Science.gov

Sample records for quantum confinement vi

  1. Strong confinement effects in CdTe/MnTe quantum wells: A new strained layer binary II VI heterostructure

    NASA Astrophysics Data System (ADS)

    Fu, Q.; Pelekanos, N.; Nurmikko, A. V.; Durbin, S.; Han, J.; Sungki, O.; Menke, D.; Kobayashi, M.; Gunshor, R. L.

    1990-04-01

    A range of optical studies have been carried out on a series of single quantum wells of CdTe/MnTe. The structures appear to be nearly pseudomorphic and show evidence for robust electron-hole confinement. Exciton states have been characterized in terms of lifetime and coupling to optical phonons.

  2. Spectroscopy of CdTe/MnTe single quantum wells: A strained-layer II-VI heterostructure with strong electronic confinement

    NASA Astrophysics Data System (ADS)

    Pelekanos, N.; Fu, Q.; Ding, J.; Wałecki, W.; Nurmikko, A. V.; Durbin, S. M.; Han, J.; Kobayashi, M.; Gunshor, R. L.

    1990-05-01

    A range of optical studies has been carried out on a series of single quantum wells of CdTe/MnTe. The structures appear to be nearly pseudomorphic and show evidence for very effective electron-hole confinement. For thin quantum-well layers, efficient low-temperature photoluminescence up to yellow-green photon energies has been obtained. Coupling of excitons to longitudinal-optical phonons has also been measured.

  3. Comparison of quantum confinement effects between quantum wires and dots

    SciTech Connect

    Li, Jingbo; Wang, Lin-Wang

    2004-03-30

    Dimensionality is an important factor to govern the electronic structures of semiconductor nanocrystals. The quantum confinement energies in one-dimensional quantum wires and zero-dimensional quantum dots are quite different. Using large-scale first-principles calculations, we systematically study the electronic structures of semiconductor (including group IV, III-V, and II-VI) surface-passivated quantum wires and dots. The band-gap energies of quantum wires and dots have the same scaling with diameter for a given material. The ratio of band-gap-increases between quantum wires and dots is material-dependent, and slightly deviates from 0.586 predicted by effective-mass approximation. Highly linear polarization of photoluminescence in quantum wires is found. The degree of polarization decreases with the increasing temperature and size.

  4. Einstein's Photoemission from Quantum Confined Superlattices.

    PubMed

    Debbarma, S; Ghatak, K P

    2016-01-01

    This paper is dedicated to the 83th Birthday of Late Professor B. R. Nag, D.Sc., formerly Head of the Departments of Radio Physics and Electronics and Electronic Science of the University of Calcutta, a firm believer of the concept of theoretical minimum of Landau and an internationally well known semiconductor physicist, to whom the second author remains ever grateful as a student and research worker from 1974-2004. In this paper, an attempt is made to study, the Einstein's photoemission (EP) from III-V, II-VI, IV-VI, HgTe/CdTe and strained layer quantum well heavily doped superlattices (QWHDSLs) with graded interfaces in the presence of quantizing magnetic field on the basis of newly formulated electron dispersion relations within the frame work of k · p formalism. The EP from III-V, II-VI, IV-VI, HgTe/CdTe and strained layer quantum wells of heavily doped effective mass superlattices respectively has been presented under magnetic quantization. Besides the said emissions, from the quantum dots of the aforementioned heavily doped SLs have further investigated for the purpose of comparison and complete investigation in the context of EP from quantum confined superlattices. Using appropriate SLs, it appears that the EP increases with increasing surface electron concentration and decreasing film thickness in spiky manners, which are the characteristic features of such quantized hetero structures. Under magnetic quantization, the EP oscillates with inverse quantizing magnetic field due to Shuvnikov-de Haas effect. The EP increases with increasing photo energy in a step-like manner and the numerical values of EP with all the physical variables are totally band structure dependent for all the cases. The most striking features are that the presence of poles in the dispersion relation of the materials in the absence of band tails create the complex energy spectra in the corresponding HD constituent materials of such quantum confined superlattices and effective electron

  5. A Review of Quantum Confinement

    SciTech Connect

    Connerade, Jean-Patrick

    2009-12-03

    A succinct history of the Confined Atom problem is presented. The hydrogen atom confined to the centre of an impenetrable sphere counts amongst the exactly soluble problems of physics, alongside much more noted exact solutions such as Black Body Radiation and the free Hydrogen atom in absence of any radiation field. It shares with them the disadvantage of being an idealisation, while at the same time encapsulating in a simple way particular aspects of physical reality. The problem was first formulated by Sommerfeld and Welker - henceforth cited as SW - in connection with the behaviour of atoms at very high pressures, and the solution was published on the occasion of Pauli's 60th birthday celebration. At the time, it seemed that there was not much other connection with physical reality beyond a few simple aspects connected to the properties of atoms in solids, for which more appropriate models were soon developed. Thus, confined atoms attracted little attention until the advent of the metallofullerene, which provided the first example of a confined atom with properties quite closely related to those originally considered by SW. Since then, the problem has received much more attention, and many more new features of quantum confinement, quantum compression, the quantum Faraday cage, electronic reorganisation, cavity resonances, etc have been described, which are relevant to real systems. Also, a number of other situations have been uncovered experimentally to which quantum confinement is relevant. Thus, studies of the confined atom are now more numerous, and have been extended both in terms of the models used and the systems to which they can be applied. Connections to thermodynamics are explored through the properties of a confined two-level atom adapted from Einstein's celebrated model, and issues of dynamical screening of electromagnetic radiation by the confining shell are discussed in connection with the Faraday cage produced by a confining conducting shell. The

  6. CORRELATIONS IN CONFINED QUANTUM PLASMAS

    SciTech Connect

    DUFTY J W

    2012-01-11

    This is the final report for the project 'Correlations in Confined Quantum Plasmas', NSF-DOE Partnership Grant DE FG02 07ER54946, 8/1/2007 - 7/30/2010. The research was performed in collaboration with a group at Christian Albrechts University (CAU), Kiel, Germany. That collaboration, almost 15 years old, was formalized during the past four years under this NSF-DOE Partnership Grant to support graduate students at the two institutions and to facilitate frequent exchange visits. The research was focused on exploring the frontiers of charged particle physics evolving from new experimental access to unusual states associated with confinement. Particular attention was paid to combined effects of quantum mechanics and confinement. A suite of analytical and numerical tools tailored to the specific inquiry has been developed and employed

  7. Electronic quantum confinement in cylindrical potential well

    NASA Astrophysics Data System (ADS)

    Baltenkov, Arkadiy S.; Msezane, Alfred Z.

    2016-04-01

    The effects of quantum confinement on the momentum distribution of electrons confined within a cylindrical potential well have been analyzed. The motivation is to understand specific features of the momentum distribution of electrons when the electron behavior is completely controlled by the parameters of a non-isotropic potential cavity. It is shown that studying the solutions of the wave equation for an electron confined in a cylindrical potential well offers the possibility to analyze the confinement behavior of an electron executing one- or two-dimensional motion in the three-dimensional space within the framework of the same mathematical model. Some low-lying electronic states with different symmetries have been considered and the corresponding wave functions have been calculated; the behavior of their nodes and their peak positions with respect to the parameters of the cylindrical well has been analyzed. Additionally, the momentum distributions of electrons in these states have been calculated. The limiting cases of the ratio of the cylinder length H and its radius R0 have been considered; when the cylinder length H significantly exceeds its radius R0 and when the cylinder radius is much greater than its length. The cylindrical quantum confinement effects on the momentum distribution of electrons in these potential wells have been analyzed. The possible application of the results obtained here for the description of the general features in the behavior of electrons in nanowires with metallic type of conductivity (or nanotubes) and ultrathin epitaxial films (or graphene sheets) are discussed. Possible experiments are suggested where the quantum confinement can be manifested. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.

  8. Confinement of Fractional Quantum Hall States

    NASA Astrophysics Data System (ADS)

    Willett, Robert; Manfra, Michael; West, Ken; Pfeiffer, Loren

    2008-03-01

    Confinement of small-gapped fractional quantum Hall states facilitates quasiparticle manipulation and is an important step towards quasiparticle interference measurements. Demonstrated here is conduction through top gate defined, narrow channels in high density, ultra-high mobility heterostructures. Transport evidence for the persistence of a correlated state at filling fraction 5/3 is shown in channels of 2μm length but gated to near 0.3μm in width. The methods employed to achieve this confinement hold promise for interference devices proposed for studying potential non-Abelian statistics at filling fraction 5/2. R.L. Willett, M.J. Manfra, L.N. Pfeiffer, K.W. West, Appl. Phys. Lett. 91, 052105 (2007).

  9. Using Quantum Confinement to Uniquely Identify Devices

    PubMed Central

    Roberts, J.; Bagci, I. E.; Zawawi, M. A. M.; Sexton, J.; Hulbert, N.; Noori, Y. J.; Young, M. P.; Woodhead, C. S.; Missous, M.; Migliorato, M. A.; Roedig, U.; Young, R. J.

    2015-01-01

    Modern technology unintentionally provides resources that enable the trust of everyday interactions to be undermined. Some authentication schemes address this issue using devices that give a unique output in response to a challenge. These signatures are generated by hard-to-predict physical responses derived from structural characteristics, which lend themselves to two different architectures, known as unique objects (UNOs) and physically unclonable functions (PUFs). The classical design of UNOs and PUFs limits their size and, in some cases, their security. Here we show that quantum confinement lends itself to the provision of unique identities at the nanoscale, by using fluctuations in tunnelling measurements through quantum wells in resonant tunnelling diodes (RTDs). This provides an uncomplicated measurement of identity without conventional resource limitations whilst providing robust security. The confined energy levels are highly sensitive to the specific nanostructure within each RTD, resulting in a distinct tunnelling spectrum for every device, as they contain a unique and unpredictable structure that is presently impossible to clone. This new class of authentication device operates with minimal resources in simple electronic structures above room temperature. PMID:26553435

  10. Using Quantum Confinement to Uniquely Identify Devices.

    PubMed

    Roberts, J; Bagci, I E; Zawawi, M A M; Sexton, J; Hulbert, N; Noori, Y J; Young, M P; Woodhead, C S; Missous, M; Migliorato, M A; Roedig, U; Young, R J

    2015-01-01

    Modern technology unintentionally provides resources that enable the trust of everyday interactions to be undermined. Some authentication schemes address this issue using devices that give a unique output in response to a challenge. These signatures are generated by hard-to-predict physical responses derived from structural characteristics, which lend themselves to two different architectures, known as unique objects (UNOs) and physically unclonable functions (PUFs). The classical design of UNOs and PUFs limits their size and, in some cases, their security. Here we show that quantum confinement lends itself to the provision of unique identities at the nanoscale, by using fluctuations in tunnelling measurements through quantum wells in resonant tunnelling diodes (RTDs). This provides an uncomplicated measurement of identity without conventional resource limitations whilst providing robust security. The confined energy levels are highly sensitive to the specific nanostructure within each RTD, resulting in a distinct tunnelling spectrum for every device, as they contain a unique and unpredictable structure that is presently impossible to clone. This new class of authentication device operates with minimal resources in simple electronic structures above room temperature. PMID:26553435

  11. Using Quantum Confinement to Uniquely Identify Devices

    NASA Astrophysics Data System (ADS)

    Roberts, J.; Bagci, I. E.; Zawawi, M. A. M.; Sexton, J.; Hulbert, N.; Noori, Y. J.; Young, M. P.; Woodhead, C. S.; Missous, M.; Migliorato, M. A.; Roedig, U.; Young, R. J.

    2015-11-01

    Modern technology unintentionally provides resources that enable the trust of everyday interactions to be undermined. Some authentication schemes address this issue using devices that give a unique output in response to a challenge. These signatures are generated by hard-to-predict physical responses derived from structural characteristics, which lend themselves to two different architectures, known as unique objects (UNOs) and physically unclonable functions (PUFs). The classical design of UNOs and PUFs limits their size and, in some cases, their security. Here we show that quantum confinement lends itself to the provision of unique identities at the nanoscale, by using fluctuations in tunnelling measurements through quantum wells in resonant tunnelling diodes (RTDs). This provides an uncomplicated measurement of identity without conventional resource limitations whilst providing robust security. The confined energy levels are highly sensitive to the specific nanostructure within each RTD, resulting in a distinct tunnelling spectrum for every device, as they contain a unique and unpredictable structure that is presently impossible to clone. This new class of authentication device operates with minimal resources in simple electronic structures above room temperature.

  12. Quantum confinement in transition metal oxide quantum wells

    SciTech Connect

    Choi, Miri; Lin, Chungwei; Butcher, Matthew; Posadas, Agham B.; Demkov, Alexander A.; Rodriguez, Cesar; Zollner, Stefan; He, Qian; Borisevich, Albina Y.

    2015-05-11

    We report on the quantum confinement in SrTiO{sub 3} (STO) quantum wells (QWs) grown by molecular beam epitaxy. The QW structure consists of LaAlO{sub 3} (LAO) and STO layers grown on LAO substrate. Structures with different QW thicknesses ranging from two to ten unit cells were grown and characterized. Optical properties (complex dielectric function) were measured by spectroscopic ellipsometry in the range of 1.0 eV–6.0 eV at room temperature. We observed that the absorption edge was blue-shifted by approximately 0.39 eV as the STO quantum well thickness was reduced to two unit cells. This demonstrates that the energy level of the first sub-band can be controlled by the QW thickness in a complex oxide material.

  13. Quantum confinement in metal nanofilms: Optical spectra

    NASA Astrophysics Data System (ADS)

    Khmelinskii, Igor; Makarov, Vladimir I.

    2016-05-01

    We report optical absorption and photoluminescence spectra of Au, Fe, Co and Ni polycrystalline nanofilms in the UV-vis-NIR range, featuring discrete bands resulting from transverse quantum confinement. The film thickness ranged from 1.1 to 15.6 nm, depending on the material. The films were deposited on fused silica substrates by sputtering/thermo-evaporation, with Fe, Co and Ni protected by a SiO2 film deposited on top. The results are interpreted within the particle-in-a-box model, with the box width equal to the mass thickness of the nanofilm. The transverse-quantized energy levels and transition energies scale as the inverse square of the film thickness. The calculated values of the effective electron mass are 0.93 (Au), 0.027 (Fe), 0.21 (Co) and 0.16 (Ni), in units of mo - the mass of the free electron, being independent on the film thickness. The uncertainties in the effective mass values are ca. 2.5%, determined by the film thickness calibration. The second calculated model parameter, the quantum number n of the HOMO, was thickness-independent in Au (5.00) and Fe (6.00), and increased with the film thickness in Co (from 7 to 9) and Ni (from 7 to 11). The transitions observed in the absorbance all start at the level n and correspond to Δn=+1, +2, +3, etc. The photoluminescence bands exhibit large Stokes shifts, shifting to higher energies with the increased excitation energy. The photoluminescence quantum yields grow linearly with the excitation energy, showing evidence of multiple exciton generation. A prototype Fe-SnO2 nanofilm photovoltaic cell demonstrated at least 90% quantum yield of photoelectrons at 77 K.

  14. Quantum chromodynamics near the confinement limit

    SciTech Connect

    Quigg, C.

    1985-09-01

    These nine lectures deal at an elementary level with the strong interaction between quarks and its implications for the structure of hadrons. Quarkonium systems are studied as a means for measuring the interquark interaction. This is presumably (part of) the answer a solution to QCD must yield, if it is indeed the correct theory of the strong interactions. Some elements of QCD are reviewed, and metaphors for QCD as a confining theory are introduced. The 1/N expansion is summarized as a way of guessing the consequences of QCD for hadron physics. Lattice gauge theory is developed as a means for going beyond perturbation theory in the solution of QCD. The correspondence between statistical mechanics, quantum mechanics, and field theory is made, and simple spin systems are formulated on the lattice. The lattice analog of local gauge invariance is developed, and analytic methods for solving lattice gauge theory are considered. The strong-coupling expansion indicates the existence of a confining phase, and the renormalization group provides a means for recovering the consequences of continuum field theory. Finally, Monte Carlo simulations of lattice theories give evidence for the phase structure of gauge theories, yield an estimate for the string tension characterizing the interquark force, and provide an approximate description of the quarkonium potential in encouraging good agreement with what is known from experiment.

  15. Quantum-confined CdS nanoparticles on DNA templates

    NASA Astrophysics Data System (ADS)

    Rho, Young Gyu

    As electronic devices became smaller, interest in quantum-confined semiconductor nanostructures increased. Self-assembled mesoscale semiconductor structures of II-VI nanocrystals are an especially exciting subject because of their controllable band gap and unique photophysical properties. Several preparative methods to synthesize and control the sizes of the individual nanocrystallites and the electronic and optical properties have been intensively studied. Fabrication of patterned nanostructures composed of quantum-confined nanoparticles is the next step toward practical applications. We have developed an innovative method to fabricate diverse nanostructures which relies on the size and a shape of a chosen deoxyribonucleic acid (DNA) template. DNA has anionic atoms which can bind transition metal ions such as Znsp{2+},\\ Cdsp{2+} and Hgsp{2+}. The DNA can thus control the location of nanoparticles synthesis. Therefore, diverse nanoscale structures composed of arrays of quantum-confined nanocrystallite can be fabricated on DNA fixed to solid substrates without using complicated and expensive photolithography. Mesoscale arrays of Q-CdS nanostructures were fabricated on pUCLeu4 plasmid and PhiX 174 RF II DNA. These DNAs are double-stranded and in A-form are 2.55 nm in diameter, and 0.85 mum and 1.32 mum long, respectively. The samples were prepared either by dropping Cdsp{2+}/DNA complexes on carbon-coated TEM grids or by floating the grids on Cdsp{2+}/DNA or DNA only solutions. The grids with DNA only were reacted with Cdsp{2+} by dipping the grids into a cadmium solution. The grids were exposed to Hsb2S gas to form the Q-CdS nanoparticle arrays. Various ratios and concentrations of Cdsp{2+}/DNA were examined. Conventional, analytical and high resolution transmission electron microscopy were used to characterize the Q-CdS nanostructures. Absorption and photoluminescence spectroscopies were used for optical characterization. The experimental results demonstrate the

  16. Emergent quantum confinement at topological insulator surfaces

    NASA Astrophysics Data System (ADS)

    Bahramy, M. S.; King, P. D. C.; de la Torre, A.; Chang, J.; Shi, M.; Patthey, L.; Balakrishnan, G.; Hofmann, Ph.; Arita, R.; Nagaosa, N.; Baumberger, F.

    2012-10-01

    Bismuth-chalchogenides are model examples of three-dimensional topological insulators. Their ideal bulk-truncated surface hosts a single spin-helical surface state, which is the simplest possible surface electronic structure allowed by their non-trivial Z2 topology. However, real surfaces of such compounds, even if kept in ultra-high vacuum, rapidly develop a much more complex electronic structure whose origin and properties have proved controversial. Here we demonstrate that a conceptually simple model, implementing a semiconductor-like band bending in a parameter-free tight-binding supercell calculation, can quantitatively explain the entire measured hierarchy of electronic states. In combination with circular dichroism in angle-resolved photoemission experiments, we further uncover a rich three-dimensional spin texture of this surface electronic system, resulting from the non-trivial topology of the bulk band structure. Moreover, our study sheds new light on the surface-bulk connectivity in topological insulators, and reveals how this is modified by quantum confinement.

  17. Gate-defined Quantum Confinement in Suspended Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Allen, Monica

    2013-03-01

    Quantum confined devices in carbon-based materials offer unique possibilities for applications ranging from quantum computation to sensing. In particular, nanostructured carbon is a promising candidate for spin-based quantum computation due to the ability to suppress hyperfine coupling to nuclear spins, a dominant source of spin decoherence. Yet graphene lacks an intrinsic bandgap, which poses a serious challenge for the creation of such devices. We present a novel approach to quantum confinement utilizing tunnel barriers defined by local electric fields that break sublattice symmetry in suspended bilayer graphene. This technique electrostatically confines charges via band structure control, thereby eliminating the edge and substrate disorder that hinders on-chip etched nanostructures to date. We report clean single electron tunneling through gate-defined quantum dots in two regimes: at zero magnetic field using the energy gap induced by a perpendicular electric field and at finite magnetic fields using Landau level confinement. The observed Coulomb blockade periodicity agrees with electrostatic simulations based on local top-gate geometry, a direct demonstration of local control over the band structure of graphene. This technology integrates quantum confinement with pristine device quality and access to vibrational modes, enabling wide applications from electromechanical sensors to quantum bits. More broadly, the ability to externally tailor the graphene bandgap over nanometer scales opens a new unexplored avenue for creating quantum devices.

  18. Correlation studies in weakly confining quantum dot potentials

    NASA Astrophysics Data System (ADS)

    Kimani, Peter; Jones, Preston; Winkler, Peter

    We investigate the electron correlation in few-electron closed-shell atomic systems and similarly in few-electron quantum dots under weak confinement. As usual we start with restricted Hartree-Fock (HF) calculations and add electron correlation in steps in a series of approximations based on the single particle Green's function approach: (i) second-order Green function (GF); (ii) 2ph-Tamm-Dancoff approximation (TDA); and (iii) an extended version thereof which introduces ground-state correlation into the TDA. Our studies exhibit similarities and differences between weakly confined quantum dots and standard atomic systems. The calculations support the application of HF, GF, and TDA techniques in the modeling of three-dimensional quantum dot systems. The observed differences emphasize the significance of confinement and electronic features unique to quantum dots, such as the increased binding of electrons with higher angular momentum and thus - compared to atomic systems - modified shell-filling sequences.

  19. Si quantum dots in silicon nitride: Quantum confinement and defects

    SciTech Connect

    Goncharova, L. V. Karner, V. L.; D'Ortenzio, R.; Chaudhary, S.; Mokry, C. R.; Simpson, P. J.; Nguyen, P. H.

    2015-12-14

    Luminescence of amorphous Si quantum dots (Si QDs) in a hydrogenated silicon nitride (SiN{sub x}:H) matrix was examined over a broad range of stoichiometries from Si{sub 3}N{sub 2.08} to Si{sub 3}N{sub 4.14}, to optimize light emission. Plasma-enhanced chemical vapor deposition was used to deposit hydrogenated SiN{sub x} films with excess Si on Si (001) substrates, with stoichiometry controlled by variation of the gas flow rates of SiH{sub 4} and NH{sub 3} gases. The compositional and optical properties were analyzed by Rutherford backscattering spectroscopy, elastic recoil detection, spectroscopic ellipsometry, photoluminescence (PL), time-resolved PL, and energy-filtered transmission electron microscopy. Ultraviolet-laser-excited PL spectra show multiple emission bands from 400 nm (3.1 eV) to 850 nm (1.45 eV) for different Si{sub 3}N{sub x} compositions. There is a red-shift of the measured peaks from ∼2.3 eV to ∼1.45 eV as Si content increases, which provides evidence for quantum confinement. Higher N content samples show additional peaks in their PL spectra at higher energies, which we attribute to defects. We observed three different ranges of composition where Tauc band gaps, PL, and PL lifetimes change systematically. There is an interesting interplay of defect luminescence and, possibly, small Si QD luminescence observed in the intermediate range of compositions (∼Si{sub 3}N{sub 3.15}) in which the maximum of light emission is observed.

  20. Si quantum dots in silicon nitride: Quantum confinement and defects

    NASA Astrophysics Data System (ADS)

    Goncharova, L. V.; Nguyen, P. H.; Karner, V. L.; D'Ortenzio, R.; Chaudhary, S.; Mokry, C. R.; Simpson, P. J.

    2015-12-01

    Luminescence of amorphous Si quantum dots (Si QDs) in a hydrogenated silicon nitride (SiNx:H) matrix was examined over a broad range of stoichiometries from Si3N2.08 to Si3N4.14, to optimize light emission. Plasma-enhanced chemical vapor deposition was used to deposit hydrogenated SiNx films with excess Si on Si (001) substrates, with stoichiometry controlled by variation of the gas flow rates of SiH4 and NH3 gases. The compositional and optical properties were analyzed by Rutherford backscattering spectroscopy, elastic recoil detection, spectroscopic ellipsometry, photoluminescence (PL), time-resolved PL, and energy-filtered transmission electron microscopy. Ultraviolet-laser-excited PL spectra show multiple emission bands from 400 nm (3.1 eV) to 850 nm (1.45 eV) for different Si3Nx compositions. There is a red-shift of the measured peaks from ˜2.3 eV to ˜1.45 eV as Si content increases, which provides evidence for quantum confinement. Higher N content samples show additional peaks in their PL spectra at higher energies, which we attribute to defects. We observed three different ranges of composition where Tauc band gaps, PL, and PL lifetimes change systematically. There is an interesting interplay of defect luminescence and, possibly, small Si QD luminescence observed in the intermediate range of compositions (˜Si3N3.15) in which the maximum of light emission is observed.

  1. Bench-scale column experiments to study the containment of Cr(VI) in confined aquifers by bio-transformation.

    PubMed

    Shashidhar, T; Philip, Ligy; Murty Bhallamudi, S

    2006-04-17

    Bench-scale soil column experiments were conducted to study the effectiveness of Cr(VI) containment in confined aquifers using in situ bio-transformation. Batch adsorption studies were carried out to estimate the adsorption capacities of two different soils for Cr(VI) and Cr(III). Bio-kinetic parameters were evaluated for the enriched microbial system. The inhibition constant, evaluated using Monod's inhibition model, was found to be 11.46 mg/L of Cr(VI). Transport studies indicated that it would not be possible to contain Cr(VI) by adsorption alone. Transport and bio-transformation studies indicated that the pore velocity and the initial bio-mass concentration significantly affect the containment process. In situ bio-remediation is effective in the case of silty aquifers. Cr(VI) concentration of 25 mg/L was effectively contained within 60 cm of a confined silty aquifer. Cr(VI) containment could be achieved in sandy aquifers when the pore velocity was very low and the initial augmented bio-mass was high. A bio-barrier of approximately one meter width would be able to contain Cr(VI) if the initial Cr(VI) concentration is as much as 25 mg/L. PMID:16263213

  2. Suppression of Quantum Scattering in Strongly Confined Systems

    SciTech Connect

    Kim, J. I.; Melezhik, V. S.; Schmelcher, P.

    2006-11-10

    We demonstrate that scattering of particles strongly interacting in three dimensions (3D) can be suppressed at low energies in a quasi-one-dimensional (1D) confinement. The underlying mechanism is the interference of the s- and p-wave scattering contributions with large s- and p-wave 3D scattering lengths being a necessary prerequisite. This low-dimensional quantum scattering effect might be useful in 'interacting' quasi-1D ultracold atomic gases, guided atom interferometry, and impurity scattering in strongly confined quantum wire-based electronic devices.

  3. Quantum confinement in Si and Ge nanostructures: Theory and experiment

    SciTech Connect

    Barbagiovanni, Eric G.; Lockwood, David J.; Simpson, Peter J.; Goncharova, Lyudmila V.

    2014-03-15

    The role of quantum confinement (QC) in Si and Ge nanostructures (NSs) including quantum dots, quantum wires, and quantum wells is assessed under a wide variety of fabrication methods in terms of both their structural and optical properties. Structural properties include interface states, defect states in a matrix material, and stress, all of which alter the electronic states and hence the measured optical properties. We demonstrate how variations in the fabrication method lead to differences in the NS properties, where the most relevant parameters for each type of fabrication method are highlighted. Si embedded in, or layered between, SiO{sub 2}, and the role of the sub-oxide interface states embodies much of the discussion. Other matrix materials include Si{sub 3}N{sub 4} and Al{sub 2}O{sub 3}. Si NSs exhibit a complicated optical spectrum, because the coupling between the interface states and the confined carriers manifests with varying magnitude depending on the dimension of confinement. Ge NSs do not produce well-defined luminescence due to confined carriers, because of the strong influence from oxygen vacancy defect states. Variations in Si and Ge NS properties are considered in terms of different theoretical models of QC (effective mass approximation, tight binding method, and pseudopotential method). For each theoretical model, we discuss the treatment of the relevant experimental parameters.

  4. Quantum confinement in Si and Ge nanostructures: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Barbagiovanni, Eric G.; Lockwood, David J.; Simpson, Peter J.; Goncharova, Lyudmila V.

    2014-03-01

    The role of quantum confinement (QC) in Si and Ge nanostructures (NSs) including quantum dots, quantum wires, and quantum wells is assessed under a wide variety of fabrication methods in terms of both their structural and optical properties. Structural properties include interface states, defect states in a matrix material, and stress, all of which alter the electronic states and hence the measured optical properties. We demonstrate how variations in the fabrication method lead to differences in the NS properties, where the most relevant parameters for each type of fabrication method are highlighted. Si embedded in, or layered between, SiO2, and the role of the sub-oxide interface states embodies much of the discussion. Other matrix materials include Si3N4 and Al2O3. Si NSs exhibit a complicated optical spectrum, because the coupling between the interface states and the confined carriers manifests with varying magnitude depending on the dimension of confinement. Ge NSs do not produce well-defined luminescence due to confined carriers, because of the strong influence from oxygen vacancy defect states. Variations in Si and Ge NS properties are considered in terms of different theoretical models of QC (effective mass approximation, tight binding method, and pseudopotential method). For each theoretical model, we discuss the treatment of the relevant experimental parameters.

  5. Confinement of Dirac electrons in graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Jolie, Wouter; Craes, Fabian; Petrović, Marin; Atodiresei, Nicolae; Caciuc, Vasile; Blügel, Stefan; Kralj, Marko; Michely, Thomas; Busse, Carsten

    2014-04-01

    We observe spatial confinement of Dirac states on epitaxial graphene quantum dots with low-temperature scanning tunneling microscopy after using oxygen as an intercalant to suppress the surface state of Ir(111) and to effectively decouple graphene from its metal substrate. We analyze the confined electronic states with a relativistic particle-in-a-box model and find a linear dispersion relation. The oxygen-intercalated graphene is p doped [ED=0.64±0.07 eV] and has a Fermi velocity close to the one of free-standing graphene [vF=0.96±0.07×106 m/s].

  6. Spectroscopic study of Gd nanostructures quantum confined in Fe corrals

    SciTech Connect

    Cao, R. X.; Sun, L.; Miao, B. F.; Li, Q. L.; Zheng, C.; Wu, D.; You, B.; Zhang, W.; Han, P.; Bader, S. D.; Zhang, W. Y.; Ding, H. F.

    2015-07-10

    Low dimensional nanostructures have attracted attention due to their rich physical properties and potential applications. The essential factor for their functionality is their electronic properties, which can be modified by quantum confinement. Here the electronic states of Gd atom trapped in open Fe corrals on Ag(111) were studied via scanning tunneling spectroscopy. A single spectroscopic peak above the Fermi level is observed after Gd adatoms are trapped inside Fe corrals, while two peaks appear in empty corrals. The single peak position is close to the higher energy peak of the empty corrals. These findings, attributed to quantum confinement of the corrals and Gd structures trapped inside, are supported by tight-binding calculations. As a result, this demonstrates and provides insights into atom trapping in open corrals of various diameters, giving an alternative approach to modify the properties of nano-objects.

  7. Spectroscopic study of Gd nanostructures quantum confined in Fe corrals

    DOE PAGESBeta

    Cao, R. X.; Sun, L.; Miao, B. F.; Li, Q. L.; Zheng, C.; Wu, D.; You, B.; Zhang, W.; Han, P.; Bader, S. D.; et al

    2015-07-10

    Low dimensional nanostructures have attracted attention due to their rich physical properties and potential applications. The essential factor for their functionality is their electronic properties, which can be modified by quantum confinement. Here the electronic states of Gd atom trapped in open Fe corrals on Ag(111) were studied via scanning tunneling spectroscopy. A single spectroscopic peak above the Fermi level is observed after Gd adatoms are trapped inside Fe corrals, while two peaks appear in empty corrals. The single peak position is close to the higher energy peak of the empty corrals. These findings, attributed to quantum confinement of themore » corrals and Gd structures trapped inside, are supported by tight-binding calculations. As a result, this demonstrates and provides insights into atom trapping in open corrals of various diameters, giving an alternative approach to modify the properties of nano-objects.« less

  8. Interplay between quantum confinement and dielectric mismatch for ultrashallow dopants

    NASA Astrophysics Data System (ADS)

    Mol, J. A.; Salfi, J.; Miwa, J. A.; Simmons, M. Y.; Rogge, S.

    2013-06-01

    Understanding the electronic properties of dopants near an interface is a critical challenge for nanoscale devices. We have determined the effect of dielectric mismatch and quantum confinement on the ionization energy of individual acceptors beneath a hydrogen passivated silicon (100) surface. While dielectric mismatch between the vacuum and the silicon at the interface results in an image charge which enhances the binding energy of subsurface acceptors, quantum confinement is shown to reduce the binding energy. Using scanning tunneling spectroscopy we measure resonant transport through the localized states of individual acceptors. Thermal broadening of the conductance peaks provides a direct measure for the absolute energy scale. Our data unambiguously demonstrates that these two independent effects compete with the result that the ionization energy is less than 5 meV lower than the bulk value for acceptors less than a Bohr radius from the interface.

  9. Molecular Limits to the Quantum Confinement Model in Diamond Clusters

    SciTech Connect

    Willey, T M; Bostedt, C; van Buuren, T; Dahl, J E; Liu, S E; Carlson, R K; Terminello, L J; Moller, T

    2005-04-07

    The electronic structure of monodisperse, hydrogen-passivated diamond clusters in the gas phase has been studied with x-ray absorption spectroscopy. The data show that the bulk-related unoccupied states do not exhibit any quantum confinement. Additionally, density of states below the bulk absorption edge appears, consisting of features correlated to CH and CH{sub 2} hydrogen surface termination, resulting in an effective red shift of the lowest unoccupied states. The results contradict the commonly used and very successful quantum confinement model for semiconductors which predicts increasing band edge blue shifts with decreasing particle size. Our findings indicate that in the ultimate size limit for nanocrystals a more molecular description is necessary.

  10. Quantum states of confined hydrogen plasma species: Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Micca Longo, G.; Longo, S.; Giordano, D.

    2015-12-01

    The diffusion Monte Carlo method with symmetry-based state selection is used to calculate the quantum energy states of \\text{H}2+ confined into potential barriers of atomic dimensions (a model for these ions in solids). Special solutions are employed, permitting one to obtain satisfactory results with rather simple native code. As a test case, {{}2}{{\\Pi}u} and {{}2}{{\\Pi}g} states of \\text{H}2+ ions under spherical confinement are considered. The results are interpreted using the correlation of \\text{H}2+ states to atomic orbitals of H atoms lying on the confining surface and perturbation calculations. The method is straightforwardly applied to cavities of any shape and different hydrogen plasma species (at least one-electron ones, including H) for future studies with real crystal symmetries.

  11. Quantum Confinement of Surface Electrons by Molecular Nanohoop Corrals.

    PubMed

    Taber, Benjamen N; Gervasi, Christian F; Mills, Jon M; Kislitsyn, Dmitry A; Darzi, Evan R; Crowley, William G; Jasti, Ramesh; Nazin, George V

    2016-08-18

    Quantum confinement of two-dimensional surface electronic states has been explored as a way for controllably modifying the electronic structures of a variety of coinage metal surfaces. In this Letter, we use scanning tunneling microscopy and spectroscopy (STM/STS) to study the electron confinement within individual ring-shaped cycloparaphenylene (CPP) molecules forming self-assembled films on Ag(111) and Au(111) surfaces. STM imaging and STS mapping show the presence of electronic states localized in the interiors of CPP rings, inconsistent with the expected localization of molecular electronic orbitals. Electronic energies of these states show considerable variations correlated with the molecular shape. These observations are explained by the presence of localized states formed due to confinement of surface electrons by the CPP skeletal framework, which thus acts as a molecular electronic "corral". Our experiments suggest an approach to robust large-area modification of the surface electronic structure via quantum confinement within molecules forming self-assembled layers. PMID:27459268

  12. Twinned silicon and germanium nanocrystals: Formation, stability and quantum confinement

    SciTech Connect

    Yu, Ting; Pi, Xiaodong Ni, Zhenyi; Zhang, Hui; Yang, Deren

    2015-03-15

    Although twins are often observed in Si/Ge nanocrystals (NCs), little theoretical investigation has been carried out to understand this type of important planar defects in Si/Ge NCs. We now study the twinning of Si/Ge NCs in the frame work of density functional theory by representatively considering single-twinned and fivefold-twinned Si/Ge NCs. It is found that the formation of twinned Si/Ge NCs is thermodynamically possible. The effect of twinning on the formation of Si NCs is different from that of Ge NCs. For both Si and Ge NCs twinning enhances their stability. The quantum confinement effect is weakened by twinning for Si NCs. Twinning actually enhances the quantum confinement of Ge NCs when they are small (<136 atoms), while weakening the quantum confinement of Ge NCs as their size is large (>136 atoms). The current results help to better understand the experimental work on twinned Si/Ge NCs and guide the tuning of Si/Ge-NC structures for desired properties.

  13. Enhanced confinement in compositionally heterogeneous alloy quantum dots

    NASA Astrophysics Data System (ADS)

    Hossain, Zubaer

    While there is a growing need to increase solar cell efficiencies and reduce the cost per watt, reported efficiencies are still well below the thermodynamic limit of photovoltaic energy conversion. The major factor that affects the efficiency (by more than 40%) is the lack of absorption or thermalization of electrons. To improve absorption, existing approaches, till date, are focused on combining multiple materials in the form of heterostructures. This talk will show the application of a physics-based mechanistic approach to engineer absorption by using alloy quantum dots and exploiting its heterogeneous compositional and deformation fields. Using a multiscale computational framework that combines density functional theory, k.p method and the finite element calculations, the work shows that heterogeneous distribution of composition and strain fields can lead to substantial confinement in alloy quantum dots. Subsequently alloy quantum dots that are much larger (on the order of 50 nm) in size - compared to their single crystalline counterparts (which are on the order of 5 nm) - can still provide significant confinement. The findings uncover new fundamental insights for engineering confinement that are unattainable under conventional homogenization approximations.

  14. Quantum tunneling and vibrational dynamics of ultra-confined water

    NASA Astrophysics Data System (ADS)

    Kolesnikov, Alexander I.; Anovitz, Lawrence M.; Ehlers, Georg; Mamontov, Eugene; Podlesnyak, Andrey; Prisk, Timothy R.; Seel, Andrew; Reiter, George F.

    2015-03-01

    Vibrational dynamics of ultra-confined water in single crystals beryl, the structure of which contains ~ 5 Å diameter channels along the c-axis was studied with inelastic (INS), quasi-elastic (QENS) and deep inelastic (DINS) neutron scattering. The results reveal significantly anisotropic dynamical behavior of confined water, and show that effective potential experienced by water perpendicular to the channels is significantly softer than along them. The observed 7 peaks in the INS spectra (at energies 0.25 to 15 meV), based on their temperature and momentum transfer dependences, are explained by transitions between the split ground states of water in beryl due to water quantum tunneling between the 6-fold equivalent positions across the channels. DINS study of beryl at T=4.3 K shows narrow, anisotropic water proton momentum distribution with corresponding kinetic energy, EK=95 meV, which is much less than was previously observed in bulk water (~150 meV). We believe that the exceptionally small EK in beryl is a result of water quantum tunneling ∖ delocalization in the nanometer size confinement and weak water-cage interaction. The neutron experiment at ORNL was sponsored by the Sci. User Facilities Div., BES, U.S. DOE. This research was sponsored by the Div. Chemical Sci, Geosciences, and Biosciences, BES, U.S. DOE. The STFC RAL is thanked for access to ISIS neutron facilities.

  15. Impurity binding energies in quantum dots with parabolic confinement

    NASA Astrophysics Data System (ADS)

    Abramov, Arnold

    2015-03-01

    We present an effective numerical procedure to calculate the binding energies and wave functions of the hydrogen-like impurity states in a quantum dot (QD) with parabolic confinement. The unknown wave function was expressed as an expansion over one-dimensional harmonic oscillator states, which describes the electron's movement along the defined z-axis. Green's function technique used to obtain the solution of Schredinger equation for electronic states in a transverse plane. Binding energy of impurity states is defined as poles of the wave function. The dependences of the binding energy on the position of an impurity, the size of the QD and the magnetic field strength are presented and discussed.

  16. Confined quantum time of arrival for the vanishing potential

    SciTech Connect

    Galapon, Eric A.; Caballar, Roland F.; Bahague, Ricardo

    2005-12-15

    We give full account of our recent report in E. A. Galapon, R. Caballar, and R. Bahague, Phys. Rev. Lett. 93, 180406 (2004), where it is shown that formulating the free quantum time of arrival problem in a segment of the real line suggests rephrasing the quantum time of arrival problem to finding a complete set of states that evolve to unitarily arrive at a given point at a definite time. For a spatially confined particle, here it is shown explicitly that the problem admits a solution in the form of an eigenvalue problem of a class of compact and self-adjoint time of arrival operators derived by a quantization of the classical time of arrival. The eigenfunctions of these operators are numerically demonstrated to unitarily arrive at the origin at their respective eigenvalues.

  17. Graphene/Si-quantum-dot heterojunction diodes showing high photosensitivity compatible with quantum confinement effect.

    PubMed

    Shin, Dong Hee; Kim, Sung; Kim, Jong Min; Jang, Chan Wook; Kim, Ju Hwan; Lee, Kyeong Won; Kim, Jungkil; Oh, Si Duck; Lee, Dae Hun; Kang, Soo Seok; Kim, Chang Oh; Choi, Suk-Ho; Kim, Kyung Joong

    2015-04-24

    Graphene/Si quantum dot (QD) heterojunction diodes are reported for the first time. The photoresponse, very sensitive to variations in the size of the QDs as well as in the doping concentration of graphene and consistent with the quantum-confinement effect, is remarkably enhanced in the near-ultraviolet range compared to commercially available bulk-Si photodetectors. The photoresponse proves to be dominated by the carriertunneling mechanism. PMID:25776865

  18. The Interplay of Quantum Confinement and Hydrogenation in Amorphous Silicon Quantum Dots.

    PubMed

    Askari, Sadegh; Svrcek, Vladmir; Maguire, Paul; Mariotti, Davide

    2015-12-22

    Hydrogenation in amorphous silicon quantum dots (QDs) has a dramatic impact on the corresponding optical properties and band energy structure, leading to a quantum-confined composite material with unique characteristics. The synthesis of a-Si:H QDs is demonstrated with an atmospheric-pressure plasma process, which allows for accurate control of a highly chemically reactive non-equilibrium environment with temperatures well below the crystallization temperature of Si QDs. PMID:26523743

  19. Quantum confinement effects across two-dimensional planes in MoS{sub 2} quantum dots

    SciTech Connect

    Gan, Z. X.; Liu, L. Z.; Wu, H. Y.; Hao, Y. L.; Shan, Y.; Wu, X. L. E-mail: paul.chu@cityu.edu.hk; Chu, Paul K. E-mail: paul.chu@cityu.edu.hk

    2015-06-08

    The low quantum yield (∼10{sup −5}) has restricted practical use of photoluminescence (PL) from MoS{sub 2} composed of a few layers, but the quantum confinement effects across two-dimensional planes are believed to be able to boost the PL intensity. In this work, PL from 2 to 9 nm MoS{sub 2} quantum dots (QDs) is excluded from the solvent and the absorption and PL spectra are shown to be consistent with the size distribution. PL from MoS{sub 2} QDs is also found to be sensitive to aggregation due to the size effect.

  20. Investigation of quantum confinement behavior of zinc sulphide quantum dots synthesized via various chemical methods

    SciTech Connect

    Jose, Meera Sakthivel, T. Chandran, Hrisheekesh T. Nivea, R. Gunasekaran, V.

    2014-10-15

    In this work, undoped and Ag-doped ZnS quantum dots were synthesized using various chemical methods. The products were characterized using X-ray diffraction (XRD), UV-visible spectroscopy and Photoluminescence spectroscopy. Our results revealed that the size of the as-prepared samples range from 1–6 nm in diameter and have a cubic zinc-blende structure. Also, we observed the emission of different wavelength of light from different sized quantum dots of the same material due to quantum confinement effect. The results will be presented in detail and ZnS can be a potential candidate for optical device development and applications.

  1. Excitation-induced Quantum Confined Stark Effect in a Coupled Double Quantum Wells

    NASA Astrophysics Data System (ADS)

    Shin, Y. H.; Park, Y. H.; Kim, Yongmin; Perry, C. H.

    2011-12-01

    We report a photoluminescence detected anticrossing of the energy levels in an undoped asymmetric coupled-double-quantum-well buried in a p-i-n structure. Due to the built-in electric field, the quantum wells are tilted in such a way that the symmetric energy level is higher than that of the antisymmetric one in the conduction band. Keeping the laser excitation energy below the barrier, with increasing laser power, the level anticrossing and the quantum confined Stark effect were observed due to decreasing built-in electric field by the photogenerated electron and hole pairs.

  2. Experimental Observation of Quantum Confinement in the Conduction Band of CdSe Quantum Dots

    SciTech Connect

    Lee, J I; Meulenberg, R W; Hanif, K M; Mattoussi, H; Klepeis, J E; Terminello, L J; van Buuren, T

    2006-12-15

    Recent theoretical descriptions as to the magnitude of effect that quantum confinement has on he conduction band (CB) of CdSe quantum dots (QD) have been conflicting. In this manuscript, we experimentally identify quantum confinement effects in the CB of CdSe QDs for the first time. Using X-ray absorption spectroscopy, we have unambiguously witnessed the CB minimum shift to higher energy with decreasing particle size and have been able to compare these results to recent theories. Our experiments have been able to identify which theories correctly describe the CB states in CdSe QDs. In particular, our experiments suggest that multiple theories describe the shifts in the CB of CdSe QDs and are not mutually exclusive.

  3. Quantum Metrology with Lattice-Confined Ultracold SR Atoms

    NASA Astrophysics Data System (ADS)

    Ludlow, A. D.; Campbell, G. K.; Blatt, S.; Boyd, M. M.; Martin, M. J.; Nicholson, T. L.; Swallows, M.; Thomsen, J. W.; Fortier, T.; Oates, C. W.; Diddams, S. A.; Lemke, N. D.; Barber, Z.; Porsev, S. G.; Ye, Jun

    2009-04-01

    Quantum state engineering of ultracold matter and precise control of optical fields have together allowed accurate measurement of light-matter interactions for applications in precision tests of fundamental physics. State-of-the-art lasers maintain optical phase coherence over one second. Optical frequency combs distribute this optical phase coherence across the entire visible and infrared parts of the electromagnetic spectrum, leading to the direct visualization and measurement of light ripples. At the same time, ultracold atoms confined in an optical lattice with zero differential ac Stark shift between two clock states allow us to minimize quantum decoherence while strengthening the clock signal. For 87Sr, we achieve a resonance quality factor > 2.4 × 1014 on the 1S0 - 3P0 doubly forbidden clock transition at 698 nm [1]. The uncertainty of this new clock has reached 1 × 10-16 and its instability approaches 1 × 10-15 at 1 s [2]. These developments represent a remarkable convergence of ultracold atoms, laser stabilization, and ultrafast science. Further improvements are still tantalizing, with quantum measurement and precision metrology combining forces to explore the next frontier.

  4. Quantum distillation and confinement of vacancies in a doublon sea

    NASA Astrophysics Data System (ADS)

    Xia, Lin; Zundel, Laura A.; Carrasquilla, Juan; Reinhard, Aaron; Wilson, Joshua M.; Rigol, Marcos; Weiss, David S.

    2015-04-01

    Ultracold atomic gases have revolutionized the study of non-equilibrium dynamics in quantum many-body systems. Many counterintuitive non-equilibrium effects have been observed, such as suppressed thermalization in a one-dimensional (1D) gas, the formation of repulsive self-bound dimers, and identical behaviours for attractive and repulsive interactions. Here, we observe the expansion of a bundle of ultracold 1D Bose gases in a flat-bottomed optical lattice potential. By combining in situ measurements with photoassociation, we follow the spatial dynamics of singly, doubly and triply occupied lattice sites. The system sheds interaction energy by dissolving some doublons and triplons. Some singlons quantum distil out of the doublon centre, whereas others remain confined. Our Gutzwiller mean-field model captures these experimental features in a physically clear way. These experiments might be used to study thermalization in systems with particle losses, the evolution of quantum entanglement or, if applied to fermions, to prepare very low entropy states.

  5. Exciton Kinetics in Strained II-Vi Semiconductor Multiple Quantum Wells.

    NASA Astrophysics Data System (ADS)

    Hefetz, Yaron

    1987-09-01

    Two groups of wide gap II-VI semiconductor superlattices based on ZnSe/Zn(,1-x)Mn(,x)Se and CdTe/ZnTe were investigated using CW and time-resolved photoluminescence, excitation, reflectance, and photomodulated reflectance spectroscopy at various temperatures and under an external magnetic field. All these lattice mismatch strained layer structures were grown by MBE technique and exhibit strong excitonic photoluminescence at low temperatures. By studying the dynamics of the exciton recombination processes, the role of strain, quantum confinement and localization effects were revealed. In the CdTe/ZnTc system where the lattice mismatch is (DELTA)a/a (TURNEQ) 6% the inhomogeneously broadened ((TURN)40 mev) luminescence line is governed by excitonic localization in well width fluctuations. Exchange interactions of the carriers with the Mn('++) ions in the dilute magnetic semiconductor Zn(,1-x)Mn(,x)Se in thin film and the barrier of the MQW structures influence their optical behavior in an exernal magnetic field. "Giant" Zeeman splittings of up to (TURN)10 mev/Tesla were measured in samples with moderate Mn concentration (x = .23). Antiferromagnetic interaction reduces these splittings in samples with higher Mn concentrations. In observing the time evolution of the carrier in Zn(,1-x)Mn(,x)Se MQW we found that the capture time of these carriers into the well is on the order of 1 psec but the last stages of thermalization, exciton formations and localization is (TURN)70 ps. The fast capture of electrons and holes into the quantum wells bypass the energy transfer into the Mn internal transition that is responsible to the efficient "yellow" luminescence in ZnMnSe mixed crystals.

  6. Quantum Behavior of Water Molecules Confined to Nanocavities in Gemstones.

    PubMed

    Gorshunov, Boris P; Zhukova, Elena S; Torgashev, Victor I; Lebedev, Vladimir V; Shakurov, Gil'man S; Kremer, Reinhard K; Pestrjakov, Efim V; Thomas, Victor G; Fursenko, Dimitry A; Dressel, Martin

    2013-06-20

    When water is confined to nanocavities, its quantum mechanical behavior can be revealed by terahertz spectroscopy. We place H2O molecules in the nanopores of a beryl crystal lattice and observe a rich and highly anisotropic set of absorption lines in the terahertz spectral range. Two bands can be identified, which originate from translational and librational motions of the water molecule isolated within the cage; they correspond to the analogous broad bands in liquid water and ice. In the present case of well-defined and highly symmetric nanocavities, the observed fine structure can be explained by macroscopic tunneling of the H2O molecules within a six-fold potential caused by the interaction of the molecule with the cavity walls. PMID:26283245

  7. Relativistic quantum model of confinement and the current quark masses

    NASA Astrophysics Data System (ADS)

    Soloviev, L. D.

    1998-08-01

    We consider a relativistic quantum model of confined massive spinning quarks and antiquarks which describes the leading Regge trajectories of mesons. The quarks are described by the Dirac equations and the gluon contribution is approximated by the Nambu-Goto straight-line string. The string tension and the current quark masses are the main parameters of the model. Additional parameters are phenomenological constants which approximate nonstring short-range contributions. A comparison of the measured meson masses with the model predictions allows one to determine the current quark masses (in MeV) to be ms=227+/-5, mc=1440+/-10, and mb=4715+/-20. The chiral SU3 model makes it possible to estimate from here the u- and d-quark masses to be mu=6.2+/-0.2 Mev and md=11.1+/-0.4 Mev.

  8. Diamagnetic susceptibility of a confined donor in inhomogeneous quantum dots

    NASA Astrophysics Data System (ADS)

    Rahmani, K.; Zorkani, I.; Jorio, A.

    2011-03-01

    The binding energy and diamagnetic susceptibility χdia are estimated for a shallow donor confined to move in GaAs-GaAlAs inhomogeneous quantum dots. The calculation was performed within the effective mass approximation and using the variational method. The results show that the binding energy and the diamagnetic susceptibility χdia depend strongly on the core radius and the shell radius. We have demonstrated that there is a critical value of the ratio of the inner radius to the outer radius which may be important for nanofabrication techniques. The binding energy Eb shows a minimum for a critical value of this ratio depending on the value of the outer radius and shows a maximum when the donor is placed at the center of the spherical layer. The diamagnetic susceptibility is more sensitive to variations of the radius for a large spherical layer. The binding energy and diamagnetic susceptibility depend strongly on the donor position.

  9. Confinement-driven phase separation of quantum liquid mixtures.

    PubMed

    Prisk, T R; Pantalei, C; Kaiser, H; Sokol, P E

    2012-08-17

    We report small-angle neutron scattering studies of liquid helium mixtures confined in Mobil Crystalline Material-41 (MCM-41), a porous silica glass with narrow cylindrical nanopores (d=3.4 nm). MCM-41 is an ideal model adsorbent for fundamental studies of gas sorption in porous media because its monodisperse pores are arranged in a 2D triangular lattice. The small-angle scattering consists of a series of diffraction peaks whose intensities are determined by how the imbibed liquid fills the pores. Pure (4)He adsorbed in the pores show classic, layer-by-layer film growth as a function of pore filling, leaving the long range symmetry of the system intact. In contrast, the adsorption of (3)He-(4)He mixtures produces a structure incommensurate with the pore lattice. Neither capillary condensation nor preferential adsorption of one helium isotope to the pore walls can provide the symmetry-breaking mechanism. The scattering is consistent with the formation of randomly distributed liquid-liquid microdomains ∼2.3 nm in size, providing evidence that confinement in a nanometer scale capillary can drive local phase separation in quantum liquid mixtures. PMID:23006380

  10. Exciton-Phonon Interaction Effects in II-Vi Compound Semiconductor Quantum Wells

    NASA Astrophysics Data System (ADS)

    Pelekanos, Nikolaos Themelis

    1992-01-01

    In this thesis, we report on two specific examples of exciton-LO phonon Frohlich interaction effects, namely, hot carrier relaxation and temperature dependent exciton linewidth broadening. These phenomena are considered in the context of quasi-two dimensional excitons in strongly polar II-VI semiconductor quantum wells. Hot-exciton luminescence phenomena are investigated in a single quantum well of ZnTe/MnTe where tunneling through thin MnTe barrier layers suppresses the formation of thermalized luminescence. For near resonant photoexcitation, the secondary emission spectrum is modulated by distinct LO-phonon peaks, which, for sufficiently high order of scattering ( >=4), behave like hot luminescence (HPL) as opposed to resonant Raman scattering. This is confirmed by time-resolved spectroscopy as well as by steady-state characteristics such as linewidth broadening and lack of polarization memory. Several novel observations are made: (1) The LO-phonon intermediated energy relaxation involves Coulomb-correlated pairs, i.e. hot excitons, as opposed to independently-relaxing free electrons and holes. (2) The additional weak disorder originating from QW thickness fluctuations plays a major role in the details of the HPL spectra. The major contribution to the ground state exciton linewidth at room temperature originates from LO phonon -intermediated exciton scattering to higher exciton states. A measure of the effect is given by the parameter Gamma_{LO} which increases with the polarity of the material and is independent of dimensionality provided that the LO phonon energy is greater than the exciton binding energy. Measurements of Gamma_{LO} are performed in two quantum well systems: CdTe/MnTe and (Zn,Cd)Se/ZnSe. In the latter system, a strong reduction of Gamma _{LO} is observed as the quantum well width becomes comparable to the three-dimensional exciton Bohr radius. This is explained in terms of a model where quasi-2D confinement effects increase the exciton binding

  11. Quantum-confined Stark effect measurements in Ge/SiGe quantum-well structures.

    PubMed

    Chaisakul, Papichaya; Marris-Morini, Delphine; Isella, Giovanni; Chrastina, Daniel; Le Roux, Xavier; Gatti, Eleonora; Edmond, Samson; Osmond, Johann; Cassan, Eric; Vivien, Laurent

    2010-09-01

    We investigate the room-temperature quantum-confined Stark effect in Ge/SiGe multiple quantum wells (MQWs) grown by low-energy plasma-enhanced chemical vapor deposition. The active region is embedded in a p-i-n diode, and absorption spectra at different reverse bias voltages are obtained from optical transmission, photocurrent, and differential transmission measurements. The measurements provide accurate values of the fraction of light absorbed per well of the Ge/SiGe MQWs. Both Stark shift and reduction of exciton absorption peak are observed. Differential transmission indicates that there is no thermal contribution to these effects. PMID:20808367

  12. Experimental Observation of Quantum Confinement in the Conduction Band of CdSe Quantum Dots

    SciTech Connect

    Lee, Jonathan R. I.; Meulenberg, Robert W.; Klepeis, John E.; Terminello, Louis J.; Buuren, Tony van; Hanif, Khalid M.; Mattoussi, Hedi

    2007-04-06

    X-ray absorption spectroscopy has been used to characterize the evolution in the conduction band (CB) density of states of CdSe quantum dots (QDs) as a function of particle size. We have unambiguously witnessed the CdSe QD CB minimum (CBM) shift to higher energy with decreasing particle size, consistent with quantum confinement effects, and have directly compared our results with recent theoretical calculations. At the smallest particle size, evidence for a pinning of the CBM is presented. Our observations can be explained by considering a size-dependent change in the angular-momentum-resolved states at the CBM.

  13. Return of the Quantum Cellular Automata: Episode VI

    NASA Astrophysics Data System (ADS)

    Carr, Lincoln D.; Hillberry, Logan E.; Rall, Patrick; Halpern, Nicole Yunger; Bao, Ning; Montangero, Simone

    2016-05-01

    There are now over 150 quantum simulators or analog quantum computers worldwide. Although exploring quantum phase transitions, many-body localization, and the generalized Gibbs ensemble are exciting and worthwhile endeavors, there are totally untapped directions we have not yet pursued. One of these is quantum cellular automata. In the past a principal goal of quantum cellular automata was to reproduce continuum single particle quantum physics such as the Schrodinger or Dirac equation from simple rule sets. Now that we begin to really understand entanglement and many-body quantum physics at a deeper level, quantum cellular automata present new possibilities. We explore several time evolution schemes on simple spin chains leading to high degrees of quantum complexity and nontrivial quantum dynamics. We explain how the 256 known classical elementary cellular automata reduce to just a few exciting quantum cases. Our analysis tools include mutual information based complex networks as well as more familiar quantifiers like sound speed and diffusion rate. Funded by NSF and AFOSR.

  14. Anomalous Light Emission and Wide Photoluminescence Spectra in Graphene Quantum Dot: Quantum Confinement from Edge Microstructure.

    PubMed

    Huang, Pu; Shi, Jun-Jie; Zhang, Min; Jiang, Xin-He; Zhong, Hong-Xia; Ding, Yi-Min; Cao, Xiong; Wu, Meng; Lu, Jing

    2016-08-01

    The physical origin of the observed anomalous photoluminescence (PL) behavior, that is, the large-size graphene quantum dots (GQDs) exhibiting higher PL energy than the small ones and the broadening PL spectra from deep ultraviolet to near-infrared, has been debated for many years. Obviously, it is in conflict with the well-accepted quantum confinement. Here we shed new light on these two notable debates by state-of-the-art first-principles calculations based on many-body perturbation theory. We find that quantum confinement is significant in GQDs with remarkable size-dependent exciton absorption/emission. The edge environment from alkaline to acidic conditions causes a blue shift of the PL peak. Furthermore, carbon vacancies are inclined to assemble at the GQD edge and form the tiny edge microstructures. The bound excitons, localized inside these edge microstructures, determine the anomalous PL behavior (blue and UV emission) of large-size GQDs. The bound excitons confined in the whole GQD lead to the low-energy transition. PMID:27409980

  15. Confinement of color states in a stochastic vacuum of quantum chromodynamics

    NASA Astrophysics Data System (ADS)

    Kuvshinov, V. I.; Bagashov, E. G.

    2015-09-01

    We show that in the framework of the stochastic vacuum model of quantum chromodynamics, quark confinement can be described as the decoherence of a color state of a particle into a mixed quantum state with equal probabilities for different colors. We evaluate the quantum characteristics of one-particle and multiparticle states: purity, fidelity, and the von Neumann entropy.

  16. Photooxidation and quantum confinement effects in exfoliated black phosphorus

    NASA Astrophysics Data System (ADS)

    Favron, Alexandre; Gaufrès, Etienne; Fossard, Frédéric; Phaneuf-L'Heureux, Anne-Laurence; Tang, Nathalie Y.-W.; Lévesque, Pierre L.; Loiseau, Annick; Leonelli, Richard; Francoeur, Sébastien; Martel, Richard

    2015-08-01

    Thin layers of black phosphorus have recently raised interest owing to their two-dimensional (2D) semiconducting properties, such as tunable direct bandgap and high carrier mobilities. This lamellar crystal of phosphorus atoms can be exfoliated down to monolayer 2D-phosphane (also called phosphorene) using procedures similar to those used for graphene. Probing the properties has, however, been challenged by a fast degradation of the thinnest layers on exposure to ambient conditions. Herein, we investigate this chemistry using in situ Raman and transmission electron spectroscopies. The results highlight a thickness-dependent photoassisted oxidation reaction with oxygen dissolved in adsorbed water. The oxidation kinetics is consistent with a phenomenological model involving electron transfer and quantum confinement as key parameters. A procedure carried out in a glove box is used to prepare mono-, bi- and multilayer 2D-phosphane in their pristine states for further studies on the effect of layer thickness on the Raman modes. Controlled experiments in ambient conditions are shown to lower the Ag1/Ag2 intensity ratio for ultrathin layers, a signature of oxidation.

  17. Experimental investigations of quantum confined silicon nanoparticle light emitting devices

    NASA Astrophysics Data System (ADS)

    Ligman, Rebekah Kristine

    2007-12-01

    As the demands on our world's energy resources continue to grow, alternative high efficiency materials such as quantum confined silicon nanoparticles (Si nps) are desirable for their potential low cost application in white light illumination, in optical displays, and in on-chip optical interconnects. Many fabrication and passivation techniques exist that produce Si nps with high photogenerated quantum yield. However, high electrically generated Si np quantum efficiency has eluded our society. Predominantly due to the lack of a stable surface passivation and a device fabrication technique that preserves the Si np optical properties. To amend these deficiencies, the passivation of nonthermal plasma fabricated Si nps with a surface oxide grown under UV exposure was first investigated. Control over the surface oxidized Si np (Si/SiO2) passivation growth was demonstrated and the optical stability of Si/SiO2 nps was suitable for demonstrating Si np electroluminescence (EL). Two approaches for constructing hybrid organic light emitting diode (OLED) devices around nonthermal plasma fabricated Si nps were then investigated. Multilayer devices, composed of a nonthermal plasma fabricated Si np layer embedded within an OLED, were first studied. However, no EL from Si nps was obtained using the multilayer device architecture due to poor control over the Si np film thickness. Single layer polymer(Si/SiO2) hybrid devices, composed of nps randomly dispersed within an extrinsic conductive polymer, were then studied and EL from Si/SiO2 nps was obtained. The hybrid device optical and electrical response was enhanced over the control devices, possibly due to morphology changes induced by the Si/SiO2 nps. The energy transfer (ET) processes in single layer polymer(Si/SiO 2) hybrid devices were then investigated by imposing known spatial separations between the intrinsic conductive polymers and Si/SiO2 nps. No measurable Si/SiO2 np emission was observed from the intrinsic hybrid devices

  18. Quantum confined stark effect in wide parabolic quantum wells: real density matrix approach

    NASA Astrophysics Data System (ADS)

    Zielińska-Raczyńska, Sylwia; Czajkowski, Gerard; Ziemkiewicz, David

    2015-12-01

    We show how to compute the optical functions of wide parabolic quantum wells (WPQWs) exposed to uniform electric F applied in the growth direction, in the excitonic energy region. The effect of the coherence between the electron-hole pair and the electromagnetic field of the propagating wave including the electron-hole screened Coulomb potential is adopted, and the valence band structure is taken into account in the cylindrical approximation. The role of the interaction potential and of the applied electric field, which mix the energy states according to different quantum numbers and create symmetry forbidden transitions, is stressed. We use the real density matrix approach (RDMA) and an effective e-h potential, which enable to derive analytical expressions for the WPQWs electrooptical functions. Choosing the susceptibility, we performed numerical calculations appropriate to a GaAs/GaAlAs WPQWs. We have obtained a red shift of the absorption maxima (quantum confined Stark effect), asymmetric upon the change of the direction of the applied field ( F → - F), parabolic for the ground state and strongly dependent on the confinement parameters (the QWs sizes), changes in the oscillator strengths, and new peaks related to the states with different parity for electron and hole.

  19. XANES: observation of quantum confinement in the conduction band of colloidal PbS quantum dots

    NASA Astrophysics Data System (ADS)

    Demchenko, I. N.; Chernyshova, M.; He, X.; Minikayev, R.; Syryanyy, Y.; Derkachova, A.; Derkachov, G.; Stolte, W. C.; Piskorska-Hommel, E.; Reszka, A.; Liang, H.

    2013-04-01

    The presented investigations aimed at development of inexpensive method for synthesized materials suitable for utilization of solar energy. This important issue was addressed by focusing, mainly, on electronic local structure studies with supporting x-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis of colloidal galena nano-particles (NPs) and quantum dots (QDs) synthesized using wet chemistry under microwave irradiation. Performed x-ray absorption near edge structure (XANES) analysis revealed an evidence of quantum confinement for the sample with QDs, where the bottom of the conduction band was shifted to higher energy. The QDs were found to be passivated with oxides at the surface. Existence of sulfate/sulfite and thiosulfate species in pure PbS and QDs, respectively, was identified.

  20. Confined optical-phonon-assisted cyclotron resonance in quantum wells via two-photon absorption process

    NASA Astrophysics Data System (ADS)

    Phuc, Huynh Vinh; Hien, Nguyen Dinh; Dinh, Le; Phong, Tran Cong

    2016-06-01

    The effect of confined phonons on the phonon-assisted cyclotron resonance (PACR) via both one and two photon absorption processes in a quantum well is theoretically studied. We consider cases when electrons are scattered by confined optical phonons described by the Fuchs-Kliewer slab, Ridley's guided, and Huang-Zhu models. The analytical expression of the magneto-optical absorption coefficient (MOAC) is obtained by relating it to the transition probability for the absorption of photons. It predicts resonant peaks caused by transitions between Landau levels and electric subband accompanied by confined phonons emission in the absorption spectrum. The MOAC and the full-width at half-maximum (FWHM) for the intra- and inter-subband transitions are given as functions of the magnetic field, temperature, and quantum well width. In narrow quantum wells, the phonon confinement becomes more important and should be taken into account in studying FWHM.

  1. Quantum theory of an optical maser. VI - Transient behavior.

    NASA Technical Reports Server (NTRS)

    Wang, Y. K.; Lamb, W. E., Jr.

    1973-01-01

    The transient behavior of a laser is discussed using the quantum theory as did Scully and Lamb. The formal solution of the density-matrix equation is expressed in terms of exponentially decaying eigenmodes. Some of the lower decay constants are obtained numerically. The equations for the moments of the density matrix are then derived and solved by a truncation method. The equations of motion are integrated numerically for the case where the average number of photons in a laser cavity has the realistically large value 1.3 x 100,000. An alternative Fokker-Planck-equation approach is discussed.

  2. Elucidating Quantum Confinement in Graphene Oxide Dots Based On Excitation-Wavelength-Independent Photoluminescence.

    PubMed

    Yeh, Te-Fu; Huang, Wei-Lun; Chung, Chung-Jen; Chiang, I-Ting; Chen, Liang-Che; Chang, Hsin-Yu; Su, Wu-Chou; Cheng, Ching; Chen, Shean-Jen; Teng, Hsisheng

    2016-06-01

    Investigating quantum confinement in graphene under ambient conditions remains a challenge. In this study, we present graphene oxide quantum dots (GOQDs) that show excitation-wavelength-independent photoluminescence. The luminescence color varies from orange-red to blue as the GOQD size is reduced from 8 to 1 nm. The photoluminescence of each GOQD specimen is associated with electron transitions from the antibonding π (π*) to oxygen nonbonding (n-state) orbitals. The observed quantum confinement is ascribed to a size change in the sp(2) domains, which leads to a change in the π*-π gap; the n-state levels remain unaffected by the size change. The electronic properties and mechanisms involved in quantum-confined photoluminescence can serve as the foundation for the application of oxygenated graphene in electronics, photonics, and biology. PMID:27192445

  3. Confinement and inhomogeneous broadening effects in the quantum oscillatory magnetization of quantum dot ensembles.

    PubMed

    Herzog, F; Heedt, S; Goerke, S; Ibrahim, A; Rupprecht, B; Heyn, Ch; Hardtdegen, H; Schäpers, Th; Wilde, M A; Grundler, D

    2016-02-01

    We report on the magnetization of ensembles of etched quantum dots with a lateral diameter of 460 nm, which we prepared from InGaAs/InP heterostructures. The quantum dots exhibit 1/B-periodic de-Haas-van-Alphen-type oscillations in the magnetization M(B) for external magnetic fields B  >  2 T, measured by torque magnetometry at 0.3 K. We compare the experimental data to model calculations assuming different confinement potentials and including ensemble broadening effects. The comparison shows that a hard wall potential with an edge depletion width of 100 nm explains the magnetic behavior. Beating patterns induced by Rashba spin-orbit interaction (SOI) as measured in unpatterned and nanopatterned InGaAs/InP heterostructures are not observed for the quantum dots. From our model we predict that signatures of SOI in the magnetization could be observed in larger dots in tilted magnetic fields. PMID:26740509

  4. Efficient Multi-Dimensional Simulation of Quantum Confinement Effects in Advanced MOS Devices

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Ancona, Mario G.; Rafferty, Conor S.; Yu, Zhiping

    2000-01-01

    We investigate the density-gradient (DG) transport model for efficient multi-dimensional simulation of quantum confinement effects in advanced MOS devices. The formulation of the DG model is described as a quantum correction ot the classical drift-diffusion model. Quantum confinement effects are shown to be significant in sub-100nm MOSFETs. In thin-oxide MOS capacitors, quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion of quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion of quantum effects in simulations dramatically improves the match between C-V simulations and measurements for oxide thickness down to 2 nm. Significant quantum corrections also occur in the I-V characteristics of short-channel (30 to 100 nm) n-MOSFETs, with current drive reduced by up to 70%. This effect is shown to result from reduced inversion charge due to quantum confinement of electrons in the channel. Also, subthreshold slope is degraded by 15 to 20 mV/decade with the inclusion of quantum effects via the density-gradient model, and short channel effects (in particular, drain-induced barrier lowering) are noticeably increased.

  5. Optimal quantum control via numerical pulse shape optimization for two exciton qubits confined to semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Mathew, Reuble; Shi Yang, Hong Yi; Hall, Kimberley

    2015-03-01

    Optimal quantum control (OQC), which iteratively optimizes the control Hamiltonian to achieve a target quantum state, is a versatile approach for manipulating quantum systems. For optically-active transitions, OQC can be implemented using femtosecond pulse shaping which provides control over the amplitude and/or phase of the electric field. Optical pulse shaping has been employed to optimize physical processes such as nonlinear optical signals, photosynthesis, and has recently been applied to optimizing single-qubit gates in multiple semiconductor quantum dots. In this work, we examine the use of numerical pulse shape optimization for optimal quantum control of multiple qubits confined to quantum dots as a function of their electronic structure parameters. The numerically optimized pulse shapes were found to produce high fidelity quantum gates for a range of transition frequencies, dipole moments, and arbitrary initial and final states. This work enhances the potential for scalability by reducing the laser resources required to control multiple qubits.

  6. Efficient Multi-Dimensional Simulation of Quantum Confinement Effects in Advanced MOS Devices

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Rafferty, Conor S.; Ancona, Mario G.; Yu, Zhi-Ping

    2000-01-01

    We investigate the density-gradient (DG) transport model for efficient multi-dimensional simulation of quantum confinement effects in advanced MOS devices. The formulation of the DG model is described as a quantum correction to the classical drift-diffusion model. Quantum confinement effects are shown to be significant in sub-100nm MOSFETs. In thin-oxide MOS capacitors, quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion or quantum effects in simulations dramatically improves the match between C-V simulations and measurements for oxide thickness down to 2 nm. Significant quantum corrections also occur in the I-V characteristics of short-channel (30 to 100 nm) n-MOSFETs, with current drive reduced by up to 70%. This effect is shown to result from reduced inversion charge due to quantum confinement of electrons in the channel. Also, subthreshold slope is degraded by 15 to 20 mV/decade with the inclusion of quantum effects via the density-gradient model, and short channel effects (in particular, drain-induced barrier lowering) are noticeably increased.

  7. Relaxation and coherent oscillations in the spin dynamics of II-VI diluted magnetic quantum wells

    NASA Astrophysics Data System (ADS)

    Ungar, F.; Cygorek, M.; Tamborenea, P. I.; Axt, V. M.

    2015-10-01

    We study theoretically the ultrafast spin dynamics of II-VI diluted magnetic quantum wells in the presence of spin-orbit interaction. We extend a recent study where it was shown that the spin-orbit interaction and the exchange sd coupling in bulk and quantum wells can compete resulting in qualitatively new dynamics when they act simultaneously. We concentrate on Hg1-x-yMnxCdyTe quantum wells, which have a highly tunable Rashba spin-orbit coupling. Our calculations use a recently developed formalism which incorporates electronic correlations originating from the exchange sd-coupling. We find that the dependence of electronic spin oscillations on the excess energy changes qualitatively depending on whether or not the spin-orbit interaction dominates or is of comparable strength with the sd interaction.

  8. Spectral properties of a confined nonlinear quantum oscillator in one and three dimensions

    SciTech Connect

    Schulze-Halberg, Axel; Gordon, Christopher R.

    2013-04-15

    We analyze the spectral behaviour of a nonlinear quantum oscillator model under confinement. The underlying potential is given by a harmonic oscillator interaction plus a nonlinear term that can be weakened or strengthened through a parameter. Numerical eigenvalues of the model in one and three dimensions are presented. The asymptotic behaviour of the eigenvalues for confinement relaxation and for vanishing nonlinear term in the potential is investigated. Our findings are compared with existing results.

  9. Electron quasi-confined-optical-phonon interactions in wurtzite GaN/AlN quantum wells

    NASA Astrophysics Data System (ADS)

    Li, L.; Liu, D.; Shi, J.-J.

    2005-04-01

    The equation of motion for the p-polarization field in a wurtzite GaN/AlN multilayer heterostructure is solved for the quasi-confined-optical-phonon modes based on the dielectric-continuum model and Loudon’s uniaxial crystal model. The polarization eigenvector, the dispersion relation of the quasi-confined-optical-phonon modes and the electron-quasi-confined-phonon interaction Fröhlich-like Hamiltonian are derived. The analytical formulas can be directly applied to single/multiple quantum wells (QW’s) and superlattices. The electron-quasi-confined-phonon coupling functions are investigated for a given AlN/GaN/AlN single QW with full account of the strains of the QW structures and the anisotropy effect of wurtzite crystals. We find that there are two kinds of quasi-confined-optical-phonon modes in the GaN/AlN QW’s: the GaN-layer quasi-confined-optical-phonon modes and the AlN-layer quasi-confined-optical-phonon modes. There are infinite quasi-confined-optical-phonon branches, labelled by a quantum number n (n=1,2,...), with definite symmetry with respect to the center of the AlN/GaN/AlN single QW for a given phonon wave number q. The dispersions of the quasi-confined-optical-phonon modes with smaller n are more obvious than the ones with larger n. Moreover, the modes with smaller n are much more important for their electron-quasi-confined-phonon interactions than those with larger n. In most cases, it is enough to consider the modes with n≤ 8 for the electron-quasi-confined-phonon interactions in a single GaN/AlN QW. The higher frequency modes are more significant than the lower ones. The long-wavelength quasi-confined-optical-phonon modes are much more important for the electron-quasi-confined-phonon interactions. The GaN-layer quasi-confined-optical-phonon energies and their electron-quasi-confined-phonon interaction strength are markedly increased due to the strains of the QW structures. The influence of the strains on the the AlN-layer electron-quasi-confined

  10. Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature

    SciTech Connect

    Nguyen, H. S.; Lafosse, X.; Amo, A.; Bouchoule, S.; Bloch, J.; Abdel-Baki, K.; Lauret, J.-S.; Deleporte, E.

    2014-02-24

    We report on the quantum confinement of zero-dimensional polaritons in perovskite-based microcavity at room temperature. Photoluminescence of discrete polaritonic states is observed for polaritons localized in symmetric sphere-like defects which are spontaneously nucleated on the top dielectric Bragg mirror. The linewidth of these confined states is found much sharper (almost one order of magnitude) than that of photonic modes in the perovskite planar microcavity. Our results show the possibility to study organic-inorganic cavity polaritons in confined microstructure and suggest a fabrication method to realize integrated polaritonic devices operating at room temperature.

  11. Role of confinements on the melting of Wigner molecules in quantum dots

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Dyuti; Filinov, Alexei V.; Ghosal, Amit; Bonitz, Michael

    2016-03-01

    We explore the stability of a Wigner molecule (WM) formed in confinements with different geometries emulating the role of disorder and analyze the melting (or crossover) of such a system. Building on a recent calculation [D. Bhattacharya, A. Ghosal, Eur. Phys. J. B 86, 499 (2013)] that discussed the effects of irregularities on the thermal crossover in classical systems, we expand our studies in the untested territory by including both the effects of quantum fluctuations and of disorder. Our results, using classical and quantum (path integral) Monte Carlo techniques, unfold complementary mechanisms that drive the quantum and thermal crossovers in a WM and show that the symmetry of the confinement plays no significant role in determining the quantum crossover scale n X . This is because the zero-point motion screens the boundary effects within short distances. The phase diagram as a function of thermal and quantum fluctuations determined from independent criteria is unique, and shows "melting" from the WM to both the classical and quantum "liquids". An intriguing signature of weakening liquidity with increasing temperature, T, is found in the extreme quantum regime. The crossover is associated with production of defects. However, these defects appear to play distinct roles in driving the quantum and thermal "melting". Our analyses carry serious implications for a variety of experiments on many-particle systems - semiconductor heterostructure quantum dots, trapped ions, nanoclusters, colloids and complex plasma.

  12. Crystal-Phase Control by Solution-Solid-Solid Growth of II-VI Quantum Wires.

    PubMed

    Wang, Fudong; Buhro, William E

    2016-02-10

    A simple and potentially general means of eliminating the planar defects and phase alternations that typically accompany the growth of semiconductor nanowires by catalyzed methods is reported. Nearly phase-pure, defect-free wurtzite II-VI semiconductor quantum wires are grown from solid rather than liquid catalyst nanoparticles. The solid-catalyst nanoparticles are morphologically stable during growth, which minimizes the spontaneous fluctuations in nucleation barriers between zinc blende and wurtzite phases that are responsible for the defect formation and phase alternations. Growth of single-phase (in our cases the wurtzite phase) nanowires is thus favored. PMID:26731426

  13. Quantum confinement of excitons in wurtzite InP nanowires

    SciTech Connect

    Pemasiri, K.; Jackson, H. E.; Smith, L. M.; Wong, B. M.; Paiman, S.; Gao, Q.; Tan, H. H.; Jagadish, C.

    2015-05-21

    Exciton resonances are observed in photocurrent spectra of 80 nm wurtzite InP nanowire devices at low temperatures, which correspond to transitions between the A, B, and C valence bands and the lower conduction band. Photocurrent spectra for 30 nm WZ nanowires exhibit shifts of the exciton resonances to higher energy, which are consistent with finite element calculations of wavefunctions of the confined electrons and holes for the various bands.

  14. Strongly confined tunnel-coupled one-dimensional electron systems from an asymmetric double quantum well

    NASA Astrophysics Data System (ADS)

    Buchholz, S. S.; Fischer, S. F.; Kunze, U.; Schuh, D.; Abstreiter, G.

    2008-03-01

    Vertically stacked quantum point contacts (QPCs) are prepared by atomic force microscope (AFM) lithography from an asymmetric GaAs/AlGaAs double quantum well (DQW) heterostructure. Top- and back-gate voltages are used to tune the tunnel-coupled QPCs, and back-gate bias cooling is employed to investigate coupled and decoupled one-dimensional (1D) modes. Parity dependent mode coupling is invoked by the particular asymmetry in the vertical DQW confinement.

  15. Quantum-Carnot engine for particle confined to cubic potential

    SciTech Connect

    Sutantyo, Trengginas Eka P. Belfaqih, Idrus H. Prayitno, T. B.

    2015-09-30

    Carnot cycle consists of isothermal and adiabatic processes which are reversible. Using analogy in quantum mechanics, these processes can be well explained by replacing variables in classical process with a quantum system. Quantum system which is shown in this paper is a particle that moves under the influence of a cubic potential which is restricted only to the state of the two energy levels. At the end, the efficiency of the system is shown as a function of the width ratio between the initial conditions and the farthest wall while expanding. Furthermore, the system efficiency will be considered 1D and 2D cases. The providing efficiencies are different due to the influence of the degeneration of energy and the degrees of freedom of the system.

  16. Quantum Dot Channel (QDC) FETs with Wraparound II-VI Gate Insulators: Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Jain, F.; Lingalugari, M.; Kondo, J.; Mirdha, P.; Suarez, E.; Chandy, J.; Heller, E.

    2016-08-01

    This paper presents simulations predicting the feasibility of 9-nm wraparound quantum dot channel (QDC) field-effect transistors (FETs). In particular, II-VI lattice-matched layers which reduce the density of interface states, serving as top (tunnel gate), side, and bottom gate insulators, have been simulated. Quantum simulations show FET operation with voltage swing of ~0.2 V. Incorporation of cladded quantum dots, such as SiO x -Si and GeO x -Ge, under the gate tunnel oxide results in electrical transport in one or more quantum dot layers which form a quantum dot superlattice (QDSL). Long-channel QDC FETs have experimental multistate drain current (I D)-gate voltage (V G) and drain current (I D)-drain voltage (V D) characteristics, which can be attributed to the manifestation of extremely narrow energy minibands formed in the QDSL. An approach for modeling the multistate I D-V G characteristics is reported. The multistate characteristics of QDC FETs permit design of compact two-bit multivalued logic circuits.

  17. Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon.

    PubMed

    Schaibley, J R; Burgers, A P; McCracken, G A; Duan, L-M; Berman, P R; Steel, D G; Bracker, A S; Gammon, D; Sham, L J

    2013-04-19

    The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing architecture lies in demonstrating the ability to scale the system to many qubits. In this Letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to a single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dot's excited state. We obtain a lower bound on the fidelity of entanglement of 0.59±0.04, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement-based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3×10(3) s(-1). This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network. PMID:23679636

  18. Electronic structure and electron correlation in weakly confining spherical quantum dot potentials

    NASA Astrophysics Data System (ADS)

    Kimani, Peter Borgia Ndungu

    The electronic structure and electron correlations in weakly confining spherical quantum dots potentials are investigated. Following a common practice, the investigation starts with the restricted Hartree-Fock (HF) approximation. Then electron correlation is added in steps in a series of approximations based on the single particle Green's function approach: (i) Second-order Green function (GF) (ii) 2ph-Tamm-Dancoff approximation (TDA) and (iii) an extended version thereof (XTDA) which introduces ground-state correlation into the TDA. The study includes as well Hartree-Fock V (N-1) potential approximation in which framework the Hartree-Fock virtual orbitals are calculated in the field of the N-1 electrons as opposed to the regular but unphysical N-electron field Hartree-Fock calculation of virtual orbitals. For contrast and comparison, the same approximation techniques are applied to few-electron closed-shell atoms and few-electron negative ions for which pertinent data is readily available. The results for the weakly confining spherical quantum dot potentials and the standard atomic systems exhibit fundamental similarities as well as significant differences. For the most part the results of these calculations are in favor of application of HF, GF, and TDA techniques in the modeling of three-dimensional weakly confining quantum dot potentials. The observed differences emphasize the significance of confinement and electronic features unique to quantum dots such as the increased binding of electrons with higher angular momentum and the modified shell filling sequences.

  19. Stark Effect of Excitons in a Quantum Nano-rod with Parabolic Confinement

    NASA Astrophysics Data System (ADS)

    Lyo, S. K.

    2013-03-01

    We study the exciton binding energy and the oscillator strength as a function of a DC electric field in a quasi-one-dimensional quantum dot (i.e., nano rod) with parabolic confinements in the conduction and valence bands. The relative importance of the quantum confinement and electron-hole interaction is examined by varying the the linear confinement length (i.e., rod length). We find an abrupt decrease of the oscillator strength, loss of exciton binding energy, and a sudden increase of the root-mean-square average of electron-hole separation as the excitons are dissociated at the threshold field. The field dependence of the effects are also investigated as a function of the rod length and the radius of the nano rod. The numerical results are applied to GaAs and CdSe rods. This work was supported by DOE/BES under Contract No.DE-AC04-94AL85000.

  20. Ground state of the holes localized in II-VI quantum dots with Gaussian potential profiles

    NASA Astrophysics Data System (ADS)

    Semina, M. A.; Golovatenko, A. A.; Rodina, A. V.

    2016-01-01

    We report on a theoretical study of the hole states in II-IV quantum dots of spherical and ellipsoidal shapes, described by smooth potential confinement profiles that can be modeled by Gaussian functions in all three dimensions. The universal dependencies of the hole energy, g factor, and localization length on the quantum dot barrier height, as well as the ratio of effective masses of the light and heavy holes are presented for the spherical quantum dots. The splitting of the fourfold degenerate ground state into two doublets is derived for anisotropic (oblate or prolate) quantum dots. Variational calculations are combined with numerical ones in the framework of the Luttinger Hamiltonian. Constructed trial functions are optimized by comparison with the numerical results. The effective hole g factor is found to be independent of the quantum dot size and barrier height and is approximated by a simple universal expression depending only on the effective mass parameters. The results can be used for interpreting and analyzing experimental spectra measured in various structures with quantum dots of different semiconductor materials.

  1. Vortex anomaly in low-dimensional fermionic condensates: Quantum confinement breaks chirality

    NASA Astrophysics Data System (ADS)

    Chen, Yajiang; Shanenko, A. A.; Peeters, F. M.

    2014-02-01

    Chiral fermions are responsible for low-temperature properties of vortices in fermionic condensates, both superconducting (charged) and superfluid (neutral). One of the most striking consequences of this fact is that the core of a single-quantum vortex collapses at low temperatures, T →0 (i.e., the Kramer-Pesch effect for superconductors), due to the presence of chiral quasiparticles in the vortex-core region. We show that the situation changes drastically for fermionic condensates confined in quasi-one-dimensional and quasi-two-dimensional geometries. Here quantum confinement breaks the chirality of in-core fermions. As a result, instead of the ultimate shrinking, the core of a single-quantum vortex extends at low temperatures, and the condensate profile surprisingly mimics the multiquantum vortex behavior. Our findings are relevant for nanoscale superconductors, such as recent metallic nanoislands on silicon, and also for ultracold superfluid Fermi gases in cigar-shaped and pancake-shaped atomic traps.

  2. Effect of phonon confinement on lattice thermal conductivity of lead Telluride quantum well structure

    SciTech Connect

    Tripathi, Madhvendra Nath

    2014-04-24

    The paper examines the effect of spatial confinement of acoustic phonons on average group velocity and consequently the lattice thermal conductivity of a free-standing PbTe quantum well structure and their temperature dependence. The average group velocity at 100 Å decreases 30% to the bulk value and falls more rapidly on reducing the width of quantum well. Moreover, the lattice thermal conductivity of 100 Å wide PbTe quantum well with value of 0.60 W/mK shows considerable decrease of 70% compared to it’s bulk value. It is observed that the effect of reduction in well width is less pronounce as temperature increases. This appears mainly due to dominance of umklapp processes over the confinement effects.

  3. Electronic and optical properties of exciton, trions and biexciton in II-VI parabolic quantum dot

    NASA Astrophysics Data System (ADS)

    Sujanah, P.; John Peter, A.; Woo Lee, Chang

    2015-08-01

    Binding energies of exciton, trions and biexciton and their interband optical transition energies are studied in a CdTe/ZnTe quantum dot nanostructure taking into consideration the geometrical confinement effect. The radial spread of the wavefunctions, binding energies, optical transition energies, oscillator strength, radiative life time and the absorption coefficients of exciton, positively and negatively charged excitons and biexciton are carried out. It is found that the ratio of the radiative life time of exciton with the trions and biexciton enhances with the reduction of geometrical confinement. The results show that (i) the binding energies of exciton, positive and negative trions and the biexciton have strong influence on the reduction of geometrical confinement effect, (ii) the binding energy is found to decrease from the binding energies of exciton to positive trion through biexciton and negative trion binding energies, (iii) the oscillator strength of trions is found to be lesser than exciton and the biexciton and (iv) the electronic and optical properties of exciton, trions and the biexciton are considerably dependent on the spatial confinement, incident photon energy and the radiative life time. The obtained results are in good agreement with the other existing literature.

  4. Quantum mechanical solver for confined heterostructure tunnel field-effect transistors

    SciTech Connect

    Verreck, Devin Groeseneken, Guido; Van de Put, Maarten; Sorée, Bart; Magnus, Wim; Verhulst, Anne S.; Collaert, Nadine; Thean, Aaron; Vandenberghe, William G.

    2014-02-07

    Heterostructure tunnel field-effect transistors (HTFET) are promising candidates for low-power applications in future technology nodes, as they are predicted to offer high on-currents, combined with a sub-60 mV/dec subthreshold swing. However, the effects of important quantum mechanical phenomena like size confinement at the heterojunction are not well understood, due to the theoretical and computational difficulties in modeling realistic heterostructures. We therefore present a ballistic quantum transport formalism, combining a novel envelope function approach for semiconductor heterostructures with the multiband quantum transmitting boundary method, which we extend to 2D potentials. We demonstrate an implementation of a 2-band version of the formalism and apply it to study confinement in realistic heterostructure diodes and p-n-i-n HTFETs. For the diodes, both transmission probabilities and current densities are found to decrease with stronger confinement. For the p-n-i-n HTFETs, the improved gate control is found to counteract the deterioration due to confinement.

  5. Confinement-deconfinement transition due to spontaneous symmetry breaking in quantum Hall bilayers.

    PubMed

    Pikulin, D I; Silvestrov, P G; Hyart, T

    2016-01-01

    Band-inverted electron-hole bilayers support quantum spin Hall insulator and exciton condensate phases. Interest in quantum spin Hall effect in these systems has recently put them in the spotlight. We investigate such a bilayer in an external magnetic field. We show that the interlayer correlations lead to formation of a helical quantum Hall exciton condensate state. Existence of the counterpropagating edge modes in this system results in formation of a ground state spin-texture not supporting gapless single-particle excitations. The charged edge excitations in a sufficiently narrow Hall bar are confined: a charge on one of the edges always gives rise to an opposite charge on the other edge. Magnetic field and gate voltages allow the control of a confinement-deconfinement transition of charged edge excitations, which can be probed with nonlocal conductance. Confinement-deconfinement transitions are of great interest, not least because of their possible significance in shedding light on the confinement problem of quarks. PMID:26804790

  6. Confinement-deconfinement transition due to spontaneous symmetry breaking in quantum Hall bilayers

    PubMed Central

    Pikulin, D. I.; Silvestrov, P. G.; Hyart, T.

    2016-01-01

    Band-inverted electron-hole bilayers support quantum spin Hall insulator and exciton condensate phases. Interest in quantum spin Hall effect in these systems has recently put them in the spotlight. We investigate such a bilayer in an external magnetic field. We show that the interlayer correlations lead to formation of a helical quantum Hall exciton condensate state. Existence of the counterpropagating edge modes in this system results in formation of a ground state spin-texture not supporting gapless single-particle excitations. The charged edge excitations in a sufficiently narrow Hall bar are confined: a charge on one of the edges always gives rise to an opposite charge on the other edge. Magnetic field and gate voltages allow the control of a confinement-deconfinement transition of charged edge excitations, which can be probed with nonlocal conductance. Confinement-deconfinement transitions are of great interest, not least because of their possible significance in shedding light on the confinement problem of quarks. PMID:26804790

  7. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction.

    PubMed

    Lei, Fengcai; Liu, Wei; Sun, Yongfu; Xu, Jiaqi; Liu, Katong; Liang, Liang; Yao, Tao; Pan, Bicai; Wei, Shiqiang; Xie, Yi

    2016-01-01

    Ultrathin metal layers can be highly active carbon dioxide electroreduction catalysts, but may also be prone to oxidation. Here we construct a model of graphene confined ultrathin layers of highly reactive metals, taking the synthetic highly reactive tin quantum sheets confined in graphene as an example. The higher electrochemical active area ensures 9 times larger carbon dioxide adsorption capacity relative to bulk tin, while the highly-conductive graphene favours rate-determining electron transfer from carbon dioxide to its radical anion. The lowered tin-tin coordination numbers, revealed by X-ray absorption fine structure spectroscopy, enable tin quantum sheets confined in graphene to efficiently stabilize the carbon dioxide radical anion, verified by 0.13 volts lowered potential of hydroxyl ion adsorption compared with bulk tin. Hence, the tin quantum sheets confined in graphene show enhanced electrocatalytic activity and stability. This work may provide a promising lead for designing efficient and robust catalysts for electrolytic fuel synthesis. PMID:27585984

  8. Confinement-deconfinement transition due to spontaneous symmetry breaking in quantum Hall bilayers

    NASA Astrophysics Data System (ADS)

    Pikulin, D. I.; Silvestrov, P. G.; Hyart, T.

    2016-01-01

    Band-inverted electron-hole bilayers support quantum spin Hall insulator and exciton condensate phases. Interest in quantum spin Hall effect in these systems has recently put them in the spotlight. We investigate such a bilayer in an external magnetic field. We show that the interlayer correlations lead to formation of a helical quantum Hall exciton condensate state. Existence of the counterpropagating edge modes in this system results in formation of a ground state spin-texture not supporting gapless single-particle excitations. The charged edge excitations in a sufficiently narrow Hall bar are confined: a charge on one of the edges always gives rise to an opposite charge on the other edge. Magnetic field and gate voltages allow the control of a confinement-deconfinement transition of charged edge excitations, which can be probed with nonlocal conductance. Confinement-deconfinement transitions are of great interest, not least because of their possible significance in shedding light on the confinement problem of quarks.

  9. First-principles study of orbital-dependent quantum confinement in Si/Ge nanowire superlattices

    NASA Astrophysics Data System (ADS)

    Kim, Min-Kook; Choi, Hyoung Joon

    2012-02-01

    We study electronic structures of H-passivated Si/Ge nanowire superlattices (NWSLs) oriented along [110] direction, using an ab-initio pseudopotential density-functional method with the local density approximation. Obtained electronic structures of the Si/Ge NWSLs show both dispersive and non-dispersive bands in conduction and valence bands due to band-selective quantum confinement: the highest valence band and the lowest conduction band are not confined in either the Si- or Ge-nanowire segment but they are extended throughout the whole NWSLs, while there exist non-dispersive bands confined in either Si- or Ge-nanowire segment below the top of the valence band and above the bottom of the conduction band. This feature originates from strong orbital-dependence of quantum confinement of electronic states, making conventional band-offset diagrams for superlattices invalid in Si/Ge NWSLs. Effects of atomic geometries on the confinement are studied with different diameters and superlattice periodicities. This work was supported by NRF of Korea (Grant Nos. 2009-0081204 and 2011-0018306). Computational resources have been provided by KISTI Supercomputing Center (Project No. KSC-2011-C3-05).

  10. Quantum confined electron-phonon interaction in silicon nanocrystals.

    PubMed

    Sagar, D M; Atkin, Joanna M; Palomaki, Peter K B; Neale, Nathan R; Blackburn, Jeffrey L; Johnson, Justin C; Nozik, Arthur J; Raschke, Markus B; Beard, Matthew C

    2015-03-11

    We study the micro-Raman spectra of colloidal silicon nanocrystals as a function of size, excitation wavelength, and excitation intensity. We find that the longitudinal optical (LO) phonon spectrum is asymmetrically broadened toward the low energy side and exhibits a dip or antiresonance on the high-energy side, both characteristics of a Fano line shape. The broadening depends on both nanocrystal size and Raman excitation wavelength. We propose that the Fano line shape results from interference of the optical phonon response with a continuum of electronic states that become populated by intraband photoexcitation of carriers. The asymmetry exhibits progressive enhancement with decreasing particle size and with increasing excitation energy for a given particle size. We compare our observations with those reported for p- and n-doped bulk Si, where Fano interference has also been observed, but we find opposite wavelength dependence of the asymmetry for the bulk and nanocrystalline Si. Our results have important implications for potentially controlling carrier energy relaxation channels in strongly confined Si nanocrystals. PMID:25626139

  11. Lateral carrier confinement in InGaN quantum-well nanorods

    SciTech Connect

    Shi, Chentian; Zhang, Chunfeng; Wang, Xiaoyong; Xiao, Min

    2015-07-15

    We review our studies on lateral carrier diffusion in micro-fabricated samples of InGaN nanorods and their parent quantum wells. The carrier diffusion is observed to be strongly confined in nanorods, as manifested by the reduction in the delayed-rise component of time-resolved photoluminescence traces. We further argue that the confinement of carrier diffusion can be applied to suppress the efficiency droop related to defect state recombination and to assist in the energy transfer between InGaN nanorods and nanocrystal phosphors for color conversion.

  12. Influence of the nanoparticles agglomeration state in the quantum-confinement effects: Experimental evidences

    SciTech Connect

    Lorite, I.; Romero, J. J.; Fernandez, J. F.

    2015-03-15

    The agglomeration state facilitates particle-particle interaction which produces important effects in the phonon confinement effects at the nanoscale. A partial phonon transmission between close nanoparticles yields a lower momentum conservation relaxation than in a single isolated nanoparticle. It means a larger red shift and broadening of the Raman modes than the expected ones for Raman quantum confinement effects. This particle-particle interaction can drive to error when Raman responses are used to estimate the size of the nanoscaled materials. In this work different corrections are suggested to overtake this source of error.

  13. Atomic layer epitaxy of II-VI quantum wells and superlattices

    NASA Astrophysics Data System (ADS)

    Faschinger, W.

    1993-01-01

    Atomic Layer Epitaxy (ALE) under ultra high vacuum conditions is a variation of MBE which makes use of a self-regulating growth process, leading to digital growth in steps of monolayers or even fractions of monolayers. We report on fundamental aspects of the ALE growth of tellurides and selenides, and give three examples on the physics of ALE-grown structures: (a) Phonon confinement in CdTe/ZnTe superlattices (b) "Spin Sheet" superlattices of cubic MnTe with CdTe and (c) Luminescence tuning in ultra-thin CdSe quantum wells embedded in ZnSe.

  14. Engineering the hole confinement for CdTe-based quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Kłopotowski, Ł.; Wojnar, P.; Kret, S.; Parlińska-Wojtan, M.; Fronc, K.; Wojtowicz, T.; Karczewski, G.

    2015-06-01

    We demonstrate an efficient method to engineer the quantum confinement in a system of two quantum dots grown in a vertical stack. We achieve this by using materials with a different lattice constant for the growth of the outer and inner barriers. We monitor the resulting dot morphology with transmission electron microscopy studies and correlate the results with ensemble quantum dot photoluminescence. Furthermore, we embed the double quantum dots into diode structures and study photoluminescence as a function of bias voltage. We show that in properly engineered structures, it is possible to achieve a resonance of the hole states by tuning the energy levels with electric field. At the resonance, we observe signatures of a formation of a molecular state, hybridized over the two dots.

  15. Engineering the hole confinement for CdTe-based quantum dot molecules

    SciTech Connect

    Kłopotowski, Ł. Wojnar, P.; Kret, S.; Fronc, K.; Wojtowicz, T.; Karczewski, G.

    2015-06-14

    We demonstrate an efficient method to engineer the quantum confinement in a system of two quantum dots grown in a vertical stack. We achieve this by using materials with a different lattice constant for the growth of the outer and inner barriers. We monitor the resulting dot morphology with transmission electron microscopy studies and correlate the results with ensemble quantum dot photoluminescence. Furthermore, we embed the double quantum dots into diode structures and study photoluminescence as a function of bias voltage. We show that in properly engineered structures, it is possible to achieve a resonance of the hole states by tuning the energy levels with electric field. At the resonance, we observe signatures of a formation of a molecular state, hybridized over the two dots.

  16. Fluorescent sensor for Cr(VI) based in functionalized silicon quantum dots with dendrimers.

    PubMed

    Campos, B B; Algarra, M; Alonso, B; Casado, C M; Jiménez-Jiménez, J; Rodríguez-Castellón, E; Esteves da Silva, J C G

    2015-11-01

    Highly luminescent nanoparticles based in Silicon quantum dots, coated by hydroxyl PAMAM dendrimer (PAMAM-OH) of 5th generation, were obtained by one step process by hydrothermal treatment of 3-Aminopropyl)triethoxysilane (APTES) in aqueous solution. Previous to the optimization of the synthesis procedure, different dendritic molecules of 5th generation were tested to obtain the most intense fluorescence signal. The influence of different parameters such ratio APTES/PAMAM-OH, pH and ionic strength on the fluorescence intensity was studied. The fluorescence spectra showed maximum excitation and emission wavelengths at 370 and 446 nm, respectively. The obtained silicon nanoparticles (SiQDs@PAMAM-OH) were characterized by TEM, DLS and XPS, and were found to detect selectively Cr(VI) in aqueous solutions at 2.7 μM level of detection, sensitivity of 0.2 μM with a RSD of 0.16% (n=10). To study the feasibility of the proposed system for Cr(VI) detection, it was tested in real electrochemical solution bath and a tanning effluent obtained from electrochemical industry and with two certified waters, demonstrating promising outcomes as nano-sensor. PMID:26452901

  17. Photoluminescence quantum efficiency of various ternary II VI semiconductor solid solutions

    NASA Astrophysics Data System (ADS)

    Westphäling, R.; Bauer, S.; Klingshirn, C.; Reznitstsky, A.; Verbin, S.

    1998-02-01

    As a result of the spatial localization of excitons in II-VI mixed crystals the external luminescence quantum efficiency η lum is expected to be remarkably higher than in the corresponding binary compounds. To investigate this assumption we built a new experimental setup with a miniature integrating sphere fitted into a cryostat. At low temperatures in the binary systems CdS and CdSe we always found η lum ⩽ 25% in the main luminescence bands (arising from bound excitons (D 0X, A 0X) and donor—acceptor pair recombination). For the free-exciton luminescence η lum was more than two orders of magnitude less. In contrast, CdS 1- xSe x mixed crystals show η lum up to 70% in the luminescence from localized states, indicating that the nonradiative recombination is strongly suppressed for localized excitons. Other II-VI alloys (ZnSe 1- xTe x Zn 1- xCd xS and Zn 1- xCd xSe) show partly considerably lower values for η lum. The temperature dependence of η lum gives information about various activation processes to nonradiative recombination channels.

  18. Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers

    NASA Astrophysics Data System (ADS)

    Zhang, Zi-Hui; Liu, Wei; Ju, Zhengang; Tiam Tan, Swee; Ji, Yun; Kyaw, Zabu; Zhang, Xueliang; Wang, Liancheng; Wei Sun, Xiao; Volkan Demir, Hilmi

    2014-06-01

    InGaN/GaN light-emitting diodes (LEDs) grown along the polar orientations significantly suffer from the quantum confined Stark effect (QCSE) caused by the strong polarization induced electric field in the quantum wells, which is a fundamental problem intrinsic to the III-nitrides. Here, we show that the QCSE is self-screened by the polarization induced bulk charges enabled by designing quantum barriers. The InN composition of the InGaN quantum barrier graded along the growth orientation opportunely generates the polarization induced bulk charges in the quantum barrier, which well compensate the polarization induced interface charges, thus avoiding the electric field in the quantum wells. Consequently, the optical output power and the external quantum efficiency are substantially improved for the LEDs. The ability to self-screen the QCSE using polarization induced bulk charges opens up new possibilities for device engineering of III-nitrides not only in LEDs but also in other optoelectronic devices.

  19. Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers

    SciTech Connect

    Zhang, Zi-Hui; Liu, Wei; Ju, Zhengang; Tiam Tan, Swee; Ji, Yun; Kyaw, Zabu; Zhang, Xueliang; Wang, Liancheng; Wei Sun, Xiao E-mail: volkan@stanfordalumni.org; Volkan Demir, Hilmi E-mail: volkan@stanfordalumni.org

    2014-06-16

    InGaN/GaN light-emitting diodes (LEDs) grown along the polar orientations significantly suffer from the quantum confined Stark effect (QCSE) caused by the strong polarization induced electric field in the quantum wells, which is a fundamental problem intrinsic to the III-nitrides. Here, we show that the QCSE is self-screened by the polarization induced bulk charges enabled by designing quantum barriers. The InN composition of the InGaN quantum barrier graded along the growth orientation opportunely generates the polarization induced bulk charges in the quantum barrier, which well compensate the polarization induced interface charges, thus avoiding the electric field in the quantum wells. Consequently, the optical output power and the external quantum efficiency are substantially improved for the LEDs. The ability to self-screen the QCSE using polarization induced bulk charges opens up new possibilities for device engineering of III-nitrides not only in LEDs but also in other optoelectronic devices.

  20. Excitons in artificial quantum dots in the weak spatial confinement regime

    SciTech Connect

    Zaitsev, S. V. Welsch, M. K.; Forchel, A.; Bacher, G.

    2007-12-15

    The exciton states in individual quantum dots prepared by the selective interdiffusion method in CdTe/CdMgTe quantum wells are studied by the methods of steady-state optical spectroscopy. The annealing-induced diffusion of Mg atoms inward to the bulk of the quantum well, which is significantly enhanced under the SiO{sub 2} mask, leads to a modulation of the bandgap width in the plane of the well, with the minima of the potential being located in the mask aperture areas. A lateral potential that arises, whose height is in the range 30-270 meV and characteristic scale is about 100 nm, efficiently localizes carriers, which form quasi-zero-dimensional excitons in the weak spatial confinement regime. Detailed magnetooptical studies show that Coulomb correlations play a significant role in the formation of exciton states under such a regime, which, in particular, manifests itself in the localization of the wavefunction of carriers on scales that are considerably smaller than the scale of the lateral potential. The particular features of the interlevel splitting, of the biexciton binding energy, and of the diamagnetic shift are discussed. A strong dependence of the interlevel relaxation on the interlevel splitting (the phonon neck) indicates that alternative relaxation mechanisms in the quantum dots studied are weak. The excited states are populated according to the Pauli principle, which indicates that it is possible to apply the shell model of many-exciton states to quantum dots under the weak spatial confinement conditions.

  1. Dielectric confinement influenced screened Coulomb potential for a semiconductor quantum wire

    NASA Astrophysics Data System (ADS)

    Aharonyan, K. H.; Margaryan, N. B.

    2016-01-01

    A formalism of the Thomas-Fermi method has been applied for studying the screening effect due to quasi-one-dimensional electron gas in a semiconductor cylindrical quantum wire embedded in the barrier environment. With taking into account of strongly low dielectric properties of the barrier material, an applicability of the quantum wire effective interaction potential of the confined charge carriers has been revealed. Both screened quasi- one-dimensional interaction potential and effective screening length analytical expressions are derived in the first time. It is shown that in the long wavelength moderate limit dielectric confinement effect enhances strength of the screening potential depending on the both radius of the wire and effective screening length, whereas in the long wavelength strong limit the screening potential solely is determined by barrier environment dielectric properties.

  2. Quantum confinement effect in cheese like silicon nano structure fabricated by metal induced etching

    NASA Astrophysics Data System (ADS)

    Saxena, Shailendra K.; Sahu, Gayatri; Sagdeo, Pankaj R.; Kumar, Rajesh

    2015-08-01

    Quantum confinement effect has been studied in cheese like silicon nano-structures (Ch-SiNS) fabricated by metal induced chemical etching using different etching times. Scanning electron microscopy is used for the morphological study of these Ch-SiNS. A visible photoluminescence (PL) emission is observed from the samples under UV excitation at room temperature due to quantum confinement effect. The average size of Silicon Nanostructures (SiNS) present in the samples has been estimated by bond polarizability model using Raman Spectroscopy from the red-shift observed from SiNSs as compared to its bulk counterpart. The sizes of SiNS present in the samples decreases as etching time increase from 45 to 75 mintunes.

  3. Photoluminescence in quantum-confined SnO2 nanocrystals: Evidence of free exciton decay

    NASA Astrophysics Data System (ADS)

    Lee, E. J. H.; Ribeiro, C.; Giraldi, T. R.; Longo, E.; Leite, E. R.; Varela, J. A.

    2004-03-01

    Nanocrystalline SnO2 quantum dots were synthesized at room temperature by hydrolysis reaction of SnCl2. The addition of tetrabutyl ammonium hydroxide and the use of hydrothermal treatment enabled one to obtain tin dioxide colloidal suspensions with mean particle radii ranging from 1.5 to 4.3 nm. The photoluminescent properties of the suspensions were studied. The particle size distribution was estimated by transmission electron microscopy. Assuming that the maximum intensity photon energy of the photoluminescence spectra is related to the band gap energy of the system, the size dependence of the band gap energies of the quantum-confined SnO2 particles was studied. This dependence was observed to agree very well with the weak confinement regime predicted by the effective mass model. This might be an indication that photoluminescence occurs as a result of a free exciton decay process.

  4. Quantum confinement effect in cheese like silicon nano structure fabricated by metal induced etching

    SciTech Connect

    Saxena, Shailendra K. Sahu, Gayatri; Sagdeo, Pankaj R.; Kumar, Rajesh

    2015-08-28

    Quantum confinement effect has been studied in cheese like silicon nano-structures (Ch-SiNS) fabricated by metal induced chemical etching using different etching times. Scanning electron microscopy is used for the morphological study of these Ch-SiNS. A visible photoluminescence (PL) emission is observed from the samples under UV excitation at room temperature due to quantum confinement effect. The average size of Silicon Nanostructures (SiNS) present in the samples has been estimated by bond polarizability model using Raman Spectroscopy from the red-shift observed from SiNSs as compared to its bulk counterpart. The sizes of SiNS present in the samples decreases as etching time increase from 45 to 75 mintunes.

  5. Confined acoustic and optical plasmons in double-layered quantum-wire arrays with strong tunneling

    NASA Astrophysics Data System (ADS)

    Dethlefsen, A. F.; Heyn, Ch.; Heitmann, D.; Schüller, C.

    2006-05-01

    We investigate electronic excitations in GaAs-AlxGa1-xAs double-layered quantum wire arrays with strong tunneling coupling by resonant inelastic light scattering. By applying an external electric field, we can change the one-dimensional (1D) electron density and the symmetry of the double quantum-well (DQW) structure at the same time. We identify confined optical 1D intersubband plasmons (COP) and confined acoustic 1D intersubband plasmons (CAP). Due to the tunneling coupling, the energies of the CAP exhibit a minimum for a symmetric DQW potential, whereas the energies of the COP are dominated by the total carrier density, and are nearly insensitive to the symmetry of the potential.

  6. Quantum-confined emission and fluorescence blinking of individual exciton complexes in CdSe nanowires.

    PubMed

    Franz, Dennis; Reich, Aina; Strelow, Christian; Wang, Zhe; Kornowski, Andreas; Kipp, Tobias; Mews, Alf

    2014-11-12

    One-dimensional semiconductor nanostructures combine electron mobility in length direction with the possibility of tailoring the physical properties by confinement effects in radial direction. Here we show that thin CdSe quantum nanowires exhibit low-temperature fluorescence spectra with a specific universal structure of several sharp lines. The structure strongly resembles the pattern of bulk spectra but show a diameter-dependent shift due to confinement effects. Also the fluorescence shows a pronounced complex blinking behavior with very different blinking dynamics of different emission lines in one and the same spectrum. Time- and space-resolved optical spectroscopy are combined with high-resolution transmission electron microscopy of the very same quantum nanowires to establish a detailed structure-property relationship. Extensive numerical simulations strongly suggest that excitonic complexes involving donor and acceptor sites are the origin of the feature-rich spectra. PMID:25343231

  7. Self-Induced Oscillation for Electron-Hole Pair Confined in Quantum Dot

    SciTech Connect

    Tagawa, Tomoki; Tsubaki, Atsushi; Ishizuki, Masamu; Takeda, Kyozaburo

    2011-12-23

    We study the time-dependent (TD) phenomena of the electron-hole or electron-electron pair confined in the square quantum dot (SQD) system by computationally solving TD Schroedinger equation under the unrestricted Hartree-Fock (UHF) approach. A typical vacillation is found both in the electron and hole when the charged pair is strongly confined in the SQD while the charged particles have initially the same orbital symmetry. The FFT analysis elucidates that the transition matrix element due to the coulomb interaction involves the eigen frequency {omega} being equal to the excitation energy when the resonative vacillation appears. Thus, Coulomb potential has a potential to cause the self-induced ''Rabi'' oscillation when the charged-particle pair is confined only in the QD.

  8. Energies and densities of electrons confined in elliptical and ellipsoidal quantum dots.

    PubMed

    Halder, Avik; Kresin, Vitaly V

    2016-10-01

    We consider a droplet of electrons confined within an external harmonic potential well of elliptical or ellipsoidal shape, a geometry commonly encountered in work with semiconductor quantum dots and other nanoscale or mesoscale structures. For droplet sizes exceeding the effective Bohr radius, the dominant contribution to average system parameters in the Thomas-Fermi approximation comes from the potential energy terms, which allows us to derive expressions describing the electron droplet's shape and dimensions, its density, total and capacitive energy, and chemical potential. The analytical results are in very good agreement with experimental data and numerical calculations, and make it possible to follow the dependence of the properties of the system on its parameters (the total number of electrons, the axial ratios and curvatures of the confinement potential, and the dielectric constant of the material). An interesting feature is that the eccentricity of the electron droplet is not the same as that of its confining potential well. PMID:27502044

  9. Size control and quantum confinement in Cu2ZnSnS4 nanocrystals.

    PubMed

    Khare, Ankur; Wills, Andrew W; Ammerman, Lauren M; Norris, David J; Aydil, Eray S

    2011-11-14

    Starting with metal dithiocarbamate complexes, we synthesize colloidal Cu(2)ZnSnS(4) (CZTS) nanocrystals with diameters ranging from 2 to 7 nm. Structural and Raman scattering data confirm that CZTS is obtained rather than other possible material phases. The optical absorption spectra of nanocrystals with diameters less than 3 nm show a shift to higher energy due to quantum confinement. PMID:21952415

  10. Quantum confinement and quasiparticle corrections in α-HgS from first principles

    NASA Astrophysics Data System (ADS)

    Lanzillo, Nicholas A.; Roy, Sujit; Nayak, Saroj K.

    2015-06-01

    Using a combination of density functional theory and many-body GW corrections, we calculate the quasiparticle band gap of bulk α-HgS and investigate the effect of quantum confinement on the geometric, electronic and optical structures. The basic structural unit of α-HgS is a one-dimensional helical chain consisting of covalently bound Hg and S atoms. When isolated to just a single helix or to a few-helix configuration, we find that α-HgS becomes a wide-gap semiconductor with a quasiparticle band gap as large as 7.0 eV, in contrast to the bulk structure with a direct quasiparticle band gap of 2.8 eV and an indirect gap of 2.14 eV. This dramatic increase in the band gap is attributed to quantum confinement effects on the geometry and intra-helix bonding. Shifts in the band gaps are also reflected as shifts in the low-energy optical absorption spectra calculated via density functional theory. As more helical chains are added, the band gap decreases sharply while the geometry becomes more bulk-like. This work illustrates the strong effects of quantum confinement in low-dimensional α-HgS nanostructures.

  11. Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors.

    PubMed

    Beard, Matthew C; Luther, Joseph M; Semonin, Octavi E; Nozik, Arthur J

    2013-06-18

    Improving the primary photoconversion process in a photovoltaiccell by utilizing the excess energy that is otherwise lost as heat can lead to an increase in the overall power conversion efficiency (PCE). Semiconductor nanocrystals (NCs) with at least one dimension small enough to produce quantum confinement effects provide new ways of controlling energy flow not achievable in thin film or bulk semiconductors. Researchers have developed various strategies to incorporate these novel structures into suitable solar conversion systems. Some of these methods could increase the PCE past the Shockley-Queisser (SQ) limit of ∼33%, making them viable "third generation photovoltaic" (TGPV) cell architectures. Surpassing the SQ limit for single junction solar cells presents both a scientific and a technological challenge, and the use of semiconductor NCs to enhance the primary photoconversion process offers a promising potential solution. The NCs are synthesized via solution phase chemical reactions producing stable colloidal solutions, where the reaction conditions can be modified to produce a variety of shapes, compositions, and structures. The confinement of the semiconductor NC in one dimension produces quantum films, wells, or discs. Two-dimensional confinement leads to quantum wires or rods (QRs), and quantum dots (QDs) are three-dimensionally confined NCs. The process of multiple exciton generation (MEG) converts a high-energy photon into multiple electron-hole pairs. Although many studies have demonstrated that MEG is enhanced in QDs compared with bulk semiconductors, these studies have either used ultrafast spectroscopy to measure the photon-to-exciton quantum yields (QYs) or theoretical calculations. Implementing MEG in a working solar cell has been an ongoing challenge. In this Account, we discuss the status of MEG research and strategies towards implementing MEG in working solar cells. Recently we showed an external quantum efficiency for photocurrent of greater

  12. Anisotropic Quantum Confinement Effect and Electric Control of Surface States in Dirac Semimetal Nanostructures

    PubMed Central

    Xiao, Xianbo; Yang, Shengyuan A.; Liu, Zhengfang; Li, Huili; Zhou, Guanghui

    2015-01-01

    The recent discovery of Dirac semimetals represents a new achievement in our fundamental understanding of topological states of matter. Due to their topological surface states, high mobility, and exotic properties associated with bulk Dirac points, these new materials have attracted significant attention and are believed to hold great promise for fabricating novel topological devices. For nanoscale device applications, effects from finite size usually play an important role. In this report, we theoretically investigate the electronic properties of Dirac semimetal nanostructures. Quantum confinement generally opens a bulk band gap at the Dirac points. We find that confinement along different directions shows strong anisotropic effects. In particular, the gap due to confinement along vertical c-axis shows a periodic modulation, which is absent for confinement along horizontal directions. We demonstrate that the topological surface states could be controlled by lateral electrostatic gating. It is possible to generate Rashba-like spin splitting for the surface states and to shift them relative to the confinement-induced bulk gap. These results will not only facilitate our fundamental understanding of Dirac semimetal nanostructures, but also provide useful guidance for designing all-electrical topological spintronics devices. PMID:25600392

  13. Ligand-Mediated Control of the Confinement Potential in Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Amin, Victor

    This thesis describes the mechanisms by which organic surfactants, particularly thiophenols and phenyldithiocarbamates, reduce the confinement potential experienced by the exciton of semiconductor quantum dots (QDs). The reduction of the confinement potential is enabled by the creation of interfacial electronic states near the band edge of the QD upon ligand adsorption. In the case of thiophenols, we find that this ligand adsorbs in two distinct binding modes, (i) a tightly bound mode capable of exciton delocalization, and (ii) a more weakly bound mode that has no discernable effect on exciton confinement. Both the adsorption constant and reduction in confinement potential are tunable by para substitution and are generally anticorrelated. For tightly bound thiophenols and other moderately delocalizing ligands, the degree of delocalization induced in the QD is approximately linearly proportional to the fractional surface area occupied by the ligand for all sizes of QDs. In the case of phenyldithiocarbamates, the reduction in the confinement potential is much greater, and ligand adjacency must be accounted for to model exciton delocalization. We find that at high surface coverages, exciton delocalization by phenyldithiocarbamates and other highly delocalizing ligands is dominated by ligand packing effects. Finally, we construct a database of electronic structure calculations on organic molecules and propose an algorithm that combines experimental and computational screening to find novel delocalizing ligands.

  14. Heterostructure quantum confined Stark effect electrooptic modulators operating at 938 nm

    NASA Astrophysics Data System (ADS)

    Hayduk, Michael J.; Krol, Mark F.; Boncek, Raymond K.

    1993-12-01

    Electro-optics modulators are a necessary component of emerging optical fiber based local area interconnects. One type of modulator, suitable for use in optical interconnects, is an asymmetric Fabry-Perot reflection modulator (ARM). This type of an intensity modulator uses an electro-optic material as the spacer material to balance the normally unequal front and back mirror reflectances. The quantum confined Franz-Keldysh and Stark effects shift the absorption edge of semiconductor multiple quantum well (MQW) materials to longer wavelengths in the presence of an external electric field applied perpendicular to the MQW layers, thereby changing the reflectance of the etalon. The combined coherence effects of the etalon coupled with the quantum effects of the MQW materials result in a large modulation depth and a low insertion loss. P-I-N diode structures using an In Ha As/GaAs MQW structure as the intrinsic region were fabricated for the purpose of characterizing the electro-absorption associated with different applied electric fields. Quantum confined Franz-Keldysh and Stark shifts were observed for applied electric fields as large as 6.58 x 10000 V/cm. The resulting change in the absorption coefficient was found to be -3.7 x 1000 cm to the minus 1st power which is sufficient to design a high-speed ARM with a large modulation depth and a low insertion loss.

  15. The surface termination effect on the quantum confinement and electron affinities of 3C-SiC quantum dots: a first-principles study

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenkui; Dai, Ying; Yu, Lin; Guo, Meng; Huang, Baibiao; Whangbo, Myung-Hwan

    2012-02-01

    In light of the established differences between the quantum confinement effect and the electron affinities between hydrogen-passivated C and Si quantum dots, we carried out theoretical investigations on SiC quantum dots, with surfaces uniformly terminated by C-H or Si-H bonds, to explore the role of surface terminations on these two aspects. Surprisingly, it was found that the quantum confinement effect is present (or absent) in the highest occupied (or lowest unoccupied) molecular orbital of the SiC quantum dots regardless of their surface terminations. Thus, the quantum confinement effect related to the energy gap observed experimentally (Phys. Rev. Lett., 2005, 94, 026102) is contributed to by the size-dependence of the highest occupied states; the absence of quantum confinement in the lowest unoccupied states is in contrary to the usual belief based on hydrogen-passivated C quantum dots. However, the cause of the absence of the quantum confinement in C nanodots is not transferable to SiC. We propose a model that provides a clear explanation for all findings on the basis of the nearest-neighbor and next-nearest-neighbor interactions between the valence atomic p-orbital in the frontier occupied/unoccupied states. We also found that the electron affinities of the SiC quantum dots, which closely depend on the surface environments, are negative for the C-H termination and positive for the Si-H termination. The prediction of negative electron affinities in SiC quantum dots by simple C-H termination indicates a promising application for these materials in electron-emitter devices. Our model predicts that GeC quantum dots with hydrogen passivation exhibit similar features to SiC quantum dots and our study confirms the crucial role that the surface environment plays in these nanoscale systems.In light of the established differences between the quantum confinement effect and the electron affinities between hydrogen-passivated C and Si quantum dots, we carried out

  16. The role of the interface in germanium quantum dots: when not only size matters for quantum confinement effects.

    PubMed

    Cosentino, S; Mio, A M; Barbagiovanni, E G; Raciti, R; Bahariqushchi, R; Miritello, M; Nicotra, G; Aydinli, A; Spinella, C; Terrasi, A; Mirabella, S

    2015-07-14

    Quantum confinement (QC) typically assumes a sharp interface between a nanostructure and its environment, leading to an abrupt change in the potential for confined electrons and holes. When the interface is not ideally sharp and clean, significant deviations from the QC rule appear and other parameters beyond the nanostructure size play a considerable role. In this work we elucidate the role of the interface on QC in Ge quantum dots (QDs) synthesized by rf-magnetron sputtering or plasma enhanced chemical vapor deposition (PECVD). Through a detailed electron energy loss spectroscopy (EELS) analysis we investigated the structural and chemical properties of QD interfaces. PECVD QDs exhibit a sharper interface compared to sputter ones, which also evidences a larger contribution of mixed Ge-oxide states. Such a difference strongly modifies the QC strength, as experimentally verified by light absorption spectroscopy. A large size-tuning of the optical bandgap and an increase in the oscillator strength occur when the interface is sharp. A spatially dependent effective mass (SPDEM) model is employed to account for the interface difference between Ge QDs, pointing out a larger reduction in the exciton effective mass in the sharper interface case. These results add new insights into the role of interfaces on confined systems, and open the route for reliable exploitation of QC effects. PMID:26077313

  17. Mapping the spatial distribution of charge carriers in quantum-confined heterostructures

    PubMed Central

    Smith, Andrew M.; Lane, Lucas A.; Nie, Shuming

    2014-01-01

    Quantum-confined nanostructures are considered ‘artificial atoms’ because the wavefunctions of their charge carriers resemble those of atomic orbitals. For multiple-domain heterostructures, however, carrier wavefunctions are more complex and still not well understood. We have prepared a unique series of cation-exchanged HgxCd1−xTe quantum dots (QDs) and seven epitaxial core–shell QDs and measured their first and second exciton peak oscillator strengths as a function of size and chemical composition. A major finding is that carrier locations can be quantitatively mapped and visualized during shell growth or cation exchange simply using absorption transition strengths. These results reveal that a broad range of quantum heterostructures with different internal structures and band alignments exhibit distinct carrier localization patterns that can be used to further improve the performance of optoelectronic devices and enhance the brightness of QD probes for bioimaging. PMID:25080298

  18. Mapping the spatial distribution of charge carriers in quantum-confined heterostructures

    NASA Astrophysics Data System (ADS)

    Smith, Andrew M.; Lane, Lucas A.; Nie, Shuming

    2014-07-01

    Quantum-confined nanostructures are considered ‘artificial atoms’ because the wavefunctions of their charge carriers resemble those of atomic orbitals. For multiple-domain heterostructures, however, carrier wavefunctions are more complex and still not well understood. We have prepared a unique series of cation-exchanged HgxCd1-xTe quantum dots (QDs) and seven epitaxial core-shell QDs and measured their first and second exciton peak oscillator strengths as a function of size and chemical composition. A major finding is that carrier locations can be quantitatively mapped and visualized during shell growth or cation exchange simply using absorption transition strengths. These results reveal that a broad range of quantum heterostructures with different internal structures and band alignments exhibit distinct carrier localization patterns that can be used to further improve the performance of optoelectronic devices and enhance the brightness of QD probes for bioimaging.

  19. First-principle study of quantum confinement effect on small sized silicon quantum dots using density-functional theory

    SciTech Connect

    Anas, M. M.; Othman, A. P.; Gopir, G.

    2014-09-03

    Density functional theory (DFT), as a first-principle approach has successfully been implemented to study nanoscale material. Here, DFT by numerical basis-set was used to study the quantum confinement effect as well as electronic properties of silicon quantum dots (Si-QDs) in ground state condition. Selection of quantum dot models were studied intensively before choosing the right structure for simulation. Next, the computational result were used to examine and deduce the electronic properties and its density of state (DOS) for 14 spherical Si-QDs ranging in size up to ∼ 2 nm in diameter. The energy gap was also deduced from the HOMO-LUMO results. The atomistic model of each silicon QDs was constructed by repeating its crystal unit cell of face-centered cubic (FCC) structure, and reconstructed until the spherical shape obtained. The core structure shows tetrahedral (T{sub d}) symmetry structure. It was found that the model need to be passivated, and hence it was noticed that the confinement effect was more pronounced. The model was optimized using Quasi-Newton method for each size of Si-QDs to get relaxed structure before it was simulated. In this model the exchange-correlation potential (V{sub xc}) of the electrons was treated by Local Density Approximation (LDA) functional and Perdew-Zunger (PZ) functional.

  20. Fractional Quantum Hall Effect at ν = 1 / 2 in Hole Systems Confined to GaAs Wide Quantum Wells

    NASA Astrophysics Data System (ADS)

    Hasdemir, Sukret; Liu, Yang; Graninger, Aurelius; Shayegan, Mansour; Pfeiffer, Loren; West, Ken; Baldwin, Kirk; Winkler, Roland

    2014-03-01

    We observe fractional quantum Hall effect (FQHE) at the even-denominator Landau level filling factor ν = 1 / 2 in two-dimensional hole systems confined to GaAs quantum wells of width 30 to 50 nm and having bilayer-like charge distributions. The ν = 1 / 2 FQHE is stable when the charge distribution is symmetric and only in a range of intermediate densities, qualitatively similar to what is seen in two-dimensional electron systems confined to approximately twice wider GaAs quantum wells. Despite the complexity of the hole Landau level structure, originating from the coexistence and mixing of the heavy- and light-hole states, we find the hole ν = 1 / 2 FQHE to be consistent with a two-component, Halperin-Laughlin (Ψ331) state. We acknowledge support through the DOE BES (DE-FG02-00-ER45841) for measurements, and the Gordon and Betty Moore Foundation (Grant GBMF2719), Keck Foundation, and the NSF (DMR-0904117, DMR-1305691 and MRSEC DMR-0819860) for sample fabrication. Work at Arg.

  1. Quantum confinement of correlated eg^1 electrons in rare earth nickelate heterostructures

    NASA Astrophysics Data System (ADS)

    Liu, Jian; van Veenendaal, M.; Okamoto, S.; Kareev, M.; Gray, B.; Ryan, P.; Freeland, J. W.; Chakhalian, J.

    2012-02-01

    Complex oxide heterostrutures have emerged as a new playground for controlling the mutually coupled charge, spin, orbital and lattice degrees of freedom, and a promising route to stabilize unusual phases not existing in the bulk. In particular, quantum well structures have recently attracted attention due to the potential in creating novel two-dimensional systems with confined correlated electrons. To this end, we have studied the eg^1 system based on the 3d^7 low-spin state in perovskite rare earth nickelates which are artificially confined by wide-gap dielectrics LaAlO3. The combination of transport measurements and dynamical-mean-field calculations indicate that, a Mott-type metal-insulator transition can be induced by confinement via dimensionality-control. X-ray absorption spectroscopy reveals that the electronic modification in proximity to the confining interfaces is caused by modulated covalency, which is in good agreement with cluster calculations. J.C. was supported by DOD-ARO under the Contract No. 0402-17291 and NSF Contract No. DMR-0747808.

  2. Multi-band Bloch equations and gain spectra of highly excited II-VI semiconductor quantum wells

    SciTech Connect

    Girndt, A.; Jahnke, F.; Knorr, A.; Koch, S.W.; Chow, W.W.

    1997-04-21

    Quasi-equilibrium excitation dependent optical probe spectra of II-VI semiconductor quantum wells at room temperature are investigated within the framework of multi-band semiconductor Bloch equations. The calculations include correlation effects beyond the Hartree-Fock level which describe dephasing, interband Coulomb correlations and band-gap renormalization in second Born approximation. In addition to the carrier-Coulomb interaction, the influence of carrier-phonon scattering and inhomogeneous broadening is considered. The explicit calculation of single particle properties like band structure and dipole matrix elements using k {center_dot} p theory makes it possible to investigate various II-VI material combinations. Numerical results are presented for CdZnSe/ZnSe and CdZnSe/MnZnSSe semiconductor quantum-well systems.

  3. Quantum criticality and confinement effects in an Ising chain in transverse field

    NASA Astrophysics Data System (ADS)

    Coldea, Radu

    2011-03-01

    The Ising chain in transverse field is one of the key paradigms for the theory of continuous zero-temperature quantum phase transitions. We have recently realized this system experimentally by applying strong magnetic fields to the quasi- 1D, low-exchange Ising ferromagnet CoNb2O6 to drive it to its quantum critical point where the spontaneous long-range magnetic order is suppressed by magnetic field. Using high-resolution single-crystal neutron scattering we have probed how the spin dynamics evolves with the applied field and have observed a dramatic change in the character of spin excitations at the quantum critical point, from pairs of domain-wall (kink) quasiparticles in the magnetically-ordered phase, to sharp spin- flip quasiparticles in the paramagnetic phase. The weak, but finite couplings between the chains significantly enrich the physics by stabilizing a complex structure of two-kink bound states due to mean-field confinement effects. In zero field the rich spectrum of bound states can be quantitatitively understood following McCoy and Wu's analytic theory of weak confinement. Just below the critical field the energies of the two lowest bound states approach the ``golden ratio'' as predicted by Zamolodchikov's E8 scaling limit solution of the off-critical Ising model in a weak longitudinal field.

  4. Bernoulli's formula and Poisson's equations for a confined quantum gas: Effects due to a moving piston

    NASA Astrophysics Data System (ADS)

    Nakamura, Katsuhiro; Sobirov, Zarifboy A.; Matrasulov, Davron U.; Avazbaev, Sanat K.

    2012-12-01

    We study a nonequilibrium equation of states of an ideal quantum gas confined in the cavity under a moving piston with a small but finite velocity in the case in which the cavity wall suddenly begins to move at the time origin. Confining ourselves to the thermally isolated process, the quantum nonadiabatic (QNA) contribution to Poisson's adiabatic equations and to Bernoulli's formula which bridges the pressure and internal energy is elucidated. We carry out a statistical mean of the nonadiabatic (time-reversal-symmetric) force operator found in our preceding paper [Nakamura , Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.83.041133 83, 041133 (2011)] in both the low-temperature quantum-mechanical and high-temperature quasiclassical regimes. The QNA contribution, which is proportional to the square of the piston's velocity and to the inverse of the longitudinal size of the cavity, has a coefficient that is dependent on the temperature, gas density, and dimensionality of the cavity. The investigation is done for a unidirectionally expanding three-dimensional (3D) rectangular parallelepiped cavity as well as its 1D version. Its relevance in a realistic nanoscale heat engine is discussed.

  5. Computer simulation of liquid-vapor coexistence of confined quantum fluids

    SciTech Connect

    Trejos, Víctor M.; Gil-Villegas, Alejandro Martinez, Alejandro

    2013-11-14

    The liquid-vapor coexistence (LV) of bulk and confined quantum fluids has been studied by Monte Carlo computer simulation for particles interacting via a semiclassical effective pair potential V{sub eff}(r) = V{sub LJ} + V{sub Q}, where V{sub LJ} is the Lennard-Jones 12-6 potential (LJ) and V{sub Q} is the first-order Wigner-Kirkwood (WK-1) quantum potential, that depends on β = 1/kT and de Boer's quantumness parameter Λ=h/σ√(mε), where k and h are the Boltzmann's and Planck's constants, respectively, m is the particle's mass, T is the temperature of the system, and σ and ε are the LJ potential parameters. The non-conformal properties of the system of particles interacting via the effective pair potential V{sub eff}(r) are due to Λ, since the LV phase diagram is modified by varying Λ. We found that the WK-1 system gives an accurate description of the LV coexistence for bulk phases of several quantum fluids, obtained by the Gibbs Ensemble Monte Carlo method (GEMC). Confinement effects were introduced using the Canonical Ensemble (NVT) to simulate quantum fluids contained within parallel hard walls separated by a distance L{sub p}, within the range 2σ ⩽ L{sub p} ⩽ 6σ. The critical temperature of the system is reduced by decreasing L{sub p} and increasing Λ, and the liquid-vapor transition is not longer observed for L{sub p}/σ < 2, in contrast to what has been observed for the classical system.

  6. Spin blockade and exchange in Coulomb-confined silicon double quantum dots.

    PubMed

    Weber, Bent; Tan, Y H Matthias; Mahapatra, Suddhasatta; Watson, Thomas F; Ryu, Hoon; Rahman, Rajib; Hollenberg, Lloyd C L; Klimeck, Gerhard; Simmons, Michelle Y

    2014-06-01

    Electron spins confined to phosphorus donors in silicon are promising candidates as qubits because of their long coherence times, exceeding seconds in isotopically purified bulk silicon. With the recent demonstrations of initialization, readout and coherent manipulation of individual donor electron spins, the next challenge towards the realization of a Si:P donor-based quantum computer is the demonstration of exchange coupling in two tunnel-coupled phosphorus donors. Spin-to-charge conversion via Pauli spin blockade, an essential ingredient for reading out individual spin states, is challenging in donor-based systems due to the inherently large donor charging energies (∼45 meV), requiring large electric fields (>1 MV m(-1)) to transfer both electron spins onto the same donor. Here, in a carefully characterized double donor-dot device, we directly observe spin blockade of the first few electrons and measure the effective exchange interaction between electron spins in coupled Coulomb-confined systems. PMID:24727686

  7. Spectroscopy and dynamics of charge transfer excitons in type-II band aligned quantum confined heterostructures

    NASA Astrophysics Data System (ADS)

    Kushavah, Dushyant; Mohapatra, P. K.; Rustagi, K. C.; Bahadur, D.; Vasa, P.; Singh, B. P.

    2015-05-01

    We illustrate effect of charge transfer (CT) in type-II quantum confined heterostructure by comparing CdSe quantum dots (QDs), CdSe/CdTe heterostructure quantum dots (HQDs) and CdSe/CdTe/CdSe quantum well-quantum dots (QWQDs) heterostructures. CdSe core QDs were synthesized using a kinetic growth method where QD size depends on reaction time. For shell coating we used modified version of successive ionic layer adsorption and reaction (SILAR). Size of different QDs ˜5 to 7 nm were measured by transmission electron microscopy (TEM). Strong red shift from ˜597 to ˜746 nm in photoluminescence (PL) spectra from QDs to QWQDs shows high tunability which is not possible with single constituent semiconductor QDs. PL spectra have been recorded at different temperatures (10K-300K). Room temperature time correlated single photon counting (TCSPC) measurements for QDs to QWQDs show three exponential radiative decay. The slowest component decay constant in QWQDs comes around eight fold to ˜51 ns as compared to ˜6.5 ns in HQD suggesting new opportunities to tailor the radiative carrier recombination rate of CT excitons.

  8. Spectroscopy and dynamics of charge transfer excitons in type-II band aligned quantum confined heterostructures

    SciTech Connect

    Kushavah, Dushyant; Mohapatra, P. K.; Vasa, P.; Singh, B. P.; Rustagi, K. C.; Bahadur, D.

    2015-05-15

    We illustrate effect of charge transfer (CT) in type-II quantum confined heterostructure by comparing CdSe quantum dots (QDs), CdSe/CdTe heterostructure quantum dots (HQDs) and CdSe/CdTe/CdSe quantum well-quantum dots (QWQDs) heterostructures. CdSe core QDs were synthesized using a kinetic growth method where QD size depends on reaction time. For shell coating we used modified version of successive ionic layer adsorption and reaction (SILAR). Size of different QDs ∼5 to 7 nm were measured by transmission electron microscopy (TEM). Strong red shift from ∼597 to ∼746 nm in photoluminescence (PL) spectra from QDs to QWQDs shows high tunability which is not possible with single constituent semiconductor QDs. PL spectra have been recorded at different temperatures (10K-300K). Room temperature time correlated single photon counting (TCSPC) measurements for QDs to QWQDs show three exponential radiative decay. The slowest component decay constant in QWQDs comes around eight fold to ∼51 ns as compared to ∼6.5 ns in HQD suggesting new opportunities to tailor the radiative carrier recombination rate of CT excitons.

  9. Quantum-confined bandgap narrowing of TiO2 nanoparticles by graphene quantum dots for visible-light-driven applications.

    PubMed

    Wang, Shujun; Cole, Ivan S; Li, Qin

    2016-07-28

    We for the first time report a quantum-confined bandgap narrowing mechanism through which the absorption of two UV absorbers, namely the graphene quantum dots (GQDs) and TiO2 nanoparticles, can be easily extended into the visible light range in a controllable manner. Such a mechanism may be of great importance for light harvesting, photocatalysis and optoelectronics. PMID:27297746

  10. Quantum-Carnot engine for particle confined to 2D symmetric potential well

    SciTech Connect

    Belfaqih, Idrus Husin Sutantyo, Trengginas Eka Putra Prayitno, T. B.; Sulaksono, Anto

    2015-09-30

    Carnot model of heat engine is the most efficient cycle consisting of isothermal and adiabatic processes which are reversible. Although ideal gas usually used as a working fluid in the Carnot engine, Bender used quantum particle confined in 1D potential well as a working fluid. In this paper, by following Bender we generalize the situation to 2D symmetric potential well. The efficiency is express as the ratio of the initial length of the system to the final length of the compressed system. The result then is shown that for the same ratio, 2D potential well is more efficient than 1D potential well.

  11. Impurity with two electrons in the spherical quantum dot with Unite confinement potential

    NASA Astrophysics Data System (ADS)

    Baghdasaryan, D. A.; Ghaltaghchyan, H. Ts; Kazaryan, E. M.; Sarkisyan, H. A.

    2016-01-01

    Two-electron states in a spherical QD with the hydrogenic impurity located in the center and with a finite height confinement potential barrier are investigated. The effective mass mismatch have been taken into account. The dependence of ground state energy and Coulomb electron-electron interaction energy correction on the QD size is studied. The problem of the state exchange time control in QD is discussed, taking into account the spins of the electrons in the Russell-Saunders approximation. The effect of quantum emission has been shown.

  12. Wide-gap II-VI heterostructures

    NASA Astrophysics Data System (ADS)

    Gunshor, R. L.; Kolodziejski, L. A.; Kobayashi, M.; Otsuka, N.; Nurmikko, A. V.

    1990-04-01

    Recent advances in the growth of II-VI/II-VI and II-VI/III-V heterostructures based on the widegap II-VI semiconductors CdTe and ZnTe are discussed. The potentially important pseudomorphic epilayer/epilayer heterojunction consisting of ZnTe on AlSb has been grown by MBE and characterized. Both microstructural and optical evaluation indicate a high degree of structural quality and the potential for future development of novel light-emitting device structures. Metastable zincblende MnTe, for which TEM and X-ray evaluation reveal the presence of only zincblende phases, has been grown by MBE. Single quantum well structures using zincblende MnTe for the barrier layers have been fabricated and found to show strong carrier confinement, further confirming the predicted zincblende MnTe bandgap at 3.2 eV.

  13. Enhanced Quantum Confined Stark Effect in a mesoporous hybrid multifunctional system

    NASA Astrophysics Data System (ADS)

    Gogoi, M.; Deb, P.; Sen, D.; Mazumder, S.; Kostka, A.

    2014-06-01

    Quantum Confined Stark Effect in hybrid of CdTe quantum dot with superparamagnetic iron oxide nanoparticles in both nonporous and mesoporous silica matrix has been realized. The observed QCSE is due to the local electric field induced by charge dispersion at SiO2/polar solvent interface. Enhanced Stark shift of 89.5 meV is observed in case of mesoporous hybrid structure and the corresponding local electric field has been evaluated as 4.38×104 V/cm. The enhancement is assumed to be caused by greater density of charge in the mesoporous hybrid. The conjugation of superparamagnetic nanoparticles in this tailored hybrid microstructure has not imparted any alteration to the Stark shift, but has added multifunctional attribute. The present study on the local electric field induced enhanced QCSE with wavelength modulation towards red end paves the way of developing magneto-fluorescent hybrid systems for biomedical imaging application.

  14. Strongly confining bare core CdTe quantum dots in polymeric microdisk resonators

    SciTech Connect

    Flatae, Assegid Grossmann, Tobias; Beck, Torsten; Wiegele, Sarah; Kalt, Heinz

    2014-01-01

    We report on a simple route to the efficient coupling of optical emission from strongly confining bare core CdTe quantum dots (QDs) to the eigenmodes of a micro-resonator. The quantum emitters are embedded into QD/polymer sandwich microdisk cavities. This prevents photo-oxidation and yields the high dot concentration necessary to overcome Auger enhanced surface trapping of carriers. In combination with the very high cavity Q-factors, interaction of the QDs with the cavity modes in the weak coupling regime is readily observed. Under nanosecond pulsed excitation the CdTe QDs in the microdisks show lasing with a threshold energy as low as 0.33 μJ.

  15. Fluorescent carbon nano dots from lignite: unveiling the impeccable evidence for quantum confinement.

    PubMed

    Kumar Thiyagarajan, Senthil; Raghupathy, Suresh; Palanivel, Dharmalingam; Raji, Kaviyarasan; Ramamurthy, Perumal

    2016-04-28

    Synthesizing nano carbon from its bulk precursors is of recent research interest. In this report, luminescent carbon nanoparticles (CNPs) with tunable particle size and surface functionality are fabricated from lignite using ethylenediamine as the reactive solvent and surface passivating agent via different experimental methods. From the steady-state and time-resolved photophysical studies of these differently sized CNPs, it is unveiled that the energy of the excitons generated after photoexcitation is quantum confined, and it influences the observed photophysical behaviour significantly only when the particle size is less than 10 nm. A larger size of the CNPs and less surface functionalization lead to aggregation, and quenching of the fluorescence. But by dispersing smaller size CNPs in sodium sulfate matrix exhibits fluorescence in the solid state with an absolute fluorescence quantum yield of ∼34%. The prospective application of this hybrid material in sensing and removal of moisture in the atmosphere is illustrated. PMID:27067247

  16. Carrier dynamics in highly quantum-confined, colloidal indium antimonide nanocrystals.

    PubMed

    Chang, Angela Y; Liu, Wenyong; Talapin, Dmitri V; Schaller, Richard D

    2014-08-26

    Nanometer-sized particles of indium antimonide (InSb) offer opportunities in areas such as solar energy conversion and single photon sources. Here, we measure electron-hole pair dynamics, spectra, and absorption cross sections of strongly quantum-confined colloidal InSb nanocrystal quantum dots using femtosecond transient absorption. For all samples, we observe a bleach feature that develops on ultrafast time scales, which notably moves to lower energy during the first several picoseconds following excitation. We associate this unusual red shift, which becomes larger for larger particles and more distinct at lower sample temperatures, with hot exciton cooling through states that we suggest arise from energetically proximal conduction band levels. From controlled optical excitation intensities, we determine biexciton lifetimes, which range from 2 to 20 ps for the studied 3-6 nm diameter particle sizes. PMID:25106893

  17. Probing the excited subband dispersion of holes confined to GaAs wide quantum wells

    NASA Astrophysics Data System (ADS)

    Jo, Insun; Liu, Yang; Deng, H.; Shayegan, M.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Winkler, R.

    Owing to the strong spin-orbit coupling and their large effective mass, the two-dimensional (2D) holes in modulation-doped GaAs quantum wells provide a fertile test bed to study the rich physics of low-dimensional systems. In a wide quantum well, even at moderate 2D densities, the holes start to occupy the excited subband, a subband whose dispersion is very unusual and has a non-monotonic dependence on the wave vector. Here, we study a 2D hole system confined to a 40-nm-thick (001) GaAs quantum well and demonstrate that, via the application of both front and back gates, the density can be tuned in a wide range, between ~1 and 2 ×1011 cm-2. Using Fourier analysis of the low-field Shubnikov-de Haas oscillations, we investigate the population of holes and the spin-orbit interaction induced spin-splitting in different subbands. We discuss the results in light of self-consistent quantum calculations of magneto-oscillations. Work support by the DOE BES (DE-FG02-00-ER45841), the NSF (Grants DMR-1305691 and MRSEC DMR-1420541), the Gordon and Betty Moore Foundation (Grant GBMF4420), and Keck Foundation for experiments, and the NSF Grant DMR-1310199 for calculations.

  18. Elementary framework for cold field emission from quantum-confined, non-planar emitters

    NASA Astrophysics Data System (ADS)

    Patterson, A. A.; Akinwande, A. I.

    2015-05-01

    For suitably small field emitters, the effects of quantum confinement at the emitter tip may have a significant impact on the emitter performance and total emitted current density (ECD). Since the geometry of a quantum system uniquely determines the magnitude and distribution of its energy levels, a framework for deriving ECD equations from cold field electron emitters of arbitrary geometry and dimensionality is developed. In the interest of obtaining semi-analytical ECD equations, the framework is recast in terms of plane wave solutions to the Schrödinger equation via the use of the Jeffreys-Wentzel-Kramers-Brillouin approximation. To demonstrate the framework's consistency with our previous work and its capabilities in treating emitters with non-planar geometries, ECD equations were derived for the normally unconfined cylindrical nanowire (CNW) and normally confined (NC) CNW emitter geometries. As a function of the emitter radius, the NC CNW emitter ECD profile displayed a strong dependence on the Fermi energy and had an average ECD that exceeded the Fowler-Nordheim equation for typical values of the Fermi energy due to closely spaced, singly degenerate energy levels (excluding electron spin), comparatively large electron supply values, and the lack of a transverse, zero-point energy. Such characteristics suggest that emitters with non-planar geometries may be ideal for emission from both an electron supply and electrostatics perspective.

  19. Elementary framework for cold field emission from quantum-confined, non-planar emitters

    SciTech Connect

    Patterson, A. A. Akinwande, A. I.

    2015-05-07

    For suitably small field emitters, the effects of quantum confinement at the emitter tip may have a significant impact on the emitter performance and total emitted current density (ECD). Since the geometry of a quantum system uniquely determines the magnitude and distribution of its energy levels, a framework for deriving ECD equations from cold field electron emitters of arbitrary geometry and dimensionality is developed. In the interest of obtaining semi-analytical ECD equations, the framework is recast in terms of plane wave solutions to the Schrödinger equation via the use of the Jeffreys-Wentzel-Kramers-Brillouin approximation. To demonstrate the framework's consistency with our previous work and its capabilities in treating emitters with non-planar geometries, ECD equations were derived for the normally unconfined cylindrical nanowire (CNW) and normally confined (NC) CNW emitter geometries. As a function of the emitter radius, the NC CNW emitter ECD profile displayed a strong dependence on the Fermi energy and had an average ECD that exceeded the Fowler-Nordheim equation for typical values of the Fermi energy due to closely spaced, singly degenerate energy levels (excluding electron spin), comparatively large electron supply values, and the lack of a transverse, zero-point energy. Such characteristics suggest that emitters with non-planar geometries may be ideal for emission from both an electron supply and electrostatics perspective.

  20. Real-Time Reciprocal Space Mapping of Nano-Islands Induced by Quantum Confinement

    NASA Astrophysics Data System (ADS)

    Hong, Hawoong; Gray, Aaron; Chiang, T.-C.

    2011-01-01

    The effects of quantum confinement have been observed pronouncedly in the island morphology of Pb thin films. The evolution of these nano-islands on Si (111)-(7 × 7) and sapphire (001) surfaces has been studied with a new X-ray diffraction method. A charge-coupled device (CCD) camera was used to collect two- and three-dimensional (2-D and 3-D, respectively) maps of the surface X-ray diffraction in real time. Large ranges of the reflectivity curves, with rocking curves at every point on the reflectivity curves, could be measured continuously in a relatively short amount of time. The abundance of information from 2-D k-space maps reveals clear changes in the growth modes of these thin Pb films. With the 3-D extension of this method, it was possible to observe the ordering of the islands. The islands maintain a nearly uniform interisland distance but lack any angular correlation. The interisland ordering is correlated well with the development of "magic" island heights caused by quantum confinement.

  1. Interplay between quantum confinement and Fulde-Ferrell-Larkin-Ovchinnikov phase in superconducting nanofilms

    NASA Astrophysics Data System (ADS)

    Wójcik, P.; Zegrodnik, M.

    2016-09-01

    In superconducting nanofilms the energy quantization induced by the confinement in the direction perpendicular to the film splits the band of single-electron states into series of subbands. The quantum size effect leads to the experimentally observed oscillations of the critical magnetic field with increasing nanofilm thickness. Here, we study the influence of the quantum confinement on the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase in superconducting nanofilms. We show that the range of the magnetic fields for which the FFLO phase is stable oscillates as a function of the film thickness with the phase shift equal to one half of the period corresponding to the critical magnetic field oscillations. Due to the multiband character of the system a division of the FFLO phase stability region appears leading to a phase diagram which is qualitatively different than the one corresponding to a single-band situation. The number of subregions created in such manner depends on the number of bands participating in the formation of the paired state.

  2. Decoupling the effects of confinement and passivation on semiconductor quantum dots.

    PubMed

    Rudd, Roya; Hall, Colin; Murphy, Peter J; Reece, Peter J; Charrault, Eric; Evans, Drew

    2016-07-20

    Semiconductor (SC) quantum dots (QDs) have recently been fabricated by both chemical and plasma techniques for specific absorption and emission of light. Their optical properties are governed by the size of the QD and the chemistry of any passivation at their surface. Here, we decouple the effects of confinement and passivation by utilising DC magnetron sputtering to fabricate SC QDs in a perfluorinated polyether oil. Very high band gaps are observed for fluorinated QDs with increasing levels of quantum confinement (from 4.2 to 4.6 eV for Si, and 2.5 to 3 eV for Ge), with a shift down to 3.4 eV for Si when oxygen is introduced to the passivation layer. In contrast, the fluorinated Si QDs display a constant UV photoluminescence (3.8 eV) irrespective of size. This ability to tune the size and passivation independently opens a new opportunity to extending the use of simple semiconductor QDs. PMID:27385513

  3. Real time reciprocal space mapping of nano-islands induced by quantum confinment.

    SciTech Connect

    Hong, H.; Gray, A.; Chiang, T. C.

    2011-01-01

    The effects of quantum confinement have been observed pronouncedly in the island morphology of Pb thin films. The evolution of these nano-islands on Si (111)-(7 x 7) and sapphire (001) surfaces has been studied with a new X-ray diffraction method. A charge-coupled device (CCD) camera was used to collect two- and three-dimensional (2-D and 3-D, respectively) maps of the surface X-ray diffraction in real time. Large ranges of the reflectivity curves, with rocking curves at every point on the reflectivity curves, could be measured continuously in a relatively short amount of time. The abundance of information from 2-D k-space maps reveals clear changes in the growth modes of these thin Pb films. With the 3-D extension of this method, it was possible to observe the ordering of the islands. The islands maintain a nearly uniform interisland distance but lack any angular correlation. The interisland ordering is correlated well with the development of 'magic' island heights caused by quantum confinement.

  4. Maximal Wavelength of Confined Quarks and Gluons and Properties of Quantum Chromodynamics

    SciTech Connect

    Brodsky, Stanley J.; Shrock, Robert; /YITP, Stony Brook

    2008-08-01

    Because quarks and gluons are confined within hadrons, they have a maximum wavelength of order the confinement scale. Propagators, normally calculated for free quarks and gluons using Dyson-Schwinger equations, are modified by bound-state effects in close analogy to the calculation of the Lamb shift in atomic physics. Because of confinement, the effective quantum chromodynamic coupling stays finite in the infrared. The quark condensate which arises from spontaneous chiral symmetry breaking in the bound state Dyson-Schwinger equation is the expectation value of the operator {bar q}q evaluated in the background of the fields of the other hadronic constituents, in contrast to a true vacuum expectation value. Thus quark and gluon condensates reside within hadrons. The effects of instantons are also modified. We discuss the implications of the maximum quark and gluon wavelength for phenomena such as deep inelastic scattering and annihilation, the decay of heavy quarkonia, jets, and dimensional counting rules for exclusive reactions. We also discuss implications for the zero-temperature phase structure of a vectorial SU(N) gauge theory with a variable number N{sub f} of massless fermions.

  5. Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

    SciTech Connect

    Kushwaha, Manvir S.

    2014-12-15

    Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes) – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing) the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots: resulting into a blue (red) shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower) magneto-optical transitions survive even in the extreme instances. However, the intra-Landau level

  6. Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

    NASA Astrophysics Data System (ADS)

    Kushwaha, Manvir S.

    2014-12-01

    Semiconducting quantum dots - more fancifully dubbed artificial atoms - are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement - or the lack of any degree of freedom for the electrons (and/or holes) - in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines' random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing) the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots: resulting into a blue (red) shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower) magneto-optical transitions survive even in the extreme instances. However, the intra-Landau level transitions are seen

  7. Charge Carrier Dynamics of Quantum Confined Semiconductor Nanoparticles Analyzed via Transient Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Thibert, Arthur Joseph, III

    Semiconductor nanoparticles are tiny crystalline structures (typically range from 1 - 100 nm) whose shape in many cases can be dictated through tailored chemical synthesis with atomic scale precision. The small size of these nanoparticles often results in quantum confinement (spatial confinement of wave functions), which imparts the ability to manipulate band-gap energies thus allowing them to be optimally engineered for different applications (i.e., photovoltaics, photocatalysis, imaging). However, charge carriers excited within these nanoparticles are often involved in many different processes: trapping, trap migration, Auger recombination, non-radiative relaxation, radiative relaxation, oxidation / reduction, or multiple exciton generation. Broadband ultrafast transient absorption laser spectroscopy is used to spectrally resolve the fate of excited charge carriers in both wavelength and time, providing insight as to what synthetic developments or operating conditions will be necessary to optimize their efficiency for certain applications. This thesis outlines the effort of resolving the dynamics of excited charge carriers for several Cd and Si based nanoparticle systems using this experimental technique. The thesis is organized into five chapters and two appendices as indicated below. Chapter 1 provides a brief introduction to the photophysics of semiconductor nanoparticles. It begins by defining what nanoparticles, semiconductors, charge carriers, and quantum confinement are. From there it details how the study of charge carrier dynamics within nanoparticles can lead to increased efficiency in applications such as photocatalysis. Finally, the experimental methodology associated with ultrafast transient absorption spectroscopy is introduced and its power in mapping charge carrier dynamics is established. Chapter 2 (JPCC, 19647, 2011) introduces the first of the studied samples: water-solubilized 2D CdSe nanoribbons (NRs), which were synthesized in the Osterloh

  8. Quantum confinement in semiconductor nanofilms: Optical spectra and multiple exciton generation

    NASA Astrophysics Data System (ADS)

    Khmelinskii, Igor; Makarov, Vladimir I.

    2016-04-01

    We report optical absorption and photoluminescence (PL) spectra of Si and SnO2 nanocrystalline films in the UV-vis-NIR range, featuring discrete bands resulting from transverse quantum confinement, observed in the optical spectra of nanofilms for the first time ever. The film thickness ranged from 3.9 to 12.2 nm, depending on the material. The results are interpreted within the particle-in-a-box model, with infinite walls. The calculated values of the effective electron mass are independent on the film thickness and equal to 0.17mo (Si) and 0.21mo (SnO2), with mo the mass of the free electron. The second calculated model parameter, the quantum number n of the HOMO (valence band), was also thickness-independent: 8.00 (Si) and 7.00 (SnO2). The transitions observed in absorption all start at the level n and correspond to Δn = 1, 2, 3, …. The photoluminescence bands exhibit large Stokes shifts, shifting to higher energies with increased excitation energy. In effect, nanolayers of Si, an indirect-gap semiconductor, behave as a direct-gap semiconductor, as regards the transverse-quantized level system. A prototype Si-SnO2 nanofilm photovoltaic cell demonstrated photoelectron quantum yields achieving 2.5, showing clear evidence of multiple exciton generation, for the first time ever in a working nanofilm device.

  9. Narrow divergence, single quantum well, separate confinement, AlGaAs laser

    SciTech Connect

    Haw, T.E.; Williams, J.E.; Wober, M.A.

    1991-01-29

    This patent describes a improvement in a structure for a narrow divergence, single quantum well, separate confinement, laser. It comprises: an n-AlGaAs cladding epitaxial layer, a first AlGaAs waveguide epitaxial layer, a GaAs quantum well active epitaxial layer, a second AlGaAs waveguide epitaxial layer, a p-AlGaAs cladding epitaxial layer, and a GaAs cap epitaxial layer, all sequentially grown with respect to each other. The improvement comprises: the n-AlGaAs cladding layer dimensioned to a thickness which is greater than 2 microns and doped to a density less than 5 {times} 10{sup 18}/cm{sup 3}; the first AlGaAs waveguide layer dimensioned to a thickness in a range between 400 and 700 Angstroms; the GaAs quantum well layer dimensioned to a thickness in a range between 50 and 200 Angstroms; the second AlGaAs waveguide layer dimensioned to a thickness in a range between 400 and 700 Angstroms; and the p-AlGaAs cladding layer dimensioned to a thickness which is greater than 2.0 microns and doped to a density less than 5 {times} 10{sup 18}/cm{sup 3}.

  10. Probing quantum confinement at the atomic scale with optically detected nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Kempf, James G.

    2001-09-01

    Near-band-gap circularly polarized excitation in III-V semiconductors provides spin-polarized electrons that transfer spin order to lattice nuclei via fluctuations in the contact hyperfine interaction. This process of optical nuclear polarization and the complementary technique of optical detection of nuclear magnetic resonance (NMR) provide extreme sensitivity enhancement and spatial selectivity in structured samples, enabling collection of NMR spectra from samples such as single quantum wells or dots containing as few as ˜105 nuclei. Combining these advances with novel techniques for high spectral resolution, we have probed quantum-confined electronic states near the interface of a single epitaxially grown Al1-x As/GaAs (x = 0.36) heterojunction. Using a novel strategy that we refer to as POWER (p&barbelow;erturbations o&barbelow;bserved w&barbelow;ith e&barbelow;nhanced ṟesolution) NMR, multiple-pulse time suspension is synchronized with bandgap optical irradiation to reveal spectra of effective spin Hamiltonians that are differences between those of the occupied and unoccupied photoexcited electronic state. The underlying NMR linewidth is reduced by three orders of magnitude in these experiments, enabling resolution of an asymmetric line shape due to light-induced hyperfine interactions. The results are successfully fit with the coherent nuclear spin evolution and relaxation theoretically expected for sites distributed over the volume of an electronic excitation weakly localized at a point defect. This analysis establishes a one-to-one relationship, which can be used to follow nuclear spin diffusion, between optical Knight shift and the radial position of lattice nuclei. We have also introduced POWER NMR techniques to characterize the change in electric field associated with cycling from light-on to light-off states via a linear quadrupole Stark effect (LQSE) of the nuclear spins. Simulations of these NMR spectra in terms of the radial electric fields of

  11. Construction of novel quantum-confined structure with lead halide/gemini surfactant hybrids

    NASA Astrophysics Data System (ADS)

    Takeoka, Yuko; Kawahara, Mitsuyasu; Rikukawa, Masahiro

    2012-11-01

    Novel organic-inorganic hybrid compounds, C16H44N4Pb3I10 and C14H34N2Pb2I6, were synthesized by solvent diffusion recrystallization from the dimethylsulfoxide solution containing PbI2 and gemini ammonium surfactants with different head groups. The results of single crystal X-ray structural analysis showed that the inorganic region of C16H44N4Pb3I10 has quasi one-dimensional chains of [Pb3I10]4- units, whereas that of C12H30N2Pb2I6 has one-dimensional chains of face-sharing PbI6 octahedra. The absorption and fluorescence spectra of these compounds also indicate the formation of one-dimensional inorganic chains and quantum-confined structures.

  12. Macroscopic Excitations in Confined Bose-Einstein Condensates, Searching for Quantum Turbulence

    NASA Astrophysics Data System (ADS)

    Zamora-Zamora, R.; Adame-Arana, O.; Romero-Rochin, V.

    2015-07-01

    We present a survey of macroscopic excitations of harmonically confined Bose-Einstein condensates (BEC), described by Gross-Pitaevskii (GP) equation, in search of routes to develop quantum turbulence. These excitations can all be created by phase-imprinting techniques on an otherwise equilibrium BEC. We analyze two crossed vortices, two parallel anti-vortices, a vortex ring, a vortex with topological charge , and a tangle of four vortices. Since GP equation is time-reversal invariant, we are careful to distinguish time intervals in which this symmetry is preserved and those in which rounding errors play a role. We find that the system tends to reach stationary states that may be widely classified as having either an array of vortices with collective excitations at different length scales or an agitated state composed mainly of Bogoliubov phonons.

  13. Ultralow threshold graded-index separate-confinement heterostructure single quantum well (Al, Ga) As lasers

    NASA Technical Reports Server (NTRS)

    Derry, P. L.; Chen, H. Z.; Morkoc, H.; Yariv, A.; Lau, K. Y.

    1988-01-01

    Broad area graded-index separate-confinement heterostructure single quantum well lasers grown by molecular-beam epitaxy (MBE) with threshold current density as low as 93 A/sq cm (520 microns long) have been fabricated. Buried lasers formed from similarly structured MBE material with liquid phase epitaxy regrowth had threshold currents at submilliampere levels when high reflectivity coatings were applied to the end facets. A CW threshold current of 0.55 mA was obtained for a laser with facet reflectivities of about 80 percent, a cavity length of 120 micron, and an active region stripe width of 1 micron. These devices driven directly with logic level signals have switch-on delays less than 50 ps without any current prebias. Such lasers permit fully on-off switching while at the same time obviating the need for bias monitoring and feedback control.

  14. Dominant luminescence is not due to quantum confinement in molecular-sized silicon carbide nanocrystals.

    PubMed

    Beke, David; Szekrényes, Zsolt; Czigány, Zsolt; Kamarás, Katalin; Gali, Ádám

    2015-07-01

    Molecular-sized colloid silicon carbide (SiC) nanoparticles are very promising candidates to realize bioinert non-perturbative fluorescent nanoparticles for in vivo bioimaging. Furthermore, SiC nanoparticles with engineered vacancy-related emission centres may realize magneto-optical probes operating at nanoscale resolution. Understanding the nature of molecular-sized SiC nanoparticle emission is essential for further applications. Here we report an efficient and simple method to produce a relatively narrow size distribution of water soluble molecular-sized SiC nanoparticles. The tight control of their size distribution makes it possible to demonstrate a switching mechanism in the luminescence correlated with particle size. We show that molecular-sized SiC nanoparticles of 1-3 nm show a relatively strong and broad surface related luminescence whilst the larger ones exhibit a relatively weak band edge and structural defect luminescence with no evidence of quantum confinement effect. PMID:26055555

  15. Quantum propagation and confinement in 1D systems using the transfer-matrix method

    NASA Astrophysics Data System (ADS)

    Pujol, Olivier; Carles, Robert; Pérez, José-Philippe

    2014-05-01

    The aim of this article is to provide some Matlab scripts to the teaching community in quantum physics. The scripts are based on the transfer-matrix formalism and offer a very efficient and versatile tool to solve problems of a physical object (electron, proton, neutron, etc) with one-dimensional (1D) stationary potential energy. Resonant tunnelling through a multiple-barrier or confinement in wells of various shapes is particularly analysed. The results are quantitatively discussed with semiconductor heterostructures, harmonic and anharmonic molecular vibrations, or neutrons in a gravity field. Scripts and other examples (hydrogen-like ions and transmission by a smooth variation of potential energy) are available freely at http://www-loa.univ-lille1.fr/˜pujol in three languages: English, French and Spanish.

  16. Enhancement of thermoelectric performance in InAs nanotubes by tuning quantum confinement effect

    SciTech Connect

    Zhou, Wu-Xing; Tan, Shihua; Chen, Ke-Qiu; Hu, Wenping

    2014-03-28

    By using the nonequilibrium Green's function method, we study the thermoelectric properties of InAs nanotubes. The results show that InAs nanotube with a certain internal diameter has much higher ZT value than nanowire due to the enhancement of quantum confinement effect leading to the increase of the power factor S{sup 2}G. The ZT value of InAs nanotube can reach 1.74, which is about three times greater than that of nanowires. Moreover, it is found that the ZT values of InAs nanotubes decrease rapidly with the increase of internal diameter, which results from the rapid increase of phonons thermal conductance due to the “red shift” of low-frequency optical phonon modes.

  17. Quantum confinement, core level shifts, and dopant segregation in P-doped Si⟨110⟩ nanowires

    NASA Astrophysics Data System (ADS)

    Han, Jiaxin; Chan, Tzu-Liang; Chelikowsky, James R.

    2010-10-01

    We examine P-doped Si⟨110⟩ nanowires by employing a real-space pseudopotential method. We find the defect wave function becomes more localized along the nanowire axis and the donor ionization energy increases, owing to quantum confinement. It is more difficult to dope a P atom into a Si⟨110⟩ nanowire than to dope Si bulk because the formation energy increases with decreasing size. By comparing the formation energy for different P positions within a nanowire, we find that if a P atom at the nanowire surface can overcome the energy barrier close to the surface, there is a tendency for the dopant to reside within the nanowire core. We calculate P core levels shift as P changes position within the nanowire and provide a means for x-ray photoelectron spectroscopy experiments to determine the location of P atoms within a Si nanowire.

  18. Confinement and Lattice Quantum-Electrodynamic Electric Flux Tubes Simulated with Ultracold Atoms

    SciTech Connect

    Zohar, Erez; Reznik, Benni

    2011-12-30

    We propose a method for simulating (2+1)D compact lattice quantum-electrodynamics, using ultracold atoms in optical lattices. In our model local Bose-Einstein condensates' (BECs) phases correspond to the electromagnetic vector potential, and the local number operators represent the conjugate electric field. The well-known gauge-invariant Kogut-Susskind Hamiltonian is obtained as an effective low-energy theory. The field is then coupled to external static charges. We show that in the strong coupling limit this gives rise to ''electric flux tubes'' and to confinement. This can be observed by measuring the local density deviations of the BECs, and is expected to hold even, to some extent, outside the perturbative calculable regime.

  19. Confinement in Maxwell-Chern-Simons planar quantum electrodynamics and the 1/N approximation

    SciTech Connect

    Hofmann, Christoph P.; Raya, Alfredo; Madrigal, Saul Sanchez

    2010-11-01

    We study the analytical structure of the fermion propagator in planar quantum electrodynamics coupled to a Chern-Simons term within a four-component spinor formalism. The dynamical generation of parity-preserving and parity-violating fermion mass terms is considered, through the solution of the corresponding Schwinger-Dyson equation for the fermion propagator at leading order of the 1/N approximation in Landau gauge. The theory undergoes a first-order phase transition toward chiral symmetry restoration when the Chern-Simons coefficient {theta} reaches a critical value which depends upon the number of fermion families considered. Parity-violating masses, however, are generated for arbitrarily large values of the said coefficient. On the confinement scenario, complete charge screening - characteristic of the 1/N approximation - is observed in the entire (N,{theta})-plane through the local and global properties of the vector part of the fermion propagator.

  20. Time-Dependent Configuration Interaction Approach for Multielectron System Confined in Two-Dimensional Quantum Dot

    NASA Astrophysics Data System (ADS)

    Okunishi, Takuma; Clark, Richard; Takeda, Kyozaburo; Kusakabe, Koichi; Tomita, Norikazu

    2013-02-01

    We extend the static multireference description (resonant unrestricted Hartree-Fock) to a dynamical system in order to include the correlation effect dynamically. The resulting time-dependent (TD) Schrödinger equation is simplified into the time-developed rate equation (TD-CI), where the TD external field \\hatH‧(t) is taken into account directly in the Hamiltonian without any approximations. This TD-CI approach also has an advantage in that it takes into account the electron correlation by narrowing down the number of employed Slater determinants. We apply our TD-CI approach to the case of two electrons confined in the square quantum dot (QD) having the spin singlet multiplicity, and study theoretically the spatial and temporal fluctuation of the two-electron ground state under photon injection and pulse field application.

  1. Study of photoluminescence and electroluminescence mechanisms in quantum-confined InSb/InAs heterostructures

    SciTech Connect

    Terent'ev, Ya. V. Mukhin, M. S.; Solov'ev, V. A.; Semenov, A. N.; Meltser, B. Ya.; Usikova, A. A.; Ivanov, S. V.

    2010-08-15

    Photoluminescence and electroluminescence in InSb/InAs heterostructures with ultrathin InSb insertions grown by molecular-beam epitaxy have been systematically studied. Measurements were made in the temperature range from 2 to 300 K on a large set of samples of various designs, with both the InAs matrix and ultrathin InSb insertions grown by different methods. The primary goal of the study was to identify the main radiative recombination channels in these heterostructures. It is shown that optical transitions associated with acceptor impurity centers in the InAs matrix represent an important mechanism diminishing the efficiency of luminescence from InSb insertions at room temperature. The results obtained are important for development of optimal growth modes and design of the active region of light-emitting devices based on quantum-confined InSb/InAs structures emitting in the range 3-5 {mu}m.

  2. Plasmon response of a quantum-confined electron gas probed by core-level photoemission

    SciTech Connect

    Ozer, Mustafa M; Moon, Eun Ju; Eguiluz, Adolfo G; Weitering, Harm H

    2011-01-01

    We demonstrate the existence of quantized 'bulk' plasmons in ultrathin magnesium films on Si(111) by analyzing plasmon-loss satellites in core-level photoemission spectra, recorded as a function of the film thickness d. Remarkably, the plasmon energy is shown to vary as 1/d{sup 2} all the way down to three atomic layers. The loss spectra are dominated by the n=1 and n=2 normal modes, consistent with the excitation of plasmons involving quantized electronic subbands. With decreasing film thickness, spectral weight is gradually transferred from the plasmon modes to the low-energy single-particle excitations. These results represent striking manifestations of the role of quantum confinement on plasmon resonances in precisely controlled nanostructures.

  3. Quantum confined colloidal nanorod heterostructures for solar-to-fuel conversion.

    PubMed

    Wu, Kaifeng; Lian, Tianquan

    2016-07-11

    Solar energy conversion, particularly solar-driven chemical fuel formation, has been intensely studied in the past decades as a potential approach for renewable energy generation. Efficient solar-to-fuel conversion requires artificial photosynthetic systems with strong light absorption, long-lived charge separation and efficient catalysis. Colloidal quantum confined nanoheterostructures have emerged as promising materials for this application because of the ability to tailor their properties through size, shape and composition. In particular, colloidal one-dimensional (1D) semiconductor nanorods (NRs) offer the opportunity to simultaneously maintain quantum confinement in radial dimensions for tunable light absorptions and bulk like carrier transport in the axial direction for long-distance charge separations. In addition, the versatile chemistry of colloidal NRs enables the formation of semiconductor heterojunctions (such as CdSe/CdS dot-in-rod NRs) to separate photogenerated electron-hole pairs and deposition of metallic domains to accept charges and catalyze redox reactions. In this review, we summarize research progress on colloidal NR heterostructures and their applications for solar energy conversion, emphasizing mechanistic insights into the working principle of these systems gained from spectroscopic studies. Following a brief overview of synthesis of various NRs and heterostructures, we introduce their electronic structures and dynamics of exciton and carrier transport and interfacial transfer. We discuss how these exciton and carrier dynamics are controlled by their structures and provide key mechanistic understanding on their photocatalytic performance, including the photo-reduction of a redox mediator (methyl viologen) and light driven H2 generation. We discuss the solar-driven H2 generation mechanism, key efficiency limiting steps, and potential approaches for rational improvement in semiconductor NR/metal heterostructures (such as Pt tipped Cd

  4. Photoemission Studies of Quantum Confinement in Nonmagnetic/Magnetic Film and Wedge Structures

    NASA Astrophysics Data System (ADS)

    Li, Dongqi

    1996-03-01

    The field of giant magnetoresistance (GMR) has generated much excitement. Photoemission provides a powerful tool to address some of the outstanding, yet fundamental issues in this field. It probes the spin-polarized metallic quantum well (QW) states in GMR materials, which underlie the oscillatory exchange coupling.(J. E. Ortega and F. J. Himpsel, Phys. Rev. Lett. 69, 844 (1992).) Angle- and spin-resolved photoemission experiments were performed at NSLS undulator beamline U5. For the Cu/Co system, both sp- and d-band derived minority-spin QW states of Cu overlayers on Co(100) grown on a Cu(100) substrate are identified. Also, the degree of confinement of these states is quantified by inserting a Co wedge to form a barrier between the Cu overlayer and substrate.(Dongqi Li, et al., Phys. Rev. B 51, 7195 (1995).) The characteristic length scale for the quantum confinement coincides with that known to influence the GMR. This provides a glimpse into understanding the importance of spin-dependent interfacial scattering. Another basic issue still under debate is the origin of the "long-period" oscillation in systems such as Fe/Cr. The QW picture is recognized as equivalent to the RKKY description of the coupling periodicity. There are three regions of the Cr Fermi surface whose spanning vectors can explain the periodicity, and thus, where the characteristic QW states might emerge: (i) the nested region (due to aliasing); (ii) the N-centered ellipse; or (iii) the d-derived "lens". Angle- resolved photoemission provides a novel methodology to search k-space for the features responsible for the coupling. Work done in collaboration with S. D. Bader, D.-J. Huang, P. D. Johnson, J. E. Mattson, J. Pearson, E. Vescovo. * Supported by DOE BES-MS under #W-31-109-ENG-38 and ONR under #N-00014- 94-F-0085.

  5. Surface confined quantum well state in MoS{sub 2}(0001) thin film

    SciTech Connect

    Sun, Jia-Tao Song, S. R.; Meng, S.; Du, S. X.; Gao, H. J.; Liu, F.

    2015-10-19

    Surface confined quantum well state (scQWS) is a QWS confined around the surface of a thin film whose electronic energy is smaller than the work function of the film. The scQWS is rather rare in most thin films. Here, we show the existence of scQWS in thin films of transition metal dichalcogenides, MoS{sub 2}. Signatures of scQWS are identified as the overall downward band dispersion in the bulk gap of 2 H-MoS{sub 2} thin film at larger binding energy range. These scQWSs are also characterized with a Shockley-type surface state having an inverse parabolic decay into the film and a symmetric (asymmetric) distribution of projected charge density at the two surfaces of odd-layer (even-layer) films. Our findings of scQWS in MoS{sub 2} shed some light on understanding the electronic properties of 2D materials with implications in future 2D electronic devices.

  6. Control of physical and optical properties of II-VI quantum dots

    NASA Astrophysics Data System (ADS)

    Sooklal, Kelly Sonja

    This thesis primarily concentrates on two semiconductors, CdS and ZnS, both of which have been widely used in the fabrication of electrical devices. Nanoparticles of CdS and ZnS have both been prepared using a variety of synthetic methods. These "quantum confined" particles exhibit a wide range of size dependent properties which can be modified by either altering their size and/or surface chemistry. In one set of experiments, it was found that the location of Mn 2+ profoundly affects the photophysics of ZnS nanoclusters. Mn 2+ substituted for Zn2+ in the ZnS lattice produced orange emission with lifetimes that were intermediate between those found for micron clusters and smaller nanoclusters. The addition of Mn2+ to the outside of the preformed ZnS nanoclusters showed near-band gap emission in the ultraviolet with even shorter lifetimes. We have also used these Mn2+ doped nanoclusters to fabricate electroluminescent devices. In another set of experiments, the effects of different ions on the photophysics of ZnS nanoclusters was investigated. Depending on the cation, we have been able to produce ZnS nanoclusters that emit in the blue, green, yellow and orange regions of the visible spectrum by incorporating Cu2+, Pb2+ and Mn2+. Quantum dots of CdS have also been prepared using several different stabilizing agents. CdS nanoparticles that have been synthesized using dendrimers as hosts exhibit striking optical and electronic features. Intense blue-green emission is observed when the CdS-dendrimer nanocomposites are formed in methanol and/or acidified methanol solutions. Bright yellow emission is observed when the semiconductor-dendrimer nanocomposites are prepared in water and/or basic methanol solutions. One additional experiment was performed using capping groups to modify the photophysics of CdS. Nanometer-sized CdS were prepared using a series of 4-substituted thiophenols as capping agents. The 4-substituents included both electron-donating and electron

  7. Assessment of field-induced quantum confinement in heterogate germanium electron–hole bilayer tunnel field-effect transistor

    SciTech Connect

    Padilla, J. L. Alper, C.; Ionescu, A. M.; Gámiz, F.

    2014-08-25

    The analysis of quantum mechanical confinement in recent germanium electron–hole bilayer tunnel field-effect transistors has been shown to substantially affect the band-to-band tunneling (BTBT) mechanism between electron and hole inversion layers that constitutes the operating principle of these devices. The vertical electric field that appears across the intrinsic semiconductor to give rise to the bilayer configuration makes the formerly continuous conduction and valence bands become a discrete set of energy subbands, therefore increasing the effective bandgap close to the gates and reducing the BTBT probabilities. In this letter, we present a simulation approach that shows how the inclusion of quantum confinement and the subsequent modification of the band profile results in the appearance of lateral tunneling to the underlap regions that greatly degrades the subthreshold swing of these devices. To overcome this drawback imposed by confinement, we propose an heterogate configuration that proves to suppress this parasitic tunneling and enhances the device performance.

  8. Confinement transition of Z2 gauge theory coupled to fermions. A sign problem free quantum Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Gazit, Snir; Randeria, Mohit; Vishwanath, Ashvin

    In two space dimensions, the Z2 lattice gauge theory is known to undergo a zero temperature confinement to de-confinment quantum phase transition . In this work, we study how this transition is modified in the presence of lattice fermions which are minimally coupled to the Z2 gauge field. This may be viewed as an extreme version of the BEC-BCS transition where fermions are confined in the strong coupling phase. We investigate both a square lattice model with a large fermi surface and Dirac fermions realized on a π flux and honeycomb lattices. The models are found to be free of the numerical sign problem for all fermion density. In addition, we introduce a numerical method to stochastically incorporate the Gauss law constraint in a quantum Monte Carlo (QMC) simulation. The phase diagram as a function of the model parameters, chemical potential and temperature is determined by means of a large scale determinant QMC.

  9. Improvement of the quantum confined Stark effect characteristics by means of energy band profile modulation: The case of Gaussian quantum wells

    NASA Astrophysics Data System (ADS)

    Ramírez-Morales, A.; Martínez-Orozco, J. C.; Rodríguez-Vargas, I.

    2011-11-01

    We study the quantum confined stark effect (QCSE) characteristics in Gaussian quantum wells (GQW). This special energy band profile is built varying the aluminum concentration of the AlGaAs ternary alloy in Gaussian fashion. The semi-empirical sp3s* tight-binding model including spin is used to obtain the energy Stark shifts (ESS) and the wave-function Gaussian spatial overlap (GSO) between electrons and holes for different electric field strengths, quantum well widths and aluminum concentrations. We find that both the ESS and the GSO depend parabolically with respect to the electric field strength and the quantum well width. These QCSE characteristics show an asymmetry for the electric field in the forward and reverse directions, related directly to the different band-offset of electrons and holes, being the negative electric fields (reverse direction) more suitable to reach greater ESS. Two important features are presented by this special energy band profile: (1) reductions of the ESS and (2) enhancements of the GSO of tents to hundreds with respect to parabolic and rectangular quantum wells. Even more, tailoring the quantum well width it is possible to reach GSO of thousands with respect to rectangular quantum wells. Finally, it is important to mention that similar results could be obtained in other quantum well heterostructures of materials such as nitrides, oxides (ZnO), and SiGe whenever the confinement band profiles are modulated in Gaussian form.

  10. Effects of thermolysis and ferrocyanide quenching on quantum-confined CdS stabilized by polynucleotides

    SciTech Connect

    Bigham, S.R.; Coffer, J.L.

    1993-12-31

    Cadmium sulfide semiconductor clusters in the quantum confined size regime (Q-CdS) may be successfully stabilized by double-stranded deoxyribonucleic acid (DNA) from calf thymus and E. Coli as well as by single-stranded ribonucleic acids (RNA) in the forms of Poly[A], Poly[C], Poly[G] and Poly [U]. These Q-CdS/ploynucleotide clusters exhibit broad trap emission characteristic of both cadmium and sulfur related defect sites at the semiconductor surface. Here the paper discusses differences in the nature of the stabilizer-cluster interaction between single-stranded and double-stranded polynucleotides, as probed by monitoring changes in photoluminescence after thermolysis or ferrocyanide addition. Thermolysis of Q-CdS/polynucleotide samples affects the interfacial interaction between cluster and stabilizer as demonstrated by a shift in the emission maximum and a change in quantum yield. Stern-Volmer analysis of photoluminescence quenching with ferrocyanide anions exhibits nonlinear behavior. Ferrocyanide anions quench the photoluminescene of Q-CdS/DNA approximately 38% more efficiently (in terms of integrated intensity) than Q-CdS/RNA after 0.17 mN addition. Such behavior suggests that single-stranded polynucleotides are better than double-stranded polynucleotides in terms of protecting the semiconductor surface from the highly negatively charged ferrocyanide anion.

  11. Bias activated dielectric response of excitons and excitonic Mott transition in quantum confined lasers structures.

    NASA Astrophysics Data System (ADS)

    Bhunia, Amit; Bansal, Kanika; Datta, Shouvik; Alshammari, Marzook S.; Henini, Mohamed

    In contrast to the widely reported optical techniques, there are hardly any investigations on corresponding electrical signatures of condensed matter physics of excitonic phenomena. We studied small signal steady state capacitance response in III-V materials based multi quantum well (AlGaInP) and MBE grown quantum dot (InGaAs) laser diodes to identify signatures of excitonic presence. Conductance activation by forward bias was probed using frequency dependent differential capacitance response (fdC/df), which changes characteristically with the onset of light emission indicating the occurrence of negative activation energy. Our analysis shows that it is connected with a steady state population of exciton like bound states. Calculated average energy of this bound state matches well with the binding energy of weakly confined excitons in this type of structures. Further increase in charge injection decreases the differential capacitive response in AlGaInP based diodes, indicating a gradual Mott transition of excitonic states into electron hole plasma. This electrical description of excitonic Mott transition is fully supplemented by standard optical spectroscopic signatures of band gap renormalization and phase space filling effects.

  12. Phosphorene confined systems in magnetic field, quantum transport, and superradiance in the quasiflat band

    NASA Astrophysics Data System (ADS)

    Ostahie, B.; Aldea, A.

    2016-02-01

    Spectral and transport properties of electrons in confined phosphorene systems are investigated in a five hopping parameter tight-binding model, using analytical and numerical techniques. The main emphasis is on the properties of the topological edge states accommodated by the quasiflat band that characterizes the phosphorene energy spectrum. We show, in the particular case of phosphorene, how the breaking of the bipartite lattice structure gives rise to the electron-hole asymmetry of the energy spectrum. The properties of the topological edge states in the zigzag nanoribbons are analyzed under different aspects: degeneracy, localization, extension in the Brillouin zone, dispersion of the quasiflat band in magnetic field. The finite-size phosphorene plaquette exhibits a Hofstadter-type spectrum made up of two unequal butterflies separated by a gap, where a quasiflat band composed of zigzag edge states is located. The transport properties are investigated by simulating a four-lead Hall device (importantly, all leads are attached on the same zigzag side), and using the Landauer-Büttiker formalism. We find out that the chiral edge states due to the magnetic field yield quantum Hall plateaus, but the topological edge states in the gap do not support the quantum Hall effect and prove a dissipative behavior. By calculating the complex eigenenergies of the non-Hermitian effective Hamiltonian that describes the open system (plaquette+leads), we prove the superradiance effect in the energy range of the quasiflat band, with consequences for the density of states and electron transmission properties.

  13. Nuclear Quantum Effects in H(+) and OH(-) Diffusion along Confined Water Wires.

    PubMed

    Rossi, Mariana; Ceriotti, Michele; Manolopoulos, David E

    2016-08-01

    The diffusion of protons and hydroxide ions along water wires provides an efficient mechanism for charge transport that is exploited by biological membrane channels and shows promise for technological applications such as fuel cells. However, what is lacking for a better control and design of these systems is a thorough theoretical understanding of the diffusion process at the atomic scale. Here we focus on two aspects of this process that are often disregarded because of their high computational cost: the use of first-principles potential energy surfaces and the treatment of the nuclei as quantum particles. We consider proton and hydroxide ions in finite water wires using density functional theory augmented with an apolar cylindrical confining potential. We employ machine learning techniques to identify the charged species, thus obtaining an agnostic definition that takes explicitly into account the delocalization of the charge in the Grotthus-like mechanism. We include nuclear quantum effects (NQEs) through the thermostated ring polymer molecular dynamics method and model finite system size effects by considering Langevin dynamics on the potential of mean force of the charged species, allowing us to extract the same "universal" diffusion coefficient from simulations with different wire sizes. In the classical case, diffusion coefficients depend significantly on the potential energy surface, in particular on how dispersion forces modulate water-water distances. NQEs, however, make the diffusion less sensitive to the underlying potential and geometry of the wire. PMID:27440483

  14. Polarization of emission from non-polar III-nitride quantum wells: the influence of confinement

    NASA Astrophysics Data System (ADS)

    Arora, Ashish; Ghosh, Sandip

    2014-01-01

    Taking M-plane oriented GaN quantum wells (QW) as an example, it is shown that the finite out-of-plane crystal momentum arising from quantum confinement modifies valence band mixing in a way that can significantly alter the emission polarization properties of strained non-polar oriented wurtzite group III-nitride QWs. For certain values of strain, the emission polarization direction can rotate by 90° either within the QW plane, or from being out-of-plane to being in-plane which is desirable for light emission applications. The study based on a k · p type perturbation theory simultaneously accounts for the influence of anisotropic in-plane strain which arises in such QWs and also affects the optical polarization properties. An important practical implication of these results is that M-plane oriented AlxGa1-xN QWs under anisotropic in-plane tensile strain can work as efficient ultra-violet light emitters, unlike bulk AlxGa1-xN films with identical composition and strain. After including the influence of the out-of-plane crystal momentum, the emission polarization criterion allows for larger concentration of Al in such QW active layers if the well width is kept sufficiently small. These results are also applicable to A-plane oriented QWs.

  15. Direct Measurement of Quantum Confinement and Environmental Pinning Effects on Metal/Nanostructure Schottky Contacts

    NASA Astrophysics Data System (ADS)

    Tivarus, Cristian

    2005-03-01

    I will discuss direct nm-resolution measurements of metal/quantum well (QW) Schottky contacts made using Cross- sectional Ballistic Electron Emission Microscopy (XBEEM), in order to quantify the influence of small-size effects on hot- carrier injection into semiconductor nanostructures. Molecular Beam Epitaxy was used to grow a sequence of GaAs QWs with width varying from 1nm to 15 nm, separated by thick Al0.3Ga0.7As barrier layers. The samples were cleaved ex-situ and polycrystalline Au contacts were electron-beam evaporated on the cleaved edge using shadow mask or photo-lithography. Samples were studied in ultra-high vacuum using Scanning Tunneling Microscopy and XBEEM. The Schottky barrier height over the QWs was found to systematically increase with decreasing QW width, by up to ˜140 meV for the 1 nm QW. This is mostly due to a large quantum-confinement increase ( up to ˜200 meV) of the QW conduction band minimum (CBM), as estimated by a simple 1D QW model. We also did finite element electrostatic modeling to estimate the ``environmental" effects of the surrounding metal/Al0.3Ga0.7As interface on the QW CBM. Excellent quantitative agreement over the full QW width range is obtained when both quantum confinement and electrostatic effects are considered.I will also discuss on-going measurements to use the metal/QW nanocontacts as unique ``nano-apertures" to directly image and quantify the lateral hot-electron spreading profile in the metal film. This profile is surprisingly large, with a FWHM of ˜15nm (˜21nm) for a 4nm (7nm) thick Au film. XBEEM images directly show that hot-electron spreading is strongly modified by the grain structure in the metal film. In collaboration with J.P. Pelz, M.K. Hudait, and S.A. Ringel. Work supported by NSF and ONR

  16. Theory of the vortex-clustering transition in a confined two-dimensional quantum fluid

    NASA Astrophysics Data System (ADS)

    Yu, Xiaoquan; Billam, Thomas P.; Nian, Jun; Reeves, Matthew T.; Bradley, Ashton S.

    2016-08-01

    Clustering of like-sign vortices in a planar bounded domain is known to occur at negative temperature, a phenomenon that Onsager demonstrated to be a consequence of bounded phase space. In a confined superfluid, quantized vortices can support such an ordered phase, provided they evolve as an almost isolated subsystem containing sufficient energy. A detailed theoretical understanding of the statistical mechanics of such states thus requires a microcanonical approach. Here we develop an analytical theory of the vortex clustering transition in a neutral system of quantum vortices confined to a two-dimensional disk geometry, within the microcanonical ensemble. The choice of ensemble is essential for identifying the correct thermodynamic limit of the system, enabling a rigorous description of clustering in the language of critical phenomena. As the system energy increases above a critical value, the system develops global order via the emergence of a macroscopic dipole structure from the homogeneous phase of vortices, spontaneously breaking the Z2 symmetry associated with invariance under vortex circulation exchange, and the rotational SO (2 ) symmetry due to the disk geometry. The dipole structure emerges characterized by the continuous growth of the macroscopic dipole moment which serves as a global order parameter, resembling a continuous phase transition. The critical temperature of the transition, and the critical exponent associated with the dipole moment, are obtained exactly within mean-field theory. The clustering transition is shown to be distinct from the final state reached at high energy, known as supercondensation. The dipole moment develops via two macroscopic vortex clusters and the cluster locations are found analytically, both near the clustering transition and in the supercondensation limit. The microcanonical theory shows excellent agreement with Monte Carlo simulations, and signatures of the transition are apparent even for a modest system of 100

  17. Effect of thermal annealing on the emission properties of heterostructures containing a quantum-confined GaAsSb layer

    SciTech Connect

    Dikareva, N. V. Vikhrova, O. V.; Zvonkov, B. N.; Malekhonova, N. V.; Nekorkin, S. M.; Pirogov, A. V.; Pavlov, D. A.

    2015-01-15

    Heterostructures containing single GaAsSb/GaAs quantum wells and bilayer GaAsSb/InGaAs quantum wells are produced by metal-organic vapor-phase epitaxy at atmospheric pressure. The growth temperature of the quantum-confined layers is 500–570°C. The structural quality of the samples and the quality of heterointerfaces of the quantum wells are studied by the high-resolution transmission electron microscopy of cross sections. The emission properties of the heterostructures are studied by photoluminescence measurements. The structures are subjected to thermal annealing under conditions chosen in accordance with the temperature and time of growth of the upper cladding p-InGaP layer during the formation of GaAs/InGaP laser structures with an active region containing quantum-confined GaAsSb layers. It is found that such heat treatment can have a profound effect on the emission properties of the active region, only if a bilayer GaAsSb/InGaAs quantum well is formed.

  18. Cyclotron transition line-width due to interactions with the flexural wave of a phonon confined in a quantum well

    NASA Astrophysics Data System (ADS)

    Kang, Nam Lyong

    2016-03-01

    The cyclotron transition line-width for a system of electrons interacting with the flexural wave of phonons confined in a quantum well structure of silicon was calculated using the optical conductivity formula derived by the projection-reduction method. Only a few confined phonons with low energy make a significant contribution to the line-width, which increases with increasing temperature. The well width and magnetic field dependence of the line-width are complicated and the flexural mode contributes to the line-width more strongly than the dilatational mode at low magnetic fields and for small well widths.

  19. Collectively Induced Quantum-Confined Stark Effect in Monolayers of Molecules Consisting of Polar Repeating Units

    PubMed Central

    2011-01-01

    The electronic structure of terpyrimidinethiols is investigated by means of density-functional theory calculations for isolated molecules and monolayers. In the transition from molecule to self-assembled monolayer (SAM), we observe that the band gap is substantially reduced, frontier states increasingly localize on opposite sides of the SAM, and this polarization in several instances is in the direction opposite to the polarization of the overall charge density. This behavior can be analyzed by analogy to inorganic semiconductor quantum-wells, which, as the SAMs studied here, can be regarded as semiperiodic systems. There, similar observations are made under the influence of a, typically external, electric field and are known as the quantum-confined Stark effect. Without any external perturbation, in oligopyrimidine SAMs one encounters an energy gradient that is generated by the dipole moments of the pyrimidine repeat units. It is particularly strong, reaching values of about 1.6 eV/nm, which corresponds to a substantial electric field of 1.6 × 107 V/cm. Close-lying σ- and π-states turn out to be a particular complication for a reliable description of the present systems, as their order is influenced not only by the docking groups and bonding to the metal, but also by the chosen computational approach. In the latter context we demonstrate that deliberately picking a hybrid functional allows avoiding pitfalls due to the infamous self-interaction error. Our results show that when aiming to build a monolayer with a specific electronic structure one can not only resort to the traditional technique of modifying the molecular structure of the constituents, but also try to exploit collective electronic effects. PMID:21955058

  20. Investigation of quantum confinement within the tunneling-percolation transition for ultrathin bismuth films

    NASA Astrophysics Data System (ADS)

    Oller, Declan; Fernandes, Gustavo E.; Kim, Jin Ho; Xu, Jimmy

    2015-10-01

    We investigate conduction phenomena in ultrathin bismuth (Bi) films that are thermally evaporated onto flat quartz. Critical points in the conductance as a function of deposition time are identified and used to scale the data from time dependence to coverage dependence. The resulting nonlinear coverage scaling equation is verified independently via analysis done on transmission electron microscope images of the evaporated films. The scaled data yields critical exponents in very good agreement with classical percolation theory, and clearly shows the transition from the tunneling regime into percolation. Surprisingly, no noticeable signatures of size-quantization effects in the nucleation sites as a function of deposition time is observed in either regime. We discuss our findings in light of Boltzmann transport modeling of 1D conduction as an approximation to the narrow percolative paths that form at the onset of percolation. Our results suggest that lack of a preferred crystallite orientation in the nucleation process may indeed cause quantum-confinement to be too smeared out to be observable in the tunneling to percolation transition.

  1. Role of quantum confinement and hyperfine splitting in lithium-doped ZnO nanocrystals

    NASA Astrophysics Data System (ADS)

    Kwak, Hyunwook; Tiago, Murilo L.; Chan, Tzu-Liang; Chelikowsky, James R.

    2008-11-01

    The role of quantum confinement on the electronic properties of Li interstitial impurities in ZnO nanocrystals was examined using a real-space pseudopotential-density-functional method. The Li impurity was found to be partially ionized resulting in a significant charge transfer around the impurity site. To calculate the hyperfine interaction for this system using pseudopotentials, we modified Van de Walle and Blöchl’s method to include explicitly the off-site contribution of the Li impurity wave function. Our modifications dramatically enhanced the agreement between the calculated and the measured isotropic hyperfine splitting constants. Our analysis with an effective-mass model demonstrates that the partial ionization of the impurity atom plays an important role both in the binding energy and in the shape of its wave function. Comparison between calculations using the local-density approximation (LDA) with LDA+U indicates that the local Coulomb correlation does not play a significant role in altering the impurity electronic states of interstitial Li-doped ZnO nanocrystals.

  2. Quantum confinement induced band gaps in MgB2 nanosheets

    NASA Astrophysics Data System (ADS)

    Xu, Bo Z.; Beckman, Scott P.

    2016-09-01

    The discovery of two-dimensional semiconducting materials, a decade ago, spawned an entire sub-field within solid-state physics that is focused on the development of nanoelectronics. Here we present a new class of semiconducting two-dimensional material based on hexagonal MgB2. Although MgB2 is a semimetal, similar to the other well-studied transition metal diborides, we demonstrate that, unlike the transition metal diborides, thinning MgB2, to create nanosheets, opens a band gap in the density of states. We predict that a 7 Å thick MgB2 nanosheet will have a band gap of 0.51 eV. MgB2 nanosheets differ from other two-dimensional semiconductors in that the band gap is introduced by (001) surfaces and is opened by the quantum confinement effect. The implications of these findings are that nanostructured MgB2 is not merely a new composition, but also has intrinsic mechanisms for tuning its electronic properties, which may facilitate the development of nanoelectronics.

  3. Energy transfer in finite-size exciton-phonon systems: Confinement-enhanced quantum decoherence

    NASA Astrophysics Data System (ADS)

    Pouthier, Vincent

    2012-09-01

    Based on the operatorial formulation of the perturbation theory, the exciton-phonon problem is revisited for investigating exciton-mediated energy flow in a finite-size lattice. Within this method, the exciton-phonon entanglement is taken into account through a dual dressing mechanism so that exciton and phonons are treated on an equal footing. In a marked contrast with what happens in an infinite lattice, it is shown that the dynamics of the exciton density is governed by several time scales. The density evolves coherently in the short-time limit, whereas a relaxation mechanism occurs over intermediated time scales. Consequently, in the long-time limit, the density converges toward a nearly uniform distributed equilibrium distribution. Such a behavior results from quantum decoherence that originates in the fact that the phonons evolve differently depending on the path followed by the exciton to tunnel along the lattice. Although the relaxation rate increases with the temperature and with the coupling, it decreases with the lattice size, suggesting that the decoherence is inherent to the confinement.

  4. Acid-free sol-gel fabrication of glass thin films embedded with II-VI colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Jani, Hemang; Duan, Lingze

    2015-01-01

    II-VI colloidal quantum dots (QDs) are ideal for optical sensors thanks to their high fluorescent brightness and good size uniformity. However, embedding colloidal QDs into a glass matrix with the standard sol-gel process leads to the QDs being damaged by the acid catalyst. Here, we report an acid-free sol-gel technique, which proves to be both simple and effective in fabricating silica glass thin films embedded with commercial II-VI colloidal QDs. Octadecylamine ligands are used as a bifunctional aid to not only stabilize the QDs in solution, but also assist the formation of the SiO2 gel. We demonstrate that high-quality QD-embedded glass thin films can be developed with this technique, and our fluorescent tests indicate that, except for a small blueshift in the emission spectrum, the QDs are very well preserved through the sol-gel process. This method offers a fast and low-cost path towards thin-film QD sensors with good mechanical and thermal stabilities, which are desirable for applications involving highly focused laser beams, such as ultrafast nanophotonics.

  5. Features of the electroluminescence spectra of quantum-confined silicon p{sup +}-n heterojunctions in the infrared spectral region

    SciTech Connect

    Bagraev, N. T.; Klyachkin, L. E.; Kuzmin, R. V. Malyarenko, A. M.; Mashkov, V. A.

    2013-11-15

    The results of studying the characteristics of optical emission in various regions of quantum-confined silicon p{sup +}-n heterojunctions heavily doped with boron are analyzed. The results obtained allow one to conclude that near-infrared electroluminescence arises near the heterointerface between the nanostructured wide-gap silicon p{sup +}-barrier heavily doped with boron and n-type silicon (100), the formation of which included the active involvement of boron dipole centers.

  6. Wet chemical synthesis of quantum confined nanostructured tin oxide thin films by successive ionic layer adsorption and reaction technique

    SciTech Connect

    Murali, K.V.; Ragina, A.J.; Preetha, K.C.; Deepa, K.; Remadevi, T.L.

    2013-09-01

    Graphical abstract: - Highlights: • Quantum confined SnO{sub 2} thin films were synthesized at 80 °C by SILAR technique. • Film formation mechanism is discussed. • Films with snow like crystallite morphology offer high specific surface area. • The blue-shifted value of band gap confirmed the quantum confinement effect. • Present synthesis has advantages – low cost, low temperature and green friendly. - Abstract: Quantum confined nanostructured SnO{sub 2} thin films were synthesized at 353 K using ammonium chloride (NH{sub 4}Cl) and other chemicals by successive ionic layer adsorption and reaction technique. Film formation mechanism is discussed. Structural, morphological, optical and electrical properties were investigated and compared with the as-grown and annealed films fabricated without NH{sub 4}Cl solution. SnO{sub 2} films were polycrystalline with crystallites of tetragonal structure with grain sizes lie in the 5–8 nm range. Films with snow like crystallite morphology offer high specific surface area. The blue-shifted value of band gap of as-grown films confirmed the quantum confinement effect of grains. Refractive index of the films lies in the 2.1–2.3 range. Films prepared with NH{sub 4}Cl exhibit relatively lower resistivity of the order of 10{sup 0}–10{sup −1} Ω cm. The present synthesis has advantages such as low cost, low temperature and green friendly, which yields small particle size, large surface–volume ratio, and high crystallinity SnO{sub 2} films.

  7. Quantum confinement in self-assembled two-dimensional nanoporous honeycomb networks at close-packed metal surfaces

    NASA Astrophysics Data System (ADS)

    Kepčija, N.; Huang, T.-J.; Klappenberger, F.; Barth, J. V.

    2015-03-01

    Quantum confinement of a two-dimensional electron gas by supramolecular nanoporous networks is investigated using the boundary elements method based on Green's functions for finite geometries and electron plane wave expansion for periodic systems. The "particle in a box" picture was analyzed for cases with selected symmetries that model previously reported architectures constructed from organic and metal-organic scattering centers confining surface state electrons of Ag(111) and Cu(111). First, by analyzing a series of cases with systematically defined parameters (scattering geometry, potentials, and effective broadening), we demonstrate how the scattering processes affect the properties of the confined electrons. For the features of the local density of states reported by scanning tunneling spectroscopy (STS), we disentangle the contributions of lifetime broadening and splitting of quantum well states due to coupling of neighboring quantum dots. For each system, we analyze the local electron density distribution and relate it to the corresponding band structure as calculated within the plane-wave expansion framework. Then, we address two experimental investigations, where in one case only STS data and in the other case mainly angle-resolved photoemission spectroscopy (ARPES) data were reported. In both cases, the experimental findings can be successfully simulated. Furthermore, the missing information can be complemented because our approach allows to correlate the information obtained by STS with that of ARPES. The combined analysis of several observations suggests that the scattering potentials created by the network originate primarily from the adsorbate-induced changes of the local surface dipole barrier.

  8. Diffusion of H2 and D2 Confined in Single-Walled Carbon Nanotubes: Quantum Dynamics and Confinement Effects.

    PubMed

    Mondelo-Martell, Manel; Huarte-Larrañaga, Fermín

    2016-08-25

    We present quantum dynamics calculations of the diffusion constant of H2 and D2 along a single-walled carbon nanotube at temperatures between 50 and 150 K. We calculate the respective diffusion rates in the low-pressure limit by adapting well-known approaches and methods from the chemical dynamics field using two different potential energy surfaces to model the C-H interaction. Our results predict a usual kinetic isotope effect, with H2 diffusing faster than D2 in the higher temperature range but a reverse trend at temperatures below 50-70 K. These findings are consistent with experimental observation in similar systems and can be explained by the different effective size of both isotopes resulting from their different zero-point energy. PMID:27459476

  9. Structural Metastability and Quantum Confinement in Zn1-xCoxO Nanoparticles.

    PubMed

    Almonacid, G; Martín-Rodríguez, R; Renero-Lecuna, C; Pellicer-Porres, J; Agouram, S; Valiente, R; González, J; Rodríguez, F; Nataf, L; Gamelin, D R; Segura, A

    2016-08-10

    This paper investigates the electronic structure of wurtzite (W) and rock-salt (RS) Zn1-xCoxO nanoparticles (NPs) by means of optical measurements under pressure (up to 25 GPa), X-ray absorption, and transmission electron microscopy. W-NPs were chemically synthesized at ambient conditions and RS-NPs were obtained by pressure-induced transformation of W-NPs. In contrast to the abrupt phase transition in W-Zn1-xCoxO as thin film or single crystal, occurring sharply at about 9 GPa, spectroscopic signatures of tetrahedral Co(2+) are observed in NPs from ambient pressure to about 17 GPa. Above this pressure, several changes in the absorption spectrum reveal a gradual and irreversible W-to-RS phase transition: (i) the fundamental band-to-band edge shifts to higher photon energies; (ii) the charge-transfer absorption band virtually disappears (or overlaps the fundamental edge); and (iii) the intensity of the crystal-field absorption peaks of Co(2+) around 2 eV decreases by an order of magnitude and shifts to 2.5 eV. After incomplete phase transition pressure cycles, the absorption edge of nontransformed W-NPs at ambient pressure exhibits a blue shift of 0.22 eV. This extra shift is interpreted in terms of quantum confinement effects. The observed gradual phase transition and metastability are related to the NP size distribution: the larger the NP, the lower the W-to-RS transition pressure. PMID:27390839

  10. Quantum chemistry study of uranium(VI), neptunium(V), and plutonium(IV,VI) complexes with preorganized tetradentate phenanthrolineamide ligands.

    PubMed

    Xiao, Cheng-Liang; Wu, Qun-Yan; Wang, Cong-Zhi; Zhao, Yu-Liang; Chai, Zhi-Fang; Shi, Wei-Qun

    2014-10-20

    The preorganized tetradentate 2,9-diamido-1,10-phenanthroline ligand with hard-soft donors combined in the same molecule has been found to possess high selectivity toward actinides in an acidic aqueous solution. In this work, density functional theory (DFT) coupled with the quasi-relativistic small-core pseudopotential method was used to investigate the structures, bonding nature, and thermodynamic behavior of uranium(VI), neptunium(V), and plutonium(IV,VI) with phenanthrolineamides. Theoretical optimization shows that Et-Tol-DAPhen and Et-Et-DAPhen ligands are both coordinated with actinides in a tetradentate chelating mode through two N donors of the phenanthroline moiety and two O donors of the amide moieties. It is found that [AnO2L(NO3)](n+) (An = U(VI), Np(V), Pu(VI); n = 0, 1) and PuL(NO3)4 are the main 1:1 complexes. With respect to 1:2 complexes, the reaction [Pu(H2O)9](4+)(aq) + 2L(org) + 2NO3(-)(aq) → [PuL2(NO3)2](2+)(org) + 9H2O(aq) might be another probable extraction mechanism for Pu(IV). From the viewpoint of energy, the phenanthrolineamides extract actinides in the order of Pu(IV) > U(VI) > Pu(VI) > Np(V), which agrees well with the experimental results. Additionally, all of the thermodynamic reactions are more energetically favorable for the Et-Tol-DAPhen ligand than the Et-Et-DAPhen ligand, indicating that substitution of one ethyl group with one tolyl group can enhance the complexation abilities toward actinide cations (anomalous aryl strengthening). PMID:25268674

  11. Quantum-confinement effect in individual Ge1-xSnx quantum dots on Si(111) substrates covered with ultrathin SiO2 films using scanning tunneling spectroscopy

    NASA Astrophysics Data System (ADS)

    Nakamura, Yoshiaki; Masada, Akiko; Ichikawa, Masakazu

    2007-07-01

    The authors observed a quantum-confinement effect in individual Ge1-xSnx quantum dots (QDs) on Si (111) substrates covered with ultrathin SiO2 films using scanning tunneling spectroscopy at room temperature. The quantum-confinement effect was featured by an increase in the energy band gap of ˜1.5eV with a decrease in QD diameter from 35to4nm. The peaks for quantum levels of QDs became broader with a decrease in the height-diameter aspect ratio of QDs, demonstrating the gradual emergence of two dimensionality in density of states of quasi zero-dimensional QDs with the QD flattening.

  12. Quantum confinement in self-assembled two-dimensional nanoporous honeycomb networks at close-packed metal surfaces

    SciTech Connect

    Kepčija, N.; Huang, T.-J.; Klappenberger, F. Barth, J. V.

    2015-03-14

    Quantum confinement of a two-dimensional electron gas by supramolecular nanoporous networks is investigated using the boundary elements method based on Green’s functions for finite geometries and electron plane wave expansion for periodic systems. The “particle in a box” picture was analyzed for cases with selected symmetries that model previously reported architectures constructed from organic and metal-organic scattering centers confining surface state electrons of Ag(111) and Cu(111). First, by analyzing a series of cases with systematically defined parameters (scattering geometry, potentials, and effective broadening), we demonstrate how the scattering processes affect the properties of the confined electrons. For the features of the local density of states reported by scanning tunneling spectroscopy (STS), we disentangle the contributions of lifetime broadening and splitting of quantum well states due to coupling of neighboring quantum dots. For each system, we analyze the local electron density distribution and relate it to the corresponding band structure as calculated within the plane-wave expansion framework. Then, we address two experimental investigations, where in one case only STS data and in the other case mainly angle-resolved photoemission spectroscopy (ARPES) data were reported. In both cases, the experimental findings can be successfully simulated. Furthermore, the missing information can be complemented because our approach allows to correlate the information obtained by STS with that of ARPES. The combined analysis of several observations suggests that the scattering potentials created by the network originate primarily from the adsorbate-induced changes of the local surface dipole barrier.

  13. Size control, quantum confinement, and oxidation kinetics of silicon nanocrystals synthesized at a high rate by expanding thermal plasma

    SciTech Connect

    Han, Lihao E-mail: A.H.M.Smets@tudelft.nl; Zeman, Miro; Smets, Arno H. M. E-mail: A.H.M.Smets@tudelft.nl

    2015-05-25

    The growth mechanism of silicon nanocrystals (Si NCs) synthesized at a high rate by means of expanding thermal plasma chemical vapor deposition technique are studied in this letter. A bimodal Gaussian size distribution is revealed from the high-resolution transmission electron microscopy images, and routes to reduce the unwanted large Si NCs are discussed. Photoluminescence and Raman spectroscopies are employed to study the size-dependent quantum confinement effect, from which the average diameters of the small Si NCs are determined. The surface oxidation kinetics of Si NCs are studied using Fourier transform infrared spectroscopy and the importance of post-deposition passivation treatments of hydrogenated crystalline silicon surfaces are demonstrated.

  14. Theory of confined states of positronium in spherical and circular quantum dots with Kane’s dispersion law

    PubMed Central

    2013-01-01

    Confined states of a positronium (Ps) in the spherical and circular quantum dots (QDs) are theoretically investigated in two size quantization regimes: strong and weak. Two-band approximation of Kane’s dispersion law and parabolic dispersion law of charge carriers are considered. It is shown that electron-positron pair instability is a consequence of dimensionality reduction, not of the size quantization. The binding energies for the Ps in circular and spherical QDs are calculated. The Ps formation dependence on the QD radius is studied. PMID:23826867

  15. Quantum well intermixing technique using proton implantation for carrier confinement of vertical-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Moriwaki, Shouhei; Saitou, Minoru; Miyamoto, Tomoyuki

    2016-08-01

    We investigated quantum well intermixing (QWI) using proton implantation to form the carrier confinement structure in the active layer of a vertical-cavity surface-emitting laser (VCSEL). The required potential barrier height is discussed referring to the result of numerical analysis. The bandgap change due to the QWI was investigated experimentally for various quantum well structures, proton dose densities, and thermal annealing conditions. A potential barrier height of 30 meV was observed using a high-indium and thin-well structure. High crystalline quality was confirmed by photoluminescence intensity measurement, even after the QWI process, and the lasing of the fabricated QWI-VCSEL was observed without any deterioration. The proposed technique would be effective in improving the device performance in a simple fabrication process.

  16. Long-lived nanosecond spin coherence in high-mobility 2DEGs confined in double and triple quantum wells

    NASA Astrophysics Data System (ADS)

    Ullah, S.; Gusev, G. M.; Bakarov, A. K.; Hernandez, F. G. G.

    2016-06-01

    We investigated the spin coherence of high-mobility two-dimensional electron gases confined in multilayer GaAs quantum wells. The dynamics of the spin polarization was optically studied using pump-probe techniques: time-resolved Kerr rotation and resonant spin amplification. For double and triple quantum wells doped beyond the metal-to-insulator transition, the spin-orbit interaction was tailored by the sample parameters of structural symmetry (Rashba constant), width, and electron density (Dresselhaus linear and cubic constants) which allow us to attain long dephasing times in the nanoseconds range. The determination of the scales, namely, transport scattering time, single-electron scattering time, electron-electron scattering time, and spin polarization decay time further supports the possibility of using n-doped multilayer systems for developing spintronic devices.

  17. Engineering Electronic Structure of a Two-Dimensional Topological Insulator Bi(111) Bilayer on Sb Nanofilms by Quantum Confinement Effect.

    PubMed

    Bian, Guang; Wang, Zhengfei; Wang, Xiao-Xiong; Xu, Caizhi; Xu, SuYang; Miller, Thomas; Hasan, M Zahid; Liu, Feng; Chiang, Tai-Chang

    2016-03-22

    We report on the fabrication of a two-dimensional topological insulator Bi(111) bilayer on Sb nanofilms via a sequential molecular beam epitaxy growth technique. Our angle-resolved photoemission measurements demonstrate the evolution of the electronic band structure of the heterostructure as a function of the film thickness and reveal the existence of a two-dimensional spinful massless electron gas within the top Bi bilayer. Interestingly, our first-principles calculation extrapolating the observed band structure shows that, by tuning down the thickness of the supporting Sb films into the quantum dimension regime, a pair of isolated topological edge states emerges in a partial energy gap at 0.32 eV above the Fermi level as a consequence of quantum confinement effect. Our results and methodology of fabricating nanoscale heterostructures establish the Bi bilayer/Sb heterostructure as a platform of great potential for both ultra-low-energy-cost electronics and surface-based spintronics. PMID:26932368

  18. Spectroscopy in CdTe/MnTe and ZnTe/MnTe single quantum wells; new binary wide gap II VI heterostructures

    NASA Astrophysics Data System (ADS)

    Pelekanos, N.; Fu, Q.; Nurmikko, A. V.; Durbin, S.; Han, J.; Sungki, O.; Menke, D.; Kobayashi, M.; Gunshor, R. L.

    1990-04-01

    With the incorporation of cubic zincblende MnTe, a range of optical studies have been carried out on single quantum wells of ZnTe/MnTe and CdTe/MnTe. By using thin MnTe barrier layers the structures appear to be nearly pseudomorphic and show evidence for good electron-hole confinement.

  19. Non-resonant elastic scattering of low-energy photons by atomic sodium confined in quantum plasmas

    SciTech Connect

    Ghosh, Avijit Ray, Debasis

    2015-03-15

    The non-resonant elastic scattering of low-energy photons by the bound valence electron in the ground state 3s of atomic sodium confined in quantum plasmas is investigated theoretically. The incident photon energy is assumed to be much smaller than the 3s-3p excitation energy. The alkali atom sodium is first formulated as an effective one-electron problem in which the attractive interaction between the valence electron and the atomic ion core is simulated by a spherically symmetric model potential. The Shukla-Eliasson oscillatory exponential cosine screened-Coulomb potential model is then used to mimic the effective two-body (valence-core) interaction within quantum plasmas. Non-relativistic calculations performed within the electric dipole approximation indicate that the non-resonant elastic photon scattering cross-section undergoes a dramatic growth by several orders of magnitude as the quantum wave number increases. A qualitative explanation of this phenomenon is presented. In the absence of the oscillatory cosine screening term, a similar growth is observed at larger values of the quantum wave number. Our computed relevant atomic data are in very good agreement with the experimental as well as the previous theoretical data for the zero-screening (free atom) case, and with the very limited, accurate theoretical results available for the case of exponential screened-Coulomb two-body interaction, without the cosine screening term.

  20. Quantum-confinement and Structural Anisotropy result in Electrically-Tunable Dirac Cone in Few-layer Black Phosphorous

    PubMed Central

    Dolui, Kapildeb; Quek, Su Ying

    2015-01-01

    Two-dimensional (2D) materials are well-known to exhibit interesting phenomena due to quantum confinement. Here, we show that quantum confinement, together with structural anisotropy, result in an electric-field-tunable Dirac cone in 2D black phosphorus. Using density functional theory calculations, we find that an electric field, Eext, applied normal to a 2D black phosphorus thin film, can reduce the direct band gap of few-layer black phosphorus, resulting in an insulator-to-metal transition at a critical field, Ec. Increasing Eext beyond Ec can induce a Dirac cone in the system, provided the black phosphorus film is sufficiently thin. The electric field strength can tune the position of the Dirac cone and the Dirac-Fermi velocities, the latter being similar in magnitude to that in graphene. We show that the Dirac cone arises from an anisotropic interaction term between the frontier orbitals that are spatially separated due to the applied field, on different halves of the 2D slab. When this interaction term becomes vanishingly small for thicker films, the Dirac cone can no longer be induced. Spin-orbit coupling can gap out the Dirac cone at certain electric fields; however, a further increase in field strength reduces the spin-orbit-induced gap, eventually resulting in a topological-insulator-to-Dirac-semimetal transition. PMID:26129645

  1. First-principles study of quantum confinement and surface effects on the electronic properties of InAs nanowires

    SciTech Connect

    Ning, Feng; Tang, Li-Ming Zhang, Yong; Chen, Ke-Qiu

    2013-12-14

    We have used first principles methods to systematically investigate the quantum confinement effect on the electronic properties of zinc-blende (ZB) and wurtzite (WZ) InAs nanowires (NWs) with different orientations and diameters, and compared their electronic properties before and after pseudo-hydrogen passivation. The results show that the calculated carrier effective masses are dependent on the NW diameter, except for [110] ZB NWs, and the hole effective masses of [111] ZB NWs are larger than the electron effective masses when the NW diameter is ≥26 Å. The band alignments of [111] ZB and [0001] WZ NWs reveal that the effect of quantum confinement on the conduction bands is greater than on the valence bands, and the position of the valence band maximum level changes little with increasing NW diameter. The pseudo-hydrogen passivated NWs have larger band gaps than the corresponding unpassivated NWs. The carrier effective masses and mobilities can be adjusted by passivating the surface dangling bonds.

  2. Quantum confinement, carrier dynamics and interfacial processes in nanostructured direct/indirect-gap semiconductor-glass composites

    SciTech Connect

    Joseph H. Simmons

    2002-08-13

    The behavior of semiconductor clusters precipitated in an insulated matrix was investigated. Semiconductor compositions of CdTe, Si and Ge were studies and the insulating matrix was amorphous SiO2. As a function of size, quantum confinement effects were observed in all three composite systems. However significant differences were observed between the direct-gap column 2-6 semiconductors and the indirect-gap column 4 semiconductors. As observed by others, the direct-gap 2-6 semiconductors showed a distinct saturation in the energy-gap blue shift with decreasing size. Theoretical studies using a 20-band k dot p calculation of the electronic and valence bands for a 3-dimensionally confined CdTe semiconductor showed that mixing of the conduction band states leads to a flattening of the central valley. This increases the electron mass drastically and saturates the size dependent blue shift in the bandgap. In contrast, the blue shift in the Si and Ge nanocrystals showed no sign of saturation and increased drastically with decreasing size. In fact, Si and Ge crystals were formed with blue shift values that moved the bandgap to the near UV region. We examined the absorption curves to determine whether the bandgap was direct or indirect in the quantum dots. The results are that the absorption shows an indirect gap for all but the smallest Si crystals and an indirect gap for all Ge crystals. Raman studies showed negligible size dependence due to a lack of phonon confinement in the matrix embedded clusters. Exciton saturation and recovery times were found to be very short (of the order of 400fs) and are the fastest reported for any quantum dot system. Work to examine the type of confinement obtained in a matrix that consists of a transparent conductor is under way. Studies of the photoinduced absorption change in GeSe glasses showed a significant effect of photodarkening, regardless of composition. The photodarkening effect appears to be composed of permanent and transient

  3. Power loss of a single electron charge distribution confined in a quantum plasma

    SciTech Connect

    Mehramiz, A.; Mahmoodi, J.; Sobhanian, S.

    2011-05-15

    The dielectric tensor for a quantum plasma is derived by using a linearized quantum hydrodynamic theory. The wave functions for a nanostructure bound system have been investigated. Finally, the power loss for an oscillating charge distribution of a mixed state will be calculated, using the dielectric function formalism.

  4. Influence of quantum-confined Stark effect on optical properties within trench defects in InGaN quantum wells with different indium content

    SciTech Connect

    Vaitkevičius, A. Mickevičius, J.; Dobrovolskas, D.; Tamulaitis, G.; Tuna, Ö.; Giesen, C.; Heuken, M.

    2014-06-07

    The trench defects in InGaN/GaN multiple quantum well structures are studied using confocal photoluminescence (PL) spectroscopy and atomic force microscopy. A strong blueshift (up to ∼280 meV) and an intensity increase (by up to a factor of 700) of the emission are demonstrated for regions enclosed by trench loops. The influence of the difference in the well width inside and outside the trench loops observed by transmission electron microscopy, the compositional pulling effect, the strain relaxation inside the loop, and corresponding reduction in the built-in field on the PL band peak position and intensity were estimated. The competition of these effects is mainly governed by the width of the quantum wells in the structure. It is shown that the PL band blueshift observed within the trench defect loops in the InGaN structures with wide quantum wells is mainly caused by the reduction in efficiency of the quantum-confined Stark effect due to strain relaxation.

  5. High detectivity short-wavelength II-VI quantum cascade detector

    SciTech Connect

    Ravikumar, Arvind P. Gmachl, Claire F.; Garcia, Thor A.; Tamargo, Maria C.; Jesus, Joel De

    2014-08-11

    We report on the experimental demonstration of a ZnCdSe/ZnCdMgSe-based short-wavelength photovoltaic Quantum Cascade Detector (QCD). The QCD operates in two spectral bands centered around 2.6 μm and 3.6 μm. Calibrated blackbody measurements yield a peak responsivity of 0.1 mA/W or 2400 V/W at 80 K, and a corresponding 300 K background radiation limited infrared performance detectivity (BLIP) of ∼2.5 × 10{sup 10 }cm √Hz/W. Comparison of background illuminated and dark current-voltage measurements demonstrates a BLIP temperature of 200 K. The device differential resistance-area product, decreases from about 10{sup 6} Ω cm{sup 2} at 80 K to about 8000 Ω cm{sup 2} at 300 K, indicative of the ultra-low Johnson noise in the detectors.

  6. Impact of field-induced quantum confinement on the onset of tunneling field-effect transistors: Experimental verification

    SciTech Connect

    Smets, Quentin Verreck, Devin; Heyns, Marc M.; Verhulst, Anne S.; Martens, Koen; Lin, Han Chung; Kazzi, Salim El; Simoen, Eddy; Collaert, Nadine; Thean, Aaron; Raskin, Jean-Pierre

    2014-11-17

    The Tunneling Field-Effect Transistor (TFET) is a promising device for future low-power logic. Its performance is often predicted using semiclassical simulations, but there is usually a large discrepancy with experimental results. An important reason is that Field-Induced Quantum Confinement (FIQC) is neglected. Quantum mechanical simulations show FIQC delays the onset of Band-To-Band Tunneling (BTBT) with hundreds of millivolts in the promising line-TFET configuration. In this letter, we provide experimental verification of this delayed onset. We accomplish this by developing a method where line-TFET are modeled using highly doped MOS capacitors (MOS-CAP). Using capacitance-voltage measurements, we demonstrate AC inversion by BTBT, which was so far unobserved in MOS-CAP. Good agreement is shown between the experimentally obtained BTBT onset and quantum mechanical predictions, proving the need to include FIQC in all TFET simulations. Finally, we show that highly doped MOS-CAP is promising for characterization of traps deep into the conduction band.

  7. Spectral broadening and electron-photon coupling in III-V infrared detectors of low dimensional quantum confined system

    NASA Astrophysics Data System (ADS)

    Joy, Soumitra R.; Mohammedy, Farseem M.

    2016-05-01

    Present work explores the mid-IR photodetection mechanism in III-V quantum confined system in twofold ways. Firstly, it models the extent of spectral linewidth broadening of photo-detector. Secondly, it investigates whether a strong perturbation of light can modulate the electronic bandstructure. Photo-absorption mechanism in the detector correlated to reduced carrier lifetime in ground state leading to homogeneous spectral widening is calculated. Besides, contribution of non-uniform size and composition of quantum dots towards spectral broadening is modeled in order to get the envelop of inhomogeneously broadened photocurrent spectrum. Our model generates photocurrent spectrum with 1.4 μm broadening centered at 3.5 μm at 77 K for a DWELL-IP, which agrees with the experimental result. The calculated photocurrent spectral width of 1.3 μm for GaAs/AlGaAs Quantum Well (QW) centered at 8.31 μm at 77 K also supports experimental data. In addition, our calculation reveals the emergence of a broad resonant peak in the spectrum of QW-IP in far infrared region (20-50 μm) as the photon volume density increases up to 0.1% of carrier density inside the active region. We introduce a hybrid density-of-states for strongly coupled electron-photon system to explain both mid and far IR peak.

  8. Study of the confined states in Al{sub x}Ga{sub 1−x}As/GaAs/vacuum surface quantum well

    SciTech Connect

    Xiong, D.-Y. Wang, J.-Q.

    2014-04-14

    In this paper, we investigate the optical properties of confined electronic states in ultra-thin Al{sub 0.27}Ga{sub 0.73}As/GaAs/vacuum surface quantum wells by using photoreflectance spectroscopy at room temperature. Well-resolved doublet structures were found in the spectra. The energy of the features increases with decreasing well width in agreement with the predictions of a model of the transition energy between confined electron and hole states in a surface quantum well. Both the transition broadening and intensity behaviors are also well explained by the effective mass approximation theory. The offset between the un-perturbed theoretical transition energy and the experimental data has been explained by surface-state interaction effects. Moreover, the fact that the light hole ground state in the surface quantum well can be pushed out from the surface quantum well has been directly observed experimentally.

  9. Quantum criticality, kink confinement, and emergent symmetries in coupled Ising chains and ladders

    NASA Astrophysics Data System (ADS)

    Tennant, Alan

    2011-03-01

    In this talk I cover the physics in three of the central quantum phase transitions in 1D. First, the transverse Ising model which is realized in CoNb2O6. While this is perhaps the simplest textbook case of a quantum phase transition, a remarkable emergence of E8 symmetry arises close to the quantum critical point. This manifests itself in an octave of bound states. We observe these experimentally and in particular the interval of the first two resonances on this octave which are found to match the golden ratio 1.618... - just as predicted for the emergence of this extraordinary symmetry. I then plan to show with the example of the Heisenberg chain how we can probe the quantum critical volume experimentally and show the characteristic scaling behaviour in space and time. The third example is of a spin ladder CaCu2O3 which is near the long sought after Wess-Zumino-Novikov-Witten quantum critical point.

  10. Towards enhancing two-dimensional electron gas quantum confinement effects in perovskite oxide heterostructures

    SciTech Connect

    Nazir, Safdar; Behtash, Maziar; Yang, Kesong

    2015-03-21

    We explore the possibility of achieving highly confined two-dimensional electron gas (2DEG) within one single atomic layer through a comprehensive comparison study on three prototypical perovskite heterostructures, LaAlO{sub 3}/ATiO{sub 3} (A = Ca, Sr, and Ba), using first-principles electronic structure calculations. We predict that the heterostructure LaAlO{sub 3}/BaTiO{sub 3} has a highly confined 2DEG within a single atomic layer of the substrate BaTiO{sub 3}, and exhibits relatively higher interfacial charge carrier density and larger magnetic moments than the well-known LaAlO{sub 3}/SrTiO{sub 3} system. The long Ti-O bond length in the ab-plane of the LaAlO{sub 3}/BaTiO{sub 3} heterostructure is responsible for the superior charge confinement. We propose BaTiO{sub 3} as an exceptional substrate material for 2DEG systems with potentially superior properties.

  11. Trap-size scaling in confined-particle systems at quantum transitions

    SciTech Connect

    Campostrini, Massimo; Vicari, Ettore

    2010-02-15

    We develop a trap-size scaling theory for trapped particle systems at quantum transitions. As a theoretical laboratory, we consider a quantum XY chain in an external transverse field acting as a trap for the spinless fermions of its quadratic Hamiltonian representation. We discuss trap-size scaling at the Mott insulator to superfluid transition in the Bose-Hubbard model. We present exact and accurate numerical results for the XY chain and for the low-density Mott transition in the hard-core limit of the one-dimensional Bose-Hubbard model. Our results are relevant for systems of cold atomic gases in optical lattices.

  12. Effect of a lateral electric field on an off-center single dopant confined in a thin quantum disk

    NASA Astrophysics Data System (ADS)

    Dujardin, F.; Oukerroum, A.; Feddi, E.; Bosch Bailach, J.; Martínez-Pastor, J.; Zazi, M.

    2012-02-01

    The effect of a lateral electric field on a donor impurity confined in a thin quantum disk is studied theoretically in the framework of mass approximation and using the Ritz variational approach. We show that the binding energy depends on several parameters: the dot size, the position of the donor impurity, the lateral field strength, and its orientation relative to the axis containing the impurity. When the impurity is located at one edge and the electric field is oriented in the opposite direction, the binding energy is considerably reinforced due to the simultaneous additive effects of coulombic potential and electrostatic force. The competition between these effects modifies considerably the probability densities and allows a better comprehension of the binding energy variations. This interesting behavior can contribute to an better understanding of the experimental optical response.

  13. Quantum-confined Stark effect on photoluminescence and electroluminescence characteristics of InGaN-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Masui, Hisashi; Sonoda, Junichi; Pfaff, Nathan; Koslow, Ingrid; Nakamura, Shuji; Den Baars, Steven P.

    2008-08-01

    The quantum-confined Stark effect (QCSE) on InGaN-based light-emitting diodes (LEDs) was investigated as a part of the continuing study of exploring differences between photoluminescence (PL) and electroluminescence (EL) characteristics. The luminescence characteristics were related to electrical characteristics of green and amber LEDs by employing the electrical-bias-applied PL technique. By inspecting the band diagram, it has been found that the separation of quasi-Fermi levels, which strongly affects the QCSE, can be quantified and related to the luminescence. In order to compare PL and EL characteristics, attention was paid to the QCSE during the PL and EL measurements. Despite the control of the QCSE, differences were still confirmed between PL and EL characteristics, which have led us to the conclusion to that there are other unrevealed origins for the differences.

  14. Density matrix for an electron confined in quantum dots under uniform magnetic field and static electrical field

    NASA Astrophysics Data System (ADS)

    Pang, Qian-Jun

    2007-01-01

    Using unitary transformations, this paper obtains the eigenvalues and the common eigenvector of Hamiltonian and a new-defined generalized angular momentum (Lz) for an electron confined in quantum dots under a uniform magnetic field (UMF) and a static electric field (SEF). It finds that the eigenvalue of Lz just stands for the expectation value of a usual angular momentum lz in the eigen-state. It first obtains the matrix density for this system via directly calculating a transfer matrix element of operator exp(-βH) in some representations with the technique of integral within an ordered products (IWOP) of operators, rather than via solving a Bloch equation. Because the quadratic homogeneity of potential energy is broken due to the existence of SEF, the virial theorem in statistical physics is not satisfactory for this system, which is confirmed through the calculation of thermal averages of physical quantities.

  15. Quantum Confinement Induced Oscillatory Electric Field on a Stepped Pb(111) Film and Its Influence on Surface Reactivity

    SciTech Connect

    Liu, Xiaojie; Wang, Cai-Zhuang; Hupalo, Myron; Lin, Hai-Quing; Ho, Kai-Ming; Tringides, Michael C.

    2014-01-06

    When the thickness of ultrathin metal films approaches the nanometer scale comparable to the coherence length of the electrons, significant effects on the structure stability and the electronic properties of the metal films emerge due to electron confinement and quantization of the allowed electronic states in the direction perpendicular to the film. Using first-principles calculations, we showed that such quantum size effects can induce oscillatory electrostatic potential and thus alternating electric field on the surface of the wedge-shaped Pb(111) films. The alternating electric field has significant influence on surface reactivity, leading to selective even- or odd-layer adsorption preference depending on the charge state of the adatoms, consistent with the odd-layer preference of higher Mg coverage on wedge-shaped Pb(111) films, as observed in experiment.

  16. Quantum confinement effect in Bi anti-dot thin films with tailored pore wall widths and thicknesses

    SciTech Connect

    Park, Y.; Hirose, Y.; Fukumura, T.; Hasegawa, T.; Nakao, S.; Xu, J.

    2014-01-13

    We investigated quantum confinement effects in Bi anti-dot thin films grown on anodized aluminium oxide templates. The pore wall widths (w{sub Bi}) and thickness (t) of the films were tailored to have values longer or shorter than Fermi wavelength of Bi (λ{sub F} = ∼40 nm). Magnetoresistance measurements revealed a well-defined weak antilocalization effect below 10 K. Coherence lengths (L{sub ϕ}) as functions of temperature were derived from the magnetoresistance vs field curves by assuming the Hikami-Larkin-Nagaoka model. The anti-dot thin film with w{sub Bi} and t smaller than λ{sub F} showed low dimensional electronic behavior at low temperatures where L{sub ϕ}(T) exceed w{sub Bi} or t.

  17. Strong quantum confinement effects in kesterite Cu2ZnSnS4 nanospheres for organic optoelectronic cells.

    PubMed

    Arul, Narayanasamy Sabari; Yun, Dong Yeol; Lee, Dea Uk; Kim, Tae Whan

    2013-12-01

    X-ray photoelectron spectra, X-ray diffraction patterns, scanning electron microscopy images, and high-resolution transmission electron microscopy images showed that the as-prepared samples were Cu2ZnSnS4 (CZTS) nanospheres with a kesterite phase. Ultraviolet-visible absorption spectra for the CZTS nanospheres with an average crystallite size of 3.26 nm showed that the absorption edge corresponding to the energy gap shifted to the higher energy side due to the quantum confinement within the CZTS nanoparticles. Current-density measurements showed that the power conversion efficiency (0.952%) of the organic photovoltaic cells with CZTS nanospheres was much higher than that (0.120%) of the cells without CZTS nanospheres. PMID:24129972

  18. Space-charge waves in magnetized and collisional quantum plasma columns confined in carbon nanotubes

    SciTech Connect

    Bagheri, Mehran; Abdikian, Alireza

    2014-04-15

    We study the dispersion relation of electrostatic waves propagating in a column of quantum magnetized collisional plasma embraced completely by a metallic single-walled carbon nanotubes. The analysis is based on the quantum linearized hydrodynamic formalism of collective excitations within the quasi-static approximation. It is shown when the electronic de Broglie's wavelength of the plasma is comparable in the order of magnitude to the radius of the nanotube, the quantum effects are quite meaningful and our model anticipates one acoustical and two optical space-charge waves which are positioned into three propagating bands. With increasing the nanotube radius, the features of the acoustical branch remain unchanged, yet two distinct optical branches are degenerated and the classical behavior is recovered. This study might provide a platform to create new finite transverse cross section quantum magnetized plasmas and to devise nanometer dusty plasmas based on the metallic carbon nanotubes in the absence of either a drift or a thermal electronic velocity and their existence could be experimentally examined.

  19. Quantum-mechanical engines working with an ideal gas with a finite number of particles confined in a power-law trap

    NASA Astrophysics Data System (ADS)

    Wang, Jianhui; Ma, Yongli; He, Jizhou

    2015-07-01

    Based on quantum thermodynamic processes, we make a quantum-mechanical (QM) extension of the typical heat engine cycles, such as the Carnot, Brayton, Otto, Diesel cycles, etc., with no introduction of the concept of temperature. When these QM engine cycles are implemented by an ideal gas confined in an arbitrary power-law trap, a relation between the quantum adiabatic exponent and trap exponent is found. The differences and similarities between the efficiency of a given QM engine cycle and its classical counterpart are revealed and discussed.

  20. Quantum dynamics of a hydrogen molecule confined in a cylindrical potential

    NASA Astrophysics Data System (ADS)

    Yildirim, Taner; Harris, A. B.

    2003-06-01

    We study the coupled rotation-vibration levels of a hydrogen molecule in a confining potential with cylindrical symmetry. We include the coupling between rotations and translations and show how this interaction is essential to obtain the correct degeneracies of the energy level scheme. We applied our formalism to study the dynamics of H2 molecules inside a “smooth” carbon nanotube as a function of tube radius. The results are obtained both by numerical solution of the (2J+1)-component radial Schrödinger equation and by developing an effective Hamiltonian to describe the splitting of a manifold of states of fixed angular momentum J and number of phonons N. For nanotube radius smaller than ≈3.5 Å, the confining potential has a parabolic shape and the results can be understood in terms of a simple toy model. For larger radius, the potential has the “Mexican hat” shape and therefore the H2 molecule is off centered, yielding radial and tangential translational dynamics in addition to rotational dynamics of H2 molecule which we also describe by a simple model. Finally, we make several predictions for the the neutron scattering observation of various transitions between these levels.

  1. Wavelength-tunable visible to near-infrared photoluminescence of carbon dots: the role of quantum confinement and surface states

    NASA Astrophysics Data System (ADS)

    Ghamsari, Morteza Sasani; Bidzard, Ashkan Momeni; Han, Wooje; Park, Hyung-Ho

    2016-04-01

    Carbon quantum dots (C-QDs) with different size distributions and surface characteristics can exhibit good emission properties in the visible and near-infrared (NIR) regions, which can be applicable in optoelectronic devices as well as biomedical applications. Optical properties of colloidal C-QDs in distilled water at different concentrations produced using a method of alkali-assisted surfactant-free oxidation of cellulose acetate is presented. The structural and optical properties of colloidal C-QDs at different concentrations were investigated, with the aim of clarifying the main mechanisms of photoluminescence emissions. We observed a wide range of tunable visible to NIR emissions with good stability from the C-QD colloids at different applied excitation wavelengths. The colloids show dual emissions with maxima at ˜420 and 775 nm (blue and NIR emissions) when excited at the wavelength range near the energy gaps of the C-QDs. Moreover, by increasing the excitation wavelength, tunable visible emissions at the spectral range of 475 to 550 nm are observed. A detailed analysis of the results shows that the blue and NIR luminescence of colloidal C-QDs originate from the oxide-related surface effects whereas quantum confinement is the responsible mechanism for tunable visible emissions of the C-QD colloid.

  2. Quantum-size effects in the energy loss of charged particles interacting with a confined two-dimensional electron gas

    SciTech Connect

    Borisov, A. G.; Juaristi, J. I.

    2006-01-15

    Time-dependent density-functional theory is used to calculate quantum-size effects in the energy loss of antiprotons interacting with a confined two-dimensional electron gas. The antiprotons follow a trajectory normal to jellium circular clusters of variable size, crossing every cluster at its geometrical center. Analysis of the characteristic time scales that define the process is made. For high-enough velocities, the interaction time between the projectile and the target electrons is shorter than the time needed for the density excitation to travel along the cluster. The finite-size object then behaves as an infinite system, and no quantum-size effects appear in the energy loss. For small velocities, the discretization of levels in the cluster plays a role and the energy loss does depend on the system size. A comparison to results obtained using linear theory of screening is made, and the relative contributions of electron-hole pair and plasmon excitations to the total energy loss are analyzed. This comparison also allows us to show the importance of a nonlinear treatment of the screening in the interaction process.

  3. An Infinite Order Discrete Variable Representation of an Effective Mass Hamiltonian: Application to Exciton Wave Functions in Quantum Confined Nanostructures.

    PubMed

    Kaledin, Alexey L; Lian, Tianquan; Hill, Craig L; Musaev, Djamaladdin G

    2014-08-12

    We describe an extension of the conventional Fourier grid discrete variable representation (DVR) to the bound state problem of a particle with a position-dependent mass. An infinite order DVR, derived for a variable mass kinetic energy operator, coupled with an efficient grid contraction scheme yields essentially exact eigenvalues for a chosen grid spacing. Implementation of the method is shown to be very practical due to the fact that in a DVR no integral evaluation is necessary and that the resultant kinetic energy matrix is sparse. Numerical calculations are presented for exciton states of spherical, cylindrical, and toric Type I (CdSe/ZnS) core-shell quantum dots. In these examples, electron-hole interaction is treated explicitly by solving a self-consistent Schrödinger-Poisson equation on a contracted DVR grid. Prospective applications of the developed approach to calculating electron transfer rates between adsorbed molecular acceptors and quantum confined nanocrystals of generic shape, dimensionality, and composition are also discussed. PMID:26588309

  4. Quantum kinetic theory of a Bose-Einstein gas confined in a lattice

    NASA Astrophysics Data System (ADS)

    Rey, Ana Maria; Hu, B. L.; Calzetta, Esteban; Clark, Charles W.

    2005-08-01

    We extend our earlier work on the nonequilibrium dynamics of a Bose-Einstein condensate initially loaded into a one-dimensional optical lattice. From the two-particle-irreducible (2PI) closed-time-path (CTP) effective action for the Bose-Hubbard Hamiltonian we derive causal equations of motion that treat mean-field effects and quantum fluctuations on an equal footing. We demonstrate that these equations reproduce well-known limits when simplifying approximations are introduced. For example, when the system dynamics admits two-time separation, we obtain the Kadanoff-Baym equations of quantum kinetic theory, and in the weakly interacting limit, we show that the local equilibrium solutions of our equations reproduce the second-order corrections to the self-energy of the type originally derived by Beliaev. The derivation of quantum kinetic equations from the 2PI-CTP effective action not only checks the viability of the formalism but also shows it to be a tractable framework for going beyond standard Boltzmann equations of motion.

  5. Quantum kinetic theory of a Bose-Einstein gas confined in a lattice

    SciTech Connect

    Rey, Ana Maria; Hu, B.L.; Calzetta, Esteban; Clark, Charles W.

    2005-08-15

    We extend our earlier work on the nonequilibrium dynamics of a Bose-Einstein condensate initially loaded into a one-dimensional optical lattice. From the two-particle-irreducible (2PI) closed-time-path (CTP) effective action for the Bose-Hubbard Hamiltonian we derive causal equations of motion that treat mean-field effects and quantum fluctuations on an equal footing. We demonstrate that these equations reproduce well-known limits when simplifying approximations are introduced. For example, when the system dynamics admits two-time separation, we obtain the Kadanoff-Baym equations of quantum kinetic theory, and in the weakly interacting limit, we show that the local equilibrium solutions of our equations reproduce the second-order corrections to the self-energy of the type originally derived by Beliaev. The derivation of quantum kinetic equations from the 2PI-CTP effective action not only checks the viability of the formalism but also shows it to be a tractable framework for going beyond standard Boltzmann equations of motion.

  6. Effect of the 2DEG confinement potential on the magnetotransport properties of an open quantum dot under a tilted magnetic field

    NASA Astrophysics Data System (ADS)

    Gustin, C.; Faniel, S.; Hackens, B.; Bayot, V.; de Poortere, E.; Shayegan, M.

    2002-03-01

    We report on the low temperature magnetoresistance of various quantum billiards, each with a different shape of the 2DEG (two-dimensional electron gas) confinement potential. The structures are patterned by electron beam lithography on three different high mobility GaAs/AlGaAs samples, namely a single heterojunction and two quantum wells with widths of 150 and 450Årespectively. By means of electrostatic gates, both the electron density and the shape of the billiard can be controlled, as well as the finite thickness of the 2DEG in the case of the wide quantum well. We discuss the results of low temperature magnetotransport measurements with the open dots subject to an phin-situ tilted magnetic field. More specifically we investigate the influence of the symmetry-asymmetry of the 2DEG confinement potential on the statistics of the universal conductance fluctuations (UCF).

  7. Impact of artificial lateral quantum confinement on exciton-spin relaxation in a two-dimensional GaAs electronic system

    SciTech Connect

    Kiba, Takayuki Murayama, Akihiro; Tanaka, Toru; Tamura, Yosuke; Higo, Akio; Thomas, Cedric; Samukawa, Seiji

    2014-10-15

    We demonstrate the effect of artificial lateral quantum confinement on exciton-spin relaxation in a GaAs electronic system. GaAs nanodisks (NDs) were fabricated from a quantum well (QW) by top-down nanotechnology using neutral-beam etching aided by protein-engineered bio-nano-templates. The exciton-spin relaxation time was 1.4 ns due to ND formation, significantly extended compared to 0.44 ns for the original QW, which is attributed to weakening of the hole-state mixing in addition to freezing of the carrier momentum. The temperature dependence of the spin-relaxation time depends on the ND thickness, reflecting the degree of quantum confinement.

  8. Synthesis of 2-Mercaptonicotinic Acid-Capped CdSe Quantum Dots and its Application to Spectrofluorometric Determination of Cr(VI) in Water Samples.

    PubMed

    Hosseini, Mohammad Saeid; Khorashahi, Somayeh; Hosseini, Navid

    2016-05-01

    The CdSe quantum dots (QDs) capped with 2-mercaptonicotinic acid (H2MN) were prepared through a controllable process at 80 °C. The prepared QDs were characterized by XRD, TEM, IR, UV-Vis and fluorescence (FL) techniques. It was found that the QDs were nearly mono-disperse with the diameters in the range of 8-10 nm. These QDs are capable to exhibit strong FL even in concentrated acidic media. They exhibit an enhanced fluorescence in the presence of Cr(VI), which was used for the determination of Cr(VI) in water samples. The linear range was found to be 1 × 10(-7)-6.0 × 10(-6) M with the RSD and DL of 0.92 % and 5 × 10(-8) M, respectively. Except that Ca(2+) and Fe(3+) which can be eliminated through a simple precipitation process, the other co-existent ions present in natural water were not interfered. The recoveries obtained for the added amounts of Cr(VI) were in the range of 96.9-103.2 %, which denote on application of the method, satisfactorily. PMID:26825078

  9. Tunneling into a quantum confinement created by a single-step nanolithography of conducting oxide interfaces

    NASA Astrophysics Data System (ADS)

    Maniv, E.; Ron, A.; Goldstein, M.; Palevski, A.; Dagan, Y.

    2016-07-01

    A unique nanolithography technique compatible with conducting oxide interfaces, which requires a single lithographic step with no additional amorphous deposition or etching, is presented. It is demonstrated on a SrTiO3/LaAlO3 interface where a constriction is patterned in the electron liquid. We find that an additional backgating can further confine the electron liquid into an isolated island. Conductance and differential conductance measurements show resonant tunneling through the island. The data at various temperatures and magnetic fields are analyzed and the effective island size is found to be of the order of 10 nm. The magnetic field dependence suggests the absence of spin degeneracy in the island. Our method is suitable for creating superconducting and oxide-interface-based electronic devices.

  10. Dispersive measurement of electron spin states in Coulomb-confined silicon double quantum dots

    NASA Astrophysics Data System (ADS)

    House, Matthew; Kobayashi, Takashi; Weber, Bent; Hile, Sam; Rogge, Sven; Simmons, Michelle

    2015-03-01

    We use radio frequency reflectometry with a resonant circuit to investigate a double quantum dot device patterned by the placement of phosphorus donors in silicon with scanning tunnelling microscope lithography. The circuit responds to electron tunnelling to and from the quantum dots, the complex admittance of which provides information about the tunnel coupling between the dots and the leads. With four electrons on two dots, the Pauli Exclusion Principle makes tunnelling of one electron between the two dots spin dependent, which we exploit to measure the electronic spin state. We map the ground state transition between singlet and triplet states as a function of electric and magnetic fields, which shows that the exchange energy can be tuned over an order of magnitude (about 10 to 100 μeV) or more in this device. We apply high frequency pulses to induce an excited spin state and observe that the dispersive measurement can detect the excited spin state in addition to the ground state.

  11. Modeling direct band-to-band tunneling: From bulk to quantum-confined semiconductor devices

    SciTech Connect

    Carrillo-Nuñez, H.; Ziegler, A.; Luisier, M.; Schenk, A.

    2015-06-21

    A rigorous framework to study direct band-to-band tunneling (BTBT) in homo- and hetero-junction semiconductor nanodevices is introduced. An interaction Hamiltonian coupling conduction and valence bands (CVBs) is derived using a multiband envelope method. A general form of the BTBT probability is then obtained from the linear response to the “CVBs interaction” that drives the system out of equilibrium. Simple expressions in terms of the one-electron spectral function are developed to compute the BTBT current in two- and three-dimensional semiconductor structures. Additionally, a two-band envelope equation based on the Flietner model of imaginary dispersion is proposed for the same purpose. In order to characterize their accuracy and differences, both approaches are compared with full-band, atomistic quantum transport simulations of Ge, InAs, and InAs-Si Esaki diodes. As another numerical application, the BTBT current in InAs-Si nanowire tunnel field-effect transistors is computed. It is found that both approaches agree with high accuracy. The first one is considerably easier to conceive and could be implemented straightforwardly in existing quantum transport tools based on the effective mass approximation to account for BTBT in nanodevices.

  12. Solution-processed, barrier-confined, and 1D nanostructure supported quasi-quantum well with large photoluminescence enhancement.

    PubMed

    Yan, Keyou; Zhang, Lixia; Kuang, Qin; Wei, Zhanhua; Yi, Ya; Wang, Jiannong; Yang, Shihe

    2014-04-22

    Planar substrate supported semiconductor quantum well (QW) structures are not amenable to manipulation in miniature devices, while free-standing QW nanostructures, e.g., ultrathin nanosheets and nanoribbons, suffer from mechanical and environmental instability. Therefore, it is tempting to fashion high-quality QW structures on anisotropic and mechanically robust supporting nanostructures such as nanowires and nanoplates. Herein, we report a solution quasi-heteroepitaxial route for growing a barrier-confined quasi-QW structure (ZnSe/CdSe/ZnSe) on the supporting arms of ZnO nanotetrapods, which have a 1D nanowire structure, through the combination of ion exchange and successive deposition assembly. This resulted in highly crystalline and highly oriented quasi-QWs along the whole axial direction of the arms of the nanotetrapod because a transition buffer layer (Zn(x)Cd(1-x)Se) was formed and in turn reduced the lattice mismatch and surface defects. Significantly, such a barrier-confined QW emits excitonic light ∼17 times stronger than the heterojunction (HJ)-type structure (ZnSe/CdSe, HJ) at the single-particle level. Time-resolved photoluminescence from ensemble QWs exhibits a lifetime of 10 ns, contrasting sharply with ∼300 ps for the control HJ sample. Single-particle PL and Raman spectra suggest that the barrier layer of QW has completely removed the surface trap states on the HJ and restored or upgraded the photoelectric properties of the semiconductor layer. Therefore, this deliberate heteroepitaxial growth protocol on the supporting nanotetrapod has realized a several micrometer long QW structure with high mechanical robustness and high photoelectric quality. We envision that such QWs integrated on 1D nanostructures will largely improve the performance of solar cells and bioprobes, among others. PMID:24580094

  13. Quantum confinement effects in lithographic sub-5 nm Silicon nanowire fets and integration of si nanograting fet biosensors

    NASA Astrophysics Data System (ADS)

    Trivedi, Krutarth B.

    In recent years, widespread accessibility to reliable nanofabrication techniques such as high resolution electron beam lithography as well as development of innovative techniques such as nanoimprint lithography and chemically grown nano-materials like carbon nanotubes and graphene have spurred a boom in many fields of research involving nanoscale features and devices. The breadth of fields in which nanoscale features represent a new paradigm is staggering. Scaling down device dimensions to nanoscale enables non-classical quantum behavior and allows for interaction with similarly sized natural materials, like proteins and DNA, as never before, affording an unprecedented level of performance and control and fostering a seemingly boundless array of unique applications. Much of the research effort has been directed toward understanding such interactions to leverage the potential of nanoscale devices to enhance electronic and medical technology. In keeping with the spirit of application based research, my graduate research career has spanned the development of nanoimprint techniques and devices for novel applications, demonstration and study of sub-5 nm Si nanowire FETs exhibiting tangible performance enhancement over conventional MOSFETs, and development of an integrated Si nanograting FET based biosensor and related framework. The following dissertation details my work in fabrication of sub-5 nm Si nanowire FETs and characterization of quantum confinement effects in charge transport of FETs with 2D and 1D channel geometry, fabrication and characterization of schottky contact Si nanograting FET sensors, integration of miniaturized Si nanograting FET biosensors into Chip-in-Strip(c) packaging, development of an automated microfluidic sensing system, and investigation of electrochemical considerations in the Si nanograting FET biosensor gate stack followed by development of a novel patent-pending strategy for a lithographically patterned on-chip gate electrode.

  14. Sandwiched confinement of quantum dots in graphene matrix for efficient electron transfer and photocurrent production

    PubMed Central

    Zhu, Nan; Zheng, Kaibo; Karki, Khadga J.; Abdellah, Mohamed; Zhu, Qiushi; Carlson, Stefan; Haase, Dörthe; Žídek, Karel; Ulstrup, Jens; Canton, Sophie E.; Pullerits, Tõnu; Chi, Qijin

    2015-01-01

    Quantum dots (QDs) and graphene are both promising materials for the development of new-generation optoelectronic devices. Towards this end, synergic assembly of these two building blocks is a key step but remains a challenge. Here, we show a one-step strategy for organizing QDs in a graphene matrix via interfacial self-assembly, leading to the formation of sandwiched hybrid QD-graphene nanofilms. We have explored structural features, electron transfer kinetics and photocurrent generation capacity of such hybrid nanofilms using a wide variety of advanced techniques. Graphene nanosheets interlink QDs and significantly improve electronic coupling, resulting in fast electron transfer from photoexcited QDs to graphene with a rate constant of 1.3 × 109 s−1. Efficient electron transfer dramatically enhances photocurrent generation in a liquid-junction QD-sensitized solar cell where the hybrid nanofilm acts as a photoanode. We thereby demonstrate a cost-effective method to construct large-area QD-graphene hybrid nanofilms with straightforward scale-up potential for optoelectronic applications. PMID:25996307

  15. Quantum confinement and dielectric profiles of colloidal nanoplatelets of halide inorganic and hybrid organic-inorganic perovskites.

    PubMed

    Sapori, Daniel; Kepenekian, Mikaël; Pedesseau, Laurent; Katan, Claudine; Even, Jacky

    2016-03-28

    Quantum confinement as well as high frequency ε∞ and static εs dielectric profiles are described for nanoplatelets of halide inorganic perovskites CsPbX3 (X = I, Br, Cl) and hybrid organic-inorganic perovskites (HOP) in two-dimensional (2D) and three-dimensional (3D) structures. 3D HOP are currently being sought for their impressive photovoltaic ability. Prior to this sudden popularity, 2D HOP materials were driving intense activity in the field of optoelectronics. Such developments have been enriched by the recent ability to synthesize colloidal nanostructures of controlled sizes of 2D and 3D HOP. This raises the need to achieve a thorough description of the electronic structure and dielectric properties of these systems. In this work, we go beyond the abrupt dielectric interface model and reach the atomic scale description. We examine the influence of the nature of the halogen and of the cation on the band structure and dielectric constants. Similarly, we survey the effect of dimensionality and shape of the perovskite. In agreement with recent experimental results, we show an increase of the band gap and a decrease of ε∞ when the size of a nanoplatelet reduces. By inspecting 2D HOP, we find that it cannot be described as a simple superposition of independent inorganic and organic layers. Finally, the dramatic impact of ionic contributions on the dielectric constant εs is analysed. PMID:26705549

  16. Interplay between strain, quantum confinement, and ferromagnetism in strained ferromagnetic semiconductor (In,Fe)As thin films

    SciTech Connect

    Sasaki, Daisuke; Anh, Le Duc; Nam Hai, Pham; Tanaka, Masaaki

    2014-04-07

    We systematically investigated the influence of strain on the electronic structure and ferromagnetism of (In,Fe)As thin films. It is found that while the shift of the critical point energies of compressive-strained (In,Fe)As layers grown on (In{sub 1−y},Ga{sub y})As (y = 0.05, 0.1) buffer layers can be explained by the hydrostatic deformation effect (HDE) alone, those of tensile-strained (In,Fe)As layers grown on (Ga{sub 1−z},Al{sub z})Sb (z = 0, 0.5, 1) buffer layers can be explained by the combination of HDE and the quantum confinement effect (QCE). The Curie temperature T{sub C} of the (In,Fe)As layers strongly depends on the strain, and shows a maximum for the (In,Fe)As layer grown on a GaSb buffer layer. The strain dependence of T{sub C} can be explained by the s-d exchange mechanism taking into account HDE and QCE.

  17. Quantum confinement effect in multilayer structure of alternate CdSe and SiOx insulator matrix thinfilms

    NASA Astrophysics Data System (ADS)

    Melvin David Kumar, M.; Devadason, Suganthi

    2013-06-01

    Multilayer (ML) structure of layer-by-layer deposited CdSe/SiOx thin films and their monolayers were prepared using sequential thermal evaporation technique. X-ray diffraction study confirmed the (002) plane of CdSe with wurtzite structure. It is noticed that the microstrain, developed in ML thin films, increased with decreasing particle size. Experimentally measured band gap energies confirmed the splitting of valence band energy levels which rise due to hole confinement in CdSe. Crystallite sizes (5-7 nm) were calculated using the effective mass approximation model (i.e., Brus model) which shows that the diameter of crystallites was smaller than the Bohr exciton diameter (11.2 nm) of CdSe. The main band in the emission spectra of ML samples gradually shifted to longer wavelength side when particle size was increased from 5 to 7 nm. This is characteristic of quantum size effect. It is inferred that disorderliness in CdSe/SiOx ML thin films would increase when the thickness of CdSe sublayer is greater than that of SiOx matrix layer.

  18. Interplay between strain, quantum confinement, and ferromagnetism in strained ferromagnetic semiconductor (In,Fe)As thin films

    NASA Astrophysics Data System (ADS)

    Sasaki, Daisuke; Anh, Le Duc; Nam Hai, Pham; Tanaka, Masaaki

    2014-04-01

    We systematically investigated the influence of strain on the electronic structure and ferromagnetism of (In,Fe)As thin films. It is found that while the shift of the critical point energies of compressive-strained (In,Fe)As layers grown on (In1-y,Gay)As (y = 0.05, 0.1) buffer layers can be explained by the hydrostatic deformation effect (HDE) alone, those of tensile-strained (In,Fe)As layers grown on (Ga1-z,Alz)Sb (z = 0, 0.5, 1) buffer layers can be explained by the combination of HDE and the quantum confinement effect (QCE). The Curie temperature TC of the (In,Fe)As layers strongly depends on the strain, and shows a maximum for the (In,Fe)As layer grown on a GaSb buffer layer. The strain dependence of TC can be explained by the s-d exchange mechanism taking into account HDE and QCE.

  19. Quantum confinement and photoresponsivity of β-In2Se3 nanosheets grown by physical vapour transport

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Nilanthy; Staddon, Christopher R.; Smith, Emily F.; Stec, Jakub; Gay, Dean; Mudd, Garry W.; Makarovsky, Oleg; Kudrynskyi, Zakhar R.; Kovalyuk, Zakhar D.; Eaves, Laurence; Patanè, Amalia; Beton, Peter H.

    2016-06-01

    We demonstrate that β-In2Se3 layers with thickness ranging from 2.8 to 100 nm can be grown on SiO2/Si, mica and graphite using a physical vapour transport method. The β-In2Se3 layers are chemically stable at room temperature and exhibit a blue-shift of the photoluminescence emission when the layer thickness is reduced, due to strong quantum confinement of carriers by the physical boundaries of the material. The layers are characterised using Raman spectroscopy and x-ray diffraction from which we confirm lattice constants c = 28.31 ± 0.05 Å and a = 3.99 ± 0.02 Å. In addition, these layers show high photoresponsivity of up to ∼2 × 103 A W‑1 at λ = 633 nm, with rise and decay times of τ r = 0.6 ms and τ d = 2.5 ms, respectively, confirming the potential of the as-grown layers for high sensitivity photodetectors.

  20. Properties of nanocones formed on a surface of semiconductors by laser radiation: quantum confinement effect of electrons, phonons, and excitons.

    PubMed

    Medvid, Artur; Onufrijevs, Pavels; Mychko, Alexander

    2011-01-01

    On the basis of the analysis of experimental results, a two-stage mechanism of nanocones formation on the irradiated surface of semiconductors by Nd:YAG laser is proposed for elementary semiconductors and solid solutions, such as Si, Ge, SiGe, and CdZnTe. Properties observed are explained in the frame of quantum confinement effect. The first stage of the mechanism is characterized by the formation of a thin strained top layer, due to redistribution of point defects in temperature-gradient field induced by laser radiation. The second stage is characterized by mechanical plastic deformation of the stained top layer leading to arising of nanocones, due to selective laser absorption of the top layer. The nanocones formed on the irradiated surface of semiconductors by Nd:YAG laser possessing the properties of 1D graded bandgap have been found for Si, Ge, and SiGe as well, however QD structure in CdTe was observed. The model is confirmed by "blue shift" of bands in photoluminescence spectrum, "red shift" of longitudinal optical line in Raman back scattering spectrum of Ge crystal, appearance of Ge phase in SiGe solid solution after irradiation by the laser at intensity 20 MW/cm2, and non-monotonous dependence of Si crystal micro-hardness as function of the laser intensity. PMID:22060172

  1. Light-front holography and superconformal quantum mechanics: A new approach to hadron structure and color confinement

    NASA Astrophysics Data System (ADS)

    Brodsky, Stanley J.; Deur, Alexandre; de Téramond, Guy F.; Dosch, Hans Günter

    2015-11-01

    A primary question in hadron physics is how the mass scale for hadrons consisting of light quarks, such as the proton, emerges from the QCD Lagrangian even in the limit of zero quark mass. If one requires the effective action which underlies the QCD Lagrangian to remain conformally invariant and extends the formalism of de Alfaro, Fubini and Furlan to light-front Hamiltonian theory, then a unique, color-confining potential with a mass parameter κ emerges. The actual value of the parameter κ is not set by the model - only ratios of hadron masses and other hadronic mass scales are predicted. The result is a nonperturbative, relativistic light-front quantum mechanical wave equation, the Light-Front Schrödinger Equation which incorporates color confinement and other essential spectroscopic and dynamical features of hadron physics, including a massless pion for zero quark mass and linear Regge trajectories with the identical slope in the radial quantum number n and orbital angular momentum L. The same light-front equations for mesons with spin J also can be derived from the holographic mapping to QCD (3+1) at fixed light-front time from the soft-wall model modification of AdS5 space with a specific dilaton profile. Light-front holography thus provides a precise relation between the bound-state amplitudes in the fifth dimension of AdS space and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in physical space-time. One can also extend the analysis to baryons using superconformal algebra - 2 × 2 supersymmetric representations of the conformal group. The resulting fermionic LF bound-state equations predict striking similarities between the meson and baryon spectra. In fact, the holographic QCD light-front Hamiltonians for the states on the meson and baryon trajectories are identical if one shifts the internal angular momenta of the meson (LM) and baryon (LB) by one unit: LM = LB + 1. We also show how the mass scale κ

  2. Nanometer-scale monitoring of quantum-confined Stark effect and emission efficiency droop in multiple GaN/AlN quantum disks in nanowires

    NASA Astrophysics Data System (ADS)

    Zagonel, L. F.; Tizei, L. H. G.; Vitiello, G. Z.; Jacopin, G.; Rigutti, L.; Tchernycheva, M.; Julien, F. H.; Songmuang, R.; Ostasevicius, T.; de la Peña, F.; Ducati, C.; Midgley, P. A.; Kociak, M.

    2016-05-01

    We report on a detailed study of the intensity dependent optical properties of individual GaN/AlN quantum disks (QDisks) embedded into GaN nanowires (NW). The structural and optical properties of the QDisks were probed by high spatial resolution cathodoluminescence (CL) in a scanning transmission electron microscope (STEM). By exciting the QDisks with a nanometric electron beam at currents spanning over three orders of magnitude, strong nonlinearities (energy shifts) in the light emission are observed. In particular, we find that the amount of energy shift depends on the emission rate and on the QDisk morphology (size, position along the NW and shell thickness). For thick QDisks (>4 nm), the QDisk emission energy is observed to blueshift with the increase of the emission intensity. This is interpreted as a consequence of the increase of carriers density excited by the incident electron beam inside the QDisks, which screens the internal electric field and thus reduces the quantum confined Stark effect (QCSE) present in these QDisks. For thinner QDisks (<3 nm ), the blueshift is almost absent in agreement with the negligible QCSE at such sizes. For QDisks of intermediate sizes there exists a current threshold above which the energy shifts, marking the transition from unscreened to partially screened QCSE. From the threshold value we estimate the lifetime in the unscreened regime. These observations suggest that, counterintuitively, electrons of high energy can behave ultimately as single electron-hole pair generators. In addition, when we increase the current from 1 to 10 pA the light emission efficiency drops by more than one order of magnitude. This reduction of the emission efficiency is a manifestation of the "efficiency droop" as observed in nitride-based 2D light emitting diodes, a phenomenon tentatively attributed to the Auger effect.

  3. Thickness-Induced Metal-Insulator Transition in Sb-doped SnO2 Ultrathin Films: The Role of Quantum Confinement

    PubMed Central

    Ke, Chang; Zhu, Weiguang; Zhang, Zheng; Soon Tok, Eng; Ling, Bo; Pan, Jisheng

    2015-01-01

    A thickness induced metal-insulator transition (MIT) was firstly observed in Sb-doped SnO2 (SnO2:Sb) epitaxial ultrathin films deposited on sapphire substrates by pulsed laser deposition. Both electrical and spectroscopic studies provide clear evidence of a critical thickness for the metallic conductivity in SnO2:Sb thin films and the oxidation state transition of the impurity element Sb. With the shrinkage of film thickness, the broadening of the energy band gap as well as the enhancement of the impurity activation energy was studied and attributed to the quantum confinement effect. Based on the scenario of impurity level pinning and band gap broadening in quantum confined nanostructures, we proposed a generalized energy diagram to understand the thickness induced MIT in the SnO2:Sb system. PMID:26616286

  4. Single photon emission at 1.55 μm from charged and neutral exciton confined in a single quantum dash

    SciTech Connect

    Dusanowski, Ł. Syperek, M.; Mrowiński, P.; Rudno-Rudziński, W.; Misiewicz, J.; Sęk, G.; Somers, A.; Kamp, M.; Höfling, S.; Reithmaier, J. P.

    2014-07-14

    We investigate charged and neutral exciton complexes confined in a single self-assembled InAs/InGaAlAs/InP quantum dash emitting at 1.55 μm. The emission characteristics have been probed by measuring high-spatial-resolution polarization-resolved photoluminescence and cross-correlations of photon emission statistics at T = 5 K. The photon auto-correlation histogram of the emission from both the neutral and charged exciton indicates a clear antibunching dip with as-measured g{sup (2)}(0) values of 0.18 and 0.31, respectively. It proves that these exciton complexes confined in single quantum dashes of InP-based material system can act as true single photon emitters being compatible with standard long-distance fiber communication technology.

  5. Thickness-Induced Metal-Insulator Transition in Sb-doped SnO2 Ultrathin Films: The Role of Quantum Confinement

    NASA Astrophysics Data System (ADS)

    Ke, Chang; Zhu, Weiguang; Zhang, Zheng; Soon Tok, Eng; Ling, Bo; Pan, Jisheng

    2015-11-01

    A thickness induced metal-insulator transition (MIT) was firstly observed in Sb-doped SnO2 (SnO2:Sb) epitaxial ultrathin films deposited on sapphire substrates by pulsed laser deposition. Both electrical and spectroscopic studies provide clear evidence of a critical thickness for the metallic conductivity in SnO2:Sb thin films and the oxidation state transition of the impurity element Sb. With the shrinkage of film thickness, the broadening of the energy band gap as well as the enhancement of the impurity activation energy was studied and attributed to the quantum confinement effect. Based on the scenario of impurity level pinning and band gap broadening in quantum confined nanostructures, we proposed a generalized energy diagram to understand the thickness induced MIT in the SnO2:Sb system.

  6. Thickness-Induced Metal-Insulator Transition in Sb-doped SnO2 Ultrathin Films: The Role of Quantum Confinement.

    PubMed

    Ke, Chang; Zhu, Weiguang; Zhang, Zheng; Tok, Eng Soon; Ling, Bo; Pan, Jisheng

    2015-01-01

    A thickness induced metal-insulator transition (MIT) was firstly observed in Sb-doped SnO2 (SnO2:Sb) epitaxial ultrathin films deposited on sapphire substrates by pulsed laser deposition. Both electrical and spectroscopic studies provide clear evidence of a critical thickness for the metallic conductivity in SnO2:Sb thin films and the oxidation state transition of the impurity element Sb. With the shrinkage of film thickness, the broadening of the energy band gap as well as the enhancement of the impurity activation energy was studied and attributed to the quantum confinement effect. Based on the scenario of impurity level pinning and band gap broadening in quantum confined nanostructures, we proposed a generalized energy diagram to understand the thickness induced MIT in the SnO2:Sb system. PMID:26616286

  7. Evolution of exciton states near the percolation threshold in two-phase systems with II-VI semiconductor quantum dots

    SciTech Connect

    Bondar, N. V. Brodyn, M. S.

    2010-07-15

    From studies of two-phase systems (borosilicate matrices containing ZnSe or CdS quantum dots), it was found that the systems exhibit a specific feature associated with the percolation phase transition of charge carriers (excitons). The transition manifests itself as radical changes in the optical spectra of both ZnSe and CdS quantum dot systems and by fluctuations of the emission band intensities near the percolation threshold. These effects are due to microscopic fluctuations of the density of quantum dots. The average spacing between quantum dots is calculated taking into account their finite dimensions and the volume fraction occupied by the quantum dots at the percolation threshold. It is shown that clustering of quantum dots occurs via tunneling of charge carriers between the dots. A physical mechanism responsible for the percolation threshold for charge carriers is suggested. In the mechanism, the permittivity mismatch of the materials of the matrix and quantum dots plays an important role in delocalization of charge carriers (excitons): due to the mismatch, 'a dielectric trap' is formed at the external surface of the interface between the matrix and a quantum dot and, thus, surface exciton states are formed there. The critical concentrations of quantum dots are determined, such that the spatial overlapping of such surface states provides the percolation transition in both systems.

  8. Gold Quantum Boxes: On the Periodicities and the Quantum Confinement in the Au₂₈, Au₃₆, Au₄₄ , and Au₅₂ Magic Series.

    PubMed

    Zeng, Chenjie; Chen, Yuxiang; Iida, Kenji; Nobusada, Katsuyuki; Kirschbaum, Kristin; Lambright, Kelly J; Jin, Rongchao

    2016-03-30

    Revealing the size-dependent periodicities (including formula, growth pattern, and property evolution) is an important task in metal nanocluster research. However, investigation on this major issue has been complicated, as the size change is often accompanied by a structural change. Herein, with the successful determination of the Au44(TBBT)28 structure, where TBBT = 4-tert-butylbenzenethiolate, the missing size in the family of Au28(TBBT)20, Au36(TBBT)24, and Au52(TBBT)32 nanoclusters is filled, and a neat "magic series" with a unified formula of Au8n+4(TBBT)4n+8 (n = 3-6) is identified. Such a periodicity in magic numbers is a reflection of the uniform anisotropic growth patterns in this magic series, and the n value is correlated with the number of (001) layers in the face-centered cubic lattice. The size-dependent quantum confinement nature of this magic series is further understood by empirical scaling law, classical "particle in a box" model, and the density functional theory calculations. PMID:26934618

  9. Quantum confinement and dielectric profiles of colloidal nanoplatelets of halide inorganic and hybrid organic-inorganic perovskites

    NASA Astrophysics Data System (ADS)

    Sapori, Daniel; Kepenekian, Mikaël; Pedesseau, Laurent; Katan, Claudine; Even, Jacky

    2016-03-01

    Quantum confinement as well as high frequency ε∞ and static εs dielectric profiles are described for nanoplatelets of halide inorganic perovskites CsPbX3 (X = I, Br, Cl) and hybrid organic-inorganic perovskites (HOP) in two-dimensional (2D) and three-dimensional (3D) structures. 3D HOP are currently being sought for their impressive photovoltaic ability. Prior to this sudden popularity, 2D HOP materials were driving intense activity in the field of optoelectronics. Such developments have been enriched by the recent ability to synthesize colloidal nanostructures of controlled sizes of 2D and 3D HOP. This raises the need to achieve a thorough description of the electronic structure and dielectric properties of these systems. In this work, we go beyond the abrupt dielectric interface model and reach the atomic scale description. We examine the influence of the nature of the halogen and of the cation on the band structure and dielectric constants. Similarly, we survey the effect of dimensionality and shape of the perovskite. In agreement with recent experimental results, we show an increase of the band gap and a decrease of ε∞ when the size of a nanoplatelet reduces. By inspecting 2D HOP, we find that it cannot be described as a simple superposition of independent inorganic and organic layers. Finally, the dramatic impact of ionic contributions on the dielectric constant εs is analysed.Quantum confinement as well as high frequency ε∞ and static εs dielectric profiles are described for nanoplatelets of halide inorganic perovskites CsPbX3 (X = I, Br, Cl) and hybrid organic-inorganic perovskites (HOP) in two-dimensional (2D) and three-dimensional (3D) structures. 3D HOP are currently being sought for their impressive photovoltaic ability. Prior to this sudden popularity, 2D HOP materials were driving intense activity in the field of optoelectronics. Such developments have been enriched by the recent ability to synthesize colloidal nanostructures of controlled

  10. Hole Confinement and 1/ f Noise Characteristics of SiGe Double-Quantum-Well p-Type Metal-Oxide-Semiconductor Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Lin, Yu Min; Wu, San Lein; Chang, Shoou Jinn; Chen, Pang Shiu; Liu, Chee Wee

    2006-05-01

    A working p-type SiGe double-quantum-well metal-oxide-semiconductor field effect transistor (DQW-pMOSFETs) has been fabricated and characterized. The upper quantum well with 15%-Ge acts as an induced-carrier buffer to slow holes into the Si surface channel and increases the number of high-mobility holes in the 30%-Ge well at the bottom under high gate voltage by improving carrier confinement. DQW devices with a thinner Si-spacer layer between the two SiGe quantum wells exhibit an improved effective hole mobility and wider gate voltage swings but also reduced 1/ f noise levels than Si-controlled pMOSFETs. The DQW has an enhanced carrier confinement compared to a single quantum-well (SQW) device; however, the degradation of mobility and transconductance observed in a sample DQW indicates that this poor transport mechanism may result from an additional hole scattering effect at the Si/SiGe interface.