Science.gov

Sample records for quantum dots studied

  1. Quantum Dots

    NASA Astrophysics Data System (ADS)

    Tartakovskii, Alexander

    2012-07-01

    Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by

  2. Correlation studies in weakly confining quantum dot potentials

    NASA Astrophysics Data System (ADS)

    Kimani, Peter; Jones, Preston; Winkler, Peter

    We investigate the electron correlation in few-electron closed-shell atomic systems and similarly in few-electron quantum dots under weak confinement. As usual we start with restricted Hartree-Fock (HF) calculations and add electron correlation in steps in a series of approximations based on the single particle Green's function approach: (i) second-order Green function (GF); (ii) 2ph-Tamm-Dancoff approximation (TDA); and (iii) an extended version thereof which introduces ground-state correlation into the TDA. Our studies exhibit similarities and differences between weakly confined quantum dots and standard atomic systems. The calculations support the application of HF, GF, and TDA techniques in the modeling of three-dimensional quantum dot systems. The observed differences emphasize the significance of confinement and electronic features unique to quantum dots, such as the increased binding of electrons with higher angular momentum and thus - compared to atomic systems - modified shell-filling sequences.

  3. Luminescence studies of individual quantum dot photocatalysts.

    PubMed

    Amirav, Lilac; Alivisatos, A Paul

    2013-09-01

    Using far-field optical microscopy we report the first measurements of photoluminescence from single nanoparticle photocatalysts. Fluence-dependent luminescence is investigated from metal-semiconductor heterojunction quantum dot catalysts exposed to a variety of environments, ranging from gaseous argon to liquid water containing a selection of hole scavengers. The catalysts each exhibit characteristic nonlinear fluence dependence. From these structurally and environmentally sensitive trends, we disentangle the separate rate-determining steps in each particle across the very wide range of time scales, which follow the initial light absorption process. This information will significantly benefit the design of effective artificial photocatalytic systems for renewable direct solar-to-fuel energy conversion. PMID:23895591

  4. Theoretical studies of graphene nanoribbon quantum dot qubits

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Chieh; Chang, Yia-Chung

    Graphene nanoribbon quantum dot qubits have been proposed as promising candidates for quantum computing applications to overcome the spin-decoherence problems associated with typical semiconductor (e.g., GaAs) quantum dot qubits. We perform theoretical studies of the electronic structures of graphene nanoribbon quantum dots by solving the Dirac equation with appropriate boundary conditions. We then evaluate the exchange splitting based on an unrestricted Hartree-Fock method for the Dirac particles. The electronic wave function and long-range exchange coupling due to the Klein tunneling and the Coulomb interaction are calculated for various gate configurations. It is found that the exchange coupling between qubits can be significantly enhanced by the Klein tunneling effect. The implications of our results for practical qubit construction and operation are discussed. This work was supported in part by the Ministry of Science and Technology, Taiwan, under Contract No. MOST 104-2112-M-001-009-MY2.

  5. Mid-Infrared Quantum-Dot Quantum Cascade Laser: A Theoretical Feasibility Study

    DOE PAGESBeta

    Michael, Stephan; Chow, Weng; Schneider, Hans

    2016-05-13

    In the framework of a microscopic model for intersubband gain from electrically pumped quantum-dot structures we investigate electrically pumped quantum-dots as active material for a mid-infrared quantum cascade laser. Our previous calculations have indicated that these structures could operate with reduced threshold current densities while also achieving a modal gain comparable to that of quantum well active materials. We study the influence of two important quantum-dot material parameters, here, namely inhomogeneous broadening and quantum-dot sheet density, on the performance of a proposed quantum cascade laser design. In terms of achieving a positive modal net gain, a high quantum-dot density canmore » compensate for moderately high inhomogeneous broadening, but at a cost of increased threshold current density. By minimizing quantum-dot density with presently achievable inhomogeneous broadening and total losses, significantly lower threshold densities than those reported in quantum-well quantum-cascade lasers are predicted by our theory.« less

  6. Numerical renormalization group study of a dissipative quantum dot

    NASA Astrophysics Data System (ADS)

    Glossop, M. T.; Ingersent, K.

    2007-03-01

    We study the quantum phase transition (QPT) induced by dissipation in a quantum dot device at the degeneracy point. We employ a Bose-Fermi numerical renormalization group approach [1] to study the simplest case of a spinless resonant-level model that couples the charge density on the dot to a dissipative bosonic bath with density of states B(φ)ŝ. In anticipation of future experiments [2] and to assess further the validity of theoretical techniques in this rapidly developing area, we take the conduction-electron leads to have a pseudogap density of states: ρ(φ) |φ|^r, as considered in a very recent perturbative renormalization group study [3]. We establish the conditions on r and s such that a QPT arises with increasing dissipation strength --- from a delocalized phase, where resonant tunneling leads to large charge fluctuations on the dot, to a localized phase where such fluctuations are frozen. We present results for the single-particle spectrum and the response of the system to a local electric field, extracting critical exponents that depend in general on r and s and obey hyperscaling relations. We make full comparison with results of [3] where appropriate. Supported by NSF Grant DMR-0312939. [1] M. T. Glossop and K. Ingersent, PRL 95, 067202 (2005); PRB (2006). [2] L. G. G. V. Dias da Silva, N. P. Sandler, K. Ingersent, and S. E. Ulloa, PRL 97, 096603 (2006). [3] C.-H. Chung, M. Kir'can, L. Fritz, and M. Vojta (2006).

  7. Entanglement and Quantum Optics with Quantum Dots

    NASA Astrophysics Data System (ADS)

    Burgers, A. P.; Schaibley, J. R.; Steel, D. G.

    2015-06-01

    Quantum dots (QDs) exhibit many characteristics of simpler two-level (or few level) systems, under optical excitation. This makes atomic coherent optical spectroscopy theory and techniques well suited for understanding the behavior of quantum dots. Furthermore, the combination of the solid state nature of quantum dots and their close approximation to atomic systems makes them an attractive platform for quantum information based technologies. In this chapter, we will discuss recent studies using direct detection of light emitted from a quantum dot to investigate coherence properties and confirm entanglement between the emitted photon and an electron spin qubit confined to the QD.

  8. Study and manipulation of electron tunneling through quantum dots

    NASA Astrophysics Data System (ADS)

    Bhadrachalam, Pradeep Krishna

    Fermi-Dirac distribution is the fundamental property which governs the electron energy distribution in solids. At finite temperatures, Fermi-Dirac thermal smearing of electron energies limits the operation of many electronic, opto-electronic and spintronic devices. Examples include single electron transistors, quantum dot resonant tunnel diodes for single photon detection, and single electron turnstile devices. To overcome this intrinsic limitation of Fermi-Dirac thermal smearing, these devices have typically been operated at cryogenic temperatures. Room temperature operation of these devices could be realized, however, if the thermal smearing of electron energies could be suppressed. Until now, studies in the fields of electron-tunneling refrigerators and double quantum dot devices have demonstrated limited manipulation/suppression of electron energy distribution, but those have been carried out at cryogenic temperatures. Using a double barrier tunneling junction structure as a model system this research has accomplished the following: * Demonstrated suppression of thermal smearing of electrons at room temperature, without any physical cooling of the system * Demonstrated that cold electrons whose effective temperature as low as ˜45 K can be created at room temperature without any physical cooling * Systematically investigated the phenomenon responsible for suppression in thermal smearing of electron energies * Systematically investigated the cold electron transport in the double barrier tunnel junction structure One of the key achievements of this research was demonstration of effective electron temperature of ˜45K at room temperature without any physical cooling of the system. This was realized by filtering out the thermally excited electrons in a double barrier tunneling junction structure. A discrete energy state of a quantum well, created by band bending of Cr2O3 conduction band, acted as an electron energy filter, effectively suppressing energy

  9. The study of the formation of monolayers of quantum dots at different temperatures

    NASA Astrophysics Data System (ADS)

    Gorbachev, Ilya A.; Goryacheva, Irina Y.; Brezesinski, Gerald; Gluhovskoy, Evgeny G.

    2016-04-01

    The process of formation of Langmuir monolayers of quantum dots at the different subphase temperatures was studied by means of compression isotherm, Brewster angle microscopy and transmission electron microscopy. The increasing of the maximum surface pressure from 32 to 44 mN/m takes place with decreasing the temperature from 34 to 11°C. This is due to a decrease in the rate of dissolution of surfactant molecules in water. The increasing of a filling degree of monolayer by the quantum dots and increasing of it uniformity in thickness takes place in this temperature range. The area of bilayer and multilayer film of quantum dots decreasing and the area of quantum dots monolayer is increasing. This change explained by the difference in the phase condition of oleic acid molecules, which stabilized quantum dots.

  10. Computational studies of quantum dot sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kolesov, Grigory

    This thesis presents a computational study of quantum dot (QD) sensitized solar cells. First part deals with the non-equilibrium many-body theory or non-equilibrium Green's function (NEGF) theory. In this approach I study electron dynamics in the quantum-dot sensitized solar cell subjected to time-dependent fields. NEGF theory, because it does not impose any conditions on a perturbation, is the fundamental one to describe ultrafast processes in small, strongly correlated systems and/or in strong fields. In this research I do not only perform analytical derivation, but also design and implement spectral numerical solution for the resulting complex system of partial integrodifferential equations. This numerical solution yielded an order of magnitude speedup over the methods used previously in the field. The forth chapter of this thesis deals with calculation of optical properties and the ground state configuration of Zn2SnO4 (ZTO). ZTO is used by experimentalists in UW to grow nanorods which are then sensitized by QDs. ZTO is a challenging material for computational analysis because of its inverse spinel structure; thus it has an immense number of configurations matching the X-ray diffraction experiments. I've applied a cluster expansion method and have found the ground state configuration and phase diagram for ZTO. Calculations of optical properties of ground state bulk ZTO were done with a recently developed DFT functional. The optical band gap obtained in these calculations matched the experimental value. The last chapter describes development of the general simulator for interdigitated array electrodes. The application of this simulation together with the experiments may lead to understanding of reaction parameters and mechanisms important for development of electrochemical solar cells.

  11. Quantum Monte Carlo Studies of Interaction-Induced Localization in Quantum Dots and Wires

    NASA Astrophysics Data System (ADS)

    Devrim Güçlü, A.

    2009-03-01

    We investigate interaction-induced localization of electrons in both quantum dots and inhomogeneous quantum wires using variational and diffusion quantum Monte Carlo methods. Quantum dots and wires are highly tunable systems that enable the study of the physics of strongly correlated electrons. With decreasing electronic density, interactions become stronger and electrons are expected to localize at their classical positions, as in Wigner crystallization in an infinite 2D system. (1) Dots: We show that the addition energy shows a clear progression from features associated with shell structure to those caused by commensurability of a Wigner crystal. This cross-over is, then, a signature of localization; it occurs near rs˜20. For higher values of rs, the configuration symmetry of the quantum dot becomes fully consistent with the classical ground state. (2) Wires: We study an inhomogeneous quasi-one-dimensional system -- a wire with two regions, one at low density and the other high. We find that strong localization occurs in the low density quantum point contact region as the gate potential is increased. The nature of the transition from high to low density depends on the density gradient -- if it is steep, a barrier develops between the two regions, causing Coulomb blockade effects. We find no evidence for ferromagnetic spin polarization for the range of parameters studied. The picture emerging here is in good agreement with the experimental measurements of tunneling between two wires. Collaborators: C. J. Umrigar (Cornell), Hong Jiang (Fritz Haber Institut), Amit Ghosal (IISER Calcutta), and H. U. Baranger (Duke).

  12. Colloidal Double Quantum Dots

    PubMed Central

    2016-01-01

    Conspectus Pairs of coupled quantum dots with controlled coupling between the two potential wells serve as an extremely rich system, exhibiting a plethora of optical phenomena that do not exist in each of the isolated constituent dots. Over the past decade, coupled quantum systems have been under extensive study in the context of epitaxially grown quantum dots (QDs), but only a handful of examples have been reported with colloidal QDs. This is mostly due to the difficulties in controllably growing nanoparticles that encapsulate within them two dots separated by an energetic barrier via colloidal synthesis methods. Recent advances in colloidal synthesis methods have enabled the first clear demonstrations of colloidal double quantum dots and allowed for the first exploratory studies into their optical properties. Nevertheless, colloidal double QDs can offer an extended level of structural manipulation that allows not only for a broader range of materials to be used as compared with epitaxially grown counterparts but also for more complex control over the coupling mechanisms and coupling strength between two spatially separated quantum dots. The photophysics of these nanostructures is governed by the balance between two coupling mechanisms. The first is via dipole–dipole interactions between the two constituent components, leading to energy transfer between them. The second is associated with overlap of excited carrier wave functions, leading to charge transfer and multicarrier interactions between the two components. The magnitude of the coupling between the two subcomponents is determined by the detailed potential landscape within the nanocrystals (NCs). One of the hallmarks of double QDs is the observation of dual-color emission from a single nanoparticle, which allows for detailed spectroscopy of their properties down to the single particle level. Furthermore, rational design of the two coupled subsystems enables one to tune the emission statistics from single

  13. Colloidal Double Quantum Dots.

    PubMed

    Teitelboim, Ayelet; Meir, Noga; Kazes, Miri; Oron, Dan

    2016-05-17

    Pairs of coupled quantum dots with controlled coupling between the two potential wells serve as an extremely rich system, exhibiting a plethora of optical phenomena that do not exist in each of the isolated constituent dots. Over the past decade, coupled quantum systems have been under extensive study in the context of epitaxially grown quantum dots (QDs), but only a handful of examples have been reported with colloidal QDs. This is mostly due to the difficulties in controllably growing nanoparticles that encapsulate within them two dots separated by an energetic barrier via colloidal synthesis methods. Recent advances in colloidal synthesis methods have enabled the first clear demonstrations of colloidal double quantum dots and allowed for the first exploratory studies into their optical properties. Nevertheless, colloidal double QDs can offer an extended level of structural manipulation that allows not only for a broader range of materials to be used as compared with epitaxially grown counterparts but also for more complex control over the coupling mechanisms and coupling strength between two spatially separated quantum dots. The photophysics of these nanostructures is governed by the balance between two coupling mechanisms. The first is via dipole-dipole interactions between the two constituent components, leading to energy transfer between them. The second is associated with overlap of excited carrier wave functions, leading to charge transfer and multicarrier interactions between the two components. The magnitude of the coupling between the two subcomponents is determined by the detailed potential landscape within the nanocrystals (NCs). One of the hallmarks of double QDs is the observation of dual-color emission from a single nanoparticle, which allows for detailed spectroscopy of their properties down to the single particle level. Furthermore, rational design of the two coupled subsystems enables one to tune the emission statistics from single photon

  14. Quantum Dots: Theory

    SciTech Connect

    Vukmirovic, Nenad; Wang, Lin-Wang

    2009-11-10

    This review covers the description of the methodologies typically used for the calculation of the electronic structure of self-assembled and colloidal quantum dots. These are illustrated by the results of their application to a selected set of physical effects in quantum dots.

  15. Quantum Dot Solar Cells

    NASA Astrophysics Data System (ADS)

    Raffaelle, Ryne P.; Castro, Stephanie L.; Hepp, Aloysius; Bailey, Sheila G.

    2002-10-01

    We have been investigating the synthesis of quantum dots of CdSe, CuInS2, and CuInSe2 for use in an intermediate bandgap solar cell. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Bawendi, et. al., in the early 1990's. However, unlike previous work in this area we have also utilized single-source precursor molecules in the synthesis process. We will present XRD, TEM, SEM and EDS characterization of our initial attempts at fabricating these quantum dots. Investigation of the size distributions of these nanoparticles via laser light scattering and scanning electron microscopy will be presented. Theoretical estimates on appropriate quantum dot composition, size, and inter-dot spacing along with potential scenarios for solar cell fabrication will be discussed.

  16. Quantum Dot Solar Cells

    NASA Technical Reports Server (NTRS)

    Raffaelle, Ryne P.; Castro, Stephanie L.; Hepp, Aloysius; Bailey, Sheila G.

    2002-01-01

    We have been investigating the synthesis of quantum dots of CdSe, CuInS2, and CuInSe2 for use in an intermediate bandgap solar cell. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Bawendi, et. al., in the early 1990's. However, unlike previous work in this area we have also utilized single-source precursor molecules in the synthesis process. We will present XRD, TEM, SEM and EDS characterization of our initial attempts at fabricating these quantum dots. Investigation of the size distributions of these nanoparticles via laser light scattering and scanning electron microscopy will be presented. Theoretical estimates on appropriate quantum dot composition, size, and inter-dot spacing along with potential scenarios for solar cell fabrication will be discussed.

  17. Self-assembly drives quantum dot photoluminescence.

    PubMed

    Plain, J; Sonnefraud, Y; Viste, P; Lérondel, G; Huant, S; Royer, P

    2009-03-01

    Engineering the spectral properties of quantum dots can be achieved by a control of the quantum dots organization on a substrate. Indeed, many applications of quantum dots as LEDs are based on the realization of a 3D architecture of quantum dots. In this contribution, we present a systematic study of the quantum dot organization obtained on different chemically modified substrates. By varying the chemical affinity between the quantum dots and the substrate, the quantum dot organization is strongly modified from the 2D monolayer to the 3D aggregates. Then the photoluminescence of the different obtained samples has been systematically studied and correlated with the quantum dot film organization. We clearly show that the interaction between the substrate and the quantum dot must be stronger than the quantum dot-quantum dot interaction to avoid 3D aggregation and that these organization strongly modified the photoluminescence of the film rather than intrinsic changes of the quantum dot induced by pure surface chemistry. PMID:18792763

  18. Sized controlled synthesis, purification, and cell studies with silicon quantum dots.

    PubMed

    Shiohara, Amane; Prabakar, Sujay; Faramus, Angelique; Hsu, Chia-Yen; Lai, Ping-Shan; Northcote, Peter T; Tilley, Richard D

    2011-08-01

    This article describes the size control synthesis of silicon quantum dots with simple microemulsion techniques. The silicon nanocrystals are small enough to be in the strong confinement regime and photoluminesce in the blue region of the visible spectrum and the emission can be tuned by changing the nanocrystal size. The silicon quantum dots were capped with allylamine either a platinum catalyst or UV-radiation. An extensive purification protocol is reported and assessed using (1)H NMR to produce ultra pure silicon quantum dots suitable for biological studies. The highly pure quantum dots were used in cellular uptake experiments and monitored using confocal microscopy. The results showed that the amine terminated silicon nanocrystals accumulated in lysosome but not in nuclei and could be used as bio-markers to monitor cancer cells over long timescales. PMID:21727983

  19. Sized controlled synthesis, purification, and cell studies with silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Shiohara, Amane; Prabakar, Sujay; Faramus, Angelique; Hsu, Chia-Yen; Lai, Ping-Shan; Northcote, Peter T.; Tilley, Richard D.

    2011-08-01

    This article describes the size control synthesis of silicon quantum dots with simple microemulsion techniques. The silicon nanocrystals are small enough to be in the strong confinement regime and photoluminesce in the blue region of the visible spectrum and the emission can be tuned by changing the nanocrystal size. The silicon quantum dots were capped with allylamine either a platinum catalyst or UV-radiation. An extensive purification protocol is reported and assessed using 1H NMR to produce ultra pure silicon quantum dots suitable for biological studies. The highly pure quantum dots were used in cellular uptake experiments and monitored using confocal microscopy. The results showed that the amine terminated silicon nanocrystals accumulated in lysosome but not in nuclei and could be used as bio-markers to monitor cancer cells over long timescales.This article describes the size control synthesis of silicon quantum dots with simple microemulsion techniques. The silicon nanocrystals are small enough to be in the strong confinement regime and photoluminesce in the blue region of the visible spectrum and the emission can be tuned by changing the nanocrystal size. The silicon quantum dots were capped with allylamine either a platinum catalyst or UV-radiation. An extensive purification protocol is reported and assessed using 1H NMR to produce ultra pure silicon quantum dots suitable for biological studies. The highly pure quantum dots were used in cellular uptake experiments and monitored using confocal microscopy. The results showed that the amine terminated silicon nanocrystals accumulated in lysosome but not in nuclei and could be used as bio-markers to monitor cancer cells over long timescales. Electronic supplementary information (ESI) available. See DOI: 10.1039/c1nr10458f

  20. Electrochemical Study and Applications of Selective Electrodeposition of Silver on Quantum Dots.

    PubMed

    Martín-Yerga, Daniel; Rama, Estefanía Costa; Costa-García, Agustín

    2016-04-01

    In this work, selective electrodeposition of silver on quantum dots is described. The particular characteristics of the nanostructured silver thus obtained are studied by electrochemical and microscopic techniques. On one hand, quantum dots were found to catalyze the silver electrodeposition, and on the other hand, a strong adsorption between electrodeposited silver and quantum dots was observed, indicated by two silver stripping processes. Nucleation of silver nanoparticles followed different mechanisms depending on the surface (carbon or quantum dots). Voltammetric and confocal microscopy studies showed the great influence of electrodeposition time on surface coating, and high-resolution transmission electron microscopy (HRTEM) imaging confirmed the initial formation of Janus-like Ag@QD nanoparticles in this process. By use of moderate electrodeposition conditions such as 50 μM silver, -0.1 V, and 60 s, the silver was deposited only on quantum dots, allowing the generation of localized nanostructured electrode surfaces. This methodology can also be employed for sensing applications, showing a promising ultrasensitive electrochemical method for quantum dot detection. PMID:26910270

  1. Time Dependent Study of Multiple Exciton Generation in Nanocrystal Quantum Dots

    NASA Astrophysics Data System (ADS)

    Damtie, Fikeraddis A.; Wacker, Andreas

    2016-03-01

    We study the exciton dynamics in an optically excited nanocrystal quantum dot. Multiple exciton formation is more efficient in nanocrystal quantum dots compared to bulk semiconductors due to enhanced Coulomb interactions and the absence of conservation of momentum. The formation of multiple excitons is dependent on different excitation parameters and the dissipation. We study this process within a Lindblad quantum rate equation using the full many-particle states. We optically excite the system by creating a single high energy exciton ESX in resonance to a double exciton EDX. With Coulomb electron-electron interaction, the population can be transferred from the single exciton to the double exciton state by impact ionisation (inverse Auger process). The ratio between the recombination processes and the absorbed photons provide the yield of the structure. We observe a quantum yield of comparable value to experiment assuming typical experimental conditions for a 4 nm PbS quantum dot.

  2. Lateral Quantum Dots for Quantum Information Processing

    NASA Astrophysics Data System (ADS)

    House, Matthew Gregory

    The possibility of building a computer that takes advantage of the most subtle nature of quantum physics has been driving a lot of research in atomic and solid state physics for some time. It is still not clear what physical system or systems can be used for this purpose. One possibility that has been attracting significant attention from researchers is to use the spin state of an electron confined in a semiconductor quantum dot. The electron spin is magnetic in nature, so it naturally is well isolated from electrical fluctuations that can a loss of quantum coherence. It can also be manipulated electrically, by taking advantage of the exchange interaction. In this work we describe several experiments we have done to study the electron spin properties of lateral quantum dots. We have developed lateral quantum dot devices based on the silicon metal-oxide-semiconductor transistor, and studied the physics of electrons confined in these quantum dots. We measured the electron spin excited state lifetime, which was found to be as long as 30 ms at the lowest magnetic fields that we could measure. We fabricated and characterized a silicon double quantum dot. Using this double quantum dot design, we fabricated devices which combined a silicon double quantum dot with a superconducting microwave resonator. The microwave resonator was found to be sensitive to two-dimensional electrons in the transistor channel, which we measured and characterized. We developed a new method for extracting information from random telegraph signals, which are produced when we observe thermal fluctuations of electrons in quantum dots. The new statistical method, based on the hidden Markov model, allows us to detect spin-dependent effects in such fluctuations even though we are not able to directly observe the electron spin. We use this analysis technique on data from two experiments involving gallium arsenide quantum dots and use it to measure spin-dependent tunneling rates. Our results advance the

  3. Transport through graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Güttinger, J.; Molitor, F.; Stampfer, C.; Schnez, S.; Jacobsen, A.; Dröscher, S.; Ihn, T.; Ensslin, K.

    2012-12-01

    We review transport experiments on graphene quantum dots and narrow graphene constrictions. In a quantum dot, electrons are confined in all lateral dimensions, offering the possibility for detailed investigation and controlled manipulation of individual quantum systems. The recently isolated two-dimensional carbon allotrope graphene is an interesting host to study quantum phenomena, due to its novel electronic properties and the expected weak interaction of the electron spin with the material. Graphene quantum dots are fabricated by etching mono-layer flakes into small islands (diameter 60-350 nm) with narrow connections to contacts (width 20-75 nm), serving as tunneling barriers for transport spectroscopy. Electron confinement in graphene quantum dots is observed by measuring Coulomb blockade and transport through excited states, a manifestation of quantum confinement. Measurements in a magnetic field perpendicular to the sample plane allowed to identify the regime with only a few charge carriers in the dot (electron-hole transition), and the crossover to the formation of the graphene specific zero-energy Landau level at high fields. After rotation of the sample into parallel magnetic field orientation, Zeeman spin splitting with a g-factor of g ≈ 2 is measured. The filling sequence of subsequent spin states is similar to what was found in GaAs and related to the non-negligible influence of exchange interactions among the electrons.

  4. Ab Initio study of multiple exciton generation in layered structure quantum dots

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyong; Zimmerman, Paul; Cui, Yi; Musgrave, Charles

    2011-03-01

    Multiple Exciton Generation (MEG) can potentially increase the photovoltaic conversion efficiency significantly and has been reported in a large number of systems and has been extensively studies theoretically and experimentally. Here we report our study of the MEG process in inorganic layered structure quantum dots using high level Ab Initio methods that are capable of electronic states of multi-exciton in character. Our results show that multiple states that are of multi-exciton character exist in quantum dots and different mechanisms govern the MEG process in quantum dots: (1) MEG through an internal crossing mechanism from a optically active state to an optically dark multi-exciton state, as in the singlet fission process of pentacene; and (2) direct multi-exciton generation through an optically active excited state. We also discuss detailed structure evolution of quantum dots, from stable molecular like structures of various shapes and sizes, to larger quantum dots of bulk like bonding motifs with distinctive surface structures and illustrate the correlation between structure and the multi-exciton states.

  5. Study of polycation-capped Mn:ZnSe quantum dots as a novel fluorescent probe for living cells.

    PubMed

    Pan, Xiaobo; Li, Zheng; Wang, Tianlong; Xie, Jin; Wang, Pei-Nan; Chen, Ji-Yao; Chen, Li; Mi, Lan

    2014-05-01

    Transition metal manganese ion (Mn(2+)) doped zinc selenide quantum dots (Mn:ZnSe D-Dots) have been considered as a new material for fluorescent probes in biological labeling. However, this application is limited by the low membrane permeability of D-Dots. In this work, Mn:ZnSe D-Dots were capped with the polycation Sofast to label living cells. For the first time, the efficiency of cellular uptake in living cells is significantly enhanced. Various molar ratios of Sofast to D-Dots were explored and compared to obtain the optimal reaction conditions between Sofast and D-Dots for preparing Sofast/D-Dots nano-compound. A comparison on the fluorescence labeling ability of living cells were made between Sofast/D-Dots and pure D-Dots. Results from laser scanning confocal microscope show that Sofast/D-Dots complexes enter the cells more efficiently than pure D-Dots, even with a lower concentration and shorter incubation time. The cytotoxicities of D-Dots and Sofast/D-Dots were also studied. It was found that Sofast/D-Dots have a much lower cytotoxicity than cadmium-containing quantum dots (i.e. CdTe and CdTe/ZnS). Our results suggest that the non-heavy-metal-containing Sofast/D-Dots complexes have a great potential in the application of biological labeling, especially of long-time bioimaging in living cells. PMID:24488596

  6. An integrated study on antimicrobial activity and ecotoxicity of quantum dots and quantum dots coated with the antimicrobial peptide indolicidin.

    PubMed

    Galdiero, Emilia; Siciliano, Antonietta; Maselli, Valeria; Gesuele, Renato; Guida, Marco; Fulgione, Domenico; Galdiero, Stefania; Lombardi, Lucia; Falanga, Annarita

    2016-01-01

    This study attempts to evaluate the antimicrobial activity and the ecotoxicity of quantum dots (QDs) alone and coated with indolicidin. To meet this objective, we tested the level of antimicrobial activity on Gram-positive and Gram-negative bacteria, and we designed an ecotoxicological battery of test systems and indicators able to detect different effects using a variety of end points. The antibacterial activity was analyzed against Staphylococcus aureus (ATCC 6538), Pseudomonas aeruginosa (ATCC 1025), Escherichia coli (ATCC 11229), and Klebsiella pneumoniae (ATCC 10031), and the results showed an improved germicidal action of QDs-Ind. Toxicity studies on Daphnia magna indicated a decrease in toxicity for QDs-Ind compared to QDs alone, lack of bioluminescence inhibition on Vibrio fisheri, and no mutations in Salmonella typhimurium TA 100. The comet assay and oxidative stress experiments performed on D. magna showed a genotoxic and an oxidative damage with a dose-response trend. Indolicidin retained its activity when bound to QDs. We observed an enhanced activity for QDs-Ind. The presence of indolicidin on the surface of QDs was able to decrease its QDs toxicity. PMID:27616887

  7. An integrated study on antimicrobial activity and ecotoxicity of quantum dots and quantum dots coated with the antimicrobial peptide indolicidin

    PubMed Central

    Galdiero, Emilia; Siciliano, Antonietta; Maselli, Valeria; Gesuele, Renato; Guida, Marco; Fulgione, Domenico; Galdiero, Stefania; Lombardi, Lucia; Falanga, Annarita

    2016-01-01

    This study attempts to evaluate the antimicrobial activity and the ecotoxicity of quantum dots (QDs) alone and coated with indolicidin. To meet this objective, we tested the level of antimicrobial activity on Gram-positive and Gram-negative bacteria, and we designed an ecotoxicological battery of test systems and indicators able to detect different effects using a variety of end points. The antibacterial activity was analyzed against Staphylococcus aureus (ATCC 6538), Pseudomonas aeruginosa (ATCC 1025), Escherichia coli (ATCC 11229), and Klebsiella pneumoniae (ATCC 10031), and the results showed an improved germicidal action of QDs-Ind. Toxicity studies on Daphnia magna indicated a decrease in toxicity for QDs-Ind compared to QDs alone, lack of bioluminescence inhibition on Vibrio fisheri, and no mutations in Salmonella typhimurium TA 100. The comet assay and oxidative stress experiments performed on D. magna showed a genotoxic and an oxidative damage with a dose–response trend. Indolicidin retained its activity when bound to QDs. We observed an enhanced activity for QDs-Ind. The presence of indolicidin on the surface of QDs was able to decrease its QDs toxicity. PMID:27616887

  8. Synthetic Developments of Nontoxic Quantum Dots.

    PubMed

    Das, Adita; Snee, Preston T

    2016-03-01

    Semiconductor nanocrystals, or quantum dots (QDs), are candidates for biological sensing, photovoltaics, and catalysis due to their unique photophysical properties. The most studied QDs are composed of heavy metals like cadmium and lead. However, this engenders concerns over heavy metal toxicity. To address this issue, numerous studies have explored the development of nontoxic (or more accurately less toxic) quantum dots. In this Review, we select three major classes of nontoxic quantum dots composed of carbon, silicon and Group I-III-VI elements and discuss the myriad of synthetic strategies and surface modification methods to synthesize quantum dots composed of these material systems. PMID:26548450

  9. Quantum dots: a new tool for studying quantum phase transitions (QPT)

    NASA Astrophysics Data System (ADS)

    Roch, N.; Florens, S.; Bouchiat, V.; Wernsdorfer, W.; Balestro, F.

    2009-03-01

    QPT were studied in many different systems: spin chains, strongly correlated materials, high Tc superconductors, etc. but all the properties (magnetism, superconductivity ...) of these materials can be difficult to control. On the other hand, thanks to microelectronic technologies, it is now possible to obtain taylor-made quantum dots in which all the interactions can be tuned finely. It was then proposed by several theoretic papers [1] to use them as model systems for probing QPT. In this experimental work, we observed a screening/non screening QPT transition in a single-molecule transistor. We will present a full study as a function of magnetic field, bias voltage and temperature [2].[3pt] [1] M.Vojta, Philosophical Magazine,86:13,1807 - 1846 (2006)[0pt] [2] N.Roch et al. , Nature 453, 633-637 (2008)

  10. Single to quadruple quantum dots with tunable tunnel couplings

    SciTech Connect

    Takakura, T.; Noiri, A.; Obata, T.; Yoneda, J.; Yoshida, K.; Otsuka, T.; Tarucha, S.

    2014-03-17

    We prepare a gate-defined quadruple quantum dot to study the gate-tunability of single to quadruple quantum dots with finite inter-dot tunnel couplings. The measured charging energies of various double dots suggest that the dot size is governed by the gate geometry. For the triple and quadruple dots, we study the gate-tunable inter-dot tunnel couplings. For the triple dot, we find that the effective tunnel coupling between side dots significantly depends on the alignment of the center dot potential. These results imply that the present quadruple dot has a gate performance relevant for implementing spin-based four-qubits with controllable exchange couplings.

  11. Quantum dot device tunable from single to triple dot system

    SciTech Connect

    Rogge, M. C.; Haug, R. J.; Pierz, K.

    2013-12-04

    We present a lateral quantum dot device which has a tunable number of quantum dots. Depending on easily tunable gate voltages, one, two or three quantum dots are found. They are investigated in transport and charge detection.

  12. Comparison studies of infrared photodetectors with a quantum-dot and a quantum-wire base

    NASA Astrophysics Data System (ADS)

    El Tokhy, M. S.; Mahmoud, I. I.; Konber, H. A.

    2011-12-01

    This paper mainly presents a theoretical analysis for the characteristics of quantum dot infrared photodetectors (QDIPs) and quantum wire infrared photodetectors (QRIPs). The paper introduces a unique mathematical model of solving Poisson's equations with the usage of Lambert W functions for infrared detectors' structures based on quantum effects. Even though QRIPs and QDIPs have been the subject of extensive researches and development during the past decade, it is still essential to implement theoretical models allowing to estimate the ultimate performance of those detectors such as photocurrent and its figure-of-merit detectivity vs. various parameter conditions such as applied voltage, number of quantum wire layers, quantum dot layers, lateral characteristic size, doping density, operation temperature, and structural parameters of the quantum dots (QDs), and quantum wires (QRs). A comparison is made between the computed results of the implemented models and fine agreements are observed. It is concluded from the obtained results that the total detectivity of QDIPs can be significantly lower than that in the QRIPs and main features of the QRIPs such as large gap between the induced photocurrent and dark current of QRIP which allows for overcoming the problems in the QDIPs. This confirms what is evaluated before in the literature. It is evident that by increasing the QD/QR absorption volume in QDIPs/QRIPs as well as by separating the dark current and photocurrents, the specific detectivity can be improved and consequently the devices can operate at higher temperatures. It is an interesting result and it may be benefit to the development of QDIP and QRIP for infrared sensing applications.

  13. PREFACE: Quantum Dot 2010

    NASA Astrophysics Data System (ADS)

    Taylor, Robert A.

    2010-09-01

    These conference proceedings contain the written papers of the contributions presented at Quantum Dot 2010 (QD2010). The conference was held in Nottingham, UK, on 26-30 April 2010. The conference addressed topics in research on: 1. Epitaxial quantum dots (including self-assembled and interface structures, dots defined by electrostatic gates etc): optical properties and electron transport quantum coherence effects spin phenomena optics of dots in cavities interaction with surface plasmons in metal/semiconductor structures opto-electronics applications 2. Novel QD structures: fabrication and physics of graphene dots, dots in nano-wires etc 3. Colloidal quantum dots: growth (shape control and hybrid nanocrystals such as metal/semiconductor, magnetic/semiconductor) assembly and surface functionalisation optical properties and spin dynamics electrical and magnetic properties applications (light emitting devices and solar cells, biological and medical applications, data storage, assemblers) The Editors Acknowledgements Conference Organising Committee: Maurice Skolnick (Chair) Alexander Tartakovskii (Programme Chair) Pavlos Lagoudakis (Programme Chair) Max Migliorato (Conference Secretary) Paola Borri (Publicity) Robert Taylor (Proceedings) Manus Hayne (Treasurer) Ray Murray (Sponsorship) Mohamed Henini (Local Organiser) International Advisory Committee: Yasuhiko Arakawa (Tokyo University, Japan) Manfred Bayer (Dortmund University, Germany) Sergey Gaponenko (Stepanov Institute of Physics, Minsk, Belarus) Pawel Hawrylak (NRC, Ottawa, Canada) Fritz Henneberger (Institute for Physics, Berlin, Germany) Atac Imamoglu (ETH, Zurich, Switzerland) Paul Koenraad (TU Eindhoven, Nethehrlands) Guglielmo Lanzani (Politecnico di Milano, Italy) Jungil Lee (Korea Institute of Science and Technology, Korea) Henri Mariette (CNRS-CEA, Grenoble, France) Lu Jeu Sham (San Diego, USA) Andrew Shields (Toshiba Research Europe, Cambridge, UK) Yoshihisa Yamamoto (Stanford University, USA) Artur

  14. Electrochromic nanocrystal quantum dots.

    PubMed

    Wang, C; Shim, M; Guyot-Sionnest, P

    2001-03-23

    Incorporating nanocrystals into future electronic or optoelectronic devices will require a means of controlling charge-injection processes and an understanding of how the injected charges affect the properties of nanocrystals. We show that the optical properties of colloidal semiconductor nanocrystal quantum dots can be tuned by an electrochemical potential. The injection of electrons into the quantum-confined states of the nanocrystal leads to an electrochromic response, including a strong, size-tunable, midinfrared absorption corresponding to an intraband transition, a bleach of the visible interband exciton transitions, and a quench of the narrow band-edge photoluminescence. PMID:11264530

  15. In vivo study of immunogenicity and kinetic characteristics of a quantum dot-labelled baculovirus.

    PubMed

    Wang, Meng; Zheng, Zhenhua; Meng, Jin; Wang, Han; He, Man; Zhang, Fuxian; Liu, Yan; Hu, Bin; He, Zike; Hu, Qinxue; Wang, Hanzhong

    2015-09-01

    Nanomaterials conjugated with biomacromolecules, including viruses, have great potential for in vivo applications. Therefore, it is important to evaluate the safety of nanoparticle-conjugated macromolecule biomaterials (Nano-mbio). Although a number of studies have assessed the risks of nanoparticles and macromolecule biomaterials in living bodies, only a few of them investigated Nano-mbios. Here we evaluated the in vivo safety profile of a quantum dot-conjugated baculovirus (Bq), a promising new Nano-mbio, in mice. Each animal was injected twice intraperitoneally with 50 μg virus protein labelled with around 3*10(-5)nmol conjugated qds. Control animals were injected with PBS, quantum dots, baculovirus, or a mixture of quantum dots and baculovirus. Blood, tissues and body weight were analysed at a series of time points following both the first and the second injections. It turned out that the appearance and behaviour of the mice injected with Bq were similar to those injected with baculovirus alone. However, combination of baculovirus and quantum dot (conjugated or simply mixed) significantly induced stronger adaptive immune responses, and lead to a faster accumulation and longer existence of Cd in the kidneys. Thus, despite the fact that both quantum dot and baculovirus have been claimed to be safe in vivo, applications of Bq in vivo should be cautious. To our knowledge, this is the first study examining the interaction between a nanoparticle-conjugated virus and a living body from a safety perspective, providing a basis for in vivo application of other Nano-mbios. PMID:26117660

  16. A quantum dot in topological insulator nanofilm.

    PubMed

    Herath, Thakshila M; Hewageegana, Prabath; Apalkov, Vadym

    2014-03-19

    We introduce a quantum dot in topological insulator nanofilm as a bump at the surface of the nanofilm. Such a quantum dot can localize an electron if the size of the dot is large enough, ≳5 nm. The quantum dot in topological insulator nanofilm has states of two types, which belong to two ('conduction' and 'valence') bands of the topological insulator nanofilm. We study the energy spectra of such defined quantum dots. We also consider intraband and interband optical transitions within the dot. The optical transitions of the two types have the same selection rules. While the interband absorption spectra have multi-peak structure, each of the intraband spectra has one strong peak and a few weak high frequency satellites. PMID:24590177

  17. (In,Mn)As multilayer quantum dot structures

    SciTech Connect

    Bouravleuv, Alexei; Sapega, Victor; Nevedomskii, Vladimir; Khrebtov, Artem; Samsonenko, Yuriy; Cirlin, George

    2014-12-08

    (In,Mn)As multilayer quantum dots structures were grown by molecular beam epitaxy using a Mn selective doping of the central parts of quantum dots. The study of the structural and magneto-optical properties of the samples with three and five layers of (In,Mn)As quantum dots has shown that during the quantum dots assembly, the out-diffusion of Mn from the layers with (In,Mn)As quantum dots can occur resulting in the formation of the extended defects. To produce a high quality structures using the elaborated technique of selective doping, the number of (In,Mn)As quantum dot layers should not exceed three.

  18. Optically active quantum dots

    NASA Astrophysics Data System (ADS)

    Gerard, Valerie; Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii K.

    2015-10-01

    The main goal of our research is to develop new types of technologically important optically active quantum dot (QD) based materials, study their properties and explore their biological applications. For the first time chiral II-VI QDs have been prepared by us using microwave induced heating with the racemic (Rac), D- and L-enantiomeric forms of penicillamine as stabilisers. Circular dichroism (CD) studies of these QDs have shown that D- and L-penicillamine stabilised particles produced mirror image CD spectra, while the particles prepared with a Rac mixture showed only a weak signal. It was also demonstrated that these QDs show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. These QDs have demonstrated highly specific chiral recognition of various biological species including aminoacids. The utilisation of chiral stabilisers also allowed the preparation of new water soluble white emitting CdS nano-tetrapods, which demonstrated circular dichroism in the band-edge region of the spectrum. Biological testing of chiral CdS nanotetrapods displayed a chiral bias for an uptake of the D- penicillamine stabilised nano-tetrapods by cancer cells. It is expected that this research will open new horizons in the chemistry of chiral nanomaterials and their application in nanobiotechnology, medicine and optical chemo- and bio-sensing.

  19. Toxicological studies of semiconductor quantum dots on immune cells.

    SciTech Connect

    Ricken, James Bryce; Rios, Lynette; Poschet, Jens Fredrich; Bachand, Marlene; Bachand, George David; Greene, Adrienne Celeste; Carroll-Portillo, Amanda

    2008-11-01

    Nanoengineered materials hold a vast promise of enabling revolutionary technologies, but also pose an emerging and potentially serious threat to human and environmental health. While there is increasing knowledge concerning the risks posed by engineered nanomaterials, significant inconsistencies exist within the current data based on the high degree of variability in the materials (e.g., synthesis method, coatings, etc) and biological test systems (e.g., cell lines, whole organism, etc). In this project, we evaluated the uptake and response of two immune cell lines (RAW macrophage and RBL mast cells) to nanocrystal quantum dots (Qdots) with different sizes and surface chemistries, and at different concentrations. The basic experimental design followed a 2 x 2 x 3 factorial model: two Qdot sizes (Qdot 520 and 620), two surface chemistries (amine 'NH{sub 2}' and carboxylic acid 'COOH'), and three concentrations (0, 1 nM, and 1 {micro}M). Based on this design, the following Qdots from Evident Technologies were used for all experiments: Qdot 520-COOH, Qdot 520-NH{sub 2}, Qdot 620-COOH, and Qdot 620-NH{sub 2}. Fluorescence and confocal imaging demonstrated that Qdot 620-COOH and Qdot 620-NH{sub 2} nanoparticles had a greater level of internalization and cell membrane association in RAW and RBL cells, respectively. From these data, a two-way interaction between Qdot size and concentration was observed in relation to the level of cellular uptake in RAW cells, and association with RBL cell membranes. Toxicity of both RBL and RAW cells was also significantly dependent on the interaction of Qdot size and concentration; the 1 {micro}M concentrations of the larger, Qdot 620 nanoparticles induced a greater toxic effect on both cell lines. The RBL data also demonstrate that Qdot exposure can induce significant toxicity independent of cellular uptake. A significant increase in TNF-{alpha} and decrease in IL-10 release was observed in RAW cells, and suggested that Qdot exposure

  20. Use of quantum dot-conjugated antibodies to study intracellular cancer biomarkers in living and fixed cells

    NASA Astrophysics Data System (ADS)

    Ling, Jian

    2008-02-01

    Quantum dots have unique properties for long-term immunofluorescence imaging of molecular activities inside living cells. The key is how to deliver the quantum dot-conjugated antibodies into cells and further allow the antibodies freely move inside cells to bind target molecules. This study investigated the feasibility of using Pep-1, a cell penetration protein, to facilitate the internalization of quantum dot-conjugated antibodies for the labeling of two intracellular cervical cancer biomarkers: p16 and Mcm5. Quantum dots were directly conjugated with the antibodies to p16 and Mcm5 and, they were able to stain fixed cells and to differentiate biomarker positive and negative cells. The non-covalent binding between the conjugates and Pep-1 peptides allows the quick internalization of the quantum dot-conjugated antibodies into living cells. The internalized conjugates were concentrated in the perinuclear regions of the biomarker-positive HeLa cells. In the biomarker negative Um-Uc-3 cells, however, the conjugates concentrated in juxtaneclear region. Cells bearing with quantum dots still go through the mitosis process. Although the study indicates many questions need to be answered and many problems need to be solved, the use of cell penetration peptide is a promising method for the intracellular labeling of living cell molecules using quantum dots.

  1. A theoretical and experimental study of λ>2 μm luminescence of quantum dots on InP substrate

    NASA Astrophysics Data System (ADS)

    Doré, F.; Even, J.; Cornet, C.; Schliwa, A.; Bertru, N.; Dehaese, O.; Alghoraibi, I.; Folliot, H.; Piron, R.; Le Corre, A.; Loualiche, S.

    2007-04-01

    Theoretical and experimental studies of the electronic properties of InAs(Sb) quantum dots (QDs) grown by molecular beam epitaxy (MBE) on InP(100) substrate are presented. Eight-band kṡp calculations including strain and piezoelectric effects are performed on InAs/InP(100) quantum dot (QD) structure to study the influence of the quantum dot height. Photoluminescence (PL) spectroscopy experiments show promising results. High arsine flow rate during the growth of InAs QDs makes possible long emission wavelength beyond 2 μm. Emission wavelength as long as 2.35 μm is observed with InAsSb QDs.

  2. Designing quantum dots for solotronics

    PubMed Central

    Kobak, J.; Smoleński, T.; Goryca, M.; Papaj, M.; Gietka, K.; Bogucki, A.; Koperski, M.; Rousset, J.-G.; Suffczyński, J.; Janik, E.; Nawrocki, M.; Golnik, A.; Kossacki, P.; Pacuski, W.

    2014-01-01

    Solotronics, optoelectronics based on solitary dopants, is an emerging field of research and technology reaching the ultimate limit of miniaturization. It aims at exploiting quantum properties of individual ions or defects embedded in a semiconductor matrix. It has already been shown that optical control of a magnetic ion spin is feasible using the carriers confined in a quantum dot. However, a serious obstacle was the quenching of the exciton luminescence by magnetic impurities. Here we show, by photoluminescence studies on thus-far-unexplored individual CdTe dots with a single cobalt ion and CdSe dots with a single manganese ion, that even if energetically allowed, nonradiative exciton recombination through single-magnetic-ion intra-ionic transitions is negligible in such zero-dimensional structures. This opens solotronics for a wide range of as yet unconsidered systems. On the basis of results of our single-spin relaxation experiments and on the material trends, we identify optimal magnetic-ion quantum dot systems for implementation of a single-ion-based spin memory. PMID:24463946

  3. The theoretical studies of topology electronic states in HgTe Hall Bar and Quantum Dot

    NASA Astrophysics Data System (ADS)

    Qu, Jin-Xian; Zhang, Shu-Hui; Yang, Wen

    In recent years, there is an extensive attention on the new properties of topology materials and their potential applications. Our interest is on the physics in the quantum confined systems based on topology materials. To consider two such systems, i.e., quantum dot and Hall bar constructed on the HgTe quantum well, we study the electronic properties and their dependence on various material parameters with and without an in-plane electric field. For both systems, we find that 1) the exotic edge states appear in bulk energy gap, resulting from the non-trivial topological property of quantum well system. 2) by the magnetic doping, there are tunable phase transitions, e.g., transition from trivial insulating phase to topological insulating phase or anomalous quantum Hall insulating phase. 3) the in-plane electric field can introduce effective control on the electronic states.

  4. The surface termination effect on the quantum confinement and electron affinities of 3C-SiC quantum dots: a first-principles study

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenkui; Dai, Ying; Yu, Lin; Guo, Meng; Huang, Baibiao; Whangbo, Myung-Hwan

    2012-02-01

    In light of the established differences between the quantum confinement effect and the electron affinities between hydrogen-passivated C and Si quantum dots, we carried out theoretical investigations on SiC quantum dots, with surfaces uniformly terminated by C-H or Si-H bonds, to explore the role of surface terminations on these two aspects. Surprisingly, it was found that the quantum confinement effect is present (or absent) in the highest occupied (or lowest unoccupied) molecular orbital of the SiC quantum dots regardless of their surface terminations. Thus, the quantum confinement effect related to the energy gap observed experimentally (Phys. Rev. Lett., 2005, 94, 026102) is contributed to by the size-dependence of the highest occupied states; the absence of quantum confinement in the lowest unoccupied states is in contrary to the usual belief based on hydrogen-passivated C quantum dots. However, the cause of the absence of the quantum confinement in C nanodots is not transferable to SiC. We propose a model that provides a clear explanation for all findings on the basis of the nearest-neighbor and next-nearest-neighbor interactions between the valence atomic p-orbital in the frontier occupied/unoccupied states. We also found that the electron affinities of the SiC quantum dots, which closely depend on the surface environments, are negative for the C-H termination and positive for the Si-H termination. The prediction of negative electron affinities in SiC quantum dots by simple C-H termination indicates a promising application for these materials in electron-emitter devices. Our model predicts that GeC quantum dots with hydrogen passivation exhibit similar features to SiC quantum dots and our study confirms the crucial role that the surface environment plays in these nanoscale systems.In light of the established differences between the quantum confinement effect and the electron affinities between hydrogen-passivated C and Si quantum dots, we carried out

  5. CdTe and CdSe Quantum Dots Cytotoxicity: A Comparative Study on Microorganisms

    PubMed Central

    Gomes, Suzete A.O.; Vieira, Cecilia Stahl; Almeida, Diogo B.; Santos-Mallet, Jacenir R.; Menna-Barreto, Rubem F. S.; Cesar, Carlos L.; Feder, Denise

    2011-01-01

    Quantum dots (QDs) are colloidal semiconductor nanocrystals of a few nanometers in diameter, being their size and shape controlled during the synthesis. They are synthesized from atoms of group II–VI or III–V of the periodic table, such as cadmium telluride (CdTe) or cadmium selenium (CdSe) forming nanoparticles with fluorescent characteristics superior to current fluorophores. The excellent optical characteristics of quantum dots make them applied widely in the field of life sciences. Cellular uptake of QDs, location and translocation as well as any biological consequence, such as cytotoxicity, stimulated a lot of scientific research in this area. Several studies pointed to the cytotoxic effect against micoorganisms. In this mini-review, we overviewed the synthesis and optical properties of QDs, and its advantages and bioapplications in the studies about microorganisms such as protozoa, bacteria, fungi and virus. PMID:22247686

  6. Controlled Population Transfer in a Double Quantum Dot System

    SciTech Connect

    Fountoulakis, Antonios; Terzis, Andreas F.; Paspalakis, Emmanuel

    2007-12-26

    We study the potential for controlled population transfer between the ground states of two anharmonic coupled quantum dots. We propose a method based on the interaction of the quantum dot structure with external electromagnetic fields. The interaction of the quantum dot system with the electromagnetic fields is studied with the use of the time-dependent Schroedinger equation. We present numerical results for an asymmetric quantum dot structure.

  7. A mirage study of CdSe colloidal quantum dot films, Urbach tail, and surface states

    NASA Astrophysics Data System (ADS)

    Guyot-Sionnest, Philippe; Lhuillier, Emmanuel; Liu, Heng

    2012-10-01

    Thermal deflection spectroscopy allows to measure very small absorption and uncovers absorption tails extending well below the bulk bandgap energy for CdSe quantum dots films after ligand exchange by sulfide. In this monodispersed system, the redshift, the broadening, and the absorption tails cannot be solely attributed to electronic coupling between the dots. Instead, mixing of hole states from the quantum dot and surface is proposed to dominate the changes of the interband spectra at the absorption edge.

  8. A mirage study of CdSe colloidal quantum dot films, Urbach tail, and surface states.

    PubMed

    Guyot-Sionnest, Philippe; Lhuillier, Emmanuel; Liu, Heng

    2012-10-21

    Thermal deflection spectroscopy allows to measure very small absorption and uncovers absorption tails extending well below the bulk bandgap energy for CdSe quantum dots films after ligand exchange by sulfide. In this monodispersed system, the redshift, the broadening, and the absorption tails cannot be solely attributed to electronic coupling between the dots. Instead, mixing of hole states from the quantum dot and surface is proposed to dominate the changes of the interband spectra at the absorption edge. PMID:23083181

  9. Quantum phase transition in trigonal triple quantum dots: The case of quantum dots deviated from particle-hole symmetric point

    NASA Astrophysics Data System (ADS)

    Kim, Song-Hyok; Kang, Chol-Jin; Kim, Yon-Il; Kim, Kwang-Hyon

    2015-05-01

    We consider a triple quantum dot system in a triangular geometry with one of the dots connected to metallic leads. We investigate quantum phase transition between local moment phase and Kondo screened strong coupling phase in triple quantum dots where energy levels of dots are deviated from the particle-hole symmetric point. The effect of on-site energy of dots on quantum phase transition between local moment phase and Kondo screened strong coupling phase in triple quantum dots is studied based on the analytical arguments and the numerical renormalization group method. The results show that the critical value of tunnel coupling between side dots decreases when the energy level of embedded dot rises up from the symmetric point to the Fermi level and the critical value increases when the energy levels of two side dots rise up. The study of the influence of on-site-energy changes on the quantum phase transitions in triple quantum dots has the importance for clarifying the mechanism of Kondo screening in triple quantum dots where energy levels of dots are deviated from the particle-hole symmetric point.

  10. Studying nanotoxic effects of CdTe quantum dots in Trypanosoma cruzi

    NASA Astrophysics Data System (ADS)

    Stahl, C. V.; Almeida, D. B.; de Thomaz, A. A.; Fontes, A.; Menna-Barreto, R. F. S.; Santos-Mallet, J. R.; Cesar, C. L.; Gomes, S. A. O.; Feder, D.

    2010-02-01

    Many studies have been done in order to verify the possible nanotoxicity of quantum dots in some cellular types. Protozoan pathogens as Trypanosoma cruzi, etiologic agent of Chagas1 disease is transmitted to humans either by blood-sucking triatomine vectors, blood transfusion, organs transplantation or congenital transmission. The study of the life cycle, biochemical, genetics, morphology and others aspects of the T. cruzi is very important to better understand the interactions with its hosts and the disease evolution on humans. Quantum dot, nanocrystals, highly luminescent has been used as tool for experiments in in vitro and in vivo T. cruzi life cycle development in real time. We are now investigating the quantum dots toxicity on T. cruzi parasite cells using analytical methods. In vitro experiments were been done in order to test the interference of this nanoparticle on parasite development, morphology and viability (live-death). Ours previous results demonstrated that 72 hours after parasite incubation with 200 μM of CdTe altered the development of T. cruzi and induced cell death by necrosis in a rate of 34%. QDs labeling did not effect: (i) on parasite integrity, at least until 7 days; (ii) parasite cell dividing and (iii) parasite motility at a concentration of 2 μM CdTe. This fact confirms the low level of cytotoxicity of these QDs on this parasite cell. In summary our results is showing T. cruzi QDs labeling could be used for in vivo cellular studies in Chagas disease.

  11. Quantitative multiplexed quantum dot immunohistochemistry

    SciTech Connect

    Sweeney, E.; Ward, T.H.; Gray, N.; Womack, C.; Jayson, G.; Hughes, A.; Dive, C.; Byers, R.

    2008-09-19

    Quantum dots are photostable fluorescent semiconductor nanocrystals possessing wide excitation and bright narrow, symmetrical, emission spectra. These characteristics have engendered considerable interest in their application in multiplex immunohistochemistry for biomarker quantification and co-localisation in clinical samples. Robust quantitation allows biomarker validation, and there is growing need for multiplex staining due to limited quantity of clinical samples. Most reported multiplexed quantum dot staining used sequential methods that are laborious and impractical in a high-throughput setting. Problems associated with sequential multiplex staining have been investigated and a method developed using QDs conjugated to biotinylated primary antibodies, enabling simultaneous multiplex staining with three antibodies. CD34, Cytokeratin 18 and cleaved Caspase 3 were triplexed in tonsillar tissue using an 8 h protocol, each localised to separate cellular compartments. This demonstrates utility of the method for biomarker measurement enabling rapid measurement of multiple co-localised biomarkers on single paraffin tissue sections, of importance for clinical trial studies.

  12. Comparison of quantum confinement effects between quantum wires and dots

    SciTech Connect

    Li, Jingbo; Wang, Lin-Wang

    2004-03-30

    Dimensionality is an important factor to govern the electronic structures of semiconductor nanocrystals. The quantum confinement energies in one-dimensional quantum wires and zero-dimensional quantum dots are quite different. Using large-scale first-principles calculations, we systematically study the electronic structures of semiconductor (including group IV, III-V, and II-VI) surface-passivated quantum wires and dots. The band-gap energies of quantum wires and dots have the same scaling with diameter for a given material. The ratio of band-gap-increases between quantum wires and dots is material-dependent, and slightly deviates from 0.586 predicted by effective-mass approximation. Highly linear polarization of photoluminescence in quantum wires is found. The degree of polarization decreases with the increasing temperature and size.

  13. Synthesis of Luminescent Graphene Quantum Dots with High Quantum Yield and Their Toxicity Study

    PubMed Central

    Jiang, Dan; Chen, Yunping; Li, Na; Li, Wen; Wang, Zhenguo; Zhu, Jingli; Zhang, Hong; Liu, Bin; Xu, Shan

    2015-01-01

    High fluorescence quantum yield graphene quantum dots (GQDs) have showed up as a new generation for bioimaging. In this work, luminescent GQDs were prepared by an ameliorative photo-Fenton reaction and a subsequent hydrothermal process using graphene oxide sheets as the precursor. The as-prepared GQDs were nanomaterials with size ranging from 2.3 to 6.4 nm and emitted intense green luminescence in water. The fluorescence quantum yield was as high as 24.6% (excited at 340 nm) and the fluorescence was strongest at pH 7. Moreover, the influences of low-concentration (12.5, 25 μg/mL) GQDs on the morphology, viability, membrane integrity, internal cellular reactive oxygen species level and mortality of HeLa cells were relatively weak, and the in vitro imaging demonstrated GQDs were mainly in the cytoplasm region. More strikingly, zebrafish embryos were co-cultured with GQDs for in vivo imaging, and the results of heart rate test showed the intake of small amounts of GQDs brought little harm to the cardiovascular of zebrafish. GQDs with high quantum yield and strong photoluminescence show good biocompatibility, thus they show good promising for cell imaging, biolabeling and other biomedical applications. PMID:26709828

  14. Spatially resolved photoluminescence spectroscopy of quantum dots

    NASA Astrophysics Data System (ADS)

    Dybiec, Maciej

    Recent advancements in nanotechnology create a need for a better understanding of the underlying physical processes that lead to the different behavior of nanoscale structures in comparison to bulk materials. The influence of the surrounding environment on the physical and optical properties of nanoscale objects embedded inside them is of particular interest. This research is focused on the optical properties of semiconductor quantum dots which are zero-dimensional nanostructures. There are many investigation techniques for measuring the local parameters and structural characteristics of Quantum Dot structures. They include X-ray diffraction, Transmission Electron Microscopy, Wavelength Dispersive Spectroscopy, etc. However, none of these is suitable for the study of large areas of quantum dots matrices and substrates. The existence of spatial inhomogeneity in the quantum dots allows for a deeper and better understanding of underlying physical processes responsible in particular for the observed changes in photoluminescence (PL) characteristics. Spectroscopic PL mapping can reveal areas of improved laser performance of InAs - InGaAs quantum dots structures. Establishing physical mechanisms responsible for two different types of spatial PL inhomogeneity in InAs/InGaAs quantum dots structures for laser applications was the first objective of this research. Most of the bio-applications of semiconductor quantum dots utilize their superior optical properties over organic fluorophores. Therefore, optimization of QD labeling performance with biomolecule attachment was another focus of this research. Semiconductor quantum dots suspended in liquids were investigated, especially the influence of surrounding molecules that may be attached or bio-conjugated to the quantum dots for specific use in biological reactions on the photoluminescence spectrum. Provision of underlying physical mechanisms of optical property instability of CdSe/ZnS quantum dots used for biological

  15. Quantum dots: Rethinking the electronics

    NASA Astrophysics Data System (ADS)

    Bishnoi, Dimple

    2016-05-01

    In this paper, we demonstrate theoretically that the Quantum dots are quite interesting for the electronics industry. Semiconductor quantum dots (QDs) are nanometer-scale crystals, which have unique photo physical, quantum electrical properties, size-dependent optical properties, There small size means that electrons do not have to travel as far as with larger particles, thus electronic devices can operate faster. Cheaper than modern commercial solar cells while making use of a wider variety of photon energies, including "waste heat" from the sun's energy. Quantum dots can be used in tandem cells, which are multi junction photovoltaic cells or in the intermediate band setup. PbSe (lead selenide) is commonly used in quantum dot solar cells.

  16. Entangled exciton states in quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Bayer, Manfred

    2002-03-01

    Currently there is strong interest in quantum information processing(See, for example, The Physics of Quantum Information, eds. D. Bouwmeester, A. Ekert and A. Zeilinger (Springer, Berlin, 2000).) in a solid state environment. Many approaches mimic atomic physics concepts in which semiconductor quantum dots are implemented as artificial atoms. An essential building block of a quantum processor is a gate which entangles the states of two quantum bits. Recently a pair of vertically aligned quantum dots has been suggested as optically driven quantum gate(P. Hawrylak, S. Fafard, and Z. R. Wasilewski, Cond. Matter News 7, 16 (1999).)(M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z.R. Wasilewski, O. Stern, and A. Forchel, Science 291, 451 (2001).): The quantum bits are individual carriers either on dot zero or dot one. The different dot indices play the same role as a "spin", therefore we call them "isospin". Quantum mechanical tunneling between the dots rotates the isospin and leads to superposition of these states. The quantum gate is built when two different particles, an electron and a hole, are created optically. The two particles form entangled isospin states. Here we present spectrocsopic studies of single self-assembled InAs/GaAs quantum dot molecules that support the feasibility of this proposal. The evolution of the excitonic recombination spectrum with varying separation between the dots allows us to demonstrate coherent tunneling of carriers across the separating barrier and the formation of entangled exciton states: Due to the coupling between the dots the exciton states show a splitting that increases with decreasing barrier width. For barrier widths below 5 nm it exceeds the thermal energy at room temperature. For a given barrier width, we find only small variations of the tunneling induced splitting demonstrating a good homogeneity within a molecule ensemble. The entanglement may be controlled by application of electromagnetic field. For

  17. Chiral quantum dot based materials

    NASA Astrophysics Data System (ADS)

    Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii

    2014-05-01

    Recently, the use of stereospecific chiral stabilising molecules has also opened another avenue of interest in the area of quantum dot (QD) research. The main goal of our research is to develop new types of technologically important quantum dot materials containing chiral defects, study their properties and explore their applications. The utilisation of chiral penicillamine stabilisers allowed the preparation of new water soluble white emitting CdS quantum nanostructures which demonstrated circular dichroism in the band-edge region of the spectrum. It was also demonstrated that all three types of QDs (D-, L-, and Rac penicillamine stabilised) show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. In this work the chiral CdS based quantum nanostructures have also been doped by copper metal ions and new chiral penicilamine stabilized CuS nanoparticles have been prepared and investigated. It was found that copper doping had a strong effect at low levels in the synthesis of chiral CdS nanostructures. We expect that this research will open new horizons in the chemistry of chiral nanomaterials and their application in biotechnology, sensing and asymmetric synthesis.

  18. Study of heterostructures with a combined In(Ga)As/GaAs quantum dot/quantum well layer and a Mn δ layer

    SciTech Connect

    Pavlova, E. D. Gorshkov, A. P.; Bobrov, A. I.; Malekhonova, N. V.; Zvonkov, B. N.

    2013-12-15

    Using high-resolution transmission electron microscopy and photoelectric spectroscopy methods, the effect of Mn δ layer embedding and GaAs coating layer growth techniques in structures with In(Ga)As/GaAs quantum dots and wells on their structural and optoelectronic characteristics is studied. It is shown that the low-temperature GaAs coating layer in a structure with a Mn δ layer is structurally inhomogeneous and can cause a decrease in the quantum-dot photosensitivity.

  19. Quantum Dots Investigated for Solar Cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Castro, Stephanie L.; Raffaelle, Ryne P.; Hepp, Aloysius F.

    2001-01-01

    The NASA Glenn Research Center has been investigating the synthesis of quantum dots of CdSe and CuInS2 for use in intermediate-bandgap solar cells. Using quantum dots in a solar cell to create an intermediate band will allow the harvesting of a much larger portion of the available solar spectrum. Theoretical studies predict a potential efficiency of 63.2 percent, which is approximately a factor of 2 better than any state-of-the-art devices available today. This technology is also applicable to thin-film devices--where it offers a potential four-fold increase in power-to-weight ratio over the state of the art. Intermediate-bandgap solar cells require that quantum dots be sandwiched in an intrinsic region between the photovoltaic solar cell's ordinary p- and n-type regions (see the preceding figure). The quantum dots form the intermediate band of discrete states that allow sub-bandgap energies to be absorbed. However, when the current is extracted, it is limited by the bandgap, not the individual photon energies. The energy states of the quantum dot can be controlled by controlling the size of the dot. Ironically, the ground-state energy levels are inversely proportional to the size of the quantum dots. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Ba Wendi et al., in the early 1990's. The most studied quantum dots prepared by this method have been of CdSe. To produce these dots, researchers inject a syringe of the desired organometallic precursors into heated triocytlphosphine oxide (TOPO) that has been vigorously stirred under an inert atmosphere (see the following figure). The solution immediately begins to change from colorless to yellow, then orange and red/brown, as the quantum dots increase in size. When the desired size is reached, the heat is removed from the flask. Quantum dots of different sizes can be identified by placing them under a "black light" and observing the various color differences in

  20. Theoretical and experimental studies of (In,Ga)As/GaP quantum dots

    PubMed Central

    2012-01-01

    (In,Ga)As/GaP(001) quantum dots (QDs) are grown by molecular beam epitaxy and studied both theoretically and experimentally. The electronic band structure is simulated using a combination of k·p and tight-binding models. These calculations predict an indirect to direct crossover with the In content and the size of the QDs. The optical properties are then studied in a low-In-content range through photoluminescence and time-resolved photoluminescence experiments. It suggests the proximity of two optical transitions of indirect and direct types. PMID:23176537

  1. Optical properties of quantum-dot-doped liquid scintillators

    PubMed Central

    Aberle, C.; Li, J.J.; Weiss, S.; Winslow, L.

    2014-01-01

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO. PMID:25392711

  2. First-principle study of quantum confinement effect on small sized silicon quantum dots using density-functional theory

    SciTech Connect

    Anas, M. M.; Othman, A. P.; Gopir, G.

    2014-09-03

    Density functional theory (DFT), as a first-principle approach has successfully been implemented to study nanoscale material. Here, DFT by numerical basis-set was used to study the quantum confinement effect as well as electronic properties of silicon quantum dots (Si-QDs) in ground state condition. Selection of quantum dot models were studied intensively before choosing the right structure for simulation. Next, the computational result were used to examine and deduce the electronic properties and its density of state (DOS) for 14 spherical Si-QDs ranging in size up to ∼ 2 nm in diameter. The energy gap was also deduced from the HOMO-LUMO results. The atomistic model of each silicon QDs was constructed by repeating its crystal unit cell of face-centered cubic (FCC) structure, and reconstructed until the spherical shape obtained. The core structure shows tetrahedral (T{sub d}) symmetry structure. It was found that the model need to be passivated, and hence it was noticed that the confinement effect was more pronounced. The model was optimized using Quasi-Newton method for each size of Si-QDs to get relaxed structure before it was simulated. In this model the exchange-correlation potential (V{sub xc}) of the electrons was treated by Local Density Approximation (LDA) functional and Perdew-Zunger (PZ) functional.

  3. Quantum Dots in Gated Nanowires and Nanotubes

    NASA Astrophysics Data System (ADS)

    Churchill, Hugh Olen Hill

    This thesis describes experiments on quantum dots made by locally gating one-dimensional quantum wires. The first experiment studies a double quantum dot device formed in a Ge/Si core/shell nanowire. In addition to measuring transport through the double dot, we detect changes in the charge occupancy of the double dot by capacitively coupling it to a third quantum dot on a separate nanowire using a floating gate. We demonstrate tunable tunnel coupling of the double dot and quantify the strength of the tunneling using the charge sensor. The second set of experiments concerns carbon nanotube double quantum dots. In the first nanotube experiment, spin-dependent transport through the double dot is compared in two sets of devices. The first set is made with carbon containing the natural abundance of 12C (99%) and 13C (1%), the second set with the 99% 13C and 1% 12C. In the devices with predominantly 13C, we find evidence in spin-dependent transport of the interaction between the electron spins and the 13C nuclear spins that was much stronger than expected and not present in the 12C devices. In the second nanotube experiment, pulsed gate experiments are used to measure the timescales of spin relaxation and dephasing in a two-electron double quantum dot. The relaxation time is longest at zero magnetic field and goes through a minimum at higher field, consistent with the spin-orbit-modified electronic spectrum of carbon nanotubes. We measure a short dephasing time consistent with the anomalously strong electron-nuclear interaction inferred from the first nanotube experiment.

  4. Photoluminescence Study of Interdot Carrier Transfer on Strain-relaxed InAs Quantum Dots

    SciTech Connect

    Chiang, Chen-Hao; Chang, You-Cheng; Hsieh, Meng-Chien; Yang, Cheng-Hong; Wang, Jia-Feng; Chen, Jenn-Fang; Wu, Yue-Han; Chang, Li

    2011-12-23

    Photoluminescence (PL) properties of the strain relaxed InAs quantum dots (QDs) are studied as a function of temperature from 10 to 300 K. Two groups of QDs induced by strain relaxation are observed in the PL spectra. The PL peak position of the relaxed (non-relaxed) QDs locates at a higher (lower) energy. TEM image prove QDs are distributed into two groups and indicate the QDs relax the strain by diffusing indium to GaAs. In the 120-200 K temperature range, there are abnormal temperature behaviors attributed to the carrier transfer from the relaxed to non-relaxed QDs.

  5. Grazing-incidence small-angle X-ray scattering: application to the study of quantum dot lattices

    SciTech Connect

    Buljan, Maja Radić, Nikola; Bernstorff, Sigrid; Dražić, Goran; Bogdanović-Radović, Iva; Holý, Václav

    2012-01-01

    The modelling of grazing-incidence small-angle X-ray scattering (GISAXS) from three-dimensional quantum dot lattices is described. The ordering of quantum dots in three-dimensional quantum dot lattices is investigated by grazing-incidence small-angle X-ray scattering (GISAXS). Theoretical models describing GISAXS intensity distributions for three general classes of lattices of quantum dots are proposed. The classes differ in the type of disorder of the positions of the quantum dots. The models enable full structure determination, including lattice type, lattice parameters, the type and degree of disorder in the quantum dot positions and the distributions of the quantum dot sizes. Applications of the developed models are demonstrated using experimentally measured data from several types of quantum dot lattices formed by a self-assembly process.

  6. Non-Markovian full counting statistics in quantum dot molecules

    PubMed Central

    Xue, Hai-Bin; Jiao, Hu-Jun; Liang, Jiu-Qing; Liu, Wu-Ming

    2015-01-01

    Full counting statistics of electron transport is a powerful diagnostic tool for probing the nature of quantum transport beyond what is obtainable from the average current or conductance measurement alone. In particular, the non-Markovian dynamics of quantum dot molecule plays an important role in the nonequilibrium electron tunneling processes. It is thus necessary to understand the non-Markovian full counting statistics in a quantum dot molecule. Here we study the non-Markovian full counting statistics in two typical quantum dot molecules, namely, serially coupled and side-coupled double quantum dots with high quantum coherence in a certain parameter regime. We demonstrate that the non-Markovian effect manifests itself through the quantum coherence of the quantum dot molecule system, and has a significant impact on the full counting statistics in the high quantum-coherent quantum dot molecule system, which depends on the coupling of the quantum dot molecule system with the source and drain electrodes. The results indicated that the influence of the non-Markovian effect on the full counting statistics of electron transport, which should be considered in a high quantum-coherent quantum dot molecule system, can provide a better understanding of electron transport through quantum dot molecules. PMID:25752245

  7. Strain-induced vertical self-organization of semiconductor quantum dots: A computational study

    SciTech Connect

    Shtinkov, N.

    2013-12-28

    Atomistic strain simulations based on the valence force field method are employed to study the vertical arrangements of semiconductor quantum dot (QD) multilayers. The effects of the QD shape, dimensions, and materials parameters are systematically investigated, varying independently the following parameters: spacer width H, QD lateral spacing D, base b, and height h, slope of the side facets, elastic properties of the dot and the substrate materials, and lattice mismatch between the dot and the substrate. The transition between vertically aligned and anti-aligned structures is found to be determined mainly by the ratios H/D and b/D, as well as by the strain anisotropy of the substrate and to a lesser extent of the QD. The dependence on the QD height h is significant only for steep side facets and large aspect ratios h/b, and the effects of the lattice mismatch strain and the bulk elastic moduli are found to be negligible. The comparison with experimental data shows an excellent agreement with the results from the simulations, demonstrating that the presented analysis results in precise theoretical predictions for the vertical self-organization regime in a wide range of QD materials systems.

  8. Comparative study of donor-induced quantum dots in Si nano-channels by single-electron transport characterization and Kelvin probe force microscopy

    SciTech Connect

    Tyszka, K.; Moraru, D.; Samanta, A.; Mizuno, T.; Tabe, M.; Jabłoński, R.

    2015-06-28

    We comparatively study donor-induced quantum dots in Si nanoscale-channel transistors for a wide range of doping concentration by analysis of single-electron tunneling transport and surface potential measured by Kelvin probe force microscopy (KPFM). By correlating KPFM observations of donor-induced potential landscapes with simulations based on Thomas-Fermi approximation, it is demonstrated that single-electron tunneling transport at lowest gate voltages (for smallest coverage of screening electrons) is governed most frequently by only one dominant quantum dot, regardless of doping concentration. Doping concentration, however, primarily affects the internal structure of the quantum dot. At low concentrations, individual donors form most of the quantum dots, i.e., “donor-atom” quantum dots. In contrast, at high concentrations above metal-insulator transition, closely placed donors instead of individual donors form more complex quantum dots, i.e., “donor-cluster” quantum dots. The potential depth of these “donor-cluster” quantum dots is significantly reduced by increasing gate voltage (increasing coverage of screening electrons), leading to the occurrence of multiple competing quantum dots.

  9. Quantum efficiency of a double quantum dot microwave photon detector

    NASA Astrophysics Data System (ADS)

    Wong, Clement; Vavilov, Maxim

    Motivated by recent interest in implementing circuit quantum electrodynamics with semiconducting quantum dots, we study charge transfer through a double quantum dot (DQD) capacitively coupled to a superconducting cavity subject to a microwave field. We analyze the DQD current response using input-output theory and determine the optimal parameter regime for complete absorption of radiation and efficient conversion of microwave photons to electric current. For experimentally available DQD systems, we show that the cavity-coupled DQD operates as a photon-to-charge converter with quantum efficiencies up to 80% C.W. acknowledges support by the Intelligence Community Postdoctoral Research Fellowship Program.

  10. Optical properties of charged semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Jha, Praket P.

    The effect of n-type doping on the luminescence properties of II-VI quantum dots is studied. The addition of two shells of CdS on CdSe quantum dots prevents the creation of surface traps and makes the system stable under reducing environment. The injection of electrons into films of quantum dots leads to lower photoluminescence (PL) efficiency, with the extent of quenching dependent on both the number and the quantum states of the spectator charges in the nanocrystal. It is found that a 1Pe electron is an eightfold better PL quencher than the 1Se electron. Reduced threshold for stimulated emission is also observed in doped CdSe/CdS films. Time resolved photoluminescence measurements are used to extract the recombination rates of a charged exciton, called trion. It is observed that the negative trion has a radiative rate ˜2.2 +/- 0.4x faster than a neutral exciton, while its non-radiative recombination rate is slower than the biexciton non-radiative recombination rate by a factor of 7.5 +/- 1.7. The knowledge of the recombination rates of the trion enables us to calculate the quantum yield of a negative trion to be ˜10% for the nanocrystals investigated in our work. This is larger than the off state quantum yield from a single quantum dot photoluminescence trajectory and eliminates the formation of negative trion as the possible reason for the PL blinking of single quantum dots. Single quantum dot electrochemistry has also been achieved. It is shown that by varying the Fermi level of the system electrons can be reversibly injected into and extracted out of single CdSe/CdS and CdSe/ZnS nanoparticles to modulate the photoluminescence.

  11. Multiplexed and quantitative study of biomarker expression in tumor specimens using quantum dots

    NASA Astrophysics Data System (ADS)

    Wu, Aileen; True, Lawrence; Gao, Xiaohu

    2006-02-01

    When conjugated with targeting molecules, quantum dots (QD) can be used as powerful cancer diagnostic tools providing the molecular profiles of cancer cases based on common clinical biopsies. Such personalized analyses will enable doctors to treat and manage the patients' diseases more effectively. The unique optical properties (e.g., size-tunable emission, simultaneous excitation, high brightness and photostability) of these nanoparticles make them superior to conventionally popular organic fluorophores 1-2. Polymer-encapsulated, antibody-tagged QDs were prepared and used to successfully stain both fixed and live cells as well as clinical formalin-fixed paraffin-embedded (FFPE) tissue sections. In the tissue staining study, QD bioconjugates targeting mutated p53 and early growth response protein (egr-1) were used to examine prostate cancer tissues. The tissue slides were then analyzed with a wavelength-resolved spectrometer to accurately quantify the protein expression levels. In comparison to traditional qualitatively based diagnostic procedures, quantum dot nanotechnology allows for a more quantitative, rigorous and objective analysis of tissue specimens in question. In addition, new developments in imaging instrumentation could automate spectroscopy measurements and data analysis.

  12. Quantum dot quantum cascade infrared photodetector

    NASA Astrophysics Data System (ADS)

    Wang, Xue-Jiao; Zhai, Shen-Qiang; Zhuo, Ning; Liu, Jun-Qi; Liu, Feng-Qi; Liu, Shu-Man; Wang, Zhan-Guo

    2014-04-01

    We demonstrate an InAs quantum dot quantum cascade infrared photodetector operating at room temperature with a peak detection wavelength of 4.3 μm. The detector shows sensitive photoresponse for normal-incidence light, which is attributed to an intraband transition of the quantum dots and the following transfer of excited electrons on a cascade of quantum levels. The InAs quantum dots for the infrared absorption were formed by making use of self-assembled quantum dots in the Stranski-Krastanov growth mode and two-step strain-compensation design based on InAs/GaAs/InGaAs/InAlAs heterostructure, while the following extraction quantum stairs formed by LO-phonon energy are based on a strain-compensated InGaAs/InAlAs chirped superlattice. Johnson noise limited detectivities of 3.64 × 1011 and 4.83 × 106 Jones at zero bias were obtained at 80 K and room temperature, respectively. Due to the low dark current and distinct photoresponse up to room temperature, this device can form high temperature imaging.

  13. Quantum dot quantum cascade infrared photodetector

    SciTech Connect

    Wang, Xue-Jiao; Zhai, Shen-Qiang; Zhuo, Ning; Liu, Jun-Qi E-mail: fqliu@semi.ac.cn; Liu, Feng-Qi E-mail: fqliu@semi.ac.cn; Liu, Shu-Man; Wang, Zhan-Guo

    2014-04-28

    We demonstrate an InAs quantum dot quantum cascade infrared photodetector operating at room temperature with a peak detection wavelength of 4.3 μm. The detector shows sensitive photoresponse for normal-incidence light, which is attributed to an intraband transition of the quantum dots and the following transfer of excited electrons on a cascade of quantum levels. The InAs quantum dots for the infrared absorption were formed by making use of self-assembled quantum dots in the Stranski–Krastanov growth mode and two-step strain-compensation design based on InAs/GaAs/InGaAs/InAlAs heterostructure, while the following extraction quantum stairs formed by LO-phonon energy are based on a strain-compensated InGaAs/InAlAs chirped superlattice. Johnson noise limited detectivities of 3.64 × 10{sup 11} and 4.83 × 10{sup 6} Jones at zero bias were obtained at 80 K and room temperature, respectively. Due to the low dark current and distinct photoresponse up to room temperature, this device can form high temperature imaging.

  14. Chiral Graphene Quantum Dots.

    PubMed

    Suzuki, Nozomu; Wang, Yichun; Elvati, Paolo; Qu, Zhi-Bei; Kim, Kyoungwon; Jiang, Shuang; Baumeister, Elizabeth; Lee, Jaewook; Yeom, Bongjun; Bahng, Joong Hwan; Lee, Jaebeom; Violi, Angela; Kotov, Nicholas A

    2016-02-23

    Chiral nanostructures from metals and semiconductors attract wide interest as components for polarization-enabled optoelectronic devices. Similarly to other fields of nanotechnology, graphene-based materials can greatly enrich physical and chemical phenomena associated with optical and electronic properties of chiral nanostructures and facilitate their applications in biology as well as other areas. Here, we report that covalent attachment of l/d-cysteine moieties to the edges of graphene quantum dots (GQDs) leads to their helical buckling due to chiral interactions at the "crowded" edges. Circular dichroism (CD) spectra of the GQDs revealed bands at ca. 210-220 and 250-265 nm that changed their signs for different chirality of the cysteine edge ligands. The high-energy chiroptical peaks at 210-220 nm correspond to the hybridized molecular orbitals involving the chiral center of amino acids and atoms of graphene edges. Diverse experimental and modeling data, including density functional theory calculations of CD spectra with probabilistic distribution of GQD isomers, indicate that the band at 250-265 nm originates from the three-dimensional twisting of the graphene sheet and can be attributed to the chiral excitonic transitions. The positive and negative low-energy CD bands correspond to the left and right helicity of GQDs, respectively. Exposure of liver HepG2 cells to L/D-GQDs reveals their general biocompatibility and a noticeable difference in the toxicity of the stereoisomers. Molecular dynamics simulations demonstrated that d-GQDs have a stronger tendency to accumulate within the cellular membrane than L-GQDs. Emergence of nanoscale chirality in GQDs decorated with biomolecules is expected to be a general stereochemical phenomenon for flexible sheets of nanomaterials. PMID:26743467

  15. Quantum-dot-induced phase shift in a pillar microcavity

    SciTech Connect

    Young, A. B.; Hu, C. Y.; Rarity, J. G.; Oulton, R.; Thijssen, A. C. T.; Schneider, C.; Reitzenstein, S.; Kamp, M.; Hoefling, S.; Worschech, L.; Forchel, A.

    2011-07-15

    We perform high-resolution reflection spectroscopy of a quantum dot resonantly coupled to a pillar microcavity. We show the change in reflectivity as the quantum dot is tuned through the cavity resonance and measure the quantum-dot-induced phase shift using an ultrastable interferometer. The macroscopic phase shift we measure could be extended to the study of charged quantum dot pillar microcavity systems, where it could be exploited to realize a high-efficiency spin photon interface for hybrid quantum information schemes.

  16. Reconfigurable quadruple quantum dots in a silicon nanowire transistor

    NASA Astrophysics Data System (ADS)

    Betz, A. C.; Tagliaferri, M. L. V.; Vinet, M.; Broström, M.; Sanquer, M.; Ferguson, A. J.; Gonzalez-Zalba, M. F.

    2016-05-01

    We present a reconfigurable metal-oxide-semiconductor multi-gate transistor that can host a quadruple quantum dot in silicon. The device consists of an industrial quadruple-gate silicon nanowire field-effect transistor. Exploiting the corner effect, we study the versatility of the structure in the single quantum dot and the serial double quantum dot regimes and extract the relevant capacitance parameters. We address the fabrication variability of the quadruple-gate approach which, paired with improved silicon fabrication techniques, makes the corner state quantum dot approach a promising candidate for a scalable quantum information architecture.

  17. Low Threshold Quantum Dot Lasers.

    PubMed

    Iyer, Veena Hariharan; Mahadevu, Rekha; Pandey, Anshu

    2016-04-01

    Semiconductor quantum dots have replaced conventional inorganic phosphors in numerous applications. Despite their overall successes as emitters, their impact as laser materials has been severely limited. Eliciting stimulated emission from quantum dots requires excitation by intense short pulses of light typically generated using other lasers. In this Letter, we develop a new class of quantum dots that exhibit gain under conditions of extremely low levels of continuous wave illumination. We observe thresholds as low as 74 mW/cm(2) in lasers made from these materials. Due to their strong optical absorption as well as low lasing threshold, these materials could possibly convert light from diffuse, polychromatic sources into a laser beam. PMID:26978011

  18. Grazing-incidence small-angle X-ray scattering: application to the study of quantum dot lattices

    PubMed Central

    Buljan, Maja; Radić, Nikola; Bernstorff, Sigrid; Dražić, Goran; Bogdanović-Radović, Iva; Holý, Václav

    2012-01-01

    The ordering of quantum dots in three-dimensional quantum dot lattices is investigated by grazing-incidence small-angle X-ray scattering (GISAXS). Theoretical models describing GISAXS intensity distributions for three general classes of lattices of quantum dots are proposed. The classes differ in the type of disorder of the positions of the quantum dots. The models enable full structure determination, including lattice type, lattice parameters, the type and degree of disorder in the quantum dot positions and the distributions of the quantum dot sizes. Applications of the developed models are demonstrated using experimentally measured data from several types of quantum dot lattices formed by a self-assembly process. PMID:22186289

  19. A colloidal quantum dot spectrometer

    NASA Astrophysics Data System (ADS)

    Bao, Jie; Bawendi, Moungi G.

    2015-07-01

    Spectroscopy is carried out in almost every field of science, whenever light interacts with matter. Although sophisticated instruments with impressive performance characteristics are available, much effort continues to be invested in the development of miniaturized, cheap and easy-to-use systems. Current microspectrometer designs mostly use interference filters and interferometric optics that limit their photon efficiency, resolution and spectral range. Here we show that many of these limitations can be overcome by replacing interferometric optics with a two-dimensional absorptive filter array composed of colloidal quantum dots. Instead of measuring different bands of a spectrum individually after introducing temporal or spatial separations with gratings or interference-based narrowband filters, a colloidal quantum dot spectrometer measures a light spectrum based on the wavelength multiplexing principle: multiple spectral bands are encoded and detected simultaneously with one filter and one detector, respectively, with the array format allowing the process to be efficiently repeated many times using different filters with different encoding so that sufficient information is obtained to enable computational reconstruction of the target spectrum. We illustrate the performance of such a quantum dot microspectrometer, made from 195 different types of quantum dots with absorption features that cover a spectral range of 300 nanometres, by measuring shifts in spectral peak positions as small as one nanometre. Given this performance, demonstrable avenues for further improvement, the ease with which quantum dots can be processed and integrated, and their numerous finely tuneable bandgaps that cover a broad spectral range, we expect that quantum dot microspectrometers will be useful in applications where minimizing size, weight, cost and complexity of the spectrometer are critical.

  20. Quantum dots-nanogap metamaterials fabrication by self-assembly lithography and photoluminescence studies.

    PubMed

    Tripathi, Laxmi Narayan; Kang, Taehee; Bahk, Young-Mi; Han, Sanghoon; Choi, Geunchang; Rhie, Jiyeah; Jeong, Jeeyoon; Kim, Dai-Sik

    2015-06-01

    We present a new and versatile technique of self-assembly lithography to fabricate a large scale Cadmium selenide quantum dots-silver nanogap metamaterials. After optical and electron microscopic characterizations of the metamaterials, we performed spatially resolved photoluminescence transmission measurements. We obtained highly quenched photoluminescence spectra compared to those from bare quantum dots film. We then quantified the quenching in terms of an average photoluminescence enhancement factor. A finite difference time domain simulation was performed to understand the role of an electric field enhancement in the nanogap over this quenching. Finally, we interpreted the mechanism of the photoluminescence quenching and proposed fabrication method of new metamaterials using our technique. PMID:26072850

  1. Theoretical study of spin relaxation in a carbon nanotube quantum dot

    NASA Astrophysics Data System (ADS)

    Bezanson, Brian; Hu, Xuedong

    2008-03-01

    Carbon nanotubes offer an attractive environment for coherent spin manipulation due to the small population of nuclear spins and weak spin-orbit interaction. While a couple of specific spin relaxation mechanisms have been investigated theoretically[1][2], there is still no comprehensive study of spin lifetimes in carbon nanotubes. In the present study we calculate the spin decay rate for electrons in gate-defined quantum dots on carbon nanotubes due to the spin-orbit and electron-phonon interactions. More specifically, we explore effects of magnetic field strength and orientation, tube diameter and chirality, and confinement. [1] Y. G. Semenov, K. W. Kim, G. J. Iafrate, Phys. Rev. B 75, 045429 (2007) [2] K. M. Borysenko, Y. G. Semenov, K. W. Kim, J. M. Zavada, arXiv 0710.3382 (2007)

  2. Imaging ligand-gated ion channels with quantum dots

    NASA Astrophysics Data System (ADS)

    Tomlinson, I. D.; Orndorff, Rebecca L.; Gussin, Hélène; Mason, John N.; Blakely, Randy D.; Pepperberg, David R.; Rosenthal, Sandra J.

    2007-02-01

    In this paper we report two different methodologies for labeling ligand-gated receptors. The first of these builds upon our earlier work with serotonin conjugated quantum dots and our studies with pegilated quantum dots to reduce non specific binding. In this approach a pegilated derivative of muscimol was synthesized and attached via an amide linkage to quantum dots coated in an amphiphillic polymer derivative of poly acrylamide. These conjugates were used to image the GABA C receptor in oocytes. An alternative approach was used to image tissue sections to study nicotinic acetylcholine receptors in the neuro muscular junction with biotinylated Bungerotoxin and streptavidin coated quantum dots.

  3. In situ studies of transient photoconductivity in PbSe quantum dot solar cells

    NASA Astrophysics Data System (ADS)

    Gao, Jianbo; Koh, Weon-Kyu; Makarov, Nikolay; Pietryga, Jeffrey; Klimov, Victor

    2014-03-01

    PbSe quantum dot (QD) solar cells have attracted significant interest due to their band gap tunability, easy-processing and flexibility. Efficiencies have risen from 1% just a few years ago to nearly 9% today. Furthermore, the novel concept of multiple exciton generation (MEG) resulting from quantum confinement makes these materials scientifically interesting counterparts to bulk semiconductors. Recent observations of more than 100% external quantum efficiency in PbSe QD solar cells confirm direct relevance of MEG to practical photovoltaics. However, in order to take full advantage of this effect, one needs a better understanding of photogeneration dynamics and carrier transport in QD solar cells. In this talk, we discuss a new technique for in situ measurements of transient photoconductivity with fast response time (<50 ps) applied to study carrier transport and photogeneration dynamics in PbSe QD solar cells. These measurements complement traditional photoconductivity techniques such as time-resolved microwave conductivity and time-of-flight. Based on the analysis of temperature, excitation wavelength and electrical field dependence measurements, we derive parameters such as MEG efficiency, carrier lifetime, trap-free mobility and carrier emission rate from trap states.

  4. Electrical control of quantum dot spin qubits

    NASA Astrophysics Data System (ADS)

    Laird, Edward Alexander

    This thesis presents experiments exploring the interactions of electron spins with electric fields in devices of up to four quantum dots. These experiments are particularly motivated by the prospect of using electric fields to control spin qubits. A novel hyperfine effect on a single spin in a quantum dot is presented in Chapter 2. Fluctuations of the nuclear polarization allow single-spin resonance to be driven by an oscillating electric field. Spin resonance spectroscopy revealed a nuclear polarization built up inside the quantum dot device by driving the resonance. The evolution of two coupled spins is controlled by the combination of hyperfine interaction, which tends to cause spin dephasing, and exchange, which tends to prevent it. In Chapter 3, dephasing is studied in a device with tunable exchange, probing the crossover between exchange-dominated and hyperfine-dominated regimes. In agreement with theoretical predictions, oscillations of the spin conversion probability and saturation of dephasing are observed. Chapter 4 deals with a three-dot device, suggested as a potential qubit controlled entirely by exchange. Preparation and readout of the qubit state are demonstrated, together with one out of two coherent exchange operations needed for arbitrary manipulations. A new readout technique allowing rapid device measurement is described. In Chapter 5, an attempt to make a two-qubit gate using a four-dot device is presented. Although spin qubit operation has not yet been possible, the electrostatic interaction between pairs of dots was measured to be sufficient in principle for coherent qubit coupling.

  5. Synthesis and Characterization of Quantum Dots: A Case Study Using PbS

    ERIC Educational Resources Information Center

    Pan, Yi; Li, Yue Ru; Zhao, Yu; Akins, Daniel L.

    2015-01-01

    A research project for senior undergraduates of chemistry has been developed to introduce syntheses of a series of monodispersed semiconductor PbS quantum dots (QDs) and their characterization methodologies. In this paper, we report the preparation of monodispersed semiconductor PbS QDs with sizes smaller than the exciton Bohr radius using a…

  6. Study of the self-organization processes in lead sulfide quantum dots

    SciTech Connect

    Tarasov, S. A. Aleksandrova, O. A.; Maksimov, A. I.; Maraeva, E. V.; Matyushkin, L. B.; Men’kovich, E. A.; Moshnikov, V. A.; Musikhin, S. F.

    2014-12-15

    A procedure is described for the synthesis of nanoparticles based on lead chalcogenides. The procedure combines the synthesis of colloidal quantum dots (QDs) in aqueous solutions with simultaneous organization of the QDs into ordered arrays. The processes of the self-organization of QDs are analyzed at the nano- and microscopic levels by the photoluminescence method, atomic-force microscopy, and optical microscopy.

  7. Coherent control in quantum dot gain media using shaped pulses: a numerical study.

    PubMed

    Mishra, Akhilesh Kumar; Karni, Ouri; Eisenstein, Gadi

    2015-11-16

    We present a numerical study of coherent control in a room temperature InAs/InP quantum dot (QD) semiconductor optical amplifier (SOA) using shaped ultra-short pulses. Both the gain and absorption regimes were analyzed for pulses with central wavelengths lying on either side of the inhomogeneously broadened gain spectrum. The numerical experiments predict that in the gain regime the coherent interactions between a QD SOA and a pulse can be controlled by incorporating a quadratic spectral phase (QSP) in the pulse profile. The sequential interaction with the gain medium of different spectral components of the pulse results in either suppression or enhancement of the coherent signatures on the pulse profile depending upon their proximity to the gain spectrum peak. In the absorption regime, positive QSP induces a negative chirp that adds up to that of a two photon absorption induced Kerr-like effect resulting in pulse compression while negative QSP enhances dispersive broadening of the pulse. PMID:26698476

  8. Ambipolar quantum dots in intrinsic silicon

    SciTech Connect

    Betz, A. C. Gonzalez-Zalba, M. F.; Podd, G.; Ferguson, A. J.

    2014-10-13

    We electrically measure intrinsic silicon quantum dots with electrostatically defined tunnel barriers. The presence of both p- and n-type ohmic contacts enables the accumulation of either electrons or holes. Thus, we are able to study both transport regimes within the same device. We investigate the effect of the tunnel barriers and the electrostatically defined quantum dots. There is greater localisation of charge states under the tunnel barriers in the case of hole conduction, leading to higher charge noise in the p-type regime.

  9. Study of optical nonlinearity of CdSe and CdSe@ZnO core-shell quantum dots in nanosecond regime

    NASA Astrophysics Data System (ADS)

    Deepika; Dhar, Rakesh; Mohan, Devendra

    2015-12-01

    Thioglycolic acid capped cadmium selenide (CdSe) and CdSe@ZnO core-shell quantum dots have been synthesized in aqueous phase. The sample was characterized by UV-vis spectrophotometer, TEM and Z-scan technique. The nonlinear optical parameters viz. nonlinear absorption coefficient (β), nonlinear refractive index (n2) and third-order nonlinear susceptibilities (χ3) of quantum dots have been estimated using second harmonic of Nd:YAG laser. The study predicts that CdSe@ZnO quantum dots exhibits strong nonlinearity as compared to core CdSe quantum dots. The nonlinearity in quantum dots is attributed to the presence of resonant excitation and free optical processes. The presence of RSA in these nanoparticles makes them a potential material for the development of optical limiter.

  10. Optical Fiber Sensing Using Quantum Dots

    PubMed Central

    Jorge, Pedro; Martins, Manuel António; Trindade, Tito; Santos, José Luís; Farahi, Faramarz

    2007-01-01

    Recent advances in the application of semiconductor nanocrystals, or quantum dots, as biochemical sensors are reviewed. Quantum dots have unique optical properties that make them promising alternatives to traditional dyes in many luminescence based bioanalytical techniques. An overview of the more relevant progresses in the application of quantum dots as biochemical probes is addressed. Special focus will be given to configurations where the sensing dots are incorporated in solid membranes and immobilized in optical fibers or planar waveguide platforms.

  11. Gallium arsenide-based long-wavelength quantum dot lasers

    NASA Astrophysics Data System (ADS)

    Park, Gyoungwon

    2001-09-01

    GaAs-based long-wavelength quantum dot lasers have long been studied for applications to optical interconnects. The zero-dimensional confinement potential of quantum dots opens possibility of novel devices. Also, the quantum dot itself shows very interesting characteristics. This dissertation describes the development of GaAs-based 1.3 μm quantum dot lasers and the research on the unique characteristics of quantum dot ensemble. InGaAs quantum dots grown using molecular beam epitaxy in submonolayer deposition have extended wavelength around 1.3 μm and well resolved energy levels that can be described by three-dimensional harmonic oscillator model assuming parabolic confining potential. Lasing transitions from various InGaAs quantum dot energy levels are obtained from edge-emitting lasers. With optimized quantum dot active region and device structure, continuous-wave, room-temperature lasing operation around 1.3 μm is achieved with very low threshold current. Lateral confinement of carriers and photons in the cavity with AlxO y using wet-oxidation technique results in low waveguide loss, which lowers the threshold further. InGaAs quantum dot lasers have almost temperature- insensitive lasing threshold below ~200 K with very low threshold current density close to transparency current density. The rapid increase of threshold current along with temperature above ~200 K is due to thermal excitation of carriers into the higher energy levels and increase of non-radiative recombination. Quasi- equilibrium model for carrier dynamics shows that the optical gain of quantum dot ensemble is strongly temperature dependent, and that the separation between quantum dot energy levels plays an important role in the temperature dependence of the device characteristics. Several predictions of the model are compared with the experimental results. Lasing operation with less temperature-sensitivity is achieved from InAs quantum dot lasers with increased level separation.

  12. An experimental and theoretical mechanistic study of biexciton quantum yield enhancement in single quantum dots near gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Dey, Swayandipta; Zhou, Yadong; Tian, Xiangdong; Jenkins, Julie A.; Chen, Ou; Zou, Shengli; Zhao, Jing

    2015-04-01

    In this work, we systematically investigated the plasmonic effect on blinking, photon antibunching behavior and biexciton emission of single CdSe/CdS core/shell quantum dots (QDs) near gold nanoparticles (NPs) with a silica shell (Au@SiO2). In order to obtain a strong interaction between the plasmons and excitons, the Au@SiO2 NPs and CdSe/CdS QDs of appropriate sizes were chosen so that the plasmon resonance overlaps with the absorption and emission of the QDs. We observed that in the regime of a low excitation power, the photon antibunching and blinking properties of single QDs were modified significantly when the QDs were on the Au@SiO2 substrates compared to those on glass. Most significantly, second-order photon intensity correlation data show that the presence of plasmons increases the ratio of the biexciton quantum yield over the exciton quantum yield (QYBX/QYX). An electrodynamics model was developed to quantify the effect of plasmons on the lifetime, quantum yield, and emission intensity of the biexcitons for the QDs. Good agreement was obtained between the experimentally measured and calculated changes in QYBX/QYX due to Au@SiO2 NPs, showing the validity of the developed model. The theoretical studies also indicated that the relative position of the QDs to the Au NPs and the orientation of the electric field are important factors that regulate the emission properties of the excitons and biexcitons of QDs. The study suggests that the multiexciton emission efficiency in QD systems can be manipulated by employing properly designed plasmonic structures.In this work, we systematically investigated the plasmonic effect on blinking, photon antibunching behavior and biexciton emission of single CdSe/CdS core/shell quantum dots (QDs) near gold nanoparticles (NPs) with a silica shell (Au@SiO2). In order to obtain a strong interaction between the plasmons and excitons, the Au@SiO2 NPs and CdSe/CdS QDs of appropriate sizes were chosen so that the plasmon resonance

  13. Silicon quantum dots: fine-tuning to maturity

    NASA Astrophysics Data System (ADS)

    Morello, Andrea

    2015-12-01

    Quantum dots in semiconductor heterostructures provide one of the most flexible platforms for the study of quantum phenomena at the nanoscale. The surging interest in using quantum dots for quantum computation is forcing researchers to rethink fabrication and operation methods, to obtain highly tunable dots in spin-free host materials, such as silicon. Borselli and colleagues report in Nanotechnology the fabrication of a novel Si/SiGe double quantum dot device, which combines an ultra-low disorder Si/SiGe accumulation-mode heterostructure with a stack of overlapping control gates, ensuring tight confining potentials and exquisite tunability. This work signals the technological maturity of silicon quantum dots, and their readiness to be applied to challenging projects in quantum information science.

  14. An experimental and theoretical mechanistic study of biexciton quantum yield enhancement in single quantum dots near gold nanoparticles.

    PubMed

    Dey, Swayandipta; Zhou, Yadong; Tian, Xiangdong; Jenkins, Julie A; Chen, Ou; Zou, Shengli; Zhao, Jing

    2015-04-21

    In this work, we systematically investigated the plasmonic effect on blinking, photon antibunching behavior and biexciton emission of single CdSe/CdS core/shell quantum dots (QDs) near gold nanoparticles (NPs) with a silica shell (Au@SiO2). In order to obtain a strong interaction between the plasmons and excitons, the Au@SiO2 NPs and CdSe/CdS QDs of appropriate sizes were chosen so that the plasmon resonance overlaps with the absorption and emission of the QDs. We observed that in the regime of a low excitation power, the photon antibunching and blinking properties of single QDs were modified significantly when the QDs were on the Au@SiO2 substrates compared to those on glass. Most significantly, second-order photon intensity correlation data show that the presence of plasmons increases the ratio of the biexciton quantum yield over the exciton quantum yield (QYBX/QYX). An electrodynamics model was developed to quantify the effect of plasmons on the lifetime, quantum yield, and emission intensity of the biexcitons for the QDs. Good agreement was obtained between the experimentally measured and calculated changes in QYBX/QYX due to Au@SiO2 NPs, showing the validity of the developed model. The theoretical studies also indicated that the relative position of the QDs to the Au NPs and the orientation of the electric field are important factors that regulate the emission properties of the excitons and biexcitons of QDs. The study suggests that the multiexciton emission efficiency in QD systems can be manipulated by employing properly designed plasmonic structures. PMID:25806486

  15. Semiconductor double quantum dot micromaser.

    PubMed

    Liu, Y-Y; Stehlik, J; Eichler, C; Gullans, M J; Taylor, J M; Petta, J R

    2015-01-16

    The coherent generation of light, from masers to lasers, relies upon the specific structure of the individual emitters that lead to gain. Devices operating as lasers in the few-emitter limit provide opportunities for understanding quantum coherent phenomena, from terahertz sources to quantum communication. Here we demonstrate a maser that is driven by single-electron tunneling events. Semiconductor double quantum dots (DQDs) serve as a gain medium and are placed inside a high-quality factor microwave cavity. We verify maser action by comparing the statistics of the emitted microwave field above and below the maser threshold. PMID:25593187

  16. Brightness-equalized quantum dots

    NASA Astrophysics Data System (ADS)

    Lim, Sung Jun; Zahid, Mohammad U.; Le, Phuong; Ma, Liang; Entenberg, David; Harney, Allison S.; Condeelis, John; Smith, Andrew M.

    2015-10-01

    As molecular labels for cells and tissues, fluorescent probes have shaped our understanding of biological structures and processes. However, their capacity for quantitative analysis is limited because photon emission rates from multicolour fluorophores are dissimilar, unstable and often unpredictable, which obscures correlations between measured fluorescence and molecular concentration. Here we introduce a new class of light-emitting quantum dots with tunable and equalized fluorescence brightness across a broad range of colours. The key feature is independent tunability of emission wavelength, extinction coefficient and quantum yield through distinct structural domains in the nanocrystal. Precise tuning eliminates a 100-fold red-to-green brightness mismatch of size-tuned quantum dots at the ensemble and single-particle levels, which substantially improves quantitative imaging accuracy in biological tissue. We anticipate that these materials engineering principles will vastly expand the optical engineering landscape of fluorescent probes, facilitate quantitative multicolour imaging in living tissue and improve colour tuning in light-emitting devices.

  17. Brightness-equalized quantum dots

    PubMed Central

    Lim, Sung Jun; Zahid, Mohammad U.; Le, Phuong; Ma, Liang; Entenberg, David; Harney, Allison S.; Condeelis, John; Smith, Andrew M.

    2015-01-01

    As molecular labels for cells and tissues, fluorescent probes have shaped our understanding of biological structures and processes. However, their capacity for quantitative analysis is limited because photon emission rates from multicolour fluorophores are dissimilar, unstable and often unpredictable, which obscures correlations between measured fluorescence and molecular concentration. Here we introduce a new class of light-emitting quantum dots with tunable and equalized fluorescence brightness across a broad range of colours. The key feature is independent tunability of emission wavelength, extinction coefficient and quantum yield through distinct structural domains in the nanocrystal. Precise tuning eliminates a 100-fold red-to-green brightness mismatch of size-tuned quantum dots at the ensemble and single-particle levels, which substantially improves quantitative imaging accuracy in biological tissue. We anticipate that these materials engineering principles will vastly expand the optical engineering landscape of fluorescent probes, facilitate quantitative multicolour imaging in living tissue and improve colour tuning in light-emitting devices. PMID:26437175

  18. Study of strain boundary conditions and GaAs buffer sizes in InGaAs quantum dots

    NASA Technical Reports Server (NTRS)

    Oyafuso, F.; Klimeck, G.; Boykin, T. B.; Bowen, R. C.; Allmen, P. von

    2003-01-01

    NEMO 3-D has been developed for the simulation of electronic structure in self-assembled InGaAs quantum dots on GaAs substrates. Typical self-assembled quantum dots in that material system contain about 0.5 to 1 million atoms. Effects of strain by the surrounding GaAs buffer modify the electronic structure inside the quantum dot significantly and a large GaAs buffer must be included in the strain and electronic structure.

  19. Spectroscopic studies of plasmon coupling between photosynthetic complexes and metallic quantum dots

    NASA Astrophysics Data System (ADS)

    Olejnik, Maria; Krajnik, Bartosz; Kowalska, Dorota; Lin, Guanhua; Mackowski, Sebastian

    2013-05-01

    Metallic quantum dots, or nanoparticles, have found an increasing number of applications not only in nanotechnology and nanoscience, but also in neighboring disciplines, such as chemistry and biology. Among the variety of ways to exploit the unique properties of metallic nanostructures is the notion that plasmonic effects associated with the movement of free carriers in metallic nanoparticles may enhance photosynthetic function in naturally evolved organisms. We report on optical microscopy and spectroscopy studies of three hybrid nanostructures composed of spherical gold nanoparticles and peridinin-chlorophyll-protein (PCP), a light-harvesting complex from algae. In the case of a bioconjugated structure we find efficient, concentration dependent quenching due to non-radiative energy transfer. In contrast, for the PCP complexes deposited directly on Au nanoparticles, the emission is increased as a result of the strong increase of the fluorescence quantum yield. Finally, for a structure with controlled separation between metallic nanoparticles and the light-harvesting complexes the emission features non-monotonic behavior with maximum enhancement of about 6, which is due to a combination of fluorescence and absorption rate increases. In this way we demonstrate how the design of plasmonic hybrid nanostructures determines the optical response, which is important for engineering novel systems for photovoltaics and sensor applications, for instance.

  20. Quantum dot circuits: Single-electron switch and few-electron quantum dots

    NASA Astrophysics Data System (ADS)

    Chan, Ian Hin-Yun

    A strongly capacitively-coupled parallel double quantum dot was studied as a single-electron switch. The double dot was fabricated in a two-dimensional electron gas (2DEG) in a GaAs/AlGaAs heterostructure. An electrically-floating coupling gate increased capacitive-coupling between the dots, while an etched trench prevented tunnel-coupling between them. Split Coulomb blockade peaks were observed in each dot, and the Coulomb blockade conductance of the double dot formed a hexagonal pattern characteristic of coupled dots. A fractional peak splitting f = 0.34 was measured, which corresponds to a fractional capacitive-coupling alpha ≡ CINT/CSigma = 0.20. This is an order of magnitude larger than reported for similar lateral quantum dots, and shows that the coupling gate works. The strong capacitive-coupling in our device allowed the charge state of one dot to strongly influence the conductance of the other dot and enabled it to work as a single-electron switch. By moving in a combination of gate voltages, electrons are induced in one dot (the "trigger" dot) only. In response to the change in the charge state, the conductance of the other dot (the "switched" dot) is turned on and off. The abruptness of the conductance switching in gate voltage (the switching lineshape) is determined by how well charge is quantized on the trigger dot, and was found to follow tanh and arctan forms for (respectively) good and poor charge quantization in the trigger dot. A few-electron tunnel-coupled series double dot was studied for possible application to quantum computing. The device was fabricated in a square-well 2DEG in a GaAs/AlGaAs heterostructure. The dots were emptied of electrons in order to define the absolute number of electrons in the dot. Finite bias Coulomb blockade measurements on each dot showed that the last Coulomb blockade diamonds did not close and thus that both dots could be emptied. A three-dimensional conductance measurement of one dot in the one sidegate and the

  1. Surface photovoltage spectroscopy study of InAs quantum dot in quantum well multilayer structures for infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Donchev, V.; Ivanov, Ts.; Ivanova, Ts.; Mathews, S.; Kim, J. O.; Krishna, S.

    2015-12-01

    Inter-band optical transitions in InAs submonolayer and Stranski-Krastanov quantum dot (QD) in quantum well (QW) nanostructures are studied by means of room temperature surface photovoltage (SPV) spectroscopy taking advantage of its high sensitivity and contactless nature. The QD optical transitions are identified by the combined analysis of SPV amplitude and phase spectra and are in agreement with photoluminescence results. The SPV spectra have further revealed the optical transitions in all other relevant layers in the structures - wetting layer, QWs, and AlGaAs barriers. The analysis of the SPV phase spectra has revealed that the carrier separation and transport in the QD structure is determined by the energy band bending, resulting from the slight residual p-type doping. The complicated interaction between the SPV signals from the nanostructure and the semi-insulating GaAs substrate is discussed and clarified. The advantages of the SPV spectroscopy for characterizing complicated nanostructures at room temperature are highlighted.

  2. Silicon quantum dots embedded in a SiO2 matrix: From structural study to carrier transport properties

    NASA Astrophysics Data System (ADS)

    Garcia-Castello, Nuria; Illera, Sergio; Guerra, Roberto; Prades, Joan Daniel; Ossicini, Stefano; Cirera, Albert

    2013-08-01

    We study the details of electronic transport related to the atomistic structure of silicon quantum dots embedded in a silicon dioxide matrix using ab initio calculations of the density of states. Several structural and composition features of quantum dots (QDs), such as diameter and amorphization level, are studied and correlated with transport under transfer Hamiltonian formalism. The current is strongly dependent on the QD density of states and on the conduction gap, both dependent on the dot diameter. In particular, as size increases, the available states inside the QD increase, while the QD band gap decreases due to relaxation of quantum confinement. Both effects contribute to increasing the current with the dot size. Besides, valence band offset between the band edges of the QD and the silica, and conduction band offset in a minor grade, increases with the QD diameter up to the theoretical value corresponding to planar heterostructures, thus decreasing the tunneling transmission probability and hence the total current. We discuss the influence of these parameters on electron and hole transport, evidencing a correlation between the electron (hole) barrier value and the electron (hole) current, and obtaining a general enhancement of the electron (hole) transport for larger (smaller) QD. Finally, we show that crystalline and amorphous structures exhibit enhanced probability of hole and electron current, respectively.

  3. Thermoelectric energy harvesting with quantum dots.

    PubMed

    Sothmann, Björn; Sánchez, Rafael; Jordan, Andrew N

    2015-01-21

    We review recent theoretical work on thermoelectric energy harvesting in multi-terminal quantum-dot setups. We first discuss several examples of nanoscale heat engines based on Coulomb-coupled conductors. In particular, we focus on quantum dots in the Coulomb-blockade regime, chaotic cavities and resonant tunneling through quantum dots and wells. We then turn toward quantum-dot heat engines that are driven by bosonic degrees of freedom such as phonons, magnons and microwave photons. These systems provide interesting connections to spin caloritronics and circuit quantum electrodynamics. PMID:25549281

  4. Study of alloy disorder in quantum dots through multi-million atom simulations

    NASA Technical Reports Server (NTRS)

    Kilmeck, Gerhard; Oyafuso, Fabiano; Boykin, T. B.; Bowen, R. C.; von Allmen, Paul A.

    2003-01-01

    A tight binding model which includes s, p, d, s orbitals is used to examine the electronic structures of an ensemble of dome-shaped In0.6 Ga0.4 As quantum dots. Given ensembles of identically sized quantum dots, variations in composition and configuration yield a linewidth broadening of less than 0.35 meV, much smaller than the total broadening determined from photoluminescence experiments. It is also found that the computed disorder-induced broadening is very sensitive to the applied boundary conditions, so that care must be taken to ensure proper convergence of the numerical results. Examination of local eigenenergies as functions of position shows similar convergence problems and indicates that an inaccurate resolution of the equilibrium atomic positions due to truncation of the simulation domain may be the source of the slow ground state convergence.

  5. Thermodynamic properties of a quantum Hall anti-dot interferometer

    NASA Astrophysics Data System (ADS)

    Levy Schreier, Sarah; Stern, Ady; Rosenow, Bernd; Halperin, Bertrand I.

    2016-02-01

    We study quantum Hall interferometers in which the interference loop encircles a quantum anti-dot. We base our study on thermodynamic considerations, which we believe reflect the essential aspects of interference transport phenomena. We find that similar to the more conventional Fabry-Perot quantum Hall interferometers, in which the interference loop forms a quantum dot, the anti-dot interferometer is affected by the electro-static Coulomb interaction between the edge modes defining the loop. We show that in the Aharonov-Bohm regime, in which effects of fractional statistics should be visible, is easier to access in interferometers based on anti-dots than in those based on dots. We discuss the relevance of our results to recent measurements on anti-dots interferometers.

  6. Quantum Dot Light Emitting Diode

    SciTech Connect

    Keith Kahen

    2008-07-31

    The project objective is to create low cost coatable inorganic light emitting diodes, composed of quantum dot emitters and inorganic nanoparticles, which have the potential for efficiencies equivalent to that of LEDs and OLEDs and lifetime, brightness, and environmental stability between that of LEDs and OLEDs. At the end of the project the Recipient shall gain an understanding of the device physics and properties of Quantum-Dot LEDs (QD-LEDs), have reliable and accurate nanocrystal synthesis routines, and have formed green-yellow emitting QD-LEDs with a device efficiency greater than 3 lumens/W, a brightness greater than 400 cd/m2, and a device operational lifetime of more than 1000 hours. Thus the aim of the project is to break the current cost-efficiency paradigm by creating novel low cost inorganic LEDs composed of inorganic nanoparticles.

  7. Quantum Dot Light Emitting Diode

    SciTech Connect

    Kahen, Keith

    2008-07-31

    The project objective is to create low cost coatable inorganic light emitting diodes, composed of quantum dot emitters and inorganic nanoparticles, which have the potential for efficiencies equivalent to that of LEDs and OLEDs and lifetime, brightness, and environmental stability between that of LEDs and OLEDs. At the end of the project the Recipient shall gain an understanding of the device physics and properties of Quantum-Dot LEDs (QD-LEDs), have reliable and accurate nanocrystal synthesis routines, and have formed green-yellow emitting QD-LEDs with a device efficiency greater than 3 lumens/W, a brightness greater than 400 cd/m{sup 2}, and a device operational lifetime of more than 1000 hours. Thus the aim of the project is to break the current cost-efficiency paradigm by creating novel low cost inorganic LEDs composed of inorganic nanoparticles.

  8. Surface modification of CdS quantum dots using thiols—structural and photophysical studies

    NASA Astrophysics Data System (ADS)

    Thangadurai, P.; Balaji, S.; Manoharan, P. T.

    2008-10-01

    This study is aimed at identifying a suitable organic thiol for CdS by studying its structural, thermal and photophysical characteristics. Quantum dots of the II-VI semiconductor CdS, in the size regime of 2.0-3.3 nm, were prepared in the cubic phase by a wet chemical method. Five organic thiols were used for capping: (i) 1,4-dithiothreitol (DTT), (ii) 2-mercaptoethanol (ME), (iii) cysteine (Cys), (iv) methionine (Meth), and (v) glutathione (GSH). Structural studies were carried out by x-ray diffraction (XRD) and transmission electron microscopy (TEM), which revealed the cubic phase of CdS. Optical properties were studied by FT-IR, UV-visible and fluorescence spectroscopic techniques, and a comparison was made between uncapped and capped CdS. FT-IR studies suggested two different bonding mechanisms of the capping agents with the CdS. GSH and DTT capped CdS showed significant decrease in absorption wavelengths. An increase in band gap was observed in two cases: when (i) capped and (ii) decreased in size. The band gap was increased from 2.50 eV for the uncapped to 2.77 eV for the DTT capped CdS. DTT was found to be the best capping agent for CdS among these five organic thiols in two aspects: (i) yielding lower grain size in cubic phase, and (ii) good fluorescence properties with efficient quenching of the surface traps.

  9. Analysis of the efficiency of intermediate band solar cells based on quantum dot supercrystals

    SciTech Connect

    Heshmati, S; Golmohammadi, S; Abedi, K; Taleb, H

    2014-03-28

    We have studied the influence of the quantum-dot (QD) width and the quantum-dot conduction band (QD-CB) offset on the efficiency of quantum-dot intermediate band solar cells (QD-IBSCs). Simulation results demonstrate that with increasing QD-CB offset and decreasing QD width, the maximum efficiency is achieved. (laser applications and other topics in quantum electronics)

  10. Tunneling through a quantum dot in a quantum waveguide

    NASA Astrophysics Data System (ADS)

    Arsen'ev, A. A.

    2010-07-01

    The problem is considered of scattering in a system consisting of a quantum waveguide and a quantum dot weakly coupled to the waveguide. It is assumed that the quantum waveguide is described by the Pauli equations, and the Rashba spin-orbit interaction is taken into account. The possibility of tunneling through the quantum dot is proved.

  11. Optical properties of multi-layer type II InP/GaAs quantum dots studied by surface photovoltage spectroscopy

    NASA Astrophysics Data System (ADS)

    Ivanov, Ts.; Donchev, V.; Germanova, K.; Gomes, P. F.; Iikawa, F.; Brasil, M. J. S. P.; Cotta, M. A.

    2011-09-01

    We present a low-temperature (73 K) study of the optical properties of multi-layer type II InP/GaAs self-assembled quantum dots by means of surface photovoltage (SPV) spectroscopy, taking advantage of its high sensitivity and contactless nature. The samples contain 10 periods of InP quantum dot planes separated by 5 nm GaAs spacers. The SPV amplitude spectra reveal two major broad peaks, situated at low and high energies, respectively. These features are analyzed taking into account the type II character of the structure, the quantum coupling effects, the spectral behavior of the SPV phase, and the photoluminescence spectra. As a result they have been attributed to optical transitions in the quantum dots and the wetting layers, respectively. The main mechanism for carrier separation in the SPV generation process is clarified via the analysis of the SPV phase spectra. The influence of the substrate absorption on the SPV spectra is discussed in details.

  12. Modeling of the quantum dot filling and the dark current of quantum dot infrared photodetectors

    SciTech Connect

    Ameen, Tarek A.; El-Batawy, Yasser M.; Abouelsaood, A. A.

    2014-02-14

    A generalized drift-diffusion model for the calculation of both the quantum dot filling profile and the dark current of quantum dot infrared photodetectors is proposed. The confined electrons inside the quantum dots produce a space-charge potential barrier between the two contacts, which controls the quantum dot filling and limits the dark current in the device. The results of the model reasonably agree with a published experimental work. It is found that increasing either the doping level or the temperature results in an exponential increase of the dark current. The quantum dot filling turns out to be nonuniform, with a dot near the contacts containing more electrons than one in the middle of the device where the dot occupation approximately equals the number of doping atoms per dot, which means that quantum dots away from contacts will be nearly unoccupied if the active region is undoped.

  13. First principles DFT study of dye-sensitized CdS quantum dots

    SciTech Connect

    Jain, Kalpna; Singh, Kh. S.; Kishor, Shyam; Josefesson, Ida; Odelius, Michael; Ramaniah, Lavanya M.

    2014-04-24

    Dye-sensitized quantum dots (QDs) are considered promising candidates for dye-sensitized solar cells. In order to maximize their efficiency, detailed theoretical studies are important. Here, we report a first principles density functional theory (DFT) investigation of experimentally realized dye - sensitized QD / ligand systems, viz., Cd{sub 16}S{sub 16}, capped with acetate molecules and a coumarin dye. The hybrid B3LYP functional and a 6−311+G(d,p)/LANL2dz basis set are used to study the geometric, energetic and electronic properties of these clusters. There is significant structural rearrangement in all the clusters studied - on the surface for the bare QD, and in the positions of the acetate / dye ligands for the ligated QDs. The density of states (DOS) of the bare QD shows states in the band gap, which disappear on surface passivation with the acetate molecules. Interestingly, in the dye-sensitised QD, the HOMO is found to be localized mainly on the dye molecule, while the LUMO is on the QD, as required for photo-induced electron injection from the dye to the QD.

  14. Ferric oxide quantum dots in stable phosphate glass system and their magneto-optical study

    SciTech Connect

    Garaje, Sunil N.; Apte, Sanjay K.; Kumar, Ganpathy; Panmand, Rajendra P.; Naik, Sonali D.; Mahajan, Satish M.; Chand, Ramesh; Kale, Bharat B.

    2013-02-15

    Graphical abstract: We report synthesis of ferric oxide embedded low melting phosphate glass nanocomposite and also the effect of ferric oxide nanoparticles (NCs) content on the optical and magneto-optical properties of the glasses. Faraday rotation of the glass nanocomposites was measured and showed variation in Verdet constant with concentration of ferric oxide. Interestingly, the host glass itself showed fairly good Verdet constant (11.5°/T cm) and there is a threefold enhancement in the Verdet constant of ferric oxide quantum dot-glass nanocomposite. Highlights: ► We synthesize ferric oxide embedded low melting stable phosphate glass nanocomposite. ► Glasses doped with 0.25 and 2% ferric oxide show particle size in the range of 4–12 nm. ► The host phosphate glass itself shows fairly good Verdet constant (11.5°/T cm). ► Glasses doped with 0.25% ferric oxide show high Verdet constant (30.525°/T cm). ► The as synthesis glasses may have potential application in magneto optical devices. -- Abstract: Herein, we report the synthesis of ferric oxide embedded low melting phosphate glass nanocomposite and also the effect of ferric oxide nanoparticles content on the optical and magneto-optical properties of the glasses. The optical study clearly showed red shift in optical cut off with increasing ferric oxide concentration. The band gap of the host glass was observed to be 3.48 eV and it shifted to 3.14 eV after doping with ferric oxide. The glasses doped with 0.25 and 2% ferric oxide showed particle size of 4–6 nm and 8–12 nm, respectively. Faraday rotation of the glass nanocomposites was measured and showed variation in the Verdet constant as per increasing concentration of ferric oxide. Interestingly, the host glass itself showed fairly good Verdet constant (11.5°/T cm) and threefold enhancement was observed in the Verdet constant of ferric oxide quantum dot-glass nanocomposite.

  15. Optical and Surface Characterization Studies of CdSe Quantum Dots Undergoing Photooxidation

    NASA Astrophysics Data System (ADS)

    Powell, Lauren C. J.

    Realization of the potential of Quantum Dots (QDs) for biological, energy-efficient lighting and energy harvesting applications requires that their long-term photostability be improved, especially with regards to protection from photooxidation. The overarching objective of this project was the determination of the chemical and physical mechanisms of photooxidation of CdSe QDs. Pittsburgh-based Crystalplex, Inc. provided CdSe QDs with different organic ligands for this research. Three integrated in situ and ex situ characterization techniques were used to observe changes in optical behavior, QD morphology, and surface chemistry during photooxidation conditions. Single-molecule fluorescence microscopy experiments were used to observe real-time changes in the photoluminescence (PL) behavior of single QDs with oleic and lauric acid ligands. The QDs are exposed to 1 atm of pure O2, dry Ar, Ar bubbled through DI water, or air in an environmental chamber and excited with a 488 nm light. Changes in PL intensities were analyzed with respect to the periods of exposure to controlled atmospheres and light. Samples illuminated continuously exhibited strong photoenhancement effects, while those kept in the dark showed atmospheric-dependent PL loss. Microstructural and chemical identification was performed with aberration-corrected transmission electron microscopy (TEM). Ex situ exposures of QD samples to air, dry O2, and dry Ar revealed changes in surface oxide growth with respect to exposure length, illumination, and column vacuum pressure. Samples exposed to air and light exhibited the most extensive photooxidation. Quantum dots with oleic acid ligands were treated with UV/ozone plasma, and extensive degradation of QDs was observed. X-ray photoemission spectroscopy (XPS) measurements at CMU were used to identify the chemical and bonding states of the surface species before and after photooxidation. Analysis of the acquired spectra showed that exposure to below-bandgap light

  16. The quantum Hall effect in quantum dot systems

    NASA Astrophysics Data System (ADS)

    Beltukov, Y. M.; Greshnov, A. A.

    2014-12-01

    It is proposed to use quantum dots in order to increase the temperatures suitable for observation of the integer quantum Hall effect. A simple estimation using Fock-Darwin spectrum of a quantum dot shows that good part of carriers localized in quantum dots generate the intervals of plateaus robust against elevated temperatures. Numerical calculations employing local trigonometric basis and highly efficient kernel polynomial method adopted for computing the Hall conductivity reveal that quantum dots may enhance peak temperature for the effect by an order of magnitude, possibly above 77 K. Requirements to potentials, quality and arrangement of the quantum dots essential for practical realization of such enhancement are indicated. Comparison of our theoretical results with the quantum Hall measurements in InAs quantum dot systems from two experimental groups is also given.

  17. Numerical simulation of optical feedback on a quantum dot lasers

    SciTech Connect

    Al-Khursan, Amin H.; Ghalib, Basim Abdullattif; Al-Obaidi, Sabri J.

    2012-02-15

    We use multi-population rate equations model to study feedback oscillations in the quantum dot laser. This model takes into account all peculiar characteristics in the quantum dots such as inhomogeneous broadening of the gain spectrum, the presence of the excited states on the quantum dot and the non-confined states due to the presence of wetting layer and the barrier. The contribution of quantum dot groups, which cannot follow by other models, is simulated. The results obtained from this model show the feedback oscillations, the periodic oscillations which evolves to chaos at higher injection current of higher feedback levels. The frequency fluctuation is attributed mainly to wetting layer with a considerable contribution from excited states. The simulation shows that is must be not using simple rate equation models to express quantum dots working at excited state transition.

  18. Kerr rotation studies of single electron spin dynamics in a quantum dot

    NASA Astrophysics Data System (ADS)

    Mikkelsen, M. H.; Berezovsky, J.; Gywat, O.; Stoltz, N. G.; Coldren, L. A.; Awschalom, D. D.

    2007-03-01

    Kerr rotation measurements are used to directly and non-destructively probe the dynamics of a single electron spin in a charge-tunable quantum dot. The dot is formed by interface fluctuations of a GaAs quantum well and embedded in a vertical optical cavity. Using Hanle techniques, we perform single electron Kerr rotation measurements at T=10K in order to monitor the depolarization of an optically pumped electron spin within an applied transverse magnetic field. This reveals information about the time averaged transverse spin lifetime, T2^*. At gate voltages for which the charging rate of the dot is relatively low, the results yield a T2^* in agreement with values expected from the hyperfine interaction in these materials. In contrast, at larger charging rates, we find that T2^* is strongly reduced, indicating the importance of additional decoherence mechanisms in that regime. J. Berezovsky, M. H. Mikkelsen, O. Gywat, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom,Science Express, 9 November 2006, (10.1126/science.1133862).

  19. High Pressure Raman Spectroscopic Studies on CuInTe2 Quantum Dots

    NASA Astrophysics Data System (ADS)

    Yanxon, Howard; Kumar, Ravhi; HiPSEC-University of Nevada Las Vegas Team

    High pressure Raman spectroscopy studies were performed on CuInTe2 Quantum Dots (QD) up to 7.7 GPa. At ambient conditions, the Raman modes of the QD loaded into a high-pressure diamond anvil cell (DAC) were observed at 125.1 cm-1 (A1 mode) and 142.8 cm-1 (B2 or E mode). As the pressure increases, the A1 mode starts to split above 2 GPa and shifts to the left as indication of a structural change. A pressure-induced phase transition was observed around 2.9 GPa due to the collapse of the modes with the appearance of a new Raman peaks. The phase transition observed in our experiments compare well with the characteristics of bulk and larger nanoparticles. Further, it could be concluded that the phase transition pressure observed mainly depends on the particle size. H.Y. thanks McNair foundation for fellowship award. He also acknowledges Melanie White, Jason Baker and Phuc Tran for help in the experiments. He thanks Michael Pravica for using the Raman facility.

  20. Transport studies of quantum dots sensitized single Mn-ZnO nanowire field effect transistors

    NASA Astrophysics Data System (ADS)

    Sapkota, Keshab R.; Maloney, Francis Scott; Rimal, Gaurab; Poudyal, Uma; Tang, Jinke; Wang, Wenyong

    We present opto-electrical transport properties of Mn-CdSe quantum dots (QDs) sensitized single Mn-ZnO nanowire (NW) field effect transistors (FET). The ZnO NWs with 2 atomic % of Mn doping are grown by chemical vapor deposition. The NWs are ferromagnetic at low temperature. The as grown nanowires are transferred to clean SiO2/Si substrate and single nanowire field effect transistors (FET) are fabricated by standard e-beam lithography. Mobility and carrier concentration of Mn-ZnO NWs are estimated from FET device measurement which shows NWs are n-type semiconductors. Pulse laser deposition of Mn-CdSe QDs on the single NW FET significantly increases carrier concentration of the QD-NW system in dark where the QD monolayer conduction is negligibly small. The photoconductivity study of QD sensitized NW FET enlightens the conduction spectrum of QD-NW system and QD to NW carrier transfer mechanism. This work has been supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-10ER46728.

  1. Surface studies of gallium nitride quantum dots grown using droplet epitaxy on bulk, native substrates

    NASA Astrophysics Data System (ADS)

    Jones, Christina; Jeon, Sunyeol; Goldman, Rachel; Yacoby, Yizhak; Clarke, Roy

    Gallium nitride (GaN) and its applications in light-emitting diodes play an integral part in efficient, solid-state lighting, as evidenced by its recognition in the 2014 Nobel prize in physics. In order to push this technology towards higher efficiency and reliability and lower cost, we must understand device growth on bulk GaN substrates, which have lower defect densities and strain than template GaN substrates grown on sapphire. In this work, we present our findings on the surface properties of GaN quantum dots (QDs) grown on commercial bulk GaN. QDs are grown using the droplet epitaxy method and analyzed using a surface X-ray diffraction technique called Coherent Bragg Rod Analysis (COBRA), which uses phase retrieval to reconstruct atomic positions near the substrate surface. While several QD growth conditions in our study produce dense QDs, COBRA reveals that only low nitridation temperatures result in GaN QDs that are coherent with the bulk GaN substrate. Results are supported with atomic force microscopy and high-resolution transmission electron microscopy.

  2. Adsorption of quantum dots onto polymer and Gemini surfactant films: a quartz crystal microbalance study.

    PubMed

    Alejo, T; Merchán, M D; Velázquez, M M

    2014-08-26

    We used quartz crystal microbalance with dissipation to study the mechanical properties, the kinetics of adsorption, and the amount of CdSe quantum dots (QDs) adsorbed onto a SiO2 sensor, referred as bare sensor, onto the sensor modified with a film of the polymer poly(maleic anhydride-alt-1-octadecene), PMAO, or with a film of the Gemini surfactant ethyl-bis(dimethyl octadecyl ammonium bromide), abbreviated as 18-2-18. Results showed that when the sensor is coated with polymer or surfactant molecules, the coverage increases compared with that obtained for the bare sensor. On the other hand, rheological properties and kinetics of adsorption of QDs are driven by QD nanoparticles. Thus, the QD films present elastic behavior, and the elasticity values are independent of the molecule used as coating and similar to the elasticity value obtained for QDs films on the bare sensor. The QD adsorption is a two-step mechanism in which the fastest process is attributed to the QD adsorption onto the solid substrate and the slowest one is ascribed to rearrangement movements of the nanoparticles adsorbed at the surface. PMID:25093530

  3. Photoluminescence study of high density Si quantum dots with Ge core

    NASA Astrophysics Data System (ADS)

    Kondo, K.; Makihara, K.; Ikeda, M.; Miyazaki, S.

    2016-01-01

    Si quantum dots (Si-QDs) with Ge core were self-assembled on thermally grown SiO2 from alternate thermal decomposition of pure SiH4 and GeH4 diluted with He. When the sample was excited by the 979 nm line of a semiconductor laser, fairly broad photoluminescence (PL) spectra in the region of 0.6-0.8 eV were observed at room temperature. The observed PL spectra suggested that radiative recombination of photo-generated carriers through quantized states of Ge core is the dominant pathway for the emission from the dots, reflecting the type II energy band discontinuity between the Si clad and Ge core. We also found that P-δ doping to Ge core plays an important role in recombination through the quantized states in the valence band of Ge core and P donor levels.

  4. Photoluminescence of a quantum-dot molecule

    SciTech Connect

    Kruchinin, Stanislav Yu.; Rukhlenko, Ivan D.; Baimuratov, Anvar S.; Leonov, Mikhail Yu.; Turkov, Vadim K.; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii K.

    2015-01-07

    The coherent coupling of quantum dots is a sensitive indicator of the energy and phase relaxation processes taking place in the nanostructure components. We formulate a theory of low-temperature, stationary photoluminescence from a quantum-dot molecule composed of two spherical quantum dots whose electronic subsystems are resonantly coupled via the Coulomb interaction. We show that the coupling leads to the hybridization of the first excited states of the quantum dots, manifesting itself as a pair of photoluminescence peaks with intensities and spectral positions strongly dependent on the geometric, material, and relaxation parameters of the quantum-dot molecule. These parameters are explicitly contained in the analytical expression for the photoluminescence differential cross section derived in the paper. The developed theory and expression obtained are essential in interpreting and analyzing spectroscopic data on the secondary emission of coherently coupled quantum systems.

  5. Anomalous polarization in coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Xu, X. H.; Jiang, H.; Sun, X.; Lin, H. Q.

    2000-04-01

    The coupled quantum dots can be designed to possess negative polarizability in low-lying excited states. In an electric field, the coupled dots are polarized, and the dipole moment of the coupled dots is reversed by absorbing one photon. This photoswitch effect is a new photoinduced phenomenon.

  6. A Quantum Dot with Spin-Orbit Interaction--Analytical Solution

    ERIC Educational Resources Information Center

    Basu, B.; Roy, B.

    2009-01-01

    The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.

  7. Momentum Transfer Studies and Studies of Linear and Nonlinear Optical Properties of Metal Colloids and Semiconductor Quantum Dots

    NASA Technical Reports Server (NTRS)

    Collins, W. E.; Burger, A.; Dyer, K.; George, M.; Henderson, D.; Morgan, S.; Mu, R.; Shi, D.; Conner, D; Thompson, E.; Collins, L.; Curry, L.; Mattox, S.; Williams, G.

    1996-01-01

    Phase 1 of this work involved design work on a momentum transfer device. The progress on design and testing will be presented. Phase 2 involved the systematic study of the MPD thruster for dual uses. Though it was designed as a thruster for space vehicles, the characteristics of the plasma make it an excellent candidate for industrial applications. This project sought to characterize the system for use in materials processing and characterization. The surface modification on ZnCdTe, CdTe, and ZnTe will be presented. Phase 3 involved metal colloids and semiconductor quantum dots. One aspect of this project involves a collaborative effort with the Solid State Division of ORNL. The thrust behind this research is to develop ion implantation for synthesizing novel materials (quantum dots wires and wells, and metal colloids) for applications in all optical switching devices, up conversion, and the synthesis of novel refractory materials. The ions of interest are Au, Ag, Cd, Se, In, P, Sb, Ga, and As. The specific materials of interest are: CdSe, CdTe, InAs, GaAs, InP, GaP, InSb, GaSb, and InGaAs. A second aspect of this research program involves using porous glass (25-200 A) for fabricating materials of finite size. The results of some of this work will also be reported.

  8. Engineering of perturbation effects in onion-like heteronanocrystal quantum dot-quantum well

    NASA Astrophysics Data System (ADS)

    SalmanOgli, A.; Rostami, R.

    2013-10-01

    In this article, the perturbation influences on optical characterization of quantum dot and quantum dot-quantum well (modified quantum dot) heteronanocrystal is investigated. The original aim of this article is to investigate the quantum dot-quantum well heteronanocrystal advantages and disadvantages, when used as a functionalized particle in biomedical applications. Therefore, all of the critical features of quantum dots are fundamentally studied and their influences on optical properties are simulated. For the first time, the perturbation effects on optical characteristics are observed in the quantum dot-quantum well heteronanocrystals by 8-band K.P theory. The impact of perturbation on optical features such as photoluminescence and shifting of wavelength is studied. The photoluminescence and operation wavelength of quantum dots play a vital role in biomedical applications, where their absorption and emission in biological assays are altered by shifting of wavelength. Furthermore, in biomedical applications, by tuning the emission wavelengths of the quantum dot into far-red and near-infrared ranges, non-invasive in-vivo imaging techniques have been easily developed. In this wavelength window, tissue absorption, scattering and auto-fluorescence intensities have minimum quantities; thus fixing or minimizing of wavelength shifting can be regarded as an important goal which is investigated in this work.

  9. Photon Cascade from a Single Crystal Phase Nanowire Quantum Dot.

    PubMed

    Bouwes Bavinck, Maaike; Jöns, Klaus D; Zieliński, Michal; Patriarche, Gilles; Harmand, Jean-Christophe; Akopian, Nika; Zwiller, Val

    2016-02-10

    We report the first comprehensive experimental and theoretical study of the optical properties of single crystal phase quantum dots in InP nanowires. Crystal phase quantum dots are defined by a transition in the crystallographic lattice between zinc blende and wurtzite segments and therefore offer unprecedented potential to be controlled with atomic layer accuracy without random alloying. We show for the first time that crystal phase quantum dots are a source of pure single-photons and cascaded photon-pairs from type II transitions with excellent optical properties in terms of intensity and line width. We notice that the emission spectra consist often of two peaks close in energy, which we explain with a comprehensive theory showing that the symmetry of the system plays a crucial role for the hole levels forming hybridized orbitals. Our results state that crystal phase quantum dots have promising quantum optical properties for single photon application and quantum optics. PMID:26806321

  10. Electron Spin Qubits in Si/SiGe Quantum Dots

    NASA Astrophysics Data System (ADS)

    Eriksson, Mark

    2010-10-01

    It is intriguing that silicon, the central material of modern classical electronics, also has properties well suited to quantum electronics. Recent advances in Si/SiGe quantum devices have enabled the creation of high-quality silicon quantum dots, also known as artificial atoms. Motivated in part by the potential for very long spin coherence times in this material, we are pursuing the development of individual electron spin qubits in silicon quantum dots. I will discuss recent demonstrations of single-shot spin measurement in a Si/SiGe quantum dot spin qubit, and the demonstration of spin-relaxation times longer than one second in such a system. These and similar measurements depend on a knowledge of tunnel rates between quantum dots and nearby reservoirs or between pairs of quantum dots. Measurements of such rates provide an opportunity to revisit classic experiments in quantum mechanics. At the same time, the unique features of the silicon conduction band lead to novel and unexpected effects, demonstrating that Si/SiGe quantum dots provide a highly controlled experimental system in which to study ideas at the heart of quantum physics.

  11. Charge state hysteresis in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Yang, C. H.; Rossi, A.; Lai, N. S.; Leon, R.; Lim, W. H.; Dzurak, A. S.

    2014-11-01

    Semiconductor quantum dots provide a two-dimensional analogy for real atoms and show promise for the implementation of scalable quantum computers. Here, we investigate the charge configurations in a silicon metal-oxide-semiconductor double quantum dot tunnel coupled to a single reservoir of electrons. By operating the system in the few-electron regime, the stability diagram shows hysteretic tunnelling events that depend on the history of the dots charge occupancy. We present a model which accounts for the observed hysteretic behaviour by extending the established description for transport in double dots coupled to two reservoirs. We demonstrate that this type of device operates like a single-electron memory latch.

  12. Charge state hysteresis in semiconductor quantum dots

    SciTech Connect

    Yang, C. H.; Rossi, A. Lai, N. S.; Leon, R.; Lim, W. H.; Dzurak, A. S.

    2014-11-03

    Semiconductor quantum dots provide a two-dimensional analogy for real atoms and show promise for the implementation of scalable quantum computers. Here, we investigate the charge configurations in a silicon metal-oxide-semiconductor double quantum dot tunnel coupled to a single reservoir of electrons. By operating the system in the few-electron regime, the stability diagram shows hysteretic tunnelling events that depend on the history of the dots charge occupancy. We present a model which accounts for the observed hysteretic behaviour by extending the established description for transport in double dots coupled to two reservoirs. We demonstrate that this type of device operates like a single-electron memory latch.

  13. High excitation power photoluminescence studies of ultra-low density GaAs quantum dots

    SciTech Connect

    Sonnenberg, D.; Graf, A.; Paulava, V.; Heyn, Ch.; Hansen, W.

    2013-12-04

    We fabricate GaAs epitaxial quantum dots (QDs) by filling of self-organized nanoholes in AlGaAs. The QDs are fabricated under optimized process conditions and have ultra-low density in the 10{sup 6} cm{sup −2} regime. At low excitation power the optical emission of single QDs exhibit sharp excitonic lines, which are attributed to the recombination of excitonic and biexcitonic states. High excitation power measurements reveal surprisingly broad emission lines from at least six QD shell states.

  14. Atomically precise, coupled quantum dots fabricated by cleaved edge overgrowth

    NASA Astrophysics Data System (ADS)

    Wegscheider, W.; Schedelbeck, G.; Bichler, M.; Abstreiter, G.

    Recent progress in the fabrication of quantum dots by molecular beam epitaxy along three directions in space is reviewed. The optical properties of different sample structures consisting of individual quantum dots, pairs of coupled dots as well as of linear arrays of dots are studied by microscopic photoluminescence spectroscopy. The high degree of control over shape, composition and position of the 7×7×7 nm3 size GaAs quantum dots, which form at the intesection of three orthogonal quantum wells, allows a detailed investigation of the influence of coupling between almost identical zero-dimensional objects. In contrast to the inhomogeneously broadened quantum well and quantum wire signals originating from the complex twofold cleaved edge overgrowth structure, the photoluminescence spetrum of an individual quantum dot exhibits a single sharp line (full width at half maximum <70μeV) almost free of background signal. Microscopic photoluminescence excitation spectroscopy directly reveals the discreteness of the energy levels of the zero-dimensional structures and justifies the denomination "artificial atoms" for the quantum dots. It is further demonstrated that an "artifical molecule", characterized by the existence of bonding and antibonding states can be assembled from two of such "artificial atoms". The coupling strength between the "artificial atoms" is adjusted by the "interatomic" distance and is reflected in the energetic separation of the bonding and antibonding levels and the linewidths of the corresponding interband transitions.

  15. STED nanoscopy with fluorescent quantum dots

    NASA Astrophysics Data System (ADS)

    Hanne, Janina; Falk, Henning J.; Görlitz, Frederik; Hoyer, Patrick; Engelhardt, Johann; Sahl, Steffen J.; Hell, Stefan W.

    2015-05-01

    The widely popular class of quantum-dot molecular labels could so far not be utilized as standard fluorescent probes in STED (stimulated emission depletion) nanoscopy. This is because broad quantum-dot excitation spectra extend deeply into the spectral bands used for STED, thus compromising the transient fluorescence silencing required for attaining super-resolution. Here we report the discovery that STED nanoscopy of several red-emitting commercially available quantum dots is in fact successfully realized by the increasingly popular 775 nm STED laser light. A resolution of presently ~50 nm is demonstrated for single quantum dots, and sub-diffraction resolution is further shown for imaging of quantum-dot-labelled vimentin filaments in fibroblasts. The high quantum-dot photostability enables repeated STED recordings with >1,000 frames. In addition, we have evidence that the tendency of quantum-dot labels to blink is largely suppressed by combined action of excitation and STED beams. Quantum-dot STED significantly expands the realm of application of STED nanoscopy, and, given the high stability of these probes, holds promise for extended time-lapse imaging.

  16. Thick-shell nanocrystal quantum dots

    SciTech Connect

    Hollingsworth, Jennifer A.; Chen, Yongfen; Klimov, Victor I.; Htoon, Han; Vela, Javier

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  17. STED nanoscopy with fluorescent quantum dots

    PubMed Central

    Hanne, Janina; Falk, Henning J.; Görlitz, Frederik; Hoyer, Patrick; Engelhardt, Johann; Sahl, Steffen J.; Hell, Stefan W.

    2015-01-01

    The widely popular class of quantum-dot molecular labels could so far not be utilized as standard fluorescent probes in STED (stimulated emission depletion) nanoscopy. This is because broad quantum-dot excitation spectra extend deeply into the spectral bands used for STED, thus compromising the transient fluorescence silencing required for attaining super-resolution. Here we report the discovery that STED nanoscopy of several red-emitting commercially available quantum dots is in fact successfully realized by the increasingly popular 775 nm STED laser light. A resolution of presently ∼50 nm is demonstrated for single quantum dots, and sub-diffraction resolution is further shown for imaging of quantum-dot-labelled vimentin filaments in fibroblasts. The high quantum-dot photostability enables repeated STED recordings with >1,000 frames. In addition, we have evidence that the tendency of quantum-dot labels to blink is largely suppressed by combined action of excitation and STED beams. Quantum-dot STED significantly expands the realm of application of STED nanoscopy, and, given the high stability of these probes, holds promise for extended time-lapse imaging. PMID:25980788

  18. Decoherence and Entanglement Simulation in a Model of Quantum Neural Network Based on Quantum Dots

    NASA Astrophysics Data System (ADS)

    Altaisky, Mikhail V.; Zolnikova, Nadezhda N.; Kaputkina, Natalia E.; Krylov, Victor A.; Lozovik, Yurii E.; Dattani, Nikesh S.

    2016-02-01

    We present the results of the simulation of a quantum neural network based on quantum dots using numerical method of path integral calculation. In the proposed implementation of the quantum neural network using an array of single-electron quantum dots with dipole-dipole interaction, the coherence is shown to survive up to 0.1 nanosecond in time and up to the liquid nitrogen temperature of 77K.We study the quantum correlations between the quantum dots by means of calculation of the entanglement of formation in a pair of quantum dots on the GaAs based substrate with dot size of 100 ÷ 101 nanometer and interdot distance of 101 ÷ 102 nanometers order.

  19. Biocompatible Quantum Dots for Biological Applications

    SciTech Connect

    Rosenthal, Sandra; Chang, Jerry; Kovtun, Oleg; McBride, James; Tomlinson, Ian

    2011-01-01

    Semiconductor quantum dots are quickly becoming a critical diagnostic tool for discerning cellular function at the molecular level. Their high brightness, long-lasting, size-tunable, and narrow luminescence set them apart from conventional fluorescence dyes. Quantum dots are being developed for a variety of biologically oriented applications, including fluorescent assays for drug discovery, disease detection, single protein tracking, and intracellular reporting. This review introduces the science behind quantum dots and describes how they are made biologically compatible. Several applications are also included, illustrating strategies toward target specificity, and are followed by a discussion on the limitations of quantum dot approaches. The article is concluded with a look at the future direction of quantum dots.

  20. Biocompatible Quantum Dots for Biological Applications

    PubMed Central

    Rosenthal, Sandra J.; Chang, Jerry C.; Kovtun, Oleg; McBride, James R.; Tomlinson, Ian D.

    2011-01-01

    Semiconductor quantum dots are quickly becoming a critical diagnostic tool for discerning cellular function at the molecular level. Their high brightness, long-lasting, sizetunable, and narrow luminescence set them apart from conventional fluorescence dyes. Quantum dots are being developed for a variety of biologically oriented applications, including fluorescent assays for drug discovery, disease detection, single protein tracking, and intracellular reporting. This review introduces the science behind quantum dots and describes how they are made biologically compatible. Several applications are also included, illustrating strategies toward target specificity, and are followed by a discussion on the limitations of quantum dot approaches. The article is concluded with a look at the future direction of quantum dots. PMID:21276935

  1. Optophononics with coupled quantum dots.

    PubMed

    Kerfoot, Mark L; Govorov, Alexander O; Czarnocki, Cyprian; Lu, Davis; Gad, Youstina N; Bracker, Allan S; Gammon, Daniel; Scheibner, Michael

    2014-01-01

    Modern technology is founded on the intimate understanding of how to utilize and control electrons. Next to electrons, nature uses phonons, quantized vibrations of an elastic structure, to carry energy, momentum and even information through solids. Phonons permeate the crystalline components of modern technology, yet in terms of technological utilization phonons are far from being on par with electrons. Here we demonstrate how phonons can be employed to render a single quantum dot pair optically transparent. This phonon-induced transparency is realized via the formation of a molecular polaron, the result of a Fano-type quantum interference, which proves that we have accomplished making typically incoherent and dissipative phonons behave in a coherent and non-dissipative manner. We find the transparency to be widely tunable by electronic and optical means. Thereby we show amplification of weakest coupling channels. We further outline the molecular polaron's potential as a control element in phononic circuitry architecture. PMID:24534815

  2. Quantum dot nanoparticle conjugation, characterization, and applications in neuroscience

    NASA Astrophysics Data System (ADS)

    Pathak, Smita

    Quantum dot are semiconducting nanoparticles that have been used for decades in a variety of applications such as solar cells, LEDs and medical imaging. Their use in the last area, however, has been extremely limited despite their potential as revolutionary new biological labeling tools. Quantum dots are much brighter and more stable than conventional fluorophores, making them optimal for high resolution imaging and long term studies. Prior work in this area involves synthesizing and chemically conjugating quantum dots to molecules of interest in-house. However this method is both time consuming and prone to human error. Additionally, non-specific binding and nanoparticle aggregation currently prevent researchers from utilizing this system to its fullest capacity. Another critical issue that has not been addressed is determining the number of ligands bound to nanoparticles, which is crucial for proper interpretation of results. In this work, methods to label fixed cells using two types of chemically modified quantum dots are studied. Reproducible non-specific artifact labeling is consistently demonstrated if antibody-quantum dot conditions are less than optimal. In order to explain this, antibodies bound to quantum dots were characterized and quantified. While other groups have qualitatively characterized antibody functionalized quantum dots using TEM, AFM, UV spectroscopy and gel electrophoresis, and in some cases have reported calculated estimates of the putative number of total antibodies bound to quantum dots, no quantitative experimental results had been reported prior to this work. The chemical functionalization and characterization of quantum dot nanocrystals achieved in this work elucidates binding mechanisms of ligands to nanoparticles and allows researchers to not only translate our tools to studies in their own areas of interest but also derive quantitative results from these studies. This research brings ease of use and increased reliability to

  3. Quantum dot/glycol chitosan fluorescent nanoconjugates

    NASA Astrophysics Data System (ADS)

    Mansur, Alexandra AP; Mansur, Herman S.

    2015-04-01

    In this study, novel carbohydrate-based nanoconjugates combining chemically modified chitosan with semiconductor quantum dots (QDs) were designed and synthesised via single-step aqueous route at room temperature. Glycol chitosan (G-CHI) was used as the capping ligand aiming to improve the water solubility of the nanoconjugates to produce stable and biocompatible colloidal systems. UV-visible (UV-vis) spectroscopy, photoluminescence (PL) spectroscopy, and Fourier transform infrared (FTIR) spectroscopy were used to characterise the synthesis and the relative stability of biopolymer-capped semiconductor nanocrystals. The results clearly demonstrated that the glycol chitosan derivative was remarkably effective at nucleating and stabilising semiconductor CdS quantum dots in aqueous suspensions under acidic, neutral, and alkaline media with an average size of approximately 2.5 nm and a fluorescent activity in the visible range of the spectra.

  4. Protease-activated quantum dot probes

    NASA Astrophysics Data System (ADS)

    Chang, Emmanuel; Sun, Jiantang; Miller, Jordan S.; Yu, William W.; Colvin, Vicki L.; West, Jennifer L.; Drezek, Rebekah

    2006-04-01

    We demonstrate a novel quantum dot based probe with inherent signal amplification upon interaction with a targeted proteolytic enzyme. This probe may be useful for imaging in cancer detection and diagnosis. In this system, quantum dots (QDs) are bound to gold nanoparticles (AuNPs) via a proteolytically-degradable peptide sequence to non-radiatively suppress luminescence. A 71% reduction in luminescence was achieved with conjugation of AuNPs to QDs. Peptide cleavage results in release of AuNPs and restores radiative QD photoluminescence. Initial studies observed a 52% rise in luminescence over 47 hours of exposure to 0.2 mg/mL collagenase. These probes can be customized for targeted degradation simply by changing the sequence of the peptide linker.

  5. Separability and dynamical symmetry of Quantum Dots

    SciTech Connect

    Zhang, P.-M.; Zou, L.-P.; Horvathy, P.A.; Gibbons, G.W.

    2014-02-15

    The separability and Runge–Lenz-type dynamical symmetry of the internal dynamics of certain two-electron Quantum Dots, found by Simonović et al. (2003), are traced back to that of the perturbed Kepler problem. A large class of axially symmetric perturbing potentials which allow for separation in parabolic coordinates can easily be found. Apart from the 2:1 anisotropic harmonic trapping potential considered in Simonović and Nazmitdinov (2013), they include a constant electric field parallel to the magnetic field (Stark effect), the ring-shaped Hartmann potential, etc. The harmonic case is studied in detail. -- Highlights: • The separability of Quantum Dots is derived from that of the perturbed Kepler problem. • Harmonic perturbation with 2:1 anisotropy is separable in parabolic coordinates. • The system has a conserved Runge–Lenz type quantity.

  6. Photoluminescence study of the effect of strain compensation on InAs/AlAsSb quantum dots

    NASA Astrophysics Data System (ADS)

    Zhao, Zhexin; Laghumavarapu, Ramesh B.; Simmonds, Paul J.; Ji, Haiming; Liang, Baolai; Huffaker, Diana L.

    2015-09-01

    We investigate stacked structures of InAs/AlAsSb/InP quantum dots using temperature- and power-dependent photoluminescence. The band gap of InAs/AlAsSb QDs is 0.73 eV at room temperature, which is close to the ideal case for intermediate band solar cells. As the number of quantum dot layers is increased, the photoluminescence undergoes a blue-shift due to the effects of accumulated compressive strain. This PL red shift can be counteracted using thin layers of AlAs to compensate the strain. We also derive thermal activation energies for this exotic quantum dot system.

  7. Relaxation dynamics in correlated quantum dots

    SciTech Connect

    Andergassen, S.; Schuricht, D.; Pletyukhov, M.; Schoeller, H.

    2014-12-04

    We study quantum many-body effects on the real-time evolution of the current through quantum dots. By using a non-equilibrium renormalization group approach, we provide analytic results for the relaxation dynamics into the stationary state and identify the microscopic cutoff scales that determine the transport rates. We find rich non-equilibrium physics induced by the interplay of the different energy scales. While the short-time limit is governed by universal dynamics, the long-time behavior features characteristic oscillations as well as an interplay of exponential and power-law decay.

  8. Fluorescence energy transfer in quantum dot/azo dye complexes in polymer track membranes

    NASA Astrophysics Data System (ADS)

    Gromova, Yulia A.; Orlova, Anna O.; Maslov, Vladimir G.; Fedorov, Anatoly V.; Baranov, Alexander V.

    2013-10-01

    Fluorescence resonance energy transfer in complexes of semiconductor CdSe/ZnS quantum dots with molecules of heterocyclic azo dyes, 1-(2-pyridylazo)-2-naphthol and 4-(2-pyridylazo) resorcinol, formed at high quantum dot concentration in the polymer pore track membranes were studied by steady-state and transient PL spectroscopy. The effect of interaction between the complexes and free quantum dots on the efficiency of the fluorescence energy transfer and quantum dot luminescence quenching was found and discussed.

  9. Charge Carrier Conduction Mechanism in PbS Quantum Dot Solar Cells: Electrochemical Impedance Spectroscopy Study.

    PubMed

    Wang, Haowei; Wang, Yishan; He, Bo; Li, Weile; Sulaman, Muhammad; Xu, Junfeng; Yang, Shengyi; Tang, Yi; Zou, Bingsuo

    2016-07-20

    With its properties of bandgap tunability, low cost, and substrate compatibility, colloidal quantum dots (CQDs) are becoming promising materials for optoelectronic applications. Additionally, solution-processed organic, inorganic, and hybrid ligand-exchange technologies have been widely used in PbS CQDs solar cells, and currently the maximum certified power conversion efficiency of 9.9% has been reported by passivation treatment of molecular iodine. Presently, there are still some challenges, and the basic physical mechanism of charge carriers in CQDs-based solar cells is not clear. Electrochemical impedance spectroscopy is a monitoring technology for current by changing the frequency of applied alternating current voltage, and it provides an insight into its electrical properties that cannot be measured by direct current testing facilities. In this work, we used EIS to analyze the recombination resistance, carrier lifetime, capacitance, and conductivity of two typical PbS CQD solar cells Au/PbS-TBAl/ZnO/ITO and Au/PbS-EDT/PbS-TBAl/ZnO/ITO, in this way, to better understand the charge carriers conduction mechanism behind in PbS CQD solar cells, and it provides a guide to design high-performance quantum-dots solar cells. PMID:27176547

  10. Time-resolved magnetophotoluminescence studies of magnetic polaron dynamics in type-II quantum dots

    NASA Astrophysics Data System (ADS)

    Barman, B.; Oszwałdowski, R.; Schweidenback, L.; Russ, A. H.; Pientka, J. M.; Tsai, Y.; Chou, W.-C.; Fan, W. C.; Murphy, J. R.; Cartwright, A. N.; Sellers, I. R.; Petukhov, A. G.; Žutić, I.; McCombe, B. D.; Petrou, A.

    2015-07-01

    We used continuous wave photoluminescence (cw-PL) and time-resolved photoluminescence (TR-PL) spectroscopy to compare the properties of magnetic polarons (MP) in two related spatially indirect II-VI epitaxially grown quantum dot systems. In the ZnTe /(Zn ,Mn )Se system the holes are confined in the nonmagnetic ZnTe quantum dots (QDs), and the electrons reside in the magnetic (Zn,Mn)Se matrix. On the other hand, in the (Zn ,Mn )Te /ZnSe system, the holes are confined in the magnetic (Zn,Mn)Te QDs, while the electrons remain in the surrounding nonmagnetic ZnSe matrix. The magnetic polaron formation energies EMP in both systems were measured from the temporal redshift of the band-edge emission. The magnetic polaron exhibits distinct characteristics depending on the location of the Mn ions. In the ZnTe /(Zn ,Mn )Se system the magnetic polaron shows conventional behavior with EMP decreasing with increasing temperature T and increasing magnetic field B . In contrast, EMP in the (Zn ,Mn )Te /ZnSe system has unconventional dependence on temperature T and magnetic field B ; EMP is weakly dependent on T as well as on B . We discuss a possible origin for such a striking difference in the MP properties in two closely related QD systems.

  11. [Study of PL Spectra of PbSe Quantum Dots for IC Chip Temperature Dependence].

    PubMed

    Wang, He-lin; Zhang, Yu; Liu, Wen-yan; Wang, Guo-guang; Zhang, Tie-qiang

    2015-05-01

    Colloidal PbSe QDs were prepared with the particle size of 3. 6, 5. 1 and 6. 0 nm, and the temperature-dependent optical properties of colloidal PbSe QDs were investigated. At the room temperature, the experiment showed that there is red shift with increasing temperature; photoluminescence spectra of large size colloidal PbSe QDs is blue shifted with increasing temperature. Proposed a temperature detection method of integrated circuit was proposed based on photoluminescence spectra of colloidal PbSe QDs. The method for temperature detection includes colloidal PbSe quantum dots deposited on the surface of the printed circuit board, colloidal PbSe quantum dots of the surface are excited by the laser and infrared spectrometer receives photoluminescence spectra. Image acquisition system used for micron scale areas of temperature detection collects a tiny and specific areas imaging in the surface of chip. Experiments showed that the measurement accuracy is ±3 °C and the relative error is less than 5%. PMID:26415421

  12. Blood group antigen studies using CdTe quantum dots and flow cytometry

    PubMed Central

    Cabral Filho, Paulo E; Pereira, Maria IA; Fernandes, Heloise P; de Thomaz, Andre A; Cesar, Carlos L; Santos, Beate S; Barjas-Castro, Maria L; Fontes, Adriana

    2015-01-01

    New methods of analysis involving semiconductor nanocrystals (quantum dots [QDs]) as fluorescent probes have been highlighted in life science. QDs present some advantages when compared to organic dyes, such as size-tunable emission spectra, broad absorption bands, and principally exceptional resistance to photobleaching. Methods applying QDs can be simple, not laborious, and can present high sensibility, allowing biomolecule identification and quantification with high specificity. In this context, the aim of this work was to apply dual-color CdTe QDs to quantify red blood cell (RBC) antigen expression on cell surface by flow cytometric analysis. QDs were conjugated to anti-A or anti-B monoclonal antibodies, as well as to the anti-H (Ulex europaeus I) lectin, to investigate RBCs of A1, B, A1B, O, A2, and Aweak donors. Bioconjugates were capable of distinguishing the different expressions of RBC antigens, both by labeling efficiency and by flow cytometry histogram profile. Furthermore, results showed that RBCs from Aweak donors present fewer amounts of A antigens and higher amounts of H, when compared to A1 RBCs. In the A group, the amount of A antigens decreased as A1 > A3 > AX = Ael, while H antigens were AX = Ael > A1. Bioconjugates presented stability and remained active for at least 6 months. In conclusion, this methodology with high sensibility and specificity can be applied to study a variety of RBC antigens, and, as a quantitative tool, can help in achieving a better comprehension of the antigen expression patterns on RBC membranes. PMID:26185442

  13. Blood group antigen studies using CdTe quantum dots and flow cytometry.

    PubMed

    Cabral Filho, Paulo E; Pereira, Maria I A; Fernandes, Heloise P; de Thomaz, Andre A; Cesar, Carlos L; Santos, Beate S; Barjas-Castro, Maria L; Fontes, Adriana

    2015-01-01

    New methods of analysis involving semiconductor nanocrystals (quantum dots [QDs]) as fluorescent probes have been highlighted in life science. QDs present some advantages when compared to organic dyes, such as size-tunable emission spectra, broad absorption bands, and principally exceptional resistance to photobleaching. Methods applying QDs can be simple, not laborious, and can present high sensibility, allowing biomolecule identification and quantification with high specificity. In this context, the aim of this work was to apply dual-color CdTe QDs to quantify red blood cell (RBC) antigen expression on cell surface by flow cytometric analysis. QDs were conjugated to anti-A or anti-B monoclonal antibodies, as well as to the anti-H (Ulex europaeus I) lectin, to investigate RBCs of A1, B, A1B, O, A2, and Aweak donors. Bioconjugates were capable of distinguishing the different expressions of RBC antigens, both by labeling efficiency and by flow cytometry histogram profile. Furthermore, results showed that RBCs from Aweak donors present fewer amounts of A antigens and higher amounts of H, when compared to A1 RBCs. In the A group, the amount of A antigens decreased as A1 > A3 > AX = Ael, while H antigens were AX = Ael > A1. Bioconjugates presented stability and remained active for at least 6 months. In conclusion, this methodology with high sensibility and specificity can be applied to study a variety of RBC antigens, and, as a quantitative tool, can help in achieving a better comprehension of the antigen expression patterns on RBC membranes. PMID:26185442

  14. Optically Modulated Bistability in Quantum Dot Resonant Tunneling Diodes

    NASA Astrophysics Data System (ADS)

    Weng, Qian-Chun; An, Zheng-Hua; Hou, Ying; Zhu, Zi-Qiang

    2013-04-01

    InAs quantum dots are introduced into resonant tunneling diodes to study the electronic transport behavior, and a wide bistability (ΔV ~ 0.8 V) is observed in the negative differential resistance region. Based on an analytic model, we attribute the observed distinct bistability of a resonant tunneling diodes with quantum dots to the feedback dependence of energy of the electron-storing quantum dots on the tunneling current density. Meanwhile, we find that this wide bistable region can be modulated sensitively by light illumination and becomes narrower with increasing light intensity. Our results suggest that the present devices can be potentially used as sensitive photodetectors in optoelectronic fields.

  15. Hybrid entanglement in a triple-quantum-dot shuttle device

    NASA Astrophysics Data System (ADS)

    Mora, J.; Cota, E.; Rojas, F.

    2014-10-01

    We study the H3×N hybrid entanglement between charge and vibrational modes in a triple-quantum-dot shuttle system. Three quantum dots are linearly connected, with the outer dots fixed and the central dot oscillating, described as a quantum harmonic oscillator with oscillation modes that are entangled with the electronic states of the quantum dots. The entangled states are characterized by the Schmidt number as a function of the parameters of the system: detuning and inverse tunneling length. We show that at steady state, as a function of detuning, the excited states of lower energy present Bell-type entanglement 2×N, with the participation of two quantum dots, while the more energetic excited states present 3×N entanglement, with the participation of three quantum dots. In the stationary regime, we find qualitative relationships between the maxima of the electronic current and the Schmidt number. Also, the time evolution of the degree of entanglement for a particular initial condition is studied in the presence of a time-dependent electric field and we evaluate the effects on entanglement of the condition of coherent destruction of tunneling.

  16. Magnon-driven quantum dot refrigerators

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Huang, Chuankun; Liao, Tianjun; Chen, Jincan

    2015-12-01

    A new model of refrigerator consisting of a spin-splitting quantum dot coupled with two ferromagnetic reservoirs and a ferromagnetic insulator is proposed. The rate equation is used to calculate the occupation probabilities of the quantum dot. The expressions of the electron and magnon currents are obtained. The region that the system can work in as a refrigerator is determined. The cooling power and coefficient of performance (COP) of the refrigerator are derived. The influences of the magnetic field, applied voltage, and polarization of two leads on the performance are discussed. The performances of two different magnon-driven quantum dot refrigerators are compared.

  17. Fluorescent Quantum Dots for Biological Labeling

    NASA Technical Reports Server (NTRS)

    McDonald, Gene; Nadeau, Jay; Nealson, Kenneth; Storrie-Lomardi, Michael; Bhartia, Rohit

    2003-01-01

    Fluorescent semiconductor quantum dots that can serve as "on/off" labels for bacteria and other living cells are undergoing development. The "on/off" characterization of these quantum dots refers to the fact that, when properly designed and manufactured, they do not fluoresce until and unless they come into contact with viable cells of biological species that one seeks to detect. In comparison with prior fluorescence-based means of detecting biological species, fluorescent quantum dots show promise for greater speed, less complexity, greater sensitivity, and greater selectivity for species of interest. There are numerous potential applications in medicine, environmental monitoring, and detection of bioterrorism.

  18. Theoretical study of light-emission properties of amorphous silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Nishio, Kengo; Kōga, Junichiro; Yamaguchi, Toshio; Yonezawa, Fumiko

    2003-05-01

    In order to clarify the mechanism of the photoluminescence (PL) from amorphous silicon quantum dots (a-Si QDs), we calculate, in the tight-binding scheme, the emission spectra and the radiative recombination rate P of the direct band-to-band recombination process. For a-Si QDs smaller than 2.4 nm in diameter, our calculations beautifully reproduce the peak energy EPL of the experimental PL peak [N.-M. Park et al., Phys. Rev. Lett. 86, 1355 (2001)]. Our analysis also show that (i) the emission energy can be tuned into the visible range of light from red to blue by controlling the sizes of a-Si QDs, and that (ii) P calculated for a-Si QDs is higher by two to three orders of magnitude than that for crystalline Si QDs. From these results, we assert that a-Si QDs are promising candidates for visible, tunable, and high-performance light-emitting devices.

  19. Theoretical studies of excitons in type II CdSe/CdTe quantum dots

    NASA Astrophysics Data System (ADS)

    Miloszewski, Jacek M.; Tomić, Stanko; Binks, David

    2014-06-01

    We present a method for calculating exciton and bi-exciton energies in type-II colloidal quantum dots. Our methodology is based on an 8-band k · p Hamiltonian of the zinc- blend structure, which incorporates the effects of spin-orbit interaction, strain between the core and the shell and piezoelectric potentials. Exciton states are found using the configuration interaction (CI) method that explicitly includes the effects of Coulomb interaction, as well as exchange and correlation between many-electron configurations. We pay particular attention to accurate modelling of the electrostatic interaction between quasiparticles. The model includes surface polarization and self-polarization effects due to the large difference in dielectric constants at the boundary of the QD.

  20. Band parameters of InGaAs/GaAs quantum dots: electronic properties study

    NASA Astrophysics Data System (ADS)

    Yahyaoui, M.; Sellami, K.; Boujdaria, K.; Chamarro, M.; Testelin, C.

    2013-12-01

    We have made a systematic investigation of the band diagram calculation of strained and unstrained InxGa1 - xAs alloys in order to extract accurate and adapted parameters which are useful to the electronic properties of InxGa1 - xAs/GaAs quantum dots. As an application, the 40-band k.p model is used to describe the band offsets as well as the band parameters in the strained InxGa1 - xAs/GaAs system. The κ valence band parameter as well as g* Landé factor depending of the indium concentration were estimated. These results are analyzed and compared with experiment.

  1. Reprint of : Regular and singular Fermi liquid in triple quantum dots: Coherent transport studies

    NASA Astrophysics Data System (ADS)

    Tooski, S. B.; Ramšak, A.; Bułka, B. R.

    2016-08-01

    A system of three coupled quantum dots in a triangular geometry (TQD) with electron-electron interaction and symmetrically coupled to two leads is analyzed with respect to the electron transport by means of the numerical renormalization group. Varying gate potentials this system exhibits extremely rich range of regimes with different many-electron states with various local spin orderings. It is demonstrated how the Luttinger phase changes in a controlled manner which then via the Friedel sum rule formula exactly reproduces the conductance through the TQD system. The analysis of the uncoupled TQD molecule from the leads gives a reliable qualitative understanding of various relevant regimes and an insight into the phase diagram with the regular Fermi liquid and singular-Fermi liquid phases.

  2. Free-Radical-Assisted Rapid Synthesis of Graphene Quantum Dots and Their Oxidizability Studies.

    PubMed

    Li, Yan; Liu, Hui; Liu, Xin-Qian; Li, Sen; Wang, Lifeng; Ma, Ning; Qiu, Dengli

    2016-08-30

    This work reports a modified electrochemical method for rapid and large-scale preparing graphene quantum dots (GQDs) by introduction of active free radicals, which were produced by hydrogen peroxide or ultraviolet radiation. These free radicals can deepen the oxidized or reduced level of working electrode in electrochemical process and thus lead to GQDs with high concentration and small size, but different surface oxidized degree. The improved oxidation and reduction mechanism were analyzed in this work. Meanwhile, the optical properties and oxidizability of GQDs with different surface oxidized degree were investigated. It is found that these GQDs can be used as an oxidizing agent and their oxidizability is related to the degree being oxidized. PMID:27506575

  3. Regular and singular Fermi liquid in triple quantum dots: Coherent transport studies

    NASA Astrophysics Data System (ADS)

    Tooski, S. B.; Ramšak, A.; Bułka, B. R.

    2016-01-01

    A system of three coupled quantum dots in a triangular geometry (TQD) with electron-electron interaction and symmetrically coupled to two leads is analyzed with respect to the electron transport by means of the numerical renormalization group. Varying gate potentials this system exhibits extremely rich range of regimes with different many-electron states with various local spin orderings. It is demonstrated how the Luttinger phase changes in a controlled manner which then via the Friedel sum rule formula exactly reproduces the conductance through the TQD system. The analysis of the uncoupled TQD molecule from the leads gives a reliable qualitative understanding of various relevant regimes and an insight into the phase diagram with the regular Fermi liquid and singular-Fermi liquid phases.

  4. Role of Surface Termination on Hot Electron Relaxation in Silicon Quantum Dots: A First-Principles Dynamics Simulation Study.

    PubMed

    Reeves, Kyle G; Schleife, André; Correa, Alfredo A; Kanai, Yosuke

    2015-10-14

    The role of surface termination on phonon-mediated relaxation of an excited electron in quantum dots was investigated using first-principles simulations. The surface terminations of a silicon quantum dot with hydrogen and fluorine atoms lead to distinctively different relaxation behaviors, and the fluorine termination shows a nontrivial relaxation process. The quantum confined electronic states are significantly affected by the surface of the quantum dot, and we find that a particular electronic state dictates the relaxation behavior through its infrequent coupling to neighboring electronic states. Dynamical fluctuation of this electronic state results in a slow shuttling behavior within the manifold of unoccupied electronic states, controlling the overall dynamics of the excited electron with its characteristic frequency of this shuttling behavior. The present work revealed a unique role of surface termination, dictating the hot electron relaxation process in quantum-confined systems in the way that has not been considered previously. PMID:26331672

  5. Quantum dots and prion proteins

    PubMed Central

    Sobrova, Pavlina; Blazkova, Iva; Chomoucka, Jana; Drbohlavova, Jana; Vaculovicova, Marketa; Kopel, Pavel; Hubalek, Jaromir; Kizek, Rene; Adam, Vojtech

    2013-01-01

    A diagnostics of infectious diseases can be done by the immunologic methods or by the amplification of nucleic acid specific to contagious agent using polymerase chain reaction. However, in transmissible spongiform encephalopathies, the infectious agent, prion protein (PrPSc), has the same sequence of nucleic acids as a naturally occurring protein. The other issue with the diagnosing based on the PrPSc detection is that the pathological form of prion protein is abundant only at late stages of the disease in a brain. Therefore, the diagnostics of prion protein caused diseases represent a sort of challenges as that hosts can incubate infectious prion proteins for many months or even years. Therefore, new in vivo assays for detection of prion proteins and for diagnosis of their relation to neurodegenerative diseases are summarized. Their applicability and future prospects in this field are discussed with particular aim at using quantum dots as fluorescent labels. PMID:24055838

  6. Coupling and single-photon purity of a quantum dot-cavity system studied using hydrostatic pressure

    SciTech Connect

    Zhou, P. Y.; Wu, X. F.; Ding, K.; Dou, X. M.; Zha, G. W.; Ni, H. Q.; Niu, Z. C.; Zhu, H. J.; Jiang, D. S.; Zhao, C. L.; Sun, B. Q.

    2015-01-07

    We propose an approach to tune the emission of a single semiconductor quantum dot (QD) to couple with a planar cavity using hydrostatic pressure without inducing temperature variation during the process of measurement. Based on this approach, we studied the influence of cavity mode on the single-photon purity of an InAs/GaAs QD. Our measurement demonstrates that the single-photon purity degrades when the QD emission resonates with the cavity mode. This negative influence of the planar cavity is mainly caused by the cavity feeding effect.

  7. Trapping photon-dressed Dirac electrons in a quantum dot studied by coherent two dimensional photon echo spectroscopy

    PubMed Central

    Roslyak, O.; Gumbs, Godfrey; Mukamel, S.

    2012-01-01

    We study the localization of dressed Dirac electrons in a cylindrical quantum dot (QD) formed on monolayer and bilayer graphene by spatially different potential profiles. Short lived excitonic states which are too broad to be resolved in linear spectroscopy are revealed by cross peaks in the photon-echo nonlinear technique. Signatures of the dynamic gap in the two-dimensional spectra are discussed. The effect of the Coulomb induced exciton-exciton scattering and the formation of biexciton molecules are demonstrated. PMID:22612079

  8. Triple quantum dots as charge rectifiers.

    PubMed

    Busl, M; Platero, G

    2012-04-18

    We theoretically analyze electronic spin transport through a triple quantum dot in series, attached to electrical contacts, where the drain contact is coupled to the central dot. We show that current rectification is observed in the device due to current blockade. The current blocking mechanism is originated by a destructive interference of the electronic wavefunction at the drain dot. There, the electrons are coherently trapped in a singlet two-electron dark state, which is a coherent superposition of the electronic wavefunction in the source dot and in the dot isolated from the contacts. Its formation gives rise to zero current and current rectification as the voltage is swept. We analyze this behavior analytically and numerically for both zero and finite magnetic dc fields. On top of that, we include phenomenologically a finite spin relaxation rate and calculate the current numerically. Our results show that triple dots in series can be designed to behave as quantum charge rectifiers. PMID:22442135

  9. Theory Of Alkyl Terminated Silicon Quantum Dots

    SciTech Connect

    Reboredo, F; Galli, G

    2004-08-19

    We have carried out a series of ab-initio calculations to investigate changes in the optical properties of Si quantum dots as a function of surface passivation. In particular, we have compared hydrogen passivated dots with those having alkyl groups at the surface. We find that, while on clusters with reconstructed surfaces a complete alkyl passivation is possible, steric repulsion prevents full passivation of Si dots with unreconstructed surfaces. In addition, our calculations show that steric repulsion may have a dominant effect in determining the surface structure, and eventually the stability of alkyl passivated clusters, with results dependent on the length of the carbon chain. Alkyl passivation weakly affects optical gaps of silicon quantum dots, while it substantially decreases ionization potentials and electron affinities and affect their excited state properties. On the basis of our results we propose that alkyl terminated quantum dots may be size selected taking advantage of the change in ionization potential as a function of the cluster size.

  10. Multi-million atom electronic structure calculations for quantum dots

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad

    stark shift, coherent coupling of electronic states in a quantum dot molecule etc.; (3) to assess the potential use of the quantum dots in real device implementation and to provide physical insight to the experimentalists. Full three dimensional strain and electronic structure simulations of quantum dot structures containing multi-million atoms are done using NEMO 3-D. Both single and vertically stacked quantum dot structures are analyzed in detail. The results show that the strain and the piezoelectricity significantly impact the electronic structure of these devices. This work shows that the InAs quantum dots when placed in the InGaAs quantum well red shifts the emission wavelength. Such InAs/GaAs-based optical devices can be used for optical-fiber based communication systems at longer wavelengths (1.3um -- 1.5um). Our atomistic simulations of InAs/InGaAs/GaAs quantum dots quantitatively match with the experiment and give the critical insight of the physics involved in these structures. A single quantum dot molecule is studied for coherent quantum coupling of electronic states under the influence of static electric field applied in the growth direction. Such nanostructures can be used in the implementation of quantum information technologies. A close quantitative match with the experimental optical measurements allowed us to get a physical insight into the complex physics of quantum tunnel couplings of electronic states as the device operation switches between atomic and molecular regimes. Another important aspect is to design the quantum dots for a desired isotropic polarization of the optical emissions. Both single and coupled quantum dots are studied for TE/TM ratio engineering. The atomistic study provides a detailed physical analysis of these computationally expensive large nanostructures and serves as a guide for the experimentalists for the design of the polarization independent devices for the optical communication systems.

  11. Generation of singlet oxygen and other radical species by quantum dot and carbon dot nanosensitizers

    NASA Astrophysics Data System (ADS)

    Generalov, Roman; Christensen, Ingeborg L.; Chen, Wei; Sun, Ya-Ping; Kristensen, Solveig; Juzenas, Petras

    2009-06-01

    Medicinal applications of luminescent semiconductor quantum dots are of growing interest. In spite of the fact that their fabrication and imaging applications have been extensively investigated for the last decade, very little is documented on photodynamic action of quantum dots. In this study we demonstrate generation of singlet oxygen and other radical species upon exposure of quantum dots to blue light and therapeutic red light. Extent of radical production can be readily modified by antioxidants. Lay and scientific communities are two sites concerning potential hazards and enthusiastic applications of nanotechnology. Synthesis of quantum dots composed of less toxic materials is of great interest. A new candidate is a ubiquitous element carbon, which on nanoscale exhibits strong photoluminescence.

  12. Electro-absorption of silicene and bilayer graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Abdelsalam, Hazem; Talaat, Mohamed H.; Lukyanchuk, Igor; Portnoi, M. E.; Saroka, V. A.

    2016-07-01

    We study numerically the optical properties of low-buckled silicene and AB-stacked bilayer graphene quantum dots subjected to an external electric field, which is normal to their surface. Within the tight-binding model, the optical absorption is calculated for quantum dots, of triangular and hexagonal shapes, with zigzag and armchair edge terminations. We show that in triangular silicene clusters with zigzag edges a rich and widely tunable infrared absorption peak structure originates from transitions involving zero energy states. The edge of absorption in silicene quantum dots undergoes red shift in the external electric field for triangular clusters, whereas blue shift takes place for hexagonal ones. In small clusters of bilayer graphene with zigzag edges the edge of absorption undergoes blue/red shift for triangular/hexagonal geometry. In armchair clusters of silicene blue shift of the absorption edge takes place for both cluster shapes, while red shift is inherent for both shapes of the bilayer graphene quantum dots.

  13. Quantum dot conjugates in a sub-micrometer fluidic channel

    DOEpatents

    Stavis, Samuel M.; Edel, Joshua B.; Samiee, Kevan T.; Craighead, Harold G.

    2010-04-13

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  14. Quantum dot conjugates in a sub-micrometer fluidic channel

    DOEpatents

    Stavis, Samuel M.; Edel, Joshua B.; Samiee, Kevan T.; Craighead, Harold G.

    2008-07-29

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  15. Energy levels of hybrid monolayer-bilayer graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Mirzakhani, M.; Zarenia, M.; Ketabi, S. A.; da Costa, D. R.; Peeters, F. M.

    2016-04-01

    Often real samples of graphene consist of islands of both monolayer and bilayer graphene. Bound states in such hybrid quantum dots are investigated for (i) a circular single-layer graphene quantum dot surrounded by an infinite bilayer graphene sheet and (ii) a circular bilayer graphene quantum dot surrounded by an infinite single-layer graphene. Using the continuum model and applying zigzag boundary conditions at the single-layer-bilayer graphene interface, we obtain analytical results for the energy levels and the corresponding wave spinors. Their dependence on perpendicular magnetic and electric fields are studied for both types of quantum dots. The energy levels exhibit characteristics of interface states, and we find anticrossings and closing of the energy gap in the presence of a bias potential.

  16. Quantum Hall effect in semiconductor systems with quantum dots and antidots

    SciTech Connect

    Beltukov, Ya. M.; Greshnov, A. A.

    2015-04-15

    The integer quantum Hall effect in systems of semiconductor quantum dots and antidots is studied theoretically as a factor of temperature. It is established that the conditions for carrier localization in quantum-dot systems favor the observation of the quantum Hall effect at higher temperatures than in quantum-well systems. The obtained numerical results show that the fundamental plateau corresponding to the transition between the ground and first excited Landau levels can be retained up to a temperature of T ∼ 50 K, which is an order of magnitude higher than in the case of quantum wells. Implementation of the quantum Hall effect at such temperatures requires quantum-dot systems with controllable characteristics, including the optimal size and concentration and moderate geometrical and composition fluctuations. In addition, ordered arrangement is desirable, hence quantum antidots are preferable.

  17. Nanomaterials: Earthworms lit with quantum dots

    NASA Astrophysics Data System (ADS)

    Tilley, Richard D.; Cheong, Soshan

    2013-01-01

    Yeast, bacteria and fungi have been used to synthesize a variety of nanocrystals. Now, the metal detoxification process in the gut of an earthworm is exploited to produce biocompatible cadmium telluride quantum dots.

  18. Coherent radiation by quantum dots and magnetic nanoclusters

    SciTech Connect

    Yukalov, V. I.; Yukalova, E. P.

    2014-03-31

    The assemblies of either quantum dots or magnetic nanoclusters are studied. It is shown that such assemblies can produce coherent radiation. A method is developed for solving the systems of nonlinear equations describing the dynamics of such assemblies. The method is shown to be general and applicable to systems of different physical nature. Despite mathematical similarities of dynamical equations, the physics of the processes for quantum dots and magnetic nanoclusters is rather different. In a quantum dot assembly, coherence develops due to the Dicke effect of dot interactions through the common radiation field. For a system of magnetic clusters, coherence in the spin motion appears due to the Purcell effect caused by the feedback action of a resonator. Self-organized coherent spin radiation cannot arise without a resonator. This principal difference is connected with the different physical nature of dipole forces between the objects. Effective dipole interactions between the radiating quantum dots, appearing due to photon exchange, collectivize the dot radiation. While the dipolar spin interactions exist from the beginning, yet before radiation, and on the contrary, they dephase spin motion, thus destroying the coherence of moving spins. In addition, quantum dot radiation exhibits turbulent photon filamentation that is absent for radiating spins.

  19. Submonolayer Quantum Dot Infrared Photodetector

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Bandara, Sumith V.; Gunapala, Sarath D.; Chang, Yia-Chang

    2010-01-01

    A method has been developed for inserting submonolayer (SML) quantum dots (QDs) or SML QD stacks, instead of conventional Stranski-Krastanov (S-K) QDs, into the active region of intersubband photodetectors. A typical configuration would be InAs SML QDs embedded in thin layers of GaAs, surrounded by AlGaAs barriers. Here, the GaAs and the AlGaAs have nearly the same lattice constant, while InAs has a larger lattice constant. In QD infrared photodetector, the important quantization directions are in the plane perpendicular to the normal incidence radiation. In-plane quantization is what enables the absorption of normal incidence radiation. The height of the S-K QD controls the positions of the quantized energy levels, but is not critically important to the desired normal incidence absorption properties. The SML QD or SML QD stack configurations give more control of the structure grown, retains normal incidence absorption properties, and decreases the strain build-up to allow thicker active layers for higher quantum efficiency.

  20. Renormalization in Periodically Driven Quantum Dots.

    PubMed

    Eissing, A K; Meden, V; Kennes, D M

    2016-01-15

    We report on strong renormalization encountered in periodically driven interacting quantum dots in the nonadiabatic regime. Correlations between lead and dot electrons enhance or suppress the amplitude of driving depending on the sign of the interaction. Employing a newly developed flexible renormalization-group-based approach for periodic driving to an interacting resonant level we show analytically that the magnitude of this effect follows a power law. Our setup can act as a non-Markovian, single-parameter quantum pump. PMID:26824557

  1. First principle thousand atom quantum dot calculations

    SciTech Connect

    Wang, Lin-Wang; Li, Jingbo

    2004-03-30

    A charge patching method and an idealized surface passivation are used to calculate the single electronic states of IV-IV, III-V, II-VI semiconductor quantum dots up to a thousand atoms. This approach scales linearly and has a 1000 fold speed-up compared to direct first principle methods with a cost of eigen energy error of about 20 meV. The calculated quantum dot band gaps are parametrized for future references.

  2. Electron Spin Dynamics in Semiconductor Quantum Dots

    SciTech Connect

    Marie, X.; Belhadj, T.; Urbaszek, B.; Amand, T.; Krebs, O.; Lemaitre, A.; Voisin, P.

    2011-07-15

    An electron spin confined to a semiconductor quantum dot is not subject to the classical spin relaxation mechanisms known for free carriers but it strongly interacts with the nuclear spin system via the hyperfine interaction. We show in time resolved photoluminescence spectroscopy experiments on ensembles of self assembled InAs quantum dots in GaAs that this interaction leads to strong electron spin dephasing.

  3. Double quantum dot in a quantum dash: Optical properties

    SciTech Connect

    Kaczmarkiewicz, Piotr Machnikowski, Paweł; Kuhn, Tilmann

    2013-11-14

    We study the optical properties of highly elongated, highly flattened quantum dot structures, also referred to as quantum dashes, characterized by the presence of two trapping centers located along the structure. Such a system can exhibit some of the properties characteristic for double quantum dots. We show that sub- and super-radiant states can form for certain quantum dash geometries, which is manifested by a pronounced transfer of intensity between spectral lines, accompanied by the appearance of strong electron-hole correlations. We also compare exciton absorption spectra and polarization properties of a system with a single and double trapping center and show how the geometry of multiple trapping centers influences the optical properties of the system. We show that for a broad range of trapping geometries the relative absorption intensity of the ground state is larger than that of the lowest excited states, contrary to the quantum dash systems characterized by a single trapping center. Thus, optical properties of these structures are determined by fine details of their morphology.

  4. Suppression of low-frequency charge noise in gates-defined GaAs quantum dots

    SciTech Connect

    You, Jie; Li, Hai-Ou E-mail: gpguo@ustc.edu.cn; Wang, Ke; Cao, Gang; Song, Xiang-Xiang; Xiao, Ming; Guo, Guo-Ping E-mail: gpguo@ustc.edu.cn

    2015-12-07

    To reduce the charge noise of a modulation-doped GaAs/AlGaAs quantum dot, we have fabricated shallow-etched GaAs/AlGaAs quantum dots using the wet-etching method to study the effects of two-dimensional electron gas (2DEG) underneath the metallic gates. The low-frequency 1/f noise in the Coulomb blockade region of the shallow-etched quantum dot is compared with a non-etched quantum dot on the same wafer. The average values of the gate noise are approximately 0.5 μeV in the shallow-etched quantum dot and 3 μeV in the regular quantum dot. Our results show the quantum dot low-frequency charge noise can be suppressed by the removal of the 2DEG underneath the metallic gates, which provides an architecture for noise reduction.

  5. Height control of self-assembled quantum dots by strain engineering during capping

    SciTech Connect

    Grossi, D. F. Koenraad, P. M.; Smereka, P.; Keizer, J. G.; Ulloa, J. M.

    2014-10-06

    Strain engineering during the capping of III-V quantum dots has been explored as a means to control the height of strained self-assembled quantum dots. Results of Kinetic Monte Carlo simulations are confronted with cross-sectional Scanning Tunnel Microscopy (STM) measurements performed on InAs quantum dots grown by molecular beam epitaxy. We studied InAs quantum dots that are capped by In{sub x}Ga{sub (1−x)}As layers of different indium compositions. Both from our realistic 3D kinetic Monte Carlo simulations and the X-STM measurements on real samples, a trend in the height of the capped quantum dot is found as a function of the lattice mismatch between the quantum dot material and the capping layer. Results obtained on additional material combinations show a generic role of the elastic energy in the control of the quantum dot morphology by strain engineering during capping.

  6. Optimal control strategies for coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Räsänen, Esa; Putaja, Antti; Mardoukhi, Yousof

    2013-09-01

    Semiconductor quantum dots are ideal candidates for quantum information applications in solid-state technology. However, advanced theoretical and experimental tools are required to coherently control, for example, the electronic charge in these systems. Here we demonstrate how quantum optimal control theory provides a powerful way to manipulate the electronic structure of coupled quantum dots with an extremely high fidelity. As alternative control fields we apply both laser pulses as well as electric gates, respectively. We focus on double and triple quantum dots containing a single electron or two electrons interacting via Coulomb repulsion. In the two-electron situation we also briefly demonstrate the challenges of timedependent density-functional theory within the adiabatic local-density approximation to produce comparable results with the numerically exact approach.

  7. Annealing-induced change in quantum dot chain formation mechanism

    NASA Astrophysics Data System (ADS)

    Park, Tyler D.; Colton, John S.; Farrer, Jeffrey K.; Yang, Haeyeon; Kim, Dong Jun

    2014-12-01

    Self-assembled InGaAs quantum dot chains were grown using a modified Stranski-Krastanov method in which the InGaAs layer is deposited under a low growth temperature and high arsenic overpressure, which suppresses the formation of dots until a later annealing process. The dots are capped with a 100 nm GaAs layer. Three samples, having three different annealing temperatures of 460°C, 480°C, and 500°C, were studied by transmission electron microscopy. Results indicate two distinct types of dot formation processes: dots in the 460°C and 480°C samples form from platelet precursors in a one-to-one ratio whereas the dots in the sample annealed at 500°C form through the strain-driven self-assembly process, and then grow larger via an additional Ostwald ripening process whereby dots grow into larger dots at the expense of smaller seed islands. There are consequently significant morphological differences between the two types of dots, which explain many of the previously-reported differences in optical properties. Moreover, we also report evidence of indium segregation within the dots, with little or no indium intermixing between the dots and the surrounding GaAs barrier.

  8. Annealing-induced change in quantum dot chain formation mechanism

    SciTech Connect

    Park, Tyler D.; Colton, John S.; Farrer, Jeffrey K.; Yang, Haeyeon; Kim, Dong Jun

    2014-12-15

    Self-assembled InGaAs quantum dot chains were grown using a modified Stranski-Krastanov method in which the InGaAs layer is deposited under a low growth temperature and high arsenic overpressure, which suppresses the formation of dots until a later annealing process. The dots are capped with a 100 nm GaAs layer. Three samples, having three different annealing temperatures of 460°C, 480°C, and 500°C, were studied by transmission electron microscopy. Results indicate two distinct types of dot formation processes: dots in the 460°C and 480°C samples form from platelet precursors in a one-to-one ratio whereas the dots in the sample annealed at 500°C form through the strain-driven self-assembly process, and then grow larger via an additional Ostwald ripening process whereby dots grow into larger dots at the expense of smaller seed islands. There are consequently significant morphological differences between the two types of dots, which explain many of the previously-reported differences in optical properties. Moreover, we also report evidence of indium segregation within the dots, with little or no indium intermixing between the dots and the surrounding GaAs barrier.

  9. Electron charging in epitaxial germanium quantum dots on silicon (100)

    NASA Astrophysics Data System (ADS)

    Ketharanathan, Sutharsan

    The electron charging behavior of self assembled epitaxial Ge quantum dots on Si(100) grown using molecular beam epitaxy has been studied. Ge quantum dots encapsulated in n-type Si matrix were incorporated into Schottky diodes to investigate their charging behavior using capacitance-voltage measurements. These experimental results were interpreted in the context of theoretical models to assess the degree of charge localization to the dot. Experiments involving Ge quantum dot growth, growth of Sb-doped Si and morphological evolution during encapsulation of the Ge dots during Si overgrowth were performed in order to optimize the conditions for obtaining distinct Ge quantum dot morphologies. This investigation included finding a suitable method to minimize Sb segregation while maintaining good dot epitaxy and overall crystal quality. Holes are confined to the Ge dots for which the valence band offsets are large (˜650 meV). Electrons are confined to the strained Si regions adjacent to the Ge quantum dots which have relatively smaller confinement potentials (˜100--150 meV). Experimentally, it was found that but and pyramid clusters in the range from 20--40 nm in diameter confine ˜1electron per dot while dome clusters in the range from 60--80 nm diameter confine ˜6--8 electrons per dot. Theoretical simulations predict that similar pyramid structures confine ˜0.4 electrons per dot and dome structures confine ˜2.2--3 electrons per dot. Even though the theory and the experimental results disagree due to various uncertainties and approximations, the ratio between theory and experiment agree remarkably well for both island types. We also investigated constructive three-dimensional nanolithography. Nanoscale Au rich dots and pure Ge dots were deposited on SiO2 and Si3N4 substrates by decomposing adsorbed precursors using a focused electron beam in an environmental transmission electron microscope. Dimethyl acetylacetonate gold was used for Au and digermane was used to

  10. Injection of a single electron from static to moving quantum dots

    NASA Astrophysics Data System (ADS)

    Bertrand, Benoit; Hermelin, Sylvain; Mortemousque, Pierre-André; Takada, Shintaro; Yamamoto, Michihisa; Tarucha, Seigo; Ludwig, Arne; Wieck, Andreas D.; Bäuerle, Christopher; Meunier, Tristan

    2016-05-01

    We study the injection mechanism of a single electron from a static quantum dot into a moving quantum dot. The moving quantum dots are created with surface acoustic waves (SAWs) in a long depleted channel. We demonstrate that the injection process is characterized by an activation law with a threshold that depends on the SAW amplitude and on the dot-channel potential gradient. By sufficiently increasing the SAW modulation amplitude, we can reach a regime where the transfer has unity probability and is potentially adiabatic. This study points to the relevant regime to use moving dots in quantum information protocols.

  11. Injection of a single electron from static to moving quantum dots.

    PubMed

    Bertrand, Benoit; Hermelin, Sylvain; Mortemousque, Pierre-André; Takada, Shintaro; Yamamoto, Michihisa; Tarucha, Seigo; Ludwig, Arne; Wieck, Andreas D; Bäuerle, Christopher; Meunier, Tristan

    2016-05-27

    We study the injection mechanism of a single electron from a static quantum dot into a moving quantum dot. The moving quantum dots are created with surface acoustic waves (SAWs) in a long depleted channel. We demonstrate that the injection process is characterized by an activation law with a threshold that depends on the SAW amplitude and on the dot-channel potential gradient. By sufficiently increasing the SAW modulation amplitude, we can reach a regime where the transfer has unity probability and is potentially adiabatic. This study points to the relevant regime to use moving dots in quantum information protocols. PMID:27087057

  12. Quantum-dot-in-perovskite solids.

    PubMed

    Ning, Zhijun; Gong, Xiwen; Comin, Riccardo; Walters, Grant; Fan, Fengjia; Voznyy, Oleksandr; Yassitepe, Emre; Buin, Andrei; Hoogland, Sjoerd; Sargent, Edward H

    2015-07-16

    Heteroepitaxy-atomically aligned growth of a crystalline film atop a different crystalline substrate-is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned 'dots-in-a-matrix' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics. PMID:26178963

  13. Quantum-dot-in-perovskite solids

    NASA Astrophysics Data System (ADS)

    Ning, Zhijun; Gong, Xiwen; Comin, Riccardo; Walters, Grant; Fan, Fengjia; Voznyy, Oleksandr; Yassitepe, Emre; Buin, Andrei; Hoogland, Sjoerd; Sargent, Edward H.

    2015-07-01

    Heteroepitaxy--atomically aligned growth of a crystalline film atop a different crystalline substrate--is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned `dots-in-a-matrix' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.

  14. Luminescent Quantum Dots as Ultrasensitive Biological Labels

    NASA Astrophysics Data System (ADS)

    Nie, Shuming

    2000-03-01

    Highly luminescent semiconductor quantum dots have been covalently coupled to biological molecules for use in ultrasensitive biological detection. This new class of luminescent labels is considerably brighter and more resistant againt photobleaching in comparison with organic dyes. Quantum dots labeled with the protein transferrin undergo receptor-mediated endocytosis (RME) in cultured HeLa cells, and those dots that were conjugated to immunomolecules recognize specific antibodies or antigens. In addition, we show that DNA functionalized quantum dots can be used to target specific genes by hybridization. We expect that quantum dot bioconjugates will have a broad range of biological applications, such as ligand-receptor interactions, real-time monitoring of molecular trafficking inside living cells, multicolor fluorescence in-situ hybridization (FISH), high-sensitivity detection in miniaturized devices (e.g., DNA chips), and fluorescent tagging of combinatorial chemical libraries. A potential clinical application is the use of quantum dots for ultrasensitive viral RNA detection, in which as low as 100 copies of hepatitis C and HIV viruses per ml blood should be detected.

  15. Spectroscopy characterization and quantum yield determination of quantum dots

    NASA Astrophysics Data System (ADS)

    Contreras Ortiz, S. N.; Mejía Ospino, E.; Cabanzo, R.

    2016-02-01

    In this paper we show the characterization of two kinds of quantum dots: hydrophilic and hydrophobic, with core and core/shell respectively, using spectroscopy techniques such as UV-Vis, fluorescence and Raman. We determined the quantum yield in the quantum dots using the quinine sulphate as standard. This salt is commonly used because of its quantum yield (56%) and stability. For the CdTe excitation, we used a wavelength of 549nm and for the CdSe/ZnS excitation a wavelength of 527nm. The results show that CdSe/ZnS (49%) has better fluorescence, better quantum dots, and confirm the fluorescence result. The quantum dots have shown a good fluorescence performance, so this property will be used to replace dyes, with the advantage that quantum dots are less toxic than some dyes like the rhodamine. In addition, in this work we show different techniques to find the quantum dots emission: fluorescence spectrum, synchronous spectrum and Raman spectrum.

  16. Cooper pair splitting in parallel quantum dot Josephson junctions.

    PubMed

    Deacon, R S; Oiwa, A; Sailer, J; Baba, S; Kanai, Y; Shibata, K; Hirakawa, K; Tarucha, S

    2015-01-01

    Devices to generate on-demand non-local spin entangled electron pairs have potential application as solid-state analogues of the entangled photon sources used in quantum optics. Recently, Andreev entanglers that use two quantum dots as filters to adiabatically split and separate the quasi-particles of Cooper pairs have shown efficient splitting through measurements of the transport charge but the spin entanglement has not been directly confirmed. Here we report measurements on parallel quantum dot Josephson junction devices allowing a Josephson current to flow due to the adiabatic splitting and recombination of the Cooper pair between the dots. The evidence for this non-local transport is confirmed through study of the non-dissipative supercurrent while tuning independently the dots with local electrical gates. As the Josephson current arises only from processes that maintain the coherence, we can confirm that a current flows from the spatially separated entangled pair. PMID:26130172

  17. Cooper pair splitting in parallel quantum dot Josephson junctions

    PubMed Central

    Deacon, R. S.; Oiwa, A.; Sailer, J.; Baba, S.; Kanai, Y.; Shibata, K.; Hirakawa, K.; Tarucha, S.

    2015-01-01

    Devices to generate on-demand non-local spin entangled electron pairs have potential application as solid-state analogues of the entangled photon sources used in quantum optics. Recently, Andreev entanglers that use two quantum dots as filters to adiabatically split and separate the quasi-particles of Cooper pairs have shown efficient splitting through measurements of the transport charge but the spin entanglement has not been directly confirmed. Here we report measurements on parallel quantum dot Josephson junction devices allowing a Josephson current to flow due to the adiabatic splitting and recombination of the Cooper pair between the dots. The evidence for this non-local transport is confirmed through study of the non-dissipative supercurrent while tuning independently the dots with local electrical gates. As the Josephson current arises only from processes that maintain the coherence, we can confirm that a current flows from the spatially separated entangled pair. PMID:26130172

  18. Adsorption Kinetics and Binding Studies of Protein Quantum Dots Interaction: A Spectroscopic Approach.

    PubMed

    Vaishanav, Sandeep K; Korram, Jyoti; Nagwanshi, Rekha; Ghosh, Kallol K; Satnami, Manmohan L

    2016-05-01

    Protein Quantum dots interaction is crucial to investigate for better understanding of the biological interactions of QDs. Here in, the model protein Bovine serum albumin (BSA) was used to evaluate the process of protein QDs interaction and adsorption on QDs surface. The modified Stern-Volmer quenching constant (Ka), number of binding sites (n) at different temperatures (298 308 and 318 K ± 1) and corresponding thermodynamic parameters (ΔG < 0, ΔH < 0, and ΔS > 0) were calculated. The quenching constant (Ks) and number of binding sites (n) is found to be inversely proportional to temperature. It signified that static quenching mechanism is dominant over dynamic quenching. The standard free energy change (ΔG < 0) implies that the binding process is spontaneous, while the enthalpy change (ΔH < 0) suggest that the binding of QDs to BSA is an enthalpy-driven process. The standard entropy change (ΔS > 0) suggest that hydrophobic force played a pivotal role in the interaction process. The adsorption process were assessed and evaluated by pseudofirst-order, pseudosecond-order kinetic model, and intraparticle diffusion model. PMID:26825079

  19. Study on the fluorescence resonance energy transfer between CdS quantum dots and Eosin Y.

    PubMed

    Yan, Zhengyu; Zhang, Zhengwei; Yu, Yan; Chen, Jianqiu

    2015-03-01

    Water-soluble CdS quantum dots (QDs) were prepared using mercaptoacetic acid (TGA) as the stabilizer in an aqueous system. A fluorescence resonance energy transfer (FRET) system was constructed between water-soluble CdS QDs (donor) and Eosin Y (acceptor). Several factors that impacted the fluorescence spectra of the FRET system, such as pH (3.05-10.10), concentration of Eosin Y (2-80 mg/L) and concentration of CdS QDs (2-80 mg/L), were investigated and refined. Donor-to-acceptor ratios, the energy transfer efficiency (E) and the distance (r) between CdS QDs and Eosin Y were obtained. The results showed that a FRET system could be established between water-soluble CdS QDs and Eosin Y at pH 5.0; donor-to-acceptor ratios demonstrated a 1: 8 proportion of complexes; the energy transfer efficiency (E) and the distance (r) between the QDs and Eosin Y were 20.07% and 4.36 nm,respectively. PMID:24888328

  20. Magneto-optical studies of (Zn,Mn)Se/ZnTe quantum dots

    NASA Astrophysics Data System (ADS)

    Barman, B.; Tsai, Y.; Scrace, T.; Zutic, I.; McCombe, B. D.; Petrou, A.; Chou, W. C.; Tsou, M. H.; Yang, C. S.; Sellers, I. R.; Oszwaldowski, R.; Petukhov, A. G.

    2014-03-01

    We have recorded the circular polarization P of photoluminescence from (Zn,Mn)Se/ZnTe quantum dots (QDs) as function of magnetic field B. The polarization at a fixed temperature increases monotonically with B and saturates for B >3 tesla at Psat. The value of Psat depends strongly on the laser photon energy. When we excite above (below) the ZnMnSe gap with photons of energy of 3.81 eV (2.54 eV), we measure Psat = 55 %(Psat = 20 %) . We interpret these results as due to the difference in the Zeeman band splitting between the magnetic (Zn,Mn)Se matrix and the non-magnetic ZnTe QDs. For 3.81 eV excitation, electron-hole pairs are generated mainly in the (Zn,Mn)Se matrix. The majority of the holes relax to the +3/2 state before capture by the ZnTe QDs. With 2.54 eV excitation, all electron-hole pairs are excited in the QDs where the Zeeman splitting is negligible. Thus, Psat is determined in this case by the relatively small Zeeman splitting of ZnMnSe conduction band. We relate these findings to our previous results for magnetic type-II QDs, where Psat does not depend on the exciting photon energy. The work at SUNY Buffalo is supported by NSF, DOE-BES, and ONR.

  1. Quantum optics with quantum dots. Towards semiconductor sources of quantum light for quantum information processing

    NASA Astrophysics Data System (ADS)

    Beveratos, Alexios; Abram, Izo; Gérard, Jean-Michel; Robert-Philip, Isabelle

    2014-12-01

    For the past fifteen years, single semiconductor quantum dots, often referred to as solid-state artificial atoms, have been at the forefront of various research direction lines for experimental quantum information science, in particular in the development of practical sources of quantum states of light. Here we review the research to date, on the tailoring of the emission properties from single quantum dots producing single photons, indistinguishable single photons and entangled photon pairs. Finally, the progress and future prospects for applications of single dots in quantum information processing is considered.

  2. Spontaneous emission control of quantum dots embedded in photonic crystals: Effects of external fields and dimension

    NASA Astrophysics Data System (ADS)

    Vaseghi, B.; Hashemi, H.

    2016-06-01

    In this paper simultaneous effects of external electric and magnetic fields and quantum confinement on the radiation properties of spherical quantum dot embedded in a photonic crystal are investigated. Under the influence of photonic band-gap, effects of external static fields and dot dimension on the amplitude and spectrum of different radiation fields emitted by the quantum dot are studied. Our results show the considerable effects of external fields and quantum confinement on the spontaneous emission of the system.

  3. Optically controlled spins in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Economou, Sophia

    2010-03-01

    Spins in charged semiconductor quantum dots are currently generating much interest, both from a fundamental physics standpoint, as well as for their potential technological relevance. Being naturally a two-level quantum system, each of these spins can encode a bit of quantum information. Optically controlled spins in quantum dots possess several desirable properties: their spin coherence times are long, they allow for all-optical manipulation---which translates into fast logic gates---and their coupling to photons offers a straightforward route to exchange of quantum information between spatially separated sites. Designing the laser fields to achieve the unprecedented amount of control required for quantum information tasks is a challenging goal, towards which there has been recent progress. Special properties of hyperbolic secant optical pulses enabled the design of single qubit rotations, initially developed about the growth axis z [1], and later about an arbitrary direction [2]. Recently we demonstrated our theoretical proposal [1] in an ensemble of InAs/GaAs quantum dots by implementing ultrafast rotations about the z axis by an arbitrary angle [3], with the angle of rotation as a function of the optical detuning in excellent agreement with the theoretical prediction. We also developed two-qubit conditional control in a quantum dot `molecule' using the electron-hole exchange interaction [4]. In addition to its importance in quantum dot-based quantum computation, our two-qubit gate can also play an important role in photonic cluster state generation for measurement-based quantum computing [5]. [1] S. E. Economou, L. J. Sham, Y. Wu, D. S. Steel, Phys. Rev. 74, 205415 (2006) [2] S. E. Economou and T. L. Reinecke, Phys. Rev. Lett., 99, 217401 (2007) [3] A. Greilich, S. E. Economou et al, Nature Phys. 5, 262 (2009) [4] S. E. Economou and T. L. Reinecke, Phys. Rev. B, 78, 115306 (2008) [5] S. E. Economou, N. H. Lindner, and T. Rudolph, in preparation

  4. Quantum dots as active material for quantum cascade lasers: comparison to quantum wells

    NASA Astrophysics Data System (ADS)

    Michael, Stephan; Chow, Weng W.; Schneider, Hans Christian

    2016-03-01

    We review a microscopic laser theory for quantum dots as active material for quantum cascade lasers, in which carrier collisions are treated at the level of quantum kinetic equations. The computed characteristics of such a quantum-dot active material are compared to a state-of-the-art quantum-well quantum cascade laser. We find that the current requirement to achieve a comparable gain-length product is reduced compared to that of the quantum-well quantum cascade laser.

  5. Tunneling rate in double quantum dots

    NASA Astrophysics Data System (ADS)

    Filikhin, Igor; Matinyan, Sergei; Vlahovic, Branislav

    2014-03-01

    We study spectral properties of electron tunneling in double quantum dots (DQDs) (and double quantum wells (DQWs)) and their relation to the geometry. In particular we compare the tunneling in DQW with chaotic and regular geometry, taking into account recent evidence about regularization of the tunneling rate when the QW geometry is chaotic. Our calculations do not support this assumption. We confirm high influence of the QW geometry boundaries on the rate fluctuation along the spectrum. The factors of the effective mass anisotropy and violation of the symmetry of DQD and DQW are also considered. Generally, we found that the small violation of the symmetry drastically affects tunneling. This work is supported by the NSF (HRD-0833184) and NASA (NNX09AV07A).

  6. Origins and optimization of entanglement in plasmonically coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Otten, Matthew; Larson, Jeffrey; Min, Misun; Wild, Stefan M.; Pelton, Matthew; Gray, Stephen K.

    2016-08-01

    A system of two or more quantum dots interacting with a dissipative plasmonic nanostructure is investigated in detail by using a cavity quantum electrodynamics approach with a model Hamiltonian. We focus on determining and understanding system configurations that generate multiple bipartite quantum entanglements between the occupation states of the quantum dots. These configurations include allowing for the quantum dots to be asymmetrically coupled to the plasmonic system. Analytical solution of a simplified limit for an arbitrary number of quantum dots and numerical simulations and optimization for the two- and three-dot cases are used to develop guidelines for maximizing the bipartite entanglements. For any number of quantum dots, we show that through simple starting states and parameter guidelines, one quantum dot can be made to share a strong amount of bipartite entanglement with all other quantum dots in the system, while entangling all other pairs to a lesser degree.

  7. Dot-in-Well Quantum-Dot Infrared Photodetectors

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath; Bandara, Sumith; Ting, David; Hill, cory; Liu, John; Mumolo, Jason; Chang, Yia Chung

    2008-01-01

    Dot-in-well (DWELL) quantum-dot infrared photodetectors (QDIPs) [DWELL-QDIPs] are subjects of research as potentially superior alternatives to prior QDIPs. Heretofore, there has not existed a reliable method for fabricating quantum dots (QDs) having precise, repeatable dimensions. This lack has constituted an obstacle to the development of uniform, high-performance, wavelength-tailorable QDIPs and of focal-plane arrays (FPAs) of such QDIPs. However, techniques for fabricating quantum-well infrared photodetectors (QWIPs) having multiple-quantum- well (MQW) structures are now well established. In the present research on DWELL-QDIPs, the arts of fabrication of QDs and QWIPs are combined with a view toward overcoming the deficiencies of prior QDIPs. The longer-term goal is to develop focal-plane arrays of radiationhard, highly uniform arrays of QDIPs that would exhibit high performance at wavelengths from 8 to 15 m when operated at temperatures between 150 and 200 K. Increasing quantum efficiency is the key to the development of competitive QDIP-based FPAs. Quantum efficiency can be increased by increasing the density of QDs and by enhancing infrared absorption in QD-containing material. QDIPs demonstrated thus far have consisted, variously, of InAs islands on GaAs or InAs islands in InGaAs/GaAs wells. These QDIPs have exhibited low quantum efficiencies because the numbers of QD layers (and, hence, the areal densities of QDs) have been small typically five layers in each QDIP. The number of QD layers in such a device must be thus limited to prevent the aggregation of strain in the InAs/InGaAs/GaAs non-lattice- matched material system. The approach being followed in the DWELL-QDIP research is to embed In- GaAs QDs in GaAs/AlGaAs multi-quantum- well (MQW) structures (see figure). This material system can accommodate a large number of QD layers without excessive lattice-mismatch strain and the associated degradation of photodetection properties. Hence, this material

  8. Quantum transport through the system of parallel quantum dots with Majorana bound states

    SciTech Connect

    Wang, Ning; Li, Yuxian; Lv, Shuhui

    2014-02-28

    We study the tunneling transport properties through a system of parallel quantum dots which are coupled to Majorana bound states (MBSs). The conductance and spectral function are computed using the retarded Green's function method based on the equation of motion. The conductance of the system is 2e{sup 2}/h at zero Fermi energy and is robust against the coupling between the MBSs and the quantum dots. The dependence of the Fermi energy on the spectral function is different for the first dot (dot1) than for the second dot (dot2) with fixed dot2-MBSs coupling. The influence of the Majorana bound states on the spectral function was studied for the series and parallel configurations of the system. It was found that when the configuration is in series, the Majorana bound states play an important role, resulting in a spectral function with three peaks. However, the spectral function shows two peaks when the system is in a parallel configuration. The zero Fermi energy spectral function is always 1/2 not only in series but also in the parallel configuration and robust against the coupling between the MBSs and the quantum dots. The phase diagram of the Fermi energy versus the quantum dot energy levels was also investigated.

  9. Competing interactions in semiconductor quantum dots

    SciTech Connect

    van den Berg, R.; Brandino, G. P.; El Araby, O.; Konik, R. M.; Gritsev, V.; Caux, J. -S.

    2014-10-14

    In this study, we introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions at longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.

  10. Competing interactions in semiconductor quantum dots

    DOE PAGESBeta

    van den Berg, R.; Brandino, G. P.; El Araby, O.; Konik, R. M.; Gritsev, V.; Caux, J. -S.

    2014-10-14

    In this study, we introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions atmore » longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.« less

  11. Quantum Effects in Higher-Order Correlators of a Quantum-Dot Spin Qubit

    NASA Astrophysics Data System (ADS)

    Bechtold, A.; Li, F.; Müller, K.; Simmet, T.; Ardelt, P.-L.; Finley, J. J.; Sinitsyn, N. A.

    2016-07-01

    We measure time correlators of a spin qubit in an optically active quantum dot beyond the second order. Such higher-order correlators are shown to be directly sensitive to pure quantum effects that cannot be explained within the classical framework. They allow direct determination of ensemble and quantum dephasing times, T2* and T2, using only repeated projective measurements and without the need for coherent spin control. Our method enables studies of purely quantum behavior in solid state systems, including tests of the Leggett-Garg type of inequalities that rule out local hidden variable interpretation of the quantum-dot spin dynamics.

  12. Quantum Effects in Higher-Order Correlators of a Quantum-Dot Spin Qubit.

    PubMed

    Bechtold, A; Li, F; Müller, K; Simmet, T; Ardelt, P-L; Finley, J J; Sinitsyn, N A

    2016-07-01

    We measure time correlators of a spin qubit in an optically active quantum dot beyond the second order. Such higher-order correlators are shown to be directly sensitive to pure quantum effects that cannot be explained within the classical framework. They allow direct determination of ensemble and quantum dephasing times, T_{2}^{*} and T_{2}, using only repeated projective measurements and without the need for coherent spin control. Our method enables studies of purely quantum behavior in solid state systems, including tests of the Leggett-Garg type of inequalities that rule out local hidden variable interpretation of the quantum-dot spin dynamics. PMID:27447523

  13. Telegraph noise in coupled quantum dot circuits induced by a quantum point contact.

    PubMed

    Taubert, D; Pioro-Ladrière, M; Schröer, D; Harbusch, D; Sachrajda, A S; Ludwig, S

    2008-05-01

    Charge detection utilizing a highly biased quantum point contact has become the most effective probe for studying few electron quantum dot circuits. Measurements on double and triple quantum dot circuits is performed to clarify a back action role of charge sensing on the confined electrons. The quantum point contact triggers inelastic transitions, which occur quite generally. Under specific device and measurement conditions these transitions manifest themselves as bounded regimes of telegraph noise within a stability diagram. A nonequilibrium transition from artificial atomic to molecular behavior is identified. Consequences for quantum information applications are discussed. PMID:18518321

  14. Transient coherent nonlinear spectroscopy of single quantum dots.

    PubMed

    Langbein, Wolfgang; Patton, Brian

    2007-07-25

    We review our recent advances in four-wave mixing spectroscopy of single semiconductor quantum dots using heterodyne spectral interferometry, a novel implementation of transient nonlinear spectroscopy allowing the study of the transient nonlinear polarization emitted from individual electronic transitions in both amplitude and phase. We present experiments on individual excitonic transitions localized in monolayer islands of GaAs/AlAs quantum wells and in self-assembled CdTe/ZnTe quantum dots. We investigate the formation of the photon echo from individual transitions, both with increasing number of transitions in the ensemble, and in the presence of temporal jitter of the energy of a single transition. The detection of amplitude and phase of the signal allows the implementation of a two-dimensional femtosecond spectroscopy, in which mutual coherent coupling of single quantum dot states can observed and quantified. PMID:21483055

  15. Bound states in continuum: Quantum dots in a quantum well

    NASA Astrophysics Data System (ADS)

    Prodanović, Nikola; Milanović, Vitomir; Ikonić, Zoran; Indjin, Dragan; Harrison, Paul

    2013-11-01

    We report on the existence of a bound state in the continuum (BIC) of quantum rods (QR). QRs are novel elongated InGaAs quantum dot nanostructures embedded in the shallower InGaAs quantum well. BIC appears as an excited confined dot state and energetically above the bottom of a well subband continuum. We prove that high height-to-diameter QR aspect ratio and the presence of a quantum well are indispensable conditions for accommodating the BIC. QRs are unique semiconductor nanostructures, exhibiting this mathematical curiosity predicted 83 years ago by Wigner and von Neumann.

  16. Surface treatment of nanocrystal quantum dots after film deposition

    DOEpatents

    Sykora, Milan; Koposov, Alexey; Fuke, Nobuhiro

    2015-02-03

    Provided are methods of surface treatment of nanocrystal quantum dots after film deposition so as to exchange the native ligands of the quantum dots for exchange ligands that result in improvement in charge extraction from the nanocrystals.

  17. Templated self-assembly of quantum dots from aqueous solution using protein scaffolds

    NASA Astrophysics Data System (ADS)

    Szuchmacher Blum, Amy; Soto, Carissa M.; Wilson, Charmaine D.; Whitley, Jessica L.; Moore, Martin H.; Sapsford, Kim E.; Lin, Tianwei; Chatterji, Anju; Johnson, John E.; Ratna, Banahalli R.

    2006-10-01

    Short, histidine-containing peptides can be conjugated to lysine-containing protein scaffolds to controllably attach quantum dots (QDs) to the scaffold, allowing for generic attachment of quantum dots to any protein without the use of specially engineered domains. This technique was used to bind quantum dots from aqueous solution to both chicken IgG and cowpea mosaic virus (CPMV), a 30 nm viral particle. These quantum dot protein assemblies were studied in detail. The IgG QD complexes were shown to retain binding specificity to their antigen after modification. The CPMV QD complexes have a local concentration of quantum dots greater than 3000 nmol ml-1, and show a 15% increase in fluorescence quantum yield over free quantum dots in solution.

  18. Improvement of plasmonic enhancement of quantum dot emission via an intermediate silicon-aluminum oxide interface

    SciTech Connect

    Wing, Waylin J.; Sadeghi, Seyed M. Campbell, Quinn

    2015-01-05

    We studied the emission of quantum dots in the presence of plasmon-metal oxide substrates, which consist of arrays of metallic nanorods embedded in amorphous silicon coated with a nanometer-thin layer of aluminum oxide on the top. We showed that the combined effects of plasmons and the silicon-aluminum oxide interface can lead to significant enhancement of the quantum efficiency of quantum dots. Our results show that such an interface can significantly enhance plasmonic effects of the nanorods via quantum dot-induced exciton-plasmon coupling, leading to partial polarization of the quantum dots' emission.

  19. Photoconductivity of Si/Ge multilayer structures with Ge quantum dots pseudomorphic to the Si matrix

    SciTech Connect

    Talochkin, A. B. Chistokhin, I. B.

    2011-07-15

    Longitudinal photoconductivity spectra of Si/Ge multilayer structures with Ge quantum dots grown pseudomorphically to the Si matrix are studied. Lines of optical transitions between hole levels of quantum dots and Si electronic states are observed. This allowed us to construct a detailed energy-level diagram of electron-hole levels of the structure. It is shown that hole levels of pseudomorphic Ge quantum dots are well described by the simplest 'quantum box' model using actual sizes of Ge islands. The possibility of controlling the position of the long-wavelength photosensitivity edge by varying the growth parameters of Si/Ge structures with Ge quantum dots is determined.

  20. Scalable quantum computer architecture with coupled donor-quantum dot qubits

    DOEpatents

    Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey

    2014-08-26

    A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.

  1. Magneto-optical studies of ensembles of semimagnetic self-organized Cd(Mn)Se/Zn(Mn)Se Quantum Dots

    SciTech Connect

    Reshina, I. I.; Ivanov, S. V.; Toropov, A. A.

    2013-12-04

    Ensembles of Cd(Mn)Se/ZnSe and CdSe/Zn(Mn)Se semimagnetic self-organized quantum dots with different Mn content have been studied by photoluminescence and resonant Raman scattering under strong magnetic fields in Faraday and Voigt geometries and with spectral and polarization selective excitation. Electron spin-flip Raman scattering has been observed in Voigt geometry in the structures with large Mn content. Narrow exciton peaks completely σ{sup −}σ{sup +} polarized have been observed under selective excitation in Faraday geometry in the structures with medium and small Mn content. A number of specific effects manifested themselves in the structures with a smallest Mn content where no Zeeman shift of the photoluminescence bands was observed.

  2. Uptake of silica covered Quantum Dots into living cells: Long term vitality and morphology study on hyaluronic acid biomaterials.

    PubMed

    D'Amico, Michele; Fiorica, Calogero; Palumbo, Fabio Salvatore; Militello, Valeria; Leone, Maurizio; Dubertret, Benoit; Pitarresi, Giovanna; Giammona, Gaetano

    2016-10-01

    Quantum Dots (QDs) are promising very bright and stable fluorescent probes for optical studies in the biological field but water solubility and possible metal bio-contamination need to be addressed. In this work, a simple silica-QD hybrid system is prepared and the uptake in bovine chondrocytes living cells without any functionalization of the external protective silica shield is demonstrated. Moreover, long term treated cells vitality (up to 14days) and the transfer of silica-QDs to the next cell generations are here reported. Confocal fluorescence microscopy was also used to determine the morphology of the so labelled cells and the relative silica-QDs distribution. Finally, we employ silica-QD stained chondrocytes to characterize, as proof of concept, hydrogels obtained from an amphiphilic derivative of hyaluronic acid (HA-EDA-C18) functionalized with different amounts of the RGD peptide. PMID:27287118

  3. Capping process of InAs/GaAs quantum dots studied by cross-sectional scanning tunneling microscopy

    SciTech Connect

    Gong, Q.; Offermans, P.; Noetzel, R.; Koenraad, P.M.; Wolter, J.H.

    2004-12-06

    The capping process of self-assembled InAs quantum dots (QDs) grown on GaAs(100) substrates by molecular-beam epitaxy is studied by cross-sectional scanning tunneling microscopy. GaAs capping at 500 deg. C causes leveling of the QDs which is completely suppressed by decreasing the growth temperature to 300 deg. C. At elevated temperature the QD leveling is driven in the initial stage of the GaAs capping process while it is quenched during continued overgrowth when the QDs become buried. For common GaAs growth rates, both phenomena take place on a similar time scale. Therefore, the size and shape of buried InAs QDs are determined by a delicate interplay between driving and quenching of the QD leveling during capping which is controlled by the GaAs growth rate and growth temperature.

  4. Nonvolatile Quantum Dot Gate Memory (NVQDM): Tunneling Rate from Quantum Well Channel to Quantum Dot Gate

    NASA Astrophysics Data System (ADS)

    Hasaneen, El-Sayed; Heller, Evan; Bansal, Rajeev; Jain, Faquir

    2003-10-01

    In this paper, we compute the tunneling of electrons in a nonvolatile quantum dot memory (NVQDM) cell during the WRITE operation. The transition rate of electrons from a quantum well channel to the quantum dots forming the floating gate is calculated using a recently reported method by Chuang et al.[1]. Tunneling current is computed based on transport of electrons from the channel to the floating quantum dots. The maximum number of electrons on a dot is calculated using surface electric field and break down voltage of the tunneling dielectric material. Comparison of tunneling for silicon oxide and high-k dielectric gate insulators is also described. Capacitance-Voltage characteristics of a NVQDM device are calculated by solving the Schrodinger and Poisson equations self-consistently. In addition, the READ operation of the memory has been investigated analytically. Results for 70 nm channel length Si NVQDMs are presented. Threshold voltage is calculated including the effect of the charge on nanocrystal quantum dots. Current-voltage characteristics are obtained using BSIM3v3 model [2-3]. This work is supported by Office of Navel Research (N00014210883, Dr. D. Purdy, Program Monitor), Connecticut Innovations Inc./TranSwitch (CII # 00Y17), and National Science Foundation (CCR-0210428) grants. [1] S. L. Chuang and N. Holonyak, Appl. Phys. Lett., 80, pp. 1270, 2002. [2] Y. Chen et. al., BSIM3v3 Manual, Elect. Eng. and Comp. Dept., U. California, Berkeley, CA, 1996. [3] W. Liu, MOSFET Models for SPICE Simulation, John Wiley & Sons, Inc., 2001.

  5. Isotopically enhanced triple-quantum-dot qubit

    PubMed Central

    Eng, Kevin; Ladd, Thaddeus D.; Smith, Aaron; Borselli, Matthew G.; Kiselev, Andrey A.; Fong, Bryan H.; Holabird, Kevin S.; Hazard, Thomas M.; Huang, Biqin; Deelman, Peter W.; Milosavljevic, Ivan; Schmitz, Adele E.; Ross, Richard S.; Gyure, Mark F.; Hunter, Andrew T.

    2015-01-01

    Like modern microprocessors today, future processors of quantum information may be implemented using all-electrical control of silicon-based devices. A semiconductor spin qubit may be controlled without the use of magnetic fields by using three electrons in three tunnel-coupled quantum dots. Triple dots have previously been implemented in GaAs, but this material suffers from intrinsic nuclear magnetic noise. Reduction of this noise is possible by fabricating devices using isotopically purified silicon. We demonstrate universal coherent control of a triple-quantum-dot qubit implemented in an isotopically enhanced Si/SiGe heterostructure. Composite pulses are used to implement spin-echo type sequences, and differential charge sensing enables single-shot state readout. These experiments demonstrate sufficient control with sufficiently low noise to enable the long pulse sequences required for exchange-only two-qubit logic and randomized benchmarking. PMID:26601186

  6. Isotopically enhanced triple-quantum-dot qubit.

    PubMed

    Eng, Kevin; Ladd, Thaddeus D; Smith, Aaron; Borselli, Matthew G; Kiselev, Andrey A; Fong, Bryan H; Holabird, Kevin S; Hazard, Thomas M; Huang, Biqin; Deelman, Peter W; Milosavljevic, Ivan; Schmitz, Adele E; Ross, Richard S; Gyure, Mark F; Hunter, Andrew T

    2015-05-01

    Like modern microprocessors today, future processors of quantum information may be implemented using all-electrical control of silicon-based devices. A semiconductor spin qubit may be controlled without the use of magnetic fields by using three electrons in three tunnel-coupled quantum dots. Triple dots have previously been implemented in GaAs, but this material suffers from intrinsic nuclear magnetic noise. Reduction of this noise is possible by fabricating devices using isotopically purified silicon. We demonstrate universal coherent control of a triple-quantum-dot qubit implemented in an isotopically enhanced Si/SiGe heterostructure. Composite pulses are used to implement spin-echo type sequences, and differential charge sensing enables single-shot state readout. These experiments demonstrate sufficient control with sufficiently low noise to enable the long pulse sequences required for exchange-only two-qubit logic and randomized benchmarking. PMID:26601186

  7. Transition metal doped semiconductor quantum dots: Optical and magnetic properties

    NASA Astrophysics Data System (ADS)

    Dahnovsky, Yuri; Proshchenko, Vitaly; Pimachev, Artem

    We study optical and magnetic properties of CdSe and Cd-Mn-Se quantum dots (QD). We find that there are two luminescence lines, one is fast and another is slow (~1ms). With the increase of a QD diameter the slow luminescence disappears at some critical QD size, thus only one line (fast) remains. Using the SAC SI computational method we find that D = 3.2 nm and D = 2.7 nm if the Mn impurity is located inside a QD or on a QD surface, respectively. For two or four Mn atoms in the quantum dot, now absorption takes place because the transition is spin-allowed. The DFT calculations of the magnetic state reveal that it is an antiferromagnet. We also study other quantum dots such as Cd-Mn-Se, Zn-Mn-S, and Zn-Mn-Se, doped and undoped. We find the slow luminescence energies for low concentrations of Mn impurities for each QD type. The calculations indicate that two luminescence lines, fast and slow, should always take place. However for Pb-Mn-S quantum dots there are now Mn levels inside a HOMO-LUMO gap, i.e., the Mn-levels are located in a PbS conduction band. The presence of Mn dopants increases the band gap and also removes the exciton peak. This effect is different to the other quantum dots.

  8. Kondo effect in triple quantum dots

    NASA Astrophysics Data System (ADS)

    Žitko, R.; Bonča, J.; Ramšak, A.; Rejec, T.

    2006-04-01

    Numerical analysis of the simplest odd-numbered system of coupled quantum dots reveals an interplay between magnetic ordering, charge fluctuations, and the tendency of itinerant electrons in the leads to screen magnetic moments. The transition from local-moment to molecular-orbital behavior is visible in the evolution of correlation functions as the interdot coupling is increased. Resulting Kondo phases are presented in a phase diagram which can be sampled by measuring the zero-bias conductance. We discuss the origin of the even-odd effects by comparing with the double quantum dot.

  9. Bilayer graphene quantum dot defined by topgates

    SciTech Connect

    Müller, André; Kaestner, Bernd; Hohls, Frank; Weimann, Thomas; Pierz, Klaus; Schumacher, Hans W.

    2014-06-21

    We investigate the application of nanoscale topgates on exfoliated bilayer graphene to define quantum dot devices. At temperatures below 500 mK, the conductance underneath the grounded gates is suppressed, which we attribute to nearest neighbour hopping and strain-induced piezoelectric fields. The gate-layout can thus be used to define resistive regions by tuning into the corresponding temperature range. We use this method to define a quantum dot structure in bilayer graphene showing Coulomb blockade oscillations consistent with the gate layout.

  10. Density functional calculation of the structural and electronic properties of germanium quantum dots

    SciTech Connect

    Anas, M. M.; Gopir, G.

    2015-04-24

    We apply first principles density functional computational methods to study the structures, densities of states (DOS), and higher occupied molecular orbital (HOMO) – lowest unoccupied molecular orbital (LUMO) gaps of selected free-standing Ge semiconductor quantum dots up to 1.8nm. Our calculations are performed using numerical atomic orbital approach where linear combination of atomic orbital was applied. The surfaces of the quantum dots was passivized by hydrogen atoms. We find that surface passivation does affect the electronic properties associated with the changes of surface state, electron localization, and the energy gaps of germanium nanocrystals as well as the confinement of electrons inside the quantum dots (QDs). Our study shows that the energy gaps of germanium quantum dots decreases with the increasing dot diameter. The size-dependent variations of the computed HOMO-LUMO gaps in our quantum dots model were found to be consistent with the effects of quantum confinement reported in others theoretical and experimental calculation.

  11. Study of valence-band intersublevel transitions in InAs/GaAs quantum dots-in-well infrared photodetectors

    SciTech Connect

    Lao, Yan-Feng; Wolde, Seyoum; Unil Perera, A. G.; Zhang, Y. H.; Wang, T. M.; Kim, J. O.; Schuler-Sandy, Ted; Tian, Zhao-Bing; Krishna, S. S.

    2014-04-28

    The n-type quantum dot (QD) and dots-in-well (DWELL) infrared photodetectors, in general, display bias-dependent multiple-band response as a result of optical transitions between different quantum levels. Here, we present a unique characteristic of the p-type hole response, a well-preserved spectral profile, due to the much reduced tunneling probability of holes compared to electrons. This feature remains in a DWELL detector, with the dominant transition contributing to the response occurring between the QD ground state and the quantum-well states. The bias-independent response will benefit applications where single-color detection is desired and also allows achieving optimum performance by optimizing the bias.

  12. Electronic Transport in Quantum Wires with Magnetic Quantum Dots in Series

    NASA Astrophysics Data System (ADS)

    Souma, S.; Lee, S. J.; Kim, N.; Kang, T. W.; Ihm, G.; Suzuki, A.

    2002-03-01

    Recent advances in nanofabrication allow microstructured magnetic potentials to be applied to ballistic electrons in high mobility two-dimensional electron gases (2DEG). Electronic transport in quantum wires with single magnetic quantum dot was studied by some of present authors [1], where the magnetic quantum dot is defined by two different magnetic fields B and B0 inside and outside the circular region, respectively. It was shown that the conductance properties depend strongly on whether B^* is parallel or antiparallel to B_0. In this work, we investigate the conductance of quantum wires with magnetic quantum dots in series. The each magnetic quantum dot is defined in the same way as the single dot case. Conductance is calculated numerically by applying the recursive Green's function method based on the lattice Hamiltonian. Our numerical results show the conductance modulation due to the presence of new types of quasi-bound states formed around multiple magnetic quantum dots. [1]H.-S. Sim, G. Ihm, N. Kim, and K. J. Chang, Phys. Rev. Lett 87, 146601 (2001)

  13. Kondo and Majorana doublet interactions in quantum dots

    NASA Astrophysics Data System (ADS)

    Kim, Younghyun; Liu, Dong E.; Gaidamauskas, Erikas; Paaske, Jens; Flensberg, Karsten; Lutchyn, Roman

    We study the properties of a quantum dot coupled to a normal lead and a time-reversal topological superconductor with Majorana Kramers pair at the end. We explore the phase diagram of the system as a function of Kondo and Majorana-induced coupling strengths using perturbative renormalization group study and slave-boson mean-field theory. We find that, in the presence of coupling between a quantum dot and a Majorana doublet, the system flows to a new fixed point controlled by the Majorana doublet, rather than the Kondo coupling, which is characterized by correlations between a localized spin and the fermion parity of each spin sector of the topological superconductor. We find that this fixed point is stable with respect to Gaussian fluctuations. We also investigate the effect of spin-spin interaction between a quantum dot and Majorana doublet and compare the result with a case where a normal lead is directly coupled to Majorana doublet.

  14. Quantum Optical Signature of Plasmonically Coupled Nanocrystal Quantum Dots.

    PubMed

    Wang, Feng; Karan, Niladri S; Nguyen, Hue Minh; Mangum, Benjamin D; Ghosh, Yagnaseni; Sheehan, Chris J; Hollingsworth, Jennifer A; Htoon, Han

    2015-10-01

    Small clusters of two to three silica-coated nanocrystals coupled to plasmonic gap-bar antennas can exhibit photon antibunching, a characteristic of single quantum emitters. Through a detailed analysis of their photoluminescence emissions characteristics, it is shown that the observed photon antibunching is the evidence of coupled quantum dot formation resulting from the plasmonic enhancement of dipole-dipole interaction. PMID:26140499

  15. Photon-assisted tunneling in an asymmetrically coupled triple quantum dot

    NASA Astrophysics Data System (ADS)

    Wang, Bao-Chuan; Cao, Gang; Chen, Bao-Bao; Yu, Guo-Dong; Li, Hai-Ou; Xiao, Ming; Guo, Guo-Ping

    2016-08-01

    The gate-defined quantum dot is regarded as one of the basic structures required for scalable semiconductor quantum processors. Here, we demonstrate a structure that contains three quantum dots scaled in series. The electron number of each dot and the tunnel coupling between them can be tuned conveniently using splitting gates. We tune the quantum dot array asymmetrically such that the tunnel coupling between the right dot and the central dot is much larger than that between the left dot and the central dot. When driven by microwaves, the sidebands of the photon-assisted tunneling process appear not only in the left-to-central dot transition region but also in the left-to-right dot transition region. These sidebands are both attributed to the left-to-central transition for asymmetric coupling. Our result shows that there is a region of a triple quantum dot structure that remains indistinct when studied with a normal two-dimensional charge stability diagram; this will be helpful in future studies of the scalability of quantum dot systems.

  16. Quantum dot-tetrapyrrole complexes as photodynamic therapy agents

    NASA Astrophysics Data System (ADS)

    Martynenko, Irina; Visheratina, Anastasia; Kuznetsova, Vera; Orlova, Anna; Maslov, Vladimir; Fedorov, Anatoly; Baranov, Alexander

    2015-07-01

    Photophysical properties of complexes of semiconductor quantum dots with conventional photosensitizers for photodynamic therapy (tetrapyrroles) were investigated. A luminescent study of complexes in aqueous solutions was performed using spectral- and time-resolved luminescence spectroscopy. It was found that increasing the photosensitizer relative concentration in complexes resulted in sharp drop of the nonradiative energy transfer efficiency and the quantum yield of the photosensitizer photoluminescence. This fact indicates that additional channels of nonradiative energy dissipation may take place in the complexes. Using complexes of Al(OH)-sulphophthalocyanine with CdSe/ZnS quantum dots in the aqueous solution as an typical example, we have demonstrated that new channels of the energy dissipation may arise due to aggregation of the photosensitizer molecules upon formation of the complexes with quantum dots. We also demonstrated that use of methods of complex formation preventing aggregation of photosensitizers allows to conserve the high energy transfer efficiency and quantum yield of the acceptor photoluminescence in complexes in wide range of the photosensitizer concentrations. We believe that our study allows obtaining new information about the physical mechanisms of nonradiative energy transfer in quantum dots-tetrapyrrole complexes perspective for photodynamic therapy.

  17. Cavity quantum electrodynamics with carbon nanotube quantum dots

    NASA Astrophysics Data System (ADS)

    Kontos, Takis

    Cavity quantum electrodynamics techniques have turned out to be instrumental to probe or manipulate the electronic states of nanoscale circuits. Recently, cavity QED architectures have been extended to quantum dot circuits. These circuits are appealing since other degrees of freedom than the traditional ones (e.g. those of superconducting circuits) can be investigated. I will show how one can use carbon nanotube based quantum dots in that context. In particular, I will focus on the coherent coupling of a single spin or non-local Cooper pairs to cavity photons. Quantum dots also exhibit a wide variety of many body phenomena. The cQED architecture could also be instrumental for understanding them. One of the most paradigmatic phenomenon is the Kondo effect which is at the heart of many electron correlation effects. I will show that a cQED architecture has allowed us to observe the decoupling of spin and charge excitations in a Kondo system.

  18. Semiconductor quantum dot-inorganic nanotube hybrids.

    PubMed

    Kreizman, Ronen; Schwartz, Osip; Deutsch, Zvicka; Itzhakov, Stella; Zak, Alla; Cohen, Sidney R; Tenne, Reshef; Oron, Dan

    2012-03-28

    A synthetic route for preparation of inorganic WS(2) nanotube (INT)-colloidal semiconductor quantum dot (QD) hybrid structures is developed, and transient carrier dynamics on these hybrids are studied via transient photoluminescence spectroscopy utilizing several different types of QDs. Measurements reveal efficient resonant energy transfer from the QDs to the INT upon photoexcitation, provided that the QD emission is at a higher energy than the INT direct gap. Charge transfer in the hybrid system, characterized using QDs with band gaps below the INT direct gap, is found to be absent. This is attributed to the presence of an organic barrier layer due to the relatively long-chain organic ligands of the QDs under study. This system, analogous to carbon nanotube-QD hybrids, holds potential for a variety of applications, including photovoltaics, luminescence tagging and optoelectronics. PMID:22354096

  19. Inter-dot strain field effect on the optoelectronic properties of realistic InP lateral quantum-dot molecules

    NASA Astrophysics Data System (ADS)

    Barettin, Daniele; Auf der Maur, Matthias; De Angelis, Roberta; Prosposito, Paolo; Casalboni, Mauro; Pecchia, Alessandro

    2015-03-01

    We report on numerical simulations of InP surface lateral quantum-dot molecules on In0.48Ga0.52P buffer, using a model strictly derived by experimental results by extrapolation of the molecules shape from atomic force microscopy images. Our study has been inspired by the comparison of a photoluminescence spectrum of a high-density InP surface quantum dot sample with a numerical ensemble average given by a weighted sum of simulated single quantum-dot spectra. A lack of experimental optical response from the smaller dots of the sample is found to be due to strong inter-dot strain fields, which influence the optoelectronic properties of lateral quantum-dot molecules. Continuum electromechanical, k →.p → bandstructure, and optical calculations are presented for two different molecules, the first composed of two dots of nearly identical dimensions (homonuclear), the second of two dots with rather different sizes (heteronuclear). We show that in the homonuclear molecule the hydrostatic strain raises a potential barrier for the electrons in the connection zone between the dots, while conversely the holes do not experience any barrier, which considerably increases the coupling. Results for the heteronuclear molecule show instead that its dots do not appear as two separate and distinguishable structures, but as a single large dot, and no optical emission is observed in the range of higher energies where the smaller dot is supposed to emit. We believe that in samples of such a high density the smaller dots result as practically incorporated into bigger molecular structures, an effect strongly enforced by the inter-dot strain fields, and consequently it is not possible to experimentally obtain a separate optical emission from the smaller dots.

  20. Inter-dot strain field effect on the optoelectronic properties of realistic InP lateral quantum-dot molecules

    SciTech Connect

    Barettin, Daniele Auf der Maur, Matthias; De Angelis, Roberta; Prosposito, Paolo; Casalboni, Mauro; Pecchia, Alessandro

    2015-03-07

    We report on numerical simulations of InP surface lateral quantum-dot molecules on In{sub 0.48}Ga{sub 0.52 }P buffer, using a model strictly derived by experimental results by extrapolation of the molecules shape from atomic force microscopy images. Our study has been inspired by the comparison of a photoluminescence spectrum of a high-density InP surface quantum dot sample with a numerical ensemble average given by a weighted sum of simulated single quantum-dot spectra. A lack of experimental optical response from the smaller dots of the sample is found to be due to strong inter-dot strain fields, which influence the optoelectronic properties of lateral quantum-dot molecules. Continuum electromechanical, k{sup →}·p{sup →} bandstructure, and optical calculations are presented for two different molecules, the first composed of two dots of nearly identical dimensions (homonuclear), the second of two dots with rather different sizes (heteronuclear). We show that in the homonuclear molecule the hydrostatic strain raises a potential barrier for the electrons in the connection zone between the dots, while conversely the holes do not experience any barrier, which considerably increases the coupling. Results for the heteronuclear molecule show instead that its dots do not appear as two separate and distinguishable structures, but as a single large dot, and no optical emission is observed in the range of higher energies where the smaller dot is supposed to emit. We believe that in samples of such a high density the smaller dots result as practically incorporated into bigger molecular structures, an effect strongly enforced by the inter-dot strain fields, and consequently it is not possible to experimentally obtain a separate optical emission from the smaller dots.

  1. Optical fiber temperature sensor utilizing alloyed Zn(x)Cd(1-x)S quantum dots.

    PubMed

    Zhao, Fei; Kim, Jongsung

    2014-08-01

    In this paper, optical fiber temperature sensors have been prepared by using alloyed Zn(x)Cd(1-x)S quantum dots as sensing media. The surface of the optical fiber was silanized to enhance covalent bond between quantum dots and optical fiber. The quantum dots were bonded to the surface of optical fiber and further encapsulated via sol-gel coating using 3-glycidoxypropyl trimethoxysilane (GPTMS) and 3-aminopropyl trimethoxysilane (APTMS) in ethyl alcohol in acidic condition. Quantum dots with green, yellow, and red fluorescence were used. The dependence of photoluminescence (PL) intensity from quantum dots on ambient temperature has been studied. Linear relation between the fluorescent intensity and temperature was obtained from alloyed quantum dots immobilized on the surface of optical fiber. The PL intensity, sensitivity, and thermal stability were increased by the silica encapsulation. PMID:25936046

  2. Towards a feasible implementation of quantum neural networks using quantum dots

    NASA Astrophysics Data System (ADS)

    Altaisky, Mikhail V.; Zolnikova, Nadezhda N.; Kaputkina, Natalia E.; Krylov, Victor A.; Lozovik, Yurii E.; Dattani, Nikesh S.

    2016-03-01

    We propose an implementation of quantum neural networks using an array of quantum dots with dipole-dipole interactions. We demonstrate that this implementation is both feasible and versatile by studying it within the framework of GaAs based quantum dot qubits coupled to a reservoir of acoustic phonons. Using numerically exact Feynman integral calculations, we have found that the quantum coherence in our neural networks survive for over a hundred ps even at liquid nitrogen temperatures (77 K), which is three orders of magnitude higher than current implementations, which are based on SQUID-based systems operating at temperatures in the mK range.

  3. Formation and ordering of epitaxial quantum dots

    NASA Astrophysics Data System (ADS)

    Atkinson, Paola; Schmidt, Oliver G.; Bremner, Stephen P.; Ritchie, David A.

    2008-10-01

    Single quantum dots (QDs) have great potential as building blocks for quantum information processing devices. However, one of the major difficulties in the fabrication of such devices is the placement of a single dot at a pre-determined position in the device structure, for example, in the centre of a photonic cavity. In this article we review some recent investigations in the site-controlled growth of InAs QDs on GaAs by molecular beam epitaxy. The method we use is ex-situ patterning of the GaAs substrate by electron beam lithography and conventional wet or dry etching techniques to form shallow pits in the surface which then determine the nucleation site of an InAs dot. This method is easily scalable and can be incorporated with marker structures to enable simple post-growth lithographic alignment of devices to each site-controlled dot. We demonstrate good site-control for arrays with up to 10 micron spacing between patterned sites, with no dots nucleating between the sites. We discuss the mechanism and the effect of pattern size, InAs deposition amount and growth conditions on this site-control method. Finally we discuss the photoluminescence from these dots and highlight the remaining challenges for this technique. To cite this article: P. Atkinson et al., C. R. Physique 9 (2008).

  4. Red shift in the photoluminescence of colloidal carbon quantum dots induced by photon reabsorption

    SciTech Connect

    Zhang, Wenxia; Dai, Dejian; Chen, Xifang; Guo, Xiaoxiao; Fan, Jiyang

    2014-03-03

    We synthesize the colloidal carbon/graphene quantum dots 1–9 nm in diameter and study their photoluminescence properties. Surprisingly, the luminescence properties of a fixed collection of colloidal carbon quantum dots can be systematically changed as the concentration varies. A model based on photon reabsorption is proposed which explains well the experiment. Infrared spectral study indicates that the surfaces of the carbon quantum dots are substantially terminated by oxygen atoms, which causes their ultra-high hydrophilicity. Our result clarifies the mystery of distinct emission colors in carbon quantum dots and indicates that photon reabsorption can strongly affect the luminescence properties of colloidal nanocrystals.

  5. Charge transport and localization in atomically coherent quantum dot solids

    NASA Astrophysics Data System (ADS)

    Whitham, Kevin; Yang, Jun; Savitzky, Benjamin H.; Kourkoutis, Lena F.; Wise, Frank; Hanrath, Tobias

    2016-05-01

    Epitaxial attachment of quantum dots into ordered superlattices enables the synthesis of quasi-two-dimensional materials that theoretically exhibit features such as Dirac cones and topological states, and have major potential for unprecedented optoelectronic devices. Initial studies found that disorder in these structures causes localization of electrons within a few lattice constants, and highlight the critical need for precise structural characterization and systematic assessment of the effects of disorder on transport. Here we fabricated superlattices with the quantum dots registered to within a single atomic bond length (limited by the polydispersity of the quantum dot building blocks), but missing a fraction (20%) of the epitaxial connections. Calculations of the electronic structure including the measured disorder account for the electron localization inferred from transport measurements. The calculations also show that improvement of the epitaxial connections will lead to completely delocalized electrons and may enable the observation of the remarkable properties predicted for these materials.

  6. Silicon based quantum dot hybrid qubits

    NASA Astrophysics Data System (ADS)

    Kim, Dohun

    2015-03-01

    The charge and spin degrees of freedom of an electron constitute natural bases for constructing quantum two level systems, or qubits, in semiconductor quantum dots. The quantum dot charge qubit offers a simple architecture and high-speed operation, but generally suffers from fast dephasing due to strong coupling of the environment to the electron's charge. On the other hand, quantum dot spin qubits have demonstrated long coherence times, but their manipulation is often slower than desired for important future applications. This talk will present experimental progress of a `hybrid' qubit, formed by three electrons in a Si/SiGe double quantum dot, which combines desirable characteristics (speed and coherence) in the past found separately in qubits based on either charge or spin degrees of freedom. Using resonant microwaves, we first discuss qubit operations near the `sweet spot' for charge qubit operation. Along with fast (>GHz) manipulation rates for any rotation axis on the Bloch sphere, we implement two independent tomographic characterization schemes in the charge qubit regime: traditional quantum process tomography (QPT) and gate set tomography (GST). We also present resonant qubit operations of the hybrid qubit performed on the same device, DC pulsed gate operations of which were recently demonstrated. We demonstrate three-axis control and the implementation of dynamic decoupling pulse sequences. Performing QPT on the hybrid qubit, we show that AC gating yields π rotation process fidelities higher than 93% for X-axis and 96% for Z-axis rotations, which demonstrates efficient quantum control of semiconductor qubits using resonant microwaves. We discuss a path forward for achieving fidelities better than the threshold for quantum error correction using surface codes. This work was supported in part by ARO (W911NF-12-0607), NSF (PHY-1104660), DOE (DE-FG02-03ER46028), and by the Laboratory Directed Research and Development program at Sandia National Laboratories

  7. Single Electron in Systems of Two and Three Quantum Dots

    NASA Astrophysics Data System (ADS)

    Filikhin, Igor; Vlahovic, Branislav

    We consider the single electron confinement states in the system of two and three quantum dots (QDs). The InAs/GaAs QDs are modeled as laterally distributed dots, using single sub-band effective mass approach with effective potential simulating the strain effect. Electron localization in double quantum dots (DQDs) and in triple quantum dots (TQDs) is studied over the entire electron energy spectrum by varying the geometry parameters of these QDs arrays. It is shown that a small violation of the DQD shape symmetry drastically affects tunneling. This effect also appears as a numerical instability in calculations of spectral distribution of localized/delocalized electron states for small variations of the input parameters of numerical procedure. The effect of adding a third dot to a DQD is investigated. We show that the presence of a third dot increases the tunneling in the initial DQD. The spectral distribution of localized/delocalized states appears sensitive to the violation of the mirror symmetry of TQDs. This work was supported by the NSF (HRD-1345219).

  8. Reconfigurable visible quantum dot microlasers integrated on a silicon chip

    NASA Astrophysics Data System (ADS)

    Mehrabani, Simin; Hunt, Heather K.; Armani, Andrea M.

    2012-02-01

    Developing on-chip, dynamically reconfigurable visible lasers that can be integrated with additional optical and electronic components will enable adaptive optical components. In the present work, we demonstrate a reconfigurable quantum dot laser based on an integrated silica ultra high-Q microcavity. By attaching the quantum dot using a reversible, non-destructive bioconjugation process, the ability to remove and replace it with an alternative quantum dot without damaging the underlying microcavity device has been demonstrated. As a result of the absorption/emission characteristics of quantum dots, the same laser source can be used to excite quantum dots with distinct emission wavelengths.

  9. Synthesis of CdSe quantum dots for quantum dot sensitized solar cell

    SciTech Connect

    Singh, Neetu Kapoor, Avinashi; Kumar, Vinod; Mehra, R. M.

    2014-04-24

    CdSe Quantum Dots (QDs) of size 0.85 nm were synthesized using chemical route. ZnO based Quantum Dot Sensitized Solar Cell (QDSSC) was fabricated using CdSe QDs as sensitizer. The Pre-synthesized QDs were found to be successfully adsorbed on front ZnO electrode and had potential to replace organic dyes in Dye Sensitized Solar Cells (DSSCs). The efficiency of QDSSC was obtained to be 2.06 % at AM 1.5.

  10. New small quantum dots for neuroscience

    NASA Astrophysics Data System (ADS)

    Selvin, Paul

    2014-03-01

    In "New Small Quantum Dots for Neuroscience," Paul Selvin (University of Illinois, Urbana-Champaign) notes how the details of synapsis activity in the brain involves chemical receptors that facilitate the creation of the electrical connection between two nerves. In order to understand the details of this neuroscience phenomenon you need to be able to "see" what is happening at the scale of these receptors, which is around 10 nanometers. This is smaller than the diffraction limit of normal microscopy and it takes place on a 3 dimensional structure. Selvin describes the development of small quantum dots (on the order of 6-9 microns) that are surface-sensitized to interact with the receptors. This allows the application of photo-activated localized microscopy (PALM), a superresolution microscopy that can be scanned through focus to develop a 3D map on a scale that is the same size as the emitter, which in this case are the small quantum dots. The quantum dots are stable in time and provide access to the receptors which allows the imaging of the interactions taking place at the synoptic level.

  11. Nanocomposites of POC and quantum dots

    NASA Astrophysics Data System (ADS)

    Borriello, C.; Concilio, S.; Minarini, C.; Iannelli, P.; Di Luccio, T.

    2012-07-01

    New luminescent polymer nanocomposites were synthesized combining carbazole/oxadiazole copolymer (POC) and CdSe/ZnS quantum dots (QDs) surface passivated by ionic liquids. Ionic liquid ligands improve the photostability of QDs and their compatibility with polymer allowing the deposition of homogeneous nanocomposites films. The nanocomposites were characterized by UV and photoluminescence spectroscopy.

  12. Producing Quantum Dots by Spray Pyrolysis

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder; Jin, Michael H.; Hepp, Aloysius

    2006-01-01

    An improved process for making nanocrystallites, commonly denoted quantum dots (QDs), is based on spray pyrolysis. Unlike the process used heretofore, the improved process is amenable to mass production of either passivated or non-passivated QDs, with computer control to ensure near uniformity of size.

  13. Quantum-dot infrared photodetectors: a review

    NASA Astrophysics Data System (ADS)

    Stiff-Roberts, Adrienne D.

    2009-04-01

    Quantum-dot infrared photodetectors (QDIPs) are positioned to become an important technology in the field of infrared (IR) detection, particularly for high-temperature, low-cost, high-yield detector arrays required for military applications. High-operating temperature (>=150 K) photodetectors reduce the cost of IR imaging systems by enabling cryogenic dewars and Stirling cooling systems to be replaced by thermo-electric coolers. QDIPs are well-suited for detecting mid-IR light at elevated temperatures, an application that could prove to be the next commercial market for quantum dots. While quantum dot epitaxial growth and intraband absorption of IR radiation are well established, quantum dot non-uniformity remains as a significant challenge. Nonetheless, state-of-the-art mid-IR detection at 150 K has been demonstrated using 70-layer InAs/GaAs QDIPs, and QDIP focal plane arrays are approaching performance comparable to HgCdTe at 77 K. By addressing critical challenges inherent to epitaxial QD material systems (e.g., controlling dopant incorporation), exploring alternative QD systems (e.g., colloidal QDs), and using bandgap engineering to reduce dark current and enhance multi-spectral detection (e.g. resonant tunneling QDIPs), the performance and applicability of QDIPs will continue to improve.

  14. Multifunctional Quantum Dots for Personalized Medicine

    PubMed Central

    Zrazhevskiy, Pavel; Gao, Xiaohu

    2009-01-01

    Successes in biomedical research and state-of-the-art medicine have undoubtedly improved the quality of life. However, a number of diseases, such as cancer, immunodeficiencies, and neurological disorders, still evade conventional diagnostic and therapeutic approaches. A transformation towards personalized medicine may help to combat these diseases. For this, identification of disease molecular fingerprints and their association with prognosis and targeted therapy must become available. Quantum dots (QDs), semiconductor nanocrystals with unique photo-physical properties, represent a novel class of fluorescence probes to address many of the needs of personalized medicine. This review outlines the properties of QDs that make them a suitable platform for advancing personalized medicine, examines several proof-of-concept studies showing utility of QDs for clinically relevant applications, and discusses current challenges in introducing QDs into clinical practice. PMID:20161004

  15. Conductance through an array of quantum dots

    NASA Astrophysics Data System (ADS)

    Lobos, A. M.; Aligia, A. A.

    2006-10-01

    We propose a simple approach to study the conductance through an array of N interacting quantum dots, weakly coupled to metallic leads. Using a mapping to an effective site which describes the low-lying excitations and a slave-boson representation in the saddle-point approximation, we calculated the conductance through the system. Explicit results are presented for N=1 and N=3 : a linear array and an isosceles triangle. For N=1 in the Kondo limit, the results are in very good agreement with previous results obtained with numerical renormalization group. In the case of the linear trimer for odd N , when the parameters are such that electron-hole symmetry is induced, we obtain perfect conductance G0=2e2/h . The validity of the approach is discussed in detail.

  16. Quantum dots as a possible oxygen sensor

    NASA Astrophysics Data System (ADS)

    Ziółczyk, Paulina; Kur-Kowalska, Katarzyna; Przybyt, Małgorzata; Miller, Ewa

    Results of studies on optical properties of low toxicity quantum dots (QDs) obtained from copper doped zinc sulfate are discussed in the paper. The effect of copper admixture concentration and solution pH on the fluorescence emission intensity of QDs was investigated. Quenching of QDs fluorescence by oxygen was reported and removal of the oxygen from the environment by two methods was described. In the chemical method oxygen was eliminated by adding sodium sulfite, in the other method oxygen was removed from the solution using nitrogen gas. For elimination of oxygen by purging the solution with nitrogen the increase of fluorescence intensity with decreasing oxygen concentration obeyed Stern-Volmer equation indicating quenching. For the chemical method Stern-Volmer equation was not fulfilled. The fluorescence decays lifetimes were determined and the increase of mean lifetimes at the absence of oxygen support hypothesis that QDs fluorescence is quenched by oxygen.

  17. Protease-activated quantum dot probes.

    PubMed

    Chang, Emmanuel; Miller, Jordan S; Sun, Jiantang; Yu, William W; Colvin, Vicki L; Drezek, Rebekah; West, Jennifer L

    2005-09-01

    We have developed a novel nanoparticulate luminescent probe with inherent signal amplification upon interaction with a targeted proteolytic enzyme. This construct may be useful for imaging in cancer detection and diagnosis. In this system, quantum dots (QDs) are bound to gold nanoparticles (AuNPs) via a proteolytically degradable peptide sequence to non-radiatively suppress luminescence. A 71% reduction in luminescence was achieved with conjugation of AuNPs to QDs. Release of AuNPs by peptide cleavage restores radiative QD photoluminescence. Initial studies observed a 52% rise in luminescence over 47 h of exposure to 0.2 mg/mL collagenase. These probes can be customized for targeted degradation simply by changing the sequence of the peptide linker. PMID:16039606

  18. Quantum dots: synthesis, bioapplications, and toxicity

    PubMed Central

    2012-01-01

    This review introduces quantum dots (QDs) and explores their properties, synthesis, applications, delivery systems in biology, and their toxicity. QDs are one of the first nanotechnologies to be integrated with the biological sciences and are widely anticipated to eventually find application in a number of commercial consumer and clinical products. They exhibit unique luminescence characteristics and electronic properties such as wide and continuous absorption spectra, narrow emission spectra, and high light stability. The application of QDs, as a new technology for biosystems, has been typically studied on mammalian cells. Due to the small structures of QDs, some physical properties such as optical and electron transport characteristics are quite different from those of the bulk materials. PMID:22929008

  19. Efficient passivated phthalocyanine-quantum dot solar cells.

    PubMed

    Blas-Ferrando, Vicente M; Ortiz, Javier; González-Pedro, Victoria; Sánchez, Rafael S; Mora-Seró, Iván; Fernández-Lázaro, Fernando; Sastre-Santos, Ángela

    2015-01-31

    The power conversion efficiency of CdSe and CdS quantum dot sensitized solar cells is enhanced by passivation with asymmetrically substituted phthalocyanines. The introduction of the phthalocyanine dye increases the efficiency up to 45% for CdSe and 104% for CdS. The main mechanism causing this improvement is the quantum dot passivation. This study highlights the possibilities of a new generation of dyes designed to be directly linked to QDs instead of the TiO2 electrodes. PMID:25519050

  20. Lateral photoconductivity in structures with Ge/Si quantum dots

    SciTech Connect

    Panevin, V. Yu. Sofronov, A. N.; Vorobjev, L. E.; Firsov, D. A.; Shalygin, V. A.; Vinnichenko, M. Ya.; Balagula, R. M.; Tonkikh, A. A.; Werner, P.; Fuhrman, B.; Schmidt, G.

    2013-12-15

    The spectra of lateral photoconductivity and optical absorption caused by the intraband optical transitions of holes in Ge/Si quantum dots are studied at different lattice temperatures. Polarization-dependent spectral features related to the transitions of holes from the quantum dot (QD) ground state are revealed in the optical spectra. Temperature photoconductivity quenching caused by the reverse trapping of nonequilibrium free holes by the QD bound state is observed. The obtained experimental data make it possible to determine the height of the surface band bending at the QD heterointerface.

  1. Magneto-transport studies of a few hole GaAs double quantum dot in tilted magnetic fields

    NASA Astrophysics Data System (ADS)

    Studenikin, Sergei; Bogan, Alex; Tracy, Lisa; Gaudreau, Louis; Sachrajda, Andy; Korkusinski, Marek; Reno, John; Hargett, Terry

    Compared to equivalent electron devices, single-hole spins interact weakly with lattice nuclear spins leading to extended quantum coherence times. This makes p-type Quantum Dots (QD) particularly attractive for practical quantum devices such as qubit circuits, quantum repeaters, quantum sensors etc. where long coherence time is required. Another property of holes is the possibility to tune their g-factor as a result of the strong anisotropy of the valance band. Hole g-factors can be conveniently tuned in situ from a large value to almost zero by tilting the magnetic field relative to the 2D hole gas surface normal. In this work we explore high-bias magneto-transport properties of a p-type double quantum dot (DQD) device fabricated from a GaAs/AlGaAs heterostructures using lateral split-gate technology. A charge detection technique is used to monitor number of holes and tune the p-DQD in a single hole regime around (1,1) and (2,0) occupation states where Pauli spin-blockaded transport is expected. Four states are identified in quantizing magnetic fields within the high-bias current stripe - three-fold triplet and a singlet which allows determining effective heavy hole g-factor as a function of the tilt angle from 90 to 0 degrees.

  2. Size and spatial homogeneity of SiGe quantum dots in amorphous silica matrix

    SciTech Connect

    Buljan, Maja; Pinto, Sara R. C.; Rolo, Anabela G.; Levichev, Sergey; Gomes, Maria J. M.; Kashtiban, Reza J.; Bangert, Ursel; Chahboun, Adil; Holy, Vaclav

    2009-10-15

    In this paper, we present a study of structural properties of SiGe quantum dots formed in amorphous silica matrix by magnetron sputtering technique. We investigate deposition conditions leading to the formation of dense and uniformly sized quantum dots, distributed homogeneously in the matrix. X-ray and Raman spectroscopy were used to estimate the Si content. A detailed analysis based on grazing incidence small angle x-ray scattering revealed the influence of the deposition conditions on quantum dot sizes, size distributions, spatial arrangement, and concentration of quantum dots in the matrix, as well as the Si:Ge content.

  3. Single-dot optical emission from ultralow density well-isolated InP quantum dots

    SciTech Connect

    Ugur, A.; Hatami, F.; Masselink, W. T.; Vamivakas, A. N.; Lombez, L.; Atatuere, M.

    2008-10-06

    We demonstrate a straightforward way to obtain single well-isolated quantum dots emitting in the visible part of the spectrum and characterize the optical emission from single quantum dots using this method. Self-assembled InP quantum dots are grown using gas-source molecular-beam epitaxy over a wide range of InP deposition rates, using an ultralow growth rate of about 0.01 atomic monolayers/s, a quantum-dot density of 1 dot/{mu}m{sup 2} is realized. The resulting isolated InP quantum dots embedded in an InGaP matrix are individually characterized without the need for lithographical patterning and masks on the substrate. Such low-density quantum dots show excitonic emission at around 670 nm with a linewidth limited by instrument resolution. This system is applicable as a single-photon source for applications such as quantum cryptography.

  4. PREFACE: Quantum dots as probes in biology

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek

    2013-05-01

    The recent availability of nanostructured materials has resulted in an explosion of research focused on their unique optical, thermal, mechanical and magnetic properties. Optical imagining, magnetic enhancement of contrast and drug delivery capabilities make the nanoparticles of special interest in biomedical applications. These materials have been involved in the development of theranostics—a new field of medicine that is focused on personalized tests and treatment. It is likely that multimodal nanomaterials will be responsible for future diagnostic advances in medicine. Quantum dots (QD) are nanoparticles which exhibit luminescence either through the formation of three-dimensional excitons or excitations of the impurities. The excitonic luminescence can be tuned by changing the size (the smaller the size, the higher the frequency). QDs are usually made of semiconducting materials. Unlike fluorescent proteins and organic dyes, QDs resist photobleaching, allow for multi-wavelength excitations and have narrow emission spectra. The techniques to make QDs are cheap and surface modifications and functionalizations can be implemented. Importantly, QDs could be synthesized to exhibit useful optomagnetic properties and, upon functionalization with an appropriate biomolecule, directed towards a pre-selected target for diagnostic imaging and photodynamic therapy. This special issue on Quantum dots in Biology is focused on recent research in this area. It starts with a topical review by Sreenivasan et al on various physical mechanisms that lead to the QD luminescence and on using wavelength shifts for an improvement in imaging. The next paper by Szczepaniak et al discusses nanohybrids involving QDs made of CdSe coated by ZnS and combined covalently with a photosynthetic enzyme. These nanohybrids are shown to maintain the enzymatic activity, however the enzyme properties depend on the size of a QD. They are proposed as tools to study photosynthesis in isolated

  5. Origins of low energy-transfer efficiency between patterned GaN quantum well and CdSe quantum dots

    SciTech Connect

    Xu, Xingsheng

    2015-03-02

    For hybrid light emitting devices (LEDs) consisting of GaN quantum wells and colloidal quantum dots, it is necessary to explore the physical mechanisms causing decreases in the quantum efficiencies and the energy transfer efficiency between a GaN quantum well and CdSe quantum dots. This study investigated the electro-luminescence for a hybrid LED consisting of colloidal quantum dots and a GaN quantum well patterned with photonic crystals. It was found that both the quantum efficiency of colloidal quantum dots on a GaN quantum well and the energy transfer efficiency between the patterned GaN quantum well and the colloidal quantum dots decreased with increases in the driving voltage or the driving time. Under high driving voltages, the decreases in the quantum efficiency of the colloidal quantum dots and the energy transfer efficiency can be attributed to Auger recombination, while those decreases under long driving time are due to photo-bleaching and Auger recombination.

  6. Quantum computation: algorithms and implementation in quantum dot devices

    NASA Astrophysics Data System (ADS)

    Gamble, John King

    In this thesis, we explore several aspects of both the software and hardware of quantum computation. First, we examine the computational power of multi-particle quantum random walks in terms of distinguishing mathematical graphs. We study both interacting and non-interacting multi-particle walks on strongly regular graphs, proving some limitations on distinguishing powers and presenting extensive numerical evidence indicative of interactions providing more distinguishing power. We then study the recently proposed adiabatic quantum algorithm for Google PageRank, and show that it exhibits power-law scaling for realistic WWW-like graphs. Turning to hardware, we next analyze the thermal physics of two nearby 2D electron gas (2DEG), and show that an analogue of the Coulomb drag effect exists for heat transfer. In some distance and temperature, this heat transfer is more significant than phonon dissipation channels. After that, we study the dephasing of two-electron states in a single silicon quantum dot. Specifically, we consider dephasing due to the electron-phonon coupling and charge noise, separately treating orbital and valley excitations. In an ideal system, dephasing due to charge noise is strongly suppressed due to a vanishing dipole moment. However, introduction of disorder or anharmonicity leads to large effective dipole moments, and hence possibly strong dephasing. Building on this work, we next consider more realistic systems, including structural disorder systems. We present experiment and theory, which demonstrate energy levels that vary with quantum dot translation, implying a structurally disordered system. Finally, we turn to the issues of valley mixing and valley-orbit hybridization, which occurs due to atomic-scale disorder at quantum well interfaces. We develop a new theoretical approach to study these effects, which we name the disorder-expansion technique. We demonstrate that this method successfully reproduces atomistic tight-binding techniques

  7. Induced spin-accumulation and spin-polarization in a quantum-dot ring by using magnetic quantum dots and Rashba spin-orbit effect

    SciTech Connect

    Eslami, L. Faizabadi, E.

    2014-05-28

    The effect of magnetic contacts on spin-dependent electron transport and spin-accumulation in a quantum ring, which is threaded by a magnetic flux, is studied. The quantum ring is made up of four quantum dots, where two of them possess magnetic structure and other ones are subjected to the Rashba spin-orbit coupling. The magnetic quantum dots, referred to as magnetic quantum contacts, are connected to two external leads. Two different configurations of magnetic moments of the quantum contacts are considered; the parallel and the anti-parallel ones. When the magnetic moments are parallel, the degeneracy between the transmission coefficients of spin-up and spin-down electrons is lifted and the system can be adjusted to operate as a spin-filter. In addition, the accumulation of spin-up and spin-down electrons in non-magnetic quantum dots are different in the case of parallel magnetic moments. When the intra-dot Coulomb interaction is taken into account, we find that the electron interactions participate in separation between the accumulations of electrons with different spin directions in non-magnetic quantum dots. Furthermore, the spin-accumulation in non-magnetic quantum dots can be tuned in the both parallel and anti-parallel magnetic moments by adjusting the Rashba spin-orbit strength and the magnetic flux. Thus, the quantum ring with magnetic quantum contacts could be utilized to create tunable local magnetic moments which can be used in designing optimized nanodevices.

  8. Internalization of targeted quantum dots by brain capillary endothelial cells in vivo

    PubMed Central

    Paris-Robidas, Sarah; Brouard, Danny; Emond, Vincent; Parent, Martin

    2015-01-01

    Receptors located on brain capillary endothelial cells forming the blood–brain barrier are the target of most brain drug delivery approaches. Yet, direct subcellular evidence of vectorized transport of nanoformulations into the brain is lacking. To resolve this question, quantum dots were conjugated to monoclonal antibodies (Ri7) targeting the murine transferrin receptor. Specific transferrin receptor-mediated endocytosis of Ri7-quantum dots was first confirmed in N2A and bEnd5 cells. After intravenous injection in mice, Ri7-quantum dots exhibited a fourfold higher volume of distribution in brain tissues, compared to controls. Immunofluorescence analysis showed that Ri7-quantum dots were sequestered throughout the cerebral vasculature 30 min, 1 h, and 4 h post injection, with a decline of signal intensity after 24 h. Transmission electron microscopic studies confirmed that Ri7-quantum dots were massively internalized by brain capillary endothelial cells, averaging 37 ± 4 Ri7-quantum dots/cell 1 h after injection. Most quantum dots within brain capillary endothelial cells were observed in small vesicles (58%), with a smaller proportion detected in tubular structures or in multivesicular bodies. Parenchymal penetration of Ri7-quantum dots was extremely low and comparable to control IgG. Our results show that systemically administered Ri7-quantum dots complexes undergo extensive endocytosis by brain capillary endothelial cells and open the door for novel therapeutic approaches based on brain endothelial cell drug delivery. PMID:26661181

  9. Internalization of targeted quantum dots by brain capillary endothelial cells in vivo.

    PubMed

    Paris-Robidas, Sarah; Brouard, Danny; Emond, Vincent; Parent, Martin; Calon, Frédéric

    2016-04-01

    Receptors located on brain capillary endothelial cells forming the blood-brain barrier are the target of most brain drug delivery approaches. Yet, direct subcellular evidence of vectorized transport of nanoformulations into the brain is lacking. To resolve this question, quantum dots were conjugated to monoclonal antibodies (Ri7) targeting the murine transferrin receptor. Specific transferrin receptor-mediated endocytosis of Ri7-quantum dots was first confirmed in N2A and bEnd5 cells. After intravenous injection in mice, Ri7-quantum dots exhibited a fourfold higher volume of distribution in brain tissues, compared to controls. Immunofluorescence analysis showed that Ri7-quantum dots were sequestered throughout the cerebral vasculature 30 min, 1 h, and 4 h post injection, with a decline of signal intensity after 24 h. Transmission electron microscopic studies confirmed that Ri7-quantum dots were massively internalized by brain capillary endothelial cells, averaging 37 ± 4 Ri7-quantum dots/cell 1 h after injection. Most quantum dots within brain capillary endothelial cells were observed in small vesicles (58%), with a smaller proportion detected in tubular structures or in multivesicular bodies. Parenchymal penetration of Ri7-quantum dots was extremely low and comparable to control IgG. Our results show that systemically administered Ri7-quantum dots complexes undergo extensive endocytosis by brain capillary endothelial cells and open the door for novel therapeutic approaches based on brain endothelial cell drug delivery. PMID:26661181

  10. Quantum Dots: Proteomics characterization of the impact on biological systems

    NASA Astrophysics Data System (ADS)

    Pozzi-Mucelli, Stefano; Boschi, F.; Calderan, L.; Sbarbati, A.; Osculati, F.

    2009-05-01

    Over the past few years, Quantum Dots have been tested in most biotechnological applications that use fluorescence, including DNA array technology, immunofluorescence assays, cell and animal biology. Quantum Dots tend to be brighter than conventional dyes, because of the compounded effects of extinction coefficients that are an order of magnitude larger than those of most dyes. Their main advantage resides in their resistance to bleaching over long periods of time (minutes to hours), allowing the acquisition of images that are crisp and well contrasted. This increased photostability is especially useful for three-dimensional (3D) optical sectioning, where a major issue is bleaching of fluorophores during acquisition of successive z-sections, which compromises the correct reconstruction of 3D structures. The long-term stability and brightness of Quantum Dots make them ideal candidates also for live animal targeting and imaging. The vast majority of the papers published to date have shown no relevant effects on cells viability at the concentration used for imaging applications; higher concentrations, however, caused some issues on embryonic development. Adverse effects are due to be caused by the release of cadmium, as surface PEGylation of the Quantum Dots reduces these issues. A recently published paper shows evidences of an epigenetic effect of Quantum Dots treatment, with general histones hypoacetylation, and a translocation to the nucleus of p53. In this study, mice treated with Quantum Dots for imaging purposes were analyzed to investigate the impact on protein expression and networking. Differential mono-and bidimensional electrophoresis assays were performed, with the individuation of differentially expressed proteins after intravenous injection and imaging analysis; further, as several authors indicate an increase in reactive oxygen species as a possible mean of damage due to the Quantum Dots treatment, we investigated the signalling pathway of APE1/Ref1, a

  11. Efficient Luminescence from Perovskite Quantum Dot Solids.

    PubMed

    Kim, Younghoon; Yassitepe, Emre; Voznyy, Oleksandr; Comin, Riccardo; Walters, Grant; Gong, Xiwen; Kanjanaboos, Pongsakorn; Nogueira, Ana F; Sargent, Edward H

    2015-11-18

    Nanocrystals of CsPbX3 perovskites are promising materials for light-emitting optoelectronics because of their colloidal stability, optically tunable bandgap, bright photoluminescence, and excellent photoluminescence quantum yield. Despite their promise, nanocrystal-only films of CsPbX3 perovskites have not yet been fabricated; instead, highly insulating polymers have been relied upon to compensate for nanocrystals' unstable surfaces. We develop solution chemistry that enables single-step casting of perovskite nanocrystal films and overcomes problems in both perovskite quantum dot purification and film fabrication. Centrifugally cast films retain bright photoluminescence and achieve dense and homogeneous morphologies. The new materials offer a platform for optoelectronic applications of perovskite quantum dot solids. PMID:26529572

  12. DNA-based programming of quantum dot valency, self-assembly and luminescence.

    PubMed

    Tikhomirov, Grigory; Hoogland, Sjoerd; Lee, P E; Fischer, Armin; Sargent, Edward H; Kelley, Shana O

    2011-08-01

    The electronic and optical properties of colloidal quantum dots, including the wavelengths of light that they can absorb and emit, depend on the size of the quantum dots. These properties have been exploited in a number of applications including optical detection, solar energy harvesting and biological research. Here, we report the self-assembly of quantum dot complexes using cadmium telluride nanocrystals capped with specific sequences of DNA. Quantum dots with between one and five DNA-based binding sites are synthesized and then used as building blocks to create a variety of rationally designed assemblies, including cross-shaped complexes containing three different types of dots. The structure of the complexes is confirmed with transmission electron microscopy, and photophysical studies are used to quantify energy transfer among the constituent components. Through changes in pH, the conformation of the complexes can also be reversibly switched, turning on and off the transfer of energy between the constituent quantum dots. PMID:21743454

  13. Nonclassical correlation of cascaded photon pairs emitted from quantum dots

    SciTech Connect

    Li, Chuan-Feng; Zou, Yang; Xu, Jin-Shi; Ge, Rong-Chun; Guo, Guang-Can

    2011-11-15

    We studied the quantum correlation of the photon pairs generated by biexciton cascade decays of self-assembled quantum dots, and determined the correlation sudden-change temperature, which is shown to be independent of the background noise, far lower than the entanglement sudden-death temperature, and therefore, easier to be observed in experiments. The relationship between the fine-structure splitting and the sudden-change temperature is also provided.

  14. Spin blockade in a triple silicon quantum dot in CMOS technology

    NASA Astrophysics Data System (ADS)

    Prati, E.; Petretto, G.; Belli, M.; Mazzeo, G.; Cocco, S.; de Michielis, M.; Fanciulli, M.; Guagliardo, F.; Vinet, M.; Wacquez, R.

    2012-02-01

    We study the spin blockade (SB) phenomenon by quantum transport in a triple quantum dot made of two single electron transistors (SET) on a CMOS platform separated by an implanted multiple donor quantum dot [1]. Spin blockade condition [2] has been used in the past to realize single spin localization and manipulation in GaAs quantum dots [3]. Here, we reproduce the same physics in a CMOS preindustrial silicon quantum device. Single electron quantum dots are connected via an implanted quantum dot and exhibit SB in one current direction. We break the spin blockade by applying a magnetic field of few tesla. Our experimental results are explained by a theoretical microscopic scheme supported by simulations in which only some of the possible processes through the triple quantum dot are spin blocked, according to the asymmetry of the coupling capacitances with the control gates and the central dot. Depending on the spin state, the SB may be both lifted and induced. Spin control in CMOS quantum dots is a necessary condition to realize large fabrication of spin qubits in some solid state silicon quantum device architectures.[0pt] [1] Pierre et al., Appl. Phys. Lett., 95, 24, 242107 (2009); [2] Liu et al., Phys. Rev. B 77, 073310 (2008); [3] Koppens et al., Nature 442, 766-771 (2006)

  15. Tailoring 10 nm scale suspended graphene junctions and quantum dots.

    PubMed

    Tayari, Vahid; McRae, Andrew C; Yiğen, Serap; Island, Joshua O; Porter, James M; Champagne, Alexandre R

    2015-01-14

    The possibility to make 10 nm scale, and low-disorder, suspended graphene devices would open up many possibilities to study and make use of strongly coupled quantum electronics, quantum mechanics, and optics. We present a versatile method, based on the electromigration of gold-on-graphene bow-tie bridges, to fabricate low-disorder suspended graphene junctions and quantum dots with lengths ranging from 6 nm up to 55 nm. We control the length of the junctions, and shape of their gold contacts by adjusting the power at which the electromigration process is allowed to avalanche. Using carefully engineered gold contacts and a nonuniform downward electrostatic force, we can controllably tear the width of suspended graphene channels from over 100 nm down to 27 nm. We demonstrate that this lateral confinement creates high-quality suspended quantum dots. This fabrication method could be extended to other two-dimensional materials. PMID:25490053

  16. Double capping of molecular beam epitaxy grown InAs/InP quantum dots studied by cross-sectional scanning tunneling microscopy

    SciTech Connect

    Ulloa, J. M.; Koenraad, P. M.; Gapihan, E.; Letoublon, A.; Bertru, N.

    2007-08-13

    Cross-sectional scanning tunneling microscopy was used to study at the atomic scale the double capping process of self-assembled InAs/InP quantum dots (QDs) grown by molecular beam epitaxy on a (311)B substrate. The thickness of the first capping layer is found to play a mayor role in determining the final results of the process. For first capping layers up to 3.5 nm, the height of the QDs correspond to the thickness of the first capping layer. Nevertheless, for thicknesses higher than 3.5 nm, a reduction in the dot height compared to the thickness of the first capping layer is observed. These results are interpreted in terms of a transition from a double capping to a classical capping process when the first capping layer is thick enough to completely cover the dots.

  17. Quantum Computation Using Optically Coupled Quantum Dot Arrays

    NASA Technical Reports Server (NTRS)

    Pradhan, Prabhakar; Anantram, M. P.; Wang, K. L.; Roychowhury, V. P.; Saini, Subhash (Technical Monitor)

    1998-01-01

    A solid state model for quantum computation has potential advantages in terms of the ease of fabrication, characterization, and integration. The fundamental requirements for a quantum computer involve the realization of basic processing units (qubits), and a scheme for controlled switching and coupling among the qubits, which enables one to perform controlled operations on qubits. We propose a model for quantum computation based on optically coupled quantum dot arrays, which is computationally similar to the atomic model proposed by Cirac and Zoller. In this model, individual qubits are comprised of two coupled quantum dots, and an array of these basic units is placed in an optical cavity. Switching among the states of the individual units is done by controlled laser pulses via near field interaction using the NSOM technology. Controlled rotations involving two or more qubits are performed via common cavity mode photon. We have calculated critical times, including the spontaneous emission and switching times, and show that they are comparable to the best times projected for other proposed models of quantum computation. We have also shown the feasibility of accessing individual quantum dots using the NSOM technology by calculating the photon density at the tip, and estimating the power necessary to perform the basic controlled operations. We are currently in the process of estimating the decoherence times for this system; however, we have formulated initial arguments which seem to indicate that the decoherence times will be comparable, if not longer, than many other proposed models.

  18. Effects of Shannon entropy and electric field on polaron in RbCl triangular quantum dot

    NASA Astrophysics Data System (ADS)

    M, Tiotsop; A, J. Fotue; S, C. Kenfack; N, Issofa; H, Fotsin; L, C. Fai

    2016-04-01

    In this paper, the time evolution of the quantum mechanical state of a polaron is examined using the Pekar type variational method on the condition of the electric-LO-phonon strong-coupling and polar angle in RbCl triangular quantum dot. We obtain the eigenenergies, and the eigenfunctions of the ground state, and the first excited state respectively. This system in a quantum dot can be treated as a two-level quantum system qubit and the numerical calculations are performed. The effects of Shannon entropy and electric field on the polaron in the RbCl triangular quantum dot are also studied.

  19. Silver nanoparticles in combination with acetic acid and zinc oxide quantum dots for antibacterial activities improvement-A comparative study

    NASA Astrophysics Data System (ADS)

    Sedira, Sofiane; Ayachi, Ahmed Abdelhakim; Lakehal, Sihem; Fateh, Merouane; Achour, Slimane

    2014-08-01

    Due to their remarkable antibacterial/antivirus properties, silver nanoparticles (Ag NPs) and zinc oxide quantum dots (ZnO Qds) have been widely used in the antimicrobial field. The mechanism of action of Ag NPs on bacteria was recently studied and it has been proven that Ag NPs exerts their antibacterial activities mainly by the released Ag+. In this work, Ag NPs and ZnO Qds were synthesized using polyol and hydrothermal method, respectively. It was demonstrated that Ag NPs can be oxidized easily in aqueous solution and the addition of acetic acid can increase the Ag+ release which improves the antibacterial activity of Ag NPs. A comparative study between bactericidal effect of Ag NPs/acetic acid and Ag NPs/ZnO Qds on Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia and Staphylococcus aureus was undertaken using agar diffusion method. The obtained colloids were characterized using UV-vis spectroscopy, Raman spectrometry, X-ray diffraction (XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM).

  20. Study of Dislocation-Ordered In(x)Ga(1-x)As/GaAs Quantum Dots

    NASA Technical Reports Server (NTRS)

    Leon, Rose

    2003-01-01

    A report describes an experimental study of dislocation-induced spatial ordering of quantum dots (QDs) comprising nanometer-sized In(x)Ga(1-x)As islands surrounded by GaAs. Metastable heteroepitaxial structures were grown by molecular-beam epitaxy of In(x)Ga(1-x)As onto n+ GaAs and semi-insulating GaAs substrates. Then the structures were relaxed during a post-growth annealing/self-organizing process leading to the formation of surface undulations that acted as preferential sites for the nucleation of QDs. Structural effects of annealing times and temperatures on the strain-relaxed In(x)Ga(1-x)As/GaAs and the subsequent spatial ordering of the QDs were analyzed by atomic-force microscopy and transmission electron microscopy. Continuous-wave spectral and time-resolved photoluminescence (PL) measurements were performed to study the effects, upon optical properties, of increased QD positional ordering, increased QD uniformity, and proximity of QDs to arrays of dislocations. PL spectral peaks of ordered QD structures formed on strain-relaxed In(x)Ga(1-x)As/GaAs layers were found to be narrower than those of structures not so formed and ordered. Rise and decay times of time-resolved PL were found to be lower at lower temperatures -- apparently as a consequence of decreased carrier-transport times within the barriers surrounding the QDs.

  1. An accurate homogenized tissue phantom for broad spectrum autofluorescence studies: a tool for optimizing quantum dot-based contrast agents

    NASA Astrophysics Data System (ADS)

    Roy, Mathieu; Wilson, Brian C.

    2008-02-01

    We are investigating the use of ZnS-capped CdSe quantum dot (QD) bioconjugates combined with fluorescence endoscopy for improved early cancer detection in the esophagus, colon and lung. A major challenge in using fluorescent contrast agents in vivo is to extract the relevant signal from the tissue autofluorescence (AF). The present studies are aimed at maximizing the QD signal to AF background ratio (SBR) to facilitate detection. These contrast optimization studies require optical phantoms that simulate tissue autofluorescence, absorption and scattering over the entire visible spectrum, while allowing us to control the optical thickness. We present an optical phantom made of fresh homogenized tissue diluted in water. The homogenized tissue is poured into a clear polymer tank designed to hold a QD-loaded silica capillary in its center. Because of the non-linear effects of absorption and scattering on measured autofluorescence, direct comparison between results obtained using tissue phantoms of different concentration is not possible. We introduce mathematical models that make it possible to perform measurements on diluted tissue homogenates and subsequently extrapolate the results to intact (non-diluted) tissue. Finally, we present preliminary QD contrast data showing that the 380-420 nm spectral window is optimal for surface QD imaging.

  2. Two-path transport measurements with bias dependence on a triple quantum dot

    SciTech Connect

    Kotzian, M.; Rogge, M. C.; Haug, R. J.

    2013-12-04

    We present transport measurements on a lateral triple quantum dot with a star-like geometry and one lead attached to each dot. The system is studied in a regime close to established quadruple points, where all three dots are in resonance. The specific sample structure allows us to apply two different bias voltages to the two source leads and thus to study the influence between the paths with serial double dots.

  3. Two-path transport measurements with bias dependence on a triple quantum dot

    NASA Astrophysics Data System (ADS)

    Kotzian, M.; Rogge, M. C.; Haug, R. J.

    2013-12-01

    We present transport measurements on a lateral triple quantum dot with a star-like geometry and one lead attached to each dot. [1] The system is studied in a regime close to established quadruple points, where all three dots are in resonance. The specific sample structure allows us to apply two different bias voltages to the two source leads and thus to study the influence between the paths with serial double dots.

  4. Si quantum dot structures and their applications

    NASA Astrophysics Data System (ADS)

    Shcherbyna, L.; Torchynska, T.

    2013-06-01

    This paper presents briefly the history of emission study in Si quantum dots (QDs) in the last two decades. Stable light emission of Si QDs and NCs was observed in the spectral ranges: blue, green, orange, red and infrared. These PL bands were attributed to the exciton recombination in Si QDs, to the carrier recombination through defects inside of Si NCs or via oxide related defects at the Si/SiOx interface. The analysis of recombination transitions and the different ways of the emission stimulation in Si QD structures, related to the element variation for the passivation of surface dangling bonds, as well as the plasmon induced emission and rare earth impurity activation, have been presented. The different applications of Si QD structures in quantum electronics, such as: Si QD light emitting diodes, Si QD single union and tandem solar cells, Si QD memory structures, Si QD based one electron devices and double QD structures for spintronics, have been discussed as well. Note the significant worldwide interest directed toward the silicon-based light emission for integrated optoelectronics is related to the complementary metal-oxide semiconductor compatibility and the possibility to be monolithically integrated with very large scale integrated (VLSI) circuits. The different features of poly-, micro- and nanocrystalline silicon for solar cells, that is a mixture of both amorphous and crystalline phases, such as the silicon NCs or QDs embedded in a α-Si:H matrix, as well as the thin film 2-cell or 3-cell tandem solar cells based on Si QD structures have been discussed as well. Silicon NC based structures for non-volatile memory purposes, the recent studies of Si QD base single electron devices and the single electron occupation of QDs as an important component to the measurement and manipulation of spins in quantum information processing have been analyzed as well.

  5. Characterization of the Uptake of Quantum Dots by Algae

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Priyanka; Lin, Sijie; Sun, Xiaoqian; Brune, David; Ke, Pu-Chun

    2009-03-01

    The exposure of living systems to nanoparticles is inevitable due to a dramatic increase in their release into the environment, the most likely pathways being through inhalation, ingestion and skin uptake. The extremely small size of the nanoparticles may facilitate their tissue and cellular uptake by plants and animals, resulting in either positive (drug delivery, antioxidation) or negative (toxicity, cellular dysfunction) effects. Here we report the effects of quantum dots uptake by algae, the single-celled plant species and major food sources for aquatic organisms. In our studies, the presence of quantum dots in algal cells was detected using fluorescence microscopy and electron microscopy. Using spectrophotometry we found a supralinear increase of the uptake with the concentration of quantum dots, with a saturation of the uptake occurring beyond a concentration of 15 mg/mL. Using a bicarbonate indicator we further evaluated the effects of quantum dots uptake on algal photosynthesis and respiration. Such study facilitates our understanding of the environmental impact of nanomaterials.

  6. Phonon mediated spin relaxation in a moving quantum dot

    NASA Astrophysics Data System (ADS)

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong

    2015-03-01

    We study decoherence of an electron spin qubit that is being transported in a moving quantum dot. Our focus is on spin relaxation due to phonon noise through the spin-orbit interaction. We find that the effective magnetic field caused by the motion of the electron can either enhance or suppress spin relaxation depending on the angle between the moving direction and the external magnetic field. At low external magnetic field (BAlt 0 . 5 T), the suppression effect can be significant, which indicates that a moving quantum dot can maintain spin coherence better than a static dot. We also find that the spin relaxation rate is not a monotonically increasing function of the applied magnetic field when the motion of the electron is taken into account. We thank financial support by US ARO and NSF PIF.

  7. Coulombic Effects on Excited States in a Small Quantum Dot

    NASA Astrophysics Data System (ADS)

    Goldhaber-Gordon, David; Duncan, David; Westervelt, R. M.; Maranowski, K. M.; Gossard, A. C.

    2000-03-01

    The excitation spectrum of a quantum dot varies with the addition of electrons, as successive single-particle eigenstates become filled in the ground state and so cannot accomodate additional electrons. Previous experiments have observed that each spatial state becomes unavailable for transport of further electrons after only one electron has occupied it. We have investigated state occupancy in the excitation spectrum of a small (200 nm X 200 nm) quantum dot laterally defined by capacitively coupled gate electrodes in a GaAs/AlGaAs heterostructure. For our dots, quantized level spacing Δ E ≈ 300 μeV and charging energy Ec ≈ 2 meV. We have studied the evolution of features in the excitation spectrum with magnetic field and equilibrium occupancy and have identified the pattern of spins for the added electrons. These results test the applicability of the spin-degenerate constant interaction picture as well as its limitations.

  8. Nonradiative recombination of excitons in semimagnetic quantum dots

    SciTech Connect

    Chernenko, A. V.

    2015-12-15

    The mechanisms of the nonradiative recombination of excitons in neutral and charged quantum dots based on II–VI semimagnetic semiconductors are investigated. It is shown that, along with the dipole–dipole and direct-exchange mechanisms, there is one more mechanism referred to as the indirect-exchange mechanism and related to sp–d mixing. The selection rules for nonradiative recombination by exchange mechanisms are subsequently derived. The dependence of the efficiency of all recombination mechanisms on the quantum-dot size is studied. The experimentally observed growth in the intracenter photoluminescence intensity with decreasing size of dots and nanocrystals is accounted for. Methods for experimental determination of the contributions of different mechanisms to nonradiative recombination are discussed.

  9. Molecular Spintronics: Wiring Spin Coherence between Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Ouyang, Min

    2004-03-01

    Semiconductor quantum dots (QDs) are attractive candidates for scalable solid state implementations of quantum information processing based on electron spin states, where a crucial requirement for practical devices is to have efficient and tunable spin coupling between them. We focus on recent femtosecond time-resolved Faraday rotation studies of self-assembled multilayer spintronic devices based on colloidal quantum dots bridged by conjugated molecules (M. Ouyang et al., Science 301, 1074 (2003)). The data reveal the instantaneous transfer of spin coherence through conjugated molecular bridges spanning quantum dots of different size over a broad range of temperature. The room temperature spin transfer efficiency exceeds 20%, which approximately doubles the value measured at T=4.5K. A molecular π-orbital mediated spin coherence transfer mechanism is proposed to provide a qualitative insight into the experimental observations, suggesting a correlation between the stereochemistry of molecules and the transfer process. The results show that conjugated molecules can be used not only as physical links for the assembly of functional networks, but also as efficient channels for shuttling quantum information. This class of structures may be useful as two-spin quantum devices operating at ambient temperatures and may offer promising opportunities for future versatile molecule-based spintronic technologies.

  10. Nonlinear optical properties and supercontinuum spectrum of titania-modified carbon quantum dots

    NASA Astrophysics Data System (ADS)

    Kulchin, Yu N.; Mayor, A. Yu; Proschenko, D. Yu; Postnova, I. V.; Shchipunov, Yu A.

    2016-04-01

    We have studied the nonlinear optical properties and supercontinuum spectrum of solutions of carbon quantum dots prepared by a hydrothermal process from chitin and then coated with titania. The titania coating has been shown to have an activating effect on the carbon quantum dots, enhancing supercontinuum generation in the blue-violet spectral region and enabling their nonlinear optical characteristics to be varied.

  11. Reprint of : Thermodynamic properties of a quantum Hall anti-dot interferometer

    NASA Astrophysics Data System (ADS)

    Levy Schreier, Sarah; Stern, Ady; Rosenow, Bernd; Halperin, Bertrand I.

    2016-08-01

    We study quantum Hall interferometers in which the interference loop encircles a quantum anti-dot. We base our study on thermodynamic considerations, which we believe reflect the essential aspects of interference transport phenomena. We find that similar to the more conventional Fabry-Perot quantum Hall interferometers, in which the interference loop forms a quantum dot, the anti-dot interferometer is affected by the electro-static Coulomb interaction between the edge modes defining the loop. We show that in the Aharonov-Bohm regime, in which effects of fractional statistics should be visible, is easier to access in interferometers based on anti-dots than in those based on dots. We discuss the relevance of our results to recent measurements on anti-dots interferometers.

  12. Small bright charged colloidal quantum dots.

    PubMed

    Qin, Wei; Liu, Heng; Guyot-Sionnest, Philippe

    2014-01-28

    Using electrochemical charge injection, the fluorescence lifetimes of negatively charged core/shell CdTe/CdSe QDs are measured as a function of core size and shell thickness. It is found that the ensemble negative trion lifetimes reach a maximum (∼4.5 ns) for an intermediate shell thickness. This leads to the smallest particles (∼4.5 nm) with the brightest trion to date. Single dot measurements show that the negative charge suppresses blinking and that the trion can be as bright as the exciton at room temperature. In contrast, the biexciton lifetimes remain short and exhibit only a monotonous increase with shell thickness, showing no correlation with the negative trion decays. The suppression of the Auger process in small negatively charged CdTe/CdSe quantum dots is unprecedented and a significant departure from prior results with ultrathick CdSe/CdS core/shell or dot-in-rod structures. The proposed reason for the optimum shell thickness is that the electron-hole overlap is restricted to the CdTe core while the electron is tuned to have zero kinetic energy in the core for that optimum shell thickness. The different trend of the biexciton lifetime is not explained but tentatively attributed to shorter-lived positive trions at smaller sizes. These results improve our understanding of multiexciton recombination in colloidal quantum dots and may lead to the design of bright charged QDs for more efficient light-emitting devices. PMID:24350673

  13. Conductance Peaks in Open Quantum Dots

    NASA Astrophysics Data System (ADS)

    Ramos, J. G. G. S.; Bazeia, D.; Hussein, M. S.; Lewenkopf, C. H.

    2011-10-01

    We present a simple measure of the conductance fluctuations in open ballistic chaotic quantum dots, extending the number of maxima method originally proposed for the statistical analysis of compound nuclear reactions. The average number of extreme points (maxima and minima) in the dimensionless conductance T as a function of an arbitrary external parameter Z is directly related to the autocorrelation function of T(Z). The parameter Z can be associated with an applied gate voltage causing shape deformation in quantum dot, an external magnetic field, the Fermi energy, etc. The average density of maxima is found to be ⟨ρZ⟩=αZ/Zc, where αZ is a universal constant and Zc is the conductance autocorrelation length, which is system specific. The analysis of ⟨ρZ⟩ does not require large statistic samples, providing a quite amenable way to access information about parametric correlations, such as Zc.

  14. Magnetoconductance fluctuations in open bismuth quantum dots

    NASA Astrophysics Data System (ADS)

    Hackens, B.; Minet, J. P.; Farhi, G.; Crahay, A.; Faniel, S.; Gustin, C.; Bayot, V.

    2002-03-01

    We investigate the low temperature (300 mK - 10 K) magnetoconductance of open circular bismuth quantum dots (diameter: 500 nm). The structures are fabricated using a combination of electron beam lithography, lift off and plasma etching techniques on bismuth thin films evaporated on heated SiO2 substrates. We observe reproducible magnetoconductance fluctuations (UCFs) up to 5T, qualitatively similar to conductance fluctuations evidenced in open quantum dots patterned in high mobility semiconductor heterostructures. In our samples, UCFs are superposed on a slowly varying negative magnetoconductance background. We also observe a sharp conductance maximum centered in B=0, which is reminescent of the spin-orbit induced anti-localisation phenomenon. The behavior of UCFs and of the conductance maximum is discussed as a function of the temperature, thickness and degree of cristallinity of the cavity.

  15. Scanning photoluminescent spectroscopy of bioconjugated quantum dots

    NASA Astrophysics Data System (ADS)

    Chornokur, G.; Ostapenko, S.; Oleynik, E.; Phelan, C.; Korsunska, N.; Kryshtab, T.; Zhang, J.; Wolcott, A.; Sellers, T.

    2009-04-01

    We report on the application of the bio-conjugated quantum dots (QDs) for a "sandwich" enzyme-linked immunosorbent assay (ELISA) cancer testing technique. Quantum dot ELISA detection of the cancer PSA antigen at concentrations as low as 0.01 ng/ml which is ˜50 times lower than the classic "sandwich" ELISA was demonstrated. Scanning photoluminescence (PL) spectroscopy was performed on dried ELISA wells and the results compared with the same QD samples dried on a solid substrate. We confirmed a "blue" up to 37 nm PL spectral shift in a case of QDs conjugated to PSA antibodies. Increasing of the "blue" spectral shift was observed at lower PSA antigen concentrations. The results can be used to improve sensitivity of "sandwich" ELISA cancer antigen detection.

  16. Attachment of Quantum Dots on Zinc Oxide Nanorods

    NASA Astrophysics Data System (ADS)

    Seay, Jared; Liang, Huan; Harikumar, Parameswar

    2011-03-01

    ZnO nanorods grown by hydrothermal technique are of great interest for potential applications in photovoltaic and optoelectronic devices. In this study we investigate the optimization of the optical absorption properties by a low temperature, chemical bath deposition technique. Our group fabricated nanorods on indium tin oxide (ITO) substrate with precursor solution of zinc nitrate hexahydrate and hexamethylenetramine (1:1 molar ratio) at 95C for 9 hours. In order to optimize the light absorption characteristics of ZnO nanorods, CdSe/ZnS core-shell quantum dots (QDs) of various diameters were attached to the surface of ZnO nanostructures grown on ITO and gold-coated silicon substrates. Density of quantum dots was varied by controlling the number drops on the surface of the ZnO nanorods. For a 0.1 M concentration of QDs of 10 nm diameter, the PL intensity at 385 nm increased as the density of the quantum dots on ZnO nanostructures was increased. For quantum dots at 1 M concentration, the PL intensity at 385 nm increased at the beginning and then decreased at higher density. We will discuss the observed changes in PL intensity with QD concentration with ZnO-QD band structure and recombination-diffusion processes taking place at the interface.

  17. Surface processes during purification of InP quantum dots

    PubMed Central

    Emelin, Pavel; Vinokurov, Alexander; Dorofeev, Sergey; Abakumov, Artem; Kuznetsova, Tatiana

    2014-01-01

    Summary Recently, a new simple and fast method for the synthesis of InP quantum dots by using phosphine as phosphorous precursor and myristic acid as surface stabilizer was reported. Purification after synthesis is necessary to obtain samples with good optical properties. Two methods of purification were compared and the surface processes which occur during purification were studied. Traditional precipitation with acetone is accompanied by a small increase in photoluminescence. It occurs that during the purification the hydrolysis of the indium precursor takes place, which leads to a better surface passivation. The electrophoretic purification technique does not increase luminescence efficiency but yields very pure quantum dots in only a few minutes. Additionally, the formation of In(OH)3 during the low temperature synthesis was explained. Purification of quantum dots is a very significant part of postsynthetical treatment that determines the properties of the material. But this subject is not sufficiently discussed in the literature. The paper is devoted to the processes that occur at the surface of quantum dots during purification. A new method of purification, electrophoresis, is investigated and described in particular. PMID:25161857

  18. Electrical properties of semiconductor quantum dots

    SciTech Connect

    Kharlamov, V. F. Korostelev, D. A.; Bogoraz, I. G.; Milovidova, O. A.; Sergeyev, V. O.

    2013-04-15

    A method, which makes it possible to obtain semiconductor particles V Almost-Equal-To 10{sup -20} cm{sup 3} in volume (quantum dots) with a concentration of up to 10{sup 11} cm{sup -2} and electrical contacts to each of them, is suggested. High variability in the electrical properties of such particles from a metal oxide (CuO or NiO) after the chemisorption of gas molecules is found.

  19. Inverted colloidal quantum dot solar cells.

    PubMed

    Kim, Gi-Hwan; Walker, Bright; Kim, Hak-Beom; Kim, Jin Young; Sargent, Edward H; Park, Jongnam; Kim, Jin Young

    2014-05-28

    An inverted architecture of quantum dot solar cells is demonstrated by introducing a novel ZnO method on top of the PbS CQD film. Improvements in device characteristics stem from constructive optical interference from the ZnO layer that enhances absorption in the PbS CQD layer. Outstanding diode characteristics arising from a superior PbS/ZnO junction provide a further electronic advantage. PMID:24677118

  20. Decoherence dynamics of two charge qubits in vertically coupled quantum dots

    SciTech Connect

    Ben Chouikha, W.; Bennaceur, R.; Jaziri, S.

    2007-12-15

    The decoherence dynamics of two charge qubits in a double quantum dot is investigated theoretically. We consider the quantum dynamics of two interacting electrons in a vertically coupled quantum dot driven by an external electric field. We derive the equations of motion for the density matrix, in which the presence of an electron confined in the double dot represents one qubit. A Markovian approach to the dynamical evolution of the reduced density matrix is adopted. We evaluate the concurrence of two qubits in order to study the effect of acoustic phonons on the entanglement. We also show that the disentanglement effect depends on the double dot parameters and increases with the temperature.

  1. Ultra-bright alkylated graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Feng, Lan; Tang, Xing-Yan; Zhong, Yun-Xin; Liu, Yue-Wen; Song, Xue-Huan; Deng, Shun-Liu; Xie, Su-Yuan; Yan, Jia-Wei; Zheng, Lan-Sun

    2014-10-01

    Highly efficient and stable photoluminescence (PL) are urgently desired for graphene quantum dots (GQDs) to facilitate their prospective applications as optical materials. Here, we report the facile and straightforward synthesis of alkylated graphene quantum dots (AGQDs) via the solvothermal reaction of propagatively alkylated graphene sheets (PAGenes). In contrast to most GQDs reported so far, the synthesized AGQDs process pH-independent and ultra-bright PL with a relative quantum yield of up to 65%. Structural and chemical composition characterization demonstrated that the synthesized AGQDs are nearly oxygen-defect-free with alkyl groups decorated on edges and basal plane, which may contribute to their greatly improved pH tolerance and high quantum efficiency. The photocatalytic performance of AGQDs-P25 nanocomposites was evaluated by the degradation of Rhodamine B under visible light. The photocatalytic rate is ca. 5.9 times higher than that of pure P25, indicating that AGQDs could harness the visible spectrum of sunlight for energy conversion or environmental therapy.Highly efficient and stable photoluminescence (PL) are urgently desired for graphene quantum dots (GQDs) to facilitate their prospective applications as optical materials. Here, we report the facile and straightforward synthesis of alkylated graphene quantum dots (AGQDs) via the solvothermal reaction of propagatively alkylated graphene sheets (PAGenes). In contrast to most GQDs reported so far, the synthesized AGQDs process pH-independent and ultra-bright PL with a relative quantum yield of up to 65%. Structural and chemical composition characterization demonstrated that the synthesized AGQDs are nearly oxygen-defect-free with alkyl groups decorated on edges and basal plane, which may contribute to their greatly improved pH tolerance and high quantum efficiency. The photocatalytic performance of AGQDs-P25 nanocomposites was evaluated by the degradation of Rhodamine B under visible light. The

  2. The impact of quantum dot filling on dual-band optical transitions via intermediate quantum states

    SciTech Connect

    Wu, Jiang; Passmore, Brandon; Manasreh, M. O.

    2015-08-28

    InAs/GaAs quantum dot infrared photodetectors with different doping levels were investigated to understand the effect of quantum dot filling on both intraband and interband optical transitions. The electron filling of self-assembled InAs quantum dots was varied by direct doping of quantum dots with different concentrations. Photoresponse in the near infrared and middle wavelength infrared spectral region was observed from samples with low quantum dot filling. Although undoped quantum dots were favored for interband transitions with the absence of a second optical excitation in the near infrared region, doped quantum dots were preferred to improve intraband transitions in the middle wavelength infrared region. As a result, partial filling of quantum dot was required, to the extent of maintaining a low dark current, to enhance the dual-band photoresponse through the confined electron states.

  3. Quantum dot spectroscopy using a single phosphorus donor

    NASA Astrophysics Data System (ADS)

    Büch, Holger; Fuechsle, Martin; Baker, William; House, Matthew G.; Simmons, Michelle Y.

    2015-12-01

    Using a deterministic single P donor placed with atomic precision accuracy next to a nanoscale silicon quantum dot, we present a way to analyze the energy spectrum of small quantum dots in silicon by tunnel-coupled transport measurements. The energy-level structure of the quantum dot is observed as resonance features within the transport bias triangles when the donor chemical potential is aligned with states within the quantum dot as confirmed by a numeric rate equation solver SIMON. This technique allows us to independently extract the quantum dot level structure irrespective of the density of states in the leads. Such a method is useful for the investigation of silicon quantum dots in the few-electron regime where the level structure is governed by an intricate interplay between the spin- and the valley-orbit degrees of freedom.

  4. Synthesis, Characterization and Application Of PbS Quantum Dots

    SciTech Connect

    Sarma, Sweety; Datta, Pranayee; Barua, Kishore Kr.; Karmakar, Sanjib

    2009-06-29

    Lead Chalcogenides (PbS, PbSe, PbTe) quantum dots (QDs) are ideal for fundamental studies of strongly quantum confined systems with possible technological applications. Tunable electronic transitions at near--infrared wavelengths can be obtained with these QDs. Applications of lead chalcogenides encompass quite a good number of important field viz. the fields of telecommunications, medical electronics, optoelectronics etc. Very recently, it has been proposed that 'memristor'(Memory resistor) can be realized in nanoscale systems with coupled ionic and electronic transports. The hystersis characteristics of 'memristor' are observed in many nanoscale electronic devices including semiconductor quantum dot devices. This paper reports synthesis of PbS QDs by chemical route. The fabricated samples are characterized by UV-Vis, XRD, SEM, TEM, EDS, etc. Observed characteristics confirm nano formation. I-V characteristics of the sample are studied for investigating their applications as 'memristor'.

  5. Multiple Exciton Generation in PbSe Quantum Dots and Quantum Dot Solar Cells

    SciTech Connect

    Beard, M. C.; Semonin, O. E.; Nozik, A. J.; Midgett, A. G.; Luther, J. M.

    2012-01-01

    Multiple exciton generation in quantum dots (QDs) has been intensively studied as a way to enhance solar energy conversion by channeling the excess photon energy (energy greater than the bandgap) to produce multiple electron-hole pairs. Among other useful properties, quantum confinement can both increase Coulomb interactions that drive the MEG process and decrease the electron-phonon coupling that cools hot-excitons in bulk semiconductors. We have demonstrated that MEG in PbSe QDs is about two times as efficient at producing multiple electron-hole pairs than bulk PbSe. I will discuss our recent results investigating MEG in PbSe, PbS and PbSxSe1-x, which exhibits an interesting size-dependence of the MEG efficiency. Thin films of electronically coupled PbSe QDs have shown promise in simple photon-to-electron conversion architectures with power conversion efficiencies above 5%. We recently reported an enhancement in the photocurrent resulting from MEG in PbSe QD-based solar cells. We find that the external quantum efficiency (spectrally resolved ratio of collected charge carriers to incident photons) peaked at 114% in the best devices measured, with an internal quantum efficiency of 130%. These results demonstrate that MEG charge carriers can be collected in suitably designed QD solar cells. We compare our results to transient absorption measurements and find reasonable agreement.

  6. Simulation and Experimental Study on Anti-reflection Characteristics of Nano-patterned Si Structures for Si Quantum Dot-Based Light-Emitting Devices

    NASA Astrophysics Data System (ADS)

    Shao, Wenyi; Lu, Peng; Li, Wei; Xu, Jun; Xu, Ling; Chen, Kunji

    2016-06-01

    Surface-textured structure is currently an interesting topic since it can efficiently reduce the optical losses in advanced optoelectronic devices via light management. In this work, we built a model in finite-difference time-domain (FDTD) solutions by setting the simulation parameters based on the morphology of the Si nanostructures and compared with the experimental results in order to study the anti-reflection behaviors of the present nano-patterned structures. It is found that the reflectance is gradually reduced by increasing the depth of Si nanostructures which is in well agreement with the experimental observations. The reflectance can be lower than 10 % in the light range from 400 to 850 nm for Si nano-patterned structures with a depth of 150 nm despite the quite low aspect ratio, which can be understood as the formation of gradually changed index layer and the scattering effect of Si nano-patterned structures. By depositing the Si quantum dots/SiO2 multilayers on nano-patterned Si substrate, the reflectance can be further suppressed and the luminescence intensity centered at 820 nm from Si quantum dots is enhanced by 6.6-fold compared with that of flat one, which can be attributed to the improved light extraction efficiency. However, the further etch time causes the reduction of luminescence intensity from Si quantum dots which may ascribe to the serious surface recombination of carriers.

  7. Simulation and Experimental Study on Anti-reflection Characteristics of Nano-patterned Si Structures for Si Quantum Dot-Based Light-Emitting Devices.

    PubMed

    Shao, Wenyi; Lu, Peng; Li, Wei; Xu, Jun; Xu, Ling; Chen, Kunji

    2016-12-01

    Surface-textured structure is currently an interesting topic since it can efficiently reduce the optical losses in advanced optoelectronic devices via light management. In this work, we built a model in finite-difference time-domain (FDTD) solutions by setting the simulation parameters based on the morphology of the Si nanostructures and compared with the experimental results in order to study the anti-reflection behaviors of the present nano-patterned structures. It is found that the reflectance is gradually reduced by increasing the depth of Si nanostructures which is in well agreement with the experimental observations. The reflectance can be lower than 10 % in the light range from 400 to 850 nm for Si nano-patterned structures with a depth of 150 nm despite the quite low aspect ratio, which can be understood as the formation of gradually changed index layer and the scattering effect of Si nano-patterned structures. By depositing the Si quantum dots/SiO2 multilayers on nano-patterned Si substrate, the reflectance can be further suppressed and the luminescence intensity centered at 820 nm from Si quantum dots is enhanced by 6.6-fold compared with that of flat one, which can be attributed to the improved light extraction efficiency. However, the further etch time causes the reduction of luminescence intensity from Si quantum dots which may ascribe to the serious surface recombination of carriers. PMID:27356564

  8. Observing chaos for quantum-dot microlasers with external feedback.

    PubMed

    Albert, Ferdinand; Hopfmann, Caspar; Reitzenstein, Stephan; Schneider, Christian; Höfling, Sven; Worschech, Lukas; Kamp, Martin; Kinzel, Wolfgang; Forchel, Alfred; Kanter, Ido

    2011-01-01

    Chaos presents a striking and fascinating phenomenon of nonlinear systems. A common aspect of such systems is the presence of feedback that couples the output signal partially back to the input. Feedback coupling can be well controlled in optoelectronic devices such as conventional semiconductor lasers that provide bench-top platforms for the study of chaotic behaviour and high bit rate random number generation. Here we experimentally demonstrate that chaos can be observed for quantum-dot microlasers operating close to the quantum limit at nW output powers. Applying self-feedback to a quantum-dot microlaser results in a dramatic change in the photon statistics wherein strong, super-thermal photon bunching is indicative of random-intensity fluctuations associated with the spiked emission of light. Our experiments reveal that gain competition of few quantum dots in the active layer enhances the influence of self-feedback and will open up new avenues for the study of chaos in quantum systems. PMID:21694714

  9. Quantum dots fluorescence quantum yield measured by Thermal Lens Spectroscopy.

    PubMed

    Estupiñán-López, Carlos; Dominguez, Christian Tolentino; Cabral Filho, Paulo E; Fontes, Adriana; de Araujo, Renato E

    2014-01-01

    An essential parameter to evaluate the light emission properties of fluorophores is the fluorescence quantum yield, which quantify the conversion efficiency of absorbed photons to emitted photons. We detail here an alternative nonfluorescent method to determine the absolute fluorescence quantum yield of quantum dots (QDs). The method is based in the so-called Thermal Lens Spectroscopy (TLS) technique, which consists on the evaluation of refractive index gradient thermally induced in the fluorescent material by the absorption of light. Aqueous dispersion carboxyl-coated cadmium telluride (CdTe) QDs samples were used to demonstrate the Thermal Lens Spectroscopy technical procedure. PMID:25103802

  10. Quantum limit for nuclear spin polarization in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Hildmann, Julia; Kavousanaki, Eleftheria; Burkard, Guido; Ribeiro, Hugo

    2014-05-01

    A recent experiment [E. A. Chekhovich et al., Phys. Rev. Lett. 104, 066804 (2010), 10.1103/PhysRevLett.104.066804] has demonstrated that high nuclear spin polarization can be achieved in self-assembled quantum dots by exploiting an optically forbidden transition between a heavy hole and a trion state. However, a fully polarized state is not achieved as expected from a classical rate equation. Here, we theoretically investigate this problem with the help of a quantum master equation and we demonstrate that a fully polarized state cannot be achieved due to formation of a nuclear dark state. Moreover, we show that the maximal degree of polarization depends on structural properties of the quantum dot.

  11. Plasmon Enhancement of Electronic Energy Transfer Between Quantum Dots on the Surface of Nanoporous Silica

    NASA Astrophysics Data System (ADS)

    Tikhomirova, N. S.; Myslitskaya, N. A.; Samusev, I. G.; Bryukhanov, V. V.

    2016-01-01

    We use spectral kinetic methods to study electronic energy transfer processes between semiconductor quantum dots on the surface of wide-pore silica in the absence of and in the presence of silver nanoparticles, obtained by laser ablation methods. We have determined the efficiencies of dipole-dipole energy transfer between two-shell (CdSe/CdS/ZnS) and one-shell (CdSe/ZnS) quantum dots on the surface, the luminescence lifetimes and quantum yields, transfer distances and transfer rate constants. We have studied enhancement of photoprocesses in individual quantum dots and in a pair under the influence of resonant localized plasmons of ablative silver nanoparticles.

  12. Cadmium sulfide quantum dots induce oxidative stress and behavioral impairments in the marine clam Scrobicularia plana.

    PubMed

    Buffet, Pierre-Emmanuel; Zalouk-Vergnoux, Aurore; Poirier, Laurence; Lopes, Christelle; Risso-de-Faverney, Christine; Guibbolini, Marielle; Gilliland, Douglas; Perrein-Ettajani, Hanane; Valsami-Jones, Eugenia; Mouneyrac, Catherine

    2015-07-01

    Cadmium sulfide (CdS) quantum dots have a number of current applications in electronics and solar cells and significant future potential in medicine. The aim of the present study was to examine the toxic effects of CdS quantum dots on the marine clam Scrobicularia plana exposed for 14 d to these nanomaterials (10 µg Cd L(-1) ) in natural seawater and to compare them with soluble Cd. Measurement of labile Cd released from CdS quantum dots showed that 52% of CdS quantum dots remained in the nanoparticulate form. Clams accumulated the same levels of Cd regardless of the form in which it was delivered (soluble Cd vs CdS quantum dots). However, significant changes in biochemical responses were observed in clams exposed to CdS quantum dots compared with soluble Cd. Increased activities of catalase and glutathione-S-transferase were significantly higher in clams exposed in seawater to Cd as the nanoparticulate versus the soluble form, suggesting a specific nano effect. The behavior of S. plana in sediment showed impairments of foot movements only in the case of exposure to CdS quantum dots. The results show that oxidative stress and behavior biomarkers are sensitive predictors of CdS quantum dots toxicity in S. plana. Such responses, appearing well before changes might occur at the population level, demonstrate the usefulness of this model species and type of biomarker in the assessment of nanoparticle contamination in estuarine ecosystems. PMID:25772261

  13. Fluorescence and Bonding of Quantum Dots on DNA Origami Constructs

    NASA Astrophysics Data System (ADS)

    Kessinger, Matthew; Corrigan, Timothy; Neff, David; Norton, Michael; Concord University Collaboration; Marshall University Collaboration

    2015-03-01

    Semiconductor quantum dots (QDots) have historically been of interest to the scientific community since their creation for various applications ranging from solar energy to optical labeling. In this study, bioconjugated CdSe/ZnS core/shell QDots were synthesized and functionalized with 3-mercaptopropionic acid using both traditional ligand exchange as well as newly developed in situ functionalization techniques used to increase the quantum yield of the QDots. Their fluorescence and bonding to both gold as well as DNA origami were investigated for use in self assembled DNA constructs. It is believed that controlling the attachment and spacing of these nanoparticles on DNA origami could be used in a variety of optical labeling and sensing applications. Commercially available biotin and streptavidin functionalized quantum dots were also examined, and subject to the same experiments with gold nanoparticles as the MPA functionalized QDots.

  14. Theory of anomalous magnetotransport in triple quantum dots

    NASA Astrophysics Data System (ADS)

    D'Anjou, Benjamin; Coish, William A.

    2012-02-01

    Magneto-transport measurements on a triple quantum dot ring have recently shown anomalous quantum oscillations with dominant frequencies separated by a factor of three in magnetic flux [1]. Such oscillations, suggestive of a one-third periodicity in the flux quantum, are usually not observed in larger mesoscopic rings in which only larger periods are observed. We develop a microscopic transport model for the triple dot and show that the anomalous oscillations can dominate the transport behavior under certain conditions. Furthermore, we discuss the range of validity of our model by studying dephasing due to broadening and electric dipole interactions. [4pt] [1] L. Gaudreau et al., Phys. Rev. B 80, 075415 (2009)

  15. Chemiluminescence studies between aqueous phase synthesized mercaptosuccinic acid capped cadmium telluride quantum dots and luminol-H2O2.

    PubMed

    Kaviyarasan, Kulandaivelu; Anandan, Sambandam; Mangalaraja, Ramalinga Viswanathan; Asiri, Abdullah M; Wu, Jerry J

    2016-08-01

    Mercaptosuccinic acid capped Cadmium telluride quantum dots have been successfully synthesized via aqueous phase method. The products were well characterized by a number of analytical techniques, including FT-IR, XRD, HRTEM, and a corrected particle size analysis by the statistical treatment of several AFM measurements. Chemiluminescence experiments were performed to explore the resonance energy transfer between chemiluminescence donor (luminol-H2O2 system) and acceptor CdTe QDs. The combination of such donor and acceptor dramatically reduce the fluorescence while compared to pristine CdTe QDs without any exciting light source, which is due to the occurrence of chemiluminescence resonance energy transfer (CRET) processes. PMID:27131144

  16. Chemiluminescence studies between aqueous phase synthesized mercaptosuccinic acid capped cadmium telluride quantum dots and luminol-H2O2

    NASA Astrophysics Data System (ADS)

    Kaviyarasan, Kulandaivelu; Anandan, Sambandam; Mangalaraja, Ramalinga Viswanathan; Asiri, Abdullah M.; Wu, Jerry J.

    2016-08-01

    Mercaptosuccinic acid capped Cadmium telluride quantum dots have been successfully synthesized via aqueous phase method. The products were well characterized by a number of analytical techniques, including FT-IR, XRD, HRTEM, and a corrected particle size analysis by the statistical treatment of several AFM measurements. Chemiluminescence experiments were performed to explore the resonance energy transfer between chemiluminescence donor (luminol-H2O2 system) and acceptor CdTe QDs. The combination of such donor and acceptor dramatically reduce the fluorescence while compared to pristine CdTe QDs without any exciting light source, which is due to the occurrence of chemiluminescence resonance energy transfer (CRET) processes.

  17. In Vitro and In Vivo Studies of Single-Walled Carbon Nanohorns with Encapsulated Metallofullerenes and Exohedrally Functionalized Quantum Dots

    SciTech Connect

    Zhang, Jianfei; Ge, Jiechao; Shultz, M.D.; Chung, Eunna; Singh, Gurpreet; Shu, Chunying; Deck, Paul; Fatouros, Panos; Henderson, Scott; Corwin, Frank; Geohegan, David B; Rouleau, Christopher M; More, Karren Leslie; Rylander, Nichole M; Rylander, Christopher; Gibson, Harry W; Dorn, Harry C

    2010-07-01

    Single-walled carbon nanohorns (SWNHs) are new carbonaceous materials. In this paper, we report the first successful preparation of SWNHs encapsulating trimetallic nitride template endohedral metallofullerenes (TNT-EMFs). The resultant materials were functionalized by a high-speed vibration milling method and conjugated with CdSe/ZnS quantum dots (QDs). The successful encapsulation of TNT-EMFs and external functionalization with QDs provide a dual diagnostic platform for in vitro and in vivo biomedical applications of these new carbonaceous materials.

  18. Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals

    SciTech Connect

    See, Gloria G.; Xu, Lu; Nuzzo, Ralph G.; Sutanto, Erick; Alleyne, Andrew G.; Cunningham, Brian T.

    2015-08-03

    Tailored optical output, such as color purity and efficient optical intensity, are critical considerations for displays, particularly in mobile applications. To this end, we demonstrate a replica molded photonic crystal structure with embedded quantum dots. Electrohydrodynamic jet printing is used to control the position of the quantum dots within the device structure. This results in significantly less waste of the quantum dot material than application through drop-casting or spin coating. In addition, the targeted placement of the quantum dots minimizes any emission outside of the resonant enhancement field, which enables an 8× output enhancement and highly polarized emission from the photonic crystal structure.

  19. Enhanced performance of quantum dot solar cells based on type II quantum dots

    SciTech Connect

    Xu, Feng; Yang, Xiao-Guang; Luo, Shuai; Lv, Zun-Ren; Yang, Tao

    2014-10-07

    The characteristics of quantum dot solar cells (QDSCs) based on type II QDs are investigated theoretically. Based on a drift-diffusion model, we obtained a much higher open circuit voltage (V{sub oc}) as well as conversion efficiency in a type II QDSC, compared to type I QDSCs. The improved V{sub oc} and efficiency are mainly attributed to the much longer Auger recombination lifetime in type II QDs. Moreover, the influence of the carrier lifetime on devices' performance is discussed and clarified. In addition, an explicit criterion to determine the role of quantum dots in solar cells is put forward.

  20. Single-electron Spin Resonance in a Quadruple Quantum Dot

    PubMed Central

    Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R.; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Ito, Takumi; Sugawara, Retsu; Noiri, Akito; Ludwig, Arne; Wieck, Andreas D.; Tarucha, Seigo

    2016-01-01

    Electron spins in semiconductor quantum dots are good candidates of quantum bits for quantum information processing. Basic operations of the qubit have been realized in recent years: initialization, manipulation of single spins, two qubit entanglement operations, and readout. Now it becomes crucial to demonstrate scalability of this architecture by conducting spin operations on a scaled up system. Here, we demonstrate single-electron spin resonance in a quadruple quantum dot. A few-electron quadruple quantum dot is formed within a magnetic field gradient created by a micro-magnet. We oscillate the wave functions of the electrons in the quantum dots by applying microwave voltages and this induces electron spin resonance. The resonance energies of the four quantum dots are slightly different because of the stray field created by the micro-magnet and therefore frequency-resolved addressable control of each electron spin resonance is possible. PMID:27550534

  1. Single-electron Spin Resonance in a Quadruple Quantum Dot.

    PubMed

    Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Ito, Takumi; Sugawara, Retsu; Noiri, Akito; Ludwig, Arne; Wieck, Andreas D; Tarucha, Seigo

    2016-01-01

    Electron spins in semiconductor quantum dots are good candidates of quantum bits for quantum information processing. Basic operations of the qubit have been realized in recent years: initialization, manipulation of single spins, two qubit entanglement operations, and readout. Now it becomes crucial to demonstrate scalability of this architecture by conducting spin operations on a scaled up system. Here, we demonstrate single-electron spin resonance in a quadruple quantum dot. A few-electron quadruple quantum dot is formed within a magnetic field gradient created by a micro-magnet. We oscillate the wave functions of the electrons in the quantum dots by applying microwave voltages and this induces electron spin resonance. The resonance energies of the four quantum dots are slightly different because of the stray field created by the micro-magnet and therefore frequency-resolved addressable control of each electron spin resonance is possible. PMID:27550534

  2. Fano-Andreev effect in Quantum Dots in Kondo regime

    NASA Astrophysics Data System (ADS)

    Orellana, Pedro; Calle, Ana Maria; Pacheco, Monica; Apel, Victor

    In the present work, we investigate the transport through a T-shaped double quantum dot system coupled to two normal leads and to a superconducting lead. We study the role of the superconducting lead in the quantum interferometric features of the double quantum dot and by means of a slave boson mean field approximation at low temperature regime. We inquire into the influence of intradot interactions in the electronic properties of the system as well. Our results show that Fano resonances due to Andreev bound states are exhibited in the transmission from normal to normal lead as a consequence of quantum interference and proximity effect. This Fano effect produced by Andreev bound states in a side quantum dot was called Fano-Andreev effect, which remains valid even if the electron-electron interaction are taken into account, that is, the Fano-Andreev effect is robust against e-e interactions even in Kondo regime. We acknowledge the financial support from FONDECYT program Grants No. 3140053 and 11400571.

  3. Simulations of the spontaneous emission of a quantum dot near a gap plasmon waveguide

    SciTech Connect

    Perera, Chamanei S. Vernon, Kristy C.; Mcleod, Angus

    2014-02-07

    In this paper, we modeled a quantum dot at near proximity to a gap plasmon waveguide to study the quantum dot-plasmon interactions. Assuming that the waveguide is single mode, this paper is concerned about the dependence of spontaneous emission rate of the quantum dot on waveguide dimensions such as width and height. We compare coupling efficiency of a gap waveguide with symmetric configuration and asymmetric configuration illustrating that symmetric waveguide has a better coupling efficiency to the quantum dot. We also demonstrate that optimally placed quantum dot near a symmetric waveguide with 50 nm × 50 nm cross section can capture 80% of the spontaneous emission into a guided plasmon mode.

  4. Single photon emission from site-controlled InGaN/GaN quantum dots

    SciTech Connect

    Zhang, Lei; Hill, Tyler A.; Deng, Hui; Teng, Chu-Hsiang; Lee, Leung-Kway; Ku, Pei-Cheng

    2013-11-04

    Single photon emission was observed from site-controlled InGaN/GaN quantum dots. The single-photon nature of the emission was verified by the second-order correlation function up to 90 K, the highest temperature to date for site-controlled quantum dots. Micro-photoluminescence study on individual quantum dots showed linearly polarized single exciton emission with a lifetime of a few nanoseconds. The dimensions of these quantum dots were well controlled to the precision of state-of-the-art fabrication technologies, as reflected in the uniformity of their optical properties. The yield of optically active quantum dots was greater than 90%, among which 13%–25% exhibited single photon emission at 10 K.

  5. A Microfluidic Microbeads Fluorescence Assay with Quantum Dots-Bead-DNA Probe.

    PubMed

    Ankireddy, S R; Kim, Jongsung

    2016-03-01

    A microfluidic bead-based nucleic acid sensor for the detection of tumor causing N-Ras genes using quantum dots has been developed. Presently, quantum dots-bead-DNA probe based hybridization detection methods are often called as 'bead based assays' and their success is substantially influenced by the dispensing and manipulation capability of the microfluidic technology. This study reports the detection of N-Ras cancer gene by fluorescence quenching of quantum dots immobilized on the surface of polystyrene beads. A microfluidic chip was constructed in which the quantum dots-bead-DNA probes were packed in the channel. The target DNA flowed across the beads and hybridized with immobilized probe sequences. The target DNA can be detected by the fluorescence quenching of the quantum dots due to their transfer of emission energy to intercalation dye after DNA hybridization. The mutated gene also induces fluorescence quenching but with less degree than the perfectly complementary target DNA. PMID:27455729

  6. Surface Induced Magnetism in Quantum Dots

    SciTech Connect

    Meulenberg, R W; Lee, J I

    2009-08-20

    The study of nanometer sized semiconductor crystallites, also known as quantum dots (QDs), has seen rapid advancements in recent years in scientific disciplines ranging from chemistry, physics, biology, materials science, and engineering. QD materials of CdSe, ZnSe, InP, as well as many others, can be prepared in the size range of 1-10 nm producing uniform, nearly monodisperse materials that are typically coated with organic molecules [1-3]. The strength of charge carrier confinement, which dictates the size-dependent properties, in these QDs depends on the nature of the material and can be correlated to the Bohr radius for the system of interest. For instance, the Bohr radius for CdSe is {approx} 5 nm, while in the more covalent structure of InP, the Bohr radius approaches {approx} 10 nm. The study of CdSe QDs has been particularly extensive during the last decade because they exhibit unique and tunable optical properties and are readily synthesized with high-crystallinity and narrow size dispersions. Although the core electronic properties of CdSe are explained in terms of the quantum confinement model, experimental efforts to elucidate the surface structure of these materials have been limited. Typically, colloidal CdSe QDs are coated with an organic surfactant, which typically consists of an organo-phosphine, -thiol, or -amine, that has the function of energetically relaxing defect states via coordination to partially coordinated surface atoms. The organic surfactant also acts to enhance carrier confinement and prevent agglomeration of the particles. Chemically, it has been shown that the bonding of the surfactant to the CdSe QD occurs through Cd atoms resulting cleavage of the Se atoms and formation of a Cd-rich (i.e. non-stoichiometric) particle [5].

  7. Ultra-bright alkylated graphene quantum dots.

    PubMed

    Feng, Lan; Tang, Xing-Yan; Zhong, Yun-Xin; Liu, Yue-Wen; Song, Xue-Huan; Deng, Shun-Liu; Xie, Su-Yuan; Yan, Jia-Wei; Zheng, Lan-Sun

    2014-11-01

    Highly efficient and stable photoluminescence (PL) are urgently desired for graphene quantum dots (GQDs) to facilitate their prospective applications as optical materials. Here, we report the facile and straightforward synthesis of alkylated graphene quantum dots (AGQDs) via the solvothermal reaction of propagatively alkylated graphene sheets (PAGenes). In contrast to most GQDs reported so far, the synthesized AGQDs process pH-independent and ultra-bright PL with a relative quantum yield of up to 65%. Structural and chemical composition characterization demonstrated that the synthesized AGQDs are nearly oxygen-defect-free with alkyl groups decorated on edges and basal plane, which may contribute to their greatly improved pH tolerance and high quantum efficiency. The photocatalytic performance of AGQDs-P25 nanocomposites was evaluated by the degradation of Rhodamine B under visible light. The photocatalytic rate is ca. 5.9 times higher than that of pure P25, indicating that AGQDs could harness the visible spectrum of sunlight for energy conversion or environmental therapy. PMID:25192187

  8. Carbon Quantum Dots for Zebrafish Fluorescence Imaging.

    PubMed

    Kang, Yan-Fei; Li, Yu-Hao; Fang, Yang-Wu; Xu, Yang; Wei, Xiao-Mi; Yin, Xue-Bo

    2015-01-01

    Carbon quantum dots (C-QDs) are becoming a desirable alternative to metal-based QDs and dye probes owing to their high biocompatibility, low toxicity, ease of preparation, and unique photophysical properties. Herein, we describe fluorescence bioimaging of zebrafish using C-QDs as probe in terms of the preparation of C-QDs, zebrafish husbandry, embryo harvesting, and introduction of C-QDs into embryos and larvae by soaking and microinjection. The multicolor of C-QDs was validated with their imaging for zebrafish embryo. The distribution of C-QDs in zebrafish embryos and larvae were successfully observed from their fluorescence emission. the bio-toxicity of C-QDs was tested with zebrafish as model and C-QDs do not interfere to the development of zebrafish embryo. All of the results confirmed the high biocompatibility and low toxicity of C-QDs as imaging probe. The absorption, distribution, metabolism and excretion route (ADME) of C-QDs in zebrafish was revealed by their distribution. Our work provides the useful information for the researchers interested in studying with zebrafish as a model and the applications of C-QDs. The operations related zebrafish are suitable for the study of the toxicity, adverse effects, transport, and biocompatibility of nanomaterials as well as for drug screening with zebrafish as model. PMID:26135470

  9. Carbon Quantum Dots for Zebrafish Fluorescence Imaging

    PubMed Central

    Kang, Yan-Fei; Li, Yu-Hao; Fang, Yang-Wu; Xu, Yang; Wei, Xiao-Mi; Yin, Xue-Bo

    2015-01-01

    Carbon quantum dots (C-QDs) are becoming a desirable alternative to metal-based QDs and dye probes owing to their high biocompatibility, low toxicity, ease of preparation, and unique photophysical properties. Herein, we describe fluorescence bioimaging of zebrafish using C-QDs as probe in terms of the preparation of C-QDs, zebrafish husbandry, embryo harvesting, and introduction of C-QDs into embryos and larvae by soaking and microinjection. The multicolor of C-QDs was validated with their imaging for zebrafish embryo. The distribution of C-QDs in zebrafish embryos and larvae were successfully observed from their fluorescence emission. the bio-toxicity of C-QDs was tested with zebrafish as model and C-QDs do not interfere to the development of zebrafish embryo. All of the results confirmed the high biocompatibility and low toxicity of C-QDs as imaging probe. The absorption, distribution, metabolism and excretion route (ADME) of C-QDs in zebrafish was revealed by their distribution. Our work provides the useful information for the researchers interested in studying with zebrafish as a model and the applications of C-QDs. The operations related zebrafish are suitable for the study of the toxicity, adverse effects, transport, and biocompatibility of nanomaterials as well as for drug screening with zebrafish as model. PMID:26135470

  10. Carbon Quantum Dots for Zebrafish Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    Kang, Yan-Fei; Li, Yu-Hao; Fang, Yang-Wu; Xu, Yang; Wei, Xiao-Mi; Yin, Xue-Bo

    2015-07-01

    Carbon quantum dots (C-QDs) are becoming a desirable alternative to metal-based QDs and dye probes owing to their high biocompatibility, low toxicity, ease of preparation, and unique photophysical properties. Herein, we describe fluorescence bioimaging of zebrafish using C-QDs as probe in terms of the preparation of C-QDs, zebrafish husbandry, embryo harvesting, and introduction of C-QDs into embryos and larvae by soaking and microinjection. The multicolor of C-QDs was validated with their imaging for zebrafish embryo. The distribution of C-QDs in zebrafish embryos and larvae were successfully observed from their fluorescence emission. the bio-toxicity of C-QDs was tested with zebrafish as model and C-QDs do not interfere to the development of zebrafish embryo. All of the results confirmed the high biocompatibility and low toxicity of C-QDs as imaging probe. The absorption, distribution, metabolism and excretion route (ADME) of C-QDs in zebrafish was revealed by their distribution. Our work provides the useful information for the researchers interested in studying with zebrafish as a model and the applications of C-QDs. The operations related zebrafish are suitable for the study of the toxicity, adverse effects, transport, and biocompatibility of nanomaterials as well as for drug screening with zebrafish as model.

  11. Glutathione modified CdTe quantum dots as a label for studying DNA interactions with platinum based cytostatics.

    PubMed

    Ryvolova, Marketa; Smerkova, Kristyna; Chomoucka, Jana; Hubalek, Jaromir; Adam, Vojtech; Kizek, Rene

    2013-03-01

    Cisplatin, carboplatin, and oxaliplatin represent three generations of platinum based drugs applied successfully for cancer treatment. As a consequence of the employment of platinum based cytostatics in the cancer treatment, it became necessary to study the mechanism of their action. Current accepted opinion is the formation of Pt-DNA adducts, but the mechanism of their formation is still unclear. Nanomaterials, as a progressively developing branch, can offer a tool for studying the interactions of these drugs with DNA. In this study, fluorescent CdTe quantum dots (QDs, λem = 525 nm) were employed to investigate the interactions of platinum cytostatics (cisplatin, carboplatin, and oxaliplatin) with DNA fragment (500 bp, c = 25 μg/mL). Primarily, the fluorescent behavior of QDs in the presence of platinum cytostatics was monitored and major differences in the interaction of QDs with tested drugs were observed. It was found that the presence of carboplatin (c = 0.25 mg/mL) had no significant influence on QDs fluorescence; however cisplatin and oxaliplatin quenched the fluorescence significantly (average decrease of 20%) at the same concentration. Subsequently, the amount of platinum incorporated in DNA was determined by QDs fluorescence quenching. Best results were reached using oxaliplatin (9.4% quenching). Linear trend (R(2) = 0.9811) was observed for DNA platinated by three different concentrations of oxaliplatin (0.250, 0.125, and 0.063 mg/mL). Correlation with differential pulse voltammetric measurements provided linear trend (R(2) = 0.9511). As a conclusion, especially in the case of oxaliplatin-DNA adducts, the quenching was the most significant compared to cisplatin and nonquenching carboplatin. PMID:23400813

  12. Quantum dot-sized organic fluorescent dots for long-term cell tracing

    NASA Astrophysics Data System (ADS)

    Li, Kai; Tang, Ben Zhong; Liu, Bin

    2014-03-01

    Fluorescence techniques have been extensively employed to develop non-invasive methodologies for tracking and understanding complex biological processes both in vitro and in vivo, which is of high importance in modern life science research. Among a variety of fluorescent probes, inorganic semiconductor quantum dots (QDs) have shown advantages in terms of better photostability, larger Stokes shift and more feasible surface functionalization. However, their intrinsic toxic heavy metal components and unstable fluorescence at low pH greatly impede the applications of QDs in in vivo studies. In this work, we developed novel fluorescent probes that can outperform currently available QD based probes in practice. Using conjugated oligomer with aggregation-induced emission characteristics as the fluorescent domain and biocompatible lipid-PEG derivatives as the encapsulation matrix, the obtained organic dots have shown higher brightness, better stability in biological medium and comparable size and photostability as compared to their counterparts of inorganic QDs. More importantly, unlike QD-based probes, the organic fluorescent dots do not blink, and also do not contain heavy metal ions that could be potentially toxic when applied for living biosubstrates. Upon surface functionalization with a cell-penetrating peptide, the organic dots greatly outperform inorganic quantum dots in both in vitro and in vivo long-term cell tracing studies, which will be beneficial to answer crucial questions in stem cell/immune cell therapies. Considering the customized fluorescent properties and surface functionalities of the organic dots, a series of biocompatible organic dots will be developed to serve as a promising platform for multifarious bioimaging tasks in future.

  13. Charge frustration in a triangular triple quantum dot.

    PubMed

    Seo, M; Choi, H K; Lee, S-Y; Kim, N; Chung, Y; Sim, H-S; Umansky, V; Mahalu, D

    2013-01-25

    We experimentally investigate the charge (isospin) frustration induced by a geometrical symmetry in a triangular triple quantum dot. We observe the ground-state charge configurations of sixfold degeneracy, the manifestation of the frustration. The frustration results in omnidirectional charge transport, and it is accompanied by nearby nontrivial triple degenerate states in the charge stability diagram. The findings agree with a capacitive interaction model. We also observe unusual transport by the frustration, which might be related to elastic cotunneling and the interference of trajectories through the dot. This work demonstrates a unique way of studying geometrical frustration in a controllable way. PMID:25166188

  14. The quantum dot nanoconjugate tool box (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Tomlinson, I. D.; Wright, D. W.; Giorgio, T. D.; Blakely, R. D.; Pennycook, S. J.; Hercules, D.; Bentzen, L.; Smith, R. A.; McBride, J.; Vergne, M. J.; Rosenthal, S.

    2005-04-01

    The surface coating of quantum dots has been characterised using Z-stem. Quantum dots have been pegylated to increase stability in aqueous solution. The fluorescence intensity of the quantum dots was modulated pegylation. PEG was coupled using different ratios of EDC, PEG and NHS. Optimum coupling conditions were found to occur when 2000 equivalents of PEG were reacted with 1 equivalent of dot in the presence of 1500 equivalents of NHS and EDC. Angiotensin II was also conjugated to quantum dots and these conjugates were shown to be biologically active. Quantum dots have also been surface functionalised with other peptides such as NGR with subsequent demonstration of cell surface binding and can be characterized by flow cytometry.

  15. Red shift in the photoluminescence of colloidal carbon quantum dots induced by photon reabsorption

    NASA Astrophysics Data System (ADS)

    Zhang, Wenxia; Fan, Jiyang; Department of Physics, Southeast University, Nanjing 211189, People's Republic of China Team

    We synthesize the colloidal carbon/graphene quantum dots 1-9 nm in diameter through a novel alkaline-assisted method and deeply studied their photoluminescence properties. Surprisingly, the luminescence properties of a fixed collection of carbon dots can be systematically changed as the concentration varies. A model based on photon reabsorption is proposed which explains well the experiment. Infrared spectral study indicates that the surfaces of the carbon dots are totally terminated by three bonding-types of oxygen atoms, which result in their ultra-high hydrophilicity. Our result clarifies the mystery of distinct emission colors in carbon dots and indicates that photon reabsorption can strongly affect the luminescence properties of colloidal nanocrystals.This mechanism can be generalized to help understand the complex luminescence properties of other colloidal quantum dots. and should be seriously considered,otherwise, distinct conclusions may be drawn if different concentrations of quantum dots have been utilized in studying their luminescence properies.

  16. Quantum dot spin cellular automata for realizing a quantum processor

    NASA Astrophysics Data System (ADS)

    Bayat, Abolfazl; Creffield, Charles E.; Jefferson, John H.; Pepper, Michael; Bose, Sougato

    2015-10-01

    We show how single quantum dots, each hosting a singlet-triplet qubit, can be placed in arrays to build a spin quantum cellular automaton. A fast (˜10 ns) deterministic coherent singlet-triplet filtering, as opposed to current incoherent tunneling/slow-adiabatic based quantum gates (operation time ˜300 ns), can be employed to produce a two-qubit gate through capacitive (electrostatic) couplings that can operate over significant distances. This is the coherent version of the widely discussed charge and nano-magnet cellular automata, and would increase speed, reduce dissipation, and perform quantum computation while interfacing smoothly with its classical counterpart. This combines the best of two worlds—the coherence of spin pairs known from quantum technologies, and the strength and range of electrostatic couplings from the charge-based classical cellular automata. Significantly our system has zero electric dipole moment during the whole operation process, thereby increasing its charge dephasing time.

  17. Quantum dot mediated imaging of atherosclerosis

    NASA Astrophysics Data System (ADS)

    Jayagopal, Ashwath; Su, Yan Ru; Blakemore, John L.; Linton, MacRae F.; Fazio, Sergio; Haselton, Frederick R.

    2009-04-01

    The progression of atherosclerosis is associated with leukocyte infiltration within lesions. We describe a technique for the ex vivo imaging of cellular recruitment in atherogenesis which utilizes quantum dots (QD) to color-code different cell types within lesion areas. Spectrally distinct QD were coated with the cell-penetrating peptide maurocalcine to fluorescently-label immunomagnetically isolated monocyte/macrophages and T lymphocytes. QD-maurocalcine bioconjugates labeled both cell types with a high efficiency, preserved cell viability, and did not perturb native leukocyte function in cytokine release and endothelial adhesion assays. QD-labeled monocyte/macrophages and T lymphocytes were reinfused in an ApoE-/- mouse model of atherosclerosis and age-matched controls and tracked for up to four weeks to investigate the incorporation of cells within aortic lesion areas, as determined by oil red O (ORO) and immunofluorescence ex vivo staining. QD-labeled cells were visible in atherosclerotic plaques within two days of injection, and the two cell types colocalized within areas of subsequent ORO staining. Our method for tracking leukocytes in lesions enables high signal-to-noise ratio imaging of multiple cell types and biomarkers simultaneously within the same specimen. It also has great utility in studies aimed at investigating the role of distinct circulating leukocyte subsets in plaque development and progression.

  18. Photodynamic antibacterial effect of graphene quantum dots.

    PubMed

    Ristic, Biljana Z; Milenkovic, Marina M; Dakic, Ivana R; Todorovic-Markovic, Biljana M; Milosavljevic, Momir S; Budimir, Milica D; Paunovic, Verica G; Dramicanin, Miroslav D; Markovic, Zoran M; Trajkovic, Vladimir S

    2014-05-01

    Synthesis of new antibacterial agents is becoming increasingly important in light of the emerging antibiotic resistance. In the present study we report that electrochemically produced graphene quantum dots (GQD), a new class of carbon nanoparticles, generate reactive oxygen species when photoexcited (470 nm, 1 W), and kill two strains of pathogenic bacteria, methicillin-resistant Staphylococcus aureus and Escherichia coli. Bacterial killing was demonstrated by the reduction in number of bacterial colonies in a standard plate count method, the increase in propidium iodide uptake confirming the cell membrane damage, as well as by morphological defects visualized by atomic force microscopy. The induction of oxidative stress in bacteria exposed to photoexcited GQD was confirmed by staining with a redox-sensitive fluorochrome dihydrorhodamine 123. Neither GQD nor light exposure alone were able to cause oxidative stress and reduce the viability of bacteria. Importantly, mouse spleen cells were markedly less sensitive in the same experimental conditions, thus indicating a fairly selective antibacterial photodynamic action of GQD. PMID:24612819

  19. Enhancement of pumped current in quantum dots

    NASA Astrophysics Data System (ADS)

    Ramos, Juan Pablo; Foa, Luis; Apel, Victor Marcelo; Orellana, Pedro

    A direct current usually requires the application of a non-zero potential difference between source and drain, but on nanoscale systems (NSS) it is possible to obtain a non-zero current while the potential difference is zero. The effect is known as quantum charge pumping (QCP) and it is due to the interference provided by the existence of a time-dependent potential (TDP). QCP can be generated by a TDP in non-adiabatic limit. An example of this is a system composed by a ring with a dot embedded on it, under the application of an oscillating TDP. By the action of a magnetic field across the system, a pumped current is generated, since time reversal symmetry is broken. Decoherence is crucial, both from a scientific and technological point of view. In NSS it is expected that decoherence, among others things, decreases the QCP amplitude. In this context, we study what is the effect of a bath on the pumped current in our system. We find that for certain values of magnetic flux, the bath-system produce amplification of the pumped current.

  20. Immune cells tracing using quantum dots

    NASA Astrophysics Data System (ADS)

    Hoshino, Akiyoshi; Fujioka, Kouki; Kawamura, Yuki I.; Toyama-Sorimachi, Noriko; Yasuhara, Masato; Dohi, Taeko; Yamamoto, Kenji

    2006-02-01

    Fluorescent nanoparticles, such as nanocrystal quantum dots (QDs), have potential to be applied to molecular biology and bioimaging, since some nanocrystals emit higher and longer lasting fluorescence than conventional organic probes do. Here we report an example of labeling immune cells by QDs. We collected splenic CD4 + T-lymphocyte and peritoneal macrophages from mice. Then cells were labeled with QDs. QDs are incorporated into the T-lymphocyte and macrophages immediately after addition and located in the cytoplasm via endocytosis pathway. The fluorescence of QDs held in the endosomes was easily detected for more than a week. In addition, T-lymphocytes labeled with QDs were stable and cell proliferation or cytokine production including IL-2 and IFN-γ was not affected. When QD-labeled T-lymphocytes were adoptively transferred intravenously to mice, they remained in the peripheral blood and spleen up to a week. Using QD-labeled peritoneal macrophages, we studied cell traffic during inflammation on viscera in peritoneum cavity. QD-labeled macrophages were transplanted into the peritoneum of the mouse, and colitis was induced by intracolonic injection of a hapten, trinitrobenzensulfonic acid. With the aid of stong signals of QDs, we found that macrophage accumuled on the inflammation site of the colon. These results suggested that fluorescent probes of QDs might be useful as bioimaging tools for tracing target cells in vivo.

  1. Inelastic Heat Transfer in Molecular Quantum Dots

    NASA Astrophysics Data System (ADS)

    Dyrkacz, Joanna; Walczak, Kamil

    We examine electronic heat conduction via molecular complexes in the presence of local electron-phonon coupling effects. In off-resonance transport regime, even weak electron-phonon interactions lead to phonon-mediated changes of transport characteristics. In the nearly resonance conditions, the strong electron-phonon coupling reduces the height of the main conductance peak, generating additional satellites (phonon sidebands) in transport characteristics and shifting molecular energy spectrum via reorganization (polaron) energy. In the past, it was shown that inclusion of electron-phonon coupling effects into computational scheme reduces discrepancy between theoretical results and experimental data. The aim of this project is to study electron-phonon coupling effects on electronic heat transfer at molecular level. For that purpose, we use non-perturbative computational scheme based on inelastic version of Landauer formula, where the Green's functions technique combined with polaron transformation was used to calculate multi-channel transmission probability function, while accessibility of individual conduction channels is governed by Boltzmann statistics. Our analysis is based on the hypothesis that the dynamics created by electron-phonon interaction onto the molecular quantum dot asymmetrically connected to two thermal reservoirs will lead to thermal rectification effect. Our results will be discussed in a few aspects: electron-phonon coupling strength, phonon dispersion relationship, and heat fluxes generated by temperature difference as well as bias voltage.

  2. Spin filtering in a double quantum dot device: Numerical renormalization group study of the internal structure of the Kondo state

    SciTech Connect

    Vernek, E.; Büsser, C. A.; Anda, E. V.; Feiguin, A. E.; Martins, G. B.

    2014-03-31

    A double quantum dot device, connected to two channels that only interact through interdot Coulomb repulsion, is analyzed using the numerical renormalization group technique. Using a two-impurity Anderson model, and realistic parameter values [S. Amasha, A. J. Keller, I. G. Rau, A. Carmi, J. A. Katine, H. Shtrikman, Y. Oreg, and D. Goldhaber-Gordon, Phys. Rev. Lett. 110, 046604 (2013)], it is shown that, by applying a moderate magnetic field and independently adjusting the gate potential of each quantum dot at half-filling, a spin-orbital SU(2) Kondo state can be achieved where the Kondo resonance originates from spatially separated parts of the device. Our results clearly link this spatial separation effect to currents with opposing spin polarizations in each channel, i.e., the device acts as a spin filter. In addition, an experimental probe of this polarization effect is suggested, pointing to the exciting possibility of experimentally probing the internal structure of an SU(2) Kondo state.

  3. Effects of vertex corrections on diagrammatic approximations applied to the study of transport through a quantum dot

    NASA Astrophysics Data System (ADS)

    Tosi, Leandro; Roura-Bas, Pablo; Llois, Ana María; Manuel, Luis O.

    2011-02-01

    In the present work, we calculate the conductance through a single quantum dot weakly coupled to metallic contacts. We use the spin-1/2 Anderson model to describe the quantum dot, while considering a finite Coulomb repulsion. We solve the interacting system using the noncrossing approximation (NCA) and the one-crossing approximation (OCA). We obtain the linear response conductance as a function of temperature and energy position of the localized level. From the comparison of both approximations we extract the role of the vertex corrections, which are introduced in the OCA calculations and neglected in the NCA scheme. As a function of the energy position, we observe that the diagrams omitted within the NCA are really important for appropriately describing transport phenomena in Kondo systems as well as in the mixed valence regime. On the other hand, as a function of temperature, the corrections introduced by the OCA partly recover the universal scaling properties known from numerical approaches such as the numerical renormalization group.

  4. Thermal conductance associated with six types of vibration modes in quantum wire modulated with quantum dot

    NASA Astrophysics Data System (ADS)

    Peng, Xiao-Fang; Wang, Xin-Jun; Chen, Li-Qun; Li, Jian-Bo; Zhou, Wu-Xing; Zhang, Gui; Chen, Ke-Qiu

    2014-06-01

    We study the ballistic phonon transport and thermal conductance of six low-lying vibration modes in quantum wire modulated with quantum dot at low temperatures. A comparative analysis is made among the six vibrational modes. The results show that the transmission rates of the six vibrational modes relative to reduced frequency display periodic or quasi-periodic oscillatory behavior. Among the four acoustic modes, the thermal conductance contributed by the torsional mode is the smallest, and the thermal conductances of other acoustic modes have adjacent values. It is also found that the thermal conductance of the optical mode increases from zero monotonously. Moreover, the total thermal conductance in concavity-shaped quantum structure is lower than that in convexity-shaped quantum structure. These thermal conductance values can be adjusted by changing the structural parameters of the quantum dot.

  5. Fluorescence of quantum dots on e-beam patterned and DNA origami substrates

    NASA Astrophysics Data System (ADS)

    Corrigan, Timothy D.; Kessinger, Matthew; Kidd, Jesse; Neff, David; Rahman, Masudur; Norton, Michael L.

    2015-05-01

    Attachment of quantum dots or fluorescent molecules to gold nanoparticles has a variety of optical labeling and sensory applications. In this study, we use both e-beam lithography and DNA origami to examine the fluorescence enhancement of fluorescent molecules and quantum dots with a systematic approach to understanding the contribution of gold nanoparticle size and interparticle spacing. The unique design of our patterns allows us to study the effects of size and spacing of the gold nanoparticles on the enhancement of fluorescence in one quick study with constant conditions - removing undesirable effects such as differences in concentration of quantum dots or other chemistry differences that plague multiple experiments. We also discuss the fluorescence and bonding of CdSe/ZnS quantum dots to both gold as well as DNA for use in self assembled DNA constructs. Specifically, bioconjugated CdSe/ZnS core/shell quantum dots were synthesized and functionalized with MPA using both traditional ligand exchange as well as newly developed in situ functionalization techniques used to increase the quantum yield of the quantum dots. We will present fluorescent images showing results of optimal size and spacing for fluorescence as well as demonstrating attachment chemistry of the quantum dots.

  6. CdTe quantum dots: aqueous phase synthesis, stability studies and protein conjugation for development of biosensors

    NASA Astrophysics Data System (ADS)

    Borse, Vivek; Sadawana, Mayur; Srivastava, Rohit

    2016-04-01

    Synthesis of quantum dots (QDs) in aqueous medium is advantageous as compared to the organic solvent mediated synthesis, as the aqueous synthesis is less toxic, reagent effective, easily reproducible and importantly, synthesized QDs have biological compatibility. The QDs should be aqueous in nature for use in cell imaging, drug labeling, tracking and delivery. Structural modifications are necessary to enable their use in biosensing application. In this work, mercaptopropionic acid capped cadmium telluride QDs (MPA-CdTe QDs) were synthesized by hydrothermal method and characterized by various techniques. Water and various biochemical buffers were used to study the fluorescence intensity stability of the QDs at different physicochemical conditions. QDs stored in 4° C showed excellent stability of fluorescence intensity values as compared to the samples stored at room temperature. Staphylococcal protein A (SPA) was conjugated with the QDs (SPA-QDs) and characterized using UV and fluorescence spectroscopy, zeta potential, HRTEM, FTIR, and AFM. Blue shift was observed in the fluorescence emission spectra that may be due to reduction in the surface charge as carboxyl groups on QDs were replaced by amino groups of SPA. This SPA conjugated to QDs enables binding of the C-terminal of antibodies on its surface allowing N-terminal binding site remain free to bind with antigenic biomarkers. Thus, the biosensor i.e. antibody bound on SPA-QDs would bind to the antigenic biomarkers in sample and the detection system could be developed. As QDs have better fluorescence properties than organic dyes, this biosensor will provide high sensitivity and quantitative capability in diagnostics.

  7. Quantum Dots: An Experiment for Physical or Materials Chemistry

    ERIC Educational Resources Information Center

    Winkler, L. D.; Arceo, J. F.; Hughes, W. C.; DeGraff, B. A.; Augustine, B. H.

    2005-01-01

    An experiment is conducted for obtaining quantum dots for physical or materials chemistry. This experiment serves to both reinforce the basic concept of quantum confinement and providing a useful bridge between the molecular and solid-state world.

  8. Luminescent studies of alloy Zn xCd 1- xSe quantum dots grown on ZnSe by metalorganic chemical vapor-phase deposition

    NASA Astrophysics Data System (ADS)

    Zhang, X. B.; Hark, S. K.

    2000-01-01

    Zn xCd 1- xSe alloy quantum dots (QDs) with x in the range 0-0.39 are grown by metalorganic chemical vapor-phase deposition on ZnSe. Cathodoluminescence (CL) and photoluminescence (PL) were used to study these self-assembled quantum dots. CL imaging and spectra show that clusters of QDs are efficient luminescent sites. A large red shift of the low-temperature PL peak energy of QDs, despite an increase in Zn, is attributed to a considerable increase in their size. This increase in size is consistent with the results of recent theoretical models. In forming the self-assembled QDs, mismatch strain is regarded as the fundamental driving force. When the strain changes, through a change in the composition of Zn xCd 1- xSe, QDs of a different size are obtained. A decrease in size, in turn, results in stronger quantum confinement effects. The size of the QDs is very sensitive to small changes of strain. Even a minute reduction in the zinc content of the QDs, achieved through a lengthening of growth interruptions, produces an observable blue shift of luminescence, as a result of the strengthening of the quantum confinement energy.

  9. Lifetime blinking in nonblinking nanocrystal quantum dots.

    PubMed

    Galland, Christophe; Ghosh, Yagnaseni; Steinbrück, Andrea; Hollingsworth, Jennifer A; Htoon, Han; Klimov, Victor I

    2012-01-01

    Nanocrystal quantum dots are attractive materials for applications as nanoscale light sources. One impediment to these applications is fluctuations of single-dot emission intensity, known as blinking. Recent progress in colloidal synthesis has produced nonblinking nanocrystals; however, the physics underlying blinking suppression remains unclear. Here we find that ultra-thick-shell CdSe/CdS nanocrystals can exhibit pronounced fluctuations in the emission lifetimes (lifetime blinking), despite stable nonblinking emission intensity. We demonstrate that lifetime variations are due to switching between the neutral and negatively charged state of the nanocrystal. Negative charging results in faster radiative decay but does not appreciably change the overall emission intensity because of suppressed nonradiative Auger recombination for negative trions. The Auger process involving excitation of a hole (positive trion pathway) remains efficient and is responsible for charging with excess electrons, which occurs via Auger-assisted ionization of biexcitons accompanied by ejection of holes. PMID:22713750

  10. Single-molecule colocalization studies shed light on the idea of fully emitting versus dark single quantum dots.

    PubMed

    Pons, Thomas; Medintz, Igor L; Farrell, Dorothy; Wang, Xiang; Grimes, Amy F; English, Douglas S; Berti, Lorenzo; Mattoussi, Hedi

    2011-07-18

    In this report the correlation between the solution photoluminescence (PL) quantum yield and the fluorescence emission of individual semiconductor quantum dots (QDs) is investigated. This is done by taking advantage of previously reported enhancement in the macroscopic quantum yield of water-soluble QDs capped with dihydrolipoic acid (DHLA) when self-assembled with polyhistidine-appended proteins, and by using fluorescence coincidence analysis (FCA) to detect the presence of "bright" and "dark" single QDs in solution. This allows for changes in the fraction of the two QD species to be tracked as the PL yield of the solution is progressively altered. The results clearly indicate that in a dispersion of luminescent nanocrystals, "bright" (intermittently emitting) single QDs coexist with "permanently dark" (non-emitting) QDs. Furthermore, the increase in the fraction of emitting QDs accompanies the increase in the PL quantum yield of the solution. These findings support the idea that a dispersion of QDs consists of two optically distinct populations of nanocrystals--one is "bright" while the other is "dark;" and that the relative fraction of these two populations defines the overall PL yield. PMID:21710484

  11. Biexciton induced refractive index changes in a semiconductor quantum dot

    NASA Astrophysics Data System (ADS)

    Shojaei, S.

    2015-06-01

    We present a detailed theoretical study of linear and third order nonlinear refractive index changes in a optically driven disk-like GaN quantum dot. In our numerical calculations, we consider the three level system containing biexciton, exciton, and ground states and use the compact density matrix formalism and iterative method to obtain refractive index changes. Variational method through effective mass approximation are employed to calculate the ground state energy of biexciton and exciton states. The evolution of refractive index changes around one, two and three photon resonance is investigated and discussed for different quantum dot sizes and light intensities. Size-dependent three-photon nonlinear refractive index change versus incident photon energy compared to that of two-photon is obtained and analyzed. As main result, we found that around resonance frequency at exciton-biexciton transition the quantum confinement has great influence on the linear change in refractive index so that for very large quantum dots, it decreases. Moreover, it was found that third order refractive index changes for three photon process is strongly dependent on QD size and light intensity. Our study reveals that considering our simple model leads to results which are in good agreement with other rare numerical results. Comparison with experimental results has been done.

  12. Transport across two interacting quantum dots: Bulk Kondo, Kondo box, and molecular regimes

    NASA Astrophysics Data System (ADS)

    Ribeiro, L. C.; Hamad, I. J.; Chiappe, G.; Anda, E. V.

    2014-01-01

    We analyze the transport properties of a double quantum dot device with both dots coupled to perfect conducting leads and to a finite chain of N noninteracting sites connecting both of them. The interdot chain strongly influences the transport across the system and the local density of states of the dots. We study the case of a small number of sites, so that Kondo box effects are present, varying the coupling between the dots and the chain. For odd N and small coupling between the interdot chain and the dots, a state with two coexisting Kondo regimes develops: the bulk Kondo due to the quantum dots connected to leads and the one produced by the screening of the quantum dot spins by the spin in the finite chain at the Fermi level. As the coupling to the interdot chain increases, there is a crossover to a molecular Kondo effect, due to the screening of the molecule (formed by the finite chain and the quantum dots) spin by the leads. For even N the two Kondo temperatures regime does not develop and the physics is dominated by the usual competition between Kondo and antiferromagnetism between the quantum dots. We finally study how the transport properties are affected as N is increased. For the study we used exact multiconfigurational Lanczos calculations and finite-U slave-boson mean-field theory at T =0. The results obtained with both methods describe qualitatively and also quantitatively the same physics.

  13. Correlated Coulomb Drag in Capacitively Coupled Quantum-Dot Structures.

    PubMed

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-05-13

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs)-a bias-driven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach that accounts for higher-order tunneling (cotunneling) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multielectron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters. Interestingly, the direction of the drag current is not determined by the drive current, but by an interplay between the energy-dependent lead couplings. Studying the drag mechanism in a graphene-based CQD heterostructure, we show that the predictions of our theory are consistent with recent experiments on Coulomb drag in CQD systems. PMID:27232031

  14. Correlated Coulomb Drag in Capacitively Coupled Quantum-Dot Structures

    NASA Astrophysics Data System (ADS)

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-05-01

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs)—a bias-driven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach that accounts for higher-order tunneling (cotunneling) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multielectron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters. Interestingly, the direction of the drag current is not determined by the drive current, but by an interplay between the energy-dependent lead couplings. Studying the drag mechanism in a graphene-based CQD heterostructure, we show that the predictions of our theory are consistent with recent experiments on Coulomb drag in CQD systems.

  15. Ferromagnetic Kondo Effect in a Triple Quantum Dot System

    NASA Astrophysics Data System (ADS)

    Baruselli, P. P.; Requist, R.; Fabrizio, M.; Tosatti, E.

    2013-07-01

    A simple device of three laterally coupled quantum dots, the central one contacted by metal leads, provides a realization of the ferromagnetic Kondo model, which is characterized by interesting properties like a nonanalytic inverted zero-bias anomaly and an extreme sensitivity to a magnetic field. Tuning the gate voltages of the lateral dots allows us to study the transition from a ferromagnetic to antiferromagnetic Kondo effect, a simple case of a Berezinskii-Kosterlitz-Thouless transition. We model the device by three coupled Anderson impurities that we study by numerical renormalization group. We calculate the single-particle spectral function of the central dot, which at zero frequency is proportional to the zero-bias conductance, across the transition, both in the absence and in the presence of a magnetic field.

  16. Ferromagnetic Kondo effect in a triple quantum dot system.

    PubMed

    Baruselli, P P; Requist, R; Fabrizio, M; Tosatti, E

    2013-07-26

    A simple device of three laterally coupled quantum dots, the central one contacted by metal leads, provides a realization of the ferromagnetic Kondo model, which is characterized by interesting properties like a nonanalytic inverted zero-bias anomaly and an extreme sensitivity to a magnetic field. Tuning the gate voltages of the lateral dots allows us to study the transition from a ferromagnetic to antiferromagnetic Kondo effect, a simple case of a Berezinskii-Kosterlitz-Thouless transition. We model the device by three coupled Anderson impurities that we study by numerical renormalization group. We calculate the single-particle spectral function of the central dot, which at zero frequency is proportional to the zero-bias conductance, across the transition, both in the absence and in the presence of a magnetic field. PMID:23931401

  17. Lateral excitonic switching in vertically stacked quantum dots

    NASA Astrophysics Data System (ADS)

    Jarzynka, Jarosław R.; McDonald, Peter G.; Shumway, John; Galbraith, Ian

    2016-06-01

    We show that the application of a vertical electric field to the Coulomb interacting system in stacked quantum dots leads to a 90° in-plane switching of charge probability distribution in contrast to a single dot, where no such switching exists. Results are obtained using path integral quantum Monte Carlo with realistic dot geometry, alloy composition, and piezo-electric potential profiles. The origin of the switching lies in the strain interactions between the stacked dots hence the need for more than one layer of dots. The lateral polarization and electric field dependence of the radiative lifetimes of the excitonic switch are also discussed.

  18. Nano-laser on silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Qi; Liu, Shi-Rong; Qin, Chao-Jian; Lü, Quan; Xu, Li

    2011-04-01

    A new conception of nano-laser is proposed in which depending on the size of nano-clusters (silicon quantum dots (QD)), the pumping level of laser can be tuned by the quantum confinement (QC) effect, and the population inversion can be formed between the valence band and the localized states in gap produced from the surface bonds of nano-clusters. Here we report the experimental demonstration of nano-laser on silicon quantum dots fabricated by nanosecond pulse laser. The peaks of stimulated emission are observed at 605 nm and 693 nm. Through the micro-cavity of nano-laser, a full width at half maximum of the peak at 693 nm can reach to 0.5 nm. The theoretical model and the experimental results indicate that it is a necessary condition for setting up nano-laser that the smaller size of QD (d < 3 nm) can make the localized states into band gap. The emission energy of nano-laser will be limited in the range of 1.7-2.3 eV generally due to the position of the localized states in gap, which is in good agreement between the experiments and the theory.

  19. Engineering the hole confinement for CdTe-based quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Kłopotowski, Ł.; Wojnar, P.; Kret, S.; Parlińska-Wojtan, M.; Fronc, K.; Wojtowicz, T.; Karczewski, G.

    2015-06-01

    We demonstrate an efficient method to engineer the quantum confinement in a system of two quantum dots grown in a vertical stack. We achieve this by using materials with a different lattice constant for the growth of the outer and inner barriers. We monitor the resulting dot morphology with transmission electron microscopy studies and correlate the results with ensemble quantum dot photoluminescence. Furthermore, we embed the double quantum dots into diode structures and study photoluminescence as a function of bias voltage. We show that in properly engineered structures, it is possible to achieve a resonance of the hole states by tuning the energy levels with electric field. At the resonance, we observe signatures of a formation of a molecular state, hybridized over the two dots.

  20. Engineering the hole confinement for CdTe-based quantum dot molecules

    SciTech Connect

    Kłopotowski, Ł. Wojnar, P.; Kret, S.; Fronc, K.; Wojtowicz, T.; Karczewski, G.

    2015-06-14

    We demonstrate an efficient method to engineer the quantum confinement in a system of two quantum dots grown in a vertical stack. We achieve this by using materials with a different lattice constant for the growth of the outer and inner barriers. We monitor the resulting dot morphology with transmission electron microscopy studies and correlate the results with ensemble quantum dot photoluminescence. Furthermore, we embed the double quantum dots into diode structures and study photoluminescence as a function of bias voltage. We show that in properly engineered structures, it is possible to achieve a resonance of the hole states by tuning the energy levels with electric field. At the resonance, we observe signatures of a formation of a molecular state, hybridized over the two dots.

  1. Quantum Dot Platform for Single-Cell Molecular Profiling

    NASA Astrophysics Data System (ADS)

    Zrazhevskiy, Pavel S.

    preparation and specimen labeling, requiring no advanced technical skills and being directly applicable for a wide range of molecular profiling studies. Utilization of quantum dot platform for single-cell molecular profiling promises to greatly benefit both biomedical research and clinical diagnostics by providing a tool for addressing phenotypic heterogeneity within large cell populations, opening access to studying low-abundance events often masked or completely erased by batch processing, and elucidating biomarker signatures of diseases critical for accurate diagnostics and targeted therapy.

  2. Power-law photoluminescence decay in quantum dots

    SciTech Connect

    Král, Karel; Menšík, Miroslav

    2014-05-15

    Some quantum dot samples show a long-time (power-law) behavior of their luminescence intensity decay. This effect has been recently explained as being due to a cooperation of many tunneling channels transferring electrons from small quantum dots with triplet exciton to quantum dots at which the electrons can recombine with the holes in the valence band states. In this work we show that the long-time character of the sample luminescence decay can also be caused by an intrinsic property of a single dot, namely, by a non-adiabatic effect of the electron occupation up-conversion caused by the electron-phonon multiple scattering mechanism.

  3. Quantum Dot Device Design Optimization for Resonator Coupling

    NASA Astrophysics Data System (ADS)

    King, Cameron; Coppersmith, S. N.; Friesen, Mark

    Coupling a semiconductor quantum dot qubit to a superconducting resonator broadens the possibilities for interqubit communication and potentially allows integration of quantum dots with other qubit systems. The major technological hurdle that must be overcome is reaching the strong coupling limit, where the coupling frequency between the resonator and the qubit is larger than both the qubit decoherence rate and the photon loss rate of the resonator. In this work, we examine optimization of the quantum dot device design. Using the Thomas-Fermi approximation in conjunction with a metallic dot capacitive model, we focus on improving the capacitive coupling between a resonator gate and a quantum dot while decreasing the cross-coupling to nearby dots. Through these simulations, we find that the optimization follows an intuitive geometric relation. This work was supported in part by ARO (W911NF-12-0607), NSF (PHY-1104660), and ONR (N00014-15-1-0029).

  4. Controlling quantum dot energies using submonolayer bandstructure engineering

    SciTech Connect

    Yu, L.; Law, S.; Wasserman, D.; Jung, D.; Lee, M. L.; Shen, J.; Cha, J. J.

    2014-08-25

    We demonstrate control of energy states in epitaxially-grown quantum dot structures formed by stacked submonolayer InAs depositions via engineering of the internal bandstructure of the dots. Transmission electron microscopy of the stacked sub-monolayer regions shows compositional inhomogeneity, indicative of the presence of quantum dots. The quantum dot ground state is manipulated not only by the number of deposited InAs layers, but also by control of the thickness and material composition of the spacing layers between submonolayer InAs depositions. In this manner, we demonstrate the ability to shift the quantum dot ground state energy at 77 K from 1.38 eV to 1.88 eV. The results presented offer a potential avenue towards enhanced control of dot energies for a variety of optoelectronic applications.

  5. Interactions between N-acetyl-L-cysteine protected CdTe quantum dots and doxorubicin through spectroscopic method

    SciTech Connect

    Yang, Xiupei; Lin, Jia; Liao, Xiulin; Zong, Yingying; Gao, Huanhuan

    2015-06-15

    Highlights: • CdTe quantum dots with the diameter of 3–5 nm were synthesized in aqueous solution. • The modified CdTe quantum dots showed well fluorescence properties. • The interaction between the CdTe quantum dots and doxorubicin (DR) was investigated. - Abstract: N-acetyl-L-cysteine protected cadmium telluride quantum dots with a diameter of 3–5 nm were synthesized in aqueous solution. The interaction between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin was investigated by ultraviolet–visible absorption and fluorescence spectroscopy at physiological conditions (pH 7.2, 37 °C). The results indicate that electron transfer has occurred between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin under light illumination. The quantum dots react readily with doxorubicin to form a N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex via electrostatic attraction between the −NH{sub 3}{sup +} moiety of doxorubicin and the −COO{sup −} moiety of N-acetyl-L-cysteine/cadmium telluride quantum dots. The interaction of N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex with bovine serum albumin was studied as well, showing that the complex might induce the conformation change of bovine serum due to changes in microenvironment of bovine serum.

  6. Two photon processes in ZnO quantum dots

    NASA Astrophysics Data System (ADS)

    Maikhuri, Deepti; Purohit, S. P.; Mathur, K. C.

    2016-01-01

    The two-photon bound-bound (TPBB) and the two-photon bound-free (TPBF) processes are studied for the electron in the initial 1S state in the conduction band of the ZnO quantum dot (QD) embedded in the HfO2 and the AlN matrices. The energy and the wave functions of the QD are obtained by using the effective mass approximation with a finite barrier height at the dot-matrix interface. Using the second order perturbation theory results are obtained for the two-photon absorption coefficient and the photoelectric cross section. The photoelectric cross section ratio for the circularly to the linearly polarized photons is also obtained. It is observed that the two-photon processes depend significantly on the polarization of the incident beam, the dot size, and the surrounding matrix. It is found that the electric quadrupole interaction enhance the TPBF photoelectric cross section.

  7. A hybrid silicon evanescent quantum dot laser

    NASA Astrophysics Data System (ADS)

    Jang, Bongyong; Tanabe, Katsuaki; Kako, Satoshi; Iwamoto, Satoshi; Tsuchizawa, Tai; Nishi, Hidetaka; Hatori, Nobuaki; Noguchi, Masataka; Nakamura, Takahiro; Takemasa, Keizo; Sugawara, Mitsuru; Arakawa, Yasuhiko

    2016-09-01

    We report the first demonstration of a hybrid silicon quantum dot (QD) laser, evanescently coupled to a silicon waveguide. InAs/GaAs QD laser structures with thin AlGaAs lower cladding layers were transferred by direct wafer bonding onto silicon waveguides defining cavities with adiabatic taper structures and distributed Bragg reflectors. The laser operates at temperatures up to 115 °C under pulsed current conditions, with a characteristic temperature T 0 of 303 K near room temperature. Furthermore, by reducing the width of the GaAs/AlGaAs mesa down to 8 µm, continuous-wave operation is realized at 25 °C.

  8. Fabrication of a graphene quantum dot device

    NASA Astrophysics Data System (ADS)

    Lee, Jeong Il; Kim, Eunseong

    2014-03-01

    Graphene, which exhibits a massless Dirac-like spectrum for its electrons, has shown impressive properties for nano-electronics applications including a high mobility and a width dependent bandgap. We will report the preliminary report on the transport property of the suspended graphene nano-ribbon(GNR) quantum dot device down to dilution refrigerator temperature. This GNR QD device was fabricated to realize an ideal probe to investigate Kondo physics--a characteristic phenomenon in the physics of strongly correlated electrons. We gratefully acknowledge the financial support by the National Research Foundation of Korea through the Creative Research Initiatives.

  9. Superexchange blockade in triple quantum dots

    NASA Astrophysics Data System (ADS)

    Sánchez, Rafael; Gallego-Marcos, Fernando; Platero, Gloria

    2014-04-01

    We propose the interaction of two electrons in a triple quantum dot as a minimal system to control long-range superexchange transitions. These are probed by transport spectroscopy. Narrow resonances appear indicating the transfer of charge from one side of the sample to the other with the central one being occupied only virtually. We predict that two different intermediate states establish the two arms of a one-dimensional interferometer. We find configurations where destructive interference of the two superexchange trajectories totally blocks the current through the system. We emphasize the role of spin correlations giving rise to lifetime-enhanced resonances.

  10. Implementing of Quantum Cloning with Spatially Separated Quantum Dot Spins

    NASA Astrophysics Data System (ADS)

    Wen, Jing-Ji; Yeon, Kyu-Hwang; Du, Xin; Lv, Jia; Wang, Ming; Wang, Hong-Fu; Zhang, Shou

    2016-07-01

    We propose some schemes for implementing optimal symmetric (asymmetric) 1 → 2 universal quantum cloning, optimal symmetric (asymmetric) 1 → 2 phase-covariant cloning, optimal symmetric 1 → 3 economical phase-covariant cloning and optimal symmetric 1 → 3 economical real state cloning with spatially separated quantum dot spins by choosing the single-qubit rotation angles appropriately. The decoherences of the spontaneous emission of QDs, cavity decay and fiber loss are suppressed since the effective long-distance off-resonant interaction between two distant QDs is mediated by the vacuum fields of the fiber and cavity, and during the whole process no system is excited.

  11. Quantum Adiabatic Pumping by Modulating Tunnel Phase in Quantum Dots

    NASA Astrophysics Data System (ADS)

    Taguchi, Masahiko; Nakajima, Satoshi; Kubo, Toshihiro; Tokura, Yasuhiro

    2016-08-01

    In a mesoscopic system, under zero bias voltage, a finite charge is transferred by quantum adiabatic pumping by adiabatically and periodically changing two or more control parameters. We obtained expressions for the pumped charge for a ring of three quantum dots (QDs) by choosing the magnetic flux penetrating the ring as one of the control parameters. We found that the pumped charge shows a steplike behavior with respect to the variance of the flux. The value of the step heights is not universal but depends on the trajectory of the control parameters. We discuss the physical origin of this behavior on the basis of the Fano resonant condition of the ring.

  12. Implementing of Quantum Cloning with Spatially Separated Quantum Dot Spins

    NASA Astrophysics Data System (ADS)

    Wen, Jing-Ji; Yeon, Kyu-Hwang; Du, Xin; Lv, Jia; Wang, Ming; Wang, Hong-Fu; Zhang, Shou

    2016-02-01

    We propose some schemes for implementing optimal symmetric (asymmetric) 1 → 2 universal quantum cloning, optimal symmetric (asymmetric) 1 → 2 phase-covariant cloning, optimal symmetric 1 → 3 economical phase-covariant cloning and optimal symmetric 1 → 3 economical real state cloning with spatially separated quantum dot spins by choosing the single-qubit rotation angles appropriately. The decoherences of the spontaneous emission of QDs, cavity decay and fiber loss are suppressed since the effective long-distance off-resonant interaction between two distant QDs is mediated by the vacuum fields of the fiber and cavity, and during the whole process no system is excited.

  13. Fast synthesize ZnO quantum dots via ultrasonic method.

    PubMed

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots. PMID:26611814

  14. A Nanowire-Based Plasmonic Quantum Dot Laser.

    PubMed

    Ho, Jinfa; Tatebayashi, Jun; Sergent, Sylvain; Fong, Chee Fai; Ota, Yasutomo; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2016-04-13

    Quantum dots enable strong carrier confinement and exhibit a delta-function like density of states, offering significant improvements to laser performance and high-temperature stability when used as a gain medium. However, quantum dot lasers have been limited to photonic cavities that are diffraction-limited and further miniaturization to meet the demands of nanophotonic-electronic integration applications is challenging based on existing designs. Here we introduce the first quantum dot-based plasmonic laser to reduce the cross-sectional area of nanowire quantum dot lasers below the cutoff limit of photonic modes while maintaining the length in the order of the lasing wavelength. Metal organic chemical vapor deposition grown GaAs-AlGaAs core-shell nanowires containing InGaAs quantum dot stacks are placed directly on a silver film, and lasing was observed from single nanowires originating from the InGaAs quantum dot emission into the low-loss higher order plasmonic mode. Lasing threshold pump fluences as low as ∼120 μJ/cm(2) was observed at 7 K, and lasing was observed up to 125 K. Temperature stability from the quantum dot gain, leading to a high characteristic temperature was demonstrated. These results indicate that high-performance, miniaturized quantum dot lasers can be realized with plasmonics. PMID:27030886

  15. Titanium-based silicide quantum dot superlattices for thermoelectrics applications.

    PubMed

    Savelli, Guillaume; Stein, Sergio Silveira; Bernard-Granger, Guillaume; Faucherand, Pascal; Montès, Laurent; Dilhaire, Stefan; Pernot, Gilles

    2015-07-10

    Ti-based silicide quantum dot superlattices (QDSLs) are grown by reduced-pressure chemical vapor deposition. They are made of titanium-based silicide nanodots scattered in an n-doped SiGe matrix. This is the first time that such nanostructured materials have been grown in both monocrystalline and polycrystalline QDSLs. We studied their crystallographic structures and chemical properties, as well as the size and the density of the quantum dots. The thermoelectric properties of the QDSLs are measured and compared to equivalent SiGe thin films to evaluate the influence of the nanodots. Our studies revealed an increase in their thermoelectric properties-specifically, up to a trifold increase in the power factor, with a decrease in the thermal conductivity-making them very good candidates for further thermoelectric applications in cooling or energy-harvesting fields. PMID:26086207

  16. Investigations on Landé factor in a strained GaxIn1-xAs/GaAs quantum dot

    NASA Astrophysics Data System (ADS)

    Kumar, N. R. Senthil; Peter, A. John

    2014-04-01

    The effective excitonic g-factor as functions of dot radius and the Ga alloy content, in a strained GaxIn1-xAs/GaAs quantum dot, is numerically measured. The heavy hole excitonic states are studied for various Ga alloy content taking into account the anisotropy, non-parabolicity of the conduction band and the geometrical confinement effects. The quantum dot is considered as spherical dot of InAs surrounded by a GaAs barrier material.

  17. Transport across two interacting quantum dots: Bulk Kondo, Kondo box, and molecular regimes

    NASA Astrophysics Data System (ADS)

    Costa Ribeiro, Laercio; Hamad, Ignacio; Chiappe, Guillermo; Victoriano Anda, Enrique

    2015-03-01

    We analyze the transport properties of a double quantum dot device with both dots coupled to perfect conducting leads and to a finite chain of N noninteracting sites connecting both of them. The interdot chain strongly influences the transport across the system and the local density of states of the dots. We study the case of a small number of sites, so that Kondo box effects are present, varying the coupling between the dots and the chain. For odd N and small coupling between the interdot chain and the dots, a state with two coexisting Kondo regimes develops: the bulk Kondo due to the quantum dots connected to leads and the one produced by the screening of the quantum dot spins by the spin in the finite chain at the Fermi level. As the coupling to the interdot chain increases, there is a crossover to a molecular Kondo effect, due to the screening of the molecule (formed by the finite chain and the quantum dots) spin by the leads. For even N the two Kondo temperatures regime does not develop and the physics is dominated by the usual competition between Kondo and antiferromagnetism between the quantum dots. We acknowledge financial support from the Brazilian agencies FAPERJ and CNPq.

  18. Comparative study of the exciton states in CdSe/ZnS core-shell quantum dots under applied electric fields with and without permanent electric dipole moment

    NASA Astrophysics Data System (ADS)

    Cristea, M.

    2016-04-01

    Due to its non-centrosymmetric wurtzite crystal structure, the CdSe dot presents a permanent electric dipole moment. In this paper we study the effect of an electric applied field on the emission wavelength of a CdSe/ZnS core-shell quantum dot with a permanent electric dipole. The electron and hole single-particle energy and wave function in the presence of an electric dipole are obtained in the effective-mass and parabolic-band approximation for various electric field strengths. The Schrödinger equation was solved by use of the finite element method. The exciton binding energy is calculated in the first-order perturbation theory and the optical emission wavelengths are found and compared to the experimental values. We find that the photoluminescence emission can be tuned by varying the electric dipole size, the electric field strength and by an appropriate orientation between the permanent dipole moment and applied electric field.

  19. Magnetic field dependence of a charge-frustrated state in a triangular triple quantum dot

    NASA Astrophysics Data System (ADS)

    Seo, M.; Chung, Y.

    2013-11-01

    We studied the magnetic field dependence of a charge-frustrated state formed in a triangular triple quantum dot. Stability diagrams at various magnetic fields were measured by using two-terminal and three-terminal conductance measurement schemes. We found that the frustrated state broke down at an external magnetic field of around 0.1 T. This result is due to the confinement energy shifts in quantum dots under external magnetic fields. A similar breakdown of the frustrated state was observed when the confinement energy of a quantum dot was intentionally shifted by the plunger gate of the dot, which confirm the reason for the breakdown of the frustrated state under on applied magnetic field. Our measured stability diagrams differed depending on the measurement schemes, which could not be explained by the capacitive interaction model based on an independent particle picture. We believe that the discrepancy is related to the closed electron and hole trajectories inside a triple quantum dot.

  20. Effect of swift heavy ion irradiation on bare and coated ZnS quantum dots

    SciTech Connect

    Chowdhury, S. Hussain, A.M.P.; Ahmed, G.A.; Singh, F.; Avasthi, D.K.; Choudhury, A.

    2008-12-01

    The present study compares structural and optical modifications of bare and silica (SiO{sub 2}) coated ZnS quantum dots under swift heavy ion (SHI) irradiation. Bare and silica coated ZnS quantum dots were prepared following an inexpensive chemical route using polyvinyl alcohol (PVA) as the dielectric host matrix. X-ray diffraction (XRD) and transmission electron microscopy (TEM) study of the samples show the formation of almost spherical ZnS quantum dots. The UV-Vis absorption spectra reveal blue shift relative to bulk material in absorption energy while photoluminescence (PL) spectra suggests that surface state and near band edge emissions are dominating in case of bare and coated samples, respectively. Swift heavy ion irradiation of the samples was carried out with 160 MeV Ni{sup 12+} ion beam with fluences 10{sup 12} to 10{sup 13} ions/cm{sup 2}. Size enhancement of bare quantum dots after irradiation has been indicated in XRD and TEM analysis of the samples which has also been supported by optical absorption spectra. However similar investigations on irradiated coated quantum dots revealed little change in quantum dot size and emission. The present study thus shows that the coated ZnS quantum dots are stable upon SHI irradiation compared to the bare one.

  1. Size dependence in tunneling spectra of PbSe quantum-dot arrays.

    PubMed

    Ou, Y C; Cheng, S F; Jian, W B

    2009-07-15

    Interdot Coulomb interactions and collective Coulomb blockade were theoretically argued to be a newly important topic, and experimentally identified in semiconductor quantum dots, formed in the gate confined two-dimensional electron gas system. Developments of cluster science and colloidal synthesis accelerated the studies of electron transport in colloidal nanocrystal or quantum-dot solids. To study the interdot coupling, various sizes of two-dimensional arrays of colloidal PbSe quantum dots are self-assembled on flat gold surfaces for scanning tunneling microscopy and scanning tunneling spectroscopy measurements at both room and liquid-nitrogen temperatures. The tip-to-array, array-to-substrate, and interdot capacitances are evaluated and the tunneling spectra of quantum-dot arrays are analyzed by the theory of collective Coulomb blockade. The current-voltage of PbSe quantum-dot arrays conforms properly to a scaling power law function. In this study, the dependence of tunneling spectra on the sizes (numbers of quantum dots) of arrays is reported and the capacitive coupling between quantum dots in the arrays is explored. PMID:19546498

  2. Hyper-parallel photonic quantum computation with coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Ren, Bao-Cang; Deng, Fu-Guo

    2014-04-01

    It is well known that a parallel quantum computer is more powerful than a classical one. So far, there are some important works about the construction of universal quantum logic gates, the key elements in quantum computation. However, they are focused on operating on one degree of freedom (DOF) of quantum systems. Here, we investigate the possibility of achieving scalable hyper-parallel quantum computation based on two DOFs of photon systems. We construct a deterministic hyper-controlled-not (hyper-CNOT) gate operating on both the spatial-mode and the polarization DOFs of a two-photon system simultaneously, by exploiting the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics (QED). This hyper-CNOT gate is implemented by manipulating the four qubits in the two DOFs of a two-photon system without auxiliary spatial modes or polarization modes. It reduces the operation time and the resources consumed in quantum information processing, and it is more robust against the photonic dissipation noise, compared with the integration of several cascaded CNOT gates in one DOF.

  3. Non-blinking quantum dot with a plasmonic nanoshell resonator

    NASA Astrophysics Data System (ADS)

    Ji, Botao; Giovanelli, Emerson; Habert, Benjamin; Spinicelli, Piernicola; Nasilowski, Michel; Xu, Xiangzhen; Lequeux, Nicolas; Hugonin, Jean-Paul; Marquier, Francois; Greffet, Jean-Jacques; Dubertret, Benoit

    2015-02-01

    Colloidal semiconductor quantum dots are fluorescent nanocrystals exhibiting exceptional optical properties, but their emission intensity strongly depends on their charging state and local environment. This leads to blinking at the single-particle level or even complete fluorescence quenching, and limits the applications of quantum dots as fluorescent particles. Here, we show that a single quantum dot encapsulated in a silica shell coated with a continuous gold nanoshell provides a system with a stable and Poissonian emission at room temperature that is preserved regardless of drastic changes in the local environment. This novel hybrid quantum dot/silica/gold structure behaves as a plasmonic resonator with a strong Purcell factor, in very good agreement with simulations. The gold nanoshell also acts as a shield that protects the quantum dot fluorescence and enhances its resistance to high-power photoexcitation or high-energy electron beams. This plasmonic fluorescent resonator opens the way to a new family of plasmonic nanoemitters with robust optical properties.

  4. Fast Hybrid Silicon Double-Quantum-Dot Qubit

    NASA Astrophysics Data System (ADS)

    Shi, Zhan; Simmons, C. B.; Prance, J. R.; Gamble, John King; Koh, Teck Seng; Shim, Yun-Pil; Hu, Xuedong; Savage, D. E.; Lagally, M. G.; Eriksson, M. A.; Friesen, Mark; Coppersmith, S. N.

    2012-04-01

    We propose a quantum dot qubit architecture that has an attractive combination of speed and fabrication simplicity. It consists of a double quantum dot with one electron in one dot and two electrons in the other. The qubit itself is a set of two states with total spin quantum numbers S2=3/4 (S=1/2) and Sz=-1/2, with the two different states being singlet and triplet in the doubly occupied dot. Gate operations can be implemented electrically and the qubit is highly tunable, enabling fast implementation of one- and two-qubit gates in a simpler geometry and with fewer operations than in other proposed quantum dot qubit architectures with fast operations. Moreover, the system has potentially long decoherence times. These are all extremely attractive properties for use in quantum information processing devices.

  5. Biosensing with Luminescent Semiconductor Quantum Dots

    PubMed Central

    Sapsford, Kim E.; Pons, Thomas; Medintz, Igor L.; Mattoussi, Hedi

    2006-01-01

    Luminescent semiconductor nanocrystals or quantum dots (QDs) are a recently developed class of nanomaterial whose unique photophysical properties are helping to create a new generation of robust fluorescent biosensors. QD properties of interest for biosensing include high quantum yields, broad absorption spectra coupled to narrow size-tunable photoluminescent emissions and exceptional resistance to both photobleaching and chemical degradation. In this review, we examine the progress in adapting QDs for several predominantly in vitro biosensing applications including use in immunoassays, as generalized probes, in nucleic acid detection and fluorescence resonance energy transfer (FRET) - based sensing. We also describe several important considerations when working with QDs mainly centered on the choice of material(s) and appropriate strategies for attaching biomolecules to the QDs.

  6. FAST TRACK COMMUNICATION: Graphene based quantum dots

    NASA Astrophysics Data System (ADS)

    Zhang, H. G.; Hu, H.; Pan, Y.; Mao, J. H.; Gao, M.; Guo, H. M.; Du, S. X.; Greber, T.; Gao, H.-J.

    2010-08-01

    Laterally localized electronic states are identified on a single layer of graphene on ruthenium by low temperature scanning tunneling spectroscopy (STS). The individual states are separated by 3 nm and comprise regions of about 90 carbon atoms. This constitutes a highly regular quantum dot-array with molecular precision. It is evidenced by quantum well resonances (QWRs) with energies that relate to the corrugation of the graphene layer. The dI/dV conductance spectra are modeled by a layer height dependent potential-well with a delta-function potential that describes the barrier for electron penetration into graphene. The resulting QWRs are strongest and lowest in energy on the isolated 'hill' regions with a diameter of 2 nm, where the graphene is decoupled from the surface.

  7. Electron states in semiconductor quantum dots

    SciTech Connect

    Dhayal, Suman S.; Ramaniah, Lavanya M.; Ruda, Harry E.; Nair, Selvakumar V.

    2014-11-28

    In this work, the electronic structures of quantum dots (QDs) of nine direct band gap semiconductor materials belonging to the group II-VI and III-V families are investigated, within the empirical tight-binding framework, in the effective bond orbital model. This methodology is shown to accurately describe these systems, yielding, at the same time, qualitative insights into their electronic properties. Various features of the bulk band structure such as band-gaps, band curvature, and band widths around symmetry points affect the quantum confinement of electrons and holes. These effects are identified and quantified. A comparison with experimental data yields good agreement with the calculations. These theoretical results would help quantify the optical response of QDs of these materials and provide useful input for applications.

  8. Universal Braess paradox in open quantum dots.

    PubMed

    Barbosa, A L R; Bazeia, D; Ramos, J G G S

    2014-10-01

    We present analytical and numerical results that demonstrate the presence of the Braess paradox in chaotic quantum dots. The paradox that we identify, originally perceived in classical networks, shows that the addition of more capacity to the network can suppress the current flow in the universal regime. We investigate the weak localization term, showing that it presents the paradox encoded in a saturation minimum of the conductance, under the presence of hyperflow in the external leads. In addition, we demonstrate that the weak localization suffers a transition signal depending on the overcapacity lead and presents an echo on the magnetic crossover before going to zero due to the full time-reversal symmetry breaking. We also show that the quantum interference contribution can dominate the Ohm term in the presence of constrictions and that the corresponding Fano factor engenders an anomalous behavior. PMID:25375575

  9. Universal Braess paradox in open quantum dots

    NASA Astrophysics Data System (ADS)

    Barbosa, A. L. R.; Bazeia, D.; Ramos, J. G. G. S.

    2014-10-01

    We present analytical and numerical results that demonstrate the presence of the Braess paradox in chaotic quantum dots. The paradox that we identify, originally perceived in classical networks, shows that the addition of more capacity to the network can suppress the current flow in the universal regime. We investigate the weak localization term, showing that it presents the paradox encoded in a saturation minimum of the conductance, under the presence of hyperflow in the external leads. In addition, we demonstrate that the weak localization suffers a transition signal depending on the overcapacity lead and presents an echo on the magnetic crossover before going to zero due to the full time-reversal symmetry breaking. We also show that the quantum interference contribution can dominate the Ohm term in the presence of constrictions and that the corresponding Fano factor engenders an anomalous behavior.

  10. Silicon quantum dots for biological applications.

    PubMed

    Chinnathambi, Shanmugavel; Chen, Song; Ganesan, Singaravelu; Hanagata, Nobutaka

    2014-01-01

    Semiconductor nanoparticles (or quantum dots, QDs) exhibit unique optical and electronic properties such as size-controlled fluorescence, high quantum yields, and stability against photobleaching. These properties allow QDs to be used as optical labels for multiplexed imaging and in drug delivery detection systems. Luminescent silicon QDs and surface-modified silicon QDs have also been developed as potential minimally toxic fluorescent probes for bioapplications. Silicon, a well-known power electronic semiconductor material, is considered an extremely biocompatible material, in particular with respect to blood. This review article summarizes existing knowledge related to and recent research progress made in the methods for synthesizing silicon QDs, as well as their optical properties and surface-modification processes. In addition, drug delivery systems and in vitro and in vivo imaging applications that use silicon QDs are also discussed. PMID:23949967

  11. Semiconductor Quantum Dots for Biomedicial Applications

    PubMed Central

    Shao, Lijia; Gao, Yanfang; Yan, Feng

    2011-01-01

    Semiconductor quantum dots (QDs) are nanometre-scale crystals, which have unique photophysical properties, such as size-dependent optical properties, high fluorescence quantum yields, and excellent stability against photobleaching. These properties enable QDs as the promising optical labels for the biological applications, such as multiplexed analysis of immunocomplexes or DNA hybridization processes, cell sorting and tracing, in vivo imaging and diagnostics in biomedicine. Meanwhile, QDs can be used as labels for the electrochemical detection of DNA or proteins. This article reviews the synthesis and toxicity of QDs and their optical and electrochemical bioanalytical applications. Especially the application of QDs in biomedicine such as delivering, cell targeting and imaging for cancer research, and in vivo photodynamic therapy (PDT) of cancer are briefly discussed. PMID:22247690

  12. Semiconductor quantum dot-sensitized solar cells

    PubMed Central

    Tian, Jianjun; Cao, Guozhong

    2013-01-01

    Semiconductor quantum dots (QDs) have been drawing great attention recently as a material for solar energy conversion due to their versatile optical and electrical properties. The QD-sensitized solar cell (QDSC) is one of the burgeoning semiconductor QD solar cells that shows promising developments for the next generation of solar cells. This article focuses on recent developments in QDSCs, including 1) the effect of quantum confinement on QDSCs, 2) the multiple exciton generation (MEG) of QDs, 3) fabrication methods of QDs, and 4) nanocrystalline photoelectrodes for solar cells. We also make suggestions for future research on QDSCs. Although the efficiency of QDSCs is still low, we think there will be major breakthroughs in developing QDSCs in the future. PMID:24191178

  13. Luminescence upconversion in colloidal double quantum dots.

    PubMed

    Deutsch, Zvicka; Neeman, Lior; Oron, Dan

    2013-09-01

    Luminescence upconversion nanocrystals capable of converting two low-energy photons into a single photon at a higher energy are sought-after for a variety of applications, including bioimaging and photovoltaic light harvesting. Currently available systems, based on rare-earth-doped dielectrics, are limited in both tunability and absorption cross-section. Here we present colloidal double quantum dots as an alternative nanocrystalline upconversion system, combining the stability of an inorganic crystalline structure with the spectral tunability afforded by quantum confinement. By tailoring its composition and morphology, we form a semiconducting nanostructure in which excited electrons are delocalized over the entire structure, but a double potential well is formed for holes. Upconversion occurs by excitation of an electron in the lower energy transition, followed by intraband absorption of the hole, allowing it to cross the barrier to a higher energy state. An overall conversion efficiency of 0.1% per double excitation event is achieved. PMID:23912060

  14. Strong Electron-Hole Exchange in Coherently Coupled Quantum Dots

    NASA Astrophysics Data System (ADS)

    Fält, Stefan; Atatüre, Mete; Türeci, Hakan E.; Zhao, Yong; Badolato, Antonio; Imamoglu, Atac

    2008-03-01

    We have investigated few-body states in vertically stacked quantum dots. Because of a small interdot tunneling rate, the coupling in our system is in a previously unexplored regime where electron-hole exchange plays a prominent role. By tuning the gate bias, we are able to turn this coupling off and study a complementary regime where total electron spin is a good quantum number. The use of differential transmission allows us to obtain unambiguous signatures of the interplay between electron and hole-spin interactions. Small tunnel coupling also enables us to demonstrate all-optical charge sensing, where a conditional exciton energy shift in one dot identifies the charging state of the coupled partner.

  15. Facile synthesis and photoluminescence mechanism of graphene quantum dots

    SciTech Connect

    Yang, Ping; Zhou, Ligang; Zhang, Shenli; Pan, Wei Shen, Wenzhong; Wan, Neng

    2014-12-28

    We report a facile hydrothermal synthesis of intrinsic fluorescent graphene quantum dots (GQDs) with two-dimensional morphology. This synthesis uses glucose, concentrate sulfuric acid, and deionized water as reagents. Concentrated sulfuric acid is found to play a key role in controlling the transformation of as-prepared hydrothermal products from amorphous carbon nanodots to well-crystallized GQDs. These GQDs show typical absorption characteristic for graphene, and have nearly excitation-independent ultraviolet and blue intrinsic emissions. Temperature-dependent PL measurements have demonstrated strong electron-electron scattering and electron-phonon interactions, suggesting a similar temperature behavior of GQDs to inorganic semiconductor quantum dots. According to optical studies, the ultraviolet emission is found to originate from the recombination of electron-hole pairs localized in the C=C bonds, while the blue emission is from the electron transition of sp{sup 2} domains.

  16. Modulation of magnetotransport in asymmetrically coupled double quantum dot system

    NASA Astrophysics Data System (ADS)

    Liao, Yan-Hua; Huang, Jin; Wang, Wei-Zhong

    2016-01-01

    We study the transport properties in double quantum dots asymmetrically coupled to leads in magnetic field. We focus on the situation in which the second dot (QD2) couples with the leads with a weak hybridization function. The results shows that by tuning the energy level 𝜖2 of QD2 one can control the conductance and its spin polarization of the system. In the absence of magnetic field B, with increasing 𝜖2, the conductance shows a dip structure. This behavior of conductance results from a continuous triplet-doublet quantum phase transition. In the presence of magnetic field B, we obtain a perfect spin filtering with a fully-polarized conductance of up-spin or down-spin.

  17. Nonequilibrium population of charge carriers in structures with InGaN deep quantum dots

    SciTech Connect

    Sizov, D. S. Zavarin, E. E.; Ledentsov, N. N.; Lundin, V. V.; Musikhin, Yu. G.; Sizov, V. S.; Suris, R. A.; Tsatsul'nikov, A. F.

    2007-05-15

    Electronic and optical properties of ensembles of quantum dots with various energies of activation from the ground-state level to the continuous-spectrum region were studied theoretically and experimentally with the InGaN quantum dots as an example. It is shown that, depending on the activation energy, both the quasi-equilibrium statistic of charge carriers at the levels of quantum dots and nonequilibrium statistic at room temperature are possible. In the latter case, the position of the maximum in the emission spectrum is governed by the value of the demarcation transition: the quantum dots with the transition energy higher than this value feature the quasi-equilibrium population of charge carriers, while the quantum dots with the transition energy lower than the demarcation-transition energy feature the nonequilibrium population. A model based on kinetic equations was used in the theoretical analysis. The key parameters determining the statistic are the parameters of thermal ejection of charge carriers; these parameters depend exponentially on the activation energy. It is shown experimentally that the use of stimulated phase decomposition makes it possible to appreciably increase the activation energy. In this case, the thermal-activation time is found to be much longer than the recombination time for an electron-hole pair, which suppresses the redistribution of charge carriers between the quantum dots and gives rise to the nonequilibrium population. The effect of nonequilibrium population on the luminescent properties of the structures with quantum dots is studied in detail.

  18. Nose-to-Brain Transport of Aerosolized Quantum Dots Following Acute Exposure

    PubMed Central

    Hopkins, Laurie E.; Patchin, Esther S.; Chiu, Po-Lin; Brandenberger, Christina; Smiley-Jewell, Suzette; Pinkerton, Kent E.

    2014-01-01

    Nanoparticles are of wide interest due to their potential use for diverse commercial applications. Quantum dots are semiconductor nanocrystals possessing unique optical and electrical properties. Although quantum dots are commonly made of cadmium, a metal known to have neurological effects, potential transport of quantum dots directly to the brain has not been assessed. This study evaluated whether quantum dots (CdSe/ZnS nanocrystals) could be transported from the olfactory tract to the brain via inhalation. Adult C57BL/6 mice were exposed to an aerosol of quantum dots for one hour via nasal inhalation, and nanoparticles were detected three hours post-exposure within the olfactory tract and olfactory bulb by a wide range of techniques, including visualization via fluorescent and transmission electron microscopy. We conclude that following short-term inhalation of solid quantum dot nanoparticles, there is rapid olfactory uptake and axonal transport to the brain/olfactory bulb with observed activation of microglial cells, indicating a pro-inflammatory response. To our knowledge, this is the first study to clearly demonstrate that quantum dots can be rapidly transported from the nose to the brain by olfactory uptake via axonal transport following inhalation. PMID:24040866

  19. Diffraction of quantum dots reveals nanoscale ultrafast energy localization.

    PubMed

    Vanacore, Giovanni M; Hu, Jianbo; Liang, Wenxi; Bietti, Sergio; Sanguinetti, Stefano; Zewail, Ahmed H

    2014-11-12

    Unlike in bulk materials, energy transport in low-dimensional and nanoscale systems may be governed by a coherent "ballistic" behavior of lattice vibrations, the phonons. If dominant, such behavior would determine the mechanism for transport and relaxation in various energy-conversion applications. In order to study this coherent limit, both the spatial and temporal resolutions must be sufficient for the length-time scales involved. Here, we report observation of the lattice dynamics in nanoscale quantum dots of gallium arsenide using ultrafast electron diffraction. By varying the dot size from h = 11 to 46 nm, the length scale effect was examined, together with the temporal change. When the dot size is smaller than the inelastic phonon mean-free path, the energy remains localized in high-energy acoustic modes that travel coherently within the dot. As the dot size increases, an energy dissipation toward low-energy phonons takes place, and the transport becomes diffusive. Because ultrafast diffraction provides the atomic-scale resolution and a sufficiently high time resolution, other nanostructured materials can be studied similarly to elucidate the nature of dynamical energy localization. PMID:25099123

  20. Study of colloidal quantum dot surfaces using an innovative thin-film positron 2D-ACAR method

    NASA Astrophysics Data System (ADS)

    Barbiellini, B.; Bansil, A.; Eijt, S. W. H.; Schut, H.; Mijnarends, P. E.; Denison, A. B.

    2006-03-01

    Despite a wealth of information, many fundamental questions regarding the nature of the surface of nanosized inorganic particles and its relationship with the electronic structure remain unsolved. We have investigated the electron momentum density (EMD) of colloidal CdSe quantum-dots via depth-resolved positron 2D angular correlation of annihilation (2D-ACAR) spectroscopy at the Delft intense variable-energy positron beam. This method, in combination with first-principles calculations of the EMD, shows that implanted positrons are trapped at the surface of CdSe nanocrystals. They annihilate mostly with the Se electrons and monitor changes in composition and structure of the surface while hardly sensing the ligand molecules. We thus unambiguously confirm [1] the strong surface relaxation predicted by first-principles calculations [2]. Work supported by the USDOE.[1] S.W.H. Eijt et al., Nature Materials (in press).[2] A. Puzder, et al., Phys. Rev. Lett. 92, 217401 (2004).

  1. Fast and efficient photodetection in nanoscale quantum-dot junctions.

    PubMed

    Prins, Ferry; Buscema, Michele; Seldenthuis, Johannes S; Etaki, Samir; Buchs, Gilles; Barkelid, Maria; Zwiller, Val; Gao, Yunan; Houtepen, Arjan J; Siebbeles, Laurens D A; van der Zant, Herre S J

    2012-11-14

    We report on a photodetector in which colloidal quantum dots directly bridge nanometer-spaced electrodes. Unlike in conventional quantum-dot thin film photodetectors, charge mobility no longer plays a role in our quantum-dot junctions as charge extraction requires only two individual tunnel events. We find an efficient photoconductive gain mechanism with external quantum efficiencies of 38 electrons-per-photon in combination with response times faster than 300 ns. This compact device-architecture may open up new routes for improved photodetector performance in which efficiency and bandwidth do not go at the cost of one another. PMID:23094869

  2. The relation of the energy of electronic state with the interior periodic potential in quantum dot given by matrix method

    NASA Astrophysics Data System (ADS)

    Luo, Q. J.; Feng, S. M.; Gu, L. H.; Liu, J. X.; Tang, X. F.

    2016-01-01

    In this paper, we mainly investigate the effect of the interior periodic potential and the surface potential on the energy of electronic state in quantum dot. Based on Chebyshev polynomials of the second kind and matrix theory, we deduced one expression, which can clearly describe the relation of energy of electronic state with the surface and interior periodic potential. The theoretical analysis shows that the energy of electronic state in quantum dot strongly depend on surface potential and the interior periodic potential. For the same quantum dot with different surface potential, the energy of electronic state with the determined quantum number is different. For the quantum dot of same size with different interior periodic potential, the energy of electronic state with the determined quantum number is also different. The further study indicates that there are two different energy of electronic state in quantum dot for the decided quantum number.

  3. Evolution of exciton states near the percolation threshold in two-phase systems with II-VI semiconductor quantum dots

    SciTech Connect

    Bondar, N. V. Brodyn, M. S.

    2010-07-15

    From studies of two-phase systems (borosilicate matrices containing ZnSe or CdS quantum dots), it was found that the systems exhibit a specific feature associated with the percolation phase transition of charge carriers (excitons). The transition manifests itself as radical changes in the optical spectra of both ZnSe and CdS quantum dot systems and by fluctuations of the emission band intensities near the percolation threshold. These effects are due to microscopic fluctuations of the density of quantum dots. The average spacing between quantum dots is calculated taking into account their finite dimensions and the volume fraction occupied by the quantum dots at the percolation threshold. It is shown that clustering of quantum dots occurs via tunneling of charge carriers between the dots. A physical mechanism responsible for the percolation threshold for charge carriers is suggested. In the mechanism, the permittivity mismatch of the materials of the matrix and quantum dots plays an important role in delocalization of charge carriers (excitons): due to the mismatch, 'a dielectric trap' is formed at the external surface of the interface between the matrix and a quantum dot and, thus, surface exciton states are formed there. The critical concentrations of quantum dots are determined, such that the spatial overlapping of such surface states provides the percolation transition in both systems.

  4. Colloidal quantum dot light-emitting devices.

    PubMed

    Wood, Vanessa; Bulović, Vladimir

    2010-01-01

    Colloidal quantum dot light-emitting devices (QD-LEDs) have generated considerable interest for applications such as thin film displays with improved color saturation and white lighting with a high color rendering index (CRI). We review the key advantages of using quantum dots (QDs) in display and lighting applications, including their color purity, solution processability, and stability. After highlighting the main developments in QD-LED technology in the past 15 years, we describe the three mechanisms for exciting QDs - optical excitation, Förster energy transfer, and direct charge injection - that have been leveraged to create QD-LEDs. We outline the challenges facing QD-LED development, such as QD charging and QD luminescence quenching in QD thin films. We describe how optical downconversion schemes have enabled researchers to overcome these challenges and develop commercial lighting products that incorporate QDs to achieve desirable color temperature and a high CRI while maintaining efficiencies comparable to inorganic white LEDs (>65 lumens per Watt). We conclude by discussing some current directions in QD research that focus on achieving higher efficiency and air-stable QD-LEDs using electrical excitation of the luminescent QDs. PMID:22110863

  5. Using quantum dot photoluminescence for load detection

    NASA Astrophysics Data System (ADS)

    Moebius, M.; Martin, J.; Hartwig, M.; Baumann, R. R.; Otto, T.; Gessner, T.

    2016-08-01

    We propose a novel concept for an integrable and flexible sensor capable to visualize mechanical impacts on lightweight structures by quenching the photoluminescence (PL) of CdSe quantum dots. Considering the requirements such as visibility, storage time and high optical contrast of PL quenching with low power consumption, we have investigated a symmetrical and an asymmetrical layer stack consisting of semiconductor organic N,N,N',N'-Tetrakis(3-methylphenyl)-3,3'-dimethylbenzidine (HMTPD) and CdSe quantum dots with elongated CdS shell. Time-resolved series of PL spectra from layer stacks with applied voltages of different polarity and simultaneous observation of power consumption have shown that a variety of mechanisms such as photo-induced charge separation and charge injection, cause PL quenching. However, mechanisms such as screening of external field as well as Auger-assisted charge ejection is working contrary to that. Investigations regarding the influence of illumination revealed that the positive biased asymmetrical layer stack is the preferred sensor configuration, due to a charge carrier injection at voltages of 10 V without the need of coincident illumination.

  6. Excitation transfer in stacked quantum dot chains

    NASA Astrophysics Data System (ADS)

    Kanjanachuchai, Songphol; Xu, Ming; Jaffré, Alexandre; Jittrong, Apichart; Chokamnuai, Thitipong; Panyakeow, Somsak; Boutchich, Mohamed

    2015-05-01

    Stacked InAs quantum dot chains (QDCs) on InGaAs/GaAs cross-hatch pattern (CHP) templates yield a rich emission spectrum with an unusual carrier transfer characteristic compared to conventional quantum dot (QD) stacks. The photoluminescent spectra of the controlled, single QDC layer comprise multiple peaks from the orthogonal QDCs, the free-standing QDs, the CHP, the wetting layers and the GaAs substrate. When the QDC layers are stacked, employing a 10 nm GaAs spacer between adjacent QDC layers, the PL spectra are dominated by the top-most stack, indicating that the QDC layers are nominally uncoupled. Under high excitation power densities when the high-energy peaks of the top stack are saturated, however, low-energy PL peaks from the bottom stacks emerge as a result of carrier transfers across the GaAs spacers. These unique PL signatures contrast with the state-filling effects in conventional, coupled QD stacks and serve as a means to quickly assess the presence of electronic coupling in stacks of dissimilar-sized nanostructures.

  7. Photoluminescence study of InAs quantum dots embedded in GaNAs strain compensating layer grown by metalorganic-molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zhang, X. Q.; Ganapathy, Sasikala; Kumano, Hidekazu; Uesugi, Kasturi; Suemune, Ikuo

    2002-12-01

    Self-assembled InAs quantum dots (QDs) embedded in GaN0.007As0.993 strain compensating layers have been grown by metalorganic-molecular-beam epitaxy on a GaAs (001) substrate with a high density of 1×1011 cm-2. The photoluminescence properties have been studied for two periods of InAs quantum dots layers embedded in GaN0.007As0.993 strain compensating layers. Four well-resolved excited-state peaks in the photoluminescence spectra have been observed from these highly packed InAs QDs embedded in the GaN0.007As0.993 strain compensating layers. This indicates that the InAs QDs are uniformly formed and that the excited states in QDs due to the quantum confinement effect are well defined. This is explained by tensile strain in GaNAs layers instead of the usual GaAs layers to relieve the compressive strain formed in InAs QDs to keep the total strain of the system at a minimum.

  8. Charge transport in semiconductor nanocrystal quantum dots

    NASA Astrophysics Data System (ADS)

    Mentzel, Tamar Shoshana

    In this thesis, we study charge transport in arrays of semiconductor nanocrystal quantum dots. Nanocrystals are synthesized in solution, and an organic ligand on the surface of the nanocrystal creates a potential barrier that confines charges in the nanocrystal. Optical absorption measurements reveal discrete electronic energy levels in the nanocrystals resulting from quantum confinement. When nanocrystals are deposited on a surface, they self-assemble into a close-packed array forming a nanocrystal solid. We report electrical transport measurements of a PbSe nanocrystal solid that serves as the channel of an inverted field-effect transistor. We measure the conductance as a function of temperature, source-drain bias and. gate voltage. The data indicates that holes are the majority carriers; the Fermi energy lies in impurity states in the bandgap of the nanocrystal; and charges hop between the highest occupied valence state in the nanocrystals (the 1S h states). At low source-drain voltages, the activation energy for hopping is given by the energy required to generate holes in the 1Sh state plus activation over barriers resulting from site disorder. The barriers from site disorder are eliminated with a sufficiently high source-drain bias. From the gate effect, we extract the Thomas-Fermi screening length and a density of states that is consistent with the estimated value. We consider variable-range hopping as an alternative model, and find no self-consistent evidence for it. Next, we employ charge sensing as an alternative to current measurements for studying transport in materials with localized sites. A narrow-channel MOSFET serves as a charge sensor because its conductance is sensitive to potential fluctuations in the nearby environment caused by the motion of charge. In particular, it is sensitive to the fluctuation of single electrons at the silicon-oxide interface within the MOSFET. We pattern a strip of amorphous germanium within 100 nm of the transistor. The

  9. Electron transport and dephasing in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Huibers, Andrew Gerrit A.

    At low temperatures, electrons in semiconductors can be phase coherent over distances exceeding tens of microns and are sufficiently monochromatic that a variety of interesting quantum interference phenomena can be observed and manipulated. This work discusses electron transport measurements through cavities (quantum dots) formed by laterally confining electrons in the two-dimensional sub-band of a GaAs/AlGaAs heterojunction. Metal gates fabricated using e-beam lithography enable fine control of the cavity shape as well as the leads which connect the dot cavity to source and drain reservoirs. Quantum dots can be modeled by treating the devices as chaotic scatterers. Predictions of this theoretical description are found to be in good quantitative agreement with experimental measurements of full conductance distributions at different temperatures. Weak localization, the suppression of conductance due to phase-coherent backscattering at zero magnetic field, is used to measure dephasing times in the system. Mechanisms responsible for dephasing, including electron-electron scattering and Nyquist phase relaxation, are investigated by studying the loss of phase coherence as a function of temperature. Coupling of external microwave fields to the device is also studied to shed light on the unexpected saturation of dephasing that is observed below an electron temperature of 100 mK. The effect of external fields in the present experiment is explained in terms of Joule heating from an ac bias.

  10. Tuning the properties of Ge-quantum dots superlattices in amorphous silica matrix through deposition conditions

    SciTech Connect

    Pinto, S.; Roldan Gutierrez, Manuel A; Ramos, M. M.D.; Gomes, M.J.M.; Molina, S. I.; Pennycook, Stephen J; Varela del Arco, Maria; Buljan, M.; Barradas, N.; Alves, E.; Chahboun, A.; Bernstorff, S.

    2012-01-01

    In this work, we investigate the structural properties of Ge quantum dot lattices in amorphous silica matrix, prepared by low-temperature magnetron sputtering deposition of (Ge+SiO{sub 2})/SiO{sub 2} multilayers. The dependence of quantum dot shape, size, separation, and arrangement type on the Ge-rich (Ge + SiO{sub 2}) layer thickness is studied. We show that the quantum dots are elongated along the growth direction, perpendicular to the multilayer surface. The size of the quantum dots and their separation along the growth direction can be tuned by changing the Ge-rich layer thickness. The average value of the quantum dots size along the lateral (in-plane) direction along with their lateral separation is not affected by the thickness of the Ge-rich layer. However, the thickness of the Ge-rich layer significantly affects the quantum dot ordering. In addition, we investigate the dependence of the multilayer average atomic composition and also the quantum dot crystalline quality on the deposition parameters.

  11. Tuning the properties of Ge-quantum dots superlattices in amorphous silica matrix through deposition conditions

    SciTech Connect

    Pinto, S. R. C.; Ramos, M. M. D.; Gomes, M. J. M.; Buljan, M.; Chahboun, A.; Roldan, M. A.; Molina, S. I.; Bernstorff, S.; Varela, M.; Pennycook, S. J.; Barradas, N. P.; Alves, E.

    2012-04-01

    In this work, we investigate the structural properties of Ge quantum dot lattices in amorphous silica matrix, prepared by low-temperature magnetron sputtering deposition of (Ge+SiO{sub 2})/SiO{sub 2} multilayers. The dependence of quantum dot shape, size, separation, and arrangement type on the Ge-rich (Ge + SiO{sub 2}) layer thickness is studied. We show that the quantum dots are elongated along the growth direction, perpendicular to the multilayer surface. The size of the quantum dots and their separation along the growth direction can be tuned by changing the Ge-rich layer thickness. The average value of the quantum dots size along the lateral (in-plane) direction along with their lateral separation is not affected by the thickness of the Ge-rich layer. However, the thickness of the Ge-rich layer significantly affects the quantum dot ordering. In addition, we investigate the dependence of the multilayer average atomic composition and also the quantum dot crystalline quality on the deposition parameters.

  12. The brighter side of soils: quantum dots track organic nitrogen through fungi and plants.

    PubMed

    Whiteside, Matthew D; Treseder, Kathleen K; Atsatt, Peter R

    2009-01-01

    Soil microorganisms mediate many nutrient transformations that are central in terrestrial cycling of carbon and nitrogen. However, uptake of organic nutrients by microorganisms is difficult to study in natural systems. We assessed quantum dots (fluorescent nanoscale semiconductors) as a new tool to observe uptake and translocation of organic nitrogen by fungi and plants. We conjugated quantum dots to the amino groups of glycine, arginine, and chitosan and incubated them with Penicillium fungi (a saprotroph) and annual bluegrass (Poa annua) inoculated with arbuscular mycorrhizal fungi. As experimental controls, we incubated fungi and bluegrass samples with substrate-free quantum dots as well as unbound quantum dot substrate mixtures. Penicillium fungi, annual bluegrass, and arbuscular mycorrhizal fungi all showed uptake and translocation of quantum dot-labeled organic nitrogen, but no uptake of quantum dot controls. Additionally, we observed quantum dot-labeled organic nitrogen within soil hyphae, plant roots, and plant shoots using field imaging techniques. This experiment is one of the first to demonstrate direct uptake of organic nitrogen by arbuscular mycorrhizal fungi. PMID:19294917

  13. Tuning the properties of Ge-quantum dots superlattices in amorphous silica matrix through deposition conditions

    NASA Astrophysics Data System (ADS)

    Pinto, S. R. C.; Buljan, M.; Chahboun, A.; Roldan, M. A.; Bernstorff, S.; Varela, M.; Pennycook, S. J.; Barradas, N. P.; Alves, E.; Molina, S. I.; Ramos, M. M. D.; Gomes, M. J. M.

    2012-04-01

    In this work, we investigate the structural properties of Ge quantum dot lattices in amorphous silica matrix, prepared by low-temperature magnetron sputtering deposition of (Ge+SiO2)/SiO2 multilayers. The dependence of quantum dot shape, size, separation, and arrangement type on the Ge-rich (Ge + SiO2) layer thickness is studied. We show that the quantum dots are elongated along the growth direction, perpendicular to the multilayer surface. The size of the quantum dots and their separation along the growth direction can be tuned by changing the Ge-rich layer thickness. The average value of the quantum dots size along the lateral (in-plane) direction along with their lateral separation is not affected by the thickness of the Ge-rich layer. However, the thickness of the Ge-rich layer significantly affects the quantum dot ordering. In addition, we investigate the dependence of the multilayer average atomic composition and also the quantum dot crystalline quality on the deposition parameters.

  14. Functional surface engineering of quantum dot hydrogels for selective fluorescence imaging of extracellular lactate release.

    PubMed

    Zhang, Xiaomeng; Ding, Shushu; Cao, Sumei; Zhu, Anwei; Shi, Guoyue

    2016-06-15

    Selective and sensitive detection of extracellular lactate is of fundamental significance for studying the metabolic alterations in tumor progression. Here we report the rational design and synthesis of a quantum-dot-hydrogel-based fluorescent probe for biosensing and bioimaging the extracellular lactate. By surface engineering the destabilized quantum dot sol with Nile Blue, the destabilized Nile-Blue-functionalized quantum dot sol cannot only self-assemble forming quantum dot hydrogel but also monitor lactate in the presence of nicotinamide adenine dinucleotide cofactor and lactate dehydrogenase through fluorescence resonance energy transfer. Notably, the surface engineered quantum dot hydrogel show high selectivity toward lactate over common metal ions, amino acids and other small molecules that widely coexist in biological system. Moreover, the destabilized Nile-Blue-functionalized quantum dots can encapsulate isolated cancer cells when self-assembled into a hydrogel and thus specifically detect and image the extracellular lactate metabolism. By virtue of these properties, the functionalized quantum dot hydrogel was further successfully applied to monitor the effect of metabolic agents. PMID:26852200

  15. Readout scheme for Majorana parity states using a quantum dot

    NASA Astrophysics Data System (ADS)

    Hoving, Darryl; Gharavi, Kaveh; Baugh, Jonathan

    We propose and numerically study a scheme for reading out the parity state of a pair of Majorana bound states using a tunnel coupled quantum dot. The dot is coupled to one end of the topological wire but isolated from any reservoir, and is capacitively coupled to a charge sensor for measurement. The combined parity of the MBS-dot system is conserved and charge transfer between MBS and dot only occurs through resonant tunnelling. Resonance is controlled by the dot potential through a local gate and by the MBS splitting due to the overlap of the MBS pair wavefunctions. The latter splitting can be controlled by changing the position of the spatially separated, uncoupled MBS via a set of keyboard gates. Our simulations show that the oscillatory nature of the MBS splitting versus separation does not prevent high-fidelity readout. Indeed, the scheme can also be applied to measure the splitting versus separation, which would yield a clear signature of the topological state. With experimentally realistic parameters we find parity readout fidelities >99% should be feasible. This work was supported by the Natural Sciences and Engineering Research Council of Canada.

  16. Ground state energy of an exciton in a spherical quantum dot in the presence of an external magnetic field

    SciTech Connect

    Jahan K, Luhluh Boda, Aalu; Chatterjee, Ashok

    2015-05-15

    The problem of an exciton trapped in a three dimensional Gaussian quantum dot is studied in the presence of an external magnetic field. A variational method is employed to obtain the ground state energy of the exciton as a function of the quantum dot size, the confinement strength and the magnetic field. It is also shown that the variation of the size of the exciton with the radius of the quantum dot.

  17. Excitonic complexes in single zinc-blende GaN/AlN quantum dots grown by droplet epitaxy

    SciTech Connect

    Sergent, S.; Kako, S.; Bürger, M.; Schupp, T.; As, D. J.; Arakawa, Y.

    2014-10-06

    We study by microphotoluminescence the optical properties of single zinc-blende GaN/AlN quantum dots grown by droplet epitaxy. We show evidences of both excitonic and multiexcitonic recombinations in individual quantum dots with radiative lifetimes shorter than 287 ± 8 ps. Owing to large band offsets and a large exciton binding energy, the excitonic recombinations of single zinc-blende GaN/AlN quantum dots can be observed up to 300 K.

  18. A high quality liquid-type quantum dot white light-emitting diode.

    PubMed

    Sher, Chin-Wei; Lin, Chin-Hao; Lin, Huang-Yu; Lin, Chien-Chung; Huang, Che-Hsuan; Chen, Kuo-Ju; Li, Jie-Ru; Wang, Kuan-Yu; Tu, Hsien-Hao; Fu, Chien-Chung; Kuo, Hao-Chung

    2016-01-14

    This study demonstrates a novel package design to store colloidal quantum dots in liquid format and integrate them with a standard LED. The high efficiency and high quality color performance at a neutral white correlated color temperature is demonstrated. The experimental results indicate that the liquid-type quantum dot white light-emitting diode (LQD WLED) is highly efficient and reliable. The luminous efficiency and color rendering index (CRI) of the LQD WLED can reach 271 lm Wop(-1) and 95, respectively. Moreover, a glass box is employed to prevent humidity and oxygen erosion. With this encapsulation design, our quantum dot box can survive over 1000 hours of storage time. PMID:26666455

  19. Multiphoton microscopy of transdermal quantum dot delivery using two photon polymerization-fabricated polymer microneedles

    PubMed Central

    Gittard, Shaun D; Miller, Philip R; Boehm, Ryan D; Ovsianikov, Aleksandr; Chichkov, Boris N; Heiser, Jeremy; Gordon, John; Monteiro-Riviere, Nancy A; Narayan, Roger J

    2010-01-01

    Due to their ability to serve as fluorophores and drug delivery vehicles, quantum dots are a powerful tool for theranostics-based clinical applications. In this study, microneedle devices for transdermal drug delivery were fabricated by means of two-photon polymerization of an acrylate-based polymer. We examined proliferation of cells on this polymer using neonatal human epidermal keratinocytes and human dermal fibroblasts. The microneedle device was used to inject quantum dots into porcine skin; imaging of the quantum dots was performed using multiphoton microscopy. PMID:21413181

  20. Electro-absorption of an ensemble of close-packed CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Gurinovich, Leonid I.; Artemyev, Mikhail V.

    2002-05-01

    Highly monodisperse CdSe quantum dots 1.8 nm in size were synthesized capped with surface monolayer of 1-thioglycerol. The optical absorption of thin films of matrix free close- packed and isolated in PMMA matrix quantum dots was studied at various electric field biases. The broadening and red shift of optical transitions in close-packed ensemble against isolated is attributed to the formation of collective electronic submini-bands between interacting nanocrystals. The reversible collapse of collective electronic subminibands has been achieved by applying of strong electric field to the thin film of close-packed quantum dots.

  1. Excitation-induced energy shifts in the optical gain spectra of InN quantum dots

    NASA Astrophysics Data System (ADS)

    Lorke, M.; Seebeck, J.; Gartner, P.; Jahnke, F.; Schulz, S.

    2009-08-01

    A microscopic theory for the optical absorption and gain spectra of InN quantum-dot systems is used to study the combined influence of material properties and interaction-induced effects. Atomistic tight-binding calculations for the single-particle properties of the self-assembled quantum-dot and wetting-layer system are used in conjunction with a many-body description of Coulomb interaction and carrier phonon interaction. We analyze the carrier-density and temperature dependence of strong excitation-induced energy shifts of the dipole-allowed quantum-dot transitions.

  2. A high quality liquid-type quantum dot white light-emitting diode

    NASA Astrophysics Data System (ADS)

    Sher, Chin-Wei; Lin, Chin-Hao; Lin, Huang-Yu; Lin, Chien-Chung; Huang, Che-Hsuan; Chen, Kuo-Ju; Li, Jie-Ru; Wang, Kuan-Yu; Tu, Hsien-Hao; Fu, Chien-Chung; Kuo, Hao-Chung

    2015-12-01

    This study demonstrates a novel package design to store colloidal quantum dots in liquid format and integrate them with a standard LED. The high efficiency and high quality color performance at a neutral white correlated color temperature is demonstrated. The experimental results indicate that the liquid-type quantum dot white light-emitting diode (LQD WLED) is highly efficient and reliable. The luminous efficiency and color rendering index (CRI) of the LQD WLED can reach 271 lm Wop-1 and 95, respectively. Moreover, a glass box is employed to prevent humidity and oxygen erosion. With this encapsulation design, our quantum dot box can survive over 1000 hours of storage time.

  3. Excitonic optical properties of wurtzite ZnS quantum dots under pressure

    SciTech Connect

    Zeng, Zaiping; Garoufalis, Christos S.; Baskoutas, Sotirios; Bester, Gabriel

    2015-03-21

    By means of atomistic empirical pseudopotentials combined with a configuration interaction approach, we have studied the optical properties of wurtzite ZnS quantum dots in the presence of strong quantum confinement effects as a function of pressure. We find the pressure coefficients of quantum dots to be highly size-dependent and reduced by as much as 23% in comparison to the bulk value of 63 meV/GPa obtained from density functional theory calculations. The many-body excitonic effects on the quantum dot pressure coefficients are found to be marginal. The absolute gap deformation potential of quantum dots originates mainly from the energy change of the lowest unoccupied molecular orbital state. Finally, we find that the exciton spin-splitting increases nearly linearly as a function of applied pressure.

  4. Nonlinear thermoelectric response due to energy-dependent transport properties of a quantum dot

    NASA Astrophysics Data System (ADS)

    Svilans, Artis; Burke, Adam M.; Svensson, Sofia Fahlvik; Leijnse, Martin; Linke, Heiner

    2016-08-01

    Quantum dots are useful model systems for studying quantum thermoelectric behavior because of their highly energy-dependent electron transport properties, which are tunable by electrostatic gating. As a result of this strong energy dependence, the thermoelectric response of quantum dots is expected to be nonlinear with respect to an applied thermal bias. However, until now this effect has been challenging to observe because, first, it is experimentally difficult to apply a sufficiently large thermal bias at the nanoscale and, second, it is difficult to distinguish thermal bias effects from purely temperature-dependent effects due to overall heating of a device. Here we take advantage of a novel thermal biasing technique and demonstrate a nonlinear thermoelectric response in a quantum dot which is defined in a heterostructured semiconductor nanowire. We also show that a theoretical model based on the Master equations fully explains the observed nonlinear thermoelectric response given the energy-dependent transport properties of the quantum dot.

  5. Spin transport measurements in gallium arsenide quantum dots

    NASA Astrophysics Data System (ADS)

    Folk, Joshua Alexander

    This thesis presents a series of measurements investigating the spin physics of lateral quantum dots, defined electrostatically in the 2-D electron gas at the interface of a GaAs/AlGaAs heterostructure. The experiments span a range from open dots, where the leads of the dot carry at least one fully transmitting mode, to closed dots, where the leads are set to be tunnel barriers. For open dots, spin physics is inferred from measurements of conductance fluctuations; the effects of spin degeneracy in the orbital levels as well as a spin-orbit interaction are observed. In the closed dot measurements, ground state spin transitions as electrons are added to the dot may be determined from the motion of Coulomb blockade peaks in an in-plane magnetic field. In addition, this thesis demonstrates for the first time a direct measurement of the spin polarization of current emitted from a quantum dot, or a quantum point contact, during transport. These experiments make use of a spin-sensitive focusing geometry in which a quantum point contact serves as a spin analyzer for the mesoscopic device under test. Measurements are presented both in the open dot regime, where good agreement with theory is found, as well as the closed dot regime, where the data defies a simple theoretical explanation.

  6. Microanalysis of quantum dots with type II band alignments

    NASA Astrophysics Data System (ADS)

    Sarney, Wendy; Little, John; Svensson, Stefan

    2006-03-01

    We will discuss the structural characterization of a system consisting of undoped self-assembled InSb quantum dots having a type II band alignment with the surrounding In0.53Ga0.47As matrix. This differs from systems using conventional type-I quantum dots that must be doped and that rely on intersubband transitions for infrared photoresponse. Type II dots grown in a superlattice structure combine the advantages of quantum dots (3-dimensional confinement) with the tunability and photovoltaic operation of the type II superlattice. We grew a high surface density of InSb quantum dots with a narrow distribution of sizes and shapes and free of dislocations within the body of the dots. The dots are relaxed due to an array of misfit dislocations confined at the basal dot/matrix interface. This makes burying the dots with InGaAs not feasible without generating dislocations due to the large dot/matrix lattice mismatch. We are experimenting with strain-compensating or graded strain overlayers to lower the lattice mismatch.

  7. Conductance fluctuations in chaotic bilayer graphene quantum dots.

    PubMed

    Bao, Rui; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso

    2015-07-01

    Previous studies of quantum chaotic scattering established a connection between classical dynamics and quantum transport properties: Integrable or mixed classical dynamics can lead to sharp conductance fluctuations but chaos is capable of smoothing out the conductance variations. Relativistic quantum transport through single-layer graphene systems, for which the quasiparticles are massless Dirac fermions, exhibits, due to scarring, this classical-quantum correspondence, but sharp conductance fluctuations persist to a certain extent even when the classical system is fully chaotic. There is an open issue regarding the effect of finite mass on relativistic quantum transport. To address this issue, we study quantum transport in chaotic bilayer graphene quantum dots for which the quasiparticles have a finite mass. An interesting phenomenon is that, when traveling along the classical ballistic orbit, the quasiparticle tends to hop back and forth between the two layers, exhibiting a Zitterbewegung-like effect. We find signatures of abrupt conductance variations, indicating that the mass has little effect on relativistic quantum transport. In solid-state electronic devices based on Dirac materials, sharp conductance fluctuations are thus expected, regardless of whether the quasiparticle is massless or massive and whether there is chaos in the classical limit. PMID:26274258

  8. Conductance fluctuations in chaotic bilayer graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Bao, Rui; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso

    2015-07-01

    Previous studies of quantum chaotic scattering established a connection between classical dynamics and quantum transport properties: Integrable or mixed classical dynamics can lead to sharp conductance fluctuations but chaos is capable of smoothing out the conductance variations. Relativistic quantum transport through single-layer graphene systems, for which the quasiparticles are massless Dirac fermions, exhibits, due to scarring, this classical-quantum correspondence, but sharp conductance fluctuations persist to a certain extent even when the classical system is fully chaotic. There is an open issue regarding the effect of finite mass on relativistic quantum transport. To address this issue, we study quantum transport in chaotic bilayer graphene quantum dots for which the quasiparticles have a finite mass. An interesting phenomenon is that, when traveling along the classical ballistic orbit, the quasiparticle tends to hop back and forth between the two layers, exhibiting a Zitterbewegung-like effect. We find signatures of abrupt conductance variations, indicating that the mass has little effect on relativistic quantum transport. In solid-state electronic devices based on Dirac materials, sharp conductance fluctuations are thus expected, regardless of whether the quasiparticle is massless or massive and whether there is chaos in the classical limit.

  9. Andreev and Majorana bound states in single and double quantum dot structures.

    PubMed

    Silva, Joelson F; Vernek, E

    2016-11-01

    We present a numerical study of the emergence of Majorana and Andreev bound states in a system composed of two quantum dots, one of which is coupled to a conventional superconductor, SC1, and the other connects to a topological superconductor, SC2. By controlling the interdot coupling we can drive the system from two single (uncoupled) quantum dots to double (coupled) dot system configurations. We employ a recursive Green's function technique that provides us with numerically exact results for the local density of states of the system. We first show that in the uncoupled dot configuration (single dot behavior) the Majorana and the Andreev bound states appear in an individual dot in two completely distinct regimes. Therefore, they cannot coexist in the single quantum dot system. We then study the coexistence of these states in the coupled double dot configuration. In this situation we show that in the trivial phase of SC2, the Andreev states are bound to an individual quantum dot in the atomic regime (weak interdot coupling) or extended over the entire molecule in the molecular regime (strong interdot coupling). More interesting features are actually seen in the topological phase of SC2. In this case, in the atomic limit, the Andreev states appear bound to one of the quantum dots while a Majorana zero mode appears in the other one. In the molecular regime, on the other hand, the Andreev bound states take over the entire molecule while the Majorana state remains always bound to one of the quantum dots. PMID:27602524

  10. Wet chemical synthesis of quantum dots for medical applications

    NASA Astrophysics Data System (ADS)

    Cepeda-Pérez, E. I.; López-Luke, T.; Pérez-Mayen, L.; Hidalgo, Alberto; de la Rosa, E.; Torres-Castro, Alejandro; Ceja-Fdez, Andrea; Vivero-Escoto, Juan; Gonzalez-Yebra, Ana L.

    2015-07-01

    In recent years the use of nanoparticles in medical applications has boomed. This is because the various applications that provide these materials like drug delivery, cancer cell diagnostics and therapeutics [1-5]. Biomedical applications of Quantum Dots (QDs) are focused on molecular imaging and biological sensing due to its optical properties. The size of QDs can be continuously tuned from 2 to 10 nm in diameter, which, after polymer encapsulation, generally increases to 5 - 20 nm diminishing the toxicity. The QDs prepared in our lab have a diameter between 2 to 7 nm. Particles smaller than 5 nm can interact with the cells [2]. Some of the characteristics that distinguish QDs from the commonly used fluorophores are wider range of emission, narrow and more sharply defined emission peak, brighter emission and a higher signal to noise ratio compared with organic dyes [6]. In this paper we will show our progress in the study of the interaction of quantum dots in live cells for image and Raman spectroscopy applications. We will also show the results of the interaction of quantum dots with genomic DNA for diagnostic purposes.

  11. Ferritin-Templated Quantum-Dots for Quantum Logic Gates

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Kim, Jae-Woo; Chu, Sang-Hyon; Park, Yeonjoon; King, Glen C.; Lillehei, Peter T.; Kim, Seon-Jeong; Elliott, James R.

    2005-01-01

    Quantum logic gates (QLGs) or other logic systems are based on quantum-dots (QD) with a stringent requirement of size uniformity. The QD are widely known building units for QLGs. The size control of QD is a critical issue in quantum-dot fabrication. The work presented here offers a new method to develop quantum-dots using a bio-template, called ferritin, that ensures QD production in uniform size of nano-scale proportion. The bio-template for uniform yield of QD is based on a ferritin protein that allows reconstitution of core material through the reduction and chelation processes. One of the biggest challenges for developing QLG is the requirement of ordered and uniform size of QD for arrays on a substrate with nanometer precision. The QD development by bio-template includes the electrochemical/chemical reconsitution of ferritins with different core materials, such as iron, cobalt, manganese, platinum, and nickel. The other bio-template method used in our laboratory is dendrimers, precisely defined chemical structures. With ferritin-templated QD, we fabricated the heptagonshaped patterned array via direct nano manipulation of the ferritin molecules with a tip of atomic force microscope (AFM). We also designed various nanofabrication methods of QD arrays using a wide range manipulation techniques. The precise control of the ferritin-templated QD for a patterned arrangement are offered by various methods, such as a site-specific immobilization of thiolated ferritins through local oxidation using the AFM tip, ferritin arrays induced by gold nanoparticle manipulation, thiolated ferritin positioning by shaving method, etc. In the signal measurements, the current-voltage curve is obtained by measuring the current through the ferritin, between the tip and the substrate for potential sweeping or at constant potential. The measured resistance near zero bias was 1.8 teraohm for single holoferritin and 5.7 teraohm for single apoferritin, respectively.

  12. Fano effect dominance over Coulomb blockade in transport properties of parallel coupled quantum dot system

    SciTech Connect

    Brogi, Bharat Bhushan Ahluwalia, P. K.; Chand, Shyam

    2015-06-24

    Theoretical study of the Coulomb blockade effect on transport properties (Transmission Probability and I-V characteristics) for varied configuration of coupled quantum dot system has been studied by using Non Equilibrium Green Function(NEGF) formalism and Equation of Motion(EOM) method in the presence of magnetic flux. The self consistent approach and intra-dot Coulomb interaction is being taken into account. As the key parameters of the coupled quantum dot system such as dot-lead coupling, inter-dot tunneling and magnetic flux threading through the system can be tuned, the effect of asymmetry parameter and magnetic flux on this tuning is being explored in Coulomb blockade regime. The presence of the Coulomb blockade due to on-dot Coulomb interaction decreases the width of transmission peak at energy level ε + U and by adjusting the magnetic flux the swapping effect in the Fano peaks in asymmetric and symmetric parallel configuration sustains despite strong Coulomb blockade effect.

  13. Behavior of optical bistability in multifold quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Hamedi, H. R.; Mehmannavaz, M. R.

    2015-02-01

    We analyze the optical bistability (OB) behavior in a multifold quantum dot (QD) molecule composed of five quantum dots controlled by the tunneling coupling. It is shown that the optical bistability can strongly be affected by the tunneling inter-dot coupling coefficients as well as detuning parameters. In addition, we find that the rate of an incoherent pump field has a leading role in modification of the OB threshold. We then generalize our analysis to the case of multifold quantum dot molecules where the number of the quantum dots is N (with a center dot and N-1 satellite dots). We compare the OB features that could occur in a multifold QD system consist of three (N= ), four (N=\\text{4} ), and five (N = 5) quantum dots. We realize that the OB threshold increases as the number of satellite QDs increases. Such controllable optical bistability in multiple QD molecules may provide some new possibilities for technological applications in optoelectronics and solid-state quantum information science.

  14. RKKY interaction in a chirally coupled double quantum dot system

    SciTech Connect

    Heine, A. W.; Tutuc, D.; Haug, R. J.; Zwicknagl, G.; Schuh, D.; Wegscheider, W.

    2013-12-04

    The competition between the Kondo effect and the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction is investigated in a double quantum dots system, coupled via a central open conducting region. A perpendicular magnetic field induces the formation of Landau Levels which in turn give rise to the so-called Kondo chessboard pattern in the transport through the quantum dots. The two quantum dots become therefore chirally coupled via the edge channels formed in the open conducting area. In regions where both quantum dots exhibit Kondo transport the presence of the RKKY exchange interaction is probed by an analysis of the temperature dependence. The thus obtained Kondo temperature of one dot shows an abrupt increase at the onset of Kondo transport in the other, independent of the magnetic field polarity, i.e. edge state chirality in the central region.

  15. Spin-based all-optical quantum computation with quantum dots: Understanding and suppressing decoherence

    SciTech Connect

    Calarco, T.; Datta, A.; Fedichev, P.; Zoller, P.; Pazy, E.

    2003-07-01

    We present an all-optical implementation of quantum computation using semiconductor quantum dots. Quantum memory is represented by the spin of an excess electron stored in each dot. Two-qubit gates are realized by switching on trion-trion interactions between different dots. State selectivity is achieved via conditional laser excitation exploiting Pauli exclusion principle. Read out is performed via a quantum-jump technique. We analyze the effect on our scheme's performance of the main imperfections present in real quantum dots: exciton decay, hole mixing, and phonon decoherence. We introduce an adiabatic gate procedure that allows one to circumvent these effects and evaluate quantitatively its fidelity.

  16. Subtle leakage of a Majorana mode into a quantum dot

    NASA Astrophysics Data System (ADS)

    Vernek, E.; Penteado, P. H.; Seridonio, A. C.; Egues, J. C.

    2014-04-01

    We investigate quantum transport through a quantum dot connected to source and drain leads and side coupled to a topological superconducting nanowire (Kitaev chain) sustaining Majorana end modes. Using a recursive Green's-function approach, we determine the local density of states of the system and find that the end Majorana mode of the wire leaks into the dot, thus, emerging as a unique dot level pinned to the Fermi energy ɛF of the leads. Surprisingly, this resonance pinning, resembling, in this sense, a "Kondo resonance," occurs even when the gate-controlled dot level ɛdot(Vg) is far above or far below ɛF. The calculated conductance G of the dot exhibits an unambiguous signature for the Majorana end mode of the wire: In essence, an off-resonance dotdot(Vg)≠ɛF], which should have G =0, shows, instead, a conductance e2/2h over a wide range of Vg due to this pinned dot mode. Interestingly, this pinning effect only occurs when the dot level is coupled to a Majorana mode; ordinary fermionic modes (e.g., disorder) in the wire simply split and broaden (if a continuum) the dot level. We discuss experimental scenarios to probe Majorana modes in wires via these leaked/pinned dot modes.

  17. Three-dimensional nanoscale study of Al segregation and quantum dot formation in GaAs/AlGaAs core-shell nanowires

    SciTech Connect

    Mancini, L.; Blum, I.; Vurpillot, F.; Rigutti, L.; Fontana, Y.; Conesa-Boj, S.; Francaviglia, L.; Russo-Averchi, E.; Heiss, M.; Morral, A. Fontcuberta i; Arbiol, J.

    2014-12-15

    GaAs/Al-GaAs core-shell nanowires fabricated by molecular beam epitaxy contain quantum confining structures susceptible of producing narrow photoluminescence (PL) and single photons. The nanoscale chemical mapping of these structures is analyzed in 3D by atom probe tomography (APT). The study allows us to confirm that Al atoms tend to segregate within the AlGaAs shells towards the vertices of the hexagons defining the nanowire cross section. We also find strong alloy fluctuations remaining AlGaAs shell, leading occasionally to the formation of quantum dots (QDs). The PL emission energies predicted in the framework of a 3D effective mass model for a QD analyzed by APT and the PL spectra measured on other nanowires from the same growth batch are consistent within the experimental uncertainties.

  18. Photocurrent spectrum study of a quantum dot single-photon detector based on resonant tunneling effect with near-infrared response

    SciTech Connect

    Weng, Q. C.; An, Z. H. E-mail: luwei@mail.sitp.ac.cn; Xiong, D. Y.; Zhu, Z. Q.; Zhang, B.; Chen, P. P.; Li, T. X.; Lu, W. E-mail: luwei@mail.sitp.ac.cn

    2014-07-21

    We present the photocurrent spectrum study of a quantum dot (QD) single-photon detector using a reset technique which eliminates the QD's “memory effect.” By applying a proper reset frequency and keeping the detector in linear-response region, the detector's responses to different monochromatic light are resolved which reflects different detection efficiencies. We find the reset photocurrent tails up to 1.3 μm wavelength and near-infrared (∼1100 nm) single-photon sensitivity is demonstrated due to interband transition of electrons in QDs, indicating the device a promising candidate both in quantum information applications and highly sensitive imaging applications operating in relative high temperatures (>80 K).

  19. Hybrid Circuit QED with Double Quantum Dots

    NASA Astrophysics Data System (ADS)

    Petta, Jason

    2014-03-01

    Cavity quantum electrodynamics explores quantum optics at the most basic level of a single photon interacting with a single atom. We have been able to explore cavity QED in a condensed matter system by placing a double quantum dot (DQD) inside of a high quality factor microwave cavity. Our results show that measurements of the cavity field are sensitive to charge and spin dynamics in the DQD.[2,3] We can explore non-equilibrium physics by applying a finite source-drain bias across the DQD, which results in sequential tunneling. Remarkably, we observe a gain as large as 15 in the cavity transmission when the DQD energy level detuning is matched to the cavity frequency. These results will be discussed in the context of single atom lasing.[4] I will also describe recent progress towards reaching the strong-coupling limit in cavity-coupled Si DQDs. In collaboration with Manas Kulkarni, Yinyu Liu, Karl Petersson, George Stehlik, Jacob Taylor, and Hakan Tureci. We acknowledge support from the Sloan and Packard Foundations, ARO, DARPA, and NSF.

  20. Phonon bottleneck in p-type Ge/Si quantum dots

    SciTech Connect

    Yakimov, A. I.; Kirienko, V. V.; Armbrister, V. A.; Bloshkin, A. A.; Dvurechenskii, A. V.

    2015-11-23

    We study the effect of quantum dot size on the mid-infrared photo- and dark current, photoconductive gain, and hole capture probability in ten-period p-type Ge/Si quantum dot heterostructures. The dot dimensions are varied by changing the Ge coverage and the growth temperature during molecular beam epitaxy of Ge/Si(001) system in the Stranski-Krastanov growth mode. In all samples, we observed the general tendency: with decreasing the size of the dots, the dark current and hole capture probability are reduced, while the photoconductive gain and photoresponse are enhanced. Suppression of the hole capture probability in small-sized quantum dots is attributed to a quenched electron-phonon scattering due to phonon bottleneck.

  1. A triple quantum dot based nano-electromechanical memory device

    SciTech Connect

    Pozner, R.; Lifshitz, E.; Peskin, U.

    2015-09-14

    Colloidal quantum dots (CQDs) are free-standing nano-structures with chemically tunable electronic properties. This tunability offers intriguing possibilities for nano-electromechanical devices. In this work, we consider a nano-electromechanical nonvolatile memory (NVM) device incorporating a triple quantum dot (TQD) cluster. The device operation is based on a bias induced motion of a floating quantum dot (FQD) located between two bound quantum dots (BQDs). The mechanical motion is used for switching between two stable states, “ON” and “OFF” states, where ligand-mediated effective interdot forces between the BQDs and the FQD serve to hold the FQD in each stable position under zero bias. Considering realistic microscopic parameters, our quantum-classical theoretical treatment of the TQD reveals the characteristics of the NVM.

  2. Gate-controlled electromechanical backaction induced by a quantum dot.

    PubMed

    Okazaki, Yuma; Mahboob, Imran; Onomitsu, Koji; Sasaki, Satoshi; Yamaguchi, Hiroshi

    2016-01-01

    Semiconductor-based quantum structures integrated into mechanical resonators have emerged as a unique platform for generating entanglement between macroscopic phononic and mesocopic electronic degrees of freedom. A key challenge to realizing this is the ability to create and control the coupling between two vastly dissimilar systems. Here, such coupling is demonstrated in a hybrid device composed of a gate-defined quantum dot integrated into a piezoelectricity-based mechanical resonator enabling milli-Kelvin phonon states to be detected via charge fluctuations in the quantum dot. Conversely, the single electron transport in the quantum dot can induce a backaction onto the mechanics where appropriate bias of the quantum dot can enable damping and even current-driven amplification of the mechanical motion. Such electron transport induced control of the mechanical resonator dynamics paves the way towards a new class of hybrid semiconductor devices including a current injected phonon laser and an on-demand single phonon emitter. PMID:27063939

  3. Full counting statistics of quantum dot resonance fluorescence.

    PubMed

    Matthiesen, Clemens; Stanley, Megan J; Hugues, Maxime; Clarke, Edmund; Atatüre, Mete

    2014-01-01

    The electronic energy levels and optical transitions of a semiconductor quantum dot are subject to dynamics within the solid-state environment. In particular, fluctuating electric fields due to nearby charge traps or other quantum dots shift the transition frequencies via the Stark effect. The environment dynamics are mapped directly onto the fluorescence under resonant excitation and diminish the prospects of quantum dots as sources of indistinguishable photons in optical quantum computing. Here, we present an analysis of resonance fluorescence fluctuations based on photon counting statistics which captures the underlying time-averaged electric field fluctuations of the local environment. The measurement protocol avoids dynamic feedback on the electric environment and the dynamics of the quantum dot's nuclear spin bath by virtue of its resonant nature and by keeping experimental control parameters such as excitation frequency and external fields constant throughout. The method introduced here is experimentally undemanding. PMID:24810097

  4. Full counting statistics of quantum dot resonance fluorescence

    PubMed Central

    Matthiesen, Clemens; Stanley, Megan J.; Hugues, Maxime; Clarke, Edmund; Atatüre, Mete

    2014-01-01

    The electronic energy levels and optical transitions of a semiconductor quantum dot are subject to dynamics within the solid-state environment. In particular, fluctuating electric fields due to nearby charge traps or other quantum dots shift the transition frequencies via the Stark effect. The environment dynamics are mapped directly onto the fluorescence under resonant excitation and diminish the prospects of quantum dots as sources of indistinguishable photons in optical quantum computing. Here, we present an analysis of resonance fluorescence fluctuations based on photon counting statistics which captures the underlying time-averaged electric field fluctuations of the local environment. The measurement protocol avoids dynamic feedback on the electric environment and the dynamics of the quantum dot's nuclear spin bath by virtue of its resonant nature and by keeping experimental control parameters such as excitation frequency and external fields constant throughout. The method introduced here is experimentally undemanding. PMID:24810097

  5. The transfer matrix approach to circular graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Chau Nguyen, H.; Nguyen, Nhung T. T.; Nguyen, V. Lien

    2016-07-01

    We adapt the transfer matrix (T-matrix) method originally designed for one-dimensional quantum mechanical problems to solve the circularly symmetric two-dimensional problem of graphene quantum dots. Similar to one-dimensional problems, we show that the generalized T-matrix contains rich information about the physical properties of these quantum dots. In particular, it is shown that the spectral equations for bound states as well as quasi-bound states of a circular graphene quantum dot and related quantities such as the local density of states and the scattering coefficients are all expressed exactly in terms of the T-matrix for the radial confinement potential. As an example, we use the developed formalism to analyse physical aspects of a graphene quantum dot induced by a trapezoidal radial potential. Among the obtained results, it is in particular suggested that the thermal fluctuations and electrostatic disorders may appear as an obstacle to controlling the valley polarization of Dirac electrons.

  6. Gate-controlled electromechanical backaction induced by a quantum dot

    NASA Astrophysics Data System (ADS)

    Okazaki, Yuma; Mahboob, Imran; Onomitsu, Koji; Sasaki, Satoshi; Yamaguchi, Hiroshi

    2016-04-01

    Semiconductor-based quantum structures integrated into mechanical resonators have emerged as a unique platform for generating entanglement between macroscopic phononic and mesocopic electronic degrees of freedom. A key challenge to realizing this is the ability to create and control the coupling between two vastly dissimilar systems. Here, such coupling is demonstrated in a hybrid device composed of a gate-defined quantum dot integrated into a piezoelectricity-based mechanical resonator enabling milli-Kelvin phonon states to be detected via charge fluctuations in the quantum dot. Conversely, the single electron transport in the quantum dot can induce a backaction onto the mechanics where appropriate bias of the quantum dot can enable damping and even current-driven amplification of the mechanical motion. Such electron transport induced control of the mechanical resonator dynamics paves the way towards a new class of hybrid semiconductor devices including a current injected phonon laser and an on-demand single phonon emitter.

  7. Gate-controlled electromechanical backaction induced by a quantum dot

    PubMed Central

    Okazaki, Yuma; Mahboob, Imran; Onomitsu, Koji; Sasaki, Satoshi; Yamaguchi, Hiroshi

    2016-01-01

    Semiconductor-based quantum structures integrated into mechanical resonators have emerged as a unique platform for generating entanglement between macroscopic phononic and mesocopic electronic degrees of freedom. A key challenge to realizing this is the ability to create and control the coupling between two vastly dissimilar systems. Here, such coupling is demonstrated in a hybrid device composed of a gate-defined quantum dot integrated into a piezoelectricity-based mechanical resonator enabling milli-Kelvin phonon states to be detected via charge fluctuations in the quantum dot. Conversely, the single electron transport in the quantum dot can induce a backaction onto the mechanics where appropriate bias of the quantum dot can enable damping and even current-driven amplification of the mechanical motion. Such electron transport induced control of the mechanical resonator dynamics paves the way towards a new class of hybrid semiconductor devices including a current injected phonon laser and an on-demand single phonon emitter. PMID:27063939

  8. A triple quantum dot based nano-electromechanical memory device

    NASA Astrophysics Data System (ADS)

    Pozner, R.; Lifshitz, E.; Peskin, U.

    2015-09-01

    Colloidal quantum dots (CQDs) are free-standing nano-structures with chemically tunable electronic properties. This tunability offers intriguing possibilities for nano-electromechanical devices. In this work, we consider a nano-electromechanical nonvolatile memory (NVM) device incorporating a triple quantum dot (TQD) cluster. The device operation is based on a bias induced motion of a floating quantum dot (FQD) located between two bound quantum dots (BQDs). The mechanical motion is used for switching between two stable states, "ON" and "OFF" states, where ligand-mediated effective interdot forces between the BQDs and the FQD serve to hold the FQD in each stable position under zero bias. Considering realistic microscopic parameters, our quantum-classical theoretical treatment of the TQD reveals the characteristics of the NVM.

  9. The effect of oxidation on charge carrier motion in PbS quantum dot thin films studied with Kelvin Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Nguyen Hoang, Lan Phuong; Williams, Pheona; Moscatello, Jason; Aidala, Katherine E.; Aidala Group Team

    We developed a technique that uses scanning probe microscopy (SPM) to study the real-time injection and extraction of charge carriers in thin film devices. We investigate the effects of oxidation on thin films of Lead Sulfide (PbS) quantum dots with tetrabutyl-ammonium-iodide (TBAI) ligands in an inverted field effect transistor geometry with gold electrodes. By positioning the SPM tip at an individual location and using Kelvin Probe Force Microscopy (KPFM) to measure the potential over time, we can record how the charge carriers respond to changing the backgate voltage with grounded source and drain electrodes. We see relatively fast screening for negative backgate voltages because holes are quickly injected into the PbS film. The screening is slower for positive gate voltages, because some of these holes are trapped and therefore less mobile. We probe these trapped holes by applying different gate voltages and recording the change in potential at the surface. There are mixed reports about the effect of air exposure on thin films of PbS quantum dots, with initial exposure appearing to be beneficial to device characteristics. We study the change in current, mobility, and charge injection and extraction as measured by KPFM over hours and days of exposure to air. This work is supported by NSF Grant DMR-0955348, and the Center for Heirarchical Manufacturing at the University of Massachusetts, Amherst (NSF CMMI-1025020).

  10. Gate field induced switching of electronic current in Si-Ge Core-Shell nanowire quantum dots: A first principles study

    NASA Astrophysics Data System (ADS)

    Dhungana, Kamal B.; Jaishi, Meghnath; Pati, Ranjit

    Core-shell nanowires are formed by varying the radial composition of the nanowires. One of the most widely studied core-shell nanowire groups in recent years is the Si-Ge and Ge-Si core-shell nanowires. Compared to their pristine counterparts, they are reported to have superior electronic properties. For example, the scaled ON state current value in a Ge-Si core-shell nanowire field effect transistor (FET) is reported to be three to four times higher than that observed in state-of-the-art-metal oxide semiconductor FET (MOSFET) (Nature, 441, 489 (2006)). Here, we study the transport properties of the pristine Si and Si-Ge core-shell nanowire quantum dots of similar dimension to understand the superior performance of Si-Ge core-shell nanowire field effect transistor. Our calculations yield excellent gate field induced switching behavior in current for both pristine Si and Si-Ge core-shell hetero-structure nanowire quantum dots. The threshold gate bias for ON/OFF switching in the Si-Ge core-shell nanowire is found to be much smaller than that found in the pristine Si nanowire. A single particle many-body Green's function approach in conjunction with density functional theory is employed to calculate the electronic current.

  11. Energy levels in self-assembled quantum arbitrarily shaped dots.

    PubMed

    Tablero, C

    2005-02-01

    A model to determine the electronic structure of self-assembled quantum arbitrarily shaped dots is applied. This model is based principally on constant effective mass and constant potentials of the barrier and quantum dot material. An analysis of the different parameters of this model is done and compared with those which take into account the variation of confining potentials, bands, and effective masses due to strain. The results are compared with several spectra reported in literature. By considering the symmetry, the computational cost is reduced with respect to other methods in literature. In addition, this model is not limited by the geometry of the quantum dot. PMID:15740390

  12. Quantum Dots Microstructured Optical Fiber for X-Ray Detection

    NASA Technical Reports Server (NTRS)

    DeHaven, Stan; Williams, Phillip; Burke, Eric

    2015-01-01

    Microstructured optical fibers containing quantum dots scintillation material comprised of zinc sulfide nanocrystals doped with magnesium sulfide are presented. These quantum dots are applied inside the microstructured optical fibers using capillary action. The x-ray photon counts of these fibers are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The results of the fiber light output and associated effects of an acrylate coating and the quantum dot application technique are discussed.

  13. Wet electron microscopy with quantum dots.

    PubMed

    Timp, Winston; Watson, Nicki; Sabban, Alon; Zik, Ory; Matsudaira, Paul

    2006-09-01

    Wet electron microscopy (EM) is a new imaging method with the potential to allow higher spatial resolution of samples. In contrast to most EM methods, it requires little time to perform and does not require complicated equipment or difficult steps. We used this method on a common murine macrophage cell line, IC-21, in combination with various stains and preparations, to collect high resolution images of the actin cytoskeleton. Most importantly, we demonstrated the use of quantum dots in conjunction with this technique to perform light/electron correlation microscopy. We found that wet EM is a useful tool that fits into a niche between the simplicity of light microscopy and the high spatial resolution of EM. PMID:16989089

  14. Spectroscopic behavior of bioconjugated quantum dots

    NASA Astrophysics Data System (ADS)

    Chornokur, G.; Ostapenko, S.; Emirov, Yu; Korsunska, N. E.; Sellers, T.; Phelan, C.

    2008-07-01

    We report on a short-wavelength, 'blue' spectral shift of the photoluminescence (PL) spectrum in CdSeTe/ZnS core/shell quantum dots (QDs) caused by bioconjugation with several monoclonal cancer-related antibodies (ABs). Scanning PL spectroscopy was performed on samples dried on solid substrates at various temperatures. The influence of the AB chemical origin on the PL spectral shift was observed. The QD-AB conjugation reaction was confirmed using the agarose gel electrophoresis technique. The spectral shift was strongly increased and the process facilitated when the samples were dried above room temperature. The PL spectroscopic mapping revealed a profile of the PL spectral shift across the dried QD-AB spot. A mechanism of the blue shift is attributed to changes in the QD electronic energy levels caused by a local stress applied to the bioconjugated QD.

  15. Building devices from colloidal quantum dots.

    PubMed

    Kagan, Cherie R; Lifshitz, Efrat; Sargent, Edward H; Talapin, Dmitri V

    2016-08-26

    The continued growth of mobile and interactive computing requires devices manufactured with low-cost processes, compatible with large-area and flexible form factors, and with additional functionality. We review recent advances in the design of electronic and optoelectronic devices that use colloidal semiconductor quantum dots (QDs). The properties of materials assembled of QDs may be tailored not only by the atomic composition but also by the size, shape, and surface functionalization of the individual QDs and by the communication among these QDs. The chemical and physical properties of QD surfaces and the interfaces in QD devices are of particular importance, and these enable the solution-based fabrication of low-cost, large-area, flexible, and functional devices. We discuss challenges that must be addressed in the move to solution-processed functional optoelectronic nanomaterials. PMID:27563099

  16. Quantum theory of dynamic nuclear polarization in quantum dots

    NASA Astrophysics Data System (ADS)

    Economou, Sophia; Barnes, Edwin

    2013-03-01

    Nuclear spins play a major role in the dynamics of spin qubits in III-V semiconductor quantum dots. Although the hyperfine interaction between nuclear and electron (or hole) spins is typically viewed as the leading source of decoherence in these qubits, understanding how to experimentally control the nuclear spin polarization can not only ameliorate this problem, but in fact turn the nuclear spins into a valuable resource for quantum computing. Beyond extending decoherence times, control of this polarization can enable universal quantum computation as shown in singlet-triplet qubits and, in addition, offers the possibility of repurposing the nuclear spins into a robust quantum memory. In, we took a first step toward taking advantage of this resource by developing a general, fully quantum theory of non-unitary electron-nuclear spin dynamics with a periodic train of delta-function pulses as the external control driving the electron spin. Here, we extend this approach to other types of controls and further expand on the predictions and physical insights that emerge from the theory.

  17. Two-dimensional probe absorption in coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Liu, Ningwu; Zhang, Yan; Kang, Chengxian; Wang, Zhiping; Yu, Benli

    2016-07-01

    We investigate the two-dimensional (2D) probe absorption in coupled quantum dots. It is found that, due to the position-dependent quantum interference effect, the 2D optical absorption spectrum can be easily controlled via adjusting the system parameters. Thus, our scheme may provide some technological applications in solid-state quantum communication.

  18. Transport across two interacting quantum dots: bulk Kondo, Kondo box and molecular regimes

    NASA Astrophysics Data System (ADS)

    Costa Ribeiro, Laercio; Hamad, Ignacio; Chiappe, Guillermo; Victoriano Anda, Enrique

    2014-03-01

    We analyze the transport properties of a double quantum dot device with both dots coupled to perfect conducting leads and to a finite chain of N non-interacting sites connecting both of them. The inter-dot chain strongly influences the transport across the system and the local density of states of the dots. We study the case of small number of sites, so that Kondo box effects are present. For odd N and small coupling between the inter-dot chain and the dots, a state with two coexisting Kondo regimes develops: the bulk Kondo due to the quantum dots connected to leads and the one produced by the screening of the quantum dots spins by the spin in the finite chain. As the coupling to the inter-dot chain increases, there is a crossover to a molecular Kondo effect, due to the screening of the molecule spin by the leads. For even N the two-Kondo temperatures regime does not develop and the physics is dominated by the usual competition between Kondo and antiferromagnetism. We finally study how the transport properties are affected as N is increased. We used exact multi-configurational Lanczos calculations and finite U slave-boson mean-field theory. The results obtained with both methods describe qualitatively and also quantitatively the same physics.

  19. Two-photon photoemission study of competing Auger and surface-mediated relaxation of hot electrons in CdSe quantum dot solids.

    PubMed

    Sippel, Philipp; Albrecht, Wiebke; Mitoraj, Dariusz; Eichberger, Rainer; Hannappel, Thomas; Vanmaekelbergh, Daniel

    2013-04-10

    Solids composed of colloidal quantum dots hold promise for third generation highly efficient thin-film photovoltaic cells. The presence of well-separated conduction electron states opens the possibility for an energy-selective collection of hot and equilibrated carriers, pushing the efficiency above the one-band gap limit. However, in order to reach this goal the decay of hot carriers within a band must be better understood and prevented, eventually. Here, we present a two-photon photoemission study of the 1Pe→1Se intraband relaxation dynamics in a CdSe quantum dot solid that mimics the active layer in a photovoltaic cell. We observe fast hot electron relaxation from the 1Pe to the 1Se state on a femtosecond-scale by Auger-type energy donation to the hole. However, if the oleic acid capping is exchanged for hexanedithiol capping, fast deep hole trapping competes efficiently with this relaxation pathway, blocking the Auger-type electron-hole energy exchange. A slower decay becomes then visible; we provide evidence that this is a multistep process involving the surface. PMID:23506122

  20. (e,3e) process on a quantum dot

    SciTech Connect

    Srivastava, M.K.

    2004-12-01

    The exact initial state wave function of an interacting electron pair in a quantum dot under parabolic confinement and neutralization of the dot by the substrate after ejection of electrons is exploited to obtain the fivefold differential cross section (X) of the (e,3e) process on the dot. The reflections of the center-of-mass (c.m.) motion and relative motion on X are decoupled if the incident and scattered electrons are energetic and the ejected electrons are slow. The results are studied in fixed mutual angle (with zero c.m. momentum K) and Bethe ridge modes which allow the 'cleanest' analysis of the contribution of the relative motion. The Coulomb interaction between the emitted electrons is found to qualitatively change the angular distribution of X. In the mode in which the magnitude of K is equal to the momentum transfer q, the angular distribution of X with respect to {theta}{sub Kq}=cos{sup -1}(K{center_dot}q) leads to a mapping of the initial c.m. wave function of the ejected pair. However, the c.m. motion is found to be best studied in the kinematics where the relative momentum k-vector of the ejected pair is equal to q-vector.

  1. A comparison between semi-spheroid- and dome-shaped quantum dots coupled to wetting layer

    SciTech Connect

    Shahzadeh, Mohammadreza; Sabaeian, Mohammad

    2014-06-15

    During the epitaxial growth method, self-assembled semi-spheroid-shaped quantum dots (QDs) are formed on the wetting layer (WL). However for sake of simplicity, researchers sometimes assume semi-spheroid-shaped QDs to be dome-shaped (hemisphere). In this work, a detailed and comprehensive study on the difference between electronic and transition properties of dome- and semi-spheroid-shaped quantum dots is presented. We will explain why the P-to-S intersubband transition behaves the way it does. The calculated results for intersubband P-to-S transition properties of quantum dots show two different trends for dome-shaped and semi-spheroid-shaped quantum dots. The results are interpreted using the probability of finding electron inside the dome/spheroid region, with emphasis on the effects of wetting layer. It is shown that dome-shaped and semi-spheroid-shaped quantum dots feature different electronic and transition properties, arising from the difference in lateral dimensions between dome- and semi-spheroid-shaped QDs. Moreover, an analogy is presented between the bound S-states in the quantum dots and a simple 3D quantum mechanical particle in a box, and effective sizes are calculated. The results of this work will benefit researchers to present more realistic models of coupled QD/WL systems and explain their properties more precisely.

  2. Bioconjugated silicon quantum dots from one-step green synthesis

    NASA Astrophysics Data System (ADS)

    Intartaglia, Romuald; Barchanski, Annette; Bagga, Komal; Genovese, Alessandro; Das, Gobind; Wagener, Philipp; di Fabrizio, Enzo; Diaspro, Alberto; Brandi, Fernando; Barcikowski, Stephan

    2012-02-01

    Biofunctionalized silicon quantum dots were prepared through a one step strategy avoiding the use of chemical precursors. UV-Vis spectroscopy, Raman spectroscopy and HAADF-STEM prove oligonucleotide conjugation to the surface of silicon nanoparticle with an average size of 4 nm. The nanoparticle size results from the size-quenching effect during in situ conjugation. Photoemissive properties, conjugation efficiency and stability of these pure colloids were studied and demonstrate the bio-application potential, e.g. for nucleic acid vector delivery with semiconducting, biocompatible nanoparticles.Biofunctionalized silicon quantum dots were prepared through a one step strategy avoiding the use of chemical precursors. UV-Vis spectroscopy, Raman spectroscopy and HAADF-STEM prove oligonucleotide conjugation to the surface of silicon nanoparticle with an average size of 4 nm. The nanoparticle size results from the size-quenching effect during in situ conjugation. Photoemissive properties, conjugation efficiency and stability of these pure colloids were studied and demonstrate the bio-application potential, e.g. for nucleic acid vector delivery with semiconducting, biocompatible nanoparticles. Electronic supplementary information (ESI) available: Experimental details of sample preparation, sample characterizations. Additional results of UV-vis, HAADF-STEM, Raman spectroscopy of bioconjugated silicon dots and ICP-OES of deionized water used for the synthesis are presented in Fig. S1, S3, S2, and S4 and Table S2, respectively. See DOI: 10.1039/c2nr11763k

  3. (In,Mn)As quantum dots: Molecular-beam epitaxy and optical properties

    SciTech Connect

    Bouravleuv, A. D. Nevedomskii, V. N.; Ubyivovk, E. V.; Sapega, V. F.; Khrebtov, A. I.; Samsonenko, Yu. B.; Cirlin, G. E.; Ustinov, V. M.

    2013-08-15

    Self-assembled (In,Mn)As quantum dots are synthesized by molecular-beam epitaxy on GaAs (001) substrates. The experimental results obtained by transmission electron microscopy show that doping of the central part of the quantum dots with Mn does not bring about the formation of structural defects. The optical properties of the samples, including those in external magnetic fields, are studied.

  4. Multielectron ionization of CdSe quantum dots in intense femtosecond ultraviolet light

    SciTech Connect

    Son, D.H.; Wittenberg, Joshua S.; Alivisatos, A. Paul

    2004-03-26

    Multielectron ionization of colloidal CdSe quantum dots under intense femtosecond UV excitation has been studied. By directly probing the absorption from the ionized electron, quantitative measurements of the yield and dynamics of the ionization have been made as a function of excitation fluence and variations of size and potential structure of quantum dots. The results have been explained by an ionization mechanism involving resonant two-photon absorption.

  5. Estimations of phonon-induced decoherence in silicon-germanium triple quantum dots

    NASA Astrophysics Data System (ADS)

    Vasiliev, Alexander Yu.; Fedichkin, Leonid

    2014-08-01

    The decoherence and dephasing rate of charge qubits in systems based on double and triple SiGe quantum dots are studied. At the short time limit, electron-phonon interaction causes an incomplete decay of the off-diagonal density matrix elements. Long-time relaxation decay dominates over dephasing at large times. The triple quantum dot system with the same interdot distance demonstrates lower relaxation rate in the wide range of parameters.

  6. Dirac electrons in graphene-based quantum wires and quantum dots

    NASA Astrophysics Data System (ADS)

    Peres, N. M. R.; Rodrigues, J. N. B.; Stauber, T.; Lopes dos Santos, J. M. B.

    2009-08-01

    In this paper we analyse the electronic properties of Dirac electrons in finite-size ribbons and in circular and hexagonal quantum dots. We show that due to the formation of sub-bands in the ribbons it is possible to spatially localize some of the electronic modes using a p-n-p junction. We also show that scattering of confined Dirac electrons in a narrow channel by an infinitely massive wall induces mode mixing, giving a qualitative reason for the fact that an analytical solution to the spectrum of Dirac electrons confined in a square box has not yet been found. A first attempt to solve this problem is presented. We find that only the trivial case k = 0 has a solution that does not require the existence of evanescent modes. We also study the spectrum of quantum dots of graphene in a perpendicular magnetic field. This problem is studied in the Dirac approximation, and its solution requires a numerical method whose details are given. The formation of Landau levels in the dot is discussed. The inclusion of the Coulomb interaction among the electrons is considered at the self-consistent Hartree level, taking into account the interaction with an image charge density necessary to keep the back-gate electrode at zero potential. The effect of a radial confining potential is discussed. The density of states of circular and hexagonal quantum dots, described by the full tight-binding model, is studied using the Lanczos algorithm. This is necessary to access the detailed shape of the density of states close to the Dirac point when one studies large systems. Our study reveals that zero-energy edge states are also present in graphene quantum dots. Our results are relevant for experimental research in graphene nanostructures. The style of writing is pedagogical, in the hope that newcomers to the subject will find this paper a good starting point for their research.

  7. Quantum interference and electron correlation in charge transport through triangular quantum dot molecules.

    PubMed

    Chen, Chih-Chieh; Chang, Yia-chung; Kuo, David M T

    2015-03-01

    We study the charge transport properties of triangular quantum dot molecules (TQDMs) connected to metallic electrodes, taking into account all correlation functions and relevant charging states. The quantum interference (QI) effect of TQDMs resulting from electron coherent tunneling between quantum dots is revealed and well interpreted by the long distance coherent tunneling mechanism. The spectra of electrical conductance of TQDMs with charge filling from one to six electrons clearly depict the many-body and topological effects. The calculated charge stability diagram for conductance and total occupation numbers matches well with the recent experimental measurements. We also demonstrate that the destructive QI effect on the tunneling current of TQDMs is robust with respect to temperature variation, making the single electron QI transistor feasible at higher temperatures. PMID:25660124

  8. Quantum computing with quantum dots using the Heisenberg exchange interaction

    NASA Astrophysics Data System (ADS)

    Dewaele, Nick J.

    One of the most promising systems for creating a working quantum computer is the triple quantum dots in a linear semiconductor. One of the biggest advantages is that we are able to perform Heisenberg exchange gates on the physical qubits. These exchanges are both fast and relatively low energy. Which means that they would be excellent for producing fast and accurate operations. In order to prevent leakage errors we use a 3 qubit DFS to encode a logical qubit. Here we determine the theoretical time dependent affects of applying the Heisenberg exchange gates in the DFS basis as well as the effect of applying multiple exchange gates at the same time. we also find that applying two heisenberg exchange gates at the same time is an effective way of implementing a leakage elimination operator.

  9. Tunable metallic silicon nanowires and quantum dots with tailored dimensions and spacing

    NASA Astrophysics Data System (ADS)

    Zhang, Liangchi; Mylvaganam, Kausala

    2013-06-01

    Metallic silicon nanowire and quantum dots are promising low dimensional materials for a great range of applications. A critical issue is their quality-controlled, cost-effective fabrication. This paper presents a simple method for making seamlessly integrated tunable metallic silicon nanowires and quantum dots in the subsurface of mono-crystalline silicon by mechanical scratching. The study predicted, with the aid of the molecular dynamics analysis, that arrays of stable metallic bct-5 silicon nanowires and conductive quantum dots could be produced in the subsurface of silicon by scratching the {001} surface along a ⟨110⟩ direction. The dimension and spacing of the nanowires and quantum dots can easily be controlled by adjusting the distance between scratching tips, the size of the tips, and their depth-of-cut. It was also shown that the metallic bct-5 silicon is stable under a residual octahedral shear stress of 5 to 8 GPa.

  10. Spin dynamics of an individual Cr atom in a semiconductor quantum dot under optical excitation

    NASA Astrophysics Data System (ADS)

    Lafuente-Sampietro, A.; Utsumi, H.; Boukari, H.; Kuroda, S.; Besombes, L.

    2016-08-01

    We studied the spin dynamics of a Cr atom incorporated in a II-VI semiconductor quantum dot using photon correlation techniques. We used recently developed singly Cr-doped CdTe/ZnTe quantum dots to access the spin of an individual magnetic atom. Auto-correlation of the photons emitted by the quantum dot under continuous wave optical excitation reveals fluctuations of the localized spin with a timescale in the 10 ns range. Cross-correlation gives quantitative transfer time between Cr spin states. A calculation of the time dependence of the spin levels population in Cr-doped quantum dots shows that the observed spin dynamics is dominated by the exciton-Cr interaction. These measurements also provide a lower bound in the 20 ns range for the intrinsic Cr spin relaxation time.

  11. Voltage Fluctuation to Current Converter with Coulomb-Coupled Quantum Dots

    NASA Astrophysics Data System (ADS)

    Hartmann, F.; Pfeffer, P.; Höfling, S.; Kamp, M.; Worschech, L.

    2015-04-01

    We study the rectification of voltage fluctuations in a system consisting of two Coulomb-coupled quantum dots. The first quantum dot is connected to a reservoir where voltage fluctuations are supplied and the second one is attached to two separate leads via asymmetric and energy-dependent transport barriers. We observe a rectified output current through the second quantum dot depending quadratically on the noise amplitude supplied to the other Coulomb-coupled quantum dot. The current magnitude and direction can be switched by external gates, and maximum output currents are found in the nA region. The rectification delivers output powers in the pW region. Future devices derived from our sample may be applied for energy harvesting on the nanoscale beneficial for autonomous and energy-efficient electronic applications.

  12. Pulsed-laser micropatterned quantum-dot array for white light source

    NASA Astrophysics Data System (ADS)

    Wang, Sheng-Wen; Lin, Huang-Yu; Lin, Chien-Chung; Kao, Tsung Sheng; Chen, Kuo-Ju; Han, Hau-Vei; Li, Jie-Ru; Lee, Po-Tsung; Chen, Huang-Ming; Hong, Ming-Hui; Kuo, Hao-Chung

    2016-03-01

    In this study, a novel photoluminescent quantum dots device with laser-processed microscale patterns has been demonstrated to be used as a white light emitting source. The pulsed laser ablation technique was employed to directly fabricate microscale square holes with nano-ripple structures onto the sapphire substrate of a flip-chip blue light-emitting diode, confining sprayed quantum dots into well-defined areas and eliminating the coffee ring effect. The electroluminescence characterizations showed that the white light emission from the developed photoluminescent quantum-dot light-emitting diode exhibits stable emission at different driving currents. With a flexibility of controlling the quantum dots proportions in the patterned square holes, our developed white-light emitting source not only can be employed in the display applications with color triangle enlarged by 47% compared with the NTSC standard, but also provide the great potential in future lighting industry with the correlated color temperature continuously changed in a wide range.

  13. Structural Origin of Enhanced Luminescence Efficiency of Antimony Irradiated InAs Quantum Dots

    SciTech Connect

    Beltran, AM; Ben, Teresa; Sales, David; Sanchez, AM; Ripalda, JM; Taboada, Alfonso G; Varela del Arco, Maria; Pennycook, Stephen J; Molina, S. I.

    2011-01-01

    We report that Sb irradiation combined with the presence of a GaAs intermediate layer previous to the deposition of a GaSb layer over InAs quantum dots grown by molecular beam epitaxy improves the crystalline quality of these nanostructures. Moreover, this approach to develop III-V-Sb nanostructures causes the formation of quantum dots buried by a confining GaSb layer and, in this way, achieving a type II band alignment. Both phenomena, studied by Conventional transmission electron microscopy (CTEM) and scanning-transmission electron microscope (STEM) techniques are keys to achieve the best room temperature photoluminescence results from InAs/GaAs (001) quantum dots. The Sb flux contributes to the preservation of the quantum dots size and at the same time reduces In diffusion from the wetting layer.

  14. Biosynthesis of luminescent CdS quantum dots using plant hairy root culture

    NASA Astrophysics Data System (ADS)

    Borovaya, Mariya N.; Naumenko, Antonina P.; Matvieieva, Nadia A.; Blume, Yaroslav B.; Yemets, Alla I.

    2014-12-01

    CdS nanoparticles have a great potential for application in chemical research, bioscience and medicine. The aim of this study was to develop an efficient and environmentally-friendly method of plant-based biosynthesis of CdS quantum dots using hairy root culture of Linaria maroccana L. By incubating Linaria root extract with inorganic cadmium sulfate and sodium sulfide we synthesized stable luminescent CdS nanocrystals with absorption peaks for UV-visible spectrometry at 362 nm, 398 nm and 464 nm, and luminescent peaks at 425, 462, 500 nm. Transmission electron microscopy of produced quantum dots revealed their spherical shape with a size predominantly from 5 to 7 nm. Electron diffraction pattern confirmed the wurtzite crystalline structure of synthesized cadmium sulfide quantum dots. These results describe the first successful attempt of quantum dots synthesis using plant extract.

  15. Increased in vivo skin penetration of quantum dots with UVR and in vitro quantum dot cytotoxicity

    NASA Astrophysics Data System (ADS)

    Mortensen, Luke; Zheng, Hong; Faulknor, Renea; De Benedetto, Anna; Beck, Lisa; DeLouise, Lisa A.

    2009-02-01

    The growing presence of quantum dots (QD) in a variety of biological, medical, and electronics applications means an increased risk of human exposure in manufacturing, research, and consumer use. However, very few studies have investigated the susceptibility of skin to penetration of QD - the most common exposure route- and the results of those that exist are conflicting. This suggests that a technique allowing determination of skin barrier status and prediction of skin permeability to QD would be of crucial interest as recent findings have provided evidence of in vitro cytotoxicity and long-term in vivo retention in the body for most QD surface chemistries. Our research focuses on barrier status of the skin (intact and with ultraviolet radiation induced barrier defect) and its impact on QD skin penetration. These model studies are particularly relevant to the common application condition of NP containing sunscreen and SPF cosmetics to UV exposed skin. Herein we present our initial efforts to develop an in vivo model of nanoparticle skin penetration using the SKH-1 hairless mouse with transepidermal water loss (TEWL) to evaluate skin barrier status and determine its ability to predict QD penetration. Our results show that ultraviolet radiation increases both TEWL and skin penetration of QD. Additionally, we demonstrate cytotoxic potential of QD to skin cells using a metastatic melanoma cell line. Our research suggests future work in specific targeting of nanoparticles, to prevent or enhance penetration. This knowledge will be used to develop powerful therapeutic agents, decreased penetration cosmetic nanoparticles, and precise skin cancer imaging modalities.

  16. Energy spectra and optical transitions in germanene quantum dots.

    PubMed

    Herath, Thakshila M; Apalkov, Vadym

    2016-04-27

    The band gap of buckled graphene-like materials, such as silicene and germanene, depends on external perpendicular electric field. Then a specially design profile of electric field can produce trapping potential for electrons. We study theoretically the energy spectrum and optical transitions for such designed quantum dots (QDs) in graphene-like materials. The energy spectra depend on the size of the QD and applied electric field in the region of the QD. The number of the states in the QD increases with increasing the size of the dot and the energies of the states have almost linear dependence on the applied electric field with the slope which increases with increasing the dot size. The optical properties of the QDs are characterized by two types of absorption spectra: interband (optical transitions between the states of the valence and conduction bands) and intraband (transitions between the states of conduction/valence band). The interband absorption spectra have triple-peak structure with peak separation around 10 meV, while intraband absorption spectra, which depend on the number of electrons in the dot, have double-peak structure. PMID:27008912

  17. Long-distance coherent coupling in a quantum dot array.

    PubMed

    Braakman, F R; Barthelemy, P; Reichl, C; Wegscheider, W; Vandersypen, L M K

    2013-06-01

    Controlling long-distance quantum correlations is central to quantum computation and simulation. In quantum dot arrays, experiments so far rely on nearest-neighbour couplings only, and inducing long-distance correlations requires sequential local operations. Here, we show that two distant sites can be tunnel-coupled directly. The coupling is mediated by virtual occupation of an intermediate site, with a strength that is controlled via the energy detuning of this site. It permits a single charge to oscillate coherently between the outer sites of a triple dot array without passing through the middle, as demonstrated through the observation of Landau-Zener-Stückelberg interference. The long-distance coupling significantly improves the prospects of fault-tolerant quantum computation using quantum dot arrays, and opens up new avenues for performing quantum simulations in nanoscale devices. PMID:23624695

  18. Nitrogen-Doped Carbon Dots for "green" Quantum Dot Solar Cells.

    PubMed

    Wang, Hao; Sun, Pengfei; Cong, Shan; Wu, Jiang; Gao, Lijun; Wang, Yun; Dai, Xiao; Yi, Qinghua; Zou, Guifu

    2016-12-01

    Considering the environment protection, "green" materials are increasingly explored for photovoltaics. Here, we developed a kind of quantum dots solar cell based on nitrogen-doped carbon dots. The nitrogen-doped carbon dots were prepared by direct pyrolysis of citric acid and ammonia. The nitrogen-doped carbon dots' excitonic absorption depends on the N-doping content in the carbon dots. The N-doping can be readily modified by the mass ratio of reactants. The constructed "green" nitrogen-doped carbon dots solar cell achieves the best power conversion efficiency of 0.79 % under AM 1.5 G one full sun illumination, which is the highest efficiency for carbon dot-based solar cells. PMID:26781285

  19. Nitrogen-Doped Carbon Dots for "green" Quantum Dot Solar Cells

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Sun, Pengfei; Cong, Shan; Wu, Jiang; Gao, Lijun; Wang, Yun; Dai, Xiao; Yi, Qinghua; Zou, Guifu

    2016-01-01

    Considering the environment protection, "green" materials are increasingly explored for photovoltaics. Here, we developed a kind of quantum dots solar cell based on nitrogen-doped carbon dots. The nitrogen-doped carbon dots were prepared by direct pyrolysis of citric acid and ammonia. The nitrogen-doped carbon dots' excitonic absorption depends on the N-doping content in the carbon dots. The N-doping can be readily modified by the mass ratio of reactants. The constructed "green" nitrogen-doped carbon dots solar cell achieves the best power conversion efficiency of 0.79 % under AM 1.5 G one full sun illumination, which is the highest efficiency for carbon dot-based solar cells.

  20. Photoluminescence enhancement in CdS quantum dots by thermal annealing

    PubMed Central

    2012-01-01

    The photoluminescence behavior of CdS quantum dots in initial growth stage was studied in connection with an annealing process. Compared to the as-synthesized CdS quantum dots (quantum efficiency ≅ 1%), the heat-treated sample showed enhanced luminescence properties (quantum efficiency ≅ 29%) with a narrow band-edge emission. The simple annealing process diminished the accumulated defect states within the nanoparticles and thereby reduced the nonradiative recombination, which was confirmed by diffraction, absorption, and time-resolved photoluminescence. Consequently, the highly luminescent and defect-free nanoparticles were obtained by a facile and straightforward process. PMID:22931230

  1. Non-equilibrium slave bosons approach to quantum pumping in interacting quantum dots

    NASA Astrophysics Data System (ADS)

    Citro, Roberta; Romeo, Francesco

    2016-03-01

    We review a time-dependent slave bosons approach within the non-equilibrium Green's function technique to analyze the charge and spin pumping in a strongly interacting quantum dot. We study the pumped current as a function of the pumping phase and of the dot energy level and show that a parasitic current arises, beyond the pure pumping one, as an effect of the dynamical constraints. We finally illustrate an all-electrical mean for spin-pumping and discuss its relevance for spintronics applications.

  2. Molecular interaction investigation between three CdTe:Zn(2+) quantum dots and human serum albumin: A comparative study.

    PubMed

    Huang, Shan; Qiu, Hangna; Liu, Yi; Huang, Chusheng; Sheng, Jiarong; Su, Wei; Xiao, Qi

    2015-12-01

    Water-soluble Zn-doped CdTe quantum dots (CdTe:Zn(2+) QDs) have attracted great attention in biological and biomedical applications. In particular, for any potential in vivo application, the interaction of CdTe:Zn(2+) QDs with human serum albumin (HSA) is of greatest importance. As a step toward the elucidation of the fate of CdTe:Zn(2+) QDs introduced to organism, the molecular interactions between CdTe:Zn(2+) QDs with three different sizes and HSA were systematically investigated by spectroscopic techniques. Three CdTe:Zn(2+) QDs with maximum emission of 514 nm (green QDs, GQDs), 578 nm (yellow QDs, YQDs), and 640 nm (red QDs, RQDs) were tested. The binding of CdTe:Zn(2+) QDs with HSA was a result of the formation of HSA-QDs complex and electrostatic interactions played major roles in stabilizing the complex. The Stern-Volmer quenching constant, associative binding constant, and corresponding thermodynamic parameters were calculated. The site-specific probe competitive experiments revealed that the binding location of CdTe:Zn(2+) QDs with HSA was around site I. The microenvironmental and conformational changes of HSA induced by CdTe:Zn(2+) QDs were analyzed. These results suggested that the conformational change of HSA was dramatically at secondary structure level and the biological activity of HSA was weakened in the present of CdTe:Zn(2+) QDs with bigger size. PMID:26555713

  3. Magnetooptical study of CdSe/ZnMnSe semimagnetic quantum-dot ensembles with n-type modulation doping

    SciTech Connect

    Reshina, I. I. Ivanov, S. V.

    2014-12-15

    Magnetic and polarization investigations of the photoluminescence and resonant electron spin-flip Raman scattering in ensembles of self-organized CdSe/ZnMnSe semimagnetic quantum dots with n-type modulation doping are carried out. It is demonstrated that exciton transitions contribute to the photoluminescence band intensity, along with the transitions of trions in the singlet state. In the Hanle-effect measurements, negative circular polarization in zero magnetic field is observed, which is related to the optical orientation of a trion heavy hole. The lifetime and spin-relaxation time of a heavy hole are estimated as ≤3 and ≤1 ps, respectively. Such short times are assumed to be due to Auger recombination with the excitation of an intrinsic transition in a Mn{sup 2+} ion. Investigations of the photoluminescence-maximum intensity and shift in a longitudinal magnetic field at the σ{sup −}σ{sup +} and σ{sup −}σ{sup −} polarizations reveal the pronounced spin polarization of electrons. Under resonant excitation conditions, a sharp increase in the photoluminescence-band maximum intensity at σ{sup −} excitation polarization over the σ{sup +} one is observed. The Raman scattering peak at the electron spin-flip transition is observed upon resonant excitation in a transverse magnetic field in crossed linear polarizations. This peak is shown to be a Brillouin function of a magnetic field.

  4. The Study On The Physical Properties Of CdS Quantum Dots Synthesized By Ligand Exchange in Cd{sup 2+}-thiol Aqueous Solutions

    SciTech Connect

    Ha, S. Y.; Yoo, D. S.; Kim, I. G.; Choo, M. S.; Kim, G. W.; Lee, E. S.; Lee, B. C.

    2011-12-23

    We synthesized CdS quantum dots in aqueous medium using three thiolate-ligands, 2-mercaptoethanol (2ME), 3-mercaptopropanoic acid (MPA) and dimercaprol (BAL) by ligand exchange method. With a fixed concentration of thiols, the absorption edge of the quantum dots formed shifted towards shorter wavelength, as to the decreasing of a concentration of CdCl{sub 2}. When a concentration of CdCl{sub 2} and thiol was same, band gap energies and average sizes of the quantum dots were shown to be 2.65 eV, 3.26 nm for MPA, 2.84 eV, 3.16 nm for 2 ME and 3.16 eV, 1.81 nm for BAL, respectively. PL spectra analysis shows that as the decrease in molar concentration of CdCl{sub 2}, emission peak shifted towards shorter wavelength.

  5. Luminescent graphene quantum dots fabricated by pulsed laser synthesis

    PubMed Central

    Habiba, Khaled; Makarov, Vladimir I.; Avalos, Javier; Guinel, Maxime J.F.; Weiner, Brad R.; Morell, Gerardo

    2016-01-01

    Graphene has been the subject of intense research in recent years due to its unique electrical, optical and mechanical properties. Furthermore, it is expected that quantum dots of graphene would make their way into devices due to their structure and composition which unify graphene and quantum dots properties. Graphene quantum dots (GQDs) are planar nano flakes with a few atomic layers thick and with a higher surface-to-volume ratio than spherical carbon dots (CDs) of the same size. We have developed a pulsed laser synthesis (PLS) method for the synthesis of GQDs that are soluble in water, measure 2–6 nm across, and are about 1–3 layers thick. They show strong intrinsic fluorescence in the visible region. The source of fluorescence can be attributed to various factors, such as: quantum confinement, zigzag edge structure, and surface defects. Confocal microscopy images of bacteria exposed to GQDs show their suitability as biomarkers and nano-probes in high contrast bioimaging.

  6. Heterovalent cation substitutional doping for quantum dot homojunction solar cells

    PubMed Central

    Stavrinadis, Alexandros; Rath, Arup K.; de Arquer, F. Pelayo García; Diedenhofen, Silke L.; Magén, César; Martinez, Luis; So, David; Konstantatos, Gerasimos

    2013-01-01

    Colloidal quantum dots have emerged as a material platform for low-cost high-performance optoelectronics. At the heart of optoelectronic devices lies the formation of a junction, which requires the intimate contact of n-type and p-type semiconductors. Doping in bulk semiconductors has been largely deployed for many decades, yet electronically active doping in quantum dots has remained a challenge and the demonstration of robust functional optoelectronic devices had thus far been elusive. Here we report an optoelectronic device, a quantum dot homojunction solar cell, based on heterovalent cation substitution. We used PbS quantum dots as a reference material, which is a p-type semiconductor, and we employed Bi-doping to transform it into an n-type semiconductor. We then combined the two layers into a homojunction device operating as a solar cell robustly under ambient air conditions with power conversion efficiency of 2.7%. PMID:24346430

  7. What future for quantum dot-based light emitters?

    NASA Astrophysics Data System (ADS)

    Nurmikko, Arto

    2015-12-01

    Synthesis of semiconductor colloidal quantum dots by low-cost, solution-based methods has produced an abundance of basic science. Can these materials be transformed to high-performance light emitters to disrupt established photonics technologies, particularly semiconductor lasers?

  8. Entanglement switching via the Kondo effect in triple quantum dots

    NASA Astrophysics Data System (ADS)

    Tooski, S. B.; Bułka, Bogdan R.; Žitko, Rok; Ramšak, Anton

    2014-06-01

    We consider a triple quantum dot system in a triangular geometry with one of the dots connected to metallic leads. Using Wilson's numerical renormalization group method, we investigate quantum entanglement and its relation to the thermodynamic and transport properties in the regime where each of the dots is singly occupied on average, but with non-negligible charge fluctuations. It is shown that even in the regime of significant charge fluctuations the formation of the Kondo singlets induces switching between separable and perfectly entangled states. The quantum phase transition between unentangled and entangled states is analyzed quantitatively and the corresponding phase diagram is explained by exactly solvable spin model. In the framework of an effective model we also explain smearing of the entanglement transition for cases when the symmetry of the triple quantum dot system is relaxed.

  9. Spin Qubits with Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Tarucha, Seigo; Yamamoto, Michihisa; Oiwa, Akira; Choi, Byung-Soo; Tokura, Yasuhiro

    This section describes recent progresses on the research of spin qubits realized in semiconductor quantum dot (QD) systems. After we argue the scheme of initialization and detection of individual spin states, we discuss the key idea of the universal gates constituted with QDs proposed by D. Loss and D. P. DiVincenzo. In order to achieve universal quantum gate operations, we need single qubit coherent manipulations and two qubit controlled-NOT or control-Z gates. For the first type of gate, instead of the standard rf magnetic field driven electron spin resonance (ESR), we proposed and implemented electric dipole induced spin resonance (EDSR), which has various advantages over ESR, including low dissipation, individual access to the spins and integrability. We describes recent progress in the fast Rabi oscillations. The second type of gate can be realized by the exchange coupling between nearby QDs. We also discuss the experiments combining single- and two-qubit operations. Finally, we argue the progress of the coupling of the spins in QDs with the "flying qubits", namely, photons of visible or microwave and itinerant electrons in the wave guides.

  10. Colloidal quantum dot materials for infrared optoelectronics

    NASA Astrophysics Data System (ADS)

    Arinze, Ebuka S.; Nyirjesy, Gabrielle; Cheng, Yan; Palmquist, Nathan; Thon, Susanna M.

    2015-09-01

    Colloidal quantum dots (CQDs) are an attractive material for optoelectronic applications because they combine flexible, low-cost solution-phase synthesis and processing with the potential for novel functionality arising from their nanostructure. Specifically, the bandgap of films composed of arrays of CQDs can be tuned via the quantum confinement effect for tailored spectral utilization. PbS-based CQDs can be tuned throughout the near and mid-infrared wavelengths and are a promising materials system for photovoltaic devices that harvest non-visible solar radiation. The performance of CQD solar cells is currently limited by an absorption-extraction compromise, whereby photon absorption lengths in the near infrared spectral regime exceed minority carrier diffusion lengths in the bulk films. Several light trapping strategies for overcoming this compromise and increasing the efficiency of infrared energy harvesting will be reviewed. A thin-film interference technique for creating multi-colored and transparent solar cells will be presented, and a discussion of designing plasmonic nanomaterials based on earth-abundant materials for integration into CQD solar cells is developed. The results indicate that it should be possible to achieve high absorption and color-tunability in a scalable nanomaterials system.

  11. Improved dot size uniformity and luminescense of InAs quantum dots on InP substrate

    NASA Technical Reports Server (NTRS)

    Qiu, Y.; Uhl, D.

    2002-01-01

    InAs self-organized quantum dots have been grown in InGaAs quantum well on InP substrates by metalorganic vapor phase epitaxy. Atomic Force Microscopy confirmed of quantum dot formation with dot density of 3X10(sup 10) cm(sup -2). Improved dot size uniformity and strong room temperature photoluminescence up to 2 micron were observed after modifying the InGaAs well.

  12. Low Disorder Si MOSFET Dots for Quantum Computing

    NASA Astrophysics Data System (ADS)

    Nordberg, E. P.; Tracy, L. A.; Ten Eyck, G. A.; Eng, K.; Stalford, H. L.; Childs, K. D.; Stevens, J.; Grubbs, R. K.; Lilly, M. P.; Eriksson, M. A.; Carroll, M. S.

    2009-03-01

    Silicon quantum dot based qubits have emerged as an appealing approach to extending the success of GaAs spin based double quantum dot qubits. Research in this field is motivated by the promise of long spin coherence times, and within a MOS system the potential for variable carrier density, very small dot sizes, and CMOS compatibility. In this work, we will present results on the fabrication and transport properties of quantum dots in novel double gated Si MOS structures. Coulomb blockade is observed from single quantum dots with extracted charging energies up to an including 5meV. Observed dots were formed both from disorder within a quantum point contact, and through disorder free electrostatic confinement. Extracted capacitances, verified with 3D finite element simulations confirm the location of the disorder free dot to be within the designed lithographic structure. Distinctions will be made regarding the effects of feature sizes and sample processing. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. Coupling capacitance between double quantum dots tunable by the number of electrons in Si quantum dots

    SciTech Connect

    Uchida, Takafumi Arita, Masashi; Takahashi, Yasuo; Fujiwara, Akira

    2015-02-28

    Tunability of capacitive coupling in the Si double-quantum-dot system is discussed by changing the number of electrons in quantum dots (QDs), in which the QDs are fabricated using pattern-dependent oxidation (PADOX) of a Si nanowire and multi-fine-gate structure. A single QD formed by PADOX is divided into multiple QDs by additional oxidation through the gap between the fine gates. When the number of electrons occupying the QDs is large, the coupling capacitance increases gradually and almost monotonically with the number of electrons. This phenomenon is attributed to the gradual growth in the effective QD size due to the increase in the number of electrons in the QDs. On the other hand, when the number of electrons changes in the few-electron regime, the coupling capacitance irregularly changes. This irregularity can be observed even up to 40 electrons. This behavior is attributable the rough structure of Si nano-dots made by PADOX. This roughness is thought to induce complicated change in the electron wave function when an electron is added to or subtracted from a QD.

  14. Quantum Phase Transitions in Cavity Coupled Dot systems

    NASA Astrophysics Data System (ADS)

    Kasisomayajula, Vijay; Russo, Onofrio

    2011-03-01

    We investigate a Quantum Dot System, in which the transconductance, in part, is due to spin coupling, with each dot subjected to a biasing voltage. When this system is housed in a QED cavity, the cavity dot coupling alters the spin coupling of the coupled dots significantly via the Purcell Effect. In this paper we show the extent to which one can control the various coupling parameters: the inter dot coupling, the individual dots coupling with the cavity and the coupled dots coupling with the cavity as a single entity. We show that the dots coupled to each other and to the cavity, the spin transport can be controlled selectively. We derive the conditions for such control explicitly. Further, we discuss the Quantum phase transition effects due to the charge and spin transport through the dots. The electron transport through the dots, electron-electron spin interaction and the electron-photon interaction are treated using the Non-equilibrium Green's Function Formalism. http://publish.aps.org/search/field/author/Trif_Mircea (Trif Mircea), http://publish.aps.org/search/field/author/Golovach_Vitaly_N (Vitaly N. Golovach), and http://publish.aps.org/search/field/author/Loss_Daniel (Daniel Loss), Phys. Rev. B 75, 085307 (2007)

  15. Study of GaAsSb/GaAs type-II quantum well with top InAs quantum dot layer using complementary spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    Hsu, Hung-Pin; Wu, Jiun-De; Lin, Yan-Jih; Huang, Ying-Sheng; Lin, You-Ru; Lin, Hao-Hsiung

    2015-09-01

    The optical characterization of GaAsSb/GaAs type-II quantum wells (QWs) with top InAs quantum dot (QD) layer composite structures was carried out using the complementary surface photovoltage (SPV) and photoluminescence (PL) spectroscopies. The obtained SPV and PL spectra revealed that the features originated from InAs QDs, modulated potential wells in GaAsSb QWs, the wetting layer (WL) as well as the GaAs cap layer/barrier at room temperature. The optical transition from the modulated potential wells in GaAsSb QWs in the composite structures showed a redshift when the spacer layer was narrowed from 10 to 5 nm. This is attributed to the lower modulated potential minimum in GaAsSb QWs caused by the strain exerted by InAs QDs in the composite structures with the narrower spacer layer. The power-dependent PL measurement showed that the luminescences from the GaAsSb/GaAs heterostructure blue-shifted with increasing excitation power owing to the type-II band alignment. These results demonstrated that SPV and PL are useful techniques for the nondestructive optical characterization of GaAsSb QWs with top InAs QD composite structures.

  16. Quantum dot FRET-based probes in thin films grown in microfluidic channels.

    PubMed

    Crivat, Georgeta; Da Silva, Sandra Maria; Reyes, Darwin R; Locascio, Laurie E; Gaitan, Michael; Rosenzweig, Nitsa; Rosenzweig, Zeev

    2010-02-10

    This paper describes the development of new fluorescence resonance energy transfer (FRET)-based quantum dot probes for proteolytic activity. The CdSe/ZnS quantum dots are incorporated into a thin polymeric film, which is prepared by layer-by-layer deposition of alternately charged polyelectrolytes. The quantum dots, which serve as fluorescent donors, are separated from rhodamine acceptor molecules, which are covalently attached to the film surface by a varying number of polyelectrolyte layers. When excited with visible light, the emission color of the polyelectrolyte multilayer film appears orange due to FRET between the quantum dots and molecular acceptors. The emission color changes to green when the rhodamine molecules are removed from the surface by enzymatic cleavage. The new probe design enables the use of quantum dots in bioassays, in this study for real-time monitoring of trypsin activity, while alleviating concerns about their potential toxicity. Application of these quantum dot FRET-based probes in microfluidic channels enables bioanalysis of volume-limited samples and single-cell studies in an in vivo-like environment. PMID:20073459

  17. Approaches to Future Generation Photovoltaics and Solar Fuels: Quantum Dots, Arrays, and Quantum Dot Solar Cells

    SciTech Connect

    Semonin, O.; Luther, J.; Beard, M.; Johnson, J.; Gao, J.; Nozik, A.

    2012-01-01

    One potential, long-term approach to more efficient and lower cost future generation solar cells for solar electricity and solar fuels is to utilize the unique properties of quantum dots (QDs) to control the relaxation pathways of excited states to enhance multiple exciton generation (MEG). We have studied MEG in close-packed PbSe QD arrays where the QDs are electronically coupled in the films and thus exhibit good transport while still maintaining quantization and MEG. We have developed simple, all-inorganic solution-processable QD solar cells that produce large short-circuit photocurrents and power conversion efficiencies above 5% via nanocrystalline p-n junctions. These solar cells show QYs for photocurrent that exceed 100% in the photon energy regions where MEG is possible; the photocurrent MEG QYs as a function of photon energy match those determined via time-resolved spectroscopy Recent analyses of the major effect of MEG combined with solar concentration on the conversion efficiency of solar cells will also be discussed.

  18. Ordered quantum dot molecules and single quantum dots formed by self-organized anisotropic strain engineering

    SciTech Connect

    Lippen, T. van; Noetzel, R.; Hamhuis, G.J.; Wolter, J.H.

    2005-02-15

    An ordered lattice of lateral InAs quantum dot (QD) molecules is created by self-organized anisotropic strain engineering of an (In,Ga)As/GaAs superlattice (SL) template on GaAs(311)B by molecular-beam epitaxy, constituting a Turing pattern in solid state. The SL template and InAs QD growth conditions, such as the number of SL periods, growth temperatures, amount and composition of deposited (In,Ga)As, and insertion of Al-containing layers, are studied in detail for an optimized QD ordering within and among the InAs QD molecules on the SL template nodes, which is evaluated by atomic force microscopy. The average number of InAs QDs within the molecules is controlled by the thickness of the upper GaAs separation layer on the SL template and the (In,Ga)As growth temperature in the SL. The strain-correlated growth in SL template formation and QD ordering is directly confirmed by high-resolution x-ray diffraction. Ordered arrays of single InAs QDs on the SL template nodes are realized for elevated SL template and InAs QD growth temperatures together with the insertion of a second InAs QD layer. The InAs QD molecules exhibit strong photoluminescence (PL) emission up to room temperature. Temperature-dependent PL measurements exhibit an unusual behavior of the full width at half maximum, indicating carrier redistribution solely within the QD molecules.

  19. Whispering-gallery mode microcavity quantum-dot lasers

    SciTech Connect

    Kryzhanovskaya, N V; Maximov, M V; Zhukov, A E

    2014-03-28

    This review examines axisymmetric-cavity quantum-dot microlasers whose emission spectrum is determined by whisperinggallery modes. We describe the possible designs, fabrication processes and basic characteristics of the microlasers and demonstrate the possibility of lasing at temperatures above 100 °C. The feasibility of creating multichannel optical sources based on a combination of a broadband quantum-dot laser and silicon microring modulators is discussed. (review)

  20. Ultrafast optical properties of lithographically defined quantum dot amplifiers

    SciTech Connect

    Miaja-Avila, L.; Verma, V. B.; Mirin, R. P.; Silverman, K. L.; Coleman, J. J.

    2014-02-10

    We measure the ultrafast optical response of lithographically defined quantum dot amplifiers at 40 K. Recovery of the gain mostly occurs in less than 1 picosecond, with some longer-term transients attributable to carrier heating. Recovery of the absorption proceeds on a much longer timescale, representative of relaxation between quantum dot levels and carrier recombination. We also measure transparency current-density in these devices.