Science.gov

Sample records for quantum conductance steps

  1. Quantum conductance steps in solutions of multiwalled carbon nanotubes.

    PubMed

    Urbina, A; Echeverría, I; Pérez-Garrido, A; Díaz-Sánchez, A; Abellán, J

    2003-03-14

    We have prepared solutions of multiwalled carbon nanotubes in Aroclor 1254, a mixture of polychlorinated biphenyls. The solutions are stable at room temperature. Transport measurements were performed using a scanning-tunneling probe on a sample prepared by spin coating the solution on gold substrates. Conductance steps were clearly seen. A histogram of a high number of traces shows maximum peaks at integer values of the conductance quantum G(0)=2e(2)/h, demonstrating ballistic transport at room temperature along the carbon nanotube over distances longer than 1.4 microm. PMID:12689021

  2. Tunneling into a quantum confinement created by a single-step nanolithography of conducting oxide interfaces

    NASA Astrophysics Data System (ADS)

    Maniv, E.; Ron, A.; Goldstein, M.; Palevski, A.; Dagan, Y.

    2016-07-01

    A unique nanolithography technique compatible with conducting oxide interfaces, which requires a single lithographic step with no additional amorphous deposition or etching, is presented. It is demonstrated on a SrTiO3/LaAlO3 interface where a constriction is patterned in the electron liquid. We find that an additional backgating can further confine the electron liquid into an isolated island. Conductance and differential conductance measurements show resonant tunneling through the island. The data at various temperatures and magnetic fields are analyzed and the effective island size is found to be of the order of 10 nm. The magnetic field dependence suggests the absence of spin degeneracy in the island. Our method is suitable for creating superconducting and oxide-interface-based electronic devices.

  3. Fractional quantum conductance in edge channels of silicon quantum wells

    SciTech Connect

    Bagraev, Nikolay; Klyachkin, Leonid; Kudryavtsev, Andrey; Malyarenko, Anna

    2013-12-04

    We present the findings for the fractional quantum conductance of holes that is caused by the edge channels in the silicon nanosandwich prepared within frameworks of the Hall geometry. This nanosandwich represents the ultra-narrow p-type silicon quantum well (Si-QW), 2 nm, confined by the δ-barriers heavily doped with boron on the n-type Si (100) surface. The edge channels in the Si-QW plane are revealed by measuring the longitudinal quantum conductance staircase, G{sub xx}, as a function of the voltage applied to the Hall contacts, V{sub xy}, to a maximum of 4e{sup 2}/h. In addition to the standard plateau, 2e{sup 2}/h, the variations of the V{sub xy} voltage appear to exhibit the fractional form of the quantum conductance staircase with the plateaus and steps that bring into correlation respectively with the odd and even fractions.

  4. Quantum Conductance in Metal Nanowires

    NASA Astrophysics Data System (ADS)

    Ugarte, Daniel

    2004-03-01

    Quantum Conductance in Metal Nanowires D. Ugarte Brazilian National Synchrotron Light Laboratory C.P. 6192, 13084-971 Campinas SP, Brazil. Electrical transport properties of metallic nanowires (NWs) have received great attention due to their quantum conductance behavior. Atomic scale wires can be generated by stretching metal contacts; during the elongation and just before rupture, the NW conductance shows flat plateaus and abrupt jumps of approximately a conductance quantum. In this experiments, both the NW atomic arrangement and conductance change simultaneously, making difficult to discriminate electronic and structural effects. In this work, the atomic structure of NWs was studied by time-resolved in situ experiments in a high resolution transmission electron microscope, while their electrical properties using an UHV mechanically controllable break junction (MCBJ). From the analysis of numerous HRTEM images and videos, we have deduced that metal (Au, Ag, Pt, etc.) junctions generated by tensile deformation are crystalline and free of defects. The neck structure is strongly dependent on the surface properties of the analyzed metal, this was verified by comparing different metal NWs (Au, Ag, Cu), which have similar atomic structure (FCC), but show very different faceting patterns. The correlation between the observed structural and transport properties of NW points out that the quantum conductance behavior is defined by preferred atomic arrangement at the narrowest constriction. In the case of magnetic (ex. Fe,Co,Ni) or quasi-magnetic (ex. Pd) wires, we have observed that one-atom-thick structures show a conductance of half the quantum as expected for a fully spin polarized current. This phenomenon seems to occur spontaneously for magnetic suspended atom-chains in zero magnetic field and at room temperature. These results open new opportunities for spin control in nanostructures. Funded by FAPESP, LNLS and CNPq.

  5. Quantum mechanics and heat conduction

    SciTech Connect

    Bajpai, S.D. ); Mishra, S. )

    1991-08-01

    One of the fundamental problems in quantum mechanics is to find a solution of Schroedinger equation for different forms of potentials. The object of this paper is to obtain a series solution of a particular one-dimensional, time-dependent Schroedinger equation involving Hermite polynomials. The authors also show a relationship of their particular one-dimensional, time-dependent Schroedinger equation with an equation of heat conduction.

  6. Conductivity of Si(111)-(7×7): the role of a single atomic step.

    PubMed

    Martins, Bruno V C; Smeu, Manuel; Livadaru, Lucian; Guo, Hong; Wolkow, Robert A

    2014-06-20

    While it is known that the Si-(7×7) is a conducting surface, measured conductivity values differ by 7 orders of magnitude. Here we report a combined STM and transport method capable of surface conductivity measurement of step-free or single-step containing surface regions and having minimal interaction with the sample, and by which we quantitatively determine the intrinsic conductivity of the Si-(7×7) surface. We found that a single step has a conductivity per unit length about 50 times smaller than the flat surface. Our first principles quantum transport calculations confirm and lend insight into the experimental observation. PMID:24996100

  7. Steps toward fault-tolerant quantum chemistry.

    SciTech Connect

    Taube, Andrew Garvin

    2010-05-01

    Developing quantum chemistry programs on the coming generation of exascale computers will be a difficult task. The programs will need to be fault-tolerant and minimize the use of global operations. This work explores the use a task-based model that uses a data-centric approach to allocate work to different processes as it applies to quantum chemistry. After introducing the key problems that appear when trying to parallelize a complicated quantum chemistry method such as coupled-cluster theory, we discuss the implications of that model as it pertains to the computational kernel of a coupled-cluster program - matrix multiplication. Also, we discuss the extensions that would required to build a full coupled-cluster program using the task-based model. Current programming models for high-performance computing are fault-intolerant and use global operations. Those properties are unsustainable as computers scale to millions of CPUs; instead one must recognize that these systems will be hierarchical in structure, prone to constant faults, and global operations will be infeasible. The FAST-OS HARE project is introducing a scale-free computing model to address these issues. This model is hierarchical and fault-tolerant by design, allows for the clean overlap of computation and communication, reducing the network load, does not require checkpointing, and avoids the complexity of many HPC runtimes. Development of an algorithm within this model requires a change in focus from imperative programming to a data-centric approach. Quantum chemistry (QC) algorithms, in particular electronic structure methods, are an ideal test bed for this computing model. These methods describe the distribution of electrons in a molecule, which determine the properties of the molecule. The computational cost of these methods is high, scaling quartically or higher in the size of the molecule, which is why QC applications are major users of HPC resources. The complexity of these algorithms means that

  8. Surface and Step Conductivities on Si(111) Surfaces.

    PubMed

    Just, Sven; Blab, Marcus; Korte, Stefan; Cherepanov, Vasily; Soltner, Helmut; Voigtländer, Bert

    2015-08-01

    Four-point measurements using a multitip scanning tunneling microscope are carried out in order to determine surface and step conductivities on Si(111) surfaces. In a first step, distance-dependent four-point measurements in the linear configuration are used in combination with an analytical three-layer model for charge transport to disentangle the 2D surface conductivity from nonsurface contributions. A termination of the Si(111) surface with either Bi or H results in the two limiting cases of a pure 2D or 3D conductance, respectively. In order to further disentangle the surface conductivity of the step-free surface from the contribution due to atomic steps, a square four-probe configuration is applied as a function of the rotation angle. In total, this combined approach leads to an atomic step conductivity of σ(step)=(29±9)  Ω(-1) m(-1) and to a step-free surface conductivity of σ(surf)=(9±2)×10(-6)  Ω(-1)/□ for the Si(111)-(7×7) surface. PMID:26296126

  9. Thermodynamics of trajectories of open quantum systems, step by step

    NASA Astrophysics Data System (ADS)

    Pigeon, Simon; Xuereb, André

    2016-06-01

    Thermodynamics of trajectories promises to make possible the thorough analysis of the dynamical properties of an open quantum system, a sought-after goal in modern physics. Unfortunately, calculation of the relevant quantities presents severe challenges. Determining the large-deviation function that gives access to the full counting statistics associated with a dynamical order parameter is challenging, if not impossible, even for systems evolving in a restricted Liouville space. Acting on the realisation that the salient features of most dynamical systems are encoded in the first few moments of the counting statistics, in this article we present a method that gives sequential access to these moments. Our method allows for obtaining analytical result in several cases, as we illustrate, and allows using large deviation theory to reinterpret certain well-known results.

  10. Topologically induced fractional Hall steps in the integer quantum Hall regime of MoS 2.

    PubMed

    Islam, S K Firoz; Benjamin, Colin

    2016-09-23

    The quantum magnetotransport properties of a monolayer of molybdenum disulfide are derived using linear response theory. In particular, the effect of topological terms on longitudinal and Hall conductivity is analyzed. The Hall conductivity exhibits fractional steps in the integer quantum Hall regime. Further complete spin and valley polarization of the longitudinal conductivitity is seen in presence of these topological terms. Finally, the Shubnikov-de Hass oscillations are suppressed or enhanced contingent on the sign of these topological terms. PMID:27533362

  11. Conductance Peaks in Open Quantum Dots

    NASA Astrophysics Data System (ADS)

    Ramos, J. G. G. S.; Bazeia, D.; Hussein, M. S.; Lewenkopf, C. H.

    2011-10-01

    We present a simple measure of the conductance fluctuations in open ballistic chaotic quantum dots, extending the number of maxima method originally proposed for the statistical analysis of compound nuclear reactions. The average number of extreme points (maxima and minima) in the dimensionless conductance T as a function of an arbitrary external parameter Z is directly related to the autocorrelation function of T(Z). The parameter Z can be associated with an applied gate voltage causing shape deformation in quantum dot, an external magnetic field, the Fermi energy, etc. The average density of maxima is found to be ⟨ρZ⟩=αZ/Zc, where αZ is a universal constant and Zc is the conductance autocorrelation length, which is system specific. The analysis of ⟨ρZ⟩ does not require large statistic samples, providing a quite amenable way to access information about parametric correlations, such as Zc.

  12. Comparing conductance quantization in quantum wires and quantum Hall systems

    NASA Astrophysics Data System (ADS)

    Alekseev, Anton Yu.; Cheianov, Vadim V.; Fröhlich, Jürg

    1996-12-01

    We suggest a means to calculate the dc conductance of a one-dimensional electron system described by the Luttinger model. Our approach is based on the ideas of Landauer and Büttiker on transport in ballistic channels and on the methods of current algebra. We analyze in detail the way in which the system can be coupled to external reservoirs. This determines whether the conductance is renormalized or not. We provide a parallel treatment of a quantum wire and a fractional quantum Hall system on a cylinder with two widely separated edges. Although both systems are described by the same effective theory, the physical electrons are identified with different types of excitations, and hence the coupling to external reservoirs is different. As a consequence, the conductance in the wire is quantized in integer units of e2/h per spin orientation whereas the Hall conductance allows for fractional quantization.

  13. One Step Quantum Key Distribution Based on EPR Entanglement.

    PubMed

    Li, Jian; Li, Na; Li, Lei-Lei; Wang, Tao

    2016-01-01

    A novel quantum key distribution protocol is presented, based on entanglement and dense coding and allowing asymptotically secure key distribution. Considering the storage time limit of quantum bits, a grouping quantum key distribution protocol is proposed, which overcomes the vulnerability of first protocol and improves the maneuverability. Moreover, a security analysis is given and a simple type of eavesdropper's attack would introduce at least an error rate of 46.875%. Compared with the "Ping-pong" protocol involving two steps, the proposed protocol does not need to store the qubit and only involves one step. PMID:27357865

  14. One Step Quantum Key Distribution Based on EPR Entanglement

    PubMed Central

    Li, Jian; Li, Na; Li, Lei-Lei; Wang, Tao

    2016-01-01

    A novel quantum key distribution protocol is presented, based on entanglement and dense coding and allowing asymptotically secure key distribution. Considering the storage time limit of quantum bits, a grouping quantum key distribution protocol is proposed, which overcomes the vulnerability of first protocol and improves the maneuverability. Moreover, a security analysis is given and a simple type of eavesdropper’s attack would introduce at least an error rate of 46.875%. Compared with the “Ping-pong” protocol involving two steps, the proposed protocol does not need to store the qubit and only involves one step. PMID:27357865

  15. How to Conduct Surveys: A Step-by-Step Guide. Sixth Edition

    ERIC Educational Resources Information Center

    Fink, Arlene

    2016-01-01

    Packed with new topics that reflect today's challenges, the Sixth Edition of the bestselling "How to Conduct Surveys" guides readers through the process of developing their own rigorous surveys and evaluating the credibility and transparency of surveys created by others. Offering practical, step-by-step advice and written in the same…

  16. Step-by-step magic state encoding for efficient fault-tolerant quantum computation

    PubMed Central

    Goto, Hayato

    2014-01-01

    Quantum error correction allows one to make quantum computers fault-tolerant against unavoidable errors due to decoherence and imperfect physical gate operations. However, the fault-tolerant quantum computation requires impractically large computational resources for useful applications. This is a current major obstacle to the realization of a quantum computer. In particular, magic state distillation, which is a standard approach to universality, consumes the most resources in fault-tolerant quantum computation. For the resource problem, here we propose step-by-step magic state encoding for concatenated quantum codes, where magic states are encoded step by step from the physical level to the logical one. To manage errors during the encoding, we carefully use error detection. Since the sizes of intermediate codes are small, it is expected that the resource overheads will become lower than previous approaches based on the distillation at the logical level. Our simulation results suggest that the resource requirements for a logical magic state will become comparable to those for a single logical controlled-NOT gate. Thus, the present method opens a new possibility for efficient fault-tolerant quantum computation. PMID:25511387

  17. Step-by-step magic state encoding for efficient fault-tolerant quantum computation

    NASA Astrophysics Data System (ADS)

    Goto, Hayato

    2014-12-01

    Quantum error correction allows one to make quantum computers fault-tolerant against unavoidable errors due to decoherence and imperfect physical gate operations. However, the fault-tolerant quantum computation requires impractically large computational resources for useful applications. This is a current major obstacle to the realization of a quantum computer. In particular, magic state distillation, which is a standard approach to universality, consumes the most resources in fault-tolerant quantum computation. For the resource problem, here we propose step-by-step magic state encoding for concatenated quantum codes, where magic states are encoded step by step from the physical level to the logical one. To manage errors during the encoding, we carefully use error detection. Since the sizes of intermediate codes are small, it is expected that the resource overheads will become lower than previous approaches based on the distillation at the logical level. Our simulation results suggest that the resource requirements for a logical magic state will become comparable to those for a single logical controlled-NOT gate. Thus, the present method opens a new possibility for efficient fault-tolerant quantum computation.

  18. Dirac Cellular Automaton from Split-step Quantum Walk

    NASA Astrophysics Data System (ADS)

    Mallick, Arindam; Chandrashekar, C. M.

    2016-05-01

    Simulations of one quantum system by an other has an implication in realization of quantum machine that can imitate any quantum system and solve problems that are not accessible to classical computers. One of the approach to engineer quantum simulations is to discretize the space-time degree of freedom in quantum dynamics and define the quantum cellular automata (QCA), a local unitary update rule on a lattice. Different models of QCA are constructed using set of conditions which are not unique and are not always in implementable configuration on any other system. Dirac Cellular Automata (DCA) is one such model constructed for Dirac Hamiltonian (DH) in free quantum field theory. Here, starting from a split-step discrete-time quantum walk (QW) which is uniquely defined for experimental implementation, we recover the DCA along with all the fine oscillations in position space and bridge the missing connection between DH-DCA-QW. We will present the contribution of the parameters resulting in the fine oscillations on the Zitterbewegung frequency and entanglement. The tuneability of the evolution parameters demonstrated in experimental implementation of QW will establish it as an efficient tool to design quantum simulator and approach quantum field theory from principles of quantum information theory.

  19. Dirac Cellular Automaton from Split-step Quantum Walk.

    PubMed

    Mallick, Arindam; Chandrashekar, C M

    2016-01-01

    Simulations of one quantum system by an other has an implication in realization of quantum machine that can imitate any quantum system and solve problems that are not accessible to classical computers. One of the approach to engineer quantum simulations is to discretize the space-time degree of freedom in quantum dynamics and define the quantum cellular automata (QCA), a local unitary update rule on a lattice. Different models of QCA are constructed using set of conditions which are not unique and are not always in implementable configuration on any other system. Dirac Cellular Automata (DCA) is one such model constructed for Dirac Hamiltonian (DH) in free quantum field theory. Here, starting from a split-step discrete-time quantum walk (QW) which is uniquely defined for experimental implementation, we recover the DCA along with all the fine oscillations in position space and bridge the missing connection between DH-DCA-QW. We will present the contribution of the parameters resulting in the fine oscillations on the Zitterbewegung frequency and entanglement. The tuneability of the evolution parameters demonstrated in experimental implementation of QW will establish it as an efficient tool to design quantum simulator and approach quantum field theory from principles of quantum information theory. PMID:27184159

  20. Dirac Cellular Automaton from Split-step Quantum Walk

    PubMed Central

    Mallick, Arindam; Chandrashekar, C. M.

    2016-01-01

    Simulations of one quantum system by an other has an implication in realization of quantum machine that can imitate any quantum system and solve problems that are not accessible to classical computers. One of the approach to engineer quantum simulations is to discretize the space-time degree of freedom in quantum dynamics and define the quantum cellular automata (QCA), a local unitary update rule on a lattice. Different models of QCA are constructed using set of conditions which are not unique and are not always in implementable configuration on any other system. Dirac Cellular Automata (DCA) is one such model constructed for Dirac Hamiltonian (DH) in free quantum field theory. Here, starting from a split-step discrete-time quantum walk (QW) which is uniquely defined for experimental implementation, we recover the DCA along with all the fine oscillations in position space and bridge the missing connection between DH-DCA-QW. We will present the contribution of the parameters resulting in the fine oscillations on the Zitterbewegung frequency and entanglement. The tuneability of the evolution parameters demonstrated in experimental implementation of QW will establish it as an efficient tool to design quantum simulator and approach quantum field theory from principles of quantum information theory. PMID:27184159

  1. Quantum conductance of carbon nanotube peapods

    SciTech Connect

    Yoon, Young-Gui; Mazzoni, Mario S.C.; Louie, Steven G.

    2003-08-01

    We present a first-principles study of the quantum conductance of hybrid nanotube systems consisting of single-walled carbon nanotubes (SWCNTs) encapsulating either an isolated single C60 molecule or a chain of C60 molecules (nanotube peapods). The calculations show a rather weak bonding interaction between the fullerenes and the SWCNTs. The conductance of a (10,10) SWCNT with a single C60 molecule is virtually unaffected at the Fermi level, but exhibits quantized resonant reductions at the molecular levels. The nanotube peapod arrangement gives rise to high density of states for the fullerene highest occupied molecular orbital and lowest unoccupied molecular orbital bands.

  2. Conductance through an array of quantum dots

    NASA Astrophysics Data System (ADS)

    Lobos, A. M.; Aligia, A. A.

    2006-10-01

    We propose a simple approach to study the conductance through an array of N interacting quantum dots, weakly coupled to metallic leads. Using a mapping to an effective site which describes the low-lying excitations and a slave-boson representation in the saddle-point approximation, we calculated the conductance through the system. Explicit results are presented for N=1 and N=3 : a linear array and an isosceles triangle. For N=1 in the Kondo limit, the results are in very good agreement with previous results obtained with numerical renormalization group. In the case of the linear trimer for odd N , when the parameters are such that electron-hole symmetry is induced, we obtain perfect conductance G0=2e2/h . The validity of the approach is discussed in detail.

  3. Quantum conductance of zigzag graphene oxide nanoribbons

    SciTech Connect

    Kan, Zhe; Nelson, Christopher; Khatun, Mahfuza

    2014-04-21

    The electronic properties of zigzag graphene oxide nanoribbons (ZGOR) are presented. The results show interesting behaviors which are considerably different from the properties of the perfect graphene nanoribbons (GNRs). The theoretical methods include a Huckel-tight binding approach, a Green's function methodology, and the Landauer formalism. The presence of oxygen on the edge results in band bending, a noticeable change in density of states and thus the conductance. Consequently, the occupation in the valence bands increase for the next neighboring carbon atom in the unit cell. Conductance drops in both the conduction and valence band regions are due to the reduction of allowed k modes resulting from band bending. The asymmetry of the energy band structure of the ZGOR is due to the energy differences of the atoms. The inclusion of a foreign atom's orbital energies changes the dispersion relation of the eigenvalues in energy space. These novel characteristics are important and valuable in the study of quantum transport of GNRs.

  4. Five questions to consider before conducting a stepped wedge trial.

    PubMed

    Hargreaves, James R; Copas, Andrew J; Beard, Emma; Osrin, David; Lewis, James J; Davey, Calum; Thompson, Jennifer A; Baio, Gianluca; Fielding, Katherine L; Prost, Audrey

    2015-01-01

    Researchers should consider five questions before starting a stepped wedge trial. Why are you planning one? Researchers sometimes think that stepped wedge trials are useful when there is little doubt about the benefit of the intervention being tested. However, if the primary reason for an intervention is to measure its effect, without equipoise there is no ethical justification for delaying implementation in some clusters. By contrast, if you are undertaking pragmatic research, where the primary reason for rolling out the intervention is for it to exert its benefits, and if phased implementation is inevitable, a stepped wedge trial is a valid option and provides better evidence than most non-randomized evaluations. What design will you use? Two common stepped wedge designs are based on the recruitment of a closed or open cohort. In both, individuals may experience both control and intervention conditions and you should be concerned about carry-over effects. In a third, continuous-recruitment, short-exposure design, individuals are recruited as they become eligible and experience either control or intervention condition, but not both. How will you conduct the primary analysis? In stepped wedge trials, control of confounding factors through secular variation is essential. 'Vertical' approaches preserve randomization and compare outcomes between randomized groups within periods. 'Horizontal' approaches compare outcomes before and after crossover to the intervention condition. Most analysis models used in practice combine both types of comparison. The appropriate analytic strategy should be considered on a case-by-case basis. How large will your trial be? Standard sample size calculations for cluster randomized trials do not accommodate the specific features of stepped wedge trials. Methods exist for many stepped wedge designs, but simulation-based calculations provide the greatest flexibility. In some scenarios, such as when the intracluster correlation coefficient is

  5. Two-step spin flop transition in quantum spin ladders

    NASA Astrophysics Data System (ADS)

    Sakai, Toru; Okamoto, Kiyomi

    2008-03-01

    It is well known that the antiferromagnet with easy-axis anisotropies exhibits a field-induced first-order phase transition, the so- called spin flop. In one-dimensional quantum spin systems, instead of it, a second-order phase transition occurs because of large quantum fluctuations[1]. Particularly the S=1 antiferromagnetic chain with the easy-axis single-ion anisotropy was revealed to exhibit two successive field-induced second-order transitions by our previous numerical analysis[2]. However, such transitions have not been obseved yet. Recently a two-step spin flop transition was observed in the spin ladder system IPA-CuCl3[3], which has ferromagnetic rung coupling. In order to clarify the mechanism of the two-step field-induced transition, we investigate the anisotropic spin ladder using the numerical diagonalization and the finite-size scaling analysis. As a result, we revealed that two different field-induced second-order quantum phase transitions possibly occur. Several phase diagrams are also presented. In addition we discuss on a possible two-step spin flop in other materials[4] and some frustrated systems. [1] C. N. Yang and C. P. Yang, Phys. Rev. 151 (1966) 258. [2] T. Sakai, Phys. Rev. B 58 (1998) 6268. [3] T. Masuda et al, Phys. Rev. Lett. 96 (2006) 047210. [4] H. Miyasaka et al, Inorg. Chem. 42 (2003) 8203.

  6. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films

    NASA Astrophysics Data System (ADS)

    Kim, Jin Young; Adinolfi, Valerio; Sutherland, Brandon R.; Voznyy, Oleksandr; Kwon, S. Joon; Kim, Tae Wu; Kim, Jeongho; Ihee, Hyotcherl; Kemp, Kyle; Adachi, Michael; Yuan, Mingjian; Kramer, Illan; Zhitomirsky, David; Hoogland, Sjoerd; Sargent, Edward H.

    2015-07-01

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles--yet size-effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector.

  7. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films.

    PubMed

    Kim, Jin Young; Adinolfi, Valerio; Sutherland, Brandon R; Voznyy, Oleksandr; Kwon, S Joon; Kim, Tae Wu; Kim, Jeongho; Ihee, Hyotcherl; Kemp, Kyle; Adachi, Michael; Yuan, Mingjian; Kramer, Illan; Zhitomirsky, David; Hoogland, Sjoerd; Sargent, Edward H

    2015-01-01

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles--yet size-effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector. PMID:26165185

  8. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films

    PubMed Central

    Kim, Jin Young; Adinolfi, Valerio; Sutherland, Brandon R.; Voznyy, Oleksandr; Kwon, S. Joon; Kim, Tae Wu; Kim, Jeongho; Ihee, Hyotcherl; Kemp, Kyle; Adachi, Michael; Yuan, Mingjian; Kramer, Illan; Zhitomirsky, David; Hoogland, Sjoerd; Sargent, Edward H.

    2015-01-01

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles—yet size–effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector. PMID:26165185

  9. Nonlinear Conductance of Long Quantum Wires at a Conductance Plateau Transition: Where Does the Voltage Drop?

    NASA Astrophysics Data System (ADS)

    Micklitz, T.; Levchenko, A.; Rosch, A.

    2012-07-01

    We calculate the linear and nonlinear conductance of spinless fermions in clean, long quantum wires, where short-ranged interactions lead locally to equilibration. Close to the quantum phase transition, where the conductance jumps from zero to one conductance quantum, the conductance obtains a universal form governed by the ratios of temperature, bias voltage, and gate voltage. Asymptotic analytic results are compared to solutions of a Boltzmann equation which includes the effects of three-particle scattering. Surprisingly, we find that for long wires the voltage predominantly drops close to one end of the quantum wire due to a thermoelectric effect.

  10. Quantum-limited heat conduction over macroscopic distances

    NASA Astrophysics Data System (ADS)

    Partanen, Matti; Tan, Kuan Yen; Govenius, Joonas; Lake, Russell E.; Mäkelä, Miika K.; Tanttu, Tuomo; Möttönen, Mikko

    2016-05-01

    The emerging quantum technological apparatuses, such as the quantum computer, call for extreme performance in thermal engineering. Cold distant heat sinks are needed for the quantized electric degrees of freedom owing to the increasing packaging density and heat dissipation. Importantly, quantum mechanics sets a fundamental upper limit for the flow of information and heat, which is quantified by the quantum of thermal conductance. However, the short distance between the heat-exchanging bodies in the previous experiments hinders their applicability in quantum technology. Here, we present experimental observations of quantum-limited heat conduction over macroscopic distances extending to a metre. We achieved this improvement of four orders of magnitude in the distance by utilizing microwave photons travelling in superconducting transmission lines. Thus, it seems that quantum-limited heat conduction has no fundamental distance cutoff. This work establishes the integration of normal-metal components into the framework of circuit quantum electrodynamics, which provides a basis for the superconducting quantum computer. Especially, our results facilitate remote cooling of nanoelectronic devices using faraway in situ-tunable heat sinks. Furthermore, quantum-limited heat conduction is important in contemporary thermodynamics. Here, the long distance may lead to ultimately efficient mesoscopic heat engines with promising practical applications.

  11. Quantum-limited heat conduction over macroscopic distances

    PubMed Central

    Partanen, Matti; Tan, Kuan Yen; Govenius, Joonas; Lake, Russell E.; Mäkelä, Miika K.; Tanttu, Tuomo; Möttönen, Mikko

    2016-01-01

    The emerging quantum technological apparatuses1, 2, such as the quantum computer3–6, call for extreme performance in thermal engineering7. Cold distant heat sinks are needed for the quantized electric degrees of freedom due to the increasing packaging density and heat dissipation. Importantly, quantum mechanics sets a fundamental upper limit for the flow of information and heat, which is quantified by the quantum of thermal conductance8–10. However, the short distance between the heat-exchanging bodies in the previous experiments11–14 hinders their applicability in quantum technology. Here, we present experimental observations of quantum-limited heat conduction over macroscopic distances extending to a metre. We achieved this improvement of four orders of magnitude in the distance by utilizing microwave photons travelling in superconducting transmission lines. Thus, it seems that quantum-limited heat conduction has no fundamental distance cutoff. This work establishes the integration of normal-metal components into the framework of circuit quantum electrodynamics15–17 which provides a basis for the superconducting quantum computer18–21. Especially, our results facilitate remote cooling of nanoelectronic devices using far-away in-situ-tunable heat sinks22, 23. Furthermore, quantum-limited heat conduction is important in contemporary thermodynamics24, 25. Here, the long distance may lead to ultimately efficient mesoscopic heat engines with promising practical applications26. PMID:27239219

  12. Bioconjugated silicon quantum dots from one-step green synthesis

    NASA Astrophysics Data System (ADS)

    Intartaglia, Romuald; Barchanski, Annette; Bagga, Komal; Genovese, Alessandro; Das, Gobind; Wagener, Philipp; di Fabrizio, Enzo; Diaspro, Alberto; Brandi, Fernando; Barcikowski, Stephan

    2012-02-01

    Biofunctionalized silicon quantum dots were prepared through a one step strategy avoiding the use of chemical precursors. UV-Vis spectroscopy, Raman spectroscopy and HAADF-STEM prove oligonucleotide conjugation to the surface of silicon nanoparticle with an average size of 4 nm. The nanoparticle size results from the size-quenching effect during in situ conjugation. Photoemissive properties, conjugation efficiency and stability of these pure colloids were studied and demonstrate the bio-application potential, e.g. for nucleic acid vector delivery with semiconducting, biocompatible nanoparticles.Biofunctionalized silicon quantum dots were prepared through a one step strategy avoiding the use of chemical precursors. UV-Vis spectroscopy, Raman spectroscopy and HAADF-STEM prove oligonucleotide conjugation to the surface of silicon nanoparticle with an average size of 4 nm. The nanoparticle size results from the size-quenching effect during in situ conjugation. Photoemissive properties, conjugation efficiency and stability of these pure colloids were studied and demonstrate the bio-application potential, e.g. for nucleic acid vector delivery with semiconducting, biocompatible nanoparticles. Electronic supplementary information (ESI) available: Experimental details of sample preparation, sample characterizations. Additional results of UV-vis, HAADF-STEM, Raman spectroscopy of bioconjugated silicon dots and ICP-OES of deionized water used for the synthesis are presented in Fig. S1, S3, S2, and S4 and Table S2, respectively. See DOI: 10.1039/c2nr11763k

  13. Quantum Annealing at Google: Recent Learnings and Next Steps

    NASA Astrophysics Data System (ADS)

    Neven, Hartmut

    Recently we studied optimization problems with rugged energy landscapes that featured tall and narrow energy barriers separating energy minima. We found that for a crafted problem of this kind, called the weak-strong cluster glass, the D-Wave 2X processor achieves a significant advantage in runtime scaling relative to Simulated Annealing (SA). For instances with 945 variables this results in a time-to-99%-success-probability 109 times shorter than SA running on a single core. When comparing to the Quantum Monte Carlo (QMC) algorithm we only observe a pre-factor advantage but the pre-factor is large, about 106 for an implementation on a single core. We should note that we expect QMC to scale like physical quantum annealing only for problems for which the tunneling transitions can be described by a dominant purely imaginary instanton. We expect these findings to carry over to other problems with similar energy landscapes. A class of practical interest are k-th order binary optimization problems. We studied 4-spin problems using numerical methods and found again that simulated quantum annealing has better scaling than SA. This leaves us with a final step to achieve a wall clock speedup of practical relevance. We need to develop an annealing architecture that supports embedding of k-th order binary optimization in a manner that preserves the runtime advantage seen prior to embedding.

  14. Conductance fluctuations in chaotic bilayer graphene quantum dots.

    PubMed

    Bao, Rui; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso

    2015-07-01

    Previous studies of quantum chaotic scattering established a connection between classical dynamics and quantum transport properties: Integrable or mixed classical dynamics can lead to sharp conductance fluctuations but chaos is capable of smoothing out the conductance variations. Relativistic quantum transport through single-layer graphene systems, for which the quasiparticles are massless Dirac fermions, exhibits, due to scarring, this classical-quantum correspondence, but sharp conductance fluctuations persist to a certain extent even when the classical system is fully chaotic. There is an open issue regarding the effect of finite mass on relativistic quantum transport. To address this issue, we study quantum transport in chaotic bilayer graphene quantum dots for which the quasiparticles have a finite mass. An interesting phenomenon is that, when traveling along the classical ballistic orbit, the quasiparticle tends to hop back and forth between the two layers, exhibiting a Zitterbewegung-like effect. We find signatures of abrupt conductance variations, indicating that the mass has little effect on relativistic quantum transport. In solid-state electronic devices based on Dirac materials, sharp conductance fluctuations are thus expected, regardless of whether the quasiparticle is massless or massive and whether there is chaos in the classical limit. PMID:26274258

  15. Conductance fluctuations in chaotic bilayer graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Bao, Rui; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso

    2015-07-01

    Previous studies of quantum chaotic scattering established a connection between classical dynamics and quantum transport properties: Integrable or mixed classical dynamics can lead to sharp conductance fluctuations but chaos is capable of smoothing out the conductance variations. Relativistic quantum transport through single-layer graphene systems, for which the quasiparticles are massless Dirac fermions, exhibits, due to scarring, this classical-quantum correspondence, but sharp conductance fluctuations persist to a certain extent even when the classical system is fully chaotic. There is an open issue regarding the effect of finite mass on relativistic quantum transport. To address this issue, we study quantum transport in chaotic bilayer graphene quantum dots for which the quasiparticles have a finite mass. An interesting phenomenon is that, when traveling along the classical ballistic orbit, the quasiparticle tends to hop back and forth between the two layers, exhibiting a Zitterbewegung-like effect. We find signatures of abrupt conductance variations, indicating that the mass has little effect on relativistic quantum transport. In solid-state electronic devices based on Dirac materials, sharp conductance fluctuations are thus expected, regardless of whether the quasiparticle is massless or massive and whether there is chaos in the classical limit.

  16. A variable multi-step method for transient heat conduction

    NASA Technical Reports Server (NTRS)

    Smolinski, Patrick

    1991-01-01

    A variable explicit time integration algorithm is developed for unsteady diffusion problems. The algorithm uses nodal partitioning and allows the nodal groups to be updated with different time steps. The stability of the algorithm is analyzed using energy methods and critical time steps are found in terms of element eigenvalues with no restrictions on element types. Several numerical examples are given to illustrate the accuracy of the method.

  17. Observation of quantum-limited heat conduction over macroscopic distances

    NASA Astrophysics Data System (ADS)

    Mottonen, Mikko; Partanen, Matti; Tan, Kuan Yen; Govenius, Joonas; Lake, Russell; Makela, Miika; Tanttu, Tuomo

    The emerging quantum technological devices, such as the quantum computer, call for extreme performance in thermal engineering at the nanoscale. Importantly, quantum mechanics sets a fundamental upper limit for the flow of information and heat, which is quantified by the quantum of thermal conductance. We present experimental observations of quantum-limited heat conduction over macroscopic distances extending to a meter. We achieved this striking improvement of four orders of magnitude in the distance by utilizing microwave photons travelling in superconducting transmission lines. Thus it seems that quantum-limited heat conduction has no fundamental restriction in its distance. This work lays the foundation for the integration of normal-metal components into superconducting transmission lines, and hence provides an important tool for circuit quantum electrodynamics, the basis of the emerging superconducting quantum computer. In particular, our results may lead to remote cooling of nanoelectronic devices with the help of a far-away in-situ-tunable heat sink. European Research Council (ERC) is acknowledged for funding under the Grant No. 278117 (SINGLEOUT).

  18. Thermal conductance associated with six types of vibration modes in quantum wire modulated with quantum dot

    NASA Astrophysics Data System (ADS)

    Peng, Xiao-Fang; Wang, Xin-Jun; Chen, Li-Qun; Li, Jian-Bo; Zhou, Wu-Xing; Zhang, Gui; Chen, Ke-Qiu

    2014-06-01

    We study the ballistic phonon transport and thermal conductance of six low-lying vibration modes in quantum wire modulated with quantum dot at low temperatures. A comparative analysis is made among the six vibrational modes. The results show that the transmission rates of the six vibrational modes relative to reduced frequency display periodic or quasi-periodic oscillatory behavior. Among the four acoustic modes, the thermal conductance contributed by the torsional mode is the smallest, and the thermal conductances of other acoustic modes have adjacent values. It is also found that the thermal conductance of the optical mode increases from zero monotonously. Moreover, the total thermal conductance in concavity-shaped quantum structure is lower than that in convexity-shaped quantum structure. These thermal conductance values can be adjusted by changing the structural parameters of the quantum dot.

  19. Quantum conductance of carbon nanotubes with defects

    SciTech Connect

    Chico, L.; Benedict, L.X.; Louie, S.G.; Cohen, M.L. |

    1996-07-01

    We study the conductance of metallic carbon nanotubes with vacancies and pentagon-heptagon pair defects within the Landauer formalism. Using a tight-binding model and a Green{close_quote}s function technique to calculate the scattering matrix, we examine the one-dimensional to two-dimensional crossover in these systems and show the existence of metallic tube junctions in which the conductance is suppressed for symmetry reasons. {copyright} {ital 1996 The American Physical Society.}

  20. Getting the Schools You Want: A Step-by-Step Guide to Conducting Your Own Curriculum Management Audit.

    ERIC Educational Resources Information Center

    Logan, Kimberly

    The curriculum-management audit was developed to provide school districts with a tool for making districtwide improvements. The audit can be used to help districts improve quality control over their instructional programs. This book offers a step-by-step guide to school improvement with a focus on conducting an internal audit. The first four…

  1. Conduction pathways in microtubules, biological quantum computation, and consciousness.

    PubMed

    Hameroff, Stuart; Nip, Alex; Porter, Mitchell; Tuszynski, Jack

    2002-01-01

    Technological computation is entering the quantum realm, focusing attention on biomolecular information processing systems such as proteins, as presaged by the work of Michael Conrad. Protein conformational dynamics and pharmacological evidence suggest that protein conformational states-fundamental information units ('bits') in biological systems-are governed by quantum events, and are thus perhaps akin to quantum bits ('qubits') as utilized in quantum computation. 'Real time' dynamic activities within cells are regulated by the cell cytoskeleton, particularly microtubules (MTs) which are cylindrical lattice polymers of the protein tubulin. Recent evidence shows signaling, communication and conductivity in MTs, and theoretical models have predicted both classical and quantum information processing in MTs. In this paper we show conduction pathways for electron mobility and possible quantum tunneling and superconductivity among aromatic amino acids in tubulins. The pathways within tubulin match helical patterns in the microtubule lattice structure, which lend themselves to topological quantum effects resistant to decoherence. The Penrose-Hameroff 'Orch OR' model of consciousness is reviewed as an example of the possible utility of quantum computation in MTs. PMID:11755497

  2. Electronic Conduction through Atomic Chains, Quantum Well and Quantum Wire

    NASA Astrophysics Data System (ADS)

    Sharma, A. C.

    2011-07-01

    Charge transport is dynamically and strongly linked with atomic structure, in nanostructures. We report our ab-initio calculations on electronic transport through atomic chains and the model calculations on electron-electron and electron-phonon scattering rates in presence of random impurity potential in a quantum well and in a quantum wire. We computed synthesis and ballistic transport through; (a) C and Si based atomic chains attached to metallic electrodes, (b) armchair (AC), zigzag (ZZ), mixed, rotated-AC and rotated-ZZ geometries of small molecules made of 2S, 6C & 4H atoms attaching to metallic electrodes, and (c) carbon atomic chain attached to graphene electrodes. Computed results show that synthesis of various atomic chains are practically possible and their transmission coefficients are nonzero for a wide energy range. The ab-initio calculations on electronic transport have been performed with the use of Landauer-type scattering formalism formulated in terms of Grben's functions in combination with ground-state DFT. The electron-electron and electron-phonon scattering rates have been calculated as function of excitation energy both at zero and finite temperatures for disordered 2D and 1D systems. Our model calculations suggest that electron scattering rates in a disordered system are mainly governed by effective dimensionality of a system, carrier concentration and dynamical screening effects.

  3. Conductivity of quantum wires in uniform magnetic fields

    SciTech Connect

    Sinyavskii, E. P. Khamidullin, R. A.

    2006-11-15

    The features of the de conductivity of quantum wires in longitudinal and transverse magnetic fields are studied for degenerate and nondegenerate electron gas. The conductivity is calculated on the basis of the Kubo formalism with regard to the elastic scattering of charge carriers at long-wavelength lattice vibrations. The final theoretical results for the conductivity are compared to the experimental data. The suggested model of quantum wires allows, among other things, an interpretation of the nonmonotonic dependence of the transverse magnetoresistance on the magnetic field.

  4. Four Simple Steps to Conduct an Assessment of Your Practice.

    PubMed

    Gurganious, Valora S

    2016-01-01

    Medical practice management has never been more complex than it is today, with volumes of rapidly changing regulations, increasing cost pressures, and rising quality standards under the Affordable Care Act. These challenges have made it more critical for practices to assess their current position in order to determine how best to move the practice forward. A practice assessment begins with four simple steps: an evaluation of the long-term goals and motivation of the practice's owner; a review of key practice financials and how successfully the practice captures every dollar to which it is rightfully entitled; a measure of provider productivity and strategies to improve it; and an assessment of the talent and morale of the team of professionals at the practice. PMID:27443050

  5. Thermal Conductivity of Quantum Wires with Surface Roughness

    NASA Astrophysics Data System (ADS)

    Hershfield, Selman; Muttalib, Khandker

    Quantum wires have been shown to have greatly reduced thermal conductivity compared to bulk systems because of the increased role of surface scattering. The lattice thermal conductance and conductivity is calculated in the harmonic approximation for a long quantum wire placed between two heat baths using the Landauer formula for phonons and a recursive Green function technique to compute the transmission probabilities. The width of the wires is varied in the transverse direction so as to have a root mean square value σ and correlation length L. As observed experimentally, we find that the thermal conductance is decreased with increasing σ and increased as L increases. The full scaling of the thermal conductance as a function of σ, L, the width and the length of the sample is discussed. The simulations are also compared to approximate techniques such as modeling the surfaces as having diffusive scattering.

  6. Ballistic thermal conductance by phonons through superlattice quantum-waveguides

    SciTech Connect

    Xie, Zhong-Xiang Zhang, Yong; Yu, Xia; Li, Ke-Min; Chen, Qiao

    2014-03-14

    Ballistic thermal conductances (BTCs) by phonons through superlattice quantum-waveguides are investigated by using the scattering-matrix method and the elastic continuum theory. A comparison for the cylindrical model (CM) and the rectangular model (RM) is addressed. We find that for these two models, the quantum thermal conductance can be observed even when the superlattices exist in quantum-waveguides. At low temperature, BTCs for the CM and the RM present almost the same behaviors regardless of the periodic length of superlattices. However, at higher temperature, BTCs for the RM are larger than those for the CM stemming from lower cutoff frequencies of high order modes for the RM. We also find that BTCs undergo a noticeable transformation from the monotonic decrease to constant with increasing the periodic number of superlattices. A brief analysis of these results is given.

  7. Multisublevel Magnetoquantum Conductance in Single and Coupled Double Quantum Wires

    SciTech Connect

    Lyo, Sungkwun Ken; Huang, Danhong

    2001-09-15

    We study the ballistic and diffusive magnetoquantum transport using a typical quantum point contact geometry for single and tunnel-coupled double wires that are wide (less than or similar to1 mum) in one perpendicular direction with densely populated sublevels and extremely confined in the other perpendicular (i.e., growth) direction. A general analytic solution to the Boltzmann equation is presented for multisublevel elastic scattering at low temperatures. The solution is employed to study interesting magnetic-field dependent behavior of the conductance such as a large enhancement and quantum oscillations of the conductance for various structures and field orientations. These phenomena originate from the following field-induced properties: magnetic confinement, displacement of the initial- and final-state wave functions for scattering, variation of the Fermi velocities, mass enhancement, depopulation of the sublevels and anticrossing (in double quantum wires). The magnetoconductance is strikingly different in long diffusive (or rough. dirty) wires from the quantized conductance in short ballistic (or clean) wires. Numerical results obtained for the rectangular confinement potentials in the growth direction are satisfactorily interpreted in terms of the analytic solutions based on harmonic confinement potentials. Some of the predicted features of the field-dependent diffusive and quantized conductances are consistent with recent data from GaAs/AlxGa1-xAs double quantum wires.

  8. Quantum conductance of silicon-doped carbon wire nanojunctions

    PubMed Central

    2012-01-01

    Unknown quantum electronic conductance across nanojunctions made of silicon-doped carbon wires between carbon leads is investigated. This is done by an appropriate generalization of the phase field matching theory for the multi-scattering processes of electronic excitations at the nanojunction and the use of the tight-binding method. Our calculations of the electronic band structures for carbon, silicon, and diatomic silicon carbide are matched with the available corresponding density functional theory results to optimize the required tight-binding parameters. Silicon and carbon atoms are treated on the same footing by characterizing each with their corresponding orbitals. Several types of nanojunctions are analyzed to sample their behavior under different atomic configurations. We calculate for each nanojunction the individual contributions to the quantum conductance for the propagating σ, Π, and σ∗electron incidents from the carbon leads. The calculated results show a number of remarkable features, which include the influence of the ordered periodic configurations of silicon-carbon pairs and the suppression of quantum conductance due to minimum substitutional disorder and artificially organized symmetry on these nanojunctions. Our results also demonstrate that the phase field matching theory is an efficient tool to treat the quantum conductance of complex molecular nanojunctions. PMID:23130998

  9. Thermal conductivity at a disordered quantum critical point

    NASA Astrophysics Data System (ADS)

    Hartnoll, Sean A.; Ramirez, David M.; Santos, Jorge E.

    2016-04-01

    Strongly disordered and strongly interacting quantum critical points are difficult to access with conventional field theoretic methods. They are, however, both experimentally important and theoretically interesting. In particular, they are expected to realize universal incoherent transport. Such disordered quantum critical theories have recently been constructed holographically by deforming a CFT by marginally relevant disorder. In this paper we find additional disordered fixed points via relevant disordered deformations of a holographic CFT. Using recently developed methods in holographic transport, we characterize the thermal conductivity in both sets of theories in 1+1 dimensions. The thermal conductivity is found to tend to a constant at low temperatures in one class of fixed points, and to scale as T 0.3 in the other. Furthermore, in all cases the thermal conductivity exhibits discrete scale invariance, with logarithmic in temperature oscillations superimposed on the low temperature scaling behavior. At no point do we use the replica trick.

  10. Derivation of the Drude conductivity from quantum kinetic equations

    NASA Astrophysics Data System (ADS)

    Kitamura, Hikaru

    2015-11-01

    The Drude formula of ac (frequency-dependent) electric conductivity has been established as a simple and practically useful model to understand the electromagnetic response of simple free-electron-like metals. In most textbooks of solid-state physics, the Drude formula is derived from either a classical equation of motion or the semiclassical Boltzmann transport equation. On the other hand, quantum-mechanical derivation of the Drude conductivity, which requires an appropriate treatment of phonon-assisted intraband transitions with small momentum transfer, has not been well documented except for the zero- or high-frequency case. Here, a lucid derivation of the Drude conductivity that covers the entire frequency range is presented by means of quantum kinetic equations in the density-matrix formalism. The derivation is straightforward so that advanced undergraduate students or early-year graduate students will be able to gain insight into the link between the microscopic Schrödinger equation and macroscopic transport.

  11. Conductance of quantum interference transistors in parallel and in series

    NASA Astrophysics Data System (ADS)

    Nikolić, K.; Nikolić, P.; Šordan, R.

    1999-07-01

    We theoretically study the electronic conductance G and the current-voltage characteristics of two quantum interference transistors in parallel and in series. We use two different definitions of conductance, G ˜ T and G ˜ T / R. Neither can reproduce the classical additivity law in the case of coherent transport due to quantum interference for the elements in series and quasibound states when elements are in parallel. In the case of two transistors in series, we find that the quantity T / R only qualitatively better represents the additivity law, which is probably expected because this model avoids counting the contact resistance twice. However, for the parallel configuration of transistors, the conductance is almost additive for the majority of energies when G ˜ T, except for the single-mode regime. Possible use of these configurations in digital electronics for basic logic functions is discussed.

  12. Quantum authencryption: one-step authenticated quantum secure direct communications for off-line communicants

    NASA Astrophysics Data System (ADS)

    Hwang, Tzonelih; Luo, Yi-Ping; Yang, Chun-Wei; Lin, Tzu-Han

    2014-04-01

    This work proposes a new direction in quantum cryptography called quantum authencryption. Quantum authencryption (QA), a new term to distinguish from authenticated quantum secure direct communications, is used to describe the technique of combining quantum encryption and quantum authentication into one process for off-line communicants. QA provides a new way of quantum communications without the presence of a receiver on line, and thus makes many applications depending on secure one-way quantum communications, such as quantum E-mail systems, possible. An example protocol using single photons and one-way hash functions is presented to realize the requirements on QA.

  13. Creation of ''Quantum Platelets'' via Strain-Controlled Self-Organization at Steps

    SciTech Connect

    Li, Adam; Liu, Feng; Petrovykh, D. Y.; Lin, J.-L.; Viernow, J.; Himpsel, F. J.; Lagally, M. G.

    2000-12-18

    We demonstrate, by both theory and experiment, the strain-induced self-organized formation of ''quantum platelets,'' monolayer-thick islands of finite dimensions. They form at the early stage of heteroepitaxial growth on a substrate with regularly spaced steps, and align along the steps. In the direction perpendicular to substrate steps, the island position and spacing can be preselected through substrate miscut. Along the steps, the island size and density are controlled by self-organized growth.

  14. Dislocation-induced Charges in Quantum Dots: Step Alignment and Radiative Emission

    NASA Technical Reports Server (NTRS)

    Leon, R.; Okuno, J.; Lawton, R.; Stevens-Kalceff, M.; Phillips, M.; Zou, J.; Cockayne, D.; Lobo, C.

    1999-01-01

    A transition between two types of step alignment was observed in a multilayered InGaAs/GaAs quantum-dot (QD) structure. A change to larger QD sizes in smaller concentrations occurred after formation of a dislocation array.

  15. Contactless measurement of alternating current conductance in quantum Hall structures

    SciTech Connect

    Drichko, I. L.; Diakonov, A. M.; Malysh, V. A.; Smirnov, I. Yu.; Ilyinskaya, N. D.; Usikova, A. A.; Galperin, Y. M.; Kummer, M.; Känel, H. von

    2014-10-21

    We report a procedure to determine the frequency-dependent conductance of quantum Hall structures in a broad frequency domain. The procedure is based on the combination of two known probeless methods—acoustic spectroscopy and microwave spectroscopy. By using the acoustic spectroscopy, we study the low-frequency attenuation and phase shift of a surface acoustic wave in a piezoelectric crystal in the vicinity of the electron (hole) layer. The electronic contribution is resolved using its dependence on a transverse magnetic field. At high frequencies, we study the attenuation of an electromagnetic wave in a coplanar waveguide. To quantitatively calibrate these data, we use the fact that in the quantum-Hall-effect regime the conductance at the maxima of its magnetic field dependence is determined by extended states. Therefore, it should be frequency independent in a broad frequency domain. The procedure is verified by studies of a well-characterized p-SiGe/Ge/SiGe heterostructure.

  16. Photo-induced conductance fluctuations in mesoscopic Ge/Si systems with quantum dots

    SciTech Connect

    Stepina, N. P.; Dvurechenskii, A. V.; Nikiforov, A. I.; Moers, J.; Gruetzmacher, D.

    2014-08-20

    We study the evolution of electron transport in strongly localized mesoscopic system with quantum dots under small photon flux. Exploring devices with narrow transport channels lead to the observation of giant fluctuations of the photoconductance, which is attributed to the strong dependence of hopping current on the filling of dots by holes. In our experiments, single-photon mode operation is indicated by the linear dependence of the frequency of photo-induced fluctuations on the light intensity and the step-like response of conductance on the pulse excitation. The effect of the light wavelength, measurement temperature, size of the conductive channel on the device efficiency are considered.

  17. One-step implementation of the 1->3 orbital state quantum cloning machine via quantum Zeno dynamics

    SciTech Connect

    Shao Xiaoqiang; Wang Hongfu; Zhang Shou; Chen Li; Zhao Yongfang; Yeon, Kyu-Hwang

    2009-12-15

    We present an approach for implementation of a 1->3 orbital state quantum cloning machine based on the quantum Zeno dynamics via manipulating three rf superconducting quantum interference device (SQUID) qubits to resonantly interact with a superconducting cavity assisted by classical fields. Through appropriate modulation of the coupling constants between rf SQUIDs and classical fields, the quantum cloning machine can be realized within one step. We also discuss the effects of decoherence such as spontaneous emission and the loss of cavity in virtue of master equation. The numerical simulation result reveals that the quantum cloning machine is especially robust against the cavity decay, since all qubits evolve in the decoherence-free subspace with respect to cavity decay due to the quantum Zeno dynamics.

  18. Constraints on conductances for Y-junctions of quantum wires

    NASA Astrophysics Data System (ADS)

    Aristov, D. N.

    2011-03-01

    We consider the Y-junction, connecting three quantum wires, in the scattering states formalism. In the absence of fermionic interaction we analyze the restrictions on the values of conductance matrix, imposed by the unitarity of scattering S matrix. Using the combination of numerical and analytical results, we describe the four-dimensional body of values of reduced conductance matrix. We show that this body touches the unit sphere at six points only, in accordance with Birkhoff-von Neumann theorem. It implies that the Abelian bosonization analysis for the vanishing interaction strength can be performed only in the vicinity of these six points.

  19. Direct imaging of quantum wires nucleated at diatomic steps

    SciTech Connect

    Molina, S. I.; Varela, M.; Sales, D. L.; Ben, T.; Pizarro, J.; Galindo, P. L.; Fuster, D.; Gonzalez, Y.; Gonzalez, L.; Pennycook, S. J.

    2007-10-01

    Atomic steps at growth surfaces are important heterogeneous sources for nucleation of epitaxial nano-objects. In the presence of misfit strain, we show that the nucleation process takes place preferentially at the upper terrace of the step as a result of the local stress relaxation. Evidence for strain-induced nucleation comes from the direct observation by postgrowth, atomic resolution, Z-contrast imaging of an InAs-rich region in a nanowire located on the upper terrace surface of an interfacial diatomic step.

  20. Lattice thermal conductance of quantum wires with disorder

    NASA Astrophysics Data System (ADS)

    Vyhmeister, Erik; Hershfield, Selman

    We model the lattice thermal conductance in long quantum wires connected to two large heat baths at different temperatures in the harmonic approximation. The thermal conductance is computed with the Landauer formula for phonons, where it is related to the sum over all transmission probabilities for phonons through the wire. The net transmission probability is computed using a recursive Green function technique, which allows one to study long wires efficiently. We consider several different kinds of disorder to reduce the lattice thermal conductivity: periodic rectangular holes of varying sizes and shapes, periodic triangular holes, and narrow bands, averaged over randomness to account for variance in manufacturing. Depending on the model, the thermal conductance was reduced by 80 percent or more from the perfectly ordered wire case. Funded by NSF grant DMR-1461019.

  1. Growth of Quantum Wires on Step-Bunched Substrate

    SciTech Connect

    Liu, Feng

    2005-02-01

    This proposal initiates a combined theoretical and experimental multidisciplinary research effort to explore a novel approach for growing metallic and magnetic nanowires on step-bunched semiconductor and dielectric substrates, and to lay the groundwork for understanding the growth mechanisms and the electronic, electrical, and magnetic properties of metallic and magnetic nanowires. The research will focus on four topics: (1) fundamental studies of step bunching and self-organization in a strained thin film for creating step-bunched substrates. (2) Interaction between metal adatoms (Al,Cu, and Ni) and semiconductor (Si and SiGe) and dielectric (CaF2) surface steps. (3) growth and characterization of metallic and magnetic nanowires on step-bunched templates. (4) fabrication of superlattices of nanowires by growing multilayer films. We propose to attack these problems at both a microscopic and macroscopic level, using state-of-the-art theoretical and experimental techniques. Multiscale (electronic-atomic-continuum) theories will be applied to investigate growth mechanisms of nanowires: mesoscopic modeling and simulation of step flow growth of strained thin films, in particular, step bunching and self-organization will be carried out within the framework of continuum linear elastic theory; atomistic calculation of interaction between metal adatoms and semiconductor and dielectric surface steps will be done by large-scale computations using first-principles total-energy methods. In parallel, thin films and nanowires will be grown by molecular beam epitaxy (MBE), and the resultant structure and morphology will be characterized at the atomic level up to micrometer range, using a combination of different surface/interface probes, including scanning tunneling microscopy (STM, atomic resolution), atomic force microscopy (AFM, nanometer resolution), low-energy electron microscopy (LEEM, micrometer resolution), reflectance high-energy electron diffraction (RHEED), and x

  2. Mid-infrared Photoconductive Response in AlGaN/GaN Step Quantum Wells.

    PubMed

    Rong, X; Wang, X Q; Chen, G; Zheng, X T; Wang, P; Xu, F J; Qin, Z X; Tang, N; Chen, Y H; Sang, L W; Sumiya, M; Ge, W K; Shen, B

    2015-01-01

    AlGaN/GaN quantum structure is an excellent candidate for high speed infrared detectors based on intersubband transitions. However, fabrication of AlGaN/GaN quantum well infrared detectors suffers from polarization-induced internal electric field, which greatly limits the carrier vertical transport. In this article, a step quantum well is proposed to attempt solving this problem, in which a novel spacer barrier layer is used to balance the internal electric field. As a result, a nearly flat band potential profile is obtained in the step barrier layers of the AlGaN/GaN step quantum wells and a bound-to-quasi-continuum (B-to-QC) type intersubband prototype device with detectable photocurrent at atmosphere window (3-5 μm) is achieved in such nitride semiconductors. PMID:26395756

  3. Mid-infrared Photoconductive Response in AlGaN/GaN Step Quantum Wells

    PubMed Central

    Rong, X.; Wang, X. Q.; Chen, G.; Zheng, X. T.; Wang, P.; Xu, F. J.; Qin, Z. X.; Tang, N.; Chen, Y. H.; Sang, L. W.; Sumiya, M.; Ge, W. K.; Shen, B.

    2015-01-01

    AlGaN/GaN quantum structure is an excellent candidate for high speed infrared detectors based on intersubband transitions. However, fabrication of AlGaN/GaN quantum well infrared detectors suffers from polarization-induced internal electric field, which greatly limits the carrier vertical transport. In this article, a step quantum well is proposed to attempt solving this problem, in which a novel spacer barrier layer is used to balance the internal electric field. As a result, a nearly flat band potential profile is obtained in the step barrier layers of the AlGaN/GaN step quantum wells and a bound-to-quasi-continuum (B-to-QC) type intersubband prototype device with detectable photocurrent at atmosphere window (3–5 μm) is achieved in such nitride semiconductors. PMID:26395756

  4. Negative Differential Conductivity in an Interacting Quantum Gas

    NASA Astrophysics Data System (ADS)

    Labouvie, Ralf; Santra, Bodhaditya; Heun, Simon; Wimberger, Sandro; Ott, Herwig

    2015-07-01

    We report on the observation of negative differential conductivity (NDC) in a quantum transport device for neutral atoms employing a multimode tunneling junction. The system is realized with a Bose-Einstein condensate loaded in a one-dimensional optical lattice with high site occupancy. We induce an initial difference in chemical potential at one site by local atom removal. The ensuing transport dynamics are governed by the interplay between the tunneling coupling, the interaction energy, and intrinsic collisions, which turn the coherent coupling into a hopping process. The resulting current-voltage characteristics exhibit NDC, for which we identify atom number-dependent tunneling as a new microscopic mechanism. Our study opens new ways for the future implementation and control of complex neutral atom quantum circuits.

  5. Negative Differential Conductivity in an Interacting Quantum Gas.

    PubMed

    Labouvie, Ralf; Santra, Bodhaditya; Heun, Simon; Wimberger, Sandro; Ott, Herwig

    2015-07-31

    We report on the observation of negative differential conductivity (NDC) in a quantum transport device for neutral atoms employing a multimode tunneling junction. The system is realized with a Bose-Einstein condensate loaded in a one-dimensional optical lattice with high site occupancy. We induce an initial difference in chemical potential at one site by local atom removal. The ensuing transport dynamics are governed by the interplay between the tunneling coupling, the interaction energy, and intrinsic collisions, which turn the coherent coupling into a hopping process. The resulting current-voltage characteristics exhibit NDC, for which we identify atom number-dependent tunneling as a new microscopic mechanism. Our study opens new ways for the future implementation and control of complex neutral atom quantum circuits. PMID:26274404

  6. DNA-sensors based on functionalized conducting polymers and quantum dots

    NASA Astrophysics Data System (ADS)

    Kjällman, Tanja; Peng, Hui; Travas-Sejdic, Jadranka; Soeller, Christian

    2007-12-01

    The availability of rapid and specific biosensors is of great importance for many areas of biomedical research and modern biotechnology. This includes a need for DNA sensors where the progress of molecular biology demands routine detection of minute concentrations of specific gene fragments. A promising alternative approach to traditional DNA essays utilizes novel smart materials, including conducting polymers and nanostructured materials such as quantum dots. We have constructed a number of DNA sensors based on smart materials that allow rapid one-step detection of unlabeled DNA fragments with high specificity. These sensors are based on functionalized conducting polymers derived from polypyrrole (PPy) and poly(p-phenylenevinylene) (PPV). PPy based sensors provide intrinsic electrical readout via cyclic voltammetry and electrochemical impedance spectroscopy. The performance of these sensors is compared to a novel self-assembled monolayer-PNA construct on a gold electrode. Characterization of the novel PNA based sensor shows that it has comparable performance to the PPy based sensors and can also be read out effectively using AC cyclic voltammetry. Complementary to such solid substrate sensors we have developed a novel optical DNA essay based on a new PPV derived cationic conducting polymer. DNA detection in this essay results from sample dependent fluorescence resonance energy transfer changes between the cationic conducting polymer and Cy3 labeled probe oligonucleotides. As an alternative to such fluorochrome based sensors we discuss the use of inorganic nanocrystals ('quantum dots') and present data from water soluble CdTe quantum dots synthesized in an aqueous environment.

  7. Negative Differential Conductivity in an Interacting Quantum Gas

    NASA Astrophysics Data System (ADS)

    Santra, Bodhaditya; Labouvie, Ralf; Heun, Simon; Wimberger, Sandro; Ott, Herwig

    2015-05-01

    Negative differential conductivity (NDC) is a widely exploited mechanism in many areas of research dealing with particle and energy transport. We experimentally realize such a many body quantum transport system based on ultracold atoms in a periodic potential. We prepare our system by loading Bose condensed rubidium atoms in a 1D optical lattice with high atom occupancy per lattice site. Subsequently, we remove all the atoms from a central lattice site. While the atoms from neighboring sites tunnel into the empty site, we observe NDC in the resulting current voltage characteristics and investigate the microscopic mechanism behind it.

  8. Experimental Observation of Quantum Confinement in the Conduction Band of CdSe Quantum Dots

    SciTech Connect

    Lee, Jonathan R. I.; Meulenberg, Robert W.; Klepeis, John E.; Terminello, Louis J.; Buuren, Tony van; Hanif, Khalid M.; Mattoussi, Hedi

    2007-04-06

    X-ray absorption spectroscopy has been used to characterize the evolution in the conduction band (CB) density of states of CdSe quantum dots (QDs) as a function of particle size. We have unambiguously witnessed the CdSe QD CB minimum (CBM) shift to higher energy with decreasing particle size, consistent with quantum confinement effects, and have directly compared our results with recent theoretical calculations. At the smallest particle size, evidence for a pinning of the CBM is presented. Our observations can be explained by considering a size-dependent change in the angular-momentum-resolved states at the CBM.

  9. Modeling of graphene nanoscroll conductance with quantum capacitance effect

    NASA Astrophysics Data System (ADS)

    Khaledian, Mohsen; Ismail, Razali

    2015-12-01

    Graphene nanoscrolls (GNSs) as a new category of quasi one dimensional belong to the carbon-based nanomaterials, which have recently captivated the attention of researchers. The latest discoveries of exceptional structural and electronic properties of GNSs like, high mobility, controllable band gap and tunable core size has become a new stimuli for nanotechnology researchers. Fundamental descriptions about structure and electronic properties of GNSs have been investigated in order to apply them in nanoelectronic applications like nanotransistors and nanosensors as a new semiconducting material. By utilizing a novel approach, the analytical conductance model (G) of GNSs with the effect of Hall quantum is derived. This letter introduces a geometrydependent model to analyze the conductance of GNSs. The conductance modeling of GNS in parabolic part of the band structure which displays minimum conductance near the charge neutrality point is calculated. Subsequently, the effect of temperature and physical parameters on GNS conductivity is studied. This study emphasized that the GNS is a promising candidate for new generation of nanoelectronic devices.

  10. Error correction in short time steps during the application of quantum gates

    NASA Astrophysics Data System (ADS)

    de Castro, L. A.; Napolitano, R. d. J.

    2016-04-01

    We propose a modification of the standard quantum error-correction method to enable the correction of errors that occur due to the interaction with a noisy environment during quantum gates without modifying the codification used for memory qubits. Using a perturbation treatment of the noise that allows us to separate it from the ideal evolution of the quantum gate, we demonstrate that in certain cases it is necessary to divide the logical operation in short time steps intercalated by correction procedures. A prescription of how these gates can be constructed is provided, as well as a proof that, even for the cases when the division of the quantum gate in short time steps is not necessary, this method may be advantageous for reducing the total duration of the computation.

  11. Experimental Observation of Quantum Confinement in the Conduction Band of CdSe Quantum Dots

    SciTech Connect

    Lee, J I; Meulenberg, R W; Hanif, K M; Mattoussi, H; Klepeis, J E; Terminello, L J; van Buuren, T

    2006-12-15

    Recent theoretical descriptions as to the magnitude of effect that quantum confinement has on he conduction band (CB) of CdSe quantum dots (QD) have been conflicting. In this manuscript, we experimentally identify quantum confinement effects in the CB of CdSe QDs for the first time. Using X-ray absorption spectroscopy, we have unambiguously witnessed the CB minimum shift to higher energy with decreasing particle size and have been able to compare these results to recent theories. Our experiments have been able to identify which theories correctly describe the CB states in CdSe QDs. In particular, our experiments suggest that multiple theories describe the shifts in the CB of CdSe QDs and are not mutually exclusive.

  12. Quantum Conductance in Silicon Oxide Resistive Memory Devices

    PubMed Central

    Mehonic, A.; Vrajitoarea, A.; Cueff, S.; Hudziak, S.; Howe, H.; Labbé, C.; Rizk, R.; Pepper, M.; Kenyon, A. J.

    2013-01-01

    Resistive switching offers a promising route to universal electronic memory, potentially replacing current technologies that are approaching their fundamental limits. In many cases switching originates from the reversible formation and dissolution of nanometre-scale conductive filaments, which constrain the motion of electrons, leading to the quantisation of device conductance into multiples of the fundamental unit of conductance, G0. Such quantum effects appear when the constriction diameter approaches the Fermi wavelength of the electron in the medium – typically several nanometres. Here we find that the conductance of silicon-rich silica (SiOx) resistive switches is quantised in half-integer multiples of G0. In contrast to other resistive switching systems this quantisation is intrinsic to SiOx, and is not due to drift of metallic ions. Half-integer quantisation is explained in terms of the filament structure and formation mechanism, which allows us to distinguish between systems that exhibit integer and half-integer quantisation. PMID:24048282

  13. Quantum resonance catastrophe for conductance through a periodically driven barrier

    NASA Astrophysics Data System (ADS)

    Thuberg, Daniel; Reyes, Sebastián A.; Eggert, Sebastian

    2016-05-01

    We consider the quantum conductance in a tight-binding chain with a locally applied potential which is oscillating in time. The steady state for such a driven impurity can be calculated exactly for any energy and applied potential using the Floquet formalism. The resulting transmission has a nontrivial, nonmonotonic behavior depending on incoming momentum, driving frequency, and the strength of the applied periodic potential. Hence there is an abundance of tuning possibilities, which allows finding the resonances of total reflection for any choice of incoming momentum and periodic potential. Remarkably, this implies that even for an arbitrarily small infinitesimal impurity potential it is always possible to find a resonance frequency at which there is a catastrophic breakdown of the transmission T =0 . The points of zero transmission are closely related to the phenomenon of Fano resonances at dynamically created bound states in the continuum. The results are relevant for a variety of one-dimensional systems where local AC driving is possible, such as quantum nanodot arrays, ultracold gases in optical lattices, photonic crystals, or molecular electronics.

  14. Enhanced conductance through side-coupled double quantum dots

    NASA Astrophysics Data System (ADS)

    Žitko, R.; Bonča, J.

    2006-01-01

    Conductance, on-site, and intersite charge fluctuations and spin correlations in the system of two side-coupled quantum dots are calculated using Wilson’s numerical renormalization group (NRG) technique. We also show the spectral density calculated using the density-matrix NRG, which for some parameter ranges remedies inconsistencies of the conventional approach. By changing the gate voltage and the interdot tunneling rate, the system can be tuned to a nonconducting spin-singlet state, the usual Kondo regime with an odd number of electrons occupying the dots, the two-stage Kondo regime with two electrons, or a valence-fluctuating state associated with a Fano resonance. Analytical expressions for the width of the Kondo regime and the Kondo temperature are given. We also study the effect of unequal gate voltages and the stability of the two-stage Kondo effect with respect to such perturbations.

  15. Single-step synthesis of graphene quantum dots by femtosecond laser ablation of graphene oxide dispersions.

    PubMed

    Russo, Paola; Liang, Robert; Jabari, Elahe; Marzbanrad, Ehsan; Toyserkani, Ehsan; Zhou, Y Norman

    2016-04-21

    In the last few years, graphene quantum dots (GQDs) have attracted the attention of many research groups for their outstanding properties, which include low toxicity, chemical stability and photoluminescence. One of the challenges of GQD synthesis is finding a single-step, cheap and sustainable approach for synthesizing these promising nanomaterials. In this study, we demonstrate that femtosecond laser ablation of graphene oxide (GO) dispersions could be employed as a facile and environmentally friendly synthesis method for GQDs. With the proper control of laser ablation parameters, such as ablation time and laser power, it is possible to produce GQDs with average sizes of 2-5 nm, emitting a blue luminescence at 410 nm. We tested the feasibility of the synthesized GQDs as materials for electronic devices by aerosol-jet printing of an ink that is a mixture of water dispersion of laser synthesized GQDs and silver nanoparticle dispersion, which resulted in lower resistivity of the final printed patterns. Preliminary results showed that femtosecond laser synthesized GQDs can be mixed with silver nanoparticle dispersion to fabricate a hybrid material, which can be employed in printing electronic devices by either printing patterns that are more conductive and/or reducing costs of the ink by decreasing the concentration of silver nanoparticles (AgNPs) in the ink. PMID:27071944

  16. XANES: observation of quantum confinement in the conduction band of colloidal PbS quantum dots

    NASA Astrophysics Data System (ADS)

    Demchenko, I. N.; Chernyshova, M.; He, X.; Minikayev, R.; Syryanyy, Y.; Derkachova, A.; Derkachov, G.; Stolte, W. C.; Piskorska-Hommel, E.; Reszka, A.; Liang, H.

    2013-04-01

    The presented investigations aimed at development of inexpensive method for synthesized materials suitable for utilization of solar energy. This important issue was addressed by focusing, mainly, on electronic local structure studies with supporting x-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis of colloidal galena nano-particles (NPs) and quantum dots (QDs) synthesized using wet chemistry under microwave irradiation. Performed x-ray absorption near edge structure (XANES) analysis revealed an evidence of quantum confinement for the sample with QDs, where the bottom of the conduction band was shifted to higher energy. The QDs were found to be passivated with oxides at the surface. Existence of sulfate/sulfite and thiosulfate species in pure PbS and QDs, respectively, was identified.

  17. One-step implementation of a Toffoli gate of separated superconducting qubits via quantum Zeno dynamics

    NASA Astrophysics Data System (ADS)

    Chen, Mei-Feng; Chen, Yong-Fa; Ma, Song-She

    2016-04-01

    Based on the quantum Zeno dynamics, a scheme is presented to implement a Toffoli gate of three separated superconducting qubits (SQs) by one step. Three separated SQs are connected by two resonators. The scheme is insensitive to the resonator decay because the Zeno subspace does not include the state of the resonators being excited. Numerical simulations indicate that the scheme is robust to the fluctuation of the parameters and the Toffoli gate can be implemented with high fidelity.

  18. Single-step synthesis of graphene quantum dots by femtosecond laser ablation of graphene oxide dispersions

    NASA Astrophysics Data System (ADS)

    Russo, Paola; Liang, Robert; Jabari, Elahe; Marzbanrad, Ehsan; Toyserkani, Ehsan; Zhou, Y. Norman

    2016-04-01

    In the last few years, graphene quantum dots (GQDs) have attracted the attention of many research groups for their outstanding properties, which include low toxicity, chemical stability and photoluminescence. One of the challenges of GQD synthesis is finding a single-step, cheap and sustainable approach for synthesizing these promising nanomaterials. In this study, we demonstrate that femtosecond laser ablation of graphene oxide (GO) dispersions could be employed as a facile and environmentally friendly synthesis method for GQDs. With the proper control of laser ablation parameters, such as ablation time and laser power, it is possible to produce GQDs with average sizes of 2-5 nm, emitting a blue luminescence at 410 nm. We tested the feasibility of the synthesized GQDs as materials for electronic devices by aerosol-jet printing of an ink that is a mixture of water dispersion of laser synthesized GQDs and silver nanoparticle dispersion, which resulted in lower resistivity of the final printed patterns. Preliminary results showed that femtosecond laser synthesized GQDs can be mixed with silver nanoparticle dispersion to fabricate a hybrid material, which can be employed in printing electronic devices by either printing patterns that are more conductive and/or reducing costs of the ink by decreasing the concentration of silver nanoparticles (AgNPs) in the ink.In the last few years, graphene quantum dots (GQDs) have attracted the attention of many research groups for their outstanding properties, which include low toxicity, chemical stability and photoluminescence. One of the challenges of GQD synthesis is finding a single-step, cheap and sustainable approach for synthesizing these promising nanomaterials. In this study, we demonstrate that femtosecond laser ablation of graphene oxide (GO) dispersions could be employed as a facile and environmentally friendly synthesis method for GQDs. With the proper control of laser ablation parameters, such as ablation time and

  19. Novel patternable and conducting metal-polymer nanocomposites: a step towards advanced mutlifunctional materials

    NASA Astrophysics Data System (ADS)

    Rodríguez-Cantó, Pedro J.; Martínez-Marco, Mariluz; Abargues, Rafael; Latorre-Garrido, Victor; Martínez-Pastor, Juan P.

    2013-03-01

    In this work, we present a novel patternable conducting nanocomposite containing gold nanoparticles. Here, the in-situ polymerization of 3T is carried out using HAuCl4 as oxidizing agent inside PMMA as host matrix. During the bake step, the gold salt is also reduced from Au(III) to Au(0) generating Au nanoparticles in the interpenetrating polymer network (IPN) system. We found that this novel multifunctional resist shows electrical conductivity and plasmonic properties as well as potential patterning capability provided by the host matrix. The resulting nanocomposite has been investigated by TEM and UV-Vis spectroscopy. Electrical characterization was also conducted for different concentration of 3T and Au(III) following a characteristic percolation behaviour. Conductivities values from 10-5 to 10 S/cm were successfully obtained depending on the IPN formulation. Moreover, The Au nanoparticles generated exhibited a localized surface plasmon resonance at around 520 nm. This synthetic approach is of potential application to modify the conductivity of numerous insulating polymers and synthesize Au nanoparticles preserving to some extent their physical and chemical properties. In addition, combination of optical properties (Plasmonics), electrical, and lithographic capability in the same material allows for the design of materials with novel functionalities and provides the basis for next generation devices.

  20. Control of valley dynamics in silicon quantum dots in the presence of an interface step

    NASA Astrophysics Data System (ADS)

    Boross, Péter; Széchenyi, Gábor; Culcer, Dimitrie; Pályi, András

    2016-07-01

    Recent experiments on silicon nanostructures have seen breakthroughs toward scalable, long-lived quantum information processing. The valley degree of freedom plays a fundamental role in these devices, and the two lowest-energy electronic states of a silicon quantum dot can form a valley qubit. In this paper, we show that a single-atom high step at the silicon/barrier interface induces a strong interaction of the qubit and in-plane electric fields and that the strength of this interaction can be controlled by varying the relative position of the electron and the step. We analyze the consequences of this enhanced interaction on the dynamics of the qubit. The charge densities of the qubit states are deformed differently by the interface step, allowing nondemolition qubit readout via valley-to-charge conversion. A gate-induced in-plane electric field together with the interface step enables fast control of the valley qubit via electrically driven valley resonance. We calculate single- and two-qubit gate times, as well as relaxation and dephasing times, and present predictions for the parameter range where the gate times can be much shorter than the relaxation time and dephasing is reduced.

  1. Magnetic-Field-Induced V-Shaped Quantized Conductance Staircase in a Double-Layer Quantum Point Contact

    SciTech Connect

    Lyo, S.K.

    1999-01-04

    We show that the low-temperature conductance (G) of a quantum point contact consisting of ballistic tunnel-coupled double-layer quantum well wires is modulated by an in-layer magnetic field B{sub {parallel}} perpendicular to the wires due to the anticrossing. In a system with a small g factor, B{sub {parallel}} creates a V-shaped quantum staircase for G, causing it to decrease in steps of 2e{sup 2}/{Dirac_h} to a minimum and then increase to a maximum value, where G may saturate or decrease again at higher B{sub {parallel}}'s. The effect of B{sub {parallel}}-induced mass enhancement and spin splitting is studied. The relevance of the results to recent data is discussed.

  2. Controlled Quantized Conductance Steps Using a Simple Mechanical System: An Undergraduate Lab Experiment

    NASA Astrophysics Data System (ADS)

    Burnett, Christopher; Tolley, Robert; Silvidi, Antony; Eid, Khalid

    2011-10-01

    We demonstrate clear quantized conductance steps in mechanical break junctions (MBJ) based on a gold wire, a springy-steel bending beam, a micrometer, a 1.5V battery , and a Teflon disc that we rotate manually. The voltage across the wire is measured using a NI-DAQ assistant unit and a simple LabVIEW program. As the wire is stretched, its resistance (i.e. voltage across it) increases gradually then follows a stair-case- like shape, which is a hallmark of quantized conductance, with steps at values of 25.8 kφ/2n, where n is an integer. The resistance jumps are clearer and more distinct for smaller n and become closer for larger n, which is a demonstration of the Correspondence Principle. The quantization occurs when the wire is thin enough that its diameter is comparable to the de Broglie wave length of the current-carrying electrons and is a direct consequence of confinement. This experiment is designed for sophomore/junior level undergraduate labs.

  3. Suppressed Conductance From Spin Selection Rules in F-CNT-F Quantum Dots

    NASA Astrophysics Data System (ADS)

    Hartman, Nikolaus; Morgan-Wall, Tyler; Markovic, Nina

    Conductance through a quantum dot can be suppressed due to spin selection rules governing the hoping of an additional electron onto an already-occupied quantum dot. Measurements of this effect in a carbon nanotube quantum dot with ferromagnetic contacts will be presented. Suppressed conductance peaks are observed in the Coulomb diamond plots at zero field and explained using spin selection rules. The pattern of suppressed peaks is observed to change with applied magnetic field as the spin ground state of the occupied quantum dot changes. This work was supported by NSF DMR-1106167.

  4. Lead-position dependent regular oscillations and random fluctuations of conductance in graphene quantum dots.

    PubMed

    Huang, Liang; Yang, Rui; Lai, Ying-Cheng; Ferry, David K

    2013-02-27

    Quantum interference causes a wavefunction to have sensitive spatial dependence, and this has a significant effect on quantum transport. For example, in a quantum-dot system, the conductance can depend on the lead positions. We investigate, for graphene quantum dots, the conductance variations with the lead positions. Since for graphene the types of boundaries, e.g., zigzag and armchair, can fundamentally affect the quantum transport characteristics, we focus on rectangular graphene quantum dots, for which the effects of boundaries can be systematically studied. For both zigzag and armchair horizontal boundaries, we find that changing the positions of the leads can induce significant conductance variations. Depending on the Fermi energy, the variations can be either regular oscillations or random conductance fluctuations. We develop a physical theory to elucidate the origin of the conductance oscillation/fluctuation patterns. In particular, quantum interference leads to standing-wave-like-patterns in the quantum dot which, in the absence of leads, are regulated by the energy-band structure of the corresponding vertical graphene ribbon. The observed 'coexistence' of regular oscillations and random fluctuations in the conductance can be exploited for the development of graphene-based nanodevices. PMID:23343960

  5. Quantum transport with long-range steps on Watts-Strogatz networks

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Xu, Xin-Jian

    2016-07-01

    We study transport dynamics of quantum systems with long-range steps on the Watts-Strogatz network (WSN) which is generated by rewiring links of the regular ring. First, we probe physical systems modeled by the discrete nonlinear schrödinger (DNLS) equation. Using the localized initial condition, we compute the time-averaged occupation probability of the initial site, which is related to the nonlinearity, the long-range steps and rewiring links. Self-trapping transitions occur at large (small) nonlinear parameters for coupling ɛ=-1 (1), as long-range interactions are intensified. The structure disorder induced by random rewiring, however, has dual effects for ɛ=-1 and inhibits the self-trapping behavior for ɛ=1. Second, we investigate continuous-time quantum walks (CTQW) on the regular ring ruled by the discrete linear schrödinger (DLS) equation. It is found that only the presence of the long-range steps does not affect the efficiency of the coherent exciton transport, while only the allowance of random rewiring enhances the partial localization. If both factors are considered simultaneously, localization is greatly strengthened, and the transport becomes worse.

  6. Highly efficient hyperentanglement concentration with two steps assisted by quantum swap gates.

    PubMed

    Ren, Bao-Cang; Long, Gui Lu

    2015-01-01

    We present a two-step hyperentanglement concentration protocol (hyper-ECP) for polarization-spatial hyperentangled Bell states based on the high-capacity character of hyperentanglement resorting to the swap gates, which is used to obtain maximally hyperentangled states from partially hyperentangled pure states in long-distance quantum communication. The swap gate, which is constructed with the giant optical circular birefringence (GOCB) of a diamond nitrogen-vacancy (NV) center embedded in a photonic crystal cavity, can be used to transfer the information in one degree of freedom (DOF) between photon systems. By transferring the useful information between hyperentangled photon pairs, more photon pairs in maximally hyperentangled state can be obtained in our hyper-ECP, and the success probability of the hyper-ECP is greatly improved. Moreover, we show that the high-fidelity quantum gate operations can be achieved by mapping the infidelities to heralded losses even in the weak coupling regime. PMID:26552898

  7. High-performance surface-normal modulators based on stepped quantum wells (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Mohseni, H.; Chan, W. K.; An, H.; Ulmer, A.; Capewell, D.

    2005-05-01

    We present high-performance surface-normal modulators based on unique properties of stepped quantum wells (SQWs) around the eye-safe wavelength of 1550 nm. Fabricated devices show nearly two times better efficiency and 7 dB higher extinction ratio compared with the conventional devices with rectangular and coupled-quantum well active layers. Moreover, the optical bandwidth is about 70 nm at a 3dB modulation depth, which is more than five times wider than the optical bandwidth of the conventional devices. Such a wide optical bandwidth eliminates the need for a temperature controller. This is a critical advantage for many applications such as unmanned aerial vehicles (UAVs) and dynamic optical tags (DOTs), where limited volume, power, and weight can be allocated to the modulator system.

  8. Highly efficient hyperentanglement concentration with two steps assisted by quantum swap gates

    PubMed Central

    Ren, Bao-Cang; Long, Gui Lu

    2015-01-01

    We present a two-step hyperentanglement concentration protocol (hyper-ECP) for polarization-spatial hyperentangled Bell states based on the high-capacity character of hyperentanglement resorting to the swap gates, which is used to obtain maximally hyperentangled states from partially hyperentangled pure states in long-distance quantum communication. The swap gate, which is constructed with the giant optical circular birefringence (GOCB) of a diamond nitrogen-vacancy (NV) center embedded in a photonic crystal cavity, can be used to transfer the information in one degree of freedom (DOF) between photon systems. By transferring the useful information between hyperentangled photon pairs, more photon pairs in maximally hyperentangled state can be obtained in our hyper-ECP, and the success probability of the hyper-ECP is greatly improved. Moreover, we show that the high-fidelity quantum gate operations can be achieved by mapping the infidelities to heralded losses even in the weak coupling regime. PMID:26552898

  9. Quantized steps and topological nature of universal conductance fluctuation in Bi2Te2Se

    NASA Astrophysics Data System (ADS)

    Song, Fengqi

    Here we report the experimental observation of universal conductance fluctuations (UCF) in Bi2Te2Se. Four aspects were addressed to support the UCF's topological nature of the electronic state. i) The irregular fluctuations are repeatable in different temperature and reversal magnetic fields. ii) All the UCF features coincide after the field is normalized to the perpendicular direction. This points to a two-dimensional electronic state. iii) A parallel field is applied to suppress the bulk coherent paths, while the UCF features stays similar. This excludes a quasi-2D bulk state. iv). The intrinsic UCF magnitude is extracted, which is close to the predicted values of a topological surface state. v). Quantized steps of the UCF magnitudes are observed when the magnetic field is modulated. (Sci.Rep. 2012, 2,595; Appl. Phys. Expre. 2014,7,065202; arxiv 2015)

  10. Dynamical conductivity at the dirty superconductor-metal quantum phase transition.

    PubMed

    Del Maestro, Adrian; Rosenow, Bernd; Hoyos, José A; Vojta, Thomas

    2010-10-01

    We study the transport properties of ultrathin disordered nanowires in the neighborhood of the superconductor-metal quantum phase transition. To this end we combine numerical calculations with analytical strong-disorder renormalization group results. The quantum critical conductivity at zero temperature diverges logarithmically as a function of frequency. In the metallic phase, it obeys activated scaling associated with an infinite-randomness quantum critical point. We extend the scaling theory to higher dimensions and discuss implications for experiments. PMID:21230844

  11. Assembly and benign step-by-step post-treatment of oppositely charged reduced graphene oxides for transparent conductive thin films with multiple applications

    NASA Astrophysics Data System (ADS)

    Zhu, Jiayi; He, Junhui

    2012-05-01

    We report a new approach for the fabrication of flexible and transparent conducting thin films via the layer-by-layer (LbL) assembly of oppositely charged reduced graphene oxide (RGO) and the benign step-by-step post-treatment on substrates with a low glass-transition temperature, such as glass and poly(ethylene terephthalate) (PET). The RGO dispersions and films were characterized by means of atomic force microscopy, UV-visible absorption spectrophotometery, Raman spectroscopy, transmission electron microscopy, contact angle/interface systems and a four-point probe. It was found that the graphene thin films exhibited a significant increase in electrical conductivity after the step-by-step post-treatments. The graphene thin film on the PET substrate had a good conductivity retainability after multiple cycles (30 cycles) of excessively bending (bending angle: 180°), while tin-doped indium oxide (ITO) thin films on PET showed a significant decrease in electrical conductivity. In addition, the graphene thin film had a smooth surface with tunable wettability.We report a new approach for the fabrication of flexible and transparent conducting thin films via the layer-by-layer (LbL) assembly of oppositely charged reduced graphene oxide (RGO) and the benign step-by-step post-treatment on substrates with a low glass-transition temperature, such as glass and poly(ethylene terephthalate) (PET). The RGO dispersions and films were characterized by means of atomic force microscopy, UV-visible absorption spectrophotometery, Raman spectroscopy, transmission electron microscopy, contact angle/interface systems and a four-point probe. It was found that the graphene thin films exhibited a significant increase in electrical conductivity after the step-by-step post-treatments. The graphene thin film on the PET substrate had a good conductivity retainability after multiple cycles (30 cycles) of excessively bending (bending angle: 180°), while tin-doped indium oxide (ITO) thin films on

  12. Transparent conducting films of CdSe(ZnS) core(shell) quantum dot xerogels.

    PubMed

    Korala, Lasantha; Li, Li; Brock, Stephanie L

    2012-09-01

    A method of fabricating sol-gel quantum dot (QD) films is demonstrated, and their optical, structural and electrical properties are evaluated. The CdSe(ZnS) xerogel films remain quantum confined, yet are highly conductive (10(-3) S cm(-1)). This approach provides a pathway for the exploitation of QD gels in optoelectronic applications. PMID:22801641

  13. Quantum Hall Effect Breakdown Steps due to an Instability of Laminar Flow against Electron-Hole Pair Formation

    NASA Astrophysics Data System (ADS)

    Eaves, L.

    The breakdown of the dissipationless state of the quantum Hall effect at high currents sometimes occurs as a series of regular steps in the dissipative voltage drop measured along the Hall bar. The steps were first seen clearly in two of the Hall bars used to maintain the US Resistance Standard, but have also been reported in other devices. This paper describes a model to account for the origin of the steps. It is proposed that the dissipationless flow of the quantum Hall fluid is unstable at high flow rates due to inter-Landau level tunnelling processes in local microscopic regions of the Hall bar. Electron-hole pairs are generated in the quantum Hall fluid in these regions and the electronic motion can be envisaged as a quantum analogue of the von Karman vortex street which forms when a classical fluid flows past an obstacle.

  14. Observation of conductance doubling in an Andreev quantum point contact

    NASA Astrophysics Data System (ADS)

    Kjaergaard, M.; Nichele, F.; Suominen, H.; Nowak, M.; Wimmer, M.; Akhmerov, A.; Folk, J.; Flensberg, K.; Shabani, J.; Palmstrom, C.; Marcus, C.

    One route to study the non-Abelian nature of excitations in topological superconductors is to realise gateable two dimensional (2D) semiconducting systems, with spin-orbit coupling in proximity to an s-wave superconductor. Previous work on coupling 2D electron gases (2DEG) with superconductors has been hindered by a non-ideal interface and unstable gateability. We report measurements on a gateable 2DEG coupled to superconductors through a pristine interface, and use aluminum grown in situ epitaxially on an InGaAs/InAs electron gas. We demonstrate quantization in units of 4e2 / h in a quantum point contact (QPC) in such hybrid systems. Operating the QPC as a tunnel probe, we observe a hard superconducting gap, overcoming the soft-gap problem in 2D superconductor/semiconductor systems. Our work paves way for a new and highly scalable system in which to pursue topological quantum information processing. Research supported by Microsoft Project Q and the Danish National Research Foundation.

  15. Parallel magnetic-field-induced conductance fluctuations in one- and two-subband ballistic quantum dots

    NASA Astrophysics Data System (ADS)

    Gustin, C.; Faniel, S.; Hackens, B.; Melinte, S.; Shayegan, M.; Bayot, V.

    2003-12-01

    We report on conductance fluctuations of ballistic quantum dots in a strictly parallel magnetic field B. The quantum dots are patterned in two-dimensional electron gases (2DEG’s), confined to 15- and 45-nm-thick GaAs quantum wells (QW) with one and two occupied subbands at B=0, respectively. For both dots we observe universal conductance fluctuations (UCF’s) and, in the case of the wide QW dot, a reduction in their amplitude at large B. Our data suggest that the finite thickness of the 2DEG and the orbital effect are responsible for the parallel B-induced UCF’s.

  16. Enhanced conductance fluctuation by quantum confinement effect in graphene nanoribbons.

    PubMed

    Xu, Guangyu; Torres, Carlos M; Song, Emil B; Tang, Jianshi; Bai, Jingwei; Duan, Xiangfeng; Zhang, Yuegang; Wang, Kang L

    2010-11-10

    Conductance fluctuation is usually unavoidable in graphene nanoribbons (GNR) due to the presence of disorder along its edges. By measuring the low-frequency noise in GNR devices, we find that the conductance fluctuation is strongly correlated with the density-of-states of GNR. In single-layer GNR, the gate-dependence of noise shows peaks whose positions quantitatively match the subband positions in the band structures of GNR. This correlation provides a robust mechanism to electrically probe the band structure of GNR, especially when the subband structures are smeared out in conductance measurement. PMID:20939609

  17. Single-step synthesis of sulfonated polyoxadiazoles and their use as proton conducting membranes

    NASA Astrophysics Data System (ADS)

    Gomes, Dominique; Roeder, Jerusa; Ponce, Mariela L.; Nunes, Suzana P.

    A single-step approach for the synthesis of sulfonated polyoxadiazoles from hydrazine sulfate was developed using non-sulfonated diacids in polyphosphoric acid. The post-sulfonation conditions were optimized by varying reaction time, medium and reagent concentrations in sulfuric acid, oleum and/or their mixtures. For the first time, a series of sulfonated polyoxadiazoles with ion exchange capacity (IEC) ranging from 1.26 to 2.7 meqiv. g -1 and high molecular weight (about 40,0000 g mol -1) were synthesized. The structures of the polymers were characterized by elemental analysis, 1H NMR, and FTIR. Sulfonated polyoxadiazole membranes with high thermal stability indicated by observed glass-transition temperatures (T g) ranging from 364 to 442 °C in sodium salt form and from 304 to 333 °C in acid form and with high mechanical properties (storage modulus about 3 GPa at 300 °C) have been prepared. The membrane stability to oxidation was investigated by soaking the film in Fenton's reagent at 80 °C for 1 h. The sulfonated polyoxadiazole membranes exhibited high oxidative stability, retaining 98-100% of their weight after the test. Proton conductivity values with the order of magnitude of 10 -1 to 10 -2 S cm -1 at 80 °C and with relative humidity ranging from 100% to 20% were obtained.

  18. Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry

    PubMed Central

    Ma, Eric Yue; Calvo, M. Reyes; Wang, Jing; Lian, Biao; Mühlbauer, Mathias; Brüne, Christoph; Cui, Yong-Tao; Lai, Keji; Kundhikanjana, Worasom; Yang, Yongliang; Baenninger, Matthias; König, Markus; Ames, Christopher; Buhmann, Hartmut; Leubner, Philipp; Molenkamp, Laurens W.; Zhang, Shou-Cheng; Goldhaber-Gordon, David; Kelly, Michael A.; Shen, Zhi-Xun

    2015-01-01

    The realization of quantum spin Hall effect in HgTe quantum wells is considered a milestone in the discovery of topological insulators. Quantum spin Hall states are predicted to allow current flow at the edges of an insulating bulk, as demonstrated in various experiments. A key prediction yet to be experimentally verified is the breakdown of the edge conduction under broken time-reversal symmetry. Here we first establish a systematic framework for the magnetic field dependence of electrostatically gated quantum spin Hall devices. We then study edge conduction of an inverted quantum well device under broken time-reversal symmetry using microwave impedance microscopy, and compare our findings to a non-inverted device. At zero magnetic field, only the inverted device shows clear edge conduction in its local conductivity profile, consistent with theory. Surprisingly, the edge conduction persists up to 9 T with little change. This indicates physics beyond simple quantum spin Hall model, including material-specific properties and possibly many-body effects. PMID:26006728

  19. Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry

    DOE PAGESBeta

    Ma, Eric Yue; Calvo, M. Reyes; Wang, Jing; Lian, Biao; Muhlbauer, Mathias; Brune, Christoph; Cui, Yong -Tao; Lai, Keji; Kundhikanjana, Worasom; Yang, Yongliang; et al

    2015-05-26

    The realization of quantum spin Hall effect in HgTe quantum wells is considered a milestone in the discovery of topological insulators. Quantum spin Hall states are predicted to allow current flow at the edges of an insulating bulk, as demonstrated in various experiments. A key prediction yet to be experimentally verified is the breakdown of the edge conduction under broken time-reversal symmetry. Here we first establish a systematic framework for the magnetic field dependence of electrostatically gated quantum spin Hall devices. We then study edge conduction of an inverted quantum well device under broken time-reversal symmetry using microwave impedance microscopy,more » and compare our findings to a non-inverted device. At zero magnetic field, only the inverted device shows clear edge conduction in its local conductivity profile, consistent with theory. Surprisingly, the edge conduction persists up to 9 T with little change. Finally, this indicates physics beyond simple quantum spin Hall model, including material-specific properties and possibly many-body effects.« less

  20. Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry

    SciTech Connect

    Ma, Eric Yue; Calvo, M. Reyes; Wang, Jing; Lian, Biao; Muhlbauer, Mathias; Brune, Christoph; Cui, Yong -Tao; Lai, Keji; Kundhikanjana, Worasom; Yang, Yongliang; Baenninger, Matthias; Konig, Markus; Ames, Christopher; Buhmann, Hartmut; Leubner, Philipp; Molenkamp, Laurens W.; Zhang, Shou -Cheng; Goldhaber-Gordon, David; Kelly, Michael A.; Shen, Zhi -Xun

    2015-05-26

    The realization of quantum spin Hall effect in HgTe quantum wells is considered a milestone in the discovery of topological insulators. Quantum spin Hall states are predicted to allow current flow at the edges of an insulating bulk, as demonstrated in various experiments. A key prediction yet to be experimentally verified is the breakdown of the edge conduction under broken time-reversal symmetry. Here we first establish a systematic framework for the magnetic field dependence of electrostatically gated quantum spin Hall devices. We then study edge conduction of an inverted quantum well device under broken time-reversal symmetry using microwave impedance microscopy, and compare our findings to a non-inverted device. At zero magnetic field, only the inverted device shows clear edge conduction in its local conductivity profile, consistent with theory. Surprisingly, the edge conduction persists up to 9 T with little change. Finally, this indicates physics beyond simple quantum spin Hall model, including material-specific properties and possibly many-body effects.

  1. Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry

    NASA Astrophysics Data System (ADS)

    Ma, Eric Yue; Calvo, M. Reyes; Wang, Jing; Lian, Biao; Mühlbauer, Mathias; Brüne, Christoph; Cui, Yong-Tao; Lai, Keji; Kundhikanjana, Worasom; Yang, Yongliang; Baenninger, Matthias; König, Markus; Ames, Christopher; Buhmann, Hartmut; Leubner, Philipp; Molenkamp, Laurens W.; Zhang, Shou-Cheng; Goldhaber-Gordon, David; Kelly, Michael A.; Shen, Zhi-Xun

    2015-05-01

    The realization of quantum spin Hall effect in HgTe quantum wells is considered a milestone in the discovery of topological insulators. Quantum spin Hall states are predicted to allow current flow at the edges of an insulating bulk, as demonstrated in various experiments. A key prediction yet to be experimentally verified is the breakdown of the edge conduction under broken time-reversal symmetry. Here we first establish a systematic framework for the magnetic field dependence of electrostatically gated quantum spin Hall devices. We then study edge conduction of an inverted quantum well device under broken time-reversal symmetry using microwave impedance microscopy, and compare our findings to a non-inverted device. At zero magnetic field, only the inverted device shows clear edge conduction in its local conductivity profile, consistent with theory. Surprisingly, the edge conduction persists up to 9 T with little change. This indicates physics beyond simple quantum spin Hall model, including material-specific properties and possibly many-body effects.

  2. Investigating Student Understanding of Quantum Physics: Spontaneous Models of Conductivity.

    ERIC Educational Resources Information Center

    Wittmann, Michael C.; Steinberg, Richard N.; Redish, Edward F.

    2002-01-01

    Investigates student reasoning about models of conduction. Reports that students often are unable to account for the existence of free electrons in a conductor and create models that lead to incorrect predictions and responses contradictory to expert descriptions of the physics involved. (Contains 36 references.) (Author/YDS)

  3. One-step synthesis of size-controlled CZTS quantum dots

    NASA Astrophysics Data System (ADS)

    Arora, Leena; Singh, Vidya Nand; Partheepan, G.; Senguttuvan, T. D.; Jain, Kiran

    2015-02-01

    Size-controlled CZTS quantum dots (QDs) were synthesized and its application as a potential electron accepting material for polymer-based hybrid solar cell is demonstrated. The CZTS QDs with a size of 2-10 nm were synthesized in a single step by the decomposition of metal dithiocarbamate and characterized by various techniques; like, SEM, TEM, FTIR, XRD, etc. Results reveal that the CZTS QDs synthesized in oleic acid can quench the luminescence of P3HT effectively. Due to the favourable ionization potential and electron affinity values for CZTS with respect to P3HT, the CZTS QDs act as an effective electron acceptor in the hybrid solar cells based on P3HT/CZTS-QD blends which is also revealed by the charge transfer characteristics of P3HT/CZTS blend.

  4. Quantum dynamics via Planck-scale-stepped action-carrying 'Graph Paths'

    SciTech Connect

    Chew, Geoffrey F.

    2003-05-05

    A divergence-free, parameter-free, path-based discrete-time quantum dynamics is designed to not only enlarge the achievements of general relativity and the standard particle model, by approximations at spacetime scales far above Planck scale while far below Hubble scale, but to allow tackling of hitherto inaccessible questions. ''Path space'' is larger than and precursor to Hilbert-space basis. The wave-function-propagating paths are action-carrying structured graphs-cubic and quartic structured vertices connected by structured ''fermionic'' or ''bosonic'' ''particle'' and ''nonparticle'' arcs. A Planck-scale path step determines the gravitational constant while controlling all graph structure. The basis of the theory's (zero-rest-mass) elementary-particle Hilbert space (which includes neither gravitons nor scalar bosons) resides in particle arcs. Nonparticle arcs within a path are responsible for energy and rest mass.

  5. Single step, bulk synthesis of engineered MoS2 quantum dots for multifunctional electrocatalysis

    NASA Astrophysics Data System (ADS)

    Tadi, Kiran Kumar; Palve, Anil M.; Pal, Shubhadeep; Sudeep, P. M.; Narayanan, Tharangattu N.

    2016-07-01

    Bi- or tri- functional catalysts based on atomic layers are receiving tremendous scientific attention due to their importance in various energy technologies. Recent studies on molybdenum disulphide (MoS2) nanosheets revealed that controlling the edge states and doping/modifying with suitable elements are highly important in tuning the catalytic activities of MoS2. Here we report a bulk, single step method to synthesize metal modified MoS2 quantum dots (QDs). Three elements, namely Fe, Mg and Li, are chosen to study the effects of dopants in the catalytic activities of MoS2. Fe and Mg are found to act like dopants in the MoS2 lattice forming respective doped MoS2 QDs, while Li formed an intercalated MoS2 QD. The efficacy and tunability of these luminescent doped QDs towards various electrocatalytic activities (hydrogen evolution reaction, oxygen evolution reaction and oxygen reduction action) are reported here.

  6. Single step, bulk synthesis of engineered MoS2 quantum dots for multifunctional electrocatalysis.

    PubMed

    Tadi, Kiran Kumar; Palve, Anil M; Pal, Shubhadeep; Sudeep, P M; Narayanan, Tharangattu N

    2016-07-01

    Bi- or tri- functional catalysts based on atomic layers are receiving tremendous scientific attention due to their importance in various energy technologies. Recent studies on molybdenum disulphide (MoS2) nanosheets revealed that controlling the edge states and doping/modifying with suitable elements are highly important in tuning the catalytic activities of MoS2. Here we report a bulk, single step method to synthesize metal modified MoS2 quantum dots (QDs). Three elements, namely Fe, Mg and Li, are chosen to study the effects of dopants in the catalytic activities of MoS2. Fe and Mg are found to act like dopants in the MoS2 lattice forming respective doped MoS2 QDs, while Li formed an intercalated MoS2 QD. The efficacy and tunability of these luminescent doped QDs towards various electrocatalytic activities (hydrogen evolution reaction, oxygen evolution reaction and oxygen reduction action) are reported here. PMID:27231837

  7. Negative differential conductivity in quantum well with complex potential profile for electron-phonon scattering

    NASA Astrophysics Data System (ADS)

    Figarova, S. R.; Hasiyeva, G. N.; Figarov, V. R.

    2016-04-01

    The effect of phonon scattering on electrical conductivity (EC) of 2D electron gas in quantum well (QW) systems with a complicated potential profile is described. Dependence of QW electrical conductivity on QW parameters (such as QW width, Fermi level positions etc.) when phonon scattering is employed has been calculated. NDC in EC when it varies with width of the QW has been found.

  8. Conducting High Cycle Fatigue Strength Step Tests on Gamma TiAl

    NASA Technical Reports Server (NTRS)

    Lerch, Brad; Draper, Sue; Pereira, J. Mike

    2002-01-01

    High cycle fatigue strength testing of gamma TiAl by the step test method is investigated. A design of experiments was implemented to determine if the coaxing effect occurred during testing. Since coaxing was not observed, step testing was deemed a suitable method to define the fatigue strength at 106 cycles.

  9. Water electrolysis with a conducting carbon cloth: subthreshold hydrogen generation and superthreshold carbon quantum dot formation.

    PubMed

    Biswal, Mandakini; Deshpande, Aparna; Kelkar, Sarika; Ogale, Satishchandra

    2014-03-01

    A conducting carbon cloth, which has an interesting turbostratic microstructure and functional groups that are distinctly different from other ordered forms of carbon, such as graphite, graphene, and carbon nanotubes, was synthesized by a simple one-step pyrolysis of cellulose fabric. This turbostratic disorder and surface chemical functionalities had interesting consequences for water splitting and hydrogen generation when such a cloth was used as an electrode in the alkaline electrolysis process. Importantly, this work also gives a new twist to carbon-assisted electrolysis. During electrolysis, the active sites in the carbon cloth allow slow oxidation of its surface to transform the surface groups from COH to COOH and so forth at a voltage as low as 0.2 V in a two-electrode system, along with platinum as the cathode, instead of 1.23 V (plus overpotential), which is required for platinum, steel, or even graphite anodes. The quantity of subthreshold hydrogen evolved was 24 mL cm(-2)  h(-1) at 1 V. Interestingly, at a superthreshold potential (>1.23 V+overpotential), another remarkable phenomenon was found. At such voltages, along with the high rate and quantity of hydrogen evolution, rapid exfoliation of the tiny nanoscale (5-7 nm) units of carbon quantum dots (CQDs) are found in copious amounts due to an enhanced oxidation rate. These CQDs show bright-blue fluorescence under UV light. PMID:24492961

  10. Improved characteristics of ultraviolet AlGaN multiple-quantum-well laser diodes with step-graded quantum barriers close to waveguide layers

    NASA Astrophysics Data System (ADS)

    Cai, Xuefen; Li, Shuping; Kang, Junyong

    2016-09-01

    Ultraviolet AlGaN multiple-quantum-well laser diodes (LDs) with step-graded quantum barriers (QBs) instead of conventional first and last QBs close to waveguide layers are proposed. The characteristics of this type of laser diodes are numerically investigated by using the software PICS3D and it is found that the performances of these LDs are greatly improved. The results indicates that the structure with step-graded QBs exhibits higher output light power, slope efficiency and emission intensity, as well as lower series resistance and threshold current density under the identical condition, compared with conventional LD structure.

  11. Evidence for universal conductance fluctuations in an open quantum dot under a strictly parallel magnetic field

    NASA Astrophysics Data System (ADS)

    Gustin, C.; Faniel, S.; Hackens, B.; De Poortere, E. P.; Shayegan, M.; Bayot, V.

    2003-04-01

    We investigate the transport properties of semiconductor ballistic cavities subject to a parallel magnetic field. Universal conductance fluctuations are observed on two GaAs/AlGaAs quantum well samples with one and two occupied carrier subbands, respectively. Large differences between the two open quantum dots in both the amplitude and frequency distribution of these fluctuations are analyzed in terms of electron orbital motion and magnetic subband depopulation.

  12. Dynamical conductivity at the dirty superconductor-metal quantum phase transition

    NASA Astrophysics Data System (ADS)

    Hoyos, J. A.; Del Maestro, Adrian; Rosenow, Bernd; Vojta, Thomas

    2011-03-01

    We study the transport properties of ultrathin disordered nanowires in the neighborhood of the superconductor-metal quantum phase transition. To this end we combine numerical calculations with analytical strong-disorder renormalization group results. The quantum critical conductivity at zero temperature diverges logarithmically as a function of frequency. In the metallic phase, it obeys activated scaling associated with an infinite-randomness quantum critical point. We extend the scaling theory to higher dimensions and discuss implications for experiments. Financial support: Fapesp, CNPq, NSF, and Research Corporation.

  13. Exact conductance through point contacts in the {nu}=1/3 fractional quantum Hall Effect

    SciTech Connect

    Fendley, P.; Ludwig, A.W.W.; Saleur, H. |

    1995-04-10

    The conductance for tunneling through an impurity in a Luttinger liquid is described by a universal scaling function. We compute this scaling function exactly, by using the thermodynamic Bethe ansatz and a kinetic (Boltzmann) equation. This model has been proposed to describe resonant tunneling through a point contact between two {nu}=1/3 quantum Hall edges. Recent experiments on quantum Hall devices agree well with our exact results. We also derive the exact conductance and {ital I}({ital V}) curve, out of equilibrium, in this fully interacting system.

  14. Defect interactions with stepped CeO₂/SrTiO₃ interfaces: implications for radiation damage evolution and fast ion conduction.

    PubMed

    Dholabhai, Pratik P; Aguiar, Jeffery A; Misra, Amit; Uberuaga, Blas P

    2014-05-21

    Due to reduced dimensions and increased interfacial content, nanocomposite oxides offer improved functionalities in a wide variety of advanced technological applications, including their potential use as radiation tolerant materials. To better understand the role of interface structures in influencing the radiation damage tolerance of oxides, we have conducted atomistic calculations to elucidate the behavior of radiation-induced point defects (vacancies and interstitials) at interface steps in a model CeO2/SrTiO3 system. We find that atomic-scale steps at the interface have substantial influence on the defect behavior, which ultimately dictate the material performance in hostile irradiation environments. Distinctive steps react dissimilarly to cation and anion defects, effectively becoming biased sinks for different types of defects. Steps also attract cation interstitials, leaving behind an excess of immobile vacancies. Further, defects introduce significant structural and chemical distortions primarily at the steps. These two factors are plausible origins for the enhanced amorphization at steps seen in our recent experiments. The present work indicates that comprehensive examination of the interaction of radiation-induced point defects with the atomic-scale topology and defect structure of heterointerfaces is essential to evaluate the radiation tolerance of nanocomposites. Finally, our results have implications for other applications, such as fast ion conduction. PMID:24852551

  15. Quantum Hall conductance of graphene combined with charge-trap memory operation.

    PubMed

    Kang, Haeyong; Yun, Yoojoo; Park, Jeongmin; Kim, Joonggyu; Truong, Thuy Kieu; Kim, Jeong-Gyun; Park, Nahee; Yun, Hoyeol; Lee, Sang Wook; Lee, Young Hee; Suh, Dongseok

    2015-08-28

    The combination of quantum Hall conductance and charge-trap memory operation was qualitatively examined using a graphene field-effect transistor. The characteristics of two terminal quantum Hall conductance appeared clearly on the background of a huge conductance hysteresis during a gate-voltage sweep for a device using monolayer graphene as a channel,hexagonal boron-nitride flakes as a tunneling dielectric and defective silicon oxide as the charge storage node. Even though there was a giant shift of the charge neutrality point, the deviation of quantized resistance value at the state of filling factor 2 was less than 1.6% from half of the von Klitzing constant. At high Landau level indices, the behaviors of quantum conductance oscillation between the increasing and the decreasing electron densities were identical in spite ofa huge memory window exceeding 100 V. Our results indicate that the two physical phenomena, two-terminal quantum Hall conductance and charge-trap memory operation, can be integrated into one device without affecting each other. PMID:26242388

  16. Effect of phonon confinement on lattice thermal conductivity of lead Telluride quantum well structure

    SciTech Connect

    Tripathi, Madhvendra Nath

    2014-04-24

    The paper examines the effect of spatial confinement of acoustic phonons on average group velocity and consequently the lattice thermal conductivity of a free-standing PbTe quantum well structure and their temperature dependence. The average group velocity at 100 Å decreases 30% to the bulk value and falls more rapidly on reducing the width of quantum well. Moreover, the lattice thermal conductivity of 100 Å wide PbTe quantum well with value of 0.60 W/mK shows considerable decrease of 70% compared to it’s bulk value. It is observed that the effect of reduction in well width is less pronounce as temperature increases. This appears mainly due to dominance of umklapp processes over the confinement effects.

  17. One-step instant synthesis of protein-conjugated quantum dots at room temperature.

    PubMed

    He, Xuewen; Gao, Li; Ma, Nan

    2013-01-01

    We present a new general facile strategy for the preparation of protein-functionalized QDs in a single step at ambient conditions. We demonstrated that highly luminescent red to near-infrared (NIR) protein-functionalized QDs could be synthesized at room temperature in one second through a one-pot reaction that proceeds in aqueous solution. Herein protein-functionalized QDs were successfully constructed for a variety of proteins with a wide range of molecular weights and isoelectric points. The as-prepared protein-conjugated QDs exhibited high quantum yield, high photostabiliy and colloidal stability, and high functionalization efficiency. Importantly, the proteins attached to the QDs maintain their biological activities and are capable of catalyzing reactions and biotargeting. In particular, the as-prepared transferrin-QDs could be used to label cancer cells with high specificity. Moreover, we demonstrated that this synthetic strategy could be extended to prepare QDs functionalized with folic acids and peptides, which were also successfully applied to cancer cell imaging. PMID:24084780

  18. Conductance oscillations in quantum point contacts of InAs/GaSb heterostructures

    NASA Astrophysics Data System (ADS)

    Papaj, Michał; Cywiński, Łukasz; Wróbel, Jerzy; Dietl, Tomasz

    2016-05-01

    We study quantum point contacts in two-dimensional topological insulators by means of quantum transport simulations for InAs/GaSb heterostructures and HgTe/(Hg,Cd)Te quantum wells. In InAs/GaSb, the density of edge states shows an oscillatory decay as a function of the distance to the edge. This is in contrast to the behavior of the edge states in HgTe quantum wells, which decay into the bulk in a simple exponential manner. The difference between the two materials is brought about by spatial separation of electrons and holes in InAs/GaSb, which affects the magnitudes of the parameters describing the particle-hole asymmetry and the strength of intersubband coupling within the Bernevig-Hughes-Zhang model. We show that the character of the wave-function decay impacts directly the dependence of the point contact conductance on the constriction width and the Fermi energy, which can be verified experimentally and serves to accurately determine the values of the relevant parameters. In the case of InAs/GaSb heterostructures, the conductance magnitude oscillates as a function of the constriction width following the oscillations of the edge state penetration, whereas in HgTe/(Hg,Cd)Te quantum wells a single switching from transmitting to reflecting contact is predicted.

  19. Universal conductivity in a two-dimensional superfluid-to-insulator quantum critical system.

    PubMed

    Chen, Kun; Liu, Longxiang; Deng, Youjin; Pollet, Lode; Prokof'ev, Nikolay

    2014-01-24

    We compute the universal conductivity of the (2+1)-dimensional XY universality class, which is realized for a superfluid-to-Mott insulator quantum phase transition at constant density. Based on large-scale Monte Carlo simulations of the classical (2+1)-dimensional J-current model and the two-dimensional Bose-Hubbard model, we can precisely determine the conductivity on the quantum critical plateau, σ(∞) = 0.359(4)σQ with σQ the conductivity quantum. The universal conductivity curve is the standard example with the lowest number of components where the bottoms-up AdS/CFT correspondence from string theory can be tested and made to use [R. C. Myers, S. Sachdev, and A. Singh, Phys. Rev. D 83, 066017 (2011)]. For the first time, the shape of the σ(iω(n)) - σ(∞) function in the Matsubara representation is accurate enough for a conclusive comparison and establishes the particlelike nature of charge transport. We find that the holographic gauge-gravity duality theory for transport properties can be made compatible with the data if temperature of the horizon of the black brane is different from the temperature of the conformal field theory. The requirements for measuring the universal conductivity in a cold gas experiment are also determined by our calculation. PMID:24484123

  20. Quantum-critical conductivity scaling for a metal-insulator transition

    PubMed

    Lee; Carini; Baxter; Henderson; Gruner

    2000-01-28

    Temperature (T)- and frequency (omega)-dependent conductivity measurements are reported here in amorphous niobium-silicon alloys with compositions (x) near the zero-temperature metal-insulator transition. There is a one-to-one correspondence between the frequency- and temperature-dependent conductivity on both sides of the critical concentration, thus establishing the quantum-critical nature of the transition. The analysis of the conductivity leads to a universal scaling function and establishes the critical exponents. This scaling can be described by an x-, T-, and omega-dependent characteristic length, the form of which is derived by experiment. PMID:10649993

  1. Nanoscale electrical property studies of individual GeSi quantum rings by conductive scanning probe microscopy

    PubMed Central

    2012-01-01

    The nanoscale electrical properties of individual self-assembled GeSi quantum rings (QRs) were studied by scanning probe microscopy-based techniques. The surface potential distributions of individual GeSi QRs are obtained by scanning Kelvin microscopy (SKM). Ring-shaped work function distributions are observed, presenting that the QRs' rim has a larger work function than the QRs' central hole. By combining the SKM results with those obtained by conductive atomic force microscopy and scanning capacitance microscopy, the correlations between the surface potential, conductance, and carrier density distributions are revealed, and a possible interpretation for the QRs' conductance distributions is suggested. PMID:23194252

  2. Simulation and experimental design of a new advanced variable step size Incremental Conductance MPPT algorithm for PV systems.

    PubMed

    Loukriz, Abdelhamid; Haddadi, Mourad; Messalti, Sabir

    2016-05-01

    Improvement of the efficiency of photovoltaic system based on new maximum power point tracking (MPPT) algorithms is the most promising solution due to its low cost and its easy implementation without equipment updating. Many MPPT methods with fixed step size have been developed. However, when atmospheric conditions change rapidly , the performance of conventional algorithms is reduced. In this paper, a new variable step size Incremental Conductance IC MPPT algorithm has been proposed. Modeling and simulation of different operational conditions of conventional Incremental Conductance IC and proposed methods are presented. The proposed method was developed and tested successfully on a photovoltaic system based on Flyback converter and control circuit using dsPIC30F4011. Both, simulation and experimental design are provided in several aspects. A comparative study between the proposed variable step size and fixed step size IC MPPT method under similar operating conditions is presented. The obtained results demonstrate the efficiency of the proposed MPPT algorithm in terms of speed in MPP tracking and accuracy. PMID:26337741

  3. Photoreflectance spectroscopy of step-like GaInNAs/GaInNAs/GaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Kudrawiec, R.; Andrzejewski, J.; Misiewicz, J.; Gollub, D.; Forchel, A.

    2005-05-01

    Photoreflectance (PR) spectroscopy has been applied to study of step-like GaInNAs/GaInNAs/GaAs double quantum well (DQW) structures grown by molecular beam epitaxy. PR features related to optical transitions in the active part of the step-like QW structure, i.e. GaInNAs/GaInNAs QW, as well as PR features related to transitions above the step-like barrier (SLB) have been clearly observed and analysed in this paper. The analysis of the QW transitions gives information about the number of confined states in the active part of the step-like QW structure. In addition, the analysis of the second portion of PR signal gives information about the band gap energy of the SLB and optical transitions between hole and electron levels confined above the SLB.

  4. Mapping out spin and particle conductances in a quantum point contact.

    PubMed

    Krinner, Sebastian; Lebrat, Martin; Husmann, Dominik; Grenier, Charles; Brantut, Jean-Philippe; Esslinger, Tilman

    2016-07-19

    We study particle and spin transport in a single-mode quantum point contact, using a charge neutral, quantum degenerate Fermi gas with tunable, attractive interactions. This yields the spin and particle conductance of the point contact as a function of chemical potential or confinement. The measurements cover a regime from weak attraction, where quantized conductance is observed, to the resonantly interacting superfluid. Spin conductance exhibits a broad maximum when varying the chemical potential at moderate interactions, which signals the emergence of Cooper pairing. In contrast, the particle conductance is unexpectedly enhanced even before the gas is expected to turn into a superfluid, continuously rising from the plateau at [Formula: see text] for weak interactions to plateau-like features at nonuniversal values as high as [Formula: see text] for intermediate interactions. For strong interactions, the particle conductance plateaus disappear and the spin conductance gets suppressed, confirming the spin-insulating character of a superfluid. Our observations document the breakdown of universal conductance quantization as many-body correlations appear. The observed anomalous quantization challenges a Fermi liquid description of the normal phase, shedding new light on the nature of the strongly attractive Fermi gas. PMID:27357668

  5. Mapping out spin and particle conductances in a quantum point contact

    PubMed Central

    Krinner, Sebastian; Lebrat, Martin; Husmann, Dominik; Grenier, Charles; Brantut, Jean-Philippe; Esslinger, Tilman

    2016-01-01

    We study particle and spin transport in a single-mode quantum point contact, using a charge neutral, quantum degenerate Fermi gas with tunable, attractive interactions. This yields the spin and particle conductance of the point contact as a function of chemical potential or confinement. The measurements cover a regime from weak attraction, where quantized conductance is observed, to the resonantly interacting superfluid. Spin conductance exhibits a broad maximum when varying the chemical potential at moderate interactions, which signals the emergence of Cooper pairing. In contrast, the particle conductance is unexpectedly enhanced even before the gas is expected to turn into a superfluid, continuously rising from the plateau at 1/h for weak interactions to plateau-like features at nonuniversal values as high as 4/h for intermediate interactions. For strong interactions, the particle conductance plateaus disappear and the spin conductance gets suppressed, confirming the spin-insulating character of a superfluid. Our observations document the breakdown of universal conductance quantization as many-body correlations appear. The observed anomalous quantization challenges a Fermi liquid description of the normal phase, shedding new light on the nature of the strongly attractive Fermi gas. PMID:27357668

  6. Hall conductance, topological quantum phase transition, and the Diophantine equation on the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Sato, Masatoshi; Tobe, Daijiro; Kohmoto, Mahito

    2008-12-01

    We consider a tight-binding model with the nearest-neighbor hopping integrals on the honeycomb lattice in a magnetic field. Assuming one of the three hopping integrals, which we denote by ta , can take a different value from the two others, we study quantum phase structures controlled by the anisotropy of the honeycomb lattice. For weak and strong ta regions, the Hall conductances are calculated algebraically by using the Diophantine equation. Except for a few specific gaps, we completely determine the Hall conductances in these two regions including those for subband gaps. In a weak magnetic field, it is found that the weak ta region shows the unconventional quantization of the Hall conductance, σxy=-(e2/h)(2n+1) (n=0,±1,±2,…) , near the half filling, while the strong ta region shows only the conventional one, σxy=-(e2/h)n (n=0,±1,±2,…) . From the topological nature of the Hall conductance, the existence of gap closing points and quantum phase transitions in the intermediate ta region is concluded. We also study numerically the quantum phase structure in detail and find that even when ta=1 , namely, in graphene case, the system is in the weak ta phase except when the Fermi energy is located near the Van Hove singularity or the lower and upper edges of the spectrum.

  7. The effects of doping layer location on the electronic and optical properties of GaN step quantum well

    NASA Astrophysics Data System (ADS)

    Dakhlaoui, Hassen

    2016-09-01

    In the present work, the intersubband transition and the optical absorption coefficient between the ground and the first excited states in the Si-δ-doped step AlGaN/GaN quantum well were theoretically studied by solving Schrödinger-Poisson equations self-consistently within the framework of effective mass approximation. The delta-doped layer was inserted in three different locations (middle of the quantum well, middle of the step quantum well and middle of the left barrier). The obtained results show that the energy difference between the ground and the first excited state and the optical absorption depend not only on the doping layer concentration but also on its location. The shape of the confining potential and the wavefunctions were also changed depending on the doped layer location. It was found that doping in the middle quantum well is advantageous to obtain an optical absorption with a higher energy separation; however, doping in the left barrier gives us an optical absorption with a lower energy separation. The obtained results in optical absorption give us a new degree of freedom in optoelectronic devices based on intersubband transitions.

  8. Unexpected edge conduction in HgTe quantum wells under broken time reversal symmetry

    NASA Astrophysics Data System (ADS)

    Ma, Eric Yue; Calvo, M. Reyes; Wang, Jing; Lian, Biao; Muehlbauer, Matthias; Brüne, Christoph; Cui, Yongtao; Lai, Keji; Kundhikanjana, Worasom; Yang, Yongliang; Baenninger, Matthias; König, Markus; Ames, Christopher; Buhmann, Hartmut; Leubner, Philipp; Molenkamp, Laurens; Zhang, Shou-Cheng; Goldhaber-Gordon, David; Kelly, Michael; Shen, Zhi-Xun

    2015-03-01

    A key prediction of quantum spin Hall (QSH) theory that remains to be experimentally verified is the breakdown of the edge conduction under broken TRS by a magnetic field. Here we use a unique cryogenic microwave impedance microscopy (MIM) on two HgTe QW devices, corresponding to a trivial (5.5 nm) and an inverted (7.5 nm) band structure, to find unexpectedly robust edge conduction under broken TRS. At zero field and low carrier densities, clear edge conduction is observed only in the local conductivity profile of the 7.5 nm device, consistent with QSH theory. Surprisingly, the edge conduction persists up to 9 T with little effect from the magnetic field, as confirmed by both transport and real space MIM images. This indicates physics beyond current simple QSH models, possibly associated with material-specific properties, other symmetry protection and/or electron-electron interactions.

  9. Negative differential conductance in InAs wire based double quantum dot induced by a charged AFM tip

    SciTech Connect

    Zhukov, A. A.; Volk, Ch.; Winden, A.; Hardtdegen, H.; Schaepers, Th.

    2012-12-15

    We investigate the conductance of an InAs nanowire in the nonlinear regime in the case of low electron density where the wire is split into quantum dots connected in series. The negative differential conductance in the wire is initiated by means of a charged atomic force microscope tip adjusting the transparency of the tunneling barrier between two adjoining quantum dots. We confirm that the negative differential conductance arises due to the resonant tunneling between these two adjoining quantum dots. The influence of the transparency of the blocking barriers and the relative position of energy states in the adjoining dots on a decrease of the negative differential conductance is investigated in detail.

  10. Emergence of Helical Edge Conduction in Graphene in the ν = 0 Quantum Hall State

    NASA Astrophysics Data System (ADS)

    Fertig, Herbert; Tikhonov, Pavel; Shimshoni, Efrat; Murthy, Ganpathy

    The conductance of graphene subject to a strong, tilted magnetic field exhibits a dramatic change with tilt-angle, interpreted as an evidence for the transition from a canted antiferromagnetic (CAF) to a ferromagnetic (FM) ν = 0 quantum Hall state. We develop a theory for the electric transport in this system based on the spin-charge connection, whereby the evolution in the nature of collective spin excitations throughout this quantum phase transition is reflected in the charge-carrying modes. To this end we study quantum fluctuations of the spin-valley configuration in a system with an edge, and derive an effective theory describing collective charge edge excitations coupled to neutral bulk excitations. Focusing particularly on the FM phase, naively expected to exhibit perfect conductance due to the emergence helical edge modes, we analyze the mechanism whereby the coupling to bulk excitations assists in generating back-scattering. Finally, we calculate the conductance as a function of temperature and the Zeeman energy à€`` the parameter that tunes the transition between the two phases. Support provided by the US-Israel BSF, ISF, and NSF.

  11. Conductance stability in chaotic and integrable quantum dots with random impurities.

    PubMed

    Wang, Guanglei; Ying, Lei; Lai, Ying-Cheng

    2015-08-01

    For a quantum dot system of fixed geometry, in the presence of random impurities the average conductance over an appropriate range of the Fermi energy decreases as the impurity strength is increased. Can the nature of the corresponding classical dynamics in the dot region affect the rate of decrease? Utilizing graphene quantum dots with two semi-infinite, single-mode leads as a prototypical model, we address the device stability issue by investigating the combined effects of classical dynamics and impurities on the average conductance over the energy range of the first transverse mode. We find that, for chaotic dot systems, the rate of decrease in the average conductance with the impurity strength is in general characteristically smaller than that for integrable dots. We develop a semiclassical analysis for the phenomenon and also obtain an understanding based on the random matrix theory. Our results demonstrate that classical chaos can generally lead to a stronger stability in the device performance, strongly advocating exploiting chaos in the development of nanoscale quantum transport devices. PMID:26382470

  12. The Cystic Fibrosis-causing Mutation ΔF508 Affects Multiple Steps in Cystic Fibrosis Transmembrane Conductance Regulator Biogenesis*

    PubMed Central

    Thibodeau, Patrick H.; Richardson, John M.; Wang, Wei; Millen, Linda; Watson, Jarod; Mendoza, Juan L.; Du, Kai; Fischman, Sharon; Senderowitz, Hanoch; Lukacs, Gergely L.; Kirk, Kevin; Thomas, Philip J.

    2010-01-01

    The deletion of phenylalanine 508 in the first nucleotide binding domain of the cystic fibrosis transmembrane conductance regulator is directly associated with >90% of cystic fibrosis cases. This mutant protein fails to traffic out of the endoplasmic reticulum and is subsequently degraded by the proteasome. The effects of this mutation may be partially reversed by the application of exogenous osmolytes, expression at low temperature, and the introduction of second site suppressor mutations. However, the specific steps of folding and assembly of full-length cystic fibrosis transmembrane conductance regulator (CFTR) directly altered by the disease-causing mutation are unclear. To elucidate the effects of the ΔF508 mutation, on various steps in CFTR folding, a series of misfolding and suppressor mutations in the nucleotide binding and transmembrane domains were evaluated for effects on the folding and maturation of the protein. The results indicate that the isolated NBD1 responds to both the ΔF508 mutation and intradomain suppressors of this mutation. In addition, identification of a novel second site suppressor of the defect within the second transmembrane domain suggests that ΔF508 also effects interdomain interactions critical for later steps in the biosynthesis of CFTR. PMID:20667826

  13. Computation of the thermal conductivity using methods based on classical and quantum molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bedoya-Martínez, O. N.; Barrat, Jean-Louis; Rodney, David

    2014-01-01

    The thermal conductivity of a model for solid argon is investigated using nonequilibrium molecular dynamics methods, as well as the traditional Boltzmann transport equation approach with input from molecular dynamics calculations, both with classical and quantum thermostats. A surprising result is that, at low temperatures, only the classical molecular dynamics technique is in agreement with the experimental data. We argue that this agreement is due to a compensation of errors and raise the issue of an appropriate method for calculating thermal conductivities at low (below Debye) temperatures.

  14. Suppression of bulk conductivity in InAs/GaSb broken gap composite quantum wells

    SciTech Connect

    Charpentier, Christophe; Fält, Stefan; Reichl, Christian; Nichele, Fabrizio; Nath Pal, Atindra; Pietsch, Patrick; Ihn, Thomas; Ensslin, Klaus; Wegscheider, Werner

    2013-09-09

    The two-dimensional topological insulator state in InAs/GaSb quantum wells manifests itself by topologically protected helical edge channel transport relying on an insulating bulk. This work investigates a way of suppressing bulk conductivity by using gallium source materials of different degrees of impurity concentrations. While highest-purity gallium is accompanied by clear conduction through the sample bulk, intentional impurity incorporation leads to a bulk resistance over 1 MΩ, independent of applied magnetic fields. In addition, ultra high electron mobilities for GaAs/AlGaAs structures fabricated in a molecular beam epitaxy system used for the growth of Sb-based samples are reported.

  15. Two-dimensional quantum transport in highly conductive carbon nanotube fibers

    NASA Astrophysics Data System (ADS)

    Piraux, L.; Abreu Araujo, F.; Bui, T. N.; Otto, M. J.; Issi, J.-P.

    2015-08-01

    Measurements of the electrical resistivity, from 1.5 to 300 K, and of the low temperature magnetoresistance of highly conductive carbon nanotube (CNT) fibers, obtained by wet-spinning from liquid crystalline phase (LCP), are reported. At high temperature the results obtained on the raw CNT fibers show a typical metallic behavior and the resistivity levels without postdoping process were found to be only one order of magnitude higher than the best electrical conductors, with the specific conductivity (conductivity per unit weight) comparable to that of pure copper. At low temperature a logarithmic dependence of the resistivity and the temperature dependence of the negative magnetoresistance are consistent with a two-dimensional quantum charge transport—weak localization and Coulomb interaction—in the few-walled CNT fibers. The temperature dependence of the phase-breaking scattering rate has also been determined from magnetoresistance measurements. In the temperature range T <100 K , electron-electron scattering is found to be the dominant source of dephasing in these highly conductive CNT fibers. While quantum effects demonstrate the two-dimensional aspect of conduction in the fibers, the fact that it was found that their resistance is mainly determined by the intrinsic resistivity of the CNTs—and not by intertube resistances—suggests that better practical conductors could be obtained by improving the quality of the CNTs and the fiber morphology.

  16. Emergence of helical edge conduction in graphene at the ν =0 quantum Hall state

    NASA Astrophysics Data System (ADS)

    Tikhonov, Pavel; Shimshoni, Efrat; Fertig, H. A.; Murthy, Ganpathy

    2016-03-01

    The conductance of graphene subject to a strong, tilted magnetic field exhibits a dramatic change from insulating to conducting behavior with tilt angle, regarded as evidence for the transition from a canted antiferromagnetic (CAF) to a ferromagnetic (FM) ν =0 quantum Hall state. We develop a theory for the electric transport in this system based on the spin-charge connection, whereby the evolution in the nature of collective spin excitations is reflected in the charge-carrying modes. To this end, we derive an effective field-theoretical description of the low-energy excitations, associated with quantum fluctuations of the spin-valley domain-wall ground-state configuration which characterizes the two-dimensional (2D) system with an edge. This analysis yields a model describing a one-dimensional charged edge mode coupled to charge-neutral spin-wave excitations in the 2D bulk. Focusing particularly on the FM phase, naively expected to exhibit perfect conductance, we study a mechanism whereby the coupling to these bulk excitations assists in generating backscattering. Our theory yields the conductance as a function of temperature and the Zeeman energy—the parameter that tunes the transition between the FM and CAF phases—with behavior in qualitative agreement with experiment.

  17. High temperature conductance fluctuations in an InGaAs/InAlAs open quantum dot

    NASA Astrophysics Data System (ADS)

    Faniel, S.; Hackens, B.; Delfosse, F.; Gustin, C.; Boutry, H.; Huynen, I.; Bayot, V.; Wallart, X.; Bollaert, S.; Cappy, A.

    2002-03-01

    We present magnetotransport measurements in an open quantum dot realized on an InGaAs/InAlAs narrow quantum well. The measurements are performed on a 500 nm diameter circular cavity patterned by electron beam lithography and wet etching. The electronic density can be tuned by a Ti/Pt/Au electrostatic gate. The sample is characterized down to 300mK in a magnetic field up to 5T. We observe a superposition of slowly varying reproducible magnetoconductance fluctuations and a rich pattern of universal conductance fluctuations whose characteristic magnetic field scale is much shorter. We study the evolution of these two types of fluctuations as a function of the temperature (up to 230K) and the gate voltage. We notice the persistence of fluctuations up to unexpectedly high temperatures.

  18. Quantum beats in conductance oscillations in graphene-based asymmetric double velocity wells and electrostatic wells

    SciTech Connect

    Liu, Lei; Li, Yu-Xian; Zhang, Ying-Tao; Liu, Jian-Jun

    2014-01-14

    The transport properties in graphene-based asymmetric double velocity well (Fermi velocity inside the well less than that outside the well) and electrostatic well structures are investigated using the transfer matrix method. The results show that quantum beats occur in the oscillations of the conductance for asymmetric double velocity wells. The beating effect can also be found in asymmetric double electrostatic wells, but only if the widths of the two wells are different. The beat frequency for the asymmetric double well is exactly equal to the frequency difference between the oscillation rates in two isolated single wells with the same structures as the individual wells in the double well structure. A qualitative interpretation is proposed based on the fact that the resonant levels depend upon the sizes of the quantum wells. The beating behavior can provide a new way to identify the symmetry of double well structures.

  19. Formation of a protected sub-band for conduction in quantum point contacts under extreme biasing

    NASA Astrophysics Data System (ADS)

    Lee, J.; Han, J. E.; Xiao, S.; Song, J.; Reno, J. L.; Bird, J. P.

    2014-02-01

    Managing energy dissipation is critical to the scaling of current microelectronics and to the development of novel devices that use quantum coherence to achieve enhanced functionality. To this end, strategies are needed to tailor the electron-phonon interaction, which is the dominant mechanism for cooling non-equilibrium (`hot') carriers. In experiments aimed at controlling the quantum state, this interaction causes decoherence that fundamentally disrupts device operation. Here, we show a contrasting behaviour, in which strong electron-phonon scattering can instead be used to generate a robust mode for electrical conduction in GaAs quantum point contacts, driven into extreme non-equilibrium by nanosecond voltage pulses. When the amplitude of these pulses is much larger than all other relevant energy scales, strong electron-phonon scattering induces an attraction between electrons in the quantum-point-contact channel, which leads to the spontaneous formation of a narrow current filament and to a renormalization of the electronic states responsible for transport. The lowest of these states coalesce to form a sub-band separated from all others by an energy gap larger than the source voltage. Evidence for this renormalization is provided by a suppression of heating-related signatures in the transient conductance, which becomes pinned near 2e2/h (e, electron charge; h, Planck constant) for a broad range of source and gate voltages. This collective non-equilibrium mode is observed over a wide range of temperature (4.2-300 K) and may provide an effective means to manage electron-phonon scattering in nanoscale devices.

  20. Two-step synthesis of highly emissive C/ZnO hybridized quantum dots with a broad visible photoluminescence

    NASA Astrophysics Data System (ADS)

    He, Liangjie; Mei, Shiliang; Chen, Qiuhang; Zhang, Wanlu; Zhang, Jie; Zhu, Jiatao; Chen, Guoping; Guo, Ruiqian

    2016-02-01

    In situ growth of ZnO layer on the surface of carbon dots was realized via a two-step method, which resulted in an enhancement of the broad visible emission with a high quantum yield. Influence of the refluxing time, the temperature and the oleylamine/octadecene ratio was investigated to address the key factors on the preparation of the carbon dots. Under the optimal conditions, the carbon dots with an average diameter of 3.4 ± 0.4 nm and a photoluminescence quantum yield of 29.3% were achieved. Remarkable improvements of photoluminescence were achieved by the hybridization of the ZnO layer, which can eliminate the surface-trap from the C cores and form the new centers of emission. The synergistic effect arising from the C/ZnO hybridized structure obviously broadened the visible emission and enhanced their photoluminescence quantum yield from 29.3% to 47.3%. The as-prepared highly emissive quantum dots exhibited a broad and stable emission with the Commission Internationaled 'E' clairage chromaticity coordinate of (0.23, 0.34), which could offer a promising solution for the future-generation white light emitting diodes.

  1. Conductance maps of quantum rings due to a local potential perturbation.

    PubMed

    Petrović, M D; Peeters, F M; Chaves, A; Farias, G A

    2013-12-11

    We performed a numerical simulation of the dynamics of a Gaussian shaped wavepacket inside a small sized quantum ring, smoothly connected to two leads and exposed to a perturbing potential of a biased atomic force microscope tip. Using the Landauer formalism, we calculated conductance maps of this system in the case of single and two subband transport. We explain the main features in the conductance maps as due to the AFM tip influence on the wavepacket phase and amplitude. In the presence of an external magnetic field, the tip modifies the ϕ0 periodic Aharonov-Bohm oscillation pattern into a ϕ0/2 periodic Al'tshuler-Aronov-Spivak oscillation pattern. Our results in the case of multiband transport suggest tip selectivity to higher subbands, making them more observable in the total conductance map. PMID:24184634

  2. Non-linear conductance in quantum point contacts of noble metals

    NASA Astrophysics Data System (ADS)

    Yoshida, Makoto; Takayanagi, Kunio

    2004-03-01

    We studied the non-linear property of the electronic conductance of the noble metal nanocontact. Specimens were cleaned by Ar ion sputtering in UHV(`2 ˜10|7[Pa]) at room temperature. Current vs voltage curves (I-V curves) were obtained, while the metal contact was stretched by STM. The bias voltage at the contact was changed within 2V (using the triangle wave voltage 3`5kHz). Au, Pt, Ag and Cu quantum point contacts showed non-linear I-V curves. These metallic contacts presented the quantized conductance of the quantum unit G0(=2e2/h). I-V curves are fitted to a cubic function ( IaV+cV3 ). The value of c/a does not depend on the zero-bias conductance value, a. However, c/a values depend on metals (c/a ; Au=0.58 0.02, Ag=0.33 0.02, Cu= 0.40 0.03). The present result indicates that metals of lower resistance (higher mobility) give lower values of c/a.

  3. Disorder strongly enhances Auger recombination in conductive quantum-dot solids

    PubMed Central

    Gao, Yunan; Sandeep, C. S. Suchand; Schins, Juleon M.; Houtepen, Arjan J.; Siebbeles, Laurens D. A.

    2013-01-01

    Auger recombination (AR) can be an important loss mechanism for optoelectronic devices, but it is typically not very efficient at low excitation densities. Here we show that in conductive quantum-dot solids, AR is the dominant charge carrier decay path even at excitation densities as low as 10−3 per quantum dot, and that AR becomes faster as the charge carrier mobility increases. Monte Carlo simulations reveal that this efficient AR results from charge carrier congregation in ‘Auger hot spots’: lower-energy sites that are present because of energy disorder. Disorder-enhanced AR is a general effect that is expected to be active in all disordered materials. The observed efficient AR is an issue of concern for devices that work at charge carrier densities in excess of ~10−3 charge carriers per quantum dot. At the same time, efficient carrier congregation could be exploited for fast optical switching or to achieve optical gain in the near infrared. PMID:24029819

  4. Bound states induced giant oscillations of the conductance in the quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Kadigrobov, A. M.; Fistul, M. V.

    2016-06-01

    We theoretically studied the quasiparticle transport in a 2D electron gas biased in the quantum Hall regime and in the presence of a lateral potential barrier. The lateral junction hosts the specific magnetic field dependent quasiparticle states highly localized in the transverse direction. The quantum tunnelling across the barrier provides a complex bands structure of a one-dimensional energy spectrum of these bound states, {εn}≤ft( {{p}y}\\right) , where p y is the electron momentum in the longitudinal direction y. Such a spectrum manifests itself by a large number of peaks and drops in the dependence of the magnetic edge states transmission coefficient D(E ) on the electron energy E. E.g. the high value of D occurs as soon as the electron energy E reaches gaps in the spectrum. These peaks and drops of D(E) result in giant oscillations of the transverse conductance G x with the magnetic field and/or the transport voltage. Our theoretical analysis, based on the coherent macroscopic quantum superposition of the bound states and the magnetic edge states propagating along the system boundaries, is in a good accord with the experimental observations found in Kang et al (2000 Lett. Nat. 403 59)

  5. Bound states induced giant oscillations of the conductance in the quantum Hall regime.

    PubMed

    Kadigrobov, A M; Fistul, M V

    2016-06-29

    We theoretically studied the quasiparticle transport in a 2D electron gas biased in the quantum Hall regime and in the presence of a lateral potential barrier. The lateral junction hosts the specific magnetic field dependent quasiparticle states highly localized in the transverse direction. The quantum tunnelling across the barrier provides a complex bands structure of a one-dimensional energy spectrum of these bound states, [Formula: see text], where p y is the electron momentum in the longitudinal direction y. Such a spectrum manifests itself by a large number of peaks and drops in the dependence of the magnetic edge states transmission coefficient D(E ) on the electron energy E. E.g. the high value of D occurs as soon as the electron energy E reaches gaps in the spectrum. These peaks and drops of D(E) result in giant oscillations of the transverse conductance G x with the magnetic field and/or the transport voltage. Our theoretical analysis, based on the coherent macroscopic quantum superposition of the bound states and the magnetic edge states propagating along the system boundaries, is in a good accord with the experimental observations found in Kang et al (2000 Lett. Nat. 403 59). PMID:27166511

  6. Long-wavelength corrections to Hall conductivity in fractional quantum Hall fluids

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Haldane, F. D. M.

    2013-03-01

    Recent work by Hoyos and Son, then Bradlyn et al., has investigated the relation between the long-wavelength (O (q2)) corrections to the Hall conductivity σH (q) and the Hall viscosity of quantum Hall states. These works assume the presence of Galilean and rotational invariance. However, these are not generic symmetries of electrons in condensed matter. We identify translation and (2D) inversion symmetry as the only generic symmetries of an ``ideal'' quantum Hall liquid, as these are needed to guarantee the absence of any dissipationless ground state current density; then σH (q) = σH (- q) characterizes the dissipation less current that flows in response to a spatially-non-uniform electric field. We consider the general problem for fractional quantum Hall (FQH) states without Galilean or rotational invariance, when the guiding-center contribution to the Hall viscosity becomes a non-trivial tensor property related to an emergent geometry of the FQH state, (Bo Yang et,al (PRB 85,165318). Supported by DOE DE-SC0002140 and Agency for Science Technology and Research (A*STAR, Singapore).

  7. Breaking time reversal symmetry, quantum anomalous Hall state and dissipationless chiral conduction in topological insulators

    NASA Astrophysics Data System (ADS)

    Moodera, Jagadeesh

    Breaking time reversal symmetry (TRS) in a topological insulator (TI) with ferromagnetic perturbation can lead to many exotic quantum phenomena exhibited by Dirac surface states including the quantum anomalous Hall (QAH) effect and dissipationless quantized Hall transport. The realization of the QAH effect in realistic materials requires ferromagnetic insulating materials and topologically non-trivial electronic band structures. In a TI, the ferromagnetic order and TRS breaking is achievable by conventional way, through doping with a magnetic element, or by ferromagnetic proximity coupling. Our experimental studies by both approaches will be discussed. In doped TI van Vleck ferromagnetism was observed. The proximity induced magnetism at the interface was stable, beyond the expected temperature range. We shall describe in a hard ferromagnetic TI system a robust QAH state and dissipationless edge current flow is achieved,1,2 a major step towards dissipationless electronic applications with no external fields, making such devices more amenable for metrology and spintronics applications. Our study of the gate and temperature dependences of local and nonlocal magnetoresistance, may elucidate the causes of the dissipative edge channels and the need for very low temperature to observe QAH. In close collaboration with: CuiZu Chang,2,3 Ferhat Katmis, 1 . 2 , 3 Peng Wei. 1 , 2 , 3 ; From Nuclear Eng. Dept. MIT, M. Li, J. Li; From Penn State U, W-W. Zhao, D. Y. Kim, C-x. Liu, J. K. Jain, M. H. W. Chan; From Oakridge National Lab, V. Lauter; From Northeastern U., B. A. Assaf, M. E. Jamer, D. Heiman; From Argonne Lab, J. W. Freeland; From Ruhr-Universitaet Bochum (Germany), F. S. Nogueira, I. Eremin; From Saha Institute of Nuclear Physics (India), B. Satpati. Work supported by NSF Grant DMR-1207469, the ONR Grant N00014-13-1-0301, and the STC Center for Integrated Quantum Materials under NSF Grant DMR-1231319.

  8. On the quantum magnetic oscillations of electrical and thermal conductivities of graphene

    NASA Astrophysics Data System (ADS)

    Alisultanov, Z. Z.; Reis, M. S.

    2016-05-01

    Oscillating thermodynamic quantities of diamagnetic materials, specially graphene, have been attracting attention of the scientific community due to the possibility to experimentally map the Fermi surface of the material. These have been the case of the de Haas-van Alphen and Shubnikov-de Haas effects, found on the magnetization and electrical conductivity, respectively. In this direction, managing the thermodynamic oscillations is of practical purpose, since from the reconstructed Fermi surface it is possible to access, for instance, the electronic density. The present work theoretically explores the quantum oscillations of electrical and thermal conductivities of a monolayer graphene under a crossed magnetic and electric fields. We found that the longitudinal electric field can increase the amplitude of the oscillations and this result is of practical and broad interest for both, experimental and device physics.

  9. Tunnel magnetoresistance and linear conductance of double quantum dots strongly coupled to ferromagnetic leads

    SciTech Connect

    Weymann, Ireneusz

    2015-05-07

    We analyze the spin-dependent linear-response transport properties of double quantum dots strongly coupled to external ferromagnetic leads. By using the numerical renormalization group method, we determine the dependence of the linear conductance and tunnel magnetoresistance on the degree of spin polarization of the leads and the position of the double dot levels. We focus on the transport regime where the system exhibits the SU(4) Kondo effect. It is shown that the presence of ferromagnets generally leads the suppression of the linear conductance due to the presence of an exchange field. Moreover, the exchange field gives rise to a transition from the SU(4) to the orbital SU(2) Kondo effect. We also analyze the dependence of the tunnel magnetoresistance on the double dot levels' positions and show that it exhibits a very nontrivial behavior.

  10. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block

    SciTech Connect

    Deng Fuguo; Liu Xiaoshu; Long Guilu

    2003-10-01

    A protocol for quantum secure direct communication using blocks of Einstein-Podolsky-Rosen (EPR) pairs is proposed. A set of ordered N EPR pairs is used as a data block for sending secret message directly. The ordered N EPR set is divided into two particle sequences, a checking sequence and a message-coding sequence. After transmitting the checking sequence, the two parties of communication check eavesdropping by measuring a fraction of particles randomly chosen, with random choice of two sets of measuring bases. After insuring the security of the quantum channel, the sender Alice encodes the secret message directly on the message-coding sequence and sends them to Bob. By combining the checking and message-coding sequences together, Bob is able to read out the encoded messages directly. The scheme is secure because an eavesdropper cannot get both sequences simultaneously. We also discuss issues in a noisy channel.

  11. Charge Carrier Conduction Mechanism in PbS Quantum Dot Solar Cells: Electrochemical Impedance Spectroscopy Study.

    PubMed

    Wang, Haowei; Wang, Yishan; He, Bo; Li, Weile; Sulaman, Muhammad; Xu, Junfeng; Yang, Shengyi; Tang, Yi; Zou, Bingsuo

    2016-07-20

    With its properties of bandgap tunability, low cost, and substrate compatibility, colloidal quantum dots (CQDs) are becoming promising materials for optoelectronic applications. Additionally, solution-processed organic, inorganic, and hybrid ligand-exchange technologies have been widely used in PbS CQDs solar cells, and currently the maximum certified power conversion efficiency of 9.9% has been reported by passivation treatment of molecular iodine. Presently, there are still some challenges, and the basic physical mechanism of charge carriers in CQDs-based solar cells is not clear. Electrochemical impedance spectroscopy is a monitoring technology for current by changing the frequency of applied alternating current voltage, and it provides an insight into its electrical properties that cannot be measured by direct current testing facilities. In this work, we used EIS to analyze the recombination resistance, carrier lifetime, capacitance, and conductivity of two typical PbS CQD solar cells Au/PbS-TBAl/ZnO/ITO and Au/PbS-EDT/PbS-TBAl/ZnO/ITO, in this way, to better understand the charge carriers conduction mechanism behind in PbS CQD solar cells, and it provides a guide to design high-performance quantum-dots solar cells. PMID:27176547

  12. Theory of quantum metal to superconductor transitions in highly conducting systems

    SciTech Connect

    Spivak, B.

    2010-04-06

    We derive the theory of the quantum (zero temperature) superconductor to metal transition in disordered materials when the resistance of the normal metal near criticality is small compared to the quantum of resistivity. This can occur most readily in situations in which 'Anderson's theorem' does not apply. We explicitly study the transition in superconductor-metal composites, in an swave superconducting film in the presence of a magnetic field, and in a low temperature disordered d-wave superconductor. Near the point of the transition, the distribution of the superconducting order parameter is highly inhomogeneous. To describe this situation we employ a procedure which is similar to that introduced by Mott for description of the temperature dependence of the variable range hopping conduction. As the system approaches the point of the transition from the metal to the superconductor, the conductivity of the system diverges, and the Wiedemann-Franz law is violated. In the case of d-wave (or other exotic) superconductors we predict the existence of (at least) two sequential transitions as a function of increasing disorder: a d-wave to s-wave, and then an s-wave to metal transition.

  13. Ionic conductivity in a quantum lattice gas model with three-particle interactions

    NASA Astrophysics Data System (ADS)

    Barry, J. H.; Muttalib, K. A.; Tanaka, T.

    2012-12-01

    A system of mesoscopic ions with dominant three-particle interactions is modeled by a quantum lattice liquid on the planar kagomé lattice. The two-parameter Hamiltonian contains localized attractive triplet interactions as potential energy and nearest neighbor hopping-type terms as kinetic energy. The dynamic ionic conductivity σ(ω) is theoretically investigated for ‘weak hopping’ via a quantum many-body perturbation expansion of the thermal (Matsubara) Green function (current-current correlation). A simple analytic continuation and mapping of the thermal Green function provide the temporal Fourier transform of the physical retarded Green function in the Kubo formula. Substituting pertinent exact solutions for static multi-particle correlations known from previous work, Arrhenius relations are revealed in zeroth-order approximation for the dc ionic conductivity σdc along special trajectories in density-temperature space. The Arrhenius plots directly yield static activation energies along the latter loci. Experimental possibilities relating to σdc are discussed in the presence of equilibrium aggregation. This article is part of ‘Lattice models and integrability’, a special issue of Journal of Physics A: Mathematical and Theoretical in honour of F Y Wu's 80th birthday.

  14. Distortions of the coulomb blockade conductance line in scanning gate measurements of inas nanowire based quantum dots

    SciTech Connect

    Zhukov, A. A.; Volk, Ch.; Winden, A.; Hardtdegen, H.; Schaepers, Th.

    2013-01-15

    We performed measurements at helium temperatures of the electronic transport in the linear regime in an InAs quantum wire in the presence of a charged tip of an atomic force microscope (AFM) at low electron concentration. We show that at certain concentration of electrons, only two closely placed quantum dots, both in the Coulomb blockade regime, govern conductance of the whole wire. Under this condition, two types of peculiarities-wobbling and splitting-arise in the behavior of the lines of the conductance peaks of Coulomb blockade. These peculiarities are measured in quantum-wire-based structures for the first time. We explain both peculiarities as an interplay of the conductance of two quantum dots present in the wire. Detailed modeling of wobbling behavior made in the framework of the orthodox theory of Coulomb blockade demonstrates good agreement with the obtained experimental data.

  15. Single step deposition of an interacting layer of a perovskite matrix with embedded quantum dots

    NASA Astrophysics Data System (ADS)

    Ngo, Thi Tuyen; Suarez, Isaac; Sanchez, Rafael S.; Martinez-Pastor, Juan P.; Mora-Sero, Ivan

    2016-07-01

    Hybrid lead halide perovskite (PS) derivatives have emerged as very promising materials for the development of optoelectronic devices in the last few years. At the same time, inorganic nanocrystals with quantum confinement (QDs) possess unique properties that make them suitable materials for the development of photovoltaics, imaging and lighting applications, among others. In this work, we report on a new methodology for the deposition of high quality, large grain size and pinhole free PS films (CH3NH3PbI3) with embedded PbS and PbS/CdS core/shell Quantum Dots (QDs). The strong interaction between both semiconductors is revealed by the formation of an exciplex state, which is monitored by photoluminescence and electroluminescence experiments. The radiative exciplex relaxation is centered in the near infrared region (NIR), ~1200 nm, which corresponds to lower energies than the corresponding band gap of both perovskite (PS) and QDs. Our approach allows the fabrication of multi-wavelength light emitting diodes (LEDs) based on a PS matrix with embedded QDs, which show considerably low turn-on potentials. The presence of the exciplex state of PS and QDs opens up a broad range of possibilities with important implications in both LEDs and solar cells.Hybrid lead halide perovskite (PS) derivatives have emerged as very promising materials for the development of optoelectronic devices in the last few years. At the same time, inorganic nanocrystals with quantum confinement (QDs) possess unique properties that make them suitable materials for the development of photovoltaics, imaging and lighting applications, among others. In this work, we report on a new methodology for the deposition of high quality, large grain size and pinhole free PS films (CH3NH3PbI3) with embedded PbS and PbS/CdS core/shell Quantum Dots (QDs). The strong interaction between both semiconductors is revealed by the formation of an exciplex state, which is monitored by photoluminescence and

  16. Single step deposition of an interacting layer of a perovskite matrix with embedded quantum dots.

    PubMed

    Ngo, Thi Tuyen; Suarez, Isaac; Sanchez, Rafael S; Martinez-Pastor, Juan P; Mora-Sero, Ivan

    2016-08-14

    Hybrid lead halide perovskite (PS) derivatives have emerged as very promising materials for the development of optoelectronic devices in the last few years. At the same time, inorganic nanocrystals with quantum confinement (QDs) possess unique properties that make them suitable materials for the development of photovoltaics, imaging and lighting applications, among others. In this work, we report on a new methodology for the deposition of high quality, large grain size and pinhole free PS films (CH3NH3PbI3) with embedded PbS and PbS/CdS core/shell Quantum Dots (QDs). The strong interaction between both semiconductors is revealed by the formation of an exciplex state, which is monitored by photoluminescence and electroluminescence experiments. The radiative exciplex relaxation is centered in the near infrared region (NIR), ≈1200 nm, which corresponds to lower energies than the corresponding band gap of both perovskite (PS) and QDs. Our approach allows the fabrication of multi-wavelength light emitting diodes (LEDs) based on a PS matrix with embedded QDs, which show considerably low turn-on potentials. The presence of the exciplex state of PS and QDs opens up a broad range of possibilities with important implications in both LEDs and solar cells. PMID:27437778

  17. Two-step synthesis of luminescent MoS(2)-ZnS hybrid quantum dots.

    PubMed

    Clark, Rhiannon M; Carey, Benjamin J; Daeneke, Torben; Atkin, Paul; Bhaskaran, Madhu; Latham, Kay; Cole, Ivan S; Kalantar-Zadeh, Kourosh

    2015-10-28

    A surfactant assisted technique has been used to promote the exfoliation of molybdenum disulphide (MoS2) in a water-ethanol mixture, to avoid the use of harsh organic solvents, whilst still producing sufficient concentration of MoS2 in suspension. The exfoliated flakes are converted into MoS2 quantum dots (QDs), through a hydrothermal procedure. Alternatively, when the flakes are processed with precursors for zinc sulphide (ZnS) synthesis, a simultaneous break-down and composite growth is achieved. The products are separated by centrifugation, into large ZnS spheres (200-300 nm) and small MoS2-ZnS hybrid QD materials (<100 nm), of which, the latter show favorable optical properties. Two concurrent photoluminescent (PL) peaks are seen at 380 and 450 nm, which are assigned to MoS2 and ZnS components of QDs, respectively. The PL emission from MoS2-ZnS QDs is of high energy and is more intense than the bare MoS2 flakes or QDs, with a quantum yield as high as 1.96%. The emission wavelength is independent from the excitation wavelength and does not change over time. Due to such properties, the developed hybrid QDs are potentially suitable for imaging and sensing applications. PMID:26399979

  18. Two-step synthesis of luminescent MoS2-ZnS hybrid quantum dots

    NASA Astrophysics Data System (ADS)

    Clark, Rhiannon M.; Carey, Benjamin J.; Daeneke, Torben; Atkin, Paul; Bhaskaran, Madhu; Latham, Kay; Cole, Ivan S.; Kalantar-Zadeh, Kourosh

    2015-10-01

    A surfactant assisted technique has been used to promote the exfoliation of molybdenum disulphide (MoS2) in a water-ethanol mixture, to avoid the use of harsh organic solvents, whilst still producing sufficient concentration of MoS2 in suspension. The exfoliated flakes are converted into MoS2 quantum dots (QDs), through a hydrothermal procedure. Alternatively, when the flakes are processed with precursors for zinc sulphide (ZnS) synthesis, a simultaneous break-down and composite growth is achieved. The products are separated by centrifugation, into large ZnS spheres (200-300 nm) and small MoS2-ZnS hybrid QD materials (<100 nm), of which, the latter show favorable optical properties. Two concurrent photoluminescent (PL) peaks are seen at 380 and 450 nm, which are assigned to MoS2 and ZnS components of QDs, respectively. The PL emission from MoS2-ZnS QDs is of high energy and is more intense than the bare MoS2 flakes or QDs, with a quantum yield as high as 1.96%. The emission wavelength is independent from the excitation wavelength and does not change over time. Due to such properties, the developed hybrid QDs are potentially suitable for imaging and sensing applications.A surfactant assisted technique has been used to promote the exfoliation of molybdenum disulphide (MoS2) in a water-ethanol mixture, to avoid the use of harsh organic solvents, whilst still producing sufficient concentration of MoS2 in suspension. The exfoliated flakes are converted into MoS2 quantum dots (QDs), through a hydrothermal procedure. Alternatively, when the flakes are processed with precursors for zinc sulphide (ZnS) synthesis, a simultaneous break-down and composite growth is achieved. The products are separated by centrifugation, into large ZnS spheres (200-300 nm) and small MoS2-ZnS hybrid QD materials (<100 nm), of which, the latter show favorable optical properties. Two concurrent photoluminescent (PL) peaks are seen at 380 and 450 nm, which are assigned to MoS2 and ZnS components of

  19. An electrochemical one-step system for assaying methyltransferase activity based on transport of a quantum dot signaling tracer.

    PubMed

    Baek, Songyi; Won, Byoung Yeon; Park, Ki Soo; Park, Hyun Gyu

    2013-11-15

    A one-step, electrochemical method for assaying methyltransferase (MTase) activity, based on the convective transport of a quantum dot (QD) signaling tracer, has been developed. The assay chip used in this system was prepared by modifying a gold matrix with CdSe/ZnS QD-tagged dsDNA, which contains a specific methylation site (5'-GATC-3') recognized by MTase. Treatment of the chip with DNA adenine methylation (Dam) MTase, generates a methylated sequence (5'-GAmTC-3') within the dsDNA. The methylated dsDNA is then subjected to a cleavage reaction, induced by DpnI, which leads to release from the gold matrix of a DNA fragment tethered to a QD. Detection of the released QD, using square wave anodic stripping voltammetry (SWASV) on a glassy carbon (GC) electrode, enables the reliable quantitation of the methylated DNA. Because it is accomplished in a simple and convenient one step and does not require any complicated secondary or tedious washing steps, the new assay method holds great promise for epigenetic analysis in facility-limited environments or point-of-care testing (POCT) applications. PMID:23777705

  20. Photoluminescence quenching and conductivity enhancement of PVK induced by CdS quantum dots

    NASA Astrophysics Data System (ADS)

    Masala, S.; Bizzarro, V.; Re, M.; Nenna, G.; Villani, F.; Minarini, C.; Di Luccio, T.

    2012-04-01

    In this work we studied the optical and transport properties of hybrid nanocomposites of CdS quantum dots (QDs) and poly(N-vinylcarbazole) (PVK) polymer. The CdS QDs were prepared by thermal decomposition (thermolysis) of a single source precursor, Cd bis-thiolate, in a high boiling solvent, octadecene (ODE). The optical characterization of the QDs has been carried out by UV-vis absorption and photoluminescence spectroscopy while the morphological properties have been investigated atomic force microscopy and transmission electron microscopy. The analyses have shown that CdS QDs of diameter below 6 nm can be synthesized by such route with good light emission in the UV range. The QDs have been dispersed in a poly(N-vinylcarbazole) (PVK) matrix to obtain a PVK:CdS nanocomposite layers. An increase of conductivity and a quenching of the photoluminescence have been observed when the nanocomposite layer was inserted in ITO/PVK:CdS/Al structures.

  1. Multi-scale quantum point contact model for filamentary conduction in resistive random access memories devices

    SciTech Connect

    Lian, Xiaojuan Cartoixà, Xavier; Miranda, Enrique; Suñé, Jordi; Perniola, Luca; Rurali, Riccardo; Long, Shibing; Liu, Ming

    2014-06-28

    We depart from first-principle simulations of electron transport along paths of oxygen vacancies in HfO{sub 2} to reformulate the Quantum Point Contact (QPC) model in terms of a bundle of such vacancy paths. By doing this, the number of model parameters is reduced and a much clearer link between the microscopic structure of the conductive filament (CF) and its electrical properties can be provided. The new multi-scale QPC model is applied to two different HfO{sub 2}-based devices operated in the unipolar and bipolar resistive switching (RS) modes. Extraction of the QPC model parameters from a statistically significant number of CFs allows revealing significant structural differences in the CF of these two types of devices and RS modes.

  2. Interaction-induced corrections to conductance and thermopower in quantum wires.

    SciTech Connect

    Levchenko, A.; Ristivojevic, Z.; Micklitz, T.; Materials Science Division; Theorique de l'Ecole Normale Superieure; Freie Univ. Berlin

    2011-01-19

    We study transport properties of weakly interacting spinless electrons in one-dimensional single-channel quantum wires. The effects of interaction manifest as three-particle collisions due to the severe constraints imposed by the conservation laws on the two-body processes. We focus on short wires where the effects of equilibration on the distribution function can be neglected and the collision integral can be treated in perturbation theory. We find that interaction-induced corrections to conductance and thermopower rely on the scattering processes that change the number of right- and left-moving electrons. The latter requires transition at the bottom of the band which is exponentially suppressed at low temperatures. Our theory is based on the scattering approach that is beyond the Luttinger-liquid limit. We emphasize the crucial role of the exchange terms in the three-particle scattering amplitude that was not discussed in previous studies.

  3. Quantum states of charge carriers and longitudinal conductivity in double periodic n-type semiconductor lattice structures in electric field

    SciTech Connect

    Perov, A. A. Penyagin, I. V.

    2015-07-15

    Quantum states of charge carriers in double periodic semiconductor superlattices of n-type quantum dots with Rashba spin–orbit coupling in an electron gas have been calculated in the one-electron approximation in the presence of mutually perpendicular electric and magnetic fields. For these structures in weak constant electric field, the solution to the quasi-classical kinetic Boltzmann equation shows that the states of carriers in magnetic Landau minibands with negative differential conductivity are possible.

  4. Step-Scan FTIR spectroscopy and quantum chemical calculations of xanthone in the triplet state

    NASA Astrophysics Data System (ADS)

    Buschhaus, L.; Kleinermanns, K.

    2014-10-01

    Step-Scan-FTIR spectroscopy has been used to measure the infrared spectrum of xanthone in the triplet state using chloroform as solvent. Xanthone is an important triplet sensitizer and therefore suitable as model system. Xanthone was excited at 266 nm and its IR triplet spectrum measured in the range 1000-1750 cm-1. The spectrum was analyzed by comparison with DFT/B3LYP/TZVP/COSMO calculations. Further on the results were compared to gas phase IR measurements of triplet xanthone and calculations of isolated xanthone. Mainly based on the calculations we tried to identify the geometry changes from the electronic ground state to the first triplet state.

  5. Bias voltage dependence of two-step photocurrent in GaAs/AlGaAs quantum well solar cells

    NASA Astrophysics Data System (ADS)

    Noda, T.; Elborg, M.; Mano, T.; Kawazu, T.; Han, L.; Sakaki, H.

    2016-02-01

    We investigated photoresponses of AlGaAs solar cells in which coupled GaAs quantum wells were embedded in the i-region of p-i-n diodes; we studied how the bias voltage Vb affects the normal photocurrent I generated by the visible light and a "two-step" photocurrent ΔI generated by the absorption of visible and infrared photons. We found that as Vb exceeds -0.2 V, ΔI rises and peaks at 0.6 V, while the normal photocurrent I falls to about half of its saturated level. These findings are discussed in terms of a rate equation model to show that ΔI is mainly determined by the balance of escape and recombination of photogenerated carriers.

  6. Photoluminescence study of {InxGa1-xAs}/{InyAl1-yAs} one-side-modulation-doped asymmetric step quantum wells

    NASA Astrophysics Data System (ADS)

    Li, Hanxuan; Wang, Zhanguo; Liang, Jiben; Xu, Bo; Jiang, Chao; Gong, Qian; Liu, Fengqi; Zhou, Wei

    1998-06-01

    Fourier transform photoluminescence measurements were carried out to investigate the optical transitions in {InxGa1-xAs}/{InyAl1-yAs} one-side-modulation-doped asymmetric step quantum wells. Samples with electron density ns between 0.8 and 5.3 × 10 12cm -2 are studied. Strong recombination involving one to three populated electron subbands with the first heavyhole subband is observed. Fermi edge singularity (FES) clearly can be observed for some samples. The electron subband energies in the {InGaAs}/{InAlAs} step quantum wells were calculated by a self-consistent method, taking into account strain and nonparabolicity effects and the comparison with the experimental data shows a good agreement. Our results can help improve understanding for the application of {InGaAs}/{InAlAs} step quantum wells in microelectronic and optoelectronic devices.

  7. Quantum criticality of the two-channel pseudogap Anderson model: universal scaling in linear and non-linear conductance.

    PubMed

    Wu, Tsan-Pei; Wang, Xiao-Qun; Guo, Guang-Yu; Anders, Frithjof; Chung, Chung-Hou

    2016-05-01

    The quantum criticality of the two-lead two-channel pseudogap Anderson impurity model is studied. Based on the non-crossing approximation (NCA) and numerical renormalization group (NRG) approaches, we calculate both the linear and nonlinear conductance of the model at finite temperatures with a voltage bias and a power-law vanishing conduction electron density of states, [Formula: see text] (0  <  r  <  1) near the Fermi energy [Formula: see text]. At a fixed lead-impurity hybridization, a quantum phase transition from the two-channel Kondo (2CK) to the local moment (LM) phase is observed with increasing r from r  =  0 to [Formula: see text]. Surprisingly, in the 2CK phase, different power-law scalings from the well-known [Formula: see text] or [Formula: see text] form is found. Moreover, novel power-law scalings in conductances at the 2CK-LM quantum critical point are identified. Clear distinctions are found on the critical exponents between linear and non-linear conductance at criticality. The implications of these two distinct quantum critical properties for the non-equilibrium quantum criticality in general are discussed. PMID:27045815

  8. Quantum criticality of the two-channel pseudogap Anderson model: universal scaling in linear and non-linear conductance

    NASA Astrophysics Data System (ADS)

    Wu, Tsan-Pei; Wang, Xiao-Qun; Guo, Guang-Yu; Anders, Frithjof; Chung, Chung-Hou

    2016-05-01

    The quantum criticality of the two-lead two-channel pseudogap Anderson impurity model is studied. Based on the non-crossing approximation (NCA) and numerical renormalization group (NRG) approaches, we calculate both the linear and nonlinear conductance of the model at finite temperatures with a voltage bias and a power-law vanishing conduction electron density of states, {ρ\\text{c}}(ω )\\propto |ω -{μ\\text{F}}{{|}r} (0  <  r  <  1) near the Fermi energy {μ\\text{F}} . At a fixed lead-impurity hybridization, a quantum phase transition from the two-channel Kondo (2CK) to the local moment (LM) phase is observed with increasing r from r  =  0 to r={{r}\\text{c}}<1 . Surprisingly, in the 2CK phase, different power-law scalings from the well-known \\sqrt{T} or \\sqrt{V} form is found. Moreover, novel power-law scalings in conductances at the 2CK-LM quantum critical point are identified. Clear distinctions are found on the critical exponents between linear and non-linear conductance at criticality. The implications of these two distinct quantum critical properties for the non-equilibrium quantum criticality in general are discussed.

  9. Zero bias maximum of differential conductance in coupled quantum dots: The effect of interdot Coulomb interaction

    NASA Astrophysics Data System (ADS)

    Rajput, Gagan; Chand, S.; Ahluwalia, P. K.; Sharma, K. C.

    2010-10-01

    In this paper, we present a theoretical study of correlated electronic transport through coupled double quantum dot (DQD) system attached to normal leads, using a generalised two impurity Anderson Hamiltonian in the presence of intra- and inter-dot Coulomb interactions. A generic formulation from which different structures, i.e. series, symmetric as well as asymmetric parallel and T-shape, can be obtained easily, is developed using Keldysh non-equilibrium Green functions method. The occupation numbers and correlators appearing in the formulation have been calculated in a self-consistent manner. A special attention is paid to investigate the ZBM in the differential conductance, which appears, develops and disappears over a particular range of interdot Coulomb interaction, in the configuration of interest. The ZBM is found to result from the renormalization of energy levels induced by the interdot Coulomb interaction and therefore an attempt has been made to understand it within the framework of local density of states. The interdot tunneling is found to enhance the effect of the interdot Coulomb interaction in inducing the ZBM in all the three configurations. Calculations for the T-shape configuration reveal that non-zero value of the interdot tunneling is an essential condition for the appearance of the ZBM in the differential conductance.

  10. Redox-driven conductance modulation of a single quantum dot in an electrolytic environment

    NASA Astrophysics Data System (ADS)

    Lovat, Giacomo; Choi, Boyeon; Roy, Xavier; Venkataraman, Latha

    Electrons confined in zero-dimensional systems exhibit shape and size-dependent electronic and optical properties of interest for many technological applications. A realization of molecular-scale quantum dots having precise shape and size is provided by the synthesis of atomically defined isostructural metal chalcogenide clusters functionalized with organic connectors, which opens the possibility of wiring up these dots without altering significantly their electronic structure. Here, we characterize the charge transport in single molecule junctions fabricated with Co6Se8 clusters via the scanning tunneling microscope break junction technique. The cluster structure consists of an octahedron of Co atoms concentric with a cube of Se atoms; the electrical connection to the Au leads is provided by aurophilic thiol-terminated ligands attached at the Co sites. We demonstrate that conductance modulation in a cluster junction can be achieved by controlling the charge state of the cluster. The conductance of the oxidized species differs from that of the neutral ones, consistent with the value obtained in a control experiment with chemically oxidized clusters. This work was supported in part by the Columbia University NSF-MRSEC center.

  11. Normal-state conductance used to probe superconducting tunnel junctions for quantum computing

    NASA Astrophysics Data System (ADS)

    Chaparro, Carlos; Bavier, Richard; Kim, Yong-Seung; Kim, Eunyoung; Kline, Jeffrey S.; Pappas, David P.; Oh, Seongshik

    2010-04-01

    Here we report normal-state conductance measurements of three different types of superconducting tunnel junctions that are being used or proposed for quantum computing applications: p-Al/a-AlO/p-Al, e-Re/e-AlO/p-Al, and e-V/e-MgO/p-V, where p stands for polycrystalline, e for epitaxial, and a for amorphous. All three junctions exhibited significant deviations from the parabolic behavior predicted by the WKB approximation models. In the p-Al/a-AlO/p-Al junction, we observed enhancement of tunneling conductances at voltages matching harmonics of Al-O stretching modes. On the other hand, such Al-O vibration modes were missing in the epitaxial e-Re/e-AlO/p-Al junction. This suggests that absence or existence of the Al-O stretching mode might be related to the crystallinity of the AlO tunnel barrier and the interface between the electrode and the barrier. In the e-V/e-MgO/p-V junction, which is one of the candidate systems for future superconducting qubits, we observed suppression of the density of states at zero bias. This implies that the interface is electronically disordered, presumably due to oxidation of the vanadium surface underneath the MgO barrier, even if the interface was structurally well ordered, suggesting that the e-V/e-MgO/p-V junction will not be suitable for qubit applications in its present form. This also demonstrates that the normal-state conductance measurement can be effectively used to screen out low quality samples in the search for better superconducting tunnel junctions.

  12. Parallel magnetic field-induced conductance fluctuations in GaAs/AlGaAs ballistic quantum dots.

    NASA Astrophysics Data System (ADS)

    Faniel, S.; Gustin, C.; Melinte, S.; Hackens, B.; Bayot, V.; Shayegan, M.

    2004-03-01

    We present magnetotransport measurements in ballistic quantum dots under a parallel magnetic field. The dots were fabricated on two different GaAs/AlGaAs quantum wells with thicknesses of 15 and and 45 nm and with one and two subbands occupied, respectively. The samples were patterned using e-beam lithography and wet etching. A Cr/Au electrostatic top gate was used in order to tune the width of the dot openings. The measurements were performed down to 300 mK with the magnetic field applied strictly parallel to the plane of the two-dimensional electron gas. For both dots, we observe universal conductance fluctuations and, in the case of the wide quantum well, a reduction of their amplitude at large magnetic field. We discuss these conductance fluctuations in terms of orbital effect(V.I. Fal'ko and T. Jungwirth, Phys Rev B 65), 081306 (2002) and magnetic subband depopulation.

  13. Spin-orbit splitting of valence and conduction bands in HgTe quantum wells near the Dirac point

    NASA Astrophysics Data System (ADS)

    Minkov, G. M.; Germanenko, A. V.; Rut, O. E.; Sherstobitov, A. A.; Nestoklon, M. O.; Dvoretski, S. A.; Mikhailov, N. N.

    2016-04-01

    Energy spectra both of the conduction and valence bands of the HgTe quantum wells with a width close to the Dirac point were studied experimentally. Simultaneous analysis of the Shubnikov-de Haas oscillations and the Hall effect over a wide range of electron and hole densities yields surprising results: the top of the valence band is strongly split by spin-orbit interaction while the splitting of the conduction band is absent, within experimental accuracy. This holds true for the structures with normal and inverted band ordering. The results obtained are inconsistent with the results of kP calculations, in which the smooth electric field across the quantum well is only reckoned in. It is shown that taking into account the asymmetry of the quantum-well interfaces within a tight-binding method gives reasonable agreement with the experimental data.

  14. Chemical processing of three-dimensional graphene networks on transparent conducting electrodes for depleted-heterojunction quantum dot solar cells.

    PubMed

    Tavakoli, Mohammad Mahdi; Simchi, Abdolreza; Fan, Zhiyong; Aashuri, Hossein

    2016-01-01

    We present a novel chemical procedure to prepare three-dimensional graphene networks (3DGNs) as a transparent conductive film to enhance the photovoltaic performance of PbS quantum-dot (QD) solar cells. It is shown that 3DGN electrodes enhance electron extraction, yielding a 30% improvement in performance compared with the conventional device. PMID:26514615

  15. The Occurrence of Anomalous Conductance Plateaus and Spin Textures in Quantum Point Contacts

    NASA Astrophysics Data System (ADS)

    Wan, J.; Cahay, M.; Debray, P.; Newrock, R.

    2010-03-01

    Recently, we used a NEGF formalism [1] to provide a theoretical explanation for the experimentally observed 0.5G0 (G0=2e^2/h) plateau in the conductance of side-gated quantum point contacts (QPCs) in the presence of lateral spin-orbit coupling (LSOC) [2]. We showed that the 0.5G0 plateau appears in the QPCs without any external magnetic field as a result of three ingredients: an asymmetric lateral confinement, a LSOC, and a strong electron-electron (e-e) interaction. In this report, we present the results of simulations for a wide range of QPC dimensions and biasing parameters showing that the same physics predicts the appearance of other anomalous plateaus at non-integer values of G0, including the well-known 0.7G0 anomaly. These features are related to a plethora of spin textures in the QPC that depend sensitively on material, device, biasing parameters, temperature, and the strength of the e-e interaction. [1] J. Wan, M. Cahay, P. Debray, and R.S. Newrock, Phys. Rev. B 80, 155440 (2009). [2] P. Debray, S.M. Rahman, J. Wan, R.S. Newrock, M. Cahay, A.T. Ngo, S.E. Ulloa, S.T. Herbert, M. Muhammad, and M. Johnson, Nature Nanotech. 4, 759 (2009).

  16. Interference features in scanning gate conductance maps of quantum point contacts with disorder

    NASA Astrophysics Data System (ADS)

    Kolasiński, K.; Szafran, B.; Brun, B.; Sellier, H.

    2016-08-01

    We consider quantum point contact (QPC) defined within a disordered two-dimensional electron gas as studied by scanning gate microscopy. We evaluate the conductance maps in the Landauer approach with a wave-function picture of electron transport for samples with both low and high electron mobility at finite temperatures. We discuss the spatial distribution of the impurities in the context of the branched electron flow. We reproduce the surprising temperature stability of the experimental interference fringes far from the QPC. Next, we discuss funnel-shaped features that accompany splitting of the branches visible in previous experiments. Finally, we study elliptical interference fringes formed by an interplay of scattering by the pointlike impurities and by the scanning probe. We discuss the details of the elliptical features as functions of the tip voltage and the temperature, showing that the first interference fringe is very robust against the thermal widening of the Fermi level. We present a simple analytical model that allows for extraction of the impurity positions and the electron-gas depletion radius induced by the negatively charged tip of the atomic force microscope, and apply this model on experimental scanning gate images showing such elliptical fringes.

  17. Quantization and anomalous structures in the conductance of Si/SiGe quantum point contacts

    NASA Astrophysics Data System (ADS)

    von Pock, J. F.; Salloch, D.; Qiao, G.; Wieser, U.; Hackbarth, T.; Kunze, U.

    2016-04-01

    Quantum point contacts (QPCs) are fabricated on modulation-doped Si/SiGe heterostructures and ballistic transport is studied at low temperatures. We observe quantized conductance with subband separations up to 4 meV and anomalies in the first conductance plateau at 4e2/h. At a temperature of T = 22 mK in the linear transport regime, a weak anomalous kink structure arises close to 0.5(4e2/h), which develops into a distinct plateau-like structure as temperature is raised up to T = 4 K. Under magnetic field parallel to the wire up to B = 14 T, the anomaly evolves into the Zeeman spin-split level at 0.5(4e2/h), resembling the "0.7 anomaly" in GaAs/AlGaAs QPCs. Additionally, a zero-bias anomaly (ZBA) is observed in nonlinear transport spectroscopy. At T = 22 mK, a parallel magnetic field splits the ZBA peak up into two peaks. At B = 0, elevated temperatures lead to similar splitting, which differs from the behavior of ZBAs in GaAs/AlGaAs QPCs. Under finite dc bias, the differential resistance exhibits additional plateaus approximately at 0.8(4e2/h) and 0.2(4e2/h) known as "0.85 anomaly" and "0.25 anomaly" in GaAs/AlGaAs QPCs. Unlike the first regular plateau at 4e2/h, the 0.2(4e2/h) plateau is insensitive to dc bias voltage up to at least VDS = 80 mV, in-plane magnetic fields up to B = 15 T, and to elevated temperatures up to T = 25 K. We interpret this effect as due to pinching off one of the reservoirs close to the QPC. We do not see any indication of lifting of the valley degeneracy in our samples.

  18. Single step synthesis of ZnS quantum dots and their microstructure characterization and electrical transport below room temperature

    NASA Astrophysics Data System (ADS)

    Mukherjee, P. S.; Patra, S.; Chakraborty, G.; Pradhan, S. K.; Meikap, A. K.

    2016-09-01

    Low dimensional cubic phase ZnS quantum dots (QDs) are formed by mechanical alloying the stoichiometric mixture of Zn and S powders at room temperature. During milling process the primary mixed phase ZnS is formed at about 3.5 h of milling and strain less single phase (cubic) ZnS QDs are formed with ∼4.5 nm in size after 20 h of milling. Detailed microstructure study has been done by both Rietveld analysis of x-ray diffraction pattern and high resolution transmission electron microscope images. Dc resistivity decreases with increasing temperature which can be explained by three-dimensional hopping conduction mechanisms. Observed negative magnetoconductivity has been analyzed by wave function shrinkage model. Alternating current conductivity can be described by the correlated barrier hopping conduction mechanism. Analysis of complex impedance indicates that the grain boundary resistance is found to be dominating over the grain resistance. Relaxation behavior has been explained by the analysis of the electric modulus.

  19. Externally controlled local magnetic field in a conducting mesoscopic ring coupled to a quantum wire

    SciTech Connect

    Maiti, Santanu K.

    2015-01-14

    In the present work, the possibility of regulating local magnetic field in a quantum ring is investigated theoretically. The ring is coupled to a quantum wire and subjected to an in-plane electric field. Under a finite bias voltage across the wire a net circulating current is established in the ring which produces a strong magnetic field at its centre. This magnetic field can be tuned externally in a wide range by regulating the in-plane electric field, and thus, our present system can be utilized to control magnetic field at a specific region. The feasibility of this quantum system in designing spin-based quantum devices is also analyzed.

  20. Defect interactions with stepped CeO{sub 2}/SrTiO{sub 3} interfaces: Implications for radiation damage evolution and fast ion conduction

    SciTech Connect

    Dholabhai, Pratik P. Aguiar, Jeffery A.; Uberuaga, Blas P.; Misra, Amit

    2014-05-21

    Due to reduced dimensions and increased interfacial content, nanocomposite oxides offer improved functionalities in a wide variety of advanced technological applications, including their potential use as radiation tolerant materials. To better understand the role of interface structures in influencing the radiation damage tolerance of oxides, we have conducted atomistic calculations to elucidate the behavior of radiation-induced point defects (vacancies and interstitials) at interface steps in a model CeO{sub 2}/SrTiO{sub 3} system. We find that atomic-scale steps at the interface have substantial influence on the defect behavior, which ultimately dictate the material performance in hostile irradiation environments. Distinctive steps react dissimilarly to cation and anion defects, effectively becoming biased sinks for different types of defects. Steps also attract cation interstitials, leaving behind an excess of immobile vacancies. Further, defects introduce significant structural and chemical distortions primarily at the steps. These two factors are plausible origins for the enhanced amorphization at steps seen in our recent experiments. The present work indicates that comprehensive examination of the interaction of radiation-induced point defects with the atomic-scale topology and defect structure of heterointerfaces is essential to evaluate the radiation tolerance of nanocomposites. Finally, our results have implications for other applications, such as fast ion conduction.

  1. Evidence of quantum correction to conductivity and variable range hopping conduction in nano-crystalline Cu{sub 3}N thin film

    SciTech Connect

    Sahoo, Guruprasad Jain, Mahaveer K.

    2015-10-15

    We have investigated the temperature dependent carrier transport properties of nano-crystalline copper nitride thin films synthesized by modified activated reactive evaporation. The films, prepared in a Cu-rich growth condition are found to be highly disordered and the carrier transport in these films is mainly attributed to the impurity band conduction. We have observed that no single conduction mechanism is appropriate to elucidate the carrier transport in the entire temperature range of 20 – 300 K. Therefore, we have employed different conduction mechanisms in different temperature regimes. The carrier transport of the films in the low temperature regime (20 – 150 K) has been interpreted by implementing quantum correction to the conductivity. In the high temperature regime (200 – 300 K), the conduction mechanism has been successfully analyzed on the basis of Mott’s variable range hopping mechanism. Furthermore, it can be predicted that copper ions present at the surface of the crystallites are responsible for the hopping conduction mechanism.

  2. Anomalous Conductivity Tensor and Quantum Oscillations in the Dirac Semimetal Na3Bi

    NASA Astrophysics Data System (ADS)

    Xiong, Jun; Kushwaha, Satya; Krizan, Jason; Liang, Tian; Cava, Robert J.; Ong, Nai Phuan

    2015-03-01

    Na3Bi is a 3D Dirac semimetal with protected nodes. Angle-resolved photoemission experiments have observed these massless Dirac fermions in the bulk band, but transport experiments have been hampered by the extreme air sensitivity of Na3Bi crystals. Transport experiments can potentially address interesting issues such as charge pumping between the separated Weyl nodes when the time-reversal symmetry is broken by a strong magnetic field. Here we report a transport measurement that reveals robust anomalies in both the conductivity and resistivity tensors. The resistivity ρxx is B-linear up to 35 T, while the Hall angle exhibits an unusual profile approaching a step-function. In addition, we have also observed a prominent beating pattern in the Shubnikov de Haas (SdH) oscillations indicating the existence of two nearly equal SdH frequencies when the Fermi energy falls inside the non-trivial gap-inverted regime. Supported by NSF-MRSEC (DMR 0819860), Army Research Office (ARO W911NF-11-1-0379) and MURI Grant (ARO W911NF-12-1-0461).

  3. Effect of the Nuclear Hyperfine Field on the 2D Electron Conductivity in the Quantum Hall Regime

    SciTech Connect

    VITKALOV,S.A.; BOWERS,C.R.; SIMMONS,JERRY A.; RENO,JOHN L.

    2000-07-13

    The effect of the nuclear hyperfine interaction on the dc conductivity of 2D electrons under quantum Hall effect conditions at filling factor v= 1 is observed for the first time. The local hyperfine field enhanced by dynamic nuclear polarization is monitored via the Overhauser shift of the 2D conduction electron spin resonance in AlGaAs/GaAs multiquantum-well samples. The experimentally observed change in the dc conductivity resulting from dynamic nuclear polarization is in agreement with a thermal activation model incorporating the Zeeman energy change due to the hyperfine interaction. The relaxation decay time of the dc conductivity is, within experimental error, the same as the relaxation time of the nuclear spin polarization determined from the Overhauser shift. These findings unequivocally establish the nuclear spin origins of the observed conductivity change.

  4. Parity independence of the zero-bias conductance peak in a nanowire based topological superconductor-quantum dot hybrid device

    PubMed Central

    Deng, M. T.; Yu, C. L.; Huang, G. Y.; Larsson, M.; Caroff, P.; Xu, H. Q.

    2014-01-01

    We explore the signatures of Majorana fermions in a nanowire based topological superconductor-quantum dot-topological superconductor hybrid device by charge transport measurements. At zero magnetic field, well-defined Coulomb diamonds and the Kondo effect are observed. Under the application of a finite, sufficiently strong magnetic field, a zero-bias conductance peak structure is observed. It is found that the zero-bias conductance peak is present in many consecutive Coulomb diamonds, irrespective of the even-odd parity of the quasi-particle occupation number in the quantum dot. In addition, we find that the zero-bias conductance peak is in most cases accompanied by two differential conductance peaks, forming a triple-peak structure, and the separation between the two side peaks in bias voltage shows oscillations closely correlated to the background Coulomb conductance oscillations of the device. The observed zero-bias conductance peak and the associated triple-peak structure are in line with Majorana fermion physics in such a hybrid topological system. PMID:25434375

  5. Structural characterization and observation of variable range hopping conduction mechanism at high temperature in CdSe quantum dot solids

    NASA Astrophysics Data System (ADS)

    Sinha, Subhojyoti; Kumar Chatterjee, Sanat; Ghosh, Jiten; Kumar Meikap, Ajit

    2013-03-01

    We have used Rietveld refinement technique to extract the microstructural parameters of thioglycolic acid capped CdSe quantum dots. The quantum dot formation and its efficient capping are further confirmed by HR-TEM, UV-visible and FT-IR spectroscopy. Comparative study of the variation of dc conductivity with temperature (298 K ≤ T ≤ 460 K) is given considering Arrhenius formalism, small polaron hopping and Schnakenberg model. We observe that only Schnakenberg model provides good fit to the non-linear region of the variation of dc conductivity with temperature. Experimental variation of ac conductivity and dielectric parameters with temperature (298 K ≤ T ≤ 460 K) and frequency (80 Hz ≤ f ≤ 2 MHz) are discussed in the light of hopping theory and quantum confinement effect. We have elucidated the observed non-linearity in the I-V curves (measured within ±50 V), at dark and at ambient light, in view of tunneling mechanism. Tunnel exponents and non-linearity weight factors have also been evaluated in this regard.

  6. Thermal Conductivity through the Quantum Critical Point in YbRh2Si2 at Very Low Temperature

    NASA Astrophysics Data System (ADS)

    Taupin, M.; Knebel, G.; Matsuda, T. D.; Lapertot, G.; Machida, Y.; Izawa, K.; Brison, J.-P.; Flouquet, J.

    2015-07-01

    The thermal conductivity of YbRh2Si2 has been measured down to very low temperatures under field in the basal plane. An additional channel for heat transport appears below 30 mK, both in the antiferromagnetic and paramagnetic states, respectively, below and above the critical field suppressing the magnetic order. This excludes antiferromagnetic magnons as the origin of this additional contribution to thermal conductivity. Moreover, this low temperature contribution prevails a definite conclusion on the validity or violation of the Wiedemann-Franz law at the field-induced quantum critical point.

  7. Accurate molecular dynamics and nuclear quantum effects at low cost by multiple steps in real and imaginary time: Using density functional theory to accelerate wavefunction methods

    NASA Astrophysics Data System (ADS)

    Kapil, V.; VandeVondele, J.; Ceriotti, M.

    2016-02-01

    The development and implementation of increasingly accurate methods for electronic structure calculations mean that, for many atomistic simulation problems, treating light nuclei as classical particles is now one of the most serious approximations. Even though recent developments have significantly reduced the overhead for modeling the quantum nature of the nuclei, the cost is still prohibitive when combined with advanced electronic structure methods. Here we present how multiple time step integrators can be combined with ring-polymer contraction techniques (effectively, multiple time stepping in imaginary time) to reduce virtually to zero the overhead of modelling nuclear quantum effects, while describing inter-atomic forces at high levels of electronic structure theory. This is demonstrated for a combination of MP2 and semi-local DFT applied to the Zundel cation. The approach can be seamlessly combined with other methods to reduce the computational cost of path integral calculations, such as high-order factorizations of the Boltzmann operator or generalized Langevin equation thermostats.

  8. Connection between quantum systems involving the fourth Painlevé transcendent and k-step rational extensions of the harmonic oscillator related to Hermite exceptional orthogonal polynomial

    NASA Astrophysics Data System (ADS)

    Marquette, Ian; Quesne, Christiane

    2016-05-01

    The purpose of this communication is to point out the connection between a 1D quantum Hamiltonian involving the fourth Painlevé transcendent PIV, obtained in the context of second-order supersymmetric quantum mechanics and third-order ladder operators, with a hierarchy of families of quantum systems called k-step rational extensions of the harmonic oscillator and related with multi-indexed Xm1,m2,…,mk Hermite exceptional orthogonal polynomials of type III. The connection between these exactly solvable models is established at the level of the equivalence of the Hamiltonians using rational solutions of the fourth Painlevé equation in terms of generalized Hermite and Okamoto polynomials. We also relate the different ladder operators obtained by various combinations of supersymmetric constructions involving Darboux-Crum and Krein-Adler supercharges, their zero modes and the corresponding energies. These results will demonstrate and clarify the relation observed for a particular case in previous papers.

  9. Impact ionization across the conduction-band-edge discontinuity of quantum-well heterostructures

    NASA Technical Reports Server (NTRS)

    Chuang, S. L.; Hess, K.

    1986-01-01

    Impact ionization across the band-edge discontinuity of quantum-well heterostructures is studied theoretically. A heterolayer structure of alternating Al(x)Ga(1-x)As and GaAs layers is considered where the GaAs layers are heavily doped with donors. Thus a large number of electrons is confined to the quantum-well region. Incident electrons are heated up by applied electric fields and collide with the electrons confined in the well regions. Both the ionization rate as a function of the incident energy, and average ionization rates are computed. Device applications of such multiple quantum-well structures and the possibility of a complete analog to the conventional photomultiplier are discussed.

  10. Thermal and Electrical Conduction of Single-crystal Bi2Te3 Nanostructures grown using a one step process

    PubMed Central

    Park, Dambi; Park, Sungjin; Jeong, Kwangsik; Jeong, Hong-Sik; Song, Jea Yong; Cho, Mann–Ho

    2016-01-01

    Single-crystal Bi2Te3 nanowires (NWs) and nanoribbons (NRs) were synthesized by a vapor-liquid-solid (VLS) method from Bi2Te3 powder. To investigate the thermal properties of the Bi2Te3 nanostructure, a nondestructive technique based on temperature dependent Raman mapping was carried out. The Raman peaks were red shifted with increasing temperature. In addition, the fraction of the laser power absorbed inside the Bi2Te3 nanostructures was estimated by optical simulation and used to calculate the thermal conductivity value (κ). The thermal conductivity value obtained for the Bi2Te3 NW and NR was 1.47 Wm−1K−1 and 1.81 Wm−1K−1 at 300 K, respectively. The electrical conductivity of the Bi2Te3 nanostructure was also measured. In particular, an excellent electrical conductivity value of 1.22 * 103 Ω−1 cm−1 was obtained for the Bi2Te3 NW at 300 K. This result can be attributed to topological insulator surface states. As a result of our study, the figure of merit (ZT) for the Bi2Te3 NW and NR can be significantly improved. PMID:26750563

  11. One-step fabrication of a highly conductive and durable copper paste and its flexible dipole tag-antenna application.

    PubMed

    Shin, Keun-Young; Lee, James S; Hong, Jin-Yong; Jang, Jyongsik

    2014-03-21

    A highly conductive and durable copper (Cu) paste was successfully fabricated via acid treatment and mechanical blending with corrosion inhibitors. A screen-printed Cu pattern was evaluated as a dipole tag-antenna with long term and thermal stability, and structural flexibility. PMID:24514876

  12. Quantum Mechanics Studies of Fuel Cell Catalysts and Proton Conducting Ceramics with Validation by Experiment

    NASA Astrophysics Data System (ADS)

    Tsai, Ho-Cheng

    We carried out quantum mechanics (QM) studies aimed at improving the performance of hydrogen fuel cells. In part I, The challenge was to find a replacement for the Pt cathode that would lead to improved performance for the Oxygen Reduction Reaction (ORR) while remaining stable under operational conditions and decreasing cost. Our design strategy was to find an alloy with composition Pt3M that would lead to surface segregation such that the top layer would be pure Pt, with the second and subsequent layers richer in M. Under operating conditions we expect the surface to have significant O and/or OH chemisorbed on the surface; we searched for M that would remain segregated under these conditions. Using QM we examined surface segregation for 28 Pt3M alloys, where M is a transition metal. We found that only Pt3Os and Pt3Ir showed significant surface segregation when O and OH are chemisorbed on the catalyst surfaces. This result indicates that Pt3Os and Pt 3Ir favor formation of a Pt-skin surface layer structure that would resist the acidic electrolyte corrosion during fuel cell operation environments. We chose to focus on Os because the phase diagram for Pt-Ir indicated that Pt-Ir could not form a homogeneous alloy at lower temperature. To determine the performance for ORR, we used QM to examine intermediates, reaction pathways, and reaction barriers involved in the processes for which protons from the anode reactions react with O2 to form H2O. These QM calculations used our Poisson-Boltzmann implicit solvation model include the effects of the solvent (water with dielectric constant 78 with pH 7 at 298K). We also carried out similar QM studies followed by experimental validation for the Os/Pt core-shell catalyst fabricated by the underpotential deposition (UPD) method. The QM results indicated that the RDS for ORR is a compromise between the OOH formation step (0.37 eV for Pt, 0.23 eV for Pt2ML/Os core-shell) and H2O formation steps (0.32 eV for Pt, 0.22 eV for Pt2ML

  13. Quantum Mechanics Studies of Fuel Cell Catalysts and Proton Conducting Ceramics with Validation by Experiment

    NASA Astrophysics Data System (ADS)

    Tsai, Ho-Cheng

    We carried out quantum mechanics (QM) studies aimed at improving the performance of hydrogen fuel cells. In part I, The challenge was to find a replacement for the Pt cathode that would lead to improved performance for the Oxygen Reduction Reaction (ORR) while remaining stable under operational conditions and decreasing cost. Our design strategy was to find an alloy with composition Pt3M that would lead to surface segregation such that the top layer would be pure Pt, with the second and subsequent layers richer in M. Under operating conditions we expect the surface to have significant O and/or OH chemisorbed on the surface; we searched for M that would remain segregated under these conditions. Using QM we examined surface segregation for 28 Pt3M alloys, where M is a transition metal. We found that only Pt3Os and Pt3Ir showed significant surface segregation when O and OH are chemisorbed on the catalyst surfaces. This result indicates that Pt3Os and Pt 3Ir favor formation of a Pt-skin surface layer structure that would resist the acidic electrolyte corrosion during fuel cell operation environments. We chose to focus on Os because the phase diagram for Pt-Ir indicated that Pt-Ir could not form a homogeneous alloy at lower temperature. To determine the performance for ORR, we used QM to examine intermediates, reaction pathways, and reaction barriers involved in the processes for which protons from the anode reactions react with O2 to form H2O. These QM calculations used our Poisson-Boltzmann implicit solvation model include the effects of the solvent (water with dielectric constant 78 with pH 7 at 298K). We also carried out similar QM studies followed by experimental validation for the Os/Pt core-shell catalyst fabricated by the underpotential deposition (UPD) method. The QM results indicated that the RDS for ORR is a compromise between the OOH formation step (0.37 eV for Pt, 0.23 eV for Pt2ML/Os core-shell) and H2O formation steps (0.32 eV for Pt, 0.22 eV for Pt2ML

  14. Orbital effect, subband depopulation, and conductance fluctuations in ballistic quantum dots under a tilted magnetic field

    NASA Astrophysics Data System (ADS)

    Gustin, C.; Faniel, S.; Hackens, B.; Melinte, S.; Shayegan, M.; Bayot, V.

    2005-04-01

    Using two-dimensional electron gases (2DEGs) confined to wide and narrow quantum wells, we study the magnetoconductance of ballistic quantum dots as a function of the well width and the tilt angle of the magnetic field B with respect to the 2DEG. Both the wide and narrow quantum well dots feature magnetoconductance fluctuations (MCFs) at intermediate tilt angles, due to the finite thickness of the electron layer and the field-induced orbital effect. As B approaches a strictly parallel configuration, a saturation of the MCFs’ spectral distribution is observed, combined with the persistence of a limited number of frequency components in the case of the narrow quantum well dot. It is found that the onset of saturation strongly depends on the width of the confining well. Using the results of self-consistent Poisson-Schrödinger simulations, the magnetoconductance is rescaled as a function of the Fermi level in the 2DEG. We perform a power spectrum analysis of the parallel field-induced MCFs in the energy space and find a good agreement with theoretical predictions.

  15. Ten Steps to Conducting a Large, Multi-Site, Longitudinal Investigation of Language and Reading in Young Children

    PubMed Central

    Farquharson, Kelly; Murphy, Kimberly A.

    2016-01-01

    Purpose: This paper describes methodological procedures involving execution of a large-scale, multi-site longitudinal study of language and reading comprehension in young children. Researchers in the Language and Reading Research Consortium (LARRC) developed and implemented these procedures to ensure data integrity across multiple sites, schools, and grades. Specifically, major features of our approach, as well as lessons learned, are summarized in 10 steps essential for successful completion of a large-scale longitudinal investigation in early grades. Method: Over 5 years, children in preschool through third grade were administered a battery of 35 higher- and lower-level language, listening, and reading comprehension measures (RCM). Data were collected from children, their teachers, and their parents/guardians at four sites across the United States. Substantial and rigorous effort was aimed toward maintaining consistency in processes and data management across sites for children, assessors, and staff. Conclusion: With appropriate planning, flexibility, and communication strategies in place, LARRC developed and executed a successful multi-site longitudinal research study that will meet its goal of investigating the contribution and role of language skills in the development of children's listening and reading comprehension. Through dissemination of our design strategies and lessons learned, research teams embarking on similar endeavors can be better equipped to anticipate the challenges. PMID:27064308

  16. Single-step bioassays in serum and whole blood with a smartphone, quantum dots and paper-in-PDMS chips.

    PubMed

    Petryayeva, Eleonora; Algar, W Russ

    2015-06-21

    The development of nanoparticle-based bioassays is an active and promising area of research, where point-of-care (POC) diagnostics are one of many prospective applications. Unfortunately, the majority of nanoparticle-based assays that have been developed to date have failed to address two important considerations for POC applications: use of instrumentation amenable to POC settings, and measurement of analytes in biological sample matrices such as serum and whole blood. To address these considerations, we present design criteria and demonstrate proof-of-concept for a semiconductor quantum dot (QD)-based assay format that utilizes smartphone readout for the single-step, Förster resonance energy transfer (FRET)-based detection of hydrolase activity in serum and whole blood, using thrombin as a model analyte. Important design criteria for assay development included (i) the size and emission wavelength of the QDs, which had to balance brightness for smartphone imaging, optical transmission through blood samples, and FRET efficiency for signaling; (ii) the wavelength of a light-emitting diode (LED) excitation source, which had to balance transmission through blood and the efficiency of excitation of QDs; and (iii) the use of an array of paper-in-polydimethylsiloxane (PDMS)-on-glass sample chips to reproducibly limit the optical path length through blood to ca. 250 μm and permit multiplexing. Ultimately, CdSe/CdS/ZnS QDs with peak emission at 630 nm were conjugated with Alexa Fluor 647-labeled peptide substrates for thrombin and immobilized on paper test strips inside the sample cells. This FRET system was sensitive to thrombin activity, where the recovery of QD emission with hydrolytic loss of FRET permitted kinetic assays in buffer, serum and whole blood. Quantitative results were obtained in less than 30 min with a limit of detection 18 NIH units mL(-1) of activity in 12 μL of whole blood. Proof-of-concept for a competitive binding assay was also demonstrated with

  17. Linear and total intersubband transitions in the step-like GaAs/GaAlAs asymmetric quantum well as dependent on intense laser field

    NASA Astrophysics Data System (ADS)

    Ozturk, Emine

    2015-11-01

    In this study, for a step-like GaAs- Ga_{1-x}AlxAs asymmetric quantum well (AQW) the linear and total intersubband optical absorption coefficients and the refractive index changes are calculated as dependent on the intense laser field (ILF) and the right quantum well (RQW) width. Our results show that the location and the magnitude of all absorption coefficients and refractive index changes depend on ILF and the asymmetric parameter ( d=LR/LL). Also, we showed that both ILF and d provide an important effect on the electronic and optical properties of step-like quantum well, and the changes of the energy levels, the dipole moment matrix elements and the resonant peak values of the absorption coefficients are dependent on the shape of the confinement potential. While for different asymmetric parameters the intersubband absorption spectrum shows blue shift up to the different critical ILF values, this spectrum shows red shift for ILF values greater than certain values. By considering the variation of the energy difference as dependent on the RQW width, for step-like QW the absorption spectrum shows blue or red shift. Especially, step-like QWs are used for producing terahertz radiation from intersubband transitions and they have more tunable structure parameters (the left (right) quantum well width, LL(LR), and the confinement potential in the left (right) hand side, VL (VR) with respect to other asymmetric QWs (in the present study we used LR=LL/2, LL, 3 L L/2 and V R = 2 V L/3 values). This case provides a new degree of freedom for controlling the optical properties in quantum wells (QWs). In addition, the nonlinear optics underlying the application of the ILF to asymmetric potential heterostructures becomes a subject of present-day interest. In conclusion: i) The electronic and optical properties of the step-like AQW vary by increasing ILF. ii) ILF leads to major modifications on the shape of the confining potential. iii) The position and the size of all absorption

  18. Long dephasing time and high-temperature conductance fluctuations in an open InGaAs quantum dot

    NASA Astrophysics Data System (ADS)

    Hackens, B.; Delfosse, F.; Faniel, S.; Gustin, C.; Boutry, H.; Wallart, X.; Bollaert, S.; Cappy, A.; Bayot, V.

    2002-12-01

    We measure the electron phase-coherence time τφ up to 18 K using universal fluctuations in the low-temperature magnetoconductance of an open InGaAs quantum dot. The temperature dependence of τφ is quantitatively consistent with the two-dimensional model of electron-electron interactions in disordered systems. In our sample, τφ is two to four times larger than previously reported in GaAs quantum dots. We attribute this enhancement to a larger value of the Fermi energy and the lower electron effective mass in our sample. We also observe a distinct type of conductance fluctuation due to ballistic electron focusing inside the dot up to 204 K.

  19. Spin photocurrent spectra induced by Rashba- and Dresselhaus-type circular photogalvanic effect at inter-band excitation in InGaAs/GaAs/AlGaAs step quantum wells

    PubMed Central

    2014-01-01

    Spin photocurrent spectra induced by Rashba- and Dresselhaus-type circular photogalvanic effect (CPGE) at inter-band excitation have been experimentally investigated in InGaAs/GaAs/AlGaAs step quantum wells (QWs) at room temperature. The Rashba- and Dresselhaus-induced CPGE spectra are quite similar with each other during the spectral region corresponding to the transition of the excitonic state 1H1E (the first valence subband of heavy hole to the first conduction subband of electrons). The ratio of Rashba- and Dresselhaus-induced CPGE current for the transition 1H1E is estimated to be 8.8±0.1, much larger than that obtained in symmetric QWs (4.95). Compared to symmetric QWs, the reduced well width enhances the Dresselhaus-type spin splitting, but the Rashba-type spin splitting increases more rapidly in the step QWs. Since the degree of the segregation effect of indium atoms and the intensity of build-in field in the step QWs are comparable to those in symmetric QWs, as proved by reflectance difference and photoreflectance spectra, respectively, the larger Rashba-type spin splitting is mainly induced by the additional interface introduced by step structures. PMID:24646286

  20. Finite shot noise and electron heating at quantized conductance in high-mobility quantum point contacts

    NASA Astrophysics Data System (ADS)

    Muro, Tatsuya; Nishihara, Yoshitaka; Norimoto, Shota; Ferrier, Meydi; Arakawa, Tomonori; Kobayashi, Kensuke; Ihn, Thomas; Rössler, Clemens; Ensslin, Klaus; Reichl, Christian; Wegscheider, Werner

    2016-05-01

    We report a precise experimental study on the shot noise of a quantum point contact (QPC) fabricated in a GaAs/AlGaAs based high-mobility two-dimensional electron gas (2DEG). The combination of unprecedented cleanliness and very high measurement accuracy has enabled us to discuss the Fano factor to characterize the shot noise with a precision of 0.01. We observed that the shot noise at zero magnetic field exhibits a slight enhancement exceeding the single particle theoretical prediction, and that it gradually decreases as a perpendicular magnetic field is applied. We also confirmed that this additional noise completely vanishes in the quantum Hall regime. These phenomena can be explained by the electron heating effect near the QPC, which is suppressed with increasing magnetic field.

  1. Multifunctional graphene incorporated polyacrylamide conducting gel electrolytes for efficient quasi-solid-state quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Duan, Jialong; Tang, Qunwei; Li, Ru; He, Benlin; Yu, Liangmin; Yang, Peizhi

    2015-06-01

    Pursuit of a high efficiency and stability has been a persistent objective for quantum dot-sensitized solar cells (QDSCs). Here we launch a strategy of synthesizing graphene implanted polyacrylamide (PAAm-G) conducting gel electrolytes for quasi-solid-state QDSCs. With an aim of elevating the dosage of S2-/Sx2- redox couples and therefore charge-transfer ability, both osmotic press across the PAAm-G and capillary force within the three-dimensional micropores are utilized as driving forces. A promising power conversion efficiency of 2.34% is recorded for the QDSCs by optimizing graphene dosage in the conducting gel electrolyte. The enhanced conversion efficiency of solar cell is attributed to the expanded catalytic area from counter electrolyte/electrolyte interface to both interface and the conducting gel electrolyte.

  2. How strong is localization in the integer quantum Hall effect: Relevant quantum corrections to conductivity in non-zero magnetic field

    NASA Astrophysics Data System (ADS)

    Greshnov, A. A.; Kolesnikova, E. N.; Utesov, O. I.; Zegrya, G. G.

    2010-02-01

    The divergent at ω=0 quantum correction to conductivity δσ2(ω) of the leading order in (kFl)-1 has been calculated neglecting Cooperon-type contributions suppressed by moderate or strong magnetic field. In the so-called diffusion approximation this quantity is equal to zero up to the second order in (kFl)-1. More subtle treatment of the problem shows that δσ2(ω) is non-zero due to ballistic contributions neglected previously. Knowledge of δσ2(ω) allows to estimate value of the so-called unitary localization length as ξu≈lexp(1.6g2) where Drude conductivity is given by σ0=ge2/h. This estimation underpins the statement of the linear growth of σxx peaks with Landau level number n in the integer quantum Hall effect regime [1] (Greshnov and Zegrya, 2008; Greshnov et al., 2008) at least for n≤2 and calls Pruisken-Khmelnitskii hypothesis of universality [2] (Levine et al., 1983; Khmelnitskii, 1983) in question.

  3. Effects of alkyl groups in the rate determining step of the Baeyer-Villiger reaction of phenyl alkyl ketones: a quantum chemistry study.

    PubMed

    Reyes, Lino; Díaz-Sánchez, Celestino; Iuga, Cristina

    2012-07-26

    In this work, we have studied the substituent effect of several alkyl groups in the rate-determining step of the catalyzed Baeyer-Villiger (BV) reaction of phenyl alkyl ketones with performic (PFA) and trifluoroperacetic (TFPAA) acids, using quantum chemistry methods. Our results reveal that the substituent effect is more pronounced in the migration step barriers than in the corresponding addition step; that could change the rate-determining step (RDS) of the reaction, as observed in the oxidation of phenyl tert-butyl ketone with both peracids. In addition, the effect of the acid/peracid pairs used is also analyzed. We have demonstrated that the addition step is less susceptible to the acid/peracid nature since the acid strength and the nucleophilicity of the peracid have opposite effects. The effect of the acid/peracid pair is much more pronounced in the migration step because it only depends on the leaving ability of the acid, which in turn depends on its strength. These observations are relevant for understanding the effects of the substrate, the peracid, and the catalyst on the switching of the RDS in the BV reaction. PMID:22738150

  4. Spectrally resolved intraband transitions on two-step photon absorption in InGaAs/GaAs quantum dot solar cell

    SciTech Connect

    Tamaki, Ryo Shoji, Yasushi; Okada, Yoshitaka; Miyano, Kenjiro

    2014-08-18

    Two-step photon absorption processes in a self-organized In{sub 0.4}Ga{sub 0.6}As/GaAs quantum dot (QD) solar cell have been investigated by monitoring the mid-infrared (IR) photoinduced modulation of the external quantum efficiency (ΔEQE) at low temperature. The first step interband and the second step intraband transitions were both spectrally resolved by scanning photon energies of visible to near-IR CW light and mid-IR pulse lasers, respectively. A peak centered at 0.20 eV corresponding to the transition to virtual bound states and a band above 0.42 eV probably due to photoexcitation to GaAs continuum states were observed in ΔEQE spectra, when the interband transition was above 1.4 eV, directly exciting wetting layers or GaAs spacer layers. On the other hand, resonant excitation of the ground state of QDs at 1.35 eV resulted in a reduction of EQE. The sign of ΔEQE below 1.40 eV changed from negative to positive by increasing the excitation intensity of the interband transition. We ascribe this to the filling of higher energy trap states.

  5. Complex quantum dot arrays formed by combination of self-organized anisotropic strain engineering and step engineering on shallow patterned substrates

    SciTech Connect

    Mano, T.; Noetzel, R.; Zhou, D.; Hamhuis, G.J.; Eijkemans, T.J.; Wolter, J.H.

    2005-01-01

    One-dimensional (In,Ga)As quantum dot (QD) arrays are created on planar singular, vicinal, and shallow mesa-patterned GaAs (100) substrates by self-organized anisotropic strain engineering of an (In,Ga)As/GaAs quantum wire (QWR) superlattice template in molecular beam epitaxy. On planar singular substrates, highly uniform single QD arrays along [0-11] are formed. On shallow [0-11] and [011] stripe-patterned substrates, the generated type-A and -B steps distinctly affect the surface migration processes which are crucial for QWR template development, i.e., strain-gradient-driven In adatom migration along [011] and surface-reconstruction-induced Ga/In adatom migration along [0-11]. In the presence of both type-A and -B steps on vicinal substrates misoriented towards [101], the direction of adatom migration is altered to rotate the QD arrays. This establishes the relationship between self-organized anisotropic strain and step engineering, which is exploited on shallow zigzag-patterned substrates for the realization of complex QD arrays and networks with well-positioned bends and branches, exhibiting high structural and optical quality.

  6. Two-Step Reactive Aid Sintering of BaZr0.8Y0.2O3-δ Proton-Conducting Ceramics

    DOE PAGESBeta

    Wang, Siwei; Chen, Yan; Zhang, Lingling; Ren, Cong; Chen, Fanglin; Brinkman, Kyle S.

    2015-10-14

    Ceramic-based proton conductors enable high-temperature hydrogen economy applications such as hydrogen separation membranes, fuel cells, and steam electrolyzers. BaZr0.8Y0.2O3-δ (BZY) proton-conducting oxide possesses the highest level of proton conductivity reported to date, but poor sinterability hinders its widespread utilization. Here, we report a two-step reactive aid sintering (TRAS) method involving the introduction of BaCO3 and B2O3-Li2O for the preparation of dense BZY ceramics sintered at 1500°C. The resulting BZY samples showed a pure perovskite structure with a dramatic increase in the relative density to 91.5%. In addition, the shrinkage during sintering was improved to 19.3% by a TRAS method asmore » compared to 2.6% by the conventional solid date reaction method. Moreover, the bulk conductivity was improved due to enhanced densification, while the grain boundary conductivity decreased due to the blocking behavior of the sintering aid resulting in a decrease in the total conductivity of the samples.« less

  7. Two-Step Reactive Aid Sintering of BaZr0.8Y0.2O3- δ Proton-Conducting Ceramics

    NASA Astrophysics Data System (ADS)

    Wang, Siwei; Chen, Yan; Zhang, Lingling; Ren, Cong; Chen, Fanglin; Brinkman, Kyle S.

    2015-12-01

    Ceramic-based proton conductors enable high-temperature hydrogen economy applications such as hydrogen separation membranes, fuel cells, and steam electrolyzers. BaZr0.8Y0.2O3- δ (BZY) proton-conducting oxide possesses the highest level of proton conductivity reported to date, but poor sinterability hinders its widespread utilization. In this paper, we report a two-step reactive aid sintering (TRAS) method involving the introduction of BaCO3 and B2O3-Li2O for the preparation of dense BZY ceramics sintered at 1500°C. The resulting BZY samples showed a pure perovskite structure with a dramatic increase in the relative density to 91.5%. In addition, the shrinkage during sintering was improved to 19.3% by a TRAS method as compared to 2.6% by the conventional solid date reaction method. The bulk conductivity was improved due to enhanced densification, while the grain boundary conductivity decreased due to the blocking behavior of the sintering aid resulting in a decrease in the total conductivity of the samples.

  8. Surfactant-controlled polymerization of semiconductor clusters to quantum dots through competing step-growth and living chain-growth mechanisms.

    PubMed

    Evans, Christopher M; Love, Alyssa M; Weiss, Emily A

    2012-10-17

    This article reports control of the competition between step-growth and living chain-growth polymerization mechanisms in the formation of cadmium chalcogenide colloidal quantum dots (QDs) from CdSe(S) clusters by varying the concentration of anionic surfactant in the synthetic reaction mixture. The growth of the particles proceeds by step-addition from initially nucleated clusters in the absence of excess phosphinic or carboxylic acids, which adsorb as their anionic conjugate bases, and proceeds indirectly by dissolution of clusters, and subsequent chain-addition of monomers to stable clusters (Ostwald ripening) in the presence of excess phosphinic or carboxylic acid. Fusion of clusters by step-growth polymerization is an explanation for the consistent observation of so-called "magic-sized" clusters in QD growth reactions. Living chain-addition (chain addition with no explicit termination step) produces QDs over a larger range of sizes with better size dispersity than step-addition. Tuning the molar ratio of surfactant to Se(2-)(S(2-)), the limiting ionic reagent, within the living chain-addition polymerization allows for stoichiometric control of QD radius without relying on reaction time. PMID:23009216

  9. Observation of a 0.5 conductance plateau in asymmetrically biased GaAs quantum point contact

    NASA Astrophysics Data System (ADS)

    Bhandari, N.; Das, P. P.; Cahay, M.; Newrock, R. S.; Herbert, S. T.

    2012-09-01

    We report the observation of a robust anomalous conductance plateau near G = 0.5 G0 (G0 = 2e2/h) in asymmetrically biased AlGaAs/GaAs quantum point contacts (QPCs), with in-plane side gates in the presence of lateral spin-orbit coupling. This is interpreted as evidence of spin polarization in the narrow portion of the QPC. The appearance and evolution of the conductance anomaly has been studied at T = 4.2 K as a function of the potential asymmetry between the side gates. Because GaAs is a material with established processing techniques, high mobility, and a relatively high spin coherence length, the observation of spontaneous spin polarization in a side-gated GaAs QPC could eventually lead to the realization of an all-electric spin-valve at tens of degrees Kelvin.

  10. Formation of a Novel Hard Binary SiO2/QUANTUM Dot Nanocomposite with Predictable Electrical Conductivity

    NASA Astrophysics Data System (ADS)

    Aliov, M. K.; Sabur, A. R.

    In this paper, hard silica/epoxy nanocomposite coatings were prepared by a spinning method on the surface of AA6082 aluminum alloy with addition of CdTe quantum dots as the second phase in hard nanocomposite coating with different ratios with respect to main phase (silica nanoparticulates). Wear and electrical conductivity test have been done on the coatings for investigation of the possible enhanced or inverse effects of addition QDs on properties of hard nanocomposite. The effect of coating time, rotating speed and SiO2/QD ratio have been investigated and it has been shown that by adding QD nanoparticulates, the electrical conductivity of layers is completely controllable without adverse effect on wear resistance. The effects of mentioned parameters on the trend of obtained curves have been discussed.

  11. Dynamic conductivity of the bulk states of n-type HgTe/CdTe quantum well topological insulator

    SciTech Connect

    Chen, Qinjun; Sanderson, Matthew; Cao, J. C.; Zhang, Chao

    2014-11-17

    We theoretically studied the frequency-dependent current response of the bulk state of topological insulator HgTe/CdTe quantum well. The optical conductivity is mainly due to the inter-band process at high frequencies. At low frequencies, intra-band process dominates with a dramatic drop to near zero before the inter-band contribution takes over. The conductivity decreases with temperature at low temperature and increases with temperature at high temperature. The transport scattering rate has an opposite frequency dependence in the low and high temperature regime. The different frequency dependence is due to the interplay of the carrier-impurity scattering and carrier population near the Fermi surface.

  12. Dynamic conductivity of the bulk states of n-type HgTe/CdTe quantum well topological insulator

    NASA Astrophysics Data System (ADS)

    Chen, Qinjun; Sanderson, Matthew; Cao, J. C.; Zhang, Chao

    2014-11-01

    We theoretically studied the frequency-dependent current response of the bulk state of topological insulator HgTe/CdTe quantum well. The optical conductivity is mainly due to the inter-band process at high frequencies. At low frequencies, intra-band process dominates with a dramatic drop to near zero before the inter-band contribution takes over. The conductivity decreases with temperature at low temperature and increases with temperature at high temperature. The transport scattering rate has an opposite frequency dependence in the low and high temperature regime. The different frequency dependence is due to the interplay of the carrier-impurity scattering and carrier population near the Fermi surface.

  13. Quantum theory of the effect of grain boundaries on the electrical conductivity of thin films and wires

    NASA Astrophysics Data System (ADS)

    Moraga, Luis; Henriquez, Ricardo; Solis, Basilio

    2015-08-01

    We calculate the electrical conductivity of a metallic sample under the effects of distributed impurities and a random distribution of grain boundaries by means of a quantum mechanical procedure based on Kubo formula. Grain boundaries are represented either by a one-dimensional regular array of Dirac delta potentials (Mayadas and Shatzkes model) or by its three-dimensional extension (Szczyrbowski and Schmalzbauer model). We give formulas expressing the conductivity of bulk samples, thin films and thin wires of rectangular cross-sections in the case when the samples are bounded by perfectly flat surfaces. We find that, even in the absence of surface roughness, the conductivity in thin samples is reduced from its bulk value. If there are too many grain boundaries per unit length, or their scattering strength is high enough, there is a critical value Rc of the reflectivity R of an individual boundary such that the electrical conductivity vanishes for R >Rc. Also, the conductivity of thin wires shows a stepwise dependence on R. The effect of weak random variations in the strength or separation of the grain boundaries is computed by means of the method of correlation length. Finally, the resistivity of nanometric polycrystalline tungsten films reported in Choi et al. J. Appl. Phys. (2014) 115 104308 is tentatively analyzed by means of the present formalism.

  14. Formation of self-assembled InGaAs quantum dot arrays aligned along quasiperiodic multiatomic steps on vicinal (111)B GaAs

    SciTech Connect

    Akiyama, Y.; Sakaki, H.

    2006-10-30

    Dense and highly ordered arrays of self-assembled InGaAs quantum dots are formed by molecular beam epitaxy along multiatomic steps on vicinal (111)B GaAs. This unique structure has been synthesized by depositing a nominally 3-nm-thick In{sub 0.3}Ga{sub 0.7}As layer onto a periodically corrugated surface prepared on a GaAs substrate tilted 8.5 deg. from (111)B. Each dot is typically 30-50 nm in lateral size and about 4 nm in height. Accumulation and release processes of strains in InGaAs layers deposited on stepped surfaces are discussed to suggest a possible mechanism for the aligned dot formation.

  15. Quantum transport in strongly disordered crystals: Electrical conductivity with large negative vertex corrections

    NASA Astrophysics Data System (ADS)

    Janiš, Václav; Pokorný, Vladislav

    2012-12-01

    We propose a renormalization scheme of the Kubo formula for the electrical conductivity with multiple backscatterings contributing to the electron-hole irreducible vertex derived from the asymptotic limit to high spatial dimensions. We use this vertex to represent the two-particle Green function via a symmetrized Bethe-Salpeter equation in momentum space. We further utilize the dominance of a pole in the irreducible vertex to an approximate diagonalization of the Bethe-Salpeter equation and a non-perturbative representation of the electron-hole correlation function. The latter function is then used to derive a compact representation for the electrical conductivity at zero temperature without the necessity to evaluate separately the Drude term and vertex corrections. The electrical conductivity calculated in this way remains nonnegative also in the strongly disordered regime where the localization effects become significant and the negative vertex corrections in the standard Kubo formula overweight the Drude term.

  16. Next Step for STEP

    SciTech Connect

    Wood, Claire; Bremner, Brenda

    2013-08-09

    The Siletz Tribal Energy Program (STEP), housed in the Tribe’s Planning Department, will hire a data entry coordinator to collect, enter, analyze and store all the current and future energy efficiency and renewable energy data pertaining to administrative structures the tribe owns and operates and for homes in which tribal members live. The proposed data entry coordinator will conduct an energy options analysis in collaboration with the rest of the Siletz Tribal Energy Program and Planning Department staff. An energy options analysis will result in a thorough understanding of tribal energy resources and consumption, if energy efficiency and conservation measures being implemented are having the desired effect, analysis of tribal energy loads (current and future energy consumption), and evaluation of local and commercial energy supply options. A literature search will also be conducted. In order to educate additional tribal members about renewable energy, we will send four tribal members to be trained to install and maintain solar panels, solar hot water heaters, wind turbines and/or micro-hydro.

  17. Electrical Conductivity.

    ERIC Educational Resources Information Center

    Allen, Philip B.

    1979-01-01

    Examines Drude's classical (1900) theory of electrical conduction, details the objections to and successes of the 1900 theory, and investigates the Quantum (1928) theory of conduction, reviewing its successes and limitations. (BT)

  18. Close relation between quantum interference in molecular conductance and diradical existence.

    PubMed

    Tsuji, Yuta; Hoffmann, Roald; Strange, Mikkel; Solomon, Gemma C

    2016-01-26

    An empirical observation of a relationship between a striking feature of electronic transmission through a π-system, destructive quantum interference (QI), on one hand, and the stability of diradicals on the other, leads to the proof of a general theorem that relates the two. Subject to a number of simplifying assumptions, in a π-electron system, QI occurs when electrodes are attached to those positions of an N-carbon atom N-electron closed-shell hydrocarbon where the matrix elements of the Green's function vanish. These zeros come in two types, which are called easy and hard. Suppose an N+2 atom, N+2 electron hydrocarbon is formed by substituting 2 CH2 groups at two atoms, where the electrodes were. Then, if a QI feature is associated with electrode attachment to the two atoms of the original N atom system, the resulting augmented N+2 molecule will be a diradical. If there is no QI feature, i.e., transmission of current is normal if electrodes are attached to the two atoms, the resulting hydrocarbon will not be a diradical but will have a classical closed-shell electronic structure. Moreover, where a diradical exists, the easy zero is associated with a nondisjoint diradical, and the hard zero is associated with a disjoint one. A related theorem is proven for deletion of two sites from a hydrocarbon. PMID:26755578

  19. Close relation between quantum interference in molecular conductance and diradical existence

    PubMed Central

    Tsuji, Yuta; Hoffmann, Roald; Strange, Mikkel; Solomon, Gemma C.

    2016-01-01

    An empirical observation of a relationship between a striking feature of electronic transmission through a π-system, destructive quantum interference (QI), on one hand, and the stability of diradicals on the other, leads to the proof of a general theorem that relates the two. Subject to a number of simplifying assumptions, in a π-electron system, QI occurs when electrodes are attached to those positions of an N-carbon atom N-electron closed-shell hydrocarbon where the matrix elements of the Green’s function vanish. These zeros come in two types, which are called easy and hard. Suppose an N+2 atom, N+2 electron hydrocarbon is formed by substituting 2 CH2 groups at two atoms, where the electrodes were. Then, if a QI feature is associated with electrode attachment to the two atoms of the original N atom system, the resulting augmented N+2 molecule will be a diradical. If there is no QI feature, i.e., transmission of current is normal if electrodes are attached to the two atoms, the resulting hydrocarbon will not be a diradical but will have a classical closed-shell electronic structure. Moreover, where a diradical exists, the easy zero is associated with a nondisjoint diradical, and the hard zero is associated with a disjoint one. A related theorem is proven for deletion of two sites from a hydrocarbon. PMID:26755578

  20. Accurate molecular dynamics and nuclear quantum effects at low cost by multiple steps in real and imaginary time: Using density functional theory to accelerate wavefunction methods.

    PubMed

    Kapil, V; VandeVondele, J; Ceriotti, M

    2016-02-01

    The development and implementation of increasingly accurate methods for electronic structure calculations mean that, for many atomistic simulation problems, treating light nuclei as classical particles is now one of the most serious approximations. Even though recent developments have significantly reduced the overhead for modeling the quantum nature of the nuclei, the cost is still prohibitive when combined with advanced electronic structure methods. Here we present how multiple time step integrators can be combined with ring-polymer contraction techniques (effectively, multiple time stepping in imaginary time) to reduce virtually to zero the overhead of modelling nuclear quantum effects, while describing inter-atomic forces at high levels of electronic structure theory. This is demonstrated for a combination of MP2 and semi-local DFT applied to the Zundel cation. The approach can be seamlessly combined with other methods to reduce the computational cost of path integral calculations, such as high-order factorizations of the Boltzmann operator or generalized Langevin equation thermostats. PMID:26851912

  1. Conductance and Transmittance of waves through a chaotic cavity (or, equivalently, quantum dot) results in regularization of tunneling rates

    NASA Astrophysics Data System (ADS)

    Pecora, Louis; Wu, Dong Ho; Kim, Christopher

    Tunneling rates in closed, double well quantum or wave systems in two dimensions or higher are radically different between wells with classically regular or chaotic behavior. Wells with regular dynamics have tunneling rates that fluctuate by several orders of magnitude as a function of energy or frequency. Wells with chaotic dynamics have fluctuations smaller than one order of magnitude (a regularization of the fluctuations). We examine a more realistic experimental system, a single well with two channels with tunneling barriers at their junctions with the wells. Former theories for conductance in quantum dots will not apply here. We developed a theory, which uses proper boundary conditions at the barriers and yields the scattering matrix. Results show that the transmission rates fluctuate by orders of magnitude in the regular-shaped well, but are greatly reduced (regularized) for the chaotic-shaped well. We will show experimental results that test these theoretical findings for microwave transmission through a chaotic-shaped cavity, which is made of copper and has two ports with tunneling barriers.

  2. Quantum corrections to temperature dependent electrical conductivity of ZnO thin films degenerately doped with Si

    SciTech Connect

    Das, Amit K. Ajimsha, R. S.; Kukreja, L. M.

    2014-01-27

    ZnO thin films degenerately doped with Si (Si{sub x}Zn{sub 1−x}O) in the concentrations range of ∼0.5% to 5.8% were grown by sequential pulsed laser deposition on sapphire substrates at 400 °C. The temperature dependent resistivity measurements in the range from 300 to 4.2 K revealed negative temperature coefficient of resistivity (TCR) for the 0.5%, 3.8%, and 5.8% doped Si{sub x}Zn{sub 1−x}O films in the entire temperature range. On the contrary, the Si{sub x}Zn{sub 1−x}O films with Si concentrations of 1.0%, 1.7%, and 2.0% showed a transition from negative to positive TCR with increasing temperature. These observations were explained using weak localization based quantum corrections to conductivity.

  3. Conduction band mass determinations for n-type InGaAs/InAlAs single quantum wells

    SciTech Connect

    Jones, E.D.; Reno, J.L.; Kotera, Nobuo; Wang, Y.

    1998-05-01

    The authors report the measurement of the conduction band mass in n-type single 27-ML-wide InGaAs/InAlAs quantum well lattice matched to InP using two methods: (1) Magnetoluminescence spectroscopy and (2) far-infrared cyclotron resonance. The magnetoluminescence method utilizes Landau level transitions between 0 and 14 T at 1.4 K. The far infrared cyclotron resonance measurements were made at 4.2 K and to fields as large up to 18 T. The 2D-carrier density N{sub 2D} = 3 {times} 10{sup 11} cm{sup {minus}2} at low temperatures. The magnetoluminescence technique yielded an effective conduction-band mass of m{sub c} = 0.062m{sub 0} while the far infrared cyclotron resonance measurements gave m{sub c} = 0.056m{sub 0}, where m{sub 0} is the free electron mass. Both measurements show no evidence for any significant conduction-band nonparabolicity.

  4. Cluster-continuum quantum mechanical models to guide the choice of anions for Li{sup +}-conducting ionomers

    SciTech Connect

    Shiau, Huai-Suen; Janik, Michael J.; Liu, Wenjuan; Colby, Ralph H.

    2013-11-28

    A quantum-mechanical investigation on Li poly(ethylene oxide)-based ionomers was performed in the cluster-continuum solvation model (CCM) that includes specific solvation in the first shell surrounding the cation, all surrounded by a polarizable continuum. A four-state model, including a free Li cation, Li{sup +}-anion pair, triple ion, and quadrupole was used to represent the states of Li{sup +} within the ionomer in the CCM. The relative energy of each state was calculated for Li{sup +} with various anions, with dimethyl ether representing the ether oxygen solvation. The population distribution of Li{sup +} ions among states was estimated by applying Boltzmann statistics to the CCM energies. Entropy difference estimates are needed for populations to better match the true ionomer system. The total entropy change is considered to consist of four contributions: translational, rotational, electrostatic, and solvent immobilization entropies. The population of ion states is reported as a function of Bjerrum length divided by ion-pair separation with/without entropy considered to investigate the transition between states. Predicted concentrations of Li{sup +}-conducting states (free Li{sup +} and positive triple ions) are compared among a series of anions to indicate favorable features for design of an optimal Li{sup +}-conducting ionomer; the perfluorotetraphenylborate anion maximizes the conducting positive triple ion population among the series of anions considered.

  5. One-step synthesis of NiCo2S4 ultrathin nanosheets on conductive substrates as advanced electrodes for high-efficient energy storage

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Gan; Jin, Dandan; Zhou, Rui; Shen, Chao; Xie, Keyu; Wei, Bingqing

    2016-02-01

    A simple one-step and low-temperature synthesis approach has been developed to grow hierarchical NiCo2S4 ultrathin nanosheets (2-3 nm in thickness) on Ni foam. Owing to the unique nanoarchitecture, the NiCo2S4 nanosheets not only offer abundant electro-active sites for energy storage, but also have good electrical and mechanical connections to the conductive Ni foam for enhancing reaction kinetics and improving electrode integrity. When used as anodes for Li-ion batteries, the NiCo2S4 nanosheets demonstrate exceptional energy storage performance in terms of high specific capacity, excellent rate capability, and good cycling stability. The mild-solution synthesis of NiCo2S4 nanostructures and the outstanding electrochemical performance enable the novel electrodes to hold great potential for high-efficient energy storage systems.

  6. One-Step Process for High-Performance, Adhesive, Flexible Transparent Conductive Films Based on p-Type Reduced Graphene Oxides and Silver Nanowires.

    PubMed

    Lai, Yi-Ting; Tai, Nyan-Hwa

    2015-08-26

    This work demonstrates a one-step process to synthesize uniformly dispersed hybrid nanomaterial containing silver nanowires (AgNWs) and p-type reduced graphene (p-rGO). The hybrid nanomaterial was coated onto a polyethylene terephthalate (PET) substrate for preparing high-performance flexible transparent conductive films (TCFs). The p-rGO plays the role of bridging discrete AgNWs, providing more electron holes and lowering the resistance of the contacted AgNWs; therefore, enhancing the electrical conductivity without sacrificing too much transparence of the TCFs. Additionally, the p-rGO also improves the adhesion between AgNWs and substrate by covering the AgNWs on the substrate tightly. The study shows that coating of the hybrid nanomaterials on the PET substrate demonstrates exceptional optoelectronic properties with a transmittance of 94.68% (at a wavelength of 550 nm) and a sheet resistance of 25.0 ± 0.8 Ω/sq. No significant variation in electric resistance can be detected even when the film was subjected to a bend loading with a radius of curvature of 5.0 mm or the film was loaded with a reciprocal tension or compression for 1000 cycles. Furthermore, both chemical corrosion resistance and haze effect were improved when p-rGO was introduced. The study shows that the fabricated flexible TCFs have the potential to replace indium tin oxide film in the optoelectronic industry. PMID:26247286

  7. Decoupling Edge Versus Bulk Conductance in the Trivial Regime of an InAs/GaSb Double Quantum Well Using Corbino Ring Geometry.

    PubMed

    Nguyen, Binh-Minh; Kiselev, Andrey A; Noah, Ramsey; Yi, Wei; Qu, Fanming; Beukman, Arjan J A; de Vries, Folkert K; van Veen, Jasper; Nadj-Perge, Stevan; Kouwenhoven, Leo P; Kjaergaard, Morten; Suominen, Henri J; Nichele, Fabrizio; Marcus, Charles M; Manfra, Michael J; Sokolich, Marko

    2016-08-12

    A Corbino ring geometry is utilized to analyze edge and bulk conductance of InAs/GaSb quantum well structures. We show that edge conductance exists in the trivial regime of this theoretically predicted topological system with a temperature-insensitive linear resistivity per unit length in the range of 2  kΩ/μm. A resistor network model of the device is developed to decouple the edge conductance from the bulk conductance, providing a quantitative technique to further investigate the nature of this trivial edge conductance, conclusively identified here as being of n type. PMID:27563999

  8. Decoupling Edge Versus Bulk Conductance in the Trivial Regime of an InAs /GaSb Double Quantum Well Using Corbino Ring Geometry

    NASA Astrophysics Data System (ADS)

    Nguyen, Binh-Minh; Kiselev, Andrey A.; Noah, Ramsey; Yi, Wei; Qu, Fanming; Beukman, Arjan J. A.; de Vries, Folkert K.; van Veen, Jasper; Nadj-Perge, Stevan; Kouwenhoven, Leo P.; Kjaergaard, Morten; Suominen, Henri J.; Nichele, Fabrizio; Marcus, Charles M.; Manfra, Michael J.; Sokolich, Marko

    2016-08-01

    A Corbino ring geometry is utilized to analyze edge and bulk conductance of InAs /GaSb quantum well structures. We show that edge conductance exists in the trivial regime of this theoretically predicted topological system with a temperature-insensitive linear resistivity per unit length in the range of 2 k Ω /μ m . A resistor network model of the device is developed to decouple the edge conductance from the bulk conductance, providing a quantitative technique to further investigate the nature of this trivial edge conductance, conclusively identified here as being of n type.

  9. Quantum and Classical Magnetoresistance in Ambipolar Topological Insulator Transistors with Gate-tunable Bulk and Surface Conduction

    PubMed Central

    Tian, Jifa; Chang, Cuizu; Cao, Helin; He, Ke; Ma, Xucun; Xue, Qikun; Chen, Yong P.

    2014-01-01

    Weak antilocalization (WAL) and linear magnetoresistance (LMR) are two most commonly observed magnetoresistance (MR) phenomena in topological insulators (TIs) and often attributed to the Dirac topological surface states (TSS). However, ambiguities exist because these phenomena could also come from bulk states (often carrying significant conduction in many TIs) and are observable even in non-TI materials. Here, we demonstrate back-gated ambipolar TI field-effect transistors in (Bi0.04Sb0.96)2Te3 thin films grown by molecular beam epitaxy on SrTiO3(111), exhibiting a large carrier density tunability (by nearly 2 orders of magnitude) and a metal-insulator transition in the bulk (allowing switching off the bulk conduction). Tuning the Fermi level from bulk band to TSS strongly enhances both the WAL (increasing the number of quantum coherent channels from one to peak around two) and LMR (increasing its slope by up to 10 times). The SS-enhanced LMR is accompanied by a strongly nonlinear Hall effect, suggesting important roles of charge inhomogeneity (and a related classical LMR), although existing models of LMR cannot capture all aspects of our data. Our systematic gate and temperature dependent magnetotransport studies provide deeper insights into the nature of both MR phenomena and reveal differences between bulk and TSS transport in TI related materials. PMID:24810663

  10. Multiplex electrochemiluminescence immunoassay of two tumor markers using multicolor quantum dots as labels and graphene as conducting bridge.

    PubMed

    Guo, Zhiyong; Hao, Tingting; Du, Shuping; Chen, Beibei; Wang, Zebo; Li, Xing; Wang, Sui

    2013-06-15

    A multiplex electrochemiluminescence (ECL) immunoassay for simultaneous determination of two different tumor markers, alpha-fetoprotein (AFP) and carcinoembryonic antigen (CEA), using multicolor quantum dots as labels and graphene as conducting bridge was developed. Herein, a typical sandwich immune complex was constructed on the glass carbon electrode, with QDs525 and QDs625 labeled on secondary anti-AFP and anti-CEA antibodies, respectively, thus to obtain distinguishable ECL signals. Because most of those QDs labeled on secondary antibodies were beyond the space domain of the ECL reaction, graphene was used as a conducting bridge to promote the electron transfer between QDs and the electrode, leading to about 30-fold enhancement of the ECL intensity. Experimental results revealed that the multiplex electrochemiluminescence immunoassay enabled the simultaneous monitoring of AFP and CEA in a single run with a working range of 0.001-0.1 pg/mL. The detection limit (LOD) for both analytes at 0.4 fg/mL was very low. No obvious cross-reactivity was found. Precision, recovery and stability were satisfactory. This novel multiplex ECL immunoassay provided a simple, sensitive, specific and reliable alternative for the simultaneous detection of tumor markers in clinical laboratory. PMID:23399472

  11. Quantum Confinement Induced Oscillatory Electric Field on a Stepped Pb(111) Film and Its Influence on Surface Reactivity

    SciTech Connect

    Liu, Xiaojie; Wang, Cai-Zhuang; Hupalo, Myron; Lin, Hai-Quing; Ho, Kai-Ming; Tringides, Michael C.

    2014-01-06

    When the thickness of ultrathin metal films approaches the nanometer scale comparable to the coherence length of the electrons, significant effects on the structure stability and the electronic properties of the metal films emerge due to electron confinement and quantization of the allowed electronic states in the direction perpendicular to the film. Using first-principles calculations, we showed that such quantum size effects can induce oscillatory electrostatic potential and thus alternating electric field on the surface of the wedge-shaped Pb(111) films. The alternating electric field has significant influence on surface reactivity, leading to selective even- or odd-layer adsorption preference depending on the charge state of the adatoms, consistent with the odd-layer preference of higher Mg coverage on wedge-shaped Pb(111) films, as observed in experiment.

  12. Step-taper active-region quantum cascade lasers for carrier-leakage suppression and high internal differential efficiency

    NASA Astrophysics Data System (ADS)

    Kirch, J. D.; Chang, C.-C.; Boyle, C.; Mawst, L. J.; Lindberg, D.; Earles, T.; Botez, D.

    2016-03-01

    By stepwise tapering both the barrier heights and quantum-well depths in the active regions of 8.7 μm- and 8.4 μm-emitting quantum cascade lasers (QCLs) virtually complete carrier-leakage suppression is achieved, as evidenced by high values for both the threshold-current characteristic temperature coefficient T0 (283 K and 242 K) and the slope-efficiency characteristic temperature coefficient T1 (561 K and 279 K), over the 20-60 °C heatsink-temperature range, for low- and high-doped devices, respectively. Such high values are obtained while the threshold-current density is kept relatively low for 35-period, low- and high-doped devices: 1.58 kA/cm2 and 1.88 kA/cm2, respectively. In addition, due to resonant extraction from the lower laser level, high differential-transition-efficiency values (89-90%) are obtained. In turn, the slope-efficiency for 3 mm-long, 35-period high-reflectivity (HR)-coated devices are: 1.15-1.23 W/A; that is, 30- 40 % higher than for same-geometry and similar-doping conventional 8-9 μm-emitting QCLs. As a result of both efficient carrier-leakage suppression as well as fast and efficient carrier extraction, the values for the internal differential efficiency are found to be ≍ 86%, by comparison to typical values in the 58-67 % range for conventional QCLs emitting in the 7-11 μm wavelength range.

  13. Synthesis and Characterization of TiO2 Nanotubes Sensitized with CdS Quantum Dots Using a One-Step Method

    NASA Astrophysics Data System (ADS)

    Song, Jiahui; Zhang, Xinguo; Zhou, Chunyan; Lan, Yuwei; Pang, Qi; Zhou, Liya

    2015-01-01

    A novel one-step synthesis process was used to assemble CdS quantum dots (QDs) into TiO2 nanotube arrays (TNTAs). The sensitization time of the TiO2 nanotubes can be adjusted by controlling the CdS QD synthesis time. The absorption band of sensitized TNTAs red-shifted and broadened to the visible spectrum. The photoelectric conversion efficiency increased to 0.83%, the open-circuit voltage to 776 mV, and the short-circuit current density ( J SC) to 2.30 mA cm-2 with increased sensitization time. The conversion efficiency with this new sensitization method was five times that of nonsensitized TNTAs, providing novel ideas for study of TNTA solar cells.

  14. Adiabatic passage for one-step generation of n-qubit Greenberger-Horne-Zeilinger states of superconducting qubits via quantum Zeno dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Jin-Lei; Song, Chong; Xu, Jing; Yu, Lin; Ji, Xin; Zhang, Shou

    2016-06-01

    An efficient scheme is proposed for generating n-qubit Greenberger-Horne-Zeilinger states of n superconducting qubits separated by (n-1 ) coplanar waveguide resonators capacitively via adiabatic passage with the help of quantum Zeno dynamics in one step. In the scheme, it is not necessary to precisely control the time of the whole operation and the Rabi frequencies of classical fields because of the introduction of adiabatic passage. The numerical simulations for three-qubit Greenberger-Horne-Zeilinger state show that the scheme is insensitive to the dissipation of the resonators and the energy relaxation of the superconducting qubits. The three-qubit Greenberger-Horne-Zeilinger state can be deterministically generated with comparatively high fidelity in the current experimental conditions, though the scheme is somewhat sensitive to the dephasing of superconducting qubits.

  15. Optical and electrical characterizations of a single step ion beam milling mesa devices of chloride passivated PbS colloidal quantum dots based film

    NASA Astrophysics Data System (ADS)

    Hechster, Elad; Shapiro, Arthur; Lifshitz, Efrat; Sarusi, Gabby

    2016-07-01

    Colloidal Quantum Dots (CQDs) are of increasing interest, thanks to their quantum size effect that gives rise to their usage in various applications, such as biological tagging, solar cells and as the sensitizing layer of night vision devices. Here, we analyze the optical absorbance of chloride passivated PbS CQDs as well as revealing a correlation between their photoluminescence and sizes distribution, using theoretical models and experimental results from the literature. Next, we calculate the CQDs resistivity as a film. Although resistivity can be calculated from sheet resistance measurement using four point probes, such measurement is usually carried-out on the layer's surface that in most cases has dangling bonds and surface states, which might affect the charges flow and modify the resistivity. Therefore; our approach, which was applied in this work, is to extract the actual resistivity from measurements that are performed along the film's thickness (z-direction). For this intent, we fabricated gold capped PbS mesas devices using a single step Ion Beam Milling (IBM) process where we milled the gold and the PbS film continually, and then measured the vertical resistance. Knowing the mesas' dimensions, we calculate the resistivity. To the best of our knowledge, no previous work has extracted, vertically, the resistivity of chloride passivated PbS CQDs using the above method.

  16. Step bunch assisted two dimensional ordering of In{sub 0.19}Ga{sub 0.81}As/GaAs quantum dots on vicinal GaAs(001) surfaces

    SciTech Connect

    Hanke, M.; Wang, Zh. M.; Mazur, Yu. I.; Lee, J. H.; Salamo, G. J.; Schmidbauer, M.

    2008-01-21

    We have investigated the self-organized, step bunch assisted formation of In{sub 0.19}Ga{sub 0.81}As/GaAs quantum dots in vertical superlattices consisting of one, four, eight, and ten periods. Samples were grown by molecular beam epitaxy on vicinal 2 deg. A and 2 deg. B GaAs(001) substrates. Those with miscut along the [110] (2 deg. B) exclusively show step bunches of an aspect ratio larger than 10 but without the formation of quantum dots. This highly linear pattern is improved during subsequent periods as proved by high resolution x-ray diffraction and grazing incidence diffraction. On the other hand, a miscut along the [110] (2 deg. A) initially causes a crosslike pattern of step bunches, which finally becomes a two-dimensional arrangement of individual quantum dots.

  17. Quantized ionic conductance in nanopores.

    PubMed

    Zwolak, Michael; Lagerqvist, Johan; Di Ventra, Massimiliano

    2009-09-18

    Ionic transport in nanopores is a fundamentally and technologically important problem in view of its occurrence in biological processes and its impact on novel DNA sequencing applications. Using molecular dynamics simulations we show that ion transport may exhibit strong nonlinearities as a function of the pore radius reminiscent of the conductance quantization steps as a function of the transverse cross section of quantum point contacts. In the present case, however, conductance steps originate from the break up of the hydration layers that form around ions in aqueous solution. We discuss this phenomenon and the conditions under which it should be experimentally observable. PMID:19792463

  18. One-step, low-temperature fabrication of CdS quantum dots by watermelon rind: a green approach

    PubMed Central

    Lakshmipathy, Rajasekhar; Sarada, Nallani Chakravarthula; Chidambaram, K; Pasha, Sk Khadeer

    2015-01-01

    We investigated the one-step synthesis of CdS nanoparticles via green synthesis that used aqueous extract of watermelon rind as a capping and stabilizing agent. Preliminary phytochemical analysis depicted the presence of carbohydrates which can act as capping and stabilizing agents. Synthesized CdS nanoparticles were characterized using UV-visible, Fourier transform infrared spectroscopy, X-ray diffraction, EDX, dynamic light scattering, transmission electron microscopy, and atomic force microscopy techniques. The CdS nanoparticles were found to be size- and shape-controlled and were stable even after 3 months of synthesis. The results suggest that watermelon rind, an agro-waste, can be used for synthesis of CdS nanoparticles without any addition of stabilizing and capping agents. PMID:26491319

  19. Two-Step Nucleation and Growth of InP Quantum Dots via Magic-Sized Cluster Intermediates

    DOE PAGESBeta

    Gary, Dylan C.; Terban, Maxwell W.; Billinge, Simon J. L.; Cossairt, Brandi M.

    2015-01-30

    We report on the role of magic-sized clusters (MSCs) as key intermediates in the synthesis of indium phosphide quantum dots (InP QDs) from molecular precursors. These observations suggest that previous efforts to control nucleation and growth by tuning precursor reactivity have been undermined by formation of these kinetically persistent MSCs prior to QD formation. The thermal stability of InP MSCs is influenced by the presence of exogenous bases as well as choice of the anionic ligand set. Addition of a primary amine, a common additive in previous InP QD syntheses, to carboxylate terminated MSCs was found to bypass the formationmore » of MSCs, allowing for homogeneous growth of InP QDs through a continuum of isolable sizes. Substitution of the carboxylate ligand set for a phosphonate ligand set increased the thermal stability of one particular InP MSC to 400°C. The structure and optical properties of the MSCs with both carboxylate and phosphonate ligand sets were studied by UV-Vis absorption spectroscopy, powder XRD analysis, and solution ³¹P{¹H} and ¹H NMR spectroscopy. Finally, the carboxylate terminated MSCs were identified as effective single source precursors (SSPs) for the synthesis of high quality InP QDs. Employing InP MSCs as SSPs for QDs effectively decouples the formation of MSCs from the subsequent second nucleation event and growth of InP QDs. The concentration dependence of this SSP reaction, as well as the shape uniformity of particles observed by TEM suggests that the stepwise growth from MSCs directly to QDs proceeds via a second nucleation event rather than an aggregative growth mechanism.« less

  20. Two-Step Nucleation and Growth of InP Quantum Dots via Magic-Sized Cluster Intermediates

    SciTech Connect

    Gary, Dylan C.; Terban, Maxwell W.; Billinge, Simon J. L.; Cossairt, Brandi M.

    2015-01-30

    We report on the role of magic-sized clusters (MSCs) as key intermediates in the synthesis of indium phosphide quantum dots (InP QDs) from molecular precursors. These observations suggest that previous efforts to control nucleation and growth by tuning precursor reactivity have been undermined by formation of these kinetically persistent MSCs prior to QD formation. The thermal stability of InP MSCs is influenced by the presence of exogenous bases as well as choice of the anionic ligand set. Addition of a primary amine, a common additive in previous InP QD syntheses, to carboxylate terminated MSCs was found to bypass the formation of MSCs, allowing for homogeneous growth of InP QDs through a continuum of isolable sizes. Substitution of the carboxylate ligand set for a phosphonate ligand set increased the thermal stability of one particular InP MSC to 400°C. The structure and optical properties of the MSCs with both carboxylate and phosphonate ligand sets were studied by UV-Vis absorption spectroscopy, powder XRD analysis, and solution ³¹P{¹H} and ¹H NMR spectroscopy. Finally, the carboxylate terminated MSCs were identified as effective single source precursors (SSPs) for the synthesis of high quality InP QDs. Employing InP MSCs as SSPs for QDs effectively decouples the formation of MSCs from the subsequent second nucleation event and growth of InP QDs. The concentration dependence of this SSP reaction, as well as the shape uniformity of particles observed by TEM suggests that the stepwise growth from MSCs directly to QDs proceeds via a second nucleation event rather than an aggregative growth mechanism.

  1. Quantum transparency of Anderson insulator junctions: Statistics of transmission eigenvalues, shot noise, and proximity conductance

    NASA Astrophysics Data System (ADS)

    Nikolić, Branislav K.; Dragomirova, Ralitsa L.

    2005-01-01

    We investigate quantum transport through strongly disordered barriers, made of a material with exceptionally high resistivity that behaves as an Anderson insulator or a “bad metal” in the bulk, by analyzing the distribution of Landauer transmission eigenvalues for a junction where such barrier is attached to two clean metallic leads. We find that scaling of the transmission eigenvalue distribution with the junction thickness (starting from the single interface limit) always predicts a nonzero probability to find high transmission channels even in relatively thick barriers. Using this distribution, we compute the zero frequency shot noise power (as well as its sample-to-sample fluctuations) and demonstrate how it provides a single number characterization of nontrivial transmission properties of different types of disordered barriers. The appearance of open conducting channels, whose transmission eigenvalue is close to one, and corresponding violent mesoscopic fluctuations of transport quantities explain at least some of the peculiar zero-bias anomalies in the Anderson-insulator/superconductor junctions observed in recent experiments [A. Vaknin, A. Frydman, and Z. Ovadyahu, Phys. Rev. B 61, 13037 (2000)]. Our findings are also relevant for the understanding of the role of defects that can undermine quality of thin tunnel barriers made of conventional band insulators.

  2. Optical reading of field-effect transistors by phase-space absorption quenching in a single InGaAs quantum well conducting channel

    NASA Astrophysics Data System (ADS)

    Chemla, D. S.; Bar-Joseph, I.; Klingshirn, C.; Miller, D. A. B.; Kuo, J. M.

    1987-03-01

    Absorption switching in a semiconductor quantum well by electrically varying the charge density in the quantum well conducting channel of a selectively doped heterostructure transistor is reported for the first time. The phase-space absorption quenching (PAQ) is observed at room temperature in an InGaAs/InAlAs grown on InP FET, and it shows large absorption coefficient changes with relatively broad spectral bandwidth. This PAQ is large enough to be used for direct optical determination of the logic state of the FET.

  3. Security: Step by Step

    ERIC Educational Resources Information Center

    Svetcov, Eric

    2005-01-01

    This article provides a list of the essential steps to keeping a school's or district's network safe and sound. It describes how to establish a security architecture and approach that will continually evolve as the threat environment changes over time. The article discusses the methodology for implementing this approach and then discusses the…

  4. Quantized ionic conductance in nanopores

    SciTech Connect

    Zwolak, Michael; Lagerqvist, Johan; Di Ventra, Massimilliano

    2009-01-01

    Ionic transport in nanopores is a fundamentally and technologically important problem in view of its ubiquitous occurrence in biological processes and its impact on DNA sequencing applications. Using microscopic calculations, we show that ion transport may exhibit strong non-liDearities as a function of the pore radius reminiscent of the conductance quantization steps as a function of the transverse cross section of quantum point contacts. In the present case, however, conductance steps originate from the break up of the hydration layers that form around ions in aqueous solution. Once in the pore, the water molecules form wavelike structures due to multiple scattering at the surface of the pore walls and interference with the radial waves around the ion. We discuss these effects as well as the conditions under which the step-like features in the ionic conductance should be experimentally observable.

  5. The first step of the dioxygenation reaction carried out by tryptophan dioxygenase and indoleamine 2,3-dioxygenase as revealed by quantum mechanical/molecular mechanical studies

    PubMed Central

    Capece, Luciana; Lewis-Ballester, Ariel; Batabyal, Dipanwita; Di Russo, Natali; Estrin, Dario A.

    2015-01-01

    Tryptophan dioxygenase (TDO) and indole-amine 2,3-dioxygenase (IDO) are two heme-containing enzymes which catalyze the conversion of L-tryptophan to N-formylkynurenine (NFK). In mammals, TDO is mostly expressed in liver and is involved in controlling homeostatic serum tryptophan concentrations, whereas IDO is ubiquitous and is involved in modulating immune responses. Previous studies suggested that the first step of the dioxygenase reaction involves the deprotonation of the indoleamine group of the substrate by an evolutionarily conserved distal histidine residue in TDO and the heme-bound dioxygen in IDO. Here, we used classical molecular dynamics and hybrid quantum mechanical/molecular mechanical methods to evaluate the base-catalyzed mechanism. Our data suggest that the deprotonation of the indoleamine group of the substrate by either histidine in TDO or heme-bound dioxygen in IDO is not energetically favorable. Instead, the dioxygenase reaction can be initiated by a direct attack of heme-bound dioxygen on the C2=C3 bond of the indole ring, leading to a protein-stabilized 2,3-alkylperoxide transition state and a ferryl epoxide intermediate, which subsequently recombine to generate NFK. The novel sequential two-step oxygen addition mechanism is fully supported by our recent resonance Raman data that allowed identification of the ferryl intermediate (Lewis-Ballester et al. in Proc Natl Acad Sci USA 106:17371–17376, 2009). The results reveal the subtle differences between the TDO and IDO reactions and highlight the importance of protein matrix in modulating stereoelectronic factors for oxygen activation and the stabilization of both transition and intermediate states. PMID:20361220

  6. One-step microwave synthesis of N-doped hydroxyl-functionalized carbon dots with ultra-high fluorescence quantum yields.

    PubMed

    Zhang, Yongqiang; Liu, Xingyuan; Fan, Yi; Guo, Xiaoyang; Zhou, Lei; Lv, Ying; Lin, Jie

    2016-08-18

    A one-step microwave synthesis of N-doped hydroxyl-functionalized carbon dots (CDs) with ultra-high fluorescence quantum yields (QYs) of 99% is reported. These ultra-high QY CDs were synthesized using citric acid and amino compound-containing hydroxyls like ethanolamine and tris(hydroxylmethyl)aminomethane. Amino and carboxyl moieties can form amides through dehydration condensation reactions, and these amides act as bridges between carboxyl and hydroxyl groups, and modify hydroxyl groups on the surface of the CDs. The entire reaction can be carried out within 5 min. When the molar ratio of reactants is 1 : 1, the hydroxyl and graphitic nitrogen content is the highest, and the synergy leads to a high ratio between the radiative transition rate and nonradiative transition rate as well as a high QY. The developed pathway to N-doped hydroxyl-functionalized CDs can provide unambiguous and remarkable insights into the design of highly luminescent functionalized carbon dots, and expedite the applications of CDs. PMID:27500530

  7. One-Step Synthesis of Water-Soluble MoS2 Quantum Dots via a Hydrothermal Method as a Fluorescent Probe for Hyaluronidase Detection.

    PubMed

    Gu, Wei; Yan, Yinghan; Zhang, Cuiling; Ding, Caiping; Xian, Yuezhong

    2016-05-11

    In this work, a bottom-up strategy is developed to synthesize water-soluble molybdenum disulfide quantum dots (MoS2 QDs) through a simple, one-step hydrothermal method using ammonium tetrathiomolybdate [(NH4)2MoS4] as the precursor and hydrazine hydrate as the reducing agent. The as-synthesized MoS2 QDs are few-layered with a narrow size distribution, and the average diameter is about 2.8 nm. The resultant QDs show excitation-dependent blue fluorescence due to the polydispersity of the QDs. Moreover, the fluorescence can be quenched by hyaluronic acid (HA)-functionalized gold nanoparticles through a photoinduced electron-transfer mechanism. Hyaluronidase (HAase), an endoglucosidase, can cleave HA into proangiogenic fragments and lead to the aggregation of gold nanoparticles. As a result, the electron transfer is blocked and fluorescence is recovered. On the basis of this principle, a novel fluorescence sensor for HAase is developed with a linear range from 1 to 50 U/mL and a detection limit of 0.7 U/mL. PMID:27082278

  8. Observation of quantized conductance in neutral matter

    NASA Astrophysics Data System (ADS)

    Krinner, Sebastian; Stadler, David; Husmann, Dominik; Brantut, Jean-Philippe; Esslinger, Tilman

    2015-01-01

    In transport experiments, the quantum nature of matter becomes directly evident when changes in conductance occur only in discrete steps, with a size determined solely by Planck's constant h. Observations of quantized steps in electrical conductance have provided important insights into the physics of mesoscopic systems and have allowed the development of quantum electronic devices. Even though quantized conductance should not rely on the presence of electric charges, it has never been observed for neutral, massive particles. In its most fundamental form, it requires a quantum-degenerate Fermi gas, a ballistic and adiabatic transport channel, and a constriction with dimensions comparable to the Fermi wavelength. Here we report the observation of quantized conductance in the transport of neutral atoms driven by a chemical potential bias. The atoms are in an ultraballistic regime, where their mean free path exceeds not only the size of the transport channel, but also the size of the entire system, including the atom reservoirs. We use high-resolution lithography to shape light potentials that realize either a quantum point contact or a quantum wire for atoms. These constrictions are imprinted on a quasi-two-dimensional ballistic channel connecting the reservoirs. By varying either a gate potential or the transverse confinement of the constrictions, we observe distinct plateaux in the atom conductance. The conductance in the first plateau is found to be equal to the universal conductance quantum, 1/h. We use Landauer's formula to model our results and find good agreement for low gate potentials, with all parameters determined a priori. Our experiment lets us investigate quantum conductors with wide control not only over the channel geometry, but also over the reservoir properties, such as interaction strength, size and thermalization rate.

  9. Ge/Si(001) heterostructures with dense arrays of Ge quantum dots: morphology, defects, photo-emf spectra and terahertz conductivity

    PubMed Central

    2012-01-01

    Issues of Ge hut cluster array formation and growth at low temperatures on the Ge/Si(001) wetting layer are discussed on the basis of explorations performed by high resolution STM and in-situ RHEED. Dynamics of the RHEED patterns in the process of Ge hut array formation is investigated at low and high temperatures of Ge deposition. Different dynamics of RHEED patterns during the deposition of Ge atoms in different growth modes is observed, which reflects the difference in adatom mobility and their ‘condensation’ fluxes from Ge 2D gas on the surface for different modes, which in turn control the nucleation rates and densities of Ge clusters. Data of HRTEM studies of multilayer Ge/Si heterostructures are presented with the focus on low-temperature formation of perfect films. Heteroepitaxial Si p–i–n-diodes with multilayer stacks of Ge/Si(001) quantum dot dense arrays built in intrinsic domains have been investigated and found to exhibit the photo-emf in a wide spectral range from 0.8 to 5 μm. An effect of wide-band irradiation by infrared light on the photo-emf spectra has been observed. Photo-emf in different spectral ranges has been found to be differently affected by the wide-band irradiation. A significant increase in photo-emf is observed in the fundamental absorption range under the wide-band irradiation. The observed phenomena are explained in terms of positive and neutral charge states of the quantum dot layers and the Coulomb potential of the quantum dot ensemble. A new design of quantum dot infrared photodetectors is proposed. By using a coherent source spectrometer, first measurements of terahertz dynamical conductivity (absorptivity) spectra of Ge/Si(001) heterostructures were performed at frequencies ranged from 0.3 to 1.2 THz in the temperature interval from 300 to 5 K. The effective dynamical conductivity of the heterostructures with Ge quantum dots has been discovered to be significantly higher than that of the structure with the same amount

  10. Quantum robots and quantum computers

    SciTech Connect

    Benioff, P.

    1998-07-01

    Validation of a presumably universal theory, such as quantum mechanics, requires a quantum mechanical description of systems that carry out theoretical calculations and systems that carry out experiments. The description of quantum computers is under active development. No description of systems to carry out experiments has been given. A small step in this direction is taken here by giving a description of quantum robots as mobile systems with on board quantum computers that interact with different environments. Some properties of these systems are discussed. A specific model based on the literature descriptions of quantum Turing machines is presented.

  11. Validation of a two-step quality control approach for a large-scale human urine metabolomic study conducted in seven experimental batches with LC/QTOF-MS.

    PubMed

    Demetrowitsch, Tobias J; Petersen, Beate; Keppler, Julia K; Koch, Andreas; Schreiber, Stefan; Laudes, Matthias; Schwarz, Karin

    2015-01-01

    After his study of food science at the Rheinische Friedrich-Wilhelms University of Bonn, Tobias J Demetrowitsch obtained his doctoral degree in the research field of metabolomics at the Christian-Albrechts-University of Kiel. The present paper is part of his doctoral thesis and describes an extended strategy to evaluate and verify complex or large-scale experiments and data sets. Large-scale studies result in high sample numbers, requiring the analysis of samples in different batches. So far, the verification of such LC-MS-based metabolomics studies is difficult. Common approaches have not provided a reliable validation procedure to date. This article shows a novel verification process for a large-scale human urine study (analyzed by a LC/QToF-MS system) using a two-step validation procedure. The first step comprises a targeted approach that aims to examine and exclude statistical outliers. The second step consists of a principle component analysis, with the aim of a tight cluster of all quality controls and a second for all volunteer samples. The applied study design provides a reliable two-step validation procedure for large-scale studies and additionally contains an inhouse verification procedure. PMID:25558939

  12. Experimental evidence of the quantum point contact theory in the conduction mechanism of bipolar HfO2-based resistive random access memories

    NASA Astrophysics Data System (ADS)

    Prócel, L. M.; Trojman, L.; Moreno, J.; Crupi, F.; Maccaronio, V.; Degraeve, R.; Goux, L.; Simoen, E.

    2013-08-01

    The quantum point contact (QPC) model for dielectric breakdown is used to explain the electron transport mechanism in HfO2-based resistive random access memories (ReRAM) with TiN(30 nm)HfO2(5 nm)Hf(10 nm)TiN(30 nm) stacks. Based on experimental I-V characteristics of bipolar HfO2-based ReRAM, we extracted QPC model parameters related to the conduction mechanism in several devices in order to make a statistical study. In addition, we investigated the temperature effect on the conduction mechanism and compared it with the QPC model. Based on these experimental results, we show that the QPC model agrees well with the conduction behavior of HfO2-based ReRAM memory cells.

  13. Microscopic origin of the 1.3 G{sub 0} conductance observed in oxygen-doped silver quantum point contacts

    SciTech Connect

    Tu, Xingchen; Wang, Minglang; Hou, Shimin; Sanvito, Stefano

    2014-11-21

    Besides the peak at one conductance quantum, G{sub 0}, two additional features at ∼0.4 G{sub 0} and ∼1.3 G{sub 0} have been observed in the conductance histograms of silver quantum point contacts at room temperature in ambient conditions. In order to understand such feature, here we investigate the electronic transport and mechanical properties of clean and oxygen-doped silver atomic contacts by employing the non-equilibrium Green's function formalism combined with density functional theory. Our calculations show that, unlike clean Ag single-atom contacts showing a conductance of 1 G{sub 0}, the low-bias conductance of oxygen-doped Ag atomic contacts depends on the number of oxygen impurities and their binding configuration. When one oxygen atom binds to an Ag monatomic chain sandwiched between two Ag electrodes, the low-bias conductance of the junction always decreases. In contrast, when the number of oxygen impurities is two and the O-O axis is perpendicular to the Ag-Ag axis, the transmission coefficients at the Fermi level are, respectively, calculated to be 1.44 for the junction with Ag(111) electrodes and 1.24 for that with Ag(100) electrodes, both in good agreement with the measured value of ∼1.3 G{sub 0}. The calculated rupture force (1.60 nN for the junction with Ag(111) electrodes) is also consistent with the experimental value (1.66 ± 0.09 nN), confirming that the measured ∼1.3 G{sub 0} conductance should originate from Ag single-atom contacts doped with two oxygen atoms in a perpendicular configuration.

  14. Improved Open- Circuit Voltage in ZnO–PbSe Quantum Dot Solar Cells by Understanding and Reducing Losses Arising from the ZnO Conduction Band Tail

    PubMed Central

    Hoye, Robert L Z; Ehrler, Bruno; Böhm, Marcus L; Muñoz-Rojas, David; Altamimi, Rashid M; Alyamani, Ahmed Y; Vaynzof, Yana; Sadhanala, Aditya; Ercolano, Giorgio; Greenham, Neil C; Friend, Richard H; MacManus-Driscoll, Judith L; Musselman, Kevin P

    2014-01-01

    Colloidal quantum dot solar cells (CQDSCs) are attracting growing attention owing to significant improvements in efficiency. However, even the best depleted-heterojunction CQDSCs currently display open-circuit voltages (VOCs) at least 0.5 V below the voltage corresponding to the bandgap. We find that the tail of states in the conduction band of the metal oxide layer can limit the achievable device efficiency. By continuously tuning the zinc oxide conduction band position via magnesium doping, we probe this critical loss pathway in ZnO–PbSe CQDSCs and optimize the energetic position of the tail of states, thereby increasing both the VOC (from 408 mV to 608 mV) and the device efficiency. PMID:26225131

  15. A 250 mV Cu/SiO2/W Memristor with Half-Integer Quantum Conductance States.

    PubMed

    Nandakumar, S R; Minvielle, Marie; Nagar, Saurabh; Dubourdieu, Catherine; Rajendran, Bipin

    2016-03-01

    Memristive devices, whose conductance depends on previous programming history, are of significant interest for building nonvolatile memory and brain-inspired computing systems. Here, we report half-integer quantized conductance transitions G = (n/2) (2e(2)/h) for n = 1, 2, 3, etc., in Cu/SiO2/W memristive devices observed below 300 mV at room temperature. This is attributed to the nanoscale filamentary nature of Cu conductance pathways formed inside SiO2. Retention measurements also show spontaneous filament decay with quantized conductance levels. Numerical simulations shed light into the dynamics underlying the data retention loss mechanisms and provide new insights into the nanoscale physics of memristive devices and trade-offs involved in engineering them for computational applications. PMID:26849776

  16. Optical conductivity of warm dense matter within a wide frequency range using quantum statistical and kinetic approaches.

    PubMed

    Veysman, M; Röpke, G; Winkel, M; Reinholz, H

    2016-07-01

    Fundamental properties of warm dense matter are described by the dielectric function, which gives access to the frequency-dependent electrical conductivity; absorption, emission, and scattering of radiation; charged particles stopping; and further macroscopic properties. Different approaches to the dielectric function and the related dynamical collision frequency are compared in a wide frequency range. The high-frequency limit describing inverse bremsstrahlung and the low-frequency limit of the dc conductivity are considered. Sum rules and Kramers-Kronig relation are checked for the generalized linear response theory and the standard approach following kinetic theory. The results are discussed in application to aluminum, xenon, and argon plasmas. PMID:27575226

  17. Optical conductivity of warm dense matter within a wide frequency range using quantum statistical and kinetic approaches

    NASA Astrophysics Data System (ADS)

    Veysman, M.; Röpke, G.; Winkel, M.; Reinholz, H.

    2016-07-01

    Fundamental properties of warm dense matter are described by the dielectric function, which gives access to the frequency-dependent electrical conductivity; absorption, emission, and scattering of radiation; charged particles stopping; and further macroscopic properties. Different approaches to the dielectric function and the related dynamical collision frequency are compared in a wide frequency range. The high-frequency limit describing inverse bremsstrahlung and the low-frequency limit of the dc conductivity are considered. Sum rules and Kramers-Kronig relation are checked for the generalized linear response theory and the standard approach following kinetic theory. The results are discussed in application to aluminum, xenon, and argon plasmas.

  18. Experimental study on the contribution of the quantum tunneling effect to the improvement of the conductivity and piezoresistivity of a nickel powder-filled cement-based composite

    NASA Astrophysics Data System (ADS)

    Han, B. G.; Han, B. Z.; Yu, X.

    2009-06-01

    The voltage-current characteristics of a nickel powder (NP)-filled cement-based composite (NPCC) and the variation of electrical resistivity of NPCC under compression are studied by using a four-pole method based on embedded loop electrodes. The generation of conductivity and piezoresistivity in NPCC is investigated by examining the morphology of NPCC by SEM and studying the variation of distance between NP particles under compression. Experimental results indicate that the electrical conductivity of NPCC is ohmic when the voltage is below 3.5 V. Although NP particles are dispersed in the cement matrix and they do not form a connected conductive network, NPCC has a low electrical resistivity of 2.29 × 103Ω cm without loading. A decrease of 0.042% in the fractional change in volume of NPCC under compression causes the tunneling distance to decrease 0.60-1.42 nm and the fractional change in electrical resistivity to reach 62.61%. It is therefore concluded that the improvement of conductivity and piezoresistivity of NPCC is due to the quantum tunneling effect.

  19. Optical and electrical step-recovery study of minority-carrier transport in an InGaN /GaN quantum-well light-emitting diode grown on sapphire

    NASA Astrophysics Data System (ADS)

    Kaplar, R. J.; Kurtz, S. R.; Koleske, D. D.

    2004-11-01

    Forward-to-reverse bias step-recovery experiments were performed on an InGaN /GaN single-quantum-well light-emitting diode grown on sapphire. With the quantum well sampling the minority-carrier hole density at a single position, the optical emission displayed a two-stage decay. Using a solution to the diffusion equation to self-consistently describe both the optical and electrical recovery data, we estimated values for the hole lifetime (758±44ns), diffusion length (588±45nm), and mobility (0.18±0.02cm2/Vs) in GaN grown on sapphire. This low value of the minority-carrier mobility may reflect trap-modulated transport, and the lifetime is suggestive of slow capture and emission processes occurring through deep levels.

  20. Built-in-polarization field effect on intrinsic and extrinsic thermal conductivities of AlN/GaN/AlN quantum well

    NASA Astrophysics Data System (ADS)

    Pansari, A.; Gedam, V.; Sahoo, B. K.

    2015-07-01

    In this paper, the effect of built-in-polarization field on lattice thermal conductivity of AlN/GaN/AlN quantum well (QW) has been theoretically investigated. The built-in-polarization field at the hetero-interface of GaN/AlN modifies elastic constant, phonon velocity and Debye temperature of GaN QW. The relaxation time of acoustic phonons (AP) in various scattering processes in GaN with and without built-in-polarization field has been computed at room temperature. The result shows that combined relaxation time of AP is enhanced by built-in-polarization field and implies a longer mean free path. The revised intrinsic and extrinsic thermal conductivities of GaN have been estimated. The theoretical analysis shows that up to a certain temperature the polarization field acts as negative effect and reduces the thermal conductivities. However, after this temperature both thermal conductivities are significantly contributed by polarization field. This gives the idea of temperature dependence of polarization effect which signifies the pyro-electric character of GaN. The intrinsic thermal conductivity at room temperature for with and without polarization mechanism is found to be 491 Wm-1K-1 and 409 Wm-1K-1, respectively i.e., 20% enhancement. However, the extrinsic thermal conductivity at room temperature for with and without polarization mechanism is found to be 280 Wm-1K-1 and 245 Wm-1K-1, respectively i.e., 13% enhancement. The method we have developed may be taken into account during the simulation of heat transport in optoelectronic nitride devices to minimize the self-heating processes and in polarization engineering strategies to optimize the thermoelectric performance of GaN alloys.

  1. Energy level alignment and quantum conductance of functionalized metal-molecule junctions: Density functional theory versus GW calculations

    SciTech Connect

    Jin, Chengjun; Markussen, Troels; Thygesen, Kristian S.; Strange, Mikkel; Solomon, Gemma C.

    2013-11-14

    We study the effect of functional groups (CH{sub 3}*4, OCH{sub 3}, CH{sub 3}, Cl, CN, F*4) on the electronic transport properties of 1,4-benzenediamine molecular junctions using the non-equilibrium Green function method. Exchange and correlation effects are included at various levels of theory, namely density functional theory (DFT), energy level-corrected DFT (DFT+Σ), Hartree-Fock and the many-body GW approximation. All methods reproduce the expected trends for the energy of the frontier orbitals according to the electron donating or withdrawing character of the substituent group. However, only the GW method predicts the correct ordering of the conductance amongst the molecules. The absolute GW (DFT) conductance is within a factor of two (three) of the experimental values. Correcting the DFT orbital energies by a simple physically motivated scissors operator, Σ, can bring the DFT conductances close to experiments, but does not improve on the relative ordering. We ascribe this to a too strong pinning of the molecular energy levels to the metal Fermi level by DFT which suppresses the variation in orbital energy with functional group.

  2. The quantum space race

    NASA Astrophysics Data System (ADS)

    Jennewein, Thomas; Higgins, Brendon

    2013-03-01

    Sending satellites equipped with quantum technologies into space will be the first step towards a global quantum-communication network. As Thomas Jennewein and Brendon Higgins explain, these systems will also enable physicists to test fundamental physics in new regimes.

  3. Suppression of thermal carrier escape and efficient photo-carrier generation by two-step photon absorption in InAs quantum dot intermediate-band solar cells using a dot-in-well structure

    SciTech Connect

    Asahi, S.; Teranishi, H.; Kasamatsu, N.; Kada, T.; Kaizu, T.; Kita, T.

    2014-08-14

    We investigated the effects of an increase in the barrier height on the enhancement of the efficiency of two-step photo-excitation in InAs quantum dot (QD) solar cells with a dot-in-well structure. Thermal carrier escape of electrons pumped in QD states was drastically reduced by sandwiching InAs/GaAs QDs with a high potential barrier of Al{sub 0.3}Ga{sub 0.7}As. The thermal activation energy increased with the introduction of the barrier. The high potential barrier caused suppression of thermal carrier escape and helped realize a high electron density in the QD states. We observed efficient two-step photon absorption as a result of the high occupancy of the QD states at room temperature.

  4. A direct investigation of photocharge transfer across monomolecular layer between C60 and CdS quantum dots by photoassisted conductive atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaohong; Liu, He; Zhang, Xingtang; Cheng, Gang; Wang, Shujie; Du, Zuliang

    2016-04-01

    The composite assembly of C60 and CdS Quantum Dots (QDs) on ITO substrate was prepared by Langmuir-Blodgett (LB) technique using arachic acid (AA), stearic acid (SA) and octadecanyl amine (OA) as additives. Photoassisted conductive atomic force microscopy was used to make point contact current-voltage (I-V) measurements on both the CdS QDs and the composite assembly of C60/CdS. The result make it clear that the CdS, C60/CdS assemblies deposited on ITO substrate showed linear characteristics and the current increased largely under illumination comparing with that in the dark. The coherent, nonresonant tunneling mechanism was used to explain the current occurrence. It is considered that the photoinduced carriers CdS QDs tunneled through alkyl chains increased the current rapidly.

  5. Electrical Bistabilities and Conduction Mechanisms of Nonvolatile Memories Based on a Polymethylsilsesquioxane Insulating Layer Containing CdSe/ZnS Quantum Dots

    NASA Astrophysics Data System (ADS)

    Ma, Zehao; Ooi, Poh Choon; Li, Fushan; Yun, Dong Yeol; Kim, Tae Whan

    2015-10-01

    Nonvolatile memory (NVM) devices based on a metal-insulator-metal structure consisting of CdSe/ZnS quantum dots embedded in polymethylsilsesquioxane dielectric layers were fabricated. The current-voltage ( I- V) curves showed a bistable current behavior and the presence of hysteresis. The current-time ( I- t) curves showed that the fabricated NVM memory devices were stable up to 1 × 104 s with a distinct ON/OFF ratio of 104 and were reprogrammable when the endurance test was performed. The extrapolation of the I- t curve to 105 s with corresponding current ON/OFF ratio 1 × 105 indicated a long performance stability of the NVM devices. Schottky emission, Poole-Frenkel emission, trapped-charge limited-current and Child-Langmuir law were proposed as the dominant conduction mechanisms for the fabricated NVM devices based on the obtained I- V characteristics.

  6. Two-Step Reactive Aid Sintering of BaZr0.8Y0.2O3-δ Proton-Conducting Ceramics

    SciTech Connect

    Wang, Siwei; Chen, Yan; Zhang, Lingling; Ren, Cong; Chen, Fanglin; Brinkman, Kyle S.

    2015-10-14

    Ceramic-based proton conductors enable high-temperature hydrogen economy applications such as hydrogen separation membranes, fuel cells, and steam electrolyzers. BaZr0.8Y0.2O3-δ (BZY) proton-conducting oxide possesses the highest level of proton conductivity reported to date, but poor sinterability hinders its widespread utilization. Here, we report a two-step reactive aid sintering (TRAS) method involving the introduction of BaCO3 and B2O3-Li2O for the preparation of dense BZY ceramics sintered at 1500°C. The resulting BZY samples showed a pure perovskite structure with a dramatic increase in the relative density to 91.5%. In addition, the shrinkage during sintering was improved to 19.3% by a TRAS method as compared to 2.6% by the conventional solid date reaction method. Moreover, the bulk conductivity was improved due to enhanced densification, while the grain boundary conductivity decreased due to the blocking behavior of the sintering aid resulting in a decrease in the total conductivity of the samples.

  7. Host-Guest Chemistry between Perylene Diimide (PDI) Derivatives and 18-Crown-6: Enhancement in Luminescence Quantum Yield and Electrical Conductivity.

    PubMed

    Lasitha, P; Prasad, Edamana

    2016-07-18

    Perylene diimide (PDI) derivatives exhibit a high propensity for aggregation, which causes the aggregation-induced quenching of emission from the system. Host-guest chemistry is one of the best-known methods for preventing aggregation through the encapsulation of guest molecules. Herein we report the use of 18-crown-6 (18-C-6) as a host system to disaggregate suitably substituted PDI derivatives in methanol. 18-C-6 formed complexes with amino-substituted PDIs in methanol, which led to disaggregation and enhanced emission from the systems. Furthermore, the embedding of the PDI⋅18-C-6 complexes in poly(vinyl alcohol) (PVA) films generated remarkably high emission quantum yields (60-70 %) from the PDI derivatives. More importantly, the host-guest systems were tested for their ability to conduct electricity in PVA films. The electrical conductivities of the self-assembled systems in PVA were measured by electrochemical impedance spectroscopy (EIS) and the highest conductivity observed was 2.42×10(-5)  S cm(-1) . PMID:27319975

  8. Nonlinear refractive index change and optical rectification in a GaN-based step quantum wells with strong built-in electric field

    NASA Astrophysics Data System (ADS)

    Zhang, Li

    2015-11-01

    Based on the compact density matrix approach, the linear and nonlinear refractive index change (RIC) and optical rectification (OR) coefficients in a GaN-based step QW with strong built-in electric field (BEF) have been theoretically deduced and investigated in detail. The analytical electronic state is derived by the two airy functions. And the band nonparabolicity is taken into account by using an energy dependence effective mass (EDEM) method. Numerical calculations on a four-layer AlN/GaN/AlxGa1-xN/AlN step QW are performed, and the curves for the geometric factors, the linear, the nonlinear, the total RICs and the OR coefficients as functions of the structural parameters of the step QW are discussed. The features for these curves were specified and reasons for the features were explained reasonably. It is found that the decreasing of well width Lw, and step barrier width Lb and the doped concentration x in step barrier will result in the significant enhancement of the RICs. With the decrease of Lw, Lb and x, the resonant photon energies of RIC and OR coefficients have obvious blue-shift. Moreover, the RIC and OR coefficients behave different dependence on the structural parameters of the GaN-based step QWs. The profound physical reasons are also analyzed.

  9. Quantum Interference in Graphene Nanoconstrictions.

    PubMed

    Gehring, Pascal; Sadeghi, Hatef; Sangtarash, Sara; Lau, Chit Siong; Liu, Junjie; Ardavan, Arzhang; Warner, Jamie H; Lambert, Colin J; Briggs, G Andrew D; Mol, Jan A

    2016-07-13

    We report quantum interference effects in the electrical conductance of chemical vapor deposited graphene nanoconstrictions fabricated using feedback controlled electroburning. The observed multimode Fabry-Pérot interferences can be attributed to reflections at potential steps inside the channel. Sharp antiresonance features with a Fano line shape are observed. Theoretical modeling reveals that these Fano resonances are due to localized states inside the constriction, which couple to the delocalized states that also give rise to the Fabry-Pérot interference patterns. This study provides new insight into the interplay between two fundamental forms of quantum interference in graphene nanoconstrictions. PMID:27295198

  10. Observation of quantized conductance in neutral matter

    NASA Astrophysics Data System (ADS)

    Husmann, Dominik; Krinner, Sebastian; Lebrat, Martin; Grenier, Charles; Nakajima, Shuta; Häusler, Samuel; Brantut, Jean-Philippe; Esslinger, Tilman

    2015-05-01

    In transport experiments, the quantum nature of matter becomes directly evident when changes in conductance occur only in discrete steps, with a size determined solely by Planck's constant h. Here we report the observation of quantized conductance in the transport of neutral atoms driven by a chemical potential bias. We use high-resolution lithography to shape light potentials that realize either a quantum point contact or a quantum wire for atoms. These constrictions are imprinted on a quasi-two-dimensional ballistic channel connecting the reservoirs. By varying either a gate potential or the transverse confinement of the constrictions, we observe distinct plateaux in the atom conductance. The conductance in the first plateau is found to be equal to the universal conductance quantum, 1/h. We use Landauer's formula to model our results and find good agreement for low gate potentials, with all parameters determined a priori. We eventually explore the behavior of a strongly interacting Fermi gas in the same configuration, and the consequences of the emergence of superfluidity.

  11. Universal quantum computation by discontinuous quantum walk

    SciTech Connect

    Underwood, Michael S.; Feder, David L.

    2010-10-15

    Quantum walks are the quantum-mechanical analog of random walks, in which a quantum ''walker'' evolves between initial and final states by traversing the edges of a graph, either in discrete steps from node to node or via continuous evolution under the Hamiltonian furnished by the adjacency matrix of the graph. We present a hybrid scheme for universal quantum computation in which a quantum walker takes discrete steps of continuous evolution. This ''discontinuous'' quantum walk employs perfect quantum-state transfer between two nodes of specific subgraphs chosen to implement a universal gate set, thereby ensuring unitary evolution without requiring the introduction of an ancillary coin space. The run time is linear in the number of simulated qubits and gates. The scheme allows multiple runs of the algorithm to be executed almost simultaneously by starting walkers one time step apart.

  12. Quantum Computing

    NASA Astrophysics Data System (ADS)

    Steffen, Matthias

    2013-03-01

    Quantum mechanics plays a crucial role in many day-to-day products, and has been successfully used to explain a wide variety of observations in Physics. While some quantum effects such as tunneling limit the degree to which modern CMOS devices can be scaled to ever reducing dimensions, others may potentially be exploited to build an entirely new computing architecture: The quantum computer. In this talk I will review several basic concepts of a quantum computer. Why quantum computing and how do we do it? What is the status of several (but not all) approaches towards building a quantum computer, including IBM's approach using superconducting qubits? And what will it take to build a functional machine? The promise is that a quantum computer could solve certain interesting computational problems such as factoring using exponentially fewer computational steps than classical systems. Although the most sophisticated modern quantum computing experiments to date do not outperform simple classical computations, it is increasingly becoming clear that small scale demonstrations with as many as 100 qubits are beginning to be within reach over the next several years. Such a demonstration would undoubtedly be a thrilling feat, and usher in a new era of controllably testing quantum mechanics or quantum computing aspects. At the minimum, future demonstrations will shed much light on what lies ahead.

  13. PHOEBE - step by step manual

    NASA Astrophysics Data System (ADS)

    Zasche, P.

    2016-03-01

    An easy step-by-step manual of PHOEBE is presented. It should serve as a starting point for the first time users of PHOEBE analyzing the eclipsing binary light curve. It is demonstrated on one particular detached system also with the downloadable data and the whole procedure is described easily till the final trustworthy fit is being reached.

  14. Step Pultrusion

    NASA Astrophysics Data System (ADS)

    Langella, A.; Carbone, R.; Durante, M.

    2012-12-01

    The pultrusion process is an efficient technology for the production of composite material profiles. Thanks to this positive feature, several studies have been carried out, either to expand the range of products made using the pultrusion technology, or improve its already high production rate. This study presents a process derived from the traditional pultrusion technology named "Step Pultrusion Process Technology" (SPPT). Using the step pultrusion process, the final section of the composite profiles is obtainable by means of a progressive cross section increasing through several resin cure stations. This progressive increasing of the composite cross section means that a higher degree of cure level can be attained at the die exit point of the last die. Mechanical test results of the manufactured pultruded samples have been used to compare both the traditional and the step pultrusion processes. Finally, there is a discussion on ways to improve the new step pultrusion process even further.

  15. STEP Experiment Requirements

    NASA Technical Reports Server (NTRS)

    Brumfield, M. L. (Compiler)

    1984-01-01

    A plan to develop a space technology experiments platform (STEP) was examined. NASA Langley Research Center held a STEP Experiment Requirements Workshop on June 29 and 30 and July 1, 1983, at which experiment proposers were invited to present more detailed information on their experiment concept and requirements. A feasibility and preliminary definition study was conducted and the preliminary definition of STEP capabilities and experiment concepts and expected requirements for support services are presented. The preliminary definition of STEP capabilities based on detailed review of potential experiment requirements is investigated. Topics discussed include: Shuttle on-orbit dynamics; effects of the space environment on damping materials; erectable beam experiment; technology for development of very large solar array deployers; thermal energy management process experiment; photovoltaic concentrater pointing dynamics and plasma interactions; vibration isolation technology; flight tests of a synthetic aperture radar antenna with use of STEP.

  16. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. II. Application—Effect of quantum confinement and homogeneous strain on Cu conductance

    SciTech Connect

    Hegde, Ganesh Povolotskyi, Michael; Kubis, Tillmann; Charles, James; Klimeck, Gerhard

    2014-03-28

    The Semi-Empirical tight binding model developed in Part I Hegde et al. [J. Appl. Phys. 115, 123703 (2014)] is applied to metal transport problems of current relevance in Part II. A systematic study of the effect of quantum confinement, transport orientation, and homogeneous strain on electronic transport properties of Cu is carried out. It is found that quantum confinement from bulk to nanowire boundary conditions leads to significant anisotropy in conductance of Cu along different transport orientations. Compressive homogeneous strain is found to reduce resistivity by increasing the density of conducting modes in Cu. The [110] transport orientation in Cu nanowires is found to be the most favorable for mitigating conductivity degradation since it shows least reduction in conductance with confinement and responds most favorably to compressive strain.

  17. Step-like increase of quantum yield of 1.5 μm Er-related emission in SiO{sub 2} doped with Si nanocrystals

    SciTech Connect

    Saeed, S.; Jong, E. M. L. D. de; Gregorkiewicz, T.

    2015-02-14

    We investigate the excitation dependence of the efficiency of the Si nanocrystals-mediated photoluminescence from Er{sup 3+} ions embedded in a SiO{sub 2} matrix. We show that the quantum yield of this emission increases in a step-like manner with excitation energy. The subsequent thresholds of this characteristic dependence are approximately given by the sum of the Si nanocrystals bandgap energy and multiples of 0.8 eV, corresponding to the energy of the first excited state of Er{sup 3+} ions. By comparing differently prepared materials, we explicitly demonstrate that the actual values of the threshold energies and the rate of the observed increase of the external quantum yield depend on sample characteristics—the size, the optical activity and the concentration of Si nanocrystals as well Er{sup 3+} ions to Si nanocrystals concentration ratio. In that way, detailed insights into the efficient excitation of Er{sup 3+} ions are obtained. In particular, the essential role of the hot-carrier-mediated Er excitation route is established, with a possible application perspective for highly efficient future-generation photovoltaics.

  18. Quantum picturalism

    NASA Astrophysics Data System (ADS)

    Coecke, Bob

    2010-01-01

    Why did it take us 50 years since the birth of the quantum mechanical formalism to discover that unknown quantum states cannot be cloned? Yet, the proof of the 'no-cloning theorem' is easy, and its consequences and potential for applications are immense. Similarly, why did it take us 60 years to discover the conceptually intriguing and easily derivable physical phenomenon of 'quantum teleportation'? We claim that the quantum mechanical formalism doesn't support our intuition, nor does it elucidate the key concepts that govern the behaviour of the entities that are subject to the laws of quantum physics. The arrays of complex numbers are kin to the arrays of 0s and 1s of the early days of computer programming practice. Using a technical term from computer science, the quantum mechanical formalism is 'low-level'. In this review we present steps towards a diagrammatic 'high-level' alternative for the Hilbert space formalism, one which appeals to our intuition. The diagrammatic language as it currently stands allows for intuitive reasoning about interacting quantum systems, and trivialises many otherwise involved and tedious computations. It clearly exposes limitations such as the no-cloning theorem, and phenomena such as quantum teleportation. As a logic, it supports 'automation': it enables a (classical) computer to reason about interacting quantum systems, prove theorems, and design protocols. It allows for a wider variety of underlying theories, and can be easily modified, having the potential to provide the required step-stone towards a deeper conceptual understanding of quantum theory, as well as its unification with other physical theories. Specific applications discussed here are purely diagrammatic proofs of several quantum computational schemes, as well as an analysis of the structural origin of quantum non-locality. The underlying mathematical foundation of this high-level diagrammatic formalism relies on so-called monoidal categories, a product of a fairly

  19. DNA Damage: Quantum Mechanics/Molecular Mechanics Study on the Oxygen Binding and Substrate Hydroxylation Step in AlkB Repair Enzymes

    PubMed Central

    Quesne, Matthew G; Latifi, Reza; Gonzalez-Ovalle, Luis E; Kumar, Devesh; de Visser, Sam P

    2014-01-01

    AlkB repair enzymes are important nonheme iron enzymes that catalyse the demethylation of alkylated DNA bases in humans, which is a vital reaction in the body that heals externally damaged DNA bases. Its mechanism is currently controversial and in order to resolve the catalytic mechanism of these enzymes, a quantum mechanics/molecular mechanics (QM/MM) study was performed on the demethylation of the N1-methyladenine fragment by AlkB repair enzymes. Firstly, the initial modelling identified the oxygen binding site of the enzyme. Secondly, the oxygen activation mechanism was investigated and a novel pathway was found, whereby the catalytically active iron(IV)–oxo intermediate in the catalytic cycle undergoes an initial isomerisation assisted by an Arg residue in the substrate binding pocket, which then brings the oxo group in close contact with the methyl group of the alkylated DNA base. This enables a subsequent rate-determining hydrogen-atom abstraction on competitive σ-and π-pathways on a quintet spin-state surface. These findings give evidence of different locations of the oxygen and substrate binding channels in the enzyme and the origin of the separation of the oxygen-bound intermediates in the catalytic cycle from substrate. Our studies are compared with small model complexes and the effect of protein and environment on the kinetics and mechanism is explained. PMID:24339041

  20. Stepped Hydraulic Geometry in Stepped Channels

    NASA Astrophysics Data System (ADS)

    Comiti, F.; Cadol, D. D.; Wohl, E.

    2007-12-01

    Steep mountain streams typically present a stepped longitudinal profile. Such stepped channels feature tumbling flow, where hydraulic jumps represent an important source of channel roughness (spill resistance). However, the extent to which spill resistance persists up to high flows has not been ascertained yet, such that a faster, skimming flow has been envisaged to begin at those conditions. In order to analyze the relationship between flow resistance and bed morphology, a mobile bed physical model was developed at Colorado State University (Fort Collins, USA). An 8 m-long, 0.6 m-wide flume tilted at a constant 14% slope was used, testing 2 grain-size mixtures differing only for the largest fraction. Experiments were conducted under clear water conditions. Reach-averaged flow velocity was measured using salt tracers, bed morphology and flow depth by a point gage, and surface grain size using commercial image-analysis software. Starting from an initial plane bed, progressively higher flow rates were used to create different bed structures. After each bed morphology was stable with its forming discharge, lower-than-forming flows were run to build a hydraulic geometry curve. Results show that even though equilibrium slopes ranged from 8.5% to 14%, the reach-averaged flow was always sub-critical. Steps formed through a variety of mechanisms, with immobile clasts playing a dominant role by causing local scouring and/or trapping moving smaller particles. Overall, step height, step pool steepness, relative pool area and volume increased with discharge up to the threshold when the bed approached fully- mobilized conditions. For bed morphologies surpassing a minimum profile roughness, a stepped velocity- discharge relationship is evident, with sharp rises in velocity correlated with the disappearance of rollers in pools at flows approaching the formative discharge for each morphology. Flow resistance exhibits an opposite pattern, with drops in resistance being a function

  1. Quantum Hall effect in quantum electrodynamics

    SciTech Connect

    Penin, Alexander A.

    2009-03-15

    We consider the quantum Hall effect in quantum electrodynamics and find a deviation from the quantum-mechanical prediction for the Hall conductivity due to radiative antiscreening of electric charge in an external magnetic field. A weak dependence of the universal von Klitzing constant on the magnetic field strength, which can possibly be observed in a dedicated experiment, is predicted.

  2. Stepped nozzle

    DOEpatents

    Sutton, G.P.

    1998-07-14

    An insert is described which allows a supersonic nozzle of a rocket propulsion system to operate at two or more different nozzle area ratios. This provides an improved vehicle flight performance or increased payload. The insert has significant advantages over existing devices for increasing nozzle area ratios. The insert is temporarily fastened by a simple retaining mechanism to the aft end of the diverging segment of the nozzle and provides for a multi-step variation of nozzle area ratio. When mounted in place, the insert provides the nozzle with a low nozzle area ratio. During flight, the retaining mechanism is released and the insert ejected thereby providing a high nozzle area ratio in the diverging nozzle segment. 5 figs.

  3. Stepped nozzle

    DOEpatents

    Sutton, George P.

    1998-01-01

    An insert which allows a supersonic nozzle of a rocket propulsion system to operate at two or more different nozzle area ratios. This provides an improved vehicle flight performance or increased payload. The insert has significant advantages over existing devices for increasing nozzle area ratios. The insert is temporarily fastened by a simple retaining mechanism to the aft end of the diverging segment of the nozzle and provides for a multi-step variation of nozzle area ratio. When mounted in place, the insert provides the nozzle with a low nozzle area ratio. During flight, the retaining mechanism is released and the insert ejected thereby providing a high nozzle area ratio in the diverging nozzle segment.

  4. Quantum Chaos

    NASA Astrophysics Data System (ADS)

    Casati, Giulio; Chirikov, Boris

    2006-11-01

    in two-electron atoms R. Blümel and W. P. Reinhardt; Part III. Semiclassical Approximations: 20. Semiclassical theory of spectral rigidity M. V. Berry; 21. Semiclassical structure of trace formulas R. G. Littlejohn; 22. h-Expansion for quantum trace formulas P. Gaspard; 23. Pinball scattering B. Eckhardt, G. Russberg, P. Cvitanovic, P. E. Rosenqvist and P. Scherer; 24. Logarithm breaking time in quantum chaos G. P. Berman and G. M. Zaslavsky; 25. Semiclassical propagation: how long can it last? M. A. Sepulveda, S. Tomsovic and E. J. Heller; 26. The quantized Baker's transformation N. L. Balazs and A. Voros; 27. Classical structures in the quantized baker transformation M. Saraceno; 28. Quantum nodal points as fingerprints of classical chaos P. Leboeuf and A. Voros; 29. Chaology of action billiards A. M. Ozorio de Almeida and M. A. M. de Aguiar; Part IV. Level Statistics and Random Matrix Theory: 30. Characterization of chaotic quantum spectra and universality of level fluctuation laws O. Bohigas, M. J. Giannono, and C. Schmit; 31. Quantum chaos, localization and band random matrices F. M. Izrailev; 32. Structural invariance in channel space: a step toward understanding chaotic scattering in quantum mechanics T. H. Seligman; 33. Spectral properties of a Fermi accelerating disk R. Badrinarayanan and J. J. José; 34. Spectral properties of systems with dynamical localization T. Dittrich and U. Smilansky; 35. Unbound quantum diffusion and fractal spectra T. Geisel, R. Ketzmerick and G. Petschel; 36. Microwave studies in irregularly shaped billiards H.-J. Stöckmann, J. Stein and M. Kollman; Index.

  5. Quantum Chaos

    NASA Astrophysics Data System (ADS)

    Casati, Giulio; Chirikov, Boris

    1995-04-01

    in two-electron atoms R. Blümel and W. P. Reinhardt; Part III. Semiclassical Approximations: 20. Semiclassical theory of spectral rigidity M. V. Berry; 21. Semiclassical structure of trace formulas R. G. Littlejohn; 22. h-Expansion for quantum trace formulas P. Gaspard; 23. Pinball scattering B. Eckhardt, G. Russberg, P. Cvitanovic, P. E. Rosenqvist and P. Scherer; 24. Logarithm breaking time in quantum chaos G. P. Berman and G. M. Zaslavsky; 25. Semiclassical propagation: how long can it last? M. A. Sepulveda, S. Tomsovic and E. J. Heller; 26. The quantized Baker's transformation N. L. Balazs and A. Voros; 27. Classical structures in the quantized baker transformation M. Saraceno; 28. Quantum nodal points as fingerprints of classical chaos P. Leboeuf and A. Voros; 29. Chaology of action billiards A. M. Ozorio de Almeida and M. A. M. de Aguiar; Part IV. Level Statistics and Random Matrix Theory: 30. Characterization of chaotic quantum spectra and universality of level fluctuation laws O. Bohigas, M. J. Giannono, and C. Schmit; 31. Quantum chaos, localization and band random matrices F. M. Izrailev; 32. Structural invariance in channel space: a step toward understanding chaotic scattering in quantum mechanics T. H. Seligman; 33. Spectral properties of a Fermi accelerating disk R. Badrinarayanan and J. J. José; 34. Spectral properties of systems with dynamical localization T. Dittrich and U. Smilansky; 35. Unbound quantum diffusion and fractal spectra T. Geisel, R. Ketzmerick and G. Petschel; 36. Microwave studies in irregularly shaped billiards H.-J. Stöckmann, J. Stein and M. Kollman; Index.

  6. Coulomb Blockade of the Conductivity of SiO{sub x} Films Due to One-Electron Charging of a Silicon Quantum Dot in a Chain of Electronic States

    SciTech Connect

    Efremov, M.D.; Kamaev, G.N.; Volodin, V.A.; Arzhannikova, S.A.; Kachurin, G.A.; Cherkova, S.G.; Kretinin, A.V.; Malyutina-Bronskaya, V.V.; Marin, D.V.

    2005-08-15

    The electrical characteristics of metal-oxide-semiconductor (MOS) structures with silicon nanoparticles embedded in silicon oxide have been studied. The nanocrystals are formed by decomposition of an oversaturated solid solution of implanted silicon during thermal annealing at a temperature of {approx}1000 deg. C. At liquid-nitrogen temperature, a stepped current-voltage characteristic is observed in a MOS structure consisting of Si nanocrystals in a SiO{sub 2} film. The stepped current-voltage characteristic is, for the first time, quantitatively described using a model in which charge transport occurs via a chain of local states containing a silicon nanocrystal. The presence of steps is found to be associated with one-electron charging of the silicon nanocrystal and Coulomb blockade of the probability of a hop from the nearest local state to the conducting chain. The local states in silicon dioxide are assumed to be related to an excess of silicon atoms. The presence of such states is confirmed by measurements of the differential conductance and capacitance. For MOS structures implanted with silicon, the differential capacitance and conductance are found to be higher, compared to the reference structures, in the range of biases exceeding 0.2 V. In the same bias range, the conductance is observed to decrease under ultraviolet irradiation due to a change in the population of the states in the conductivity chains.

  7. Baby steps.

    PubMed

    Bader, E J; Truax, H

    1991-01-01

    The focus of the discussion of US national environmental efforts on population growth issues is on carrying capacity, the impact of the antiabortion movement, the insensitivity of some population control advocated to people of color, and congressional and presidential actions. Efforts are being made to surmount the mistrust that has characterized efforts to deal with population issues. The World Wildlife Fund, the Sierra Club, and the National Audubon Society recognize the need for population stabilization, albeit with meager budgets. Carrying capacity is the number of people the earth can sustain without rapidly depleting non-renewable resources or degrading resources necessary to sustain life. In 1970, Earth Day called for stabilization of the global population, but most celebrations of Earth Day in 1990 did not recognize this. Sensitive issues are involved, and the abortion controversy has muffled open forums on population growth. Lobbyists were successful in having the US withdraw funding for international family planning (FP) programs that had abortion components. Then Reagan eliminated all funding to the UN Fund for Population Activities, because of China's FP policies. The results for women have been disastrous. Zero Population Growth has been conducting information meetings for environmental groups. The National wildlife Federation has a new program linking population and environmental issues but will not deal with the issue of abortion. A Philadelphia editorial recommended implanted contraceptives for welfare mothers, which raised fears of the reemergence of the eugenic movement which sought involuntary sterilization or population control for the poor. Another effort was to protect the US from immigration as a way of curbing population growth. Meaningful change means education women, changing unfavorable survival conditions, and heeding the reasons women have children. Japan's FP Association criticizes population control efforts undertaken for economic and

  8. Quantum phase magnification

    NASA Astrophysics Data System (ADS)

    Hosten, O.; Krishnakumar, R.; Engelsen, N. J.; Kasevich, M. A.

    2016-06-01

    Quantum metrology exploits entangled states of particles to improve sensing precision beyond the limit achievable with uncorrelated particles. All previous methods required detection noise levels below this standard quantum limit to realize the benefits of the intrinsic sensitivity provided by these states. We experimentally demonstrate a widely applicable method for entanglement-enhanced measurements without low-noise detection. The method involves an intermediate quantum phase magnification step that eases implementation complexity. We used it to perform squeezed-state metrology 8 decibels below the standard quantum limit with a detection system that has a noise floor 10 decibels above the standard quantum limit.

  9. Quantum phase magnification.

    PubMed

    Hosten, O; Krishnakumar, R; Engelsen, N J; Kasevich, M A

    2016-06-24

    Quantum metrology exploits entangled states of particles to improve sensing precision beyond the limit achievable with uncorrelated particles. All previous methods required detection noise levels below this standard quantum limit to realize the benefits of the intrinsic sensitivity provided by these states. We experimentally demonstrate a widely applicable method for entanglement-enhanced measurements without low-noise detection. The method involves an intermediate quantum phase magnification step that eases implementation complexity. We used it to perform squeezed-state metrology 8 decibels below the standard quantum limit with a detection system that has a noise floor 10 decibels above the standard quantum limit. PMID:27339982

  10. Probabilistic authenticated quantum dialogue

    NASA Astrophysics Data System (ADS)

    Hwang, Tzonelih; Luo, Yi-Ping

    2015-12-01

    This work proposes a probabilistic authenticated quantum dialogue (PAQD) based on Bell states with the following notable features. (1) In our proposed scheme, the dialogue is encoded in a probabilistic way, i.e., the same messages can be encoded into different quantum states, whereas in the state-of-the-art authenticated quantum dialogue (AQD), the dialogue is encoded in a deterministic way; (2) the pre-shared secret key between two communicants can be reused without any security loophole; (3) each dialogue in the proposed PAQD can be exchanged within only one-step quantum communication and one-step classical communication. However, in the state-of-the-art AQD protocols, both communicants have to run a QKD protocol for each dialogue and each dialogue requires multiple quantum as well as classical communicational steps; (4) nevertheless, the proposed scheme can resist the man-in-the-middle attack, the modification attack, and even other well-known attacks.

  11. Publishing Ethical Research: A Step-by-Step Overview

    ERIC Educational Resources Information Center

    Wester, Kelly L.

    2011-01-01

    To publish ethical research, one must conduct research responsibly, making ethical choices from the inception of the research idea and throughout the research process. Conducting and publishing ethical research is important because of the impact the results will have on the counseling profession. Steps to consider are discussed.

  12. Relativistic Quantum Scars

    SciTech Connect

    Huang, Liang; Lai Yingcheng; Ferry, David K.; Goodnick, Stephen M.; Akis, Richard

    2009-07-31

    The concentrations of wave functions about classical periodic orbits, or quantum scars, are a fundamental phenomenon in physics. An open question is whether scarring can occur in relativistic quantum systems. To address this question, we investigate confinements made of graphene whose classical dynamics are chaotic and find unequivocal evidence of relativistic quantum scars. The scarred states can lead to strong conductance fluctuations in the corresponding open quantum dots via the mechanism of resonant transmission.

  13. Sticky steps inhibit step motions near equilibrium

    NASA Astrophysics Data System (ADS)

    Akutsu, Noriko

    2012-12-01

    Using a Monte Carlo method on a lattice model of a vicinal surface with a point-contact-type step-step attraction, we show that, at low temperature and near equilibrium, there is an inhibition of the motion of macrosteps. This inhibition leads to a pinning of steps without defects, adsorbates, or impurities (self-pinning of steps). We show that this inhibition of the macrostep motion is caused by faceted steps, which are macrosteps that have a smooth side surface. The faceted steps result from discontinuities in the anisotropic surface tension (the surface free energy per area). The discontinuities are brought into the surface tension by the point-contact-type step-step attraction. The point-contact-type step-step attraction also originates “step droplets,” which are locally merged steps, at higher temperatures. We derive an analytic equation of the surface stiffness tensor for the vicinal surface around the (001) surface. Using the surface stiffness tensor, we show that step droplets roughen the vicinal surface. Contrary to what we expected, the step droplets slow down the step velocity due to the diminishment of kinks in the merged steps (smoothing of the merged steps).

  14. Quantum Computation and Quantum Information

    NASA Astrophysics Data System (ADS)

    Nielsen, Michael A.; Chuang, Isaac L.

    2010-12-01

    Part I. Fundamental Concepts: 1. Introduction and overview; 2. Introduction to quantum mechanics; 3. Introduction to computer science; Part II. Quantum Computation: 4. Quantum circuits; 5. The quantum Fourier transform and its application; 6. Quantum search algorithms; 7. Quantum computers: physical realization; Part III. Quantum Information: 8. Quantum noise and quantum operations; 9. Distance measures for quantum information; 10. Quantum error-correction; 11. Entropy and information; 12. Quantum information theory; Appendices; References; Index.

  15. Quantum state transfer via Bloch oscillations

    NASA Astrophysics Data System (ADS)

    Tamascelli, Dario; Olivares, Stefano; Rossotti, Stefano; Osellame, Roberto; Paris, Matteo G. A.

    2016-05-01

    The realization of reliable quantum channels, able to transfer a quantum state with high fidelity, is a fundamental step in the construction of scalable quantum devices. In this paper we describe a transmission scheme based on the genuinely quantum effect known as Bloch oscillations. The proposed protocol makes it possible to carry a quantum state over different distances with a minimal engineering of the transmission medium and can be implemented and verified on current quantum technology hardware.

  16. Quantum state transfer via Bloch oscillations.

    PubMed

    Tamascelli, Dario; Olivares, Stefano; Rossotti, Stefano; Osellame, Roberto; Paris, Matteo G A

    2016-01-01

    The realization of reliable quantum channels, able to transfer a quantum state with high fidelity, is a fundamental step in the construction of scalable quantum devices. In this paper we describe a transmission scheme based on the genuinely quantum effect known as Bloch oscillations. The proposed protocol makes it possible to carry a quantum state over different distances with a minimal engineering of the transmission medium and can be implemented and verified on current quantum technology hardware. PMID:27189630

  17. Quantum state transfer via Bloch oscillations

    PubMed Central

    Tamascelli, Dario; Olivares, Stefano; Rossotti, Stefano; Osellame, Roberto; Paris, Matteo G. A.

    2016-01-01

    The realization of reliable quantum channels, able to transfer a quantum state with high fidelity, is a fundamental step in the construction of scalable quantum devices. In this paper we describe a transmission scheme based on the genuinely quantum effect known as Bloch oscillations. The proposed protocol makes it possible to carry a quantum state over different distances with a minimal engineering of the transmission medium and can be implemented and verified on current quantum technology hardware. PMID:27189630

  18. Learning in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Gardner, David E.

    This thesis describes qualitative research conducted to understand the problems students have when learning quantum mechanics. It differs from previous studies on educational issues associated with quantum mechanics in that I have examined the difficulties from the students' perspective. Three questions guided this research: What are the experiences of students learning quantum mechanics? What conceptual difficulties do students have with quantum mechanics? and, How do students approach learning quantum mechanics? From these questions, two themes emerged. First, students do not consider the quantum mechanical concepts of wave-particle duality or the uncertainty principle to be important sources of difficulties for them. Second, many of the difficulties students encounter are not related to conceptual understanding of specific topics, but stem from a mindset that is incongruent with the nature and structure of quantum mechanics. The implications for teaching are that the nature and structure of quantum mechanics should be emphasized and be an explicit part of instruction.

  19. Quantum robots plus environments.

    SciTech Connect

    Benioff, P.

    1998-07-23

    A quantum robot is a mobile quantum system, including an on board quantum computer and needed ancillary systems, that interacts with an environment of quantum systems. Quantum robots carry out tasks whose goals include making specified changes in the state of the environment or carrying out measurements on the environment. The environments considered so far, oracles, data bases, and quantum registers, are seen to be special cases of environments considered here. It is also seen that a quantum robot should include a quantum computer and cannot be simply a multistate head. A model of quantum robots and their interactions is discussed in which each task, as a sequence of alternating computation and action phases,is described by a unitary single time step operator T {approx} T{sub a} + T{sub c} (discrete space and time are assumed). The overall system dynamics is described as a sum over paths of completed computation (T{sub c}) and action (T{sub a}) phases. A simple example of a task, measuring the distance between the quantum robot and a particle on a 1D lattice with quantum phase path dispersion present, is analyzed. A decision diagram for the task is presented and analyzed.

  20. The use of bulk states to accelerate the band edge statecalculation of a semiconductor quantum dot

    SciTech Connect

    Vomel, Christof; Tomov, Stanimire Z.; Wang, Lin-Wang; Marques,Osni A.; Dongarra, Jack J.

    2006-05-10

    We present a new technique to accelerate the convergence of the folded spectrum method in empirical pseudopotential band edge state calculations for colloidal quantum dots. We use bulk band states of the materials constituent of the quantum dot to construct initial vectors and a preconditioner. We apply these to accelerate the convergence of the folded spectrum method for the interior states at the top of the valence and the bottom of the conduction band. For large CdSe quantum dots, the number of iteration steps until convergence decreases by about a factor of 4 compared to previous calculations.

  1. Enhanced electrocatalytic activity of the Au-electrodeposited Pt nanoparticles-coated conducting oxide for the quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Yoon, Yeung-Pil; Kim, Jae-Hong; Kang, Soon-Hyung; Kim, Hyunsoo; Choi, Chel-Jong; Kim, Kyong-Kook; Ahn, Kwang-Soon

    2014-08-01

    Au was electrodeposited potentiostatically at 0.3 V for 5 min on nanoporous Pt nanoparticle-coated F-doped SnO2 (FTO/Pt) substrates. For comparison, Au-electrodeposited FTO (FTO/Au) and Au-uncoated FTO/Pt were prepared. FTO/Au showed large-sized Au clusters dispersed sparsely over FTO, which resulted in lower electrocatalytic activity than FTO/Pt. In contrast, FTO/Pt exhibited poor stability unlike FTO/Au due to poisoning by the adsorption of sulfur species. The Au-electrodeposited FTO/Pt (FTO/Pt/Au) consisted of small Au clusters deposited over the entire area of Pt due to the effective Au nucleation provided by nanoporous metallic Pt. FTO/Pt/Au exhibited enhanced electrocatalytic activity and excellent stability because the small Au particles well-dispersed over the nanoporous metallic Pt network provided numerous electrochemical reaction sites, and the Pt surface was not exposed to the electrolyte. When FTO/Pt/Au was used as the counter electrode (CE) of a quantum dot-sensitized solar cell, the significantly enhanced electrocatalytic activity of the FTO/Pt/Au CE facilitated the reduction reaction of Sn2- + 2e- (CE) → Sn-12- + S2- at the CE/electrolyte interface, resulting in a significantly hindered recombination reaction, Sn2- + 2e- (TiO2 in the photoanode) → Sn-12- + S2-, and significantly improved overall energy conversion efficiency.

  2. Writing the Winning Dissertation: A Step-By-Step Guide.

    ERIC Educational Resources Information Center

    Glatthorn, Allan A.

    This book is a practical guide to researching and writing the doctoral dissertation or master's thesis. Part 1 offers seven chapters on preparatory steps: laying the groundwork for the thesis and dissertation; finding a research problem; conducting a focused review of the literature; making a preliminary choice of methodology; organizing and…

  3. Quantum robots and environments

    SciTech Connect

    Benioff, P.

    1998-08-01

    Quantum robots and their interactions with environments of quantum systems are described, and their study justified. A quantum robot is a mobile quantum system that includes an on-board quantum computer and needed ancillary systems. Quantum robots carry out tasks whose goals include specified changes in the state of the environment, or carrying out measurements on the environment. Each task is a sequence of alternating computation and action phases. Computation phase activites include determination of the action to be carried out in the next phase, and recording of information on neighborhood environmental system states. Action phase activities include motion of the quantum robot and changes in the neighborhood environment system states. Models of quantum robots and their interactions with environments are described using discrete space and time. A unitary step operator T that gives the single time step dynamics is associated with each task. T=T{sub a}+T{sub c} is a sum of action phase and computation phase step operators. Conditions that T{sub a} and T{sub c} should satisfy are given along with a description of the evolution as a sum over paths of completed phase input and output states. A simple example of a task{emdash}carrying out a measurement on a very simple environment{emdash}is analyzed in detail. A decision tree for the task is presented and discussed in terms of the sums over phase paths. It is seen that no definite times or durations are associated with the phase steps in the tree, and that the tree describes the successive phase steps in each path in the sum over phase paths. {copyright} {ital 1998} {ital The American Physical Society}

  4. Quantum Hall conductance and de Haas-van Alphen oscillation in a tight-binding model with electron and hole pockets for (TMTSF) 2NO3

    NASA Astrophysics Data System (ADS)

    Kishigi, Keita; Hasegawa, Yasumasa

    2016-08-01

    Quantized Hall conductance and de Haas-van Alphen (dHvA) oscillation are studied theoretically in the tight-binding model for (TMTSF) 2NO3 , in which there are small pockets of electrons and holes due to the periodic potentials of anion ordering in the a direction. The magnetic field is treated by hoppings as complex numbers due to the phase caused by the vector potential, i.e., Peierls substitution. In realistic values of parameters and the magnetic field, the energy as a function of the magnetic field (Hofstadter butterfly diagram) is obtained. It is shown that the energy levels are broadened and the gaps are closed or almost closed periodically as a function of the inverse magnetic field, which is not seen in the semiclassical theory of the magnetic breakdown. The Hall conductance is quantized with an integer obtained by the Diophantine equation when the chemical potential lies in an energy gap. When electrons or holes are doped in this system, the Hall conductance is quantized in some regions of a magnetic field but it is not quantized in other regions of a magnetic field due to the broadening of the Landau levels. The amplitude of the dHvA oscillation at zero temperature decreases as the magnetic field increases, while it is constant in the semiclassical Lifshitz Kosevich formula.

  5. Enhanced electrocatalytic activity of the Au-electrodeposited Pt nanoparticles-coated conducting oxide for the quantum dot-sensitized solar cells

    SciTech Connect

    Yoon, Yeung-Pil; Kim, Jae-Hong; Ahn, Kwang-Soon; Kang, Soon-Hyung; Kim, Hyunsoo; Choi, Chel-Jong; Kim, Kyong-Kook

    2014-08-25

    Au was electrodeposited potentiostatically at 0.3 V for 5 min on nanoporous Pt nanoparticle-coated F-doped SnO{sub 2} (FTO/Pt) substrates. For comparison, Au-electrodeposited FTO (FTO/Au) and Au-uncoated FTO/Pt were prepared. FTO/Au showed large-sized Au clusters dispersed sparsely over FTO, which resulted in lower electrocatalytic activity than FTO/Pt. In contrast, FTO/Pt exhibited poor stability unlike FTO/Au due to poisoning by the adsorption of sulfur species. The Au-electrodeposited FTO/Pt (FTO/Pt/Au) consisted of small Au clusters deposited over the entire area of Pt due to the effective Au nucleation provided by nanoporous metallic Pt. FTO/Pt/Au exhibited enhanced electrocatalytic activity and excellent stability because the small Au particles well-dispersed over the nanoporous metallic Pt network provided numerous electrochemical reaction sites, and the Pt surface was not exposed to the electrolyte. When FTO/Pt/Au was used as the counter electrode (CE) of a quantum dot-sensitized solar cell, the significantly enhanced electrocatalytic activity of the FTO/Pt/Au CE facilitated the reduction reaction of S{sub n}{sup 2− }+ 2e{sup −} (CE) → S{sub n−1}{sup 2−} + S{sup 2−} at the CE/electrolyte interface, resulting in a significantly hindered recombination reaction, S{sub n}{sup 2− }+ 2e{sup −} (TiO{sub 2} in the photoanode) → S{sub n-1}{sup 2−} + S{sup 2−}, and significantly improved overall energy conversion efficiency.

  6. Electrically conductive composite material

    DOEpatents

    Clough, Roger L.; Sylwester, Alan P.

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  7. Electrically conductive composite material

    DOEpatents

    Clough, R.L.; Sylwester, A.P.

    1988-06-20

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  8. Quantum and Classical Molecular Dynamics of Ionic Liquid Electrolytes for Na/Li-based Batteries: Molecular Origins of the Conductivity Behavior.

    PubMed

    Vicent-Luna, Jose Manuel; Ortiz-Roldan, Jose Manuel; Hamad, Said; Tena-Zaera, Ramon; Calero, Sofia; Anta, Juan Antonio

    2016-08-18

    Compositional effects on the charge-transport properties of electrolytes for batteries based on room-temperature ionic liquids (RTILs) are well-known. However, further understanding is required about the molecular origins of these effects, in particular regarding the replacement of Li by Na. In this work, we investigate the use of RTILs in batteries, by means of both classical molecular dynamics (MD), which provides information about structure and molecular transport, and ab initio molecular dynamics (AIMD), which provides information about structure. The focus has been placed on the effect of adding either Na(+) or Li(+) to 1-methyl-1-butyl-pyrrolidinium [C4 PYR](+) bis(trifluoromethanesulfonyl)imide [Tf2 N](-) . Radial distribution functions show excellent agreement between MD and AIMD, which ensures the validity of the force fields used in the MD. This is corroborated by the MD results for the density, the diffusion coefficients, and the total conductivity of the electrolytes, which reproduce remarkably well the experimental observations for all studied Na/Li concentrations. By extracting partial conductivities, it is demonstrated that the main contribution to the conductivity is that of [C4 PYR](+) and [Tf2 N](-) . However, addition of Na(+) /Li(+) , although not significant on its own, produces a dramatic decrease in the partial conductivities of the RTIL ions. The origin of this indirect effect can be traced to the modification of the microscopic structure of the liquid as observed from the radial distribution functions, owing to the formation of [Na(Tf2 N)n ]((n-1)-) and [Li(Tf2 N)n ]((n-1)-) clusters at high concentrations. This formation hinders the motion of the large ions, hence reducing the total conductivity. We demonstrate that this clustering effect is common to both Li and Na, showing that both ions behave in a similar manner at a microscopic level in spite of their distinct ionic radii. This is an interesting finding for extending Li-ion and Li

  9. Influence of electron irradiation on the electronic transport mechanisms during the conductive AFM imaging of InAs/GaAs quantum dots capped with a thin GaAs layer.

    PubMed

    Troyon, M; Smaali, K

    2008-06-25

    We have used conductive atomic force microscopy (C-AFM) to study the electronic transport mechanisms through InAs quantum dots (QDs) grown by molecular beam epitaxy on an n-type GaAs(001) substrate and covered with a 5 nm thick GaAs cap layer. The study is performed with a conductive atomic force microscope working inside a scanning electron microscope. Electric images can be obtained only if the sample is preliminarily irradiated with an electron probe current sufficiently high to generate strong electron beam induced current. In these conditions holes are trapped in QDs and surface states, so allowing the release of the Fermi level pinning and thus conduction through the sample. The electronic transport mechanism depends on the type of AFM probe used; it is explained for a metal (Co/Cr) coated probe and p-doped diamond coated probe with the aid of energy band diagrams. The writing (charge trapping) and erasing (untrapping) phenomena is conditioned by the magnitude of the electron probe current. A strong memory effect is evidenced for the sample studied. PMID:21828669

  10. Quantum Information Processing with Trapped Ions

    SciTech Connect

    Barrett, M.D.; Schaetz, T.; Chiaverini, J.; Leibfried, D.; Britton, J.; Itano, W.M.; Jost, J.D.; Langer, C.; Ozeri, R.; Wineland, D.J.; Knill, E.

    2005-05-05

    We summarize two experiments on the creation and manipulation of multi-particle entangled states of trapped atomic ions - quantum dense coding and quantum teleportation. The techniques used in these experiments constitute an important step toward performing large-scale quantum information processing. The techniques also have application in other areas of physics, providing improvement in quantum-limited measurement and fundamental tests of quantum mechanical principles, for example.

  11. Screw dislocation-induced influence of transverse modes on Hall conductivity

    NASA Astrophysics Data System (ADS)

    de Lima, André G.; Poux, Armelle; Assafrão, Denise; Filgueiras, Cleverson

    2013-11-01

    The Hall conductivity of an electron gas on an interface showing a topological defect called screw dislocation is investigated. This kind of defect induces a singular torsion on the medium which in turn induces transverse modes in the quantum Hall effect. It is shown that this topology decreases the plateaus' widths and shifts the steps in the Hall conductivity to lower magnetic fields. The Hall conductivity is neither enhanced nor diminished by the presence of this kind of defect alone. We also consider the presence of two defects on a sample, a screw dislocation together with a disclination. For a specific value of deficit angle, there is a reduction in the Hall conductivity. For an excess of angle, the steps shift to higher magnetic fields and the Hall conductivity is enhanced. Our work could be tested only in common semiconductors but we think it opens a road to the investigation on how topological defects can influence other classes of Hall effect.

  12. Stepping motor controller

    DOEpatents

    Bourret, S.C.; Swansen, J.E.

    1982-07-02

    A stepping motor is microprocessor controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  13. Stepping motor controller

    DOEpatents

    Bourret, Steven C.; Swansen, James E.

    1984-01-01

    A stepping motor is microprocessingly controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  14. Conductance fluctuations in nanostructures

    NASA Astrophysics Data System (ADS)

    Zhu, Ningjia

    1997-12-01

    In this Ph.D thesis the conductance fluctuations of different physical origins in semi-conductor nanostructures were studied using both diagrammatic analytical methods and large scale numerical techniques. In the "mixed" transport regime where both mesoscopic and ballistic features play a role, for the first time I have analytically calculated the non-universal conductance fluctuations. This mixed regime is reached when impurities are distributed near the walls of a quantum wire, leaving the center region ballistic. I have discovered that the existence of a ballistic region destroys the universal conductance fluctuations. The crossover behavior of the fluctuation amplitude from the usual quasi-1D situation to that of the mixed regime is clearly revealed, and the role of various length scales are identified. My analytical predictions were confirmed by a direct numerical simulation by evaluating the Landauer formula. In another direction, I have made several studies of conductance or resistance oscillations and fluctuations in systems with artificial impurities in the ballistic regime. My calculation gave explanations of all the experimental results concerning the classical focusing peaks of the resistance versus magnetic field, the weak localization peak in a Sinai billiard system, the formation of a chaotic billiard, and predicted certain transport features which were indeed found experimentally. I have further extended the calculation to study the Hall resistance in a four-terminal quantum dot in which there is an antidot array. From my numerical data I analyzed the classical paths of electron motion and its quantum oscillations. The results compare well with recent experimental studies on similar systems. Since these billiard systems could provide quantum chaotic dynamics, I have made a detailed study of the consequence of such dynamics. In particular I have investigated the resonant transmission of electrons in these chaotic systems, and found that the level

  15. Conduction subbands in a GaAs/AlxGa1-xAs quantum well: Comparing different k.p models

    NASA Astrophysics Data System (ADS)

    von Allmen, Paul

    1992-12-01

    The energy dispersion of the conduction subbands in a GaAs/AlxGa1-xAs superlattice is calculated by using a k.p Hamiltonian that includes different number of bands. The most accurate model includes the Γc6, Γv7, Γv8, Γc7, and Γc8 bands. The resulting subband dispersion is compared with that obtained when the coupling of the Γc6 band with the Γv7 and Γv8 and/or Γc7 and Γc8 bands is neglected. We also consider the 2×2 k.p Hamiltonian with terms up to the order k4. The subband dispersions are analyzed quantitatively by fitting the numerical result to the analytical expression obtained with the invariant expansion technique. The subbands are found to be significantly different with the various models. The differences are ascribed to the different bulk band dispersions obtained with different k.p Hamiltonians and to the variation of the band parameters in the well and barrier materials.

  16. Quantum neuron design

    NASA Astrophysics Data System (ADS)

    Behrman, Elizabeth; Steck, James

    2014-03-01

    In previous work, we have developed quantum systems that can learn and do information processing much like artificial neural networks. These learning methods have some advantages over other implementations of quantum computing in that they construct their own algorithms and could be robust to noise and decoherence. Here we take the next step, by designing quantum neurons that have some of the important behaviors of biological neurons, yet have the advantage of being complex valued and having quantum computing power. Our neuron model consists of a two-level system coupled to a Gaussian bath representing the environment. Simulations of a interconnected network of these neurons show that the model can both learn standard AI tasks, as similar networks of classical neurons have been shown to do, and, in addition, perform quantum mechanical calculations.

  17. Electroluminescence of quantum-dash-based quantum cascade laser structures

    SciTech Connect

    Liverini, V.; Bismuto, A.; Nevou, L.; Beck, M.; Faist, J.

    2011-12-23

    We developed two mid-infrared quantum cascade structures based on InAs quantum dashes. The dashes were embedded either in AlInGaAs lattice-matched to InP or in tensile-strained AlInAs. The devices emit between 7 and 11 {mu}m and are a step forward in the development of quantum cascade lasers based on 3-D confined active regions.

  18. Quantum dot quantum cascade infrared photodetector

    NASA Astrophysics Data System (ADS)

    Wang, Xue-Jiao; Zhai, Shen-Qiang; Zhuo, Ning; Liu, Jun-Qi; Liu, Feng-Qi; Liu, Shu-Man; Wang, Zhan-Guo

    2014-04-01

    We demonstrate an InAs quantum dot quantum cascade infrared photodetector operating at room temperature with a peak detection wavelength of 4.3 μm. The detector shows sensitive photoresponse for normal-incidence light, which is attributed to an intraband transition of the quantum dots and the following transfer of excited electrons on a cascade of quantum levels. The InAs quantum dots for the infrared absorption were formed by making use of self-assembled quantum dots in the Stranski-Krastanov growth mode and two-step strain-compensation design based on InAs/GaAs/InGaAs/InAlAs heterostructure, while the following extraction quantum stairs formed by LO-phonon energy are based on a strain-compensated InGaAs/InAlAs chirped superlattice. Johnson noise limited detectivities of 3.64 × 1011 and 4.83 × 106 Jones at zero bias were obtained at 80 K and room temperature, respectively. Due to the low dark current and distinct photoresponse up to room temperature, this device can form high temperature imaging.

  19. Quantum dot quantum cascade infrared photodetector

    SciTech Connect

    Wang, Xue-Jiao; Zhai, Shen-Qiang; Zhuo, Ning; Liu, Jun-Qi E-mail: fqliu@semi.ac.cn; Liu, Feng-Qi E-mail: fqliu@semi.ac.cn; Liu, Shu-Man; Wang, Zhan-Guo

    2014-04-28

    We demonstrate an InAs quantum dot quantum cascade infrared photodetector operating at room temperature with a peak detection wavelength of 4.3 μm. The detector shows sensitive photoresponse for normal-incidence light, which is attributed to an intraband transition of the quantum dots and the following transfer of excited electrons on a cascade of quantum levels. The InAs quantum dots for the infrared absorption were formed by making use of self-assembled quantum dots in the Stranski–Krastanov growth mode and two-step strain-compensation design based on InAs/GaAs/InGaAs/InAlAs heterostructure, while the following extraction quantum stairs formed by LO-phonon energy are based on a strain-compensated InGaAs/InAlAs chirped superlattice. Johnson noise limited detectivities of 3.64 × 10{sup 11} and 4.83 × 10{sup 6} Jones at zero bias were obtained at 80 K and room temperature, respectively. Due to the low dark current and distinct photoresponse up to room temperature, this device can form high temperature imaging.

  20. Phonon scattering in graphene over substrate steps

    SciTech Connect

    Sevinçli, H.; Brandbyge, M.

    2014-10-13

    We calculate the effect on phonon transport of substrate-induced bends in graphene. We consider bending induced by an abrupt kink in the substrate, and provide results for different step-heights and substrate interaction strengths. We find that individual substrate steps reduce thermal conductance in the range between 5% and 47%. We also consider the transmission across linear kinks formed by adsorption of atomic hydrogen at the bends and find that individual kinks suppress thermal conduction substantially, especially at high temperatures. Our analysis show that substrate irregularities can be detrimental for thermal conduction even for small step heights.

  1. Quantum ellipsometry

    NASA Astrophysics Data System (ADS)

    Toussaint, Kimani Christopher, Jr.

    Ellipsometry is a technique in which the polarization of light is used to determine the optical properties of a material (sample) and infer information such as the thickness of a thin film. Traditional ellipsometric measurements are limited in their accuracy because of the use of an external reference sample for calibration, and because of the quantum noise inherent in the source that becomes important at low light levels. A new technique called quantum ellipsometry is investigated, and is shown to circumvent these limitations by using a non-classical source of light, namely, twin photons generated by the process of spontaneous parametric downconversion (SPDC), in conjunction with a novel polarization interferometer and coincidence-counting detection scheme. Quantum ellipsometry comes in two forms: correlated-photon and entangled-photon ellipsometry. Both ellipsometric techniques yield estimated of the sample reflectance/transmittance with accuracy greater than conventional ellipsometry. Specifically, when the quantum efficiencies of the detectors used are above a certain threshold the signal-to-noise ratio of the measured ellipsometric parameters is larger for quantum ellipsometry than for conventional ellipsometry. This is because the photon pairs generated by SPDC have a fully correlated joint photon counting distribution. Furthermore, both correlated-photon and entangled-photon ellipsometry have the added advantage that they do not require calibration by an external reference sample, which is another limitation on the accuracy for most conventional ellipsometry. Quantum ellipsometry exploits the property of photon number correlation and polarization entanglement. The entanglement property, inherent in entangled-photon ellipsometry, is shown to allow for the movement of the optical elements that precede the sample to the sample-free optical channel in the setup. A theoretical and experimental investigation of quantum ellipsometry was conducted. Both correlated

  2. Steps in Behavior Modividation.

    ERIC Educational Resources Information Center

    Straughan, James H.; And Others

    James H. Straughan lists five steps for modifying target behavior and four steps for working with teachers using behavior modification. Grant Martin and Harold Kunzelmann then outline an instructional program for pinpointing and recording classroom behaviors. (JD)

  3. One Step to Learning.

    ERIC Educational Resources Information Center

    Thornton, Carol A.; And Others

    1980-01-01

    Described are activities and games incorporating a technique of "one step" which is used with children with learning difficulties. The purpose of "one step" is twofold, to minimize difficulties with typical trouble spots and to keep the step size of the instruction small. (Author/TG)

  4. A Step Circuit Program.

    ERIC Educational Resources Information Center

    Herman, Susan

    1995-01-01

    Aerobics instructors can use step aerobics to motivate students. One creative method is to add the step to the circuit workout. By incorporating the step, aerobic instructors can accommodate various fitness levels. The article explains necessary equipment and procedures, describing sample stations for cardiorespiratory fitness, muscular strength,…

  5. Tunable mid-infrared photodetectors employing Stark shifts of intersubband transitions in In 0.05Ga 0.95As/Al 0.32Ga 0.68As/Al 0.45Ga 0.55As asymmetric step quantum wells

    NASA Astrophysics Data System (ADS)

    Wu, Wengang

    2004-01-01

    Tunable mid-infrared (3-5 μm) photodetectors made of In 0.05Ga 0.95As/Al 0.32Ga 0.68As/Al 0.45Ga 0.55As asymmetric step multiple quantum wells are reported. The detectors exhibit photovoltaic-type photocurrent response with the peak wavelengths modulated by an applied bias in the 3-5.3 μm infrared atmospheric transmission window. The bias-controlled modulation of the peak wavelength of the main response is due to the Stark shifts of the intersubband transitions from the ground states to the first excited states in the quantum wells. By expanding the electron wavefunction in terms of the normalized plane wave basis within the framework of the effective-mass envelope-function approximation, a theoretical calculation of the linear Stark effects of the intersubband transitions between the ground and the first excited states in the asymmetric step wells is carried out and the results agree well with experimental measurements. The key features of the photodetectors, including the photocurrent response, dark current, and black-body detectivity, which is about 1.0×10 10 cm Hz 1/2/W at 77 K under a bias of ±7 V, are close to the requirements for practical applications.

  6. Quantum cloning attacks against PUF-based quantum authentication systems

    NASA Astrophysics Data System (ADS)

    Yao, Yao; Gao, Ming; Li, Mo; Zhang, Jian

    2016-08-01

    With the advent of physical unclonable functions (PUFs), PUF-based quantum authentication systems have been proposed for security purposes, and recently, proof-of-principle experiment has been demonstrated. As a further step toward completing the security analysis, we investigate quantum cloning attacks against PUF-based quantum authentication systems and prove that quantum cloning attacks outperform the so-called challenge-estimation attacks. We present the analytical expression of the false-accept probability by use of the corresponding optimal quantum cloning machines and extend the previous results in the literature. In light of these findings, an explicit comparison is made between PUF-based quantum authentication systems and quantum key distribution protocols in the context of cloning attacks. Moreover, from an experimental perspective, a trade-off between the average photon number and the detection efficiency is discussed in detail.

  7. Quantum cloning attacks against PUF-based quantum authentication systems

    NASA Astrophysics Data System (ADS)

    Yao, Yao; Gao, Ming; Li, Mo; Zhang, Jian

    2016-05-01

    With the advent of physical unclonable functions (PUFs), PUF-based quantum authentication systems have been proposed for security purposes, and recently, proof-of-principle experiment has been demonstrated. As a further step toward completing the security analysis, we investigate quantum cloning attacks against PUF-based quantum authentication systems and prove that quantum cloning attacks outperform the so-called challenge-estimation attacks. We present the analytical expression of the false-accept probability by use of the corresponding optimal quantum cloning machines and extend the previous results in the literature. In light of these findings, an explicit comparison is made between PUF-based quantum authentication systems and quantum key distribution protocols in the context of cloning attacks. Moreover, from an experimental perspective, a trade-off between the average photon number and the detection efficiency is discussed in detail.

  8. STEP: A Futurevision, Today

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STEP (STandard for the Exchange of Product Model Data) is an innovative software tool that allows the exchange of data between different programming systems to occur and helps speed up the designing in various process industries. This exchange occurs easily between those companies that have STEP, and many industries and government agencies are requiring that their vendors utilize STEP in their computer aided design projects, such as in the areas of mechanical, aeronautical, and electrical engineering. STEP allows the process of concurrent engineering to occur and increases the quality of the design product. One example of the STEP program is the Boeing 777, the first paperless airplane.

  9. Quantum correlation via quantum coherence

    NASA Astrophysics Data System (ADS)

    Yu, Chang-shui; Zhang, Yang; Zhao, Haiqing

    2014-06-01

    Quantum correlation includes quantum entanglement and quantum discord. Both entanglement and discord have a common necessary condition—quantum coherence or quantum superposition. In this paper, we attempt to give an alternative understanding of how quantum correlation is related to quantum coherence. We divide the coherence of a quantum state into several classes and find the complete coincidence between geometric (symmetric and asymmetric) quantum discords and some particular classes of quantum coherence. We propose a revised measure for total coherence and find that this measure can lead to a symmetric version of geometric quantum correlation, which is analytic for two qubits. In particular, this measure can also arrive at a monogamy equality on the distribution of quantum coherence. Finally, we also quantify a remaining type of quantum coherence and find that for two qubits, it is directly connected with quantum nonlocality.

  10. Valley-orbit hybrid states in Si quantum dots

    NASA Astrophysics Data System (ADS)

    Gamble, John; Friesen, Mark; Coppersmith, S. N.

    2013-03-01

    The conduction band for electrons in layered Si nanostructures oriented along (001) has two low-lying valleys. Most theoretical treatments assume that these valleys are decoupled from the long-wavelength physics of electron confinement. In this work, we show that even a minimal amount of disorder (a single atomic step at the quantum well interface) is sufficient to mix valley states and electron orbitals, causing a significant distortion of the long-wavelength electron envelope. For physically realistic electric fields and dot sizes, this valley-orbit coupling impacts all electronic states in Si quantum dots, implying that one must always consider valley-orbit hybrid states, rather than distinct valley and orbital degrees of freedom. We discuss the ramifications of our results on silicon quantum dot qubits. This work was supported in part by ARO (W911NF-08-1-0482) and NSF (DMR-0805045).

  11. Quantum-enhanced absorption refrigerators

    PubMed Central

    Correa, Luis A.; Palao, José P.; Alonso, Daniel; Adesso, Gerardo

    2014-01-01

    Thermodynamics is a branch of science blessed by an unparalleled combination of generality of scope and formal simplicity. Based on few natural assumptions together with the four laws, it sets the boundaries between possible and impossible in macroscopic aggregates of matter. This triggered groundbreaking achievements in physics, chemistry and engineering over the last two centuries. Close analogues of those fundamental laws are now being established at the level of individual quantum systems, thus placing limits on the operation of quantum-mechanical devices. Here we study quantum absorption refrigerators, which are driven by heat rather than external work. We establish thermodynamic performance bounds for these machines and investigate their quantum origin. We also show how those bounds may be pushed beyond what is classically achievable, by suitably tailoring the environmental fluctuations via quantum reservoir engineering techniques. Such superefficient quantum-enhanced cooling realises a promising step towards the technological exploitation of autonomous quantum refrigerators. PMID:24492860

  12. Quantum-enhanced absorption refrigerators

    NASA Astrophysics Data System (ADS)

    Correa, Luis A.; Palao, José P.; Alonso, Daniel; Adesso, Gerardo

    2014-02-01

    Thermodynamics is a branch of science blessed by an unparalleled combination of generality of scope and formal simplicity. Based on few natural assumptions together with the four laws, it sets the boundaries between possible and impossible in macroscopic aggregates of matter. This triggered groundbreaking achievements in physics, chemistry and engineering over the last two centuries. Close analogues of those fundamental laws are now being established at the level of individual quantum systems, thus placing limits on the operation of quantum-mechanical devices. Here we study quantum absorption refrigerators, which are driven by heat rather than external work. We establish thermodynamic performance bounds for these machines and investigate their quantum origin. We also show how those bounds may be pushed beyond what is classically achievable, by suitably tailoring the environmental fluctuations via quantum reservoir engineering techniques. Such superefficient quantum-enhanced cooling realises a promising step towards the technological exploitation of autonomous quantum refrigerators.

  13. Quantum-enhanced absorption refrigerators.

    PubMed

    Correa, Luis A; Palao, José P; Alonso, Daniel; Adesso, Gerardo

    2014-01-01

    Thermodynamics is a branch of science blessed by an unparalleled combination of generality of scope and formal simplicity. Based on few natural assumptions together with the four laws, it sets the boundaries between possible and impossible in macroscopic aggregates of matter. This triggered groundbreaking achievements in physics, chemistry and engineering over the last two centuries. Close analogues of those fundamental laws are now being established at the level of individual quantum systems, thus placing limits on the operation of quantum-mechanical devices. Here we study quantum absorption refrigerators, which are driven by heat rather than external work. We establish thermodynamic performance bounds for these machines and investigate their quantum origin. We also show how those bounds may be pushed beyond what is classically achievable, by suitably tailoring the environmental fluctuations via quantum reservoir engineering techniques. Such superefficient quantum-enhanced cooling realises a promising step towards the technological exploitation of autonomous quantum refrigerators. PMID:24492860

  14. Quantum error correction beyond qubits

    NASA Astrophysics Data System (ADS)

    Aoki, Takao; Takahashi, Go; Kajiya, Tadashi; Yoshikawa, Jun-Ichi; Braunstein, Samuel L.; van Loock, Peter; Furusawa, Akira

    2009-08-01

    Quantum computation and communication rely on the ability to manipulate quantum states robustly and with high fidelity. To protect fragile quantum-superposition states from corruption through so-called decoherence noise, some form of error correction is needed. Therefore, the discovery of quantum error correction (QEC) was a key step to turn the field of quantum information from an academic curiosity into a developing technology. Here, we present an experimental implementation of a QEC code for quantum information encoded in continuous variables, based on entanglement among nine optical beams. This nine-wave-packet adaptation of Shor's original nine-qubit scheme enables, at least in principle, full quantum error correction against an arbitrary single-beam error.

  15. Rapid prototype extruded conductive pathways

    DOEpatents

    Bobbitt, III, John T.

    2016-06-21

    A process of producing electrically conductive pathways within additively manufactured parts and similar parts made by plastic extrusion nozzles. The process allows for a three-dimensional part having both conductive and non-conductive portions and allows for such parts to be manufactured in a single production step.

  16. Quantum memory Quantum memory

    NASA Astrophysics Data System (ADS)

    Le Gouët, Jean-Louis; Moiseev, Sergey

    2012-06-01

    Interaction of quantum radiation with multi-particle ensembles has sparked off intense research efforts during the past decade. Emblematic of this field is the quantum memory scheme, where a quantum state of light is mapped onto an ensemble of atoms and then recovered in its original shape. While opening new access to the basics of light-atom interaction, quantum memory also appears as a key element for information processing applications, such as linear optics quantum computation and long-distance quantum communication via quantum repeaters. Not surprisingly, it is far from trivial to practically recover a stored quantum state of light and, although impressive progress has already been accomplished, researchers are still struggling to reach this ambitious objective. This special issue provides an account of the state-of-the-art in a fast-moving research area that makes physicists, engineers and chemists work together at the forefront of their discipline, involving quantum fields and atoms in different media, magnetic resonance techniques and material science. Various strategies have been considered to store and retrieve quantum light. The explored designs belong to three main—while still overlapping—classes. In architectures derived from photon echo, information is mapped over the spectral components of inhomogeneously broadened absorption bands, such as those encountered in rare earth ion doped crystals and atomic gases in external gradient magnetic field. Protocols based on electromagnetic induced transparency also rely on resonant excitation and are ideally suited to the homogeneous absorption lines offered by laser cooled atomic clouds or ion Coulomb crystals. Finally off-resonance approaches are illustrated by Faraday and Raman processes. Coupling with an optical cavity may enhance the storage process, even for negligibly small atom number. Multiple scattering is also proposed as a way to enlarge the quantum interaction distance of light with matter. The

  17. Room-temperature resonant quantum tunneling transport of macroscopic systems.

    PubMed

    Xiong, Zhengwei; Wang, Xuemin; Yan, Dawei; Wu, Weidong; Peng, Liping; Li, Weihua; Zhao, Yan; Wang, Xinmin; An, Xinyou; Xiao, Tingting; Zhan, Zhiqiang; Wang, Zhuo; Chen, Xiangrong

    2014-11-21

    A self-assembled quantum dots array (QDA) is a low dimensional electron system applied to various quantum devices. This QDA, if embedded in a single crystal matrix, could be advantageous for quantum information science and technology. However, the quantum tunneling effect has been difficult to observe around room temperature thus far, because it occurs in a microcosmic and low temperature condition. Herein, we show a designed a quasi-periodic Ni QDA embedded in a single crystal BaTiO3 matrix and demonstrate novel quantum resonant tunneling transport properties around room-temperature according to theoretical calculation and experiments. The quantum tunneling process could be effectively modulated by changing the Ni QDA concentration. The major reason was that an applied weak electric field (∼10(2) V cm(-1)) could be enhanced by three orders of magnitude (∼10(5) V cm(-1)) between the Ni QDA because of the higher permittivity of BaTiO3 and the 'hot spots' of the Ni QDA. Compared with the pure BaTiO3 films, the samples with embedded Ni QDA displayed a stepped conductivity and temperature (σ-T curves) construction. PMID:25307500

  18. Cyclic steps on ice

    NASA Astrophysics Data System (ADS)

    Yokokawa, M.; Izumi, N.; Naito, K.; Parker, G.; Yamada, T.; Greve, R.

    2016-05-01

    Boundary waves often form at the interface between ice and fluid flowing adjacent to it, such as ripples under river ice covers, and steps on the bed of supraglacial meltwater channels. They may also be formed by wind, such as the megadunes on the Antarctic ice sheet. Spiral troughs on the polar ice caps of Mars have been interpreted to be cyclic steps formed by katabatic wind blowing over ice. Cyclic steps are relatives of upstream-migrating antidunes. Cyclic step formation on ice is not only a mechanical but also a thermodynamic process. There have been very few studies on the formation of either cyclic steps or upstream-migrating antidunes on ice. In this study, we performed flume experiments to reproduce cyclic steps on ice by flowing water, and found that trains of steps form when the Froude number is larger than unity. The features of those steps allow them to be identified as ice-bed analogs of cyclic steps in alluvial and bedrock rivers. We performed a linear stability analysis and obtained a physical explanation of the formation of upstream-migrating antidunes, i.e., precursors of cyclic steps. We compared the results of experiments with the predictions of the analysis and found the observed steps fall in the range where the analysis predicts interfacial instability. We also found that short antidune-like undulations formed as a precursor to the appearance of well-defined steps. This fact suggests that such antidune-like undulations correspond to the instability predicted by the analysis and are precursors of cyclic steps.

  19. Strong Acid-Nonionic Surfactant Lyotropic Liquid-Crystalline Mesophases as Media for the Synthesis of Carbon Quantum Dots and Highly Proton Conducting Mesostructured Silica Thin Films and Monoliths.

    PubMed

    Olutaş, Elif B; Balcı, Fadime M; Dag, Ömer

    2015-09-22

    Lyotropic liquid-crystalline (LLC) materials are important in designing porous materials, and acids are as important in chemical synthesis. Combining these two important concepts will be highly beneficial to chemistry and material science. In this work, we show that a strong acid can be used as a solvent for the assembly of nonionic surfactants into various mesophases. Sulfuric acid (SA), 10-lauryl ether (C12E10), and a small amount of water form bicontinuous cubic (V1), 2D-hexagonal (H1), and micelle cubic (I1) mesophases with increasing SA/C12E10 mole ratio. A mixture of SA and C12E10 is fluidic but transforms to a highly ordered LLC mesophase by absorbing ambient water. The LLC mesophase displays high proton conductivity (1.5 to 19.0 mS/cm at room temperature) that increases with an increasing SA content up to 11 SA/C12E10 mole ratio, where the absorbed water is constant with respect to the SA amount but gradually increases from a 2.3 to 4.3 H2O/C12E10 mole ratio with increasing SA/C12E10 from 2 to 11, respectively. The mixture of SA and C12E10 slowly undergoes carbonization to produce carbon quantum dots (c-dots). The carbonization process can be controlled by simply controlling the water content of the media, and it can be almost halted by leaving the samples under ambient conditions, where the mixture slowly absorbs water to form photoluminescent c-dot-embedded mesophases. Over time the c-dots grow in size and increase in number, and the photoluminescence frequency gradually shifts to a lower frequency. The SA/C12E10 mesophase can also be used as a template to produce highly proton conducting mesostructured silica films and monoliths, as high as 19.3 mS/cm under ambient conditions. Aging the silica samples enhances the conductivity that can be even larger than for the LLC mesophase with the same amount of SA. The presence of silica has a positive effect on the proton conductivity of SA/C12E10 systems. PMID:26332603

  20. The quantum Hall effect in quantum dot systems

    NASA Astrophysics Data System (ADS)

    Beltukov, Y. M.; Greshnov, A. A.

    2014-12-01

    It is proposed to use quantum dots in order to increase the temperatures suitable for observation of the integer quantum Hall effect. A simple estimation using Fock-Darwin spectrum of a quantum dot shows that good part of carriers localized in quantum dots generate the intervals of plateaus robust against elevated temperatures. Numerical calculations employing local trigonometric basis and highly efficient kernel polynomial method adopted for computing the Hall conductivity reveal that quantum dots may enhance peak temperature for the effect by an order of magnitude, possibly above 77 K. Requirements to potentials, quality and arrangement of the quantum dots essential for practical realization of such enhancement are indicated. Comparison of our theoretical results with the quantum Hall measurements in InAs quantum dot systems from two experimental groups is also given.

  1. Golgi-Cox Staining Step by Step

    PubMed Central

    Zaqout, Sami; Kaindl, Angela M.

    2016-01-01

    Golgi staining remains a key method to study neuronal morphology in vivo. Since most protocols delineating modifications of the original staining method lack details on critical steps, establishing this method in a laboratory can be time-consuming and frustrating. Here, we describe the Golgi-Cox staining in such detail that should turn the staining into an easily feasible method for all scientists working in the neuroscience field. PMID:27065817

  2. One step, microwave assisted green synthesis of biocompatible carbon quantum dots and their composites with [α−PW{sub 12}O{sub 40}{sup 3−}] for visible light photocatalysis

    SciTech Connect

    Sahasrabudhe, Atharva Pant, Shashank Chatti, Manjunath Maiti, Binoy De, Priyadarsi Roy, Soumyajit

    2014-04-24

    We report a simple, rapid and green route for synthesis of fluorescent carbon quantum dots (CQDs) by microwave assisted pyrolysis method using polyleucine polymer (Boc-L-Leu-HEMA) as precursor and self-passivating agent. The as synthesized CQDs were found to possess low cytotoxicity, thus making them suitable candidates for bioimaging and bio-labelling. Moreover, nanocomposites of as prepared CQDs with [α−PW{sub 12}O{sub 40}{sup 3−}] polyoxometalate were synthesized and were shown to possess excellent photocatalytic properties under visible light towards degradation of organic dye pollutants. Based on the control experiments, a suitable mechanism has been proposed to explain the remarkable photoactivity of the CQD/[α−PW{sub 12}O{sub 40}{sup 3−}] composites.

  3. Wurtzite GaAs Quantum Wires: One-Dimensional Subband Formation.

    PubMed

    Vainorius, Neimantas; Lehmann, Sebastian; Gustafsson, Anders; Samuelson, Lars; Dick, Kimberly A; Pistol, Mats-Erik

    2016-04-13

    It is of contemporary interest to fabricate nanowires having quantum confinement and one-dimensional subband formation. This is due to a host of applications, for example, in optical devices, and in quantum optics. We have here fabricated and optically investigated narrow, down to 10 nm diameter, wurtzite GaAs nanowires which show strong quantum confinement and the formation of one-dimensional subbands. The fabrication was bottom up and in one step using the vapor-liquid-solid growth mechanism. Combining photoluminescence excitation spectroscopy with transmission electron microscopy on the same individual nanowires, we were able to extract the effective masses of the electrons in the two lowest conduction bands as well as the effective masses of the holes in the two highest valence bands. Our results, combined with earlier demonstrations of thin crystal phase nanodots in GaAs, set the stage for the fabrication of crystal phase quantum dots having full three-dimensional confinement. PMID:27004550

  4. The Twelve Steps Experientially.

    ERIC Educational Resources Information Center

    Horne, Lianne

    Experiential activities provide each participant with the ability to see, feel, and experience whatever therapeutic issue the facilitator is addressing, and usually much more. This paper presents experiential activities to address the 12 steps of recovery adopted from Alcoholics Anonymous. These 12 steps are used worldwide for many other recovery…

  5. Quantum simulation

    NASA Astrophysics Data System (ADS)

    Georgescu, I. M.; Ashhab, S.; Nori, Franco

    2014-01-01

    Simulating quantum mechanics is known to be a difficult computational problem, especially when dealing with large systems. However, this difficulty may be overcome by using some controllable quantum system to study another less controllable or accessible quantum system, i.e., quantum simulation. Quantum simulation promises to have applications in the study of many problems in, e.g., condensed-matter physics, high-energy physics, atomic physics, quantum chemistry, and cosmology. Quantum simulation could be implemented using quantum computers, but also with simpler, analog devices that would require less control, and therefore, would be easier to construct. A number of quantum systems such as neutral atoms, ions, polar molecules, electrons in semiconductors, superconducting circuits, nuclear spins, and photons have been proposed as quantum simulators. This review outlines the main theoretical and experimental aspects of quantum simulation and emphasizes some of the challenges and promises of this fast-growing field.

  6. Quantum Spin Hall Effect

    SciTech Connect

    Bernevig, B.Andrei; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-01-15

    The quantum Hall liquid is a novel state of matter with profound emergent properties such as fractional charge and statistics. Existence of the quantum Hall effect requires breaking of the time reversal symmetry caused by an external magnetic field. In this work, we predict a quantized spin Hall effect in the absence of any magnetic field, where the intrinsic spin Hall conductance is quantized in units of 2 e/4{pi}. The degenerate quantum Landau levels are created by the spin-orbit coupling in conventional semiconductors in the presence of a strain gradient. This new state of matter has many profound correlated properties described by a topological field theory.

  7. Quantum networks reveal quantum nonlocality.

    PubMed

    Cavalcanti, Daniel; Almeida, Mafalda L; Scarani, Valerio; Acín, Antonio

    2011-01-01

    The results of local measurements on some composite quantum systems cannot be reproduced classically. This impossibility, known as quantum nonlocality, represents a milestone in the foundations of quantum theory. Quantum nonlocality is also a valuable resource for information-processing tasks, for example, quantum communication, quantum key distribution, quantum state estimation or randomness extraction. Still, deciding whether a quantum state is nonlocal remains a challenging problem. Here, we introduce a novel approach to this question: we study the nonlocal properties of quantum states when distributed and measured in networks. We show, using our framework, how any one-way entanglement distillable state leads to nonlocal correlations and prove that quantum nonlocality is a non-additive resource, which can be activated. There exist states, local at the single-copy level, that become nonlocal when taking several copies of them. Our results imply that the nonlocality of quantum states strongly depends on the measurement context. PMID:21304513

  8. Conduct disorder

    MedlinePlus

    Disruptive behavior - child; Impulse control problem - child ... Conduct disorder has been linked to: Child abuse Drug or alcohol abuse in the parents Family conflicts Genetic defects Poverty The diagnosis is more common among boys. It is ...

  9. Electrical Conductivity.

    ERIC Educational Resources Information Center

    Hershey, David R.; Sand, Susan

    1993-01-01

    Explains how electrical conductivity (EC) can be used to measure ion concentration in solutions. Describes instrumentation for the measurement, temperature dependence and EC, and the EC of common substances. (PR)

  10. Exploiting Symmetry for Quantum Error Suppression

    NASA Astrophysics Data System (ADS)

    Nam, Yunseong; Blümel, Reinhold

    2016-05-01

    In light of recent experimental progress in quantum computing, the time is ripe to discuss quantum computer hardware optimization. Taking the digital/analog hybrid nature of quantum computers into account, choosing a proper processor architecture for a given quantum algorithm becomes crucial in making quantum computing a practical reality. As a first step in this direction, we investigate the robustness of quantum adders with respect to naturally occurring hardware defects and errors. In particular, we compare the robustness of the ripple-carry adder to that of the quantum Fourier adder. We show that, surprisingly, when used in Shor's algorithm, the quantum Fourier adder may well be more robust than the ripple-carry adder. We present a noise suppression scheme, called symmetric noise, applicable to the quantum Fourier architecture, that, measured in terms of fidelity, results in an order-of-magnitude performance boost.

  11. Neutron Matter Wave Quantum Optics

    NASA Astrophysics Data System (ADS)

    Rauch, Helmut

    2012-06-01

    Neutron matter-wave optics provides the basis for new quantum experiments and a step towards applications of quantum phenomena. Most experiments have been performed with a perfect crystal neutron interferometer where widely separated coherent beams can be manipulated individually. Various geometric phases have been measured and their robustness against fluctuation effects has been proven, which may become a useful property for advanced quantum communication. Quantum contextuality for single particle systems shows that quantum correlations are to some extent more demanding than classical ones. In this case entanglement between external and internal degrees of freedom offers new insights into basic laws of quantum physics. Non-contextuality hidden variable theories can be rejected by arguments based on the Kochen-Specker theorem.

  12. Beyond the Quantum

    NASA Astrophysics Data System (ADS)

    Nieuwenhuizen, Theo M.; Mehmani, Bahar; Špička, Václav; Aghdami, Maryam J.; Khrennikov, Andrei Yu

    2007-09-01

    pt. A. Introductions. The mathematical basis for deterministic quantum mechanics / G.'t Hooft. What did we learn from quantum gravity? / A. Ashtekar. Bose-Einstein condensates and EPR quantum non-locality / F. Laloe. The quantum measurement process: lessons from an exactly solvable model / A.E. Allahverdyan, R. Balian and Th. M. Nieuwenhuizen -- pt. B. Quantum mechanics and quantum information. POVMs: a small but important step beyond standard quantum mechanics / W. M. de Muynck. State reduction by measurements with a null result / G. Nienhuis. Solving open questions in the Bose-Einstein condensation of an ideal gas via a hybrid mixture of laser and statistical physics / M. Kim, A. Svidzinsky and M.O. Scully. Twin-Photon light scattering and causality / G. Puentes, A. Aiello and J. P. Woerdman. Simultaneous measurement of non-commuting observables / G. Aquino and B. Mehmani. Quantum decoherence and gravitational waves / M.T. Jaekel ... [et al.]. Role of various entropies in the black hole information loss problem / Th. M. Nieuwenhuizen and I.V. Volovich. Quantum and super-quantum correlations / G.S. Jaeger -- pt. C. Long distance correlations and bell inequalities. Understanding long-distance quantum correlations / L. Marchildon. Connection of probability models to EPR experiments: probability spaces and Bell's theorem / K. Hess and W. Philipp. Fair sampling vs no-signalling principle in EPR experiments / G. Adenier and A. Yu. Khrennikov -- pt. D. Mathematical foundations. Where the mathematical structure of quantum mechanics comes from / G.M. D'Ariano. Phase space description of quantum mechanics and non-commutative geometry: Wigner-Moyal and Bohm in a wider context / B.J. Hiley. Quantum mechanics as simple algorithm for approximation of classical integrals / A. Yu. Khrennikov. Noncommutative quantum mechanics viewed from Feynman Formalism / J. Lages ... [et al.]. Beyond the quantum in Snyder space / J.F.S. van Huele and M. K. Transtrum -- pt. E. Stochastic

  13. The role of water in the initial steps of methanol oxidation on Pt(1 1 1)

    NASA Astrophysics Data System (ADS)

    Hartnig, C.; Spohr, E.

    2005-12-01

    We report the results of quantum-chemical and ab initio molecular dynamics studies within the framework of density functional theory for the oxidation of methanol on the (1 1 1) face of a platinum single crystal. In aqueous solution the oxidation of methanol starts by the formation of a hydrogen bond from the OH group of the methanol to a solvent molecule. The initial step of the reaction is the cleavage of a CH bond which points towards the platinum surface; this is followed by rapid dissociation of the methanol OH bond, which leads to formaldehyde as a stable intermediate on the time scale of the simulation. Charge delocalization is achieved by the formation of a Zundel ion (H5O2+) in the aqueous phase. The further evolution provides hints for the following steps of methanol oxidation and proton conduction in the environment of a liquid-fed direct methanol fuel cell.

  14. High conductivity composite metal

    DOEpatents

    Zhou, Ruoyi; Smith, James L.; Embury, John David

    1998-01-01

    Electrical conductors and methods of producing them, where the conductors possess both high strength and high conductivity. Conductors are comprised of carbon steel and a material chosen from a group consisting of copper, nickel, silver, and gold. Diffusion barriers are placed between these two materials. The components of a conductor are assembled and then the assembly is subjected to heat treating and mechanical deformation steps.

  15. High conductivity composite metal

    DOEpatents

    Zhou, R.; Smith, J.L.; Embury, J.D.

    1998-01-06

    Electrical conductors and methods of producing them are disclosed, where the conductors possess both high strength and high conductivity. Conductors are comprised of carbon steel and a material chosen from a group consisting of copper, nickel, silver, and gold. Diffusion barriers are placed between these two materials. The components of a conductor are assembled and then the assembly is subjected to heat treating and mechanical deformation steps. 10 figs.

  16. Quantum ontologies

    SciTech Connect

    Stapp, H.P.

    1988-12-01

    Quantum ontologies are conceptions of the constitution of the universe that are compatible with quantum theory. The ontological orientation is contrasted to the pragmatic orientation of science, and reasons are given for considering quantum ontologies both within science, and in broader contexts. The principal quantum ontologies are described and evaluated. Invited paper at conference: Bell's Theorem, Quantum Theory, and Conceptions of the Universe, George Mason University, October 20-21, 1988. 16 refs.

  17. The Next Giant Step

    NASA Video Gallery

    Artist Robert McCall painted "The Next Giant Step" in 1979 to commemorate the heroism and courage of spaceflight pioneers. Located in the lobby of Johnson's building 2, the mural depicts America's ...

  18. Quantum Computer Games: Quantum Minesweeper

    ERIC Educational Resources Information Center

    Gordon, Michal; Gordon, Goren

    2010-01-01

    The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…

  19. A Step by Step Guide for Planning a Japanese Cultural Festival.

    ERIC Educational Resources Information Center

    Murphy, Carole

    Teachers at all academic levels can adapt the design and content of the sixth grade Japanese cultural festival detailed in this learning packet. Material is divided into 2 sections. Section 1 provides a step-by-step guide to planning and conducting the festival. These instructions, based on 5 years of experience, include a detailed planning…

  20. SPSS for Windows Step by Step: A Simple Guide and Reference.

    ERIC Educational Resources Information Center

    George, Darren; Mallery, Paul

    This book is designed to give step-by-step instructions necessary to do most major types of data analysis using the Statistical Package for the Social Sciences (SPSS). SPSS is a powerful tool that is capable of conducting nearly any type of data analysis used in the social sciences. This book should enable the reader to do 95% of what the program…

  1. Quantum memristors

    NASA Astrophysics Data System (ADS)

    Pfeiffer, P.; Egusquiza, I. L.; di Ventra, M.; Sanz, M.; Solano, E.

    2016-07-01

    Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.

  2. Quantum memristors.

    PubMed

    Pfeiffer, P; Egusquiza, I L; Di Ventra, M; Sanz, M; Solano, E

    2016-01-01

    Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems. PMID:27381511

  3. Quantum memristors

    PubMed Central

    Pfeiffer, P.; Egusquiza, I. L.; Di Ventra, M.; Sanz, M.; Solano, E.

    2016-01-01

    Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems. PMID:27381511

  4. Appropriate Conduct

    ERIC Educational Resources Information Center

    Di Lullo, Louis

    2004-01-01

    Many years ago when the author assumed the role of assistant principal for school climate, discipline, and attendance, he inherited many school policies and guidelines that were outdated, unfair, and without merit in the current school climate. Because the school conduct code had not been revised since the school opened in 1960, many of the…

  5. Conducting Meetings.

    ERIC Educational Resources Information Center

    United Tribes Educational Technical Center, Bismarck, ND.

    Written for anyone interested in what makes a meeting run smoothly (and what doesn't), the guide for conducting meetings is divided into the following sections: the chairperson (his/her responsibilities, preparing an agenda, organizing discussions); the meeting (quorums, discussions, points of order, and clarification); the motion (making the…

  6. Quantum devices in silicon/silicon germanium heterostructures

    NASA Astrophysics Data System (ADS)

    Slinker, Keith A.

    This thesis presents the fabrication and characterization of silicon/silicon-germanium quantum wells, quantum dots, and quantum point contacts. These systems are promising for quantum computing applications due to the long predicted spin lifetimes. In addition, the valley states in Si/SiGe two-dimensional electron gases (2DEGs) are a novel phenomenon in regards to nanostructures, and characterizing these states is also necessary for potential computing applications. However, working with these heterostructures---especially in regards to metal Schottky gating---has proved historically challenging such that single electron transistors had not been achieved at the onset of this research. The first quantum dots in Si/SiGe are presented, defined completely by CF4 reactive ion etch without the use of metal gates. Etch-defined 2DEG side gates are used to modulate the potential of the quantum dot. Results for various metal gating schemes are also presented, culminating in the first Schottky-gated quantum dots in Si/SiGe. Differing from the etch-defined dots, the tunnel junctions of the metal-etch hybrid dot are fully tunable by the voltage applied to the top gates. Hall measurements of multiple heterostructures are presented, providing evidence that many of the challenges associated with gating Si/SiGe can be attributed to undepleted dopants in the supply layer. These dopants screen the top gates but can be detected as a parallel conduction channel in Hall measurements taken at a 2 K. A fully top-gate defined quantum dot was fabricated on an optimized Si/SiGe heterostructure, and the single particle excited states were resolved for the first time in Si/SiGe. Finally, quantum point contacts were defined by metal top gates, and the conduction was mapped out over a large range of magnetic field and voltages on the gates. The positions of the conductance steps are used to extract the valley splitting---a quantity that had been measured in a bulk 2DEG but not in a nanostructure

  7. Electrodeless conductivity.

    PubMed

    Light, T S; McHale, E J; Fletcher, K S

    1989-01-01

    Electrodeless conductivity is a technique for measuring the concentration of electrolytes in solution and utilizes a probe consisting of two toroids in close proximity, both of which are immersed in the solution. In special cases, the toroids may be mounted externally on insulated pipes carrying the solution. One toroid radiates an alternating electric field in the audiofrequency range and the other acts as a receiver to pick up the small current induced by the ions moving in a conducting loop of solution. Coatings which would foul contacting electrodes, such as suspensions, precipitates or oil, have little or no effect. Applications are chiefly to continuous measurement in the chemical processing industries, including pulp and paper, mining and heavy chemical production. The principles and practical details of the method are reviewed and cell-diameter, wall, and temperature effects are discussed. PMID:18964695

  8. Heat conduction

    SciTech Connect

    Lilley, D.G.

    1987-01-01

    Analytical and numerical methods, including both finite difference and finite element techniques, are presented with applications to heat conduction problems. Numerical and analytical methods are integrated throughout the text and a variety of complexities are thoroughly treated with many problems, solutions and computer programs. This book is presented as a fundamental course suitable for senior undergraduate and first year graduate students, with end-of-chapter problems and answers included. Sample case studies and suggested projects are included.

  9. Conduction apraxia.

    PubMed

    Ochipa, C; Rothi, L J; Heilman, K M

    1994-10-01

    A left hemisphere damaged patient with ideomotor apraxia is described, whose performance on pantomime to verbal command was superior to pantomime imitation. His reception of these same gestures (gesture naming) was spared. This syndrome has been named conduction apraxia. To account for this selective impaired performance on gesture imitation, a separation of the representations for gesture production and reception is proposed and a non-lexical gesture processing route for gesture imitation is suggested. PMID:7931387

  10. Quantum hair and quantum gravity

    SciTech Connect

    Coleman, S. ); Krauss, L.M. ); Preskill, J. ); Wilczek, F. )

    1992-01-01

    A black hole may carry quantum numbers that are not associated with massless gauge fields, contrary to the spirit of the 'no-hair' theorems. The 'quantum hair' is invisible in the classical limit, but measurable via quantum interference experiments. Quantum hair alters the temperature of the radiation emitted by a black hole. It also induces non-zero expectation values for fields outside the event horizon; these expectation values are non-perturbative in [Dirac h], and decay exponentially far from the hole. The existence of quantum hair demonstrates that a black hole can have an intricate quantum-mechanical structure that is completely missed by standard semiclassical theory.

  11. Quantum Darwinism

    SciTech Connect

    Zurek, Wojciech H

    2008-01-01

    Quantum Darwinism - proliferation, in the environment, of multiple records of selected states of the system (its information-theoretic progeny) - explains how quantum fragility of individual state can lead to classical robustness of their multitude.

  12. Quantum Orbifolds

    NASA Astrophysics Data System (ADS)

    Harju, Antti J.

    2016-06-01

    This is a study of orbifold-quotients of quantum groups (quantum orbifolds {Θ } rightrightarrows Gq). These structures have been studied extensively in the case of the quantum S U 2 group. A generalized theory of quantum orbifolds over compact simple and simply connected quantum groups is developed. Associated with a quantum orbifold there is an invariant subalgebra and a crossed product algebra. For each spin quantum orbifold, there is a unitary equivalence class of Dirac spectral triples over the invariant subalgebra, and for each effective spin quantum orbifold associated with a finite group action, there is a unitary equivalence class of Dirac spectral triples over the crossed product algebra. A Hopf-equivariant Fredholm index problem is studied as an application.

  13. Quantum memristors

    DOE PAGESBeta

    Pfeiffer, P.; Egusquiza, I. L.; Di Ventra, M.; Sanz, M.; Solano, E.

    2016-07-06

    Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantummore » regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. As a result, the proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.« less

  14. One-way quantum computation with circuit quantum electrodynamics

    SciTech Connect

    Wu Chunwang; Han Yang; Chen Pingxing; Li Chengzu; Zhong Xiaojun

    2010-03-15

    In this Brief Report, we propose a potential scheme to implement one-way quantum computation with circuit quantum electrodynamics (QED). Large cluster states of charge qubits can be generated in just one step with a superconducting transmission line resonator (TLR) playing the role of a dispersive coupler. A single-qubit measurement in the arbitrary basis can be implemented using a single electron transistor with the help of one-qubit gates. By examining the main decoherence sources, we show that circuit QED is a promising architecture for one-way quantum computation.

  15. Stepped inlet optical panel

    DOEpatents

    Veligdan, James T.

    2001-01-01

    An optical panel includes stacked optical waveguides having stepped inlet facets collectively defining an inlet face for receiving image light, and having beveled outlet faces collectively defining a display screen for displaying the image light channeled through the waveguides by internal reflection.

  16. Steps Toward Effective Assessment.

    ERIC Educational Resources Information Center

    Cope, Carolyn O.

    1996-01-01

    Describes and defines the steps involved in measurement and evaluation: (1) determining an outcome; (2)defining scoring criteria; (3)establishing appropriate assessment tasks; and (4)creating opportunities for learning. Includes a flow chart for a design-down curriculum and an example of a vocal performance rating scale assessment. (MJP)

  17. Conductivity Probe

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Thermal and Electrical Conductivity Probe (TECP) for NASA's Phoenix Mars Lander took measurements in Martian soil and in the air.

    The needles on the end of the instrument were inserted into the Martian soil, allowing TECP to measure the propagation of both thermal and electrical energy. TECP also measured the humidity in the surrounding air.

    The needles on the probe are 15 millimeters (0.6 inch) long.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  18. Experimental teleportation of a quantum controlled-NOT gate.

    PubMed

    Huang, Yun-Feng; Ren, Xi-Feng; Zhang, Yong-Sheng; Duan, Lu-Ming; Guo, Guang-Can

    2004-12-10

    Teleportation of quantum gates is a critical step for the implementation of quantum networking and teleportation-based models of quantum computation. We report an experimental demonstration of teleportation of the prototypical quantum controlled-NOT (CNOT) gate. Assisted with linear optical manipulations, photon entanglement produced from parametric down-conversion, and postselection from the coincidence measurements, we teleport the quantum CNOT gate from acting on local qubits to acting on remote qubits. The quality of the quantum gate teleportation is characterized through the method of quantum process tomography, with an average fidelity of 0.84 demonstrated for the teleported gate. PMID:15697787

  19. Quantum random walks without walking

    SciTech Connect

    Manouchehri, K.; Wang, J. B.

    2009-12-15

    Quantum random walks have received much interest due to their nonintuitive dynamics, which may hold the key to a new generation of quantum algorithms. What remains a major challenge is a physical realization that is experimentally viable and not limited to special connectivity criteria. We present a scheme for walking on arbitrarily complex graphs, which can be realized using a variety of quantum systems such as a Bose-Einstein condensate trapped inside an optical lattice. This scheme is particularly elegant since the walker is not required to physically step between the nodes; only flipping coins is sufficient.

  20. Efficient entanglement distillation without quantum memory

    PubMed Central

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J.; Fiurášek, Jaromír; Schnabel, Roman

    2016-01-01

    Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution. PMID:27241946

  1. Efficient entanglement distillation without quantum memory.

    PubMed

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J; Fiurášek, Jaromír; Schnabel, Roman

    2016-01-01

    Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution. PMID:27241946

  2. Efficient entanglement distillation without quantum memory

    NASA Astrophysics Data System (ADS)

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J.; Fiurášek, Jaromír; Schnabel, Roman

    2016-05-01

    Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution.

  3. Lanczos steps to improve variational wave functions

    NASA Astrophysics Data System (ADS)

    Becca, Federico; Hu, Wen-Jun; Iqbal, Yasir; Parola, Alberto; Poilblanc, Didier; Sorella, Sandro

    2015-09-01

    Gutzwiller-projected fermionic states can be efficiently implemented within quantum Monte Carlo calculations to define extremely accurate variational wave functions for Heisenberg models on frustrated two-dimensional lattices, not only for the ground state but also for low-energy excitations. The application of few Lanczos steps on top of these states further improves their accuracy, allowing calculations on large clusters. In addition, by computing both the energy and its variance, it is possible to obtain reliable estimations of exact results. Here, we report the cases of the frustrated Heisenberg models on square and Kagome lattices.

  4. Quantum susceptance and its effects on the high-frequency response of superconducting tunnel junctions

    SciTech Connect

    Hu, Q.; Mears, C.A.; Richards, P.L. Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, Berkeley, CA ); Lloyd, F.L. )

    1990-12-01

    We have made the first direct measurement of the quantum susceptance that arises from the nondissipative part of quasiparticle tunneling in a superconductor-insulator-superconductor tunnel junction. The junction is coupled to an antenna and a superconducting microstrip stub to form a resonator; the resonant frequency is determined from the response of the junction to broadband radiation from a Fourier-transform spectrometer. A 19% shift of the resonant frequency, from 73 to 87 GHz, is observed, which arises from the change of the quantum susceptance of the junction with dc bias voltage. This shift is in excellent agreement with calculations based on the Werthamer-Tucker theory, which includes the quantum susceptance. We also demonstrate that it is essential to include the quantum susceptance in our theoretical computation to explain the photon-assisted-tunneling steps, which have negative dynamic conductance. Such steps are observed when the junction is pumped at slightly below the resonant frequency of the capacitor and the stub. The quantum susceptance should exist in all tunnel devices whose nonlinear {ital I}-{ital V} characteristics are due to elastic tunneling.

  5. Multiparty controlled quantum secure direct communication based on quantum search algorithm

    NASA Astrophysics Data System (ADS)

    Kao, Shih-Hung; Hwang, Tzonelih

    2013-12-01

    In this study, a new controlled quantum secure direct communication (CQSDC) protocol using the quantum search algorithm as the encoding function is proposed. The proposed protocol is based on the multi-particle Greenberger-Horne-Zeilinger entangled state and the one-step quantum transmission strategy. Due to the one-step transmission of qubits, the proposed protocol can be easily extended to a multi-controller environment, and is also free from the Trojan horse attacks. The analysis shows that the use of quantum search algorithm in the construction of CQSDC appears very promising.

  6. Quantum technology: from research to application

    NASA Astrophysics Data System (ADS)

    Schleich, Wolfgang P.; Ranade, Kedar S.; Anton, Christian; Arndt, Markus; Aspelmeyer, Markus; Bayer, Manfred; Berg, Gunnar; Calarco, Tommaso; Fuchs, Harald; Giacobino, Elisabeth; Grassl, Markus; Hänggi, Peter; Heckl, Wolfgang M.; Hertel, Ingolf-Volker; Huelga, Susana; Jelezko, Fedor; Keimer, Bernhard; Kotthaus, Jörg P.; Leuchs, Gerd; Lütkenhaus, Norbert; Maurer, Ueli; Pfau, Tilman; Plenio, Martin B.; Rasel, Ernst Maria; Renn, Ortwin; Silberhorn, Christine; Schiedmayer, Jörg; Schmitt-Landsiedel, Doris; Schönhammer, Kurt; Ustinov, Alexey; Walther, Philip; Weinfurter, Harald; Welzl, Emo; Wiesendanger, Roland; Wolf, Stefan; Zeilinger, Anton; Zoller, Peter

    2016-05-01

    The term quantum physics refers to the phenomena and characteristics of atomic and subatomic systems which cannot be explained by classical physics. Quantum physics has had a long tradition in Germany, going back nearly 100 years. Quantum physics is the foundation of many modern technologies. The first generation of quantum technology provides the basis for key areas such as semiconductor and laser technology. The "new" quantum technology, based on influencing individual quantum systems, has been the subject of research for about the last 20 years. Quantum technology has great economic potential due to its extensive research programs conducted in specialized quantum technology centres throughout the world. To be a viable and active participant in the economic potential of this field, the research infrastructure in Germany should be improved to facilitate more investigations in quantum technology research.

  7. Atomic step-and-terrace surface of polyimide sheet for advanced polymer substrate engineering.

    PubMed

    Tan, G; Shimada, K; Nozawa, Y; Kaneko, S; Urakami, T; Koyama, K; Komura, M; Matsuda, A; Yoshimoto, M

    2016-07-22

    Typical thermostable and flexible polyimide polymers exhibit many excellent properties such as strong mechanical and chemical resistance. However, in contrast to single-crystal substrates like silicon or sapphire, polymers mostly display disordered and rough surfaces, which may result in instability and degradation of the interfaces between thin films and polymer substrates. As a step toward the development of next-generation polymer substrates, we here report single-atom-layer imprinting onto the polyimide sheets, resulting in an ultrasmooth 0.3 nm high atomic step-and-terrace surface on the polyimides. The ultrasmooth polymer substrates are expected to be applied to the fabrication of nanostructures such as superlattices, nanowires, or quantum dots in nanoscale-controlled electronic devices. We fabricate smooth and atomically stepped indium tin oxide transparent conducting oxide thin films on the imprinted polyimide sheets for future use in organic-based optoelectronic devices processed with nanoscale precision. Furthermore, toward 2D polymer substrate nanoengineering, we demonstrate nanoscale letter writing on the atomic step-and-terrace polyimide surface via atomic force microscopy probe scratching. PMID:27284690

  8. Atomic step-and-terrace surface of polyimide sheet for advanced polymer substrate engineering

    NASA Astrophysics Data System (ADS)

    Tan, G.; Shimada, K.; Nozawa, Y.; Kaneko, S.; Urakami, T.; Koyama, K.; Komura, M.; Matsuda, A.; Yoshimoto, M.

    2016-07-01

    Typical thermostable and flexible polyimide polymers exhibit many excellent properties such as strong mechanical and chemical resistance. However, in contrast to single-crystal substrates like silicon or sapphire, polymers mostly display disordered and rough surfaces, which may result in instability and degradation of the interfaces between thin films and polymer substrates. As a step toward the development of next-generation polymer substrates, we here report single-atom-layer imprinting onto the polyimide sheets, resulting in an ultrasmooth 0.3 nm high atomic step-and-terrace surface on the polyimides. The ultrasmooth polymer substrates are expected to be applied to the fabrication of nanostructures such as superlattices, nanowires, or quantum dots in nanoscale-controlled electronic devices. We fabricate smooth and atomically stepped indium tin oxide transparent conducting oxide thin films on the imprinted polyimide sheets for future use in organic-based optoelectronic devices processed with nanoscale precision. Furthermore, toward 2D polymer substrate nanoengineering, we demonstrate nanoscale letter writing on the atomic step-and-terrace polyimide surface via atomic force microscopy probe scratching.

  9. Quantum cheques

    NASA Astrophysics Data System (ADS)

    Moulick, Subhayan Roy; Panigrahi, Prasanta K.

    2016-06-01

    We propose the idea of a quantum cheque scheme, a cryptographic protocol in which any legitimate client of a trusted bank can issue a cheque, that cannot be counterfeited or altered in anyway, and can be verified by a bank or any of its branches. We formally define a quantum cheque and present the first unconditionally secure quantum cheque scheme and show it to be secure against any no-signalling adversary. The proposed quantum cheque scheme can been perceived as the quantum analog of Electronic Data Interchange, as an alternate for current e-Payment Gateways.

  10. Quantum cheques

    NASA Astrophysics Data System (ADS)

    Moulick, Subhayan Roy; Panigrahi, Prasanta K.

    2016-03-01

    We propose the idea of a quantum cheque scheme, a cryptographic protocol in which any legitimate client of a trusted bank can issue a cheque, that cannot be counterfeited or altered in anyway, and can be verified by a bank or any of its branches. We formally define a quantum cheque and present the first unconditionally secure quantum cheque scheme and show it to be secure against any no-signalling adversary. The proposed quantum cheque scheme can been perceived as the quantum analog of Electronic Data Interchange, as an alternate for current e-Payment Gateways.

  11. Quantum frames

    NASA Astrophysics Data System (ADS)

    Brown, Matthew J.

    2014-02-01

    The framework of quantum frames can help unravel some of the interpretive difficulties i the foundation of quantum mechanics. In this paper, I begin by tracing the origins of this concept in Bohr's discussion of quantum theory and his theory of complementarity. Engaging with various interpreters and followers of Bohr, I argue that the correct account of quantum frames must be extended beyond literal space-time reference frames to frames defined by relations between a quantum system and the exosystem or external physical frame, of which measurement contexts are a particularly important example. This approach provides superior solutions to key EPR-type measurement and locality paradoxes.

  12. Towards Quantum Computing With Light

    NASA Astrophysics Data System (ADS)

    Pysher, Matthew

    This thesis presents experimental progress towards the realization of an optical quantum computer. Quantum computers replace the bits used in classical computing with quantum systems and promise an exponential speedup over their classical counterparts for certain tasks such as integer factoring and the simulation of quantum systems. A recently proposed quantum computing protocol known as one-way quantum computing has paved the way for the use of light in a functional quantum computer. One-way quantum computing calls for the generation of a large (consisting of many subsystems) entangled state known as a cluster state to serve as a quantum register. Entangled states are comprised of subsystems linked in such a way that the state cannot be separated into individual components. A recent proposal has shown that is possible to make arbitrarily large cluster states by linking the resonant frequency modes of a single optical parametric oscillator (OPO). In this thesis, we present two major steps towards the creation of such a cluster state. Namely, we successfully design and test the exotic nonlinear crystal needed in this proposal and use a slight variation on this proposal to simultaneously create over 15 four-mode cluster states in a single OPO. We also explore the possibility of scaling down the physical size of an optical quantum computer by generating squeezed states of light in a compact optical waveguide. Additionally, we investigate photon-number-resolving measurements on continuous quantum light sources, which will be necessary to obtain the desired speedups for a quantum computer over a classical computer.

  13. Micromachine Wedge Stepping Motor

    SciTech Connect

    Allen, J.J.; Schriner, H.K.

    1998-11-04

    A wedge stepping motor, which will index a mechanism, has been designed and fabricated in the surface rnicromachine SUMMiT process. This device has demonstrated the ability to index one gear tooth at a time with speeds up to 205 teeth/see. The wedge stepper motor has the following features, whi:h will be useful in a number of applications. o The ability to precisely position mechanical components. . Simple pulse signals can be used for operation. o Only 2 drive signals are requixed for operation. o Torque and precision capabilities increase with device size . The device to be indexed is restrained at all times by the wedge shaped tooth that is used for actuation. This paper will discuss the theory of operation and desi=m of the wedge stepping motor. The fabrication and testing of I he device will also be presented.

  14. Loop quantum cosmology in 2 +1 dimension

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangdong

    2014-12-01

    As a first step to generalize the structure of loop quantum cosmology to the theories with the spacetime dimension other than four, the isotropic model of loop quantum cosmology in 2 +1 dimension is studied in this paper. We find that the classical big bang singularity is again replaced by a quantum bounce in the model. The similarities and differences between the (2 +1 )-dimensional model and the (3 +1 )-dimensional one are also discussed.

  15. Quantum image matching

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Dang, Yijie; Wang, Jian

    2016-06-01

    Quantum image processing (QIP) means the quantum-based methods to speed up image processing algorithms. Many quantum image processing schemes claim that their efficiency is theoretically higher than their corresponding classical schemes. However, most of them do not consider the problem of measurement. As we all know, measurement will lead to collapse. That is to say, executing the algorithm once, users can only measure the final state one time. Therefore, if users want to regain the results (the processed images), they must execute the algorithms many times and then measure the final state many times to get all the pixels' values. If the measurement process is taken into account, whether or not the algorithms are really efficient needs to be reconsidered. In this paper, we try to solve the problem of measurement and give a quantum image matching algorithm. Unlike most of the QIP algorithms, our scheme interests only one pixel (the target pixel) instead of the whole image. It modifies the probability of pixels based on Grover's algorithm to make the target pixel to be measured with higher probability, and the measurement step is executed only once. An example is given to explain the algorithm more vividly. Complexity analysis indicates that the quantum scheme's complexity is O(2n) in contradistinction to the classical scheme's complexity O(2^{2n+2m}) , where m and n are integers related to the size of images.

  16. Electrically conductive alternating copolymers

    DOEpatents

    Aldissi, M.; Jorgensen, B.S.

    1987-08-31

    Polymers which are soluble in common organic solvents and are electrically conductive, but which also may be synthesized in such a manner that they become nonconductive. Negative ions from the electrolyte used in the electrochemical synthesis of a polymer are incorporated into the polymer during the synthesis and serve as a dopant. A further electrochemical step may be utilized to cause the polymer to be conductive. The monomer repeat unit is comprised of two rings, a pyrrole molecule joined to a thienyl group, or a furyl group, or a phenyl group. The individual groups of the polymers are arranged in an alternating manner. For example, the backbone arrangement of poly(furylpyrrole) is -furan-pyrrole-furan-pyrrole- furan-pyrrole. An alkyl group or phenyl group may be substituted for either or both of the hydrogen atoms of the pyrrole ring.

  17. Conducting a thermal conductivity survey

    NASA Technical Reports Server (NTRS)

    Allen, P. B.

    1985-01-01

    A physically transparent approximate theory of phonon decay rates is presented starting from a pair potential model of the interatomic forces in an insulator or semiconductor. The theory applies in the classical regime and relates the 3-phonon decay rate to the third derivative of the pair potential. Phonon dispersion relations do not need to be calculated, as sum rules relate all the needed quantities directly to the pair potential. The Brillouin zone averaged phonon lifetime turns out to involve a dimensionless measure of the anharmonicity multiplied by an effective density of states for 3-phonon decay. Results are given for rare gas and alkali halide crystals. For rare gases, the results are in good agreement with more elaborate perturbation calculations. Comparison to experimental data on phonon linewidths and thermal conductivity are made.

  18. Adiabatic Quantum Computing

    NASA Astrophysics Data System (ADS)

    Landahl, Andrew

    2012-10-01

    Quantum computers promise to exploit counterintuitive quantum physics principles like superposition, entanglement, and uncertainty to solve problems using fundamentally fewer steps than any conventional computer ever could. The mere possibility of such a device has sharpened our understanding of quantum coherent information, just as lasers did for our understanding of coherent light. The chief obstacle to developing quantum computer technology is decoherence--one of the fastest phenomena in all of physics. In principle, decoherence can be overcome by using clever entangled redundancies in a process called fault-tolerant quantum error correction. However, the quality and scale of technology required to realize this solution appears distant. An exciting alternative is a proposal called ``adiabatic'' quantum computing (AQC), in which adiabatic quantum physics keeps the computer in its lowest-energy configuration throughout its operation, rendering it immune to many decoherence sources. The Adiabatic Quantum Architectures In Ultracold Systems (AQUARIUS) Grand Challenge Project at Sandia seeks to demonstrate this robustness in the laboratory and point a path forward for future hardware development. We are building devices in AQUARIUS that realize the AQC architecture on up to three quantum bits (``qubits'') in two platforms: Cs atoms laser-cooled to below 5 microkelvin and Si quantum dots cryo-cooled to below 100 millikelvin. We are also expanding theoretical frontiers by developing methods for scalable universal AQC in these platforms. We have successfully demonstrated operational qubits in both platforms and have even run modest one-qubit calculations using our Cs device. In the course of reaching our primary proof-of-principle demonstrations, we have developed multiple spinoff technologies including nanofabricated diffractive optical elements that define optical-tweezer trap arrays and atomic-scale Si lithography commensurate with placing individual donor atoms with

  19. Hybrid Quantum Point Contact-Superconductor Devices Using InSb Nanowires

    NASA Astrophysics Data System (ADS)

    Gill, Stephen; Damasco, John Jeffrey; Car, Diana; Bakkers, Erik; Mason, Nadya

    Recent experiments using hybrid nanowire (NW)-superconductor (SC) devices have provided evidence for Majorana quasiparticles in tunneling experiments. However, these tunneling experiments are marked by a soft superconducting gap, which likely originates from disorder at the NW-SC interface. Hence, clean NW-SC interfaces are important for future Majorana studies. By carefully processing the NW-SC interface, we have realized quantized conductance steps in quantum point contacts fabricated from InSb NWs and superconducting contacts. We study the length dependence of ballistic behavior and the induced superconductivity in InSb NWs by quantum point contact spectroscopy. Additionally, we discuss how the transport in InSb NW-SC quantum point contacts evolves in magnetic field.

  20. Quantum volume

    NASA Astrophysics Data System (ADS)

    Ryabov, V. A.

    2015-08-01

    Quantum systems in a mechanical embedding, the breathing mode of a small particles, optomechanical system, etc. are far not the full list of examples in which the volume exhibits quantum behavior. Traditional consideration suggests strain in small systems as a result of a collective movement of particles, rather than the dynamics of the volume as an independent variable. The aim of this work is to show that some problem here might be essentially simplified by introducing periodic boundary conditions. At this case, the volume is considered as the independent dynamical variable driven by the internal pressure. For this purpose, the concept of quantum volume based on Schrödinger’s equation in 𝕋3 manifold is proposed. It is used to explore several 1D model systems: An ensemble of free particles under external pressure, quantum manometer and a quantum breathing mode. In particular, the influence of the pressure of free particle on quantum oscillator is determined. It is shown also that correction to the spectrum of the breathing mode due to internal degrees of freedom is determined by the off-diagonal matrix elements of the quantum stress. The new treatment not using the “force” theorem is proposed for the quantum stress tensor. In the general case of flexible quantum 3D dynamics, quantum deformations of different type might be introduced similarly to monopole mode.

  1. Confinement of Fractional Quantum Hall States

    NASA Astrophysics Data System (ADS)

    Willett, Robert; Manfra, Michael; West, Ken; Pfeiffer, Loren

    2008-03-01

    Confinement of small-gapped fractional quantum Hall states facilitates quasiparticle manipulation and is an important step towards quasiparticle interference measurements. Demonstrated here is conduction through top gate defined, narrow channels in high density, ultra-high mobility heterostructures. Transport evidence for the persistence of a correlated state at filling fraction 5/3 is shown in channels of 2μm length but gated to near 0.3μm in width. The methods employed to achieve this confinement hold promise for interference devices proposed for studying potential non-Abelian statistics at filling fraction 5/2. R.L. Willett, M.J. Manfra, L.N. Pfeiffer, K.W. West, Appl. Phys. Lett. 91, 052105 (2007).

  2. Quantum games as quantum types

    NASA Astrophysics Data System (ADS)

    Delbecque, Yannick

    In this thesis, we present a new model for higher-order quantum programming languages. The proposed model is an adaptation of the probabilistic game semantics developed by Danos and Harmer [DH02]: we expand it with quantum strategies which enable one to represent quantum states and quantum operations. Some of the basic properties of these strategies are established and then used to construct denotational semantics for three quantum programming languages. The first of these languages is a formalisation of the measurement calculus proposed by Danos et al. [DKP07]. The other two are new: they are higher-order quantum programming languages. Previous attempts to define a denotational semantics for higher-order quantum programming languages have failed. We identify some of the key reasons for this and base the design of our higher-order languages on these observations. The game semantics proposed in this thesis is the first denotational semantics for a lambda-calculus equipped with quantum types and with extra operations which allow one to program quantum algorithms. The results presented validate the two different approaches used in the design of these two new higher-order languages: a first one where quantum states are used through references and a second one where they are introduced as constants in the language. The quantum strategies presented in this thesis allow one to understand the constraints that must be imposed on quantum type systems with higher-order types. The most significant constraint is the fact that abstraction over part of the tensor product of many unknown quantum states must not be allowed. Quantum strategies are a new mathematical model which describes the interaction between classical and quantum data using system-environment dialogues. The interactions between the different parts of a quantum system are described using the rich structure generated by composition of strategies. This approach has enough generality to be put in relation with other

  3. New photolithography stepping machine

    SciTech Connect

    Hale, L.; Klingmann, J.; Markle, D.

    1995-03-08

    A joint development project to design a new photolithography steeping machine capable of 150 nanometer overlay accuracy was completed by Ultratech Stepper and the Lawrence Livermore National Laboratory. The principal result of the project is a next-generation product that will strengthen the US position in step-and-repeat photolithography. The significant challenges addressed and solved in the project are the subject of this report. Design methods and new devices that have broader application to precision machine design are presented in greater detail while project specific information serves primarily as background and motivation.

  4. Stepped sinewave inverter

    NASA Astrophysics Data System (ADS)

    Appelbaum, J.; Gabbay, D.

    1984-11-01

    A stepped sinewave dc/ac inverter was analyzed for an inductive load with respect to load current and voltage, harmonics, power factor, and efficiency. This special inverter of high efficiency and low harmonic content is constructed by synthesizing the sinusoidal output by discrete voltage sources, such as storage batteries, solar cell, etc., with electronic switching of the sources at specific time intervals. The switching times are determined for the condition of minimum distortion of the synthesized wave. A 50 W inverter was built and tested to demonstrate this approach.

  5. Quantum rewinding via phase estimation

    NASA Astrophysics Data System (ADS)

    Tabia, Gelo Noel

    2015-03-01

    In cryptography, the notion of a zero-knowledge proof was introduced by Goldwasser, Micali, and Rackoff. An interactive proof system is said to be zero-knowledge if any verifier interacting with an honest prover learns nothing beyond the validity of the statement being proven. With recent advances in quantum information technologies, it has become interesting to ask if classical zero-knowledge proof systems remain secure against adversaries with quantum computers. The standard approach to show the zero-knowledge property involves constructing a simulator for a malicious verifier that can be rewinded to a previous step when the simulation fails. In the quantum setting, the simulator can be described by a quantum circuit that takes an arbitrary quantum state as auxiliary input but rewinding becomes a nontrivial issue. Watrous proposed a quantum rewinding technique in the case where the simulation's success probability is independent of the auxiliary input. Here I present a more general quantum rewinding scheme that employs the quantum phase estimation algorithm. This work was funded by institutional research grant IUT2-1 from the Estonian Research Council and by the European Union through the European Regional Development Fund.

  6. BOOK REVIEW Quantum Measurement and Control Quantum Measurement and Control

    NASA Astrophysics Data System (ADS)

    Kiefer, Claus

    2010-12-01

    In the last two decades there has been an enormous progress in the experimental investigation of single quantum systems. This progress covers fields such as quantum optics, quantum computation, quantum cryptography, and quantum metrology, which are sometimes summarized as `quantum technologies'. A key issue there is entanglement, which can be considered as the characteristic feature of quantum theory. As disparate as these various fields maybe, they all have to deal with a quantum mechanical treatment of the measurement process and, in particular, the control process. Quantum control is, according to the authors, `control for which the design requires knowledge of quantum mechanics'. Quantum control situations in which measurements occur at important steps are called feedback (or feedforward) control of quantum systems and play a central role here. This book presents a comprehensive and accessible treatment of the theoretical tools that are needed to cope with these situations. It also provides the reader with the necessary background information about the experimental developments. The authors are both experts in this field to which they have made significant contributions. After an introduction to quantum measurement theory and a chapter on quantum parameter estimation, the central topic of open quantum systems is treated at some length. This chapter includes a derivation of master equations, the discussion of the Lindblad form, and decoherence - the irreversible emergence of classical properties through interaction with the environment. A separate chapter is devoted to the description of open systems by the method of quantum trajectories. Two chapters then deal with the central topic of quantum feedback control, while the last chapter gives a concise introduction to one of the central applications - quantum information. All sections contain a bunch of exercises which serve as a useful tool in learning the material. Especially helpful are also various separate

  7. Transient Heat Conduction in Strongly Correlated Systems

    NASA Astrophysics Data System (ADS)

    Aghjayan, Rita; Luniewski, Arthur; Walczak, Kamil; Nanoscale Physics Division Team

    2015-03-01

    We analyze heat transport carried by electrons via quantum dots, modeled as strongly-correlated systems with discrete spectrum of available energy levels, which couple to two heat reservoirs of different temperatures. Our computational method for the electronic heat flux is based on the density matrix formalism, while the transition rates between particular quantum states are determined within the Fermi's golden rule. By taking into consideration the non-steady-state solutions for probabilities, we examine the influence of initial conductions and contact-induced time delays onto the rapid thermal switching response of the quantum system under investigation. Specifically, we use several different models for quantum dot, where the Zeeman splitting, Coulomb blockade, and the concept of dark-state are explicitly included. A special attention is devoted to thermal memory effects and the relationship between all the quantum transport expressions and the hyperbolic Cattaneo-Vernotte equation. This research is supported by Pace University Start-up Grant.

  8. Quantum flywheel

    NASA Astrophysics Data System (ADS)

    Levy, Amikam; Diósi, Lajos; Kosloff, Ronnie

    2016-05-01

    In this work we present the concept of a quantum flywheel coupled to a quantum heat engine. The flywheel stores useful work in its energy levels, while additional power is extracted continuously from the device. Generally, the energy exchange between a quantum engine and a quantized work repository is accompanied by heat, which degrades the charging efficiency. Specifically when the quantum harmonic oscillator acts as a work repository, quantum and thermal fluctuations dominate the dynamics. Quantum monitoring and feedback control are applied to the flywheel in order to reach steady state and regulate its operation. To maximize the charging efficiency one needs a balance between the information gained by measuring the system and the information fed back to the system. The dynamics of the flywheel are described by a stochastic master equation that accounts for the engine, the external driving, the measurement, and the feedback operations.

  9. Quantum Groupoids

    NASA Astrophysics Data System (ADS)

    Xu, Ping

    We introduce a general notion of quantum universal enveloping algebroids (QUE algebroids), or quantum groupoids, as a unification of quantum groups and star-products. Some basic properties are studied including the twist construction and the classical limits. In particular, we show that a quantum groupoid naturally gives rise to a Lie bialgebroid as a classical limit. Conversely, we formulate a conjecture on the existence of a quantization for any Lie bialgebroid, and prove this conjecture for the special case of regular triangular Lie bialgebroids. As an application of this theory, we study the dynamical quantum groupoid , which gives an interpretation of the quantum dynamical Yang-Baxter equation in terms of Hopf algebroids.

  10. Quantifying Quantumness

    NASA Astrophysics Data System (ADS)

    Braun, Daniel; Giraud, Olivier; Braun, Peter A.

    2010-03-01

    We introduce and study a measure of ``quantumness'' of a quantum state based on its Hilbert-Schmidt distance from the set of classical states. ``Classical states'' were defined earlier as states for which a positive P-function exists, i.e. they are mixtures of coherent states [1]. We study invariance properties of the measure, upper bounds, and its relation to entanglement measures. We evaluate the quantumness of a number of physically interesting states and show that for any physical system in thermal equilibrium there is a finite critical temperature above which quantumness vanishes. We then use the measure for identifying the ``most quantum'' states. Such states are expected to be potentially most useful for quantum information theoretical applications. We find these states explicitly for low-dimensional spin-systems, and show that they possess beautiful, highly symmetric Majorana representations. [4pt] [1] Classicality of spin states, Olivier Giraud, Petr Braun, and Daniel Braun, Phys. Rev. A 78, 042112 (2008)

  11. SPAR-H Step-by-Step Guidance

    SciTech Connect

    W. J. Galyean; A. M. Whaley; D. L. Kelly; R. L. Boring

    2011-05-01

    This guide provides step-by-step guidance on the use of the SPAR-H method for quantifying Human Failure Events (HFEs). This guide is intended to be used with the worksheets provided in: 'The SPAR-H Human Reliability Analysis Method,' NUREG/CR-6883, dated August 2005. Each step in the process of producing a Human Error Probability (HEP) is discussed. These steps are: Step-1, Categorizing the HFE as Diagnosis and/or Action; Step-2, Rate the Performance Shaping Factors; Step-3, Calculate PSF-Modified HEP; Step-4, Accounting for Dependence, and; Step-5, Minimum Value Cutoff. The discussions on dependence are extensive and include an appendix that describes insights obtained from the psychology literature.

  12. Decoherence can be useful in quantum walks

    SciTech Connect

    Kendon, Viv; Tregenna, Ben

    2003-04-01

    We present a study of the effects of decoherence in the operation of a discrete quantum walk on a line, cycle, and hypercube. We find high sensitivity to decoherence, increasing with the number of steps in the walk, as the particle is becoming more delocalized with each step. However, the effect of a small amount of decoherence is to enhance the properties of the quantum walk that are desirable for the development of quantum algorithms. Specifically, we observe a highly uniform distribution on the line, a very fast mixing time on the cycle, and more reliable hitting times across the hypercube.

  13. Quantum criticality.

    PubMed

    Coleman, Piers; Schofield, Andrew J

    2005-01-20

    As we mark the centenary of Albert Einstein's seminal contribution to both quantum mechanics and special relativity, we approach another anniversary--that of Einstein's foundation of the quantum theory of solids. But 100 years on, the same experimental measurement that puzzled Einstein and his contemporaries is forcing us to question our understanding of how quantum matter transforms at ultra-low temperatures. PMID:15662409

  14. Spin-orbit interaction in multiple quantum wells

    SciTech Connect

    Hao, Ya-Fei

    2015-01-07

    In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices.

  15. Quantum Dots

    NASA Astrophysics Data System (ADS)

    Tartakovskii, Alexander

    2012-07-01

    Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by

  16. Three-step semiquantum secure direct communication protocol

    NASA Astrophysics Data System (ADS)

    Zou, XiangFu; Qiu, DaoWen

    2014-09-01

    Quantum secure direct communication is the direct communication of secret messages without need for establishing a shared secret key first. In the existing schemes, quantum secure direct communication is possible only when both parties are quantum. In this paper, we construct a three-step semiquantum secure direct communication (SQSDC) protocol based on single photon sources in which the sender Alice is classical. In a semiquantum protocol, a person is termed classical if he (she) can measure, prepare and send quantum states only with the fixed orthogonal quantum basis {|0>, |1>}. The security of the proposed SQSDC protocol is guaranteed by the complete robustness of semiquantum key distribution protocols and the unconditional security of classical one-time pad encryption. Therefore, the proposed SQSDC protocol is also completely robust. Complete robustness indicates that nonzero information acquired by an eavesdropper Eve on the secret message implies the nonzero probability that the legitimate participants can find errors on the bits tested by this protocol. In the proposed protocol, we suggest a method to check Eves disturbing in the doves returning phase such that Alice does not need to announce publicly any position or their coded bits value after the photons transmission is completed. Moreover, the proposed SQSDC protocol can be implemented with the existing techniques. Compared with many quantum secure direct communication protocols, the proposed SQSDC protocol has two merits: firstly the sender only needs classical capabilities; secondly to check Eves disturbing after the transmission of quantum states, no additional classical information is needed.

  17. Dissipative quantum computing with open quantum walks

    SciTech Connect

    Sinayskiy, Ilya; Petruccione, Francesco

    2014-12-04

    An open quantum walk approach to the implementation of a dissipative quantum computing scheme is presented. The formalism is demonstrated for the example of an open quantum walk implementation of a 3 qubit quantum circuit consisting of 10 gates.

  18. Stair-stepped Mound

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-429, 22 July 2003

    This April 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a stair-stepped mound of sedimentary rock (right of center) on the floor of a large impact crater in western Arabia Terra near 11.0oN, 4.4oW. Sedimentary rock outcrops are common in the craters of this region. The repeated thickness and uniformity of the layers that make up this mound suggest that their depositional environment was one in which cyclic or episodic events occurred over some period of time. The sediments might have been deposited in a lake, or they may have settled directly out of the atmosphere. Most of the layered material was later eroded away, leaving this circular mound and the other nearby mesas and knobs. The image is illuminated by sunlight from the lower left.

  19. Predictive Quantum Chemistry: A Step Toward ``Chemistry Without Test Tubes''

    NASA Astrophysics Data System (ADS)

    Perera, Ajith

    2007-12-01

    The merits of the claims made in two recent papers entitled "First generation of pentazole (HN5, pentazolic acid), the final azole, and a zinc pentazolate salt in solution: A new N-dearylation of 1-(p-methoxyphenyl) pyrazoles, a 2-(p-methoxyphenyl) tetrazole and application of the methodology to 1-(p-methoxyphenyl) pentazole" (R. N. Butler, J. C. Stephan and L. A. Burke, J. Chem. Commun. 2003, 1016-1017) and "First generation of the pentazolate anion is solution is far from over" (T. Schroer, R. Haiges, S. Schneider and K. O. Christe, Chem. Commun. 2005, 1607-1609) are verified by predictive quality theoretical methods. Knowing whether the CF3OH in HF solution undergoes protonation to form CF3[OH2]+ is critical to the success of the recently proposed synthetic route to form the prototype perfluorinated alcohol, CF3OH. Chirstie and co-workers first considered the 13C and 19F shielding constants to distinguish CF3OH and CF3[OH2]+, but it turns out that they both have similar chemical shifts. Furthermore, they noted that the computed 13C chemical shifts differ by 11 ppm from the measured ones and claimed that "These findings presented a dilemma because either experimental or the calculated shifts has to be seriously flawed and, therefore chemical shifts alone it was impossible to decide whether CF3OH in liquid HF is protonated or not". Instead of chemical shifts, they propose to use 13C-19F NMR spin-spin coupling constants and argue that the observed 20 Hz difference of 1J(13C-19F) to the increase in the covalent character upon protonation. The reported discrepancy in computed and measured chemical shifts is reexamined and the spin-spin coupling constants results are verified by the predicative-level calculations.

  20. Digital Quantum Rabi and Dicke Models in Superconducting Circuits

    NASA Astrophysics Data System (ADS)

    Mezzacapo, A.; Las Heras, U.; Pedernales, J. S.; Dicarlo, L.; Solano, E.; Lamata, L.

    2014-12-01

    We propose the analog-digital quantum simulation of the quantum Rabi and Dicke models using circuit quantum electrodynamics (QED). We find that all physical regimes, in particular those which are impossible to realize in typical cavity QED setups, can be simulated via unitary decomposition into digital steps. Furthermore, we show the emergence of the Dirac equation dynamics from the quantum Rabi model when the mode frequency vanishes. Finally, we analyze the feasibility of this proposal under realistic superconducting circuit scenarios.

  1. Quantum Dots: An Experiment for Physical or Materials Chemistry

    ERIC Educational Resources Information Center

    Winkler, L. D.; Arceo, J. F.; Hughes, W. C.; DeGraff, B. A.; Augustine, B. H.

    2005-01-01

    An experiment is conducted for obtaining quantum dots for physical or materials chemistry. This experiment serves to both reinforce the basic concept of quantum confinement and providing a useful bridge between the molecular and solid-state world.

  2. Quantum Cryptography Without Quantum Uncertainties

    NASA Astrophysics Data System (ADS)

    Durt, Thomas

    2002-06-01

    Quantum cryptography aims at transmitting a random key in such a way that the presence of a spy eavesdropping the communication would be revealed by disturbances in the transmission of the message. In standard quantum cryptography, this unavoidable disturbance is a consequence of the uncertainty principle of Heisenberg. We propose in this paper to replace quantum uncertainties by generalised, technological uncertainties, and discuss the realisability of such an idea. The proposed protocol can be considered as a simplification, but also as a generalisation of the standard quantum cryptographic protocols.

  3. Quantum computer games: quantum minesweeper

    NASA Astrophysics Data System (ADS)

    Gordon, Michal; Gordon, Goren

    2010-07-01

    The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical minesweeper the goal of the game is to discover all the mines laid out on a board without triggering them, in the quantum version there are several classical boards in superposition. The goal is to know the exact quantum state, i.e. the precise layout of all the mines in all the superposed classical boards. The player can perform three types of measurement: a classical measurement that probabilistically collapses the superposition; a quantum interaction-free measurement that can detect a mine without triggering it; and an entanglement measurement that provides non-local information. The application of the concepts taught by quantum minesweeper to one-way quantum computing are also presented.

  4. Scattering in Quantum Lattice Gases

    NASA Astrophysics Data System (ADS)

    O'Hara, Andrew; Love, Peter

    2009-03-01

    Quantum Lattice Gas Automata (QLGA) are of interest for their use in simulating quantum mechanics on both classical and quantum computers. QLGAs are an extension of classical Lattice Gas Automata where the constraint of unitary evolution is added. In the late 1990s, David A. Meyer as well as Bruce Boghosian and Washington Taylor produced similar models of QLGAs. We start by presenting a unified version of these models and study them from the point of view of the physics of wave-packet scattering. We show that the Meyer and Boghosian-Taylor models are actually the same basic model with slightly different parameterizations and limits. We then implement these models computationally using the Python programming language and show that QLGAs are able to replicate the analytic results of quantum mechanics (for example reflected and transmitted amplitudes for step potentials and the Klein paradox).

  5. Quantum thermal transport in stanene

    NASA Astrophysics Data System (ADS)

    Zhou, Hangbo; Cai, Yongqing; Zhang, Gang; Zhang, Yong-Wei

    2016-07-01

    By way of the nonequilibrium Green's function simulations and analytical expressions, the quantum thermal conductance of stanene is studied. We find that, due to the existence of Dirac fermion in stanene, the ratio of electron thermal conductance and electric conductance becomes a chemical-potential-dependent quantity, violating the Wiedemann-Franz law. This finding is applicable to any two-dimensional (2D) materials that possess massless Dirac fermions. In strong contrast to the negligible electronic contribution in graphene, surprisingly, the electrons and phonons in stanene carry a comparable heat current. The unusual behaviors in stanene widen our knowledge of quantum thermal transport in 2D materials.

  6. Green Schools Energy Project: A Step-by-Step Manual.

    ERIC Educational Resources Information Center

    Quigley, Gwen

    This publication contains a step-by-step guide for implementing an energy-saving project in local school districts: the installation of newer, more energy-efficient "T-8" fluorescent tube lights in place of "T-12" lights. Eleven steps are explained in detail: (1) find out what kind of lights the school district currently uses; (2) form a group to…

  7. Quantum metrology

    NASA Technical Reports Server (NTRS)

    Lee, H.; Kok, P.; Dowling, J. P.

    2002-01-01

    This paper addresses the formal equivalence between the Mach-Zehnder interferometer, the Ramsey spectroscope, and a specific quantum logical gate. Based on this equivalence we introduce the quantum Rosetta Stone, and we describe a projective measurement scheme for generating the desired correlations between the interferometric input states in order to achieve Heisenberg-limited sensitivity.

  8. Quantum microbiology.

    PubMed

    Trevors, J T; Masson, L

    2011-01-01

    During his famous 1943 lecture series at Trinity College Dublin, the reknown physicist Erwin Schrodinger discussed the failure and challenges of interpreting life by classical physics alone and that a new approach, rooted in Quantum principles, must be involved. Quantum events are simply a level of organization below the molecular level. This includes the atomic and subatomic makeup of matter in microbial metabolism and structures, as well as the organic, genetic information code of DNA and RNA. Quantum events at this time do not elucidate, for example, how specific genetic instructions were first encoded in an organic genetic code in microbial cells capable of growth and division, and its subsequent evolution over 3.6 to 4 billion years. However, due to recent technological advances, biologists and physicists are starting to demonstrate linkages between various quantum principles like quantum tunneling, entanglement and coherence in biological processes illustrating that nature has exerted some level quantum control to optimize various processes in living organisms. In this article we explore the role of quantum events in microbial processes and endeavor to show that after nearly 67 years, Schrödinger was prophetic and visionary in his view of quantum theory and its connection with some of the fundamental mechanisms of life. PMID:21368338

  9. Quantum computing with defects.

    PubMed

    Weber, J R; Koehl, W F; Varley, J B; Janotti, A; Buckley, B B; Van de Walle, C G; Awschalom, D D

    2010-05-11

    Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV(-1)) center stands out for its robustness--its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV(-1) center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally coordinated semiconductors. PMID:20404195

  10. Karl Popper's Quantum Ghost

    NASA Astrophysics Data System (ADS)

    Shields, William

    2004-05-01

    Karl Popper, though not trained as a physicist and embarrassed early in his career by a physics error pointed out by Einstein and Bohr, ultimately made substantial contributions to the interpretation of quantum mechanics. As was often the case, Popper initially formulated his position by criticizing the views of others - in this case Niels Bohr and Werner Heisenberg. Underlying Popper's criticism was his belief that, first, the "standard interpretation" of quantum mechanics, sometimes called the Copenhagen interpretation, abandoned scientific realism and second, the assertion that quantum theory was "complete" (an assertion rejected by Einstein among others) amounted to an unfalsifiable claim. Popper insisted that the most basic predictions of quantum mechanics should continue to be tested, with an eye towards falsification rather than mere adding of decimal places to confirmatory experiments. His persistent attacks on the Copenhagen interpretation were aimed not at the uncertainty principle itself and the formalism from which it was derived, but at the acceptance by physicists of an unclear epistemology and ontology that left critical questions unanswered. In 1999, physicists at the University of Maryland conducted a version of Popper's Experiment, re-igniting the debate over quantum predictions and the role of locality in physics.

  11. Analysis Of Stepped Labyrinth Seals

    NASA Technical Reports Server (NTRS)

    Scharrer, Joseph K.

    1990-01-01

    Report presents analysis of compressible flow in stepped labyrinth gas seal in turbomachine. Part of continuing effort to understand and suppress self-excited vibrations caused by stepped labyrinth seals. Rotordynamic coefficients derived for compressible flow.

  12. The Stepping Stone Approach

    NASA Astrophysics Data System (ADS)

    Brumfitt, A.

    Education is a profession in its own right. It has its own parameters, passions and language. Having the responsibility both of educare and educere, education has a focus of delivering specific factual knowledge whilst drawing out the creative mind. Space Science is a special vehicle having the properties of both educare and educere. It has a magic and wonder that touches the very essence of an individual and his place in time and space; it offers the "wow" factor that all teachers strive for. Space Science is the wrapping paper for other elements in the curriculum, e.g. cross-curricula and skill-based activities, such as language development, creativity, etc. as well as the pure sciences which comprise of engineering, physics and other natural sciences from astronomy to chemistry to biology. Each of these spheres of influence are relevant from kindergarten to undergraduate studies and complement, and in addition support informal education in museums, science centers and the world of e-learning. ESA Science Education has devised the "Stepping Stone Approach" to maximize the greatest outreach to all education stakeholders in Europe. In this paper we illustrate how to best reach these target groups with very specific activities to trigger and sustain enthusiasm whilst supporting the pedagogical, subject content and skill-based needs of a prescribed curriculum.

  13. SPAR-H Step-by-Step Guidance

    SciTech Connect

    April M. Whaley; Dana L. Kelly; Ronald L. Boring; William J. Galyean

    2012-06-01

    Step-by-step guidance was developed recently at Idaho National Laboratory for the US Nuclear Regulatory Commission on the use of the Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) method for quantifying Human Failure Events (HFEs). This work was done to address SPAR-H user needs, specifically requests for additional guidance on the proper application of various aspects of the methodology. This paper overviews the steps of the SPAR-H analysis process and highlights some of the most important insights gained during the development of the step-by-step directions. This supplemental guidance for analysts is applicable when plant-specific information is available, and goes beyond the general guidance provided in existing SPAR-H documentation. The steps highlighted in this paper are: Step-1, Categorizing the HFE as Diagnosis and/or Action; Step-2, Rate the Performance Shaping Factors; Step-3, Calculate PSF-Modified HEP; Step-4, Accounting for Dependence, and; Step-5, Minimum Value Cutoff.

  14. Multiple stage miniature stepping motor

    DOEpatents

    Niven, William A.; Shikany, S. David; Shira, Michael L.

    1981-01-01

    A stepping motor comprising a plurality of stages which may be selectively activated to effect stepping movement of the motor, and which are mounted along a common rotor shaft to achieve considerable reduction in motor size and minimum diameter, whereby sequential activation of the stages results in successive rotor steps with direction being determined by the particular activating sequence followed.

  15. Powerlessness Reinterpreted: Reframing Step One.

    ERIC Educational Resources Information Center

    Young, Susan L.

    The 12 steps of the well-known mutual help group, Alcoholics Anonymous (AA), begin with Step One, admitting powerlessness. Although Step One has helped many problem drinkers and other addicts, its spiritual concepts have been criticized. The possibility of reconceptualizing powerlessness as empowering, not only within AA and its offshoot programs,…

  16. Quantum strategies of quantum measurements

    NASA Astrophysics Data System (ADS)

    Li, Chuan-Feng; Zhang, Yong-Sheng; Huang, Yun-Feng; Guo, Guang-Can

    2001-03-01

    In the classical Monty Hall problem, one player can always win with probability 2/3. We generalize the problem to the quantum domain and show that a fair two-party zero-sum game can be carried out if the other player is permitted to adopt quantum measurement strategy.

  17. Carbon Fibers Conductivity Studies

    NASA Technical Reports Server (NTRS)

    Yang, C. Y.; Butkus, A. M.

    1980-01-01

    In an attempt to understand the process of electrical conduction in polyacrylonitrile (PAN)-based carbon fibers, calculations were carried out on cluster models of the fiber consisting of carbon, nitrogen, and hydrogen atoms using the modified intermediate neglect of differential overlap (MINDO) molecular orbital (MO) method. The models were developed based on the assumption that PAN carbon fibers obtained with heat treatment temperatures (HTT) below 1000 C retain nitrogen in a graphite-like lattice. For clusters modeling an edge nitrogen site, analysis of the occupied MO's indicated an electron distribution similar to that of graphite. A similar analysis for the somewhat less stable interior nitrogen site revealed a partially localized II electron distribution around the nitrogen atom. The differences in bonding trends and structural stability between edge and interior nitrogen clusters led to a two-step process proposed for nitrogen evolution with increasing HTT.

  18. Realization of Reliable Solid-State Quantum Memory for Photonic Polarization Qubit

    NASA Astrophysics Data System (ADS)

    Zhou, Zong-Quan; Lin, Wei-Bin; Yang, Ming; Li, Chuan-Feng; Guo, Guang-Can

    2012-05-01

    Faithfully storing an unknown quantum light state is essential to advanced quantum communication and distributed quantum computation applications. The required quantum memory must have high fidelity to improve the performance of a quantum network. Here we report the reversible transfer of photonic polarization states into collective atomic excitation in a compact solid-state device. The quantum memory is based on an atomic frequency comb (AFC) in rare-earth ion-doped crystals. We obtain up to 0.999 process fidelity for the storage and retrieval process of single-photon-level coherent pulse. This reliable quantum memory is a crucial step toward quantum networks based on solid-state devices.

  19. Optimizing qubit resources for quantum chemistry simulations in second quantization on a quantum computer

    NASA Astrophysics Data System (ADS)

    Moll, Nikolaj; Fuhrer, Andreas; Staar, Peter; Tavernelli, Ivano

    2016-07-01

    Quantum chemistry simulations on a quantum computer suffer from the overhead needed for encoding the Fermionic problem in a system of qubits. By exploiting the block diagonality of a Fermionic Hamiltonian, we show that the number of required qubits can be reduced while the number of terms in the Hamiltonian will increase. All operations for this reduction can be performed in operator space. The scheme is conceived as a pre-computational step that would be performed prior to the actual quantum simulation. We apply this scheme to reduce the number of qubits necessary to simulate both the Hamiltonian of the two-site Fermi–Hubbard model and the hydrogen molecule. Both quantum systems can then be simulated with a two-qubit quantum computer. Despite the increase in the number of Hamiltonian terms, the scheme still remains a useful tool to reduce the dimensionality of specific quantum systems for quantum simulators with a limited number of resources.

  20. Quantum memory with millisecond coherence in circuit QED

    NASA Astrophysics Data System (ADS)

    Reagor, Matthew; Pfaff, Wolfgang; Axline, Christopher; Heeres, Reinier W.; Ofek, Nissim; Sliwa, Katrina; Holland, Eric; Wang, Chen; Blumoff, Jacob; Chou, Kevin; Hatridge, Michael J.; Frunzio, Luigi; Devoret, Michel H.; Jiang, Liang; Schoelkopf, Robert J.

    2016-07-01

    Significant advances in coherence render superconducting quantum circuits a viable platform for fault-tolerant quantum computing. To further extend capabilities, highly coherent quantum systems could act as quantum memories for these circuits. A useful quantum memory must be rapidly addressable by Josephson-junction-based artificial atoms, while maintaining superior coherence. We demonstrate a superconducting microwave cavity architecture that is highly robust against major sources of loss that are encountered in the engineering of circuit QED systems. The architecture allows for storage of quantum superpositions in a resonator on the millisecond scale, while strong coupling between the resonator and a transmon qubit enables control, encoding, and readout at MHz rates. This extends the maximum available coherence time attainable in superconducting circuits by almost an order of magnitude compared to earlier hardware. Our design is an ideal platform for studying coherent quantum optics and marks an important step towards hardware-efficient quantum computing in Josephson-junction-based quantum circuits.

  1. Experimental quantum fingerprinting with weak coherent pulses

    NASA Astrophysics Data System (ADS)

    Xu, Feihu; Arrazola, Juan Miguel; Wei, Kejin; Wang, Wenyuan; Palacios-Avila, Pablo; Feng, Chen; Sajeed, Shihan; Lütkenhaus, Norbert; Lo, Hoi-Kwong

    2015-10-01

    Quantum communication holds the promise of creating disruptive technologies that will play an essential role in future communication networks. For example, the study of quantum communication complexity has shown that quantum communication allows exponential reductions in the information that must be transmitted to solve distributed computational tasks. Recently, protocols that realize this advantage using optical implementations have been proposed. Here we report a proof-of-concept experimental demonstration of a quantum fingerprinting system that is capable of transmitting less information than the best-known classical protocol. Our implementation is based on a modified version of a commercial quantum key distribution system using off-the-shelf optical components over telecom wavelengths, and is practical for messages as large as 100 Mbits, even in the presence of experimental imperfections. Our results provide a first step in the development of experimental quantum communication complexity.

  2. Quantum navigation and ranking in complex networks.

    PubMed

    Sánchez-Burillo, Eduardo; Duch, Jordi; Gómez-Gardeñes, Jesús; Zueco, David

    2012-01-01

    Complex networks are formal frameworks capturing the interdependencies between the elements of large systems and databases. This formalism allows to use network navigation methods to rank the importance that each constituent has on the global organization of the system. A key example is Pagerank navigation which is at the core of the most used search engine of the World Wide Web. Inspired in this classical algorithm, we define a quantum navigation method providing a unique ranking of the elements of a network. We analyze the convergence of quantum navigation to the stationary rank of networks and show that quantumness decreases the number of navigation steps before convergence. In addition, we show that quantum navigation allows to solve degeneracies found in classical ranks. By implementing the quantum algorithm in real networks, we confirm these improvements and show that quantum coherence unveils new hierarchical features about the global organization of complex systems. PMID:22930671

  3. Quantum Navigation and Ranking in Complex Networks

    PubMed Central

    Sánchez-Burillo, Eduardo; Duch, Jordi; Gómez-Gardeñes, Jesús; Zueco, David

    2012-01-01

    Complex networks are formal frameworks capturing the interdependencies between the elements of large systems and databases. This formalism allows to use network navigation methods to rank the importance that each constituent has on the global organization of the system. A key example is Pagerank navigation which is at the core of the most used search engine of the World Wide Web. Inspired in this classical algorithm, we define a quantum navigation method providing a unique ranking of the elements of a network. We analyze the convergence of quantum navigation to the stationary rank of networks and show that quantumness decreases the number of navigation steps before convergence. In addition, we show that quantum navigation allows to solve degeneracies found in classical ranks. By implementing the quantum algorithm in real networks, we confirm these improvements and show that quantum coherence unveils new hierarchical features about the global organization of complex systems. PMID:22930671

  4. Experimental quantum fingerprinting with weak coherent pulses.

    PubMed

    Xu, Feihu; Arrazola, Juan Miguel; Wei, Kejin; Wang, Wenyuan; Palacios-Avila, Pablo; Feng, Chen; Sajeed, Shihan; Lütkenhaus, Norbert; Lo, Hoi-Kwong

    2015-01-01

    Quantum communication holds the promise of creating disruptive technologies that will play an essential role in future communication networks. For example, the study of quantum communication complexity has shown that quantum communication allows exponential reductions in the information that must be transmitted to solve distributed computational tasks. Recently, protocols that realize this advantage using optical implementations have been proposed. Here we report a proof-of-concept experimental demonstration of a quantum fingerprinting system that is capable of transmitting less information than the best-known classical protocol. Our implementation is based on a modified version of a commercial quantum key distribution system using off-the-shelf optical components over telecom wavelengths, and is practical for messages as large as 100 Mbits, even in the presence of experimental imperfections. Our results provide a first step in the development of experimental quantum communication complexity. PMID:26515586

  5. Experimental quantum fingerprinting with weak coherent pulses

    PubMed Central

    Xu, Feihu; Arrazola, Juan Miguel; Wei, Kejin; Wang, Wenyuan; Palacios-Avila, Pablo; Feng, Chen; Sajeed, Shihan; Lütkenhaus, Norbert; Lo, Hoi-Kwong

    2015-01-01

    Quantum communication holds the promise of creating disruptive technologies that will play an essential role in future communication networks. For example, the study of quantum communication complexity has shown that quantum communication allows exponential reductions in the information that must be transmitted to solve distributed computational tasks. Recently, protocols that realize this advantage using optical implementations have been proposed. Here we report a proof-of-concept experimental demonstration of a quantum fingerprinting system that is capable of transmitting less information than the best-known classical protocol. Our implementation is based on a modified version of a commercial quantum key distribution system using off-the-shelf optical components over telecom wavelengths, and is practical for messages as large as 100 Mbits, even in the presence of experimental imperfections. Our results provide a first step in the development of experimental quantum communication complexity. PMID:26515586

  6. Dynamical objectivity in quantum Brownian motion

    NASA Astrophysics Data System (ADS)

    Tuziemski, J.; Korbicz, J. K.

    2015-11-01

    Classical objectivity as a property of quantum states —a view proposed to explain the observer-independent character of our world from quantum theory, is an important step in bridging the quantum-classical gap. It was recently derived in terms of spectrum broadcast structures for small objects embedded in noisy photon-like environments. However, two fundamental problems have arisen: a description of objective motion and applicability to other types of environments. Here we derive an example of objective states of motion in quantum mechanics by showing the formation of dynamical spectrum broadcast structures in the celebrated, realistic model of decoherence —Quantum Brownian Motion. We do it for realistic, thermal environments and show their noise-robustness. This opens a potentially new method of studying the quantum-to-classical transition.

  7. Step-step interactions on GaAs (110) nanopatterns

    SciTech Connect

    Galiana, B.; Benedicto, M.; Tejedor, P.

    2013-01-14

    The step-step interactions on vicinal GaAs (110) surface patterns have been extracted from the quantitative analysis of the terrace width distribution (TWD). We have specifically studied the interactions in near-equilibrium faceting and kinetics-driven step bunching and meandering formed by spontaneous self-organization or through the modification of GaAs growth kinetics by atomic hydrogen. We show that the experimental TWDs determined from atomic force microscopy measurements can be accurately described by a weighed sum of a generalized Wigner distribution and several Gaussians. The results of our calculations indicate that straight facets are formed during high temperature homoepitaxy due to attractive interactions between [110] steps. At low temperatures, steady state attractive interactions in [110] step bunches are preceded by a transition regime dominated by entropic and energetic repulsions between meandering [11n]-type steps (n {>=} 2), whose population density exceeds that of the [110] bunched steps. In addition, it has been found that atomic H reduces the attractive interactions between [110] bunched steps and enhances entropic and dipole-induced energetic repulsions between H-terminated [11n] steps through the inhibition of As-As bond formation at step edges. Our analysis has evidenced a correlation between the value of the adjustable parameter that accounts in our model for the specific weight of the secondary peaks in the TWD ({beta}) and the extent of transverse meandering on the vicinal surface.

  8. Quantum Adiabatic Pumping by Modulating Tunnel Phase in Quantum Dots

    NASA Astrophysics Data System (ADS)

    Taguchi, Masahiko; Nakajima, Satoshi; Kubo, Toshihiro; Tokura, Yasuhiro

    2016-08-01

    In a mesoscopic system, under zero bias voltage, a finite charge is transferred by quantum adiabatic pumping by adiabatically and periodically changing two or more control parameters. We obtained expressions for the pumped charge for a ring of three quantum dots (QDs) by choosing the magnetic flux penetrating the ring as one of the control parameters. We found that the pumped charge shows a steplike behavior with respect to the variance of the flux. The value of the step heights is not universal but depends on the trajectory of the control parameters. We discuss the physical origin of this behavior on the basis of the Fano resonant condition of the ring.

  9. Flow depth and energy coefficient relatiohnships for stepped spillways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A multi-year, large-scale physical model study of stepped chutes was conducted over a broad range of design parameters (i.e. step heights, slopes, and unit discharges). Air entrainment developed naturally as the flow descended the chute. Air entrainment began to develop downstream of the surface i...

  10. Diffeomorphism invariant cosmological symmetry in full quantum gravity

    NASA Astrophysics Data System (ADS)

    Beetle, Christopher; Engle, Jonathan S.; Hogan, Matthew E.; Mendonça, Phillip

    2016-06-01

    This paper summarizes a new proposal to define rigorously a sector of loop quantum gravity at the diffeomorphism invariant level corresponding to homogeneous and isotropic cosmologies, thereby enabling a detailed comparison of results in loop quantum gravity and loop quantum cosmology. The key technical steps we have completed are (a) to formulate conditions for homogeneity and isotropy in a diffeomorphism covariant way on the classical phase-space of general relativity, and (b) to translate these conditions consistently using well-understood techniques to loop quantum gravity. Some additional steps, such as constructing a specific embedding of the Hilbert space of loop quantum cosmology into a space of (distributional) states in the full theory, remain incomplete. However, we also describe, as a proof of concept, a complete analysis of an analogous embedding of homogeneous and isotropic loop quantum cosmology into the quantum Bianchi I model of Ashtekar and Wilson-Ewing. Details will appear in a pair of forthcoming papers.

  11. An Integrated Development Environment for Adiabatic Quantum Programming

    SciTech Connect

    Humble, Travis S; McCaskey, Alex; Bennink, Ryan S; Billings, Jay Jay; D'Azevedo, Eduardo; Sullivan, Blair D; Klymko, Christine F; Seddiqi, Hadayat

    2014-01-01

    Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware raises the question of how well quantum programs perform. Benchmarking behavior is challenging since the multiple steps to synthesize an adiabatic quantum program are highly tunable. We present an adiabatic quantum programming environment called JADE that provides control over all the steps taken during program development. JADE captures the workflow needed to rigorously benchmark performance while also allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation engine that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its use for benchmarking adiabatic quantum programs.

  12. Faceting diagram for sticky steps

    NASA Astrophysics Data System (ADS)

    Akutsu, Noriko

    2016-03-01

    Faceting diagrams for the step-faceting zone, the step droplet zone, and the Gruber-Mullins-Pokrovsky-Talapov (GMPT) zone for a crystal surface are obtained by using the density matrix renormalization group method to calculate the surface tension. The model based on these calculations is the restricted solid-on-solid (RSOS) model with a point-contact-type step-step attraction (p-RSOS model) on a square lattice. The point-contact-type step-step attraction represents the energy gain obtained by forming a bonding state with orbital overlap at the meeting point of the neighboring steps. In the step-faceting zone, disconnectedness in the surface tension leads to the formation of a faceted macrostep on a vicinal surface at equilibrium. The disconnectedness in the surface tension also causes the first-order shape transition for the equilibrium shape of a crystal droplet. The lower zone boundary line (ZBL), which separates the step-faceting zone and the step droplet zone, is obtained by the condition γ 1 = lim n → ∞ γ n / n , where γn is the step tension of the n-th merged step. The upper ZBL, which separates the GMPT zone and the step droplet zone, is obtained by the condition Aq,eff = 0 and Bq,eff = 0, where Aq,eff and Bq,eff represent the coefficients for the | q → | 2 term and the | q → | 3 term, respectively, in the | q → | -expanded form of the surface free energy f eff ( q → ) . Here, q → is the surface gradient relative to the (111) surface. The reason why the vicinal surface inclined in the <101> direction does not exhibit step-faceting is explained in terms of the one-dimensional spinless quasi-impenetrable attractive bosons at absolute zero.

  13. Simulated annealing versus quantum annealing

    NASA Astrophysics Data System (ADS)

    Troyer, Matthias

    Based on simulated classical annealing and simulated quantum annealing using quantum Monte Carlo (QMC) simulations I will explore the question where physical or simulated quantum annealers may outperform classical optimization algorithms. Although the stochastic dynamics of QMC simulations is not the same as the unitary dynamics of a quantum system, I will first show that for the problem of quantum tunneling between two local minima both QMC simulations and a physical system exhibit the same scaling of tunneling times with barrier height. The scaling in both cases is O (Δ2) , where Δ is the tunneling splitting. An important consequence is that QMC simulations can be used to predict the performance of a quantum annealer for tunneling through a barrier. Furthermore, by using open instead of periodic boundary conditions in imaginary time, equivalent to a projector QMC algorithm, one obtains a quadratic speedup for QMC, and achieve linear scaling in Δ. I will then address the apparent contradiction between experiments on a D-Wave 2 system that failed to see evidence of quantum speedup and previous QMC results that indicated an advantage of quantum annealing over classical annealing for spin glasses. We find that this contradiction is resolved by taking the continuous time limit in the QMC simulations which then agree with the experimentally observed behavior and show no speedup for 2D spin glasses. However, QMC simulations with large time steps gain further advantage: they ``cheat'' by ignoring what happens during a (large) time step, and can thus outperform both simulated quantum annealers and classical annealers. I will then address the question how to optimally run a simulated or physical quantum annealer. Investigating the behavior of the tails of the distribution of runtimes for very hard instances we find that adiabatically slow annealing is far from optimal. On the contrary, many repeated relatively fast annealing runs can be orders of magnitude faster for

  14. Volume Diffusion Growth Kinetics and Step Geometry in Crystal Growth

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Ramachandran, Narayanan

    1998-01-01

    The role of step geometry in two-dimensional stationary volume diff4sion process used in crystal growth kinetics models is investigated. Three different interface shapes: a) a planar interface, b) an equidistant hemispherical bumps train tAx interface, and c) a train of right angled steps, are used in this comparative study. The ratio of the super-saturation to the diffusive flux at the step position is used as a control parameter. The value of this parameter can vary as much as 50% for different geometries. An approximate analytical formula is derived for the right angled steps geometry. In addition to the kinetic models, this formula can be utilized in macrostep growth models. Finally, numerical modeling of the diffusive and convective transport for equidistant steps is conducted. In particular, the role of fluid flow resulting from the advancement of steps and its contribution to the transport of species to the steps is investigated.

  15. Hamiltonian deformations of Gabor frames: First steps

    PubMed Central

    de Gosson, Maurice A.

    2015-01-01

    Gabor frames can advantageously be redefined using the Heisenberg–Weyl operators familiar from harmonic analysis and quantum mechanics. Not only does this redefinition allow us to recover in a very simple way known results of symplectic covariance, but it immediately leads to the consideration of a general deformation scheme by Hamiltonian isotopies (i.e. arbitrary paths of non-linear symplectic mappings passing through the identity). We will study in some detail an associated weak notion of Hamiltonian deformation of Gabor frames, using ideas from semiclassical physics involving coherent states and Gaussian approximations. We will thereafter discuss possible applications and extensions of our method, which can be viewed – as the title suggests – as the very first steps towards a general deformation theory for Gabor frames. PMID:25892903

  16. Quantum Pendulum.

    ERIC Educational Resources Information Center

    Aldrovandi, R.: Ferreira, P. Leal

    1980-01-01

    Discusses the problem of the mathematical pendulum in its classical, semiclassical, and quantum aspects. The energy spectrum and its eigenfunctions are presented under the usual requirement of single valuedness of the solutions. (Author/CS)

  17. Quantum Heterostructures

    NASA Astrophysics Data System (ADS)

    Mitin, Vladimir; Kochelap, Viacheslav; Stroscio, Michael A.

    1999-07-01

    Quantum Heterostructures provides a detailed description of the key physical and engineering principles of quantum semiconductor heterostructures. Blending important concepts from physics, materials science, and electrical engineering, it also explains clearly the behavior and operating features of modern microelectronic and optoelectronic devices. The authors begin by outlining the trends that have driven development in this field, most importantly the need for high-performance devices in computer, information, and communications technologies. They then describe the basics of quantum nanoelectronics, including various transport mechanisms. In the latter part of the book, they cover novel microelectronic devices, and optical devices based on quantum heterostructures. The book contains many homework problems and is suitable as a textbook for undergraduate and graduate courses in electrical engineering, physics, or materials science. It will also be of great interest to those involved in research or development in microelectronic or optoelectronic devices.

  18. Stochastic solution to quantum dynamics

    NASA Technical Reports Server (NTRS)

    John, Sarah; Wilson, John W.

    1994-01-01

    The quantum Liouville equation in the Wigner representation is solved numerically by using Monte Carlo methods. For incremental time steps, the propagation is implemented as a classical evolution in phase space modified by a quantum correction. The correction, which is a momentum jump function, is simulated in the quasi-classical approximation via a stochastic process. The technique, which is developed and validated in two- and three- dimensional momentum space, extends an earlier one-dimensional work. Also, by developing a new algorithm, the application to bound state motion in an anharmonic quartic potential shows better agreement with exact solutions in two-dimensional phase space.

  19. Quantum Locality?

    NASA Astrophysics Data System (ADS)

    Stapp, Henry P.

    2012-05-01

    Robert Griffiths has recently addressed, within the framework of a `consistent quantum theory' that he has developed, the issue of whether, as is often claimed, quantum mechanics entails a need for faster-than-light transfers of information over long distances. He argues that the putative proofs of this property that involve hidden variables include in their premises some essentially classical-physics-type assumptions that are not entailed by the precepts of quantum mechanics. Thus whatever is proved is not a feature of quantum mechanics, but is a property of a theory that tries to combine quantum theory with quasi-classical features that go beyond what is entailed by quantum theory itself. One cannot logically prove properties of a system by establishing, instead, properties of a system modified by adding properties alien to the original system. Hence Griffiths' rejection of hidden-variable-based proofs is logically warranted. Griffiths mentions the existence of a certain alternative proof that does not involve hidden variables, and that uses only macroscopically described observable properties. He notes that he had examined in his book proofs of this general kind, and concluded that they provide no evidence for nonlocal influences. But he did not examine the particular proof that he cites. An examination of that particular proof by the method specified by his `consistent quantum theory' shows that the cited proof is valid within that restrictive version of quantum theory. An added section responds to Griffiths' reply, which cites general possibilities of ambiguities that might make what is to be proved ill-defined, and hence render the pertinent `consistent framework' ill defined. But the vagaries that he cites do not upset the proof in question, which, both by its physical formulation and by explicit identification, specify the framework to be used. Griffiths confirms the validity of the proof insofar as that pertinent framework is used. The section also shows

  20. Transport through quantum rings

    NASA Astrophysics Data System (ADS)

    António, B. A. Z.; Lopes, A. A.; Dias, R. G.

    2013-07-01

    The transport of fermions through nanocircuits plays a major role in mesoscopic physics. Exploring the analogy with classical wave scattering, basic notions of nanoscale transport can be explained in a simple way, even at the level of undergraduate solid state physics courses, and more so if these explanations are supported by numerical simulations of these nanocircuits. This paper presents a simple tight-binding method for the study of the conductance of quantum nanorings connected to one-dimensional leads. We show how to address the effects of applied magnetic and electric fields and illustrate concepts such as Aharonov-Bohm conductance oscillations, resonant tunneling and destructive interference.

  1. Heat conduction in conducting polyaniline nanofibers

    NASA Astrophysics Data System (ADS)

    Nath, Chandrani; Kumar, A.; Syu, K.-Z.; Kuo, Y.-K.

    2013-09-01

    Thermal conductivity and specific heat of conducting polyaniline nanofibers are measured to identify the nature of heat carrying modes combined with their inhomogeneous structure. The low temperature thermal conductivity results reveal crystalline nature while the high temperature data confirm the amorphous nature of the material suggesting heterogeneous model for conducting polyaniline. Extended acoustic phonons dominate the low temperature (<100 K) heat conduction, while localized optical phonons hopping, assisted by the extended acoustic modes, account for the high temperature (>100 K) heat conduction.

  2. Quantum correlations and distinguishability of quantum states

    SciTech Connect

    Spehner, Dominique

    2014-07-15

    A survey of various concepts in quantum information is given, with a main emphasis on the distinguishability of quantum states and quantum correlations. Covered topics include generalized and least square measurements, state discrimination, quantum relative entropies, the Bures distance on the set of quantum states, the quantum Fisher information, the quantum Chernoff bound, bipartite entanglement, the quantum discord, and geometrical measures of quantum correlations. The article is intended both for physicists interested not only by collections of results but also by the mathematical methods justifying them, and for mathematicians looking for an up-to-date introductory course on these subjects, which are mainly developed in the physics literature.

  3. Quantum Anomalous Hall Effect in Hg_1-yMn_yTe Quantum Wells

    SciTech Connect

    Liu, Chao-Xing; Qi, Xiao-Liang; Dai, Xi; Fang, Zhong; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    The quantum Hall effect is usually observed when the two-dimensional electron gas is subjected to an external magnetic field, so that their quantum states form Landau levels. In this work we predict that a new phenomenon, the quantum anomalous Hall effect, can be realized in Hg{sub 1-y}Mn{sub y}Te quantum wells, without the external magnetic field and the associated Landau levels. This effect arises purely from the spin polarization of the Mn atoms, and the quantized Hall conductance is predicted for a range of quantum well thickness and the concentration of the Mn atoms. This effect enables dissipationless charge current in spintronics devices.

  4. Quantum Particles From Quantum Information

    NASA Astrophysics Data System (ADS)

    Görnitz, T.; Schomäcker, U.

    2012-08-01

    Many problems in modern physics demonstrate that for a fundamental entity a more general conception than quantum particles or quantum fields are necessary. These concepts cannot explain the phenomena of dark energy or the mind-body-interaction. Instead of any kind of "small elementary building bricks", the Protyposis, an abstract and absolute quantum information, free of special denotation and open for some purport, gives the solution in the search for a fundamental substance. However, as long as at least relativistic particles are not constructed from the Protyposis, such an idea would remain in the range of natural philosophy. Therefore, the construction of relativistic particles without and with rest mass from quantum information is shown.

  5. Quantum transport in Sierpinski carpets

    NASA Astrophysics Data System (ADS)

    van Veen, Edo; Yuan, Shengjun; Katsnelson, Mikhail I.; Polini, Marco; Tomadin, Andrea

    2016-03-01

    Recent progress in the design and fabrication of artificial two-dimensional (2D) materials paves the way for the experimental realization of electron systems moving on complex geometries, such as plane fractals. In this work, we calculate the quantum conductance of a 2D electron gas roaming on a Sierpinski carpet (SC), i.e., a plane fractal with Hausdorff dimension intermediate between 1 and 2. We find that the fluctuations of the quantum conductance are a function of energy with a fractal graph, whose dimension can be chosen by changing the geometry of the SC. This behavior is independent of the underlying lattice geometry.

  6. Step by Step to Smoke-Free Schools.

    ERIC Educational Resources Information Center

    VanSciver, James H.; Roberts, H. Earl

    1989-01-01

    This ERIC digest discusses ways of effectively banning smoking in schools so that controversies do not continue after implementation of the policy. By advocating a process approach, the document cites steps taken by the Lake Forest School Board to prohibit smoking in and around school grounds. Step one involved committee planning involving…

  7. Step-By-Step Professional Development in Technology

    ERIC Educational Resources Information Center

    Meltzer, Sarah T.

    2012-01-01

    Don't train your teachers in instructional technology without reading this resource-packed book from Sarah T. Meltzer. Meltzer presents easy-to-follow guidelines for bringing about effective professional development in technology from start to finish. She takes you step-by-step through the process of planning, implementing, and managing…

  8. Step-by-Step Visual Manuals: Design and Development

    ERIC Educational Resources Information Center

    Urata, Toshiyuki

    2004-01-01

    The types of handouts and manuals that are used in technology training vary. Some describe procedures in a narrative way without graphics; some employ step-by-step instructions with screen captures. According to Thirlway (1994), a training manual should be like a tutor that permits a student to learn at his own pace and gives him confidence for…

  9. Preface, Soil Science: A step-by-step analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book provides step-by-step procedures for soil professionals, without a lot of background theory. Chapters are targeted toward agricultural and environmental consultants, producers, students, teachers, government, and industry. Applied soil scientists gave input through a survey, which guided t...

  10. Leading Change Step-by-Step: Tactics, Tools, and Tales

    ERIC Educational Resources Information Center

    Spiro, Jody

    2010-01-01

    "Leading Change Step-by-Step" offers a comprehensive and tactical guide for change leaders. Spiro's approach has been field-tested for more than a decade and proven effective in a wide variety of public sector organizations including K-12 schools, universities, international agencies and non-profits. The book is filled with proven tactics for…

  11. Conducting polyaniline nanowire electrode junction

    NASA Astrophysics Data System (ADS)

    Gaikwad, Sumedh; Bodkhe, Gajanan; Deshmukh, Megha; Patil, Harshada; Rushi, Arti; Shirsat, Mahendra D.; Koinkar, Pankaj; Kim, Yun-Hae; Mulchandani, Ashok

    2015-03-01

    In this paper, a synthesis of conducting polyaniline nanowires electrode junction (CPNEJ) has been reported. Conducting polyaniline nanowires electrode junction on Si/SiO2 substrate (having 3 μm gap between two gold microelectrodes) is prepared. Polyaniline nanowires with diameter (ca. 140 nm to 160 nm) were synthesized by one step electrochemical polymerization using galvanostatic (constant current) technique to bridge this gap. The surface morphology of CPNEJ was studied by scanning electron microscope (SEM). The synthesized CPNEJ is an excellent platform for biosensor applications.

  12. Quantum algorithms

    NASA Astrophysics Data System (ADS)

    Abrams, Daniel S.

    This thesis describes several new quantum algorithms. These include a polynomial time algorithm that uses a quantum fast Fourier transform to find eigenvalues and eigenvectors of a Hamiltonian operator, and that can be applied in cases (commonly found in ab initio physics and chemistry problems) for which all known classical algorithms require exponential time. Fast algorithms for simulating many body Fermi systems are also provided in both first and second quantized descriptions. An efficient quantum algorithm for anti-symmetrization is given as well as a detailed discussion of a simulation of the Hubbard model. In addition, quantum algorithms that calculate numerical integrals and various characteristics of stochastic processes are described. Two techniques are given, both of which obtain an exponential speed increase in comparison to the fastest known classical deterministic algorithms and a quadratic speed increase in comparison to classical Monte Carlo (probabilistic) methods. I derive a simpler and slightly faster version of Grover's mean algorithm, show how to apply quantum counting to the problem, develop some variations of these algorithms, and show how both (apparently distinct) approaches can be understood from the same unified framework. Finally, the relationship between physics and computation is explored in some more depth, and it is shown that computational complexity theory depends very sensitively on physical laws. In particular, it is shown that nonlinear quantum mechanics allows for the polynomial time solution of NP-complete and #P oracle problems. Using the Weinberg model as a simple example, the explicit construction of the necessary gates is derived from the underlying physics. Nonlinear quantum algorithms are also presented using Polchinski type nonlinearities which do not allow for superluminal communication. (Copies available exclusively from MIT Libraries, Rm. 14- 0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  13. Feynman's simple quantum mechanics

    NASA Astrophysics Data System (ADS)

    Taylor, Edwin F.

    1997-03-01

    This sample class presents an alternative to the conventional introduction to quantum mechanics and describes its current use in a credit course. This alternative introduction rests on theory presented in professional and popular writings by Richard Feynman. Feynman showed that Nature gives a simple command to the electron: "Explore all paths." All of nonrelativistic quantum mechanics, among other fundamental results, comes from this command. With a desktop computer the student points and clicks to tell a modeled electron which paths to follow. The computer then shows the results, which embody the elemental strangeness and paradoxical behaviors of the world of the very small. Feynman's approach requires few equations and provides a largely non-mathematical introduction to the wave function of conventional quantum mechanics. Draft software and materials already used for two semesters in an e-mail computer conference credit university course show that Feynman's approach works well with a variety of students. The sample class explores computer and written material and describes the next steps in its development.

  14. Introduction to Quantum Simulation

    NASA Technical Reports Server (NTRS)

    Williams, Colin P.

    2005-01-01

    This viewgraph presentation addresses the problem of efficiently simulating the evolution of a quantum system. The contents include: 1) Quantum Simulation; 2) Extracting Answers from Quantum Simulations; 3) Quantum Fourier Transform; 4) Eigenvalue Estimation; 5) Fermionic Simulations.

  15. Quantum Physics for Beginners.

    ERIC Educational Resources Information Center

    Strand, J.

    1981-01-01

    Suggests a new approach for teaching secondary school quantum physics. Reviews traditional approaches and presents some characteristics of the three-part "Quantum Physics for Beginners" project, including: quantum physics, quantum mechanics, and a short historical survey. (SK)

  16. STEP Tether Dynamics Preliminary Analysis

    NASA Technical Reports Server (NTRS)

    Glaese, John R.

    2000-01-01

    The General Tethered Object Simulation System (GTOSS) has been successfully converted to the PC environment. GTOSS has been run under Microsoft Windows 95, 98 and NT4.0 with no problems noted. Adaptation to the PC environment and definition of the 3 three body configuration required resizing some of the GTOSS internal data arrays. To allow studies of the tether dynamics accompanying electrodynamic thrust, a tether current flow model has also been developed for GTOSS. This model includes effects due to the earth's magnetic field and ionosphere, tether conductivity, temperature, motion, shape and available power. Sample cases have been defined for a proposed STEP-AIRSEDS (Space Transfer using Electrodynamic Propulsion-The Michigan Technic Corporation proposed tether missions for commercial applications) three body configuration. This required definition of a 6th power scenario for GTOSS. This power scenario allows a user to specify whether orbit raising or orbit lowering is to be performed by selecting the number of the tether. Orbit raising and orbit lowering sample cases have been run successfully. Results from these runs have been included in this report. Results have only been generated so far for a three body configuration. Only point end masses have been represented. No attitude dynamics have been included. Initial results suggest that tether current can have significant and detrimental effects on tether dynamics and provisions will have to be made for control of it. This control will have to be considered in connection with desired target orbits for electrodynamic thrusting, as well as end body attitude control, momentum management of proposed control moment gyros, solar array pointing. All of these items will interact and thus, any system simulation will have to have each of these effects modeled in sufficient detail to display these interactions.

  17. Quantum Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Schieve, William C.; Horwitz, Lawrence P.

    2009-04-01

    1. Foundations of quantum statistical mechanics; 2. Elementary examples; 3. Quantum statistical master equation; 4. Quantum kinetic equations; 5. Quantum irreversibility; 6. Entropy and dissipation: the microscopic theory; 7. Global equilibrium: thermostatics and the microcanonical ensemble; 8. Bose-Einstein ideal gas condensation; 9. Scaling, renormalization and the Ising model; 10. Relativistic covariant statistical mechanics of many particles; 11. Quantum optics and damping; 12. Entanglements; 13. Quantum measurement and irreversibility; 14. Quantum Langevin equation: quantum Brownian motion; 15. Linear response: fluctuation and dissipation theorems; 16. Time dependent quantum Green's functions; 17. Decay scattering; 18. Quantum statistical mechanics, extended; 19. Quantum transport with tunneling and reservoir ballistic transport; 20. Black hole thermodynamics; Appendix; Index.

  18. Symmetry as a foundational concept in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Ziaeepour, Houri

    2015-07-01

    Symmetries are widely used in modeling quantum systems but they do not contribute in postulates of quantum mechanics. Here we argue that logical, mathematical, and observational evidence require that symmetry should be considered as a fundamental concept in the construction of physical systems. Based on this idea, we propose a series of postulates for describing quantum systems, and establish their relation and correspondence with axioms of standard quantum mechanics. Through some examples we show that this reformulation helps better understand some of ambiguities of standard description. Nonetheless its application is not limited to explaining confusing concept and it may be a necessary step toward a consistent model of quantum cosmology and gravity.

  19. Quantum tomography of an electron

    NASA Astrophysics Data System (ADS)

    Jullien, T.; Roulleau, P.; Roche, B.; Cavanna, A.; Jin, Y.; Glattli, D. C.

    2014-10-01

    The complete knowledge of a quantum state allows the prediction of the probability of all possible measurement outcomes, a crucial step in quantum mechanics. It can be provided by tomographic methods which have been applied to atomic, molecular, spin and photonic states. For optical or microwave photons, standard tomography is obtained by mixing the unknown state with a large-amplitude coherent photon field. However, for fermions such as electrons in condensed matter, this approach is not applicable because fermionic fields are limited to small amplitudes (at most one particle per state), and so far no determination of an electron wavefunction has been made. Recent proposals involving quantum conductors suggest that the wavefunction can be obtained by measuring the time-dependent current of electronic wave interferometers or the current noise of electronic Hanbury-Brown/Twiss interferometers. Here we show that such measurements are possible despite the extreme noise sensitivity required, and present the reconstructed wavefunction quasi-probability, or Wigner distribution function, of single electrons injected into a ballistic conductor. Many identical electrons are prepared in well-controlled quantum states called levitons by repeatedly applying Lorentzian voltage pulses to a contact on the conductor. After passing through an electron beam splitter, the levitons are mixed with a weak-amplitude fermionic field formed by a coherent superposition of electron-hole pairs generated by a small alternating current with a frequency that is a multiple of the voltage pulse frequency. Antibunching of the electrons and holes with the levitons at the beam splitter changes the leviton partition statistics, and the noise variations provide the energy density matrix elements of the levitons. This demonstration of quantum tomography makes the developing field of electron quantum optics with ballistic conductors a new test-bed for quantum information with fermions. These results may

  20. Quantum corrections for a cosmological string solution

    SciTech Connect

    Behrndt, K.

    1994-08-01

    The author investigates quantum corrections for a cosmological solution of the string effective action. Starting point is a classical solution containing an antisymmetric tensor field, a dilaton and a modulus field which has singularities in the scalar fields. As a first step he quantizes the scalar fields near the singularity with the result that the singularities disappear and that in general non-perturbative quantum corrections form a potential in the scalar fields.

  1. Schmidt-number benchmarks for continuous-variable quantum devices

    NASA Astrophysics Data System (ADS)

    Namiki, Ryo

    2016-05-01

    We present quantum fidelity benchmarks for continuous-variable (CV) quantum devices to outperform quantum channels which can transmit at most k -dimensional coherences for positive integers k . We determine an upper bound of an average fidelity over Gaussian distributed coherent states for quantum channels whose Schmidt class is k . This settles fundamental fidelity steps where the known classical limit and quantum limit correspond to the two end points of k =1 and k =∞ , respectively. It turns out that the average fidelity is useful to verify to what extent an experimental CV gate can transmit a high-dimensional coherence. The result is further extended to be applicable to general quantum operations or stochastic quantum channels. Although the fidelity is often associated with heterodyne measurements in quantum optics, we can also obtain similar criteria based on quadrature deviations determined via homodyne measurements.

  2. Quantum walk coherences on a dynamical percolation graph

    NASA Astrophysics Data System (ADS)

    Elster, Fabian; Barkhofen, Sonja; Nitsche, Thomas; Novotný, Jaroslav; Gábris, Aurél; Jex, Igor; Silberhorn, Christine

    2015-08-01

    Coherent evolution governs the behaviour of all quantum systems, but in nature it is often subjected to influence of a classical environment. For analysing quantum transport phenomena quantum walks emerge as suitable model systems. In particular, quantum walks on percolation structures constitute an attractive platform for studying open system dynamics of random media. Here, we present an implementation of quantum walks differing from the previous experiments by achieving dynamical control of the underlying graph structure. We demonstrate the evolution of an optical time-multiplexed quantum walk over six double steps, revealing the intricate interplay between the internal and external degrees of freedom. The observation of clear non-Markovian signatures in the coin space testifies the high coherence of the implementation and the extraordinary degree of control of all system parameters. Our work is the proof-of-principle experiment of a quantum walk on a dynamical percolation graph, paving the way towards complex simulation of quantum transport in random media.

  3. Grief: Difficult Times, Simple Steps.

    ERIC Educational Resources Information Center

    Waszak, Emily Lane

    This guide presents techniques to assist others in coping with the loss of a loved one. Using the language of 9 layperson, the book contains more than 100 tips for caregivers or loved ones. A simple step is presented on each page, followed by reasons and instructions for each step. Chapters include: "What to Say"; "Helpful Things to Do"; "Dealing…

  4. Physical modeling of stepped spillways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stepped spillways applied to embankment dams are becoming popular for addressing the rehabilitation of aging watershed dams, especially those situated in the urban landscape. Stepped spillways are typically placed over the existing embankment, which provides for minimal disturbance to the original ...

  5. Quantum walk computation

    SciTech Connect

    Kendon, Viv

    2014-12-04

    Quantum versions of random walks have diverse applications that are motivating experimental implementations as well as theoretical studies. Recent results showing quantum walks are “universal for quantum computation” relate to algorithms, to be run on quantum computers. We consider whether an experimental implementation of a quantum walk could provide useful computation before we have a universal quantum computer.

  6. Leidenfrost Drop on a Step

    NASA Astrophysics Data System (ADS)

    Lagubeau, Guillaume; Le Merrer, Marie; Clanet, Christophe; Quere, David

    2008-11-01

    When deposited on a hot plate, a water droplet evaporates quickly. However, a vapor film appears under the drop above a critical temperature, called Leidenfrost temperature, which insulates the drop from its substrate. Linke & al (2006) reported a spontaneous movement of such a drop, when deposited on a ratchet. We study here the case of a flat substrate decorated with a single micrometric step. The drop is deposited on the lower part of the plate and pushed towards the step at small constant velocity. If the kinetic energy of the drop is sufficient, it can climb up the step. In that case, depending on the substrate temperature, the drop can either be decelerated or accelerated by the step. We try to understand the dynamics of these drops, especially the regime where they accelerate. Taking advantage of this phenomenon, we could then build a multiple-step setup, making it possible for a Leidenfrost drop to climb stairs.

  7. Quantum Cryptography

    NASA Astrophysics Data System (ADS)

    Bruß, D.; Meyer, T.

    The Greek words "kryptos" ≡ "hidden" and "logos" ≡ "word" are the etymological sources for "cryptology," the science of secure communication. Within cryptology, one distinguishes cryptography (or "code-making") and cryptanalysis (or "code-breaking"). The aim of cryptography is to ensure secret or "secure" communication between a sender, traditionally called Alice, and a receiver, called Bob. The encryption and decryption of a so-called plain text into a cipher text and back is achieved using a certain key (not necessarily the same for Alice and Bob), as illustrated in Fig. 1. Here, "secure" means that an eavesdropper, called Eve, has no information on the message. In this chapter we will show that in classical cryptography (using classical signals), security relies on the assumed difficulty to solve certain mathematical tasks, whereas in quantum cryptography (using quantum signals), security arises from the laws of quantum physics.

  8. Quantum spirals

    NASA Astrophysics Data System (ADS)

    Yoshida, Z.; Mahajan, S. M.

    2016-02-01

    Quantum systems often exhibit fundamental incapability to entertain vortex. The Meissner effect, a complete expulsion of the magnetic field (the electromagnetic vorticity), for instance, is taken to be the defining attribute of the superconducting state. Superfluidity is another, close-parallel example; fluid vorticity can reside only on topological defects with a limited (quantized) amount. Recent developments in the Bose-Einstein condensates produced by particle traps further emphasize this characteristic. We show that the challenge of imparting vorticity to a quantum fluid can be met through a nonlinear mechanism operating in a hot fluid corresponding to a thermally modified Pauli-Schrödinger spinor field. The thermal baroclinic effect is represented by a nonlinear, non-Hermitian Hamiltonian, which, in conjunction with spin vorticity, leads to new interesting quantum states; a spiral solution is explicitly worked out in a simple field-free model.

  9. High-fidelity continuous-variable quantum teleportation toward multistep quantum operations

    SciTech Connect

    Yukawa, Mitsuyoshi; Furusawa, Akira; Benichi, Hugo

    2008-02-15

    The progress in quantum operations of continuous-variable (CV) schemes can be reduced to that in CV quantum teleportation. The fidelity of quantum teleportation of an optical setup is limited by the finite degree of quantum correlation that can be prepared with a pair of finitely squeezed states. Reports of improvement of squeezing level have appeared recently, and we adopted the improved methods in our experimental system of quantum teleportation. As a result, we teleported a coherent state with a fidelity F=0.83{+-}0.01, which is better than any other figures reported to date, to our knowledge. In this paper, we introduce a measure n{sub s}, the number of teleportations expected to be carried out sequentially. Our result corresponds to n{sub s}=5.0{+-}0.4. It suggests that our improvement would enable us to proceed toward more advanced quantum operations involving multiple steps.

  10. Discrete-time quantum walk with feed-forward quantum coin

    PubMed Central

    Shikano, Yutaka; Wada, Tatsuaki; Horikawa, Junsei

    2014-01-01

    Constructing a discrete model like a cellular automaton is a powerful method for understanding various dynamical systems. However, the relationship between the discrete model and its continuous analogue is, in general, nontrivial. As a quantum-mechanical cellular automaton, a discrete-time quantum walk is defined to include various quantum dynamical behavior. Here we generalize a discrete-time quantum walk on a line into the feed-forward quantum coin model, which depends on the coin state of the previous step. We show that our proposed model has an anomalous slow diffusion characterized by the porous-medium equation, while the conventional discrete-time quantum walk model shows ballistic transport. PMID:24651053

  11. Electrochemical Fabrication of Metallic Quantum Wires

    ERIC Educational Resources Information Center

    Tao, Nongjian

    2005-01-01

    The fabrication of metallic quantum wires using simple electrochemical techniques is described. The conductance of the system can be readily measured that allows one to constantly monitor the conductance during fabrication and use conductance quantization as a signature to guide the fabrication.

  12. Incoherent control of locally controllable quantum systems

    SciTech Connect

    Dong Daoyi; Zhang Chenbin; Rabitz, Herschel; Pechen, Alexander; Tarn, T.-J.

    2008-10-21

    An incoherent control scheme for state control of locally controllable quantum systems is proposed. This scheme includes three steps: (1) amplitude amplification of the initial state by a suitable unitary transformation, (2) projective measurement of the amplified state, and (3) final optimization by a unitary controlled transformation. The first step increases the amplitudes of some desired eigenstates and the corresponding probability of observing these eigenstates, the second step projects, with high probability, the amplified state into a desired eigenstate, and the last step steers this eigenstate into the target state. Within this scheme, two control algorithms are presented for two classes of quantum systems. As an example, the incoherent control scheme is applied to the control of a hydrogen atom by an external field. The results support the suggestion that projective measurements can serve as an effective control and local controllability information can be used to design control laws for quantum systems. Thus, this scheme establishes a subtle connection between control design and controllability analysis of quantum systems and provides an effective engineering approach in controlling quantum systems with partial controllability information.

  13. Quantum diffusion

    SciTech Connect

    Habib, S.

    1994-10-01

    We consider a simple quantum system subjected to a classical random force. Under certain conditions it is shown that the noise-averaged Wigner function of the system follows an integro-differential stochastic Liouville equation. In the simple case of polynomial noise-couplings this equation reduces to a generalized Fokker-Planck form. With nonlinear noise injection new ``quantum diffusion`` terms rise that have no counterpart in the classical case. Two special examples that are not of a Fokker-Planck form are discussed: the first with a localized noise source and the other with a spatially modulated noise source.

  14. Quantum Uniqueness

    NASA Astrophysics Data System (ADS)

    Sych, Denis; Leuchs, Gerd

    2015-12-01

    Classical physics allows for the existence of pairs of absolutely identical systems. Pairwise application of identical measurements to each of those systems always leads to exactly alike results irrespectively of the choice of measurements. Here we ask a question how the picture looks like in the quantum domain. Surprisingly, we get a counterintuitive outcome. Pairwise application of identical (but a priori unknown) measurements cannot always lead to exactly alike results. We interpret this as quantum uniqueness—a feature that has no classical analog.

  15. Quantum Foam

    SciTech Connect

    Lincoln, Don

    2014-10-24

    The laws of quantum mechanics and relativity are quite perplexing however it is when the two theories are merged that things get really confusing. This combined theory predicts that empty space isn’t empty at all – it’s a seething and bubbling cauldron of matter and antimatter particles springing into existence before disappearing back into nothingness. Scientists call this complicated state of affairs “quantum foam.” In this video, Fermilab’s Dr. Don Lincoln discusses this mind-bending idea and sketches some of the experiments that have convinced scientists that this crazy prediction is actually true.

  16. Quantum Finance

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.

    2007-09-01

    Foreword; Preface; Acknowledgements; 1. Synopsis; Part I. Fundamental Concepts of Finance: 2. Introduction to finance; 3. Derivative securities; Part II. Systems with Finite Number of Degrees of Freedom: 4. Hamiltonians and stock options; 5. Path integrals and stock options; 6. Stochastic interest rates' Hamiltonians and path integrals; Part III. Quantum Field Theory of Interest Rates Models: 7. Quantum field theory of forward interest rates; 8. Empirical forward interest rates and field theory models; 9. Field theory of Treasury Bonds' derivatives and hedging; 10. Field theory Hamiltonian of forward interest rates; 11. Conclusions; Appendix A: mathematical background; Brief glossary of financial terms; Brief glossary of physics terms; List of main symbols; References; Index.

  17. Quantum Computation

    NASA Astrophysics Data System (ADS)

    Ekert, Artur

    1994-08-01

    As computers become faster they must become smaller because of the finiteness of the speed of light. The history of computer technology has involved a sequence of changes from one type of physical realisation to another - from gears to relays to valves to transistors to integrated circuits and so on. Quantum mechanics is already important in the design of microelectronic components. Soon it will be necessary to harness quantum mechanics rather than simply take it into account, and at that point it will be possible to give data processing devices new functionality.

  18. Quantum Fokker-Planck-Kramers equation and entropy production

    NASA Astrophysics Data System (ADS)

    de Oliveira, Mário J.

    2016-07-01

    We use a canonical quantization procedure to set up a quantum Fokker-Planck-Kramers equation that accounts for quantum dissipation in a thermal environment. The dissipation term is chosen to ensure that the thermodynamic equilibrium is described by the Gibbs state. An expression for the quantum entropy production that properly describes quantum systems in a nonequilibrium stationary state is also provided. The time-dependent solution is given for a quantum harmonic oscillator in contact with a heat bath. We also obtain the stationary solution for a system of two coupled harmonic oscillators in contact with reservoirs at distinct temperatures, from which we obtain the entropy production and the quantum thermal conductance.

  19. Spontaneous Quantum Hall Liquids

    NASA Astrophysics Data System (ADS)

    Zhang, Fan

    2012-02-01

    Driven by electron-electron interactions, bilayer graphene and its thicker cousins, chirally (ABC) stacked multilayers, exhibit a variety of distinct broken symmetry states in which each spin-valley flavor spontaneously transfers charge between layers, because of their flat touching bands and large pseudospin chiralities. These gapped states are accompanied by large momentum space Berry curvatures and different types of topological orders. These competing ground states are distinguished by their flavor Hall conductivities, orbital magnetizations, edge state properties, and response to external fields. These spontaneous quantum Hall (SQH) states at zero field smoothly evolve into quantum Hall ferromagnet states at finite field. Various phase transitions occur by tuning carrier densities, temperature, and external fields. Recently, SQH states have started to be observed and explored in transport and Hall experiments on suspended devices with dual gates.

  20. Moderators and mediators of pedometer use and step count increase in the "10,000 Steps Ghent" intervention

    PubMed Central

    De Cocker, Katrien; De Bourdeaudhuij, Ilse; Brown, Wendy; Cardon, Greet

    2009-01-01

    Background The European pedometer-based "10,000 Steps Ghent" whole community intervention for 228,000 residents was found to be effective in increasing step counts by an average of 896 steps/day in a sub-sample of adults. The present study aimed to examine the characteristics of intervention participants (n = 438) who (1) used a pedometer and (2) increased their step counts. Additionally, the third aim was to examine the mediational effect of pedometer use on step count change. Methods The study sample consisted of 438 adults (207 male, mean age 49.8 (13.1) years). Binary logistic regressions were used to examine whether individual characteristics (gender, age, educational level, employment status, self-reported health condition, baseline step counts, baseline sitting time, baseline transport-related PA) and intervention exposure variables (having heard/seen a PA promotion message, being aware of the PA guidelines, and knowing about "10,000 Steps Ghent") were associated with (1) pedometer use and (2) a step count increase of 896 steps/day or more. Using pooled data (n = 864) from the intervention and comparison participants, a mediation analysis was conducted to see if the change in step counts was mediated by pedometer use. Results Age (49 years or more: OR = 3.19, p < 0.005), awareness of a PA promotion message (OR = 2.62, p < 0.01) and awareness of "10,000 Steps Ghent" (OR = 2.11, p < 0.05) were significantly associated with pedometer use. Participants with a college or university degree (OR = 1.55, p < 0.05) and those who used a pedometer (OR = 2.06, p < 0.05) were more likely to increase their steps by 896 steps/day or more. This increase was less likely among those with baseline step counts above 10,000 steps/day (OR = 0.38, p < 0.001). The mediation analysis revealed that pedometer use partly mediated step count change. Conclusion Pedometer use was more likely in older participants and in those who were aware of the "10,000 Steps" campaign. Increasing step