These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Quantum dots: synthesis, bioapplications, and toxicity  

PubMed Central

This review introduces quantum dots (QDs) and explores their properties, synthesis, applications, delivery systems in biology, and their toxicity. QDs are one of the first nanotechnologies to be integrated with the biological sciences and are widely anticipated to eventually find application in a number of commercial consumer and clinical products. They exhibit unique luminescence characteristics and electronic properties such as wide and continuous absorption spectra, narrow emission spectra, and high light stability. The application of QDs, as a new technology for biosystems, has been typically studied on mammalian cells. Due to the small structures of QDs, some physical properties such as optical and electron transport characteristics are quite different from those of the bulk materials. PMID:22929008

2012-01-01

2

Synthesis and characterization of infrared quantum dots  

E-print Network

This thesis focuses on the development of synthetic methods to create application ready quantum dots (QDs) in the infrared for biological imaging and optoelectronic devices. I concentrated primarily on controlling the size ...

Harris, Daniel Kelly

2014-01-01

3

Improved Precursor Chemistry for the Synthesis of III–V Quantum Dots  

E-print Network

The synthesis of III–V quantum dots has been long known to be more challenging than the synthesis of other types of inorganic quantum dots. This is attributed to highly reactive group-V precursors. We synthesized molecules ...

Harris, Daniel K.

4

Facile synthesis and photoluminescence mechanism of graphene quantum dots  

NASA Astrophysics Data System (ADS)

We report a facile hydrothermal synthesis of intrinsic fluorescent graphene quantum dots (GQDs) with two-dimensional morphology. This synthesis uses glucose, concentrate sulfuric acid, and deionized water as reagents. Concentrated sulfuric acid is found to play a key role in controlling the transformation of as-prepared hydrothermal products from amorphous carbon nanodots to well-crystallized GQDs. These GQDs show typical absorption characteristic for graphene, and have nearly excitation-independent ultraviolet and blue intrinsic emissions. Temperature-dependent PL measurements have demonstrated strong electron-electron scattering and electron-phonon interactions, suggesting a similar temperature behavior of GQDs to inorganic semiconductor quantum dots. According to optical studies, the ultraviolet emission is found to originate from the recombination of electron-hole pairs localized in the C=C bonds, while the blue emission is from the electron transition of sp2 domains.

Yang, Ping; Zhou, Ligang; Zhang, Shenli; Wan, Neng; Pan, Wei; Shen, Wenzhong

2014-12-01

5

Improved Precursor Chemistry for the Synthesis of III-V Quantum Dots  

PubMed Central

The synthesis of III-V Quantum Dots has been long known to be more challenging than the synthesis of other types of inorganic quantum dots. This is attributed to highly reactive group-V precursors. We synthesized molecules that are suitable for use as group-V precursors and characterized their reactivity using multiple complementary techniques. We show that the size distribution of indium arsenide quantum dots indeed improves with decreased precursor reactivity. PMID:23228014

Harris, Daniel K.; Bawendi, Moungi G.

2012-01-01

6

Synthesis and enzymatic cleavage of dual-ligand quantum dots Sarah L. Sewell a  

E-print Network

Available online 27 November 2008 Keywords: Quantum dot Dual-ligand MMP-7 Targeted therapy NanotechnologySynthesis and enzymatic cleavage of dual-ligand quantum dots Sarah L. Sewell a , Todd D. Giorgio a Tissue specific targeting Site directed therapy promises to minimize treatment-limiting systemic effects

7

Synthesis and characterization of aqueous quantum dots for biomedical applications  

NASA Astrophysics Data System (ADS)

Quantum Dots (QDs) are semiconductor nanocrystals (1˜20 nm) exhibiting distinctive photoluminescence (PL) properties due to the quantum confinement effect. Having many advantages over organic dyes, such as broad excitation and resistance to photobleaching, QDs are widely used in bioapplications as one of most exciting nanobiotechnologies. To date, most commercial QDs are synthesized through the traditional organometallic method and contain toxic elements, such as cadmium, lead, mercury, arsenic, etc. The overall goal of this thesis study is to develop an aqueous synthesis method to produce nontoxic quantum dots with strong emission and good stability, suitable for biomedical imaging applications. Firstly, an aqueous, simple, environmentally friendly synthesis method was developed. With cadmium sulfide (CdS) QDs as an example system, various processing parameters and capping molecules were examined to improve the synthesis and optimize the PL properties. The obtained water soluble QDs exhibited ultra small size (˜5 nm), strong PL and good stability. Thereafter, using the aqueous method, the zinc sulfide (ZnS) QDs were synthesized with different capping molecules, i.e., 3-mercaptopropionic acid (MPA) and 3-(mercaptopropyl)trimethoxysilane (MPS). Especially, via a newly developed capping molecule replacement method, the present ZnS QDs exhibited bright blue emission with a quantum yield of 75% and more than 60 days lifetime in the ambient conditions. Two cytotoxicity tests with human endothelial cells verified the nontoxicity of the ZnS QDs by cell counting with Trypan blue staining and fluorescence assay with Alamar Blue. Taking advantage of the versatile surface chemistry, several strategies were explored to conjugate the water soluble QDs with biomolecules, i.e., antibody and streptavidin. Accordingly, the imaging of Salmonella t. cells and biotinylated microbeads has been successfully demonstrated. In addition, polyethylenimine (PEI)-QDs complex was formed and delivered into PC12 neuronal cells for intracellular imaging with uniform distribution. The water soluble QDs were also embedded in electrospun polymer fibers as fluorescent nanocomposite. In summary, the ease of aqueous processing and the excellent PL properties of the nontoxic water soluble ZnS QDs provide great potential for various in vivo applications.

Li, Hui

8

The use of heat transfer fluids in the synthesis of high-quality CdSe quantum dots, core/shell quantum dots, and quantum rods.  

PubMed

Fluorescent semiconductor nanoparticles, or quantum dots, have potential uses as an optical material, in which the optoelectronic properties can be tuned precisely by particle size. Advances in chemical synthesis have led to improvements in size and shape control, cost, and safety. A limiting step in large-scale production is identified to be the raw materials cost, in which a common synthesis solvent, octadecene, accounts for most of the materials cost for a batch of CdSe quantum dots. Thus, less expensive solvents are needed. In this paper, we identify heat transfer fluids, a class of organic liquids commonly used in chemical process industries to transport heat between unit operations, as alternative solvents for quantum dot synthesis. We specifically show that two heat transfer fluids can be used successfully in the synthesis of CdSe quantum dots with uniform particle sizes. We show that the synthesis chemistry for CdSe/CdS core/shell quantum dots and CdSe quantum rods can also be performed in heat transfer fluids. With the aid of a population balance model, we interpret the effect of different HT fluids on QD growth kinetics in terms of solvent effects, i.e., solvent viscosity, CdSe bulk solubility in the solvent, and surface free energy. PMID:20817962

Asokan, Subashini; Krueger, Karl M; Alkhawaldeh, Ammar; Carreon, Alessandra R; Mu, Zuze; Colvin, Vicki L; Mantzaris, Nikos V; Wong, Michael S

2005-10-01

9

The use of heat transfer fluids in the synthesis of high-quality CdSe quantum dots, core/shell quantum dots, and quantum rods  

NASA Astrophysics Data System (ADS)

Fluorescent semiconductor nanoparticles, or quantum dots, have potential uses as an optical material, in which the optoelectronic properties can be tuned precisely by particle size. Advances in chemical synthesis have led to improvements in size and shape control, cost, and safety. A limiting step in large-scale production is identified to be the raw materials cost, in which a common synthesis solvent, octadecene, accounts for most of the materials cost for a batch of CdSe quantum dots. Thus, less expensive solvents are needed. In this paper, we identify heat transfer fluids, a class of organic liquids commonly used in chemical process industries to transport heat between unit operations, as alternative solvents for quantum dot synthesis. We specifically show that two heat transfer fluids can be used successfully in the synthesis of CdSe quantum dots with uniform particle sizes. We show that the synthesis chemistry for CdSe/CdS core/shell quantum dots and CdSe quantum rods can also be performed in heat transfer fluids. With the aid of a population balance model, we interpret the effect of different HT fluids on QD growth kinetics in terms of solvent effects, i.e., solvent viscosity, CdSe bulk solubility in the solvent, and surface free energy.

Asokan, Subashini; Krueger, Karl M.; Alkhawaldeh, Ammar; Carreon, Alessandra R.; Mu, Zuze; Colvin, Vicki L.; Mantzaris, Nikos V.; Wong, Michael S.

2005-10-01

10

Quantum Dot Solar Cells  

NASA Technical Reports Server (NTRS)

We have been investigating the synthesis of quantum dots of CdSe, CuInS2, and CuInSe2 for use in an intermediate bandgap solar cell. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Bawendi, et. al., in the early 1990's. However, unlike previous work in this area we have also utilized single-source precursor molecules in the synthesis process. We will present XRD, TEM, SEM and EDS characterization of our initial attempts at fabricating these quantum dots. Investigation of the size distributions of these nanoparticles via laser light scattering and scanning electron microscopy will be presented. Theoretical estimates on appropriate quantum dot composition, size, and inter-dot spacing along with potential scenarios for solar cell fabrication will be discussed.

Raffaelle, Ryne P.; Castro, Stephanie L.; Hepp, Aloysius; Bailey, Sheila G.

2002-01-01

11

Synthesis and characterization of luminescent cadmium selenide/zinc selenide/zinc sulfide cholinomimetic quantum dots  

NASA Astrophysics Data System (ADS)

Luminescent quantum dots conjugated with highly selective molecular recognition ligands are widely used for targeting and imaging biological structures. In this paper, water soluble cholinomimetic cadmium selenide (core), zinc selenide/zinc sulfide (shell) quantum dots were synthesized for targeting cholinergic sites. Cholinomimetic specificity was incorporated by conjugation of the quantum dots to an aminated analogue of hemicholinium-15, a well known competitive inhibitor of the high affinity choline uptake transporter. Detailed evaluation of the nanocrystal synthesis and characterization of the final product was conducted by 1H and 31P NMR, absorption and emission spectroscopy, as well as transmission electron microscopy.Luminescent quantum dots conjugated with highly selective molecular recognition ligands are widely used for targeting and imaging biological structures. In this paper, water soluble cholinomimetic cadmium selenide (core), zinc selenide/zinc sulfide (shell) quantum dots were synthesized for targeting cholinergic sites. Cholinomimetic specificity was incorporated by conjugation of the quantum dots to an aminated analogue of hemicholinium-15, a well known competitive inhibitor of the high affinity choline uptake transporter. Detailed evaluation of the nanocrystal synthesis and characterization of the final product was conducted by 1H and 31P NMR, absorption and emission spectroscopy, as well as transmission electron microscopy. Electronic supplementary information (ESI) available: NMR spectra supporting the synthesis of the HC-15 QDs are available. See DOI: 10.1039/c2nr30713h

Gégout, Claire; McAtee, Maria L.; Bennett, Nichole M.; Viranga Tillekeratne, L. M.; Kirchhoff, Jon R.

2012-07-01

12

A Safer, Easier, Faster Synthesis for CdSe Quantum Dot Nanocrystals  

ERIC Educational Resources Information Center

The synthesis for CdSe quantum dot nanocrystals that vary in color and are a visually engaging way to demonstrate quantum effects in chemistry is presented. CdSe nanocrystals are synthesized from CdO and elemental Se using a kinetic growth method where particle size depends on reaction time.

Boatman, Elizabeth M.; Lisensky, George C.; Nordell, Karen J.

2005-01-01

13

Quantum Dots  

NSDL National Science Digital Library

This topic-in-depth addresses the characteristics and numerous applications of the semiconductor nanocrystals, quantum dots. First, Evident Technologies' Nanotechnology website provides a great summary about the properties of quantum dots (1 ). Users can learn about quantum dots' photoluminescence spectra, molecular coupling, quantum confinement, and their absorption spectra. The second website, created by Gunjan Mishra at the University of Nevada - Reno, is a downloadable slideshow illustrating the history, formation, and application of quantum dots (2). While created as part of a lecture series, this website provides students with a concise outline of the unique characteristics of the particles. Third, UCLA describes the combined research of chemists and engineers to use quantum dots as an inexpensive means of creating nanoscale circuitry for molecular computers of the future (3). Users can learn how the particles' photocatalytic properties make them a great candidate for improving the current method of creating interconnecting lines on silicon chips. Next, Stanislaus Wong at Stony Brook University presents his research in carbon nanotubes and semiconductor nanocrystals (4 ). After a short introduction about quantum dots, users can discover his group's efforts to understand these particles in order to implement them in the fields of chemistry and biology. The fifth site is a downloadable document by Victor Klimov at Los Alamos National Laboratory discussing the development of a new laser based on quantum dots (5 ). The site supplies a series of figures illustrating the nonradiative multiparticle auger recombinations in nanocrystal quantum dots, amplified spontaneous emissions, and more. Next, Nanotechweb compares new quantum discoveries in the 21st century to the ball-bearing inventions in the 20th century (6 ). Users can learn why scientists believe the particles can be utilized in medicine, security, and electronics. In an online article, Carnegie Mellon discusses how chemists are researching quantum dots to evaluate their effectiveness in treating diseases such as cancer (7). Users can discover how the scientists were able to produce quantum dots that fluoresced for an unprecedented eight months. The last site promotes the 2004 Quantum Dots Conference (8). Researchers can learn about the conference scope, the venue, invited speakers, and more.

14

Improvement of the luminescent properties of cadmium sulfide quantum dots by a post-synthesis modification  

NASA Astrophysics Data System (ADS)

Here the improvement of the luminescent properties of CdS quantum dots by a post-synthesis modification with aqueous solutions of NaOH at different concentrations is presented. The CdS quantum dots were synthesized by a microwave-assisted method using citrate ions as stabilizer. The addition of the hydroxide ions increased the intensity of the orange-red emission by about 80%. Besides, a violet-blue emission was achieved by means of this post-synthesis modification. The hydroxide ions control the precipitation equilibria of the CdS and Cd(OH)2, dissolving and precipitating the surface of the quantum dots. The NaOH treatment increases the number of traps, which produces less band-edge and more deep-trap emission, which explains the decrease and increase in the intensity of the violet-blue and orange-red emissions, respectively.

López, Israel; Gómez, Idalia

2014-11-01

15

Bioconjugated silicon quantum dots from one-step green synthesis.  

PubMed

Biofunctionalized silicon quantum dots were prepared through a one step strategy avoiding the use of chemical precursors. UV-Vis spectroscopy, Raman spectroscopy and HAADF-STEM prove oligonucleotide conjugation to the surface of silicon nanoparticle with an average size of 4 nm. The nanoparticle size results from the size-quenching effect during in situ conjugation. Photoemissive properties, conjugation efficiency and stability of these pure colloids were studied and demonstrate the bio-application potential, e.g. for nucleic acid vector delivery with semiconducting, biocompatible nanoparticles. PMID:22252263

Intartaglia, Romuald; Barchanski, Annette; Bagga, Komal; Genovese, Alessandro; Das, Gobind; Wagener, Philipp; Di Fabrizio, Enzo; Diaspro, Alberto; Brandi, Fernando; Barcikowski, Stephan

2012-02-21

16

Green synthesis of highly efficient CdSe quantum dots for quantum-dots-sensitized solar cells  

SciTech Connect

Green synthesis of CdSe quantum dots for application in the quantum-dots-sensitized solar cells (QDSCs) is investigated in this work. The CdSe QDs were prepared with glycerol as the solvent, with sharp emission peak, full width at half maximum around 30?nm, and absorption peak from 475?nm to 510?nm. The reaction is environmental friendly and energy saving. What's more, the green synthesized CdSe QDs are coherence to the maximum remittance region of the solar spectrum and suitable as sensitizers to assemble onto TiO{sub 2} electrodes for cell devices application. What's more, the dynamic procedure of the carriers' excitation, transportation, and recombination in the QDSCs are discussed. Because the recombination of the electrons from the conduction band of TiO{sub 2}'s to the electrolyte affects the efficiency of the solar cells greatly, 3-Mercaptopropionic acid capped water-dispersible QDs were used to cover the surface of TiO{sub 2}. The resulting green synthesized CdSe QDSCs with Cu{sub 2}S as the electrode show a photovoltaic performance with a conversion efficiency of 3.39%.

Gao, Bing; Shen, Chao; Zhang, Mengya; Yuan, Shuanglong; Yang, Yunxia, E-mail: yangyunxia@ecust.edu.cn, E-mail: grchen@ecust.edu.cn; Chen, Guorong, E-mail: yangyunxia@ecust.edu.cn, E-mail: grchen@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhang, Bo [Department of Physics, East China University of Science and Technology, Shanghai 200237 (China)

2014-05-21

17

Magnetic nanocrystals: Synthesis and properties of diluted magnetic semiconductor quantum dots  

Microsoft Academic Search

The chapters in this thesis describe the investigations into the synthesis and magnetic and electronic properties of diluted magnetic semiconductor quantum dots (DMS-QDs), specifically Co2+ and Mn2+-doped ZnO and Co2+:ZnSe. Homogeneous dopant incorporation and substitutional speciation of Co2+ and Mn2+ in ZnO QDs during solution synthesis at room temperature were confirmed by electronic absorption and electron paramagnetic resonance spectroscopy measurements.

Nicholas S. Norberg

2006-01-01

18

Microwave-assisted low temperature synthesis of wurtzite ZnS quantum dots  

SciTech Connect

In this work we report, for the first time, on microwave assisted synthesis of wurtzite ZnS quantum dots (QDs) in controlled reaction at temperature as low as 150 Degree-Sign C. The synthesis can be done in different microwave absorbing solvents with multisource or single source precursors. The QDs are less than 3 nm in size as characterized by transmission electron microscopy (TEM) using selected area electron diffraction (SAED) patterns to confirm the wurtzite phase of ZnS QDs. The optical properties were investigated by UV-Vis absorption which shows blue shift in absorption compared to bulk wurtzite ZnS due to quantum confinement effects. The photoluminescence (PL) spectra of QDs reveal point defects related emission of ZnS QDs. - Graphical abstract: Microwave assisted synthesis of wurtzite ZnS quantum dots (QDs) have been achieved in controlled reaction at temperature as low as 150 Degree-Sign C. The synthesis was performed in different microwave absorbing solvents with multisource or single source precursors for very short reaction periods due to effective heating with microwaves. Highlights: Black-Right-Pointing-Pointer Wurtzite a high temperature phase of ZnS was synthesized at low temperature. Black-Right-Pointing-Pointer Low temperature synthesis was possible because of the use of microwave absorbing solvents. Black-Right-Pointing-Pointer Capping agent was used to control the size of Quantum Dots. Black-Right-Pointing-Pointer Two different systems were developed using single molecular precursor and multisource precursors.

Shahid, Robina, E-mail: rkhan@kth.se [Division of Functional Materials, Royal Institute of Technology (KTH), 16440, Kista, Stockholm (Sweden); Toprak, Muhammet S., E-mail: toprak@kth.se [Division of Functional Materials, Royal Institute of Technology (KTH), 16440, Kista, Stockholm (Sweden); Muhammed, Mamoun [Division of Functional Materials, Royal Institute of Technology (KTH), 16440, Kista, Stockholm (Sweden)

2012-03-15

19

Quantum Dots  

NSDL National Science Digital Library

This presentation, created by Gunjan Mishra at the University of Nevada - Reno, is a downloadable slideshow illustrating the history, formation, and application of quantum dots. While created as part of a lecture series, this website provides students with a concise outline of the unique characteristics of the particles.

Mishra, Gunjan

20

Synthesis and application of quantum dots-based biosensor  

NASA Astrophysics Data System (ADS)

Trichlorfon (TF) is one of the organophosphorus pesticides used widely in agriculture. The content of this paper includes the exploitation of dominant optical properties of the quantum dots consisting of a core and multilayer shell CdSe/ZnSe/ZnS (QD). A biosensor was fabricated on the basis of this QD for rapidly detecting the residues of trichlofon pesticide with concentrations of 0.01 ppm to 5 ppm. The measurements were carried out to examine the morphology of the QD structure and fluorescent properties such as transmission electron microscopy, x-ray diffraction, absorption spectroscopy and fluorescence spectroscopy. The linking mechanism among biological agents and the specificity of the acetylcholinesterase enzymes in hydrolysis reaction of acetylthiolcholine was applied to create the changes in surroundings, affecting the fluorescence of the QD. In particular, the mechanism of bioluminescence resonance energy transfer (BRET) is discussed to clearly explain the recombination of electrons and holes in the QD.

Hai Nguyen, Ngoc; Giang Duong, Thi; Hoang, Van Nong; Thang Pham, Nam; Cao Dao, Tran; Nga Pham, Thu

2015-03-01

21

Synthesis and characterization of quantum dots designed for biomedical use.  

PubMed

Semiconductor quantum dots (QDs) have become promising nanoparticles for a wide variety of biomedical applications. However, the major drawback of QDs is their potential toxicity. Here, we determined possible cytotoxic effects of a set of QDs by systematic photophysical evaluation in vitro as well as in vivo. QDs were synthesized by the hydrothermal aqueous route with sizes in the range of 2.0-3.5 nm. Cytotoxic effects of QDs were studied in the human pancreatic carcinoid cell line BON. Cadmium telluride QDs with or without zinc sulfide shell and coated with 3-mercaptopropionic acid (MPA) were highly cytotoxic even at nanomolar concentrations. Capping with l-glutathione (GSH) or thioglycolic acid (TGA) reduced the cytotoxicity of cadmium telluride QDs and cadmium selenide QDs. Determination of the toxicity of QDs revealed IC50 values in the micromolar range. In vivo studies showed good tolerability of CdSe QDs with ZnS shell and GSH capping. We could demonstrate that QDs with ZnS shell and GSH capping exhibit low toxicity and good tolerability in cell models and living organisms. These QDs appear to be promising candidates for biomedical applications such as drug delivery for enhanced chemotherapy or targeted delivery of light sensitive substances for photodynamic therapy. PMID:24657286

Kuzyniak, Weronika; Adegoke, Oluwasesan; Sekhosana, Kutloano; D'Souza, Sarah; Tshangana, Sesethu Charmaine; Hoffmann, Björn; Ermilov, Eugeny A; Nyokong, Tebello; Höpfner, Michael

2014-05-15

22

Synthesis of indium sulphide quantum dots in perfluoronated ionomer membrane  

SciTech Connect

In this paper, we demonstrate a simple and efficient method for synthesis of ?-indium sulphide (In{sub 2}S{sub 3}) nanoparticles embedded in an ionomer matrix (nafion membrane). The influence of reaction temperature on structural, compositional and optical properties of these films were analysed using X-Ray Diffraction, EDAX, UV-Vis absorption spectroscopy and photoluminescence studies. Average particle diameter was estimated using modified effective mass approximation method. Absorption spectra of In{sub 2}S{sub 3} nanoparticles show blue shift compared to bulk In{sub 2}S{sub 3}, indicating strong quantum size confinement effects. PL emission in the wavelength range 530–600 nm was recorded using a 488 nm line from an Ar{sup +} laser as the excitation source.

Sumi, R. [Centre for Nanotechnology Research, VIT University, Vellore (India); Warrier, Anita R.; Vijayan, C. [Department of Physics, Indian Institute of Technology, Chennai (India)

2014-01-28

23

Size control by rate control in colloidal PbSe quantum dot synthesis.  

PubMed

A recently demonstrated approach to control the size of colloidal nanoparticles, "size control by rate control", which was validated on the examples of colloidal CdSe- and CdS-quantum dot (CQD) synthesis, appears to be a general strategy for designing technically applicable CQD-syntheses. The "size control by rate control" concept allows full-yield syntheses of ensembles of CQDs with different sizes by tuning the solute formation rate. In this work, we extended this strategy to dialkylphosphine enhanced hot-injection synthesis of PbSe-CQDs. Furthermore, we provide new insight into the reaction mechanism of dialkylphosphine enhancement in TOPSe based CQD-syntheses. PMID:25721010

?apek, Richard Karel; Yanover, Dianna; Lifshitz, Efrat

2015-03-12

24

Synthesis and structural characterization of ZnTe/ZnSe core/shell tunable quantum dots  

E-print Network

Colloidal semiconductor nanocrystals or quantum dots have attracted much attention recently with their unique optical properties. Here we present a novel approach to synthesize ZnTe/ZnSe core/shell tunable quantum dots. ...

Guan, Juan

2008-01-01

25

Design and synthesis of heterostructured quantum dots with dual emission in the visible and infrared.  

PubMed

The unique optical properties exhibited by visible emitting core/shell quantum dots with especially thick shells are the focus of widespread study, but have yet to be realized in infrared (IR)-active nanostructures. We apply an effective-mass model to identify PbSe/CdSe core/shell quantum dots as a promising system for achieving this goal. We then synthesize colloidal PbSe/CdSe quantum dots with shell thicknesses of up to 4 nm that exhibit unusually slow hole intraband relaxation from shell to core states, as evidenced by the emergence of dual emission, i.e., IR photoluminescence from the PbSe core observed simultaneously with visible emission from the CdSe shell. In addition to the large shell thickness, the development of slowed intraband relaxation is facilitated by the existence of a sharp core-shell interface without discernible alloying. Growth of thick shells without interfacial alloying or incidental formation of homogeneous CdSe nanocrystals was accomplished using insights attained via a systematic study of the dynamics of the cation-exchange synthesis of both PbSe/CdSe and the related system PbS/CdS. Finally, we show that the efficiency of the visible photoluminescence can be greatly enhanced by inorganic passivation. PMID:25427007

Lin, Qianglu; Makarov, Nikolay S; Koh, Weon-Kyu; Velizhanin, Kirill A; Cirloganu, Claudiu M; Luo, Hongmei; Klimov, Victor I; Pietryga, Jeffrey M

2015-01-27

26

Microchemical systems for the synthesis of nanostructures : quantum dots  

E-print Network

We have developed a continuous multi-stage high-temperature and high-pressure microfluidic system. High-pressure conditions enabled the use low molecular weight solvents that have previously not been available for quantum ...

Baek, Jinyoung

2012-01-01

27

Synthesis of cadmium selenide colloidal quantum dots in aquatic medium  

NASA Astrophysics Data System (ADS)

Cadmium selenide nanocrystals were prepared in water phase through facile wet chemistry technique with thioglycolic acid (TGA) acting as capping agent. Structures were characterized using X-ray diffraction (XRD), UV-vis absorption and photoluminescence spectroscopies. Depending on synthesis conditions nanoparticles exhibit photoluminescence with maximum in the region of 580 – 680 nm. Influence of technological parameters and component concentrations on nanocrystals average size and properties was studied.

Mazing, D. S.; Matyushkin, L. B.; Aleksandrova, O. A.; Mikhailov, I. I.; Moshnikov, V. A.; Tarasov, S. A.

2014-12-01

28

Synthesis of CdSe/CdS core/shell quantum dots for biological sensing applications  

NASA Astrophysics Data System (ADS)

A simple, room temperature, one-pot method to produce biocompatible CdSe/CdS quantum dots (QDs) in aqueous solution is presented. CdCl II and NaSeSO 3 are the precursors for the CdSe core where gelatin is used as an inhibitor. A CdS shell is grown by injecting H IIS gas, generated by a reaction between sulfuric and sodium sulfide, into the solution. This fast, low cost synthesis approach is simple for scale-up production of QDs. Transmission electron microscopy shows that the bare CdSe quantum dots were 2-3 nm in diameter. The emission peak from the CdSe can be tuned over most of the visible wavelength (from 520nm to 600 nm) as the diameter of the QDs is allowed to increase before growth of the CdS shell. The core/shell structure was confirmed via UV-Vis absorption spectroscopy, PL studies, and structural characterization (XRD). The higher band gap CdS coatings significantly enhanced the photoluminescence (PL) of CdSe quantum dots by a factor of 2-3. However, the large lattice mismatch between the CdS coating and the CdSe core results in eventually quenched luminescence from CdSe with thicker CdS coatings. To increase the photochemical stability and biocompatibility of the CdSe/CdS QDs, a silica coating is grown directly on the QDs. Preliminary data indicates that the PL from CdSe/CdS QDs post-growth is affected as the applied electric field is altered. Efforts to functionalize the QDs with DNA and antibodies have begun. Studies have been initiated to demonstrate the feasibility of microinjecting the QDs into Xenopus embryo with minimal post-synthesis processing.

Xu, Yang; Mariam, Poojitha; Sethi, Varun; Jones, Mason; Meehan, Kathleen

2006-02-01

29

Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties  

NASA Astrophysics Data System (ADS)

Graphene quantum dots (GQDs) have various alluring properties and potential applications, but their large-scale applications are limited by current synthetic methods that commonly produce GQDs in small amounts. Moreover, GQDs usually exhibit polycrystalline or highly defective structures and thus poor optical properties. Here we report the gram-scale synthesis of single-crystalline GQDs by a facile molecular fusion route under mild and green hydrothermal conditions. The synthesis involves the nitration of pyrene followed by hydrothermal treatment in alkaline aqueous solutions, where alkaline species play a crucial role in tuning their size, functionalization and optical properties. The single-crystalline GQDs are bestowed with excellent optical properties such as bright excitonic fluorescence, strong excitonic absorption bands extending to the visible region, large molar extinction coefficients and long-term photostability. These high-quality GQDs can find a large array of novel applications in bioimaging, biosensing, light emitting diodes, solar cells, hydrogen production, fuel cells and supercapacitors.

Wang, Liang; Wang, Yanli; Xu, Tao; Liao, Haobo; Yao, Chenjie; Liu, Yuan; Li, Zhen; Chen, Zhiwen; Pan, Dengyu; Sun, Litao; Wu, Minghong

2014-10-01

30

Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties.  

PubMed

Graphene quantum dots (GQDs) have various alluring properties and potential applications, but their large-scale applications are limited by current synthetic methods that commonly produce GQDs in small amounts. Moreover, GQDs usually exhibit polycrystalline or highly defective structures and thus poor optical properties. Here we report the gram-scale synthesis of single-crystalline GQDs by a facile molecular fusion route under mild and green hydrothermal conditions. The synthesis involves the nitration of pyrene followed by hydrothermal treatment in alkaline aqueous solutions, where alkaline species play a crucial role in tuning their size, functionalization and optical properties. The single-crystalline GQDs are bestowed with excellent optical properties such as bright excitonic fluorescence, strong excitonic absorption bands extending to the visible region, large molar extinction coefficients and long-term photostability. These high-quality GQDs can find a large array of novel applications in bioimaging, biosensing, light emitting diodes, solar cells, hydrogen production, fuel cells and supercapacitors. PMID:25348348

Wang, Liang; Wang, Yanli; Xu, Tao; Liao, Haobo; Yao, Chenjie; Liu, Yuan; Li, Zhen; Chen, Zhiwen; Pan, Dengyu; Sun, Litao; Wu, Minghong

2014-01-01

31

Size control by rate control in colloidal PbSe quantum dot synthesis  

NASA Astrophysics Data System (ADS)

A recently demonstrated approach to control the size of colloidal nanoparticles, ``size control by rate control'', which was validated on the examples of colloidal CdSe- and CdS-quantum dot (CQD) synthesis, appears to be a general strategy for designing technically applicable CQD-syntheses. The ``size control by rate control'' concept allows full-yield syntheses of ensembles of CQDs with different sizes by tuning the solute formation rate. In this work, we extended this strategy to dialkylphosphine enhanced hot-injection synthesis of PbSe-CQDs. Furthermore, we provide new insight into the reaction mechanism of dialkylphosphine enhancement in TOPSe based CQD-syntheses.A recently demonstrated approach to control the size of colloidal nanoparticles, ``size control by rate control'', which was validated on the examples of colloidal CdSe- and CdS-quantum dot (CQD) synthesis, appears to be a general strategy for designing technically applicable CQD-syntheses. The ``size control by rate control'' concept allows full-yield syntheses of ensembles of CQDs with different sizes by tuning the solute formation rate. In this work, we extended this strategy to dialkylphosphine enhanced hot-injection synthesis of PbSe-CQDs. Furthermore, we provide new insight into the reaction mechanism of dialkylphosphine enhancement in TOPSe based CQD-syntheses. Electronic supplementary information (ESI) available: Additional data about the reaction and growth kinetics, NMR-data and exemplary TEM images of PbSe-CQDs prepared by the procedure described in this publication. See DOI: 10.1039/c5nr00028a

?apek, Richard Karel; Yanover, Dianna; Lifshitz, Efrat

2015-03-01

32

Compact biocompatible quantum dots via RAFT-mediated synthesis of imidazole-based random copolymer ligand  

E-print Network

We present a new class of polymeric ligands for quantum dot (QD) water solubilization to yield biocompatible and derivatizable QDs with compact size (10?12 nm diameter), high quantum yields (>50%), excellent stability ...

Liu, Wenhao

33

Facile synthesis of monodisperse Co3O4 quantum dots with efficient oxygen evolution activity.  

PubMed

Monodisperse, water-dispersible Co3O4 quantum dots with sizes of around 4.5 nm are prepared through a simple solution method. The resultant cobalt oxide quantum dots exhibit excellent visible-light-driven oxygen evolution activities in the [Ru(bpy)3](2+)-persulfate system under mild pH conditions. PMID:25485907

Shi, Nan; Cheng, Wei; Zhou, Han; Fan, Tongxiang; Niederberger, Markus

2015-01-25

34

Continuous-flow reactor-based synthesis of carbohydrate and dihydrolipoic acid-capped quantum dots.  

PubMed

A detailed protocol for the large-scale synthesis of carbohydrate and dihydrolipoic acid (DHLA)-coated CdSe/ZnS and CdTe/ZnS nanoparticles using continuous flow reactors is described here. Three continuous flow microreaction systems, operating at three different temperatures, are used for the synthesis of mannose-, galactose- or DHLA-functionalized quantum dots (QDs). In the first step of synthesis, the CdSe and CdTe nanoparticles are prepared. The size and spectral properties of the CdSe core of the nanoparticles are controlled by adjustment of the residence time and the temperature. As a second step, the zinc sulfide capping under homogenous conditions is carried out at a substantially lower temperature than is required for nanoparticle growth in batch processes. Finally, the trioctylphosphine/oleic acid ligand is effectively replaced with either carbohydrate PEG-thiol moieties or DHLA at 60 °C. This new protocol allows the synthesis of biologically active fluorescent QDs in 4 d. PMID:21799489

Laurino, Paola; Kikkeri, Raghavendra; Seeberger, Peter H

2011-08-01

35

Microwave-assisted synthesis of water-dispersed CdTe/CdSe core/shell type II quantum dots  

PubMed Central

A facile synthesis of mercaptanacid-capped CdTe/CdSe (core/shell) type II quantum dots in aqueous solution by means of a microwave-assisted approach is reported. The results of X-ray diffraction and high-resolution transmission electron microscopy revealed that the as-prepared CdTe/CdSe quantum dots had a core/shell structure with high crystallinity. The core/shell quantum dots exhibit tunable fluorescence emissions by controlling the thickness of the CdSe shell. The photoluminescent properties were dramatically improved through UV-illuminated treatment, and the time-resolved fluorescence spectra showed that there is a gradual increase of decay lifetime with the thickness of CdSe shell. PMID:21711922

2011-01-01

36

Tuning the Synthesis of Ternary Lead Chalcogenide Quantum Dots by Balancing Precursor Reactivity  

SciTech Connect

We report the synthesis and characterization of composition-tunable ternary lead chalcogenide alloys PbSe{sub x}Te{sub 1-x}, PbS{sub x}Te{sub 1-x}, and PbS{sub x}Se{sub 1-x}. This work explores the relative reaction rates of chalcogenide precursors to produce alloyed quantum dots (QDs), and we find the highly reactive bis(trimethylsilyl) (TMS{sub 2})-based precursors allow for the homogeneous incorporation of anions. By varying the Pb to oleic acid ratio, we demonstrate size control of similar composition alloys. We find the resulting QDs are Pb-rich but the Pb/anion ratio is size- and composition-dependent in all alloyed QD as well as in PbSe, PbTe, and PbS QDs and is consistent with the reaction rates of the anion precursors. A more reactive anion precursor results in a lower Pb/anion ratio.

Smith, Danielle K.; Luther, Joseph M; Semonin, Octavi Escala; Nozik, Arthur J; Beard, Matthew C

2010-01-01

37

One-step synthesis of biofunctional carbon quantum dots for bacterial labeling.  

PubMed

In this study, we used a simple one-step dry heating method to synthesize mannose-modified fluorescent carbon quantum dots (Man-CQDs) from solid ammonium citrate and mannose, and successfully applied for labeling Escherichia coli. The highly soluble Man-CQDs had an average particle diameter of 3.1±1.2nm and exhibited a quantum yield of 9.8% at excitation and emission wavelengths of 365 and 450nm, respectively. The fluorescent Man-CQDs could selectively bind to the FimH lectin unit in the flagella of the wild-type 1 E. coli K12 strain. We optimized the labeling efficiency of the Man-CQDs by controlling the ratio of ammonium citrate to mannose during their synthesis. The specific binding of the mannose units to E. coli allowed quantitative detection of the bacteria at levels down to 450 colony forming units mL(-1) in lab samples, and facilitate the application of the Man-CQDs for bacterial analyses of real samples (tap water, apple juice, human urine). The synthesis of our Man-CQDs, their labeling, and their use in the detection of bacteria were all simple, inexpensive and efficient processes. PMID:25557286

Weng, Cheng-I; Chang, Huan-Tsung; Lin, Chia-Hua; Shen, Yu-Wei; Unnikrishnan, Binesh; Li, Yu-Jia; Huang, Chih-Ching

2015-06-15

38

Synthesis and enhanced fluorescence of Ag doped CdTe semiconductor quantum dots  

NASA Astrophysics Data System (ADS)

Doping with intentional impurities is an intriguing way to tune the properties of semiconductor nanocrystals. However, the synthesis of some specific doped semiconductor nanocrystals remains a challenge and the doping mechanism in this strongly confined system is still not clearly understood. In this work, we report, for the first time, the synthesis of stable and water-soluble Ag-doped CdTe semiconductor quantum dots (SQDs) via a facile aqueous approach. Experimental characterization demonstrated the efficient doping of the Ag impurities into the CdTe SQDs with an appropriate reaction time. By doping 0.3% Ag impurities, the Stokes shift is decreased by 120 meV, the fluorescence intensity is enhanced more than 3 times, the radiative rate is enhanced 4.2 times, and the non-radiative rate is efficiently suppressed. These observations reveal that the fluorescence enhancement in Ag-doped CdTe SQDs is mainly attributed to the minimization of surface defects, filling of the trap states, and the enhancement of the radiative rate by the silver dopants. Our results suggest that the silver doping is an efficient method for tuning the optical properties of the CdTe SQDs.Doping with intentional impurities is an intriguing way to tune the properties of semiconductor nanocrystals. However, the synthesis of some specific doped semiconductor nanocrystals remains a challenge and the doping mechanism in this strongly confined system is still not clearly understood. In this work, we report, for the first time, the synthesis of stable and water-soluble Ag-doped CdTe semiconductor quantum dots (SQDs) via a facile aqueous approach. Experimental characterization demonstrated the efficient doping of the Ag impurities into the CdTe SQDs with an appropriate reaction time. By doping 0.3% Ag impurities, the Stokes shift is decreased by 120 meV, the fluorescence intensity is enhanced more than 3 times, the radiative rate is enhanced 4.2 times, and the non-radiative rate is efficiently suppressed. These observations reveal that the fluorescence enhancement in Ag-doped CdTe SQDs is mainly attributed to the minimization of surface defects, filling of the trap states, and the enhancement of the radiative rate by the silver dopants. Our results suggest that the silver doping is an efficient method for tuning the optical properties of the CdTe SQDs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05731g

Ding, Si-Jing; Liang, Shan; Nan, Fan; Liu, Xiao-Li; Wang, Jia-Hong; Zhou, Li; Yu, Xue-Feng; Hao, Zhong-Hua; Wang, Qu-Quan

2015-01-01

39

Low-cost and gram-scale synthesis of water-soluble Cu-In-S/ZnS core/shell quantum dots in an electric pressure cooker.  

PubMed

We report an electric pressure cooker for large-scale synthesis of water-soluble Cu-In-S/ZnS core/shell quantum dots. Low-cost thioglycolic acid and sodium citrate were used as the dual stabilizers. ?3 grams of quantum dots with a tunable emission from 545 to 610 nm and quantum yield up to 40% were obtained in a batch. PMID:24337019

Chen, Yanyan; Li, Shenjie; Huang, Lijian; Pan, Daocheng

2014-01-01

40

Quantum Dots: Theory  

E-print Network

functional theory, the e?ect of strain appears naturally intheory; electronic structure; empirical pseudopotentials; k · p method; quantum dots; Quantum Monte Carlo; strain;strain 3. MANY-BODY APPROACHES 3.1 Time dependent density functional theory

Vukmirovic, Nenad

2010-01-01

41

Quantum Dots: Theory  

SciTech Connect

This review covers the description of the methodologies typically used for the calculation of the electronic structure of self-assembled and colloidal quantum dots. These are illustrated by the results of their application to a selected set of physical effects in quantum dots.

Vukmirovic, Nenad; Wang, Lin-Wang

2009-11-10

42

6-Mercaptohexanoic acid assisted synthesis of high quality InP quantum dots for optoelectronic applications  

NASA Astrophysics Data System (ADS)

Indium phosphide semiconductor quantum dots are of significant heed as their applications encompass a spacious concatenation in LEDs and solar cells technologies. For improving their serviceable prominence, there is a real demand for a fashion that furnishes prompt and large mass production of mightily monodispersed nanoparticles. This study conveys an efficacious and fast recipe of generating substantially monodispersed InP quantum dots via water based route technique using a novel surfactant. Herein, InP QDs have been prepared using 6-mercaptohexanoic acid for achieving an effective surface passivation of monodispersed InP QDs with highly luminescence at temperature 50 °C. The as prepared quantum dots were investigated by transmission electron microscopy, luminescence spectroscopy, and X-ray diffraction. The XRD depicted that the InP quantum dots have a cubic zinc blend structure. TEM image revealed that the prepared quantum dots are monodispersed and their average particle size of about 4 nm. Energy dispersive X-ray spectroscopy confirmed the existence of organic ligand as a shell around InP nanoparticles. Time resolved spectra depicted that the capping agent passivated the InP QDs surface and enhanced the luminescence emission.

Mahmoud, Waleed E.; Chang, Y. C.; Al-Ghamdi, A. A.; Al-Marzouki, F.; Bronstein, Lyudmila M.

2013-04-01

43

New quantum dot sensors  

NASA Astrophysics Data System (ADS)

Quantum dots (QDs) are fluorescent semiconductor (e.g. II-VI) nanocrystals, which have a strong characteristic spectral emission. This emission is tunable to a desired energy by selecting variable particle size, size distribution and composition of the nanocrystals. QDs have recently attracted enormous interest due to their unique photophysical properties and range of potential applications in photonics and biochemistry. The main aim of our work is develop new chiral quantum dots (QDs) and establish fundamental principles influencing their structure, properties and biosensing behaviour. Here we present the synthesis and characterisation of chiral CdSe semiconductor nanoparticles and their utilisation as new chiral biosensors. Penicillamine stabilised CdSe nanoparticles have shown both very strong and very broad luminescence spectra. Circular dichroism (CD) spectroscopy studies have revealed that the D- and Lpenicillamine stabilised CdSe QDs demonstrate circular dichroism and possess almost identical mirror images of CD signals. Studies of photoluminescence and CD spectra have shown that there is a clear relationship between defect emission and CD activity. We have also demonstrated that these new QDs can serve as fluorescent nanosensors for various chiral biomolecules including nucleic acids. These novel nanosensors can be potentially utilized for detection of various chiral biological and chemical species with the broad range of potential applications.

Gun'ko, Y. K.; Moloney, M. M.; Gallagher, S.; Govan, J.; Hanley, C.

2010-04-01

44

Quantum computation with quantum dots  

Microsoft Academic Search

We propose an implementation of a universal set of one- and two-quantum-bit gates for quantum computation using the spin states of coupled single-electron quantum dots. Desired operations are effected by the gating of the tunneling barrier between neighboring dots. Several measures of the gate quality are computed within a recently derived spin master equation incorporating decoherence caused by a prototypical

Daniel Loss; David P. Divincenzo

1998-01-01

45

Self-organized ZnSe quantum dots: synthesis and characterization.  

PubMed

Self-organized ZnSe quantum dots (Q-ZnSe) were grown on indium tin oxide substrate using wet chemical technique without or in presence of copper and manganese dopants. The structural, morphological and luminescence properties of the as grown Q-dot films have been investigated, using X-ray diffraction, transmission electron microscopy, atomic force microscopy and optical and luminescence spectroscopy. Composition of the samples were analyzed using atomic absorption spectroscopy. The quantum dots have been shown to deposit in a compact, uniform and organized array on the indium tin oxide substrate. The size dependent blue shift in the experimentally determined absorption edge has been compared with the theoretical predictions based on the effective mass and tight binding approximations. It is shown that the experimentally determined absorption edges depart significantly from the theoretically calculated values. The photoluminescence properties of the undoped as well as doped Q-ZnSe have also been discussed. PMID:18468182

Kaushik, Diksha; Singh, R R; Sharma, A B; Gupta, D; Sharma, M; Pandey, R K

2008-03-01

46

Synthesis and optical properties of cadmium selenide quantum dots for white light-emitting diode application  

SciTech Connect

Highlights: ? Stable CdSe QDs were synthesized by the one-step and two-level process respectively. ? The fabricated white LEDs show good white balance. ? CdSe QDs present well green to yellow band luminescence. ? CdSe QDs displayed a broad excitation band. - Abstract: Yellow light-emitting cadmium selenide quantum dots were synthesized using one-step and two-step methods in an aqueous medium. The structural luminescent properties of these quantum dots were investigated. The obtained cadmium selenide quantum dots displayed a broad excitation band suitable for blue or near-ultraviolet light-emitting diode applications. White light-emitting diodes were fabricated by coating the cadmium selenide samples onto a 460 nm-emitting indium gallium nitrite chip. Both samples exhibited good white balance. Under a 20 mA working current, the white light-emitting diode fabricated via the one-step and two-step methods showed Commission Internationale de l’Éclairage coordinates at (0.27, 0.23) and (0.27, 0.33), respectively, and a color rendering index equal to 41 and 37, respectively. The one-step approach was simpler, greener, and more effective than the two-step approach. The one-step approach can be enhanced by combining cadmium selenide quantum dots with proper phosphors.

Xu, Xianmei; Wang, Yilin; Gule, Teri; Luo, Qiang [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53000 (China); Zhou, Liya, E-mail: zhouliyatf@163.com [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53000 (China); Gong, Fuzhong [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53000 (China)

2013-03-15

47

Organophosphorus acid anhydrolase bio-template for the synthesis of CdS quantum dots.  

PubMed

A direct conjugation of organophosphorus acid anhydrolase (OPAA) with CdS quantum dots was prepared via arrested precipitation within the enzyme matrix. The bio-conjugate was found not only to retain enzyme conformational structure but also to retain enzyme activity and be effective at detecting diisopropyl fluorophosphate (DFP) at the micro molar level. PMID:21597641

Zhao, Liang; Gattás-Asfura, Kerim M; Xu, Jianmin; Patel, Ravi A; Dadlani, Anup; Sillero-Mahinay, Myrna; Cushmore, Marie; Rastogi, Vipin K; Shah, Saumil S; Leblanc, Roger M

2011-07-01

48

CdTe and CdSe quantum dots: synthesis, characterizations and applications in agriculture  

NASA Astrophysics Data System (ADS)

This paper highlights the results of the whole work including the synthesis of highly luminescent quantum dots (QDs), characterizations and testing applications of them in different kinds of sensors. Concretely, it presents: (i) the successful synthesis of colloidal CdTe and CdSe QDs, their core/shell structures with single- and/or double-shell made by CdS, ZnS or ZnSe/ZnS; (ii) morphology, structural and optical characterizations of the synthesized QDs; and (iii) testing examples of QDs as the fluorescence labels for agricultural-bio-medical objects (for tracing residual pesticide in agricultural products, residual clenbuterol in meat/milk and for detection of H5N1 avian influenza virus in breeding farms). Overall, the results show that the synthesized QDs have very good crystallinity, spherical shape and strongly emit at the desired wavelengths between ˜500 and 700 nm with the luminescence quantum yield (LQY) of 30–85%. These synthesized QDs were used in fabrication of the three testing fluorescence QD-based sensors for the detection of residual pesticides, clenbuterol and H5N1 avian influenza virus. The specific detection of parathion methyl (PM) pesticide at a content as low as 0.05 ppm has been realized with the biosensors made from CdTe/CdS and CdSe/ZnSe/ZnS QDs and the acetylcholinesterase (AChE) enzymes. Fluorescence resonance energy transfer (FRET)-based nanosensors using CdTe/CdS QDs conjugated with 2-amino-8-naphthol-6-sulfonic acid were fabricated that enable detection of diazotized clenbuterol at a content as low as 10 pg ml?1. For detection of H5N1 avian influenza virus, fluorescence biosensors using CdTe/CdS QDs bound on the surface of chromatophores extracted and purified from bacteria Rhodospirillum rubrum were prepared and characterized. The specific detection of H5N1 avian influenza virus in the range of 3–50 ng ?l?1 with a detection limit of 3 ng ?L?1 has been performed based on the antibody-antigen recognition.

Dieu Thuy Ung, Thi; Tran, Thi Kim Chi; Nga Pham, Thu; Nghia Nguyen, Duc; Khang Dinh, Duy; Liem Nguyen, Quang

2012-12-01

49

Synthesis and optical property of lead sulfide quantum dot materials by the sol-gel method  

NASA Astrophysics Data System (ADS)

This research has attempted to investigate the effect of nanocrystallite surface on the quantum confinement using PbS quantum dot materials since the surface-to-volume ratio of such small nanocrystallites becomes very large in the small size region. The fabrication processes of PbS quantum dot materials have been established using the sol-gel method. Two types of matrices, 5/20/75 sodium borosilicates (Na2O : B2O3 : SiO 2 = 5 : 20 : 75 [molar %]) (NBS) and 20180 borosilicates (B2O : SiO2 = 20 : 80 [molar %]) (BS), were selected for this study. A narrow distribution of PbS quantum dots can be achieved by using (3-mercaptopropyl)trimethoxysilane (STMOS) since the mercapto group of STMOS anchors lead ions to the matrix through a reaction between -SH and Pb2+. It has also been confirmed that the PbS crystallite size was almost independent of the densification conditions, which means that neither Ostwald-ripening nor agglomeration took place during the process. The average crystallite sizes of 5.0 mole % PbS doped bulk samples were typically 12--13 nm and their standard deviations were estimated to be 2--3 nm for both NBS and BS systems. The optical behavior of quantum dots may be closely related to the surface chemistry. By preparing PbS quantum dots in either of matrices, i.e., NBS or BS system, two (2) surface effects have been introduced. Core-shell heterogeneous clusters such as the composite structure with a metallic shell could be expected to enhance the optical response. The optical absorption spectra of thin film samples indicate that partially reduced samples have quite different behaviors compared with normal samples densified under an inert gas atmosphere. This implies that the reduction treatment may alter the electronic structures of these nanocomposite materials. The distinct absorption peaks at ˜2200 nm along with overlap of other peaks at ˜2240--2280 nm were observed, which may originate in the quantum confinement within a cubic or rectangular cavity. The absorption peaks of the NBS system samples seemed to possess more structures compared with those of the BS system. The difference in the densification temperatures between the BS system and the NBS system may be one of the causes for this phenomenon. For the partially reduced samples, some characteristic structures that could be observed for non-reduced ones seemed to be suppressed to some extent through the reduction treatment, which may result from the change in shape of PbS crystallites through the reduction. (Abstract shortened by UMI.)

Hoshino, Yasukazu

50

Synthesis of Non-blinking Semiconductor Quantum Dots Emitting in the Near-Infrared  

SciTech Connect

Our previous work demonstrates that Quasi-Type II CdSe/CdS core-shell quantum dots with thick shells (3-5 nm) exhibit unique photophysical characteristics, including improved chemical robustness over typical thin-shelled core/shell systems and the elimination of blinking through suppression of nonradiative Auger recombination. Here we describe a new thick-shelled heterostructure, InP/CdS, which exhibits a Type II bandgap alignment producing near-infrared (NIR) emission. Samples with a range of shell thicknesses were synthesized, enabling shell-thickness-dependent study of the absorbance and emission spectra, fluorescence lifetimes, and quantum yields. InP/CdS/ZnS core/shell/shell structures were also synthesized to reduce cadmium exposure for applications in the biological environment. Single particle spectroscopy indicates reduced blinking and improved photostability with increasing shell thickness, resulting in thick-shelled dots that are appropriate for single-particle tracking measurements with NIR emission.

Dennis, Allison M. [Los Alamos National Laboratory; Mangum, Benjamin D. [Los Alamos National Laboratory; Piryatinski, Andrei [Los Alamos National Laboratory; Park, Young-Shin [Los Alamos National Laboratory; Htoon, Han [Los Alamos National Laboratory; Hollingsworth, Jennifer A. [Los Alamos National Laboratory

2012-06-21

51

Synthesis of biocompatible SiO2 coated ZnO quantum dots for cell imaging  

NASA Astrophysics Data System (ADS)

Quantum dots (QDs) is a promising candidate for biomedical imaging. However, the bio-toxicity of traditional quantum dots obstructed their further application seriously. In this work, a simple solution growth method was utilized to synthesize ZnO QDs. However, their self-assemble feature makes them unstable in aqueous solution. Furthermore, (3-Aminopropyl) triethoxysilane was selected as a capping agent to stabilize ZnO QDs and then ZnO@SiO2 nanoparticles were obtained. They dispersed excellently in water and exhibited favorable fluorescence properties owing to the protection of silane. The biocompatability of ZnO@SiO2 nanoparticles was verified by MTT assy. The cell affinity studies demonstrated that ZnO@SiO2 nanoparticles could be uptaken by cells efficiently. Therefore, the as-prepared ZnO@SiO2 nanoparticles is a promising candidate for applications in cell imaging.

Zhang, Min; Wang, Qian; Chen, Haiyan; Gu, Yueqing

2014-09-01

52

Electrochromic Nanocrystal Quantum Dots  

Microsoft Academic Search

The optical properties of colloidal semiconductor nanocrystal quantum dots can be tuned by an electrochemical potential. The injection of electrons into the Lowest Unoccupied Quantum Confined Orbital (LUQCO) leads to an extraordinary electrochromic response with novel characteristics. These include a strong size-tunable mid-infrared absorption corresponding to an intraband transition, a bleach of the visible interband exciton transitions and a quench

Congjun Wang; Moonsub Shim; Philippe Guyot-Sionnest

2001-01-01

53

‘One-pot’ synthesis of multifunctional GSH-CdTe quantum dots for targeted drug delivery  

NASA Astrophysics Data System (ADS)

A novel quantum dots-based multifunctional nanovehicle (DOX-QD-PEG-FA) was designed for targeted drug delivery, fluorescent imaging, tracking, and cancer therapy, in which the GSH-CdTe quantum dots play a key role in imaging and drug delivery. To exert curative effects, the antineoplastic drug doxorubicin hydrochloride (DOX) was loaded on the GSH-CdTe quantum dots through a condensation reaction. Meanwhile, a polyethylene glycol (PEG) shell was introduced to wrap the DOX-QD, thus stabilizing the structure and preventing clearance and drug release during systemic circulation. To actively target cancer cells and prevent the nanovehicles from being absorbed by normal cells, the nanoparticles were further decorated with folic acid (FA), allowing them to target HeLa cells that express the FA receptor. The multifunctional DOX-QD-PEG-FA conjugates were simply prepared using the ‘one pot’ method. In vitro study demonstrated that this simple, multifunctional nanovehicle can deliver DOX to the targeted cancer cells and localize the nanoparticles. After reaching the tumor cells, the FA on the DOX-QD-PEG surface allowed folate receptor recognition and increased the drug concentration to realize a higher curative effect. This novel, multifunctional DOX-QD-PEG-FA system shows great potential for tumor imaging, targeting, and therapy.

Chen, Xiaoqin; Tang, Yajun; Cai, Bing; Fan, Hongsong

2014-06-01

54

Topic in Depth - Quantum Dots  

NSDL National Science Digital Library

This topic-in-depth addresses the characteristics and numerous applications of the semiconductor nanocrystals, quantum dots. Find out how quantum dot are being used in computer science, chemistry, and medicine.

55

A quantum dot heterojunction photodetector  

E-print Network

This thesis presents a new device architecture for photodetectors utilizing colloidally grown quantum dots as the principle photo-active component. We implement a thin film of cadmium selenide (CdSe) quantum dot sensitizers, ...

Arango, Alexi Cosmos, 1975-

2005-01-01

56

Synthesis and Resonance Energy Transfer in Conjugates of Luminescent Cadmium Selenide Quantum Dots and Chlorin e6 Molecules  

NASA Astrophysics Data System (ADS)

We synthesized a new type of conjugates of highly luminescent water soluble CdSe/ZnS colloidal quantum dots covalently bound to Chlorin e6 dye molecules. We observed a resonance energy transfer from quantum dots emitting at 660 nm to Chlorine e6 molecules in our conjugates which can be utilized for phototherapy. Contrary to that quantum dots emitting at 588 nm show non-resonance quenching of excitonic luminescence without the energy transfer to dye molecules.

Fedosyuk, A. A.; Artemyev, M. V.

2013-05-01

57

Quantum dot laser  

SciTech Connect

An analysis is made of the self-excitation condition for a laser in which the active medium is a 'quantum dot' and a whispering-gallery mode of a dielectric microsphere acts as the cavity. It is pointed out that the interaction of a quantum dot with an ensemble of degenerate or near-degenerate modes increases the laser excitation coefficient. A calculation is made of the dependence of the effective volume of a whispering-gallery mode on its index. It is shown that the field maximum of an E-type whispering-gallery mode lies on the surface of a sphere, whereas for an H-type mode this maximum is shifted along the radius into the sphere. Calculations suggest that it should be possible to construct a microlaser even on the basis of a single quantum dot. (lasers)

Oraevsky, Anatolii N; Velichansky, Vladimir L [P.N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Scully, M O [Texas A and M University, College Station, Texas (United States)

1998-03-31

58

Synthesis of tetrahedral quasi-type-II CdSe-CdS core-shell quantum dots  

NASA Astrophysics Data System (ADS)

Synthesis of colloidal nanocrystals of II-VI semiconductor materials has been refined in recent decades and their size dependent optoelectronic properties have been well established. Here we report a facile synthesis of CdSe-CdS core-shell heterostructures using a two-step hot injection process. Red-shifts in absorption and photoluminescence spectra show that the obtained quantum dots have quasi-type-II alignment of energy levels. The obtained nanocrystals have a heterostructure with a large and highly faceted tetrahedral CdS shell grown epitaxially over a spherical CdSe core. The obtained morphology as well as high resolution electron microscopy confirms that the tetrahedral shell have a zinc blende crystal structure. A phenomenological mechanism for the growth and morphology of the nanocrystals is discussed.

Sugunan, Abhilash; Zhao, Yichen; Mitra, Somak; Dong, Lin; Li, Shanghua; Popov, Sergei; Marcinkevicius, Saulius; Toprak, Muhammet S.; Muhammed, Mamoun

2011-10-01

59

Synthesis and optical properties of water soluble CdSe/CdS quantum dots for biological applications  

NASA Astrophysics Data System (ADS)

Water soluble CdSe/CdS quantum dots (QDs) have been synthesized directly in aqueous solution with sodium citrate as surfactant agent. The QDs are mono-dispersed in water and have strong luminescent emission intensity under excitation of ultraviolet light. The emission maxima of the QDs can be tuned in a wider range from 555 to 615?nm in water by changing synthesis conditions. The result of the synthesis of water-soluble CdSe and CdSe/CdS QDs shows the high quality of the QDs with the quite narrow luminescence emission band and photostability. The results show the strongest intensity of photoluminescence emission in media with pH value at about from 8–8.5, which are pH physiological environments. The luminescence intensity increases when the QDs are coated with a polyethylene glycol (PEG) or bovine serum albumin (BSA) protein layer, the lifetime also increases.

Chu, Viet Ha; Nghiem, Thi Ha Lien; Le, Tien Ha; Vu, Dinh Lam; Nhung Tran, Hong; Vu, Thi Kim Lien

2012-06-01

60

Quantum Dot Light Emitting Diode  

SciTech Connect

The project objective is to create low cost coatable inorganic light emitting diodes, composed of quantum dot emitters and inorganic nanoparticles, which have the potential for efficiencies equivalent to that of LEDs and OLEDs and lifetime, brightness, and environmental stability between that of LEDs and OLEDs. At the end of the project the Recipient shall gain an understanding of the device physics and properties of Quantum-Dot LEDs (QD-LEDs), have reliable and accurate nanocrystal synthesis routines, and have formed green-yellow emitting QD-LEDs with a device efficiency greater than 3 lumens/W, a brightness greater than 400 cd/m2, and a device operational lifetime of more than 1000 hours. Thus the aim of the project is to break the current cost-efficiency paradigm by creating novel low cost inorganic LEDs composed of inorganic nanoparticles.

Keith Kahen

2008-07-31

61

Quantum Dot Light Emitting Diode  

SciTech Connect

The project objective is to create low cost coatable inorganic light emitting diodes, composed of quantum dot emitters and inorganic nanoparticles, which have the potential for efficiencies equivalent to that of LEDs and OLEDs and lifetime, brightness, and environmental stability between that of LEDs and OLEDs. At the end of the project the Recipient shall gain an understanding of the device physics and properties of Quantum-Dot LEDs (QD-LEDs), have reliable and accurate nanocrystal synthesis routines, and have formed green-yellow emitting QD-LEDs with a device efficiency greater than 3 lumens/W, a brightness greater than 400 cd/m{sup 2}, and a device operational lifetime of more than 1000 hours. Thus the aim of the project is to break the current cost-efficiency paradigm by creating novel low cost inorganic LEDs composed of inorganic nanoparticles.

Kahen, Keith

2008-07-31

62

Chiral quantum dot based materials  

NASA Astrophysics Data System (ADS)

Recently, the use of stereospecific chiral stabilising molecules has also opened another avenue of interest in the area of quantum dot (QD) research. The main goal of our research is to develop new types of technologically important quantum dot materials containing chiral defects, study their properties and explore their applications. The utilisation of chiral penicillamine stabilisers allowed the preparation of new water soluble white emitting CdS quantum nanostructures which demonstrated circular dichroism in the band-edge region of the spectrum. It was also demonstrated that all three types of QDs (D-, L-, and Rac penicillamine stabilised) show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. In this work the chiral CdS based quantum nanostructures have also been doped by copper metal ions and new chiral penicilamine stabilized CuS nanoparticles have been prepared and investigated. It was found that copper doping had a strong effect at low levels in the synthesis of chiral CdS nanostructures. We expect that this research will open new horizons in the chemistry of chiral nanomaterials and their application in biotechnology, sensing and asymmetric synthesis.

Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii

2014-05-01

63

Functionalized silicon quantum dots by N-vinylcarbazole: synthesis and spectroscopic properties  

PubMed Central

Silicon quantum dots (Si QDs) attract increasing interest nowadays due to their excellent optical and electronic properties. However, only a few optoelectronic organic molecules were reported as ligands of colloidal Si QDs. In this report, N-vinylcarbazole - a material widely used in the optoelectronics industry - was used for the modification of Si QDs as ligands. This hybrid nanomaterial exhibits different spectroscopic properties from either free ligands or Si QDs alone. Possible mechanisms were discussed. This type of new functional Si QDs may find application potentials in bioimaging, photovoltaic, or optoelectronic devices. PMID:25147489

2014-01-01

64

Plasmonic fluorescent quantum dots  

Microsoft Academic Search

Combining multiple discrete components into a single multifunctional nanoparticle could be useful in a variety of applications. Retaining the unique optical and electrical properties of each component after nanoscale integration is, however, a long-standing problem. It is particularly difficult when trying to combine fluorophores such as semiconductor quantum dots with plasmonic materials such as gold, because gold and other metals

Yongdong Jin; Xiaohu Gao

2009-01-01

65

Size-controlled synthesis of ZnO quantum dots in microreactors.  

PubMed

In this paper, we report on a continuous-flow microreactor process to prepare ZnO quantum dots (QDs) with widely tunable particle size and photoluminescence emission wavelengths. X-ray diffraction, electron diffraction, UV-vis, photoluminescence and transmission electron microscopy measurements were used to characterize the synthesized ZnO QDs. By varying operating conditions (temperature, flow rate) or the capping ligand, ZnO QDs with diameters ranging from 3.6 to 5.2 nm and fluorescence maxima from 500 to 560 nm were prepared. Results obtained show that low reaction temperatures (20 or 35?°C), high flow rates and the use of propionic acid as a stabilizing agent are favorable for the production of ZnO QDs with high photoluminescence quantum yields (up to 30%). PMID:24633321

Schejn, Aleksandra; Frégnaux, Mathieu; Commenge, Jean-Marc; Balan, Lavinia; Falk, Laurent; Schneider, Raphaël

2014-04-11

66

Size-controlled synthesis of ZnO quantum dots in microreactors  

NASA Astrophysics Data System (ADS)

In this paper, we report on a continuous-flow microreactor process to prepare ZnO quantum dots (QDs) with widely tunable particle size and photoluminescence emission wavelengths. X-ray diffraction, electron diffraction, UV-vis, photoluminescence and transmission electron microscopy measurements were used to characterize the synthesized ZnO QDs. By varying operating conditions (temperature, flow rate) or the capping ligand, ZnO QDs with diameters ranging from 3.6 to 5.2 nm and fluorescence maxima from 500 to 560 nm were prepared. Results obtained show that low reaction temperatures (20 or 35?°C), high flow rates and the use of propionic acid as a stabilizing agent are favorable for the production of ZnO QDs with high photoluminescence quantum yields (up to 30%).

Schejn, Aleksandra; Frégnaux, Mathieu; Commenge, Jean-Marc; Balan, Lavinia; Falk, Laurent; Schneider, Raphaël

2014-04-01

67

Synthesis of CuInS2 quantum dots using polyetheramine as solvent  

NASA Astrophysics Data System (ADS)

This paper presents a facile solvothermal method of synthesizing copper indium sulfide (CuInS2) quantum dots (QDs) via a non-coordinated system using polyetheramine as a solvent. The structural and optical properties of the resulting CuInS2 QDs were investigated using composition analysis, absorption spectroscopy, and emission spectroscopy. We employed molar ratios of I, III, and VI group elements to control the structure of CuInS2 QDs. An excess of group VI elements facilitated precipitation, whereas an excess of group I elements resulted in CuInS2 QDs with high photoluminescence quantum yield. The emission wavelength and photoluminescence quantum yield could also be modulated by controlling the composition ratio of Cu and In in the injection stock solution. An increase in the portion of S shifted the emission wavelength of the QDs to a shorter wavelength and increased the photoluminescence quantum yield. Our results demonstrate that the band gap of the CuInS2 QDs is tunable with size as well as the composition of the reactant. The photoluminescence quantum yield of the CuInS2 QDs ranged between 0.7% and 8.8% at 250°C. We also determined some important physical parameters such as the band gaps and energy levels of this system, which are crucial for the application of CuInS2 nanocrystals.

Shei, Shih-Chang; Chiang, Wen-Jui; Chang, Shoou-Jinn

2015-03-01

68

A primer on the synthesis, water-solubilization, and functionalization of quantum dots, their use as biological sensing agents, and present status.  

PubMed

The use of nanomaterials, specifically fluorescent semiconductor quantum dots (QDs), for biological imaging and sensing has become very topical. Here we present a historical synopsis of research in this field to help elucidate the origins of the most recent advances in QD-based technology. We further aim to educate the novice researcher concerning many important aspects of QD synthesis, water-solubilization, functionalization, and usage in biological imaging and sensing that are generally not discussed in the literature. We will also summarize several recent transformative examples of using quantum dots for in vitro and in vivo studies. PMID:24296551

Tyrakowski, Christina Marie; Snee, Preston Todd

2014-01-21

69

Aqueous synthesis of highly luminescent glutathione-capped Mn²?-doped ZnS quantum dots.  

PubMed

In this paper, an aqueous-based route has been developed to prepare highly luminescent glutathione (GSH)-capped Mn-doped ZnS quantum dots (QDs). The dots obtained have an average diameter of 4.3 nm and exhibit the Mn(2+)-related orange luminescence with very low surface defect density. The highest photoluminescence was observed for a Mn(2+) to Zn(2+) molar ratio of 3%. Consecutive overcoating of the Mn:ZnS@GSH QDs by a ZnS shell was done, and the core/shell structured QDs exhibit a PL quantum yield of 23%. Transmission electron microscopy, X-ray powder diffraction, electron spin resonance, X-ray photoelectron spectroscopy, UV-visible spectroscopy and spectrofluorometry have been used to characterize the crystal structure, the doping status, and the optical properties of the doped-QDs. Our systematic investigation shows that Mn:ZnS/ZnS@GSH QDs are highly promising fluorescent labels in biological applications. PMID:25280675

Kolmykov, Oleksii; Coulon, Joël; Lalevée, Jacques; Alem, Halima; Medjahdi, Ghouti; Schneider, Raphaël

2014-11-01

70

Quantum dot cascade laser  

PubMed Central

We demonstrated an unambiguous quantum dot cascade laser based on InGaAs/GaAs/InAs/InAlAs heterostructure by making use of self-assembled quantum dots in the Stranski-Krastanow growth mode and two-step strain compensation active region design. The prototype generates stimulated emission at ??~?6.15 ?m and a broad electroluminescence band with full width at half maximum over 3 ?m. The characteristic temperature for the threshold current density within the temperature range of 82 to 162 K is up to 400 K. Moreover, our materials show the strong perpendicular mid-infrared response at about 1,900 cm-1. These results are very promising for extending the present laser concept to terahertz quantum cascade laser, which would lead to room temperature operation. PACS 42.55.Px; 78.55.Cr; 78.67.Hc PMID:24666965

2014-01-01

71

Surface-treated biocompatible ZnS quantum dots: Synthesis, photo-physical and microstructural properties  

NASA Astrophysics Data System (ADS)

In the present study, the ZnS semiconductor quantum dots were successfully synthesized via an aqueous method utilizing glutathione (GSH), thioglycolic acid (TGA) and polyvinyl pyrrolidone (PVP) as capping agents. The structural, morphological and photo-physical properties and biocompatibility were investigated using comprehensive characterization techniques such as x-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), dynamic light scattering (DLS), Fourier transform infrared spectrometry (FT-IR), UV-Vis optical absorption, photoluminescence (PL) spectrometer and MTT assay. The XRD patterns showed a cubic zinc blende crystal structure and a crystallite size of about 2-3 nm using Scherrer's equation confirmed by the electron micrographs and Effective Mass Approximation (EMA). The DLS and zeta-potential results revealed that GSH capped ZnS nanoparticles have the narrowest size distribution with an average size of 27 nm and relatively good colloidal stability. Also, the FT-IR spectrum confirmed the interaction of the capping agent groups with ZnS nanoparticles. According to the UV-Vis absorption results, optical bandgap of the spherical capped nanoparticles is higher compared to the uncapped sample and could be wider than 3.67 eV (corresponding to the bulk ZnS), which is due to the quantum confinement effect. From photoluminescence spectra, it was found that the emission becomes more intensive and shifts towards the shorter wavelengths in the presence of the capping agent. Moreover, the emission mechanism of uncapped and capped ZnS was discussed in detail. Finally, the MTT results revealed the satisfactory (>94%) biocompatibility of GSH capped ZnS quantum dots which would be a promising candidate applicable in fluorescent biological labels.

Taherian, M.; Sabbagh Alvani, A. A.; Shokrgozar, M. A.; Salimi, R.; Moosakhani, S.; Sameie, H.; Tabatabaee, F.

2014-03-01

72

Quantum-dot cellular automata: computing with coupled quantum dots  

Microsoft Academic Search

We discuss novel nanoelectronic architecture paradigms based on cells composed of coupled quantum-dots. Boolean logic functions may be implemented in speci® c arrays of cells representing binary information, the so-called quantum-dot cellular automata (QCA). Cells may also be viewed as carrying analogue information and we outline a network-theoretic description of such quantum-dot nonlinear net- works (Q-CNN). In addition, we discuss

WOLFGANG POROD; CRAIG S. LENT; GARY H. BERNSTEIN; ALEXEI O. ORLOV; ISLAMSHAH AMLANI; GREGORY L. SNIDER; JAMES L. MERZ

1999-01-01

73

PREFACE: Quantum Dot 2010  

NASA Astrophysics Data System (ADS)

These conference proceedings contain the written papers of the contributions presented at Quantum Dot 2010 (QD2010). The conference was held in Nottingham, UK, on 26-30 April 2010. The conference addressed topics in research on: 1. Epitaxial quantum dots (including self-assembled and interface structures, dots defined by electrostatic gates etc): optical properties and electron transport quantum coherence effects spin phenomena optics of dots in cavities interaction with surface plasmons in metal/semiconductor structures opto-electronics applications 2. Novel QD structures: fabrication and physics of graphene dots, dots in nano-wires etc 3. Colloidal quantum dots: growth (shape control and hybrid nanocrystals such as metal/semiconductor, magnetic/semiconductor) assembly and surface functionalisation optical properties and spin dynamics electrical and magnetic properties applications (light emitting devices and solar cells, biological and medical applications, data storage, assemblers) The Editors Acknowledgements Conference Organising Committee: Maurice Skolnick (Chair) Alexander Tartakovskii (Programme Chair) Pavlos Lagoudakis (Programme Chair) Max Migliorato (Conference Secretary) Paola Borri (Publicity) Robert Taylor (Proceedings) Manus Hayne (Treasurer) Ray Murray (Sponsorship) Mohamed Henini (Local Organiser) International Advisory Committee: Yasuhiko Arakawa (Tokyo University, Japan) Manfred Bayer (Dortmund University, Germany) Sergey Gaponenko (Stepanov Institute of Physics, Minsk, Belarus) Pawel Hawrylak (NRC, Ottawa, Canada) Fritz Henneberger (Institute for Physics, Berlin, Germany) Atac Imamoglu (ETH, Zurich, Switzerland) Paul Koenraad (TU Eindhoven, Nethehrlands) Guglielmo Lanzani (Politecnico di Milano, Italy) Jungil Lee (Korea Institute of Science and Technology, Korea) Henri Mariette (CNRS-CEA, Grenoble, France) Lu Jeu Sham (San Diego, USA) Andrew Shields (Toshiba Research Europe, Cambridge, UK) Yoshihisa Yamamoto (Stanford University, USA) Artur Zrenner (Paderborn University, Germany) International Programme Committee: Alexander Eychmüller (TU Dresden, Germany) Jonathan Finley (TU Munich, Germany) Dan Gammon (NRL, Washington, USA) Alexander Govorov (Ohio University, USA) Neil Greenham (Cavendish Laboratory, UK) Vladimir Korenev (Ioffe Institute, Russia) Leo Kouwenhoven (TU Delft, Netherlands) Wolfgang Langbein (Cardiff University, UK) Xavier Marie (CNRS Toulouse, France) David Ritchie (Cambridge, UK) Andrew Sachrajda (IMS, Ottawa, Canada) Katerina Soulantica (University of Toulouse, France) Seigo Tarucha (University of Tokyo, Japan) Carlos Tejedor (UAM, Madrid, Spain) Euijoon Yoon (Seoul National University, Korea) Ulrike Woggon (Tu Berlin, Germany) Proceedings edited and compiled by Profesor Robert A Taylor, University of Oxford

Taylor, Robert A.

2010-09-01

74

Hydrothermal synthesis of CdTe quantum dots-TiO2-graphene hybrid  

NASA Astrophysics Data System (ADS)

CdTe-TiO2-graphene nanocomposites were successfully synthesized via a simple and relatively general hydrothermal method. During the hydrothermal environment, GO was reduced to reduced graphene oxide (RGO), accompanying with the anchoring of TiO2 nanoparticles on the surface of RGO. In the following process, CdTe quantum dots (QDs) were then in situ grown on the carbon basal planes. The morphologies and structural properties of the as-prepared composites were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy and fluorescent spectroscopy. It is hoped that our current work could pave a way towards the fabrication of QDs-TiO2-RGO hybrid materials.

Liu, Jinghua; Li, Xin

2014-01-01

75

Facile synthesis of soluble graphene quantum dots and its improved property in detecting heavy metal ions.  

PubMed

An effective approach to produce graphene quantum dots (GQDs) has been developed, which based on the cutting of graphene oxide (GO) powder into smaller pieces and being reduced by a green approach, using sodium polystyrene sulfonate (PSS) as a dispersant and l-ascorbic acid (l-AA) as the reducing agent, which is environmentally friendly. Then the as-prepared GQDs were further used for the detection of heavy metal ions Pb(2+). This kind of GQDs has greater solubility in water and is more biocompatible than GO that has been reduced by hydrazine hydrate. The few-layers of GQDs with defects and residual OH groups were shown to be particularly well suited for the determination of metal ions in the liquid phase using an electrochemical method, in which a remarkably low detection limit of 7×10(-9)M for Pb(2+) was achieved. PMID:24732395

Zhou, Chengfeng; Jiang, Wei; Via, Brian K

2014-06-01

76

Synthesis and optical properties of copper-doped ZnSe quantum dots  

NASA Astrophysics Data System (ADS)

This paper reports a new method to synthesize Cu-doped ZnSe quantum dots (QDs). Emission properties are tuned from the blue to the green region simply by increasing the size of the QDs. A red shift in optical absorption of Cu:ZnSe QDs compared with undoped ZnSe QDs is observed. The increase in size of QDs is explained by a change in reaction kinematics. PL measurements revealed both a band edge as well as a copper-related emission. Delocalization of electronic wave functions leads to a shift in the copper-related emission with in size. PL excitation spectra recorded at Cu emission shows ZnSe energy levels along with a feature between 350–370 nm. This feature is assigned to excited energy levels of Cu ions. Variation in electron energy levels as a function of size and on Cu incorporation is mapped.

Rajesh, Ch; Phadnis, Chinmay V.; Sonawane, Kiran G.; Mahamuni, Shailaja

2015-01-01

77

Synthesis, Phase Transfer and Surface Modification of Hydrophobic Quantum Dots for Bioapplications  

NASA Astrophysics Data System (ADS)

We review the preparation, phase transfer, surface modification and possible bioapplications of hydrophobic CdSe based quantum dots (QDs). CdSe cores with rod and spherical morphologies were prepared through adjusting preparation conditions. The photoluminescence (PL) of the QDs depended strongly on preparation conditions. The QDs were coated with semiconductor shells to improve their PL properties. Anisotropic growth occurred during shell coating. Core/shell QDs revealed tunable PL and high PL efficiencies up to 90%. The phase transfer of QDs from oil phase to water phase was carried out via polymer or a sol-gel process. The silanization of the QDs plays an important role for the sol-gel process. Because of a SiO2 coating, the surface modification of the QDs for bioapplications became easy. After transferring into water phase, the QDs still retained high PL efficiency. Because of their high PL, these biofunctional materials could provide a platform for various applications.

Zhang, Ruili; Zhang, Xiao; Li, Xiaoyu; Yang, Ping

2013-06-01

78

One-step synthesis of size-controlled CZTS quantum dots  

NASA Astrophysics Data System (ADS)

Size-controlled CZTS quantum dots (QDs) were synthesized and its application as a potential electron accepting material for polymer-based hybrid solar cell is demonstrated. The CZTS QDs with a size of 2-10 nm were synthesized in a single step by the decomposition of metal dithiocarbamate and characterized by various techniques; like, SEM, TEM, FTIR, XRD, etc. Results reveal that the CZTS QDs synthesized in oleic acid can quench the luminescence of P3HT effectively. Due to the favourable ionization potential and electron affinity values for CZTS with respect to P3HT, the CZTS QDs act as an effective electron acceptor in the hybrid solar cells based on P3HT/CZTS-QD blends which is also revealed by the charge transfer characteristics of P3HT/CZTS blend.

Arora, Leena; Singh, Vidya Nand; Partheepan, G.; Senguttuvan, T. D.; Jain, Kiran

2015-02-01

79

One step synthesis of quantum dot-magnetic nanoparticle heterodimers for dual modal imaging applications.  

PubMed

Dual modal nanoprobes are promising tools for accurately detecting target molecules as part of the diagnosis of diseases including cancers. We have explored a new dual modal bioimaging probe that is comprised of a quantum dot (QD)-magnetic nanoparticle (MNP) hybrid. The MNP-QD heterodimers explored are fabricated by using a platinum-guanine coordination bonding guided self-assembly process, employing the metal-DNA conjugation method. Investigations utilizing energy dispersive spectroscopy (EDS) equipped high resolution transmission electron microscopy (HRTEM) demonstrate that the heterodimer contains an iron (Fe) dominant MNP and a cadmium (Cd) dominant QD. Finally, the results of cell studies show that the MNP-QD conjugates display good HeLa cell uptake in the absence of non-specific binding to the cell membrane and, as such, they can be used to label cells in vitro and in vivo as part of a new cell imaging technique. PMID:25742182

Lee, Jiyeon; Hwang, Gyoyeon; Hong, Yeon Sun; Sim, Taebo

2015-03-30

80

Quantum Dots and Colors  

NSDL National Science Digital Library

Students are introduced to the physical concept of the colors of rainbows as light energy in the form of waves with distinct wavelengths, but in a different manner than traditional kaleidoscopes. Looking at different quantum dot solutions, they make observations and measurements, and graph their data. They come to understand how nanoparticles interact with absorbing photons to produce colors. They learn the dependence of particle size and color wavelength and learn about real-world applications for using these colorful liquids.

National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,

81

Plasmonic fluorescent quantum dots  

PubMed Central

Combining multiple discrete components into a single multifunctional nanoparticle could be useful in a variety of applications. Retaining the unique optical and electrical properties of each component after nanoscale integration is, however, a long-standing problem1,2. It is particularly difficult when trying to combine fluorophores such as semiconductor quantum dots with plasmonic materials such as gold, because gold and other metals can quench the fluorescence3,4. So far, the combination of quantum dot fluorescence with plasmonically active gold has only been demonstrated on flat surfaces5. Here, we combine fluorescent and plasmonic activities in a single nanoparticle by controlling the spacing between a quantum dot core and an ultrathin gold shell with nanometre precision through layer-by-layer assembly. Our wet-chemistry approach provides a general route for the deposition of ultrathin gold layers onto virtually any discrete nanostructure or continuous surface, and should prove useful for multimodal bioimaging6, interfacing with biological systems7, reducing nanotoxicity8, modulating electromagnetic fields5 and contacting nanostructures9,10. PMID:19734929

Jin, Yongdong

2009-01-01

82

Quantum Dots as Cellular Probes  

SciTech Connect

Robust and bright light emitters, semiconductor nanocrystals[quantum dots (QDs)] have been adopted as a new class of fluorescent labels. Six years after the first experiments of their uses in biological applications, there have been dramatic improvements in understanding surface chemistry, biocompatibility, and targeting specificity. Many studies have shown the great potential of using quantum dots as new probes in vitro and in vivo. This review summarizes the recent advances of quantum dot usage at the cellular level, including immunolabeling, cell tracking, in situ hybridization, FRET, in vivo imaging, and other related technologies. Limitations and potential future uses of quantum dot probes are also discussed.

Alivisatos, A. Paul; Gu, Weiwei; Larabell, Carolyn

2004-09-16

83

High Throughput Synthesis of Uniform Biocompatible Polymer Beads with High Quantum Dot Loading Using Microfluidic Jet-Mode Breakup  

E-print Network

Uniform polymer microbeads with highly loaded quantum dots (QDs) are produced using high-throughput coherent jet breakup of a biocompatible poly(ethylene glycol) diacrylate (PEGDA) prepolymer resin, followed by in-line ...

Lee, Seung-Kon

84

Quantum Computing with Quantum Dots  

NASA Astrophysics Data System (ADS)

We report recent results on the spin dynamics of coupled quantum dots and their potential as quantum computer devices. Using the Heitler-London approach, we obtain the exchange coupling J(B,a) between the excess electrons of coupled dots.(D.P. DiVincenzo and D. Loss, Quantum Computation is Physical), to appear in Superlattices and Microstructures. Special Issue on the occasion of Rolf Landauer's 70th Birthday, ed. S. Datta. See cond- mat/9710259. The dependence of J on the magnetic field B and the interdot distance 2a is of great importance for controlling the coherent time-evolution of the two-spin system as required for quantum computation.(D. Loss and D.P. DiVincenzo, Phys. Rev. A, in press. See cond- mat/9701055.) Our result, which is in good agreement with a more refined LCAO calculation, is accessible to experimental tests via magnetic response measurements.

Burkard, Guido; Loss, Daniel

1998-03-01

85

One-step colloidal synthesis of biocompatible water-soluble ZnS quantum dot/chitosan nanoconjugates  

PubMed Central

Quantum dots (QDs) are luminescent semiconductor nanocrystals with great prospective for use in biomedical and environmental applications. Nonetheless, eliminating the potential cytotoxicity of the QDs made with heavy metals is still a challenge facing the research community. Thus, the aim of this work was to develop a novel facile route for synthesising biocompatible QDs employing carbohydrate ligands in aqueous colloidal chemistry with optical properties tuned by pH. The synthesis of ZnS QDs capped by chitosan was performed using a single-step aqueous colloidal process at room temperature. The nanobioconjugates were extensively characterised by several techniques, and the results demonstrated that the average size of ZnS nanocrystals and their fluorescent properties were influenced by the pH during the synthesis. Hence, novel 'cadmium-free’ biofunctionalised systems based on ZnS QDs capped by chitosan were successfully developed exhibiting luminescent activity that may be used in a large number of possible applications, such as probes in biology, medicine and pharmacy. PMID:24308633

2013-01-01

86

One-step colloidal synthesis of biocompatible water-soluble ZnS quantum dot/chitosan nanoconjugates  

NASA Astrophysics Data System (ADS)

Quantum dots (QDs) are luminescent semiconductor nanocrystals with great prospective for use in biomedical and environmental applications. Nonetheless, eliminating the potential cytotoxicity of the QDs made with heavy metals is still a challenge facing the research community. Thus, the aim of this work was to develop a novel facile route for synthesising biocompatible QDs employing carbohydrate ligands in aqueous colloidal chemistry with optical properties tuned by pH. The synthesis of ZnS QDs capped by chitosan was performed using a single-step aqueous colloidal process at room temperature. The nanobioconjugates were extensively characterised by several techniques, and the results demonstrated that the average size of ZnS nanocrystals and their fluorescent properties were influenced by the pH during the synthesis. Hence, novel 'cadmium-free' biofunctionalised systems based on ZnS QDs capped by chitosan were successfully developed exhibiting luminescent activity that may be used in a large number of possible applications, such as probes in biology, medicine and pharmacy.

Ramanery, Fábio P.; Mansur, Alexandra AP; Mansur, Herman S.

2013-12-01

87

Quantum-dot cellular automata  

Microsoft Academic Search

An introduction to the operation of quantum-dot cellular automata is presented, along with recent experimental results. Quantum-dot cellular automata (QCA) is a transistorless computation paradigm that addresses the issues of device density and interconnection. The basic building blocks of the QCA architecture, such as AND, OR, and NOT are presented. The experimental device is a four-dot QCA cell with two

G. L. Snider; A. O. Orlov; I. Amlani; G. H. Bernstein; C. S. Lent; J. L. Merz; W. Porod

1999-01-01

88

CdSe spherical quantum dots stabilised by thiomalic acid: biphasic wet synthesis and characterisation.  

PubMed

CdSe quantum dots stabilised by thiomalic acid have been synthesised by an aqueous biphasic ligand exchange reaction in air. The materials are completely water-soluble and were found to be stable over a long time. X-ray diffraction and transmission electron microscopy reveal the formation of CdSe nanocrystals with cubic structure (a=0.6077 nm; spatial group: F-43m). The average particle size is about 5 nm. Energy dispersive X-ray analysis shows that the nanocrystals are nonstoichiometric, with a Cd/Se ratio varying between 60/40 and 70/30, and indicates the presence of Cd(2+) ions at the nanocrystal surface. Diffuse reflectance infrared Fourier transform measurements suggest that thiomalic acid chelates CdSe through the thiol group and one carboxylic function, while the second COOH group is semi-free. A complex-like structure is proposed, in which thiomalic acid forms a five-membered chelate ring with the Cd(2+) ions present on the nanocrystal surface. Chelate effect accounts for the easiness of ligand exchange and is expected to additionally stabilise the nanosystem. PMID:21337484

Concina, I; Natile, M M; Ferroni, M; Migliori, A; Morandi, V; Ortolani, L; Vomiero, A; Sberveglieri, G

2011-03-14

89

Synthesis and in vitro evaluation of a hyaluronic acid-quantum dots-melphalan conjugate.  

PubMed

Polymer-drug conjugates have played an important role in improving tumor cell targeting and the selectivity of anticancer drugs. In this study, quantum dots and melphalan were attached to the backbone of hyaluronic acid to synthesize a polymer-drug conjugate. The physicochemical properties of the conjugate were characterized by FT-IR, XRD, (1)H NMR, UV-Vis spectra and DLS. The in vitro drug release profiles and cell evaluation were investigated. The results showed that the conjugate was synthesized and self-assembled into nanoparticles with a diameter of 115±2.3nm. The conjugate had a pH-sensitive drug controlled release property. It was an ideal receptor-mediated delivery system and can be internalized into the human breast cancer cell. It had a better inhibition effect on human breast cancer cell and a poorer inhibition effect on normal breast cell than melphalan. These results supported that the conjugate would be a promising candidate for cancer therapy. PMID:25659681

Xu, Haixing; He, Jingbo; Zhang, Yu; Fan, Lihong; Zhao, Yaqiong; Xu, Tengfei; Nie, Zhuang; Li, Xiangnan; Huang, Zhijun; Lu, Bo; Xu, Peihu

2015-05-01

90

One-Pot Synthesis of Biocompatible CdSe/CdS Quantum Dots and Their Applications as Fluorescent Biological Labels  

NASA Astrophysics Data System (ADS)

We developed a novel one-pot polyol approach for the synthesis of biocompatible CdSe quantum dots (QDs) using poly(acrylic acid) (PAA) as a capping ligand at 240°C. The morphological and structural characterization confirmed the formation of biocompatible and monodisperse CdSe QDs with several nanometers in size. The encapsulation of CdS thin layers on the surface of CdSe QDs (CdSe/CdS core-shell QDs) was used for passivating the defect emission (650 nm) and enhancing the fluorescent quantum yields up to 30% of band-to-band emission (530-600 nm). Moreover, the PL emission peak of CdSe/CdS core-shell QDs could be tuned from 530 to 600 nm by the size of CdSe core. The as-prepared CdSe/CdS core-shell QDs with small size, well water solubility, good monodispersity, and bright PL emission showed high performance as fluorescent cell labels in vitro. The viability of QDs-labeled 293T cells was evaluated using a 3-(4,5-dimethylthiazol)-2-diphenyltertrazolium bromide (MTT) assay. The results showed the satisfactory (>80%) biocompatibility of as-synthesized PAA-capped QDs at the Cd concentration of 15 ?g/ml.

Zhai, Chuanxin; Zhang, Hui; Du, Ning; Chen, Bingdi; Huang, Hai; Wu, Yulian; Yang, Deren

2010-12-01

91

Synthesis of N-acetyl-L-cysteine-capped ZnCdSe quantum dots via hydrothermal method and their characterization  

NASA Astrophysics Data System (ADS)

Compared with the most studied green-red emitting (530-650 nm) quantum dots (QDs), the preparation of short-wavelength-emitting QDs remains difficult. Besides, one of the representative short-wavelength QDs materials, ZnCdSe, has a shortcoming of high content of toxic cadmium metal. In this paper, we report the synthesis of high-quality water-soluble ZnCdSe QDs via optimized one-step hydrothermal method with a new thiol as ligand, within a short time of 65 min. The emission wavelength of prepared QDs is tunable in the range of 425-540 nm by merely controlling the molar ratio of Cd:Zn or Se:Zn, and the quantum yield reaches 35%. More importantly, the maximum Cd:Zn molar ratio has been reduced to 0.04:1.0, much lower than that reported in the literature (0.5:1.0), resulting in excellent biological compatibility of prepared QDs and thus their promising applications in biological fields. Moreover, the transmission electron microscopy was employed to examine the effect of Cd:Zn ratio on the size of prepared ZnCdSe QDs, which were also characterized by x-ray photoelectron spectroscopy and electron diffraction spectroscopy.

Gao, Fang; Liu, Yuying; Fan, Yao; Zhao, Dan

2014-10-01

92

Hybrid organic/quantum dot thin film structures and devices  

E-print Network

Organic light emitting diodes have undergone rapid advancement over the course of the past decade. Similarly, quantum dot synthesis has progressed to the point that room temperature highly efficient photoluminescence can ...

Coe-Sullivan, Seth (Seth Alexander)

2005-01-01

93

Facile synthesis of N-acetyl-L-cysteine capped CdHgSe quantum dots and selective determination of hemoglobin  

NASA Astrophysics Data System (ADS)

Using N-acetyl-L-cysteine (NAC) as a stabilizer, well water-dispersed, high-quality and stable CdHgSe quantum dots were facilely synthesized via a simple aqueous phase method. The as-prepared NAC capped CdHgSe quantum dots were thoroughly characterized by fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and transmission electron microscopy. A novel method for the selective determination of hemoglobin (Hb) was developed based on fluorescence quenching of the NAC capped CdHgSe quantum dots. A number of key factors including pH value of phosphate buffer solution, quantum dots concentration, the adding sequence of reagents and reaction time that influence the analytical performance of the NAC capped CdHgSe quantum dots in Hb determination were investigated. Under the optimal experimental conditions, the change of fluorescence intensity (?I) was linearly proportional to the concentration of Hb in the range of 4.0 × 10-9-4.4 × 10-7 mol L-1 with a detection limit of 2.0 × 10-9 mol L-1. The developed method has been successfully employed to determine Hb in human urine samples.

Wang, Qingqing; Zhan, Guoqing; Li, Chunya

2014-01-01

94

Synthesis, solubilization, and surface functionalization of highly fluorescent quantum dots for cellular targeting through a small molecule  

NASA Astrophysics Data System (ADS)

To achieve long-term fluorescence imaging with quantum dots (QDs), a CdSe core/shell must first be synthesized. The synthesis of bright CdSe QDs is not trivial and as a consequence, the role of surfactant in nucleation and growth was investigated. It was found that the type of surfactant used, either phosphonic or fatty acid, played a pivotal role in the size of the CdSe core. The study of surfactant on CdSe synthesis, ultimately led to an electrical passivation method that utilized a short-chained phosphonic acid and highly reactive organometallic precursors to achieve high quantum yield (QY) as has been previously described. The synthesis of QDs using organometallic precursors and a phosphonic acid for passivation resulted in 4 out of 9 batches of QDs achieving QYs greater than 50% and 8 out of 9 batches with QYs greater than 35%. The synthesis of CdSe QDs was done in organic solutions rendering the surface of the particle hydrophobic. To perform cell-targeting experiments, QDs must be transferred to water. The transfer of QDs to water was successfully accomplished by using single acyl chain lipids. A systematic study of different lipid combinations and coatings demonstrated that 20-40 mol% single acyl chained lipids were able to transfer QDs to water resulting in monodispersed, stable QDs without adversely affecting the QY. The advantage to water solubilization using single acyl chain lipids is that the QD have a hydrodynamic radius less than 15 nm, QYs that can exceed 50% and additional surface functionalization can be down using the reactive sites incorporated into the lipid bilayer. QDs that are bright and stable in water were studied for the purpose of targeting G protein-coupled Receptors (GPCR). GPCRs are transmembrane receptors that internalize extracellular cues, and thus mediate signal transduction. The cyclic Adenosine Monophosphate Receptor 1 of the model organism Dictyostelium disodium was the receptor of interest. The Halo protein, a genetically modified dehalogenase, was added to the N-terminus of the cAR1 receptor without resulting in a phenotype. The Halo protein fused to cAR1 was then shown to bind an organic fluorophore by the cleavage of a chloroalkane bond. Though QDs functionalized with a chloroalkane were able to bind free Halo protein, no specific binding to the Halo protein fused to cAR1 was observed.

Galloway, Justin F.

95

TOPICAL REVIEW: Quantum dot micropillars  

Microsoft Academic Search

This topical review provides an overview of quantum dot micropillars and their application in cavity quantum electrodynamics (cQED) experiments. The development of quantum dot micropillars is motivated by the study of fundamental cQED effects in solid state and their exploitation in novel light sources. In general, light-matter interaction occurs when the dipole of an emitter couples to the ambient light

S. Reitzenstein; A. Forchel

2010-01-01

96

Aqueous, protein-driven synthesis of transition metal-doped ZnS immuno-quantum dots.  

PubMed

The intentional introduction of transition metal impurities in semiconductor nanocrystals is an attractive approach for tuning quantum dot emission over a wide range of wavelengths. However, the development of effective doping strategies can be challenging, especially if one simultaneously requires a low-toxicity crystalline core, a functional protein shell, and a "green", single-step synthesis process. Here, we describe a simple and environmentally friendly route for the biofabrication of Cu-doped (blue-green) or Mn-doped (yellow-orange) ZnS nanocrystals surrounded by an antibody-binding protein shell. The ZnS:Mn hybrid particles obtained with this method exhibit a 60% enhancement in maximum photoluminescence intensity relative to undoped nanocrystals and have a hydrodynamic diameter inferior to 10 nm. They can be stored for months at 4 °C, are stable over a physiological range of pH and salt concentrations, can be decorated with variable amounts of antibodies by direct mixing, and hold promise for biosensing and imaging applications. PMID:21942544

Zhou, Weibin; Baneyx, François

2011-10-25

97

Synthesis of CdSe quantum dots using selenium dioxide as selenium source and its interaction with pepsin  

NASA Astrophysics Data System (ADS)

A novel method has been developed for the synthesis of thioglycolic acid (TGA)-capped CdSe quantum dots (QDs) in an aqueous medium when selenium dioxide worked as a selenium source and sodium borohydride acted as a reductant. The interaction between CdSe QDs and pepsin was investigated by fluorescence spectroscopy. It was proved that the fluorescence quenching of pepsin by CdSe QDs was mainly a result of the formation of CdSe-pepsin complex. Based on the fluorescence quenching results, the Stern-Volmer quenching constant ( Ksv), binding constant ( KA) and binding sites ( n) were calculated. According to the Foster's non-radiative energy transfer theory, the binding distance ( r) between pepsin and CdSe QDs was obtained. The influence of CdSe QDs on the conformation of pepsin has been analyzed by synchronous fluorescence spectra, which provided that the secondary structure of pepsin has been changed by the interaction of CdSe QDs with pepsin.

Wang, Yilin; Mo, Yunchuan; Zhou, Liya

2011-09-01

98

Quantum Dots in a Polymer Composite: A Convenient Particle-in-a-Box Laboratory Experiment  

ERIC Educational Resources Information Center

Semiconductor quantum dots are at the forefront of materials science chemistry with applications in biological imaging and photovoltaic technologies. We have developed a simple laboratory experiment to measure the quantum-dot size from fluorescence spectra. A major roadblock of quantum-dot based exercises is the particle synthesis and handling;…

Rice, Charles V.; Giffin, Guinevere A.

2008-01-01

99

A highly efficient (>6%) Cd1xMnxSe quantum dot sensitized solar cell  

E-print Network

-effective solar cell. The design and synthesis of quantum dots (QDs) for achieving high photoelectric performanceA highly efficient (>6%) Cd1Ã?xMnxSe quantum dot sensitized solar cell Jianjun Tian,*a Lili Lv,a Chengbin Fei,b Yajie Wang,b Xiaoguang Liua and Guozhong Cao*bc Quantum dot sensitized solar cells (QDSCs

Cao, Guozhong

100

Liquid-phase plasma synthesis of silicon quantum dots embedded in carbon matrix for lithium battery anodes  

SciTech Connect

Graphical abstract: - Highlights: • Silicon quantum dots embedded in carbon matrix (SiQDs/C) were fabricated. • SiQDs/C exhibits excellent battery performance as anode materials with high specific capacity. • The good performance was attributed to the marriage of small sized SiQDs and carbon. - Abstract: Silicon quantum dots embedded in carbon matrix (SiQDs/C) nanocomposites were prepared by a novel liquid-phase plasma assisted synthetic process. The SiQDs/C nanocomposites were demonstrated to show high specific capacity, good cycling life and high coulmbic efficiency as anode materials for lithium-ion battery.

Wei, Ying [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121000 (China); Yu, Hang; Li, Haitao; Ming, Hai; Pan, Keming; Huang, Hui [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); Liu, Yang, E-mail: yangl@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China)

2013-10-15

101

Facile synthesis of CuInGaS? quantum dot nanoparticles for bilayer-sensitized solar cells.  

PubMed

CuIn(0.7)Ga(0.3)S2 quantum dots (QDs) with particle size of 2-5 nm were directly synthesised by a vacuum one-pot-nanocasting process and homogeneously anchored on TiO2 nanocrystals (<50 nm) for the first time. We further present CuIn(0.7)Ga(0.3)S2 quantum dots and dye bilayer-sensitized solar cells with a power conversion efficiency 36.3% higher than mono-dye sensitized solar cells. PMID:25300426

Zhao, Jinjin; Zhang, Jiangbin; Wang, Wenna; Wang, Peng; Li, Feng; Ren, Deliang; Si, Huanyan; Sun, Xiuguo; Ji, Fengqiu; Hao, Yanzhong

2014-11-28

102

Synthesis of radioactively labelled CdSe/CdS/ZnS quantum dots for in vivo experiments  

PubMed Central

Summary During the last decades of nanoparticles research, many nanomaterials have been developed for applications in the field of bio-labelling. For the visualization of transport processes in the body, organs and cells, luminescent quantum dots (QDs) make for highly useful diagnostic tools. However, intercellular routes, bio-distribution, metabolism during degradation or quantification of the excretion of nanoparticles, and the study of the biological response to the QDs themselves are areas which to date have not been fully investigated. In order to aid in addressing those issues, CdSe/CdS/ZnS QDs were radioactively labelled, which allows quantification of the QD concentration in the whole body or in ex vivo samples by ?-counting. However, the synthesis of radioactively labelled QDs is not trivial since the coating process must be completely adapted, and material availability, security and avoidance of radioactive waste must be considered. In this contribution, the coating of CdSe/CdS QDs with a radioactive 65ZnS shell using a modified, operator-safe, SILAR procedure is presented. Under UV illumination, no difference in the photoluminescence of the radioactive and non-radioactive CdSe/CdS/ZnS colloidal solutions was observed. Furthermore, a down-scaled synthesis for the production of very small batches of 5 nmol QDs without loss in the fluorescence quality was developed. Subsequently, the radio-labelled QDs were phase transferred by encapsulation into an amphiphilic polymer. ?-counting of the radioactivity provided confirmation of the successful labelling and phase transfer of the QDs. PMID:25551066

Stachowski, Gordon M; Bauer, Christoph; Waurisch, Christian; Bargheer, Denise; Nielsen, Peter; Heeren, Jörg; Hickey, Stephen G

2014-01-01

103

Synthesis of radioactively labelled CdSe/CdS/ZnS quantum dots for in vivo experiments.  

PubMed

During the last decades of nanoparticles research, many nanomaterials have been developed for applications in the field of bio-labelling. For the visualization of transport processes in the body, organs and cells, luminescent quantum dots (QDs) make for highly useful diagnostic tools. However, intercellular routes, bio-distribution, metabolism during degradation or quantification of the excretion of nanoparticles, and the study of the biological response to the QDs themselves are areas which to date have not been fully investigated. In order to aid in addressing those issues, CdSe/CdS/ZnS QDs were radioactively labelled, which allows quantification of the QD concentration in the whole body or in ex vivo samples by ?-counting. However, the synthesis of radioactively labelled QDs is not trivial since the coating process must be completely adapted, and material availability, security and avoidance of radioactive waste must be considered. In this contribution, the coating of CdSe/CdS QDs with a radioactive (65)ZnS shell using a modified, operator-safe, SILAR procedure is presented. Under UV illumination, no difference in the photoluminescence of the radioactive and non-radioactive CdSe/CdS/ZnS colloidal solutions was observed. Furthermore, a down-scaled synthesis for the production of very small batches of 5 nmol QDs without loss in the fluorescence quality was developed. Subsequently, the radio-labelled QDs were phase transferred by encapsulation into an amphiphilic polymer. ?-counting of the radioactivity provided confirmation of the successful labelling and phase transfer of the QDs. PMID:25551066

Stachowski, Gordon M; Bauer, Christoph; Waurisch, Christian; Bargheer, Denise; Nielsen, Peter; Heeren, Jörg; Hickey, Stephen G; Eychmüller, Alexander

2014-01-01

104

Black phosphorus quantum dots.  

PubMed

As a unique two-dimensional nanomaterial, layered black phosphorus (BP) nanosheets have shown promising applications in electronics. Although mechanical exfoliation was successfully used to prepare BP nanosheets, it is still a challenge to produce novel BP nanostructures in high yield. A facile top-down approach for preparation of black phosphorus quantum dots (BPQDs) in solution is presented. The obtained BPQDs have a lateral size of 4.9±1.6?nm and thickness of 1.9±0.9?nm (ca. 4±2 layers). As a proof-of-concept application, by using BPQDs mixed with polyvinylpyrrolidone as the active layer, a flexible memory device was successfully fabricated that exhibits a nonvolatile rewritable memory effect with a high ON/OFF current ratio and good stability. PMID:25649505

Zhang, Xiao; Xie, Haiming; Liu, Zhengdong; Tan, Chaoliang; Luo, Zhimin; Li, Hai; Lin, Jiadan; Sun, Liqun; Chen, Wei; Xu, Zhichuan; Xie, Linghai; Huang, Wei; Zhang, Hua

2015-03-16

105

Semiconductor quantum dot lasers, A tutorial  

SciTech Connect

Semiconductor quantum dot lasers have been extensively studied for applications in future lightwave telecommunications systems. This paper summarizes a tutorial that was presented at the Optical Fiber Communication (OFC) 2010. The motivation for quantum dots in lasers is outlined, and the desirable effects of three dimensional quantum confinement are described. Methods for forming self-assembled quantum dots and the resultant laser characteristics are presented. The formation of patterned quantum dot lasers and the results of this type of quantum dot laser are outlined. Finally, a novel inverted quantum dot structure or nanopore laser containing 3-D quantization formed from an engineered periodicity is introduced.

Coleman, J. J.; Young, J. D.; Garg, A.

2011-01-01

106

Influence of Mn²? concentration on Mn²?-doped ZnS quantum dot synthesis: evaluation of the structural and photoluminescent properties.  

PubMed

The intentional introduction of transition metal impurities into semiconductor nanocrystals is an attractive approach for tuning quantum dot photoluminescence emission. Particularly, doping of ZnS quantum dots with Mn(2+) (Mn:ZnS QDs) results in a phosphorescence-type emission, attributed to the incorporation of manganese ions into the nanocrystal structure, so that delayed radiational deactivation of the energy of nanoparticles, excited through the energy levels of the metal, is enabled. However, the development of effective doping strategies can be challenging, especially if a highly efficient photoluminescent emission within a known crystalline core structure, is required (e.g. for analytical phosphorescence applications). The spectroscopic properties and the crystal structure of Mn(2+)-doped ZnS QDs are studied here to provide a better understanding on how the luminescence emission and the crystalline composition are influenced by the presence of Mn(2+) and its concentration used during the synthesis. In order to further control and optimize the synthesis of doped QDs for future bioanalytical applications, different complementary techniques including photoluminescence and X-ray powder diffraction have been employed. The information obtained has allowed standardization of the synthesis conditions of these doped QDs and the identification and quantification of the crystal phases obtained under different synthesis conditions. PMID:23921811

Sotelo-Gonzalez, Emma; Roces, Laura; Garcia-Granda, Santiago; Fernandez-Arguelles, Maria T; Costa-Fernandez, Jose M; Sanz-Medel, Alfredo

2013-10-01

107

Quantum Dots in Cell Biology  

PubMed Central

Quantum dots are semiconductor nanocrystals that have broad excitation spectra, narrow emission spectra, tunable emission peaks, long fluorescence lifetimes, negligible photobleaching, and ability to be conjugated to proteins, making them excellent probes for bioimaging applications. Here the author reviews the advantages and disadvantages of using quantum dots in bioimaging applications, such as single-particle tracking and fluorescence resonance energy transfer, to study receptor-mediated transport. PMID:21378278

Barroso, Margarida M.

2011-01-01

108

Green and facile synthesis of water-soluble Cu-In-S/ZnS core/shell quantum dots.  

PubMed

Water-soluble Cu-In-S/ZnS core/shell quantum dots with a photoluminescence quantum yield up to 38% and an emission peak tunable from 543 to 625 nm have been successfully synthesized. All of the synthetic procedures were conducted in an aqueous solution at 95 °C under open-air conditions. L-Glutathione and sodium citrate were used as the dual stabilizing agents to balance the reactivity between copper and indium ions. PMID:23805901

Chen, Yanyan; Li, Shenjie; Huang, Lijian; Pan, Daocheng

2013-07-15

109

Green route synthesis of high quality CdSe quantum dots for applications in light emitting devices  

SciTech Connect

Investigation was made on light emitting diodes fabricated using CdSe quantum dots. CdSe quantum dots were synthesized chemically using olive oil as the capping agent, instead of toxic phosphine. Room temperature photoluminescence investigation showed sharp 1st excitonic emission peak at 568 nm. Bi-layer organic/inorganic (P3HT/CdSe) hybrid light emitting devices were fabricated by solution process. The electroluminescence study showed low turn on voltage ({approx}2.2 V) .The EL peak intensity was found to increase by increasing the operating current. - Graphical abstract: Light emitting diode was fabricated using CdSe quantum dots using olive oil as the capping agent, instead of toxic phosphine. Bi-layer organic/inorganic (P3HT/CdSe) hybrid light emitting device shows strong electroluminescence in the range 630-661 nm. Highlights: Black-Right-Pointing-Pointer CdSe Quantum dots were synthesized using olive oil as the capping agent. Black-Right-Pointing-Pointer Light emitting device was fabricated using CdSe QDs/P3HT polymer heterojunction. Black-Right-Pointing-Pointer The I-V characteristics study showed low turn on voltage at {approx}2.2 V. Black-Right-Pointing-Pointer The EL peak intensity increases with increasing the operating current.

Bera, Susnata, E-mail: susnata.bera@gmail.com [Department of Physics and Meteorology, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Singh, Shashi B. [Department of Physics and Meteorology, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Ray, S.K., E-mail: physkr@phy.iitkgp.ernet.in [Department of Physics and Meteorology, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

2012-05-15

110

Quantum dot-polypeptide hybrid assemblies: Synthesis, fundamental properties, and application  

NASA Astrophysics Data System (ADS)

We report the development of a multifunctional system that has the capability to target cancer cells, as well as simultaneously image and deliver therapeutics to these targeted cells. Such a "three-in-one" technology that has integrated targeting, imaging, and drug delivery capabilities is highly desirable in the field of cancer therapy. The material that we have developed for this application is a quantum dot (QD)-polypeptide hybrid assembly system that is spontaneously formed through the self-assembly of carboxyl-functionalized QDs and poly(diethylene glycol L-lysine)-poly(L-lysine) (PEGLL-PLL) diblock copolypeptide molecules. The hybrid assemblies could be modified to target a great variety of cancer biomarkers and have potential ability to carry therapeutic agents with diverse chemical and physical properties. In addition, the QD-polypeptide assemblies have the advantage of extensive tunability and versatility that allow their properties to be tailored and optimized for a broad range of applications. Cancer targeting can be achieved by modifying the QD-polypeptide hybrid assemblies with ligands that have affinity for certain biomarkers, which are overexpressed on cancer cells. Upon binding and uptake by the target cells through specific ligand-receptor mediated interactions, the assemblies could then allow for the simultaneous imaging of the cells and delivery of therapeutic agents to these cells. Imaging of the cells is done through detection of the QD fluorescence, and drug-delivery can be effected by loading the assembly with therapeutic agents and releasing them by means that disrupt the self-assembly. When compared to other dual imaging and drug-delivery systems, our QD-polypeptide hybrid assemblies have the advantage of extensive tunability and versatility. To showcase the tunability of the assembly, we demonstrated how its tumor-cell binding characteristics could be modulated and optimized by changing the PEGLL x-PLLy, architecture and the self-assembly conditions. First, we showed how the level of non-specific binding of the QD-polypeptide assemblies could be modulated by changing the PEGLLx-PLLy architecture that constitutes the assembly. The PEGLLx-PLLy architecture was found to affect the zeta-potential of the assembly, which in turn controls its level of non-specific binding. Second, we demonstrated that the level of integrin-mediated binding exhibited by the c(RGD)-assemblies could be modulated by varying the charge ratio (R'). R' is a parameter that is defined as the molar ratio of QD carboxyl functional groups to the lysine (PLL) residues. It was shown previously that the charge ratio controls the size of the assembly, and we believe that the assembly size in turn affects the ligand-receptor avidity effects. This work lays the foundation for further development of the QD-polypeptide hybrid assembly system such that we can achieve the ultimate goal of applying it as a highly tunable dual imaging and targeted drug-delivery agent. In the future, to allow for intracellular drug delivery, one can take advantage of the pH change that occurs in the endocytic pathway as the assemblies are internalized by the tumor cells. The change of pH to a relatively low value should then disrupt the electrostatic interaction that causes the self-assembly, which can in turn be expected to mediate the cytosolic delivery of the therapeutics cargo. (Abstract shortened by UMI.)

Thedjoisworo, Bayu Atmaja

111

Preparation of chiral quantum dots.  

PubMed

Chiral quantum dots (QDs) are expected to have a range of potential applications in photocatalysis, as specific antibacterial and cytotoxic drug-delivery agents, in assays, as sensors in asymmetric synthesis and enantioseparation, and as fluorescent chiral nanoprobes in biomedical and analytical technologies. In this protocol, we present procedures for the synthesis of chiral optically active QD nanostructures and their quality control using spectroscopic studies and transmission electron microscopy imaging. We closely examine various synthetic routes for the preparation of chiral CdS, CdSe, CdTe and doped ZnS QDs, as well as of chiral CdS nanotetrapods. Most of these nanomaterials can be produced by a very fast (70 s) microwave-induced heating of the corresponding precursors in the presence of D- or L-chiral stabilizing coating ligands (stabilizers), which are crucial to generating optically active chiral QDs. Alternatively, chiral QDs can also be produced via the conventional hot injection technique, followed by a phase transfer in the presence of an appropriate chiral stabilizer. We demonstrate that the properties, structure and behavior of chiral QD nanostructures, as determined by various spectroscopic techniques, strongly depend on chiral stabilizers and that the chiral effects induced by them can be controlled via synthetic procedures. PMID:25741991

Moloney, Mícheál P; Govan, Joseph; Loudon, Alexander; Mukhina, Maria; Gun'ko, Yurii K

2015-04-01

112

Synthesis and mechanism study of CdS quantum dots in two-phase liquid/liquid interfaces via one-pot route  

NASA Astrophysics Data System (ADS)

The present letter reports a facile synthetic strategy in octadecene(ODE)/glycerol interfaces to prepare CdS quantum dots (QDs) with bright bandgap emission. In this synthesis, the precursors were not synthesized as a preceding step, but all chemicals were reacted simultaneously in a one-pot reaction. The monodispersed CdS QDs were synthesized in ODE/glycerol interfaces at 140, 160 and 180 °C, respectively. The thermodynamic equilibrium was proposed to explain the growth mechanism of CdS QDs in the ODE/glycerol interfaces.

Wang, Jidong; Guo, Kehong; Ke, Dandan; Han, Shumin

2015-01-01

113

Microstructure-controlled aerosol-gel synthesis of ZnO quantum dots dispersed in SiO2 nanospheres.  

PubMed

ZnO quantum dots dispersed in a silica matrix were synthesized from a TEOS:Zn(NO(3))(2) solution by a one-step aerosol-gel method. It was demonstrated that the molar concentration ratio of Zn to Si (Zn/Si) in the aqueous solution was an efficient parameter with which to control the size, the degree of agglomeration, and the microstructure of ZnO quantum dots (QDs) in the SiO(2) matrix. When Zn/Si ? 0.5, unaggregated quantum dots as small as 2 nm were distributed preferentially inside SiO(2) spheres. When Zn/Si ? 1.0, however, ZnO QDs of ?7 nm were agglomerated and reached the SiO(2) surface. When decreasing the ratio of the Zn/Si, a blue shift in the band gap of ZnO was observed from the UV/Visible absorption spectra, representing the quantum size effect. The photoluminescence emission spectra at room temperature denoted two wide peaks of deep-level defect-related emissions at 2.2-2.8 eV. When decreasing Zn/Si, the first peak at ?2.3 eV was blue-shifted in keeping with the decrease in the size of the QDs. Interestingly, the second visible peak at 2.8 eV disappeared in the surface-exposed ZnO QDs when Zn/Si ? 1.0. PMID:22221080

Firmansyah, Dudi Adi; Kim, Sang-Gyu; Lee, Kwang-Sung; Zahaf, Riyan; Kim, Yong Ho; Lee, Donggeun

2012-02-01

114

All inorganic colloidal quantum dot LEDs  

E-print Network

This thesis presents the first colloidal quantum dot light emitting devices (QD-LEDs) with metal oxide charge transport layers. Colloidally synthesized quantum dots (QDs) have shown promise as the active material in ...

Wood, Vanessa Claire

2007-01-01

115

Synthesis and photoelectrochemical response of CdS quantum dot-sensitized TiO2 nanorod array photoelectrodes  

PubMed Central

A continuous and compact CdS quantum dot-sensitive layer was synthesized on TiO2 nanorods by successive ionic layer adsorption and reaction (SILAR) and subsequent thermal annealing. The thickness of the CdS quantum dot layer was tuned by SILAR cycles, which was found to be closely related to light absorption and carrier transformation. The CdS quantum dot-sensitized TiO2 nanorod array photoelectrodes were characterized by scanning electron microscopy, X-ray diffraction, ultraviolet–visible absorption spectroscopy, and photoelectrochemical property measurement. The optimum sample was fabricated by SILAR in 70 cycles and then annealed at 400°C for 1 h in air atmosphere. A TiO2/CdS core-shell structure was formed with a diameter of 35 nm, which presented an improvement in light harvesting. Finally, a saturated photocurrent of 3.6 mA/cm2 was produced under the irradiation of AM1.5G simulated sunlight at 100 mW/cm2. In particular, the saturated current density maintained a fixed value of approximately 3 mA/cm2 without decadence as time passed under the light conditions, indicating the steady photoelectronic property of the photoanode. PMID:23663590

2013-01-01

116

Carbon quantum dots and their applications.  

PubMed

Fluorescent carbon nanoparticles or carbon quantum dots (CQDs) are a new class of carbon nanomaterials that have emerged recently and have garnered much interest as potential competitors to conventional semiconductor quantum dots. In addition to their comparable optical properties, CQDs have the desired advantages of low toxicity, environmental friendliness low cost and simple synthetic routes. Moreover, surface passivation and functionalization of CQDs allow for the control of their physicochemical properties. Since their discovery, CQDs have found many applications in the fields of chemical sensing, biosensing, bioimaging, nanomedicine, photocatalysis and electrocatalysis. This article reviews the progress in the research and development of CQDs with an emphasis on their synthesis, functionalization and technical applications along with some discussion on challenges and perspectives in this exciting and promising field. PMID:25316556

Lim, Shi Ying; Shen, Wei; Gao, Zhiqiang

2015-01-01

117

High-performance quantum-dot solids via elemental sulfur synthesis.  

PubMed

An elemental-sulfur-based synthesis is reported, which, combined with processing to improve the size dispersion and passivation, results in a low-cost high-quality platform for small-bandgap PbS-CQD-based devices. Size-selective precipitation and cadmium chloride passivation are used to improve the power conversion efficiency of 1 eV bandgap CQD photovoltaic devices dramatically, which leads to record power conversion efficiency for a 1 eV PbS CQD solar cell of 5.4%. PMID:24659303

Yuan, Mingjian; Kemp, Kyle W; Thon, Susanna M; Kim, Jin Young; Chou, Kang Wei; Amassian, Aram; Sargent, Edward H

2014-06-01

118

Influence of Mn2+ concentration on Mn2+-doped ZnS quantum dot synthesis: evaluation of the structural and photoluminescent properties  

NASA Astrophysics Data System (ADS)

The intentional introduction of transition metal impurities into semiconductor nanocrystals is an attractive approach for tuning quantum dot photoluminescence emission. Particularly, doping of ZnS quantum dots with Mn2+ (Mn:ZnS QDs) results in a phosphorescence-type emission, attributed to the incorporation of manganese ions into the nanocrystal structure, so that delayed radiational deactivation of the energy of nanoparticles, excited through the energy levels of the metal, is enabled. However, the development of effective doping strategies can be challenging, especially if a highly efficient photoluminescent emission within a known crystalline core structure, is required (e.g. for analytical phosphorescence applications). The spectroscopic properties and the crystal structure of Mn2+-doped ZnS QDs are studied here to provide a better understanding on how the luminescence emission and the crystalline composition are influenced by the presence of Mn2+ and its concentration used during the synthesis. In order to further control and optimize the synthesis of doped QDs for future bioanalytical applications, different complementary techniques including photoluminescence and X-ray powder diffraction have been employed. The information obtained has allowed standardization of the synthesis conditions of these doped QDs and the identification and quantification of the crystal phases obtained under different synthesis conditions.The intentional introduction of transition metal impurities into semiconductor nanocrystals is an attractive approach for tuning quantum dot photoluminescence emission. Particularly, doping of ZnS quantum dots with Mn2+ (Mn:ZnS QDs) results in a phosphorescence-type emission, attributed to the incorporation of manganese ions into the nanocrystal structure, so that delayed radiational deactivation of the energy of nanoparticles, excited through the energy levels of the metal, is enabled. However, the development of effective doping strategies can be challenging, especially if a highly efficient photoluminescent emission within a known crystalline core structure, is required (e.g. for analytical phosphorescence applications). The spectroscopic properties and the crystal structure of Mn2+-doped ZnS QDs are studied here to provide a better understanding on how the luminescence emission and the crystalline composition are influenced by the presence of Mn2+ and its concentration used during the synthesis. In order to further control and optimize the synthesis of doped QDs for future bioanalytical applications, different complementary techniques including photoluminescence and X-ray powder diffraction have been employed. The information obtained has allowed standardization of the synthesis conditions of these doped QDs and the identification and quantification of the crystal phases obtained under different synthesis conditions. Electronic supplementary information (ESI) available: Rietveld refinement parameters and plot for each sample are summarized in Fig. S1-S4 and Table S1. See DOI: 10.1039/c3nr02422a

Sotelo-Gonzalez, Emma; Roces, Laura; Garcia-Granda, Santiago; Fernandez-Arguelles, Maria T.; Costa-Fernandez, Jose M.; Sanz-Medel, Alfredo

2013-09-01

119

Synthesis and Characterization of TiO2 Nanotubes Sensitized with CdS Quantum Dots Using a One-Step Method  

NASA Astrophysics Data System (ADS)

A novel one-step synthesis process was used to assemble CdS quantum dots (QDs) into TiO2 nanotube arrays (TNTAs). The sensitization time of the TiO2 nanotubes can be adjusted by controlling the CdS QD synthesis time. The absorption band of sensitized TNTAs red-shifted and broadened to the visible spectrum. The photoelectric conversion efficiency increased to 0.83%, the open-circuit voltage to 776 mV, and the short-circuit current density ( J SC) to 2.30 mA cm-2 with increased sensitization time. The conversion efficiency with this new sensitization method was five times that of nonsensitized TNTAs, providing novel ideas for study of TNTA solar cells.

Song, Jiahui; Zhang, Xinguo; Zhou, Chunyan; Lan, Yuwei; Pang, Qi; Zhou, Liya

2015-01-01

120

Facile synthesis and characterization of water soluble ZnSe/ZnS quantum dots for cellar imaging  

NASA Astrophysics Data System (ADS)

Strong fluorescence and low cytotoxicity ZnSe/ZnS quantum dots (QDs) were synthesized by a facile aqueous phase route. It overcame the defects such as instability and low quantum yield of the quantum dots synthesized by early aqueous phase route. L-Glutathione (GSH) and 3-mercaptopropaonic acid (MPA) were used as mixture stabilizers to synthesize high quality ZnSe/ZnS QDs. The samples were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectrometry (XPS) and their optical properties were investigated by using UV-vis spectrophotometer, fluorescence spectrophotometer (FL), IR spectrophotometer and confocal laser scanning microscope. The synthesized ZnSe/ZnS QDs illuminated blue fluorescence under ultraviolet lamp. Its water-soluble property is excellent and the fluorescence intensity of ZnSe/ZnS QDs almost did not change after 4 months at room temperature. The average diameter of ZnSe/ZnS nanocrystals is about 3 nm and quantum yield (QY) could reach to 70.6% after repeat determination. Low cytotoxicity was ensured by investigated SCG7901 and RAW264.7 cells. In comparison with cadmium based nanocrystals, ZnSe/ZnS QDs posed low cytotoxicity. The cells viability remained 96.7% when the QDs concentration was increased to 10 ?mol/L. The results in vitro indicate that ZnSe/ZnS QDs-based probes have good stability, low toxicity and biocompatibility for fluorescence imaging in cancer model system.

Shu, Chang; Huang, Bin; Chen, Xiangdong; Wang, Yan; Li, Xuequan; Ding, Li; Zhong, Wenying

2013-03-01

121

Quantum dot quantum cascade infrared photodetector  

NASA Astrophysics Data System (ADS)

We demonstrate an InAs quantum dot quantum cascade infrared photodetector operating at room temperature with a peak detection wavelength of 4.3 ?m. The detector shows sensitive photoresponse for normal-incidence light, which is attributed to an intraband transition of the quantum dots and the following transfer of excited electrons on a cascade of quantum levels. The InAs quantum dots for the infrared absorption were formed by making use of self-assembled quantum dots in the Stranski-Krastanov growth mode and two-step strain-compensation design based on InAs/GaAs/InGaAs/InAlAs heterostructure, while the following extraction quantum stairs formed by LO-phonon energy are based on a strain-compensated InGaAs/InAlAs chirped superlattice. Johnson noise limited detectivities of 3.64 × 1011 and 4.83 × 106 Jones at zero bias were obtained at 80 K and room temperature, respectively. Due to the low dark current and distinct photoresponse up to room temperature, this device can form high temperature imaging.

Wang, Xue-Jiao; Zhai, Shen-Qiang; Zhuo, Ning; Liu, Jun-Qi; Liu, Feng-Qi; Liu, Shu-Man; Wang, Zhan-Guo

2014-04-01

122

Quantum dot quantum cascade infrared photodetector  

SciTech Connect

We demonstrate an InAs quantum dot quantum cascade infrared photodetector operating at room temperature with a peak detection wavelength of 4.3??m. The detector shows sensitive photoresponse for normal-incidence light, which is attributed to an intraband transition of the quantum dots and the following transfer of excited electrons on a cascade of quantum levels. The InAs quantum dots for the infrared absorption were formed by making use of self-assembled quantum dots in the Stranski–Krastanov growth mode and two-step strain-compensation design based on InAs/GaAs/InGaAs/InAlAs heterostructure, while the following extraction quantum stairs formed by LO-phonon energy are based on a strain-compensated InGaAs/InAlAs chirped superlattice. Johnson noise limited detectivities of 3.64?×?10{sup 11} and 4.83?×?10{sup 6} Jones at zero bias were obtained at 80?K and room temperature, respectively. Due to the low dark current and distinct photoresponse up to room temperature, this device can form high temperature imaging.

Wang, Xue-Jiao; Zhai, Shen-Qiang; Zhuo, Ning; Liu, Jun-Qi, E-mail: jqliu@semi.ac.cn, E-mail: fqliu@semi.ac.cn; Liu, Feng-Qi, E-mail: jqliu@semi.ac.cn, E-mail: fqliu@semi.ac.cn; Liu, Shu-Man; Wang, Zhan-Guo [Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences and Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, P.O. Box 912, Beijing 100083 (China)

2014-04-28

123

Large-scale synthesis of high quality InP quantum dots in a continuous flow-reactor under supercritical conditions  

NASA Astrophysics Data System (ADS)

The synthesis of indium phosphide quantum dots (QDs) in toluene under supercritical conditions was carried out in a macroscopic continuous flow reaction system. The results of first experiments are reported in comparison with analogous reactions in octadecene. The reaction system is described and details are provided about special procedures that are enabled by the continuous flow system for the screening of reaction conditions. The produced QDs show very narrow emission peaks with full width at half maximum down to 45 nm and reasonable photoluminescence quantum yields. The subsequent purification process is facilitated by the ease of removal of toluene, and the productivity of the system is increased by high temperature and high pressure conditions.

Ippen, Christian; Schneider, Benjamin; Pries, Christopher; Kröpke, Stefan; Greco, Tonino; Holländer, Andreas

2015-02-01

124

Large-scale synthesis of high quality InP quantum dots in a continuous flow-reactor under supercritical conditions.  

PubMed

The synthesis of indium phosphide quantum dots (QDs) in toluene under supercritical conditions was carried out in a macroscopic continuous flow reaction system. The results of first experiments are reported in comparison with analogous reactions in octadecene. The reaction system is described and details are provided about special procedures that are enabled by the continuous flow system for the screening of reaction conditions. The produced QDs show very narrow emission peaks with full width at half maximum down to 45 nm and reasonable photoluminescence quantum yields. The subsequent purification process is facilitated by the ease of removal of toluene, and the productivity of the system is increased by high temperature and high pressure conditions. PMID:25656681

Ippen, Christian; Schneider, Benjamin; Pries, Christopher; Kröpke, Stefan; Greco, Tonino; Holländer, Andreas

2015-02-27

125

Group-velocity slowdown in quantum-dots and quantum-dot molecules  

NASA Astrophysics Data System (ADS)

We investigate theoretically the slowdown of optical pulses due to quantum-coherence effects in InGaAs-based quantum dots and quantum dot molecules. Simple models for the electronic structure of quantum dots and, in particular, quantum-dot molecules are described and calibrated using numerical simulations. It is shown how these models can be used to design optimized quantum-dot molecules for quantum coherence applications. The wave functions and energies obtained from the optimizations are used as input for a microscopic calculation of the quantum-dot material dynamics including carrier scattering and polarization dephasing. The achievable group velocity slowdown in quantum-coherence V schemes consisting of quantum-dot molecule states is shown to be substantially higher than what is achievable from similar transitions in typical InGaAs-based single quantum dots.

Michael, Stephan; Chow, Weng W.; Schneider, Hans Christian

2014-03-01

126

One-Step Instant Synthesis of Protein-Conjugated Quantum Dots at Room Temperature  

PubMed Central

We present a new general facile strategy for the preparation of protein-functionalized QDs in a single step at ambient conditions. We demonstrated that highly luminescent red to near-infrared (NIR) protein-functionalized QDs could be synthesized at room temperature in one second through a one-pot reaction that proceeds in aqueous solution. Herein protein-functionalized QDs were successfully constructed for a variety of proteins with a wide range of molecular weights and isoelectric points. The as-prepared protein-conjugated QDs exhibited high quantum yield, high photostabiliy and colloidal stability, and high functionalization efficiency. Importantly, the proteins attached to the QDs maintain their biological activities and are capable of catalyzing reactions and biotargeting. In particular, the as-prepared transferrin-QDs could be used to label cancer cells with high specificity. Moreover, we demonstrated that this synthetic strategy could be extended to prepare QDs functionalized with folic acids and peptides, which were also successfully applied to cancer cell imaging. PMID:24084780

He, Xuewen; Gao, Li; Ma, Nan

2013-01-01

127

Ultra-bright alkylated graphene quantum dots  

NASA Astrophysics Data System (ADS)

Highly efficient and stable photoluminescence (PL) are urgently desired for graphene quantum dots (GQDs) to facilitate their prospective applications as optical materials. Here, we report the facile and straightforward synthesis of alkylated graphene quantum dots (AGQDs) via the solvothermal reaction of propagatively alkylated graphene sheets (PAGenes). In contrast to most GQDs reported so far, the synthesized AGQDs process pH-independent and ultra-bright PL with a relative quantum yield of up to 65%. Structural and chemical composition characterization demonstrated that the synthesized AGQDs are nearly oxygen-defect-free with alkyl groups decorated on edges and basal plane, which may contribute to their greatly improved pH tolerance and high quantum efficiency. The photocatalytic performance of AGQDs-P25 nanocomposites was evaluated by the degradation of Rhodamine B under visible light. The photocatalytic rate is ca. 5.9 times higher than that of pure P25, indicating that AGQDs could harness the visible spectrum of sunlight for energy conversion or environmental therapy.Highly efficient and stable photoluminescence (PL) are urgently desired for graphene quantum dots (GQDs) to facilitate their prospective applications as optical materials. Here, we report the facile and straightforward synthesis of alkylated graphene quantum dots (AGQDs) via the solvothermal reaction of propagatively alkylated graphene sheets (PAGenes). In contrast to most GQDs reported so far, the synthesized AGQDs process pH-independent and ultra-bright PL with a relative quantum yield of up to 65%. Structural and chemical composition characterization demonstrated that the synthesized AGQDs are nearly oxygen-defect-free with alkyl groups decorated on edges and basal plane, which may contribute to their greatly improved pH tolerance and high quantum efficiency. The photocatalytic performance of AGQDs-P25 nanocomposites was evaluated by the degradation of Rhodamine B under visible light. The photocatalytic rate is ca. 5.9 times higher than that of pure P25, indicating that AGQDs could harness the visible spectrum of sunlight for energy conversion or environmental therapy. Electronic supplementary information (ESI) available: Additional figures (Fig. S1-S12). See DOI: 10.1039/c4nr03506b

Feng, Lan; Tang, Xing-Yan; Zhong, Yun-Xin; Liu, Yue-Wen; Song, Xue-Huan; Deng, Shun-Liu; Xie, Su-Yuan; Yan, Jia-Wei; Zheng, Lan-Sun

2014-10-01

128

Aqueous synthesis of highly luminescent AgInS2-ZnS quantum dots and their biological applications  

NASA Astrophysics Data System (ADS)

Highly emissive and air-stable AgInS2-ZnS quantum dots (ZAIS QDs) with quantum yields of up to 20% have been successfully synthesized directly in aqueous media in the presence of polyacrylic acid (PAA) and mercaptoacetic acid (MAA) as stabilizing and reactivity-controlling agents. The as-prepared water-dispersible ZAIS QDs are around 3 nm in size, possess the tetragonal chalcopyrite crystal structure, and exhibit long fluorescence lifetimes (>100 ns). In addition, these ZAIS QDs are found to exhibit excellent optical and colloidal stability in physiologically relevant pH values as well as very low cytotoxicity, which render them particularly suitable for biological applications. Their potential use in biological labelling of baculoviral vectors is demonstrated.Highly emissive and air-stable AgInS2-ZnS quantum dots (ZAIS QDs) with quantum yields of up to 20% have been successfully synthesized directly in aqueous media in the presence of polyacrylic acid (PAA) and mercaptoacetic acid (MAA) as stabilizing and reactivity-controlling agents. The as-prepared water-dispersible ZAIS QDs are around 3 nm in size, possess the tetragonal chalcopyrite crystal structure, and exhibit long fluorescence lifetimes (>100 ns). In addition, these ZAIS QDs are found to exhibit excellent optical and colloidal stability in physiologically relevant pH values as well as very low cytotoxicity, which render them particularly suitable for biological applications. Their potential use in biological labelling of baculoviral vectors is demonstrated. Electronic supplementary information (ESI) available: Quantum yields, EDX spectrum and photoluminescence decay curves. See DOI: 10.1039/c3nr34159c

Regulacio, Michelle D.; Win, Khin Yin; Lo, Seong Loong; Zhang, Shuang-Yuan; Zhang, Xinhai; Wang, Shu; Han, Ming-Yong; Zheng, Yuangang

2013-02-01

129

Designing quantum dots for solotronics  

NASA Astrophysics Data System (ADS)

Solotronics, optoelectronics based on solitary dopants, is an emerging field of research and technology reaching the ultimate limit of miniaturization. It aims at exploiting quantum properties of individual ions or defects embedded in a semiconductor matrix. It has already been shown that optical control of a magnetic ion spin is feasible using the carriers confined in a quantum dot. However, a serious obstacle was the quenching of the exciton luminescence by magnetic impurities. Here we show, by photoluminescence studies on thus-far-unexplored individual CdTe dots with a single cobalt ion and CdSe dots with a single manganese ion, that even if energetically allowed, nonradiative exciton recombination through single-magnetic-ion intra-ionic transitions is negligible in such zero-dimensional structures. This opens solotronics for a wide range of as yet unconsidered systems. On the basis of results of our single-spin relaxation experiments and on the material trends, we identify optimal magnetic-ion quantum dot systems for implementation of a single-ion-based spin memory.

Kobak, J.; Smole?ski, T.; Goryca, M.; Papaj, M.; Gietka, K.; Bogucki, A.; Koperski, M.; Rousset, J.-G.; Suffczy?ski, J.; Janik, E.; Nawrocki, M.; Golnik, A.; Kossacki, P.; Pacuski, W.

2014-01-01

130

Designing quantum dots for solotronics  

PubMed Central

Solotronics, optoelectronics based on solitary dopants, is an emerging field of research and technology reaching the ultimate limit of miniaturization. It aims at exploiting quantum properties of individual ions or defects embedded in a semiconductor matrix. It has already been shown that optical control of a magnetic ion spin is feasible using the carriers confined in a quantum dot. However, a serious obstacle was the quenching of the exciton luminescence by magnetic impurities. Here we show, by photoluminescence studies on thus-far-unexplored individual CdTe dots with a single cobalt ion and CdSe dots with a single manganese ion, that even if energetically allowed, nonradiative exciton recombination through single-magnetic-ion intra-ionic transitions is negligible in such zero-dimensional structures. This opens solotronics for a wide range of as yet unconsidered systems. On the basis of results of our single-spin relaxation experiments and on the material trends, we identify optimal magnetic-ion quantum dot systems for implementation of a single-ion-based spin memory. PMID:24463946

Kobak, J.; Smole?ski, T.; Goryca, M.; Papaj, M.; Gietka, K.; Bogucki, A.; Koperski, M.; Rousset, J.-G.; Suffczy?ski, J.; Janik, E.; Nawrocki, M.; Golnik, A.; Kossacki, P.; Pacuski, W.

2014-01-01

131

Hybrid passivated colloidal quantum dot solids  

NASA Astrophysics Data System (ADS)

Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions, leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states. Furthermore, the solution-based approach leverages recent progress in metal:chalcogen chemistry in the liquid phase. Here, we quantify the density of midgap trap states in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electron-hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device.

Ip, Alexander H.; Thon, Susanna M.; Hoogland, Sjoerd; Voznyy, Oleksandr; Zhitomirsky, David; Debnath, Ratan; Levina, Larissa; Rollny, Lisa R.; Carey, Graham H.; Fischer, Armin; Kemp, Kyle W.; Kramer, Illan J.; Ning, Zhijun; Labelle, André J.; Chou, Kang Wei; Amassian, Aram; Sargent, Edward H.

2012-09-01

132

Semiconductor double quantum dot micromaser.  

PubMed

The coherent generation of light, from masers to lasers, relies upon the specific structure of the individual emitters that lead to gain. Devices operating as lasers in the few-emitter limit provide opportunities for understanding quantum coherent phenomena, from terahertz sources to quantum communication. Here we demonstrate a maser that is driven by single-electron tunneling events. Semiconductor double quantum dots (DQDs) serve as a gain medium and are placed inside a high-quality factor microwave cavity. We verify maser action by comparing the statistics of the emitted microwave field above and below the maser threshold. PMID:25593187

Liu, Y-Y; Stehlik, J; Eichler, C; Gullans, M J; Taylor, J M; Petta, J R

2015-01-16

133

Semiconductor double quantum dot micromaser  

NASA Astrophysics Data System (ADS)

The coherent generation of light, from masers to lasers, relies upon the specific structure of the individual emitters that lead to gain. Devices operating as lasers in the few-emitter limit provide opportunities for understanding quantum coherent phenomena, from terahertz sources to quantum communication. Here we demonstrate a maser that is driven by single-electron tunneling events. Semiconductor double quantum dots (DQDs) serve as a gain medium and are placed inside a high-quality factor microwave cavity. We verify maser action by comparing the statistics of the emitted microwave field above and below the maser threshold.

Liu, Y.-Y.; Stehlik, J.; Eichler, C.; Gullans, M. J.; Taylor, J. M.; Petta, J. R.

2015-01-01

134

Lifetime blinking in nonblinking nanocrystal quantum dots.  

PubMed

Nanocrystal quantum dots are attractive materials for applications as nanoscale light sources. One impediment to these applications is fluctuations of single-dot emission intensity, known as blinking. Recent progress in colloidal synthesis has produced nonblinking nanocrystals; however, the physics underlying blinking suppression remains unclear. Here we find that ultra-thick-shell CdSe/CdS nanocrystals can exhibit pronounced fluctuations in the emission lifetimes (lifetime blinking), despite stable nonblinking emission intensity. We demonstrate that lifetime variations are due to switching between the neutral and negatively charged state of the nanocrystal. Negative charging results in faster radiative decay but does not appreciably change the overall emission intensity because of suppressed nonradiative Auger recombination for negative trions. The Auger process involving excitation of a hole (positive trion pathway) remains efficient and is responsible for charging with excess electrons, which occurs via Auger-assisted ionization of biexcitons accompanied by ejection of holes. PMID:22713750

Galland, Christophe; Ghosh, Yagnaseni; Steinbrück, Andrea; Hollingsworth, Jennifer A; Htoon, Han; Klimov, Victor I

2012-01-01

135

Lifetime blinking in nonblinking nanocrystal quantum dots  

NASA Astrophysics Data System (ADS)

Nanocrystal quantum dots are attractive materials for applications as nanoscale light sources. One impediment to these applications is fluctuations of single-dot emission intensity, known as blinking. Recent progress in colloidal synthesis has produced nonblinking nanocrystals; however, the physics underlying blinking suppression remains unclear. Here we find that ultra-thick-shell CdSe/CdS nanocrystals can exhibit pronounced fluctuations in the emission lifetimes (lifetime blinking), despite stable nonblinking emission intensity. We demonstrate that lifetime variations are due to switching between the neutral and negatively charged state of the nanocrystal. Negative charging results in faster radiative decay but does not appreciably change the overall emission intensity because of suppressed nonradiative Auger recombination for negative trions. The Auger process involving excitation of a hole (positive trion pathway) remains efficient and is responsible for charging with excess electrons, which occurs via Auger-assisted ionization of biexcitons accompanied by ejection of holes.

Galland, Christophe; Ghosh, Yagnaseni; Steinbrück, Andrea; Hollingsworth, Jennifer A.; Htoon, Han; Klimov, Victor I.

2012-06-01

136

Lifetime blinking in nonblinking nanocrystal quantum dots  

PubMed Central

Nanocrystal quantum dots are attractive materials for applications as nanoscale light sources. One impediment to these applications is fluctuations of single-dot emission intensity, known as blinking. Recent progress in colloidal synthesis has produced nonblinking nanocrystals; however, the physics underlying blinking suppression remains unclear. Here we find that ultra-thick-shell CdSe/CdS nanocrystals can exhibit pronounced fluctuations in the emission lifetimes (lifetime blinking), despite stable nonblinking emission intensity. We demonstrate that lifetime variations are due to switching between the neutral and negatively charged state of the nanocrystal. Negative charging results in faster radiative decay but does not appreciably change the overall emission intensity because of suppressed nonradiative Auger recombination for negative trions. The Auger process involving excitation of a hole (positive trion pathway) remains efficient and is responsible for charging with excess electrons, which occurs via Auger-assisted ionization of biexcitons accompanied by ejection of holes. PMID:22713750

Galland, Christophe; Ghosh, Yagnaseni; Steinbrück, Andrea; Hollingsworth, Jennifer A.; Htoon, Han; Klimov, Victor I.

2012-01-01

137

CuInS2 quantum dot-sensitized TiO2 nanorod array photoelectrodes: synthesis and performance optimization  

PubMed Central

CuInS2 quantum dots (QDs) were deposited onto TiO2 nanorod arrays for different cycles by using successive ionic layer adsorption and reaction (SILAR) method. The effect of SILAR cycles on the light absorption and photoelectrochemical properties of the sensitized photoelectrodes was studied. With optimization of CuInS2 SILAR cycles and introduction of In2S3 buffer layer, quantum dot-sensitized solar cells assembled with 3-?m thick TiO2 nanorod film exhibited a short-circuit current density (Isc) of 4.51 mA cm?2, an open-circuit voltage (Voc) of 0.56 V, a fill factor (FF) of 0.41, and a power conversion efficiency (?) of 1.06%, respectively. This study indicates that SILAR process is a very promising strategy for preparing directly anchored semiconductor QDs on TiO2 nanorod surface in a straightforward but controllable way without any complicated fabrication procedures and introduction of a linker molecule. PMID:23181940

2012-01-01

138

Quantum computation with quantum dot excitons  

Microsoft Academic Search

Potential application of elementary excitation in semiconductor quantum dot to quantum computation is discussed. We propose a scalable hardware and all optical implementation of a logic gate that exploits the discrete nature of electron-hole states and their well-concentrated oscillator strength for ultrafast gate operation. A multiple-bit gate function is based on the nearest neighbour dipole-dipole coupling. Rabi population oscillation and

H. Kamada; H. Gotoh

2004-01-01

139

Thermoelectric energy harvesting with quantum dots  

NASA Astrophysics Data System (ADS)

We review recent theoretical work on thermoelectric energy harvesting in multi-terminal quantum-dot setups. We first discuss several examples of nanoscale heat engines based on Coulomb-coupled conductors. In particular, we focus on quantum dots in the Coulomb-blockade regime, chaotic cavities and resonant tunneling through quantum dots and wells. We then turn toward quantum-dot heat engines that are driven by bosonic degrees of freedom such as phonons, magnons and microwave photons. These systems provide interesting connections to spin caloritronics and circuit quantum electrodynamics.

Sothmann, Björn; Sánchez, Rafael; Jordan, Andrew N.

2015-01-01

140

Thermoelectric energy harvesting with quantum dots.  

PubMed

We review recent theoretical work on thermoelectric energy harvesting in multi-terminal quantum-dot setups. We first discuss several examples of nanoscale heat engines based on Coulomb-coupled conductors. In particular, we focus on quantum dots in the Coulomb-blockade regime, chaotic cavities and resonant tunneling through quantum dots and wells. We then turn toward quantum-dot heat engines that are driven by bosonic degrees of freedom such as phonons, magnons and microwave photons. These systems provide interesting connections to spin caloritronics and circuit quantum electrodynamics. PMID:25549281

Sothmann, Björn; Sánchez, Rafael; Jordan, Andrew N

2015-01-21

141

Electric field tuning of spin splitting in a quantum dot coupled to a semimagnetic quantum dot  

NASA Astrophysics Data System (ADS)

We develop an approach for tuning the spin splitting and g-factor of a quantum dot by coupling it to semi-magnetic quantum dot and tuning the electric field. We show that spin splittings and g-factors of the states of a non-magnetic quantum dot coupled to semimagnetic quantum dot can be enhanced orders of magnitude. Evaluations are made for coupled CdTe/CdMnTe quantum dots. These effects are caused by electric field control of repulsion of spin sublevels in the non-magnetic dot due to tunnel coupling of quantum dots. Electric field control of spin splittings in quantum dots is of potential interest in connection with spin qubit rotations for quantum computation.

Lyanda-Geller, Y.; Reinecke, T. L.; Bacher, G.

2012-05-01

142

Dephasing in closed quantum dots  

NASA Astrophysics Data System (ADS)

The dephasing rate in closed quantum dots is expected to vanish at low excitation energies, ?dot [1]. In a recent experiment [2] the magnetic field dependence of the Coulomb Blockade peaks conductance has been measured, and deviations from the RMT value were interpreted as a sign for non-vanishing dephasing rates at low temperatures, in contradiction with the above prediction. However, a quantitative relation between the observed magnetoconductance and the dephasing rate was lacking, preventing a direct estimation of the dephasing rates. In this work [3], dephasing of one-particle states in closed quantum dots is analyzed within the framework of random matrix theory and Master equation. We derive a closed expression for the Coulomb Blockade peak conductance in the presence of dephasing. Combination of this analysis with recent experiments [2] allows for the first time to evaluate the dephasing times of closed quantum dots. These dephasing times turn out to depend on the mean level spacing and to be significantly enhanced as compared with the case of open dots. Moreover, the experimental data available are consistent with the prediction that the dephasing of one-particle states in finite closed systems disappears at low enough energies and temperatures. \\vspace*0.5cm setlength indent0 cm correct order here [1] B.L. Altshuler, Y. Gefen, A. Kamenev and L.S. Levitov, Phys. Rev. Lett. 78, 2803 (1997). [2] J. A. Folk, C. M. Marcus, and J. S. Harris, Phys. Rev. Lett. 87, 206802 (2001). [3] E. Eisenberg, K. Held and B.L. Altshuler, cond-mat/0110609.

Eisenberg, Eli; Held, Karsten; Altshuler, Boris L.

2002-03-01

143

Quantum dots: patterning fluorescent quantum dot nanocomposites by reactive inkjet printing (small 14/2015).  

PubMed

Semiconductor quantum dots have enormous potential as essential components in various optoelectronic devices. Patterned quantum dot nanocomposites such as quantum dot-polymers and quantum dot-photonic crystals are fabricated by Y. Song and co-workers on page 1649 through a reactive inkjet printing technique. Straightforward and efficient, this technique is capable of generating large-area patterns economically. It is anticipated that this concept will be broadened to the fabrication of other functional nanomaterials and optoelectronic devices. PMID:25846679

Bao, Bin; Li, Mingzhu; Li, Yuan; Jiang, Jieke; Gu, Zhenkun; Zhang, Xingye; Jiang, Lei; Song, Yanlin

2015-04-01

144

Spin fluctuations in quantum dots  

NASA Astrophysics Data System (ADS)

We explore the static longitudinal and dynamic transverse spin susceptibilities in quantum dots and nanoparticles within the framework of the Hamiltonian that extends the universal Hamiltonian to the case of uniaxial anisotropic exchange. For the limiting cases of Ising and Heisenberg exchange interactions, we ascertain how fluctuations of single-particle levels affect the Stoner instability in quantum dots. We reduce the problem to the statistics of extrema of a certain Gaussian process. We prove that, despite possible strong randomness of the single-particle levels, the spin susceptibility and all its moments diverge simultaneously at the point which is determined by the standard criterion of the Stoner instability involving the mean level spacing only.

Sharafutdinov, A. U.; Lyubshin, D. S.; Burmistrov, I. S.

2014-11-01

145

Quantitative multiplexed quantum dot immunohistochemistry.  

PubMed

Quantum dots are photostable fluorescent semiconductor nanocrystals possessing wide excitation and bright narrow, symmetrical, emission spectra. These characteristics have engendered considerable interest in their application in multiplex immunohistochemistry for biomarker quantification and co-localisation in clinical samples. Robust quantitation allows biomarker validation, and there is growing need for multiplex staining due to limited quantity of clinical samples. Most reported multiplexed quantum dot staining used sequential methods that are laborious and impractical in a high-throughput setting. Problems associated with sequential multiplex staining have been investigated and a method developed using QDs conjugated to biotinylated primary antibodies, enabling simultaneous multiplex staining with three antibodies. CD34, Cytokeratin 18 and cleaved Caspase 3 were triplexed in tonsillar tissue using an 8h protocol, each localised to separate cellular compartments. This demonstrates utility of the method for biomarker measurement enabling rapid measurement of multiple co-localised biomarkers on single paraffin tissue sections, of importance for clinical trial studies. PMID:18621021

Sweeney, E; Ward, T H; Gray, N; Womack, C; Jayson, G; Hughes, A; Dive, C; Byers, R

2008-09-19

146

Acid-free and oxone oxidant-assisted solvothermal synthesis of graphene quantum dots using various natural carbon materials as resources.  

PubMed

To prepare carbon-based fluorescent materials such as graphene quantum dots (GQDs), new and effective methods are needed to convert one-dimensional (1D) or two-dimensional (2D) carbon materials to 0D GQDs. Here, we report a novel acid-free and oxone oxidant-assisted solvothermal synthesis of GQDs using various natural carbon resources including graphite (G), multiwall carbon nanotubes (M), carbon fibers (CF), and charcoal (C). This acid-free method, not requiring the neutralization process of strong acids, exhibits a simple and eco-friendly purification process and also represents a recycling production process, together with mass production and high yield. Newly synthesized GQDs exhibited a strong blue photoluminescence (PL) under 365 nm UV light illumination. The PL emission peaks of all the recycled GQDs did not change. PMID:25757839

Shin, Yonghun; Park, Jintaek; Hyun, Daesun; Yang, Junghee; Lee, Jae-Hyeok; Kim, Jae-Ho; Lee, Hyoyoung

2015-03-19

147

CdS/CdSe quantum dot co-sensitized graphene nanocomposites via polymer brush templated synthesis for potential photovoltaic applications  

NASA Astrophysics Data System (ADS)

CdS/CdSe quantum dot (QDs) co-sensitized graphene sheets have been obtained via polymer brush templated synthesis. Firstly, the anionic functional polymer (polymethacrylate cadmium) was grafted via the surface initiated atomic transfer radical polymerization (ATRP) using a macromolecular initiator, which contains polymerized pyrene units for chemical anchoring on graphene surface and alkyl bromines to initiate ATRP. Then, the coordinated cadmium in the polymer chains can act as a source precursor for QDs. After reaction, polymer brushes can be recovered and act as the nanoreactor via the absorption of cadmium ions by carboxylate groups. So, high density QDs can be multiply uploaded onto the graphene surface by repeated steps. The as-prepared composite materials exhibited significantly enhanced visible light response compared to plain graphene, and have potential applications as the platform to build solar cell assembles.

Yan, Junfeng; Ye, Qian; Wang, Xiaolong; Yu, Bo; Zhou, Feng

2012-03-01

148

Cellular internalization of quantum dots.  

PubMed

Cell-penetrating peptides (CPPs) can facilitate uptake of quantum dots (QDs) for a variety of basic and applied sciences. Here we describe a method that utilizes simple noncovalent interactions to complex QDs and CPPs. We further describe methods to study uptake mechanisms of the QD/CPP complex. The inhibitor study coupled with the RNA interference (RNAi) technique provides a comprehensive approach to elucidate cellular entry of the QD/CPP complex. PMID:23546675

Huang, Yue-Wern; Lee, Han-Jung; Liu, Betty Revon; Chiang, Huey-Jenn; Wu, Chi-Heng

2013-01-01

149

Infra red quantum dot photolithography  

Microsoft Academic Search

CdS quantum dots were fabricated photolithographically on the surface and in the bulk of silica hydrogels, as well as on the\\u000a surface of planar substrates. Silica hydrogels were prepared with a standard base-catalyzed route, and the solvent was exchanged\\u000a with a cold aqueous solution of Cd(NO3)2, NH4OH, thiourea, and a capping agent, e.g., 2-mercaptoethanol. The samples were then exposed to

R. R. Gadipalli; L. A. Martin; B. Heckman; J. G. Story; M. F. Bertino; P. Fraundorf; S. Guha; N. Leventis

2006-01-01

150

Synthesis of cadmium telluride quantum wires and the similarity of their band gaps to those of equidiameter cadmium telluride quantum dots  

SciTech Connect

High-quality colloidal CdTe quantum wires having purposefully controlled diameters in the range of 5-11 nm are grown by the solution-liquid-solid (SLS) method, using Bi-nanoparticle catalysts, cadmium octadecylphosphonate and trioctylphosphine telluride as precursors, and a TOPO solvent. The wires adopt the wurtzite structure, and grow along the [002] direction (parallel to the c axis). The size dependence of the band gaps in the wires are determined from the absorption spectra, and compared to the experimental results for high-quality CdTe quantum dots. In contrast to the predictions of an effective-mass approximation, particle-in-a-box model, and previous experimental results from CdSe and InP dot-wire comparisons, the band gaps of CdTe dots and wires of like diameter are found to be experimentally indistinguishable. The present results are analyzed using density functional theory under the local-density approximation by implementing a charge-patching method. The higher-level theoretical analysis finds the general existence of a threshold diameter, above which dot and wire band gaps converge. The origin and magnitude of this threshold diameter is discussed.

Wang, Lin-Wang; Sun, Jianwei; Wang, Lin-Wang; Buhro, William E.

2008-07-11

151

Acid-free and oxone oxidant-assisted solvothermal synthesis of graphene quantum dots using various natural carbon materials as resources  

NASA Astrophysics Data System (ADS)

To prepare carbon-based fluorescent materials such as graphene quantum dots (GQDs), new and effective methods are needed to convert one-dimensional (1D) or two-dimensional (2D) carbon materials to 0D GQDs. Here, we report a novel acid-free and oxone oxidant-assisted solvothermal synthesis of GQDs using various natural carbon resources including graphite (G), multiwall carbon nanotubes (M), carbon fibers (CF), and charcoal (C). This acid-free method, not requiring the neutralization process of strong acids, exhibits a simple and eco-friendly purification process and also represents a recycling production process, together with mass production and high yield. Newly synthesized GQDs exhibited a strong blue photoluminescence (PL) under 365 nm UV light illumination. The PL emission peaks of all the recycled GQDs did not change.To prepare carbon-based fluorescent materials such as graphene quantum dots (GQDs), new and effective methods are needed to convert one-dimensional (1D) or two-dimensional (2D) carbon materials to 0D GQDs. Here, we report a novel acid-free and oxone oxidant-assisted solvothermal synthesis of GQDs using various natural carbon resources including graphite (G), multiwall carbon nanotubes (M), carbon fibers (CF), and charcoal (C). This acid-free method, not requiring the neutralization process of strong acids, exhibits a simple and eco-friendly purification process and also represents a recycling production process, together with mass production and high yield. Newly synthesized GQDs exhibited a strong blue photoluminescence (PL) under 365 nm UV light illumination. The PL emission peaks of all the recycled GQDs did not change. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00814j

Shin, Yonghun; Park, Jintaek; Hyun, Daesun; Yang, Junghee; Lee, Jae-Hyeok; Kim, Jae-Ho; Lee, Hyoyoung

2015-03-01

152

Stress Relaxation Phenomena in Buried Quantum Dots  

Microsoft Academic Search

We report on the results of experimental and theoretical investigation of mechanical stress relaxation in heterostructures with buried quantum dots. Quan- tum dot is viewed as a dilatational inclusion with eigenstrain (transformation strain) caused by crystal lattice mismatch between the dot and matrix materials. Stresses and energies for spheroid inclusions in an infinite medium, in a half-space, and in a

N. A. Bert; V. V. Chaldyshev; A. L. Kolesnikova; A. E. Romanov

153

Multimodal Mn-doped I-III-VI quantum dots for near infrared fluorescence and magnetic resonance imaging: from synthesis to in vivo application  

NASA Astrophysics Data System (ADS)

The development of sensitive multimodal contrast agents is a key issue to provide better global, multi-scale images for diagnostic or therapeutic purposes. Here we present the synthesis of Zn-Cu-In-(S, Se)/Zn1-xMnxS core-shell quantum dots (QDs) that can be used as markers for both near-infrared fluorescence imaging and magnetic resonance imaging (MRI). We first present the synthesis of Zn-Cu-In-(S, Se) cores coated with a thick ZnS shell doped with various proportions of Mn. Their emission wavelengths can be tuned over the NIR optical window suitable for deep tissue imaging. The incorporation of manganese ions (up to a few thousand ions per QD) confers them a paramagnetic character, as demonstrated by structural analysis and electron paramagnetic resonance spectroscopy. These QDs maintain their optical properties after transfer to water using ligand exchange. They exhibit T1-relaxivities up to 1400 mM-1 [QD] s-1 at 7 T and 300 K. We finally show that these QDs are suitable multimodal in vivo probes and demonstrate MRI and NIR fluorescence detection of regional lymph nodes in mice.The development of sensitive multimodal contrast agents is a key issue to provide better global, multi-scale images for diagnostic or therapeutic purposes. Here we present the synthesis of Zn-Cu-In-(S, Se)/Zn1-xMnxS core-shell quantum dots (QDs) that can be used as markers for both near-infrared fluorescence imaging and magnetic resonance imaging (MRI). We first present the synthesis of Zn-Cu-In-(S, Se) cores coated with a thick ZnS shell doped with various proportions of Mn. Their emission wavelengths can be tuned over the NIR optical window suitable for deep tissue imaging. The incorporation of manganese ions (up to a few thousand ions per QD) confers them a paramagnetic character, as demonstrated by structural analysis and electron paramagnetic resonance spectroscopy. These QDs maintain their optical properties after transfer to water using ligand exchange. They exhibit T1-relaxivities up to 1400 mM-1 [QD] s-1 at 7 T and 300 K. We finally show that these QDs are suitable multimodal in vivo probes and demonstrate MRI and NIR fluorescence detection of regional lymph nodes in mice. Electronic supplementary information (ESI) available: Determination of Mn content; magnetization measurements; additional TEM and spectroscopic data; additional NIR fluorescence image; MTT assay results. See DOI: 10.1039/c4nr02239d

Sitbon, Gary; Bouccara, Sophie; Tasso, Mariana; Francois, Aurélie; Bezdetnaya, Lina; Marchal, Frédéric; Beaumont, Marine; Pons, Thomas

2014-07-01

154

Simple and greener synthesis of highly photoluminescence Mn2+-doped ZnS quantum dots and its surface passivation mechanism  

NASA Astrophysics Data System (ADS)

In this paper, we reported a simple synthetic method of highly photoluminescent (PL) and stable Mn2+-doped ZnS quantum dots (QDs) with glutathione (GSH) as the capping molecule and focused on mechanism of the surface passivation of QDs. The Mn2+-doped ZnS QDs that was synthesized in basic solution (pH 10) at 120 °C for 5 h exhibited blue trap-state emission around 418 nm and a strong orange-red emission at about 580 nm with an excitation wavelength of 330 nm. The optimum doping concentration is determined to be 1.5 at.%, and the present Mn2+-doped ZnS QDs synthesized under the optimal reaction condition exhibited a quantum yield of 48%. High resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) indicated that the Mn2+-doped ZnS QDs were 3-5 nm in size with a zinc blend structure. More importantly, the PL intensity and chemical stability can be improved using organic ligand modification strategies, it was found that GSH could passivate surface defects very efficiently by comparing and analyzing the results of the different organic ligands modification. The cadmium-free Mn2+-doped ZnS QDs well-passivated with GSH as capping molecule acquired the advantages of strong PL and excellent chemical stability, which are important to QD applications.

Wang, Yongbo; Liang, Xuhua; Ma, Xuan; Hu, Yahong; Hu, Xiaoyun; Li, Xinghua; Fan, Jun

2014-10-01

155

Photoluminescence of a quantum-dot molecule  

NASA Astrophysics Data System (ADS)

The coherent coupling of quantum dots is a sensitive indicator of the energy and phase relaxation processes taking place in the nanostructure components. We formulate a theory of low-temperature, stationary photoluminescence from a quantum-dot molecule composed of two spherical quantum dots whose electronic subsystems are resonantly coupled via the Coulomb interaction. We show that the coupling leads to the hybridization of the first excited states of the quantum dots, manifesting itself as a pair of photoluminescence peaks with intensities and spectral positions strongly dependent on the geometric, material, and relaxation parameters of the quantum-dot molecule. These parameters are explicitly contained in the analytical expression for the photoluminescence differential cross section derived in the paper. The developed theory and expression obtained are essential in interpreting and analyzing spectroscopic data on the secondary emission of coherently coupled quantum systems.

Kruchinin, Stanislav Yu.; Rukhlenko, Ivan D.; Baimuratov, Anvar S.; Leonov, Mikhail Yu.; Turkov, Vadim K.; Gun'ko, Yurii K.; Baranov, Alexander V.; Fedorov, Anatoly V.

2015-01-01

156

The quantum Hall effect in quantum dot systems  

NASA Astrophysics Data System (ADS)

It is proposed to use quantum dots in order to increase the temperatures suitable for observation of the integer quantum Hall effect. A simple estimation using Fock-Darwin spectrum of a quantum dot shows that good part of carriers localized in quantum dots generate the intervals of plateaus robust against elevated temperatures. Numerical calculations employing local trigonometric basis and highly efficient kernel polynomial method adopted for computing the Hall conductivity reveal that quantum dots may enhance peak temperature for the effect by an order of magnitude, possibly above 77 K. Requirements to potentials, quality and arrangement of the quantum dots essential for practical realization of such enhancement are indicated. Comparison of our theoretical results with the quantum Hall measurements in InAs quantum dot systems from two experimental groups is also given.

Beltukov, Y. M.; Greshnov, A. A.

2014-12-01

157

A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2,4,6-trinitrophenol in aqueous solution  

NASA Astrophysics Data System (ADS)

A facile bottom-up method for the synthesis of highly fluorescent nitrogen-doped graphene quantum dots (N-GQDs) has been developed via a one-step pyrolysis of citric acid and tris(hydroxymethyl)aminomethane. The obtained N-GQDs emitted strong blue fluorescence under 365 nm UV light excitation with a high quantum yield of 59.2%. They displayed excitation-independent behavior, high resistance to photobleaching and high ionic strength. In addition to the good linear relationship between the fluorescence intensity of the N-GQDs and pH in the range 2-7, the fluorescence intensity of the N-GQDs could be greatly quenched by the addition of a small amount of 2,4,6-trinitrophenol (TNP). A sensitive approach has been developed for the detection of TNP with a detection limit of 0.30 ?M, and a linearity ranging from 1 to 60 ?M TNP could be obtained. The approach was highly selective and suitable for TNP analysis in natural water samples.A facile bottom-up method for the synthesis of highly fluorescent nitrogen-doped graphene quantum dots (N-GQDs) has been developed via a one-step pyrolysis of citric acid and tris(hydroxymethyl)aminomethane. The obtained N-GQDs emitted strong blue fluorescence under 365 nm UV light excitation with a high quantum yield of 59.2%. They displayed excitation-independent behavior, high resistance to photobleaching and high ionic strength. In addition to the good linear relationship between the fluorescence intensity of the N-GQDs and pH in the range 2-7, the fluorescence intensity of the N-GQDs could be greatly quenched by the addition of a small amount of 2,4,6-trinitrophenol (TNP). A sensitive approach has been developed for the detection of TNP with a detection limit of 0.30 ?M, and a linearity ranging from 1 to 60 ?M TNP could be obtained. The approach was highly selective and suitable for TNP analysis in natural water samples. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06365a

Lin, Liping; Rong, Mingcong; Lu, Sisi; Song, Xinhong; Zhong, Yunxin; Yan, Jiawei; Wang, Yiru; Chen, Xi

2015-01-01

158

Resonant Fluorescence from Quantum Dot Molecular Excitonic Transitions  

Microsoft Academic Search

Quantum dot molecules formed by two vertically stacked quantum dots are a rich testing ground for basic concepts regarding the measurement and control of quantum states. The well defined geometry is ideal for studying interaction mechanisms, such as the interaction of two dipoles each located in one of the quantum dots of the quantum dot molecule. A prerequisite for doing

Mark Kerfoot; Allan Bracker; Daniel Gammon; Michael Scheibner

2011-01-01

159

Microwave assisted aqueous synthesis of core-shell CdSe(x)Te(1-x)-CdS quantum dots for high performance sensitized solar cells.  

PubMed

A facile microwave assisted aqueous method has been developed to rapidly prepare stable CdSe(x)Te(1-x)-CdS quantum dots. Based on this material, core-shell type II CdSe(x)Te(1-x)-CdS quantum dot sensitized solar cells have been assembled and a power conversion efficiency as high as 5.04% has been obtained. PMID:24554167

Luo, Jianheng; Wei, Huiyun; Li, Fan; Huang, Qingli; Li, Dongmei; Luo, Yanhong; Meng, Qingbo

2014-04-01

160

Tunable quantum dots in bilayer graphene.  

PubMed

We demonstrate theoretically that quantum dots in bilayers of graphene can be realized. A position-dependent doping breaks the equivalence between the upper and lower layer and lifts the degeneracy of the positive and negative momentum states of the dot. Numerical results show the simultaneous presence of electron and hole confined states for certain doping profiles and a remarkable angular momentum dependence of the quantum dot spectrum, which is in sharp contrast with that for conventional semiconductor quantum dots. We predict that the optical spectrum will consist of a series of nonequidistant peaks. PMID:17352503

Pereira, J Milton; Vasilopoulos, P; Peeters, F M

2007-04-01

161

Charge state hysteresis in semiconductor quantum dots  

NASA Astrophysics Data System (ADS)

Semiconductor quantum dots provide a two-dimensional analogy for real atoms and show promise for the implementation of scalable quantum computers. Here, we investigate the charge configurations in a silicon metal-oxide-semiconductor double quantum dot tunnel coupled to a single reservoir of electrons. By operating the system in the few-electron regime, the stability diagram shows hysteretic tunnelling events that depend on the history of the dots charge occupancy. We present a model which accounts for the observed hysteretic behaviour by extending the established description for transport in double dots coupled to two reservoirs. We demonstrate that this type of device operates like a single-electron memory latch.

Yang, C. H.; Rossi, A.; Lai, N. S.; Leon, R.; Lim, W. H.; Dzurak, A. S.

2014-11-01

162

Thick-shell nanocrystal quantum dots  

DOEpatents

Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

Hollingsworth, Jennifer A. (Los Alamos, NM); Chen, Yongfen (Eugene, OR); Klimov, Victor I. (Los Alamos, NM); Htoon, Han (Los Alamos, NM); Vela, Javier (Los Alamos, NM)

2011-05-03

163

Single wall carbon nanotube double quantum dot  

Microsoft Academic Search

The authors report on two top-gate defined, coupled quantum dots in a semiconducting single wall carbon nanotube, constituting a tunable double quantum dot system. The single wall carbon nanotubes are contacted by titanium electrodes and gated by three narrow top-gate electrodes as well as a back gate. The authors show that a bias spectroscopy plot on just one of the

H. I. Jørgensen; K. Grove-Rasmussen; J. R. Hauptmann; P. E. Lindelof

2006-01-01

164

Facile synthesis of analogous graphene quantum dots with sp2 hybridized carbon atom dominant structures and their photovoltaic application  

NASA Astrophysics Data System (ADS)

Graphene quantum dot (GQD) is an emerging class of zero-dimensional nanocarbon material with many novel applications. It is of scientific importance to prepare GQDs with more perfect structures, that is, GQDs containing negligible oxygenous defects, for both optimizing their optical properties and helping in their photovoltaic applications. Herein, a new strategy for the facile preparation of ``pristine'' GQDs is reported. The method we presented is a combination of a bottom-up synthetic and a solvent-induced interface separation process, during which the target products with highly crystalline structure were selected by the organic solvent. The obtained organic soluble GQDs (O-GQDs) showed a significant difference in structure and composition compared with ordinary aqueous soluble GQDs, thus leading to a series of novel properties. Furthermore, O-GQDs were applied as electron-acceptors in a poly(3-hexylthiophene) (P3HT)-based organic photovoltaic device. The performance highlights that O-GQD has potential to be a novel electron-acceptor material due to the sp2 hybridized carbon atom dominant structure and good solubility in organic solvents.Graphene quantum dot (GQD) is an emerging class of zero-dimensional nanocarbon material with many novel applications. It is of scientific importance to prepare GQDs with more perfect structures, that is, GQDs containing negligible oxygenous defects, for both optimizing their optical properties and helping in their photovoltaic applications. Herein, a new strategy for the facile preparation of ``pristine'' GQDs is reported. The method we presented is a combination of a bottom-up synthetic and a solvent-induced interface separation process, during which the target products with highly crystalline structure were selected by the organic solvent. The obtained organic soluble GQDs (O-GQDs) showed a significant difference in structure and composition compared with ordinary aqueous soluble GQDs, thus leading to a series of novel properties. Furthermore, O-GQDs were applied as electron-acceptors in a poly(3-hexylthiophene) (P3HT)-based organic photovoltaic device. The performance highlights that O-GQD has potential to be a novel electron-acceptor material due to the sp2 hybridized carbon atom dominant structure and good solubility in organic solvents. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03658a

Huang, Zhengcheng; Shen, Yongtao; Li, Yu; Zheng, Wenjun; Xue, Yunjia; Qin, Chengqun; Zhang, Bo; Hao, Jingxiang; Feng, Wei

2014-10-01

165

The glutathione synthesis gene Gclm modulates amphiphilic polymer-coated CdSe/ZnS quantum dot-induced lung inflammation in mice.  

PubMed

Quantum dots (QDs) are unique semi-conductor fluorescent nanoparticles with potential uses in a variety of biomedical applications. However, concerns exist regarding their potential toxicity, specifically their capacity to induce oxidative stress and inflammation. In this study we synthesized CdSe/ZnS core/shell QDs with a tri-n-octylphosphine oxide, poly(maleic anhydride-alt-1-tetradecene) (TOPO-PMAT) coating and assessed their effects on lung inflammation in mice. Previously published in vitro data demonstrated these TOPO-PMAT QDs cause oxidative stress resulting in increased expression of antioxidant proteins, including heme oxygenase, and the glutathione (GSH) synthesis enzyme glutamate cysteine ligase (GCL). We therefore investigated the effects of these QDs in vivo in mice deficient in GSH synthesis (Gclm +/- and Gclm -/- mice). When mice were exposed via nasal instillation to a TOPO-PMAT QD dose of 6 µg cadmium (Cd) equivalents/kg body weight, neutrophil counts in bronchoalveolar lavage fluid (BALF) increased in both Gclm wild-type (+/+) and Gclm heterozygous (+/-) mice, whereas Gclm null (-/-) mice exhibited no such increase. Levels of the pro-inflammatory cytokines KC and TNF? increased in BALF from Gclm +/+ and +/- mice, but not from Gclm -/- mice. Analysis of lung Cd levels suggested that QDs were cleared more readily from the lungs of Gclm -/- mice. There was no change in matrix metalloproteinase (MMP) activity in any of the mice. However, there was a decrease in whole lung myeloperoxidase (MPO) content in Gclm -/- mice, regardless of treatment, relative to untreated Gclm +/+ mice. We conclude that in mice TOPO-PMAT QDs have in vivo pro-inflammatory properties, and the inflammatory response is dependent on GSH synthesis status. Because there is a common polymorphism in humans that influences GCLM expression, these findings imply that humans with reduced GSH synthesis capabilities may be more susceptible to the pro-inflammatory effects of QDs. PMID:23724032

McConnachie, Lisa A; Botta, Dianne; White, Collin C; Weldy, Chad S; Wilkerson, Hui-Wen; Yu, Jianbo; Dills, Russell; Yu, Xiaozhong; Griffith, William C; Faustman, Elaine M; Farin, Federico M; Gill, Sean E; Parks, William C; Hu, Xiaoge; Gao, Xiaohu; Eaton, David L; Kavanagh, Terrance J

2013-01-01

166

Surface processes during purification of InP quantum dots  

PubMed Central

Summary Recently, a new simple and fast method for the synthesis of InP quantum dots by using phosphine as phosphorous precursor and myristic acid as surface stabilizer was reported. Purification after synthesis is necessary to obtain samples with good optical properties. Two methods of purification were compared and the surface processes which occur during purification were studied. Traditional precipitation with acetone is accompanied by a small increase in photoluminescence. It occurs that during the purification the hydrolysis of the indium precursor takes place, which leads to a better surface passivation. The electrophoretic purification technique does not increase luminescence efficiency but yields very pure quantum dots in only a few minutes. Additionally, the formation of In(OH)3 during the low temperature synthesis was explained. Purification of quantum dots is a very significant part of postsynthetical treatment that determines the properties of the material. But this subject is not sufficiently discussed in the literature. The paper is devoted to the processes that occur at the surface of quantum dots during purification. A new method of purification, electrophoresis, is investigated and described in particular. PMID:25161857

Emelin, Pavel; Vinokurov, Alexander; Dorofeev, Sergey; Abakumov, Artem; Kuznetsova, Tatiana

2014-01-01

167

Biocompatible Quantum Dots for Biological Applications  

PubMed Central

Semiconductor quantum dots are quickly becoming a critical diagnostic tool for discerning cellular function at the molecular level. Their high brightness, long-lasting, sizetunable, and narrow luminescence set them apart from conventional fluorescence dyes. Quantum dots are being developed for a variety of biologically oriented applications, including fluorescent assays for drug discovery, disease detection, single protein tracking, and intracellular reporting. This review introduces the science behind quantum dots and describes how they are made biologically compatible. Several applications are also included, illustrating strategies toward target specificity, and are followed by a discussion on the limitations of quantum dot approaches. The article is concluded with a look at the future direction of quantum dots. PMID:21276935

Rosenthal, Sandra J.; Chang, Jerry C.; Kovtun, Oleg; McBride, James R.; Tomlinson, Ian D.

2011-01-01

168

Quantum-dot supercrystals for future nanophotonics  

PubMed Central

The study of supercrystals made of periodically arranged semiconductor quantum dots is essential for the advancement of emerging nanophotonics technologies. By combining the strong spatial confinement of elementary excitations inside quantum dots and exceptional design flexibility, quantum-dot supercrystals provide broad opportunities for engineering desired optical responses and developing superior light manipulation techniques on the nanoscale. Here we suggest tailoring the energy spectrum and wave functions of the supercrystals' collective excitations through the variation of different structural and material parameters. In particular, by calculating the excitonic spectra of quantum dots assembled in two-dimensional Bravais lattices we demonstrate a wide variety of spectrum transformation scenarios upon alterations in the quantum dot arrangement. This feature offers unprecedented control over the supercrystal's electromagnetic properties and enables the development of new nanophotonics materials and devices.

Baimuratov, Anvar S.; Rukhlenko, Ivan D.; Turkov, Vadim K.; Baranov, Alexander V.; Fedorov, Anatoly V.

2013-01-01

169

Localization imaging using blinking quantum dots.  

PubMed

The blinking phenomena of the quantum dots have been utilized in the super-resolution localization microscopy to map out the locations of individual quantum dots on a total internal reflection microscope. Our result indicated that the reconstructed image of quantum dots agreed with the topographic image measured by atomic force microscopy. Because of the superior optical properties of the quantum dots, the high localization resolution can be achieved in the shorter acquisition time with larger detected photon numbers. When the cells were labeled with quantum dots, the sub-cellular structures could be clearly seen in the reconstructed images taken by a commercial microscope without using complicated optical systems, special photo-switchable dye pairs or photo-activated fluorescence proteins. PMID:21359362

Chien, Fan-Ching; Kuo, Chiung Wen; Chen, Peilin

2011-04-21

170

Facile synthesis and step by step enhancement of blue photoluminescence from Ag-doped ZnS quantum dots  

E-print Network

Our results pertaining to the step by step enhancement of photoluminescence (PL) intensity from ZnS:Ag,Al quantum dots (QDs) are presented. Initially, these QDs were synthesized using a simple co-precipitation technique involving a surfactant, polyvinylpyrrolidone (PVP), in de-ionised water. It was observed that the blue PL originated from ZnS:Ag,Al QDs was considerably weak and not suitable for any practical display application. Upon UV (365 nm) photolysis, the PL intensity augmented to ~170% and attained a saturation value after ~100 minutes of exposure. This is attributed to the photo-corrosion mechanism exerted by high-flux UV light on ZnS:Ag,Al QDs. Auxiliary enhancement of PL intensity to 250% has been evidenced by subjecting the QDs to high temperatures (200oC) and pressures (~120 bars) in a sulphur-rich atmosphere, which is due to the improvement in crystallanity of ZnS QDs. The origin of the bright blue PL has been discussed. The results were supported by x-ray phase analysis, high-resolution electro...

Sahai, Sonal; Shanker, Virendra; Singh, Nahar; Haranath, D; 10.1016/j.jcis.2011.02.030

2012-01-01

171

High throughput synthesis of uniform biocompatible polymer beads with high quantum dot loading using microfluidic jet-mode breakup.  

PubMed

Uniform polymer microbeads with highly loaded quantum dots (QDs) are produced using high-throughput coherent jet breakup of a biocompatible poly(ethylene glycol) diacrylate (PEGDA) prepolymer resin, followed by in-line photopolymerization. A spiraling and gradually widening channel enables maximum absorption of radiated UV light for the in-line photopolymerization without coalescence and clogging issues. Although the dripping mode in general provides superior uniformity to the jet mode, our nozzle design with tapered geometry brings controlled jet breakup leading to 3% of uniform particle size distribution, comparable to dripping-mode performance. We achieve a maximum production rate of 2.32 kHz, 38 times faster than the dripping mode, at a same polymer flow rate. In addition, the jet-mode scheme provides better versatility with 3 times wider range of size control as well as the compatibility with viscous fluids that could cause pressure buildup in the microsystem. As a demonstration, a QD-doped prepolymer resin is introduced to create uniform biocompatible polymer beads with 10 wt % CdSe/ZnSe QD loading. In spite of this high loading, the resulting polymer beads exhibits narrow bandwidth of 28 nm to be used for the ultrasensitive bioimaging, optical coding, and sensing sufficiently with single bead. PMID:24506820

Lee, Seung-Kon; Baek, Jinyoung; Jensen, Klavs F

2014-03-01

172

Synthesis of water-dispersible zinc oxide quantum dots with antibacterial activity and low cytotoxicity for cell labeling.  

PubMed

Typical photoluminescent semiconductor nanoparticles, called quantum dots (QDs), have potential applications in biological labeling. When used to label stem cells, QDs may impair the differentiation capacity of the stem cells. In this study, we synthesized zinc oxide (ZnO) QDs in methanol with an average size of ?2 nm. We then employed two different types of polyethylene glycol (PEG) molecules (SH-PEG-NH2 and NH2-PEG-NH2) to conjugate ZnO QDs and made them water-dispersible. Fourier transform infrared spectroscopy spectra indicated the attachment of PEG molecules on ZnO QDs. No obvious size alteration was observed for ZnO QDs after PEG conjugation. The water-dispersible ZnO QDs still retained the antibacterial activity and fluorescence intensity. The cytotoxicity evaluation revealed that ZnO QDs at higher concentrations decreased cell viability but were generally safe at 30 ppm or below. Cell lines of hepatocytes (HepG2), osteoblasts (MC3T3-E1) and mesenchymal stem cells (MSCs) were successfully labeled by the water-dispersible ZnO QDs at 30 ppm. The ZnO QD-labeled MSCs maintained their stemness and differentiation capacity. Therefore, we conclude that the water-dispersible ZnO QDs developed in this study have antibacterial activity, low cytotoxicity, and proper labeling efficiency, and can be used to label a variety of cells including stem cells. PMID:24177451

Hsu, Shan-hui; Lin, Ying Yi; Huang, Sherry; Lem, Kwok Wai; Nguyen, Dinh Huong; Lee, Dai Soo

2013-11-29

173

Synthesis of water-dispersible zinc oxide quantum dots with antibacterial activity and low cytotoxicity for cell labeling  

NASA Astrophysics Data System (ADS)

Typical photoluminescent semiconductor nanoparticles, called quantum dots (QDs), have potential applications in biological labeling. When used to label stem cells, QDs may impair the differentiation capacity of the stem cells. In this study, we synthesized zinc oxide (ZnO) QDs in methanol with an average size of ?2 nm. We then employed two different types of polyethylene glycol (PEG) molecules (SH-PEG-NH2 and NH2-PEG-NH2) to conjugate ZnO QDs and made them water-dispersible. Fourier transform infrared spectroscopy spectra indicated the attachment of PEG molecules on ZnO QDs. No obvious size alteration was observed for ZnO QDs after PEG conjugation. The water-dispersible ZnO QDs still retained the antibacterial activity and fluorescence intensity. The cytotoxicity evaluation revealed that ZnO QDs at higher concentrations decreased cell viability but were generally safe at 30 ppm or below. Cell lines of hepatocytes (HepG2), osteoblasts (MC3T3-E1) and mesenchymal stem cells (MSCs) were successfully labeled by the water-dispersible ZnO QDs at 30 ppm. The ZnO QD-labeled MSCs maintained their stemness and differentiation capacity. Therefore, we conclude that the water-dispersible ZnO QDs developed in this study have antibacterial activity, low cytotoxicity, and proper labeling efficiency, and can be used to label a variety of cells including stem cells.

Hsu, Shan-hui; Lin, Ying Yi; Huang, Sherry; Lem, Kwok Wai; Huong Nguyen, Dinh; Lee, Dai Soo

2013-11-01

174

Synthesis of Nanocrystalline CdS Quantum Dots via Paraffin Liquid as Solvent and Oleic Acid as the Reacting Media  

NASA Astrophysics Data System (ADS)

Fluorescent semiconductor nanocrystals have been widely used as fluorescent materials in chemical sensors, biotechnology, medical diagnostics, biological imaging and many other fields. Compared to the conventional organic fluorophores, the inorganic quantum dots (QDs) have many advantages, including broad absorption spectra, narrow emission spectra, good photostability and long fluorescent lifetime after excitation. Here, the high quality CdS QDs were synthesized directly from sulfur and CdO using the paraffin liquid as solvent and the oleic acid as the reacting media. The synthesized CdS QDs with a zinc blende (cubic) crystal structure were proved by X-ray diffraction. HRTEM observation revealed that the CdS QDs were uniform and the average grain size was about 4 nm. The optical properties of the CdS QDs were characterized by using photoluminescence (PL) spectrophotometer and Ultraviolet-visible (UV-Vis) absorption spectrophotometer. The formation mechanism of CdS QDs in the paraffin liquid and oleic acid system was proposed.

Li, Wenjiang; Wang, Mingrui; Xie, Fei; Zhu, Sha; Zhao, Yue

2012-01-01

175

Hydrothermal synthesis of high-quality thiol-stabilized CdTe(x)Se(1-x) alloyed quantum dots.  

PubMed

Alloyed semiconductor quantum dots (QDs) enriched the synthetic routes for engineering materials with unique structural and optical properties. High-quality thiol-stabilized CdTe(x)Se(1-x) alloyed QDs were synthesized through a facile and economic hydrothermal method at 120 °C, a relatively low temperature. These water-soluble QDs were prepared using different capping agents including 3-mercaptopropionic acid (MPA) and L-cysteine (L-Cys). The photoluminescence (PL) intensity and stability of L-Cys-capped CdTe(x)Se(1-x) QDs were found to be higher than that of MPA-stabilized ones. The molar ratios of Se-to-Te upon preparation were adjusted for investigating the effect of composition on the properties of the resulting QDs. We also investigated the effect of the pH value of the reaction solution on the growth kinetics of the alloyed CdTe(x)Se(1-x) QDs. The resulting CdTe(x)Se(1-x) QDs were characterized by UV-vis absorbance and PL spectroscopy, powder X-ray diffraction, and transmission electron microscopy. Being coated with a CdS inorganic shell, the PL intensity and stability of the CdTe(x)Se(1-x)/CdS core-shell QDs were drastically enhanced, accompanied by the red-shift of the PL peak wavelength. Owing to the unique optical properties, the QDs hold great potential for application and have to be further exploited. PMID:23873206

Yang, Fanghong; Yang, Ping; Cao, Yongqiang

2013-11-01

176

Laser-assisted synthesis of Staphylococcus aureus protein-capped silicon quantum dots as bio-functional nanoprobes  

NASA Astrophysics Data System (ADS)

A novel approach for nanofabricating protein-functionalized luminescent silicon nanoparticles based on infrared ultrafast laser ablation of silicon in an aqueous solution of Staphylococcus aureus protein A is reported. It is demonstrated that 8 nm protein A-capped silicon quantum dots with blue-green photoemissive properties are generated. The conjugation efficiency studies reveal a high percentage of protein A attached to the Si nanoparticle surface through physical adsorption phenomena during the in situ laser process. The biological functionality of laser-generated Staphylococcus aureus protein A-capped Si nanoparticles is investigated. Confocal and electron microscopy together with energy dispersive x-ray spectroscopy analysis show that these Si-based bio-nanostructures selectively bind IgG in the cells. Cell viability studies reveal that these protein A-capped Si nanoparticles are suitable for biological applications, demonstrating their potential as universal secondary biomarkers for in vivo applications such as long-term, real-time cell labeling, cell staining and controlled drug delivery.

Bagga, K.; Barchanski, A.; Intartaglia, R.; Dante, S.; Marotta, R.; Diaspro, A.; Sajti, C. L.; Brandi, F.

2013-06-01

177

Synthesis and Optical Properties of Thiol Functionalized CdSe/ZnS (Core/Shell) Quantum Dots by Ligand Exchange  

SciTech Connect

The colloidal photoluminescent quantum dots (QDs) of CdSe (core) and CdSe/ZnS (core/shell) were synthesized at different temperatures with different growth periods. The optical properties (i.e., UV/Vis spectra and photoluminescent emission spectra) of the resulting QDs were investigated. The CdSe/ZnS QDs exhibited higher photoluminescent (PL) efficiency and stability than their corresponding CdSe core QDs. Ligand exchange with various thiol molecules was performed to replace the initial surface passivation ligands, that is, trioctylphosphine oxide (TOPO) and trioctylphosphine (TOP), and the optical properties of the surface-modified QDs were studied. The thiol ligand molecules used included 1,4-benzenedimethanethiol, 1,16-hexadecanedithiol, 1,11-undecanedithiol, 11-mercapto-1-undecanol, and 1,8 octanedithiol. After the thiol functionalization, the CdSe/ZnS QDs exhibited significantly enhanced PL efficiency and storage stability. Besides surface passivation effect, such enhanced performance of thiol-functionalized QDs could be due to self-assembly formation of dimer/trimer clusters, in which QDs are linked by dithiol molecules. Effects of ligand concentration, type of ligand, and heating on the thiol stabilization of QDs were also discussed.

Zhu, Huaping [ORNL; Hu, Michael Z. [ORNL; Shao, Lei [ORNL; Yu, Kui [SIMS, NRC of Canada; Dabestani, Reza T [ORNL; Zaman, Md. Badruz [SIMS, NRC of Canada; Liao, Dr. Shijun [South China University of Technology, Guangzhou, PR China

2014-01-01

178

Nanometer distance measurements between multicolor quantum dots.  

PubMed

Quantum dot dimers made of short double-stranded DNA molecules labeled with different color quantum dots at each end were imaged using multicolor stage-scanning confocal microscopy. This approach eliminates chromatic aberration and color registration issues usually encountered in other multicolor imaging techniques. We demonstrate nanometer accuracy in individual distance measurement by suppression of quantum dot blinking and thoroughly characterize the contribution of different effects to the variability observed between measurements. Our analysis opens the way to accurate structural studies of biomolecules and biomolecular complexes using multicolor quantum labeling. PMID:19374434

Antelman, Josh; Wilking-Chang, Connie; Weiss, Shimon; Michalet, Xavier

2009-05-01

179

Ag2Te quantum dots with compact surface coatings of multivalent polymers: ambient one-pot aqueous synthesis and the second near-infrared bioimaging.  

PubMed

In this study, we described a facile ambient one-pot aqueous synthesis of fluorescent Ag2Te quantum dots (QDs) adopting multivalent polymers (poly(maleic anhydride) homopolymers) as stabilizers. In experiments, Ag2Te QDs were synthesized via a stepwise addition of the stabilizers, precursors (AgNO3/Na2TeO3) and promoters (NaBH4/N2H4 · H2O) in ambient one-pot aqueous solution. By regulating the compositions of raw materials, water-dispersed Ag2Te QDs (3.8-4.7 nm) were achieved and exhibited tunable photoluminescence (PL) emission (995-1068 nm) in the second near-infrared (NIR-II) region, accompanying with the minimized surface coating thickness (1.5-1.9 nm). Such compact coating of multivalent polymers promoted PL emission of Ag2Te QDs, so showing high PL quantum yields (PLQYs: 13.1-15.2%). In addition to compact sizes and high PLQYs, experimental results testified that the Ag2Te QDs demonstrated high photo-/colloidal stability and ultralow cytotoxicity, which implied their promising applications, especially serving as an effective nanoprobe for bioimaging in the NIR-II biological window. PMID:25546835

Yang, Min; Gui, Rijun; Jin, Hui; Wang, Zonghua; Zhang, Feifei; Xia, Jianfei; Bi, Sai; Xia, Yanzhi

2015-02-01

180

Quantum Optics: Colloidal Fluorescent Semiconductor Nanocrystals (Quantum Dots)  

E-print Network

U ncorrected Proof Chapter 3 Quantum Optics: Colloidal Fluorescent Semiconductor Nanocrystals (Quantum Dots) in Single-Molecule Detection and Imaging Laurent A. Bentolila, Xavier Michalet, and Shimon quantum dots (QDs), have emerged as new powerful fluorescent probes for in vitro and in vivo biological

Michalet, Xavier

181

Single to quadruple quantum dots with tunable tunnel couplings  

SciTech Connect

We prepare a gate-defined quadruple quantum dot to study the gate-tunability of single to quadruple quantum dots with finite inter-dot tunnel couplings. The measured charging energies of various double dots suggest that the dot size is governed by the gate geometry. For the triple and quadruple dots, we study the gate-tunable inter-dot tunnel couplings. For the triple dot, we find that the effective tunnel coupling between side dots significantly depends on the alignment of the center dot potential. These results imply that the present quadruple dot has a gate performance relevant for implementing spin-based four-qubits with controllable exchange couplings.

Takakura, T.; Noiri, A.; Obata, T.; Yoneda, J.; Yoshida, K. [Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Otsuka, T.; Tarucha, S. [Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); RIKEN, Center for Emergent Matter Science, 3-1 Wako-shi, Saitama 351-0198 (Japan)

2014-03-17

182

Spin-based quantum computation in multielectron quantum dots  

Microsoft Academic Search

In a quantum computer the hardware and software are intrinsically connected because the quantum Hamiltonian (or more precisely its time development) is the code that runs the computer. We demonstrate this subtle and crucial relationship by considering the example of electron-spin-based solid-state quantum computer in semiconductor quantum dots. We show that multielectron quantum dots with one valence electron in the

Xuedong Hu; S. Das Sarma

2001-01-01

183

Synthesis, characterization and target protein binding of drug-conjugated quantum dots in vitro and in living cells  

NASA Astrophysics Data System (ADS)

Elucidation of unknown target proteins of a drug is of great importance in understanding cell biology and drug discovery. There have been extensive studies to discover and identify target proteins in the cell. Visualization of targets using drug-conjugated probes has been an important approach to gathering mechanistic information of drug action at the cellular level. As quantum dot (QD) nanocrystals have attracted much attention as a fluorescent probe in the bioimaging area, we prepared drug-conjugated QD to explore the potential of target discovery. As a model drug, we selected a well-known anticancer drug, methotrexate (MTX), which has been known to target dihydrofolate reductase (DHFR) with high affinity binding (Kd = 0.54 nM). MTX molecules were covalently attached to amino-PEG-polymer-coated QDs. Specific interactions of MTX-conjugated QDs with DHFR were identified using agarose gel electrophoresis and fluorescence microscopy. Cellular uptake of the MTX-conjugated QDs in living CHO cells was investigated with regard to their localization and distribution pattern. MTX-QD was found to be internalized into the cells via caveolae-medicated endocytosis without significant sequestration in endosomes. A colocalization experiment of the MTX-QD conjugate with antiDHFR-TAT-QD also confirmed that MTX-QD binds to the target DHFR. This study showed the potential of the drug-QD conjugate to identify or visualize drug-target interactions in the cell, which is currently of great importance in the area of drug discovery and chemical biology.

Choi, Youngseon; Kim, Minjung; Cho, Yoojin; Yun, Eunsuk; Song, Rita

2013-02-01

184

CNT Quantum dots as Terahertz detectors  

NASA Astrophysics Data System (ADS)

We study Carbon Nanotube (CNT) quantum dots as detectors of THz radiation via photon assisted single electron tunneling. Although successful detection was recently demonstrated [1], the coupling between the CNT and THz radiations was very weak. Here, we implement a novel device design where the radiation is effectively coupled to the CNT quantum dot through broad band on-chip antennas. We show that the enhanced coupling yields a highly sensitive broad band Terahertz sensor. [4pt] [1] Y. Kawano, S. Toyokawa, T. Uchida and K. Ishibashi, THz photon assisted tunneling in carbon-nanotube quantum dots, Journal of Applied Physics 103, 034307 (2008).

Rinzan, Mohamed; Jenkins, Greg; Drew, Dennis; Shafranjuk, Serhii; Barbara, Paola

2011-03-01

185

Fluorescent Quantum Dots for Biological Labeling  

NASA Technical Reports Server (NTRS)

Fluorescent semiconductor quantum dots that can serve as "on/off" labels for bacteria and other living cells are undergoing development. The "on/off" characterization of these quantum dots refers to the fact that, when properly designed and manufactured, they do not fluoresce until and unless they come into contact with viable cells of biological species that one seeks to detect. In comparison with prior fluorescence-based means of detecting biological species, fluorescent quantum dots show promise for greater speed, less complexity, greater sensitivity, and greater selectivity for species of interest. There are numerous potential applications in medicine, environmental monitoring, and detection of bioterrorism.

McDonald, Gene; Nadeau, Jay; Nealson, Kenneth; Storrie-Lomardi, Michael; Bhartia, Rohit

2003-01-01

186

Entangled exciton states in quantum dot molecules  

NASA Astrophysics Data System (ADS)

Currently there is strong interest in quantum information processing(See, for example, The Physics of Quantum Information, eds. D. Bouwmeester, A. Ekert and A. Zeilinger (Springer, Berlin, 2000).) in a solid state environment. Many approaches mimic atomic physics concepts in which semiconductor quantum dots are implemented as artificial atoms. An essential building block of a quantum processor is a gate which entangles the states of two quantum bits. Recently a pair of vertically aligned quantum dots has been suggested as optically driven quantum gate(P. Hawrylak, S. Fafard, and Z. R. Wasilewski, Cond. Matter News 7, 16 (1999).)(M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z.R. Wasilewski, O. Stern, and A. Forchel, Science 291, 451 (2001).): The quantum bits are individual carriers either on dot zero or dot one. The different dot indices play the same role as a "spin", therefore we call them "isospin". Quantum mechanical tunneling between the dots rotates the isospin and leads to superposition of these states. The quantum gate is built when two different particles, an electron and a hole, are created optically. The two particles form entangled isospin states. Here we present spectrocsopic studies of single self-assembled InAs/GaAs quantum dot molecules that support the feasibility of this proposal. The evolution of the excitonic recombination spectrum with varying separation between the dots allows us to demonstrate coherent tunneling of carriers across the separating barrier and the formation of entangled exciton states: Due to the coupling between the dots the exciton states show a splitting that increases with decreasing barrier width. For barrier widths below 5 nm it exceeds the thermal energy at room temperature. For a given barrier width, we find only small variations of the tunneling induced splitting demonstrating a good homogeneity within a molecule ensemble. The entanglement may be controlled by application of electromagnetic field. For example, using an electric field along the molecule axis we can break the entanglement. Tunneling of carriers is prevented then and emission from intra-dot and inter-dot excitons in which electron and hole are located on the same and on opposite dots, respectively, is observed. The voltage required for the entanglement breaking increases with decreasing barrier width reflecting the increasing 'robustness' of the entanglement for narrow barriers.

Bayer, Manfred

2002-03-01

187

Quantum Teleportation in One-Dimensional Quantum Dots System  

E-print Network

We present a model of quantum teleportation protocol based on one-dimensional quantum dots system. Three quantum dots with three electrons are used to perform teleportation, the unknown qubit is encoded using one electron spin on quantum dot A, the other two dots B and C are coupled to form a mixed space-spin entangled state. By choosing the Hamiltonian for the mixed space-spin entangled system, we can filter the space (spin) entanglement to obtain pure spin (space) entanglement and after a Bell measurement, the unknown qubit is transfered to quantum dot B. Selecting an appropriate Hamiltonian for the quantum gate allows the spin-based information to be transformed into a charge-based information. The possibility of generalizing this model to N-electrons is discussed.

Hefeng Wang; Sabre Kais

2006-05-18

188

Magnetic anisotropies of quantum dots  

NASA Astrophysics Data System (ADS)

Magnetic anisotropies in quantum dots (QDs) doped by magnetic ions are discussed in terms of two frameworks: anisotropic g-factors and magnetocrystalline anisotropy energy [1]. Two examples, related to zinc-blende p-doped materials, are given of how these frameworks are utilized: four-level Hamiltonian of a flat QD and a cuboid infinite-well QD containing a single hole. The latter model, despite being an idealization of a real QD, displays a rich phenomenology of anisotropies. We quantify the anisotropy constants for ZnSe and CdTe QDs, confirming that the Ising-like effective Hamiltonians apply to magnetic QDs [2]. Compared to bulk systems, confinement tuning offers a new way to control easy axes in magnetic QDs. [1] K. Vyborny et al., preprint (2011). [2] C. Le Gall et al., Phys. Rev. Lett. 107, 057401 (2011).

Vyborny, Karel; Han, J. E.; Oszwaldowski, Rafal; Zutic, Igor; Petukhov, A. G.

2012-02-01

189

Poly(glycidyl methacrylate) grafted CdSe quantum dots by surface-initiated atom transfer radical polymerization: Novel synthesis, characterization, properties, and cytotoxicity studies  

NASA Astrophysics Data System (ADS)

A novel approach for the synthesis of poly(glycidyl methacrylate) grafted CdSe quantum dot (QDs) (PGMA-g-CdSe) was developed. The PGMA-g-CdSe nanohybrids were synthesized by the surface-initiated atom transfer radical polymerization of glycidyl methacrylate from the surface of the strategic initiator, CdSe-BrIB QDs prepared by the interaction of 2-bromoisobutyryl bromide (BrIB) and CdSe-OH QDs. The structure, morphology, and optical property of the PGMA-g-CdSe nanohybrids were analyzed by FT-IR, XPS, TGA, XRD, TEM, and PL. The as-synthesized PGMA-g-CdSe nanohybrids having multi-epoxide groups were employed for the direct coupling of biotin via ring-opening reaction of the epoxide groups to afford the Biotin-f-PGMA-g-CdSe nanobioconjugate. The covalent immobilization of biotin onto PGMA-g-CdSe was confirmed by FT-IR, XPS, and EDX. Biocompatibility and imaging properties of the Biotin-f-PGMA-g-CdSe were investigated by MTT bioassay and PL analysis, respectively. The cell viability study suggested that the biocompatibility was significantly enhanced by the functionalization of CdSe QDs by biotin and PGMA.

Bach, Long Giang; Islam, Md. Rafiqul; Lee, Doh Chang; Lim, Kwon Taek

2013-10-01

190

Enhanced oxidation stability of quasi core-shell alloyed CdSeS quantum dots prepared through aqueous microwave synthesis technique.  

PubMed

Quasi core shell alloyed CdSeS quantum dots (QDs) have been prepared through a facile aqueous-phase route employing microwave irradiation technique. The optical spectroscopy and structure characterization evidenced the quasi core shell alloyed structures of CdSeS QDs. The X-ray diffraction patterns of the obtained CdSeS QDs displayed peak positions very close to those of bulk cubic CdS crystal structures and the result of X-ray photoelectron spectroscopy data re-confirmed the thick CdS shell on the CdSe core. The TEM images and HRTEM images of the CdSeS QDs ascertained the well-defined spherical particles and a relatively narrow size distribution. On the basis, the stability of the obtained QDs in an oxidative environment was also discussed using etching reaction by H2O2. The experiments result showed the as-prepared QDs present high tolerance towards H2O2, obviously superior to the commonly used CdTe QDs and core-shell CdTe/CdS QDs, which was attributed to the unique quasi core-shell CdSeS crystal structure and the small lattice mismatch between CdSe and CdS semiconductor materials. This assay provided insight to obtain high stable crystal structured semiconductor nanocrystals in the design and synthesis process. PMID:23934265

Zhan, Hong-Ju; Zhou, Pei-Jiang; Ma, Rong; Liu, Xi-Jing; He, Yu-Ning; Zhou, Chuan-Yun

2014-01-01

191

A facile synthesis of bimetallic AuPt nanoparticles as a new transparent counter electrode for quantum-dot-sensitized solar cells  

NASA Astrophysics Data System (ADS)

This study first reports the synthesis of AuPt bimetallic nanoparticles (AuPt-BNPs) on an FTO glass substrate using dry plasma reduction (DPR) and its application as an alternative transparent counter electrode (CE) for quantum-dot-sensitized solar cells (QDSCs) operated under bi-side illumination. DPR is an economically feasible and ecologically sustainable method. The formation of ultrafine crystalline AuPt-BNPs on an FTO substrate is confirmed through TEM, HRTEM with HAADF-STEM and HAADF-STEM-EDS analyses. The mechanism for controlling the size, mono-dispersity, and areal number density of nanoparticles on the substrate surface is suggested. The CE fabricated with AuPt-BNPs exhibits a high electro-catalytic activity without losing the optical transmittance of the FTO substrate. The QDSC employing the AuPt-BNP electrode reaches efficiencies of 2.4% under front-side illumination and 2.2% under back-side illumination. Bi-side illumination yields an efficiency of 3.4%, which is comparable to an efficiency of 3.7% obtained for the QDSC with the state-of-the-art CE.

Dao, Van-Duong; Choi, Youngwoo; Yong, Kijung; Larina, Liudmila L.; Shevaleevskiy, Oleg; Choi, Ho-Suk

2015-01-01

192

Low-cost and large-scale synthesis of CuInS2 and CuInS2/ZnS quantum dots in diesel  

NASA Astrophysics Data System (ADS)

In this paper, we present the results of the syntheses of CuInS2 (CIS) and CIS/ZnS core/shell quantum dots (QDs) by heating-up method using diesel as the high boiling-point reaction solvent. The influences of the synthesis parameters, namely the reaction temperature, growth time and the Cu:In molar ratio to the structure and optical properties of the obtained QDs were systematically investigated. CIS QDs were synthesised at the reaction temperatures of 200-230 °C for 5-45 min and the Cu:In molar ratios of 0.5:1-1.5:1. The optical characteristics from absorption and photoluminescence spectra have been used as indicators to the quality of the synthesised QDs, showing clearly that the highest quality CIS QDs were obtained at the reaction temperature of 210 °C for 15 min with the Cu:In molar ratio of 1:1. For such QDs, their mean size of 3.5 nm was determined directly from the transmission electron microscopy (TEM) image and calculated from their XRD pattern.

Thuy, Nguyen Thi Minh; Chi, Tran Thi Kim; Thuy, Ung Thi Dieu; Liem, Nguyen Quang

2014-11-01

193

Engineering optical properties of quantum dot systems  

NASA Astrophysics Data System (ADS)

Properties and functions of nanodevices are determined by quantum behavior of nanosystems which constitute the nucleus of the nanodevices. This work is devoted to investigation of the linear and nonlinear optical properties of quantum dot systems, in part the intrinsic optical bistability. The resonance effects and many-body effects in the systems as well as the self-consistent treatment of the phenomena form the framework of the consideration. Effects of the size parameters of quantum dot systems, shapes of quantum dots, and electron population of quantum dots on the optical properties are investigated. It is shown that a few Angstroms more or less and/or one electron more or less can make a dramatic difference in the nanosystem behavior. Knowledge of the maps of the allowed dipole coupled interlevel transitions in quantum dots are demonstrated to be crucially important. A special attention is paid to the vital effects of the electron-electron interaction in the quantum dot systems: static, dynamic, intradot, and iterdot.

Bondarenko, Victor

194

Photodetectors based on colloidal quantum dots  

E-print Network

Inspired by recent work demonstrating photocurrent enhancement in quantum-dot (QD) solids via post-deposition chemical annealing and by recent successes incorporating single monolayers of QDs in light-emitting devices ...

Oertel, David C. (David Charles)

2007-01-01

195

Nanomaterials: Earthworms lit with quantum dots  

NASA Astrophysics Data System (ADS)

Yeast, bacteria and fungi have been used to synthesize a variety of nanocrystals. Now, the metal detoxification process in the gut of an earthworm is exploited to produce biocompatible cadmium telluride quantum dots.

Tilley, Richard D.; Cheong, Soshan

2013-01-01

196

Luminescence blinking of a reacting quantum dot.  

PubMed

Luminescence blinking is an inherent feature of optical emission from individual fluorescent molecules and quantum dots. There have been intense efforts, although not with complete resolution, toward the understanding of the mechanistic origin of blinking and also its mitigation in quantum dots. As an advance in our microscopic view of blinking, we show that the luminescence blinking of a quantum dot becomes unusually heavy in the temporal vicinity of a reactive transformation. This stage of heavy blinking is a result of defects/dopants formed within the quantum dot on its path to conversion. The evolution of blinking behavior along the reaction path allows us to measure the lifetime of the critical dopant-related intermediate in the reaction. This work establishes luminescence blinking as a single-nanocrystal level probe of catalytic, photocatalytic, and electrochemical events occurring in the solid-state or on semiconductor surfaces. PMID:25730168

Routzahn, Aaron L; Jain, Prashant K

2015-04-01

197

Quantum Dots and the Harkess Method  

NSDL National Science Digital Library

Students explore the applications of quantum dots by researching a journal article and answering framing questions used in a classwide discussion. This "Harkness-method" discussion helps students become critical readers of scientific literature.

VU Bioengineering RET Program,

198

SnO2 quantum dots and quantum wires: controllable synthesis, self-assembled 2D architectures, and gas-sensing properties.  

PubMed

SnO2 quantum dots (QDs) and ultrathin nanowires (NWs) with diameters of approximately 0.5-2.5 and approximately 1.5-4.5 nm, respectively, were controllably synthesized in a simple solution system. They are supposed to be ideal models for studying the continuous evolution of the quantum-confinement effect in SnO2 1D --> 0D systems. The observed transition from strong to weak quantum confinement in SnO2 QDs and ultrathin NWs is interpreted through the use of the Brus effective-mass approximation and the Nosaka finite-depth well model. Photoluminescence properties that were coinfluenced by size effects, defects (oxygen vacancies), and surface capping are discussed in detail. With the SnO2 QDs as building blocks, various 2D porous structures with ordered hexagonal, distorted hexagonal, and square patterns were prepared on silicon-wafer surfaces and exhibited optical features of 2D photonic crystals and enhanced gas sensitivity. PMID:18715007

Xu, Xiangxing; Zhuang, Jing; Wang, Xun

2008-09-17

199

Protein-directed synthesis of Mn-doped ZnS quantum dots: a dual-channel biosensor for two proteins.  

PubMed

Proteins typically have nanoscale dimensions and multiple binding sites with inorganic ions, which facilitates the templated synthesis of nanoparticles to yield nanoparticle-protein hybrids with tailored functionality, water solubility, and tunable frameworks with well-defined structure. In this work, we report a protein-templated synthesis of Mn-doped ZnS quantum dots (QDs) by exploring bovine serum albumin (BSA) as the template. The obtained Mn-doped ZnS QDs give phosphorescence emission centered at 590?nm, with a decay time of about 1.9?ms. A dual-channel sensing system for two different proteins was developed through integration of the optical responses (phosphorescence emission and resonant light scattering (RLS)) of Mn-doped ZnS QDs and recognition of them by surface BSA phosphorescent sensing of trypsin and RLS sensing of lysozyme. Trypsin can digest BSA and remove BSA from the surface of Mn-doped ZnS QDs, thus quenching the phosphorescence of QDs, whereas lysozyme can assemble with BSA to lead to aggregation of QDs and enhanced RLS intensity. The detection limits for trypsin and lysozyme were 40 and 3?nM, respectively. The selectivity of the respective channel for trypsin and lysozyme was evaluated with a series of other proteins. Unlike other protein sensors based on nanobioconjugates, the proposed dual-channel sensor employs only one type of QDs but can detect two different proteins. Further, we found the RLS of QDs can also be useful for studying the BSA-lysozyme binding stoichiometry, which has not been reported in the literature. These successful biosensor applications clearly demonstrate that BSA not only serves as a template for growth of Mn-doped ZnS QDs, but also impacts the QDs for selective recognition of analyte proteins. PMID:23576296

Wu, Peng; Zhao, Ting; Tian, Yunfei; Wu, Lan; Hou, Xiandeng

2013-06-01

200

Semiconductor clusters nanocrystals, and quantum dots  

Microsoft Academic Search

Current research into semiconductor clusters is focused on the properties on the properties of quantum dots-fragments of semiconductor consisting of hundreds to many thousands of atoms-with the bulk bonding geometry and with surface states eliminated by enclosure in a material that has a larger band gap. Quantum dots exhibit strongly size-dependent optical and electrical properties. The ability to join the

A. P. Alivisatos

1996-01-01

201

Imaging scarred states in quantum dots.  

PubMed

We have used the scanning gate microscopy technique to image scar structures in an open quantum dot, fabricated in an InAs quantum well and defined by electron beam lithography. These are shown to have a periodicity in magnetic field that correlates with that found in the conductance fluctuations. Simulations have shown that these magnetic transform images bear a strong resemblance to actual scars found in the dots. PMID:21825542

Burke, A M; Akis, R; Day, T; Speyer, G; Ferry, D K; Bennett, B R

2009-05-27

202

Positioning of quantum dots on metallic nanostructures  

NASA Astrophysics Data System (ADS)

The capability to position individual emitters, such as quantum dots, near metallic nanostructures is highly desirable for constructing active optical devices that can manipulate light at the single photon level. The emergence of the field of plasmonics as a means to confine light now introduces a need for high precision and reliability in positioning any source of emission, which has thus far been elusive. Placing an emission source within the influence of plasmonic structures now requires accuracy approaching molecular length scales. In this paper we report the ability to reliably position nanoscale functional objects, specifically quantum dots, with sub-100-nm accuracy, which is several times smaller than the diffraction limit of a quantum dot's emission light. Electron beam lithography-defined masks on metallic surfaces and a series of surface chemical functionalization processes allow the programmed assembly of DNA-linked colloidal quantum dots. The quantum dots are successfully functionalized to areas as small as (100 nm)2 using the specific binding of thiolated DNA to Au/Ag, and exploiting the streptavidin-biotin interaction. An analysis of the reproducibility of the process for various pattern sizes shows that this technique is potentially scalable to the single quantum dot level with 50 nm accuracy accompanied by a moderate reduction in yield.

Kramer, R. K.; Pholchai, N.; Sorger, V. J.; Yim, T. J.; Oulton, R.; Zhang, X.

2010-04-01

203

Synthesis of AS1411-aptamer-conjugated CdTe quantum dots with high fluorescence strength for probe labeling tumor cells.  

PubMed

In this paper, we report microwave-assisted, one-stage synthesis of high-quality functionalized water-soluble cadmium telluride (CdTe) quantum dots (QDs). By selecting sodium tellurite as the Te source, cadmium chloride as the Cd source, mercaptosuccinic acid (MSA) as the capping agent, and a borate-acetic acid buffer solution with a pH range of 5-8, CdTe nanocrystals with four colors (blue to orange) were conveniently prepared at 100 °C under microwave irradiation in less than one hour (reaction time: 10-60 min). The influence of parameters such as the pH, Cd:Te molar ratio, and reaction time on the emission range and quantum yield percentage (QY%) was investigated. The structures and compositions of the prepared CdTe QDs were characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy, selective area electron diffraction, and X-ray powder diffraction experiments. The formation mechanism of the QDs is discussed in this paper. Furthermore, AS1141-aptamer-conjugated CdTe QDs in the U87MG glioblastoma cell line were assessed with a fluorescence microscope. The obtained results showed that the best conditions for obtaining a high QY of approximately 87% are a pH of 6, a Cd:Te molar ratio of 5:1, and a 30-min reaction time at 100 °C under microwave irradiation. The results showed that AS1141-aptamer-conjugated CdTe QDs could enter tumor cells efficiently. It could be concluded that a facile high-fluorescence-strength QD conjugated with a DNA aptamer, AS1411, which can recognize the extracellular matrix protein nucleolin, can specifically target U87MG human glioblastoma cells. The qualified AS1411-aptamer-conjugated QDs prepared in this study showed excellent capabilities as nanoprobes for cancer targeting and molecular imaging. PMID:25172439

Alibolandi, Mona; Abnous, Khalil; Ramezani, Mohammad; Hosseinkhani, Hossein; Hadizadeh, Farzin

2014-09-01

204

Submonolayer Quantum Dot Infrared Photodetector  

NASA Technical Reports Server (NTRS)

A method has been developed for inserting submonolayer (SML) quantum dots (QDs) or SML QD stacks, instead of conventional Stranski-Krastanov (S-K) QDs, into the active region of intersubband photodetectors. A typical configuration would be InAs SML QDs embedded in thin layers of GaAs, surrounded by AlGaAs barriers. Here, the GaAs and the AlGaAs have nearly the same lattice constant, while InAs has a larger lattice constant. In QD infrared photodetector, the important quantization directions are in the plane perpendicular to the normal incidence radiation. In-plane quantization is what enables the absorption of normal incidence radiation. The height of the S-K QD controls the positions of the quantized energy levels, but is not critically important to the desired normal incidence absorption properties. The SML QD or SML QD stack configurations give more control of the structure grown, retains normal incidence absorption properties, and decreases the strain build-up to allow thicker active layers for higher quantum efficiency.

Ting, David Z.; Bandara, Sumith V.; Gunapala, Sarath D.; Chang, Yia-Chang

2010-01-01

205

Dephasing times in closed quantum dots.  

PubMed

Dephasing of one-particle states in closed quantum dots is analyzed within the framework of random matrix theory and the master equation. The combination of this analysis with recent experiments on the magnetoconductance allows, for the first time, the evaluation of the dephasing times of closed quantum dots. These dephasing times turn out to be dependent on the mean level spacing and significantly enhanced as compared with the case of open dots. Moreover, the experimental data available are consistent with the prediction that the dephasing of one-particle states in finite closed systems disappears at low enough energies and temperatures. PMID:11955114

Eisenberg, Eli; Held, Karsten; Altshuler, Boris L

2002-04-01

206

Single-step noninjection synthesis of highly luminescent water soluble Cu+ doped CdS quantum dots: application as bio-imaging agents.  

PubMed

Novel highly luminescent Cu(+) doped CdS quantum dots (QDs) were directly synthesized in aqueous phase through a facile single-step noninjection method. Due to their bright red fluorescence, ultrasmall size, and good biocompatibility, as-prepared CdS:Cu(+) QDs have potential as probes in bio-imaging. PMID:23986122

Xuan, Tongtong; Wang, Song; Wang, Xiaojun; Liu, Jiaqing; Chen, Jiyao; Li, Huili; Pan, Likun; Sun, Zhuo

2013-10-11

207

Luminescent Quantum Dots as Ultrasensitive Biological Labels  

NASA Astrophysics Data System (ADS)

Highly luminescent semiconductor quantum dots have been covalently coupled to biological molecules for use in ultrasensitive biological detection. This new class of luminescent labels is considerably brighter and more resistant againt photobleaching in comparison with organic dyes. Quantum dots labeled with the protein transferrin undergo receptor-mediated endocytosis (RME) in cultured HeLa cells, and those dots that were conjugated to immunomolecules recognize specific antibodies or antigens. In addition, we show that DNA functionalized quantum dots can be used to target specific genes by hybridization. We expect that quantum dot bioconjugates will have a broad range of biological applications, such as ligand-receptor interactions, real-time monitoring of molecular trafficking inside living cells, multicolor fluorescence in-situ hybridization (FISH), high-sensitivity detection in miniaturized devices (e.g., DNA chips), and fluorescent tagging of combinatorial chemical libraries. A potential clinical application is the use of quantum dots for ultrasensitive viral RNA detection, in which as low as 100 copies of hepatitis C and HIV viruses per ml blood should be detected.

Nie, Shuming

2000-03-01

208

Dot-in-Well Quantum-Dot Infrared Photodetectors  

NASA Technical Reports Server (NTRS)

Dot-in-well (DWELL) quantum-dot infrared photodetectors (QDIPs) [DWELL-QDIPs] are subjects of research as potentially superior alternatives to prior QDIPs. Heretofore, there has not existed a reliable method for fabricating quantum dots (QDs) having precise, repeatable dimensions. This lack has constituted an obstacle to the development of uniform, high-performance, wavelength-tailorable QDIPs and of focal-plane arrays (FPAs) of such QDIPs. However, techniques for fabricating quantum-well infrared photodetectors (QWIPs) having multiple-quantum- well (MQW) structures are now well established. In the present research on DWELL-QDIPs, the arts of fabrication of QDs and QWIPs are combined with a view toward overcoming the deficiencies of prior QDIPs. The longer-term goal is to develop focal-plane arrays of radiationhard, highly uniform arrays of QDIPs that would exhibit high performance at wavelengths from 8 to 15 m when operated at temperatures between 150 and 200 K. Increasing quantum efficiency is the key to the development of competitive QDIP-based FPAs. Quantum efficiency can be increased by increasing the density of QDs and by enhancing infrared absorption in QD-containing material. QDIPs demonstrated thus far have consisted, variously, of InAs islands on GaAs or InAs islands in InGaAs/GaAs wells. These QDIPs have exhibited low quantum efficiencies because the numbers of QD layers (and, hence, the areal densities of QDs) have been small typically five layers in each QDIP. The number of QD layers in such a device must be thus limited to prevent the aggregation of strain in the InAs/InGaAs/GaAs non-lattice- matched material system. The approach being followed in the DWELL-QDIP research is to embed In- GaAs QDs in GaAs/AlGaAs multi-quantum- well (MQW) structures (see figure). This material system can accommodate a large number of QD layers without excessive lattice-mismatch strain and the associated degradation of photodetection properties. Hence, this material system is expected to enable achievement of greater densities of QDs and correspondingly greater quantum efficiencies. The host GaAs/AlGaAs MQW structures are highly compatible with mature fabrication processes that are now used routinely in making QWIP FPAs. The hybrid InGaAs-dot/GaAs/AlGaAs-well system also offers design advantages in that the effects of variability of dot size can be partly compensated by engineering quantum-well sizes, which can be controlled precisely.

Gunapala, Sarath; Bandara, Sumith; Ting, David; Hill, cory; Liu, John; Mumolo, Jason; Chang, Yia Chung

2008-01-01

209

Quantum Dots for quantitative flow cytometry  

PubMed Central

Summary In flow cytometry, the quantitation of fluorophore-tagged ligands and receptors on cells or at particulate surfaces is achieved by the use of standard beads of known calibration. To the best of our knowledge, only those calibration beads based on fluorescein, EGFP, phycoerythyrin and allophycocyanine are readily available from commercial sources. Because fluorophore based standards are specific to the selected fluorophore tag, their applicability is limited to the spectral region of resonance. Since quantum dots can be photo-excited over a continuous and broad spectral range governed by their size, it is possible to match the spectral range and width (absorbance and emission) of a wide range of fluorophores with appropriate quantum dots. Accordingly, quantitation of site coverage of the target fluorophores can be readily achieved using quantum dots whose emission spectra overlaps with the target fluorophore. This chapter will focus on the relevant spectroscopic concepts and molecular assembly of quantum dot fluorescence calibration beads. We will first examine the measurement and applicability of spectroscopic parameters, ?, ?, and %T to fluorescence calibration standards. Where, ? is the absorption coefficient of the fluorophore, ? is the quantum yield of the fluorophore and %T is the percent fraction of emitted light that is transmitted by the bandpass filter at the detector PMT. The modular construction of beads decorated with discrete quantities of quantum dots with defined spectroscopic parameters is presented in the context of a generalizable approach to calibrated measurements of fluorescence in flow cytometry. PMID:21116979

Buranda, Tione; Wu, Yang; Sklar, Larry A.

2014-01-01

210

Probing relaxation times in graphene quantum dots  

PubMed Central

Graphene quantum dots are attractive candidates for solid-state quantum bits. In fact, the predicted weak spin-orbit and hyperfine interaction promise spin qubits with long coherence times. Graphene quantum dots have been extensively investigated with respect to their excitation spectrum, spin-filling sequence and electron-hole crossover. However, their relaxation dynamics remain largely unexplored. This is mainly due to challenges in device fabrication, in particular concerning the control of carrier confinement and the tunability of the tunnelling barriers, both crucial to experimentally investigate decoherence times. Here we report pulsed-gate transient current spectroscopy and relaxation time measurements of excited states in graphene quantum dots. This is achieved by an advanced device design that allows to individually tune the tunnelling barriers down to the low megahertz regime, while monitoring their asymmetry. Measuring transient currents through electronic excited states, we estimate a lower bound for charge relaxation times on the order of 60–100?ns. PMID:23612294

Volk, Christian; Neumann, Christoph; Kazarski, Sebastian; Fringes, Stefan; Engels, Stephan; Haupt, Federica; Müller, André; Stampfer, Christoph

2013-01-01

211

Red light emitting solid state hybrid quantum dot near-UV GaN LED devices  

Microsoft Academic Search

We produced core-shell (CdSe)ZnSe quantum dots by direct colloidal chemical synthesis and the surface-passivation method---an overcoating of the core CdSe with a larger-bandgap material ZnSe. The (CdSe)ZnSe quantum dots(QDs) play the role of a colour conversion centre. We call these quantum dots nanophosphors. We fabricated red light emitting hybrid devices of (CdSe)ZnSe QDs and a near-UV GaN LED by combining

Hongjoo Song; Seonghoon Lee

2007-01-01

212

Quantum entanglement of excitons in coupled quantum dots  

SciTech Connect

Optically controlled exciton dynamics in coupled quantum dots is studied. We show that the maximally entangled Bell states and Greenberger-Horne-Zeilinger (GHZ) states can be robustly generated by manipulating the system parameters to be at the avoided crossings in the eigenenergy spectrum. The analysis of population transfer is systematically carried out by using a dressed-state picture. In addition to the quantum dot configuration that has been discussed by Quiroga and Johnson [Phys. Rev. Lett. 83, 2270 (1999)], we show that the GHZ states also may be produced in a ray of three quantum dots with a shorter generation time.

Zhang Ping; Xue Qikun [International Center for Quantum Structure and State Key Laboratory for Surface Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Chan, C.K. [Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong (China); Zhao Xiangeng [Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China)

2003-01-01

213

Nanostructured architectures for colloidal quantum dot solar cells  

E-print Network

This thesis introduces a novel ordered bulk heterojunction architecture for colloidal quantum dot (QD) solar cells. Quantum dots are solution-processed nanocrystals whose tunable bandgap energies make them a promising ...

Jean, Joel, S.M. Massachusetts Institute of Technology

2013-01-01

214

Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field  

NASA Astrophysics Data System (ADS)

Semiconducting quantum dots - more fancifully dubbed artificial atoms - are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement - or the lack of any degree of freedom for the electrons (and/or holes) - in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines' random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing) the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots: resulting into a blue (red) shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower) magneto-optical transitions survive even in the extreme instances. However, the intra-Landau level transitions are seen to be forbidden. The spherical quantum dots have an edge over the strictly two-dimensional quantum dots in that the additional (magnetic) quantum number makes the physics richer (but complex). A deeper grasp of the Coulomb blockade, quantum coherence, and entanglement can lead to a better insight into promising applications involving lasers, detectors, storage devices, and quantum computing.

Kushwaha, Manvir S.

2014-12-01

215

Magnetoplasmon excitations in quantum dot arrays  

Microsoft Academic Search

Motivated by the far-infrared transmission experiments of Demel et al., we have investigated the magnetoplasmon excitations in an array of quantum dots within the Thomas–Fermi–Dirac–von Weizsäcker (TFDW) approximation. Detailed calculations of the magnetic dispersion and power absorption from a uniform radiation field unambiguously demonstrates that the noncircular symmetry of the individual dots is responsible for the anticrossing behaviour observed in

B. P van Zyl; E. Zaremba

2000-01-01

216

Mitigation of Quantum Dot Cytotoxicity by Microencapsulation  

Microsoft Academic Search

When CdSe\\/ZnS-polyethyleneimine (PEI) quantum dots (QDs) are microencapsulated in polymeric microcapsules, human fibroblasts are protected from acute cytotoxic effects. Differences in cellular morphology, uptake, and viability were assessed after treatment with either microencapsulated or unencapsulated dots. Specifically, QDs contained in microcapsules terminated with polyethylene glycol (PEG) mitigate contact with and uptake by cells, thus providing a tool to retain particle

Amelia Romoser; Dustin Ritter; Ravish Majitha; Kenith E. Meissner; Michael McShane; Christie M. Sayes

2011-01-01

217

L d l l f ti iLandau level formation inLandau level formation inLandau level formation in G h t d tGraphene quantum dotsGraphene quantum dotsGraphene quantum dots  

E-print Network

Graphene quantum dotsGraphene quantum dotsGraphene quantum dots 1 2 Florian Libisch Stefan Rotter Johannes Güttinger 1 21 Florian Libisch, Stefan Rotter, Johannes Güttinger,, , g , Christoph Stampfer and Joachim

Rotter, Stefan

218

Quantum Dot-Based Cell Motility Assay  

SciTech Connect

Because of their favorable physical and photochemical properties, colloidal CdSe/ZnS-semiconductor nanocrystals (commonly known as quantum dots) have enormous potential for use in biological imaging. In this report, we present an assay that uses quantum dots as markers to quantify cell motility. Cells that are seeded onto a homogeneous layer of quantum dots engulf and absorb the nanocrystals and, as a consequence, leave behind a fluorescence-free trail. By subsequently determining the ratio of cell area to fluorescence-free track area, we show that it is possible to differentiate between invasive and noninvasive cancer cells. Because this assay uses simple fluorescence detection, requires no significant data processing, and can be used in live-cell studies, it has the potential to be a powerful new tool for discriminating between invasive and noninvasive cancer cell lines or for studying cell signaling events involved in migration.

Gu, Weiwei; Pellegrino, Teresa; Parak Wolfgang J; Boudreau,Rosanne; Le Gros, Mark A.; Gerion, Daniele; Alivisatos, A. Paul; Larabell, Carolyn A.

2005-06-06

219

Dephasing processes in InGaAs quantum dots and quantum-dot molecules  

NASA Astrophysics Data System (ADS)

The dephasing time in semiconductor quantum dots and quantum-dot molecules is measured using a sensitive four-wave mixing heterodyne technique. We find a dephasing time of several hundred picoseconds at low temperature in the ground-state transition of strongly-confined InGaAs quantum dots, approaching the radiative-lifetime limit. Between 7 K and 100 K the polarization decay has two distinct components resulting in a non-Lorentzian lineshape with a zero-phonon line and a broad band from elastic exciton-acoustic phonon interactions. On a series of InAs/GaAs quantum-dot molecules having different interdot barrier thicknesses a systematic dependence of the dephasing dynamics on the barrier thickness is observed. The results show how the quantum mechanical coupling of the electronic wavefunctions in the molecules affects both the exciton radiative lifetime and the exciton-acoustic phonon interaction.

Borri, Paola; Langbein, Wolfgang W.; Schneider, S.; Woggon, Ulrike; Schwab, Markus; Bayer, Manfred; Sellin, Roman L.; Ouyang, Dongxun; Bimberg, Dieter; Fafard, S.; Wasilewski, Zbigniew R.; Hawrylak, Pawel

2004-06-01

220

Ultrasound-assisted synthesis of PbS quantum dots stabilized by 1,2-benzenedimethanethiol and attachment to single-walled carbon nanotubes.  

PubMed

Lead sulfide (PbS) quantum dots stabilized by 1,2-benzenedimethanethiol can be synthesized by mixing Pb(NO3)2 and Na2S solutions in ethanol under ultrasound irradiation. The PbS quantum dots (2.7 and 3.6 nm in diameter) are characterized by their absorption and fluorescence spectra in the near infrared region and by other surface analytical techniques. With addition of single-walled carbon nanotubes (SWNT) to the system, this ultrasound-assisted procedure allows attachment of PbS nanoparticles to SWNT surface via ?-? stacking, thus providing a simple one-pot method for preparation of SWNT-PbS nanoparticle composite materials. Using the ultrasound-assisted method for synthesizing silica composites containing PbS nanoparticles by a sol-gel process is also described. PMID:24074959

Das, Anirban; Wai, Chien M

2014-03-01

221

Quantum dot-based quantum buses for quantum computer hardware architecture  

Microsoft Academic Search

We propose a quantum bus based on semiconductor self-assembled quantum dots. This allows for transmission of qubits between the different quantum registers, and could be integrated in most of the present proposal for semiconductor quantum dot-based quantum computation.

Irene D’Amico

2006-01-01

222

Quantum teleportation in one-dimensional quantum dots system Hefeng Wang, Sabre Kais *  

E-print Network

Quantum teleportation in one-dimensional quantum dots system Hefeng Wang, Sabre Kais * Department of quantum teleportation protocol based on one-dimensional quantum dots system. Three quantum dots with three electrons are used to perform teleportation, the unknown qubit is encoded using one electron spin on quantum

Kais, Sabre

223

Quantum Teleportation in Quantum Dots System Hefeng Wang and Sabre Kais  

E-print Network

Quantum Teleportation in Quantum Dots System Hefeng Wang and Sabre Kais Department of Chemistry of quantum teleportation protocol based on one-dimensional quantum dots system. Three quantum dots with three electrons are used to perform teleportation, the unknown qubit is encoded using one electron spin on quantum

Kais, Sabre

224

Photodynamic antibacterial effect of graphene quantum dots.  

PubMed

Synthesis of new antibacterial agents is becoming increasingly important in light of the emerging antibiotic resistance. In the present study we report that electrochemically produced graphene quantum dots (GQD), a new class of carbon nanoparticles, generate reactive oxygen species when photoexcited (470 nm, 1 W), and kill two strains of pathogenic bacteria, methicillin-resistant Staphylococcus aureus and Escherichia coli. Bacterial killing was demonstrated by the reduction in number of bacterial colonies in a standard plate count method, the increase in propidium iodide uptake confirming the cell membrane damage, as well as by morphological defects visualized by atomic force microscopy. The induction of oxidative stress in bacteria exposed to photoexcited GQD was confirmed by staining with a redox-sensitive fluorochrome dihydrorhodamine 123. Neither GQD nor light exposure alone were able to cause oxidative stress and reduce the viability of bacteria. Importantly, mouse spleen cells were markedly less sensitive in the same experimental conditions, thus indicating a fairly selective antibacterial photodynamic action of GQD. PMID:24612819

Ristic, Biljana Z; Milenkovic, Marina M; Dakic, Ivana R; Todorovic-Markovic, Biljana M; Milosavljevic, Momir S; Budimir, Milica D; Paunovic, Verica G; Dramicanin, Miroslav D; Markovic, Zoran M; Trajkovic, Vladimir S

2014-05-01

225

Scalable quantum computer architecture with coupled donor-quantum dot qubits  

SciTech Connect

A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.

Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey

2014-08-26

226

A facile in situ synthesis route for CuInS(2) quantum-dots/In(2)S(3) co-sensitized photoanodes with high photoelectric performance.  

PubMed

CuInS2 quantum-dot sensitized TiO2 photoanodes with In2S3 buffer layer were in situ prepared via chemical bath deposition of In2S3, where the Cd-free In2S3 layer then reacted with TiO2/CuxS which employed a facile SILAR process to deposit CuxS quantum dots on TiO2 film, followed by a covering process with ZnS layer. Polysulfide electrolyte and Cu2S on FTO glass counter electrode were used to provide higher photovoltaic performance of the constructed devices. The characteristics of the quantum dots sensitized solar cells were studied in more detail by optical measurements, photocurrent-voltage performance measurements, and impedance spectroscopy. On the basis of optimal CuxS SILAR cycles, the best photovoltaic performance with power conversion efficiency (?) of 1.62% (Jsc = 6.49 mA cm(-2), Voc = 0.50 V, FF = 0.50) under full one-sun illumination was achieved by using Cu2S counter electrode. Cu2S-FTO electrode exhibits superior electrocatalytic ability for the polysulfide redox reactions relative to that of Pt-FTO electrode. PMID:24160726

Wang, Yuan-Qiang; Rui, Yi-Chuan; Zhang, Qing-Hong; Li, Yao-Gang; Wang, Hong-Zhi

2013-11-27

227

Bilayer graphene quantum dot defined by topgates  

SciTech Connect

We investigate the application of nanoscale topgates on exfoliated bilayer graphene to define quantum dot devices. At temperatures below 500 mK, the conductance underneath the grounded gates is suppressed, which we attribute to nearest neighbour hopping and strain-induced piezoelectric fields. The gate-layout can thus be used to define resistive regions by tuning into the corresponding temperature range. We use this method to define a quantum dot structure in bilayer graphene showing Coulomb blockade oscillations consistent with the gate layout.

Müller, André; Kaestner, Bernd; Hohls, Frank; Weimann, Thomas; Pierz, Klaus; Schumacher, Hans W., E-mail: hans.w.schumacher@ptb.de [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany)

2014-06-21

228

Ambipolar quantum dots in intrinsic silicon  

NASA Astrophysics Data System (ADS)

We electrically measure intrinsic silicon quantum dots with electrostatically defined tunnel barriers. The presence of both p- and n-type ohmic contacts enables the accumulation of either electrons or holes. Thus, we are able to study both transport regimes within the same device. We investigate the effect of the tunnel barriers and the electrostatically defined quantum dots. There is greater localisation of charge states under the tunnel barriers in the case of hole conduction, leading to higher charge noise in the p-type regime.

Betz, A. C.; Gonzalez-Zalba, M. F.; Podd, G.; Ferguson, A. J.

2014-10-01

229

Single-dot optical emission from ultralow density well-isolated InP quantum dots  

SciTech Connect

We demonstrate a straightforward way to obtain single well-isolated quantum dots emitting in the visible part of the spectrum and characterize the optical emission from single quantum dots using this method. Self-assembled InP quantum dots are grown using gas-source molecular-beam epitaxy over a wide range of InP deposition rates, using an ultralow growth rate of about 0.01 atomic monolayers/s, a quantum-dot density of 1 dot/{mu}m{sup 2} is realized. The resulting isolated InP quantum dots embedded in an InGaP matrix are individually characterized without the need for lithographical patterning and masks on the substrate. Such low-density quantum dots show excitonic emission at around 670 nm with a linewidth limited by instrument resolution. This system is applicable as a single-photon source for applications such as quantum cryptography.

Ugur, A.; Hatami, F.; Masselink, W. T. [Department of Physics, Humboldt-Universitaet zu Berlin, Newtonstrasse 15, D-12489 Berlin (Germany); Vamivakas, A. N.; Lombez, L.; Atatuere, M. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

2008-10-06

230

Nonvolatile Quantum Dot Gate Memory (NVQDM): Tunneling Rate from Quantum Well Channel to Quantum Dot Gate  

NASA Astrophysics Data System (ADS)

In this paper, we compute the tunneling of electrons in a nonvolatile quantum dot memory (NVQDM) cell during the WRITE operation. The transition rate of electrons from a quantum well channel to the quantum dots forming the floating gate is calculated using a recently reported method by Chuang et al.[1]. Tunneling current is computed based on transport of electrons from the channel to the floating quantum dots. The maximum number of electrons on a dot is calculated using surface electric field and break down voltage of the tunneling dielectric material. Comparison of tunneling for silicon oxide and high-k dielectric gate insulators is also described. Capacitance-Voltage characteristics of a NVQDM device are calculated by solving the Schrodinger and Poisson equations self-consistently. In addition, the READ operation of the memory has been investigated analytically. Results for 70 nm channel length Si NVQDMs are presented. Threshold voltage is calculated including the effect of the charge on nanocrystal quantum dots. Current-voltage characteristics are obtained using BSIM3v3 model [2-3]. This work is supported by Office of Navel Research (N00014210883, Dr. D. Purdy, Program Monitor), Connecticut Innovations Inc./TranSwitch (CII # 00Y17), and National Science Foundation (CCR-0210428) grants. [1] S. L. Chuang and N. Holonyak, Appl. Phys. Lett., 80, pp. 1270, 2002. [2] Y. Chen et. al., BSIM3v3 Manual, Elect. Eng. and Comp. Dept., U. California, Berkeley, CA, 1996. [3] W. Liu, MOSFET Models for SPICE Simulation, John Wiley & Sons, Inc., 2001.

Hasaneen, El-Sayed; Heller, Evan; Bansal, Rajeev; Jain, Faquir

2003-10-01

231

Formation and ordering of epitaxial quantum dots  

NASA Astrophysics Data System (ADS)

Single quantum dots (QDs) have great potential as building blocks for quantum information processing devices. However, one of the major difficulties in the fabrication of such devices is the placement of a single dot at a pre-determined position in the device structure, for example, in the centre of a photonic cavity. In this article we review some recent investigations in the site-controlled growth of InAs QDs on GaAs by molecular beam epitaxy. The method we use is ex-situ patterning of the GaAs substrate by electron beam lithography and conventional wet or dry etching techniques to form shallow pits in the surface which then determine the nucleation site of an InAs dot. This method is easily scalable and can be incorporated with marker structures to enable simple post-growth lithographic alignment of devices to each site-controlled dot. We demonstrate good site-control for arrays with up to 10 micron spacing between patterned sites, with no dots nucleating between the sites. We discuss the mechanism and the effect of pattern size, InAs deposition amount and growth conditions on this site-control method. Finally we discuss the photoluminescence from these dots and highlight the remaining challenges for this technique. To cite this article: P. Atkinson et al., C. R. Physique 9 (2008).

Atkinson, Paola; Schmidt, Oliver G.; Bremner, Stephen P.; Ritchie, David A.

2008-10-01

232

Spectral and threshold performance of patterned quantum dot lasers  

NASA Astrophysics Data System (ADS)

Semiconductor quantum dots have been widely researched as a means of improving the performance of optoelectronic devices. Self-assembly has been the dominant method of fabricating quantum dots because of its relative ease compared to more explicit techniques. We have developed a method for fabricating quantum dots in a more explicit manner using electron beam lithography and selective-area metal-organic chemical vapor deposition crystal growth. By eliminating the dependence on strain-driven self-assembly, we can avoid the size distribution and resulting inhomogeneously broadened emission spectrum associated with self-assembled quantum dot ensembles. We report on the threshold and spectral properties of patterned quantum dot lasers.

Elarde, V. C.; Coleman, J. J.

2006-03-01

233

Spintronics in a magnetic quantum dot  

NASA Astrophysics Data System (ADS)

Spintronics or spin electronics has been a growing area of research based on the active control and manipulation of spin degrees of freedom. In this work, we study the thermoelectric properties of a quantum dot using the Anderson model in presence of the repulsive Coulomb interaction within the mean-field formalism. The temperature difference applied across the dot drives a spin current which depends on the temperature and chemical potential. We demonstrate that the quantum dot in presence of the Coulomb interaction behaves as a spin filter for selected values of the chemical potential and is able to filter electrons by their spin orientation. The spin thermopower has also been studied where the effects of the impurity energy level, temperature and also the Coulomb term have been observed.

Ghosh, Angsula; Frota, H. O.

2013-08-01

234

Optical properties of quantum-dot-doped liquid scintillators.  

PubMed

Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO. PMID:25392711

Aberle, C; Li, J J; Weiss, S; Winslow, L

2013-10-14

235

Optical properties of quantum-dot-doped liquid scintillators  

PubMed Central

Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO. PMID:25392711

Aberle, C.; Li, J.J.; Weiss, S.; Winslow, L.

2014-01-01

236

Quantum Dot Cellular Automata: Computing with Coupled Quantum-Dot Molecules  

NASA Astrophysics Data System (ADS)

We have recently proposed a scheme of using coupled quantum dots to realize digital computing elements.(C. S. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein, Nanotechnology 4, 49 (1993); C. S. Lent, P. D. Tougaw, and W. Porod, Applied Physics Letters 62, 714 (1993).) Our scheme was inspired by recent work on nanometer-scale lithography in semiconductors which has permitted the construction of quantum dots which may be viewed as artificial atoms; furthermore, the principle of dot-dot coupling has also been demonstrated, thus realizing artificial semiconductor molecules. This talk will review the work of the Notre Dame group on the theory and modeling of cellular arrays of coupled quantum-dot molecules, which we refer to as quantum-dot cellular automata (QCA). We consider inhomogeneous arrays of quantum-dot molecules, where each molecule forms the basic unit in a cellular automaton-type array architecture. These cells (molecules) consists of four or five quantum dots in close enough proximity to enable electron tunneling between dots. Coulomb repulsion between electrons in the cell results in a bistable ground state whose configuration is determined by the configuration of neighboring cells. The electrons tend to occupy antipodal sites in one of two ground-state configurations which may be used to encode binary information. We have demonstrated that Boolean logic gates can be constructed, and simple design rules permit the fabrication of any logic function. The basic principle of QCA operation was demonstrated in recent experiments.(A. O. Orlov, I. Amlani, G. H. Bernstein, C. S. Lent, and G. L. Snider, Science 277, 928, (1997).)

Porod, Wolfgang

1998-05-01

237

In Vivo Imaging of Quantum Dots  

Microsoft Academic Search

Noninvasive whole-body near-infrared fluorescence imaging is now acknowledged as a powerful method for the molecular mapping of biological events in live small animals such as mouse models. With outstanding optical properties such as high fluorescence quantum yields and low photobleaching rates, quantum dots (QDs) are labels of choice in the near-infrared domain. The main applications described in the literature for

Isabelle Texier; Véronique Josser

2009-01-01

238

REVIEW ARTICLE Semiconductor quantum dot-sensitized  

E-print Network

of low-cost and high-performance solar cells for sustainable energy sources to re- place fossil fuels hasREVIEW ARTICLE Semiconductor quantum dot-sensitized solar cells Jianjun Tian1 * and Guozhong Cao2 for solar energy con- version due to their versatile optical and electrical properties. The QD

Cao, Guozhong

239

Producing Quantum Dots by Spray Pyrolysis  

NASA Technical Reports Server (NTRS)

An improved process for making nanocrystallites, commonly denoted quantum dots (QDs), is based on spray pyrolysis. Unlike the process used heretofore, the improved process is amenable to mass production of either passivated or non-passivated QDs, with computer control to ensure near uniformity of size.

Banger, Kulbinder; Jin, Michael H.; Hepp, Aloysius

2006-01-01

240

Dark Current in Quantum Dot Infrared Photodetectors  

Microsoft Academic Search

We present the results of a new analytical model for the analysis of the dark current in realistic quantum dot infrared photodetectors (QDIPs). This model includes the effect of the space charge formed by electrons captured in QDs and donors, the self-consistent electric potential in the QDIP active region, the activation character of the electron capture and its limitation by

Victor Ryzhii; Victor Pipa; Irina Khmyrova; Vladimir Mitin; Magnus Willander

2000-01-01

241

Nonequilibrium dephasing in Coulomb blockaded quantum dots.  

PubMed

We present a theory of zero-bias anomalies and dephasing rates for a Coulomb-blockaded quantum dot, driven out of equilibrium by coupling to voltage biased source and drain leads. We interpret our results in terms of the statistics of voltage fluctuations in the system. PMID:19257305

Altland, Alexander; Egger, Reinhold

2009-01-16

242

New small quantum dots for neuroscience  

NASA Astrophysics Data System (ADS)

In "New Small Quantum Dots for Neuroscience," Paul Selvin (University of Illinois, Urbana-Champaign) notes how the details of synapsis activity in the brain involves chemical receptors that facilitate the creation of the electrical connection between two nerves. In order to understand the details of this neuroscience phenomenon you need to be able to "see" what is happening at the scale of these receptors, which is around 10 nanometers. This is smaller than the diffraction limit of normal microscopy and it takes place on a 3 dimensional structure. Selvin describes the development of small quantum dots (on the order of 6-9 microns) that are surface-sensitized to interact with the receptors. This allows the application of photo-activated localized microscopy (PALM), a superresolution microscopy that can be scanned through focus to develop a 3D map on a scale that is the same size as the emitter, which in this case are the small quantum dots. The quantum dots are stable in time and provide access to the receptors which allows the imaging of the interactions taking place at the synoptic level.

Selvin, Paul

2014-03-01

243

Surface chemistry of nanostructures: 1) interactions of mixed monolayers of carboxylic acids on titania, 2) synthesis and immobilization of aqueous cadmium selenide quantum dots  

NASA Astrophysics Data System (ADS)

This thesis will focus on (1) characterization of mixed monolayers of thiol-terminated (T) and methyl-terminated (Me) carboxylic acids on nanocrystalline TiO2 thin films, (2) the synthesis of aqueous CdSe quantum dots (QDs), with particular emphasis on the influence of capping-group functionality and reaction conditions on the kinetics and mechanism of particle growth, and (3) attachment of CdSe QDs to TiO2 thin films and their photoelectrochemical performance as a function of surfactant in QD-sensitized solar cells (QDSSCs). Mixed monolayers have been used in many applications, such as chemical sensing, biomolecular recognition, molecular electronics, catalysis, and as building blocks for materials assembly. Mixed monolayers of T and Me on TiO 2 underwent dimerization-induced compositional changes. Me was displaced on the surface by T because of the formation of intermolecular disulfide bonds between thiol groups of T adsorbed to the TiO2 surface. The compositional changes were found to vary as a function of solvent, alkyl chain length of T, steric bulk of adsorbates, and surface-binding and terminal functional groups. The findings illustrate that dimerization and other intermolecular interactions between adsorbates may dramatically influence the composition and terminal functionalization of mixed monolayers. Semiconductor QDs are attractive alternatives to molecular chromophores and bulk semiconductors for light-harvesting applications in photovoltaics and photocatalysis. Aqueous QDs are of particular interest due to their straightforward, cost-effective, and environmentally-benign syntheses. CdSe QDs were synthesized in basic aqueous suspensions at room temperature under ambient conditions by mixing a cadmium precursor, selenide precursor, and one of several carboxylate-functionalized capping groups (cysteinate, mercaptopropionate, and mercaptosuccinate). The photophysical properties of the QDs varied with capping-group functionality, concentration of precursors, and pH of the aqueous reaction mixture. Varying these parameters allowed for systematic control of the kinetics and mechanism of particle growth, as well as the size and size distribution of QDs at equilibrium. Under certain conditions, "magic-sized" clusters (MSCs) of CdSe, rather than regular QDs, were preferentially synthesized. The carboxylated capping groups of aqueous QDs were used as bifunctional linkers, allowing for facile attachment to nanocrystalline TiO2 thin films. Equilibrium binding experiments were performed to quantify the adsorption of regular QDs and MSCs to nanocrystalline TiO2 thin films. Finally, photoelectrochemistry was used to quantify the influence of capping-group functionality on the efficiency of electron injection from adsorbed QDs into TiO2 and the power-conversion efficiency of QDSSCs.

Nevins, Jeremy S.

2011-12-01

244

Non-Markovian full counting statistics in quantum dot molecules  

NASA Astrophysics Data System (ADS)

Full counting statistics of electron transport is a powerful diagnostic tool for probing the nature of quantum transport beyond what is obtainable from the average current or conductance measurement alone. In particular, the non-Markovian dynamics of quantum dot molecule plays an important role in the nonequilibrium electron tunneling processes. It is thus necessary to understand the non-Markovian full counting statistics in a quantum dot molecule. Here we study the non-Markovian full counting statistics in two typical quantum dot molecules, namely, serially coupled and side-coupled double quantum dots with high quantum coherence in a certain parameter regime. We demonstrate that the non-Markovian effect manifests itself through the quantum coherence of the quantum dot molecule system, and has a significant impact on the full counting statistics in the high quantum-coherent quantum dot molecule system, which depends on the coupling of the quantum dot molecule system with the source and drain electrodes. The results indicated that the influence of the non-Markovian effect on the full counting statistics of electron transport, which should be considered in a high quantum-coherent quantum dot molecule system, can provide a better understanding of electron transport through quantum dot molecules.

Xue, Hai-Bin; Jiao, Hu-Jun; Liang, Jiu-Qing; Liu, Wu-Ming

2015-03-01

245

Non-Markovian full counting statistics in quantum dot molecules  

PubMed Central

Full counting statistics of electron transport is a powerful diagnostic tool for probing the nature of quantum transport beyond what is obtainable from the average current or conductance measurement alone. In particular, the non-Markovian dynamics of quantum dot molecule plays an important role in the nonequilibrium electron tunneling processes. It is thus necessary to understand the non-Markovian full counting statistics in a quantum dot molecule. Here we study the non-Markovian full counting statistics in two typical quantum dot molecules, namely, serially coupled and side-coupled double quantum dots with high quantum coherence in a certain parameter regime. We demonstrate that the non-Markovian effect manifests itself through the quantum coherence of the quantum dot molecule system, and has a significant impact on the full counting statistics in the high quantum-coherent quantum dot molecule system, which depends on the coupling of the quantum dot molecule system with the source and drain electrodes. The results indicated that the influence of the non-Markovian effect on the full counting statistics of electron transport, which should be considered in a high quantum-coherent quantum dot molecule system, can provide a better understanding of electron transport through quantum dot molecules. PMID:25752245

Xue, Hai-Bin; Jiao, Hu-Jun; Liang, Jiu-Qing; Liu, Wu-Ming

2015-01-01

246

Non-Markovian full counting statistics in quantum dot molecules.  

PubMed

Full counting statistics of electron transport is a powerful diagnostic tool for probing the nature of quantum transport beyond what is obtainable from the average current or conductance measurement alone. In particular, the non-Markovian dynamics of quantum dot molecule plays an important role in the nonequilibrium electron tunneling processes. It is thus necessary to understand the non-Markovian full counting statistics in a quantum dot molecule. Here we study the non-Markovian full counting statistics in two typical quantum dot molecules, namely, serially coupled and side-coupled double quantum dots with high quantum coherence in a certain parameter regime. We demonstrate that the non-Markovian effect manifests itself through the quantum coherence of the quantum dot molecule system, and has a significant impact on the full counting statistics in the high quantum-coherent quantum dot molecule system, which depends on the coupling of the quantum dot molecule system with the source and drain electrodes. The results indicated that the influence of the non-Markovian effect on the full counting statistics of electron transport, which should be considered in a high quantum-coherent quantum dot molecule system, can provide a better understanding of electron transport through quantum dot molecules. PMID:25752245

Xue, Hai-Bin; Jiao, Hu-Jun; Liang, Jiu-Qing; Liu, Wu-Ming

2015-01-01

247

Laterally-biased quantum dot infrared photodetector  

NASA Astrophysics Data System (ADS)

At the Air Force Research Laboratory, Space Vehicles Directorate, we are interested in improving the performance of or modifying the capabilities of infrared detectors in order to locate and identify dim and/or distant objects in space. One characteristic we are very interested in is multicolor detection. To this end, we have turned to a novel detector design that we have come to call a Lateral Quantum Dot Infrared Photodetector (LQDIP). In this design, InAs quantum dots are buried in a GaAs quantum well, which in turn is tunnel-coupled to another GaAs quantum well. Photoexcited electrons from the quantum dots tunnel over to the second well and are then swept out via a lateral (perpendicular to the growth direction) bias voltage. This architecture should exhibit the ability to tune to select infrared frequencies with reduced dark current and unity gain. The lateral photocurrent is directed by a vertical (parallel to the growth direction) gate voltage. We will discuss this detector architecture and the LQDIP operating principles and conditions, and we will present some preliminary results of current-voltage, photocurrent, differential conductance, and spectral measurements.

Cardimona, D. A.; Morath, C. P.; Guidry, D. H.; Cowan, V. M.

2013-07-01

248

Entrapment in phospholipid vesicles quenches photoactivity of quantum dots  

PubMed Central

Quantum dots have emerged with great promise for biological applications as fluorescent markers for immunostaining, labels for intracellular trafficking, and photosensitizers for photodynamic therapy. However, upon entry into a cell, quantum dots are trapped and their fluorescence is quenched in endocytic vesicles such as endosomes and lysosomes. In this study, the photophysical properties of quantum dots were investigated in liposomes as an in vitro vesicle model. Entrapment of quantum dots in liposomes decreases their fluorescence lifetime and intensity. Generation of free radicals by liposomal quantum dots is inhibited compared to that of free quantum dots. Nevertheless, quantum dot fluorescence lifetime and intensity increases due to photolysis of liposomes during irradiation. In addition, protein adsorption on the quantum dot surface and the acidic environment of vesicles also lead to quenching of quantum dot fluorescence, which reappears during irradiation. In conclusion, the in vitro model of phospholipid vesicles has demonstrated that those quantum dots that are fated to be entrapped in endocytic vesicles lose their fluorescence and ability to act as photosensitizers. PMID:21931483

Generalov, Roman; Kavaliauskiene, Simona; Westrøm, Sara; Chen, Wei; Kristensen, Solveig; Juzenas, Petras

2011-01-01

249

Investigation of potential profile effects in quantum dot and onion-like quantum dot-quantum well on optical properties  

NASA Astrophysics Data System (ADS)

This paper investigates GaAs/AlGaAs modified quantum dot nanocrystal and GaAs/AlGaAs/GaAs/AlGaAs quantum dot-quantum well heteronanocrystal. These quantum dots have been analyzed by the finite element numerical methods. Simulations carried out for state n=1, l=0, and m=0 which are original, orbital, and magnetic state of quantum numbers. The effects of variation in radius layers such as total radius, GaAs core, shell and AlGaAs barriers radius on the wavelength and emission coefficient are studied. For the best time, it has also investigated the effect of mole fraction on emission coefficient. Meanwhile, one of the problems in biological applications is alteration of the emission wavelength of a quantum dot by changing in its dimension. This problem will be resolved by changing in potential profile.

Elyasi, P.; SalmanOgli, A.

2014-05-01

250

Phonon-assisted decoherence and tunneling in quantum dot molecules  

NASA Astrophysics Data System (ADS)

We study the influence of the phonon environment on the electron dynamics in a doped quantum dot molecule. A non-perturbative quantum kinetic theory based on correlation expansion is used in order to describe both diagonal and off-diagonal electron-phonon couplings representing real and virtual processes with relevant acoustic phonons. We show that the relaxation is dominated by phonon-assisted electron tunneling between constituent quantum dots and occurs on a picosecond time scale. The dependence of the time evolution of the quantum dot occupation probabilities on the energy mismatch between the quantum dots is studied in detail.

Grodecka-Grad, Anna; Förstner, Jens

2011-04-01

251

Quantum-dot-induced phase shift in a pillar microcavity  

SciTech Connect

We perform high-resolution reflection spectroscopy of a quantum dot resonantly coupled to a pillar microcavity. We show the change in reflectivity as the quantum dot is tuned through the cavity resonance and measure the quantum-dot-induced phase shift using an ultrastable interferometer. The macroscopic phase shift we measure could be extended to the study of charged quantum dot pillar microcavity systems, where it could be exploited to realize a high-efficiency spin photon interface for hybrid quantum information schemes.

Young, A. B.; Hu, C. Y.; Rarity, J. G. [Merchant Venturers School of Engineering, Woodland Road, Bristol, BS8 1UB (United Kingdom); Oulton, R. [Merchant Venturers School of Engineering, Woodland Road, Bristol, BS8 1UB (United Kingdom); H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Thijssen, A. C. T. [H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Schneider, C.; Reitzenstein, S.; Kamp, M.; Hoefling, S.; Worschech, L.; Forchel, A. [Technische Physik, Physikalisches Institut and Wilhelm Conrad Roentgen-Center for Complex Material Systems, Universitaet Wuerzburg, Am Hubland, D-97474 Wuerzburg (Germany)

2011-07-15

252

Decoherence enhanced quantum measurement of a quantum dot spin qubit  

E-print Network

We study the effect of phonons on a proposed scheme for the direct measurement of two-electron spin states in a double quantum dot by monitoring the the noise of the current flowing through a quantum point contact coupled to one of the dots. We show that although the effect of phonons is damaging to the procedure at extremely low temperatures characteristic of spin-in-quantum-dots experiments, and may even be fatal, increasing the temperature leads to a revival of the schemes usefulness. Furthermore, at higher, but still reasonably low temperatures phonon effects become advantageous to the measurement scheme, and lead to the enhancement of the spin-singlet noise without disturbing the low spin-triplet noise. Hence, the uncontrollable interaction of the measured system with the open bosonic environment, can be harnessed to increase the distinguishability between the measured states.

Katarzyna Roszak; ?ukasz Marcinowski; Pawe? Machnikowski

2013-12-03

253

Large scale synthesis of graphene quantum dots (GQDs) from waste biomass and their use as an efficient and selective photoluminescence on-off-on probe for Ag+ ions  

NASA Astrophysics Data System (ADS)

Graphene quantum dots (GQDs) are synthesized from bio-waste and are further modified to produce amine-terminated GQDs (Am-GQDs) which have higher dispersibility and photoluminescence intensity than those of GQDs. A strong fluorescence quenching of Am-GQDs (switch-off) is observed for a number of metal ions, but only for the Ag+ ions is the original fluorescence regenerated (switch-on) upon addition of l-cysteine.Graphene quantum dots (GQDs) are synthesized from bio-waste and are further modified to produce amine-terminated GQDs (Am-GQDs) which have higher dispersibility and photoluminescence intensity than those of GQDs. A strong fluorescence quenching of Am-GQDs (switch-off) is observed for a number of metal ions, but only for the Ag+ ions is the original fluorescence regenerated (switch-on) upon addition of l-cysteine. Electronic supplementary information (ESI) available: HRTEM images, GQD SAED patterns and EDAX analysis of Am-GQD@Ag. See DOI: 10.1039/c4nr02494j

Suryawanshi, Anil; Biswal, Mandakini; Mhamane, Dattakumar; Gokhale, Rohan; Patil, Shankar; Guin, Debanjan; Ogale, Satishchandra

2014-09-01

254

Planar Dirac electrons in magnetic quantum dots.  

PubMed

In this paper, we explore the size- and mass-dependent energy spectra and the electronic correlation of two- and three-electron graphene magnetic quantum dots. It is found that only the magnetic dots with large size can well confine the electrons. For large graphene magnetic dots with massless (ultra-relativity) electrons, the energy level structures of two Dirac electrons and even the ground state spin and angular momentum of three electrons are quite different from those of the usual semiconductor quantum dots. Also we reveal that such differences are not due to the magnetic confinement but originate from the character of the Coulomb interaction of two-component electronic wavefunctions in graphene. We reveal that the increase of the mass leads to both the crossover of the energy spectrum structures from the ultra-relativity to non-relativity ones and the increasing of the crystallization. The results are helpful for the understanding of the mass and size effects and may be useful in controlling the few-electron states in graphene-based nanodevices. PMID:22543306

Yang, Ning; Zhu, Jia-Lin

2012-05-30

255

Multiplexed quantum cryptography with single InP quantum dots  

NASA Astrophysics Data System (ADS)

High-efficient single-photon sources are important for fundamental experiments as well as for modern applications in the field of quantum information processing. Therefore, both the overall collection efficiency as well as the photon generation rate are important parameters. In this article, we use cascaded two-photon emission from a single quantum dot in order to double the efficient transmission rate in a quantum key distribution protocol by multiplexing on a single photon level. The energetically non-degenerate photons are separated with a single photon add/drop filter based on a Michelson interferometer. For optimizing the collection efficiency, coupling of quantum emitters to microcavities is advantageous. We also describe preliminary results towards coupling of a single quantum dot grown on a micrometer-sized tip to the whispering gallery modes of a microsphere cavity.

Aichele, Thomas; Zwiller, Valery; Scholz, Matthias; Reinaudi, Gael; Persson, Jonas; Benson, Oliver

2005-04-01

256

Scanning photoluminescent spectroscopy of bioconjugated quantum dots  

NASA Astrophysics Data System (ADS)

We report on the application of the bio-conjugated quantum dots (QDs) for a "sandwich" enzyme-linked immunosorbent assay (ELISA) cancer testing technique. Quantum dot ELISA detection of the cancer PSA antigen at concentrations as low as 0.01 ng/ml which is ˜50 times lower than the classic "sandwich" ELISA was demonstrated. Scanning photoluminescence (PL) spectroscopy was performed on dried ELISA wells and the results compared with the same QD samples dried on a solid substrate. We confirmed a "blue" up to 37 nm PL spectral shift in a case of QDs conjugated to PSA antibodies. Increasing of the "blue" spectral shift was observed at lower PSA antigen concentrations. The results can be used to improve sensitivity of "sandwich" ELISA cancer antigen detection.

Chornokur, G.; Ostapenko, S.; Oleynik, E.; Phelan, C.; Korsunska, N.; Kryshtab, T.; Zhang, J.; Wolcott, A.; Sellers, T.

2009-04-01

257

Single quantum dot imaging in living cells.  

PubMed

Direct visualization of biological processes at single-molecule level provides a detailed perspective which conventional bulk measurements are hard to achieve. Among various classes of fluorescent tags used in single-molecule tracking, quantum dots are particularly useful due to their unique photophysical properties. In this chapter, we describe the principles, methodologies, and experimental protocols for qdot-based single-molecule imaging. The first half provides an overview of fluorescent microscopy and advances in single-molecule tracking using quantum dots. The remainder of this chapter describes methods to carry out qdot-based single-molecule experiments. Detailed protocols including qdot labeling, microscopy setup, and single-molecule analysis using appropriate computational programs are given. PMID:23546667

Chang, Jerry C; Rosenthal, Sandra J

2013-01-01

258

Facile labeling of lipoglycans with quantum dots.  

PubMed

Bacterial endotoxins or lipopolysaccharides (LPS) are among the most potent activators of the innate immune system, yet mechanisms of their action and in particular the role of glycans remain elusive. Efficient non-invasive labeling strategies are necessary for studying interactions of LPS glycans with biological systems. Here we report a new method for labeling LPS and other lipoglycans with luminescent quantum dots. The labeling is achieved by partitioning of hydrophobic quantum dots into the core of various LPS aggregates without disturbing the native LPS structure. The biofunctionality of the LPS-Qdot conjugates is demonstrated by the labeling of mouse monocytes. This simple method should find broad applicability in studies concerned with visualization of LPS biodistribution and identification of LPS binding agents. PMID:19150336

Betanzos, Carlos Morales; Gonzalez-Moa, Maria; Johnston, Stephen Albert; Svarovsky, Sergei A

2009-02-27

259

Measurement back-action: Listening with quantum dots  

NASA Astrophysics Data System (ADS)

Single electrons in quantum dots can be disturbed by the apparatus used to measure them. The disturbance can be mediated by incoherent phonons -- literally, noise. Engineering acoustic interference could negate these deleterious effects and bring quantum dots closer to becoming a robust quantum technology.

Ladd, Thaddeus D.

2012-07-01

260

Deposition of colloidal quantum dots by microcontact printing for LED display technology  

E-print Network

This thesis demonstrates a new deposition method of colloidal quantum dots within a quantum dot organic light-emitting diode (QD-LED). A monolayer of quantum dots is microcontact printed as small as 20 ,Lm lines as well ...

Kim, LeeAnn

2006-01-01

261

Solution-processable graphene quantum dots.  

PubMed

This minireview describes recent progress in solution-processable graphene quantum dots (SGQDs). Advances in the preparation, modification, properties, and applications of SGQDs are highlighted in detail. As one of emerging nanostructured materials, possible ongoing research related to the precise control of the lateral size, edge structure and surface functionality; the manipulation and characterization; the relationship between the properties and structure; and interfaces with biological systems of SGQDs have been speculated upon. PMID:23733526

Zhou, Xuejiao; Guo, Shouwu; Zhang, Jingyan

2013-08-26

262

Photoluminescence of Silicon-Germanium Quantum Dots  

NSDL National Science Digital Library

This presentation, given at the Arizona Nanotechnology Cluster Symposium, introduces the topic of the photoluminescence of silicon-germainium quantum dots. Dr. James Kolodzey, of University of Delaware, presents the topic in powerpoint format. The presentation is loaded with helpful diagrams and images that capture the essence of Kolodzey's research. Overall, while the topic is advanced, the presentations allows users to better understand due to the helpful resources it contains.

Kolodzey, James

263

The pinning effect in quantum dots  

SciTech Connect

The pinning effect is studied in a Gaussian quantum dot using the improved Wigner-Brillouin perturbation theory (IWBPT) in the presence of electron-phonon interaction. The electron ground state plus one phonon state is degenerate with the electron in the first excited state. The electron-phonon interaction lifts the degeneracy and the first excited states get pinned to the ground state plus one phonon state as we increase the confinement frequency.

Monisha, P. J., E-mail: pjmonisha@gmail.com [School of Physics, University of Hyderabad, Hyderabad-500046 (India); Mukhopadhyay, Soma [Department of Physics, D V R College of Engineering and Technology, Hyderabad-502285 (India)

2014-04-24

264

Spin relaxation in semiconductor quantum dots  

Microsoft Academic Search

We have studied spin-flip processes in GaAs electron quantum dots that accompany transitions between different discrete energy levels. Several different mechanisms that originate from spin-orbit coupling are shown to be responsible for such processes. We have evaluated the rates for all mechanisms with and without a magnetic field. We have shown that the spin relaxation of the electrons localized in

Alexander V. Khaetskii; Yuli V. Nazarov

2000-01-01

265

Zeeman Effect in Parabolic Quantum Dots  

Microsoft Academic Search

An unprecedentedly well resolved Zeeman effect has been observed when confined carriers moving along a closed mesoscopic path experience an external magnetic field orthogonal to the orbit plane. Large Zeeman splitting of excited higher angular momentum states is observed in the magnetoluminescence spectrum of quantum dots induced by self-organized InP islands on InGaAs\\/GaAs. The measured effect is quantitatively reproduced by

R. Rinaldi; P. V. Giugno; R. Cingolani; H. Lipsanen; M. Sopanen; J. Tulkki; J. Ahopelto

1996-01-01

266

Ultrafast Coherent Spectroscopy of Single Semiconductor Quantum Dots  

Microsoft Academic Search

This chapter summarizes our recent work—performed within the project B6 of the Sonderforschungsbereich 296—on combining ultrafast\\u000a spectroscopy and near-field microscopy to probe the nonlinear optical response of a single quantum dot and of a pair of dipole-coupled\\u000a quantum dots on a femtosecond time scale. We demonstrate coherent control of both amplitude and phase of the coherent quantum\\u000a dot polarization by

Christoph Lienau; Thomas Elsaesser

267

Quantum Gates Between Two Spins in a Triple Dot System with an Empty Dot  

E-print Network

We propose a scheme for implementing quantum gates and entanglement between spin qubits in the outer dots of a triple-dot system with an empty central dot. The voltage applied to the central dot can be tuned to realize the gate. Our scheme exemplifies the possibility of quantum gates outside the regime where each dot has an electron, so that spin-spin exchange interaction is not the only relevant mechanism. Analytic treatment is possible by mapping the problem to a t-J model. The fidelity of the entangling quantum gate between the spins is analyzed in the presence of decoherence stemming from a bath of nuclear spins, as well as from charge fluctuations. Our scheme provides an avenue for extending the scope of two qubit gate experiments to triple-dots, while requiring minimal control, namely that of the potential of a single dot, and may enhance the qubit separation to ease differential addressability.

Jose Garcia Coello; Sougato Bose

2011-04-05

268

Imaging ligand-gated ion channels with quantum dots  

NASA Astrophysics Data System (ADS)

In this paper we report two different methodologies for labeling ligand-gated receptors. The first of these builds upon our earlier work with serotonin conjugated quantum dots and our studies with pegilated quantum dots to reduce non specific binding. In this approach a pegilated derivative of muscimol was synthesized and attached via an amide linkage to quantum dots coated in an amphiphillic polymer derivative of poly acrylamide. These conjugates were used to image the GABA C receptor in oocytes. An alternative approach was used to image tissue sections to study nicotinic acetylcholine receptors in the neuro muscular junction with biotinylated Bungerotoxin and streptavidin coated quantum dots.

Tomlinson, I. D.; Orndorff, Rebecca L.; Gussin, Hélène; Mason, John N.; Blakely, Randy D.; Pepperberg, David R.; Rosenthal, Sandra J.

2007-02-01

269

One step, microwave assisted green synthesis of biocompatible carbon quantum dots and their composites with [??PW{sub 12}O{sub 40}{sup 3?}] for visible light photocatalysis  

SciTech Connect

We report a simple, rapid and green route for synthesis of fluorescent carbon quantum dots (CQDs) by microwave assisted pyrolysis method using polyleucine polymer (Boc-L-Leu-HEMA) as precursor and self-passivating agent. The as synthesized CQDs were found to possess low cytotoxicity, thus making them suitable candidates for bioimaging and bio-labelling. Moreover, nanocomposites of as prepared CQDs with [??PW{sub 12}O{sub 40}{sup 3?}] polyoxometalate were synthesized and were shown to possess excellent photocatalytic properties under visible light towards degradation of organic dye pollutants. Based on the control experiments, a suitable mechanism has been proposed to explain the remarkable photoactivity of the CQD/[??PW{sub 12}O{sub 40}{sup 3?}] composites.

Sahasrabudhe, Atharva, E-mail: atharva19101991@gmail.com; Pant, Shashank, E-mail: atharva19101991@gmail.com; Chatti, Manjunath, E-mail: atharva19101991@gmail.com; Maiti, Binoy, E-mail: atharva19101991@gmail.com; De, Priyadarsi, E-mail: atharva19101991@gmail.com; Roy, Soumyajit, E-mail: atharva19101991@gmail.com [Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur-741252, W.B. (India)

2014-04-24

270

Enhanced performance of quantum dot solar cells based on type II quantum dots  

SciTech Connect

The characteristics of quantum dot solar cells (QDSCs) based on type II QDs are investigated theoretically. Based on a drift-diffusion model, we obtained a much higher open circuit voltage (V{sub oc}) as well as conversion efficiency in a type II QDSC, compared to type I QDSCs. The improved V{sub oc} and efficiency are mainly attributed to the much longer Auger recombination lifetime in type II QDs. Moreover, the influence of the carrier lifetime on devices' performance is discussed and clarified. In addition, an explicit criterion to determine the role of quantum dots in solar cells is put forward.

Xu, Feng; Yang, Xiao-Guang; Luo, Shuai; Lv, Zun-Ren; Yang, Tao, E-mail: tyang@semi.ac.cn [Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China)

2014-10-07

271

Digital Logic Gate Using Quantum-Dot Cellular Automata  

Microsoft Academic Search

A functioning logic gate based on quantum-dot cellular automata is presented, where digital data are encoded in the positions of only two electrons. The logic gate consists of a cell, composed of four dots connected in a ring by tunnel junctions, and two single-dot electrometers. The device is operated by applying inputs to the gates of the cell. The logic

Islamshah Amlani; Alexei O. Orlov; Geza Toth; Gary H. Bernstein; Craig S. Lent; Gregory L. Snider

1999-01-01

272

Probing coherent tunneling in semiconductor quantum dots using electromechanical backaction  

NASA Astrophysics Data System (ADS)

Self-assembled quantum dots have been studied intensely because of their possible applications to quantum information processing. While such dots are difficult to characterize using direct electrical transport measurements, it has recently been shown both theoretically [1] and experimentally [2] that a capacitively coupled AFM cantilever can serve as a sensitive probe of dot charge dynamics and electronic level structure. This sensitivity is based on the fact that the dot, which is tunnel-coupled to electrons in a reservoir, acts as a dissipative bath for the cantilever. Here, we extend previous theoretical work to describe an AFM cantilever coupled to a double quantum dot. Unlike a single-dot, the double-dot system exhibits both incoherent tunneling to the leads and coherent tunneling between the dots. We find that the cantilever's motion is affected by both kinds of tunneling and can yield significant information even in regimes where the total double-dot charge does not fluctuate. Cantilever dynamics can also be used to learn about the strength of dephasing processes in the double-dot. After presenting the theoretical approach to this problem, we will discuss the results in the context of current experimental efforts using InAs dots. These effects should also be accessible in a variety of other quantum dot setups. [1] S. D. Bennett, et al., Phys. Rev. Lett. 104, 017203 (2010). [2] L. Cockins, et al., Proc. Nat. Acad. Sci. 107, 9496 (2010).

Gardner, Jamie; Clerk, Aashish

2011-03-01

273

Sonication-assisted synthesis of CdS quantum-dot-sensitized TiO2 nanotube arrays with enhanced photoelectrochemical and photocatalytic activity.  

PubMed

A sonication-assisted sequential chemical bath deposition (S-CBD) approach is presented to uniformly decorate CdS quantum dots (QDs) on self-organized TiO2 nanotube arrays (TNTAs). This approach avoids the clogging of CdS QDs at the TiO2 nanotube mouth and promotes the deposition of CdS QDs into the nanotubes as well as on the tube walls. The photoelectrochemical and photocatalytic properties of the resulting CdS-decorated TNTAs were explored in detail. In comparison with a classical S-CBD approach, the sonication-assisted technique showed much enhancement in the photoelectrochemical and photocatalytic activities of the CdS QDs-sensitized TNTAs. PMID:20849087

Xie, Yi; Ali, Ghafar; Yoo, Seung Hwa; Cho, Sung Oh

2010-10-01

274

One-step synthesis of CdS sensitized TiO? photoanodes for quantum dot-sensitized solar cells by microwave assisted chemical bath deposition method.  

PubMed

Sensitized-type solar cells based on TiO? photoanodes and CdS quantum dots (QDs) as sensitizers have been studied. CdS QDs are grown on TiO? films, utilizing one-step microwave assisted chemical bath deposition (MACBD) method. This method allows a facile and rapid deposition and integration between CdS QDs and TiO? films. The photovoltaic performances of the cells fabricated using CdS precursor solutions with different concentrations are investigated. The results show that the cell based on MACBD deposited TiO?/CdS electrode achieves a maximum short circuit current density of 7.20 mAcm?² and power conversion efficiency of 1.18 % at one sun (AM 1.5G, 100 mW cm?²), which is comparable to the ones prepared using conventional techniques. PMID:21534627

Zhu, Guang; Pan, Likun; Xu, Tao; Sun, Zhuo

2011-05-01

275

Synthesis of Fluorinated and Nonfluorinated Graphene Quantum Dots through a New Top-Down Strategy for Long-Time Cellular Imaging.  

PubMed

Herein, a new strategy has been developed through combining a microwave-assisted technique with hydrothermal treatment to reduce graphene waste and improve production yield of graphene quantum dots (GQDs) prepared by top-down methods. By using fluorinated graphene oxide (FGO) as a raw material, fluorinated GQDs and nonfluorinated GQDs can be synthesized. Additionally, in the fluorinated GQDs, the protective shell supplied by fluorine improves the pH stability of photoluminescence and the strong electron-withdrawing group, ?F, reduces the ?- electron density of the aromatic structure; thus inhibiting reactivity toward singlet oxygen produced during irradiation and improving the photostability. Therefore, the as-prepared fluorinated GQDs with excellent photo- and pH stability are suitable for long-term cellular imaging. PMID:25614445

Sun, Hanjun; Ji, Haiwei; Ju, Enguo; Guan, Yijia; Ren, Jinsong; Qu, Xiaogang

2015-02-23

276

Production and Targeting of Monovalent Quantum Dots  

PubMed Central

The multivalent nature of commercial quantum dots (QDs) and the difficulties associated with producing monovalent dots have limited their applications in biology, where clustering and the spatial organization of biomolecules is often the object of study. We describe here a protocol to produce monovalent quantum dots (mQDs) that can be accomplished in most biological research laboratories via a simple mixing of CdSe/ZnS core/shell QDs with phosphorothioate DNA (ptDNA) of defined length. After a single ptDNA strand has wrapped the QD, additional strands are excluded from the surface. Production of mQDs in this manner can be accomplished at small and large scale, with commercial reagents, and in minimal steps. These mQDs can be specifically directed to biological targets by hybridization to a complementary single stranded targeting DNA. We demonstrate the use of these mQDs as imaging probes by labeling SNAP-tagged Notch receptors on live mammalian cells, targeted by mQDs bearing a benzylguanine moiety. PMID:25407345

Southard, Kade; Jun, Young-wook; Gartner, Zev J.

2014-01-01

277

Demonstration of a six-dot quantum cellular automata system  

Microsoft Academic Search

We report an experimental demonstration of a logic cell for quantum-dot cellular automata (QCA). This nanostructure-based computational paradigm allows logic function implementation without the use of transistors. The four-dot QCA cell is defined by a pair of series-connected double dots, and the coupling between the input and the output double dots is provided by lithographically defined capacitors. We demonstrate that,

Islamshah Amlani; Alexei O. Orlov; Gregory L. Snider; Craig S. Lent; Gary H. Bernstein

1998-01-01

278

Supercurrent reversal in quantum dots  

Microsoft Academic Search

When two superconductors become electrically connected by a weak link a\\u000azero-resistance supercurrent can flow. This supercurrent is carried by Cooper\\u000apairs of electrons with a combined charge of twice the elementary charge, e.\\u000aThe 2e charge quantum is clearly visible in the height of Shapiro steps in\\u000aJosephson junctions under microwave irradiation and in the magnetic flux\\u000aperiodicity of

Jorden A. van Dam; Yuli V. Nazarov; Erik P. A. M. Bakkers; Silvano De Franceschi; Leo P. Kouwenhoven

2006-01-01

279

Controlling quantum dot energies using submonolayer bandstructure engineering  

SciTech Connect

We demonstrate control of energy states in epitaxially-grown quantum dot structures formed by stacked submonolayer InAs depositions via engineering of the internal bandstructure of the dots. Transmission electron microscopy of the stacked sub-monolayer regions shows compositional inhomogeneity, indicative of the presence of quantum dots. The quantum dot ground state is manipulated not only by the number of deposited InAs layers, but also by control of the thickness and material composition of the spacing layers between submonolayer InAs depositions. In this manner, we demonstrate the ability to shift the quantum dot ground state energy at 77?K from 1.38?eV to 1.88?eV. The results presented offer a potential avenue towards enhanced control of dot energies for a variety of optoelectronic applications.

Yu, L.; Law, S.; Wasserman, D. [Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801 (United States); Jung, D.; Lee, M. L. [Department of Electrical Engineering, Yale University, New Haven, Connecticut 06520 (United States); Shen, J.; Cha, J. J. [Department of Mechanical Engineering and Materials Science and Energy Science Institute, Yale University, New Haven, Connecticut 06520 (United States)

2014-08-25

280

PREFACE: Quantum dots as probes in biology  

NASA Astrophysics Data System (ADS)

The recent availability of nanostructured materials has resulted in an explosion of research focused on their unique optical, thermal, mechanical and magnetic properties. Optical imagining, magnetic enhancement of contrast and drug delivery capabilities make the nanoparticles of special interest in biomedical applications. These materials have been involved in the development of theranostics—a new field of medicine that is focused on personalized tests and treatment. It is likely that multimodal nanomaterials will be responsible for future diagnostic advances in medicine. Quantum dots (QD) are nanoparticles which exhibit luminescence either through the formation of three-dimensional excitons or excitations of the impurities. The excitonic luminescence can be tuned by changing the size (the smaller the size, the higher the frequency). QDs are usually made of semiconducting materials. Unlike fluorescent proteins and organic dyes, QDs resist photobleaching, allow for multi-wavelength excitations and have narrow emission spectra. The techniques to make QDs are cheap and surface modifications and functionalizations can be implemented. Importantly, QDs could be synthesized to exhibit useful optomagnetic properties and, upon functionalization with an appropriate biomolecule, directed towards a pre-selected target for diagnostic imaging and photodynamic therapy. This special issue on Quantum dots in Biology is focused on recent research in this area. It starts with a topical review by Sreenivasan et al on various physical mechanisms that lead to the QD luminescence and on using wavelength shifts for an improvement in imaging. The next paper by Szczepaniak et al discusses nanohybrids involving QDs made of CdSe coated by ZnS and combined covalently with a photosynthetic enzyme. These nanohybrids are shown to maintain the enzymatic activity, however the enzyme properties depend on the size of a QD. They are proposed as tools to study photosynthesis in isolated photosynthetic systems. The next paper, by Olejnik et al, discussed metallic QDs which enhance photosynthetic function in light-harvesting biomolecular complexes. Such hybrid structures with gold QDs are shown to exhibit a strong increase in the fluorescence quantum yield. The next two papers, by Sikora et al and Kaminska et al deal with the ZnO nanoparticles passivated by MgO. In the first of these two papers, the authors describe the behavior of ZnO/MgO when introduced to human cancer cells. In the second, the authors describe the QDs with an extra outer layer of Fe2O3 which makes the nanoparticles superparamagnetic and also capable of generation of reactive oxygen species which could be applied to form localized centers of toxicity for cancer treatment. Finally, in the last paper by Yatsunenko et al, the authors discuss several semiconducting QDs like ZnO with various rare-earth dopands. They propose a microwave-driven hydrothermal technology to make them, characterize their luminescence and demonstrate their usefulness in the early recognition of cancer tissues. Quantum dots as probes in biology contents Quantum dots as probes in biologyMarek Cieplak Luminescent nanoparticles and their applications in the life sciencesVarun K A Sreenivasan, Andrei V Zvyagin and Ewa M Goldys Ferredoxin:NADP+ oxidoreductase in junction with CdSe/ZnS quantum dots: characteristics of an enzymatically active nanohybrid Krzysztof Szczepaniak, Remigiusz Worch and Joanna Grzyb Spectroscopic studies of plasmon coupling between photosynthetic complexes and metallic quantum dotsMaria Olejnik, Bartosz Krajnik, Dorota Kowalska, Guanhua Lin and Sebastian Mackowski Luminescence of colloidal ZnO nanoparticles synthesized in alcohols and biological application of ZnO passivated by MgOBo?ena Sikora, Krzysztof Fronc, Izabela Kami?ska, Kamil Koper, Piotr St?pie? and Danek Elbaum Novel ZnO/MgO/Fe2O3 composite optomagnetic nanoparticles I Kami?ska, B Sikora, K Fronc, P Dziawa, K Sobczak, R Minikayev, W Paszkowicz and D Elbaum Impact of yttria stabilization on Tb3+ intra-shell luminescence efficiency in

Cieplak, Marek

2013-05-01

281

Power-law photoluminescence decay in quantum dots  

SciTech Connect

Some quantum dot samples show a long-time (power-law) behavior of their luminescence intensity decay. This effect has been recently explained as being due to a cooperation of many tunneling channels transferring electrons from small quantum dots with triplet exciton to quantum dots at which the electrons can recombine with the holes in the valence band states. In this work we show that the long-time character of the sample luminescence decay can also be caused by an intrinsic property of a single dot, namely, by a non-adiabatic effect of the electron occupation up-conversion caused by the electron-phonon multiple scattering mechanism.

Král, Karel [Institute of Physics, Academy of Sciences of Czech Republic, v.v.i., Na Slovance 2, 18221 Prague 8 (Czech Republic); Menšík, Miroslav [Institute of Macromolecular Chemistry, Academy of Sciences of Czech Republic, v.v.i., Heyrovského nám. 2, 162 06 Prague 6 (Czech Republic)

2014-05-15

282

Quantum Dots: An Experiment for Physical or Materials Chemistry  

ERIC Educational Resources Information Center

An experiment is conducted for obtaining quantum dots for physical or materials chemistry. This experiment serves to both reinforce the basic concept of quantum confinement and providing a useful bridge between the molecular and solid-state world.

Winkler, L. D.; Arceo, J. F.; Hughes, W. C.; DeGraff, B. A.; Augustine, B. H.

2005-01-01

283

Design and fabrication of quantum-dot lasers  

E-print Network

Semiconductor lasers using quantum-dots in their active regions have been reported to exhibit significant performance advantages over their bulk semiconductor and quantum-well counterparts namely: low threshold current, ...

Nabanja, Sheila

2008-01-01

284

High-speed metallic quantum-dot cellular automata  

Microsoft Academic Search

The computation approach known as quantum-dot cellular automata (QCA) is based on encoding binary information in the charge configuration of quantum-dot cells. This paradigm provides a possible route to transistor-less electronics at the nano-scale. QCA devices using single-electron switching in metal-dot cells have been fabricated. Here we examine the limits of switching speed and temperature in QCA circuits. We calculate

Mo Liu; C. S. Lent

2003-01-01

285

Modified Quantum Dots Could Lead to Improved Treatments for Cancer  

NSDL National Science Digital Library

This online article from Carnegie Mellon Today, discusses how chemists are researching quantum dots to evaluate their effectiveness in treating diseases such as cancer. Readers can discover how the scientists were able to produce quantum dots that fluoresced for an unprecedented eight months, and how they might be useful in locating diseases like cancer.

Pavlak, Amy

286

Power gain in a quantum-dot cellular automata latch  

Microsoft Academic Search

We present an experimental demonstration of power gain in quantum-dot cellular automata (QCA) devices. Power gain is necessary in all practical electronic circuits where power dissipation leads to decay of logic levels. In QCA devices, charge configurations in quantum dots are used to encode and process binary information. The energy required to restore logic levels in QCA devices is drawn

Ravi K. Kummamuru; John Timler; Geza Toth; Craig S. Lent; Rajagopal Ramasubramaniam; Alexei O. Orlov; Gary H. Bernstein; Gregory L. Snider

2002-01-01

287

Clocked quantum-dot cellular automata shift register  

Microsoft Academic Search

The quantum-dot cellular automata (QCA) computational paradigm provides a means to achieve ultimately low limits of power dissipation by replacing binary coding in currents and voltages with single-electron switching within arrays of quantum dots (“cells”). Clocked control over the cells allows the realization of power gain, memory and pipelining in QCA circuits. We present an experimental demonstration of a clocked

Alexei O. Orlov; Ravi Kummamuru; R. Ramasubramaniam; Craig S. Lent; Gary H. Bernstein; Gregory L. Snider

2003-01-01

288

Patterning fluorescent quantum dot nanocomposites by reactive inkjet printing.  

PubMed

Fluorescent quantum dot nanocomposites, including polymer and photonic crystal quantum dots, have been fabricated by reactive inkjet printing. This reactive inkjet printing method has the potential to be broadened to fabrication of other functional nanomaterials, which will find promising applications in optoelectronic devices. PMID:25641755

Bao, Bin; Li, Mingzhu; Li, Yuan; Jiang, Jieke; Gu, Zhenkun; Zhang, Xingye; Jiang, Lei; Song, Yanlin

2015-04-01

289

BCD computing structures in quantum- dot cellular automata  

Microsoft Academic Search

This paper proposes a detailed design analysis of BCD computing circuit for quantum-dot cellular automata (QCA). QCA is attracting a lot of attentions due to its very small sizes and low power consumption. The primary device, a quantum-dot cell, can be used to make gates, wires, and memories as such it is the basic building block of nanotechnology circuits. Because

Maryam Taghizadeh; Mehdi Askari; Khossro Fardad

2008-01-01

290

Nanocrystal Quantum Dots: From Fundamental Photophysics to Multicolor Lasing  

NSDL National Science Digital Library

This PDF document was created by Victor Klimov of the Los Alamos National Laboratory. It discussing the development of a new laser based on quantum dots. The site supplies a series of figures illustrating the nonradiative multiparticle auger recombinations in nanocrystal quantum dots, amplified spontaneous emissions, and more.

Klimov, Victor

291

Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe (III) in aqueous media.  

PubMed

Heteroatom doping can drastically alter the electronic characteristics of graphene quantum dots (GQDs), thus resulting in unusual properties and related applications. Herein, we develop a simple and low-cost synthetic strategy to prepare nitrogen-doped GQDs (N-GQDs) through hydrothermal treatment of GQDs with hydrazine. The obtained N-GQDs with oxygen-rich functional groups exhibit a strong blue emission with 23.3% quantum yield (QY). Compared to GQDs, the N-GQDs exhibit enhanced fluorescence with blue-shifted energy. Due to the selective coordination to Fe(3+), the N-GQDs can be used as a green and facile sensing platform for label-free sensitive and selective detection of Fe (III) ions in aqueous solution and real water samples. The N-GQDs fluorescence probe shows a sensitive response to Fe(3+) in a wide concentration range of 1-1945?M with a detection limit of 90nM (s/N=3). Interestingly, it is also found that both dynamic and static quenching processes occur for the detection of Fe(3+) by N-GQDs, while the quenching effect of Fe(3+) on the fluorescence of GQDs is achieved by affecting the surface states of GQDs. PMID:24650437

Ju, Jian; Chen, Wei

2014-08-15

292

Quantum dots fluorescence quantum yield measured by Thermal Lens Spectroscopy.  

PubMed

An essential parameter to evaluate the light emission properties of fluorophores is the fluorescence quantum yield, which quantify the conversion efficiency of absorbed photons to emitted photons. We detail here an alternative nonfluorescent method to determine the absolute fluorescence quantum yield of quantum dots (QDs). The method is based in the so-called Thermal Lens Spectroscopy (TLS) technique, which consists on the evaluation of refractive index gradient thermally induced in the fluorescent material by the absorption of light. Aqueous dispersion carboxyl-coated cadmium telluride (CdTe) QDs samples were used to demonstrate the Thermal Lens Spectroscopy technical procedure. PMID:25103802

Estupiñán-López, Carlos; Dominguez, Christian Tolentino; Cabral Filho, Paulo E; Fontes, Adriana; de Araujo, Renato E

2014-01-01

293

Anomalous decay of quantum correlations of quantum dot qubits  

E-print Network

We study the evolution of quantum correlations, quantified by the geometric discord, of two excitonic quantum dot qubits under the influence of the phonon environment. We show that the decay of these correlations differs substantially form the decay of entanglement. Instead of displaying sudden death type behavior, the geometric discord shows a tendency to undergo transitions between different types of decay, is sensitive to non-local phase factors, and may already be enhanced by weak environment-mediated interactions. Hence, two-qubit quantum correlations are more robust under decoherence processes, while showing a richer and more complex spectrum of behavior under unitary and non-unitary evolution.

Katarzyna Roszak; Pawe? Mazurek; Pawe? Horodecki

2013-02-11

294

Quantum dot multi-section light emitters  

NASA Astrophysics Data System (ADS)

InxGa1-xAs quantum dot (QD) lasers grown on a GaAs substrate with 1.3-mum emission are currently a subject of strong interest, and the work presented here extends this research to the field of multi-section light emitters. Multi-section QD devices are useful for materials characterization and their flexibility in layout makes multi-functional in their device performance. This dissertation discusses the use of multi-section light emitters to produce new methods in the optical characterization of materials, QD mode-locked lasers (MLLs) and QD super-luminescent light emitting diodes (SLEDs). An improved, alternate approach to the "multi-section method" for the measurement of optical gain and absorption is presented, and for the first time, low noise, accurate gain and absorption spectra under real CW working conditions are obtained. With the improved multi-section method and MLL characteristic testing, the relationship between quantum dot MLL performance and quantum dot parameters is studied. With the highly flexible, reconfigurable multi-section approach, we demonstrate novel designs of QD MLLs and SLEDs. The multi-section MLL significantly increases the peak pulsed power (> 45%) and improves the pulse width (>35%) of the device. With the ability to change absorber position in the optical cavity at will, harmonic mode-locking from 7.2 GHz to 51 GHz is achieved. The ridge-waveguide multi-section QD SLED allows independent adjustment of the power and the spectral bandwidth relative to the ground state (GS) and the excited state (ES) of the QD and demonstrates simultaneous ultra-wide 3-dB bandwidth (> 150 nm) and an output power greater than 1 mW with a uniform multi-stack QD structure.

Xin, Yongchun

2006-04-01

295

Numerical simulation of optical feedback on a quantum dot lasers  

SciTech Connect

We use multi-population rate equations model to study feedback oscillations in the quantum dot laser. This model takes into account all peculiar characteristics in the quantum dots such as inhomogeneous broadening of the gain spectrum, the presence of the excited states on the quantum dot and the non-confined states due to the presence of wetting layer and the barrier. The contribution of quantum dot groups, which cannot follow by other models, is simulated. The results obtained from this model show the feedback oscillations, the periodic oscillations which evolves to chaos at higher injection current of higher feedback levels. The frequency fluctuation is attributed mainly to wetting layer with a considerable contribution from excited states. The simulation shows that is must be not using simple rate equation models to express quantum dots working at excited state transition.

Al-Khursan, Amin H., E-mail: ameen_2all@yahoo.com [Thi-Qar University, Nassiriya Nanotechnology Research Laboratory (NNRL), Science College (Iraq); Ghalib, Basim Abdullattif [Babylon University, Laser Physics Department, Science College for Women (Iraq); Al-Obaidi, Sabri J. [Al-Mustansiriyah University, Physics Department, Science College (Iraq)

2012-02-15

296

Impurity position effect on optical properties of various quantum dots  

NASA Astrophysics Data System (ADS)

In this work, we have investigated the effect of impurity position on optical properties of a pyramid and a cone like quantum dot. For this goal, we first obtain the energy levels and wave functions using finite element method (FEM) in the presence of impurity. Then, we have studied the influence of impurity location on refractive index changes and absorption coefficients of the two quantum dots. We found that there is a maximum value for total refractive index changes and absorption coefficients at a special impurity position. Also, we have found that the refractive index changes and absorption coefficients of a cone like quantum dot are greater than a pyramid quantum dot in same volume and height. According to the results, it is deduced that the impurity location plays an important and considerable role in the electronic and optical properties of a pyramid and a cone like quantum dot.

Khordad, R.; Bahramiyan, H.

2015-02-01

297

Combinatorial Approach to Studying Metal Enhanced Fluorescence from Quantum Dots  

NASA Astrophysics Data System (ADS)

Fluorescence is extensively used in biochemistry for determining the concentration or purity of molecules in a biological environment. In metal-enhanced fluorescence (MEF), the fluorescence molecules separated from a metal surface by several nanometers can be enhanced. The fluorescent enhancement is dependent on the size and spacing of the nanoparticles, as has been shown previously for a number of fluorophore molecules. Fluorescence from quantum dots is of particular interest because the quantum dots do not lose fluorescence ability when exposed to light and they have higher intensity of fluorescence. The purpose of this study is to determine the effect of size and spacing on fluorescence intensity when coupling gold nano-particles with quantum dots. We employ a combinatorial approach, depositing gold particles ranging in diameter from 30 nm to 130 nm with varied spacings onto the substrate, followed by a protein spacer-layer and quantum dots. The fluorescence signal from the metal enhanced quantum dots were determined by confocal microscopy.

Le, Nguyet; Corrigan, Timothy; Norton, Michael; Neff, David

2013-03-01

298

Non-blinking quantum dot with a plasmonic nanoshell resonator  

NASA Astrophysics Data System (ADS)

Colloidal semiconductor quantum dots are fluorescent nanocrystals exhibiting exceptional optical properties, but their emission intensity strongly depends on their charging state and local environment. This leads to blinking at the single-particle level or even complete fluorescence quenching, and limits the applications of quantum dots as fluorescent particles. Here, we show that a single quantum dot encapsulated in a silica shell coated with a continuous gold nanoshell provides a system with a stable and Poissonian emission at room temperature that is preserved regardless of drastic changes in the local environment. This novel hybrid quantum dot/silica/gold structure behaves as a plasmonic resonator with a strong Purcell factor, in very good agreement with simulations. The gold nanoshell also acts as a shield that protects the quantum dot fluorescence and enhances its resistance to high-power photoexcitation or high-energy electron beams. This plasmonic fluorescent resonator opens the way to a new family of plasmonic nanoemitters with robust optical properties.

Ji, Botao; Giovanelli, Emerson; Habert, Benjamin; Spinicelli, Piernicola; Nasilowski, Michel; Xu, Xiangzhen; Lequeux, Nicolas; Hugonin, Jean-Paul; Marquier, Francois; Greffet, Jean-Jacques; Dubertret, Benoit

2015-02-01

299

Creating an artificial periodic table using quantum dots  

NASA Astrophysics Data System (ADS)

Confinement of carriers in quantum dots results in hydrogenic like states for the exciton. Thus a single excitation in a quantum dot bears resemblance to a hydrogen atom; these materials are often referred to as ``artificial atoms.'' A pair of excitons will form a four body biexciton, akin to a helium atom. The excitonic `He atom should have an eigenstate spectrum in the vein of atomic orbitals. The eigenstate spectrum of the biexciton has remained elusive due to the ultrafast timescale of relaxation processes in quantum dots which mask observation of the excited states. Here, we show the first, direct observation of spectrum of states of the biexciton, completing the analogy of excitons in quantum dots to atomic and molecular systems. We report on the first observation of a biexciton Stokes shift, which we will discuss in terms of non-Aufbau filling and biexciton fine structure. The observation of biexciton Stokes shift underpins the physics of optical gain in quantum dots.

Kambhampati, Patanjali; Sewall, Samuel; Cooney, Ryan

2009-03-01

300

Quantum dot semiconductor laser with optoelectronic feedback  

NASA Astrophysics Data System (ADS)

The optoelectronic feedback (OEF) in quantum dot semiconductor lasers (QD SLs) is studied theoretically where a model includes wetting layer ground state and excited state for QDs are included separating electrons and holes in their dynamics. Both positive and negative OEF are studied. The time series of photon density, the phase portraits of carriers in the states are studied. The parameters affecting OEF are examined where an excitability is seen. The QD SL is found to be more sensitive to the changes in time delay compared with other SLs and a complicated routs are seen in the behavior of QD SL.

Ghalib, Basim Abdullattif; Al-Obaidi, Sabri J.; Al-Khursan, Amin H.

2012-11-01

301

Ultrafast optical control of entanglement between two quantum dot spins  

E-print Network

The interaction between two quantum bits enables entanglement, the two-particle correlations that are at the heart of quantum information science. In semiconductor quantum dots much work has focused on demonstrating single spin qubit control using optical techniques. However, optical control of entanglement of two spin qubits remains a major challenge for scaling from a single qubit to a full-fledged quantum information platform. Here, we combine advances in vertically-stacked quantum dots with ultrafast laser techniques to achieve optical control of the entangled state of two electron spins. Each electron is in a separate InAs quantum dot, and the spins interact through tunneling, where the tunneling rate determines how rapidly entangling operations can be performed. The two-qubit gate speeds achieved here are over an order of magnitude faster than in other systems. These results demonstrate the viability and advantages of optically controlled quantum dot spins for multi-qubit systems.

Danny Kim; Samuel G. Carter; Alex Greilich; Allan Bracker; Daniel Gammon

2010-07-21

302

Atomic and Molecular Quantum Theory Course Number: C561 10 Quantum Confinement in "Quantum dots", Thomas Fermi  

E-print Network

Atomic and Molecular Quantum Theory Course Number: C561 10 Quantum Confinement in "Quantum dots S. Iyengar (instructor) #12;Atomic and Molecular Quantum Theory Course Number: C561 5 and Molecular Quantum Theory Course Number: C561 happens to optical transitions in quantum dots. As a result

Iyengar, Srinivasan S.

303

Holonomic quantum computation with electron spins in quantum dots  

SciTech Connect

With the help of the spin-orbit interaction, we propose a scheme to perform holonomic single-qubit gates on the electron spin confined to a quantum dot. The manipulation is done in the absence (or presence) of an applied magnetic field. By adiabatic changing the position of the confinement potential, one can rotate the spin state of the electron around the Bloch sphere in semiconductor heterostructures. The dynamics of the system is equivalent to employing an effective non-Abelian gauge potential whose structure depends on the type of the spin-orbit interaction. As an example, we find an analytic expression for the electron spin dynamics when the dot is moved around a circular path (with radius R) on the two dimensional electron gas (2DEG) and show that all single-qubit gates can be realized by tuning the radius and orientation of the circular paths. Moreover, using the Heisenberg exchange interaction, we demonstrate how one can generate two-qubit gates by bringing two quantum dots near each other, yielding a scalable scheme to perform quantum computing on arbitrary N qubits. This proposal shows a way of realizing holonomic quantum computers in solid-state systems.

Golovach, Vitaly N. [Arnold Sommerfeld Center for Theoretical Physics and Center for Nanoscience Department of Physics, Ludwig-Maximilians-Universitaet, Theresienstrasse 37, D-80333 Munich (Germany); Borhani, Massoud [Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland); Department of Physics, University at Buffalo, SUNY, Buffalo, New York 14260-1500 (United States); Loss, Daniel [Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland)

2010-02-15

304

Stepwise fluorescence changes of quantum dots: single-molecule spectroscopic studies on the properties of turn-on quantum dots.  

PubMed

Single-molecule spectroscopy of turn-on quantum dots induced by NADPH-dependent biocatalyzed transformations reveals that the fluorescence intensities of quantum dots functionalized with Nile Blue are stepwisely and reversibly changed in the presence of NADPH. PMID:22117202

Kim, Yea Seul; Kim, Min Young; Song, Jae Kyu; Kim, Tae Jung; Kim, Young Dong; Hah, Sang Soo

2012-01-18

305

Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots: origin of blue and green luminescence.  

PubMed

Pristine graphene quantum dots and graphene oxide quantum dots are synthesized by chemical exfoliation from the graphite nanoparticles with high uniformity in terms of shape (circle), size (less than 4 nm), and thickness (monolayer). The origin of the blue and green photoluminescence of GQDs and GOQDs is attributed to intrinsic and extrinsic energy states, respectively. PMID:23712762

Liu, Fei; Jang, Min-Ho; Ha, Hyun Dong; Kim, Je-Hyung; Cho, Yong-Hoon; Seo, Tae Seok

2013-07-19

306

Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells  

E-print Network

to Third-Generation Photovoltaic Solar Cells A. J. Nozik,*,, M. C. Beard, J. M. Luther, M. Law,§ R. J) is presently attracting a great level of interest.15-23 Such QD-based devices used as photovoltaic cells. Applications: Quantum Dot Solar Cells 6884 6.1. Quantum Dot Solar Cell Configurations 6885 6

George, Steven C.

307

Subtle leakage of a Majorana mode into a quantum dot  

NASA Astrophysics Data System (ADS)

We investigate quantum transport through a quantum dot connected to source and drain leads and side coupled to a topological superconducting nanowire (Kitaev chain) sustaining Majorana end modes. Using a recursive Green's-function approach, we determine the local density of states of the system and find that the end Majorana mode of the wire leaks into the dot, thus, emerging as a unique dot level pinned to the Fermi energy ?F of the leads. Surprisingly, this resonance pinning, resembling, in this sense, a "Kondo resonance," occurs even when the gate-controlled dot level ?dot(Vg) is far above or far below ?F. The calculated conductance G of the dot exhibits an unambiguous signature for the Majorana end mode of the wire: In essence, an off-resonance dot [?dot(Vg)??F], which should have G =0, shows, instead, a conductance e2/2h over a wide range of Vg due to this pinned dot mode. Interestingly, this pinning effect only occurs when the dot level is coupled to a Majorana mode; ordinary fermionic modes (e.g., disorder) in the wire simply split and broaden (if a continuum) the dot level. We discuss experimental scenarios to probe Majorana modes in wires via these leaked/pinned dot modes.

Vernek, E.; Penteado, P. H.; Seridonio, A. C.; Egues, J. C.

2014-04-01

308

Size-Dependent Photoluminescence and Electroluminescence of Colloidal CdSe Quantum Dots  

NASA Astrophysics Data System (ADS)

Here we adopt a convenient green chemical route for synthesis of CdSe quantum dots, their characterization by UV/Vis absorption spectroscopy, X-ray diffraction study and transmission electron microscopy. We carry out photoluminescence and electroluminescence spectroscopy to investigate the variation in electro-optical property with size. By UV/Vis spectroscopy, blue shift is revealed and bandgap is also calculated. X-ray diffraction spectrum reveals cubic structure and transmission electron micrographs show quantum dots of different size distributions (in the range 2-8 nm). Both the luminescence spectroscopies reveal green-orange luminescence depending upon the size distribution and indicate the possibility of using CdSe quantum dots as light emitting devices with better compatibility and faster response.

Dey, S. C.; Nath, S. S.

2013-04-01

309

FIG. 1: Size-dependent color emission of quantum dots. This is a purely quantum mechanical FIG. 2: Size-dependent color emission of quantum dots. This is a purely quantum mechanical  

E-print Network

FIG. 1: Size-dependent color emission of quantum dots. This is a purely quantum mechanical effect. FIG. 2: Size-dependent color emission of quantum dots. This is a purely quantum mechanical effect. 1 #12;FIG. 3: Size-dependent color emission of quantum dots. This is a purely quantum mechanical effect

Nielsen, Steven O.

310

Semiconductor quantum dot-sensitized solar cells  

PubMed Central

Semiconductor quantum dots (QDs) have been drawing great attention recently as a material for solar energy conversion due to their versatile optical and electrical properties. The QD-sensitized solar cell (QDSC) is one of the burgeoning semiconductor QD solar cells that shows promising developments for the next generation of solar cells. This article focuses on recent developments in QDSCs, including 1) the effect of quantum confinement on QDSCs, 2) the multiple exciton generation (MEG) of QDs, 3) fabrication methods of QDs, and 4) nanocrystalline photoelectrodes for solar cells. We also make suggestions for future research on QDSCs. Although the efficiency of QDSCs is still low, we think there will be major breakthroughs in developing QDSCs in the future. PMID:24191178

Tian, Jianjun; Cao, Guozhong

2013-01-01

311

Universal Braess paradox in open quantum dots  

NASA Astrophysics Data System (ADS)

We present analytical and numerical results that demonstrate the presence of the Braess paradox in chaotic quantum dots. The paradox that we identify, originally perceived in classical networks, shows that the addition of more capacity to the network can suppress the current flow in the universal regime. We investigate the weak localization term, showing that it presents the paradox encoded in a saturation minimum of the conductance, under the presence of hyperflow in the external leads. In addition, we demonstrate that the weak localization suffers a transition signal depending on the overcapacity lead and presents an echo on the magnetic crossover before going to zero due to the full time-reversal symmetry breaking. We also show that the quantum interference contribution can dominate the Ohm term in the presence of constrictions and that the corresponding Fano factor engenders an anomalous behavior.

Barbosa, A. L. R.; Bazeia, D.; Ramos, J. G. G. S.

2014-10-01

312

Luminescence upconversion in colloidal double quantum dots.  

PubMed

Luminescence upconversion nanocrystals capable of converting two low-energy photons into a single photon at a higher energy are sought-after for a variety of applications, including bioimaging and photovoltaic light harvesting. Currently available systems, based on rare-earth-doped dielectrics, are limited in both tunability and absorption cross-section. Here we present colloidal double quantum dots as an alternative nanocrystalline upconversion system, combining the stability of an inorganic crystalline structure with the spectral tunability afforded by quantum confinement. By tailoring its composition and morphology, we form a semiconducting nanostructure in which excited electrons are delocalized over the entire structure, but a double potential well is formed for holes. Upconversion occurs by excitation of an electron in the lower energy transition, followed by intraband absorption of the hole, allowing it to cross the barrier to a higher energy state. An overall conversion efficiency of 0.1% per double excitation event is achieved. PMID:23912060

Deutsch, Zvicka; Neeman, Lior; Oron, Dan

2013-09-01

313

Luminescence upconversion in colloidal double quantum dots  

NASA Astrophysics Data System (ADS)

Luminescence upconversion nanocrystals capable of converting two low-energy photons into a single photon at a higher energy are sought-after for a variety of applications, including bioimaging and photovoltaic light harvesting. Currently available systems, based on rare-earth-doped dielectrics, are limited in both tunability and absorption cross-section. Here we present colloidal double quantum dots as an alternative nanocrystalline upconversion system, combining the stability of an inorganic crystalline structure with the spectral tunability afforded by quantum confinement. By tailoring its composition and morphology, we form a semiconducting nanostructure in which excited electrons are delocalized over the entire structure, but a double potential well is formed for holes. Upconversion occurs by excitation of an electron in the lower energy transition, followed by intraband absorption of the hole, allowing it to cross the barrier to a higher energy state. An overall conversion efficiency of 0.1% per double excitation event is achieved.

Deutsch, Zvicka; Neeman, Lior; Oron, Dan

2013-09-01

314

In Vivo Imaging of Quantum Dots  

NASA Astrophysics Data System (ADS)

Noninvasive whole-body near-infrared fluorescence imaging is now acknowledged as a powerful method for the molecular mapping of biological events in live small animals such as mouse models. With outstanding optical properties such as high fluorescence quantum yields and low photobleaching rates, quantum dots (QDs) are labels of choice in the near-infrared domain. The main applications described in the literature for in vivo imaging of mice after injection of QDs encompass imaging of lymph nodes and tumors and cell tracking. Standard methods for the preparation, the purification, and the in vivo fluorescence whole-body imaging of QDs in the live mouse are described. Nanoparticles coated by PEG chains of different sizes and terminal groups are prepared using 705-nm-emitting commercial QDs. Their biodistribution after intravenous or intradermal injections in tumor-bearing mice is reported here.

Texier, Isabelle; Josser, Véronique

315

Monolithic quantum dot sensitized solar cells  

NASA Astrophysics Data System (ADS)

We report a new design of solar cells based on semiconductor quantum dots (QDs), monolithic quantum dot sensitized solar cells (MQDSCs). MQDSCs offer the prospect of having lower cost and a simpler manufacturing process in comparison to conventional double substrate QDSCs. Our proposed monolithic QDSCs have a triple-layer structure, composed of a CdS sensitized mesoporous TiO2 photoanode, a scattering layer made by a core-shell structure of TiO2/SiO2, and a carbon active/graphite counter electrode layer, which are all deposited on a single fluorine doped tin oxide (FTO) glass substrate. Mesoporous TiO2 was sensitized with CdS QDs by successive ionic layer adsorption and reaction. Here, non-conventional solvents were utilized, which made it possible to deposit the CdS QDs in our monolithic structure. The measured photovoltaic properties and simple preparation method show that MQDSCs can be introduced as promising structures to make low-cost QDSCs in the near future.

Samadpour, M.; Ghane, Z.; Ghazyani, N.; Tajabadi, F.; Taghavinia, N.

2013-12-01

316

Spin transport across carbon nanotube quantum dots  

NASA Astrophysics Data System (ADS)

We investigate linear and nonlinear transport in interacting single-wall carbon nanotubes (SWCNTs) that are weakly attached to ferromagnetic leads. For the reduced density matrix of a SWCNT quantum dot, equations of motion which account for an arbitrarily vectored magnetization of the contacts are derived. We focus on the case of large diameter nanotubes where exchange effects emerging from short-ranged processes can be excluded and the four-electron periodicity at low bias can be observed. This yields in principle four distinct resonant tunnelling regimes, but due to symmetries in the involved groundstates, each two possess a mirror-symmetry. With a non-collinear configuration, we recover at the 4\\mathbb{N}\\leftrightarrow4\\mathbb{N}\\pm1 resonances the analytical results known for the angular dependence of the conductance of a single level quantum dot or a metallic island. The two other cases are treated numerically and show on the first glance similar, yet not analytically describable dependences. In the nonlinear regime, negative differential conductance features occur for non-collinear lead magnetizations.

Koller, Sonja; Mayrhofer, Leonhard; Grifoni, Milena

2007-09-01

317

Colloidal quantum dot light-emitting devices  

PubMed Central

Colloidal quantum dot light-emitting devices (QD-LEDs) have generated considerable interest for applications such as thin film displays with improved color saturation and white lighting with a high color rendering index (CRI). We review the key advantages of using quantum dots (QDs) in display and lighting applications, including their color purity, solution processability, and stability. After highlighting the main developments in QD-LED technology in the past 15 years, we describe the three mechanisms for exciting QDs - optical excitation, Förster energy transfer, and direct charge injection - that have been leveraged to create QD-LEDs. We outline the challenges facing QD-LED development, such as QD charging and QD luminescence quenching in QD thin films. We describe how optical downconversion schemes have enabled researchers to overcome these challenges and develop commercial lighting products that incorporate QDs to achieve desirable color temperature and a high CRI while maintaining efficiencies comparable to inorganic white LEDs (>65 lumens per Watt). We conclude by discussing some current directions in QD research that focus on achieving higher efficiency and air-stable QD-LEDs using electrical excitation of the luminescent QDs. PMID:22110863

Wood, Vanessa; Bulovi?, Vladimir

2010-01-01

318

Minimal Self-Contained Quantum Refrigeration Machine Based on Four Quantum Dots  

E-print Network

We present a theoretical study of an electronic quantum refrigerator based on four quantum dots arranged in a square configuration, in contact with as many thermal reservoirs. We show that the system implements the basic minimal mechanism for acting as a self-contained quantum refrigerator, by demonstrating heat extraction from the coldest reservoir and the cooling of the nearby quantum-dot.

Davide Venturelli; Rosario Fazio; Vittorio Giovannetti

2013-06-22

319

Physica E 26 (2005) 6366 Photoluminescence of tetrahedral quantum-dot quantum wells  

E-print Network

Physica E 26 (2005) 63­66 Photoluminescence of tetrahedral quantum-dot quantum wells V-adiabatic approach a quantitative interpretation of the photoluminescence (PL) spectrum of a single CdS/HgS/CdS QDQW Keywords: Photoluminescence; Excitons; Exciton­phonon interaction; Quantum-dot quantum wells; Non

Fonoberov, Vladimir

320

Behavior of optical bistability in multifold quantum dot molecules  

NASA Astrophysics Data System (ADS)

We analyze the optical bistability (OB) behavior in a multifold quantum dot (QD) molecule composed of five quantum dots controlled by the tunneling coupling. It is shown that the optical bistability can strongly be affected by the tunneling inter-dot coupling coefficients as well as detuning parameters. In addition, we find that the rate of an incoherent pump field has a leading role in modification of the OB threshold. We then generalize our analysis to the case of multifold quantum dot molecules where the number of the quantum dots is N (with a center dot and N-1 satellite dots). We compare the OB features that could occur in a multifold QD system consist of three (N= ), four (N=\\text{4} ), and five (N = 5) quantum dots. We realize that the OB threshold increases as the number of satellite QDs increases. Such controllable optical bistability in multiple QD molecules may provide some new possibilities for technological applications in optoelectronics and solid-state quantum information science.

Hamedi, H. R.; Mehmannavaz, M. R.

2015-02-01

321

Electron Spin Qubits in Si/SiGe Quantum Dots  

NASA Astrophysics Data System (ADS)

It is intriguing that silicon, the central material of modern classical electronics, also has properties well suited to quantum electronics. Recent advances in Si/SiGe quantum devices have enabled the creation of high-quality silicon quantum dots, also known as artificial atoms. Motivated in part by the potential for very long spin coherence times in this material, we are pursuing the development of individual electron spin qubits in silicon quantum dots. I will discuss recent demonstrations of single-shot spin measurement in a Si/SiGe quantum dot spin qubit, and the demonstration of spin-relaxation times longer than one second in such a system. These and similar measurements depend on a knowledge of tunnel rates between quantum dots and nearby reservoirs or between pairs of quantum dots. Measurements of such rates provide an opportunity to revisit classic experiments in quantum mechanics. At the same time, the unique features of the silicon conduction band lead to novel and unexpected effects, demonstrating that Si/SiGe quantum dots provide a highly controlled experimental system in which to study ideas at the heart of quantum physics.

Eriksson, Mark

2010-10-01

322

RKKY interaction in a chirally coupled double quantum dot system  

SciTech Connect

The competition between the Kondo effect and the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction is investigated in a double quantum dots system, coupled via a central open conducting region. A perpendicular magnetic field induces the formation of Landau Levels which in turn give rise to the so-called Kondo chessboard pattern in the transport through the quantum dots. The two quantum dots become therefore chirally coupled via the edge channels formed in the open conducting area. In regions where both quantum dots exhibit Kondo transport the presence of the RKKY exchange interaction is probed by an analysis of the temperature dependence. The thus obtained Kondo temperature of one dot shows an abrupt increase at the onset of Kondo transport in the other, independent of the magnetic field polarity, i.e. edge state chirality in the central region.

Heine, A. W.; Tutuc, D.; Haug, R. J. [Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstr. 2, 30167 Hannover (Germany); Zwicknagl, G. [Institut für Mathematische Physik, TU Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig (Germany); Schuh, D. [Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätstr. 31, 93053 Regensburg (Germany); Wegscheider, W. [Laboratorium für Festkörperphysik, ETH Zürich, Schafmattstr. 16, 8093 Zürich, Switzerland and Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätstr. 31, 93053 Regens (Germany)

2013-12-04

323

Synthesis and Characterization of CdSe Qunatum Dots  

NSDL National Science Digital Library

This lab, presented by the National Nanotechnology Infrastructure Network, students will "study how surfactant-based chemistry can be used to synthesize CdSe quantum dots and study how the size of the quantum dots can be controlled by varying reaction time." This lab will help students to understand the size and scale of nanoparticles using dots and considering the actions of electrons within a nanostructure. Additionally, "The model of  will be compared with more exact results, and use this to create a calibration curve. Students will be able to estimate the size of quantum dots by using UV-VIS absorption spectroscopy." Included in this lab are: Teachers guide, Student prelab worksheet w/ answers, Student worksheet with answers, Student prelab worksheet, Student Worksheet, Evaluation form for design project.

324

Synthesis of CdTe quantum dot-conjugated CC49 and their application for in vitro imaging of gastric adenocarcinoma cells  

NASA Astrophysics Data System (ADS)

The purpose of this experiment was to investigate the visible imaging of gastric adenocarcinoma cells in vitro by targeting tumor-associated glycoprotein 72 (TAG-72) with near-infrared quantum dots (QDs). QDs with an emission wavelength of about 550 to 780 nm were conjugated to CC49 monoclonal antibodies against TAG-72, resulting in a probe named as CC49-QDs. A gastric adenocarcinoma cell line (MGC80-3) expressing high levels of TAG-72 was cultured for fluorescence imaging, and a gastric epithelial cell line (GES-1) was used for the negative control group. Transmission electron microscopy indicated that the average diameter of CC49-QDs was 0.2 nm higher compared with that of the primary QDs. Also, fluorescence spectrum analysis indicated that the CC49-QDs did not have different optical properties compared to the primary QDs. Immunohistochemical examination and in vitro fluorescence imaging of the tumors showed that the CC49-QDs probe could bind TAG-72 expressed on MGC80-3 cells.

Zhang, Yun-Peng; Sun, Peng; Zhang, Xu-Rui; Yang, Wu-Li; Si, Cheng-Shuai

2013-06-01

325

Synthesis, characterization and applications of carboxylated and polyethylene-glycolated bifunctionalized InP/ZnS quantum dots in cellular internalization mediated by cell-penetrating peptides.  

PubMed

Semiconductor nanoparticles, also known as quantum dots (QDs), are widely used in biomedical imaging studies and pharmaceutical research. Cell-penetrating peptides (CPPs) are a group of small peptides that are able to traverse cell membrane and deliver a variety of cargoes into living cells. CPPs deliver QDs into cells with minimal nonspecific absorption and toxic effect. In this study, water-soluble, monodisperse, carboxyl-functionalized indium phosphide (InP)/zinc sulfide (ZnS) QDs coated with polyethylene glycol lipids (designated QInP) were synthesized for the first time. The physicochemical properties (optical absorption, fluorescence and charging state) and cellular internalization of QInP and CPP/QInP complexes were characterized. CPPs noncovalently interact with QInP in vitro to form stable CPP/QInP complexes, which can then efficiently deliver QInP into human A549 cells. The introduction of 500nM of CPP/QInP complexes and QInP at concentrations of less than 1?M did not reduce cell viability. These results indicate that carboxylated and polyethylene-glycolylated (PEGylated) bifunctionalized QInP are biocompatible nanoparticles with potential for use in biomedical imaging studies and drug delivery applications. PMID:23792556

Liu, Betty R; Winiarz, Jeffrey G; Moon, Jong-Sik; Lo, Shih-Yen; Huang, Yue-Wern; Aronstam, Robert S; Lee, Han-Jung

2013-11-01

326

Nondestructive chemical functionalization of MWNTs by poly(2-dimethylaminoethyl methacrylate) and their conjugation with CdSe quantum dots: Synthesis, properties, and cytotoxicity studies  

NASA Astrophysics Data System (ADS)

Multi-walled carbon nanotubes (MWNTs) were functionalized with poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) in a nondestructive manner by UV-driven surface-initiated reversible addition fragmentation chain transfer (RAFT) polymerization. The RAFT agent having benzophenone groups was initially synthesized, and anchored to MWNTs through UV-triggered photoreaction. The subsequent RAFT polymerization of DMAEMA from the surface of MWNTs afforded PDMAEMA grafted MWNTs (MWNTs-g-PDMAEMA). The successful grafting of PDMAEMA on MWNTs via chemical linkage was confirmed by FT-IR, 1H NMR, XPS, EDX, TGA, TEM, and SEM analyses. A reversible dispersion phenomenon was observed in an aqueous solution of MWNTs-g-PDMAEMA as induced either by temperature or pH. The CdSe quantum dots (CdSe QDs) were attached to quaternized MWNTs-g-PDMAEMA to produce MWNTs-g-PDMAEMA-MeI/CdSe nanohybrids via electrostatic self-assembly. The formation of the nanohybrids was elucidated by EDS, TEM, and XRD. The cell viability assessment of the nanohybrids suggested their biocompatible character. The photoluminescence spectra of the nanohybrids indicated that the CdSe QDs significantly preserved its optical property after conjugation with MWNTs-g-PDMAEMA.

Islam, Md. Rafiqul; Bach, Long Giang; Vo, Thanh-Sang; Tran, Thi-Nga; Lim, Kwon Taek

2013-12-01

327

Elucidation of Two Giants: Challenges to Thick-Shell Synthesis in CdSe/ZnSe and ZnSe/CdS Core/Shell Quantum Dots.  

PubMed

Core/thick-shell giant quantum dots (gQDs) possessing type II electronic structures exhibit suppressed blinking and diminished nonradiative Auger recombination. We investigate CdSe/ZnSe and ZnSe/CdS as potential new gQDs. We show theoretically and experimentally that both can exhibit partial or complete spatial separation of an excited-state electron-hole pair (i.e., type II behavior). However, we reveal that thick-shell growth is challenged by competing processes: alloying and cation exchange. We demonstrate that these can be largely avoided by choice of shelling conditions (e.g., time, temperature, and QD core identity). The resulting CdSe/ZnSe gQDs exhibit unusual single-QD properties, principally emitting from dim gray states but having high two-exciton (biexciton) emission efficiencies, whereas ZnSe/CdS gQDs show characteristic gQD blinking suppression, though only if shelling is accompanied by partial cation exchange. PMID:25746140

Acharya, Krishna P; Nguyen, Hue M; Paulite, Melissa; Piryatinski, Andrei; Zhang, Jun; Casson, Joanna L; Xu, Hongwu; Htoon, Han; Hollingsworth, Jennifer A

2015-03-25

328

Facile synthesis and characterization of highly fluorescent and biocompatible N-acetyl-L-cysteine capped CdTe/CdS/ZnS core/shell/shell quantum dots in aqueous phase.  

PubMed

The synthesis of water-soluble quantum dots (QDs) in aqueous phase has received much attention recently. To date various kinds of QDs such as CdTe, CdSe, CdTe/CdS and CdSe/ZnS have been synthesized by aqueous methods. However, generally poor-quality QDs (photoluminescent quantum yield (PLQY) lower than 30%) are obtained via this method and the 3-mercaptopropionic acid stabilizer is notorious for its toxicity and awful odor. Here we introduce a novel thiol ligand, N-acetyl-L-cysteine, as an ideal stabilizer that is successfully employed to synthesize high-quality CdTe/CdS/ZnS QDs via a simple aqueous phase. The core/shell/shell structures of the CdTe/CdS/ZnS QDs were verified by x-ray photoelectron spectroscopy, energy dispersive x-ray spectroscopy, x-ray powder diffraction and transmission electron microscopy. These QDs not only possess a high PLQY but also have excellent photostability and favorable biocompatibility, which is vital for many biological applications. This type of water-dispersed QD is a promising candidate for fluorescent probes in biological and medical fields. PMID:23165590

Xiao, Qi; Huang, Shan; Su, Wei; Chan, W H; Liu, Yi

2012-12-14

329

Cavity QED in Quantum Dot - Micropillar Cavity Systems  

Microsoft Academic Search

\\u000a In this contribution we review our recent work on cavity quantum electrodynamics experiments (cQED) with single quantum dots\\u000a in high quality micropillar cavities. After a short introduction to the theoretical background of cQED with single two level\\u000a emitters, important aspects in the growth and patterning of quantum dot–micropillar cavities will be addressed in the second\\u000a part of this review. In

S. Reitzenstein; A. Forchel

2009-01-01

330

Detection of bioconjugated quantum dots passivated with different ligands for bio-applications.  

PubMed

Bioconjugation of quantum dots has resulted in a significant increase in resolution of biological fluorescent labeling. This intrinsic property of quantum dots can be utilized for sensitive detection of target analytes with high sensitivity; including pathogenic bacteria and cancer monitoring. The quantum dots and quantum dot doped silica nanoparticles exhibit prominent emission peaks when excited at 400 nm but on conjugation to model rabbit antigoat antibodies exhibit diminished intensity of emission peak at 600 nm. It shows that photoluminescence intensity of conjugated quantum dots and quantum dot doped silica nanoparticles could permit the detection of bioconjugation. Samples of conjugated and unconjugated quantum dots and quantum dot doped silica nanoparticles were subjected to enzyme linked immunosorbent assay for further confirmation of bioconjugation. In the present study ligand exchange, bioconjugation, fluorescence detection of bioconjugated quantum dots and quantum dot doped silica nanoparticles and further confirmation of bioconjugation by enzyme linked immunosorbent assay has been described. PMID:21780375

Singh, Gurpal; Zaidi, Neelam Hazoor; Soni, Udit; Gautam, Manoj; Jackeray, Richa; Singh, Harpal; Sapra, Sameer

2011-05-01

331

Bioconjugated Quantum Dots for In Vivo Molecular and Cellular Imaging  

PubMed Central

Semiconductor quantum dots (QDs) are tiny light-emitting particles on the nanometer scale, and are emerging as a new class of fluorescent labels for biology and medicine. In comparison with organic dyes and fluorescent proteins, they have unique optical and electronic properties, with size-tunable light emission, superior signal brightness, resistance to photobleaching, and broad absorption spectra for simultaneous excitation of multiple fluorescence colors. QDs also provide a versatile nanoscale scaffold for designing multifunctional nanoparticles with both imaging and therapeutic functions. When linked with targeting ligands such as antibodies, peptides or small molecules, QDs can be used to target tumor biomarkers as well as tumor vasculatures with high affinity and specificity. Here we discuss the synthesis and development of state-of-the-art QD probes and their use for molecular and cellular imaging. We also examine key issues for in vivo imaging and therapy, such as nanoparticle biodistribution, pharmacokinetics, and toxicology. PMID:18495291

Smith, Andrew M.; Duan, Hongwei; Mohs, Aaron M.; Nie, Shuming

2008-01-01

332

Bandgap engineering of coal-derived graphene quantum dots.  

PubMed

Bandgaps of photoluminescent graphene quantum dots (GQDs) synthesized from anthracite have been engineered by controlling the size of GQDs in two ways: either chemical oxidative treatment and separation by cross-flow ultrafiltration, or by a facile one-step chemical synthesis using successively higher temperatures to render smaller GQDs. Using these methods, GQDs were synthesized with tailored sizes and bandgaps. The GQDs emit light from blue-green (2.9 eV) to orange-red (2.05 eV), depending on size, functionalities and defects. These findings provide a deeper insight into the nature of coal-derived GQDs and demonstrate a scalable method for production of GQDs with the desired bandgaps. PMID:25757413

Ye, Ruquan; Peng, Zhiwei; Metzger, Andrew; Lin, Jian; Mann, Jason A; Huang, Kewei; Xiang, Changsheng; Fan, Xiujun; Samuel, Errol L G; Alemany, Lawrence B; Martí, Angel A; Tour, James M

2015-04-01

333

In a “nutshell”: intrinsically radio-labeled quantum dots  

PubMed Central

Quantum dots (QDs) have many intriguing properties suitable for biomedical imaging applications. The poor tissue penetration of optical imaging in general, including those using QDs, has motivated the development of various QD-based dual-modality imaging agents. In this issue of AJNMMI (http://www.ajnmmi.us), Sun et al. reported the synthesis and in vitro/in vivo characterization of intrinsically radio-labeled QDs (r-QDs), where 109Cd was incorporated into the core/shell of QDs of various compositions. These r-QDs emit in the near-infrared range, have long circulation half-life, are quite stable with low cytotoxicity, exhibit small size and low accumulation in the reticuloendothelial system, and can allow for accurate measurement of their biodistribution in mice. With these desirable features demonstrated in this study, future development and optimization will further enhance the biomedical potential of intrinsically radio-labeled QDs. PMID:23133808

Cai, Weibo; Hong, Hao

2012-01-01

334

Electronic structure of nanocrystal quantum-dot quantum wells  

NASA Astrophysics Data System (ADS)

The electronic states of CdS/CdSe/CdS colloidal nanocrystal quantum-dot quantum wells are studied by large-scale pseudopotential local density approximation (LDA) calculations. Using this approach, we determine the effects of CdS core size, CdSe well thickness, and CdS shell thickness on the band-edge wave functions, band-gap, and electron-hole Coulomb interactions. We find the conduction-band wave function to be less confined to the CdSe well layer than predicted by k•p effective-mass theory, which accounts for the previous underestimation of the electron g factor.

Schrier, Joshua; Wang, Lin-Wang

2006-06-01

335

Double quantum dot in a quantum dash: Optical properties  

SciTech Connect

We study the optical properties of highly elongated, highly flattened quantum dot structures, also referred to as quantum dashes, characterized by the presence of two trapping centers located along the structure. Such a system can exhibit some of the properties characteristic for double quantum dots. We show that sub- and super-radiant states can form for certain quantum dash geometries, which is manifested by a pronounced transfer of intensity between spectral lines, accompanied by the appearance of strong electron-hole correlations. We also compare exciton absorption spectra and polarization properties of a system with a single and double trapping center and show how the geometry of multiple trapping centers influences the optical properties of the system. We show that for a broad range of trapping geometries the relative absorption intensity of the ground state is larger than that of the lowest excited states, contrary to the quantum dash systems characterized by a single trapping center. Thus, optical properties of these structures are determined by fine details of their morphology.

Kaczmarkiewicz, Piotr, E-mail: piotr.kaczmarkiewicz@pwr.wroc.pl; Machnikowski, Pawe? [Institute of Physics, Wroc?aw University of Technology, 50-370 Wroc?aw (Poland); Kuhn, Tilmann [Institut für Festkörpertheorie, Westfälische Wilhelms-Universität, 48149 Münster (Germany)

2013-11-14

336

Indium, tin, and gallium doped cadmium selenide quantum dots  

NASA Astrophysics Data System (ADS)

Doping quantum dots to increase conductivity is a crucial step towards being able to fabricate a new generation of electronic devices built on the "bottom-up" platform that are smaller and more efficient than currently available. Indium, tin, and gallium have been used to dope CdSe in both the bulk and thin film regimes and introduce n-type electron donation to the conduction band. CdSe quantum dots have been successfully doped with indium, tin, and gallium using the Li4[Cd10Se4 (SPh16)] single source precursor combined with metal chloride compounds. Doping CdSe quantum dots is shown to effect particle growth dynamics in the "heterogeneous growth regime." Doping with indium, tin, and gallium introduce donor levels 280, 100, and 50 meV below the conduction band minimum, respectively. Thin films of indium and tin doped quantum dots show improved conductivity over films of undoped quantum dots. Transient Absorption spectroscopy indicates that indium doping introduces a new electron energy level in the conduction band that results in a 70 meV blue shift in the 1Se absorption bleach position. Novel characterization methods such as in-situ fluorescence growth monitoring, single quantum dot EDS acquisition, static and time-resolved temperature dependant fluorescence spectroscopy were developed in the course of this work as well. These results show that doping CdSe quantum dots with indium, tin, and gallium has not only been successful but has introduced new electronic properties to the quantum dots that make them superior to traditional CdSe quantum dots.

Tuinenga, Christopher J.

337

Transmission electron microscopy study of vertical quantum dots molecules grown by droplet epitaxy  

Microsoft Academic Search

The compositional distribution of InAs quantum dots grown by molecular beam epitaxy on GaAs capped InAs quantum dots has been studied in this work. Upper quantum dots are nucleated preferentially on top of the quantum dots underneath, which have been nucleated by droplet epitaxy. The growth process of these nanostructures, which are usually called as quantum dots molecules, has been

D. Hernández-Maldonado; M. Herrera; D. L. Sales; P. Alonso-González; Y. González; L. González; J. Pizarro; P. L. Galindo; S. I. Molina

2010-01-01

338

Magneto-optical studies of quantum dots  

NASA Astrophysics Data System (ADS)

Significant effort in condensed matter physics has recently been devoted to the field of "spintronics" which seeks to utilize the spin degree of freedom of electrons. Unlike conventional electronics that rely on the electron charge, devices exploiting their spin have the potential to yield new and novel technological applications, including spin transistors, spin filters, and spin-based memory devices. Any such application has the following essential requirements: 1) Efficient electrical injection of spin-polarized carriers; 2) Long spin lifetimes; 3) Ability to control and manipulate electron spins; 4) Effective detection of spin-polarized carriers. Recent work has demonstrated efficient electrical injection from ferromagnetic contacts such as Fe and MnAs, utilizing a spin-Light Emitting Diode (spin-LED) as a method of detection. Semiconductor quantum dots (QDs) are attractive candidates for satisfying requirements 2 and 3 as their zero dimensionality significantly suppresses many spin-flip mechanisms leading to long spin coherence times, as well as enabling the localization and manipulation of a controlled number of electrons and holes. This thesis is composed of three projects that are all based on the optical properties of QD structures including: I) Intershell exchange between spin-polarized electrons occupying adjacent shells in InAs QDs; II) Spin-polarized multiexitons in InAs QDs in the presence of spin-orbit interactions; III) The optical Aharonov-Bohm effect in AlxGa1-xAs/AlyGa1-yAs quantum wells (QWs). In the following we introduce some of the basic optical properties of quantum dots, describe the main tool (spin-LED) employed in this thesis to inject and detect spins in these QDs, and conclude with the optical Aharonov-Bohm effect (OAB) in type-II QDs.

Russ, Andreas Hans

339

Spontaneous spin polarization in quantum dots  

NASA Astrophysics Data System (ADS)

I will discuss spin density functional calculations for the electronic structure of lateral GaAs-AlGaAs quantum dots with electron number N ? 150. Calculation of Poincaré surfaces of section for the classical orbits in the self-consistent confining potential exhibit several periodic orbits which are recapitulated as ``scars'' in the quantum mechanical spectrum. I calculate the direct Coulomb interactions, and statistics thereof, between the states, various features of which emerge due to the distinction between quasi-1d, scarred states and more homogeneous, dot-filling ``chaotic'' states. As N increases, the filling sequence is dictated by these interactions between the states. In particular, the invariable excess of the diagonal matrix elements over off-diagonal elements is shown to combine with the exchange-correlation induced spin splitting to produce spontaneous spin polarization. Double-filling of strongly scarred states is particularly costly and when it occurs it results in large fluctuations of the charging energy E_C. Spin polarization is found to fluctuate with N in a manner reminiscent of Hund's rules for atoms. This is surprising in that the level spacings exhibit (nearly) Wignerian statistics rather than any shell-like degeneracy. Moreover, the polarization is found to collapse at those values of N for which double-filling of strongly scarred states occurs. Thus, as is frequently encountered in studies of quantum chaos, the scars represent the residue of the shell structure of more symmetric potentials. Finally scars disintegrate with the application of a small magnetic field and I show that inclusion of the scarring mechanism serves to explain the statistics of Coulomb oscillation peak spacings which have been investigated by many groups recently.

Stopa, Michael

2000-03-01

340

Full counting statistics of quantum dot resonance fluorescence  

PubMed Central

The electronic energy levels and optical transitions of a semiconductor quantum dot are subject to dynamics within the solid-state environment. In particular, fluctuating electric fields due to nearby charge traps or other quantum dots shift the transition frequencies via the Stark effect. The environment dynamics are mapped directly onto the fluorescence under resonant excitation and diminish the prospects of quantum dots as sources of indistinguishable photons in optical quantum computing. Here, we present an analysis of resonance fluorescence fluctuations based on photon counting statistics which captures the underlying time-averaged electric field fluctuations of the local environment. The measurement protocol avoids dynamic feedback on the electric environment and the dynamics of the quantum dot's nuclear spin bath by virtue of its resonant nature and by keeping experimental control parameters such as excitation frequency and external fields constant throughout. The method introduced here is experimentally undemanding. PMID:24810097

Matthiesen, Clemens; Stanley, Megan J.; Hugues, Maxime; Clarke, Edmund; Atatüre, Mete

2014-01-01

341

Role of surface states and defects in the ultrafast nonlinear optical properties of CuS quantum dots  

SciTech Connect

We report facile preparation of water dispersible CuS quantum dots (2–4 nm) and nanoparticles (5–11 nm) through a nontoxic, green, one-pot synthesis method. Optical and microstructural studies indicate the presence of surface states and defects (dislocations, stacking faults, and twins) in the quantum dots. The smaller crystallite size and quantum dot formation have significant effects on the high energy excitonic and low energy plasmonic absorption bands. Effective two-photon absorption coefficients measured using 100 fs laser pulses employing open-aperture Z-scan in the plasmonic region of 800 nm reveal that CuS quantum dots are better ultrafast optical limiters compared to CuS nanoparticles.

Mary, K. A. Ann; Unnikrishnan, N. V., E-mail: nvu100@yahoo.com [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam 686560 (India); Philip, Reji [Light and Matter Physics Group, Raman Research Institute, C.V. Raman Avenue, Sadashivanagar, Bangalore 560080 (India)

2014-07-01

342

Role of surface states and defects in the ultrafast nonlinear optical properties of CuS quantum dots  

NASA Astrophysics Data System (ADS)

We report facile preparation of water dispersible CuS quantum dots (2-4 nm) and nanoparticles (5-11 nm) through a nontoxic, green, one-pot synthesis method. Optical and microstructural studies indicate the presence of surface states and defects (dislocations, stacking faults, and twins) in the quantum dots. The smaller crystallite size and quantum dot formation have significant effects on the high energy excitonic and low energy plasmonic absorption bands. Effective two-photon absorption coefficients measured using 100 fs laser pulses employing open-aperture Z-scan in the plasmonic region of 800 nm reveal that CuS quantum dots are better ultrafast optical limiters compared to CuS nanoparticles.

Mary, K. A. Ann; Unnikrishnan, N. V.; Philip, Reji

2014-07-01

343

Quantum wells and quantum dots for photonics and electronics: Fundamentals and applications  

Microsoft Academic Search

We present our recent results on exciton-polariton photonics in microcavities with embedded quantum wells (QWs) and in quantum-dot (QD) lattices. Quantum transport in nanostructures based on QWs and QDs will be discussed as well

M. Willander; E. L. Ivchenko; Y. Fu

1998-01-01

344

Optimal tunneling enhances the quantum photovoltaic effect in double quantum dots  

E-print Network

We investigate the quantum photovoltaic effect in double quantum dots by applying the nonequilibrium quantum master equation. A drastic suppression of the photovoltaic current is observed near the open circuit voltage, ...

Wang, Chen

345

Optoelectronic and photonic control of single quantum dots  

E-print Network

-of-plane direction. Other methods of producing a cavity include the double heterostructure concept [52, 75, 124, 131, 141]. 20 2.4 Photonic crystals 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 TE TM N o rm a li s e d F re q u e n c y ( a / ?? ?? ) ??M? Wavevector TE Bandgap TM... . . . . . . . . . . . . . . . . . . . . 3 2.2.1 Optical properties of single semiconductor quantum dots . 5 2.2.2 Quantum dots as single photon sources . . . . . . . . . . . 7 2.2.3 Fine structure . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.4 Quantum dots as sources...

Dewhurst, Samuel James

2010-10-12

346

Tracking bio-molecules in live cells using quantum dots  

PubMed Central

Single particle tracking (SPT) techniques were developed to explore bio-molecules dynamics in live cells at single molecule sensitivity and nanometer spatial resolution. Recent developments in quantum dots (Qdots) surface coating and bio-conjugation schemes have made them most suitable probes for live cell applications. Here we review recent advancements in using quantum dots as SPT probes for live cell experiments. The trajectory of single quantum dot bound to avidin-GPI (in black) is overlaid with the mean intensity of caveolin-1-EGFP (in green) to allow colocalization studies of avidin-GPI with caveolae. PMID:19343652

Chang, Yun-Pei; Pinaud, Fabien; Antelman, Joshua; Weiss, Shimon

2009-01-01

347

Recombination in quantum dot sensitized solar cells.  

PubMed

Quantum dot sensitized solar cells (QDSCs) have attracted significant attention as promising third-generation photovoltaic devices. In the form of quantum dots (QDs), the semiconductor sensitizers have very useful and often tunable properties; moreover, their theoretical thermodynamic efficiency might be as high as 44%, better than the original 31% calculated ceiling. Unfortunately, the practical performance of these devices still lags behind that of dye-sensitized solar cells. In this Account, we summarize the strategies for depositing CdSe quantum dots on nanostructured mesoporous TiO(2) electrodes and discuss the methods that facilitate improvement in the performance and stability of QDSCs. One particularly significant factor for solar cells that use polysulfide electrolyte as the redox couple, which provides the best performance among QDSCs, is the passivation of the photoanode surface with a ZnS coating, which leads to a dramatic increase of photocurrents and efficiencies. However, these solar cells usually show a poor current-potential characteristic, so a general investigation of the recombination mechanisms is required for improvements. A physical model based on recombination through a monoenergetic TiO(2) surface state that takes into account the effect of the surface coverage has been developed to better understand the recombination mechanisms of QDSCs. The three main methods of QD adsorption on TiO(2) are (i) in situ growth of QDs by chemical bath deposition (CBD), (ii) deposition of presynthesized colloidal QDs by direct adsorption (DA), and (iii) deposition of presynthesized colloidal QDs by linker-assisted adsorption (LA). A systematic investigation by impedance spectroscopy of QDSCs prepared by these methods showed a decrease in the charge-transfer resistance and increased electron lifetimes for CBD samples; the same result was found after ZnS coating because of the covering of the TiO(2) surface. The increase of the lifetime with the ZnS treatment has also been checked independently by open-circuit potential (V(oc)) decay measurements. Despite the lower recombination rates by electron transfer to electrolyte as well as the higher light absorption of CBD samples, only a moderate increase of photocurrent compared with colloidal QD samples is obtained, indicating the presence of an additional, internal recombination pathway in the closely packed QD layer. PMID:19722527

Mora-Seró, Iván; Giménez, Sixto; Fabregat-Santiago, Francisco; Gómez, Roberto; Shen, Qing; Toyoda, Taro; Bisquert, Juan

2009-11-17

348

Nuclear spin physics in quantum dots: An optical investigation  

NASA Astrophysics Data System (ADS)

The mesoscopic spin system formed by the 104-106 nuclear spins in a semiconductor quantum dot offers a unique setting for the study of many-body spin physics in the condensed matter. The dynamics of this system and its coupling to electron spins is fundamentally different from its bulk counterpart or the case of individual atoms due to increased fluctuations that result from reduced dimensions. In recent years, the interest in studying quantum-dot nuclear spin systems and their coupling to confined electron spins has been further fueled by its importance for possible quantum information processing applications. The fascinating nonlinear (quantum) dynamics of the coupled electron-nuclear spin system is universal in quantum dot optics and transport. In this article, experimental work performed over the last decade in studying this mesoscopic, coupled electron-nuclear spin system is reviewed. Here a special focus is on how optical addressing of electron spins can be exploited to manipulate and read out the quantum-dot nuclei. Particularly exciting recent developments in applying optical techniques to efficiently establish nonzero mean nuclear spin polarizations and using them to reduce intrinsic nuclear spin fluctuations are discussed. Both results critically influence the preservation of electron-spin coherence in quantum dots. This overall recently gained understanding of the quantum-dot nuclear spin system could enable exciting new research avenues such as experimental observations of spontaneous spin ordering or nonclassical behavior of the nuclear spin bath.

Urbaszek, Bernhard; Marie, Xavier; Amand, Thierry; Krebs, Olivier; Voisin, Paul; Maletinsky, Patrick; Högele, Alexander; Imamoglu, Atac

2013-01-01

349

Hyper-parallel photonic quantum computation with coupled quantum dots  

E-print Network

It is well known that a parallel quantum computer is more powerful than a classical one. So far, there are some important works about the construction of universal quantum logic gates, the key elements in quantum computation. However, they are focused on operating on one degree of freedom (DOF) of quantum systems. Here, we investigate the possibility of achieving scalable hyper-parallel quantum computation based on two DOFs of photon systems. We construct a deterministic hyper-controlled-not (hyper-CNOT) gate operating on both the spatial-mode and the polarization DOFs of a two-photon system simultaneously, by exploiting the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics (QED). This hyper-CNOT gate is implemented by manipulating the four qubits in the two DOFs of a two-photon system without auxiliary spatial modes or polarization modes. It reduces the operation time and the resources consumed in quantum information processing, and it is more robust against the photonic dissipation noise, compared with the integration of several cascaded CNOT gates in one DOF.

Bao-Cang Ren; Fu-Guo Deng

2014-05-01

350

Hyper-parallel photonic quantum computation with coupled quantum dots.  

PubMed

It is well known that a parallel quantum computer is more powerful than a classical one. So far, there are some important works about the construction of universal quantum logic gates, the key elements in quantum computation. However, they are focused on operating on one degree of freedom (DOF) of quantum systems. Here, we investigate the possibility of achieving scalable hyper-parallel quantum computation based on two DOFs of photon systems. We construct a deterministic hyper-controlled-not (hyper-CNOT) gate operating on both the spatial-mode and the polarization DOFs of a two-photon system simultaneously, by exploiting the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics (QED). This hyper-CNOT gate is implemented by manipulating the four qubits in the two DOFs of a two-photon system without auxiliary spatial modes or polarization modes. It reduces the operation time and the resources consumed in quantum information processing, and it is more robust against the photonic dissipation noise, compared with the integration of several cascaded CNOT gates in one DOF. PMID:24721781

Ren, Bao-Cang; Deng, Fu-Guo

2014-01-01

351

Hyper-parallel photonic quantum computation with coupled quantum dots  

PubMed Central

It is well known that a parallel quantum computer is more powerful than a classical one. So far, there are some important works about the construction of universal quantum logic gates, the key elements in quantum computation. However, they are focused on operating on one degree of freedom (DOF) of quantum systems. Here, we investigate the possibility of achieving scalable hyper-parallel quantum computation based on two DOFs of photon systems. We construct a deterministic hyper-controlled-not (hyper-CNOT) gate operating on both the spatial-mode and the polarization DOFs of a two-photon system simultaneously, by exploiting the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics (QED). This hyper-CNOT gate is implemented by manipulating the four qubits in the two DOFs of a two-photon system without auxiliary spatial modes or polarization modes. It reduces the operation time and the resources consumed in quantum information processing, and it is more robust against the photonic dissipation noise, compared with the integration of several cascaded CNOT gates in one DOF. PMID:24721781

Ren, Bao-Cang; Deng, Fu-Guo

2014-01-01

352

Self-similar magnetoconductance fluctuations in quantum dots  

Microsoft Academic Search

Self-similarity of magnetoconductance fluctuations in quantum dots is investigated by means of a tight binding Hamiltonian on a square lattice. Regular and chaotic dots are modeled by either a perfect L×L square or introducing diagonal disorder on a number of sites proportional to L. The conductance is calculated by means of an efficient implementation of the Kubo formula. The degree

E. Louis; J. A. Vergés

2000-01-01

353

Electrically driven high-Q quantum dot-micropillar cavities  

Microsoft Academic Search

We report on high quality electrically driven quantum dot micropillar cavities with Q-factors up to 16.000. The high Q-factors allow the observation of pronounced single dot resonance effects with a Purcell enhancement of about 10.

S. Reitzenstein; C. Bockler; C. Kistner; R. Debusmann; A. Löffler; J. Claudon; L. Grenouillet; S. Hofling; J. M. Gérard; A. Forchel

2008-01-01

354

Patterning quantum dot arrays using DNA replication principles.  

SciTech Connect

The convergence of nanoscience and biotechnology has opened the door to the integration of a wide range of biological molecules and processes with synthetic materials and devices. A primary biomolecule of interest has been DNA based upon its role as information storage in living systems, as well as its ability to withstand a wide range of environmental conditions. DNA also offers unique chemistries and interacts with a range of biomolecules, making it an ideal component in biological sensor applications. The primary goal of this project was to develop methods that utilize in vitro DNA synthesis to provide spatial localization of nanocrystal quantum dots (nQDs). To accomplish this goal, three specific technical objectives were addressed: (1) attachment of nQDs to DNA nucleotides, (2) demonstrating the synthesis of nQD-DNA strands in bulk solution, and (3) optimizing the ratio of unlabeled to nQD-labeled nucleotides. DNA nucleotides were successfully attached to nQDs using the biotin-streptavidin linkage. Synthesis of 450-nm long, nQD-coated DNA strands was demonstrated using a DNA template and the polymerase chain reaction (PCR)-based method of DNA amplification. Modifications in the synthesis process and conditions were subsequently used to synthesize 2-{micro}m long linear nQD-DNA assemblies. In the case of the 2-{micro}m structures, both the ratio of streptavidin-coated nQDs to biotinylated dCTP, and streptavidin-coated nQD-dCTPs to unlabeled dCTPs affected the ability to synthesize the nQD-DNA assemblies. Overall, these proof-of-principles experiments demonstrated the successful synthesis of nQD-DNA using DNA templates and in vitro replication technologies. Continued development of this technology may enable rapid, spatial patterning of semiconductor nanoparticles with Angstrom-level resolution, as well as optically active probes for DNA and other biomolecular analyses.

Crown, Kevin K.; Bachand, George David

2004-11-01

355

Onion-like (CdSe)ZnS/CdSe/ZnS quantum-dot-quantum-well heteronanocrystals  

E-print Network

. Chen, C. Hsu, and H. Hong, "InGaN-CdSe-ZnSe quantum dots white LEDs," IEEE Photon. Technol. Lett. 18Onion-like (CdSe)ZnS/CdSe/ZnS quantum-dot-quantum-well heteronanocrystals for investigation-color spontaneous emission from quantum- dot-quantum-well heteronanocrystals made of onion-like (Cd

Demir, Hilmi Volkan

356

Luminescence studies of individual quantum dot photocatalysts.  

PubMed

Using far-field optical microscopy we report the first measurements of photoluminescence from single nanoparticle photocatalysts. Fluence-dependent luminescence is investigated from metal-semiconductor heterojunction quantum dot catalysts exposed to a variety of environments, ranging from gaseous argon to liquid water containing a selection of hole scavengers. The catalysts each exhibit characteristic nonlinear fluence dependence. From these structurally and environmentally sensitive trends, we disentangle the separate rate-determining steps in each particle across the very wide range of time scales, which follow the initial light absorption process. This information will significantly benefit the design of effective artificial photocatalytic systems for renewable direct solar-to-fuel energy conversion. PMID:23895591

Amirav, Lilac; Alivisatos, A Paul

2013-09-01

357

Highly Fluorescent Noble Metal Quantum Dots  

PubMed Central

Highly fluorescent, water-soluble, few-atom noble metal quantum dots have been created that behave as multi-electron artificial atoms with discrete, size-tunable electronic transitions throughout the visible and near IR. These “molecular metals” exhibit highly polarizable transitions and scale in size according to the simple relation, Efermi/N1/3, predicted by the free electron model of metallic behavior. This simple scaling indicates that fluorescence arises from intraband transitions of free electrons and that these conduction electron transitions are the low number limit of the plasmon – the collective dipole oscillations occurring when a continuous density of states is reached. Providing the “missing link” between atomic and nanoparticle behavior in noble metals, these emissive, water-soluble Au nanoclusters open new opportunities for biological labels, energy transfer pairs, and light emitting sources in nanoscale optoelectronics. PMID:17105412

Zheng, Jie; Nicovich, Philip R.; Dickson, Robert M.

2009-01-01

358

Phonon Overlaps in Molecular Quantum Dot Systems  

NASA Astrophysics Data System (ADS)

We model the amplitudes and frequencies of the vibrational sidebands for the new molecular quantum dot systems. We calculate the Franck-Condon phonon overlaps in the 3N-dimensional configuration sapce. We solve the general case where the vibrational frequencies and eigenmodes change during the transition. We perform PM3 and DFT calculations for the case of the dumb bell-shaped C140 molecule. We find that the strongest amplitudes are associated with the 11 meV stretch mode, in agreement with experiment. The experimental amplitudes vary from molecule to molecule; indicating that the molecular overlaps are environment dependent. We explore overlaps in the presence of external electric fields from image charges and counter ions.

Chang, Connie; Sethna, James

2004-03-01

359

Semiconductor quantum dot-inorganic nanotube hybrids.  

PubMed

A synthetic route for preparation of inorganic WS(2) nanotube (INT)-colloidal semiconductor quantum dot (QD) hybrid structures is developed, and transient carrier dynamics on these hybrids are studied via transient photoluminescence spectroscopy utilizing several different types of QDs. Measurements reveal efficient resonant energy transfer from the QDs to the INT upon photoexcitation, provided that the QD emission is at a higher energy than the INT direct gap. Charge transfer in the hybrid system, characterized using QDs with band gaps below the INT direct gap, is found to be absent. This is attributed to the presence of an organic barrier layer due to the relatively long-chain organic ligands of the QDs under study. This system, analogous to carbon nanotube-QD hybrids, holds potential for a variety of applications, including photovoltaics, luminescence tagging and optoelectronics. PMID:22354096

Kreizman, Ronen; Schwartz, Osip; Deutsch, Zvicka; Itzhakov, Stella; Zak, Alla; Cohen, Sidney R; Tenne, Reshef; Oron, Dan

2012-03-28

360

Protease-activated quantum dot probes  

SciTech Connect

We have developed a novel nanoparticulate luminescent probe with inherent signal amplification upon interaction with a targeted proteolytic enzyme. This construct may be useful for imaging in cancer detection and diagnosis. In this system, quantum dots (QDs) are bound to gold nanoparticles (AuNPs) via a proteolytically degradable peptide sequence to non-radiatively suppress luminescence. A 71% reduction in luminescence was achieved with conjugation of AuNPs to QDs. Release of AuNPs by peptide cleavage restores radiative QD photoluminescence. Initial studies observed a 52% rise in luminescence over 47 h of exposure to 0.2 mg/mL collagenase. These probes can be customized for targeted degradation simply by changing the sequence of the peptide linker.

Chang, Emmanuel [Rice University, Department of Bioengineering MS-142, P.O. Box 1892, Houston, TX 77251-1892 (United States); Miller, Jordan S. [Rice University, Department of Bioengineering MS-142, P.O. Box 1892, Houston, TX 77251-1892 (United States); Sun, Jiantang [Rice University, Department of Bioengineering MS-142, P.O. Box 1892, Houston, TX 77251-1892 (United States); Yu, William W. [Rice University, Department of Bioengineering MS-142, P.O. Box 1892, Houston, TX 77251-1892 (United States); Colvin, Vicki L. [Rice University, Department of Bioengineering MS-142, P.O. Box 1892, Houston, TX 77251-1892 (United States); Drezek, Rebekah [Rice University, Department of Bioengineering MS-142, P.O. Box 1892, Houston, TX 77251-1892 (United States)]. E-mail: drezek@rice.edu; West, Jennifer L. [Rice University, Department of Bioengineering MS-142, P.O. Box 1892, Houston, TX 77251-1892 (United States)]. E-mail: jwest@rice.edu

2005-09-09

361

Electronic confinement in modulation doped quantum dots  

SciTech Connect

Modulation doping, an effective way to dope quantum dots (QDs), modifies the confinement energy levels in the QDs. We present a self-consistent full multi-grid solver to analyze the effect of modulation doping on the confinement energy levels in large-area structures containing Si QDs in SiO{sub 2} and Si{sub 3}N{sub 4} dielectrics. The confinement energy was found to be significantly lower when QDs were in close proximity to dopant ions in the dielectric. This effect was found to be smaller in Si{sub 3}N{sub 4}, while smaller QDs in SiO{sub 2} were highly susceptible to energy reduction. The energy reduction was found to follow a power law relationship with the QD size.

Puthen Veettil, B., E-mail: b.puthen-veettil@unsw.edu.au; König, D.; Patterson, R.; Smyth, S.; Conibeer, G. [Australian Centre for Advanced Photovoltaics, UNSW, Sydney 2052 (Australia)

2014-04-14

362

Subdiffusive exciton transport in quantum dot solids.  

PubMed

Colloidal quantum dots (QDs) are promising materials for use in solar cells, light-emitting diodes, lasers, and photodetectors, but the mechanism and length of exciton transport in QD materials is not well understood. We use time-resolved optical microscopy to spatially visualize exciton transport in CdSe/ZnCdS core/shell QD assemblies. We find that the exciton diffusion length, which exceeds 30 nm in some cases, can be tuned by adjusting the inorganic shell thickness and organic ligand length, offering a powerful strategy for controlling exciton movement. Moreover, we show experimentally and through kinetic Monte Carlo simulations that exciton diffusion in QD solids does not occur by a random-walk process; instead, energetic disorder within the inhomogeneously broadened ensemble causes the exciton diffusivity to decrease over time. These findings reveal new insights into exciton dynamics in disordered systems and demonstrate the flexibility of QD materials for photonic and optoelectronic applications. PMID:24807586

Akselrod, Gleb M; Prins, Ferry; Poulikakos, Lisa V; Lee, Elizabeth M Y; Weidman, Mark C; Mork, A Jolene; Willard, Adam P; Bulovi?, Vladimir; Tisdale, William A

2014-06-11

363

Ferritin-Templated Quantum-Dots for Quantum Logic Gates  

NASA Technical Reports Server (NTRS)

Quantum logic gates (QLGs) or other logic systems are based on quantum-dots (QD) with a stringent requirement of size uniformity. The QD are widely known building units for QLGs. The size control of QD is a critical issue in quantum-dot fabrication. The work presented here offers a new method to develop quantum-dots using a bio-template, called ferritin, that ensures QD production in uniform size of nano-scale proportion. The bio-template for uniform yield of QD is based on a ferritin protein that allows reconstitution of core material through the reduction and chelation processes. One of the biggest challenges for developing QLG is the requirement of ordered and uniform size of QD for arrays on a substrate with nanometer precision. The QD development by bio-template includes the electrochemical/chemical reconsitution of ferritins with different core materials, such as iron, cobalt, manganese, platinum, and nickel. The other bio-template method used in our laboratory is dendrimers, precisely defined chemical structures. With ferritin-templated QD, we fabricated the heptagonshaped patterned array via direct nano manipulation of the ferritin molecules with a tip of atomic force microscope (AFM). We also designed various nanofabrication methods of QD arrays using a wide range manipulation techniques. The precise control of the ferritin-templated QD for a patterned arrangement are offered by various methods, such as a site-specific immobilization of thiolated ferritins through local oxidation using the AFM tip, ferritin arrays induced by gold nanoparticle manipulation, thiolated ferritin positioning by shaving method, etc. In the signal measurements, the current-voltage curve is obtained by measuring the current through the ferritin, between the tip and the substrate for potential sweeping or at constant potential. The measured resistance near zero bias was 1.8 teraohm for single holoferritin and 5.7 teraohm for single apoferritin, respectively.

Choi, Sang H.; Kim, Jae-Woo; Chu, Sang-Hyon; Park, Yeonjoon; King, Glen C.; Lillehei, Peter T.; Kim, Seon-Jeong; Elliott, James R.

2005-01-01

364

Annealing-induced change in quantum dot chain formation mechanism  

NASA Astrophysics Data System (ADS)

Self-assembled InGaAs quantum dot chains were grown using a modified Stranski-Krastanov method in which the InGaAs layer is deposited under a low growth temperature and high arsenic overpressure, which suppresses the formation of dots until a later annealing process. The dots are capped with a 100 nm GaAs layer. Three samples, having three different annealing temperatures of 460°C, 480°C, and 500°C, were studied by transmission electron microscopy. Results indicate two distinct types of dot formation processes: dots in the 460°C and 480°C samples form from platelet precursors in a one-to-one ratio whereas the dots in the sample annealed at 500°C form through the strain-driven self-assembly process, and then grow larger via an additional Ostwald ripening process whereby dots grow into larger dots at the expense of smaller seed islands. There are consequently significant morphological differences between the two types of dots, which explain many of the previously-reported differences in optical properties. Moreover, we also report evidence of indium segregation within the dots, with little or no indium intermixing between the dots and the surrounding GaAs barrier.

Park, Tyler D.; Colton, John S.; Farrer, Jeffrey K.; Yang, Haeyeon; Kim, Dong Jun

2014-12-01

365

Semiconductor Few-Electron Quantum Dots as Spin Qubits  

E-print Network

a natural two- level system suitable as a qubit in a quantum computer [1]. In this work, we describe, as such a spin qubit [2]. The outline is as follows. Section 1 serves as an introduction into quantum computing and quantum dots. Section 2 describes the development of the "hardware" for the spin qubit: a device

366

Quantum dot conjugates in a sub-micrometer fluidic channel  

DOEpatents

A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

Stavis, Samuel M.; Edel, Joshua B.; Samiee, Kevan T.; Craighead, Harold G.

2010-04-13

367

Coal as an abundant source of graphene quantum dots.  

PubMed

Coal is the most abundant and readily combustible energy resource being used worldwide. However, its structural characteristic creates a perception that coal is only useful for producing energy via burning. Here we report a facile approach to synthesize tunable graphene quantum dots from various types of coal, and establish that the unique coal structure has an advantage over pure sp2-carbon allotropes for producing quantum dots. The crystalline carbon within the coal structure is easier to oxidatively displace than when pure sp2-carbon structures are used, resulting in nanometre-sized graphene quantum dots with amorphous carbon addends on the edges. The synthesized graphene quantum dots, produced in up to 20% isolated yield from coal, are soluble and fluorescent in aqueous solution, providing promise for applications in areas such as bioimaging, biomedicine, photovoltaics and optoelectronics, in addition to being inexpensive additives for structural composites. PMID:24309588

Ye, Ruquan; Xiang, Changsheng; Lin, Jian; Peng, Zhiwei; Huang, Kewei; Yan, Zheng; Cook, Nathan P; Samuel, Errol L G; Hwang, Chih-Chau; Ruan, Gedeng; Ceriotti, Gabriel; Raji, Abdul-Rahman O; Martí, Angel A; Tour, James M

2013-01-01

368

Heterovalent cation substitutional doping for quantum dot homojunction solar cells  

NASA Astrophysics Data System (ADS)

Colloidal quantum dots have emerged as a material platform for low-cost high-performance optoelectronics. At the heart of optoelectronic devices lies the formation of a junction, which requires the intimate contact of n-type and p-type semiconductors. Doping in bulk semiconductors has been largely deployed for many decades, yet electronically active doping in quantum dots has remained a challenge and the demonstration of robust functional optoelectronic devices had thus far been elusive. Here we report an optoelectronic device, a quantum dot homojunction solar cell, based on heterovalent cation substitution. We used PbS quantum dots as a reference material, which is a p-type semiconductor, and we employed Bi-doping to transform it into an n-type semiconductor. We then combined the two layers into a homojunction device operating as a solar cell robustly under ambient air conditions with power conversion efficiency of 2.7%.

Stavrinadis, Alexandros; Rath, Arup K.; de Arquer, F. Pelayo García; Diedenhofen, Silke L.; Magén, César; Martinez, Luis; So, David; Konstantatos, Gerasimos

2013-12-01

369

Growth of cubic GaN quantum dots  

NASA Astrophysics Data System (ADS)

Zinc-blende GaN quantum dots were grown on 3C-AlN(001) by two different methods in a molecular beam epitaxy system. The quantum dots in method A were fabricated by the Stranski-Krastanov growth process. The quantum dots in method B were fabricated by droplet epitaxy, a vapor-liquid-solid process. The density of the quantum dots was controllable in a range of 108 cm-2 to 1012 cm-2. Reflection high energy electron diffraction analysis confirmed the zinc-blende crystal structure of the QDs. Photoluminescence spectroscopy revealed the optical activity of the QDs, the emission energy was in agreement with the exciton ground state transition energy of theoretical calculations.

Schupp, T.; Meisch, T.; Neuschl, B.; Feneberg, M.; Thonke, K.; Lischka, K.; As, D. J.

2010-11-01

370

Heterovalent cation substitutional doping for quantum dot homojunction solar cells  

PubMed Central

Colloidal quantum dots have emerged as a material platform for low-cost high-performance optoelectronics. At the heart of optoelectronic devices lies the formation of a junction, which requires the intimate contact of n-type and p-type semiconductors. Doping in bulk semiconductors has been largely deployed for many decades, yet electronically active doping in quantum dots has remained a challenge and the demonstration of robust functional optoelectronic devices had thus far been elusive. Here we report an optoelectronic device, a quantum dot homojunction solar cell, based on heterovalent cation substitution. We used PbS quantum dots as a reference material, which is a p-type semiconductor, and we employed Bi-doping to transform it into an n-type semiconductor. We then combined the two layers into a homojunction device operating as a solar cell robustly under ambient air conditions with power conversion efficiency of 2.7%. PMID:24346430

Stavrinadis, Alexandros; Rath, Arup K.; de Arquer, F. Pelayo García; Diedenhofen, Silke L.; Magén, César; Martinez, Luis; So, David; Konstantatos, Gerasimos

2013-01-01

371

Probing specific DNA sequences with luminescent semiconductor quantum dots  

NASA Astrophysics Data System (ADS)

The development of new fluorescent probes has impacted many areas of research such as medical diagnostics, high-speed drug screening, and basic molecular biology. Main limitations to traditional organic fluorophores are their relatively weak intensities, short life times (eg., photobleaching), and broad emission spectra. The desire for more intense fluorescent probes with higher quality photostability and narrow emission wavelengths has led to the development and utilization of semiconductor quantum dots as a new label. In this work, we have modified semicondutor quantum dots (QD's) with synthetic oligonucleotides to probe a specific DNA target sequence both in solution as well as immobilized on a solid substrate. In the first approach, specific target sequences are detected in solution by using short oligonucleotide probes, which are covalently linked to semiconductor quantum dots. In the second approach, DNA target sequences are covalently attached to a glass substrate and detected using oligonucleotides linked to semiconductor quantum dots.

Taylor, Jason R.; Nie, Shuming

2001-06-01

372

Broad-band superluminescent light-emitting diodes incorporating quantum dots in compositionally modulated quantum wells  

Microsoft Academic Search

We propose and demonstrate a technique for tailoring the emission bandwidth of ?1.3 ?m quantum dot superluminescent light-emitting diodes. A broadening of the emission is achieved by incorporating the InAs quantum dot layers in InGaAs quantum wells of different indium compositions. These structures exhibit a broader and flatter emission compared to a simple dot-in well structure comprised of wells of

S. K. Ray; K. M. Groom; M. D. Beattie; H. Y. Liu; M. Hopkinson; R. A. Hogg

2006-01-01

373

Enhanced Performance of CdS/CdSe Quantum Dot Cosensitized Solar Cells via Homogeneous Distribution of Quantum Dots in TiO2  

E-print Network

a successive ion layer absorption and reaction (SILAR) method and a chemical bath deposition (CBD) methodEnhanced Performance of CdS/CdSe Quantum Dot Cosensitized Solar Cells via Homogeneous Distribution optimized for better distribution of quantum dots to enhance the performance of CdS/CdSe quantum dot

Cao, Guozhong

374

Whispering-gallery mode microcavity quantum-dot lasers  

NASA Astrophysics Data System (ADS)

This review examines axisymmetric-cavity quantum-dot microlasers whose emission spectrum is determined by whisperinggallery modes. We describe the possible designs, fabrication processes and basic characteristics of the microlasers and demonstrate the possibility of lasing at temperatures above 100 °C. The feasibility of creating multichannel optical sources based on a combination of a broadband quantum-dot laser and silicon microring modulators is discussed.

Kryzhanovskaya, N. V.; Maximov, M. V.; Zhukov, A. E.

2014-03-01

375

Ultrafast optical properties of lithographically defined quantum dot amplifiers  

SciTech Connect

We measure the ultrafast optical response of lithographically defined quantum dot amplifiers at 40?K. Recovery of the gain mostly occurs in less than 1 picosecond, with some longer-term transients attributable to carrier heating. Recovery of the absorption proceeds on a much longer timescale, representative of relaxation between quantum dot levels and carrier recombination. We also measure transparency current-density in these devices.

Miaja-Avila, L.; Verma, V. B.; Mirin, R. P.; Silverman, K. L. [Quantum Electronics and Photonics Division, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Coleman, J. J. [Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801 (United States)

2014-02-10

376

Quantum-dot cellular automata: computing by filed polarization  

Microsoft Academic Search

As CMOS technology continue its monotonic shrink, computing with quantum dots remains a goal in nanotechnology research. Quantum-dot cellular automata (QCA) is a paradigm for low-power, high-speed, highly dense computing that could be realized in a variety of materials systems. Discussed here are the basic paradigm of QCA, materials systems in which QCA might be constructed, a series of experiments

Gary H. Bernstein

2003-01-01

377

Quantum-dot cellular automata: computing by field polarization  

Microsoft Academic Search

As CMOS technology continues its monotonic shrink, computing with quantum dots remains a goal in nanotechnology research. Quantum-dot cellular automata (QCA) is a paradigm for low-power, high-speed, highly dense computing that could be realized in a variety of materials systems. Discussed here are the basic paradigm of QCA, materials systems in which QCA might be constructed, a series of experiments

Gary H. Bernstein

2003-01-01

378

Adder and Multiplier Design in Quantum-Dot Cellular Automata  

Microsoft Academic Search

Quantum-dot cellular automata (QCA) is an emerging nanotechnology, with the potential for faster speed, smaller size, and lower power consumption than transistor-based technology. Quantum-dot cellular automata has a simple cell as the basic element. The cell is used as a building block to construct gates and wires. Previously, adder designs based on conventional designs were examined for implementation with QCA

Heumpil Cho

2009-01-01

379

Programmable periodicity of quantum dot arrays with DNA origami nanotubes.  

PubMed

To fabricate quantum dot arrays with programmable periodicity, functionalized DNA origami nanotubes were developed. Selected DNA staple strands were biotin-labeled to form periodic binding sites for streptavidin-conjugated quantum dots. Successful formation of arrays with periods of 43 and 71 nm demonstrates precise, programmable, large-scale nanoparticle patterning; however, limitations in array periodicity were also observed. Statistical analysis of AFM images revealed evidence for steric hindrance or site bridging that limited the minimum array periodicity. PMID:20681601

Bui, Hieu; Onodera, Craig; Kidwell, Carson; Tan, YerPeng; Graugnard, Elton; Kuang, Wan; Lee, Jeunghoon; Knowlton, William B; Yurke, Bernard; Hughes, William L

2010-09-01

380

Luminescent quantum dots for multiplexed biological detection and imaging  

Microsoft Academic Search

Recent advances in nanomaterials have produced a new class of fluorescent labels by conjugating semiconductor quantum dots with biorecognition molecules. These nanometer-sized conjugates are water-soluble and biocompatible, and provide important advantages over organic dyes and lanthanide probes. In particular, the emission wavelength of quantum-dot nanocrystals can be continuously tuned by changing the particle size, and a single light source can

Warren C. W Chan; Dustin J Maxwell; Xiaohu Gao; Robert E Bailey; Mingyong Han; Shuming Nie

2002-01-01

381

CdTe and CdSe Quantum Dots Cytotoxicity: A Comparative Study on Microorganisms  

PubMed Central

Quantum dots (QDs) are colloidal semiconductor nanocrystals of a few nanometers in diameter, being their size and shape controlled during the synthesis. They are synthesized from atoms of group II–VI or III–V of the periodic table, such as cadmium telluride (CdTe) or cadmium selenium (CdSe) forming nanoparticles with fluorescent characteristics superior to current fluorophores. The excellent optical characteristics of quantum dots make them applied widely in the field of life sciences. Cellular uptake of QDs, location and translocation as well as any biological consequence, such as cytotoxicity, stimulated a lot of scientific research in this area. Several studies pointed to the cytotoxic effect against micoorganisms. In this mini-review, we overviewed the synthesis and optical properties of QDs, and its advantages and bioapplications in the studies about microorganisms such as protozoa, bacteria, fungi and virus. PMID:22247686

Gomes, Suzete A.O.; Vieira, Cecilia Stahl; Almeida, Diogo B.; Santos-Mallet, Jacenir R.; Menna-Barreto, Rubem F. S.; Cesar, Carlos L.; Feder, Denise

2011-01-01

382

Fluorescence from a quantum dot and metallic nanosphere hybrid system  

SciTech Connect

We present energy absorption and interference in a quantum dot-metallic nanosphere system embedded on a dielectric substrate. A control field is applied to induce dipole moments in the nanosphere and the quantum dot, and a probe field is applied to monitor absorption. Dipole moments in the quantum dot or the metal nanosphere are induced, both by the external fields and by each other's dipole fields. Thus, in addition to direct polarization, the metal nanosphere and the quantum dot will sense one another via the dipole-dipole interaction. The density matrix method was used to show that the absorption spectrum can be split from one peak to two peaks by the control field, and this can also be done by placing the metal sphere close to the quantum dot. When the two are extremely close together, a self-interaction in the quantum dot produces an asymmetry in the absorption peaks. In addition, the fluorescence efficiency can be quenched by the addition of a metal nanosphere. This hybrid system could be used to create ultra-fast switching and sensing nanodevices.

Schindel, Daniel G. [Department of Mathematics and Statistics, University of Winnipeg, 515 Portage Avenue, Winnipeg, MB, R3B 2E9 (Canada); Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7 (Canada)

2014-03-31

383

Long-Term Retention of Fluorescent Quantum Dots In Vivo  

NASA Astrophysics Data System (ADS)

Quantum dots that emit in the near-infrared can be used in vivo to follow circulation, to target the reticuloendothelial system, and to map lymphatic drainage from normal tissues and tumors. We have explored the role of surface charge and passivation by polyethylene glycol in determining circulating lifetimes and sites of deposition. Use of long polyethylene glycol polymers increases circulating lifetime. Changing surface charge can partially direct quantum dots to the liver and spleen, or the lymph nodes. Quantum dots are cleared in the order liver > spleen > bone marrow > lymph nodes. Quantum dots retained by lymph nodes maintained fluorescence for two years, suggesting either that the coating is extremely stable or that some endosomes preserve quantum dot function. We also explored migration from tumors to sentinel lymph nodes using tumor models in mice; surface charge and size make little difference to transport from tumors. Antibody and Fab-conjugates of polymer-coated quantum dots failed to target tumors in vivo, probably because of size.

Ballou, Byron; Ernst, Lauren A.; Andreko, Susan; Eructiez, Marcel P.; Lagerholm, B. Christoffer; Waggoner, Alan S.

384

Structural and optical investigation of semiconductor CdSe/CdS core-shell quantum dot thin films.  

PubMed

Highly luminescent CdSe/CdS core-shell nanocrystals have been assembled on indium tin oxide (ITO) coated glass substrates using a wet synthesis route. The physical properties of the quantum dots (QD) have been investigated using X-ray diffraction, transmission electron microscopy and optical absorption spectroscopy techniques. These quantum dots showed a strong enhancement in the near band edge absorption. The in situ luminescence behavior has been interpreted in the light of the quantum confinement effect and induced strain in the core-shell structure. PMID:19038577

Sharma, A B; Sharma, Sudhir Kumar; Sharma, M; Pandey, R K; Reddy, D S

2009-03-01

385

Electron transport in gallium arsenide quantum dots under high frequencies  

NASA Astrophysics Data System (ADS)

This thesis explores transport properties of lateral, gate defined quantum dots in GaAs/AlGaAs heterostructures. The term "quantum dot" as defined in this thesis refers to small regions of charge carriers within a 2-dimensional electron gas (2DEG), established via electrically biased surface gates used to isolate the charge carriers from the rest of the 2DEG, which are confined to lengths scales on the order of nanometers. Several other forms of quantum dots exist in the research community, including colloidal and self-assembled dots. In this thesis, however, we consider only gate defined quantum dots and nanostructures. Recent advancements in the research areas of quantum dot (QD) and single electron transistors (SET) have opened up an exciting opportunity for the development of nanostructure devices. Of the various devices, our attention is drawn in particular to detectors, which can respond to a single photon over a broad frequency spectrum, namely, microwave to infrared (IR) frequencies. Here, we report in chapter 5 transport measurements of parallel quantum dots, fabricated on a GaAs/AlGaAs 2-dimensional electron gas material, under the influence of external fields associated with 110GHz signals. In this experiment, transport measurements are presented for coupled quantum dots in parallel in the strong-tunneling Coulomb blockade (CB) regime. From this experiment we present experimental results and discuss the dependence on quantum dot size, fabrication techniques, as well as the limitations in developing a QD photon detector for microwave and IR frequencies, whose noise equivalent power (NEP) can be as sensitive as 10-22 W/Hz 1/2. The charging energy EC of a quantum dot is the dominant term in the Hamiltonian and is inversely related to the self capacitance of the dot Cdot according to EC = e2/Cdot. The temperature of the charge carriers within the 2DEG must be kept below a certain value, namely KBT, so that the thermal energy of the electrons does not exceed the charging energy EC of the dot. Keeping the temperature below the KBT limit prevents electrons from entering or leaving the dot at random, thereby allowing one to precisely control the number of electrons in the dot. In order to raise the operating temperature T of the single photon detector we must also raise the charging energy EC, which is accomplished by decreasing Cdot. Since Cdot is directly related to the dimensions of the quantum dot our focus was directed at decreasing the overall size of the quantum dots. For smaller gate defined quantum dots the inclusion of shallower 2DEG's is necessary. However, the experiments that we carried out to determine the effect of 2DEG depth on lateral gate geometries, described in Chapter 6, indicate that leakage currents within a GaAs/AlGaAs heterostructure increased dramatically as the 2DEG depth became shallower. At this moment the leakage current in shallower 2DEG materials is one of the most significant technical challenges in achieving higher operating temperatures of the single photon detector.

Matis, Bernard R.

386

Lead selenide quantum dot polymer nanocomposites  

NASA Astrophysics Data System (ADS)

Optical absorption and fluorescence properties of PbSe quantum dots (QDs) in an Angstrom Bond AB9093 epoxy polymer matrix to form a nanocomposite were investigated. To the authors’ knowledge, this is the first reported use of AB9093 as a QD matrix material and it was shown to out-perform the more common poly(methyl methacrylate) matrix in terms of preserving the optical properties of the QD, resulting in the first reported quantum yield (QY) for PbSe QDs in a polymer matrix, 26%. The 1-s first excitonic absorption peak of the QDs in a polymer matrix red shifted 65 nm in wavelength compared to QDs in a hexane solution, while the emission peak in the polymer matrix red shifted by 38 nm. The fluorescence QY dropped from 55% in hexane to 26% in the polymer matrix. A time resolved fluorescence study of the QDs showed single exponential lifetimes of 2.34 and 1.34 ?s in toluene solution and the polymer matrix respectively.

Waldron, Dennis L.; Preske, Amanda; Zawodny, Joseph M.; Krauss, Todd D.; Gupta, Mool C.

2015-02-01

387

Kinetic analysis of the temperature dependence of PbSe colloidal quantum dot photoluminescence: Effects of synthesis process and oxygen exposure  

NASA Astrophysics Data System (ADS)

A kinetic model is derived and used to analyze recently published works and new data on the temperature dependence of the spectrally integrated photoluminescence (PL) from thick-film formulations of PbSe colloidal quantum dots (QDs), with particular attention to the effects of air exposure. The model assumes that the excitons thermalize within a ground-state manifold of states and treats the distribution of radiative and nonradiative decay rates within the distribution as generally as possible, while using a minimal number of free parameters. By adjusting the parameters of the model, good fits are obtained for the wide range of integrated PL behaviors reported in [J. Phys. Chem. Lett. 2, 889 (2011), 10.1021/jz2001979; ACS Nano 6, 5498 (2012), 10.1021/nn301405j; Phys. Rev. B 82, 165435 (2010), 10.1103/PhysRevB.82.165435] and the new data presented in this manuscript. By comparing the extracted parameters we deduce the following: (i) All of the samples in the first two references emit from two distinct clusters of states separated by an energy of 55 to 80 meV regardless of air exposure, while there is only one cluster of emissive states that contributes to the emission reported in the third reference. (ii) In the absence of intentional air exposure, the nonradiative decay from all samples can be described by a single Arrhenius-like process. (iii) Although air-exposure effects are reversible in some samples and irreversible in others, the changes in integrated PL behavior brought about by air-exposure forces the introduction of a common, low-activation-energy nonradiative pathway in all cases. (iv) The low-lying emissive cluster of the two-emissive-cluster samples exhibits behavior similar to the single emissive cluster of the other samples. (v) Many hours of air exposure do not trend either the radiative or nonradiative behavior of the dual-emissive-cluster samples towards the behavior of the single-emissive-cluster samples.

Foell, Charles A.; Abel, Keith A.; van Veggel, Frank C. J. M.; Young, Jeff F.

2014-01-01

388

Preparation of biofunctionalized quantum dots using microfluidic chips for bioimaging.  

PubMed

Biofunctionalized quantum dots (QDs), especially protein-coated QDs, are known to be useful targeted fluorescent labels for cellular and deep-tissue imaging. These nanoparticles can also serve as efficient energy donors in fluorescence resonance energy transfer (FRET) binding assays for the multiplexed sensing of tumor markers. However, current preparation processes for protein-functionalized QDs are laborious and require multiple synthesis steps (e.g. preparing them in high temperature, making them dispersible in water, and functionalizing them with surface ligands) to obtain a high quality and quantity of QD formulations, significantly impeding the progress of employing QDs for clinical diagnostics use such as a QD-based immunohistofluorescence assay. Herein, we demonstrate a one-step synthesis approach for preparing protein-functionalized QDs using a microfluidic (MF) chip setup. Using bovine serum albumin (BSA) molecules as the surface ligand model, we first studied and optimized the MF reaction synthesis parameters (e.g. reaction temperature, and channel width and length) for making protein-functionalized QDs using COMSOL simulation modeling, followed by experimental verification. Moreover, in comparison with the BSA-functionalized QDs synthesized using the conventional bench-top method, BSA-QDs prepared using the MF approach exhibit a significantly higher protein-functionalization efficiency, photostability and colloidal stability. The proposed one-step MF synthesis approach provides a rapid, cost effective, and a small-scale production of nanocrystals platform for developing new QD formulations in applications ranging from cell labeling to biomolecular sensing. Most importantly, this approach will considerably reduce the amount of chemical waste generated during the trial-and-error stage of developing and perfecting the desired physical and optical properties of new QD materials. PMID:25054471

Hu, Siyi; Zeng, Shuwen; Zhang, Butian; Yang, Chengbin; Song, Peiyi; Hang Danny, Tng Jian; Lin, Guimiao; Wang, Yucheng; Anderson, Tommy; Coquet, Philippe; Liu, Liwei; Zhang, Xihe; Yong, Ken-Tye

2014-09-21

389

Photovoltaic performance of ultrasmall PbSe quantum dots.  

PubMed

We investigated the effect of PbSe quantum dot size on the performance of Schottky solar cells made in an ITO/PEDOT/PbSe/aluminum structure, varying the PbSe nanoparticle diameter from 1 to 3 nm. In this highly confined regime, we find that the larger particle bandgap can lead to higher open-circuit voltages (?0.6 V), and thus an increase in overall efficiency compared to previously reported devices of this structure. To carry out this study, we modified existing synthesis methods to obtain ultrasmall PbSe nanocrystals with diameters as small as 1 nm, where the nanocrystal size is controlled by adjusting the growth temperature. As expected, we find that photocurrent decreases with size due to reduced absorption and increased recombination, but we also find that the open-circuit voltage begins to decrease for particles with diameters smaller than 2 nm, most likely due to reduced collection efficiency. Owing to this effect, we find peak performance for devices made with PbSe dots with a first exciton energy of ?1.6 eV (2.3 nm diameter), with a typical efficiency of 3.5%, and a champion device efficiency of 4.57%. Comparing the external quantum efficiency of our devices to an optical model reveals that the photocurrent is also strongly affected by the coherent interference in the thin film due to Fabry-Pérot cavity modes within the PbSe layer. Our results demonstrate that even in this simple device architecture, fine-tuning of the nanoparticle size can lead to substantial improvements in efficiency. PMID:21939281

Ma, Wanli; Swisher, Sarah L; Ewers, Trevor; Engel, Jesse; Ferry, Vivian E; Atwater, Harry A; Alivisatos, A Paul

2011-10-25

390

Quantum dot conjugates for SEM of bacterial communities  

NASA Astrophysics Data System (ADS)

Biologically compatible quantum dot (QD) nanoparticles are hybrid inorganic-organic materials with increasing popularity as fluorescent probes for studying biological specimens. QDs have several advantageous optical features compared to fluorescent dyes and they are electron-dense, allowing for correlated fluorescence and electron microscopic imaging. Despite these features, widespread use of QDs as biological probes has generally been limited by the complex chemistry required for their synthesis and the conjugation. In this work, we show that easily prepared quantum dot (QD) probes provide excellent contrast for fluorescent confocal and environmental scanning electron microscopy (ESEM) analysis of pure microbial cultures and microbial communities. Two conjugation strategies were employed in order to specifically target the QDs to bacterial cell surfaces. The first was biotinylation of the bacteria followed by labeling with commercially available QDs incorporating the high-affinity partner for biotin (QD-streptavidin). Second, we designed a novel QD probe for Gram negative bacteria: QD-polymyxin B (PMB), which binds to lipopolysaccharide (LPS) in the Gram negative cell wall. Pure cultures of Gram positive and Gram negative strains were used to illustrate that QDs impart electron density and irradiation stability to the cells, and so no other preparation apart from QD labeling is required. The techniques were then extended to a set of recently characterized microbial communities of perennial cold springs in the Canadian High Arctic, which live in close association with unusual sulfur crystals. Using correlated confocal and and ESEM, we were able to image these organisms in living samples and illustrate their relationship to the minerals.

Nadeau, Jay; Mielke, Randall; Clarke, Samuel

2009-05-01

391

Controlling the sign of magnetoconductance in Andreev quantum dots.  

PubMed

We construct a theory of coherent transport through a ballistic quantum dot coupled to a superconductor. We show that the leading-order quantum correction to the two-terminal conductance of these Andreev quantum dots may change sign depending on (i) the number of channels carried by the normal leads or (ii) the magnetic flux threading the dot. In contrast, spin-orbit interaction may affect the magnitude of the correction, but not always its sign. Experimental signatures of the effect include a nonmonotonic magnetoconductance curve and a transition from an insulator-like to a metal-like temperature dependence of the conductance. Our results are applicable to ballistic or disordered dots. PMID:20366223

Whitney, Robert S; Jacquod, Ph

2009-12-11

392

Controlling the Sign of Magnetoconductance in Andreev Quantum Dots  

E-print Network

We construct a theory of coherent transport through a ballistic quantum dot coupled to a superconductor. We show that the leading-order quantum correction to the two-terminal conductance of these Andreev quantum dots may change sign depending on (i) the number of channels carried by the normal leads or (ii) the magnetic flux threading the dot. In contrast, spin-orbit interaction may affect the magnitude of the correction, but not always its sign. Experimental signatures of the effect include a non-monotonic magnetoconductance curve and a transition from an insulator-like to a metal-like temperature dependence of the conductance. Our results are applicable to ballistic or disordered dots.

Robert S. Whitney; Ph. Jacquod

2009-12-16

393

Carbon nanotube quantum dots as highly sensitive THz spectrometers  

NASA Astrophysics Data System (ADS)

We show that carbon nanotube quantum dots (CNT-Dots) coupled to antennas are extremely sensitive, broad-band, terahertz quantum detectors. Their response is due to photon-assisted single-electron tunneling (PASET)[1], but cannot be fully understood with orthodox PASET models[2]. We consider intra-dot excitations and non-equilibrium cooling to explain the anomalous response. REFERENCES: [1] Y. Kawano, S. Toyokawa, T. Uchida and K. Ishibashi, THz photon assisted tunneling in carbon-nanotube quantum dots, Journal of Applied Physics 103, 034307 (2008). [2] P. K. Tien and J. P. Gordon, Multiphoton Process Observed in the Interaction of Microwave Fields with the Tunneling between Superconductor Films, Phys. Rev. 129, 647 (1963).

Rinzan, Mohamed; Jenkins, Greg; Drew, Dennis; Shafranjuk, Serhii; Barbara, Paola

2012-02-01

394

Characterization of quantum dot chains using transmission electron microscopy  

NASA Astrophysics Data System (ADS)

We report on the growth and characterization of InGaAs self-assembled quantum dots which form into chains through an altered Stranski-Krastanov method. The methods we are using to study these quantum dot chains include imaging and chemical analysis using a transmission electron microscope (TEM). In order for the quantum dot chains to be characterized using the TEM, the samples must be cut and thinned to allow enough electrons to pass through the sample for our techniques. We are making cross-section and plan view cuts which allow us to get information about the chemical composition, indium segregation, size and spacing, contaminates and other aspects of the dots.

Park, Tyler; Colton, John; Farrer, Jeffrey; Yang, Haeyeon

2012-02-01

395

Compact Interconnection Networks Based on Quantum Dots  

NASA Technical Reports Server (NTRS)

Architectures that would exploit the distinct characteristics of quantum-dot cellular automata (QCA) have been proposed for digital communication networks that connect advanced digital computing circuits. In comparison with networks of wires in conventional very-large-scale integrated (VLSI) circuitry, the networks according to the proposed architectures would be more compact. The proposed architectures would make it possible to implement complex interconnection schemes that are required for some advanced parallel-computing algorithms and that are difficult (and in many cases impractical) to implement in VLSI circuitry. The difficulty of implementation in VLSI and the major potential advantage afforded by QCA were described previously in Implementing Permutation Matrices by Use of Quantum Dots (NPO-20801), NASA Tech Briefs, Vol. 25, No. 10 (October 2001), page 42. To recapitulate: Wherever two wires in a conventional VLSI circuit cross each other and are required not to be in electrical contact with each other, there must be a layer of electrical insulation between them. This, in turn, makes it necessary to resort to a noncoplanar and possibly a multilayer design, which can be complex, expensive, and even impractical. As a result, much of the cost of designing VLSI circuits is associated with minimization of data routing and assignment of layers to minimize crossing of wires. Heretofore, these considerations have impeded the development of VLSI circuitry to implement complex, advanced interconnection schemes. On the other hand, with suitable design and under suitable operating conditions, QCA-based signal paths can be allowed to cross each other in the same plane without adverse effect. In principle, this characteristic could be exploited to design compact, coplanar, simple (relative to VLSI) QCA-based networks to implement complex, advanced interconnection schemes. The proposed architectures require two advances in QCA-based circuitry beyond basic QCA-based binary-signal wires described in the cited prior article. One of these advances would be the development of QCA-based wires capable of bidirectional transmission of signals. The other advance would be the development of QCA circuits capable of high-impedance state outputs. The high-impedance states would be utilized along with the 0- and 1-state outputs of QCA.

Fijany, Amir; Toomarian, Nikzad; Modarress, Katayoon; Spotnitz, Matthew

2003-01-01

396

Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress.  

PubMed

Colloidal quantum dots (CQDs) are solution-processed semiconductors of interest in low-cost photovoltaics. Tuning of the bandgap of CQD films via the quantum size effect enables customization of solar cells' absorption profile to match the sun's broad visible- and infrared-containing spectrum reaching the earth. Here we review recent progress in the realization of low-cost, efficient solar cells based on CQDs. We focus in particular on CQD materials and approaches that provide both infrared and visible-wavelength solar power conversion CQD photovoltaics now exceed 5% solar power conversion efficiency, achieved by the introduction of a new architecture, the depleted-heterojunction CQD solar cell, that jointly maximizes current, voltage, and fill factor. CQD solar cells have also seen major progress in materials processing for stability, recently achieving extended operating lifetimes in an air ambient. We summarize progress both in device operation and also in gaining new insights into materials properties and processing - including new electrical contact materials and deposition techniques, as well as CQD synthesis, surface treatments, film-forming technologies - that underpin these rapid advances. PMID:20842658

Tang, Jiang; Sargent, Edward H

2011-01-01

397

On-chip generation and guiding of quantum light from a site-controlled quantum dot  

SciTech Connect

We demonstrate the emission and routing of single photons along a semiconductor chip originating from carrier recombination in an actively positioned InAs quantum dot. Device–scale arrays of quantum dots are formed by a two–step regrowth process. We precisely locate the propagating region of a unidirectional photonic crystal waveguide with respect to the quantum dot nucleation site. Under pulsed optical excitation, the multiphoton emission probability from the waveguide's exit is 12%?±?5% before any background correction. Our results are a major step towards the deterministic integration of a quantum emitter with the waveguiding components of photonic quantum circuits.

Jamil, Ayesha; Farrer, Ian; Griffiths, Jonathan P.; Jones, Geb A. C.; Ritchie, David A. [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)] [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Skiba-Szymanska, Joanna; Kalliakos, Sokratis; Ward, Martin B.; Ellis, David J. P.; Shields, Andrew J., E-mail: andrew.shields@crl.toshiba.co.uk [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge, CB4 0GZ (United Kingdom); Schwagmann, Andre; Brody, Yarden [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom) [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge, CB4 0GZ (United Kingdom)

2014-03-10

398

Quantum gates by coupled quantum dots and measurement procedure in Si MOSFET  

E-print Network

We investigated the quantum gates of coupled quantum dots, theoretically, when charging effects can be observed. We have shown that the charged states in the qubits can be observed by the channel current of the MOSFET structure.

Tetsufumi Tanamoto

1999-08-05

399

Quantum dot spin qubits in silicon: Multivalley physics  

NASA Astrophysics Data System (ADS)

Research on Si quantum dot spin qubits is motivated by the long spin coherence times measured in Si, yet the orbital spectrum of Si dots is increased as a result of the valley degree of freedom. The valley degeneracy may be lifted by the interface potential, which gives rise to a valley-orbit coupling but the latter depends on the detailed structure of the interface and is generally unknown a priori. These facts motivate us to provide an extensive study of spin qubits in Si double quantum dots, accounting fully for the valley degree of freedom and assuming no prior knowledge of the valley-orbit coupling. For single-spin qubits, we analyze the spectrum of a multivalley double quantum dot, discuss the initialization of one qubit, identify the conditions for the lowest energy two-electron states to be a singlet and a triplet well separated from other states, and determine analytical expressions for the exchange splitting. For singlet-triplet qubits, we analyze the single-dot spectrum and initialization process, the double-dot spectrum, singlet-triplet mixing in an inhomogeneous magnetic field, and the peculiarities of spin blockade in multivalley qubits. We review briefly the hyperfine interaction in Si and discuss its role in spin blockade in natural Si, including intravalley and intervalley effects. We study the evolution of the double-dot spectrum as a function of magnetic field. We address briefly the situation in which the valley-orbit coupling is different in each dot due to interface roughness. We propose a new experiment for measuring the valley splitting in a single quantum dot. We discuss the possibility of devising other types of qubits in Si QDs, and the size of the intervaley coupling due to the Coulomb interaction.

Culcer, Dimitrie; Cywi?ski, ?ukasz; Li, Qiuzi; Hu, Xuedong; Das Sarma, S.

2010-10-01

400

InAs(ZnCdS) Quantum Dots Optimized for Biological Imaging in the Near-Infrared  

E-print Network

We present the synthesis of InAs quantum dots (QDs) with a ZnCdS shell with bright and stable emission in the near-infrared (NIR, 700?900 nm) region for biological imaging applications. We demonstrate how NIR QDs can image ...

Allen, Peter M.

401

Ternary I–III–VI Quantum Dots Luminescent in the Red to Near Infrared  

PubMed Central

We report the synthesis of a size series of copper indium selenide quantum dots (QDs) of various stoichiometries exhibiting photoluminescence (PL) from the red to near infrared (NIR). The synthetic method is modular and we have extended it to the synthesis of luminescent silver indium diselenide QDs. Previous reports on QDs luminescent in the NIR region have been primarily restricted to binary semiconductor systems, such as InAs, PbS, and CdTe. This work seeks to expand the availability of luminescent QD materials to ternary I–III–VI semiconductor systems. PMID:18582061

Allen, Peter M.; Bawendi, Moungi G.

2008-01-01

402

Ultrasensitive solution-cast quantum dot photodetectors.  

PubMed

Solution-processed electronic and optoelectronic devices offer low cost, large device area, physical flexibility and convenient materials integration compared to conventional epitaxially grown, lattice-matched, crystalline semiconductor devices. Although the electronic or optoelectronic performance of these solution-processed devices is typically inferior to that of those fabricated by conventional routes, this can be tolerated for some applications in view of the other benefits. Here we report the fabrication of solution-processed infrared photodetectors that are superior in their normalized detectivity (D*, the figure of merit for detector sensitivity) to the best epitaxially grown devices operating at room temperature. We produced the devices in a single solution-processing step, overcoating a prefabricated planar electrode array with an unpatterned layer of PbS colloidal quantum dot nanocrystals. The devices showed large photoconductive gains with responsivities greater than 10(3) A W(-1). The best devices exhibited a normalized detectivity D* of 1.8 x 10(13) jones (1 jones = 1 cm Hz(1/2) W(-1)) at 1.3 microm at room temperature: today's highest performance infrared photodetectors are photovoltaic devices made from epitaxially grown InGaAs that exhibit peak D* in the 10(12) jones range at room temperature, whereas the previous record for D* from a photoconductive detector lies at 10(11) jones. The tailored selection of absorption onset energy through the quantum size effect, combined with deliberate engineering of the sequence of nanoparticle fusing and surface trap functionalization, underlie the superior performance achieved in this readily fabricated family of devices. PMID:16838017

Konstantatos, Gerasimos; Howard, Ian; Fischer, Armin; Hoogland, Sjoerd; Clifford, Jason; Klem, Ethan; Levina, Larissa; Sargent, Edward H

2006-07-13

403

Surface Induced Magnetism in Quantum Dots  

SciTech Connect

The study of nanometer sized semiconductor crystallites, also known as quantum dots (QDs), has seen rapid advancements in recent years in scientific disciplines ranging from chemistry, physics, biology, materials science, and engineering. QD materials of CdSe, ZnSe, InP, as well as many others, can be prepared in the size range of 1-10 nm producing uniform, nearly monodisperse materials that are typically coated with organic molecules [1-3]. The strength of charge carrier confinement, which dictates the size-dependent properties, in these QDs depends on the nature of the material and can be correlated to the Bohr radius for the system of interest. For instance, the Bohr radius for CdSe is {approx} 5 nm, while in the more covalent structure of InP, the Bohr radius approaches {approx} 10 nm. The study of CdSe QDs has been particularly extensive during the last decade because they exhibit unique and tunable optical properties and are readily synthesized with high-crystallinity and narrow size dispersions. Although the core electronic properties of CdSe are explained in terms of the quantum confinement model, experimental efforts to elucidate the surface structure of these materials have been limited. Typically, colloidal CdSe QDs are coated with an organic surfactant, which typically consists of an organo-phosphine, -thiol, or -amine, that has the function of energetically relaxing defect states via coordination to partially coordinated surface atoms. The organic surfactant also acts to enhance carrier confinement and prevent agglomeration of the particles. Chemically, it has been shown that the bonding of the surfactant to the CdSe QD occurs through Cd atoms resulting cleavage of the Se atoms and formation of a Cd-rich (i.e. non-stoichiometric) particle [5].

Meulenberg, R W; Lee, J I

2009-08-20

404

Selective targeting of microglia by quantum dots  

PubMed Central

Background Microglia, the resident immune cells of the brain, have been implicated in brain injury and various neurological disorders. However, their precise roles in different pathophysiological situations remain enigmatic and may range from detrimental to protective. Targeting the delivery of biologically active compounds to microglia could help elucidate these roles and facilitate the therapeutic modulation of microglial functions in neurological diseases. Methods Here we employ primary cell cultures and stereotaxic injections into mouse brain to investigate the cell type specific localization of semiconductor quantum dots (QDs) in vitro and in vivo. Two potential receptors for QDs are identified using pharmacological inhibitors and neutralizing antibodies. Results In mixed primary cortical cultures, QDs were selectively taken up by microglia; this uptake was decreased by inhibitors of clathrin-dependent endocytosis, implicating the endosomal pathway as the major route of entry for QDs into microglia. Furthermore, inhibiting mannose receptors and macrophage scavenger receptors blocked the uptake of QDs by microglia, indicating that QD uptake occurs through microglia-specific receptor endocytosis. When injected into the brain, QDs were taken up primarily by microglia and with high efficiency. In primary cortical cultures, QDs conjugated to the toxin saporin depleted microglia in mixed primary cortical cultures, protecting neurons in these cultures against amyloid beta-induced neurotoxicity. Conclusions These findings demonstrate that QDs can be used to specifically label and modulate microglia in primary cortical cultures and in brain and may allow for the selective delivery of therapeutic agents to these cells. PMID:22272874

2012-01-01

405

Toxicity of carbon group quantum dots  

NASA Astrophysics Data System (ADS)

Carbon group quantum dots (QDs) such as carbon, silicon and germanium, have potential for biomedical applications such as bio-imaging markers and drug delivery systems and are expected to demonstrate several advantages over conventional fluorescent QDs such as CdSe, especially in biocompatibility. We assessed biocompatibility of newly manufactured silicon QDs (Si-QDs), by means of both MTT assay and LDH assay for HeLa cells in culture and thereby detected the cellular toxicity by administration of high concentration of Si-QD (>1000 ?g/mL), while we detected the high toxicity by administration of over 100 ?g/mL of CdSe-QDs. As a hypothesis for the cause of the cellular toxicity, we measured oxy-radical generation from the QDs by means of luminol reaction method. We detected generation of oxy-radicals from the Si-QDs and those were decreased by radical scavenger such as superoxide dismutase (SOD) and N-acetyl cysteine (NAC). We concluded that the Si-QD application to cultured cells in high concentration led cell membrane damage by oxy-radicals and combination usage with radical scavenger is one of the answers.

Hanada, Sanshiro; Fujioka, Kouki; Hoshino, Akiyoshi; Manabe, Noriyoshi; Hirakuri, Kenji; Yamamoto, Kenji

2009-02-01

406

Quantum dot mediated imaging of atherosclerosis  

NASA Astrophysics Data System (ADS)

The progression of atherosclerosis is associated with leukocyte infiltration within lesions. We describe a technique for the ex vivo imaging of cellular recruitment in atherogenesis which utilizes quantum dots (QD) to color-code different cell types within lesion areas. Spectrally distinct QD were coated with the cell-penetrating peptide maurocalcine to fluorescently-label immunomagnetically isolated monocyte/macrophages and T lymphocytes. QD-maurocalcine bioconjugates labeled both cell types with a high efficiency, preserved cell viability, and did not perturb native leukocyte function in cytokine release and endothelial adhesion assays. QD-labeled monocyte/macrophages and T lymphocytes were reinfused in an ApoE-/- mouse model of atherosclerosis and age-matched controls and tracked for up to four weeks to investigate the incorporation of cells within aortic lesion areas, as determined by oil red O (ORO) and immunofluorescence ex vivo staining. QD-labeled cells were visible in atherosclerotic plaques within two days of injection, and the two cell types colocalized within areas of subsequent ORO staining. Our method for tracking leukocytes in lesions enables high signal-to-noise ratio imaging of multiple cell types and biomarkers simultaneously within the same specimen. It also has great utility in studies aimed at investigating the role of distinct circulating leukocyte subsets in plaque development and progression.

Jayagopal, Ashwath; Su, Yan Ru; Blakemore, John L.; Linton, MacRae F.; Fazio, Sergio; Haselton, Frederick R.

2009-04-01

407

Immune cells tracing using quantum dots  

NASA Astrophysics Data System (ADS)

Fluorescent nanoparticles, such as nanocrystal quantum dots (QDs), have potential to be applied to molecular biology and bioimaging, since some nanocrystals emit higher and longer lasting fluorescence than conventional organic probes do. Here we report an example of labeling immune cells by QDs. We collected splenic CD4 + T-lymphocyte and peritoneal macrophages from mice. Then cells were labeled with QDs. QDs are incorporated into the T-lymphocyte and macrophages immediately after addition and located in the cytoplasm via endocytosis pathway. The fluorescence of QDs held in the endosomes was easily detected for more than a week. In addition, T-lymphocytes labeled with QDs were stable and cell proliferation or cytokine production including IL-2 and IFN-? was not affected. When QD-labeled T-lymphocytes were adoptively transferred intravenously to mice, they remained in the peripheral blood and spleen up to a week. Using QD-labeled peritoneal macrophages, we studied cell traffic during inflammation on viscera in peritoneum cavity. QD-labeled macrophages were transplanted into the peritoneum of the mouse, and colitis was induced by intracolonic injection of a hapten, trinitrobenzensulfonic acid. With the aid of stong signals of QDs, we found that macrophage accumuled on the inflammation site of the colon. These results suggested that fluorescent probes of QDs might be useful as bioimaging tools for tracing target cells in vivo.

Hoshino, Akiyoshi; Fujioka, Kouki; Kawamura, Yuki I.; Toyama-Sorimachi, Noriko; Yasuhara, Masato; Dohi, Taeko; Yamamoto, Kenji

2006-02-01

408

Catastrophic Optical Damage in Quantum Dot Lasers  

NASA Astrophysics Data System (ADS)

A review of the high power performance of quantum dot (QD) lasers and one of its failure modes by catastrophic optical damage (COD) is presented. Since the first lasing action reported in 1994, a rapid advancement in the output power of QD lasers has been achieved. QD lasers with excellent optical power from a few mW to more than 11 W have been reported. As the QD laser output power continues to reach higher levels, problems such as COD which causes sudden failure of the laser inevitably become a problem that requires an immediate solution. Over the years, COD failure has been widely reported in QD lasers with emission wavelengths varying from 0.9 to 1.3 ?m. In this chapter, factors contributing to the COD failure in high power QD lasers are discussed and existing methods to suppress the COD are assessed. Finally, a novel laser annealing technique with in situ monitoring and control capabilities for the formation of non-absorbing mirrors in QD laser is described.

Chia, Ching Kean; Hopkinson, Mark

409

Single-quantum-dot-based DNA nanosensor  

NASA Astrophysics Data System (ADS)

Rapid and highly sensitive detection of DNA is critical in diagnosing genetic diseases. Conventional approaches often rely on cumbersome, semi-quantitative amplification of target DNA to improve detection sensitivity. In addition, most DNA detection systems (microarrays, for example), regardless of their need for target amplification, require separation of unhybridized DNA strands from hybridized stands immobilized on a solid substrate, and are thereby complicated by solution-surface binding kinetics. Here, we report an ultrasensitive nanosensor based on fluorescence resonance energy transfer (FRET) capable of detecting low concentrations of DNA in a separation-free format. This system uses quantum dots (QDs) linked to DNA probes to capture DNA targets. The target strand binds to a dye-labelled reporter strand thus forming a FRET donor-acceptor ensemble. The QD also functions as a concentrator that amplifies the target signal by confining several targets in a nanoscale domain. Unbound nanosensors produce near-zero background fluorescence, but on binding to even a small amount of target DNA (~50 copies or less) they generate a very distinct FRET signal. A nanosensor-based oligonucleotide ligation assay has been demonstrated to successfully detect a point mutation typical of some ovarian tumours in clinical samples.

Zhang, Chun-Yang; Yeh, Hsin-Chih; Kuroki, Marcos T.; Wang, Tza-Huei

2005-11-01

410

Polymersomes containing quantum dots for cellular imaging  

PubMed Central

Quantum dots (QDs) are highly fluorescent and stable probes for cellular and molecular imaging. However, poor intracellular delivery, stability, and toxicity of QDs in biological compartments hamper their use in cellular imaging. To overcome these limitations, we developed a simple and effective method to load QDs into polymersomes (Ps) made of poly(dimethylsiloxane)-poly(2-methyloxazoline) (PDMS-PMOXA) diblock copolymers without compromising the characteristics of the QDs. These Ps showed no cellular toxicity and QDs were successfully incorporated into the aqueous compartment of the Ps as confirmed by transmission electron microscopy, fluorescence spectroscopy, and fluorescence correlation spectroscopy. Ps containing QDs showed colloidal stability over a period of 6 weeks if stored in phosphate-buffered saline (PBS) at physiological pH (7.4). Efficient intracellular delivery of Ps containing QDs was achieved in human liver carcinoma cells (HepG2) and was visualized by confocal laser scanning microscopy (CLSM). Ps containing QDs showed a time- and concentration-dependent uptake in HepG2 cells and exhibited better intracellular stability than liposomes. Our results suggest that Ps containing QDs can be used as nanoprobes for cellular imaging. PMID:24872691

Camblin, Marine; Detampel, Pascal; Kettiger, Helene; Wu, Dalin; Balasubramanian, Vimalkumar; Huwyler, Jörg

2014-01-01

411

Multiplexed modular genetic targeting of quantum dots.  

PubMed

While DNA-directed nanotechnology is now a well-established platform for bioinspired nanoscale assembly in vitro, the direct targeting of various nanomaterials in living biological systems remains a significant challenge. Hybrid biological systems with integrated and targeted nanomaterials may have interesting and exploitable properties, so methods for targeting various nanomaterials to precise biological locations are required. Fluorescence imaging has benefited from the use of nanoparticles with superior optical properties compared to fluorescent organic dyes or fluorescent proteins. While single-particle tracking (SPT) in living cells with genetically encoded proteins is limited to very short trajectories, the high photon output of genetically targeted and multiplexed quantum dots (QDs) would enable long-trajectory analysis of multiple proteins. However, challenges with genetic targeting of QDs limit their application in these experiments. In this report, we establish a modular method for targeting QD nanoparticles selectively to multiple genetically encoded tags by precomplexing QD-streptavidin conjugates with cognate biotinylated hapten molecules. This approach enables labeling and SPT of multiple genetically encoded proteins on living cells at high speed and can label expressed proteins in the cytosol upon microinjection into living cells. While we demonstrate labeling with three distinct QD conjugates, the approach can be extended to other specific hapten-affinity molecule interactions and alternative nanoparticles, enabling precise directed targeting of nanoparticles in living biological systems. PMID:25380615

Saurabh, Saumya; Beck, Lauren E; Maji, Suvrajit; Baty, Catherine J; Wang, Yi; Yan, Qi; Watkins, Simon C; Bruchez, Marcel P

2014-11-25

412

2 Micrometers InAsSb Quantum-dot Lasers  

NASA Technical Reports Server (NTRS)

InAsSb quantum-dot lasers near 2 micrometers were demonstrated in cw operation at room temperature with a threshold current density of 733 A,/cm(sup 2), output power of 3 mW/facet and a differential quantum efficiency of 13%.

Qiu, Yueming; Uhl, David; Keo, Sam

2004-01-01

413

Ultrafast optical entanglement control between two quantum dot spins  

Microsoft Academic Search

Using continuous-wave lasers and picosecond optical pulses, we demonstrate initialization, single qubit gates, and two qubit gates in a system of two electron spins in separate tunnel-coupled InAs quantum dots. © 2011 Optical Society of America OCIS Codes: (270.5585) Quantum information and processing; (320.7130) Ultrafast processes in condensed matter, including semiconductors

Sam Carter; Danny Kim; Alex Greilich; Allan Bracker; Daniel Gammon

2011-01-01

414

Silicon quantum dot nanostructures for tandem photovoltaic cells  

Microsoft Academic Search

Tandem PV cells – with their increased efficiency due to a multi-band gap approach – usually involve expensive materials and fabrication. Thin film approaches, with an engineered variation in band gap through the use of quantum confinement in Si quantum dots, offer a cheaper alternative. Presented are characterisation and modelling data on fabrication of such Si and Sn QD nanostructures

Gavin Conibeer; Martin Green; Eun-Chel Cho; Dirk König; Young-Hyun Cho; Thipwan Fangsuwannarak; Giuseppe Scardera; Edwin Pink; Yidan Huang; Tom Puzzer; Shujuan Huang; Dengyuan Song; Chris Flynn; Sangwook Park; Xiaojing Hao; Daniel Mansfield

2008-01-01

415

Quantum dots: Time to get the nukes out  

NASA Astrophysics Data System (ADS)

The ability to electrically control spin dynamics in quantum dots makes them one of the most promising platforms for solid-state quantum-information processing. Minimizing the influence of the nuclear spin environment is an important step towards realizing such promise.

Schroer, Michael D.; Petta, Jason R.

2008-07-01

416

Folded-Light-Path Colloidal Quantum Dot Solar Cells  

PubMed Central

Colloidal quantum dot photovoltaics combine low-cost solution processing with quantum size-effect tuning to match absorption to the solar spectrum. Rapid advances have led to certified solar power conversion efficiencies of over 7%. Nevertheless, these devices remain held back by a compromise in the choice of quantum dot film thickness, balancing on the one hand the need to maximize photon absorption, mandating a thicker film, and, on the other, the need for efficient carrier extraction, a consideration that limits film thickness. Here we report an architecture that breaks this compromise by folding the path of light propagating in the colloidal quantum dot solid. Using this method, we achieve a substantial increase in short-circuit current, ultimately leading to improved power conversion efficiency. PMID:23835564

Koleilat, Ghada I.; Kramer, Illan J.; Wong, Chris T. O.; Thon, Susanna M.; Labelle, André J.; Hoogland, Sjoerd; Sargent, Edward H.

2013-01-01

417

Temperature dependence of quantum dot fluorescence assisted by plasmonic nanoantennas  

NASA Astrophysics Data System (ADS)

Optical antennas based on noble metal nanoparticles can increase the photoluminescence of quantum dots, but the exact strength of this enhancement depends on the brightness (i.e., the intrinsic quantum yield ?i ) of the emitters. Here we perform temperature-dependent measurements on a system of PbS colloidal quantum dots coupled with Au ring arrays that bring quantitative insight into this phenomenon. We show that although the boost in photoluminescence is lower at cryogenic temperatures where the nanocrystals become very bright emitters, the spectral signature of this enhancement is remarkably independent of ?i. These observations remain true even at wavelengths where the losses by absorption in the metal nanoparticles considerably increase due to the excitation of localized plasmon resonances, in contradiction with standard theory that treats the emitters as a collection of two-level systems. We propose a mechanism in which the quantum dots are modeled as multilevel and inhomogeneously broadened emitters to account for these findings.

Le-Van, Q.; Le Roux, X.; Teperik, T. V.; Habert, B.; Marquier, F.; Greffet, J.-J.; Degiron, A.

2015-02-01

418

A phonon laser using quantum dot spin states  

NASA Astrophysics Data System (ADS)

Sound analog of laser (saser) has not yet been realized experimentally, though some steps in this direction have been made recently [1]. As is known, the main reason impeding coherent generation of phonons in solid state is high density of phonon states [2]. We suggest a particular realization of saser, which consists of an ensemble of quantum dots and uses the Zeeman-split spin levels of the ground orbital state in the quantum dot. We develop a complete set of saser equations taking into account the Coulomb blockade conditions for a quantum dot, and evaluate all the parameters such as the threshold, output power and efficiency of the device. Supported by NSF-ECCS and US ONR, NSF PIF,and US ARO. [1]. R.P. Beardsley et al., PRL 104, 085501 (2010). [2]. J. Chen and J.B. Khurgin, IEEE Journal of Quantum Electronics, 39, 600 (2003) .

Khaetskii, Alexander; Hu, Xuedong; Zutic, Igor

2013-03-01

419

Colloidal graphene quantum dots with well-defined structures.  

PubMed

When the size of a semiconductor crystal is reduced to the nanometer scale, the crystal boundary significantly modifies electron distribution, making properties such as bandgap and energy relaxation dynamics size dependent. This phenomenon, known as quantum confinement, has been demonstrated in many semiconductor materials, leading to practical applications in areas such as bioimaging, photovoltaics, and light-emitting diodes. Graphene, a unique type of semiconductor, is a two-dimensional crystal with a zero bandgap and a zero effective mass of charge carriers. Consequently, we expect new phenomena from nanometer-sized graphene, or graphene quantum dots (QDs), because the energy of charge carriers in graphene follows size-scaling laws that differ from those in other semiconductors. From a chemistry point of view, graphene is made of carbon, an element for which researchers have developed a whole branch of chemistry. Thus, it is possible to synthesize graphene QDs through stepwise, well-controlled organic chemistry, achieving structures with an atomic precision that has not been possible for any other semiconductor materials. Recently, we developed a new solubilizing strategy that led to synthesis of stable colloidal graphene QDs with more than 100 conjugated carbon atoms, allowing us to study their properties in a new size regime. In this Account, we review our recent progress working with the colloidal graphene QDs, including their synthesis and stabilization, tuning of their properties, and new phenomena in energy relaxation dynamics. In particular, we have observed extraordinarily slow "electron cooling"--the relaxation of electrons from high excited states to lower ones. With further investigation, these high-energy electrons could potentially be harvested in solar energy applications, for example, creating more efficient photovoltaic cells. We discuss additional emerging opportunities with these new materials and current challenges, hoping to draw the interest of researchers in various fields to overcome these obstacles. PMID:23150896

Yan, Xin; Li, Binsong; Li, Liang-shi

2013-10-15

420

Quantum dot light-emitting diode with quantum dots inside the hole transporting layers.  

PubMed

We report a hybrid, quantum dot (QD)-based, organic light-emitting diode architecture using a noninverted structure with the QDs sandwiched between hole transporting layers (HTLs) outperforming the reference device structure implemented in conventional noninverted architecture by over five folds and suppressing the blue emission that is otherwise observed in the conventional structure because of the excess electrons leaking towards the HTL. It is predicted in the new device structure that 97.44% of the exciton formation takes place in the QD layer, while 2.56% of the excitons form in the HTL. It is found that the enhancement in the external quantum efficiency is mainly due to the stronger confinement of exciton formation to the QDs. PMID:23731202

Leck, Kheng Swee; Divayana, Yoga; Zhao, Dewei; Yang, Xuyong; Abiyasa, Agus Putu; Mutlugun, Evren; Gao, Yuan; Liu, Shuwei; Tan, Swee Tiam; Sun, Xiao Wei; Demir, Hilmi Volkan

2013-07-24

421

Quantum computation: algorithms and implementation in quantum dot devices  

NASA Astrophysics Data System (ADS)

In this thesis, we explore several aspects of both the software and hardware of quantum computation. First, we examine the computational power of multi-particle quantum random walks in terms of distinguishing mathematical graphs. We study both interacting and non-interacting multi-particle walks on strongly regular graphs, proving some limitations on distinguishing powers and presenting extensive numerical evidence indicative of interactions providing more distinguishing power. We then study the recently proposed adiabatic quantum algorithm for Google PageRank, and show that it exhibits power-law scaling for realistic WWW-like graphs. Turning to hardware, we next analyze the thermal physics of two nearby 2D electron gas (2DEG), and show that an analogue of the Coulomb drag effect exists for heat transfer. In some distance and temperature, this heat transfer is more significant than phonon dissipation channels. After that, we study the dephasing of two-electron states in a single silicon quantum dot. Specifically, we consider dephasing due to the electron-phonon coupling and charge noise, separately treating orbital and valley excitations. In an ideal system, dephasing due to charge noise is strongly suppressed due to a vanishing dipole moment. However, introduction of disorder or anharmonicity leads to large effective dipole moments, and hence possibly strong dephasing. Building on this work, we next consider more realistic systems, including structural disorder systems. We present experiment and theory, which demonstrate energy levels that vary with quantum dot translation, implying a structurally disordered system. Finally, we turn to the issues of valley mixing and valley-orbit hybridization, which occurs due to atomic-scale disorder at quantum well interfaces. We develop a new theoretical approach to study these effects, which we name the disorder-expansion technique. We demonstrate that this method successfully reproduces atomistic tight-binding techniques, while using a fraction of the computational resources and providing considerably more physical insight. Using this technique, we demonstrate that large dipole moments can exist between valley states in disordered systems, and calculate corrections to intervalley tunnel rates..

Gamble, John King

422

Kondo effect in coupled quantum dots under magnetic fields  

SciTech Connect

The Kondo effect in coupled quantum dots is investigated theoretically under magnetic fields. We show that the magnetoconductance (MC) illustrates the peak structures of Kondo resonant spectra. When the dot-dot tunneling coupling V{sub C} is smaller than the dot-lead coupling {Delta} (level broadening), Kondo resonant levels appear at the Fermi level (E{sub F}). The Zeeman splitting of the levels weakens the Kondo effect, which results in a negative MC. When V{sub C} is larger than {Delta}, the Kondo resonances form bonding and antibonding levels, located below and above E{sub F}, respectively. We observe a positive MC since the Zeeman splitting increases the overlap between the levels at E{sub F}. In the presence of antiferromagnetic spin coupling between the dots, the sign of the MC can change as a function of the gate voltage.

Aono, Tomosuke; Eto, Mikio

2001-08-15

423

A Quantum Dot with Spin-Orbit Interaction--Analytical Solution  

ERIC Educational Resources Information Center

The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.

Basu, B.; Roy, B.

2009-01-01

424

Fabrication and optimization of light emitting devices with core-shell quantum dots  

E-print Network

Quantum dot light emitting devices (QD-LEDs) are promising options for the next generation of solid state lighting, color displays, and other optoelectronic applications. Overcoating quantum dots (QDs) -- semiconducting ...

Song, Katherine Wei

2013-01-01

425

g-tensor control in bent carbon nanotube quantum dots  

NASA Astrophysics Data System (ADS)

We demonstrate gate control of the electronic g tensor in single and double quantum dots formed along a bend in a carbon nanotube. From the dependence of the single-dot excitation spectrum on magnetic field magnitude and direction, we extract spin-orbit coupling, valley coupling, and spin and orbital magnetic moments. Gate control of the g tensor is measured using the splitting of the Kondo peak in conductance as a sensitive probe of Zeeman energy. In the double-quantum-dot regime, the magnetic field dependence of the position of cotunneling lines in the two-dimensional charge stability diagram is used to infer the real-space positions of the two dots along the nanotube.

Lai, R. A.; Churchill, H. O. H.; Marcus, C. M.

2014-03-01

426

Intermediate-band photosensitive device with quantum dots having tunneling barrier embedded in organic matrix  

DOEpatents

A plurality of quantum dots each have a shell. The quantum dots are embedded in an organic matrix. At least the quantum dots and the organic matrix are photoconductive semiconductors. The shell of each quantum dot is arranged as a tunneling barrier to require a charge carrier (an electron or a hole) at a base of the tunneling barrier in the organic matrix to perform quantum mechanical tunneling to reach the respective quantum dot. A first quantum state in each quantum dot is between a lowest unoccupied molecular orbital (LUMO) and a highest occupied molecular orbital (HOMO) of the organic matrix. Wave functions of the first quantum state of the plurality of quantum dots may overlap to form an intermediate band.

Forrest, Stephen R. (Ann Arbor, MI)

2008-08-19

427

Non-blinking quantum dot with a plasmonic nanoshell resonator.  

PubMed

Colloidal semiconductor quantum dots are fluorescent nanocrystals exhibiting exceptional optical properties, but their emission intensity strongly depends on their charging state and local environment. This leads to blinking at the single-particle level or even complete fluorescence quenching, and limits the applications of quantum dots as fluorescent particles. Here, we show that a single quantum dot encapsulated in a silica shell coated with a continuous gold nanoshell provides a system with a stable and Poissonian emission at room temperature that is preserved regardless of drastic changes in the local environment. This novel hybrid quantum dot/silica/gold structure behaves as a plasmonic resonator with a strong Purcell factor, in very good agreement with simulations. The gold nanoshell also acts as a shield that protects the quantum dot fluorescence and enhances its resistance to high-power photoexcitation or high-energy electron beams. This plasmonic fluorescent resonator opens the way to a new family of plasmonic nanoemitters with robust optical properties. PMID:25581887

Ji, Botao; Giovanelli, Emerson; Habert, Benjamin; Spinicelli, Piernicola; Nasilowski, Michel; Xu, Xiangzhen; Lequeux, Nicolas; Hugonin, Jean-Paul; Marquier, Francois; Greffet, Jean-Jacques; Dubertret, Benoit

2015-02-01

428

Performance analysis of an interacting quantum dot thermoelectric setup  

NASA Astrophysics Data System (ADS)

In the absence of phonon contribution, a weakly coupled single orbital noninteracting quantum dot thermoelectric setup is known to operate reversibly as a Carnot engine. This reversible operation, however, occurs only in the ideal case of vanishing coupling to the contacts, wherein the transmission function is delta shaped, and under open-circuit conditions, where no electrical power is extracted. In this paper, we delve into the thermoelectric performance of quantum dot systems by analyzing the power output and efficiency directly evaluated from the nonequilibrium electric and energy currents across them. In the case of interacting quantum dots, the nonequilibrium currents in the limit of weak coupling to the contacts are evaluated using the Pauli master equation approach. The following fundamental aspects of the thermoelectric operation of a quantum dot setup are discussed in detail: (a) With a finite coupling to the contacts, a thermoelectric setup always operates irreversibly under open-circuit conditions, with a zero efficiency. (b) Operation at a peak efficiency close to the Carnot value is possible under a finite power operation. In the noninteracting single orbital case, the peak efficiency approaches the Carnot value as the coupling to the contacts becomes smaller. In the interacting case, this trend depends nontrivially on the interaction parameter U. (c) The evaluated trends of the maximum efficiency derived from the nonequilibrium currents deviate considerably from the conventional figure of merit zT-based results. Finally, we also analyze the interacting quantum dot setup for thermoelectric operation at maximum power output.

Muralidharan, Bhaskaran; Grifoni, Milena

2012-04-01

429

Feedback-generated periodic pulse trains in quantum dot lasers  

NASA Astrophysics Data System (ADS)

Quantum dot lasers have been shown to have greatly enhanced stability in the feedback configuration thanks to a high damping of the relaxation oscillations and they display different dynamics to those of conventional semiconductor lasers. For high feedback levels in conventional devices one obtains Low Frequency Fluctuations: sharp dropouts in intensity and subsequent gradual build-ups. Standard low frequency fluctuation-like traces are conspicuous by their absence in studies of feedback with quantum dot devices. We experimentally examine single mode quantum dot lasers at high feedback levels with a long delay and observe regular pulse-trains with a period equaling the external cavity round-trip time where each pulse features a distinctive broad trailing edge plateau. The distinctive pulse shape is very similar to the recently published strong pulse-asymmetry in two-section, passively mode-locked quantum dot lasers where this asymmetry was shown to result from the creation of different modal groups. We attribute the pulses in our experiment to the same phenomenon: each pulse corresponds to a simultaneous excitation of a number of the external cavity modes. We consider a model tailored specifically for quantum dot lasers with strong optical feedback and find it reproduces the experimentally observed trains extremely well.

Viktorov, Evgeny A.; Goulding, David; Hegarty, Stephen P.; Huyet, Guillaume; Erneux, Thomas; Kelleher, Bryan

2014-05-01

430

Long-lived population inversion in isovalently doped quantum dots.  

PubMed

Optical gain from colloidal quantum dots has been desired for several decades since their discovery. While gain from multiexcitations is by now well-established, nonradiative Auger recombination limits the lifetime of such population inversion in quantum dots. CdSe cores isovalently doped by one to few Te atoms capped with rod-shaped CdS are examined as a candidate system for enhanced stimulated emission properties. Emission depletion spectroscopy shows a behavior characteristic of 3-level gain systems in these quantum dots. This implies complete removal of the 2-fold degeneracy of the lowest energy electronic excitation due to the large repulsive exciton-exciton interaction in the doubly excited state. Using emission depletion measurements of the trap-associated emission from poorly passivated CdS quantum dots, we show that 3-level characteristics are typical of emission resulting from a band edge to trap state transition, but reveal subtle differences between the two systems. These results allow for unprecedented observation of long-lived population inversion from singly excited quantum