These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Synthesis and applications of quantum dots and magnetic quantum dots  

NASA Astrophysics Data System (ADS)

We have developed a new synthetic method for producing high-quality quantum dots (QDs) in aqueous solution for biological imaging applications. The glutathione-capped CdTe, ZnSe and Zn 1-xCd xSe alloyed QDs derived are tunable in fluorescence emissions between 360 nm and 700 nm. They show high quantum yields (QYs) of up to 50%, with narrow bandwidths of 19-55 nm. The synthesis of glutathione-capped QDs is simple and cost-effective compared to the conventional organometallic approaches. It can be easily scaled up for the commercial production of alloyed nanocrystals of various compositions. We have also demonstrated the fabrication of magnetic quantum dots (MQDs) through a seed-mediated approach. The formation and assembly of these bifunctional nanocomposites have been elucidated by high-resolution transmission electron microscopy (HRTEM). The MQDs exhibit superparamagnetism and tunable emissions characteristic of the components in this hybrid system. We have created biocompatible silica-coated MQDs that effectively target the cell membranes.

Ying, Jackie Y.; Zheng, Yuangang; Selvan, S. Tamil

2008-02-01

2

Quantum dots: synthesis, bioapplications, and toxicity  

PubMed Central

This review introduces quantum dots (QDs) and explores their properties, synthesis, applications, delivery systems in biology, and their toxicity. QDs are one of the first nanotechnologies to be integrated with the biological sciences and are widely anticipated to eventually find application in a number of commercial consumer and clinical products. They exhibit unique luminescence characteristics and electronic properties such as wide and continuous absorption spectra, narrow emission spectra, and high light stability. The application of QDs, as a new technology for biosystems, has been typically studied on mammalian cells. Due to the small structures of QDs, some physical properties such as optical and electron transport characteristics are quite different from those of the bulk materials. PMID:22929008

2012-01-01

3

Synthesis and characterization of infrared quantum dots  

E-print Network

This thesis focuses on the development of synthetic methods to create application ready quantum dots (QDs) in the infrared for biological imaging and optoelectronic devices. I concentrated primarily on controlling the size ...

Harris, Daniel Kelly

2014-01-01

4

Germanium quantum dots: Optical properties and synthesis  

NASA Astrophysics Data System (ADS)

Three different size distributions of Ge quantum dots (?200, 110, and 60 Å) have been synthesized via the ultrasonic mediated reduction of mixtures of chlorogermanes and organochlorogermanes (or organochlorosilanes) by a colloidal sodium/potassium alloy in heptane, followed by annealing in a sealed pressure vessel at 270 °C. The quantum dots are characterized by transmission electron microscopy, x-ray powder diffraction, x-ray photoemission, infrared spectroscopy, and Raman spectroscopy. Colloidal suspensions of these quantum dots were prepared and their extinction spectra are measured with ultraviolet/visible (UV/Vis) and near infrared (IR) spectroscopy, in the regime from 0.6 to 5 eV. The optical spectra are correlated with a Mie theory extinction calculation utilizing bulk optical constants. This leads to an assignment of three optical features to the E(1), E(0'), and E(2) direct band gap transitions. The E(0') transitions exhibit a strong size dependence. The near IR spectra of the largest dots is dominated by E(0) direct gap absorptions. For the smallest dots the near IR spectrum is dominated by the ?25?L indirect transitions.

Heath, James R.; Shiang, J. J.; Alivisatos, A. P.

1994-07-01

5

Quasi-periodic quantum dot arrays produced by electrochemical synthesis.  

National Technical Information Service (NTIS)

We discuss a ''gentle'' electrochemical technique for fabricating quasi-periodic quantum dot arrays. The technique exploits a self-organizing phenomenon to produce quasi-periodic arrangement of dots and provides excellent control over dot size and interdo...

S. Bandyopadhyay, A. E. Miller, D. F. Yue, G. Banerjee, R. E. Ricker

1994-01-01

6

Improved Precursor Chemistry for the Synthesis of III-V Quantum Dots  

PubMed Central

The synthesis of III-V Quantum Dots has been long known to be more challenging than the synthesis of other types of inorganic quantum dots. This is attributed to highly reactive group-V precursors. We synthesized molecules that are suitable for use as group-V precursors and characterized their reactivity using multiple complementary techniques. We show that the size distribution of indium arsenide quantum dots indeed improves with decreased precursor reactivity. PMID:23228014

Harris, Daniel K.; Bawendi, Moungi G.

2012-01-01

7

Encapsulated nanocrystals and quantum dots formed by ion beam synthesis  

SciTech Connect

High-dose ion implantation was used to synthesize a wide range of nanocrystals and quantum dots and to encapsulate them in host materials such as SiO{sub 2}, {alpha}-Al{sub 2}O{sub 3}, and crystalline Si. When Si nanocrystals are encapsulated in SiO{sub 2}, they exhibit dose dependent absorption and photoluminescence which provides insight into the luminescence mechanism. Compound semiconductor nanocrystals (both Group III-V and Group II-VI) can be formed in these matrices by sequential implantation of he individual constituents, and we discuss their synthesis and some of their physical and optical properties.

White, C.W.; Budai, J.D.; Withrow, S.P. [and others

1996-09-01

8

Quantum Dots  

NSDL National Science Digital Library

This topic-in-depth addresses the characteristics and numerous applications of the semiconductor nanocrystals, quantum dots. First, Evident Technologies' Nanotechnology website provides a great summary about the properties of quantum dots (1 ). Users can learn about quantum dots' photoluminescence spectra, molecular coupling, quantum confinement, and their absorption spectra. The second website, created by Gunjan Mishra at the University of Nevada - Reno, is a downloadable slideshow illustrating the history, formation, and application of quantum dots (2). While created as part of a lecture series, this website provides students with a concise outline of the unique characteristics of the particles. Third, UCLA describes the combined research of chemists and engineers to use quantum dots as an inexpensive means of creating nanoscale circuitry for molecular computers of the future (3). Users can learn how the particles' photocatalytic properties make them a great candidate for improving the current method of creating interconnecting lines on silicon chips. Next, Stanislaus Wong at Stony Brook University presents his research in carbon nanotubes and semiconductor nanocrystals (4 ). After a short introduction about quantum dots, users can discover his group's efforts to understand these particles in order to implement them in the fields of chemistry and biology. The fifth site is a downloadable document by Victor Klimov at Los Alamos National Laboratory discussing the development of a new laser based on quantum dots (5 ). The site supplies a series of figures illustrating the nonradiative multiparticle auger recombinations in nanocrystal quantum dots, amplified spontaneous emissions, and more. Next, Nanotechweb compares new quantum discoveries in the 21st century to the ball-bearing inventions in the 20th century (6 ). Users can learn why scientists believe the particles can be utilized in medicine, security, and electronics. In an online article, Carnegie Mellon discusses how chemists are researching quantum dots to evaluate their effectiveness in treating diseases such as cancer (7). Users can discover how the scientists were able to produce quantum dots that fluoresced for an unprecedented eight months. The last site promotes the 2004 Quantum Dots Conference (8). Researchers can learn about the conference scope, the venue, invited speakers, and more.

9

A Safer, Easier, Faster Synthesis for CdSe Quantum Dot Nanocrystals  

ERIC Educational Resources Information Center

The synthesis for CdSe quantum dot nanocrystals that vary in color and are a visually engaging way to demonstrate quantum effects in chemistry is presented. CdSe nanocrystals are synthesized from CdO and elemental Se using a kinetic growth method where particle size depends on reaction time.

Boatman, Elizabeth M.; Lisensky, George C.; Nordell, Karen J.

2005-01-01

10

Quantum Dots  

NSDL National Science Digital Library

This presentation, created by Gunjan Mishra at the University of Nevada - Reno, is a downloadable slideshow illustrating the history, formation, and application of quantum dots. While created as part of a lecture series, this website provides students with a concise outline of the unique characteristics of the particles.

Mishra, Gunjan

2008-07-07

11

Improvement of the luminescent properties of cadmium sulfide quantum dots by a post-synthesis modification  

NASA Astrophysics Data System (ADS)

Here the improvement of the luminescent properties of CdS quantum dots by a post-synthesis modification with aqueous solutions of NaOH at different concentrations is presented. The CdS quantum dots were synthesized by a microwave-assisted method using citrate ions as stabilizer. The addition of the hydroxide ions increased the intensity of the orange-red emission by about 80%. Besides, a violet-blue emission was achieved by means of this post-synthesis modification. The hydroxide ions control the precipitation equilibria of the CdS and Cd(OH)2, dissolving and precipitating the surface of the quantum dots. The NaOH treatment increases the number of traps, which produces less band-edge and more deep-trap emission, which explains the decrease and increase in the intensity of the violet-blue and orange-red emissions, respectively.

López, Israel; Gómez, Idalia

2014-11-01

12

Green synthesis of highly efficient CdSe quantum dots for quantum-dots-sensitized solar cells  

NASA Astrophysics Data System (ADS)

Green synthesis of CdSe quantum dots for application in the quantum-dots-sensitized solar cells (QDSCs) is investigated in this work. The CdSe QDs were prepared with glycerol as the solvent, with sharp emission peak, full width at half maximum around 30 nm, and absorption peak from 475 nm to 510 nm. The reaction is environmental friendly and energy saving. What's more, the green synthesized CdSe QDs are coherence to the maximum remittance region of the solar spectrum and suitable as sensitizers to assemble onto TiO2 electrodes for cell devices application. What's more, the dynamic procedure of the carriers' excitation, transportation, and recombination in the QDSCs are discussed. Because the recombination of the electrons from the conduction band of TiO2's to the electrolyte affects the efficiency of the solar cells greatly, 3-Mercaptopropionic acid capped water-dispersible QDs were used to cover the surface of TiO2. The resulting green synthesized CdSe QDSCs with Cu2S as the electrode show a photovoltaic performance with a conversion efficiency of 3.39%.

Gao, Bing; Shen, Chao; Zhang, Bo; Zhang, Mengya; Yuan, Shuanglong; Yang, Yunxia; Chen, Guorong

2014-05-01

13

Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots  

SciTech Connect

InAs nanocrystal quantum dots have been prepared via colloidal chemical synthesis using the reaction of InCl{sub 3} and As[Si(CH{sub 3}){sub 3}]{sub 3}. Sizes ranging from 25 to 60 A in diameter are produced and isolated with size distributions of {plus_minus}10{percent}{endash}15{percent} in diameter. The nanocrystals are crystalline and generally spherical with surfaces passivated by trioctylphosphine giving them solubility in common organic solvents. The dots have been structurally characterized by transmission electron microscopy (TEM) and powder x-ray diffraction (XRD) and the optical absorption and emission have been examined. Quantum confinement effects are evident with absorption onsets well to the blue of the bulk band gap and size dependent absorption and emission features. The emission is dominated by band edge luminescence. These quantum dots are particularly interesting as they provide an opportunity to make important comparisons with comparably sized InAs quantum dots synthesized by molecular beam epitaxy techniques. {copyright} {ital 1996 American Institute of Physics.}

Guzelian, A.A.; Banin, U.; Kadavanich, A.V.; Peng, X.; Alivisatos, A.P. [Department of Chemistry, University of California, Berkeley] [Department of Chemistry, University of California, Berkeley; [Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

1996-09-01

14

Synthesis and structural characterization of ZnTe/ZnSe core/shell tunable quantum dots  

E-print Network

Colloidal semiconductor nanocrystals or quantum dots have attracted much attention recently with their unique optical properties. Here we present a novel approach to synthesize ZnTe/ZnSe core/shell tunable quantum dots. ...

Guan, Juan

2008-01-01

15

Green chemistry for large-scale synthesis of semiconductor quantum dots.  

PubMed

Large-scale synthesis of semiconductor nanocrystals or quantum dots (QDs) with high concentration and high yield through simultaneously increasing the precursor concentration was introduced. This synthetic route conducted in diesel has produced gram-scale CdSe semiconductor quantum dots (In optimal scale-up synthetic condition, the one-pot yield of QDs is up to 9.6g). The reaction has been conducted in open air and at relatively low temperature at 190-230 degrees C in the absence of expensive organic phosphine ligands, aliphatic amine and octadecene, which is really green chemistry without high energy cost for high temperature reaction and unessential toxic chemicals except for Cd, which is the essential building block for QDs. PMID:18399665

Liu, Jin-Hua; Fan, Jun-Bing; Gu, Zheng; Cui, Jing; Xu, Xiao-Bo; Liang, Zhi-Wu; Luo, Sheng-Lian; Zhu, Ming-Qiang

2008-05-20

16

Microchemical systems for the synthesis of nanostructures : quantum dots  

E-print Network

We have developed a continuous multi-stage high-temperature and high-pressure microfluidic system. High-pressure conditions enabled the use low molecular weight solvents that have previously not been available for quantum ...

Baek, Jinyoung

2012-01-01

17

Review: three synthesis methods of CdX (X = Se, S or Te) quantum dots.  

PubMed

Quantum dots (QDs) are one of the first nanotechnologies to be integrated with the biological sciences that used for imaging or tracking macromolecules/cells in cell/tissue. Because of QDs are important in biomedical and biological applications, identify a variety of synthesis methods to produce QDs with different characteristics also is particularly important. Hence, in this review the authors discussed three methods for synthesis of heavy metal chalcogenide-based QDs for use in biomedical field: (i) Organometallic method for synthesis of QDs consists of three components: precursors, organic surfactants and solvents. The authors also discussed water-solubilisation strategies of synthesised QDs including encapsulation and ligand exchange. (ii) Aqueous synthesis technique using short-chain thiols as stabilising agents is a useful alternative to organometallic synthesis of CdSe, CdS and CdTe QDs. (iii) The third method discussed in this article for QDs synthesis involves the utilise of microorganisms to prepare QDs with controlled size, shape, chemical composition and functionality. The authors also discussed recently new methods for the synthesis of the appropriate QDs for use in biology. In addition, attachment of biomolecules such as antibodies, oligonucleotides on the surface of QDs for specific targeting and different opinions about toxicity of QD have been studied. PMID:25014077

Mussa Farkhani, Samad; Valizadeh, Alireza

2014-06-01

18

Structural changes in R-phycoerythrin upon CdS quantum dot synthesis in tunnel cavities of protein molecules.  

PubMed

Structural changes in R-phycoerythrin used as a matrix for the synthesis of CdS quantum dots have been analyzed by circular dichroism spectrometry. In deionized water, quantum dot synthesis in the tunnel cavity of the R-phycoerythrin molecule proved to be accompanied by uncoiling of ?-helices and changes in the conformation of its chromophore groups, with consequent decay of protein fluorescence. Since R-phycoerythrin fluorescence is important for practical applications, conditions for quantum dot synthesis have been optimized by replacing deionized water with 0.01 M MES buffer, pH 5.7. Under such conditions, the size of the CdS quantum dots (determined from atomic force microscopy images) remains the same as in deionized water, but quantum dots cause only minor structural changes in protein molecules, as follows from circular dichroism and absorption spectra. The thermostability of R-phycoerythrin is enhanced, as indicated by an increase in the experimental activation energy for denaturation (from 140.8 to 149.9 kJ/mol) and the intensity of R-phycoerythrin fluorescence is also enhanced approximately twofold. PMID:24141070

Bekasova, O D; Shubin, V V; Safenkova, I V; Kovalyov, L I; Kurganov, B I

2013-11-01

19

Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties  

NASA Astrophysics Data System (ADS)

Graphene quantum dots (GQDs) have various alluring properties and potential applications, but their large-scale applications are limited by current synthetic methods that commonly produce GQDs in small amounts. Moreover, GQDs usually exhibit polycrystalline or highly defective structures and thus poor optical properties. Here we report the gram-scale synthesis of single-crystalline GQDs by a facile molecular fusion route under mild and green hydrothermal conditions. The synthesis involves the nitration of pyrene followed by hydrothermal treatment in alkaline aqueous solutions, where alkaline species play a crucial role in tuning their size, functionalization and optical properties. The single-crystalline GQDs are bestowed with excellent optical properties such as bright excitonic fluorescence, strong excitonic absorption bands extending to the visible region, large molar extinction coefficients and long-term photostability. These high-quality GQDs can find a large array of novel applications in bioimaging, biosensing, light emitting diodes, solar cells, hydrogen production, fuel cells and supercapacitors.

Wang, Liang; Wang, Yanli; Xu, Tao; Liao, Haobo; Yao, Chenjie; Liu, Yuan; Li, Zhen; Chen, Zhiwen; Pan, Dengyu; Sun, Litao; Wu, Minghong

2014-10-01

20

Microwave-mediated nonaqueous synthesis of quantum dots at moderate temperature.  

PubMed

The use of microwave irradiation to accelerate both inorganic and organic chemical reactions has attracted widespread attention. Generally, microwave-mediated synthesis of quantum dots (QDs) has been conducted in aqueous solution. Here, using commercial diesel and glycerol as reaction medium, a microwave-mediated nonaqueous method toward CdSe QDs with size-tunable photoluminescent properties produces oleic-acid-protected QDs at moderate reaction temperatures of 50-140 degrees C, which are much lower than the current temperature necessary for the synthesis of CdSe QDs in organic solvents. The appropriate condition optimization for high-quality CdSe QDs shows that different sizes of CdSe QDs with emission wavelengths between 450 and 600 nm have been synthesized through varying time, temperature, feed ratio, and reaction medium. PMID:19548635

Zhu, Ming-Qiang; Gu, Zheng; Fan, Jun-Bing; Xu, Xiao-Bo; Cui, Jing; Liu, Jin-Hua; Long, Feng

2009-09-01

21

Direct synthesis of high-quality water-soluble CdTe:Zn2+ quantum dots.  

PubMed

The synthesis of water-soluble and low-cytotoxicity quantum dots (QDs) in aqueous solution has received much attention recently. A one-step and convenient method has been developed for synthesis of water-soluble glutathione (GSH)-capped and Zn(2+)-doped CdTe QDs via a refluxing route. Because of the addition of Zn ions and the epitaxial growth of a CdS layer, the prepared QDs exhibit superior properties, including strong fluorescence, minimal cytotoxicity, and enhanced biocompatibility. The optical properties of QDs are characterized by UV-vis and fluorescence (FL) spectra. The structure of QDs was verified by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectrometry (XPS), energy dispersive spectroscopy (EDS), atomic absorption spectrometry (AAS), and Fourier transform infrared spectroscopy (FTIR). Furthermore, the low cytotoxicity of the prepared QDs was proved by the microcalorimetric technique and inductively coupled plasma-atomic emission spectrometry (ICP-AES). PMID:22897561

Wang, Qisui; Fang, Tingting; Liu, Peng; Deng, Bohua; Min, Xinmin; Li, Xi

2012-09-01

22

Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties.  

PubMed

Graphene quantum dots (GQDs) have various alluring properties and potential applications, but their large-scale applications are limited by current synthetic methods that commonly produce GQDs in small amounts. Moreover, GQDs usually exhibit polycrystalline or highly defective structures and thus poor optical properties. Here we report the gram-scale synthesis of single-crystalline GQDs by a facile molecular fusion route under mild and green hydrothermal conditions. The synthesis involves the nitration of pyrene followed by hydrothermal treatment in alkaline aqueous solutions, where alkaline species play a crucial role in tuning their size, functionalization and optical properties. The single-crystalline GQDs are bestowed with excellent optical properties such as bright excitonic fluorescence, strong excitonic absorption bands extending to the visible region, large molar extinction coefficients and long-term photostability. These high-quality GQDs can find a large array of novel applications in bioimaging, biosensing, light emitting diodes, solar cells, hydrogen production, fuel cells and supercapacitors. PMID:25348348

Wang, Liang; Wang, Yanli; Xu, Tao; Liao, Haobo; Yao, Chenjie; Liu, Yuan; Li, Zhen; Chen, Zhiwen; Pan, Dengyu; Sun, Litao; Wu, Minghong

2014-01-01

23

Controlled synthesis of cadmium-free CuInS2/ZnS quantum dots  

NASA Astrophysics Data System (ADS)

This paper reports a hot colloidal synthesis method toward the synthesis of CuInS2/ZnS hybrid nanoparticles. First, CuInS2 quantum dots (QDs) were synthesized in the noncoordinating solvent octadecene using copper nitrate, indium acetate, myristic acid, oleylamine and dodecanethiol. CuInS2 QDs with diameter of 2~10 nm were obtained by tuning the reaction temperature and time. Secondly, CuInS2/ZnS core/shell QDs with different thickness of ZnS shell were synthesized by seed-mediated growth method, which can prevent the CuInS2 QDs oxidized and improve their photo luminance. Low-toxic cadmium-free CuInS2/ZnS QDs with high PL efficiency are expected to be used for bio-label.

Wang, Xiao-bo; Chen, Juan; Liu, Jing; Liu, Jian-wei; Ding, Hong; Yong, Ken-Tye; Ye, Ling; He, Shu-li

2011-08-01

24

Compact biocompatible quantum dots via RAFT-mediated synthesis of imidazole-based random copolymer ligand  

E-print Network

We present a new class of polymeric ligands for quantum dot (QD) water solubilization to yield biocompatible and derivatizable QDs with compact size (10?12 nm diameter), high quantum yields (>50%), excellent stability ...

Liu, Wenhao

25

Synthesis and unique photoluminescence properties of nitrogen-rich quantum dots and their applications.  

PubMed

Nitrogen-rich quantum dots (N-dots) were serendipitously synthesized in methanol or aqueous solution at a reaction temperature as low as 50?°C. These N-dots have a small size (less than 10?nm) and contain a high percentage of the element nitrogen, and are thus a new member of quantum-dot family. These N-dots show unique and distinct photoluminescence properties with an increasing percentage of nitrogen compared to the neighboring carbon dots. The photoluminescence behavior was adjusted from blue to green simply through variation of the reaction temperature. Furthermore, the detailed mechanism of N-dot formation was also proposed with the trapped intermediate. These N-dots have also shown promising applications as fluorescent ink and biocompatible staining in C.?elegans. PMID:25296956

Chen, Xiuxian; Jin, Qingqing; Wu, Lizhu; Tung, ChenHo; Tang, Xinjing

2014-11-10

26

Quantum Dots: Theory  

SciTech Connect

This review covers the description of the methodologies typically used for the calculation of the electronic structure of self-assembled and colloidal quantum dots. These are illustrated by the results of their application to a selected set of physical effects in quantum dots.

Vukmirovic, Nenad; Wang, Lin-Wang

2009-11-10

27

Biomimetic, Mild Chemical Synthesis of CdTe-GSH Quantum Dots with Improved Biocompatibility  

PubMed Central

Multiple applications of nanotechnology, especially those involving highly fluorescent nanoparticles (NPs) or quantum dots (QDs) have stimulated the research to develop simple, rapid and environmentally friendly protocols for synthesizing NPs exhibiting novel properties and increased biocompatibility. In this study, a simple protocol for the chemical synthesis of glutathione (GSH)-capped CdTe QDs (CdTe-GSH) resembling conditions found in biological systems is described. Using only CdCl2, K2TeO3 and GSH, highly fluorescent QDs were obtained under pH, temperature, buffer and oxygen conditions that allow microorganisms growth. These CdTe-GSH NPs displayed similar size, chemical composition, absorbance and fluorescence spectra and quantum yields as QDs synthesized using more complicated and expensive methods. CdTe QDs were not freely incorporated into eukaryotic cells thus favoring their biocompatibility and potential applications in biomedicine. In addition, NPs entry was facilitated by lipofectamine, resulting in intracellular fluorescence and a slight increase in cell death by necrosis. Toxicity of the as prepared CdTe QDs was lower than that observed with QDs produced by other chemical methods, probably as consequence of decreased levels of Cd+2 and higher amounts of GSH. We present here the simplest, fast and economical method for CdTe QDs synthesis described to date. Also, this biomimetic protocol favors NPs biocompatibility and helps to establish the basis for the development of new, “greener” methods to synthesize cadmium-containing QDs. PMID:22292028

Perez-Donoso, Jose M.; Monras, Juan P.; Bravo, Denisse; Aguirre, Adam; Quest, Andrew F.; Osorio-Roman, Igor O.; Aroca, Ricardo F.; Chasteen, Thomas G.; Vasquez, Claudio C.

2012-01-01

28

Low-cost and gram-scale synthesis of water-soluble Cu-In-S/ZnS core/shell quantum dots in an electric pressure cooker  

NASA Astrophysics Data System (ADS)

We report an electric pressure cooker for large-scale synthesis of water-soluble Cu-In-S/ZnS core/shell quantum dots. Low-cost thioglycolic acid and sodium citrate were used as the dual stabilizers. ~3 grams of quantum dots with a tunable emission from 545 to 610 nm and quantum yield up to 40% were obtained in a batch.We report an electric pressure cooker for large-scale synthesis of water-soluble Cu-In-S/ZnS core/shell quantum dots. Low-cost thioglycolic acid and sodium citrate were used as the dual stabilizers. ~3 grams of quantum dots with a tunable emission from 545 to 610 nm and quantum yield up to 40% were obtained in a batch. Electronic supplementary information (ESI) available: Experimental details, PL decay curves, PL lifetimes, EDS spectra, chemical composition, cost analysis. See DOI: 10.1039/c3nr05014a

Chen, Yanyan; Li, Shenjie; Huang, Lijian; Pan, Daocheng

2014-01-01

29

Low-cost and gram-scale synthesis of water-soluble Cu-In-S/ZnS core/shell quantum dots in an electric pressure cooker.  

PubMed

We report an electric pressure cooker for large-scale synthesis of water-soluble Cu-In-S/ZnS core/shell quantum dots. Low-cost thioglycolic acid and sodium citrate were used as the dual stabilizers. ?3 grams of quantum dots with a tunable emission from 545 to 610 nm and quantum yield up to 40% were obtained in a batch. PMID:24337019

Chen, Yanyan; Li, Shenjie; Huang, Lijian; Pan, Daocheng

2014-01-01

30

6-Mercaptohexanoic acid assisted synthesis of high quality InP quantum dots for optoelectronic applications  

NASA Astrophysics Data System (ADS)

Indium phosphide semiconductor quantum dots are of significant heed as their applications encompass a spacious concatenation in LEDs and solar cells technologies. For improving their serviceable prominence, there is a real demand for a fashion that furnishes prompt and large mass production of mightily monodispersed nanoparticles. This study conveys an efficacious and fast recipe of generating substantially monodispersed InP quantum dots via water based route technique using a novel surfactant. Herein, InP QDs have been prepared using 6-mercaptohexanoic acid for achieving an effective surface passivation of monodispersed InP QDs with highly luminescence at temperature 50 °C. The as prepared quantum dots were investigated by transmission electron microscopy, luminescence spectroscopy, and X-ray diffraction. The XRD depicted that the InP quantum dots have a cubic zinc blend structure. TEM image revealed that the prepared quantum dots are monodispersed and their average particle size of about 4 nm. Energy dispersive X-ray spectroscopy confirmed the existence of organic ligand as a shell around InP nanoparticles. Time resolved spectra depicted that the capping agent passivated the InP QDs surface and enhanced the luminescence emission.

Mahmoud, Waleed E.; Chang, Y. C.; Al-Ghamdi, A. A.; Al-Marzouki, F.; Bronstein, Lyudmila M.

2013-04-01

31

Quantum dot resonant tunneling spectroscopy  

NASA Astrophysics Data System (ADS)

The electronic transport through 3-dimensionally confined semiconductor quantum wells (quantum dots) is investigated and analyzed. The spectra corresponds to resonant tunneling from laterally-confined emitter contact subbands through the discrete 3-dimensionally confined quantum dot states. Momentum nonconservation is observed in these structures. Results on coupled quantum dot states (molccules) will be presented.

Reed, Mark A.; Randall, John N.; Luscombe, James H.; Frensley, William R.; Aggarwal, Raj J.; Matyi, Richard J.; Moore, Tom M.; Wetsel, Anna E.

32

One-pot aqueous synthesis PbS quantum dots and their Hg2+ sensitive properties.  

PubMed

In this study, we report the synthesis and stability of PbS quantum dots (QDs) using an aqueous route with L-Cysteine (L-Cys) as the capping molecule. The as-synthesized L-Cys-capped PbS QDs were characterized by high resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD), the results indicated that the QDs were about 4 nm in size and dispersed well with a rock salt crystalline structure, and there was L-Cys on the surface of QDs, which was confirmed by Fourier transform infrared (FT-IR) spectrometry. The influence of various experimental variables, including amounts of capping ligand, pH value and refluxing time, on the luminescent properties of the obtained QDs have been systematically investigated. The QDs exhibited optimal PL intensity when Pb: L-Cys: S = 1:2.2:0.3. In addition, the as-prepared QDs could be used as fluorescence probes to detect Hg2+ ions in aqueous media. The response of QDs fluorescence probes was linearly proportional to the concentration of Hg2+ ions ranging from 8 x 10(-9) to 2 x 10(-6) mol x L(-1) with a limit of detection of 2 x 10(-9) mol x L(-1). Furthermore, the method was successfully applied to the determine Hg2+ ions in different real samples. PMID:22755123

Yu, Yaxin; Zhang, Rui; Zhang, Kexin; Sun, Shuqing

2012-03-01

33

Low-temperature synthesis of CdSe nanocrystal quantum dots.  

PubMed

A method for fabricating colloidal CdSe nanocrystals at low reaction temperatures was developed. The transition from CdSe clusters to continuously-growing nanocrystals was found to be crucial in the formation of high-quality quantum dots with narrow size distribution and efficient, tunable optical properties. PMID:20830412

Siy, Jacqueline T; Brauser, Eric M; Bartl, Michael H

2011-01-01

34

Synthesis, characterization and application of luminescent quantum dots and microcrystalline phosphors  

Microsoft Academic Search

A phosphor is a substance which emits light when excited by radiation. For traditional powder phosphors impurity elements are usually incorporated into the host material to act as the luminescent centers. The fluorescent quantum dot (QD) is a new kind of phosphor, \\

Zhitao Kang

2006-01-01

35

A quantum dot heterojunction photodetector  

E-print Network

This thesis presents a new device architecture for photodetectors utilizing colloidally grown quantum dots as the principle photo-active component. We implement a thin film of cadmium selenide (CdSe) quantum dot sensitizers, ...

Arango, Alexi Cosmos, 1975-

2005-01-01

36

Quantum dot device tunable from single to triple dot system  

SciTech Connect

We present a lateral quantum dot device which has a tunable number of quantum dots. Depending on easily tunable gate voltages, one, two or three quantum dots are found. They are investigated in transport and charge detection.

Rogge, M. C.; Haug, R. J. [Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstrasse 2, 30167 Hannover (Germany); Pierz, K. [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany)

2013-12-04

37

Synthesis of biocompatible SiO2 coated ZnO quantum dots for cell imaging  

NASA Astrophysics Data System (ADS)

Quantum dots (QDs) is a promising candidate for biomedical imaging. However, the bio-toxicity of traditional quantum dots obstructed their further application seriously. In this work, a simple solution growth method was utilized to synthesize ZnO QDs. However, their self-assemble feature makes them unstable in aqueous solution. Furthermore, (3-Aminopropyl) triethoxysilane was selected as a capping agent to stabilize ZnO QDs and then ZnO@SiO2 nanoparticles were obtained. They dispersed excellently in water and exhibited favorable fluorescence properties owing to the protection of silane. The biocompatability of ZnO@SiO2 nanoparticles was verified by MTT assy. The cell affinity studies demonstrated that ZnO@SiO2 nanoparticles could be uptaken by cells efficiently. Therefore, the as-prepared ZnO@SiO2 nanoparticles is a promising candidate for applications in cell imaging.

Zhang, Min; Wang, Qian; Chen, Haiyan; Gu, Yueqing

2014-09-01

38

Quantum dot solar cells  

Microsoft Academic Search

Quantum dot (QD) solar cells have the potential to increase the maximum attainable thermodynamic conversion efficiency of solar photon conversion up to about 66% by utilizing hot photogenerated carriers to produce higher photovoltages or higher photocurrents. The former effect is based on miniband transport and collection of hot carriers in QD array photoelectrodes before they relax to the band edges

A. J Nozik

2002-01-01

39

Quantum dot infrared photodetectors  

Microsoft Academic Search

We discuss key issues related to quantum dot infrared photodetectors. These are the normal incidence response, the dark current, and the responsivity and detectivity. It is argued that the present devices have not fully demonstrated the potential advantages. The dominant infrared response in devices so far is polarized in the growth direction. The observed dark currents are several orders of

H. C. Liu; J.-Y. Duboz; R. Dudek; Z. R. Wasilewski; S. Fafard; P. Finnie

2003-01-01

40

Synthesis of mercaptosuccinic acid/MercaptoPolyhedral oligomeric silsesquioxane coated cadmium telluride quantum dots in cell labeling applications.  

PubMed

An aqueous synthesis method to obtain highly luminescent cadmium telluride nanocrystals is described. We have shown water-soluble semi-conductor quantum dots with high photoluminescence quantum yield have great potential for biological applications. The spectral properties of these nanocrystals can be easily tuned according to their particle size to yield multicolours simultaneously by a single excitation light source. A stable precursor material sodium tellurite is utilised instead of the traditional oxygen sensitive NaHTe or H2Te as Te source. We have introduced mercaptosuccinic acid and propylisobutyl polyhedral oligomeric silsesquioxane nanoparticles as novel capping agents to stabilize the nanocrystals, synthesized in borate-citrate buffering system. Inclusion of propylisobutyl polyhedral oligomeric silsesquioxane nanoparticles in the capping procedure showed enhanced stability and biocompatibility. The presence of mercaptosuccinic acid/propylisobutyl polyhedral oligomeric silsesquioxane coatings was confirmed by Fourier Transform Infrared spectroscopy and average sizes of 2-5 nm by transmission electron microscopy measurements. The functionalized and targeted quantum dots detected cancer cell death on exposure to some anticancer drugs. Studies have indicated that apoptotic cells can activate signaling pathways in dendritic cells via ligation of surface receptors. Cells treated with specific class of pro-apototic drug such as anthracyclines mount an anti-tumour immune response when introduced into mice. Apoptotic cells may be immunogenic or non-immunogenic depending on the presence of calreticulin on the plasma membrane of dying tumour cells. Here the confocal microscopy showed localization of conjugated mercaptosuccinic acid/propylisobutyl polyhedral oligomeric silsesquioxane cadmium telluride quantum dots on MCF-7 cells when exposed to cadmium ions at 50 microM, compared to coated quantum dots. We have used cadmium ions as a model drug as certain anticancer drugs (anthracyclines) induce translocation of calreticulin to the cell membrane, an indicator of apoptosis. Antibodies generated against a peptide to human calreticulin and conjugated to quantum dots detected the protein on cell membrane of stimulated cells were visualized by confocal microscopy. Stimulating natural immune response, against tumours has enormous potential to improve current regimens of cancer detection and therapy. PMID:22905553

Ghaderi, Shirin; Ramesh, Bala; Seifalian, Alexander M

2012-06-01

41

Quantum dot cascade laser  

PubMed Central

We demonstrated an unambiguous quantum dot cascade laser based on InGaAs/GaAs/InAs/InAlAs heterostructure by making use of self-assembled quantum dots in the Stranski-Krastanow growth mode and two-step strain compensation active region design. The prototype generates stimulated emission at ??~?6.15 ?m and a broad electroluminescence band with full width at half maximum over 3 ?m. The characteristic temperature for the threshold current density within the temperature range of 82 to 162 K is up to 400 K. Moreover, our materials show the strong perpendicular mid-infrared response at about 1,900 cm-1. These results are very promising for extending the present laser concept to terahertz quantum cascade laser, which would lead to room temperature operation. PACS 42.55.Px; 78.55.Cr; 78.67.Hc PMID:24666965

2014-01-01

42

A one-pot synthesis of reduced graphene oxide-Cu2S quantum dot hybrids for optoelectronic devices  

NASA Astrophysics Data System (ADS)

We demonstrate a facile one-pot approach for the synthesis of reduced graphene oxide (rGO)-cuprous sulfide quantum dot (Cu2S QD) hybrids, wherein the reduction of GO and the growth of Cu2S QDs on graphene occur simultaneously. The as-synthesized rGO-Cu2S QD hybrids exhibit an excellent photoelectric response and efficient electron transfer from the Cu2S QDs to the rGO sheets.We demonstrate a facile one-pot approach for the synthesis of reduced graphene oxide (rGO)-cuprous sulfide quantum dot (Cu2S QD) hybrids, wherein the reduction of GO and the growth of Cu2S QDs on graphene occur simultaneously. The as-synthesized rGO-Cu2S QD hybrids exhibit an excellent photoelectric response and efficient electron transfer from the Cu2S QDs to the rGO sheets. Electronic supplementary information (ESI) available: TGA curves of the GO and rGO-Cu2S QD hybrids, SEM images of the rGO-Cu2S QD hybrids with different Cu2S densities and typical I-V curves of pure Cu2S, with and without blue light irradiation. See DOI: 10.1039/c3nr02992a

Su, Yanjie; Lu, Xiaonan; Xie, Minmin; Geng, Huijuan; Wei, Hao; Yang, Zhi; Zhang, Yafei

2013-09-01

43

Facile synthesis of uniform large-sized InP nanocrystal quantum dots using tris(tert-butyldimethylsilyl)phosphine  

PubMed Central

Colloidal III-V semiconductor nanocrystal quantum dots [NQDs] have attracted interest because they have reduced toxicity compared with II-VI compounds. However, the study and application of III-V semiconductor nanocrystals are limited by difficulties in their synthesis. In particular, it is difficult to control nucleation because the molecular bonds in III-V semiconductors are highly covalent. A synthetic approach of InP NQDs was presented using newly synthesized organometallic phosphorus [P] precursors with different functional moieties while preserving the P-Si bond. Introducing bulky side chains in our study improved the stability while facilitating InP formation with strong confinement at a readily low temperature regime (210°C to 300°C). Further shell coating with ZnS resulted in highly luminescent core-shell materials. The design and synthesis of P precursors for high-quality InP NQDs were conducted for the first time, and we were able to control the nucleation by varying the reactivity of P precursors, therefore achieving uniform large-sized InP NQDs. This opens the way for the large-scale production of high-quality Cd-free nanocrystal quantum dots. PMID:22289352

2012-01-01

44

Facile synthesis of uniform large-sized InP nanocrystal quantum dots using tris( tert-butyldimethylsilyl)phosphine  

NASA Astrophysics Data System (ADS)

Colloidal III-V semiconductor nanocrystal quantum dots [NQDs] have attracted interest because they have reduced toxicity compared with II-VI compounds. However, the study and application of III-V semiconductor nanocrystals are limited by difficulties in their synthesis. In particular, it is difficult to control nucleation because the molecular bonds in III-V semiconductors are highly covalent. A synthetic approach of InP NQDs was presented using newly synthesized organometallic phosphorus [P] precursors with different functional moieties while preserving the P-Si bond. Introducing bulky side chains in our study improved the stability while facilitating InP formation with strong confinement at a readily low temperature regime (210°C to 300°C). Further shell coating with ZnS resulted in highly luminescent core-shell materials. The design and synthesis of P precursors for high-quality InP NQDs were conducted for the first time, and we were able to control the nucleation by varying the reactivity of P precursors, therefore achieving uniform large-sized InP NQDs. This opens the way for the large-scale production of high-quality Cd-free nanocrystal quantum dots.

Joung, Somyoung; Yoon, Sungwoo; Han, Chang-Soo; Kim, Youngjo; Jeong, Sohee

2012-01-01

45

PREFACE: Quantum Dot 2010  

NASA Astrophysics Data System (ADS)

These conference proceedings contain the written papers of the contributions presented at Quantum Dot 2010 (QD2010). The conference was held in Nottingham, UK, on 26-30 April 2010. The conference addressed topics in research on: 1. Epitaxial quantum dots (including self-assembled and interface structures, dots defined by electrostatic gates etc): optical properties and electron transport quantum coherence effects spin phenomena optics of dots in cavities interaction with surface plasmons in metal/semiconductor structures opto-electronics applications 2. Novel QD structures: fabrication and physics of graphene dots, dots in nano-wires etc 3. Colloidal quantum dots: growth (shape control and hybrid nanocrystals such as metal/semiconductor, magnetic/semiconductor) assembly and surface functionalisation optical properties and spin dynamics electrical and magnetic properties applications (light emitting devices and solar cells, biological and medical applications, data storage, assemblers) The Editors Acknowledgements Conference Organising Committee: Maurice Skolnick (Chair) Alexander Tartakovskii (Programme Chair) Pavlos Lagoudakis (Programme Chair) Max Migliorato (Conference Secretary) Paola Borri (Publicity) Robert Taylor (Proceedings) Manus Hayne (Treasurer) Ray Murray (Sponsorship) Mohamed Henini (Local Organiser) International Advisory Committee: Yasuhiko Arakawa (Tokyo University, Japan) Manfred Bayer (Dortmund University, Germany) Sergey Gaponenko (Stepanov Institute of Physics, Minsk, Belarus) Pawel Hawrylak (NRC, Ottawa, Canada) Fritz Henneberger (Institute for Physics, Berlin, Germany) Atac Imamoglu (ETH, Zurich, Switzerland) Paul Koenraad (TU Eindhoven, Nethehrlands) Guglielmo Lanzani (Politecnico di Milano, Italy) Jungil Lee (Korea Institute of Science and Technology, Korea) Henri Mariette (CNRS-CEA, Grenoble, France) Lu Jeu Sham (San Diego, USA) Andrew Shields (Toshiba Research Europe, Cambridge, UK) Yoshihisa Yamamoto (Stanford University, USA) Artur Zrenner (Paderborn University, Germany) International Programme Committee: Alexander Eychmüller (TU Dresden, Germany) Jonathan Finley (TU Munich, Germany) Dan Gammon (NRL, Washington, USA) Alexander Govorov (Ohio University, USA) Neil Greenham (Cavendish Laboratory, UK) Vladimir Korenev (Ioffe Institute, Russia) Leo Kouwenhoven (TU Delft, Netherlands) Wolfgang Langbein (Cardiff University, UK) Xavier Marie (CNRS Toulouse, France) David Ritchie (Cambridge, UK) Andrew Sachrajda (IMS, Ottawa, Canada) Katerina Soulantica (University of Toulouse, France) Seigo Tarucha (University of Tokyo, Japan) Carlos Tejedor (UAM, Madrid, Spain) Euijoon Yoon (Seoul National University, Korea) Ulrike Woggon (Tu Berlin, Germany) Proceedings edited and compiled by Profesor Robert A Taylor, University of Oxford

Taylor, Robert A.

2010-09-01

46

One-Pot Synthesis, Encaspulation, and Solubilization of Size-Tuned Quantum Dots with Amphiphilic Multidentate Ligands  

PubMed Central

We report one-pot synthesis, encapsulation, and solubilization of high-quality quantum dots based on the use of amphiphilic and multidentate polymer ligands. In this “all-in-one” procedure, the resulting QDs are first capped by the multidentate ligand, and are then spontaneously encapsulated and solubilized by a second layer of the same multidentate polymer upon exposure to water. In addition to providing better control of nanocrystal nucleation and growth kinetics (including resistance to Ostwald ripening), this procedure allows for in-situ growth of an inorganic passivating shell on the nanocrystal core, enabling one-pot synthesis of both type-I and type-II core-shell QDs with tunable light emission from visible to near-infrared wavelengths. PMID:18774812

Kairdolf, Brad A.; Smith, Andrew M.; Nie, Shuming

2009-01-01

47

Quantum Computing with Quantum Dots  

NASA Astrophysics Data System (ADS)

We report recent results on the spin dynamics of coupled quantum dots and their potential as quantum computer devices. Using the Heitler-London approach, we obtain the exchange coupling J(B,a) between the excess electrons of coupled dots.(D.P. DiVincenzo and D. Loss, Quantum Computation is Physical), to appear in Superlattices and Microstructures. Special Issue on the occasion of Rolf Landauer's 70th Birthday, ed. S. Datta. See cond- mat/9710259. The dependence of J on the magnetic field B and the interdot distance 2a is of great importance for controlling the coherent time-evolution of the two-spin system as required for quantum computation.(D. Loss and D.P. DiVincenzo, Phys. Rev. A, in press. See cond- mat/9701055.) Our result, which is in good agreement with a more refined LCAO calculation, is accessible to experimental tests via magnetic response measurements.

Burkard, Guido; Loss, Daniel

1998-03-01

48

Quantum Dots Investigated for Solar Cells  

NASA Technical Reports Server (NTRS)

The NASA Glenn Research Center has been investigating the synthesis of quantum dots of CdSe and CuInS2 for use in intermediate-bandgap solar cells. Using quantum dots in a solar cell to create an intermediate band will allow the harvesting of a much larger portion of the available solar spectrum. Theoretical studies predict a potential efficiency of 63.2 percent, which is approximately a factor of 2 better than any state-of-the-art devices available today. This technology is also applicable to thin-film devices--where it offers a potential four-fold increase in power-to-weight ratio over the state of the art. Intermediate-bandgap solar cells require that quantum dots be sandwiched in an intrinsic region between the photovoltaic solar cell's ordinary p- and n-type regions (see the preceding figure). The quantum dots form the intermediate band of discrete states that allow sub-bandgap energies to be absorbed. However, when the current is extracted, it is limited by the bandgap, not the individual photon energies. The energy states of the quantum dot can be controlled by controlling the size of the dot. Ironically, the ground-state energy levels are inversely proportional to the size of the quantum dots. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Ba Wendi et al., in the early 1990's. The most studied quantum dots prepared by this method have been of CdSe. To produce these dots, researchers inject a syringe of the desired organometallic precursors into heated triocytlphosphine oxide (TOPO) that has been vigorously stirred under an inert atmosphere (see the following figure). The solution immediately begins to change from colorless to yellow, then orange and red/brown, as the quantum dots increase in size. When the desired size is reached, the heat is removed from the flask. Quantum dots of different sizes can be identified by placing them under a "black light" and observing the various color differences in their fluorescence (see the photograph).

Bailey, Sheila G.; Castro, Stephanie L.; Raffaelle, Ryne P.; Hepp, Aloysius F.

2001-01-01

49

Quantum Dots and Colors  

NSDL National Science Digital Library

Students are introduced to the physical concept of the colors of rainbows as light energy in the form of waves with distinct wavelengths, but in a different manner than traditional kaleidoscopes. Looking at different quantum dot solutions, they make observations and measurements, and graph their data. They come to understand how nanoparticles interact with absorbing photons to produce colors. They learn the dependence of particle size and color wavelength and learn about real-world applications for using these colorful liquids.

National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,

50

Functionalized silicon quantum dots by N-vinylcarbazole: synthesis and spectroscopic properties  

NASA Astrophysics Data System (ADS)

Silicon quantum dots (Si QDs) attract increasing interest nowadays due to their excellent optical and electronic properties. However, only a few optoelectronic organic molecules were reported as ligands of colloidal Si QDs. In this report, N-vinylcarbazole - a material widely used in the optoelectronics industry - was used for the modification of Si QDs as ligands. This hybrid nanomaterial exhibits different spectroscopic properties from either free ligands or Si QDs alone. Possible mechanisms were discussed. This type of new functional Si QDs may find application potentials in bioimaging, photovoltaic, or optoelectronic devices.

Ji, Jianwei; Wang, Guan; You, Xiaozeng; Xu, Xiangxing

2014-08-01

51

Zeno Quantum Gates in Semiconductor Quantum Dots  

E-print Network

We propose a scheme for a two-qubit conditional phase gate by quantum Zeno effect with semiconductor quantum dots. The system consists of two charged dots and one ancillary dot that can perform Rabi oscillations under a resonant laser pulse. The quantum Zeno effect is induced by phonon-assisted exciton relaxation between the ancillary dot and the charged dots, which is equivalent to a continuous measurement. We solve analytically the master equation and simulate the dynamics of the system using a realistic set of parameters. In contrast to standard schemes, larger phonon relaxation rates increase the fidelity of the operations.

K. J. Xu; Y. P. Huang; M. G. Moore; C. Piermarocchi

2008-10-24

52

Synthesis of strongly green-photoluminescent graphene quantum dots for drug carrier.  

PubMed

A novel approach has been developed for the preparation of strongly green-photoluminescent graphene quantum dots (GQDs-PEG) which have been surface-passivated by polyethylene glycol. The photoluminescence (PL) quantum yield of the GQDs-PEG with 400 nm excitation was about 18.8%, which was higher than other GQDs reported in the literature. More importantly, the surface-passivated PEG on GQDs can not only enhance PL intensity but also load drug by hydrogen bonding. Moreover, the high specific surface area of GQDs-PEG endowed them high loading capability (2.5 mg/mg) to carry drug. The results demonstrated that the GQDs-PEG were suitable for drug carrier and cell imaging. PMID:23974005

Wang, Zonghua; Xia, Jianfei; Zhou, Chengfeng; Via, Brian; Xia, Yanzhi; Zhang, Feifei; Li, Yanhui; Xia, Linhua; Tang, Jie

2013-12-01

53

Size-controlled synthesis of ZnO quantum dots in microreactors  

NASA Astrophysics Data System (ADS)

In this paper, we report on a continuous-flow microreactor process to prepare ZnO quantum dots (QDs) with widely tunable particle size and photoluminescence emission wavelengths. X-ray diffraction, electron diffraction, UV-vis, photoluminescence and transmission electron microscopy measurements were used to characterize the synthesized ZnO QDs. By varying operating conditions (temperature, flow rate) or the capping ligand, ZnO QDs with diameters ranging from 3.6 to 5.2 nm and fluorescence maxima from 500 to 560 nm were prepared. Results obtained show that low reaction temperatures (20 or 35?°C), high flow rates and the use of propionic acid as a stabilizing agent are favorable for the production of ZnO QDs with high photoluminescence quantum yields (up to 30%).

Schejn, Aleksandra; Frégnaux, Mathieu; Commenge, Jean-Marc; Balan, Lavinia; Falk, Laurent; Schneider, Raphaël

2014-04-01

54

Si, Ge, and SiGe quantum wires and quantum dots  

NASA Astrophysics Data System (ADS)

This document is part of subvolume C3 'Optical Properties' of volume 34 'Semiconductor quantum structures' of Landolt-Börnstein, Group III, Condensed Matter, on the optical properties of quantum structures based on group IV semiconductors. It discusses Si, Ge, and SiGe quantum wire and quantum dot structures, the synthesis of quantum wires and quantum dots, and applications of SiGe quantum-dot structures as photodetectors, light-emitting diodes, for optical amplification and as Si quantum-dot memories.

Pearsall, T. P.

55

Aqueous synthesis of highly luminescent glutathione-capped Mn(2+)-doped ZnS quantum dots.  

PubMed

In this paper, an aqueous-based route has been developed to prepare highly luminescent glutathione (GSH)-capped Mn-doped ZnS quantum dots (QDs). The dots obtained have an average diameter of 4.3nm and exhibit the Mn(2+)-related orange luminescence with very low surface defect density. The highest photoluminescence was observed for a Mn(2+) to Zn(2+) molar ratio of 3%. Consecutive overcoating of the Mn:ZnS@GSH QDs by a ZnS shell was done, and the core/shell structured QDs exhibit a PL quantum yield of 23%. Transmission electron microscopy, X-ray powder diffraction, electron spin resonance, X-ray photoelectron spectroscopy, UV-visible spectroscopy and spectrofluorometry have been used to characterize the crystal structure, the doping status, and the optical properties of the doped-QDs. Our systematic investigation shows that Mn:ZnS/ZnS@GSH QDs are highly promising fluorescent labels in biological applications. PMID:25280675

Kolmykov, Oleksii; Coulon, Joël; Lalevée, Jacques; Alem, Halima; Medjahdi, Ghouti; Schneider, Raphaël

2014-11-01

56

Synthesis and optical properties of core/shell ternary/ternary CdZnSe/ZnSeS quantum dots  

NASA Astrophysics Data System (ADS)

In this paper we report on the synthesis of ternary/ternary alloyed CdZnSe/ZnSeS core/shell quantum dots (QDs) by embryonic nuclei-induced alloying process. We synthesized CdZnSe core QDs emitting in the spectral range of 530-607 nm with various Cd/Zn ratios, depending on the core synthesis temperature. By shelling ZnSeS on the CdZnSe core QDs, the average luminescence quantum yield is increased by a typical factor of 2 up to 17, which we attribute to the reduction of number of non-emitting QDs. The single-photon emitter micro-photoluminescence study showed that the CdZnSe/ZnSeS core/shell QDs are good single-photon emitters and their blinking properties were improved compared to the CdZnSe core QDs. Quantum yields up to 25% were measured for the core/shell samples, demonstrating the potential for high-quality ternary/ternary QDs fabrication.

Nguyen, Hai Yen; de Marcillac, Willy Daney; Lethiec, Clotilde; Phan, Ngoc Hong; Schwob, Catherine; Maître, Agnès; Nguyen, Quang Liem; Le, Van Vu; Bénalloul, Paul; Coolen, Laurent; Thu Nga, Pham

2014-07-01

57

Facile synthesis of soluble graphene quantum dots and its improved property in detecting heavy metal ions.  

PubMed

An effective approach to produce graphene quantum dots (GQDs) has been developed, which based on the cutting of graphene oxide (GO) powder into smaller pieces and being reduced by a green approach, using sodium polystyrene sulfonate (PSS) as a dispersant and l-ascorbic acid (l-AA) as the reducing agent, which is environmentally friendly. Then the as-prepared GQDs were further used for the detection of heavy metal ions Pb(2+). This kind of GQDs has greater solubility in water and is more biocompatible than GO that has been reduced by hydrazine hydrate. The few-layers of GQDs with defects and residual OH groups were shown to be particularly well suited for the determination of metal ions in the liquid phase using an electrochemical method, in which a remarkably low detection limit of 7×10(-9)M for Pb(2+) was achieved. PMID:24732395

Zhou, Chengfeng; Jiang, Wei; Via, Brian K

2014-06-01

58

An optically driven quantum dot quantum computer  

E-print Network

We propose a quantum computer structure based on coupled asymmetric single-electron quantum dots. Adjacent dots are strongly coupled by means of electric dipole-dipole interactions enabling rapid computation rates. Further, the asymmetric structures can be tailored for a long coherence time. The result maximizes the number of computation cycles prior to loss of coherence.

G. D. Sanders; K. W. Kim; W. C. Holton

1999-09-22

59

Quantum soldering of individual quantum dots.  

PubMed

Making contact to a quantum dot: Single quantum-dot electronic circuits are fabricated by wiring atomically precise metal chalcogenide clusters with conjugated molecular connectors. These wired clusters can couple electronically to nanoscale electrodes and be tuned to control the charge-transfer characteristics (see picture). PMID:23135896

Roy, Xavier; Schenck, Christine L; Ahn, Seokhoon; Lalancette, Roger A; Venkataraman, Latha; Nuckolls, Colin; Steigerwald, Michael L

2012-12-01

60

Synthesis of blue emitting InP/ZnS quantum dots through control of competition between etching and growth.  

PubMed

Blue (<480 nm) emitting Cd-free quantum dots (QDs) are in great demand for various applications. However, their synthesis has been challenging. Here we present blue emitting InP/ZnS core/shell QDs with a band edge emission of 475 nm and a full width at half maximum of 39 nm (215 meV) from their quantum confined states. The drastic temperature drop immediately after mixing of the precursors and holding them at a temperature below 150 °C was the critical factor for the synthesis of blue emitting QDs, because the blue QDs are formed by the etching of ultra-small InP cores by residual acetic acid below 150 °C. Etching was dominant at temperatures below 150?°C, whereas growth was dominant at temperatures above 150 °C. ZnS shells were formed successfully at 150 °C, yielding blue emitting InP/ZnS QDs. The colour of the InP/ZnS QDs depicted on the CIE 1931 chromaticity diagram is located close to the edge, indicating a pure blue colour compared to other InP-based QDs. PMID:23138715

Lim, Kipil; Jang, Ho Seong; Woo, Kyoungja

2012-12-01

61

Synthesis of blue emitting InP/ZnS quantum dots through control of competition between etching and growth  

NASA Astrophysics Data System (ADS)

Blue (<480 nm) emitting Cd-free quantum dots (QDs) are in great demand for various applications. However, their synthesis has been challenging. Here we present blue emitting InP/ZnS core/shell QDs with a band edge emission of 475 nm and a full width at half maximum of 39 nm (215 meV) from their quantum confined states. The drastic temperature drop immediately after mixing of the precursors and holding them at a temperature below 150?°C was the critical factor for the synthesis of blue emitting QDs, because the blue QDs are formed by the etching of ultra-small InP cores by residual acetic acid below 150?°C. Etching was dominant at temperatures below 150?°C, whereas growth was dominant at temperatures above 150?°C. ZnS shells were formed successfully at 150?°C, yielding blue emitting InP/ZnS QDs. The colour of the InP/ZnS QDs depicted on the CIE 1931 chromaticity diagram is located close to the edge, indicating a pure blue colour compared to other InP-based QDs.

Lim, Kipil; Jang, Ho Seong; Woo, Kyoungja

2012-12-01

62

Electrochromic Nanocrystal Quantum Dots  

NASA Astrophysics Data System (ADS)

The optical properties of colloidal semiconductor nanocrystal quantum dots can be tuned by an electrochemical potential. The injection of electrons into the Lowest Unoccupied Quantum Confined Orbital (LUQCO) leads to an extraordinary electrochromic response with novel characteristics. These include a strong size-tunable mid-infrared absorption corresponding to an intraband transition, a bleach of the visible interband exciton transitions and a quench of the narrow band-edge photoluminescence. Reversible switching of these optical properties of nanocrystals by the convenient electrochemical method has been demonstrated for the first time. This approach opens the road to a new class of electrochromic materials with unique properties that may find applications in infrared communication, "night-vision," and display technology. More broadly, the redox properties of molecules have been extended to semiconductor "artificial atoms."

Wang, Congjun; Shim, Moonsub; Guyot-Sionnest, Philippe

2001-03-01

63

Infrared emitting and photoconducting colloidal silver chalcogenide nanocrystal quantum dots from a silylamide-promoted synthesis.  

PubMed

Here, we present a hot injection synthesis of colloidal Ag chalcogenide nanocrystals (Ag(2)Se, Ag(2)Te, and Ag(2)S) that resulted in exceptionally small nanocrystal sizes in the range between 2 and 4 nm. Ag chalcogenide nanocrystals exhibit band gap energies within the near-infrared spectral region, making these materials promising as environmentally benign alternatives to established infrared active nanocrystals containing toxic metals such as Hg, Cd, and Pb. We present Ag(2)Se nanocrystals in detail, giving size-tunable luminescence with quantum yields above 1.7%. The luminescence, with a decay time on the order of 130 ns, was shown to improve due to the growth of a monolayer thick ZnSe shell. Photoconductivity with a quantum efficiency of 27% was achieved by blending the Ag(2)Se nanocrystals with a soluble fullerene derivative. The co-injection of lithium silylamide was found to be crucial to the synthesis of Ag chalcogenide nanocrystals, which drastically increased their nucleation rate even at relatively low growth temperatures. Because the same observation was made for the nucleation of Cd chalcogenide nanocrystals, we conclude that the addition of lithium silylamide might generally promote wet-chemical synthesis of metal chalcogenide nanocrystals, including in as-yet unexplored materials. PMID:21500803

Yarema, Maksym; Pichler, Stefan; Sytnyk, Mykhailo; Seyrkammer, Robert; Lechner, Rainer T; Fritz-Popovski, Gerhard; Jarzab, Dorota; Szendrei, Krisztina; Resel, Roland; Korovyanko, Oleksandra; Loi, Maria Antonietta; Paris, Oskar; Hesser, Günter; Heiss, Wolfgang

2011-05-24

64

Efficient Quantum Dot-Quantum Dot and Quantum Dot-Dye Energy Transfer in Biotemplated Assemblies  

PubMed Central

CdSe semiconductor nanocrystal quantum dots are assembled into nanowire-like arrays employing microtubule fibers as nanoscale molecular “scaffolds.” Spectrally and time-resolved energy-transfer analysis is used to assess the assembly of the nanoparticles into the hybrid inorganic-biomolecular structure. Specifically, we demonstrate that a comprehensive study of energy transfer between quantum-dot pairs on the biotemplate, and, alternatively, between quantum dots and molecular dyes embedded in the microtubule scaffold, comprises a powerful spectroscopic tool for evaluating the assembly process. In addition to revealing the extent to which assembly has occurred, the approach allows determination of particle-to-particle (and particle-to-dye) distances within the bio-mediated array. Significantly, the characterization is realized in situ, without need for further sample workup or risk of disturbing the solution-phase constructs. Furthermore, we find that the assemblies prepared in this way exhibit efficient quantum dot-quantum dot and quantum dot-dye energy transfer that affords faster energy-transfer rates compared to densely packed quantum dot arrays on planar substrates and small-molecule-mediated quantum dot/dye couples, respectively. PMID:21314178

Achermann, Marc; Jeong, Sohee; Balet, Laurent; Montano, Gabriel A.; Hollingsworth, Jennifer A.

2011-01-01

65

Quantum Dot Applications forQuantum Dot Applications for Flash Memory, SemiconductorFlash Memory, Semiconductor  

E-print Network

1 Quantum Dot Applications forQuantum Dot Applications for Flash Memory, SemiconductorFlash Memory cell #12;3 5 Quantum dots and highQuantum dots and high--K tunnelingK tunneling oxide reduce size and quantum dots 6 HighHigh--K tunneling layerK tunneling layer Replace current materials with a high

Lightsey, Glenn

66

Novel synthesis of ?-cyclodextrin functionalized CdTe quantum dots as luminescent probes  

NASA Astrophysics Data System (ADS)

A novel, inexpensive procedure for the preparation of highly fluorescent and water-soluble CdTe quantum dots (QDs) using ?-cyclodextrin (?-CD) as surface-coating agents was fabricated through the substitution reaction at the C-6 position of mono-6-deoxy-6-(p-tolylsulfonyl)-cyclodextrin (6-TsO-?-CD) by the sbnd NH2 of (3-aminopropyl)triethoxysilane-coated CdTe QDs (APTES/CdTe QDs) under mild conditions. X-ray powder diffraction (XRD), Fourier transform infrared spectra (FT-IR), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), ultraviolet and visible (UV-vis) spectrophotometer, and fluorescence (FL) spectrophotometer were used to characterize the obtained nanoparticles, which proved that the CdTe QDs have been effectively modified by ?-CD. The quantum yields (QYs) of CdTe QDs, APTES/CdTe QDs and ?-CD/APTES/CdTe QDs in water comparative to Rhodamine 6G were about 17%, 12%, and 9%, respectively. A pair of isomer o,p'-DDT and p,p'-DDT was chosen as the template molecules to evaluate the molecular recognition properties of ?-CD/APTES/CdTe QDs. The results revealed that ?-CD/APTES/CdTe QDs simultaneously possessed unique optical properties of QDs and excellent molecules recognition ability of ?-CD through combining their individual distinct advantages.

Chen, Xiao-Feng; Zhou, Min; Chang, Yan-Ping; Ren, Cui-Ling; Chen, Hong-Li; Chen, Xing-Guo

2012-12-01

67

Compact biocompatible quantum dots via RAFT-mediated synthesis of imidazole-based random copolymer ligand  

PubMed Central

We present a new class of polymeric ligands for quantum dot (QD) water solubilization to yield biocompatible and derivatizable QDs with compact size (~10-12 nm diameter), high quantum yields (>50%), excellent stability across a large pH range (pH 5-10.5), and low nonspecific binding. To address the fundamental problem of thiol instability in traditional ligand exchange systems, the polymers here employ a stable multidentate imidazole binding motif to the QD surface. The polymers are synthesized via reversible addition-fragmentation chain transfer (RAFT)-mediated polymerization to produce molecular weight controlled monodisperse random copolymers from three types of monomers that feature imidazole groups for QD binding, polyethylene glycol (PEG) groups for water solubilization, and either primary amines or biotin groups for derivatization. The polymer architecture can be tuned by the monomer ratios to yield aqueous QDs with targeted surface functionalities. By incorporating amino-PEG monomers, we demonstrate covalent conjugation of a dye to form a highly efficient QD-dye energy transfer pair as well as covalent conjugation to streptavidin for high-affinity single molecule imaging of biotinylated receptors on live cells with minimal non-specific binding. The small size and low serum binding of these polymer-coated QDs also allow us to demonstrate their utility for in-vivo imaging of the tumor microenvironment in live mice. PMID:20025223

Liu, Wenhao; Greytak, Andrew B.; Lee, Jungmin; Wong, Cliff R.; Park, Jongnam; Marshall, Lisa F.; Jiang, Wen; Curtin, Peter N.; Ting, Alice Y.; Nocera, Daniel G.; Fukumura, Dai; Jain, Rakesh K.; Bawendi, Moungi G.

2010-01-01

68

Biodetection using fluorescent quantum dots  

NASA Astrophysics Data System (ADS)

Multi-pathogen biosensors that take advantage of sandwich immunoassay detection schemes and utilize conventional fluorescent dye reporter molecules are difficult to make into extremely compact and autonomous packages. The development of a multi-pathogen, immunoassay-based, fiber optic detector that utilizes varying sized fluorescent semiconductor quantum dots (QDs) as the reporter labels has the potential to overcome these problems. In order to develop such a quantum dot-based biosensor, it is essential to demonstrate that QDs can be attached to antibody proteins, such that the specificity of the antibody is maintained. We have been involved in efforts to develop a reproducible method for attaching QDs to antibodies for use in biodetection applications. We have synthesized CdSe/ZnS core-shell QDs of differing size, functionalized their surfaces with several types of organic groups for water solubility, and covalently attached these functionalized QDs to rabbit anti-ovalbumin antibody protein. We also demonstrated that these labeled antibodies exhibit selective binding to ovalbumin antigen. We characterized the QDs at each step in the overall synthesis by UV-VIS absorption spectroscopy and by picosecond (psec) transient photoluminescence (TPL) spectroscopy. TPL spectroscopy measurements indicate that QD lifetime depends on the size of the QD, the intensity of the optical excitation source, and whether or not they are functionalized and conjugated to antibodies. We describe details of these experiments and discuss the impact of our results on our biosensor development program.

Speckman, Donna M.; Jennings, Travis L.; LaLumondiere, Steven D.; Klimcak, Charles M.; Moss, Steven C.; Loper, Gary L.; Beck, Steven M.

2002-07-01

69

Self-assembly Drives Quantum Dot Photoluminescence  

Microsoft Academic Search

Engineering the spectral properties of quantum dots can be achieved by a control of the quantum dots organization on a substrate.\\u000a Indeed, many applications of quantum dots as LEDs are based on the realization of a 3D architecture of quantum dots. In this\\u000a contribution, we present a systematic study of the quantum dot organization obtained on different chemically modified substrates.

J. Plain; Y. Sonnefraud; P. Viste; G. Lérondel; S. Huant; P. Royer

2009-01-01

70

Hybrid organic/quantum dot thin film structures and devices  

E-print Network

Organic light emitting diodes have undergone rapid advancement over the course of the past decade. Similarly, quantum dot synthesis has progressed to the point that room temperature highly efficient photoluminescence can ...

Coe-Sullivan, Seth (Seth Alexander)

2005-01-01

71

Synthesis and application of intercellular Ca2+-sensitive fluorescent probe based on quantum dots.  

PubMed

A novel Ca(2+)-sensitive fluorescent probe was synthesized and characterized with a coupled method that coupled di[2-(N,N-dicarboxylmethyl)amino]ethyl ether (EGTA) to the surface of mercaptoethylamine-modified CdTe quantum dots (CdTe/MA-EGTA QDs). The application of this probe to detect intercellular Ca(2+) change in the leaf cells of Arabidopsis thaliana was studied. Results from transmission electron micrographs showed that the particle size of CdTe/MA-EGTA was about 3-4 nm; the fluorescent spectrum indicated that the excitation spectral ranged from 350 to 490 nm with a narrow and symmetric emission spectral peak at 565 nm when excited by 400 nm, and capillary electrophoresis demonstrated that CdTe/MA-EGTA was obtained by a coupling reaction. When the detected conditions were set as an excitation wavelength of 514 nm and detection wavelength of 561-604 nm, the increase of Ca(2+) in A. thaliana leaf cells and the rapidly quenching effect of fluorescence signal induced by exogenous treatment of jasmonate acid (JA) could be measured using laser scanning confocal microscopy. The quenching rate of traditional Ca(2+)-sensitive fluorescent probe Fluo-3 reached about 80% within a minute when exciting at 488 nm, which was much faster than the novel fluorescent probe CdTe/MA-EGTA. CdTe/MA-EGTA, however, was better at resisting photo bleaching and was more suitable for long-term tracking and monitoring than Fluo-3. PMID:23123337

Xia, Jinzhi; Yu, Ying; Liao, Qiumei; Cao, Yujuan; Lin, Bixia; Hu, Xiaogang; Wu, Jianzhong

2013-01-01

72

One-step colloidal synthesis of biocompatible water-soluble ZnS quantum dot/chitosan nanoconjugates  

PubMed Central

Quantum dots (QDs) are luminescent semiconductor nanocrystals with great prospective for use in biomedical and environmental applications. Nonetheless, eliminating the potential cytotoxicity of the QDs made with heavy metals is still a challenge facing the research community. Thus, the aim of this work was to develop a novel facile route for synthesising biocompatible QDs employing carbohydrate ligands in aqueous colloidal chemistry with optical properties tuned by pH. The synthesis of ZnS QDs capped by chitosan was performed using a single-step aqueous colloidal process at room temperature. The nanobioconjugates were extensively characterised by several techniques, and the results demonstrated that the average size of ZnS nanocrystals and their fluorescent properties were influenced by the pH during the synthesis. Hence, novel 'cadmium-free’ biofunctionalised systems based on ZnS QDs capped by chitosan were successfully developed exhibiting luminescent activity that may be used in a large number of possible applications, such as probes in biology, medicine and pharmacy. PMID:24308633

2013-01-01

73

One-step colloidal synthesis of biocompatible water-soluble ZnS quantum dot/chitosan nanoconjugates  

NASA Astrophysics Data System (ADS)

Quantum dots (QDs) are luminescent semiconductor nanocrystals with great prospective for use in biomedical and environmental applications. Nonetheless, eliminating the potential cytotoxicity of the QDs made with heavy metals is still a challenge facing the research community. Thus, the aim of this work was to develop a novel facile route for synthesising biocompatible QDs employing carbohydrate ligands in aqueous colloidal chemistry with optical properties tuned by pH. The synthesis of ZnS QDs capped by chitosan was performed using a single-step aqueous colloidal process at room temperature. The nanobioconjugates were extensively characterised by several techniques, and the results demonstrated that the average size of ZnS nanocrystals and their fluorescent properties were influenced by the pH during the synthesis. Hence, novel 'cadmium-free' biofunctionalised systems based on ZnS QDs capped by chitosan were successfully developed exhibiting luminescent activity that may be used in a large number of possible applications, such as probes in biology, medicine and pharmacy.

Ramanery, Fábio P.; Mansur, Alexandra AP; Mansur, Herman S.

2013-12-01

74

Synthesis of N-acetyl-L-cysteine-capped ZnCdSe quantum dots via hydrothermal method and their characterization  

NASA Astrophysics Data System (ADS)

Compared with the most studied green-red emitting (530-650 nm) quantum dots (QDs), the preparation of short-wavelength-emitting QDs remains difficult. Besides, one of the representative short-wavelength QDs materials, ZnCdSe, has a shortcoming of high content of toxic cadmium metal. In this paper, we report the synthesis of high-quality water-soluble ZnCdSe QDs via optimized one-step hydrothermal method with a new thiol as ligand, within a short time of 65 min. The emission wavelength of prepared QDs is tunable in the range of 425-540 nm by merely controlling the molar ratio of Cd:Zn or Se:Zn, and the quantum yield reaches 35%. More importantly, the maximum Cd:Zn molar ratio has been reduced to 0.04:1.0, much lower than that reported in the literature (0.5:1.0), resulting in excellent biological compatibility of prepared QDs and thus their promising applications in biological fields. Moreover, the transmission electron microscopy was employed to examine the effect of Cd:Zn ratio on the size of prepared ZnCdSe QDs, which were also characterized by x-ray photoelectron spectroscopy and electron diffraction spectroscopy.

Gao, Fang; Liu, Yuying; Fan, Yao; Zhao, Dan

2014-10-01

75

Large-scale synthesis of high-quality metal sulfide semiconductor quantum dots with tunable surface-plasmon resonance frequencies.  

PubMed

High-quality CdS and Cu(7)S(4) quantum dots (QDs) were synthesized with N,N-dibutylthiourea (DBTU) as an organic sulfur source. In this method, nucleation and growth reactions were controlled simply by the heating rate of the reaction. The mild oxidation conditions gave monodisperse CdS QDs exhibiting pure band-edge emission with relatively high photoluminescence quantum yield. During the synthesis of Cu(7)S(4) QDs, the addition of dodecanethiol to the reaction system controlled the reaction rate to give monodisperse spherical or disk-shaped QDs. A hundred-gram scale of copper precursor could be used to generate the high-quality Cu(7)S(4) QDs, indicating that an industrial-scale reaction is achievable with our method. As observed in anisotropic noble-metal nanocrystals, larger disk-shaped Cu(7)S(4) QDs showed lower localized-surface-plasmon resonance energy in the near-infrared region. The disk-shaped Cu(7)S(4) QDs could be used effectively as templates to form cation-exchanged monodisperse disk-shaped CdS QDs. PMID:22733435

Kanehara, Masayuki; Arakawa, Hisamitsu; Honda, Tetsuya; Saruyama, Masaki; Teranishi, Toshiharu

2012-07-23

76

Negative U Molecular Quantum Dot  

Microsoft Academic Search

While the correlated transport in mesoscopic systems with repulsive electron-electron correlations received considerable attention\\u000a in the past, and continues to be the focus of intense investigations, much less has been known about a role of attractive correlations in molecular nanowires and quantum dots. Here a negative-U Hubbard model of a d -fold degenerate quantum dot is reviewed. The attractive electron

A. S. Alexandrov

77

Quantum dot sensitized solar cells  

Microsoft Academic Search

Metal sulfide (CdS or PbS) quantum dots were synthesized in nanoporous TiO2 films for applications in solar energy conversion devices. Several electrolytes were investigated for the functioning redox activity in sandwich type regenerative solar cells, based on the quantum dots sensitized TiO2 film. A high IPCE was attained by optimizing the polysulfide electrolyte composition. The CdS QD shows a higher

Y. Tachibana; H. Y. Akiyama; K. Umekita; Y. Otsuka; T. Torimoto; S. Kuwabata

2008-01-01

78

Quantum buses and quantum computer architecture based on quantum dots  

E-print Network

We propose a quantum computer architecture based on quantum dots both for short distance and for long distance communication/computation. Our scheme exploits the natural characteristics of self-assembled quantum dots and it is scalable. It is centered on the idea of a quantum bus based on semiconductor self-assembled quantum dots. This allows for transmission of qubits between the different quantum registers, and could be integrated in most of the present proposal for semiconductor quantum dot-based quantum computation. Our proposal exploits the peculiar properties of {\\it relatively short} spin-chains, and advantages and disadvantages of two possible implementations, both based on spin-chain global dynamics, are discussed in details. A clear advantage of the scheme is to avoid the use of microcavities for long distance communication between different elements of the quantum computer. In this respect our scheme is comparatively faster than hybrid quantum dot-microcavity schemes.

Irene D'Amico

2005-11-18

79

Quantum Dots in a Polymer Composite: A Convenient Particle-in-a-Box Laboratory Experiment  

ERIC Educational Resources Information Center

Semiconductor quantum dots are at the forefront of materials science chemistry with applications in biological imaging and photovoltaic technologies. We have developed a simple laboratory experiment to measure the quantum-dot size from fluorescence spectra. A major roadblock of quantum-dot based exercises is the particle synthesis and handling;…

Rice, Charles V.; Giffin, Guinevere A.

2008-01-01

80

Synthesis of colloidal Mn2+:ZnO quantum dots and high-TC ferromagnetic nanocrystalline thin films.  

PubMed

We report the synthesis of colloidal Mn(2+)-doped ZnO (Mn(2+):ZnO) quantum dots and the preparation of room-temperature ferromagnetic nanocrystalline thin films. Mn(2+):ZnO nanocrystals were prepared by a hydrolysis and condensation reaction in DMSO under atmospheric conditions. Synthesis was monitored by electronic absorption and electron paramagnetic resonance (EPR) spectroscopies. Zn(OAc)(2) was found to strongly inhibit oxidation of Mn(2+) by O(2), allowing the synthesis of Mn(2+):ZnO to be performed aerobically. Mn(2+) ions were removed from the surfaces of as-prepared nanocrystals using dodecylamine to yield high-quality internally doped Mn(2+):ZnO colloids of nearly spherical shape and uniform diameter (6.1 +/- 0.7 nm). Simulations of the highly resolved X- and Q-band nanocrystal EPR spectra, combined with quantitative analysis of magnetic susceptibilities, confirmed that the manganese is substitutionally incorporated into the ZnO nanocrystals as Mn(2+) with very homogeneous speciation, differing from bulk Mn(2+):ZnO only in the magnitude of D-strain. Robust ferromagnetism was observed in spin-coated thin films of the nanocrystals, with 300 K saturation moments as large as 1.35 micro(B)/Mn(2+) and T(C) > 350 K. A distinct ferromagnetic resonance signal was observed in the EPR spectra of the ferromagnetic films. The occurrence of ferromagnetism in Mn(2+):ZnO and its dependence on synthetic variables are discussed in the context of these and previous theoretical and experimental results. PMID:15281831

Norberg, Nick S; Kittilstved, Kevin R; Amonette, James E; Kukkadapu, Ravi K; Schwartz, Dana A; Gamelin, Daniel R

2004-08-01

81

Transport through graphene quantum dots  

NASA Astrophysics Data System (ADS)

We review transport experiments on graphene quantum dots and narrow graphene constrictions. In a quantum dot, electrons are confined in all lateral dimensions, offering the possibility for detailed investigation and controlled manipulation of individual quantum systems. The recently isolated two-dimensional carbon allotrope graphene is an interesting host to study quantum phenomena, due to its novel electronic properties and the expected weak interaction of the electron spin with the material. Graphene quantum dots are fabricated by etching mono-layer flakes into small islands (diameter 60-350 nm) with narrow connections to contacts (width 20-75 nm), serving as tunneling barriers for transport spectroscopy. Electron confinement in graphene quantum dots is observed by measuring Coulomb blockade and transport through excited states, a manifestation of quantum confinement. Measurements in a magnetic field perpendicular to the sample plane allowed to identify the regime with only a few charge carriers in the dot (electron-hole transition), and the crossover to the formation of the graphene specific zero-energy Landau level at high fields. After rotation of the sample into parallel magnetic field orientation, Zeeman spin splitting with a g-factor of g ? 2 is measured. The filling sequence of subsequent spin states is similar to what was found in GaAs and related to the non-negligible influence of exchange interactions among the electrons.

Güttinger, J.; Molitor, F.; Stampfer, C.; Schnez, S.; Jacobsen, A.; Dröscher, S.; Ihn, T.; Ensslin, K.

2012-12-01

82

Synthesis, solubilization, and surface functionalization of highly fluorescent quantum dots for cellular targeting through a small molecule  

NASA Astrophysics Data System (ADS)

To achieve long-term fluorescence imaging with quantum dots (QDs), a CdSe core/shell must first be synthesized. The synthesis of bright CdSe QDs is not trivial and as a consequence, the role of surfactant in nucleation and growth was investigated. It was found that the type of surfactant used, either phosphonic or fatty acid, played a pivotal role in the size of the CdSe core. The study of surfactant on CdSe synthesis, ultimately led to an electrical passivation method that utilized a short-chained phosphonic acid and highly reactive organometallic precursors to achieve high quantum yield (QY) as has been previously described. The synthesis of QDs using organometallic precursors and a phosphonic acid for passivation resulted in 4 out of 9 batches of QDs achieving QYs greater than 50% and 8 out of 9 batches with QYs greater than 35%. The synthesis of CdSe QDs was done in organic solutions rendering the surface of the particle hydrophobic. To perform cell-targeting experiments, QDs must be transferred to water. The transfer of QDs to water was successfully accomplished by using single acyl chain lipids. A systematic study of different lipid combinations and coatings demonstrated that 20-40 mol% single acyl chained lipids were able to transfer QDs to water resulting in monodispersed, stable QDs without adversely affecting the QY. The advantage to water solubilization using single acyl chain lipids is that the QD have a hydrodynamic radius less than 15 nm, QYs that can exceed 50% and additional surface functionalization can be down using the reactive sites incorporated into the lipid bilayer. QDs that are bright and stable in water were studied for the purpose of targeting G protein-coupled Receptors (GPCR). GPCRs are transmembrane receptors that internalize extracellular cues, and thus mediate signal transduction. The cyclic Adenosine Monophosphate Receptor 1 of the model organism Dictyostelium disodium was the receptor of interest. The Halo protein, a genetically modified dehalogenase, was added to the N-terminus of the cAR1 receptor without resulting in a phenotype. The Halo protein fused to cAR1 was then shown to bind an organic fluorophore by the cleavage of a chloroalkane bond. Though QDs functionalized with a chloroalkane were able to bind free Halo protein, no specific binding to the Halo protein fused to cAR1 was observed.

Galloway, Justin F.

83

Facile synthesis of CuInGaS2 quantum dot nanoparticles for bilayer-sensitized solar cells.  

PubMed

CuIn0.7Ga0.3S2 quantum dots (QDs) with particle size of 2-5 nm were directly synthesised by a vacuum one-pot-nanocasting process and homogeneously anchored on TiO2 nanocrystals (<50 nm) for the first time. We further present CuIn0.7Ga0.3S2 quantum dots and dye bilayer-sensitized solar cells with a power conversion efficiency 36.3% higher than mono-dye sensitized solar cells. PMID:25300426

Zhao, Jinjin; Zhang, Jiangbin; Wang, Wenna; Wang, Peng; Li, Feng; Ren, Deliang; Si, Huanyan; Sun, Xiuguo; Ji, Fengqiu; Hao, Yanzhong

2014-10-22

84

Green route synthesis of high quality CdSe quantum dots for applications in light emitting devices  

NASA Astrophysics Data System (ADS)

Investigation was made on light emitting diodes fabricated using CdSe quantum dots. CdSe quantum dots were synthesized chemically using olive oil as the capping agent, instead of toxic phosphine. Room temperature photoluminescence investigation showed sharp 1st excitonic emission peak at 568 nm. Bi-layer organic/inorganic (P3HT/CdSe) hybrid light emitting devices were fabricated by solution process. The electroluminescence study showed low turn on voltage (˜2.2 V) .The EL peak intensity was found to increase by increasing the operating current.

Bera, Susnata; Singh, Shashi B.; Ray, S. K.

2012-05-01

85

Solvothermal, Chloroalkoxide-based Synthesis of Monoclinic WO3 Quantum Dots and Gas-Sensing Enhancement by Surface Oxygen Vacancies.  

PubMed

We report for the first time the synthesis of monoclinic WO3 quantum dots. A solvothermal processing at 250 °C in oleic acid of W chloroalkoxide solutions was employed. It was shown that the bulk monoclinic crystallographic phase is the stable one even for the nanosized regime (mean size 4 nm). The nanocrystals were characterized by X-ray diffraction, High resolution transmission electron microscopy, X-ray photoelectron spectroscopy, UV-vis, Fourier transform infrared and Raman spectroscopy. It was concluded that they were constituted by a core of monoclinic WO3, surface covered by unstable W(V) species, slowly oxidized upon standing in room conditions. The WO3 nanocrystals could be easily processed to prepare gas-sensing devices, without any phase transition up to at least 500 °C. The devices displayed remarkable response to both oxidizing (nitrogen dioxide) and reducing (ethanol) gases in concentrations ranging from 1 to 5 ppm and from 100 to 500 ppm, at low operating temperatures of 100 and 200 °C, respectively. The analysis of the electrical data showed that the nanocrystals were characterized by reduced surfaces, which enhanced both nitrogen dioxide adsorption and oxygen ionosorption, the latter resulting in enhanced ethanol decomposition kinetics. PMID:25211288

Epifani, Mauro; Comini, Elisabetta; Díaz, Raül; Andreu, Teresa; Genç, Aziz; Arbiol, Jordi; Siciliano, Pietro; Faglia, Guido; Morante, Joan R

2014-10-01

86

Green and facile synthesis of water-soluble Cu-In-S/ZnS core/shell quantum dots.  

PubMed

Water-soluble Cu-In-S/ZnS core/shell quantum dots with a photoluminescence quantum yield up to 38% and an emission peak tunable from 543 to 625 nm have been successfully synthesized. All of the synthetic procedures were conducted in an aqueous solution at 95 °C under open-air conditions. L-Glutathione and sodium citrate were used as the dual stabilizing agents to balance the reactivity between copper and indium ions. PMID:23805901

Chen, Yanyan; Li, Shenjie; Huang, Lijian; Pan, Daocheng

2013-07-15

87

All inorganic colloidal quantum dot LEDs  

E-print Network

This thesis presents the first colloidal quantum dot light emitting devices (QD-LEDs) with metal oxide charge transport layers. Colloidally synthesized quantum dots (QDs) have shown promise as the active material in ...

Wood, Vanessa Claire

2007-01-01

88

Clocked molecular quantum-dot cellular automata  

Microsoft Academic Search

Quantum-dot cellular automata (QCA) is an approach to computing that eliminates the need for current switches by representing binary information as the configuration of charge among quantum dots. For molecular QCA, redox sites of molecules serve as the quantum dots. The Coulomb interaction between neighboring molecules provides device-device coupling. By introducing clocked control of the QCA cell, power gain, reduced

Craig S. Lent; Beth Isaksen

2003-01-01

89

Nanometer Distance Measurements between Multicolor Quantum Dots  

E-print Network

Nanometer Distance Measurements between Multicolor Quantum Dots Josh Antelman, Connie Wilking at Los Angeles, Los Angles, California 90095 Received April 10, 2009 ABSTRACT Quantum dot dimers made of short double-stranded DNA molecules labeled with different color quantum dots at each end were imaged

Michalet, Xavier

90

Probing the Cytotoxicity of Semiconductor Quantum Dots  

E-print Network

Probing the Cytotoxicity of Semiconductor Quantum Dots Austin M. Derfus, Warren C. W. Chan With their bright, photostable fluorescence, semiconductor quantum dots (QDs) show promise as alternativesSe-core quantum dots are an example of a nanomaterial that has been shown to be useful as an alternative

Bhatia, Sangeeta

91

Spin pumping through quantum dots  

NASA Astrophysics Data System (ADS)

We propose schemes for generating spin currents into a semiconductor by adiabatic or non-adiabatic pumping of electrons through interacting quantum dots. The appeal of such schemes lies in the possibility to tune the pumping characteristics via gate voltages that control the properties of the quantum dot. The calculations are based on a systematic perturbation expansion in the tunnel-coupling strength and the pumping frequency, expressed within a diagrammatic real-time technique. Special focus is put on the possibility of pure spin pumping, i.e., of pumping spin currents without charge currents.

Rojek, Stephan; Governale, Michele; König, Jürgen

2014-09-01

92

POSSIBLE DEFINTION OF QUANTUM BITS IN COUPLED QUANTUM DOTS  

E-print Network

POSSIBLE DEFINTION OF QUANTUM BITS IN COUPLED QUANTUM DOTS Robert H. Blick and Heribert Lorenz, 80539 Munich, Germany. ABSTRACT In this work we investigate laterally defined quantum dots confined interaction in these artificial molecules. We probe the wave function entanglement of two coupled quantum dots

Ludwig-Maximilians-Universität, München

93

Quantum phase transition in a single-molecule quantum dot  

E-print Network

LETTERS Quantum phase transition in a single-molecule quantum dot Nicolas Roch1 , Serge Florens1 demonstrate this possibility in a single-molecule quantum dot, where a gate voltage induces a crossing of two dif- ferent types of electron spin state (singlet and triplet) at zero magnetic field. The quantum dot

Canet, Léonie

94

Microstructure-controlled aerosol-gel synthesis of ZnO quantum dots dispersed in SiO2 nanospheres.  

PubMed

ZnO quantum dots dispersed in a silica matrix were synthesized from a TEOS:Zn(NO(3))(2) solution by a one-step aerosol-gel method. It was demonstrated that the molar concentration ratio of Zn to Si (Zn/Si) in the aqueous solution was an efficient parameter with which to control the size, the degree of agglomeration, and the microstructure of ZnO quantum dots (QDs) in the SiO(2) matrix. When Zn/Si ? 0.5, unaggregated quantum dots as small as 2 nm were distributed preferentially inside SiO(2) spheres. When Zn/Si ? 1.0, however, ZnO QDs of ?7 nm were agglomerated and reached the SiO(2) surface. When decreasing the ratio of the Zn/Si, a blue shift in the band gap of ZnO was observed from the UV/Visible absorption spectra, representing the quantum size effect. The photoluminescence emission spectra at room temperature denoted two wide peaks of deep-level defect-related emissions at 2.2-2.8 eV. When decreasing Zn/Si, the first peak at ?2.3 eV was blue-shifted in keeping with the decrease in the size of the QDs. Interestingly, the second visible peak at 2.8 eV disappeared in the surface-exposed ZnO QDs when Zn/Si ? 1.0. PMID:22221080

Firmansyah, Dudi Adi; Kim, Sang-Gyu; Lee, Kwang-Sung; Zahaf, Riyan; Kim, Yong Ho; Lee, Donggeun

2012-02-01

95

Low temperature synthesis of ZnS and CdZnS shells on CdSe quantum dots.  

PubMed

Methods for synthesizing quantum dots generally rely on very high temperatures to both nucleate and grow core and core-shell semiconductor nanocrystals. In this work, we generate highly monodisperse ZnS and CdZnS shells on CdSe semiconductor nanocrystals at temperatures as low as 65 degrees C by enhancing the precursor solubility. Relatively small amounts of trioctylphosphine and trioctylphosphine oxide have marked effects on the solubility of the metal salts used to form shells; their inclusion in the precursor solutions, which use thiourea as a sulfur source, can lead to homogeneous and fully dissolved solutions. Upon addition to suspensions of quantum dot cores, these precursors deposit as uniform shells; the lowest temperature for shell growth (65 degrees C) yields the thinnest shells (d < 1 nm) while the same process at higher temperatures (180 degrees C) forms thicker shells (d approximately 1-2 nm). The growth of the shell structures, average particle size, size distribution, and shape were examined using optical spectroscopy, transmission electron microscopy, x-ray diffraction, and transmittance small angle x-ray scattering. The photoluminescence quantum yield (QY) of the as-prepared CdSe/ZnS quantum dots ranged from 26% to 46% as compared to 10% for the CdSe cores. This method was further generalized to CdZnS shells by mixing cadmium and zinc acetate precursors. The CdSe/CdZnS nanocrystals have a thicker shell and higher QY (40% versus 36%) as compared to the CdSe/ZnS prepared under similar conditions. These low temperature methods for shell growth are readily amenable to scale-up and can provide a route for economical and less energy intensive production of quantum dots. PMID:20516578

Zhu, Huiguang; Prakash, Arjun; Benoit, Denise N; Jones, Christopher J; Colvin, Vicki L

2010-06-25

96

Synthesis and application of luminescent single CdS quantum dot encapsulated silica nanoparticles directed for precision optical bioimaging  

PubMed Central

This paper presents the synthesis of aqueous cadmium sulfide (CdS) quantum dots (QDs) and silica-encapsulated CdS QDs by reverse microemulsion method and utilized as targeted bio-optical probes. We report the role of CdS as an efficient cell tag with fluorescence on par with previously documented cadmium telluride and cadmium selenide QDs, which have been considered to impart high levels of toxicity. In this study, the toxicity of bare QDs was efficiently quenched by encapsulating them in a biocompatible coat of silica. The toxicity profile and uptake of bare CdS QDs and silica-coated QDs, along with the CD31-labeled, silica-coated CdS QDs on human umbilical vein endothelial cells and glioma cells, were investigated. The effect of size, along with the time-dependent cellular uptake of the nanomaterials, has also been emphasized. Enhanced, high-specificity imaging toward endothelial cell lines in comparison with glioma cells was achieved with CD31 antibody-conjugated nanoparticles. The silica-coated nanomaterials exhibited excellent biocompatibility and greater photostability inside live cells, in addition to possessing an extended shelf life. In vivo biocompatibility and localization study of silica-coated CdS QDs in medaka fish embryos, following direct nanoparticle exposure for 24 hours, authenticated the nanomaterials’ high potential for in vivo imaging, augmented with superior biocompatibility. As expected, CdS QD-treated embryos showed 100% mortality, whereas the silica-coated QD-treated embryos stayed viable and healthy throughout and after the experiments, devoid of any deformities. We provide highly cogent and convincing evidence for such silica-coated QDs as a model nanoparticle in practice, to achieve in vitro and in vivo precision targeted imaging. PMID:22888233

Veeranarayanan, Srivani; Poulose, Aby Cheruvathoor; Mohamed, M Sheikh; Nagaoka, Yutaka; Iwai, Seiki; Nakagame, Yuya; Kashiwada, Shosaku; Yoshida, Yasuhiko; Maekawa, Toru; Kumar, D Sakthi

2012-01-01

97

Optical Fiber Sensing Using Quantum Dots  

PubMed Central

Recent advances in the application of semiconductor nanocrystals, or quantum dots, as biochemical sensors are reviewed. Quantum dots have unique optical properties that make them promising alternatives to traditional dyes in many luminescence based bioanalytical techniques. An overview of the more relevant progresses in the application of quantum dots as biochemical probes is addressed. Special focus will be given to configurations where the sensing dots are incorporated in solid membranes and immobilized in optical fibers or planar waveguide platforms.

Jorge, Pedro; Martins, Manuel Antonio; Trindade, Tito; Santos, Jose Luis; Farahi, Faramarz

2007-01-01

98

Fabrication Methods for Positioning of Quantum Dots  

NASA Astrophysics Data System (ADS)

Quantum dot positioning is highly useful in terms of integrating nanoemitters into nanostructures, such as nanocavities and quantum dot waveguides. Demonstration of control over the positioning of quantum dots has proven difficult, and consequently construction of single-photon emitting systems has been hindered. We report the ability to reliably position nanoscale functional objects, specifically quantum dots, within a well-defined location. Programmed assembly of DNA linked quantum dots on both gold and silver substrates is obtained by Electron Beam Lithography patterning and a series of surface chemical functionalizations. A single quantum dot was successfully positioned within 100 nm of the desired location in 36 percent of the experiments. Furthermore, the method was completely reproducible within 500 nm accuracy. This method has the potential to functionalize quantum dots in even smaller pattern sizes.

Kramer, Rebecca; Oulton, Rupert; Sorger, Volker; Pholchai, Nitipat; Zhang, Xiang

2009-03-01

99

Quantum dot-based theranostics  

Microsoft Academic Search

Luminescent semiconductor nanocrystals, also known as quantum dots (QDs), have advanced the fields of molecular diagnostics and nanotherapeutics. Much of the initial progress for QDs in biology and medicine has focused on developing new biosensing formats to push the limit of detection sensitivity. Nevertheless, QDs can be more than passive bio-probes or labels for biological imaging and cellular studies. The

Yi-Ping Ho; Kam W. Leong

2010-01-01

100

Copolymer nanosphere encapsulated CdS quantum dots prepared by RAFT copolymerization: synthesis, characterization and mechanism of formation  

Microsoft Academic Search

Cadmium sulfide (CdS) quantum dots (QDs) encapsulated in block copolymer spheres were synthesized by an aqueous emulsion polymerization\\u000a process. First, stable dispersions of CdS QDs in water were prepared using a polymer dispersant, either poly(acrylic acid)\\u000a or a random copolymer having an average of ten acrylic acid and five butyl acrylate units. These polymer dispersants were\\u000a prepared by reversible addition-fragmentation

Paramita Das; Weiheng Zhong; Jerome P. Claverie

101

Room temperature synthesis of PbSe quantum dots in aqueous solution: stabilization by interactions with ligands  

NASA Astrophysics Data System (ADS)

An aqueous route of synthesis is described for rapid synthesis of lead selenide quantum dots (PbSe QDs) at room temperature in an attempt to produce water-soluble and stable nanocrystals. Several thiol-ligands, including thioglycolic acid (TGA), thioglycerol (TGC), 3-mercaptopropionic acid (MPA), 2-mercaptoethylamine hydrochloride (MEA), 6-mercaptohexanoic acid (MHA), and l-cysteine (l-cys), were used for capping/stabilization of PbSe QDs. The effects of the ligands on the stability of PbSe QDs were evaluated for a period of two months at room temperature under normal light conditions and at 4 °C in the dark. The TGA- and MEA-capped QDs exhibited the highest stability prior to purification, almost two months when kept in the dark at 4 °C. However, the stability of TGA-capped QDs was reduced substantially after purification to about 5 days under the same conditions, while MEA-capped QDs did not show any significant instability. The stabilization energies of Pb-thiolate complexes determined by theoretical DFT simulations supported the experimental results. The PbSe QDs capped with TGA, MPA and MEA were successfully purified and re-dispersed in water, while those stabilized with TGC, MHA and l-cys aggregated during purification attempts. The purified PbSe QDs possess very susceptible surface resulting in poor stability for about 30-45 min after re-dispersion in water. In the presence of an excess of free ligand, the stability increased up to 5 days for TGA-capped QDs at pH 7.19, 9-12 days for MPA-capped QDs at pH 7.3-7.5 and 45-47 days for MEA-capped QDs at pH 7.35. X-Ray diffraction (XRD) results showed that the QDs possess a cubic rock salt structure with the most intense peaks located at 2? = 25.3° (200) and 2? = 29.2° (100). TEM images showed that the size of the QDs ranges between 5 and 10 nm. ICP-MS results revealed that Pb : Se ratios were 1.26, 1.28, 3.85, 1.18, and 1.31 for the QDs capped with TGA, MPA, MEA, l-cys, and TGC, respectively. The proposed method is inexpensive, simple and utilizes environmentally friendly chemicals and solvents.

Primera-Pedrozo, Oliva M.; Arslan, Zikri; Rasulev, Bakhtiyor; Leszczynski, Jerzy

2012-02-01

102

Large scale synthesis of highly crystallized SnO2 quantum dots at room temperature and their high electrochemical performance  

NASA Astrophysics Data System (ADS)

In this work, SnO2 quantum dots with high crystallinity were synthesized on a large scale under mild reaction conditions via an epoxide precipitation route. The SnO intermediate, which was produced in the reactions between epoxide and [Sn(H2O)6]2+, was converted to SnO2 quantum dots by the oxidation of H2O2. It is believed that the protonation and the following ring opening of epoxide promoted the hydrolysis and condensation of [Sn(H2O)6]2+ to form the intermediate. The obtained quantum dots had a maximum specific capacitance of 204.4 F g-1 at a scan rate of 5 mV s-1 in 1 mol l-1 KOH aqueous solution. The electrochemical measurements proved that this high specific capacitance of SnO2 resulted from the Faradaic reactions between SnO2 and the electrolyte. This demonstrates for the first time that SnO2 can be used as a pseudocapacitive electrode material.

Cui, Hongtao; Liu, Yan; Ren, Wanzhong; Wang, Minmin; Zhao, Yunan

2013-08-01

103

Synthesis and photoelectrochemical response of CdS quantum dot-sensitized TiO2 nanorod array photoelectrodes  

PubMed Central

A continuous and compact CdS quantum dot-sensitive layer was synthesized on TiO2 nanorods by successive ionic layer adsorption and reaction (SILAR) and subsequent thermal annealing. The thickness of the CdS quantum dot layer was tuned by SILAR cycles, which was found to be closely related to light absorption and carrier transformation. The CdS quantum dot-sensitized TiO2 nanorod array photoelectrodes were characterized by scanning electron microscopy, X-ray diffraction, ultraviolet–visible absorption spectroscopy, and photoelectrochemical property measurement. The optimum sample was fabricated by SILAR in 70 cycles and then annealed at 400°C for 1 h in air atmosphere. A TiO2/CdS core-shell structure was formed with a diameter of 35 nm, which presented an improvement in light harvesting. Finally, a saturated photocurrent of 3.6 mA/cm2 was produced under the irradiation of AM1.5G simulated sunlight at 100 mW/cm2. In particular, the saturated current density maintained a fixed value of approximately 3 mA/cm2 without decadence as time passed under the light conditions, indicating the steady photoelectronic property of the photoanode. PMID:23663590

2013-01-01

104

Ultra-bright alkylated graphene quantum dots  

NASA Astrophysics Data System (ADS)

Highly efficient and stable photoluminescence (PL) are urgently desired for graphene quantum dots (GQDs) to facilitate their prospective applications as optical materials. Here, we report the facile and straightforward synthesis of alkylated graphene quantum dots (AGQDs) via the solvothermal reaction of propagatively alkylated graphene sheets (PAGenes). In contrast to most GQDs reported so far, the synthesized AGQDs process pH-independent and ultra-bright PL with a relative quantum yield of up to 65%. Structural and chemical composition characterization demonstrated that the synthesized AGQDs are nearly oxygen-defect-free with alkyl groups decorated on edges and basal plane, which may contribute to their greatly improved pH tolerance and high quantum efficiency. The photocatalytic performance of AGQDs-P25 nanocomposites was evaluated by the degradation of Rhodamine B under visible light. The photocatalytic rate is ca. 5.9 times higher than that of pure P25, indicating that AGQDs could harness the visible spectrum of sunlight for energy conversion or environmental therapy.Highly efficient and stable photoluminescence (PL) are urgently desired for graphene quantum dots (GQDs) to facilitate their prospective applications as optical materials. Here, we report the facile and straightforward synthesis of alkylated graphene quantum dots (AGQDs) via the solvothermal reaction of propagatively alkylated graphene sheets (PAGenes). In contrast to most GQDs reported so far, the synthesized AGQDs process pH-independent and ultra-bright PL with a relative quantum yield of up to 65%. Structural and chemical composition characterization demonstrated that the synthesized AGQDs are nearly oxygen-defect-free with alkyl groups decorated on edges and basal plane, which may contribute to their greatly improved pH tolerance and high quantum efficiency. The photocatalytic performance of AGQDs-P25 nanocomposites was evaluated by the degradation of Rhodamine B under visible light. The photocatalytic rate is ca. 5.9 times higher than that of pure P25, indicating that AGQDs could harness the visible spectrum of sunlight for energy conversion or environmental therapy. Electronic supplementary information (ESI) available: Additional figures (Fig. S1-S12). See DOI: 10.1039/c4nr03506b

Feng, Lan; Tang, Xing-Yan; Zhong, Yun-Xin; Liu, Yue-Wen; Song, Xue-Huan; Deng, Shun-Liu; Xie, Su-Yuan; Yan, Jia-Wei; Zheng, Lan-Sun

2014-10-01

105

Highly luminescent polystyrene embedded CdSe quantum dots obtained through a modified colloidal synthesis route  

NASA Astrophysics Data System (ADS)

The present work describes a modified colloidal synthesis route for the preparation of CdSe nanocrystals, which were further embedded in a polystyrene matrix. Used as a reaction medium, glycerin makes it possible to obtain nanocrystals at lower temperatures in all process stages and an easier separation from the reaction mass. The influence of two different cadmium compounds used as primary cadmium sources over the quality of synthesized CdSe nanocrystals is established. Having a double role, namely in the formation of a cadmium precursor and that of a surface capping agent, three saturated monocarboxylic fatty acids are tested. The synthesis path is refined by evaluating the luminescent properties of CdSe nanocrystals resulting from each test. The obtained CdSe nanocrystals were further embedded in a polystyrene matrix, resulting in a highly luminescent composite. The solution-processed highly luminescent composite might be used as a conversion layer in various optoelectronic devices.

Stan, Corneliu S.; Secula, Marius S.; Sibiescu, Doina

2012-06-01

106

Lifetime blinking in nonblinking nanocrystal quantum dots  

PubMed Central

Nanocrystal quantum dots are attractive materials for applications as nanoscale light sources. One impediment to these applications is fluctuations of single-dot emission intensity, known as blinking. Recent progress in colloidal synthesis has produced nonblinking nanocrystals; however, the physics underlying blinking suppression remains unclear. Here we find that ultra-thick-shell CdSe/CdS nanocrystals can exhibit pronounced fluctuations in the emission lifetimes (lifetime blinking), despite stable nonblinking emission intensity. We demonstrate that lifetime variations are due to switching between the neutral and negatively charged state of the nanocrystal. Negative charging results in faster radiative decay but does not appreciably change the overall emission intensity because of suppressed nonradiative Auger recombination for negative trions. The Auger process involving excitation of a hole (positive trion pathway) remains efficient and is responsible for charging with excess electrons, which occurs via Auger-assisted ionization of biexcitons accompanied by ejection of holes. PMID:22713750

Galland, Christophe; Ghosh, Yagnaseni; Steinbruck, Andrea; Hollingsworth, Jennifer A.; Htoon, Han; Klimov, Victor I.

2012-01-01

107

Aqueous Cadmium Chalcogenide Quantum Dots: Synthesis, Characterization, Spectroscopic Investigation of Electron Transfer Properties and Photovoltaic Device Performance  

NASA Astrophysics Data System (ADS)

The research presented in this thesis will focus on (1) synthesis and characterization of aqueous CdSe quantum dots (QDs) as alternatives to organic QDs; (2) the roles that linkers and capping groups play on the physical and optical properties of aqueous QDs; (3) performance of QD-sensitized solar cells (QDSSC) incorporating magic-sized clusters (MSCs) vs regular QDs (RQDs) and as a function of the molecular linkers between QDs and TiO2; and (4) the effect of the polysulfide electrolyte on QD-functionalized TiO 2 films and their performance in QDSSCs. The use of QDs as light harvesters has grown over the last few decades due to their unique properties. Water-dispersible QDs are of increasing interest because their syntheses are straightforward, environmentally-benign and more cost-effective. CdSe and CdS QDs were synthesized at room temperature under ambient conditions, by combining a Cd precursor and either Na2SeSO3 (for CdSe) or Na2S2O3 (for CdS), in basic aqueous reaction mixtures. Three different ligands were utilized as capping groups (cysteinate (Cys), mercaptopropionate (MP), and mercaptosuccinate (MS)). Changing the capping-agent, the reagent concentrations and the temperature changed the photophysical properties of the QDs. When Cys was used as the capping-agent, MSCs were formed. When high concentrations of Cys were used or when the reaction mixture was heated, RQDs were formed. When MP and MS were used in the synthesis of CdSe, RQDs were formed. In the synthesis of CdS, MS caused the formation of RQDs, and MP caused formation of a mixture of RQDs and MSCs. Transient absorption spectroscopy and photoelectrochemical experiments were performed to understand the influence of capping-agent and electronic properties (MSCs vs. RQDs) on the efficiency of electron transfer from photoexcited QDs to TiO2. The Cys-CdSe-functionalized TiO2 exhibited more efficient electron injection and/or slower recombination, leading to improved efficiency of QDSSCs. Devices made with Cys-CdSe RQDs exhibited higher efficiencies than QDSSCs with Cys-CdSe MSCs, indicating that the presence of Cys induces greater efficiency in QDSSCs. For QDSSCs, a polysulfide electrolyte is commonly used instead of I-/I3-. Effects of the polysulfide electrolyte and Na2S on CdSe-functionalized TiO2 films were explored to elucidate the chemistry that occurs when CdSe is exposed to the electrolyte in the QDSSCs. Photophysical changes to the CdSe-functionalized films occurred when exposed to the polysulfide electrolyte. Upon immersion of CdSe-functionalized TiO¬2 films into solutions of Na2S, an initial red shift in the absorption spectrum was observed, followed by a decrease and blue shift of the band. Based on XPS analysis of the films, it was determined that the S within the electrolyte (1) replaced Se or (2) bound to the CdSe-functionalized film without replacing Se. Photoelectrochemical measurements were acquired to analyze device performance with varying [S] within the electrolyte. Upon increase of S, the efficiency of the device increased and gave rise to a better fill factor in the photocurrent-photovoltage data collected.

Coughlin, Kathleen M.

108

Quantitative multiplexed quantum dot immunohistochemistry  

SciTech Connect

Quantum dots are photostable fluorescent semiconductor nanocrystals possessing wide excitation and bright narrow, symmetrical, emission spectra. These characteristics have engendered considerable interest in their application in multiplex immunohistochemistry for biomarker quantification and co-localisation in clinical samples. Robust quantitation allows biomarker validation, and there is growing need for multiplex staining due to limited quantity of clinical samples. Most reported multiplexed quantum dot staining used sequential methods that are laborious and impractical in a high-throughput setting. Problems associated with sequential multiplex staining have been investigated and a method developed using QDs conjugated to biotinylated primary antibodies, enabling simultaneous multiplex staining with three antibodies. CD34, Cytokeratin 18 and cleaved Caspase 3 were triplexed in tonsillar tissue using an 8 h protocol, each localised to separate cellular compartments. This demonstrates utility of the method for biomarker measurement enabling rapid measurement of multiple co-localised biomarkers on single paraffin tissue sections, of importance for clinical trial studies.

Sweeney, E.; Ward, T.H. [Clinical and Experimental Pharmacology, Paterson Institute for Cancer Research, Wilmslow Road, Manchester, 420 4BX (United Kingdom); Gray, N.; Womack, C. [AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TG (United Kingdom); Jayson, G. [Translational Angiogenesis Group, Paterson Institute for Cancer Research, Wilmslow Road, Manchester, M20 4BX (United Kingdom); Hughes, A. [AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TG (United Kingdom); Dive, C. [Clinical and Experimental Pharmacology, Paterson Institute for Cancer Research, Wilmslow Road, Manchester, 420 4BX (United Kingdom); Byers, R. [School of Cancer and Imaging Studies, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT (United Kingdom); Department of Histopathology, Manchester Royal Infirmary, Oxford Road, Manchester, M13 9WL (United Kingdom)], E-mail: richard.byers@cmmc.nhs.uk

2008-09-19

109

Nanobeam photonic crystal cavity quantum dot laser  

E-print Network

Nanobeam photonic crystal cavity quantum dot laser Yiyang Gong*, Bryan Ellis, Gary Shambat, Tomas). 6. B. Ellis, I. Fushman, D. Englund, B. Zhang, Y. Yamamoto, and J. Vuckovi´c, "Dynamics of Quantum. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-Tuned Quantum Dot Gain

Vuckovic, Jelena

110

Aqueous synthesis of type-II CdTe/CdSe core-shell quantum dots for fluorescent probe labeling tumor cells.  

PubMed

In this paper, we report a two-step aqueous synthesis of highly luminescent CdTe/CdSe core/shell quantum dots (QDs) via a simple method. The emission range of the CdTe/CdSe QDs can be tuned from 510 to 640 nm by controlling the thickness of the CdSe shell. Accordingly, the photoluminescence quantum yield (PL QY) of CdTe/CdSe QDs with an optimized thickness of the CdSe shell can reach up to 40%. The structures and compositions of the core/shell QDs were characterized by transmission electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy experiments, and their formation mechanism is discussed. Furthermore, folate conjugated CdTe/CdSe QDs in Hela cells were assessed with a fluorescence microscope. The results show that folate conjugated CdTe/CdSe QDs could enter tumor cells efficiently. PMID:19417477

Zeng, Ruosheng; Zhang, Tingting; Liu, Jincheng; Hu, Song; Wan, Qiang; Liu, Xuanming; Peng, Zhiwei; Zou, Bingsuo

2009-03-01

111

One-Step Instant Synthesis of Protein-Conjugated Quantum Dots at Room Temperature  

PubMed Central

We present a new general facile strategy for the preparation of protein-functionalized QDs in a single step at ambient conditions. We demonstrated that highly luminescent red to near-infrared (NIR) protein-functionalized QDs could be synthesized at room temperature in one second through a one-pot reaction that proceeds in aqueous solution. Herein protein-functionalized QDs were successfully constructed for a variety of proteins with a wide range of molecular weights and isoelectric points. The as-prepared protein-conjugated QDs exhibited high quantum yield, high photostabiliy and colloidal stability, and high functionalization efficiency. Importantly, the proteins attached to the QDs maintain their biological activities and are capable of catalyzing reactions and biotargeting. In particular, the as-prepared transferrin-QDs could be used to label cancer cells with high specificity. Moreover, we demonstrated that this synthetic strategy could be extended to prepare QDs functionalized with folic acids and peptides, which were also successfully applied to cancer cell imaging. PMID:24084780

He, Xuewen; Gao, Li; Ma, Nan

2013-01-01

112

Ultra-bright alkylated graphene quantum dots.  

PubMed

Highly efficient and stable photoluminescence (PL) are urgently desired for graphene quantum dots (GQDs) to facilitate their prospective applications as optical materials. Here, we report the facile and straightforward synthesis of alkylated graphene quantum dots (AGQDs) via the solvothermal reaction of propagatively alkylated graphene sheets (PAGenes). In contrast to most GQDs reported so far, the synthesized AGQDs process pH-independent and ultra-bright PL with a relative quantum yield of up to 65%. Structural and chemical composition characterization demonstrated that the synthesized AGQDs are nearly oxygen-defect-free with alkyl groups decorated on edges and basal plane, which may contribute to their greatly improved pH tolerance and high quantum efficiency. The photocatalytic performance of AGQDs-P25 nanocomposites was evaluated by the degradation of Rhodamine B under visible light. The photocatalytic rate is ca. 5.9 times higher than that of pure P25, indicating that AGQDs could harness the visible spectrum of sunlight for energy conversion or environmental therapy. PMID:25192187

Feng, Lan; Tang, Xing-Yan; Zhong, Yun-Xin; Liu, Yue-Wen; Song, Xue-Huan; Deng, Shun-Liu; Xie, Su-Yuan; Yan, Jia-Wei; Zheng, Lan-Sun

2014-10-01

113

Facile synthesis and characterization of water soluble ZnSe/ZnS quantum dots for cellar imaging.  

PubMed

Strong fluorescence and low cytotoxicity ZnSe/ZnS quantum dots (QDs) were synthesized by a facile aqueous phase route. It overcame the defects such as instability and low quantum yield of the quantum dots synthesized by early aqueous phase route. L-Glutathione (GSH) and 3-mercaptopropaonic acid (MPA) were used as mixture stabilizers to synthesize high quality ZnSe/ZnS QDs. The samples were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectrometry (XPS) and their optical properties were investigated by using UV-vis spectrophotometer, fluorescence spectrophotometer (FL), IR spectrophotometer and confocal laser scanning microscope. The synthesized ZnSe/ZnS QDs illuminated blue fluorescence under ultraviolet lamp. Its water-soluble property is excellent and the fluorescence intensity of ZnSe/ZnS QDs almost did not change after 4 months at room temperature. The average diameter of ZnSe/ZnS nanocrystals is about 3 nm and quantum yield (QY) could reach to 70.6% after repeat determination. Low cytotoxicity was ensured by investigated SCG7901 and RAW264.7 cells. In comparison with cadmium based nanocrystals, ZnSe/ZnS QDs posed low cytotoxicity. The cells viability remained 96.7% when the QDs concentration was increased to 10 ?mol/L. The results in vitro indicate that ZnSe/ZnS QDs-based probes have good stability, low toxicity and biocompatibility for fluorescence imaging in cancer model system. PMID:23266687

Shu, Chang; Huang, Bin; Chen, Xiangdong; Wang, Yan; Li, Xuequan; Ding, Li; Zhong, Wenying

2013-03-01

114

CuInS2 quantum dot-sensitized TiO2 nanorod array photoelectrodes: synthesis and performance optimization.  

PubMed

CuInS2 quantum dots (QDs) were deposited onto TiO2 nanorod arrays for different cycles by using successive ionic layer adsorption and reaction (SILAR) method. The effect of SILAR cycles on the light absorption and photoelectrochemical properties of the sensitized photoelectrodes was studied. With optimization of CuInS2 SILAR cycles and introduction of In2S3 buffer layer, quantum dot-sensitized solar cells assembled with 3-?m thick TiO2 nanorod film exhibited a short-circuit current density (Isc) of 4.51 mA cm-2, an open-circuit voltage (Voc) of 0.56 V, a fill factor (FF) of 0.41, and a power conversion efficiency (?) of 1.06%, respectively. This study indicates that SILAR process is a very promising strategy for preparing directly anchored semiconductor QDs on TiO2 nanorod surface in a straightforward but controllable way without any complicated fabrication procedures and introduction of a linker molecule. PMID:23181940

Zhou, Zhengji; Yuan, Shengjie; Fan, Junqi; Hou, Zeliang; Zhou, Wenhui; Du, Zuliang; Wu, Sixin

2012-01-01

115

Quantum dot ternary-valued full-adder: Logic synthesis by a multiobjective design optimization based on a genetic algorithm  

NASA Astrophysics Data System (ADS)

A methodology is proposed for designing a low-energy consuming ternary-valued full adder based on a quantum dot (QD) electrostatically coupled with a single electron transistor operating as a charge sensor. The methodology is based on design optimization: the values of the physical parameters of the system required for implementing the logic operations are optimized using a multiobjective genetic algorithm. The searching space is determined by elements of the capacitance matrix describing the electrostatic couplings in the entire device. The objective functions are defined as the maximal absolute error over actual device logic outputs relative to the ideal truth tables for the sum and the carry-out in base 3. The logic units are implemented on the same device: a single dual-gate quantum dot and a charge sensor. Their physical parameters are optimized to compute either the sum or the carry out outputs and are compatible with current experimental capabilities. The outputs are encoded in the value of the electric current passing through the charge sensor, while the logic inputs are supplied by the voltage levels on the two gate electrodes attached to the QD. The complex logic ternary operations are directly implemented on an extremely simple device, characterized by small sizes and low-energy consumption compared to devices based on switching single-electron transistors. The design methodology is general and provides a rational approach for realizing non-switching logic operations on QD devices.

Klymenko, M. V.; Remacle, F.

2014-10-01

116

CuInS2 quantum dot-sensitized TiO2 nanorod array photoelectrodes: synthesis and performance optimization  

PubMed Central

CuInS2 quantum dots (QDs) were deposited onto TiO2 nanorod arrays for different cycles by using successive ionic layer adsorption and reaction (SILAR) method. The effect of SILAR cycles on the light absorption and photoelectrochemical properties of the sensitized photoelectrodes was studied. With optimization of CuInS2 SILAR cycles and introduction of In2S3 buffer layer, quantum dot-sensitized solar cells assembled with 3-?m thick TiO2 nanorod film exhibited a short-circuit current density (Isc) of 4.51 mA cm?2, an open-circuit voltage (Voc) of 0.56 V, a fill factor (FF) of 0.41, and a power conversion efficiency (?) of 1.06%, respectively. This study indicates that SILAR process is a very promising strategy for preparing directly anchored semiconductor QDs on TiO2 nanorod surface in a straightforward but controllable way without any complicated fabrication procedures and introduction of a linker molecule. PMID:23181940

2012-01-01

117

Quantum-Dot Cellular Automata Konrad Walus  

E-print Network

Quantum-Dot Cellular Automata (QCA) Konrad Walus UBC Electrical and Computer Engineering #12;QCA full advantage of molecular scales Where is the benefit of small? #12;Fabricated QCA Devices "dot" = metal island electrometers 70-300 mK Al/AlOx on SiO2 Metal-dot QCA implementation #12;QCA · Nonlinear

Plotkin, Steven S.

118

Synthesis of highly luminescent and biocompatible CdTe/CdS/ZnS quantum dots using microwave irradiation: a comparative study of different ligands.  

PubMed

We compared the effects of several ligands frequently used in aqueous synthesis, including L-cysteine, L-cysteine hydrochloride, N-acetyl-L-cysteine (NAC), glutathione and 3-mercaptopropionic acid, for microwave synthesis of CdTe quantum dots (QDs) in a sealed vessel with varied temperatures and times, and then developed a rapid microwave-assisted protocol for preparing highly luminescent, photostable and biocompatible CdTe/CdS/ZnS core-multishell QDs. The effects of molecular structures of these ligands on QD synthesis under high temperatures were explored. Among these ligands, NAC was found to be the optimal ligand in terms of the optical properties of resultant QDs and reaction conditions. The emission wavelength of NAC-capped CdTe QDs could reach 700?nm in 5?min by controlling the reaction temperature, and the resultant CdTe/CdS/ZnS core-multishell QDs could achieve the highest quantum yields up to 74% with robust photostability. In addition, the effects of temperature, growth time and shell-precursor ratio on shell growth were examined. Finally, cell culturing indicated the low cytotoxicity of CdTe/CdS/ZnS core-multishell QDs as compared to CdTe and CdTe/CdS QDs, suggesting their high potential for applications in biomedical imaging and diagnostics. Copyright © 2014 John Wiley & Sons, Ltd. PMID:24436082

He, Hua; Sun, Xing; Wang, Xiaojuan; Xu, Hai

2014-11-01

119

Semiconductor Quantum Dots for Biomedicial Applications  

PubMed Central

Semiconductor quantum dots (QDs) are nanometre-scale crystals, which have unique photophysical properties, such as size-dependent optical properties, high fluorescence quantum yields, and excellent stability against photobleaching. These properties enable QDs as the promising optical labels for the biological applications, such as multiplexed analysis of immunocomplexes or DNA hybridization processes, cell sorting and tracing, in vivo imaging and diagnostics in biomedicine. Meanwhile, QDs can be used as labels for the electrochemical detection of DNA or proteins. This article reviews the synthesis and toxicity of QDs and their optical and electrochemical bioanalytical applications. Especially the application of QDs in biomedicine such as delivering, cell targeting and imaging for cancer research, and in vivo photodynamic therapy (PDT) of cancer are briefly discussed. PMID:22247690

Shao, Lijia; Gao, Yanfang; Yan, Feng

2011-01-01

120

Thick-shell nanocrystal quantum dots  

DOEpatents

Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

Hollingsworth, Jennifer A. (Los Alamos, NM); Chen, Yongfen (Eugene, OR); Klimov, Victor I. (Los Alamos, NM); Htoon, Han (Los Alamos, NM); Vela, Javier (Los Alamos, NM)

2011-05-03

121

Single Quantum Dots as Local Temperature Markers  

E-print Network

of this technique could go down to the size of a single quantum dot using far-field optics for temperature, a thermocouple has a spatial resolution of 100 µm and a temperature-sensitive paint of 1 µm.3,4 Recently, submi We propose in this work to use semiconductor nanocrystalline particles or quantum dots (QDs

Lin, Liwei

122

Theory of random population for quantum dots  

Microsoft Academic Search

Carrier capture and recombination in quantum dots are random processes. Conventional rate equation models do not take into account this property. Based on our theory of random population we predict recombination spectra, transients, and gain of quantum-dot ensembles. Even with infinitely fast interlevel energy relaxation excited levels become considerably populated. The impact of a slowdown of energy relaxation is modeled

M. Grundmann; D. Bimberg

1997-01-01

123

Dynamics of Quantum Dot Photonic Crystal Lasers  

E-print Network

Quantum dot photonic crystal membrane lasers were fabricated and the large signal modulation characteristics were studied. We find that the modulation characteristics of quantum dot lasers can be significantly improved using cavities with large spontaneous emission coupling factor. Our experiments show, and simulations confirm, that the modulation rate is limited by the rate of carrier capture into the dots to around 30GHz in our present system.

Bryan Ellis; Ilya Fushman; Dirk Englund; Bingyang Zhang; Yoshihisa Yamamoto; Jelena Vuckovic

2007-03-07

124

Ultranarrow Luminescence Lines from Single Quantum Dots  

Microsoft Academic Search

We report ultranarrow \\\\(<0.15 meV\\\\) cathodoluminescence lines originating from single InAs quantum dots in a GaAs matrix for temperatures up to 50 K, directly proving their delta-function-like density of electronic states. The quantum dots have been prepared by molecular beam epitaxy utilizing a strain-induced self-organizing mechanism. A narrow dot size distribution of width 12+\\/-1 nm is imaged by plan-view transmission

M. Grundmann; J. Christen; N. N. Ledentsov; J. Böhrer; D. Bimberg; S. S. Ruvimov; P. Werner; U. Richter; U. Gösele; J. Heydenreich; V. M. Ustinov; A. Yu. Egorov; A. E. Zhukov; P. S. Kop'ev; Zh. I. Alferov

1995-01-01

125

DNA-based programing of quantum dot properties.  

PubMed

Nucleic acid molecules can serve as robust ligands for aqueous synthesis of semiconductor nanocrystals or quantum dots (QDs). QD properties including size, morphology, dispersity, emission maximum, and quantum yield are highly dependent on the sequences and structures of nucleic acids used for the synthesis. This synthetic strategy provides a novel facile means of constructing compact, stable, and biofunctionalized QDs in one step, which is of particular interest for a variety of applications such as biosensing, bioimaging, and self-assembly. This article summarizes recent advances in nucleic acid-templated QD synthesis with an emphasis on the nucleic acids-based programing of quantum dots properties. A variety of applications based on DNA-passivated QDs are also discussed. PMID:22965762

Ma, Nan; Kelley, Shana O

2013-01-01

126

Ferritin-Templated Quantum-Dots for Quantum Logic Gates.  

National Technical Information Service (NTIS)

Quantum logic gates (QLGs) or other logic systems are based on quantum-dots (QD) with a stringent requirement of size uniformity. The QD are widely known building units for QLGs. The size control of QD is a critical issue in quantum-dot fabrication. The w...

S. H. Choi, J. W. Kim, S. H. Chu, Y. Park, G. C. King

2005-01-01

127

Quantum Optics: Colloidal Fluorescent Semiconductor Nanocrystals (Quantum Dots)  

E-print Network

U ncorrected Proof Chapter 3 Quantum Optics: Colloidal Fluorescent Semiconductor Nanocrystals (Quantum Dots) in Single-Molecule Detection and Imaging Laurent A. Bentolila, Xavier Michalet, and Shimon quantum dots (QDs), have emerged as new powerful fluorescent probes for in vitro and in vivo biological

Michalet, Xavier

128

Disordered quantum dots: A diffusion quantum Monte Carlo study  

Microsoft Academic Search

We report diffusion quantum Monte Carlo (DQMC) calculations of disordered quantum dots in the presence of an external magnetic field. The addition spectra, spin configuration, Hund's rule, and many-body densities are investigated up to 13 electrons. The data from DQMC is in excellent agreement with exact diagonalization for disorder-free quantum dots, and in marked difference with those obtained from unrestricted

A. D. Güçlü; Jian-Sheng Wang; Hong Guo

2003-01-01

129

Decoherence of nuclear spin quantum memory in a quantum dot  

Microsoft Academic Search

Recently, an ensemble of nuclear spins in a quantum dot have been proposed as a long-lived quantum memory. A quantum state of an electron spin in the dot can be faithfully transfered into nuclear spins through controlled hyperfine coupling. Here we study the decoherence of this memory due to nuclear spin dipolar coupling and inhomogeneous hyperfine interaction during the storage

Changxue Deng; Xuedong Hu

2005-01-01

130

Oriented polythiophene nanofibers grown from CdTe quantum dot surfaces.  

PubMed

Highly crystalline, doped polythiophene is grown from the surfaces of CdTe quantum dots by ligand exchange of 3-thenoic acid followed by an oxidant-initiated polymerization. The facile synthesis generates a composite of highly ordered fibers, which exhibit efficient charge transfer between the polythiophene and the inorganic CdTe quantum dots. PMID:22351435

Strong, Veronica; Uribe-Romo, Fernando J; Battson, Micah; Kaner, Richard

2012-04-23

131

Quantum measurement of coherent tunneling between quantum dots  

NASA Astrophysics Data System (ADS)

We describe the conditional and unconditional dynamics of two coupled quantum dots when one dot is subjected to a measurement of its occupation number by coupling it to a third readout dot via the Coulomb interaction. The readout dot is coupled to source and drain leads under weak bias, and a tunnel current flows through a single bound state when energetically allowed. The occupation of the quantum dot near the readout dot shifts the bound state of the readout dot from a low conducting state to a high conducting state. The measurement is made by continuously monitoring the tunnel current through the readout dot. We show that there is a difference between the time scale for the measurement-induced decoherence between the localized states of the dots, and the time scale on which the system becomes localized due to the measurement.

Wiseman, H. M.; Utami, Dian Wahyu; Sun, He Bi; Milburn, G. J.; Kane, B. E.; Dzurak, A.; Clark, R. G.

2001-06-01

132

Entanglement and Quantum Phase Transition in a One-Dimensional System of quantum Dots with Disorder  

E-print Network

Entanglement and Quantum Phase Transition in a One-Dimensional System of quantum Dots with Disorder We study the entanglement of formation and quantum phase transition in a one-dimensional quantum dots, quantum computer based on quantum dots is a prominent one[9, 10]. Quantum dots are clusters of atoms

Kais, Sabre

133

Imaging Electrons in Few-Electron Quantum Dots  

E-print Network

Imaging Electrons in Few-Electron Quantum Dots A thesis presented by Parisa Fallahi to The Division Electrons in Few-Electron Quantum Dots Abstract Electrons in a one-electron quantum dot were imaged images are obtained by scanning a charged tip above the surface of the quantum dot and recording

Heller, Eric

134

Quantum Dot Circuits: Single-Electron Switch and  

E-print Network

Quantum Dot Circuits: Single-Electron Switch and Few-Electron Quantum Dots A thesis presented August 2003 #12;© 2003 Ian Hin-Yun Chan All rights reserved. #12;iii Abstract Quantum Dot Circuits: Single-Electron Switch and Few-Electron Quantum Dots Advisor: Robert M. Westervelt Author: Ian H. Chan

135

Quantum dots DOI: 10.1002/smll.200700148  

E-print Network

Quantum dots DOI: 10.1002/smll.200700148 Specific Integrin Labeling in Living Cells Using Kessler, and Andreas R. Bausch* We present an integrin labeling method using functionalized quantum dots · quantum dots 1. Introduction Quantum dot (QD) bioimaging has recently been de- scribed as the most

Bausch, Andreas

136

Surface processes during purification of InP quantum dots  

PubMed Central

Summary Recently, a new simple and fast method for the synthesis of InP quantum dots by using phosphine as phosphorous precursor and myristic acid as surface stabilizer was reported. Purification after synthesis is necessary to obtain samples with good optical properties. Two methods of purification were compared and the surface processes which occur during purification were studied. Traditional precipitation with acetone is accompanied by a small increase in photoluminescence. It occurs that during the purification the hydrolysis of the indium precursor takes place, which leads to a better surface passivation. The electrophoretic purification technique does not increase luminescence efficiency but yields very pure quantum dots in only a few minutes. Additionally, the formation of In(OH)3 during the low temperature synthesis was explained. Purification of quantum dots is a very significant part of postsynthetical treatment that determines the properties of the material. But this subject is not sufficiently discussed in the literature. The paper is devoted to the processes that occur at the surface of quantum dots during purification. A new method of purification, electrophoresis, is investigated and described in particular. PMID:25161857

Emelin, Pavel; Vinokurov, Alexander; Dorofeev, Sergey; Abakumov, Artem; Kuznetsova, Tatiana

2014-01-01

137

Quantum dot loaded immunomicelles for tumor imaging  

Microsoft Academic Search

BACKGROUND: Optical imaging is a promising method for the detection of tumors in animals, with speed and minimal invasiveness. We have previously developed a lipid coated quantum dot system that doubles the fluorescence of PEG-grafted quantum dots at half the dose. Here, we describe a tumor-targeted near infrared imaging agent composed of cancer-specific monoclonal anti-nucleosome antibody 2C5, coupled to quantum

Aristarchos Papagiannaros; Jaydev Upponi; William Hartner; Dmitriy Mongayt; Tatyana Levchenko; Vladimir Torchilin

2010-01-01

138

Simple and greener synthesis of highly photoluminescence Mn2+-doped ZnS quantum dots and its surface passivation mechanism  

NASA Astrophysics Data System (ADS)

In this paper, we reported a simple synthetic method of highly photoluminescent (PL) and stable Mn2+-doped ZnS quantum dots (QDs) with glutathione (GSH) as the capping molecule and focused on mechanism of the surface passivation of QDs. The Mn2+-doped ZnS QDs that was synthesized in basic solution (pH 10) at 120 °C for 5 h exhibited blue trap-state emission around 418 nm and a strong orange-red emission at about 580 nm with an excitation wavelength of 330 nm. The optimum doping concentration is determined to be 1.5 at.%, and the present Mn2+-doped ZnS QDs synthesized under the optimal reaction condition exhibited a quantum yield of 48%. High resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) indicated that the Mn2+-doped ZnS QDs were 3-5 nm in size with a zinc blend structure. More importantly, the PL intensity and chemical stability can be improved using organic ligand modification strategies, it was found that GSH could passivate surface defects very efficiently by comparing and analyzing the results of the different organic ligands modification. The cadmium-free Mn2+-doped ZnS QDs well-passivated with GSH as capping molecule acquired the advantages of strong PL and excellent chemical stability, which are important to QD applications.

Wang, Yongbo; Liang, Xuhua; Ma, Xuan; Hu, Yahong; Hu, Xiaoyun; Li, Xinghua; Fan, Jun

2014-10-01

139

Microwave assisted aqueous synthesis of core-shell CdSe(x)Te(1-x)-CdS quantum dots for high performance sensitized solar cells.  

PubMed

A facile microwave assisted aqueous method has been developed to rapidly prepare stable CdSe(x)Te(1-x)-CdS quantum dots. Based on this material, core-shell type II CdSe(x)Te(1-x)-CdS quantum dot sensitized solar cells have been assembled and a power conversion efficiency as high as 5.04% has been obtained. PMID:24554167

Luo, Jianheng; Wei, Huiyun; Li, Fan; Huang, Qingli; Li, Dongmei; Luo, Yanhong; Meng, Qingbo

2014-04-01

140

Multimodal Mn-doped I-III-VI quantum dots for near infrared fluorescence and magnetic resonance imaging: from synthesis to in vivo application  

NASA Astrophysics Data System (ADS)

The development of sensitive multimodal contrast agents is a key issue to provide better global, multi-scale images for diagnostic or therapeutic purposes. Here we present the synthesis of Zn-Cu-In-(S, Se)/Zn1-xMnxS core-shell quantum dots (QDs) that can be used as markers for both near-infrared fluorescence imaging and magnetic resonance imaging (MRI). We first present the synthesis of Zn-Cu-In-(S, Se) cores coated with a thick ZnS shell doped with various proportions of Mn. Their emission wavelengths can be tuned over the NIR optical window suitable for deep tissue imaging. The incorporation of manganese ions (up to a few thousand ions per QD) confers them a paramagnetic character, as demonstrated by structural analysis and electron paramagnetic resonance spectroscopy. These QDs maintain their optical properties after transfer to water using ligand exchange. They exhibit T1-relaxivities up to 1400 mM-1 [QD] s-1 at 7 T and 300 K. We finally show that these QDs are suitable multimodal in vivo probes and demonstrate MRI and NIR fluorescence detection of regional lymph nodes in mice.The development of sensitive multimodal contrast agents is a key issue to provide better global, multi-scale images for diagnostic or therapeutic purposes. Here we present the synthesis of Zn-Cu-In-(S, Se)/Zn1-xMnxS core-shell quantum dots (QDs) that can be used as markers for both near-infrared fluorescence imaging and magnetic resonance imaging (MRI). We first present the synthesis of Zn-Cu-In-(S, Se) cores coated with a thick ZnS shell doped with various proportions of Mn. Their emission wavelengths can be tuned over the NIR optical window suitable for deep tissue imaging. The incorporation of manganese ions (up to a few thousand ions per QD) confers them a paramagnetic character, as demonstrated by structural analysis and electron paramagnetic resonance spectroscopy. These QDs maintain their optical properties after transfer to water using ligand exchange. They exhibit T1-relaxivities up to 1400 mM-1 [QD] s-1 at 7 T and 300 K. We finally show that these QDs are suitable multimodal in vivo probes and demonstrate MRI and NIR fluorescence detection of regional lymph nodes in mice. Electronic supplementary information (ESI) available: Determination of Mn content; magnetization measurements; additional TEM and spectroscopic data; additional NIR fluorescence image; MTT assay results. See DOI: 10.1039/c4nr02239d

Sitbon, Gary; Bouccara, Sophie; Tasso, Mariana; Francois, Aurélie; Bezdetnaya, Lina; Marchal, Frédéric; Beaumont, Marine; Pons, Thomas

2014-07-01

141

The confinement energy of quantum dots  

E-print Network

One of the most significant research interests in the field of electronics is that on quantum dot, because such materials have electronic properties intermediate between those of bulk semiconductors and those of discrete molecules. Confinement energy is a very important property of quantum dot. In this study, quantum confinement energy of a quantum dot is concluded to be h2/8md2 (d being the diameter of the confinement) and not h2/8ma2 (a being the radius of the confinement), as reported in the available literature. This is in the light of a recent study [1]. This finding should have a significant impact in the understanding of the physics of quantum dot and its technological application.

Dey, Samrat; Chakraborty, kishan; Dasgupta, Debasmita; Bordoloi, Darsana; Saikia, Rituja; Neog, Darsana; Shimray, Shishila; Paul, Supriyanka; Brahma, Kabita; Dey, Joydeep; Choudhury, Saurav

2012-01-01

142

ac Josephson transport through interacting quantum dots  

NASA Astrophysics Data System (ADS)

We investigate the ac Josephson current through a quantum dot with strong Coulomb interaction attached to two superconducting and one normal lead. To this end, we perform a perturbation expansion in the tunneling couplings within a diagrammatic real-time technique. The ac Josephson current is connected to the reduced density matrix elements that describe superconducting correlations induced on the quantum dot via proximity effect. We analyze the dependence of the ac signal on the level position of the quantum dot, the charging energy, and the applied bias voltages.

Hiltscher, Bastian; Governale, Michele; König, Jürgen

2012-12-01

143

Facile synthesis of analogous graphene quantum dots with sp2 hybridized carbon atom dominant structures and their photovoltaic application  

NASA Astrophysics Data System (ADS)

Graphene quantum dot (GQD) is an emerging class of zero-dimensional nanocarbon material with many novel applications. It is of scientific importance to prepare GQDs with more perfect structures, that is, GQDs containing negligible oxygenous defects, for both optimizing their optical properties and helping in their photovoltaic applications. Herein, a new strategy for the facile preparation of ``pristine'' GQDs is reported. The method we presented is a combination of a bottom-up synthetic and a solvent-induced interface separation process, during which the target products with highly crystalline structure were selected by the organic solvent. The obtained organic soluble GQDs (O-GQDs) showed a significant difference in structure and composition compared with ordinary aqueous soluble GQDs, thus leading to a series of novel properties. Furthermore, O-GQDs were applied as electron-acceptors in a poly(3-hexylthiophene) (P3HT)-based organic photovoltaic device. The performance highlights that O-GQD has potential to be a novel electron-acceptor material due to the sp2 hybridized carbon atom dominant structure and good solubility in organic solvents.Graphene quantum dot (GQD) is an emerging class of zero-dimensional nanocarbon material with many novel applications. It is of scientific importance to prepare GQDs with more perfect structures, that is, GQDs containing negligible oxygenous defects, for both optimizing their optical properties and helping in their photovoltaic applications. Herein, a new strategy for the facile preparation of ``pristine'' GQDs is reported. The method we presented is a combination of a bottom-up synthetic and a solvent-induced interface separation process, during which the target products with highly crystalline structure were selected by the organic solvent. The obtained organic soluble GQDs (O-GQDs) showed a significant difference in structure and composition compared with ordinary aqueous soluble GQDs, thus leading to a series of novel properties. Furthermore, O-GQDs were applied as electron-acceptors in a poly(3-hexylthiophene) (P3HT)-based organic photovoltaic device. The performance highlights that O-GQD has potential to be a novel electron-acceptor material due to the sp2 hybridized carbon atom dominant structure and good solubility in organic solvents. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03658a

Huang, Zhengcheng; Shen, Yongtao; Li, Yu; Zheng, Wenjun; Xue, Yunjia; Qin, Chengqun; Zhang, Bo; Hao, Jingxiang; Feng, Wei

2014-10-01

144

Eco-friendly synthesis of size-controllable amine-functionalized graphene quantum dots with antimycoplasma properties  

NASA Astrophysics Data System (ADS)

Size-controllable amine-functionalized graphene quantum dots (GQDs) are prepared by an eco-friendly method with graphene oxide sheets, ammonia and hydrogen peroxide as starting materials. Using a Sephadex G-25 gel column for fine separation, for the first time we obtain GQDs with either single or double layers. By atomic force microscopy characterization, we confirm that hydrogen peroxide and ammonia play a synergistic role on graphene oxide (GO), in which the former cuts the GO into small pieces and the latter passivates the active surface to give amine-modified GQDs. Due to the low cytotoxicity and excellent biocompatibility of the obtained amine-functionalized GQDs, besides the multiwavelength imaging properties of GQDs, for the first time we find that this kind of GQD exhibits good antimycoplasma properties. Given the superior antimycoplasma effect of the GQDs and their eco-friendly mass production with low cost, these new GQDs may offer opportunities for the development of new antimycoplasma agents, thus extending their widespread application in biomedicine.Size-controllable amine-functionalized graphene quantum dots (GQDs) are prepared by an eco-friendly method with graphene oxide sheets, ammonia and hydrogen peroxide as starting materials. Using a Sephadex G-25 gel column for fine separation, for the first time we obtain GQDs with either single or double layers. By atomic force microscopy characterization, we confirm that hydrogen peroxide and ammonia play a synergistic role on graphene oxide (GO), in which the former cuts the GO into small pieces and the latter passivates the active surface to give amine-modified GQDs. Due to the low cytotoxicity and excellent biocompatibility of the obtained amine-functionalized GQDs, besides the multiwavelength imaging properties of GQDs, for the first time we find that this kind of GQD exhibits good antimycoplasma properties. Given the superior antimycoplasma effect of the GQDs and their eco-friendly mass production with low cost, these new GQDs may offer opportunities for the development of new antimycoplasma agents, thus extending their widespread application in biomedicine. Electronic supplementary information (ESI) available: Experimental details and additional characterization data. See DOI: 10.1039/c2nr33191h

Jiang, Feng; Chen, Daiqin; Li, Ruimin; Wang, Yucheng; Zhang, Guoqiang; Li, Shumu; Zheng, Junpeng; Huang, Naiyan; Gu, Ying; Wang, Chunru; Shu, Chunying

2013-01-01

145

Quantum dot-based theranostics  

NASA Astrophysics Data System (ADS)

Luminescent semiconductor nanocrystals, also known as quantum dots (QDs), have advanced the fields of molecular diagnostics and nanotherapeutics. Much of the initial progress for QDs in biology and medicine has focused on developing new biosensing formats to push the limit of detection sensitivity. Nevertheless, QDs can be more than passive bio-probes or labels for biological imaging and cellular studies. The high surface-to-volume ratio of QDs enables the construction of a ``smart'' multifunctional nanoplatform, where the QDs serve not only as an imaging agent but also a nanoscaffold catering for therapeutic and diagnostic (theranostic) modalities. This mini review highlights the emerging applications of functionalized QDs as fluorescence contrast agents for imaging or as nanoscale vehicles for delivery of therapeutics, with special attention paid to the promise and challenges towards QD-based theranostics.

Ho, Yi-Ping; Leong, Kam W.

2010-01-01

146

Understanding electronic systems in semiconductor quantum dots  

NASA Astrophysics Data System (ADS)

Systems of confined electrons are found everywhere in nature in the form of atoms where the orbiting electrons are confined by the Coulomb attraction of the nucleus. Advancement of nanotechnology has, however, provided us with an alternative way to confine electrons by using artificial confining potentials. A typical structure of this nature is the quantum dot, a nanoscale system which consists of few confined electrons. There are many types of quantum dots ranging from self-assembled to miniaturized semiconductor quantum dots. In this work we are interested in electrostatically confined semiconductor quantum dot systems where the electrostatic confining potential that traps the electrons is generated by external electrodes, doping, strain or other factors. A large number of semiconductor quantum dots of this type are fabricated by applying lithographically patterned gate electrodes or by etching on two-dimensional electron gases in semiconductor heterostructures. Because of this, the whole structure can be treated as a confined two-dimensional electron system. Quantum confinement profoundly affects the way in which electrons interact with each other, and external parameters such as a magnetic field. Since a magnetic field affects both the orbital and the spin motion of the electrons, the interplay between quantum confinement, electron-electron correlation effects and the magnetic field gives rise to very interesting physical phenomena. Thus, confined systems of electrons in a semiconductor quantum dot represent a unique opportunity to study fundamental quantum theories in a controllable atomic-like setup. In this work, we describe some common theoretical models which are used to study confined systems of electrons in a two-dimensional semiconductor quantum dot. The main emphasis of the work is to draw attention to important physical phenomena that arise in confined two-dimensional electron systems under various quantum regimes.

Ciftja, Orion

2013-11-01

147

Comparison of quantum confinement effects between quantum wires and dots  

SciTech Connect

Dimensionality is an important factor to govern the electronic structures of semiconductor nanocrystals. The quantum confinement energies in one-dimensional quantum wires and zero-dimensional quantum dots are quite different. Using large-scale first-principles calculations, we systematically study the electronic structures of semiconductor (including group IV, III-V, and II-VI) surface-passivated quantum wires and dots. The band-gap energies of quantum wires and dots have the same scaling with diameter for a given material. The ratio of band-gap-increases between quantum wires and dots is material-dependent, and slightly deviates from 0.586 predicted by effective-mass approximation. Highly linear polarization of photoluminescence in quantum wires is found. The degree of polarization decreases with the increasing temperature and size.

Li, Jingbo; Wang, Lin-Wang

2004-03-30

148

Double superexchange in quantum dot mesomaterials  

E-print Network

dynamics are quantified from first-principles for a model system composed of small silicon quantum dots as the critical obstacles to dramatic enhancements in the energy conversion efficiency of photovoltaic cells based attractive for photovoltaic and opto- electronic applications.1­4 Compared with dots of greater size

Wu, Zhigang

149

Synthesis and Optical Properties of Thiol Functionalized CdSe/ZnS (Core/Shell) Quantum Dots by Ligand Exchange  

SciTech Connect

The colloidal photoluminescent quantum dots (QDs) of CdSe (core) and CdSe/ZnS (core/shell) were synthesized at different temperatures with different growth periods. The optical properties (i.e., UV/Vis spectra and photoluminescent emission spectra) of the resulting QDs were investigated. The CdSe/ZnS QDs exhibited higher photoluminescent (PL) efficiency and stability than their corresponding CdSe core QDs. Ligand exchange with various thiol molecules was performed to replace the initial surface passivation ligands, that is, trioctylphosphine oxide (TOPO) and trioctylphosphine (TOP), and the optical properties of the surface-modified QDs were studied. The thiol ligand molecules used included 1,4-benzenedimethanethiol, 1,16-hexadecanedithiol, 1,11-undecanedithiol, 11-mercapto-1-undecanol, and 1,8 octanedithiol. After the thiol functionalization, the CdSe/ZnS QDs exhibited significantly enhanced PL efficiency and storage stability. Besides surface passivation effect, such enhanced performance of thiol-functionalized QDs could be due to self-assembly formation of dimer/trimer clusters, in which QDs are linked by dithiol molecules. Effects of ligand concentration, type of ligand, and heating on the thiol stabilization of QDs were also discussed.

Zhu, Huaping [ORNL; Hu, Michael Z. [ORNL; Shao, Lei [ORNL; Yu, Kui [SIMS, NRC of Canada; Dabestani, Reza T [ORNL; Zaman, Md. Badruz [SIMS, NRC of Canada; Liao, Dr. Shijun [South China University of Technology, Guangzhou, PR China

2014-01-01

150

Facile synthesis of analogous graphene quantum dots with sp(2) hybridized carbon atom dominant structures and their photovoltaic application.  

PubMed

Graphene quantum dot (GQD) is an emerging class of zero-dimensional nanocarbon material with many novel applications. It is of scientific importance to prepare GQDs with more perfect structures, that is, GQDs containing negligible oxygenous defects, for both optimizing their optical properties and helping in their photovoltaic applications. Herein, a new strategy for the facile preparation of "pristine" GQDs is reported. The method we presented is a combination of a bottom-up synthetic and a solvent-induced interface separation process, during which the target products with highly crystalline structure were selected by the organic solvent. The obtained organic soluble GQDs (O-GQDs) showed a significant difference in structure and composition compared with ordinary aqueous soluble GQDs, thus leading to a series of novel properties. Furthermore, O-GQDs were applied as electron-acceptors in a poly(3-hexylthiophene) (P3HT)-based organic photovoltaic device. The performance highlights that O-GQD has potential to be a novel electron-acceptor material due to the sp(2) hybridized carbon atom dominant structure and good solubility in organic solvents. PMID:25247467

Huang, Zhengcheng; Shen, Yongtao; Li, Yu; Zheng, Wenjun; Xue, Yunjia; Qin, Chengqun; Zhang, Bo; Hao, Jingxiang; Feng, Wei

2014-10-01

151

Synthesis of water-dispersible zinc oxide quantum dots with antibacterial activity and low cytotoxicity for cell labeling  

NASA Astrophysics Data System (ADS)

Typical photoluminescent semiconductor nanoparticles, called quantum dots (QDs), have potential applications in biological labeling. When used to label stem cells, QDs may impair the differentiation capacity of the stem cells. In this study, we synthesized zinc oxide (ZnO) QDs in methanol with an average size of ?2 nm. We then employed two different types of polyethylene glycol (PEG) molecules (SH-PEG-NH2 and NH2-PEG-NH2) to conjugate ZnO QDs and made them water-dispersible. Fourier transform infrared spectroscopy spectra indicated the attachment of PEG molecules on ZnO QDs. No obvious size alteration was observed for ZnO QDs after PEG conjugation. The water-dispersible ZnO QDs still retained the antibacterial activity and fluorescence intensity. The cytotoxicity evaluation revealed that ZnO QDs at higher concentrations decreased cell viability but were generally safe at 30 ppm or below. Cell lines of hepatocytes (HepG2), osteoblasts (MC3T3-E1) and mesenchymal stem cells (MSCs) were successfully labeled by the water-dispersible ZnO QDs at 30 ppm. The ZnO QD-labeled MSCs maintained their stemness and differentiation capacity. Therefore, we conclude that the water-dispersible ZnO QDs developed in this study have antibacterial activity, low cytotoxicity, and proper labeling efficiency, and can be used to label a variety of cells including stem cells.

Hsu, Shan-hui; Lin, Ying Yi; Huang, Sherry; Lem, Kwok Wai; Huong Nguyen, Dinh; Lee, Dai Soo

2013-11-01

152

High throughput synthesis of uniform biocompatible polymer beads with high quantum dot loading using microfluidic jet-mode breakup.  

PubMed

Uniform polymer microbeads with highly loaded quantum dots (QDs) are produced using high-throughput coherent jet breakup of a biocompatible poly(ethylene glycol) diacrylate (PEGDA) prepolymer resin, followed by in-line photopolymerization. A spiraling and gradually widening channel enables maximum absorption of radiated UV light for the in-line photopolymerization without coalescence and clogging issues. Although the dripping mode in general provides superior uniformity to the jet mode, our nozzle design with tapered geometry brings controlled jet breakup leading to 3% of uniform particle size distribution, comparable to dripping-mode performance. We achieve a maximum production rate of 2.32 kHz, 38 times faster than the dripping mode, at a same polymer flow rate. In addition, the jet-mode scheme provides better versatility with 3 times wider range of size control as well as the compatibility with viscous fluids that could cause pressure buildup in the microsystem. As a demonstration, a QD-doped prepolymer resin is introduced to create uniform biocompatible polymer beads with 10 wt % CdSe/ZnSe QD loading. In spite of this high loading, the resulting polymer beads exhibits narrow bandwidth of 28 nm to be used for the ultrasensitive bioimaging, optical coding, and sensing sufficiently with single bead. PMID:24506820

Lee, Seung-Kon; Baek, Jinyoung; Jensen, Klavs F

2014-03-01

153

Synthesis of CdSe quantum dots using various long-chain fatty acids and their phase transfer.  

PubMed

Monodispersed colloidal photoluminescent CdSe quantum dots (QDs) were synthesized via an organic approach by using cadmium oxide and elemental selenium as precursors, and long-chain fatty acids as surface ligands. The hydrocarbon chain length of the fatty acid was adjusted to investigate the effect on CdSe QDs. The fatty acid ligands with different hydrocarbon chain lengths showed an apparent effect on the nanocrystal nucleation and growth which is the key controlling the size, size distribution and crystal structure of resulting CdSe QDs. This effect was attributable to the steric hindrance of different hydrocarbon length of the fatty acids, which affected the reactivity of the monomers and nanocrystals during the nanocrystal nucleation and growth. The water-soluble CdSe QDs were obtained by encapsulating the CdSe ODs in oil phase with amphiphilic poly(styrene-co-maleic anhydride) (PSMA)-ethanolamine (EA) polymers, which made it possible for further applications of the CdSe QDs in aqueous environment such as surface functionalization for biological labeling and application in photocatalysis and photosensitization. PMID:23862479

Zhang, Qiang; Zhang, Aiyu; Yang, Ping; Shen, Jianxing

2013-06-01

154

Facile synthesis and step by step enhancement of blue photoluminescence from Ag-doped ZnS quantum dots.  

PubMed

Our results pertaining to the step by step enhancement of photoluminescence (PL) intensity from ZnS:Ag,Al quantum dots (QDs) are presented. Initially, these QDs were synthesized using a simple co-precipitation technique involving a surfactant, polyvinylpyrrolidone (PVP), in de-ionised water. It was observed that the blue PL originated from ZnS:Ag,Al QDs was considerably weak and not suitable for any practical display application. Upon UV (365 nm) photolysis, the PL intensity augmented to ~170% and attained a saturation value after ~100 min of exposure. This is attributed to the photo-corrosion mechanism exerted by high-flux UV light on ZnS:Ag,Al QDs. Auxiliary enhancement of PL intensity to 250% has been evidenced by subjecting the QDs to high temperatures (200 °C) and pressures (~120 bars) in a sulphur-rich atmosphere, which is due to the improvement in crystallanity of ZnS QDs. The origin of the bright-blue PL has been discussed. The results were supported by X-ray phase analysis, high-resolution electron microscopy and compositional evaluation. PMID:21392773

Sahai, Sonal; Husain, Mushahid; Shanker, Virendra; Singh, Nahar; Haranath, D

2011-05-15

155

Facile synthesis and step by step enhancement of blue photoluminescence from Ag-doped ZnS quantum dots  

E-print Network

Our results pertaining to the step by step enhancement of photoluminescence (PL) intensity from ZnS:Ag,Al quantum dots (QDs) are presented. Initially, these QDs were synthesized using a simple co-precipitation technique involving a surfactant, polyvinylpyrrolidone (PVP), in de-ionised water. It was observed that the blue PL originated from ZnS:Ag,Al QDs was considerably weak and not suitable for any practical display application. Upon UV (365 nm) photolysis, the PL intensity augmented to ~170% and attained a saturation value after ~100 minutes of exposure. This is attributed to the photo-corrosion mechanism exerted by high-flux UV light on ZnS:Ag,Al QDs. Auxiliary enhancement of PL intensity to 250% has been evidenced by subjecting the QDs to high temperatures (200oC) and pressures (~120 bars) in a sulphur-rich atmosphere, which is due to the improvement in crystallanity of ZnS QDs. The origin of the bright blue PL has been discussed. The results were supported by x-ray phase analysis, high-resolution electro...

Sahai, Sonal; Shanker, Virendra; Singh, Nahar; Haranath, D; 10.1016/j.jcis.2011.02.030

2012-01-01

156

Photodetectors based on colloidal quantum dots  

E-print Network

Inspired by recent work demonstrating photocurrent enhancement in quantum-dot (QD) solids via post-deposition chemical annealing and by recent successes incorporating single monolayers of QDs in light-emitting devices ...

Oertel, David C. (David Charles)

2007-01-01

157

Quantum Dot Array Formation through Biomolecular Nanopatterning.  

National Technical Information Service (NTIS)

Report developed under SBIR contract for Topic A98-028: The objective is to demonstrate the feasibility of forming precisely ordered and precisely located arrays of semiconductor quantum dots by using biomolecular templates and Low Energy Electron Enhance...

H. P. Gillis

1999-01-01

158

Creating atomic order in semiconductors quantum dots  

E-print Network

1 Creating atomic order in semiconductors quantum dots Peter Moeck Department of Physics (MC 273 in the invention of the integrated circuit" Jack S. Kilby (½): creating first integrated circuit in Ge, September

Moeck, Peter

159

The Glutathione Synthesis Gene Gclm Modulates Amphiphilic Polymer-Coated CdSe/ZnS Quantum Dot-Induced Lung Inflammation in Mice  

PubMed Central

Quantum dots (QDs) are unique semi-conductor fluorescent nanoparticles with potential uses in a variety of biomedical applications. However, concerns exist regarding their potential toxicity, specifically their capacity to induce oxidative stress and inflammation. In this study we synthesized CdSe/ZnS core/shell QDs with a tri-n-octylphosphine oxide, poly(maleic anhydride-alt-1-tetradecene) (TOPO-PMAT) coating and assessed their effects on lung inflammation in mice. Previously published in vitro data demonstrated these TOPO-PMAT QDs cause oxidative stress resulting in increased expression of antioxidant proteins, including heme oxygenase, and the glutathione (GSH) synthesis enzyme glutamate cysteine ligase (GCL). We therefore investigated the effects of these QDs in vivo in mice deficient in GSH synthesis (Gclm +/? and Gclm ?/? mice). When mice were exposed via nasal instillation to a TOPO-PMAT QD dose of 6 µg cadmium (Cd) equivalents/kg body weight, neutrophil counts in bronchoalveolar lavage fluid (BALF) increased in both Gclm wild-type (+/+) and Gclm heterozygous (+/?) mice, whereas Gclm null (?/?) mice exhibited no such increase. Levels of the pro-inflammatory cytokines KC and TNF? increased in BALF from Gclm +/+ and +/? mice, but not from Gclm ?/? mice. Analysis of lung Cd levels suggested that QDs were cleared more readily from the lungs of Gclm ?/? mice. There was no change in matrix metalloproteinase (MMP) activity in any of the mice. However, there was a decrease in whole lung myeloperoxidase (MPO) content in Gclm ?/? mice, regardless of treatment, relative to untreated Gclm +/+ mice. We conclude that in mice TOPO-PMAT QDs have in vivo pro-inflammatory properties, and the inflammatory response is dependent on GSH synthesis status. Because there is a common polymorphism in humans that influences GCLM expression, these findings imply that humans with reduced GSH synthesis capabilities may be more susceptible to the pro-inflammatory effects of QDs. PMID:23724032

White, Collin C.; Weldy, Chad S.; Wilkerson, Hui-Wen; Yu, Jianbo; Dills, Russell; Yu, Xiaozhong; Griffith, William C.; Faustman, Elaine M.; Farin, Federico M.; Gill, Sean E.; Parks, William C.; Hu, Xiaoge; Gao, Xiaohu; Eaton, David L.; Kavanagh, Terrance J.

2013-01-01

160

Multimodal Mn-doped I-III-VI quantum dots for near infrared fluorescence and magnetic resonance imaging: from synthesis to in vivo application.  

PubMed

The development of sensitive multimodal contrast agents is a key issue to provide better global, multi-scale images for diagnostic or therapeutic purposes. Here we present the synthesis of Zn-Cu-In-(S, Se)/Zn(1-x)Mn(x)S core-shell quantum dots (QDs) that can be used as markers for both near-infrared fluorescence imaging and magnetic resonance imaging (MRI). We first present the synthesis of Zn-Cu-In-(S, Se) cores coated with a thick ZnS shell doped with various proportions of Mn. Their emission wavelengths can be tuned over the NIR optical window suitable for deep tissue imaging. The incorporation of manganese ions (up to a few thousand ions per QD) confers them a paramagnetic character, as demonstrated by structural analysis and electron paramagnetic resonance spectroscopy. These QDs maintain their optical properties after transfer to water using ligand exchange. They exhibit T1-relaxivities up to 1400 mM(-1) [QD] s(-1) at 7 T and 300 K. We finally show that these QDs are suitable multimodal in vivo probes and demonstrate MRI and NIR fluorescence detection of regional lymph nodes in mice. PMID:24980473

Sitbon, Gary; Bouccara, Sophie; Tasso, Mariana; Francois, Aurélie; Bezdetnaya, Lina; Marchal, Frédéric; Beaumont, Marine; Pons, Thomas

2014-08-01

161

Cation-inverting-injection: a novel method for synthesis of aqueous ZnSe quantum dots with bright excitionic emission and suppressed trap emission  

NASA Astrophysics Data System (ADS)

In the conventional synthesis of aqueous ZnSe quantum dots (QDs), highly reactive Se monomers are rapidly injected into a Zn-thiol complexes solution at room temperature, resulting in a poor excitionic luminescence and a serious trap emission of as-prepared ZnSe QDs. In this paper, we develop a novel cation-inverting-injection method to prepare aqueous ZnSe QDs with a bright excitionic luminescence. In this method, highly reactive Se monomers are first diluted in the reaction solution, followed by low-reaction Zn-thiol complexes slowly dropped at a high reaction temperature (90 °C). The inverting monomer injection order, the suppressed monomer reactivity and the high nucleation temperature in the cation-inverting-injection method can contribute to low-concentration but high-quality ZnSe nuclei, thereby promoting the formation of ZnSe QDs with large-sized particles, a high excitionic emission and a weak trap emission. As-prepared ZnSe QDs exhibit an intense deep-blue excitionic emission, which is the first reported case of a visible excitionic emission instead of a trap emission resulting from ZnSe QDs that are directly synthesized in an aqueous media. Using three types of dyes, via two measuring methods, the accurate photoluminescence quantum yield of the as-prepared ZnSe QDs is measured as 15%, which is a new record for mercaptocarboxylic acid stabilized ZnSe QDs synthesized in an aqueous media.

Wang, Yanbin; Wang, Chunlei; Xu, Shuhong; Wang, Zhuyuan; Cui, Yiping

2014-07-01

162

Cation-inverting-injection: a novel method for synthesis of aqueous ZnSe quantum dots with bright excitionic emission and suppressed trap emission.  

PubMed

In the conventional synthesis of aqueous ZnSe quantum dots (QDs), highly reactive Se monomers are rapidly injected into a Zn-thiol complexes solution at room temperature, resulting in a poor excitionic luminescence and a serious trap emission of as-prepared ZnSe QDs. In this paper, we develop a novel cation-inverting-injection method to prepare aqueous ZnSe QDs with a bright excitionic luminescence. In this method, highly reactive Se monomers are first diluted in the reaction solution, followed by low-reaction Zn-thiol complexes slowly dropped at a high reaction temperature (90 °C). The inverting monomer injection order, the suppressed monomer reactivity and the high nucleation temperature in the cation-inverting-injection method can contribute to low-concentration but high-quality ZnSe nuclei, thereby promoting the formation of ZnSe QDs with large-sized particles, a high excitionic emission and a weak trap emission. As-prepared ZnSe QDs exhibit an intense deep-blue excitionic emission, which is the first reported case of a visible excitionic emission instead of a trap emission resulting from ZnSe QDs that are directly synthesized in an aqueous media. Using three types of dyes, via two measuring methods, the accurate photoluminescence quantum yield of the as-prepared ZnSe QDs is measured as 15%, which is a new record for mercaptocarboxylic acid stabilized ZnSe QDs synthesized in an aqueous media. PMID:24981918

Wang, Yanbin; Wang, Chunlei; Xu, Shuhong; Wang, Zhuyuan; Cui, Yiping

2014-07-25

163

A facile cation exchange-based aqueous synthesis of highly stable and biocompatible Ag2S quantum dots emitting in the second near-infrared biological window.  

PubMed

Second near-infrared (NIR-II) emitting Ag2S quantum dots (QDs) with high stability and biocompatibility were synthesized and developed toward an ideal nanoprobe. This study reports a facile synthesis of NIR-II Ag2S QDs on the basis of cation exchange between visible-emitting CdS QDs and Ag(+) ions in aqueous solution. Experimental data testified that the cation exchange was quick and complete and that the resultant products were single monoclinic Ag2S without CdS QDs. The prepared Ag2S QDs were systematically characterized, showed typical NIR-II emission and high PL stability, and had small diameters (?3.5 nm) and a quantum yield up to 2.3%. The results of cytotoxicity assay suggested that the Ag2S QDs produced negligible effects in altering the cell proliferation or in generating reactive oxygen species, indicating an ultralow cytotoxicity and an excellent biocompatibility. These properties have opened up the possibility of using Ag2S QDs for effective bioimaging applications. PMID:25270003

Gui, Rijun; Sun, Jie; Liu, Dexiu; Wang, Yanfeng; Jin, Hui

2014-10-22

164

Semiconductor clusters nanocrystals, and quantum dots  

Microsoft Academic Search

Current research into semiconductor clusters is focused on the properties on the properties of quantum dots-fragments of semiconductor consisting of hundreds to many thousands of atoms-with the bulk bonding geometry and with surface states eliminated by enclosure in a material that has a larger band gap. Quantum dots exhibit strongly size-dependent optical and electrical properties. The ability to join the

A. P. Alivisatos

1996-01-01

165

Submonolayer Quantum Dot Infrared Photodetector  

NASA Technical Reports Server (NTRS)

A method has been developed for inserting submonolayer (SML) quantum dots (QDs) or SML QD stacks, instead of conventional Stranski-Krastanov (S-K) QDs, into the active region of intersubband photodetectors. A typical configuration would be InAs SML QDs embedded in thin layers of GaAs, surrounded by AlGaAs barriers. Here, the GaAs and the AlGaAs have nearly the same lattice constant, while InAs has a larger lattice constant. In QD infrared photodetector, the important quantization directions are in the plane perpendicular to the normal incidence radiation. In-plane quantization is what enables the absorption of normal incidence radiation. The height of the S-K QD controls the positions of the quantized energy levels, but is not critically important to the desired normal incidence absorption properties. The SML QD or SML QD stack configurations give more control of the structure grown, retains normal incidence absorption properties, and decreases the strain build-up to allow thicker active layers for higher quantum efficiency.

Ting, David Z.; Bandara, Sumith V.; Gunapala, Sarath D.; Chang, Yia-Chang

2010-01-01

166

Quantum Dots versus Quantum Wells on Silicon Alan Y. Liua, Chong Zhangb, Justin Normana,  

E-print Network

1 Quantum Dots versus Quantum Wells on Silicon Alan Y. Liua, Chong Zhangb, Justin Normana, Andrew with semiconductor quantum dots [2]. Recent success with In(Ga)As quantum dot lasers epitaxially grown on silicon on silicon are lacking [3]�[5]. Here we directly compare the optical properties of In(Ga)As quantum dot

Bowers, John

167

Synthesis, characterization and target protein binding of drug-conjugated quantum dots in vitro and in living cells  

NASA Astrophysics Data System (ADS)

Elucidation of unknown target proteins of a drug is of great importance in understanding cell biology and drug discovery. There have been extensive studies to discover and identify target proteins in the cell. Visualization of targets using drug-conjugated probes has been an important approach to gathering mechanistic information of drug action at the cellular level. As quantum dot (QD) nanocrystals have attracted much attention as a fluorescent probe in the bioimaging area, we prepared drug-conjugated QD to explore the potential of target discovery. As a model drug, we selected a well-known anticancer drug, methotrexate (MTX), which has been known to target dihydrofolate reductase (DHFR) with high affinity binding (Kd = 0.54 nM). MTX molecules were covalently attached to amino-PEG-polymer-coated QDs. Specific interactions of MTX-conjugated QDs with DHFR were identified using agarose gel electrophoresis and fluorescence microscopy. Cellular uptake of the MTX-conjugated QDs in living CHO cells was investigated with regard to their localization and distribution pattern. MTX-QD was found to be internalized into the cells via caveolae-medicated endocytosis without significant sequestration in endosomes. A colocalization experiment of the MTX-QD conjugate with antiDHFR-TAT-QD also confirmed that MTX-QD binds to the target DHFR. This study showed the potential of the drug-QD conjugate to identify or visualize drug-target interactions in the cell, which is currently of great importance in the area of drug discovery and chemical biology.

Choi, Youngseon; Kim, Minjung; Cho, Yoojin; Yun, Eunsuk; Song, Rita

2013-02-01

168

SnO2 quantum dots and quantum wires: controllable synthesis, self-assembled 2D architectures, and gas-sensing properties.  

PubMed

SnO2 quantum dots (QDs) and ultrathin nanowires (NWs) with diameters of approximately 0.5-2.5 and approximately 1.5-4.5 nm, respectively, were controllably synthesized in a simple solution system. They are supposed to be ideal models for studying the continuous evolution of the quantum-confinement effect in SnO2 1D --> 0D systems. The observed transition from strong to weak quantum confinement in SnO2 QDs and ultrathin NWs is interpreted through the use of the Brus effective-mass approximation and the Nosaka finite-depth well model. Photoluminescence properties that were coinfluenced by size effects, defects (oxygen vacancies), and surface capping are discussed in detail. With the SnO2 QDs as building blocks, various 2D porous structures with ordered hexagonal, distorted hexagonal, and square patterns were prepared on silicon-wafer surfaces and exhibited optical features of 2D photonic crystals and enhanced gas sensitivity. PMID:18715007

Xu, Xiangxing; Zhuang, Jing; Wang, Xun

2008-09-17

169

Thermoelectric transport through strongly correlated quantum dots  

E-print Network

The thermoelectric properties of strongly correlated quantum dots, described by a single level Anderson model coupled to conduction electron leads, is investigated using Wilson's numerical renormalization group method. We calculate the electronic contribution, $K_{\\rm e}$, to the thermal conductance, the thermopower, $S$, and the electrical conductance, $G$, of a quantum dot as a function of both temperature, $T$, and gate voltage, ${\\rm v}_g$, for strong, intermediate and weak Coulomb correlations, $U$, on the dot. For strong correlations and in the Kondo regime, we find that the thermopower exhibits two sign changes, at temperatures $T_{1}({\\rm v}_g)$ and $T_{2}({\\rm v}_g)$ with $T_{1}< T_{2}$. Such sign changes in $S(T)$ are particularly sensitive signatures of strong correlations and Kondo physics. The relevance of this to recent thermopower measurements of Kondo correlated quantum dots is discussed. We discuss the figure of merit, power factor and the degree of violation of the Wiedemann-Franz law in quantum dots. The extent of temperature scaling in the thermopower and thermal conductance of quantum dots in the Kondo regime is also assessed.

T. A. Costi; V. Zlatic

2010-04-09

170

Open Quantum Dots in Graphene: Scaling Relativistic Pointer States  

E-print Network

1 Open Quantum Dots in Graphene: Scaling Relativistic Pointer States D K Ferry1 , L Huang, R Yang quantum dots provide a window into the connection between quantum and classical physics, particularly in graphene and bilayer graphene quantum dots with this recursive Green's function method. Finally, we examine

Zhang, Junshan

171

Atomic and Molecular Quantum Theory Course Number: C561 10 Quantum Confinement in "Quantum dots", Thomas Fermi  

E-print Network

Atomic and Molecular Quantum Theory Course Number: C561 10 Quantum Confinement in "Quantum dots "niche" area called quantum dots. 1. A quantum dot is a very small chunk of semiconductor material changes the spectroscopic properties of quantum dots. Chemistry, Indiana University 84 c 2003, Srinivasan

Iyengar, Srinivasan S.

172

Quantum phase transition in a single-molecule quantum dot.  

PubMed

Quantum criticality is the intriguing possibility offered by the laws of quantum mechanics when the wave function of a many-particle physical system is forced to evolve continuously between two distinct, competing ground states. This phenomenon, often related to a zero-temperature magnetic phase transition, is believed to govern many of the fascinating properties of strongly correlated systems such as heavy-fermion compounds or high-temperature superconductors. In contrast to bulk materials with very complex electronic structures, artificial nanoscale devices could offer a new and simpler means of understanding quantum phase transitions. Here we demonstrate this possibility in a single-molecule quantum dot, where a gate voltage induces a crossing of two different types of electron spin state (singlet and triplet) at zero magnetic field. The quantum dot is operated in the Kondo regime, where the electron spin on the quantum dot is partially screened by metallic electrodes. This strong electronic coupling between the quantum dot and the metallic contacts provides the strong electron correlations necessary to observe quantum critical behaviour. The quantum magnetic phase transition between two different Kondo regimes is achieved by tuning gate voltages and is fundamentally different from previously observed Kondo transitions in semiconductor and nanotube quantum dots. Our work may offer new directions in terms of control and tunability for molecular spintronics. PMID:18509439

Roch, Nicolas; Florens, Serge; Bouchiat, Vincent; Wernsdorfer, Wolfgang; Balestro, Franck

2008-05-29

173

Quantum dots for light emitting diodes.  

PubMed

In this article we discuss the development and key advantages of quantum dot based light emitting diode (QD-LED) and other applications based on their color purity, stability, and solution processibility. Analysis of quantum dot based LEDs and the main challenges faced in this field, such as the QD luminescence quenching, QD charging in thin films, and external quantum efficiency are discussed in detail. The description about how different optical down-conversion and structures enabled researchers to overcome these challenges and to commercialize the products. The recent developments about how to overcome these difficulties have also been discussed in this article. PMID:23858829

Qasim, Khan; Lei, Wei; Li, Qing

2013-05-01

174

Dot-in-Well Quantum-Dot Infrared Photodetectors  

NASA Technical Reports Server (NTRS)

Dot-in-well (DWELL) quantum-dot infrared photodetectors (QDIPs) [DWELL-QDIPs] are subjects of research as potentially superior alternatives to prior QDIPs. Heretofore, there has not existed a reliable method for fabricating quantum dots (QDs) having precise, repeatable dimensions. This lack has constituted an obstacle to the development of uniform, high-performance, wavelength-tailorable QDIPs and of focal-plane arrays (FPAs) of such QDIPs. However, techniques for fabricating quantum-well infrared photodetectors (QWIPs) having multiple-quantum- well (MQW) structures are now well established. In the present research on DWELL-QDIPs, the arts of fabrication of QDs and QWIPs are combined with a view toward overcoming the deficiencies of prior QDIPs. The longer-term goal is to develop focal-plane arrays of radiationhard, highly uniform arrays of QDIPs that would exhibit high performance at wavelengths from 8 to 15 m when operated at temperatures between 150 and 200 K. Increasing quantum efficiency is the key to the development of competitive QDIP-based FPAs. Quantum efficiency can be increased by increasing the density of QDs and by enhancing infrared absorption in QD-containing material. QDIPs demonstrated thus far have consisted, variously, of InAs islands on GaAs or InAs islands in InGaAs/GaAs wells. These QDIPs have exhibited low quantum efficiencies because the numbers of QD layers (and, hence, the areal densities of QDs) have been small typically five layers in each QDIP. The number of QD layers in such a device must be thus limited to prevent the aggregation of strain in the InAs/InGaAs/GaAs non-lattice- matched material system. The approach being followed in the DWELL-QDIP research is to embed In- GaAs QDs in GaAs/AlGaAs multi-quantum- well (MQW) structures (see figure). This material system can accommodate a large number of QD layers without excessive lattice-mismatch strain and the associated degradation of photodetection properties. Hence, this material system is expected to enable achievement of greater densities of QDs and correspondingly greater quantum efficiencies. The host GaAs/AlGaAs MQW structures are highly compatible with mature fabrication processes that are now used routinely in making QWIP FPAs. The hybrid InGaAs-dot/GaAs/AlGaAs-well system also offers design advantages in that the effects of variability of dot size can be partly compensated by engineering quantum-well sizes, which can be controlled precisely.

Gunapala, Sarath; Bandara, Sumith; Ting, David; Hill, cory; Liu, John; Mumolo, Jason; Chang, Yia Chung

2008-01-01

175

Quantum Monte Carlo study of quantum dots in magnetic fields  

Microsoft Academic Search

We have studied the ground state energies and quantum numbers of confined two-dimensional (2D) electrons in weak and intermediate magnetic field strengths using quantum Monte Carlo methods. These 2D quantum dots are of theoretical interest, because it is possible to go from a weakly to a strongly correlated system by tuning the relative strength of the external potential to the

Wolfgang Geist; Lang Zeng; Mei-Yin Chou

2004-01-01

176

Fabrication of Novel Germanium Oxide-cladded Germanium Quantum Dots and Quantum Dot Gate Nonvolatile Memory using Germanium Oxide-Germanium Qd's  

NASA Astrophysics Data System (ADS)

In this dissertation, the floating gate type quantum dot gate nonvolatile memory device has been investigated. The electrical characterization and simulation of the fabricated quantum dot nonvolatile memory (QD-NVM) devices is presented. The electrical characterization includes program, erase, and read operations and the memory retention and endurance measurements. In addition, QD synthesis and their incorporation as the floating gate (along with material characterization) is presented in fabricated QD-NVM devices. The synthesis of the germanium oxide cladding on the germanium quantum dots is one of the key interests in this research. Owing to the electrical and physical isolation of the quantum dots due to germanium oxide cladding, it provides a larger threshold voltage shift due to tight packing and higher density of quantum dots. GeOx cladding on the QDs enhances the data retention by avoiding the lateral dot-to-dot conduction, thereby reducing charge leakage. A threshold voltage of 1.5 V was observed in the first GeOx-Ge QD-NVM device when pulsed with a 20 micros stress pulse. The experimental data indicates that there is about a 0.1 V shift in the threshold voltage of that device over a period of one year. Similarly, 1.6 V of threshold voltage shift was observed in the second device and the retention data indicates negligible shift in the threshold voltage over a period of one year. Similar results were observed in the II-VI based QD-NVM devices.

Gogna, Mukesh

177

Successive and large-scale synthesis of InP/ZnS quantum dots in a hybrid reactor and their application to white LEDs  

NASA Astrophysics Data System (ADS)

We report successive and large-scale synthesis of InP/ZnS core/shell nanocrystal quantum dots (QDs) using a customized hybrid flow reactor, which is based on serial combination of a batch-type mixer and a flow-type furnace. InP cores and InP/ZnS core/shell QDs were successively synthesized in the hybrid reactor in a simple one-step process. In this reactor, the flow rate of the solutions was typically 1 ml min-1, 100 times larger than that of conventional microfluidic reactors. In order to synthesize high-quality InP/ZnS QDs, we controlled both the flow rate and the crystal growth temperature. Finally, we obtained high-quality InP/ZnS QDs in colors from bluish green to red, and we demonstrated that these core/shell QDs could be incorporated into white-light-emitting diode (LED) devices to improve color rendering performance.

Kim, Kyungnam; Jeong, Sohee; Woo, Ju Yeon; Han, Chang-Soo

2012-02-01

178

Successive and large-scale synthesis of InP/ZnS quantum dots in a hybrid reactor and their application to white LEDs.  

PubMed

We report successive and large-scale synthesis of InP/ZnS core/shell nanocrystal quantum dots (QDs) using a customized hybrid flow reactor, which is based on serial combination of a batch-type mixer and a flow-type furnace. InP cores and InP/ZnS core/shell QDs were successively synthesized in the hybrid reactor in a simple one-step process. In this reactor, the flow rate of the solutions was typically 1 ml min(-1), 100 times larger than that of conventional microfluidic reactors. In order to synthesize high-quality InP/ZnS QDs, we controlled both the flow rate and the crystal growth temperature. Finally, we obtained high-quality InP/ZnS QDs in colors from bluish green to red, and we demonstrated that these core/shell QDs could be incorporated into white-light-emitting diode (LED) devices to improve color rendering performance. PMID:22248987

Kim, Kyungnam; Jeong, Sohee; Woo, Ju Yeon; Han, Chang-Soo

2012-02-17

179

Low-cost and large-scale synthesis of CuInS2 and CuInS2/ZnS quantum dots in diesel  

NASA Astrophysics Data System (ADS)

In this paper, we present the results of the syntheses of CuInS2 (CIS) and CIS/ZnS core/shell quantum dots (QDs) by heating-up method using diesel as the high boiling-point reaction solvent. The influences of the synthesis parameters, namely the reaction temperature, growth time and the Cu:In molar ratio to the structure and optical properties of the obtained QDs were systematically investigated. CIS QDs were synthesised at the reaction temperatures of 200-230 °C for 5-45 min and the Cu:In molar ratios of 0.5:1-1.5:1. The optical characteristics from absorption and photoluminescence spectra have been used as indicators to the quality of the synthesised QDs, showing clearly that the highest quality CIS QDs were obtained at the reaction temperature of 210 °C for 15 min with the Cu:In molar ratio of 1:1. For such QDs, their mean size of 3.5 nm was determined directly from the transmission electron microscopy (TEM) image and calculated from their XRD pattern.

Thuy, Nguyen Thi Minh; Chi, Tran Thi Kim; Thuy, Ung Thi Dieu; Liem, Nguyen Quang

2014-11-01

180

Nanostructured architectures for colloidal quantum dot solar cells  

E-print Network

This thesis introduces a novel ordered bulk heterojunction architecture for colloidal quantum dot (QD) solar cells. Quantum dots are solution-processed nanocrystals whose tunable bandgap energies make them a promising ...

Jean, Joel, S.M. Massachusetts Institute of Technology

2013-01-01

181

Wigner Function for an Impurity in a Parabolic Quantum Dot  

Microsoft Academic Search

High sensitivity of quantum dots with impurities can be linked with phase space high sensitivity to initial conditions. We present the Wigner function for an impurity in a parabolic quantum dot obtained from a variational wavefunction.

Gary Snyder; Majd Mayassi; Praveen Nittala; Tomas Materdey

2006-01-01

182

Electron tunneling and spin relaxation in a lateral quantum dot  

E-print Network

We report measurements that use real-time charge sensing to probe a single-electron lateral quantum dot. The charge sensor is a quantum point contact (QPC) adjacent to the dot and the sensitivity is comparable to other ...

Amasha, Sami

2008-01-01

183

Quantum dots to monitor RNAi delivery and improve gene silencing  

E-print Network

Quantum dots to monitor RNAi delivery and improve gene silencing Alice A. Chen1 , Austin M. Derfus2RNA delivery that combines unmodified siRNA with seminconductor quantum dots (QDs) as multi color biological

Bhatia, Sangeeta

184

Quantum Dots: The New Little Nanosemiconductors  

NASA Astrophysics Data System (ADS)

The recent arrival of nanomaterials has brought a nifty device called the Quantum Dot. They have intriguing and useful properties. They release light when electricity, heat or light excites their electrons. Their tunable bandgaps allow for the wavelength range they release to be controlled. Free Dots can be attached to a variety of molecules via metal coordinating functional groups. Some of These groups include thiol, phosphine oxide, phosphonic acid, amine, nitrile, phosphine, carboxylic acid or others ligands. This allows the Dots to be dispersed or dissolved in almost any solvent as well as incorporated into a large number of inorganic and organic films. quantum dots can also be tuned to emit in sharp Gaussian peaks in visible or infrared light. Their uses vary from counter counterfeiting to tracking terrorist movement across a large empty landscape.

Harenza, Chance

2006-10-01

185

Quantum teleportation in one-dimensional quantum dots system Hefeng Wang, Sabre Kais *  

E-print Network

Quantum teleportation in one-dimensional quantum dots system Hefeng Wang, Sabre Kais * Department of quantum teleportation protocol based on one-dimensional quantum dots system. Three quantum dots with three electrons are used to perform teleportation, the unknown qubit is encoded using one electron spin on quantum

Kais, Sabre

186

Quantum Teleportation in Quantum Dots System Hefeng Wang and Sabre Kais  

E-print Network

Quantum Teleportation in Quantum Dots System Hefeng Wang and Sabre Kais Department of Chemistry of quantum teleportation protocol based on one-dimensional quantum dots system. Three quantum dots with three electrons are used to perform teleportation, the unknown qubit is encoded using one electron spin on quantum

Kais, Sabre

187

Synthesis of optimized indium phosphide/zinc sulfide core/shell nanocrystals and titanium dioxide nanotubes for quantum dot sensitized solar cells  

NASA Astrophysics Data System (ADS)

Synthesis of InP/ZnS core/shell nanocrystals and TiO 2 nanotubes and the optimization study to couple them together were explored for quantum dot sensitized solar cells. Its intrinsic nontoxicity makes the direct band gap InP/ZnS core/shell be one of the most promising semiconductor nanocrystals for optoelectric applications, with the advantage of tuning the optical absorption range in the desired solar spectrum region. Highly luminescent and monodisperse InP/ZnS nanocrystals were synthesized in a non-coordinating solvent. By varying the synthesis scheme, different size InP/ZnS nanocrystals with emission peaks ranging from 520 nm to 620 nm were grown. For the purpose of ensuring air stability, a ZnS shell was grown. The ZnS shell improves the chemical stability in terms of oxidation prevention. Transmission electron microscopy (TEM) image shows that the nanocrystals are highly crystalline and monodisperse. Free-standing TiO2 nanotubes were produced by an anodization method using ammonium fluoride. The free-standing nanotubes were formed under the condition that the chemical dissolution speed associated with fluoride concentration was faster than the speed of Ti oxidation. Highly ordered free-standing anatase form TiO2 nanotubes, which are transformed by annealing at the optimized temperature, are expected to be ideal for coupling with the prepared InP/ZnS nanocrystals. Electrophoretic deposition was carried out to couple the InP/ZnS nanocrystals with the TiO2 nanotubes. Under the adjusted applied voltage condition, the current during the electrophoretic deposition decreased continuously with time. The amount of the deposited nanocrystals was estimated by calculation and the evenly deposited nanocrystals on the TiO2 nanotubes were observed by TEM.

Lee, Seungyong

188

Three-dimensional optical control of individual quantum dots.  

PubMed

We show that individual colloidal CdSe-core quantum dots can be optically trapped and manipulated in three dimensions by an infrared continuous wave laser operated at low laser powers. This makes possible utilizing quantum dots not only for visualization but also for manipulation, an important advantage for single molecule experiments. Moreover, we provide quantitative information about the magnitude of forces applicable to a single quantum dot and of the polarizability of an individual quantum dot. PMID:18767883

Jauffred, Liselotte; Richardson, Andrew C; Oddershede, Lene B

2008-10-01

189

Imaging a coupled quantum dot-quantum point contact system  

NASA Astrophysics Data System (ADS)

We have quantitatively studied the effect of charge traps on the electrical conductance of a quantum dot and a capacitively coupled quantum point contact. Using the sharp metallic tip of a low-temperature scanning force microscope as a scanned gate, we could localize the traps. The quantum point contact served as a charge detector and allowed us to distinguish single electron charging events in several traps from charging events on the dot. We used the quantum dot to analyze the tip-induced potential quantitatively and found its shape to be independent of the voltage applied to the tip within a certain range of parameters. We estimate that the trap density is below 0.1% of the doping density, that the charging energy of a trap is three times higher than that of the quantum dot, and that the interaction energy between the quantum dot and a trap is a significant portion of the dot's charging energy. Possibly, such charge traps are the reason for frequently observed parametric charge rearrangements.

Gildemeister, A. E.; Ihn, T.; Schleser, R.; Ensslin, K.; Driscoll, D. C.; Gossard, A. C.

2007-10-01

190

Electrical control of quantum dot spin qubits  

NASA Astrophysics Data System (ADS)

This thesis presents experiments exploring the interactions of electron spins with electric fields in devices of up to four quantum dots. These experiments are particularly motivated by the prospect of using electric fields to control spin qubits. A novel hyperfine effect on a single spin in a quantum dot is presented in Chapter 2. Fluctuations of the nuclear polarization allow single-spin resonance to be driven by an oscillating electric field. Spin resonance spectroscopy revealed a nuclear polarization built up inside the quantum dot device by driving the resonance. The evolution of two coupled spins is controlled by the combination of hyperfine interaction, which tends to cause spin dephasing, and exchange, which tends to prevent it. In Chapter 3, dephasing is studied in a device with tunable exchange, probing the crossover between exchange-dominated and hyperfine-dominated regimes. In agreement with theoretical predictions, oscillations of the spin conversion probability and saturation of dephasing are observed. Chapter 4 deals with a three-dot device, suggested as a potential qubit controlled entirely by exchange. Preparation and readout of the qubit state are demonstrated, together with one out of two coherent exchange operations needed for arbitrary manipulations. A new readout technique allowing rapid device measurement is described. In Chapter 5, an attempt to make a two-qubit gate using a four-dot device is presented. Although spin qubit operation has not yet been possible, the electrostatic interaction between pairs of dots was measured to be sufficient in principle for coherent qubit coupling.

Laird, Edward Alexander

191

Exciton binding energy in semiconductor quantum dots  

SciTech Connect

In the adiabatic approximation in the context of the modified effective mass approach, in which the reduced exciton effective mass {mu} = {mu}(a) is a function of the radius a of the semiconductor quantum dot, an expression for the exciton binding energy E{sub ex}(a) in the quantum dot is derived. It is found that, in the CdSe and CdS quantum dots with the radii a comparable to the Bohr exciton radii a{sub ex}, the exciton binding energy E{sub ex}(a) is substantially (respectively, 7.4 and 4.5 times) higher than the exciton binding energy in the CdSe and CdS single crystals.

Pokutnii, S. I., E-mail: Pokutnyi_Sergey@inbox.ru [National Academy of Sciences of Ukraine, G.V. Kurdjumov Institute for Metal Physics (Ukraine)

2010-04-15

192

Charge detection in graphene quantum dots J. Gttinger,a  

E-print Network

as a CD, as shown below. The sample is fabricated by mechanical exfoliation of natural bulk graphite.21Charge detection in graphene quantum dots J. Güttinger,a C. Stampfer, S. Hellmüller, F. Molitor, T on a graphene quantum dot with an integrated graphene charge detector. The quantum dot device consists

Ihn, Thomas

193

Molecular Imaging: Physics and Bioapplications of Quantum Dots  

E-print Network

CHAPTER 8 Molecular Imaging: Physics and Bioapplications of Quantum Dots Xavier Michalet, Laurent A. Bentolila, and Shimon Weiss 111 8.1 Introduction 112 8.2 Brief Overview of Quantum Dot Physics 112 8 Properties of Quantum Dots 115 8.3.1 Absorption and Emission Spectra 115 8.3.2 Fluorescence Intermittency 115

Michalet, Xavier

194

Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots  

Microsoft Academic Search

The development of optical gain in chemically synthesized semiconductor nanoparticles (nanocrystal quantum dots) has been intensely studied as the first step toward nanocrystal quantum dot lasers. We examined the competing dynamical processes involved in optical amplification and lasing in nanocrystal quantum dots and found that, despite a highly efficient intrinsic nonradiative Auger recombination, large optical gain can be developed at

V. I. Klimov; A. A. Mikhailovsky; Su Xu; A. Malko; J. A. Hollingsworth; C. A. Leatherdale; H.-J. Eisler; M. G. Bawendi

2000-01-01

195

Lighting Up Individual DNA Binding Proteins with Quantum Dots  

E-print Network

Lighting Up Individual DNA Binding Proteins with Quantum Dots Yuval Ebenstein,*,, Natalie Gassman. Fluorescent quantum dots (QD) are used to label proteins bound to DNA, allowing multicolor, nanometer optical contrast mechanism, such as fluorescence. Quantum dots (QDs), with their narrow, "tunable

Michalet, Xavier

196

Resonances from perturbed symmetry in open quantum dots  

E-print Network

Resonances from perturbed symmetry in open quantum dots Pierre Duclos a;b , Pavel Exner c quantum dot, i.e., a straight hard­wall channel with a potential well. If this potential depends¨o] investigated the case of a wire with ``quantum dot'' modeled by a potential well and the resonances which

197

A device architecture for computing with quantum dots  

Microsoft Academic Search

We describe a paradigm for computing with interacting quantum dots, quantum-dot cellular automata (QCA). We show how arrays of quantum-dot cells could be used to perform useful computations. A new adiabatic switching paradigm is developed which permits clocked control, eliminates metastability problems, and enables a pipelined architecture

CRAIG S. LENT; P. DOUGLAS TOUGAW

1997-01-01

198

A nonlinear Bloch model for Coulomb interaction in quantum dots  

E-print Network

A nonlinear Bloch model for Coulomb interaction in quantum dots Brigitte Bidegaray-Fesquet and Kole a Coulomb Hamiltonian for electron­ electron interaction in quantum dots in the Heisenberg picture. Then we-Bloch model, quantum dot, Coulomb interaction, Cauchy problem, Liouville model, positiveness properties. 1

199

Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics  

E-print Network

Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics X. Michalet,1 * F. F. Pinaud,1 * L. A,3 * Research on fluorescent semiconductor nanocrystals (also known as quantum dots or qdots) has evolved over quantum dots are single crystals a few nanometers in diameter whose size and shape can be precisely

Nielsen, Steven O.

200

Optically mapping the electronic structure of coupled quantum dots  

E-print Network

LETTERS Optically mapping the electronic structure of coupled quantum dots M. SCHEIBNER*, M. YAKES@bloch.nrl.navy.mil; gammon@nrl.navy.mil Published online: 10 February 2008; doi:10.1038/nphys882 In a network of quantum dots' (LACS) technique in which the ladder of orbital energy levels of one quantum dot is used to probe

Loss, Daniel

201

Quantum dot thermal spectroscopy for biological optical tweezer applications  

E-print Network

Quantum dot thermal spectroscopy for biological optical tweezer applications William T Ramsay1. Quantum dots can be fabricated to hold particular emission properties and can be labelled to target specific binding sites in biological samples to act as biomarkers [1]. Many quantum dots have been observed

Greenaway, Alan

202

Single Electron Charging in Optically Active Nanowire Quantum Dots  

E-print Network

Single Electron Charging in Optically Active Nanowire Quantum Dots Maarten P. van Kouwen, Michael E report optical experiments of a charge tunable, single nanowire quantum dot subject to an electric field the tunnel coupling of the quantum dot with the contacts. Such charge control is a first requirement for opto

203

Imaging vasculature and lymphatic flow in mice using quantum dots.  

PubMed

Quantum dots are ideal probes for fluorescent imaging of vascular and lymphatic tissues. On injection into appropriate sites, red- and near-infrared-emitting quantum dots provide excellent definition of vasculature, lymphoid organs, and lymph nodes draining both normal tissues and tumors. We detail methods for use with commercially available quantum dots and discuss common difficulties. PMID:19685300

Ballou, Byron; Ernst, Lauren A; Andreko, Susan; Fitzpatrick, James A J; Lagerholm, B Christoffer; Waggoner, Alan S; Bruchez, Marcel P

2009-01-01

204

Red light emitting solid state hybrid quantum dot near-UV GaN LED devices  

Microsoft Academic Search

We produced core-shell (CdSe)ZnSe quantum dots by direct colloidal chemical synthesis and the surface-passivation method---an overcoating of the core CdSe with a larger-bandgap material ZnSe. The (CdSe)ZnSe quantum dots(QDs) play the role of a colour conversion centre. We call these quantum dots nanophosphors. We fabricated red light emitting hybrid devices of (CdSe)ZnSe QDs and a near-UV GaN LED by combining

Hongjoo Song; Seonghoon Lee

2007-01-01

205

Potential clinical applications of quantum dots  

PubMed Central

The use of luminescent colloidal quantum dots in biological investigations has increased dramatically over the past several years due to their unique size-dependent optical properties and recent advances in biofunctionalization. In this review, we describe the methods for generating high-quality nanocrystals and report on current and potential uses of these versatile materials. Numerous examples are provided in several key areas including cell labeling, biosensing, in vivo imaging, bimodal magnetic-luminescent imaging, and diagnostics. We also explore toxicity issues surrounding these materials and speculate about the future uses of quantum dots in a clinical setting. PMID:18686776

Medintz, Igor L; Mattoussi, Hedi; Clapp, Aaron R

2008-01-01

206

Bilayer graphene quantum dot defined by topgates  

NASA Astrophysics Data System (ADS)

We investigate the application of nanoscale topgates on exfoliated bilayer graphene to define quantum dot devices. At temperatures below 500 mK, the conductance underneath the grounded gates is suppressed, which we attribute to nearest neighbour hopping and strain-induced piezoelectric fields. The gate-layout can thus be used to define resistive regions by tuning into the corresponding temperature range. We use this method to define a quantum dot structure in bilayer graphene showing Coulomb blockade oscillations consistent with the gate layout.

Müller, André; Kaestner, Bernd; Hohls, Frank; Weimann, Thomas; Pierz, Klaus; Schumacher, Hans W.

2014-06-01

207

Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells  

E-print Network

Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation 6885 6.1.3. Quantum Dots Dispersed in Organic Semiconductor Polymer Matrices 6885 6.2. Schottky. Acknowledgments 6887 9. Note Added after ASAP Publication 6887 10. References 6887 1. Introduction Semiconductors

George, Steven C.

208

Interaction effects in the mesoscopic regime: A quantum Monte Carlo study of irregular quantum dots  

E-print Network

Interaction effects in the mesoscopic regime: A quantum Monte Carlo study of irregular quantum dots-state properties of isolated irregular quantum dots. Quantum Monte Carlo techniques are used to calculate- mation overpredicts the effects of interactions in quantum dots. DOI: 10.1103/PhysRevB.71.241306 PACS

Baranger, Harold U.

209

Quantum versus classical hyperfine-induced dynamics in a quantum dot* W. A. Coisha  

E-print Network

Quantum versus classical hyperfine-induced dynamics in a quantum dot* W. A. Coisha and Daniel Loss spin dynamics for electrons confined to semiconductor quantum dots due to the contact hyperfine.1063/1.2722783 I. INTRODUCTION Prospects for future quantum information processing with quantum-dot

Yuzbashyan, Emil

210

Quantum Information Processing Using Quantum Dot Spins and Cavity QED  

Microsoft Academic Search

The electronic spin degrees of freedom in semiconductors typically have decoherence times that are several orders of magnitude longer than other relevant time scales. A solid-state quantum computer based on localized electron spins as qubits is therefore of potential interest. Here, a scheme that realizes controlled interactions between two distant quantum dot spins is proposed. The effective long-range interaction is

D. D. Awschalom; G. Burkard; D. P. Divincenzo; D. Loss; M. Sherwin; A. Small

1999-01-01

211

Magnetic properties of graphene quantum dots  

NASA Astrophysics Data System (ADS)

Using the tight-binding approximation we calculated the diamagnetic susceptibility of graphene quantum dots (GQDs) of different geometrical shapes and characteristic sizes of 2-10 nm, when the magnetic properties are governed by the electron edge states. Two types of edge states can be discerned: the zero-energy states (ZESs), located exactly at the zero-energy Dirac point, and the dispersed edge states (DESs), with the energy close but not exactly equal to zero. DESs are responsible for a temperature-independent diamagnetic response, while ZESs provide a temperature-dependent spin paramagnetism. Hexagonal, circular, and randomly shaped GQDs contain mainly DESs, and, as a result, they are diamagnetic. The edge states of the triangular GQDs are of ZES type. These dots reveal the crossover between spin paramagnetism, dominating for small dots and at low temperatures, and orbital diamagnetism, dominating for large dots and at high temperatures.

Espinosa-Ortega, T.; Luk'yanchuk, I. A.; Rubo, Y. G.

2013-05-01

212

Single-dot optical emission from ultralow density well-isolated InP quantum dots  

SciTech Connect

We demonstrate a straightforward way to obtain single well-isolated quantum dots emitting in the visible part of the spectrum and characterize the optical emission from single quantum dots using this method. Self-assembled InP quantum dots are grown using gas-source molecular-beam epitaxy over a wide range of InP deposition rates, using an ultralow growth rate of about 0.01 atomic monolayers/s, a quantum-dot density of 1 dot/{mu}m{sup 2} is realized. The resulting isolated InP quantum dots embedded in an InGaP matrix are individually characterized without the need for lithographical patterning and masks on the substrate. Such low-density quantum dots show excitonic emission at around 670 nm with a linewidth limited by instrument resolution. This system is applicable as a single-photon source for applications such as quantum cryptography.

Ugur, A.; Hatami, F.; Masselink, W. T. [Department of Physics, Humboldt-Universitaet zu Berlin, Newtonstrasse 15, D-12489 Berlin (Germany); Vamivakas, A. N.; Lombez, L.; Atatuere, M. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

2008-10-06

213

Adiabatic description of nonspherical quantum dot models  

SciTech Connect

Within the effective mass approximation an adiabatic description of spheroidal and dumbbell quantum dot models in the regime of strong dimensional quantization is presented using the expansion of the wave function in appropriate sets of single-parameter basis functions. The comparison is given and the peculiarities are considered for spectral and optical characteristics of the models with axially symmetric confining potentials depending on their geometric size, making use of the complete sets of exact and adiabatic quantum numbers in appropriate analytic approximations.

Gusev, A. A., E-mail: gooseff@jinr.ru; Chuluunbaatar, O.; Vinitsky, S. I. [Joint Institute for Nuclear Research (Russian Federation); Dvoyan, K. G.; Kazaryan, E. M.; Sarkisyan, H. A. [Russian-Armenian (Slavonic) University (Armenia); Derbov, V. L.; Klombotskaya, A. S.; Serov, V. V. [Saratov State University (Russian Federation)

2012-10-15

214

Electron Transport Through Laterally Coupled Double Quantum Dots  

NASA Astrophysics Data System (ADS)

We study electron transport through laterally coupled double quantum dots. We introduce the coupling parameter ?, which characterizes the strength of the coupling via the reservoirs between quantum dots. We find that the visibility decreases as |?| increases. We also examine the pseudo-spin Kondo effect in the laterally coupled double quantum dots. The differential conductance shows the additional structure in the spilt peak by the inter-dot tunnel coupling due to the asymmetry of the spectral density of states.

Kubo, T.; Tokura, Y.; Hatano, T.; Tarucha, S.

2008-10-01

215

Unraveling the mesoscopic character of quantum dots in nanophotonics  

E-print Network

We provide a microscopic theory for semiconductor quantum dots that explains the pronounced deviations from the prevalent point-dipole description that were recently observed in spectroscopic experiments on quantum dots in photonic nanostructures. At the microscopic level the deviations originate from structural inhomogeneities generating a large circular quantum current density that flows inside the quantum dot over mesoscopic length scales. The model is supported by the experimental data, where a strong variation of the multipolar moments across the emission spectrum of quantum dots is observed. Our work enriches the physical understanding of quantum dots and is of significance for the fields of nanophotonics, quantum photonics, and quantum-information science, where quantum dots are actively employed.

Tighineanu, Petru; Stobbe, Søren; Lodahl, Peter

2014-01-01

216

Optical properties of quantum-dot-doped liquid scintillators  

NASA Astrophysics Data System (ADS)

Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO.

Aberle, C.; Li, J. J.; Weiss, S.; Winslow, L.

2013-10-01

217

Optical properties of quantum-dot-doped liquid scintillators  

PubMed Central

Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO. PMID:25392711

Aberle, C.; Li, J.J.; Weiss, S.; Winslow, L.

2014-01-01

218

Producing Quantum Dots by Spray Pyrolysis  

NASA Technical Reports Server (NTRS)

An improved process for making nanocrystallites, commonly denoted quantum dots (QDs), is based on spray pyrolysis. Unlike the process used heretofore, the improved process is amenable to mass production of either passivated or non-passivated QDs, with computer control to ensure near uniformity of size.

Banger, Kulbinder; Jin, Michael H.; Hepp, Aloysius

2006-01-01

219

Nanocomposites of POC and quantum dots  

NASA Astrophysics Data System (ADS)

New luminescent polymer nanocomposites were synthesized combining carbazole/oxadiazole copolymer (POC) and CdSe/ZnS quantum dots (QDs) surface passivated by ionic liquids. Ionic liquid ligands improve the photostability of QDs and their compatibility with polymer allowing the deposition of homogeneous nanocomposites films. The nanocomposites were characterized by UV and photoluminescence spectroscopy.

Borriello, C.; Concilio, S.; Minarini, C.; Iannelli, P.; Di Luccio, T.

2012-07-01

220

Triggered Single Photons from a Quantum Dot  

Microsoft Academic Search

We demonstrate a new method for generating triggered single photons. After a laser pulse generates excitons inside a single quantum dot, electrostatic interactions between them and the resulting spectral shifts allow a single emitted photon to be isolated. Correlation measurements show a reduction of the two-photon probability to 0.12 times the value for Poisson light. Strong antibunching persists when the

Charles Santori; Matthew Pelton; Glenn Solomon; Yseulte Dale; Yoshihisa Yamamoto

2001-01-01

221

New small quantum dots for neuroscience  

NASA Astrophysics Data System (ADS)

In "New Small Quantum Dots for Neuroscience," Paul Selvin (University of Illinois, Urbana-Champaign) notes how the details of synapsis activity in the brain involves chemical receptors that facilitate the creation of the electrical connection between two nerves. In order to understand the details of this neuroscience phenomenon you need to be able to "see" what is happening at the scale of these receptors, which is around 10 nanometers. This is smaller than the diffraction limit of normal microscopy and it takes place on a 3 dimensional structure. Selvin describes the development of small quantum dots (on the order of 6-9 microns) that are surface-sensitized to interact with the receptors. This allows the application of photo-activated localized microscopy (PALM), a superresolution microscopy that can be scanned through focus to develop a 3D map on a scale that is the same size as the emitter, which in this case are the small quantum dots. The quantum dots are stable in time and provide access to the receptors which allows the imaging of the interactions taking place at the synoptic level.

Selvin, Paul

2014-03-01

222

Electric Field effects on quantum correlations in semiconductor quantum dots  

E-print Network

We study the effect of external electric bias on the quantum correlations in the array of optically excited coupled semiconductor quantum dots. The correlations are characterized by the quantum discord and concurrence and are observed using excitonic qubits. We employ the lower bound of concurrence for thermal density matrix at different temperatures. The effect of the F\\"orster interaction on correlations will be studied. Our theoretical model detects nonvanishing quantum discord when the electric field is on while concurrence dies, ensuring the existence of nonclassical correlations as measured by the quantum discord.

S. Shojaei; M. Mahdian; R. Yousefjani

2012-04-18

223

Large scale synthesis of graphene quantum dots (GQDs) from waste biomass and their use as an efficient and selective photoluminescence on-off-on probe for Ag(+) ions.  

PubMed

Graphene quantum dots (GQDs) are synthesized from bio-waste and are further modified to produce amine-terminated GQDs (Am-GQDs) which have higher dispersibility and photoluminescence intensity than those of GQDs. A strong fluorescence quenching of Am-GQDs (switch-off) is observed for a number of metal ions, but only for the Ag(+) ions is the original fluorescence regenerated (switch-on) upon addition of l-cysteine. PMID:25162814

Suryawanshi, Anil; Biswal, Mandakini; Mhamane, Dattakumar; Gokhale, Rohan; Patil, Shankar; Guin, Debanjan; Ogale, Satishchandra

2014-10-21

224

Quantum-dot cellular automata at a molecular scale  

Microsoft Academic Search

ABSTRACT: Quantum - dot cellular automata (QCA) is a scheme for molecular electronics in which information is transmitted and processed through electro - static interactions between charges in an array of quantum dots QCA wires, majority gates, clocked cell operation, and (recently) true power gain between QCA cells has been demonstrated in a metal - dot prototype system at cryogenic

M. Lieberman

2002-01-01

225

Entangling distant quantum dots using classical interference  

NASA Astrophysics Data System (ADS)

We show that it is possible to employ reservoir engineering to turn two distant and relatively bad cavities into one good cavity with a tunable spontaneous decay rate. As a result, quantum computing schemes, which would otherwise require the shuttling of atomic qubits in and out of an optical resonator, can now be applied to distant quantum dots. To illustrate this we transform a recent proposal to entangle two qubits via the observation of macroscopic fluorescence signals [J. Metz , Phys. Rev. Lett. 97, 040503 (2006)] to the electron-spin states of two semiconductor quantum dots. Our scheme requires neither the coherent control of qubit-qubit interactions nor the detection of single photons. Moreover, the scheme is relatively robust against spin-bath couplings, parameter fluctuations, and the spontaneous emission of photons.

Busch, Jonathan; Kyoseva, Elica S.; Trupke, Michael; Beige, Almut

2008-10-01

226

A facile in situ synthesis route for CuInS(2) quantum-dots/In(2)S(3) co-sensitized photoanodes with high photoelectric performance.  

PubMed

CuInS2 quantum-dot sensitized TiO2 photoanodes with In2S3 buffer layer were in situ prepared via chemical bath deposition of In2S3, where the Cd-free In2S3 layer then reacted with TiO2/CuxS which employed a facile SILAR process to deposit CuxS quantum dots on TiO2 film, followed by a covering process with ZnS layer. Polysulfide electrolyte and Cu2S on FTO glass counter electrode were used to provide higher photovoltaic performance of the constructed devices. The characteristics of the quantum dots sensitized solar cells were studied in more detail by optical measurements, photocurrent-voltage performance measurements, and impedance spectroscopy. On the basis of optimal CuxS SILAR cycles, the best photovoltaic performance with power conversion efficiency (?) of 1.62% (Jsc = 6.49 mA cm(-2), Voc = 0.50 V, FF = 0.50) under full one-sun illumination was achieved by using Cu2S counter electrode. Cu2S-FTO electrode exhibits superior electrocatalytic ability for the polysulfide redox reactions relative to that of Pt-FTO electrode. PMID:24160726

Wang, Yuan-Qiang; Rui, Yi-Chuan; Zhang, Qing-Hong; Li, Yao-Gang; Wang, Hong-Zhi

2013-11-27

227

Local Quantum Dot Tuning on Photonic Crystal Chips  

E-print Network

Quantum networks based on InGaAs quantum dots embedded in photonic crystal devices rely on QDs being in resonance with each other and with the cavities they are embedded in. We developed a new technique based on temperature tuning to spectrally align different quantum dots located on the same chip. The technique allows for up to 1.8nm reversible on-chip quantum dot tuning.

Andrei Faraon; Dirk Englund; Ilya Fushman; Nick Stoltz; Pierre Petroff; Jelena Vuckovic

2007-03-28

228

Thermoelectric transport through strongly correlated quantum dots  

E-print Network

The thermoelectric properties of strongly correlated quantum dots, described by a single level Anderson model coupled to conduction electron leads, is investigated using Wilson's numerical renormalization group method. We calculate the electronic contribution, $K_{\\rm e}$, to the thermal conductance, the thermopower, $S$, and the electrical conductance, $G$, of a quantum dot as a function of both temperature, $T$, and gate voltage, ${\\rm v}_g$, for strong, intermediate and weak Coulomb correlations, $U$, on the dot. For strong correlations and in the Kondo regime, we find that the thermopower exhibits two sign changes, at temperatures $T_{1}({\\rm v}_g)$ and $T_{2}({\\rm v}_g)$ with $T_{1}< T_{2}$. Such sign changes in $S(T)$ are particularly sensitive signatures of strong correlations and Kondo physics. The relevance of this to recent thermopower measurements of Kondo correlated quantum dots is discussed. We discuss the figure of merit, power factor and the degree of violation of the Wiedemann-Franz law in ...

Costi, T A; 10.1103/PhysRevB.81.235127

2010-01-01

229

Quantum modeling of laser-quantum dot interaction Brigitte Bidgaray-Fesquet  

E-print Network

Quantum modeling of laser-quantum dot interaction Brigitte Bidégaray-Fesquet Laboratoire Jeanth 2008 B. Bidégaray-Fesquet (LJK) Laser-quantum dot interaction Luminy, October 30th 2008 1 / 17 #12 + . . . B. Bidégaray-Fesquet (LJK) Laser-quantum dot interaction Luminy, October 30th 2008 2 / 17 #12;Bloch

Bidegaray, Brigitte

230

Quantum Dot Platform for Single-Cell Molecular Profiling  

NASA Astrophysics Data System (ADS)

In-depth understanding of the nature of cell physiology and ability to diagnose and control the progression of pathological processes heavily rely on untangling the complexity of intracellular molecular mechanisms and pathways. Therefore, comprehensive molecular profiling of individual cells within the context of their natural tissue or cell culture microenvironment is essential. In principle, this goal can be achieved by tagging each molecular target with a unique reporter probe and detecting its localization with high sensitivity at sub-cellular resolution, primarily via microscopy-based imaging. Yet, neither widely used conventional methods nor more advanced nanoparticle-based techniques have been able to address this task up to date. High multiplexing potential of fluorescent probes is heavily restrained by the inability to uniquely match probes with corresponding molecular targets. This issue is especially relevant for quantum dot probes---while simultaneous spectral imaging of up to 10 different probes is possible, only few can be used concurrently for staining with existing methods. To fully utilize multiplexing potential of quantum dots, it is necessary to design a new staining platform featuring unique assignment of each target to a corresponding quantum dot probe. This dissertation presents two complementary versatile approaches towards achieving comprehensive single-cell molecular profiling and describes engineering of quantum dot probes specifically tailored for each staining method. Analysis of expanded molecular profiles is achieved through augmenting parallel multiplexing capacity with performing several staining cycles on the same specimen in sequential manner. In contrast to other methods utilizing quantum dots or other nanoparticles, which often involve sophisticated probe synthesis, the platform technology presented here takes advantage of simple covalent bioconjugation and non-covalent self-assembly mechanisms for straightforward probe preparation and specimen labeling, requiring no advanced technical skills and being directly applicable for a wide range of molecular profiling studies. Utilization of quantum dot platform for single-cell molecular profiling promises to greatly benefit both biomedical research and clinical diagnostics by providing a tool for addressing phenotypic heterogeneity within large cell populations, opening access to studying low-abundance events often masked or completely erased by batch processing, and elucidating biomarker signatures of diseases critical for accurate diagnostics and targeted therapy.

Zrazhevskiy, Pavel S.

231

Entrapment in phospholipid vesicles quenches photoactivity of quantum dots  

PubMed Central

Quantum dots have emerged with great promise for biological applications as fluorescent markers for immunostaining, labels for intracellular trafficking, and photosensitizers for photodynamic therapy. However, upon entry into a cell, quantum dots are trapped and their fluorescence is quenched in endocytic vesicles such as endosomes and lysosomes. In this study, the photophysical properties of quantum dots were investigated in liposomes as an in vitro vesicle model. Entrapment of quantum dots in liposomes decreases their fluorescence lifetime and intensity. Generation of free radicals by liposomal quantum dots is inhibited compared to that of free quantum dots. Nevertheless, quantum dot fluorescence lifetime and intensity increases due to photolysis of liposomes during irradiation. In addition, protein adsorption on the quantum dot surface and the acidic environment of vesicles also lead to quenching of quantum dot fluorescence, which reappears during irradiation. In conclusion, the in vitro model of phospholipid vesicles has demonstrated that those quantum dots that are fated to be entrapped in endocytic vesicles lose their fluorescence and ability to act as photosensitizers. PMID:21931483

Generalov, Roman; Kavaliauskiene, Simona; Westr?m, Sara; Chen, Wei; Kristensen, Solveig; Juzenas, Petras

2011-01-01

232

Principles of conjugating quantum dots to proteins via carbodiimide chemistry  

NASA Astrophysics Data System (ADS)

The covalent coupling of nanomaterials to bio-recognition molecules is a critical intermediate step in using nanomaterials for biology and medicine. Here we investigate the carbodiimide-mediated conjugation of fluorescent quantum dots to different proteins (e.g., immunoglobulin G, bovine serum albumin, and horseradish peroxidase). To enable these studies, we developed a simple method to isolate quantum dot bioconjugates from unconjugated quantum dots. The results show that the reactant concentrations and protein type will impact the overall number of proteins conjugated onto the surfaces of the quantum dots, homogeneity of the protein-quantum dot conjugate population, quantum efficiency, binding avidity, and enzymatic kinetics. We propose general principles that should be followed for the successful coupling of proteins to quantum dots.

Song, Fayi; Chan, Warren C. W.

2011-12-01

233

Quantum-dot-induced phase shift in a pillar microcavity  

SciTech Connect

We perform high-resolution reflection spectroscopy of a quantum dot resonantly coupled to a pillar microcavity. We show the change in reflectivity as the quantum dot is tuned through the cavity resonance and measure the quantum-dot-induced phase shift using an ultrastable interferometer. The macroscopic phase shift we measure could be extended to the study of charged quantum dot pillar microcavity systems, where it could be exploited to realize a high-efficiency spin photon interface for hybrid quantum information schemes.

Young, A. B.; Hu, C. Y.; Rarity, J. G. [Merchant Venturers School of Engineering, Woodland Road, Bristol, BS8 1UB (United Kingdom); Oulton, R. [Merchant Venturers School of Engineering, Woodland Road, Bristol, BS8 1UB (United Kingdom); H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Thijssen, A. C. T. [H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Schneider, C.; Reitzenstein, S.; Kamp, M.; Hoefling, S.; Worschech, L.; Forchel, A. [Technische Physik, Physikalisches Institut and Wilhelm Conrad Roentgen-Center for Complex Material Systems, Universitaet Wuerzburg, Am Hubland, D-97474 Wuerzburg (Germany)

2011-07-15

234

Conductance peaks in open quantum dots  

E-print Network

We present a simple measure of the conductance fluctuations in open ballistic chaotic quantum dots, extending the number of maxima method originally proposed for the statistical analysis of compound nuclear reactions. The average number of extreme points (maxima and minima) in the dimensionless conductance, $T$, as a function of an arbitrary external parameter $Z$, is directly related to the autocorrelation function of $T(Z)$. The parameter $Z$ can be associated to an applied gate voltage causing shape deformation in quantum dot, an external magnetic field, the Fermi energy, etc.. The average density of maxima is found to be $ = \\alpha_{Z}/Z_c$, where $\\alpha_{Z}$ is a universal constant and $Z_c$ is the conductance autocorrelation length, which is system specific. The analysis of $$ does not require large statistic samples, providing a quite amenable way to access information about parametric correlations, such as $Z_c$.

J. G. G. S. Ramos; D. Bazeia; M. S. Hussein; C. H. Lewenkopf

2011-09-26

235

Gain characteristics of quantum dot injection lasers  

Microsoft Academic Search

Gain characteristics of injection lasers based on self-organized quantum dots (QDs) were studied experimentally for two systems: InGaAs QDs in an AlGaAs matrix on a GaAs substrate and InAs QDs in an InGaAs matrix on an InP substrate. A ground-to-excited state transition was observed with increasing threshold gain. An empirical equation is proposed to fit the current density dependence of

A. E. Zhukov; A. R. Kovsh; V. M. Ustinov; A. Yu Egorov; N. N. Ledentsov; A. F. Tsatsul'nikov; M. V. Maximov; Yu M. Shernyakov; V. I. Kopchatov; A. V. Lunev; P. S. Kop'ev; D. Bimberg; Zh I. Alferov

1999-01-01

236

Electrical properties of semiconductor quantum dots  

SciTech Connect

A method, which makes it possible to obtain semiconductor particles V Almost-Equal-To 10{sup -20} cm{sup 3} in volume (quantum dots) with a concentration of up to 10{sup 11} cm{sup -2} and electrical contacts to each of them, is suggested. High variability in the electrical properties of such particles from a metal oxide (CuO or NiO) after the chemisorption of gas molecules is found.

Kharlamov, V. F., E-mail: kharl@ostu.ru; Korostelev, D. A.; Bogoraz, I. G.; Milovidova, O. A.; Sergeyev, V. O. [State University, Educational-Research-Production Complex (Russian Federation)

2013-04-15

237

Quantum-dot cellular automata adders  

Microsoft Academic Search

In this paper, a novel quantum-dot cellular automata (QCA) adder design is presented that reduces the number of QCA cells compared to previously reported designs. The proposed one-bit QCA adder structure is based on a new algorithm that requires only three majority gates and two inverters for the QCA addition. By connecting n one-bit QCA adders, we can obtain an

Wei Wang; Konrad Walus; G. A. Jullien

2003-01-01

238

Synthesis of eco-friendly CuInS2 quantum dot-sensitized solar cells by a combined ex situ/in situ growth approach.  

PubMed

A cadmium-free CuInS2 quantum dot (QD)-sensitized solar cell (QDSC) has been fabricated by taking advantage of the ex situ synthesis approach for fabricating highly crystalline QDs and the in situ successive ionic-layer adsorption and reaction (SILAR) approach for achieving high surface coverage of QDs. The ex situ synthesized CuInS2 QDs can be rendered water soluble through a simple and rapid two-step method under the assistance of ultrasonication. This approach allows a stepwise ligand change from the insertion of a foreign ligand to ligand replacement, which preserves the long-term stability of colloidal solutions for more than 1 month. Furthermore, the resulting QDs can be utilized as sensitizers in QDSCs, and such a QDSC can deliver a power conversion efficiency (PCE) of 0.64%. Using the SILAR process, in situ CuInS2 QDs could be preferentially grown epitaxially on the pre-existing seeds of ex situ synthesized CuInS2 QDs. The results indicated that the CuInS2 QDSC fabricated by the combined ex situ/in situ growth process exhibited a PCE of 1.84% (short-circuit current density = 7.72 mA cm(-2), open-circuit voltage = 570 mV, and fill factor = 41.8%), which is higher than the PCEs of CuInS2 QDSCs fabricated by ex situ and in situ growth processes, respectively. The relative efficiencies of electrons injected by the combined ex situ/in situ growth approach were higher than those of ex situ synthesized CuInS2 QDs deposited on TiO2 films, as determined by emission-decay kinetic measurements. The incident photon-to-current conversion efficiency has been determined, and electrochemical impedance spectroscopy has been carried out to investigate the photovoltaic behavior and charge-transfer resistance of the QDSCs. The results suggest that the combined synergetic effects of in situ and ex situ CuInS2 QD growth facilitate more electron injection from the QD sensitizers into TiO2. PMID:24095097

Chang, Chia-Chan; Chen, Jem-Kun; Chen, Chih-Ping; Yang, Cheng-Hsien; Chang, Jia-Yaw

2013-11-13

239

Engineered quantum dot single-photon sources  

NASA Astrophysics Data System (ADS)

Fast, high efficiency and low error single-photon sources are required for the implementation of a number of quantum information processing applications. The fastest triggered single-photon sources to date have been demonstrated using epitaxially grown semiconductor quantum dots (QDs), which can be conveniently integrated with optical microcavities. Recent advances in QD technology, including demonstrations of high temperature and telecommunications wavelength single-photon emission, have made QD single-photon sources more practical. Here we discuss the applications of single-photon sources and their various requirements, before reviewing the progress made on a QD platform in meeting these requirements.

Buckley, Sonia; Rivoire, Kelley; Vu?kovi?, Jelena

2012-12-01

240

Thermoelectric conversion in Silicon quantum-dots  

NASA Astrophysics Data System (ADS)

Quantum dot-based devices have specific thermoelectric properties. Thanks to their delta-like density of states, they are expected to exhibit high Seebeck coefficient, nearly zero electronic thermal conductance and ultra-low phononic thermal conductance if embedded in an oxide matrix. Using a physical simulator dedicated to the sequential transport through quantum dots (QDs), the thermoelectric properties of devices based on Silicon QDs embedded in silicon oxide are assessed. Fully self-consistent 3D Poisson/Schrödinger simulation is performed. From the accurate computation of tunneling rates, a Monte-Carlo algorithm is used to solve the master equation and to extract the current-voltage characteristics for different temperature gradients applied between the electrodes. The evolution of both the Seebeck coefficient and the electronic conductivity resulting from a temperature bias are investigated for dissymmetric spherical and cubic quantum-dot-based (QD) single-electron transistors (SETs). Finally, the validity of the linear regime and the potentiality of semiconducting SETs in the field of Seebeck nanoscale metrology are discussed.

Talbo, V.; Saint-Martin, J.; Apertet, Y.; Retailleau, S.; Dollfus, P.

2012-11-01

241

Quantum Monte Carlo studies of quantum dots in magnetic fields  

Microsoft Academic Search

We have studied the ground and excited states of confined two-dimensional (2D) electrons in various magnetic field strengths by the variational and diffusion Monte Carlo methods. These 2D quantum dots are of great theoretical interest, because it is possible to go from a weakly to a strongly correlated system by tuning the relative strength of the external potential to the

Wolfgang Geist; Lang Zeng; Mei-Yin Chou; Cyrus Umrigar; Francesco Pederiva

2003-01-01

242

Deposition of colloidal quantum dots by microcontact printing for LED display technology  

E-print Network

This thesis demonstrates a new deposition method of colloidal quantum dots within a quantum dot organic light-emitting diode (QD-LED). A monolayer of quantum dots is microcontact printed as small as 20 ,Lm lines as well ...

Kim, LeeAnn

2006-01-01

243

Synthesis of high-quality water-soluble near-infrared-emitting CdTe quantum dots capped with 3-mercaptobutyric acid.  

PubMed

Highly fluorescent CdTe quantum dots (QDs) with emission in red to near-infrared (NIR) wavelength were successfully prepared by using 3-mercaptobutyric acid (3MBA) as capping agent. The maximum of quantum yield (QY) could reach up to 82% for QDs with emission peak at 686 nm and FWHM of 66 nm at optimal conditions. The QY of these QDs could maintain above 65% in the 650-750 nm region and QDs with emission over 800 nm were still strong fluorescent (28-41%). These optical properties of CdTe quantum dots are among the best results prepared by the state-of-the-art methods, suggesting their promising applications in bio-imaging. The success of 3MBA as excellent capping agent in this method was attributed to the balanced chain length and methyl side chain in comparison to a series of linear and branched mercapto acids, namely thioglycolic acid, thiolactic acid, 3-mercaptopropionic acid, 4-mercaptobutyric acid, 5-mercaptovaleric acid, 4-mercaptovaleric acid and 3-mercapto-2-methylbutyric acid. PMID:24757965

Ma, Kai-Guo; Bai, Jin-Yi; Fang, Tan; Guo, Hai-Qing

2014-07-01

244

Correlated electrons in coupled quantum dots and related phenomena  

NASA Astrophysics Data System (ADS)

Three topics related to correlated electrons in coupled quantum dots are discussed. The first is quasi-resonance between multi-electron states, which causes hitherto unremarked types of resonant absorption in coupled quantum dots. The second is electron tunneling through a Hubbard gap, which is induced by an increase in the density of electrons in a quantum-dot chain under an overall confining potential. The third is Mott transition in a two-dimensional quantum-dot array induced by an external electric field. In this system, the metal-insulator transition goes through a heavy electron phase in which the density of correlated electrons fluctuates.

Ugajin, Ryuichi

1998-01-01

245

Versatile mode-locked quantum-dot laser diodes  

NASA Astrophysics Data System (ADS)

Semiconductor quantum-dots have been recently showing great promise for the generation of ultrashort pulses, forming the basis of very compact and efficient ultrafast laser sources. In this paper we discuss how the unique properties of quantum-dot materials can be exploited in novel and versatile mode-locking regimes in InAs/GaAs quantum-dot edge-emitting lasers, both in monolithic and external cavity configurations. We present the current status of our research on ultrashort pulse generation involving ground (1260nm) and excited-state (1180nm) transitions, as well as the recent progress in external-cavity broadband tunable quantum-dot lasers.

Cataluna, M. A.; Rafailov, E. U.

2010-04-01

246

Progress on compact ultrafast quantum dot based lasers  

NASA Astrophysics Data System (ADS)

In this paper we review the recent progress on the development of novel quantum-dot structures and laser devices. The investigation of novel regimes of ultrashort pulse generation in quantum-dot edge-emitting lasers will be presented. We illustrate how new functionalities have been opened up, such as dual-wavelength mode-locking and enhanced tunability, through the exploitation of the excited-state transitions in the quantum dots as an additional degree of freedom in these ultrafast lasers. Progress on novel design rules for quantum-dot based vertical external cavity lasers and SESAMs are also considered.

Rafailov, E. U.; Cataluna, M. A.

2010-02-01

247

Imaging ligand-gated ion channels with quantum dots  

NASA Astrophysics Data System (ADS)

In this paper we report two different methodologies for labeling ligand-gated receptors. The first of these builds upon our earlier work with serotonin conjugated quantum dots and our studies with pegilated quantum dots to reduce non specific binding. In this approach a pegilated derivative of muscimol was synthesized and attached via an amide linkage to quantum dots coated in an amphiphillic polymer derivative of poly acrylamide. These conjugates were used to image the GABA C receptor in oocytes. An alternative approach was used to image tissue sections to study nicotinic acetylcholine receptors in the neuro muscular junction with biotinylated Bungerotoxin and streptavidin coated quantum dots.

Tomlinson, I. D.; Orndorff, Rebecca L.; Gussin, Hélène; Mason, John N.; Blakely, Randy D.; Pepperberg, David R.; Rosenthal, Sandra J.

2007-02-01

248

Facile synthesis of anatase TiO(2) quantum-dot/graphene-nanosheet composites with enhanced electrochemical performance for lithium-ion batteries.  

PubMed

A facile method to synthesize well-dispersed TiO2 quantum dots on graphene nanosheets (TiO2 -QDs/GNs) in a water-in-oil (W/O) emulsion system is reported. The TiO2 /graphene composites display high performance as an anode material for lithium-ion batteries (LIBs), such as having high reversible lithium storage capacity, high Coulombic efficiency, excellent cycling stability, and high rate capability. The excellent electrochemical performance and special structure of the composites thus offer a way to prepare novel graphene-based electrode materials for high-energy-density and high-power LIBs. PMID:24347361

Mo, Runwei; Lei, Zhengyu; Sun, Kening; Rooney, David

2014-04-01

249

Enhanced performance of quantum dot solar cells based on type II quantum dots  

NASA Astrophysics Data System (ADS)

The characteristics of quantum dot solar cells (QDSCs) based on type II QDs are investigated theoretically. Based on a drift-diffusion model, we obtained a much higher open circuit voltage (Voc) as well as conversion efficiency in a type II QDSC, compared to type I QDSCs. The improved Voc and efficiency are mainly attributed to the much longer Auger recombination lifetime in type II QDs. Moreover, the influence of the carrier lifetime on devices' performance is discussed and clarified. In addition, an explicit criterion to determine the role of quantum dots in solar cells is put forward.

Xu, Feng; Yang, Xiao-Guang; Luo, Shuai; Lv, Zun-Ren; Yang, Tao

2014-10-01

250

Tuning the quantum critical crossover in quantum dots  

NASA Astrophysics Data System (ADS)

Quantum dots with large Thouless number g embody a regime where both disorder and interactions can be treated nonperturbatively using large-N techniques (with N=g) and quantum phase transitions can be studied. Here we focus on dots where the noninteracting Hamiltonian is drawn from a crossover ensemble between two symmetry classes, where the crossover parameter introduces a new, tunable energy scale independent of and much smaller than the Thouless energy. We show that the quantum critical regime, dominated by collective critical fluctuations, can be accessed at the new energy scale. The nonperturbative physics of this regime can only be described by the large-N approach, as we illustrate with two experimentally relevant examples. G. Murthy, PRB 70, 153304 (2004). G. Murthy, R. Shankar, D. Herman, and H. Mathur, PRB 69, 075321 (2004)

Murthy, Ganpathy

2005-03-01

251

Quantum dots fluorescence quantum yield measured by Thermal Lens Spectroscopy.  

PubMed

An essential parameter to evaluate the light emission properties of fluorophores is the fluorescence quantum yield, which quantify the conversion efficiency of absorbed photons to emitted photons. We detail here an alternative nonfluorescent method to determine the absolute fluorescence quantum yield of quantum dots (QDs). The method is based in the so-called Thermal Lens Spectroscopy (TLS) technique, which consists on the evaluation of refractive index gradient thermally induced in the fluorescent material by the absorption of light. Aqueous dispersion carboxyl-coated cadmium telluride (CdTe) QDs samples were used to demonstrate the Thermal Lens Spectroscopy technical procedure. PMID:25103802

Estupiñán-López, Carlos; Dominguez, Christian Tolentino; Cabral Filho, Paulo E; Fontes, Adriana; de Araujo, Renato E

2014-01-01

252

Polarization Resolved Single Dot Spectroscopy of (211)B InAs Quantum Dots  

SciTech Connect

We report on single dot spectroscopy of (211)B InAs quantum dots, grown by molecular beam epitaxy. The dots exhibit sharp emission lines, the origin of which has been identified. Polarization dependent microphotoluminescence spectra confirm fine structure splittings from 20{mu}eV down to the determination limit of our setup (10 {mu}eV).

Germanis, S.; Dialynas, G. E.; Deligeorgis, G.; Hatzopoulos, Z. [Physics Department, University of Crete, P.O. Box 2208, 71003 Heraklion, Crete (Greece); Savvidis, P. G.; Pelekanos, N. T. [Materials Science and Technology Department, University of Crete, P.O. Box 2208, 71003 Heraklion, Crete (Greece)

2011-12-23

253

Digital Logic Gate Using Quantum-Dot Cellular Automata  

Microsoft Academic Search

A functioning logic gate based on quantum-dot cellular automata is presented, where digital data are encoded in the positions of only two electrons. The logic gate consists of a cell, composed of four dots connected in a ring by tunnel junctions, and two single-dot electrometers. The device is operated by applying inputs to the gates of the cell. The logic

Islamshah Amlani; Alexei O. Orlov; Geza Toth; Gary H. Bernstein; Craig S. Lent; Gregory L. Snider

1999-01-01

254

CdTe/CdS-MPA quantum dots as fluorescent probes to label yeast cells: synthesis, characterization and conjugation with Concanavalin A  

NASA Astrophysics Data System (ADS)

Candida albicans is the most frequent human opportunistic pathogenic fungus and one of the most important causes of nosocomial infections. In fact, diagnosis of invasive candidiasis presents unique problems. The aim of this work was to evaluate, by fluorescence image analysis, cellular labeling of C. albicans with CdTe/CdS quantum dots conjugated or not to concanavalin A (ConA). Yeast cells were incubated with CdTe/CdS quantum dots (QD) stabilized with mercaptopropionic acid (MPA) (emission peak at 530 nm) for 1 hour. In the overall study we observed no morphological alterations. The fluorescence microscopic analysis of the yeast cells showed that the non-functionalized QDs do not label C. albicans cells, while for the QD conjugated to ConA the cells showed a fluorescence profile indicating that the membrane was preferentially marked. This profile was expected since Concanavalin A is a protein that binds specifically to terminal carbohydrate residues at the membrane cell surface. The results suggest that the QD-labeled Candida cells represent a promising tool to open new possibilities for a precise evaluation of fungal infections in pathological conditions.

Kato, Ilka T.; Santos, Camila C.; Benetti, Endi; Tenório, Denise P. L. A.; Cabral Filho, Paulo E.; Sabino, Caetano P.; Fontes, Adriana; Santos, Beate S.; Prates, Renato A.; Ribeiro, Martha S.

2012-03-01

255

Large scale synthesis of graphene quantum dots (GQDs) from waste biomass and their use as an efficient and selective photoluminescence on-off-on probe for Ag+ ions  

NASA Astrophysics Data System (ADS)

Graphene quantum dots (GQDs) are synthesized from bio-waste and are further modified to produce amine-terminated GQDs (Am-GQDs) which have higher dispersibility and photoluminescence intensity than those of GQDs. A strong fluorescence quenching of Am-GQDs (switch-off) is observed for a number of metal ions, but only for the Ag+ ions is the original fluorescence regenerated (switch-on) upon addition of l-cysteine.Graphene quantum dots (GQDs) are synthesized from bio-waste and are further modified to produce amine-terminated GQDs (Am-GQDs) which have higher dispersibility and photoluminescence intensity than those of GQDs. A strong fluorescence quenching of Am-GQDs (switch-off) is observed for a number of metal ions, but only for the Ag+ ions is the original fluorescence regenerated (switch-on) upon addition of l-cysteine. Electronic supplementary information (ESI) available: HRTEM images, GQD SAED patterns and EDAX analysis of Am-GQD@Ag. See DOI: 10.1039/c4nr02494j

Suryawanshi, Anil; Biswal, Mandakini; Mhamane, Dattakumar; Gokhale, Rohan; Patil, Shankar; Guin, Debanjan; Ogale, Satishchandra

2014-09-01

256

Design and fabrication of quantum-dot lasers  

E-print Network

Semiconductor lasers using quantum-dots in their active regions have been reported to exhibit significant performance advantages over their bulk semiconductor and quantum-well counterparts namely: low threshold current, ...

Nabanja, Sheila

2008-01-01

257

Quantum Dots: An Experiment for Physical or Materials Chemistry  

ERIC Educational Resources Information Center

An experiment is conducted for obtaining quantum dots for physical or materials chemistry. This experiment serves to both reinforce the basic concept of quantum confinement and providing a useful bridge between the molecular and solid-state world.

Winkler, L. D.; Arceo, J. F.; Hughes, W. C.; DeGraff, B. A.; Augustine, B. H.

2005-01-01

258

Optical anisotropy of a donor in ellipsoidal quantum dots  

NASA Astrophysics Data System (ADS)

A system of an electron with a hydrogenic impurity confined in anisotropic quantum dots with ellipsoidal shape has been investigated. The linear and nonlinear optical absorptions as well as refractive index changes associated with intersubband transitions has been calculated. The results are presented as a function of the incident photon energy. The results show that the optical properties of a donor in ellipsoidal quantum dots are strongly affected by the anisotropy degree and the dot size. The dot anisotropy is shown to play a fundamental role in determining the dot properties.

Xie, Wenfang

2012-12-01

259

Quantum optics and cavity QED with quantum dots in photonic crystals  

E-print Network

This chapter will primarily focus on the studies of quantum optics with semiconductor, epitaxially grown quantum dots embedded in photonic crystal cavities. We will start by giving brief introductions into photonic crystals and quantum dots, then proceed with the introduction to cavity quantum electrodynamics (QED) effects, with a particular emphasis on the demonstration of these effects on the quantum dot-photonic crystal platform. Finally, we will focus on the applications of such cavity QED effects.

Vuckovic, Jelena

2014-01-01

260

Bioinspired inimitable cadmium telluride quantum dots for bioimaging purposes.  

PubMed

Synthesis of quantum nanoparticles of specific size, shape and composition are an aspect important in nanotechnology research. Although these nanostructures are routinely synthesized by chemical routes, the use of microorganisms has emerged as a promising option. The synthesis of cadmium telluride (CdTe) quantum dots by two hitherto unreported marine bacteria (Bacillus pumilus and Serratia marcescens) is reported here. Ultraviolet-visible (UV-vis) spectroscopy indicated the synthesis of CdTe nanoparticles and X-ray diffraction (XRD) patterns implicated their crystalline face-centered cubic nature. The size of the synthesized CdTe nanostructures estimated by XRD and dynamic light scattering (DLS) analysis was found to be approximately 10 nm. Photoluminescence (PL) studies were used to confirm the fluorescence properties of these semi-conducting nanoparticles. Scanning electron microscope (SEM) analysis showed the presence of well-defined nanostructures and energy dispersive spectra (EDS) confirmed the microbial synthesis of these nanoparticles. These bio-inspired CdTe nanostructures could be effectively used in imaging of yeast and animal cells. This work thus describes a cost-effective green method for synthesizing highly fluorescent biocompatible CdTe nanoparticles suitable for bio-labeling purposes. PMID:23862414

Pawar, Vinay; Kumar, Ameeta Ravi; Zinjarde, Smita; Gosavi, Suresh

2013-06-01

261

PREFACE: Quantum dots as probes in biology  

NASA Astrophysics Data System (ADS)

The recent availability of nanostructured materials has resulted in an explosion of research focused on their unique optical, thermal, mechanical and magnetic properties. Optical imagining, magnetic enhancement of contrast and drug delivery capabilities make the nanoparticles of special interest in biomedical applications. These materials have been involved in the development of theranostics—a new field of medicine that is focused on personalized tests and treatment. It is likely that multimodal nanomaterials will be responsible for future diagnostic advances in medicine. Quantum dots (QD) are nanoparticles which exhibit luminescence either through the formation of three-dimensional excitons or excitations of the impurities. The excitonic luminescence can be tuned by changing the size (the smaller the size, the higher the frequency). QDs are usually made of semiconducting materials. Unlike fluorescent proteins and organic dyes, QDs resist photobleaching, allow for multi-wavelength excitations and have narrow emission spectra. The techniques to make QDs are cheap and surface modifications and functionalizations can be implemented. Importantly, QDs could be synthesized to exhibit useful optomagnetic properties and, upon functionalization with an appropriate biomolecule, directed towards a pre-selected target for diagnostic imaging and photodynamic therapy. This special issue on Quantum dots in Biology is focused on recent research in this area. It starts with a topical review by Sreenivasan et al on various physical mechanisms that lead to the QD luminescence and on using wavelength shifts for an improvement in imaging. The next paper by Szczepaniak et al discusses nanohybrids involving QDs made of CdSe coated by ZnS and combined covalently with a photosynthetic enzyme. These nanohybrids are shown to maintain the enzymatic activity, however the enzyme properties depend on the size of a QD. They are proposed as tools to study photosynthesis in isolated photosynthetic systems. The next paper, by Olejnik et al, discussed metallic QDs which enhance photosynthetic function in light-harvesting biomolecular complexes. Such hybrid structures with gold QDs are shown to exhibit a strong increase in the fluorescence quantum yield. The next two papers, by Sikora et al and Kaminska et al deal with the ZnO nanoparticles passivated by MgO. In the first of these two papers, the authors describe the behavior of ZnO/MgO when introduced to human cancer cells. In the second, the authors describe the QDs with an extra outer layer of Fe2O3 which makes the nanoparticles superparamagnetic and also capable of generation of reactive oxygen species which could be applied to form localized centers of toxicity for cancer treatment. Finally, in the last paper by Yatsunenko et al, the authors discuss several semiconducting QDs like ZnO with various rare-earth dopands. They propose a microwave-driven hydrothermal technology to make them, characterize their luminescence and demonstrate their usefulness in the early recognition of cancer tissues. Quantum dots as probes in biology contents Quantum dots as probes in biologyMarek Cieplak Luminescent nanoparticles and their applications in the life sciencesVarun K A Sreenivasan, Andrei V Zvyagin and Ewa M Goldys Ferredoxin:NADP+ oxidoreductase in junction with CdSe/ZnS quantum dots: characteristics of an enzymatically active nanohybrid Krzysztof Szczepaniak, Remigiusz Worch and Joanna Grzyb Spectroscopic studies of plasmon coupling between photosynthetic complexes and metallic quantum dotsMaria Olejnik, Bartosz Krajnik, Dorota Kowalska, Guanhua Lin and Sebastian Mackowski Luminescence of colloidal ZnO nanoparticles synthesized in alcohols and biological application of ZnO passivated by MgOBo?ena Sikora, Krzysztof Fronc, Izabela Kami?ska, Kamil Koper, Piotr St?pie? and Danek Elbaum Novel ZnO/MgO/Fe2O3 composite optomagnetic nanoparticles I Kami?ska, B Sikora, K Fronc, P Dziawa, K Sobczak, R Minikayev, W Paszkowicz and D Elbaum Impact of yttria stabilization on Tb3+ intra-shell luminescence efficiency in

Cieplak, Marek

2013-05-01

262

Cation exchange-based facile aqueous synthesis of small, stable, and nontoxic near-infrared Ag?Te/ZnS core/shell quantum dots emitting in the second biological window.  

PubMed

Facile aqueous synthesis of near-infrared Ag(2)Te quantum dots (QDs) and Ag(2)Te/ZnS core/shell QDs emitting in the second biological window is reported. The QD synthesis is based on a straightforward cation exchange process between CdTe QDs and Ag(+) ions conducted in aqueous solution. The prepared Ag(2)Te QDs possess near-infrared emission ranging from 900 to 1300 nm and a quantum yield up to 2.1%. A ZnS shell was grown on the Ag(2)Te QD to further enhance the photoluminescence intensity with a quantum yield of 5.6%. These Ag(2)Te/ZnS core/shell QDs possess robust colloidal stability and photostability with minimum photoluminescence fluctuation upon incubation for 72 h in biological buffer or continuous laser excitation for 120 min. Also, These QDs possess small hydrodynamic size (?7.6 nm) and are non-cytotoxic to human cells, which is ideal for optical bioimaging in the second biological window. PMID:23324052

Chen, Chi; He, Xuewen; Gao, Li; Ma, Nan

2013-02-01

263

Spin quantum jumps in a singly charged quantum dot  

NASA Astrophysics Data System (ADS)

We model the population and coherence dynamics of a singly charged quantum dot driven by a constant optical field. Using a separation of time scales we predict the occurrence of quantum jumps in the spin state of the excess electron or hole. Our analysis extends the description of intermittent fluorescence from a three-level to a four-level description; the former is common in atomic systems, the later occurs in many solid-state systems. The statistics of the quantum jumps as function of the intensity of the driving field provide detailed information on physical processes that limit the ground-state coherence of these systems and their use as a solid-state quantum bit. In particular it enables a discrimination of coherent spin coupling, induced by the nuclear magnetic field, from incoherent spin flips; the coherent coupling can gradually be suppressed by increasing the pump intensity due to the quantum Zeno effect.

van Exter, M. P.; Gudat, J.; Nienhuis, G.; Bouwmeester, D.

2009-08-01

264

Shape evolution of InAs quantum dots during overgrowth  

Microsoft Academic Search

The effects of strain and thickness of an InxGa1?xAs (x=0?0.2) cap layer grown at low temperature on large low-growth-rate InAs quantum dots (QDs) are systematically studied by atomic force microscopy. The dot height drastically reduces and the dot shape transforms into an elongated ridge-valley structure at the early stage of GaAs overgrowth, while the dots tend to preserve their shape

R. Songmuang; S. Kiravittaya; O. G. Schmidt

2003-01-01

265

Nanocrystal Quantum Dots: From Fundamental Photophysics to Multicolor Lasing  

NSDL National Science Digital Library

This PDF document was created by Victor Klimov of the Los Alamos National Laboratory. It discussing the development of a new laser based on quantum dots. The site supplies a series of figures illustrating the nonradiative multiparticle auger recombinations in nanocrystal quantum dots, amplified spontaneous emissions, and more.

Klimov, Victor

2008-07-04

266

Wavelength tunable mode-locked quantum-dot laser  

NASA Astrophysics Data System (ADS)

We study the characteristics of wavelength tunable quantum-dot mode-locked lasers using a curved two-section device, external grating, and optical bandpass filter. Wide wavelength tunability is demonstrated due to the fact that the center wavelength of mode-locking is extended to excited state transitions as well as ground state transitions of the quantum-dot gain media.

Kim, Jimyung; Choi, Myoung-Taek; Lee, Wangkuen; Delfyett, Peter J., Jr.

2006-05-01

267

Modified Quantum Dots Could Lead to Improved Treatments for Cancer  

NSDL National Science Digital Library

This online article from Carnegie Mellon Today, discusses how chemists are researching quantum dots to evaluate their effectiveness in treating diseases such as cancer. Readers can discover how the scientists were able to produce quantum dots that fluoresced for an unprecedented eight months, and how they might be useful in locating diseases like cancer.

Pavlak, Amy

1969-12-31

268

Spin storage and readout in self-organized quantum dots  

NASA Astrophysics Data System (ADS)

We demonstrate optical charging of spectrally selected subensembles of self-organized quantum dots with single charge carriers. By circularly polarized excitation in an applied magnetic field, we are able to address the spin of single electron in the quantum dot. A spin-flip of the electron is observed after excitation in the upper Zeeman level.

Warming, T.; Wieczorek, W.; Geller, M.; Bimberg, D.; Cirlin, G. E.; Zhukov, A. E.; Ustinov, V. M.

2007-04-01

269

High Resolution and High Collection Efficiency of Single Quantum Dots.  

E-print Network

High Resolution and High Collection Efficiency of Single Quantum Dots. A. N. Vamivakas1 ,Z. Liu2GaAs quantum dots (QDs) grown by Stranski-Krastanow self-assembly on GaAs substrates [1]. In self-assembled QD the resolution and collection efficiency of our optical microscopy system. In contrast to conventional Solid

270

FIG. 1: Size-dependent color emission of quantum dots. This is a purely quantum mechanical FIG. 2: Size-dependent color emission of quantum dots. This is a purely quantum mechanical  

E-print Network

FIG. 1: Size-dependent color emission of quantum dots. This is a purely quantum mechanical effect. FIG. 2: Size-dependent color emission of quantum dots. This is a purely quantum mechanical effect. 1 #12;FIG. 3: Size-dependent color emission of quantum dots. This is a purely quantum mechanical effect

Nielsen, Steven O.

271

Electrically injected quantum-dot photonic crystal microcavity light sources  

Microsoft Academic Search

The design, fabrication, and characterization of an electrically injected quantum-dot photonic crystal microcavity light source are described. The optical gain in the GaAs\\/AlGaAs-based device is provided by self-organized InGaAs quantum dots with ground-state room-temperature emission at 1.1 µm. The carriers are injected directly into the photonic crystal microcavity, which contains ˜50 dots, avoiding surface state recombination in the photonic crystal

J. Topol'Ancik; S. Chakravarty; P. Bhattacharya; S. Chakrabarti

2006-01-01

272

Coherent Electron Spin Dynamics in Quantum Dots  

NASA Astrophysics Data System (ADS)

The coherent spin dynamics of electrons in confined in quantum dots is discussed. A new measurement technique, mode-locking of electron spin precession by and with a pulsed excitation laser is used to address the coherence, which otherwise would be masked in ensemble studies by dephasing. The background of nuclei leads to a refocusing such that all optically excited electron spins become synchronized with the laser. With this tool spin coherence times in the microseconds range are demonstrated at cryogenic temperatures. The mode locking can be tailored by the laser excitation protocol such that strong signals at arbitrary times can be generated in Faraday rotation experiments.

Bayer, Manfred; Greilich, Alex; Yakovlev, Dmitri R.

273

Superexchange blockade in triple quantum dots  

E-print Network

We propose the interaction of two electrons in a triple quantum dot as a minimal system to control long range superexchange transitions. These are probed by transport spectroscopy. Narrow resonances appear indicating the transfer of charge from one side of the sample to the other with the central one being occupied only virtually. We predict that two different intermediate states establish the two arms of a one dimensional interferometer. Configurations of destructive interference of the two superexchage trajectories totally block the current through the system. We emphasize the role of spin correlations giving rise to lifetime-enhanced resonances.

Rafael Sánchez; Fernando Gallego-Marcos; Gloria Platero

2013-12-09

274

Ab initio computation of circular quantum dots  

E-print Network

We perform coupled-cluster and diffusion Monte Carlo calculations of the energies of circular quantum dots up to 20 electrons. The coupled-cluster calculations include triples corrections and a renormalized Coulomb interaction defined for a given number of low-lying oscillator shells. Using such a renormalized Coulomb interaction brings the coupled-cluster calculations with triples correlations in excellent agreement with the diffusion Monte Carlo calculations. This opens up perspectives for doing ab initio calculations for much larger systems of electrons.

M. Pedersen Lohne; G. Hagen; M. Hjorth-Jensen; S. Kvaal; F. Pederiva

2010-09-24

275

Intraband carrier photoexcitation in quantum dot lasers.  

PubMed

We unveil the role of bound-to-continuum photoexcitation of carriers as a relevant process that affects the performance of quantum dot (QD) lasers. We present the response of an InAs/InGaAs QD laser to a sub-band gap pump, showing an unexpected depletion of the emitted photons. We relate this observation with carrier photoexcitation through additional transmission and photocurrent measurements. We provide a theoretical support to the experimental data and highlight the important role of this process in the laser characteristics. PMID:18278879

Moreno, P; Richard, M; Rossetti, M; Portella-Oberli, M; Li, L H; Deveaud-Plédran, B; Fiore, A

2008-03-01

276

Quantum dots in diagnostics and detection: principles and paradigms.  

PubMed

Quantum dots are semiconductor nanocrystals that exhibit exceptional optical and electrical behaviors not found in their bulk counterparts. Following seminal work in the development of water-soluble quantum dots in the late 1990's, researchers have sought to develop interesting and novel ways of exploiting the extraordinary properties of quantum dots for biomedical applications. Since that time, over 10,000 articles have been published related to the use of quantum dots in biomedicine, many of which regard their use in detection and diagnostic bioassays. This review presents a didactic overview of fundamental physical phenomena associated with quantum dots and paradigm examples of how these phenomena can and have been readily exploited for manifold uses in nanobiotechnology with a specific focus on their implementation in in vitro diagnostic assays and biodetection. PMID:24770716

Pisanic, T R; Zhang, Y; Wang, T H

2014-06-21

277

Discrete quantum Fourier transform in coupled semiconductor double quantum dot molecules  

E-print Network

In this Letter, we present a physical scheme for implementing the discrete quantum Fourier transform in a coupled semiconductor double quantum dot system. The main controlled-R gate operation can be decomposed into many simple and feasible unitary transformations. The current scheme would be a useful step towards the realization of complex quantum algorithms in the quantum dot system.

Ping Dong; Ming Yang; Zhuo-Liang Cao

2007-04-17

278

Photovoltaic quantum dot quantum cascade infrared photodetector A. V. Barve and S. Krishna  

E-print Network

Photovoltaic quantum dot quantum cascade infrared photodetector A. V. Barve and S. Krishna Citation subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions #12;Photovoltaic) Design and characterization of a quantum dot quantum cascade detector for photovoltaic midwave infrared

Krishna, Sanjay

279

Minimal self-contained quantum refrigeration machine based on four quantum dots.  

PubMed

We present a theoretical study of an electronic quantum refrigerator based on four quantum dots arranged in a square configuration, in contact with as many thermal reservoirs. We show that the system implements the minimal mechanism for acting as a self-contained quantum refrigerator, by demonstrating heat extraction from the coldest reservoir and the cooling of the nearby quantum dot. PMID:23829751

Venturelli, Davide; Fazio, Rosario; Giovannetti, Vittorio

2013-06-21

280

Quantum emission efficiency of nanocrystalline and amorphous Si quantum dots  

Microsoft Academic Search

The paper presents the comparison of emission efficiencies for crystalline Si quantum dots (QDs) and amorphous Si nanoclusters (QDs) embedded in hydrogenated amorphous (a-Si:H) films grown by the hot wire-CVD method (HW-CVD) at the variation of technological parameters. The correlations between the intensities of different PL bands and the volumes of Si nanocrystals (nc-Si:H) and\\/or an amorphous (a-Si:H) phase have

T. V. Torchynska

2011-01-01

281

Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots: origin of blue and green luminescence.  

PubMed

Pristine graphene quantum dots and graphene oxide quantum dots are synthesized by chemical exfoliation from the graphite nanoparticles with high uniformity in terms of shape (circle), size (less than 4 nm), and thickness (monolayer). The origin of the blue and green photoluminescence of GQDs and GOQDs is attributed to intrinsic and extrinsic energy states, respectively. PMID:23712762

Liu, Fei; Jang, Min-Ho; Ha, Hyun Dong; Kim, Je-Hyung; Cho, Yong-Hoon; Seo, Tae Seok

2013-07-19

282

Double quantum dot in a quantum dash: Optical properties  

SciTech Connect

We study the optical properties of highly elongated, highly flattened quantum dot structures, also referred to as quantum dashes, characterized by the presence of two trapping centers located along the structure. Such a system can exhibit some of the properties characteristic for double quantum dots. We show that sub- and super-radiant states can form for certain quantum dash geometries, which is manifested by a pronounced transfer of intensity between spectral lines, accompanied by the appearance of strong electron-hole correlations. We also compare exciton absorption spectra and polarization properties of a system with a single and double trapping center and show how the geometry of multiple trapping centers influences the optical properties of the system. We show that for a broad range of trapping geometries the relative absorption intensity of the ground state is larger than that of the lowest excited states, contrary to the quantum dash systems characterized by a single trapping center. Thus, optical properties of these structures are determined by fine details of their morphology.

Kaczmarkiewicz, Piotr, E-mail: piotr.kaczmarkiewicz@pwr.wroc.pl; Machnikowski, Pawe? [Institute of Physics, Wroc?aw University of Technology, 50-370 Wroc?aw (Poland); Kuhn, Tilmann [Institut für Festkörpertheorie, Westfälische Wilhelms-Universität, 48149 Münster (Germany)

2013-11-14

283

Semiconductor quantum dot-sensitized solar cells  

PubMed Central

Semiconductor quantum dots (QDs) have been drawing great attention recently as a material for solar energy conversion due to their versatile optical and electrical properties. The QD-sensitized solar cell (QDSC) is one of the burgeoning semiconductor QD solar cells that shows promising developments for the next generation of solar cells. This article focuses on recent developments in QDSCs, including 1) the effect of quantum confinement on QDSCs, 2) the multiple exciton generation (MEG) of QDs, 3) fabrication methods of QDs, and 4) nanocrystalline photoelectrodes for solar cells. We also make suggestions for future research on QDSCs. Although the efficiency of QDSCs is still low, we think there will be major breakthroughs in developing QDSCs in the future. PMID:24191178

Tian, Jianjun; Cao, Guozhong

2013-01-01

284

Universal Braess paradox in open quantum dots  

NASA Astrophysics Data System (ADS)

We present analytical and numerical results that demonstrate the presence of the Braess paradox in chaotic quantum dots. The paradox that we identify, originally perceived in classical networks, shows that the addition of more capacity to the network can suppress the current flow in the universal regime. We investigate the weak localization term, showing that it presents the paradox encoded in a saturation minimum of the conductance, under the presence of hyperflow in the external leads. In addition, we demonstrate that the weak localization suffers a transition signal depending on the overcapacity lead and presents an echo on the magnetic crossover before going to zero due to the full time-reversal symmetry breaking. We also show that the quantum interference contribution can dominate the Ohm term in the presence of constrictions and that the corresponding Fano factor engenders an anomalous behavior.

Barbosa, A. L. R.; Bazeia, D.; Ramos, J. G. G. S.

2014-10-01

285

Electron states in semiconductor quantum dots.  

PubMed

In this work, the electronic structures of quantum dots (QDs) of nine direct band gap semiconductor materials belonging to the group II-VI and III-V families are investigated, within the empirical tight-binding framework, in the effective bond orbital model. This methodology is shown to accurately describe these systems, yielding, at the same time, qualitative insights into their electronic properties. Various features of the bulk band structure such as band-gaps, band curvature, and band widths around symmetry points affect the quantum confinement of electrons and holes. These effects are identified and quantified. A comparison with experimental data yields good agreement with the calculations. These theoretical results would help quantify the optical response of QDs of these materials and provide useful input for applications. PMID:25429952

Dhayal, Suman S; Ramaniah, Lavanya M; Ruda, Harry E; Nair, Selvakumar V

2014-11-28

286

Cu2ZnSnS4 nanocrystals and graphene quantum dots for photovoltaics.  

PubMed

Semiconductor quantum dots exhibit great potential for applications in next generation high efficiency, low cost solar cells because of their unique optoelectronic properties. Cu(2)ZnSnS(4) (CZTS) nanocrystals and graphene quantum dots (GQDs) have recently received much attention as building blocks for use in solar energy conversion due to their outstanding properties and advantageous characteristics, including high optical absorptivity, tunable bandgap, and earth abundant chemical composition. In this Feature Article, recent advances in the synthesis and utilization of CZTS nanocrystals and colloidal GQDs for photovoltaics are highlighted, followed by an outlook on the future research efforts in these areas. PMID:21713274

Wang, Jun; Xin, Xukai; Lin, Zhiqun

2011-08-01

287

Aqueous synthesis of CdTe/CdSe core/shell quantum dots as pH-sensitive fluorescence probe for the determination of ascorbic acid.  

PubMed

By controlling the reflux time and the quantity of the shell materials, different sizes of thioglycollic acid (TGA) modified CdTe/CdSe core/shell quantum dots were synthesized in aqueous solution. This type of QDs was used for sensitive and selective determination of ascorbic acid in commercial tablets. Under optimal conditions, a good linearity was observed between the relative fluorescence (FL) intensity and the concentration of ascorbic acid in the range of 4.0 to 64.0 ?g/mL with a correlation coefficient of 0.9968. The limit of detection was 2.4 ?g/mL. This method was applied to the determination of the ascorbic acid in Vitamin C tablets and Vitamin C Yinqiao pills, and satisfactory results were obtained. PMID:21161344

Yang, Shan-Shan; Ren, Cui-Ling; Zhang, Zhen-Yang; Hao, Jun-Jie; Hu, Qin; Chen, Xing-Guo

2011-05-01

288

Synthesis of Honeycomb-like Mesoporous Pyrite FeS2 Microspheres as Efficient Counter Electrode in Quantum Dots Sensitized Solar Cells.  

PubMed

Honeycomb-like mesoporous pyrite FeS2 microspheres, with diameters of 500-800 nm and pore sizes of 25-30 nm, are synthesized by a simple solvothermal approach. The mesoporous FeS2 microspheres are demonstrated to be an outstanding counter electrode (CE) material in quantum dot sensitized solar cells (QDSSCs) for electrocatalyzing polysulfide electrolyte regeneration. The cell using mesoporous FeS2 microspheres as CE shows 86.6% enhancement in power conversion efficiency (PCE) than the cell using traditional noble Pt CE. Furthermore, it also shows 11.4% enhancement in PCE than the cell using solid FeS2 microspheres as CE, due to the mesoporous structure facilitating better contact with polysulfide electrolyte and fast diffusion of redox couple species in electrolyte. PMID:24986216

Xu, Jun; Xue, Hongtao; Yang, Xia; Wei, Huaixin; Li, Wenyue; Li, Zhangpeng; Zhang, Wenjun; Lee, Chun-Sing

2014-11-01

289

Ferritin-templated quantum dots for quantum logic gates (Invited Paper)  

Microsoft Academic Search

Quantum logic gates (QLGs) or other logic systems are based on quantum-dots (QD) with a stringent requirement of size uniformity. The QD are widely known building units for QLGs. The size control of QD is a critical issue in quantum-dot fabrication. The work presented here offers a new method to develop quantum-dots using a bio-template, called ferritin, that ensures QD

Sang H. Choi; Jae-Woo Kim; Sang-Hyon Chu; Glen C. King; Peter T. Lillehei; Seon-Jeong Kim; James R. Elliott

2005-01-01

290

Hyper-parallel photonic quantum computation with coupled quantum dots  

NASA Astrophysics Data System (ADS)

It is well known that a parallel quantum computer is more powerful than a classical one. So far, there are some important works about the construction of universal quantum logic gates, the key elements in quantum computation. However, they are focused on operating on one degree of freedom (DOF) of quantum systems. Here, we investigate the possibility of achieving scalable hyper-parallel quantum computation based on two DOFs of photon systems. We construct a deterministic hyper-controlled-not (hyper-CNOT) gate operating on both the spatial-mode and the polarization DOFs of a two-photon system simultaneously, by exploiting the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics (QED). This hyper-CNOT gate is implemented by manipulating the four qubits in the two DOFs of a two-photon system without auxiliary spatial modes or polarization modes. It reduces the operation time and the resources consumed in quantum information processing, and it is more robust against the photonic dissipation noise, compared with the integration of several cascaded CNOT gates in one DOF.

Ren, Bao-Cang; Deng, Fu-Guo

2014-04-01

291

Hyper-parallel photonic quantum computation with coupled quantum dots  

E-print Network

It is well known that a parallel quantum computer is more powerful than a classical one. So far, there are some important works about the construction of universal quantum logic gates, the key elements in quantum computation. However, they are focused on operating on one degree of freedom (DOF) of quantum systems. Here, we investigate the possibility of achieving scalable hyper-parallel quantum computation based on two DOFs of photon systems. We construct a deterministic hyper-controlled-not (hyper-CNOT) gate operating on both the spatial-mode and the polarization DOFs of a two-photon system simultaneously, by exploiting the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics (QED). This hyper-CNOT gate is implemented by manipulating the four qubits in the two DOFs of a two-photon system without auxiliary spatial modes or polarization modes. It reduces the operation time and the resources consumed in quantum information processing, and it is more robust against the photonic dissipation noise, compared with the integration of several cascaded CNOT gates in one DOF.

Bao-Cang Ren; Fu-Guo Deng

2013-09-01

292

Hyper-parallel photonic quantum computation with coupled quantum dots.  

PubMed

It is well known that a parallel quantum computer is more powerful than a classical one. So far, there are some important works about the construction of universal quantum logic gates, the key elements in quantum computation. However, they are focused on operating on one degree of freedom (DOF) of quantum systems. Here, we investigate the possibility of achieving scalable hyper-parallel quantum computation based on two DOFs of photon systems. We construct a deterministic hyper-controlled-not (hyper-CNOT) gate operating on both the spatial-mode and the polarization DOFs of a two-photon system simultaneously, by exploiting the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics (QED). This hyper-CNOT gate is implemented by manipulating the four qubits in the two DOFs of a two-photon system without auxiliary spatial modes or polarization modes. It reduces the operation time and the resources consumed in quantum information processing, and it is more robust against the photonic dissipation noise, compared with the integration of several cascaded CNOT gates in one DOF. PMID:24721781

Ren, Bao-Cang; Deng, Fu-Guo

2014-01-01

293

Nonlinear thermoelectric response of quantum dots  

NASA Astrophysics Data System (ADS)

The thermoelectric transport properties of nanostructured devices continue to attract attention from theorists and experimentalist alike as the spatial confinement allows for a controlled approach to transport properties of correlated matter. Most of the existing work, however, focuses on thermoelectric transport in the linear regime despite the fact that the nonlinear conductance of correlated quantum dots has been studied in some detail throughout the last decade. To go beyond the linear response regime, we use a recently developed scheme [1], to address the low-energy behavior near the strong-coupling fixed point at finite bias voltage and finite temperature drop at the quantum dot. We test the reliability of the method against the numerical renormalization group [2] and determine the charge, energy, and heat current through the nanostructure. This allows us to determine the nonlinear transport coefficients, the entropy production, and the fate of the Wiedemann-Franz law in the non-thermal steady-state [3].[4pt] [1] E. Munoz et al, arXiv:1111.4076.[0pt] [2] L. Merker et al, in preparation.[0pt] [3] S. Kirchner, F. Zamani, and E. Munoz, in ``New Materials for Thermoelectric Applications: Theory and Experiment,'' Springer (2012).

Kirchner, Stefan; Zamani, Farzaneh; Munoz, Enrique; Merker, Lukas; Costi, Theo

2013-03-01

294

Competing interactions in semiconductor quantum dots  

NASA Astrophysics Data System (ADS)

We introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free-induction decay and spin-echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin-echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions at longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the nondecaying fraction previously observed for zero-field free-induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.

van den Berg, R.; Brandino, G. P.; El Araby, O.; Konik, R. M.; Gritsev, V.; Caux, J.-S.

2014-10-01

295

Optimal tunneling enhances the quantum photovoltaic effect in double quantum dots  

E-print Network

We investigate the quantum photovoltaic effect in double quantum dots by applying the nonequilibrium quantum master equation. A drastic suppression of the photovoltaic current is observed near the open circuit voltage, ...

Wang, Chen

296

Quantum Dot Self-Assembly for Protein Detection with Sub-Picomolar Sensitivity  

E-print Network

Quantum Dot Self-Assembly for Protein Detection with Sub-Picomolar Sensitivity Chinmay P. Soman and rapid antigen detection is described. In the presence of a specific antigen, quantum dot other things, the relative concentration of quantum dot conjugates and antigen molecules. Quantum dot

297

Low chirp observed in directly modulated quantum dot lasers  

Microsoft Academic Search

We have examined the dynamic properties of high-aspect-ratio InAs-quantum-dot (QD) lasers at room temperature. A novel characteristic of low chirp in the lasing wavelength under 1-GHz current modulation was found in the quantum dot lasers. This is more than one order of magnitude less than the typical chirp (0.2-nm) found in a conventional quantum well laser that we used as

Hideaki Saito; Kenichi Nishi; Akio Kamei; Shigeo Sugou

2000-01-01

298

Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes  

Microsoft Academic Search

We demonstrate a deterministic approach to the implementation of solid-state cavity quantum electrodynamics (QED) systems based on a precise spatial and spectral overlap between a single self-assembled quantum dot and a photonic crystal membrane nanocavity. By fine-tuning nanocavity modes with a high quality factor into resonance with any given quantum dot exciton, we observed clear signatures of cavity QED (such

Antonio Badolato; Kevin Hennessy; Mete Atatüre; Jan Dreiser; Evelyn Hu; Pierre M. Petroff; Atac Imamoglu

2005-01-01

299

RKKY interaction in a chirally coupled double quantum dot system  

SciTech Connect

The competition between the Kondo effect and the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction is investigated in a double quantum dots system, coupled via a central open conducting region. A perpendicular magnetic field induces the formation of Landau Levels which in turn give rise to the so-called Kondo chessboard pattern in the transport through the quantum dots. The two quantum dots become therefore chirally coupled via the edge channels formed in the open conducting area. In regions where both quantum dots exhibit Kondo transport the presence of the RKKY exchange interaction is probed by an analysis of the temperature dependence. The thus obtained Kondo temperature of one dot shows an abrupt increase at the onset of Kondo transport in the other, independent of the magnetic field polarity, i.e. edge state chirality in the central region.

Heine, A. W.; Tutuc, D.; Haug, R. J. [Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstr. 2, 30167 Hannover (Germany); Zwicknagl, G. [Institut für Mathematische Physik, TU Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig (Germany); Schuh, D. [Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätstr. 31, 93053 Regensburg (Germany); Wegscheider, W. [Laboratorium für Festkörperphysik, ETH Zürich, Schafmattstr. 16, 8093 Zürich, Switzerland and Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätstr. 31, 93053 Regens (Germany)

2013-12-04

300

Size-Dependent Photoluminescence and Electroluminescence of Colloidal CdSe Quantum Dots  

NASA Astrophysics Data System (ADS)

Here we adopt a convenient green chemical route for synthesis of CdSe quantum dots, their characterization by UV/Vis absorption spectroscopy, X-ray diffraction study and transmission electron microscopy. We carry out photoluminescence and electroluminescence spectroscopy to investigate the variation in electro-optical property with size. By UV/Vis spectroscopy, blue shift is revealed and bandgap is also calculated. X-ray diffraction spectrum reveals cubic structure and transmission electron micrographs show quantum dots of different size distributions (in the range 2-8 nm). Both the luminescence spectroscopies reveal green-orange luminescence depending upon the size distribution and indicate the possibility of using CdSe quantum dots as light emitting devices with better compatibility and faster response.

Dey, S. C.; Nath, S. S.

2013-04-01

301

Electroluminescence of carbon ‘quantum' dots - From materials to devices  

NASA Astrophysics Data System (ADS)

Carbon ‘quantum' dots or carbon dots have emerged as a new class of luminescent nanomaterials. While photoluminescence properties of carbon dots had targeted optical imaging and related usage, their unique excited state redox processes responsible for the luminescence emissions may find potentially significant optoelectronic applications. In this regard, we investigated the electroluminescence properties of the carbon dots integrated into multilayer light emitting diode devices. The devices emitted white light with a slight blue color, visible to naked eyes, thus validating the expectation that carbon dots may potentially serve as a new platform for electroluminescent nanomaterials.

Veca, L. Monica; Diac, Andreea; Mihalache, Iuliana; Wang, Ping; LeCroy, Gregory E.; Pavelescu, Emil Mihai; Gavrila, Raluca; Vasile, Eugeniu; Terec, Anamaria; Sun, Ya-Ping

2014-10-01

302

Three-dimensional Si/Ge quantum dot crystals.  

PubMed

Modern nanotechnology offers routes to create new artificial materials, widening the functionality of devices in physics, chemistry, and biology. Templated self-organization has been recognized as a possible route to achieve exact positioning of quantum dots to create quantum dot arrays, molecules, and crystals. Here we employ extreme ultraviolet interference lithography (EUV-IL) at a wavelength of lambda = 13.5 nm for fast, large-area exposure of templates with perfect periodicity. Si(001) substrates have been patterned with two-dimensional hole arrays using EUV-IL and reactive ion etching. On these substrates, three-dimensionally ordered SiGe quantum dot crystals with the so far smallest quantum dot sizes and periods both in lateral and vertical directions have been grown by molecular beam epitaxy. X-ray diffractometry from a sample volume corresponding to about 3.6 x 10(7) dots and atomic force microscopy (AFM) reveal an up to now unmatched structural perfection of the quantum dot crystal and a narrow quantum dot size distribution. Intense interband photoluminescence has been observed up to room temperature, indicating a low defect density in the three-dimensional (3D) SiGe quantum dot crystals. Using the Ge concentration and dot shapes determined by X-ray and AFM measurements as input parameters for 3D band structure calculations, an excellent quantitative agreement between measured and calculated PL energies is obtained. The calculations show that the band structure of the 3D ordered quantum dot crystal is significantly modified by the artificial periodicity. A calculation of the variation of the eigenenergies based on the statistical variation in the dot dimensions as determined experimentally (+/-10% in linear dimensions) shows that the calculated electronic coupling between neighboring dots is not destroyed due to the quantum dot size variations. Thus, not only from a structural point of view but also with respect to the band structure, the 3D ordered quantum dots can be regarded as artificial crystal. PMID:17892317

Grützmacher, Detlev; Fromherz, Thomas; Dais, Christian; Stangl, Julian; Müller, Elisabeth; Ekinci, Yasin; Solak, Harun H; Sigg, Hans; Lechner, Rainer T; Wintersberger, Eugen; Birner, Stefan; Holý, Vaclav; Bauer, Günther

2007-10-01

303

Synthesis of Zn(1-x)Cd(x)S:Mn/ZnS quantum dots and their application to light-emitting diodes.  

PubMed

3.6 nm sized Mn-doped Zn(1-x)Cd(x)S quantum dots (QDs) with the composition (x) of 1, 0.5, 0.2 and 0 were synthesized by a reverse micelle approach. The bandgap energy of Zn(1-x)Cd(x)S:Mn QDs was tuned to a higher energy by increasing the Zn content, and the actual composition of alloyed Zn(1-x)Cd(x)S:Mn QDs was found to be different from the solution composition. Consecutive overcoating of the Zn(1-x)Cd(x)S:Mn QD surface by a ZnS shell was done, and the core/shell structured QDs exhibited quantum yields of 14-30%, depending on the composition of the core QDs. Using CdS:Mn/ZnS QDs, orange and white light-emitting diodes (LEDs) pumped by a near-UV and blue LED chips, respectively, were fabricated and their optical properties are described. PMID:21836252

Kim, Jong-Uk; Lee, Myung-Hyun; Yang, Heesun

2008-11-19

304

Ferritin-Templated Quantum-Dots for Quantum Logic Gates  

NASA Technical Reports Server (NTRS)

Quantum logic gates (QLGs) or other logic systems are based on quantum-dots (QD) with a stringent requirement of size uniformity. The QD are widely known building units for QLGs. The size control of QD is a critical issue in quantum-dot fabrication. The work presented here offers a new method to develop quantum-dots using a bio-template, called ferritin, that ensures QD production in uniform size of nano-scale proportion. The bio-template for uniform yield of QD is based on a ferritin protein that allows reconstitution of core material through the reduction and chelation processes. One of the biggest challenges for developing QLG is the requirement of ordered and uniform size of QD for arrays on a substrate with nanometer precision. The QD development by bio-template includes the electrochemical/chemical reconsitution of ferritins with different core materials, such as iron, cobalt, manganese, platinum, and nickel. The other bio-template method used in our laboratory is dendrimers, precisely defined chemical structures. With ferritin-templated QD, we fabricated the heptagonshaped patterned array via direct nano manipulation of the ferritin molecules with a tip of atomic force microscope (AFM). We also designed various nanofabrication methods of QD arrays using a wide range manipulation techniques. The precise control of the ferritin-templated QD for a patterned arrangement are offered by various methods, such as a site-specific immobilization of thiolated ferritins through local oxidation using the AFM tip, ferritin arrays induced by gold nanoparticle manipulation, thiolated ferritin positioning by shaving method, etc. In the signal measurements, the current-voltage curve is obtained by measuring the current through the ferritin, between the tip and the substrate for potential sweeping or at constant potential. The measured resistance near zero bias was 1.8 teraohm for single holoferritin and 5.7 teraohm for single apoferritin, respectively.

Choi, Sang H.; Kim, Jae-Woo; Chu, Sang-Hyon; Park, Yeonjoon; King, Glen C.; Lillehei, Peter T.; Kim, Seon-Jeong; Elliott, James R.

2005-01-01

305

Electron and nuclear spins in semiconductor quantum dots  

NASA Astrophysics Data System (ADS)

The electron and nuclear spin degrees of freedom in two-dimensional semiconductor quantum dots are studied as important resources for such fields as spintronics and quantum information. The coupling of electron spins to their orbital motion, via the spin-orbit interaction, and to nuclear spins, via the hyperfine interaction, are important for understanding spin-dynamics in quantum dot systems. This work is concerned with both of these interactions as they relate to two-dimensional semiconductor quantum dots. We first consider the spin-orbit interaction in many-electron quantum dots, studying its role in conductance fluctuations. We further explore the creation and destruction of spin-polarized currents by chaotic quantum dots in the strong spin-orbit limit, finding that even without magnetic fields or ferromagnets (i.e., with time reversal symmetry) such systems can produce large spin-polarizations in currents passing through a small number of open channels. We use a density matrix formalism for transport through quantum dots, allowing consideration of currents entangled between different leads, which we show can have larger fluctuations than currents which are not so entangled. Second, we consider the hyperfine interaction between electrons and approximately 106 nuclei in two-electron double quantum dots. The nuclei in each dot collectively form an effective magnetic field interacting with the electron spins. We show that a procedure originally explored with the intent to polarize the nuclei can also equalize the effective magnetic fields of the nuclei in the two quantum dots or, in other parameter regimes, can cause the effective magnetic fields to have large differences.

Krich, Jacob Jonathan

306

Quantum dot nanoparticle conjugation, characterization, and applications in neuroscience  

NASA Astrophysics Data System (ADS)

Quantum dot are semiconducting nanoparticles that have been used for decades in a variety of applications such as solar cells, LEDs and medical imaging. Their use in the last area, however, has been extremely limited despite their potential as revolutionary new biological labeling tools. Quantum dots are much brighter and more stable than conventional fluorophores, making them optimal for high resolution imaging and long term studies. Prior work in this area involves synthesizing and chemically conjugating quantum dots to molecules of interest in-house. However this method is both time consuming and prone to human error. Additionally, non-specific binding and nanoparticle aggregation currently prevent researchers from utilizing this system to its fullest capacity. Another critical issue that has not been addressed is determining the number of ligands bound to nanoparticles, which is crucial for proper interpretation of results. In this work, methods to label fixed cells using two types of chemically modified quantum dots are studied. Reproducible non-specific artifact labeling is consistently demonstrated if antibody-quantum dot conditions are less than optimal. In order to explain this, antibodies bound to quantum dots were characterized and quantified. While other groups have qualitatively characterized antibody functionalized quantum dots using TEM, AFM, UV spectroscopy and gel electrophoresis, and in some cases have reported calculated estimates of the putative number of total antibodies bound to quantum dots, no quantitative experimental results had been reported prior to this work. The chemical functionalization and characterization of quantum dot nanocrystals achieved in this work elucidates binding mechanisms of ligands to nanoparticles and allows researchers to not only translate our tools to studies in their own areas of interest but also derive quantitative results from these studies. This research brings ease of use and increased reliability to nanoparticles in medical imaging.

Pathak, Smita

307

Full counting statistics of quantum dot resonance fluorescence  

PubMed Central

The electronic energy levels and optical transitions of a semiconductor quantum dot are subject to dynamics within the solid-state environment. In particular, fluctuating electric fields due to nearby charge traps or other quantum dots shift the transition frequencies via the Stark effect. The environment dynamics are mapped directly onto the fluorescence under resonant excitation and diminish the prospects of quantum dots as sources of indistinguishable photons in optical quantum computing. Here, we present an analysis of resonance fluorescence fluctuations based on photon counting statistics which captures the underlying time-averaged electric field fluctuations of the local environment. The measurement protocol avoids dynamic feedback on the electric environment and the dynamics of the quantum dot's nuclear spin bath by virtue of its resonant nature and by keeping experimental control parameters such as excitation frequency and external fields constant throughout. The method introduced here is experimentally undemanding. PMID:24810097

Matthiesen, Clemens; Stanley, Megan J.; Hugues, Maxime; Clarke, Edmund; Atature, Mete

2014-01-01

308

Charge controlled optical switching in nanocrystal quantum dots  

NASA Astrophysics Data System (ADS)

Electron injection into quantum confined conduction band of semiconductor nanocrystal quantum dot colloids and films is reversibly controlled by applying an electrochemical potential. This has led to charge-tunable optical switching in nanocrystal quantum dots, including a complete bleach in visible interband transition, strong midinfrared intraband absorption, and significant quenching of the photoluminescence. The observed optical properties of nanocrystal quantum dot colloids and thin films are novel and unique with strong and rapid electrochromic changes occurring in narrow and tunable spectral response covering both the visible and midinfrared. Redox concepts have also been extended to these nanometer-sized "artificial atoms." A spectroelectrochemical method has been used to measure the size-dependent reduction potentials of nanocrystal quantum dots.

Wang, Congjun; Shim, Moonsub; Guyot-Sionnest, Philippe

2002-03-01

309

Linewidth broadening of a quantum dot coupled to an off-resonant cavity  

E-print Network

We study the coupling between a photonic crystal cavity and an off-resonant quantum dot under resonant excitation of the cavity or the quantum dot. Linewidths of the quantum dot and the cavity as a function of the excitation laser power are measured. We show that the linewidth of the quantum dot, measured by observing the cavity emission, is significantly broadened compared to the theoretical estimate. This indicates additional incoherent coupling between the quantum dot and the cavity.

Arka Majumdar; Andrei Faraon; Erik Kim; Dirk Englund; Hyochul Kim; Pierre Petroff; Jelena Vuckovic

2010-03-11

310

Inserting one single Mn ion into a quantum dot  

SciTech Connect

A method of growth to get one single Mn in self-assembled semiconductor quantum dot is presented. With a simple quantitative model, the appropriate low Mn density needed prior to the quantum dot nucleation is estimated. Such a low Mn concentration was reached by inserting a thin ZnTe spacer between a Zn{sub 1-x}Mn{sub x}Te buffer and the CdTe quantum dot layer. The control of Mn density is made by changing the thickness of the ZnTe spacer, with good reproducibility. Qualitative and quantitative comparisons of optical spectra for different samples assess the relevance of this growth method.

Maingault, Laurent; Besombes, L.; Leger, Y.; Bougerol, C.; Mariette, H. [CEA-CNRS-UJF Group Nanophysics and Semiconductor, Laboratoire de Spectrometrie Physique, Universite Joseph Fourier Grenoble, BP 87, 38402 St Martin d'Heres, France and CEA/DRFMC/SP2M, 17 Av. des Martyrs, 38000 Grenoble (France)

2006-11-06

311

Inserting one single Mn ion into a quantum dot  

NASA Astrophysics Data System (ADS)

A method of growth to get one single Mn in self-assembled semiconductor quantum dot is presented. With a simple quantitative model, the appropriate low Mn density needed prior to the quantum dot nucleation is estimated. Such a low Mn concentration was reached by inserting a thin ZnTe spacer between a Zn1-xMnxTe buffer and the CdTe quantum dot layer. The control of Mn density is made by changing the thickness of the ZnTe spacer, with good reproducibility. Qualitative and quantitative comparisons of optical spectra for different samples assess the relevance of this growth method.

Maingault, Laurent; Besombes, L.; Léger, Y.; Bougerol, C.; Mariette, H.

2006-11-01

312

Imaging GABAc Receptors with Ligand-Conjugated Quantum Dots  

PubMed Central

We report a methodology for labeling the GABAc receptor on the surface membrane of intact cells. This work builds upon our earlier work with serotonin-conjugated quantum dots and our studies with PEGylated quantum dots to reduce nonspecific binding. In the current approach, a PEGylated derivative of muscimol was synthesized and attached via an amide linkage to quantum dots coated in an amphiphilic polymer derivative of a modified polyacrylamide. These conjugates were used to image GABAC receptors heterologously expressed in Xenopus laevis oocytes. PMID:18437227

Tomlinson, Ian D.; Gussin, Hélène A.; Little, Deborah M.; Warnement, Michael R.; Qian, Haohua; Pepperberg, David R.; Rosenthal, Sandra J.

2007-01-01

313

Energy levels in self-assembled quantum arbitrarily shaped dots.  

PubMed

A model to determine the electronic structure of self-assembled quantum arbitrarily shaped dots is applied. This model is based principally on constant effective mass and constant potentials of the barrier and quantum dot material. An analysis of the different parameters of this model is done and compared with those which take into account the variation of confining potentials, bands, and effective masses due to strain. The results are compared with several spectra reported in literature. By considering the symmetry, the computational cost is reduced with respect to other methods in literature. In addition, this model is not limited by the geometry of the quantum dot. PMID:15740390

Tablero, C

2005-02-01

314

Scanning Gate Measurements on a Coupled Quantum DotQuantum Point Contact System  

NASA Astrophysics Data System (ADS)

We use the metallic tip of a low-temperature scanning force microscope as a movable gate to study a quantum dot and an adjacent quantum point contact. By scanning the tip we can add single electrons to the dot and detect them with the quantum point contact. Additionally, we detect other charging events which we attribute to charge traps.

Gildemeister, A. E.; Ihn, T.; Schleser, R.; Ensslin, K.; Driscoll, D. C.; Gossard, A. C.

2007-04-01

315

Hybrid entanglement in a triple-quantum-dot shuttle device  

NASA Astrophysics Data System (ADS)

We study the H3×N hybrid entanglement between charge and vibrational modes in a triple-quantum-dot shuttle system. Three quantum dots are linearly connected, with the outer dots fixed and the central dot oscillating, described as a quantum harmonic oscillator with oscillation modes that are entangled with the electronic states of the quantum dots. The entangled states are characterized by the Schmidt number as a function of the parameters of the system: detuning and inverse tunneling length. We show that at steady state, as a function of detuning, the excited states of lower energy present Bell-type entanglement 2×N, with the participation of two quantum dots, while the more energetic excited states present 3×N entanglement, with the participation of three quantum dots. In the stationary regime, we find qualitative relationships between the maxima of the electronic current and the Schmidt number. Also, the time evolution of the degree of entanglement for a particular initial condition is studied in the presence of a time-dependent electric field and we evaluate the effects on entanglement of the condition of coherent destruction of tunneling.

Mora, J.; Cota, E.; Rojas, F.

2014-10-01

316

Monolithic mode-locked quantum dot lasers  

NASA Astrophysics Data System (ADS)

Monolithic mode-locked laser diodes based on QD active regions are regarded as potentially suitable for a large range of photonic applications due to their compactness, mechanical stability and robustness, high potential repetition rates and low potential jitter. Their inherent properties, such as high differential gain, low chirp and fast saturable absorption have led to demonstration of improved performance over their QW equivalents. Low background loss and the relatively long lengths of quantum dot laser devices also have encouraged studies of mode-locking at repetition rates previously not explored in monolithic devices. Applications include biomedicine, high-speed data transmission, clock signal generation and electro-optic sampling. This paper reviews some of the work at Cambridge on the realization of such devices.

Penty, R. V.; Thompson, M. G.; White, I. H.

2008-02-01

317

Continuous flow purification of nanocrystal quantum dots.  

PubMed

Colloidal quantum dot (QD) purification is typically conducted via repeating precipitation-redispersion involving massive amounts of organic solvents and has been the main obstacle in mass production of QDs with dependable surface properties. Our results show that the electric field apparently affects the streamlining of QDs and that we could continuously collect stably dispersed QDs by the electrophoretic purification process. The purification yield increases as the electric potential difference increases or the flow rate decreases, but reaches an asymptotic value. The yield can be further improved by raising the absolute magnitude of the mobility of QDs with the addition of solvents with high dielectric constants. The continuous purification process sheds light on industrial production of colloidal nanomaterials. PMID:25340305

Kim, Duckjong; Park, Hye Kyung; Choi, Hyekyoung; Noh, Jaehong; Kim, Kyungnam; Jeong, Sohee

2014-11-01

318

Capillary electrophoresis of quantum dots: minireview.  

PubMed

It has been already three decades, since the fluorescent nanocrystals called quantum dots (QDs) appeared and attracted attention of a broad scientific community. Their excellent not only optical but also electronic properties predetermined QDs for utilization in a variety of areas. Besides lasers, solar cells, and/or computers, QDs have established themselves in the field of (bio)chemical labeling as well as medical imaging. However, due to the numerous application possibilities of QDs, there are high demands on their properties that need to be precisely controlled and characterized. CE with its versatile modes and possibilities of detection was found to be an effective tool not only for characterization of QDs size and/or surface properties but also for monitoring of their interactions with other molecules of interest. In this minireview, we are giving short insight in analysis of QDs by CE, and summarizing the advantages of this method for QDs characterization. PMID:24648211

Stanisavljevic, Maja; Vaculovicova, Marketa; Kizek, Rene; Adam, Vojtech

2014-07-01

319

Correlation energy of anisotropic quantum dots  

SciTech Connect

We study the D-dimensional high-density correlation energy E{sub c} of the singlet ground state of two electrons confined by a harmonic potential with Coulombic repulsion. We allow the harmonic potential to be anisotropic and examine the behavior of E{sub c} as a function of the anisotropy {alpha}{sup -1}. In particular, we are interested in the limit where the anisotropy goes to infinity ({alpha}{yields}0) and the electrons are restricted to a lower-dimensional space. We show that tuning the value of {alpha} from 0 to 1 allows a smooth dimensional interpolation and we demonstrate that the usual model, in which a quantum dot is treated as a two-dimensional system, is inappropriate. Finally, we provide a simple function which reproduces the behavior of E{sub c} over the entire range of {alpha}.

Zhao Yan; Loos, Pierre-Francois; Gill, Peter M. W. [Research School of Chemistry, Australian National University, Canberra, ACT 0200 (Australia)

2011-09-15

320

Broad-band superluminescent light-emitting diodes incorporating quantum dots in compositionally modulated quantum wells  

Microsoft Academic Search

We propose and demonstrate a technique for tailoring the emission bandwidth of ?1.3 ?m quantum dot superluminescent light-emitting diodes. A broadening of the emission is achieved by incorporating the InAs quantum dot layers in InGaAs quantum wells of different indium compositions. These structures exhibit a broader and flatter emission compared to a simple dot-in well structure comprised of wells of

S. K. Ray; K. M. Groom; M. D. Beattie; H. Y. Liu; M. Hopkinson; R. A. Hogg

2006-01-01

321

Semiconductor Few-Electron Quantum Dots as Spin Qubits  

E-print Network

a natural two- level system suitable as a qubit in a quantum computer [1]. In this work, we describe, as such a spin qubit [2]. The outline is as follows. Section 1 serves as an introduction into quantum computing and quantum dots. Section 2 describes the development of the "hardware" for the spin qubit: a device

322

Engineering of perturbation effects in onion-like heteronanocrystal quantum dot-quantum well  

NASA Astrophysics Data System (ADS)

In this article, the perturbation influences on optical characterization of quantum dot and quantum dot-quantum well (modified quantum dot) heteronanocrystal is investigated. The original aim of this article is to investigate the quantum dot-quantum well heteronanocrystal advantages and disadvantages, when used as a functionalized particle in biomedical applications. Therefore, all of the critical features of quantum dots are fundamentally studied and their influences on optical properties are simulated. For the first time, the perturbation effects on optical characteristics are observed in the quantum dot-quantum well heteronanocrystals by 8-band K.P theory. The impact of perturbation on optical features such as photoluminescence and shifting of wavelength is studied. The photoluminescence and operation wavelength of quantum dots play a vital role in biomedical applications, where their absorption and emission in biological assays are altered by shifting of wavelength. Furthermore, in biomedical applications, by tuning the emission wavelengths of the quantum dot into far-red and near-infrared ranges, non-invasive in-vivo imaging techniques have been easily developed. In this wavelength window, tissue absorption, scattering and auto-fluorescence intensities have minimum quantities; thus fixing or minimizing of wavelength shifting can be regarded as an important goal which is investigated in this work.

SalmanOgli, A.; Rostami, R.

2013-10-01

323

Improved dot size uniformity and luminescense of InAs quantum dots on InP substrate  

NASA Technical Reports Server (NTRS)

InAs self-organized quantum dots have been grown in InGaAs quantum well on InP substrates by metalorganic vapor phase epitaxy. Atomic Force Microscopy confirmed of quantum dot formation with dot density of 3X10(sup 10) cm(sup -2). Improved dot size uniformity and strong room temperature photoluminescence up to 2 micron were observed after modifying the InGaAs well.

Qiu, Y.; Uhl, D.

2002-01-01

324

Spectroscopy of electronic states in InSb quantum dots  

Microsoft Academic Search

Arrays of quantum dots on InSb have been realized, and intraband transitions between their discrete (zero-dimensional) electronic states have been observed with far-infrared magnetospectroscopy. In the devices, the number of electrons can be adjusted by a gate voltage, and less than five electrons per dot are detectable.

Ch. Sikorski; U. Merkt

1989-01-01

325

Coherent electronhole correlations in quantum dots Lars Jonsson,a)  

E-print Network

Coherent electron­hole correlations in quantum dots Lars Jo¨nsson,a) Matthew M. Steiner, and John W. These effects are im- portant for two reasons: first, optical properties, e.g., the ex- citonic recombination dot of size 5 25 25 nm3 denoted x, y, and z directions, respec- tively . Within the effective

Wilkins, John

326

Role of surface states and defects in the ultrafast nonlinear optical properties of CuS quantum dots  

NASA Astrophysics Data System (ADS)

We report facile preparation of water dispersible CuS quantum dots (2-4 nm) and nanoparticles (5-11 nm) through a nontoxic, green, one-pot synthesis method. Optical and microstructural studies indicate the presence of surface states and defects (dislocations, stacking faults, and twins) in the quantum dots. The smaller crystallite size and quantum dot formation have significant effects on the high energy excitonic and low energy plasmonic absorption bands. Effective two-photon absorption coefficients measured using 100 fs laser pulses employing open-aperture Z-scan in the plasmonic region of 800 nm reveal that CuS quantum dots are better ultrafast optical limiters compared to CuS nanoparticles.

Mary, K. A. Ann; Unnikrishnan, N. V.; Philip, Reji

2014-07-01

327

Long-distance coherent coupling in a quantum dot array.  

PubMed

Controlling long-distance quantum correlations is central to quantum computation and simulation. In quantum dot arrays, experiments so far rely on nearest-neighbour couplings only, and inducing long-distance correlations requires sequential local operations. Here, we show that two distant sites can be tunnel-coupled directly. The coupling is mediated by virtual occupation of an intermediate site, with a strength that is controlled via the energy detuning of this site. It permits a single charge to oscillate coherently between the outer sites of a triple dot array without passing through the middle, as demonstrated through the observation of Landau-Zener-Stückelberg interference. The long-distance coupling significantly improves the prospects of fault-tolerant quantum computation using quantum dot arrays, and opens up new avenues for performing quantum simulations in nanoscale devices. PMID:23624695

Braakman, F R; Barthelemy, P; Reichl, C; Wegscheider, W; Vandersypen, L M K

2013-06-01

328

Coal as an abundant source of graphene quantum dots  

NASA Astrophysics Data System (ADS)

Coal is the most abundant and readily combustible energy resource being used worldwide. However, its structural characteristic creates a perception that coal is only useful for producing energy via burning. Here we report a facile approach to synthesize tunable graphene quantum dots from various types of coal, and establish that the unique coal structure has an advantage over pure sp2-carbon allotropes for producing quantum dots. The crystalline carbon within the coal structure is easier to oxidatively displace than when pure sp2-carbon structures are used, resulting in nanometre-sized graphene quantum dots with amorphous carbon addends on the edges. The synthesized graphene quantum dots, produced in up to 20% isolated yield from coal, are soluble and fluorescent in aqueous solution, providing promise for applications in areas such as bioimaging, biomedicine, photovoltaics and optoelectronics, in addition to being inexpensive additives for structural composites.

Ye, Ruquan; Xiang, Changsheng; Lin, Jian; Peng, Zhiwei; Huang, Kewei; Yan, Zheng; Cook, Nathan P.; Samuel, Errol L. G.; Hwang, Chih-Chau; Ruan, Gedeng; Ceriotti, Gabriel; Raji, Abdul-Rahman O.; Martí, Angel A.; Tour, James M.

2013-12-01

329

Coal as an abundant source of graphene quantum dots.  

PubMed

Coal is the most abundant and readily combustible energy resource being used worldwide. However, its structural characteristic creates a perception that coal is only useful for producing energy via burning. Here we report a facile approach to synthesize tunable graphene quantum dots from various types of coal, and establish that the unique coal structure has an advantage over pure sp2-carbon allotropes for producing quantum dots. The crystalline carbon within the coal structure is easier to oxidatively displace than when pure sp2-carbon structures are used, resulting in nanometre-sized graphene quantum dots with amorphous carbon addends on the edges. The synthesized graphene quantum dots, produced in up to 20% isolated yield from coal, are soluble and fluorescent in aqueous solution, providing promise for applications in areas such as bioimaging, biomedicine, photovoltaics and optoelectronics, in addition to being inexpensive additives for structural composites. PMID:24309588

Ye, Ruquan; Xiang, Changsheng; Lin, Jian; Peng, Zhiwei; Huang, Kewei; Yan, Zheng; Cook, Nathan P; Samuel, Errol L G; Hwang, Chih-Chau; Ruan, Gedeng; Ceriotti, Gabriel; Raji, Abdul-Rahman O; Martí, Angel A; Tour, James M

2013-01-01

330

Growth of cubic GaN quantum dots  

SciTech Connect

Zinc-blende GaN quantum dots were grown on 3C-AlN(001) by two different methods in a molecular beam epitaxy system. The quantum dots in method A were fabricated by the Stranski-Krastanov growth process. The quantum dots in method B were fabricated by droplet epitaxy, a vapor-liquid-solid process. The density of the quantum dots was controllable in a range of 10{sup 8} cm{sup -2} to 10{sup 12} cm{sup -2}. Reflection high energy electron diffraction analysis confirmed the zinc-blende crystal structure of the QDs. Photoluminescence spectroscopy revealed the optical activity of the QDs, the emission energy was in agreement with the exciton ground state transition energy of theoretical calculations.

Schupp, T.; Lischka, K.; As, D. J. [Universitaet Paderborn, Department Physik, Warburger Str.100, 33095 Paderborn (Germany); Meisch, T.; Neuschl, B.; Feneberg, M.; Thonke, K. [Institut fuer Quantenmaterie, Universitaet Ulm, 89069 Ulm (Germany)

2010-11-01

331

Observation of inter-sub-level transitions in modulation-doped Ge quantum dots  

E-print Network

Observation of inter-sub-level transitions in modulation-doped Ge quantum dots J. L. Liu,a) W. G-doped Ge quantum dots are observed. The dot structure is grown by molecular-beam epitaxy, and consists of 30 periods of Ge quantum dots sandwiched by two 6 nm boron-doped Si layers. An absorption peak

332

Air-stable n-type colloidal quantum dot solids.  

PubMed

Colloidal quantum dots (CQDs) offer promise in flexible electronics, light sensing and energy conversion. These applications rely on rectifying junctions that require the creation of high-quality CQD solids that are controllably n-type (electron-rich) or p-type (hole-rich). Unfortunately, n-type semiconductors made using soft matter are notoriously prone to oxidation within minutes of air exposure. Here we report high-performance, air-stable n-type CQD solids. Using density functional theory we identify inorganic passivants that bind strongly to the CQD surface and repel oxidative attack. A materials processing strategy that wards off strong protic attack by polar solvents enabled the synthesis of an air-stable n-type PbS CQD solid. This material was used to build an air-processed inverted quantum junction device, which shows the highest current density from any CQD solar cell and a solar power conversion efficiency as high as 8%. We also feature the n-type CQD solid in the rapid, sensitive, and specific detection of atmospheric NO2. This work paves the way for new families of electronic devices that leverage air-stable quantum-tuned materials. PMID:24907929

Ning, Zhijun; Voznyy, Oleksandr; Pan, Jun; Hoogland, Sjoerd; Adinolfi, Valerio; Xu, Jixian; Li, Min; Kirmani, Ahmad R; Sun, Jon-Paul; Minor, James; Kemp, Kyle W; Dong, Haopeng; Rollny, Lisa; Labelle, André; Carey, Graham; Sutherland, Brandon; Hill, Ian; Amassian, Aram; Liu, Huan; Tang, Jiang; Bakr, Osman M; Sargent, Edward H

2014-08-01

333

Synthesis of CdTe quantum dot-conjugated CC49 and their application for in vitro imaging of gastric adenocarcinoma cells  

NASA Astrophysics Data System (ADS)

The purpose of this experiment was to investigate the visible imaging of gastric adenocarcinoma cells in vitro by targeting tumor-associated glycoprotein 72 (TAG-72) with near-infrared quantum dots (QDs). QDs with an emission wavelength of about 550 to 780 nm were conjugated to CC49 monoclonal antibodies against TAG-72, resulting in a probe named as CC49-QDs. A gastric adenocarcinoma cell line (MGC80-3) expressing high levels of TAG-72 was cultured for fluorescence imaging, and a gastric epithelial cell line (GES-1) was used for the negative control group. Transmission electron microscopy indicated that the average diameter of CC49-QDs was 0.2 nm higher compared with that of the primary QDs. Also, fluorescence spectrum analysis indicated that the CC49-QDs did not have different optical properties compared to the primary QDs. Immunohistochemical examination and in vitro fluorescence imaging of the tumors showed that the CC49-QDs probe could bind TAG-72 expressed on MGC80-3 cells.

Zhang, Yun-Peng; Sun, Peng; Zhang, Xu-Rui; Yang, Wu-Li; Si, Cheng-Shuai

2013-06-01

334

Synthesis of CdTe quantum dot-conjugated CC49 and their application for in vitro imaging of gastric adenocarcinoma cells  

PubMed Central

The purpose of this experiment was to investigate the visible imaging of gastric adenocarcinoma cells in vitro by targeting tumor-associated glycoprotein 72 (TAG-72) with near-infrared quantum dots (QDs). QDs with an emission wavelength of about 550 to 780 nm were conjugated to CC49 monoclonal antibodies against TAG-72, resulting in a probe named as CC49-QDs. A gastric adenocarcinoma cell line (MGC80-3) expressing high levels of TAG-72 was cultured for fluorescence imaging, and a gastric epithelial cell line (GES-1) was used for the negative control group. Transmission electron microscopy indicated that the average diameter of CC49-QDs was 0.2 nm higher compared with that of the primary QDs. Also, fluorescence spectrum analysis indicated that the CC49-QDs did not have different optical properties compared to the primary QDs. Immunohistochemical examination and in vitro fluorescence imaging of the tumors showed that the CC49-QDs probe could bind TAG-72 expressed on MGC80-3 cells. PMID:23800369

2013-01-01

335

Synthesis, characterization and applications of carboxylated and polyethylene-glycolated bifunctionalized InP/ZnS quantum dots in cellular internalization mediated by cell-penetrating peptides.  

PubMed

Semiconductor nanoparticles, also known as quantum dots (QDs), are widely used in biomedical imaging studies and pharmaceutical research. Cell-penetrating peptides (CPPs) are a group of small peptides that are able to traverse cell membrane and deliver a variety of cargoes into living cells. CPPs deliver QDs into cells with minimal nonspecific absorption and toxic effect. In this study, water-soluble, monodisperse, carboxyl-functionalized indium phosphide (InP)/zinc sulfide (ZnS) QDs coated with polyethylene glycol lipids (designated QInP) were synthesized for the first time. The physicochemical properties (optical absorption, fluorescence and charging state) and cellular internalization of QInP and CPP/QInP complexes were characterized. CPPs noncovalently interact with QInP in vitro to form stable CPP/QInP complexes, which can then efficiently deliver QInP into human A549 cells. The introduction of 500nM of CPP/QInP complexes and QInP at concentrations of less than 1?M did not reduce cell viability. These results indicate that carboxylated and polyethylene-glycolylated (PEGylated) bifunctionalized QInP are biocompatible nanoparticles with potential for use in biomedical imaging studies and drug delivery applications. PMID:23792556

Liu, Betty R; Winiarz, Jeffrey G; Moon, Jong-Sik; Lo, Shih-Yen; Huang, Yue-Wern; Aronstam, Robert S; Lee, Han-Jung

2013-11-01

336

Aqueous synthesis of thiol-capped CdTe quantum dots and its photoluminescence enhancement via room temperature treatment with alkyl chain diamines  

NASA Astrophysics Data System (ADS)

In this study the CdTe quantum dots (QDs) are synthesized in aqueous solution with three thiol-contained capping ligands of thioglycollic acid (TGA), 3-mercaptopropionic acid (MPA), and L-cysteine (LCys). The photoluminescence (PL) enhancement of the as-prepared QDs is also conducted via room temperature treatment with alkyl chain diamines. Our measurements on the ultraviolet-visible (UV-vis) absorption and fluorescence emission reveal that both the growth kinetics and the PL efficiency of the QDs vary a lot with the molecular structures of the three involved ligands. In comparison with TGA and LCys, MPA endows the QDs with a wide color tuning range from cyan to deep red and strong PL emission while its full width at half maximum (FWHM) is regretfully large. Notable enhancement on PL emission is achieved for the TGA and MPA capped QDs via room temperature treatment with diamines solutions while in the case of the QDs capped by LCys the enhancement is practically meaningless.

Liu, Xiangming; Tian, Jintao; Dai, Jinhui; Wang, Xin

2014-03-01

337

Scalable single-step noninjection synthesis of high-quality core/shell quantum dots with emission tunable from violet to near infrared.  

PubMed

The common two-step "hot-injection" methods are not suitable for reproducible production of core/shell quantum dots (QDs) at large scale for practical applications. Herein we develop a scalable, reproducible, and low-cost synthetic approach for high-quality core/shell QDs (CdS/Zn(x)Cd(1-x)S, CdSe/Zn(x)Cd(1-x)S, and CdTe/Zn(x)Cd(1-x)S) with shell material composed of gradient alloy structure by directly heating commercial available, air-stable CdO, Zn(NO(3))(2), and chalcogenide elements in octadecene media at air. With simple variation of reaction recipe (reactants and feeding ratio), luminescence color of the resulting QDs can be conveniently tuned from violet to near-infrared (400-820 nm). The emission efficiency of the as-prepared QDs can be up to 80%. Moreover, the high emission efficiency can be preserved after QDs transferred into aqueous media via ligand exchange. The structure, chemical composition, and optical properties of the obtained QDs have been characterized with use of transmission electron microscopy, elemental analysis, and optical spectroscopy. The scalability of the reported approach has been demonstrated by the facile preparation of gram-scaled QD product in one batch reaction. PMID:23234382

Zhang, Wenjin; Zhang, Hua; Feng, Yaoyu; Zhong, Xinhua

2012-12-21

338

Synthesis and application of a targeting diagnosis system via quantum dots coated by amphiphilic polymer for the detection of liver cancer cells.  

PubMed

Water-soluble quantum dots (QDs) for liver cancer diagnosis were prepared using QDs with oleylamine ligand coated with poly(aspartate)-graft-poly(ethylene glycol)-dodecylamine (PASP-Na-g-PEG-DDA). Dynamic light scattering and transmission electron microscopy imaging showed that the novel QDs have an ellipsoidal morphology with a size of?~?45?nm which could be used for biomedical application. Furthermore, the PASP-Na-g-PEG-DDA was then modified with anti-(vascular endothelial growth factor) (VEGF antibody), and a 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) assay showed that the novel anti-VEGF-targeting QDs in vitro had low toxicity. Confocal laser scanning microscopy observations revealed an intracellular (HepG2) distribution of the novel anti-VEGF-targeting QDs and the targeting efficiency of anti-VEGF. These novel QDs could be used as a probe for liver cancer cell imaging because of anti-VEGF targeting. Copyright © 2014 John Wiley & Sons, Ltd. PMID:24403213

Sun, Xiaoran; Li, Yapeng; Huang, Hailong; Yang, Bohan; Wang, Yuzhen

2014-11-01

339

Synergetics in multiple exciton generation effect in quantum dots  

NASA Astrophysics Data System (ADS)

We present detailed analysis of the non-Poissonian population of excitons produced by multiple exciton generation (MEG) effect in quantum dots on the base of statistic theory of MEG and synergetic approach for chemical reactions. From the analysis we can conclude that a non-Poissonian distribution of exciton population is evidence of nonlinear and nonequilibrium character of the process of multiple generation of excitons in quantum dots at a single photon absorption.

Turaeva, N. N.; Oksengendler, B. L.; Uralov, I.

2011-06-01

340

Deformation potentials of CdSe quantum dots  

SciTech Connect

The size dependent deformation potentials of CdSe quantum dots are studied by first principle and semi-empirical pseudopotentials calculations. They find that the amplitude of the quantum dot deformation potential is only slightly larger than the bulk value, and this increase is mostly caused by the off {Lambda} point deformation potentials in the bulk, which are larger in amplitude than the {Lambda} point deformation potential.

Li, Jingbo; Wang, Lin-Wang

2004-06-02

341

Charge and spin storage in self-organized quantum dots  

NASA Astrophysics Data System (ADS)

We demonstrate optical charging of spectrally selected subensembles of self-organized quantum dots with single charge carriers. In spectral hole burning experiments negative and positive trions are observed, representing quantum dots charged with single electrons and holes. By circularly polarized excitation in an applied magnetic field we are able to address the spin of single electrons. A spin flip of the electron is observed after excitation in the upper Zeeman level.

Wieczorek, W.; Warming, T.; Geller, M.; Bimberg, D.; Cirlin, G. E.; Zhukov, A. E.; Ustinov, V. M.

2006-05-01

342

Quantum dot sensitized semiconductors for solar energy conversion  

Microsoft Academic Search

Metal sulfide (CdS or PbS) quantum dots were synthesized in nanoporous TiO2 films for applications in solar energy conversion devices. Sandwich type regenerative solar cells, based on the quantum dots sensitized TiO2 film, exhibit a high IPCE over visible wavelengths by optimizing the polysulfide electrolyte composition. The CdS QD shows a higher IPCE, compared to PbS, related to an increased

Hitomi Y. Akiyama; Tsukasa Torimoto; Yasuhiro Tachibana; Susumu Kuwabata

2006-01-01

343

Silicon/silicon-germanium quantum dot spin qubits  

NASA Astrophysics Data System (ADS)

Gate-defined quantum dots are tunable devices that are capable of trapping individual electrons. This thesis presents measurements of gate-defined quantum dots formed in Si/SiGe semiconductor heterostuctures. The motivation for this work is the development of a solid state electron spin qubit for quantum information processing. The fundamental properties of silicon make it an attractive option for spin qubit development, because electron spins are weakly coupled to the material. In particular, the coherence time for electron spins in silicon is expected to be long because of relatively weak spin-orbit coupling and the natural abundance of 28Si, a spin-zero nuclear isotope. The results presented in this thesis demonstrate significant advances in the manipulation and measurement of electrons in Si/SiGe quantum dots, including the first demonstration of a single electron quantum dot. An integrated quantum point contact is utilized as a local sensor to detect charge transitions on the neighboring quantum dot and to determine the absolute number of electrons on the dot. Gated control of the dot tunnel barriers enables tuning of the tunnel coupling to the leads and to other dots. Careful tuning of the tunnel rate to the leads in combination with fast, pulsed-gate manipulation of individual electrons enables a spectroscopy technique to identify electronic excited states. Using this technique, the Zeeman split spin qubit levels were observed. A 3-level voltage pulse sequence was utilized to perform single-shot readout of the spin state of individual electrons, to demonstrate tunable spin-selective loading, and to measure the spin relaxation time T1 . Double quantum dots are important for achieving two-qubit operations. Here, charge sensing measurements on a double dot are demonstrated. Analysis of the interdot transfer of a single electron is used to measure the tunnel coupling between the dots, and control of a single gate voltage is used to tune this coupling by over an order of magnitude. Transport measurements through a double quantum dot demonstrate two spin-dependent effects: spin blockade and a new effect, lifetime-enhanced transport, in which current flows predominately through long-lived triplet spin states.

Simmons, Christine B.

344

Facile synthesis and characterization of highly fluorescent and biocompatible N-acetyl-l-cysteine capped CdTe/CdS/ZnS core/shell/shell quantum dots in aqueous phase  

NASA Astrophysics Data System (ADS)

The synthesis of water-soluble quantum dots (QDs) in aqueous phase has received much attention recently. To date various kinds of QDs such as CdTe, CdSe, CdTe/CdS and CdSe/ZnS have been synthesized by aqueous methods. However, generally poor-quality QDs (photoluminescent quantum yield (PLQY) lower than 30%) are obtained via this method and the 3-mercaptopropionic acid stabilizer is notorious for its toxicity and awful odor. Here we introduce a novel thiol ligand, N-acetyl-l-cysteine, as an ideal stabilizer that is successfully employed to synthesize high-quality CdTe/CdS/ZnS QDs via a simple aqueous phase. The core/shell/shell structures of the CdTe/CdS/ZnS QDs were verified by x-ray photoelectron spectroscopy, energy dispersive x-ray spectroscopy, x-ray powder diffraction and transmission electron microscopy. These QDs not only possess a high PLQY but also have excellent photostability and favorable biocompatibility, which is vital for many biological applications. This type of water-dispersed QD is a promising candidate for fluorescent probes in biological and medical fields.

Xiao, Qi; Huang, Shan; Su, Wei; Chan, W. H.; Liu, Yi

2012-12-01

345

Optical detection of brain tumors using quantum dots  

NASA Astrophysics Data System (ADS)

Introduction: Brain tumor margin detection remains a challenging problem in the operative resection of gliomas. A novel nanoparticle, a PEGylated quantum dot, has been shown to be phagocytized by macrophages in vivo. This feature may allow quantum dots to co-localize with brain tumors and serve as an optical aid in the surgical resection of brain tumors. Methods: Sprague-Daly rats were injected intracranially with C6 gliosarcoma cell lines to establish tumors. Two weeks after implantation of brain tumors, PEGylated quantum dots emitting at 705 nm (PEG-705 QD) were injected via the tail vein. Twenty-four hours post PEG-705 QD injection, the animals were sacrificed and their tissues examined. Results: PEGylated quantum dots are avidly phagocytized by macrophages and are taken up by liver, spleen and lymph nodes. Macrophages and microglia co-localize with glioma cells, carrying the optical nanoparticle, the quantum dot. Excitation of the PEG-705 quantum dots gives off a deep red fluorescence detectable with charge coupled device (CCD) cameras, optical spectroscopy units, and in dark field fluorescence microscopy. Conclusions: PEG-705QDs co-localize with brain tumors and may serve as an optical adjunct to aid in the operative resection of gliomas. The particles may be visualized in surgery with CCD cameras or detected by optical spectroscopy.

Toms, Steven A.; Daneshvar, Hamid; Muhammad, Osman; Jackson, Heather; Vogelbaum, Michael A.; Bruchez, Marcel

2005-11-01

346

Long-Term Retention of Fluorescent Quantum Dots In Vivo  

NASA Astrophysics Data System (ADS)

Quantum dots that emit in the near-infrared can be used in vivo to follow circulation, to target the reticuloendothelial system, and to map lymphatic drainage from normal tissues and tumors. We have explored the role of surface charge and passivation by polyethylene glycol in determining circulating lifetimes and sites of deposition. Use of long polyethylene glycol polymers increases circulating lifetime. Changing surface charge can partially direct quantum dots to the liver and spleen, or the lymph nodes. Quantum dots are cleared in the order liver > spleen > bone marrow > lymph nodes. Quantum dots retained by lymph nodes maintained fluorescence for two years, suggesting either that the coating is extremely stable or that some endosomes preserve quantum dot function. We also explored migration from tumors to sentinel lymph nodes using tumor models in mice; surface charge and size make little difference to transport from tumors. Antibody and Fab-conjugates of polymer-coated quantum dots failed to target tumors in vivo, probably because of size.

Ballou, Byron; Ernst, Lauren A.; Andreko, Susan; Eructiez, Marcel P.; Lagerholm, B. Christoffer; Waggoner, Alan S.

347

Self-illuminating quantum dot conjugates for in vivo imaging.  

PubMed

Fluorescent semiconductor quantum dots hold great potential for molecular imaging in vivo. However, the utility of existing quantum dots for in vivo imaging is limited because they require excitation from external illumination sources to fluoresce, which results in a strong autofluorescence background and a paucity of excitation light at nonsuperficial locations. Here we present quantum dot conjugates that luminesce by bioluminescence resonance energy transfer in the absence of external excitation. The conjugates are prepared by coupling carboxylate-presenting quantum dots to a mutant of the bioluminescent protein Renilla reniformis luciferase. We show that the conjugates emit long-wavelength (from red to near-infrared) bioluminescent light in cells and in animals, even in deep tissues, and are suitable for multiplexed in vivo imaging. Compared with existing quantum dots, self-illuminating quantum dot conjugates have greatly enhanced sensitivity in small animal imaging, with an in vivo signal-to-background ratio of > 10(3) for 5 pmol of conjugate. PMID:16501578

So, Min-Kyung; Xu, Chenjie; Loening, Andreas M; Gambhir, Sanjiv S; Rao, Jianghong

2006-03-01

348

Cavity -Quantum Dot interactions and mode coupling in a nanocavity  

NASA Astrophysics Data System (ADS)

We describe an approach for realizing effective manipulation of single electron state level transitions for quantum dots mediated by a nano-cavity. The two quantum dots interact with the cavity for the two dot system in the coulomb blockade energy region. Because of the zero dimensional structure of the quantum dots, the system can be implemented to be a characteristic entity for an efficient generator of single photons. This process is emphatically more selective in the coulomb/spin blockade region, where also, the system efficiency of the single photon event is most likely more probable. Whereas, it is clear that the photon efficiency is small, the cavity quantum electrodynamics (CQED) nature suggests an enhancement in the electron energy state being occupied by the second quantum dot. This is more likely with very strong coupling of the quantum dots to the cavity with cavity quality factors larger than perhaps 10^5. Quality factors in excess of 10^5 have been demonstrated experimentally^1. 1. K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, Appl. Phys. Lett. 86, 151106 (2005). [ISI

Kasisomayajula, Vijay; Russo, Onofrio

2009-03-01

349

Patterning quantum dot arrays using DNA replication principles.  

SciTech Connect

The convergence of nanoscience and biotechnology has opened the door to the integration of a wide range of biological molecules and processes with synthetic materials and devices. A primary biomolecule of interest has been DNA based upon its role as information storage in living systems, as well as its ability to withstand a wide range of environmental conditions. DNA also offers unique chemistries and interacts with a range of biomolecules, making it an ideal component in biological sensor applications. The primary goal of this project was to develop methods that utilize in vitro DNA synthesis to provide spatial localization of nanocrystal quantum dots (nQDs). To accomplish this goal, three specific technical objectives were addressed: (1) attachment of nQDs to DNA nucleotides, (2) demonstrating the synthesis of nQD-DNA strands in bulk solution, and (3) optimizing the ratio of unlabeled to nQD-labeled nucleotides. DNA nucleotides were successfully attached to nQDs using the biotin-streptavidin linkage. Synthesis of 450-nm long, nQD-coated DNA strands was demonstrated using a DNA template and the polymerase chain reaction (PCR)-based method of DNA amplification. Modifications in the synthesis process and conditions were subsequently used to synthesize 2-{micro}m long linear nQD-DNA assemblies. In the case of the 2-{micro}m structures, both the ratio of streptavidin-coated nQDs to biotinylated dCTP, and streptavidin-coated nQD-dCTPs to unlabeled dCTPs affected the ability to synthesize the nQD-DNA assemblies. Overall, these proof-of-principles experiments demonstrated the successful synthesis of nQD-DNA using DNA templates and in vitro replication technologies. Continued development of this technology may enable rapid, spatial patterning of semiconductor nanoparticles with Angstrom-level resolution, as well as optically active probes for DNA and other biomolecular analyses.

Crown, Kevin K.; Bachand, George David

2004-11-01

350

Quantum optics of a quantum dot: Local-field effects G. Ya. Slepyan* and S. A. Maksimenko  

E-print Network

Quantum optics of a quantum dot: Local-field effects G. Ya. Slepyan* and S. A. Maksimenko Institute electrodynamics of isolated quantum dot QD has been analyzed. The system is modeled as a strongly confined properties of quantum dots QDs is currently an area of active investigation owing to promis- ing potential

Nabben, Reinhard

351

Quantum master equation for electron transport through quantum dots and single molecules Upendra Harbola, Massimiliano Esposito,* and Shaul Mukamel  

E-print Network

Quantum master equation for electron transport through quantum dots and single molecules Upendra s : 73.63. b, 03.65.Yz, 05.60.Gg I. INTRODUCTION Electron transport through a quantum dot QD or a single in the fabrication of devices such as quantum dots whose size and geometry can be controlled with high precision14

Mukamel, Shaul

352

On-chip generation and guiding of quantum light from a site-controlled quantum dot  

E-print Network

We demonstrate the emission and routing of single photons along a semiconductor chip originating from carrier recombination in an actively positioned InAs quantum dot. Device scale arrays of quantum dots are formed by a two step regrowth process. We precisely locate the propagating region of a unidirectional photonic crystal waveguide with respect to the quantum dot nucleation site. Under pulsed optical excitation, the multiphoton emission probability from the exit of the waveguide is 12 \\pm 5 % before any background correction. Our results are a major step towards the deterministic integration of a quantum emitter with the waveguiding components of photonic quantum circuits.

Jamil, Ayesha; Kalliakos, Sokratis; Schwagmann, Andre; Ward, Martin B; Brody, Yarden; Ellis, David J P; Farrer, Ian; Griffiths, Jonathan P; Jones, Geb A C; Ritchie, David A; Shields, Andrew J

2014-01-01

353

Photoionization cross sections of atomic impurities in spherical quantum dots  

NASA Astrophysics Data System (ADS)

Quantum dots with atomic impurities have attracted considerable attention due to not only its theoretical but also practical significance. The confinement potentials associated with the structure of quantum dots are often described by the rectangular potential well or harmonic oscillator potential. However, the non-parabolic shape at the center for the rectangular well and the infinite depth for the harmonic oscillator potential make the models unrealistic in practical applications. Recently, the finite oscillator and Gaussian potentials are proposed to mimic the spherical quantum dots, which are defined respectively as VFO(r)=-A(1+Br / Br ?A . - ?A )(-Br / Br ?A . - ?A ) and VG(r)=-C(-r^2 / -r^2 D^2 . - D^2) with the confining strengths A and C, and the radii of quantum dots 1/B and D. In this work, the method of complex-coordinate rotation in the finite-element discrete variable representation is implemented to study the photoionization of atomic impurities in spherical quantum dots. We explore the energy spectra and photoionization of atomic impurities influenced by the quantum confinement. The shifting of Cooper minima caused by the quantum confinement is observed.

Lin, Chih-Yuan; Ho, Y. K.

2012-02-01

354

Thermopower of few-electron quantum dots with Kondo correlations  

NASA Astrophysics Data System (ADS)

The thermopower of few-electron quantum dots is crucially influenced by on-dot electron-electron interactions, particularly in the presence of Kondo correlations. In this paper, we present a comprehensive picture which elucidates the underlying relations between the thermopower and the spectral density function of two-level quantum dots. The effects of various electronic states, including the Kondo states originating from both spin and orbital degrees of freedom, are clearly unraveled. Such a physical picture is affirmed by accurate numerical data obtained with a hierarchical equations of motion approach. Our findings and understandings provide an effective and viable way to control the thermoelectric properties of strongly correlated quantum dot systems.

Ye, LvZhou; Hou, Dong; Wang, Rulin; Cao, Dewen; Zheng, Xiao; Yan, YiJing

2014-10-01

355

Atomic Ordering in Self-assembled Epitaxial and Endotaxial Compound and Element Semiconductor Quantum Dot Structures: The First Review  

E-print Network

Atomic Ordering in Self-assembled Epitaxial and Endotaxial Compound and Element Semiconductor alloy quantum dots, the suggestion is made that atomically ordered quantum dots which are grown superior long term structural stability. Such atomically ordered quantum dots should, therefore

Moeck, Peter

356

Multicolored Cd1-xZnxSe quantum dots with type-I core/shell structure: single-step synthesis and their use as light emitting diodes  

NASA Astrophysics Data System (ADS)

We developed a single-step hot-injection process to synthesize Cd1-xZnxSe quantum dots (QDs) with tunable emission wavelengths. The multiple emission colors of the Cd1-xZnxSe QDs resulted from the variation in their compositions (x value) with the reaction time. Because of the higher reactivity of the Cd precursor, QDs whose composition was rich in CdSe were generated at the beginning of the reaction. As the reaction proceeded, the later-formed ZnSe shell was simultaneously alloyed with the core, giving rise to a progressive alloying treatment for the grown QDs. During the reaction period, the emission color of the Cd1-xZnxSe QDs shifted from red to orange, to yellow, to green and finally to blue. A light emitting diode (LED) composed of multilayers of ITO/poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)/poly(3-hexylthiophene) blended with Cd1-xZnxSe QDs/Al was fabricated to test the electroluminescence (EL) properties of the QDs. The EL results show high color purity for the emission from LED devices containing Cd1-xZnxSe QDs, revealing that the as-synthesized QDs can be easily processed and integrated into a light-emitting device without using a complicated procedure. The findings from the present work also demonstrate the advantage of using the current single-step synthetic approach to obtain a batch of Cd1-xZnxSe QDs that may emit different colors in prototype LEDs.We developed a single-step hot-injection process to synthesize Cd1-xZnxSe quantum dots (QDs) with tunable emission wavelengths. The multiple emission colors of the Cd1-xZnxSe QDs resulted from the variation in their compositions (x value) with the reaction time. Because of the higher reactivity of the Cd precursor, QDs whose composition was rich in CdSe were generated at the beginning of the reaction. As the reaction proceeded, the later-formed ZnSe shell was simultaneously alloyed with the core, giving rise to a progressive alloying treatment for the grown QDs. During the reaction period, the emission color of the Cd1-xZnxSe QDs shifted from red to orange, to yellow, to green and finally to blue. A light emitting diode (LED) composed of multilayers of ITO/poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)/poly(3-hexylthiophene) blended with Cd1-xZnxSe QDs/Al was fabricated to test the electroluminescence (EL) properties of the QDs. The EL results show high color purity for the emission from LED devices containing Cd1-xZnxSe QDs, revealing that the as-synthesized QDs can be easily processed and integrated into a light-emitting device without using a complicated procedure. The findings from the present work also demonstrate the advantage of using the current single-step synthetic approach to obtain a batch of Cd1-xZnxSe QDs that may emit different colors in prototype LEDs. Electronic supplementary information (ESI) available: DLS data, TEM images, UV-visible absorption, PL spectra and current-EQE-voltage plots of the samples. See DOI: 10.1039/c3nr06158b

Pu, Ying-Chih; Hsu, Yung-Jung

2014-03-01

357

CdTe and CdSe Quantum Dots Cytotoxicity: A Comparative Study on Microorganisms  

PubMed Central

Quantum dots (QDs) are colloidal semiconductor nanocrystals of a few nanometers in diameter, being their size and shape controlled during the synthesis. They are synthesized from atoms of group II–VI or III–V of the periodic table, such as cadmium telluride (CdTe) or cadmium selenium (CdSe) forming nanoparticles with fluorescent characteristics superior to current fluorophores. The excellent optical characteristics of quantum dots make them applied widely in the field of life sciences. Cellular uptake of QDs, location and translocation as well as any biological consequence, such as cytotoxicity, stimulated a lot of scientific research in this area. Several studies pointed to the cytotoxic effect against micoorganisms. In this mini-review, we overviewed the synthesis and optical properties of QDs, and its advantages and bioapplications in the studies about microorganisms such as protozoa, bacteria, fungi and virus. PMID:22247686

Gomes, Suzete A.O.; Vieira, Cecilia Stahl; Almeida, Diogo B.; Santos-Mallet, Jacenir R.; Menna-Barreto, Rubem F. S.; Cesar, Carlos L.; Feder, Denise

2011-01-01

358

Quantum dot conjugates for SEM of bacterial communities  

NASA Astrophysics Data System (ADS)

Biologically compatible quantum dot (QD) nanoparticles are hybrid inorganic-organic materials with increasing popularity as fluorescent probes for studying biological specimens. QDs have several advantageous optical features compared to fluorescent dyes and they are electron-dense, allowing for correlated fluorescence and electron microscopic imaging. Despite these features, widespread use of QDs as biological probes has generally been limited by the complex chemistry required for their synthesis and the conjugation. In this work, we show that easily prepared quantum dot (QD) probes provide excellent contrast for fluorescent confocal and environmental scanning electron microscopy (ESEM) analysis of pure microbial cultures and microbial communities. Two conjugation strategies were employed in order to specifically target the QDs to bacterial cell surfaces. The first was biotinylation of the bacteria followed by labeling with commercially available QDs incorporating the high-affinity partner for biotin (QD-streptavidin). Second, we designed a novel QD probe for Gram negative bacteria: QD-polymyxin B (PMB), which binds to lipopolysaccharide (LPS) in the Gram negative cell wall. Pure cultures of Gram positive and Gram negative strains were used to illustrate that QDs impart electron density and irradiation stability to the cells, and so no other preparation apart from QD labeling is required. The techniques were then extended to a set of recently characterized microbial communities of perennial cold springs in the Canadian High Arctic, which live in close association with unusual sulfur crystals. Using correlated confocal and and ESEM, we were able to image these organisms in living samples and illustrate their relationship to the minerals.

Nadeau, Jay; Mielke, Randall; Clarke, Samuel

2009-05-01

359

Stark E ect of Interactive Electron-hole pairs in Spherical Semiconductor Quantum Dots  

E-print Network

Stark E#11;ect of Interactive Electron-hole pairs in Spherical Semiconductor Quantum Dots B model, on the quantum-con#12;nement Stark e#11;ects for spherical semiconducting quantum dots of quantum dot sizes. PACS numbers: 71.35.-y, 71.70.Ej Submitted to: Journal of Physics: Condensed Matter z

Recanati, Catherine

360

Magneto-Tunnelling Spectroscopy of Localised and Extended States in a Quantum Well Containing Quantum Dots.  

National Technical Information Service (NTIS)

We investigate resonant tunneling in GaAs/(AlGa)As double-barrier resonant-tunneling diodes (RTDs) in which a single layer of InAs self-assembled quantum dots (SAQDs) is embedded in the center of the GaAs quantum well. The dots provide a well-defined and ...

A. Patane, E. E. Vdovin, I. A. Larkin, P. N. Brounkov, Y. V. Dubrovskii

2001-01-01

361

Preparation of biofunctionalized quantum dots using microfluidic chips for bioimaging.  

PubMed

Biofunctionalized quantum dots (QDs), especially protein-coated QDs, are known to be useful targeted fluorescent labels for cellular and deep-tissue imaging. These nanoparticles can also serve as efficient energy donors in fluorescence resonance energy transfer (FRET) binding assays for the multiplexed sensing of tumor markers. However, current preparation processes for protein-functionalized QDs are laborious and require multiple synthesis steps (e.g. preparing them in high temperature, making them dispersible in water, and functionalizing them with surface ligands) to obtain a high quality and quantity of QD formulations, significantly impeding the progress of employing QDs for clinical diagnostics use such as a QD-based immunohistofluorescence assay. Herein, we demonstrate a one-step synthesis approach for preparing protein-functionalized QDs using a microfluidic (MF) chip setup. Using bovine serum albumin (BSA) molecules as the surface ligand model, we first studied and optimized the MF reaction synthesis parameters (e.g. reaction temperature, and channel width and length) for making protein-functionalized QDs using COMSOL simulation modeling, followed by experimental verification. Moreover, in comparison with the BSA-functionalized QDs synthesized using the conventional bench-top method, BSA-QDs prepared using the MF approach exhibit a significantly higher protein-functionalization efficiency, photostability and colloidal stability. The proposed one-step MF synthesis approach provides a rapid, cost effective, and a small-scale production of nanocrystals platform for developing new QD formulations in applications ranging from cell labeling to biomolecular sensing. Most importantly, this approach will considerably reduce the amount of chemical waste generated during the trial-and-error stage of developing and perfecting the desired physical and optical properties of new QD materials. PMID:25054471

Hu, Siyi; Zeng, Shuwen; Zhang, Butian; Yang, Chengbin; Song, Peiyi; Hang Danny, Tng Jian; Lin, Guimiao; Wang, Yucheng; Anderson, Tommy; Coquet, Philippe; Liu, Liwei; Zhang, Xihe; Yong, Ken-Tye

2014-09-21

362

Electrical control of single hole spins in nanowire quantum dots.  

PubMed

The development of viable quantum computation devices will require the ability to preserve the coherence of quantum bits (qubits). Single electron spins in semiconductor quantum dots are a versatile platform for quantum information processing, but controlling decoherence remains a considerable challenge. Hole spins in III-V semiconductors have unique properties, such as a strong spin-orbit interaction and weak coupling to nuclear spins, and therefore, have the potential for enhanced spin control and longer coherence times. A weaker hyperfine interaction has previously been reported in self-assembled quantum dots using quantum optics techniques, but the development of hole-spin-based electronic devices in conventional III-V heterostructures has been limited by fabrication challenges. Here, we show that gate-tunable hole quantum dots can be formed in InSb nanowires and used to demonstrate Pauli spin blockade and electrical control of single hole spins. The devices are fully tunable between hole and electron quantum dots, which allows the hyperfine interaction strengths, g-factors and spin blockade anisotropies to be compared directly in the two regimes. PMID:23416794

Pribiag, V S; Nadj-Perge, S; Frolov, S M; van den Berg, J W G; van Weperen, I; Plissard, S R; Bakkers, E P A M; Kouwenhoven, L P

2013-03-01

363

2 Micrometers InAsSb Quantum-dot Lasers  

NASA Technical Reports Server (NTRS)

InAsSb quantum-dot lasers near 2 micrometers were demonstrated in cw operation at room temperature with a threshold current density of 733 A,/cm(sup 2), output power of 3 mW/facet and a differential quantum efficiency of 13%.

Qiu, Yueming; Uhl, David; Keo, Sam

2004-01-01

364

Binding energy and exciton spectrum in double cylindrical quantum dot  

Microsoft Academic Search

The spectral characteristics of exciton in combined nanoheterosystem consisting of semiconductor cylindrical quantum wire containing two quantum dots separated by thin barrier-shell are investigated. It is shown that the binding energy non monotonously depends on the geometrical characteristics of nanoheterosystem approaching several minimum and maximum magnitudes.

O. M. Makhanets; M. M. Dovganiuk; J. O. Seti

2008-01-01

365

Manipulating Quantum Dots to Nanometer Precision by Control of Flow  

E-print Network

accuracy for holding times exceeding one hour and the ability to take active quantum measurements on the dynamically manipulated QD. KEYWORDS Quantum dots, control, electroosmotic flow, subpixel averaging, photon to always move that object from its current location toward its desired position in discrete time steps

Waks, Edo

366

Development and characterization of silk fibroin coated quantum dots  

NASA Astrophysics Data System (ADS)

Recent progress in the field of semiconductor nanocrystals or Quantum Dots (QDs) has seen them find wider acceptance as a tool in biomedical research labs. As produced, high quality QDs, synthesized by high temperature organometallic synthesis, are coated with a hydrophobic ligand. Therefore, they must be further processed to be soluble in water and to be made biocompatible. To accomplish this, the QDs are generally coated with a synthetic polymer (eg. block copolymers) or the hydrophobic surface ligands exchanged with hydrophilic material (eg. thiols). Advances in this area have enabled the QDs to experience a smooth transition from being simple inorganic fluorophores to being smart sensors, which can identify specific cell marker proteins and help in diagnosis of diseases such as cancer. In order to improve the biocompatibility and utility of the QDs, we report the development of a procedure to coat QDs with silk fibroin, a fibrous crystalline protein extracted from Bombyx Mori silkworm. Following the coating process, we characterize the size, quantum yield and two-photon absorption cross section of the silk coated QDs. Additionally, the results of biocompatibility studies carried out to compare the properties of these QD-silks with conventional QDs are presented. These natural polymer coatings on QDs could enhance the intracellular delivery and enable the use of these nanocrystals as an imaging tool for studying subcellular machinery at the molecular level.

Nathwani, B. B.; Needham, C.; Mathur, A. B.; Meissner, K. E.

2008-02-01

367

Stability of polymer encapsulated quantum dots in cell culture media  

NASA Astrophysics Data System (ADS)

The unique optical properties of Quantum Dots have attracted a great interest to use these nanomaterials in diverse biological applications. The synthesis of QDs by methods from the literature permits one to obtain nanocrystals coated by hydrophobic alkyl coordinating ligands and soluble in most of the cases in organic solvents. The ideal biocompatible QD must be homogeneously dispersed and colloidally stable in aqueous solvents, exhibit pH and salt stability, show low levels of nonspecific binding to biological components, maintain a high quantum yield, and have a small hydrodynamic diameter. Polymer encapsulation represents an excellent scaffold on which to build additional biological function, allowing for a wide range of grafting approaches for biological ligands. As these QD are functionalized with poly(ethylene)glycol (PEG) derivatives on their surface, they show long term stability without any significant change in the optical properties, and they are also highly stable in the most common buffer solutions such as Phosphate Buffer Saline (PBS) or borate. However, as biological studies are normally done in more complex biological media which contain a mixture of amino acids, salts, glucose and vitamins, it is essential to determine the stability of our synthesized QDs under these conditions before tackling biological studies.

Ojea-Jiménez, I.; Piella, J.; Nguyen, T.-L.; Bestetti, A.; Ryan, A. D.; Puntes, V.

2013-04-01

368

Ge quantum dot memory structure with laterally ordered highly dense arrays of Ge dots.  

PubMed

This work was devoted to the development of a Ge quantum dot memory structure of a MOSFET type with laterally ordered Ge quantum dots within the gate dielectric stack. Lateral ordering of the Ge dots was achieved by the combination of the following technological steps: (a) use of a focused ion beam (FIB) to create ordered two-dimensional arrays of regular holes on a field oxide on the silicon substrate, (b) chemical cleaning and restoring of the Si surface in the holes, (c) further oxidation to transfer the pattern from the field oxide to the silicon substrate, (d) removal of the field oxide and thermal re-oxidation of the sample in order to create a tunneling oxide of homogeneous thickness on the patterned silicon surface, and (e) self-assembly of the two-dimensional arrays of Ge dots on the patterned tunneling oxide. The charging properties of the obtained memory structure were characterized by electrical measurements. Charging of the Ge quantum dot layer by electrons injected from the substrate resulted in a large shift in the capacitance-voltage curves of the MOS structure. Charges were stored in deep traps in the charging layer, and consequently the erasing process was difficult, resulting in a limited memory window. The advantages of controlled positioning of the quantum dots in the charging layer will be discussed. PMID:17455497

Nassiopoulou, A G; Olzierski, A; Tsoi, E; Berbezier, I; Karmous, A

2007-01-01

369

Toxicity of carbon group quantum dots  

NASA Astrophysics Data System (ADS)

Carbon group quantum dots (QDs) such as carbon, silicon and germanium, have potential for biomedical applications such as bio-imaging markers and drug delivery systems and are expected to demonstrate several advantages over conventional fluorescent QDs such as CdSe, especially in biocompatibility. We assessed biocompatibility of newly manufactured silicon QDs (Si-QDs), by means of both MTT assay and LDH assay for HeLa cells in culture and thereby detected the cellular toxicity by administration of high concentration of Si-QD (>1000 ?g/mL), while we detected the high toxicity by administration of over 100 ?g/mL of CdSe-QDs. As a hypothesis for the cause of the cellular toxicity, we measured oxy-radical generation from the QDs by means of luminol reaction method. We detected generation of oxy-radicals from the Si-QDs and those were decreased by radical scavenger such as superoxide dismutase (SOD) and N-acetyl cysteine (NAC). We concluded that the Si-QD application to cultured cells in high concentration led cell membrane damage by oxy-radicals and combination usage with radical scavenger is one of the answers.

Hanada, Sanshiro; Fujioka, Kouki; Hoshino, Akiyoshi; Manabe, Noriyoshi; Hirakuri, Kenji; Yamamoto, Kenji

2009-02-01

370

Selective targeting of microglia by quantum dots  

PubMed Central

Background Microglia, the resident immune cells of the brain, have been implicated in brain injury and various neurological disorders. However, their precise roles in different pathophysiological situations remain enigmatic and may range from detrimental to protective. Targeting the delivery of biologically active compounds to microglia could help elucidate these roles and facilitate the therapeutic modulation of microglial functions in neurological diseases. Methods Here we employ primary cell cultures and stereotaxic injections into mouse brain to investigate the cell type specific localization of semiconductor quantum dots (QDs) in vitro and in vivo. Two potential receptors for QDs are identified using pharmacological inhibitors and neutralizing antibodies. Results In mixed primary cortical cultures, QDs were selectively taken up by microglia; this uptake was decreased by inhibitors of clathrin-dependent endocytosis, implicating the endosomal pathway as the major route of entry for QDs into microglia. Furthermore, inhibiting mannose receptors and macrophage scavenger receptors blocked the uptake of QDs by microglia, indicating that QD uptake occurs through microglia-specific receptor endocytosis. When injected into the brain, QDs were taken up primarily by microglia and with high efficiency. In primary cortical cultures, QDs conjugated to the toxin saporin depleted microglia in mixed primary cortical cultures, protecting neurons in these cultures against amyloid beta-induced neurotoxicity. Conclusions These findings demonstrate that QDs can be used to specifically label and modulate microglia in primary cortical cultures and in brain and may allow for the selective delivery of therapeutic agents to these cells. PMID:22272874

2012-01-01

371

Immune cells tracing using quantum dots  

NASA Astrophysics Data System (ADS)

Fluorescent nanoparticles, such as nanocrystal quantum dots (QDs), have potential to be applied to molecular biology and bioimaging, since some nanocrystals emit higher and longer lasting fluorescence than conventional organic probes do. Here we report an example of labeling immune cells by QDs. We collected splenic CD4 + T-lymphocyte and peritoneal macrophages from mice. Then cells were labeled with QDs. QDs are incorporated into the T-lymphocyte and macrophages immediately after addition and located in the cytoplasm via endocytosis pathway. The fluorescence of QDs held in the endosomes was easily detected for more than a week. In addition, T-lymphocytes labeled with QDs were stable and cell proliferation or cytokine production including IL-2 and IFN-? was not affected. When QD-labeled T-lymphocytes were adoptively transferred intravenously to mice, they remained in the peripheral blood and spleen up to a week. Using QD-labeled peritoneal macrophages, we studied cell traffic during inflammation on viscera in peritoneum cavity. QD-labeled macrophages were transplanted into the peritoneum of the mouse, and colitis was induced by intracolonic injection of a hapten, trinitrobenzensulfonic acid. With the aid of stong signals of QDs, we found that macrophage accumuled on the inflammation site of the colon. These results suggested that fluorescent probes of QDs might be useful as bioimaging tools for tracing target cells in vivo.

Hoshino, Akiyoshi; Fujioka, Kouki; Kawamura, Yuki I.; Toyama-Sorimachi, Noriko; Yasuhara, Masato; Dohi, Taeko; Yamamoto, Kenji

2006-02-01

372

Tuning electrochemical rectification via quantum dot assemblies.  

PubMed

A novel approach to tuning electrochemical rectification using 2D assemblies of quantum dots (QDs) is presented. Asymmetric enhancement of the oxidation and reduction currents in the presence of the Fe(CN)(6)(3-/4-) redox couple is observed upon adsorption of QDs at thiol-modified Au electrodes. The extent of the electrochemical rectification is dependent on the average QD size. A molecular blocking layer is generated by self-assembling 11-mercaptoundecanoic acid (MUA) and an ultrathin film of poly(diallyldimethylammonium chloride) (PDADMAC) on the electrode. The polycationic film allows the electrostatic adsorption of 3-mercaptopropionic acid (MPA)-stabilized CdTe QDs, generating 2D assemblies with approximately 0.4% coverage. The QD adsorption activates a fast charge transfer across the blocking layer in which the reduction process is more strongly enhanced than the oxidation reaction. The partial electrochemical rectification is rationalized in terms of the relative position of the valence (VB) and conduction band (CB) edges with respect to the redox Fermi energy (?(redox)). Quantitative analysis of the exchange current density obtained from electrochemical impedance spectroscopy demonstrates that the enhancement of charge transport across the molecular barrier is strongly dependent on the position of the QD valence band edge relative to ?(redox). The average electron tunneling rate constant through the QD assemblies is estimated on the basis of the Gerischer model for electron transfer. PMID:21050000

Kissling, Gabriela P; Bünzli, Christa; Fermín, David J

2010-12-01

373

Multiplexed modular genetic targeting of quantum dots.  

PubMed

While DNA-directed nanotechnology is now a well-established platform for bioinspired nanoscale assembly in vitro, the direct targeting of various nanomaterials in living biological systems remains a significant challenge. Hybrid biological systems with integrated and targeted nanomaterials may have interesting and exploitable properties, so methods for targeting various nanomaterials to precise biological locations are required. Fluorescence imaging has benefited from the use of nanoparticles with superior optical properties compared to fluorescent organic dyes or fluorescent proteins. While single-particle tracking (SPT) in living cells with genetically encoded proteins is limited to very short trajectories, the high photon output of genetically targeted and multiplexed quantum dots (QDs) would enable long-trajectory analysis of multiple proteins. However, challenges with genetic targeting of QDs limit their application in these experiments. In this report, we establish a modular method for targeting QD nanoparticles selectively to multiple genetically encoded tags by precomplexing QD-streptavidin conjugates with cognate biotinylated hapten molecules. This approach enables labeling and SPT of multiple genetically encoded proteins on living cells at high speed and can label expressed proteins in the cytosol upon microinjection into living cells. While we demonstrate labeling with three distinct QD conjugates, the approach can be extended to other specific hapten-affinity molecule interactions and alternative nanoparticles, enabling precise directed targeting of nanoparticles in living biological systems. PMID:25380615

Saurabh, Saumya; Beck, Lauren E; Maji, Suvrajit; Baty, Catherine J; Wang, Yi; Yan, Qi; Watkins, Simon C; Bruchez, Marcel P

2014-11-25

374

Quantum dot mediated imaging of atherosclerosis  

NASA Astrophysics Data System (ADS)

The progression of atherosclerosis is associated with leukocyte infiltration within lesions. We describe a technique for the ex vivo imaging of cellular recruitment in atherogenesis which utilizes quantum dots (QD) to color-code different cell types within lesion areas. Spectrally distinct QD were coated with the cell-penetrating peptide maurocalcine to fluorescently-label immunomagnetically isolated monocyte/macrophages and T lymphocytes. QD-maurocalcine bioconjugates labeled both cell types with a high efficiency, preserved cell viability, and did not perturb native leukocyte function in cytokine release and endothelial adhesion assays. QD-labeled monocyte/macrophages and T lymphocytes were reinfused in an ApoE-/- mouse model of atherosclerosis and age-matched controls and tracked for up to four weeks to investigate the incorporation of cells within aortic lesion areas, as determined by oil red O (ORO) and immunofluorescence ex vivo staining. QD-labeled cells were visible in atherosclerotic plaques within two days of injection, and the two cell types colocalized within areas of subsequent ORO staining. Our method for tracking leukocytes in lesions enables high signal-to-noise ratio imaging of multiple cell types and biomarkers simultaneously within the same specimen. It also has great utility in studies aimed at investigating the role of distinct circulating leukocyte subsets in plaque development and progression.

Jayagopal, Ashwath; Su, Yan Ru; Blakemore, John L.; Linton, MacRae F.; Fazio, Sergio; Haselton, Frederick R.

2009-04-01

375

Deformation potential dominated phonons in ZnS quantum dots  

E-print Network

Strong deformation potential (DP) dominated Raman spectra are reported for quantum confined cubic ZnS nanoclusters under off-resonance conditions allowed only in quantum dots. A flurry of zone boundary phonons is demonstrated in the scattering process. Transverse optic (TO) mode in the multi-phonon process shows only even order overtones suggesting the dominance of a two-phonon process (having large DP value in ZnS) and its integral multiples. Two-phonon TO modes corresponding to A1 and B2 symmetries are also demonstrated under off-resonance conditions which are allowed only in quantum dots.

S. Dhara; A. K. Arora; Jay Ghatak; K. H. Chen; C. P. Liu; L. C. Chen; Y. Tzeng; Baldev Raj

2007-09-12

376

Pulse-Gated Quantum-Dot Hybrid Qubit  

NASA Astrophysics Data System (ADS)

A quantum-dot hybrid qubit formed from three electrons in a double quantum dot has the potential for great speed, due to the presence of level crossings where the qubit becomes chargelike. Here, we show how to exploit the level crossings to implement fast pulsed gating. We develop one- and two-qubit dc quantum gates that are simpler than the previously proposed ac gates. We obtain closed-form solutions for the control sequences and show that the gates are fast (subnanosecond) and can achieve high fidelities.

Koh, Teck Seng; Gamble, John King; Friesen, Mark; Eriksson, M. A.; Coppersmith, S. N.

2012-12-01

377

Charge sensing and controllable tunnel coupling in a Si/SiGe double quantum dot.  

PubMed

We report integrated charge sensing measurements on a Si/SiGe double quantum dot. The quantum dot is shown to be tunable from a single, large dot to a well-isolated double dot. Charge sensing measurements enable the extraction of the tunnel coupling t between the quantum dots as a function of the voltage on the top gates defining the device. Control of the voltage on a single such gate tunes the barrier separating the two dots. The measured tunnel coupling is an exponential function of the gate voltage. The ability to control t is an important step toward controlling spin qubits in silicon quantum dots. PMID:19645459

Simmons, C B; Thalakulam, Madhu; Rosemeyer, B M; Van Bael, B J; Sackmann, E K; Savage, D E; Lagally, M G; Joynt, R; Friesen, Mark; Coppersmith, S N; Eriksson, M A

2009-09-01

378

Quantum description of nuclear spin cooling in a quantum dot  

NASA Astrophysics Data System (ADS)

We study theoretically the cooling of an ensemble of nuclear spins coupled to the spin of a localized electron in a quantum dot. We obtain a master equation for the state of the nuclear spins interacting with a sequence of polarized electrons that allows us to study quantitatively the cooling process including the effect of nuclear spin coherences, which can lead to “dark states” of the nuclear system in which further cooling is inhibited. We show that the inhomogeneous Knight field mitigates this effect strongly and that the remaining dark-state limitations can be overcome by very few shifts of the electron wave function, allowing for cooling far beyond the dark-state limit. Numerical integration of the master equation indicates that polarizations larger than 90% can be achieved within a millisecond time scale.

Christ, H.; Cirac, J. I.; Giedke, G.

2007-04-01

379

Quantum interference in exciton-Mn spin interactions in a CdTe semiconductor quantum dot  

E-print Network

We show theoretically and experimentally the existence of a new quantum interference(QI) effect between the electron-hole interactions and the scattering by a single Mn impurity. Theoretical model, including electron-valence hole correlations, the short and long range exchange interaction of Mn ion with the heavy hole and with electron and anisotropy of the quantum dot, is compared with photoluminescence spectroscopy of CdTe dots with single magnetic ions. We show how design of the electronic levels of a quantum dot enable the design of an exciton, control of the quantum interference and hence engineering of light-Mn interaction.

A. Trojnar; M. Korkusinski; E. Kadantsev; P. Hawrylak; M. Goryca; T. Kazimierczuk; P. Kossacki; P. Wojnar; M. Potemski

2011-05-04

380

Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals.  

PubMed

Six coal samples of different ranks have been used to prepare single-layer graphene quantum dots (S-GQDs). After chemical oxidation and a series of centrifugation separation, every coal could be treated into two fractions, namely, CoalA and CoalB. According to the characterization results of TEM, AFM, XRD, Raman and FTIR, CoalA was revealed to be mainly composed of S-GQDs, which have an average height of about 0.5 nm and an average plane dimension of about 10 nm. The obtained S-GQDs showed excitation-dependent fluorescence and excellent electrochemiluminescence. CoalB was found to be some other carbon-based nanomaterials (CNMs), including agglomerated GQDs, graphene oxide, carbon quantum dots and agglomerated carbon nanocrystals. Generally, low-ranked coals might be more suitable for the preparation of S-GQDs. The production yield of S-GQDs from the six investigated coals decreased from 56.30% to 14.66% when the coal rank increased gradually. In contrast, high-ranked coals had high production yield of CoalB and might be more suitable for preparing other CNMs that were contained in CoalB, although those CNMs were difficult to separate from each other in our experiment. PMID:24875280

Dong, Yongqiang; Lin, Jianpeng; Chen, Yingmei; Fu, Fengfu; Chi, Yuwu; Chen, Guonan

2014-07-01

381

Ultrafast optical control of individual quantum dot spin qubits.  

PubMed

Single spins in semiconductor quantum dots form a promising platform for solid-state quantum information processing. The spin-up and spin-down states of a single electron or hole, trapped inside a quantum dot, can represent a single qubit with a reasonably long decoherence time. The spin qubit can be optically coupled to excited (charged exciton) states that are also trapped in the quantum dot, which provides a mechanism to quickly initialize, manipulate and measure the spin state with optical pulses, and to interface between a stationary matter qubit and a 'flying' photonic qubit for quantum communication and distributed quantum information processing. The interaction of the spin qubit with light may be enhanced by placing the quantum dot inside a monolithic microcavity. An entire system, consisting of a two-dimensional array of quantum dots and a planar microcavity, may plausibly be constructed by modern semiconductor nano-fabrication technology and could offer a path toward chip-sized scalable quantum repeaters and quantum computers. This article reviews the recent experimental developments in optical control of single quantum dot spins for quantum information processing. We highlight demonstrations of a complete set of all-optical single-qubit operations on a single quantum dot spin: initialization, an arbitrary SU(2) gate, and measurement. We review the decoherence and dephasing mechanisms due to hyperfine interaction with the nuclear-spin bath, and show how the single-qubit operations can be combined to perform spin echo sequences that extend the qubit decoherence from a few nanoseconds to several microseconds, more than 5 orders of magnitude longer than the single-qubit gate time. Two-qubit coupling is discussed, both within a single chip by means of exchange coupling of nearby spins and optically induced geometric phases, as well as over longer-distances. Long-distance spin-spin entanglement can be generated if each spin can emit a photon that is entangled with the spin, and these photons are then interfered. We review recent work demonstrating entanglement between a stationary spin qubit and a flying photonic qubit. These experiments utilize the polarization- and frequency-dependent spontaneous emission from the lowest charged exciton state to single spin Zeeman sublevels. PMID:24006335

De Greve, Kristiaan; Press, David; McMahon, Peter L; Yamamoto, Yoshihisa

2013-09-01

382

Synthesis and Characterization of CdSe Qunatum Dots  

NSDL National Science Digital Library

This lab, presented by the National Nanotechnology Infrastructure Network, students will "study how surfactant-based chemistry can be used to synthesize CdSe quantum dots and study how the size of the quantum dots can be controlled by varying reaction time." This lab will help students to understand the size and scale of nanoparticles using dots and considering the actions of electrons within a nanostructure. Additionally, "The model of  will be compared with more exact results, and use this to create a calibration curve. Students will be able to estimate the size of quantum dots by using UV-VIS absorption spectroscopy." Included in this lab are: Teachers guide, Student prelab worksheet w/ answers, Student worksheet with answers, Student prelab worksheet, Student Worksheet, Evaluation form for design project.

2014-08-28

383

Temperature-dependent electron transport in quantum dot photovoltaics  

NASA Astrophysics Data System (ADS)

Quantum dot photovoltaics have attracted much interest from researchers in recent years. They have the potential to address both costs and efficiencies of solar cells while simultaneously demonstrating novel physics. Thin-film devices inherently require less material than bulk crystalline silicon, and solution deposition removes the high energy used in fabrication processes. The ease of bandgap tunability in quantum dots through size control allows for simple graded bandgap structures, which is one method of breaking beyond the Shockley-Queisser limit. Power output can also be increased through the process of multiple exciton generation, whereby more than one electron participates in conduction after the absorption of a single photon. In this dissertation work, quantum dot photovoltaics are examined through a range of temperatures. Exploring the current-voltage-temperature parameter space provides insight into the dominant conduction mechanisms within these materials, which is largely not agreed upon. Beginning with PbS quantum dots, changes in device structure are examined by varying the capping ligand and nanoparticle size. This leads similar studies of new, germanium quantum dot devices. Through this understanding, further optimization of device structure can lead to enhanced device performance.

Padilla, Derek J.

384

Feedback-generated periodic pulse trains in quantum dot lasers  

NASA Astrophysics Data System (ADS)

Quantum dot lasers have been shown to have greatly enhanced stability in the feedback configuration thanks to a high damping of the relaxation oscillations and they display different dynamics to those of conventional semiconductor lasers. For high feedback levels in conventional devices one obtains Low Frequency Fluctuations: sharp dropouts in intensity and subsequent gradual build-ups. Standard low frequency fluctuation-like traces are conspicuous by their absence in studies of feedback with quantum dot devices. We experimentally examine single mode quantum dot lasers at high feedback levels with a long delay and observe regular pulse-trains with a period equaling the external cavity round-trip time where each pulse features a distinctive broad trailing edge plateau. The distinctive pulse shape is very similar to the recently published strong pulse-asymmetry in two-section, passively mode-locked quantum dot lasers where this asymmetry was shown to result from the creation of different modal groups. We attribute the pulses in our experiment to the same phenomenon: each pulse corresponds to a simultaneous excitation of a number of the external cavity modes. We consider a model tailored specifically for quantum dot lasers with strong optical feedback and find it reproduces the experimentally observed trains extremely well.

Viktorov, Evgeny A.; Goulding, David; Hegarty, Stephen P.; Huyet, Guillaume; Erneux, Thomas; Kelleher, Bryan

2014-05-01

385

Detection of viral infections using colloidal quantum dots  

NASA Astrophysics Data System (ADS)

Fluorescence is a tool widely employed in biological assays. Fluorescent semiconducting nanocrystals, quantum dots (QDs), are beginning to find their way into the tool box of many biologist, chemist and biochemist. These quantum dots are an attractive alternative to the traditional organic dyes due to their broad excitation spectra, narrow emission spectra and photostability. Quantum dots were used to detect and monitor the progession of viral glycoproteins, F (fusion) and G (attachment), from Respiratory Syncytial Virus (RSV) in HEp-2 cells. Additionally, oligo-Qdot RNA probes have been developed for identification and detection of mRNA of the N(nucleocapsid) protein for RSV. The use of quantum dot-FISH probes provides another confirmatory route to diagnostics as well as a new class of probes for monitoring the flux and fate of viral RNA RSV is the most common cause of lower respiratory tract infection in children worldwide and the most common cause of hospitalization of infants in the US. Antiviral therapy is available for treatment of RSV but is only effective if given within the first 48 hours of infection. Existing test methods require a virus level of at least 1000-fold of the amount needed for infection of most children and require several days to weeks to obtain results. The use of quantum dots may provide an early, rapid method for detection and provide insight into the trafficking of viral proteins during the course of infection.

Bentzen, Elizabeth L.; House, Frances S.; Utley, Thomas J.; Crowe, James E., Jr.; Wright, David W.

2006-02-01

386

Multiple Exciton Generation in PbSe Quantum Dots and Quantum Dot Solar Cells  

SciTech Connect

Multiple exciton generation in quantum dots (QDs) has been intensively studied as a way to enhance solar energy conversion by channeling the excess photon energy (energy greater than the bandgap) to produce multiple electron-hole pairs. Among other useful properties, quantum confinement can both increase Coulomb interactions that drive the MEG process and decrease the electron-phonon coupling that cools hot-excitons in bulk semiconductors. We have demonstrated that MEG in PbSe QDs is about two times as efficient at producing multiple electron-hole pairs than bulk PbSe. I will discuss our recent results investigating MEG in PbSe, PbS and PbSxSe1-x, which exhibits an interesting size-dependence of the MEG efficiency. Thin films of electronically coupled PbSe QDs have shown promise in simple photon-to-electron conversion architectures with power conversion efficiencies above 5%. We recently reported an enhancement in the photocurrent resulting from MEG in PbSe QD-based solar cells. We find that the external quantum efficiency (spectrally resolved ratio of collected charge carriers to incident photons) peaked at 114% in the best devices measured, with an internal quantum efficiency of 130%. These results demonstrate that MEG charge carriers can be collected in suitably designed QD solar cells. We compare our results to transient absorption measurements and find reasonable agreement.

Beard, M. C.; Semonin, O. E.; Nozik, A. J.; Midgett, A. G.; Luther, J. M.

2012-01-01

387

A Quantum Dot Single-Photon Turnstile Device  

Microsoft Academic Search

Quantum communication relies on the availability of light pulses with strong quantum correlations among photons. An example of such an optical source is a single-photon pulse with a vanishing probability for detecting two or more photons. Using pulsed laser excitation of a single quantum dot, a single-photon turnstile device that generates a train of single-photon pulses was demonstrated. For a

P. Michler; A. Kiraz; C. Becher; W. V. Schoenfeld; P. M. Petroff; Lidong Zhang; E. Hu; A. Imamoglu

2000-01-01

388

InGaAs-GaAs quantum-dot lasers  

Microsoft Academic Search

Quantum-dot (QD) lasers provide superior lasing characteristics compared to quantum-well (QW) and QW wire lasers due to their delta like density of states. Record threshold current densities of 40 A·cm -2 at 77 K and of 62 A·cm-2 at 300 K are obtained while a characteristic temperature of 385 K is maintained up to 300 K. The internal quantum efficiency

D. Bimberg; N. Kirstaedter; N. N. Ledentsov; Zh. I. Alferov; P. S. Kop'ev; V. M. Ustinov

1997-01-01

389

Fabrication and optimization of light emitting devices with core-shell quantum dots  

E-print Network

Quantum dot light emitting devices (QD-LEDs) are promising options for the next generation of solid state lighting, color displays, and other optoelectronic applications. Overcoating quantum dots (QDs) -- semiconducting ...

Song, Katherine Wei

2013-01-01

390

LDRD Final Report on Theory and Exploration of Quantum-Dot Optical Nonlinearities and Coherences.  

National Technical Information Service (NTIS)

A microscopic theory for investigating quantum-dot optical properties was developed. The theory incorporated advances on various aspects of quantum-dot physics developed at Sandia and elsewhere. Important components are a non-Markovian treatment of polari...

W. W. Chow

2008-01-01

391

Quantum-dot-tagged photonic crystal beads for multiplex detection of tumor markers.  

PubMed

Novel quantum-dot-tagged photonic crystal beads were fabricated for multiplex detection of tumor markers via self-assembly of quantum dot-embedded polystyrene nanospheres into photonic crystal beads through a microfluidic device. PMID:25308755

Li, Juan; Wang, Huan; Dong, Shujun; Zhu, Peizhi; Diao, Guowang; Yang, Zhanjun

2014-12-01

392

Investigation of size dependent structural and optical properties of thin films of CdSe quantum dots  

SciTech Connect

Research highlights: {yields} CdSe q-dots have been synthesized using simple chemical synthesis route. {yields} Thin film of CdSe quantum dots exhibited self-organized growth. {yields} Size dependent blue shift observed in the absorption edge of CdSe nanocrystallites. {yields} PL emission band corresponds to band edge luminescence and defect luminescence. {yields} Organized growth led to enhancement in luminescence yield of smaller size Q-dots. -- Abstract: Cadmium selenide (CdSe) quantum dots were grown on indium tin oxide substrate using wet chemical technique for possible application as light emitting devices. The structural, morphological and luminescence properties of the as deposited thin films of CdSe Q-dot have been investigated, using X-ray diffraction, transmission electron microscopy, atomic force microscopy and optical and luminescence spectroscopy. The quantum dots have been shown to deposit in an organized array on ITO/glass substrate. The as grown Q-dots exhibited size dependent blue shift in the absorption edge. The effect of quantum confinement also manifested as a blue shift of photoluminescence emission. It is shown that the nanocrystalline CdSe exhibits intense photoluminescence as compared to the large grained polycrystalline CdSe films.

Sharma, Madhulika, E-mail: madhulikasharma1@gmail.com [Department of Physics, Bhopal University, Bhopal 462 026 (India) [Department of Physics, Bhopal University, Bhopal 462 026 (India); Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology, Bombay, Powai, Mumbai 400076 (India); Sharma, A.B.; Mishra, N. [Department of Physics, Bhopal University, Bhopal 462 026 (India)] [Department of Physics, Bhopal University, Bhopal 462 026 (India); Pandey, R.K. [University Institute of Technology, Barkatullah University, Bhopal 462026 (India)] [University Institute of Technology, Barkatullah University, Bhopal 462026 (India)

2011-03-15

393

QCAD Simulation and Optimization of Semiconductor Quantum Dots  

E-print Network

We present the Quantum Computer Aided Design (QCAD) simulator that targets modeling multi-dimensional quantum devices, particularly silicon multi-quantum dots (QDs) developed for quantum bits (qubits). This finite-element simulator has three differentiating features: (i) its core contains nonlinear Poisson, effective mass Schrodinger, and Configuration Interaction solvers that have massively parallel capability for high simulation throughput, and can be run individually or combined self-consistently for 1D/2D/3D quantum devices; (ii) the core solvers show superior convergence even at near-zero-Kelvin temperatures, which is critical for modeling quantum computing devices; and (iii) it interfaces directly with the full-featured optimization engine Dakota. In this work, we describe the capabilities and implementation of the QCAD simulation tool, and show how it can be used to both analyze existing experimental QD devices through capacitance calculations, and aid in the design of few-electron multi-QDs. In particular, we observe that computed capacitances are in rough agreement with experiment, and that quantum confinement increases capacitance when the number of electrons is fixed in a quantum dot. Coupling of QCAD with the optimizer Dakota allows for rapid identification and improvement of device layouts that are likely to exhibit few-electron quantum dot characteristics.

Xujiao Gao; Erik Nielsen; Richard P. Muller; Ralph W. Young; Andrew G. Salinger; Nathan C. Bishop; Michael P. Lilly; Malcolm S. Carroll

2014-03-28

394

Physical optimization of quantum error correction circuits with spatially separated quantum dot spins.  

PubMed

We propose an efficient protocol for optimizing the physical implementation of three-qubit quantum error correction with spatially separated quantum dot spins via virtual-photon-induced process. In the protocol, each quantum dot is trapped in an individual cavity and each two cavities are connected by an optical fiber. We propose the optimal quantum circuits and describe the physical implementation for correcting both the bit flip and phase flip errors by applying a series of one-bit unitary rotation gates and two-bit quantum iSWAP gates that are produced by the long-range interaction between two distributed quantum dot spins mediated by the vacuum fields of the fiber and cavity. The protocol opens promising perspectives for long distance quantum communication and distributed quantum computation networks. PMID:23736467

Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

2013-05-20

395

InAs(ZnCdS) Quantum Dots Optimized for Biological Imaging in the Near-Infrared  

E-print Network

We present the synthesis of InAs quantum dots (QDs) with a ZnCdS shell with bright and stable emission in the near-infrared (NIR, 700?900 nm) region for biological imaging applications. We demonstrate how NIR QDs can image ...

Allen, Peter M.

396

High efficiency photodetectors fabricated by electrostatic layer-by-layer self-assembly of CdTe quantum dots  

E-print Network

High efficiency photodetectors fabricated by electrostatic layer-by-layer self-assembly of CdTe 20 October 2008 We demonstrate high-performance photodetectors from multilayers of CdTe quantum dots. The synthesis of CdTe QDs in aqueous solution using cadmium perchlorate hydrate and Al2Te3 was previously re

Lin, Lih Y.

397

Synergistic Effect of CdSe Quantum Dot Sensitization and Nitrogen Doping of TiO2  

E-print Network

gap semiconductors such as TiO2, ZnO, and WO3 have been demonstrated as promising candidatesSynergistic Effect of CdSe Quantum Dot Sensitization and Nitrogen Doping of TiO2 Nanostructures the synthesis and photoelectrochemical (PEC) studies of TiO2 nanoparticles and nanowires simultaneously doped

Li, Yat

398

Coherent excitation of a strongly coupled quantum dot - cavity system  

E-print Network

We have studied the coherent excitation of a strongly coupled QD/photonic crystal cavity system. Time-resolved reflectivity measurements show the vacuum Rabi oscillation of the dot in the cavity. Next, we considered the resonant driving of a cavity-detuned dot, which efficiently populates the cavity mode. This cavity-controlled read-out channel allows high-resolution single quantum dot spectroscopy. Autocorrelation measurements on the cavity mode show antibunching and suggest the use of the resonantly driven QD/cavity system as an on-demand source of single photons with potentially near-unity indistinguishability.

Dirk Englund; Arka Majumdar; Andrei Faraon; Mitsuru Toishi; Nick Stoltz; Pierre Petroff; Jelena Vuckovic

2009-02-14

399

Generation of even harmonics in coupled quantum dots  

SciTech Connect

Using the spatial-temporal symmetry principle we developed recently, we propose an effective scheme for even-harmonics generation in coupled quantum dots. The relative intensity of odd and even harmonic components in the emission spectrum can be controlled by tuning the dipole couplings among the dots, which can be realized in experiments by careful design of the nanostructures. In particular, pure 2nth harmonics and (2n+1)th harmonics (where n is an integer) can be generated simultaneously with polarizations in two mutual perpendicular directions in our systems. An experimental design of the coupled dots system is presented.

Guo Shifang; Duan Suqing; Yang Ning; Chu Weidong; Zhang Wei [Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China)

2011-07-15

400

Biosensing with Quantum Dots: A Microfluidic Approach  

PubMed Central

Semiconductor quantum dots (QDs) have served as the basis for signal development in a variety of biosensing technologies and in applications using bioprobes. The use of QDs as physical platforms to develop biosensors and bioprobes has attracted considerable interest. This is largely due to the unique optical properties of QDs that make them excellent choices as donors in fluorescence resonance energy transfer (FRET) and well suited for optical multiplexing. The large majority of QD-based bioprobe and biosensing technologies that have been described operate in bulk solution environments, where selective binding events at the surface of QDs are often associated with relatively long periods to reach a steady-state signal. An alternative approach to the design of biosensor architectures may be provided by a microfluidic system (MFS). A MFS is able to integrate chemical and biological processes into a single platform and allows for manipulation of flow conditions to achieve, by sample transport and mixing, reaction rates that are not entirely diffusion controlled. Integrating assays in a MFS provides numerous additional advantages, which include the use of very small amounts of reagents and samples, possible sample processing before detection, ultra-high sensitivity, high throughput, short analysis time, and in situ monitoring. Herein, a comprehensive review is provided that addresses the key concepts and applications of QD-based microfluidic biosensors with an added emphasis on how this combination of technologies provides for innovations in bioassay designs. Examples from the literature are used to highlight the many advantages of biosensing in a MFS and illustrate the versatility that such a platform offers in the design strategy. PMID:22163723

Vannoy, Charles H.; Tavares, Anthony J.; Noor, M. Omair; Uddayasankar, Uvaraj; Krull, Ulrich J.

2011-01-01

401

Toxicity of Oxidatively Degraded Quantum Dots  

PubMed Central

Once released into the environment, engineered nanoparticles (eNPs) are subjected to processes that may alter their physical or chemical properties, potentially altering their toxicity vis-à-vis the as-synthesized materials. We examined the toxicity to zebrafish embryos of CdSecore/ZnSshell quantum dots (QDs) before and after exposure to an in vitro chemical model designed to simulate oxidative weathering in soil environments based on a reductant-driven Fenton’s reaction. Exposure to these oxidative conditions resulted in severe degradation of the QDs: the Zn shell eroded, Cd2+ and selenium were released, and amorphous Se-containing aggregates were formed. Weathered QDs exhibited higher potency than did as-synthesized QDs. Morphological endpoints of toxicity included pericardial, ocular and yolk sac edema, non-depleted yolk, spinal curvature, tail malformations, and craniofacial malformations. To better understand the selenium-like toxicity observed in QD exposures, we examined the toxicity of selenite, selenate and amorphous selenium nanoparticles (SeNPs). Selenite exposures resulted in high mortality to embryos/larvae while selenate and SeNPs were non-toxic. Co-exposures to SeNPs + CdCl2 resulted in dramatic increase in mortality and recapitulated the morphological endpoints of toxicity observed with weathered QD exposures. Cadmium body burden was increased in larvae exposed to weathered QDs or SeNP + CdCl2 suggesting the increased potency of weathered QDs was due to selenium modulation of cadmium toxicity. Our findings highlight the need to examine the toxicity of eNPs after they have undergone environmental weathering processes. PMID:23815598

Wiecinski, Paige N.; Metz, Kevin M.; King Heiden, Tisha C.; Louis, Kacie M.; Mangham, Andrew N.; Hamers, Robert J.; Heideman, Warren; Peterson, Richard E.; Pedersen, Joel A.

2014-01-01

402

Optical absorption of semiconductor quantum dot solids  

NASA Astrophysics Data System (ADS)

Several aspects concerning optical absorption in 3D assemblies of semiconductor quantum dots (QD solids) were studied. Considering the numerically simulated spectral dependences of the absorption coefficient in the case 3D QD assemblies with finite crystal size distribution, described by log-normal probability distribution functions (PDFs), several fundamental predictions were derived. First of all, it is predicted that the band gap energy of the QD solid should exhibit a certain ‘red-shift’ upon enlargement of the dispersion of the crystal size at a fixed average value thereof when the size-quantization regime in individual QDs has been entered. Furthermore, very large Urbach energy values are predicted, comparable to those characteristic for amorphous materials, for semiconductor QD solids with finite dispersion of the crystal size when the average QD size falls within the size-quantization interval. The Urbach energy in 3D assemblies composed by strongly quantized QDs with large dispersions of the PDFs characterizing the size distributions could be 100 times larger than the values in the non-quantized case (regardless of the size distribution in the latter case). Such large values are not due to the structural disorder inherent to individual QDs constituting the array, but a consequence of the disorder on the superlattice scale. Analogous arguments could be applied to predict large Urbach energies corresponding to the absorption tails in absorption spectra constructed from the spectral response of stationary nonequilibrium conductivity (photoconductivity). All these predictions are in excellent agreement with the available experimental data. Moreover, the presented approach could enable exact prediction of the optical absorption of a semiconductor QD solid if the PDF of the crystal size is known from the experiment. The smearing of excitonic absorption peaks in QD solids induced as a consequence of particle size distribution is considered and analyzed to some extent as well.

Pejova, Biljana

2014-04-01

403

Group-velocity slowdown in a double quantum dot molecule  

NASA Astrophysics Data System (ADS)

The slowdown of optical pulses due to quantum-coherence effects is investigated theoretically for an “active material” consisting of InGaAs-based double quantum dot molecules. These are designed to exhibit a long-lived coherence between two electronic levels, which is an essential part of a quantum-coherence scheme that makes use of electromagnetically induced transparency effects to achieve group-velocity slowdown. We apply a many-particle approach based on realistic semiconductor parameters that allows us to calculate the quantum dot material dynamics including microscopic carrier scattering and polarization dephasing dynamics. The group-velocity reduction is characterized in the frequency domain by a quasiequilibrium slowdown factor and in the time domain by the probe-pulse slowdown obtained from a calculation of the spatiotemporal material dynamics coupled to the propagating optical field. The group-velocity slowdown in the quantum dot molecule is shown to be substantially higher than what is achievable from similar transitions in typical InGaAs-based single quantum dots. The dependencies of slowdown and shape of the propagating probe pulses on lattice temperature and drive intensities are investigated.

Michael, Stephan; Chow, Weng W.; Schneider, Hans Christian

2013-09-01

404

Tunable optical Kerr effects of DNAs coupled to quantum dots  

PubMed Central

The coupling between DNA molecules and quantum dots can result in impressive nonlinear optical properties. In this paper, we theoretically demonstrate the significant enhancement of Kerr coefficient of signal light using optical pump-probe technique when the pump-exciton detuning is zero, and the probe-exciton detuning is adjusted properly to the frequency of DNA vibration mode. The magnitude of optical Kerr coefficient can be tuned by modifying the intensity of the pump beam. It is shown clearly that this phenomenon cannot occur without the DNA-quantum dot coupling. The present research will lead us to know more about the anomalous nonlinear optical behaviors in the hybrid DNA-quantum dot systems, which may have potential applications in the fields such as DNA detection. PMID:23194282

2012-01-01

405

Observation of dressed excitonic states in a single quantum dot.  

PubMed

We report the observation of dressed states of a quantum dot. The optically excited exciton and biexciton states of the quantum dot are coupled by a strong laser field and the resulting spectral signatures are measured using differential transmission of a probe field. We demonstrate that the anisotropic electron-hole exchange interaction induced splitting between the x- and y-polarized excitonic states can be completely erased by using the ac-Stark effect induced by the coupling field, without causing any appreciable broadening of the spectral lines. We also show that by varying the polarization and strength of a resonant coupling field, we can effectively change the polarization axis of the quantum dot. PMID:18518335

Jundt, Gregor; Robledo, Lucio; Högele, Alexander; Fält, Stefan; Imamo?lu, Atac

2008-05-01

406

Observation of Dressed Excitonic States in a Single Quantum Dot  

NASA Astrophysics Data System (ADS)

We report the observation of dressed states of a quantum dot. The optically excited exciton and biexciton states of the quantum dot are coupled by a strong laser field and the resulting spectral signatures are measured using differential transmission of a probe field. We demonstrate that the anisotropic electron-hole exchange interaction induced splitting between the x- and y-polarized excitonic states can be completely erased by using the ac-Stark effect induced by the coupling field, without causing any appreciable broadening of the spectral lines. We also show that by varying the polarization and strength of a resonant coupling field, we can effectively change the polarization axis of the quantum dot.

Jundt, Gregor; Robledo, Lucio; Högele, Alexander; Fält, Stefan; Imamo?lu, Atac

2008-05-01

407

Peptide linkers for the assembly of semiconductor quantum dot bioconjugates  

NASA Astrophysics Data System (ADS)

The use of semiconductor luminescent quantum dots for the labeling of biomolecules is rapidly expanding, however it still requires facile methods to attach functional globular proteins to biologically optimized quantum dots. Here we discuss the development of controlled variable length peptidyl linkers to attach biomolecules to poly(ethylene) glycol (PEG) coated quantum dots for both in vitro and in vivo applications. The peptides chosen, ?-sheets and alpha helices are appended to polyhistidine sequences and this allows for control of the ratio of peptide bioconjugated to QD and the distance from QD to the biomolecule. Recombinant DNA engineering, bacterial peptide expression and Ni-NTA purification of histidine labeled peptides are utilized to create the linkers. Peptide length is confirmed by in vitro fluorescent resonance energy transfer (FRET).

Boeneman, Kelly; Mei, Bing C.; Deschamps, Jeffrey R.; Delehanty, James B.; Mattoussi, Hedi; Medintz, Igor

2009-02-01

408

Charge transfer magnetoexciton formation at vertically coupled quantum dots  

PubMed Central

A theoretical investigation is presented on the properties of charge transfer excitons at vertically coupled semiconductor quantum dots in the presence of electric and magnetic fields directed along the growth axis. Such excitons should have two interesting characteristics: an extremely long lifetime and a permanent dipole moment. We show that wave functions and the low-lying energies of charge transfer exciton can be found exactly for a special morphology of quantum dots that provides a parabolic confinement inside the layers. To take into account a difference between confinement potentials of an actual structure and of our exactly solvable model, we use the Galerkin method. The density of energy states is calculated for different InAs/GaAs quantum dots’ dimensions, the separation between layers, and the strength of the electric and magnetic fields. A possibility of a formation of a giant dipolar momentum under external electric field is predicted. PMID:23092373

2012-01-01

409

Probing electric and magnetic vacuum fluctuations with quantum dots  

E-print Network

The electromagnetic-vacuum-field fluctuations are intimately linked to the process of spontaneous emission of light. Atomic emitters cannot probe electric- and magnetic-field fluctuations simultaneously because electric and magnetic transitions correspond to different selection rules. In this paper we show that semiconductor quantum dots are fundamentally different and are capable of mediating electric-dipole, magnetic-dipole, and electric-quadrupole transitions on a single electronic resonance. As a consequence, quantum dots can probe electric and magnetic fields simultaneously and can thus be applied for sensing the electromagnetic environment of complex photonic nanostructures. Our study opens the prospect of interfacing quantum dots with optical metamaterials for tailoring the electric and magnetic light-matter interaction at the single-emitter level.

Petru Tighineanu; Mads Lykke Andersen; Anders Søndberg Sørensen; Søren Stobbe; Peter Lodahl

2014-04-04

410

Pulsed single-photon resonant-cavity quantum dot LED  

NASA Astrophysics Data System (ADS)

We demonstrate electrical pumping of self-assembled InP/Ga 0.51In 0.49P quantum dots embedded in a p-i-n resonant-cavity-diode structure with emission in the red spectral region. A high aluminum containing Al 0.98Ga 0.02As layer allows wet thermal oxidation and implementation of a current restricting oxide aperture above the active region. The intended use of these InP-quantum dots in such a resonant-cavity-LED structure as a pulsed electrically driven single-photon emitter was confirmed by measuring the second order intensity correlation function g(?) with a Hanbury-Brown and Twiss type setup. The correlation measurements performed on a single quantum dot (?40 K) show a clear antibunching behavior ( g(0)<0.24) up to 200 MHz as expected for a single-photon emitter.

Schulz, W.-M.; Eichfelder, M.; Reischle, M.; Kessler, C.; Roßbach, R.; Jetter, M.; Michler, P.

2011-01-01

411

Probing electric and magnetic vacuum fluctuations with quantum dots  

E-print Network

The electromagnetic-vacuum-field fluctuations are intimately linked to the process of spontaneous emission of light. Atomic emitters cannot probe electric- and magnetic-field fluctuations simultaneously because electric and magnetic transitions correspond to different selection rules. In this paper we show that semiconductor quantum dots are fundamentally different and are capable of mediating electric-dipole, magnetic-dipole, and electric-quadrupole transitions on a single electronic resonance. As a consequence, quantum dots can probe electric and magnetic fields simultaneously and can thus be applied for sensing the electromagnetic environment of complex photonic nanostructures. Our study opens the prospect of interfacing quantum dots with optical metamaterials for tailoring the electric and magnetic light-matter interaction at the single-emitter level.

Tighineanu, Petru; Sørensen, Anders Søndberg; Stobbe, Søren; Lodahl, Peter

2014-01-01

412

Probing Electric and Magnetic Vacuum Fluctuations with Quantum Dots  

NASA Astrophysics Data System (ADS)

The electromagnetic-vacuum-field fluctuations are intimately linked to the process of spontaneous emission of light. Atomic emitters cannot probe electric- and magnetic-field fluctuations simultaneously because electric and magnetic transitions correspond to different selection rules. In this Letter we show that semiconductor quantum dots are fundamentally different and are capable of mediating electric-dipole, magnetic-dipole, and electric-quadrupole transitions on a single electronic resonance. As a consequence, quantum dots can probe electric and magnetic fields simultaneously and can thus be applied for sensing the electromagnetic environment of complex photonic nanostructures. Our study opens the prospect of interfacing quantum dots with optical metamaterials for tailoring the electric and magnetic light-matter interaction at the single-emitter level.

Tighineanu, P.; Andersen, M. L.; Sørensen, A. S.; Stobbe, S.; Lodahl, P.

2014-07-01

413

Probing electric and magnetic vacuum fluctuations with quantum dots.  

PubMed

The electromagnetic-vacuum-field fluctuations are intimately linked to the process of spontaneous emission of light. Atomic emitters cannot probe electric- and magnetic-field fluctuations simultaneously because electric and magnetic transitions correspond to different selection rules. In this Letter we show that semiconductor quantum dots are fundamentally different and are capable of mediating electric-dipole, magnetic-dipole, and electric-quadrupole transitions on a single electronic resonance. As a consequence, quantum dots can probe electric and magnetic fields simultaneously and can thus be applied for sensing the electromagnetic environment of complex photonic nanostructures. Our study opens the prospect of interfacing quantum dots with optical metamaterials for tailoring the electric and magnetic light-matter interaction at the single-emitter level. PMID:25105618

Tighineanu, P; Andersen, M L; Sørensen, A S; Stobbe, S; Lodahl, P

2014-07-25

414

Gate-controlled electron spins in quantum dots  

SciTech Connect

In this paper we study the properties of anisotropic semiconductor quantum dots (QDs) formed in the conduction band in the presence of the magnetic field. The Kane-type model is formulated and is analyzed by using both analytical and finite element techniques. Among other things, we demonstrate that in such quantum dots, the electron spin states in the phonon-induced spin-flip rate can be manipulated with the application of externally applied anisotropic gate potentials. More precisely, such potentials enhance the spin flip rates and reduce the level crossing points to lower quantum dot radii. This happens due to the suppression of the g-factor towards bulk crystal. We conclude that the phonon induced spin-flip rate can be controlled through the application of spin-orbit coupling. Numerical examples are shown to demonstrate these findings.

Prabhakar, Sanjay [M2NeT Laboratory, Wilfrid Laurier University, Waterloo, ON, N2L3C5 (Canada); Melnik, Roderick [M2NeT Laboratory, Wilfrid Laurier University, Waterloo, ON, N2L3C5 and Gregorio Millan Institute, Universidad Carlos III de Madrid, 28911, Leganes (Spain); Bonilla, Luis L. [Gregorio Millan Institute, Universidad Carlos III de Madrid, 28911, Leganes, Spain and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (United States)

2013-12-16

415

Ternary I-III-VI Quantum Dots Luminescent in the Red to Near Infrared  

PubMed Central

We report the synthesis of a size series of copper indium selenide quantum dots (QDs) of various stoichiometries exhibiting photoluminescence (PL) from the red to near infrared (NIR). The synthetic method is modular and we have extended it to the synthesis of luminescent silver indium diselenide QDs. Previous reports on QDs luminescent in the NIR region have been primarily restricted to binary semiconductor systems, such as InAs, PbS, and CdTe. This work seeks to expand the availability of luminescent QD materials to ternary I–III–VI semiconductor systems. PMID:18582061

Allen, Peter M.; Bawendi, Moungi G.

2008-01-01

416

Single hole quantum dot transistors in silicon Effendi Leobandung, Lingjie Guo, and Stephen Y. Choua)  

E-print Network

Single hole quantum dot transistors in silicon Effendi Leobandung, Lingjie Guo, and Stephen Y-dot transistors were fabricated in silicon-on-insulator. Strong oscillations in the drain current as a function third from the quantum confinement effect. The realization of single hole quantum-dot transistors opens

417

Optical Aharonov-Bohm effect on Wigner molecules in type-II semiconductor quantum dots  

Microsoft Academic Search

We theoretically examine the magnetoluminescence from a trion and a biexciton in a type-II semiconductor quantum dot, in which holes are confined inside the quantum dot and electrons are in a ring-shaped region surrounding the quantum dot. First, we show that two electrons in the trion and biexciton are strongly correlated to each other, forming a Wigner molecule: Since the

Rin Okuyama; Mikio Eto; Hiroyuki Hyuga

2011-01-01

418

Self-organized formation of quantum dots of a material on a substrate  

DOEpatents

Systems and methods are described for fabricating arrays of quantum dots. A method for making a quantum dot device, includes: forming clusters of atoms on a substrate; and charging the clusters of atoms such that the clusters of atoms repel one another. The systems and methods provide advantages because the quantum dots can be ordered with regard to spacing and/or size.

Zhang, Zhenyu (232 Long Bow Rd., Knoxville, TN 37922); Wendelken, John F. (925 Suwanee Rd., Knoxville, TN 37923); Chang, Ming-Che (F4-2, No. 178 Sec 5 Minsheng East Rd., Taipei, TW); Pai, Woei Wu (1F, No. 17, Alley 11, Lane 202, Ming Chyuan Rd., Pan Chou City, Taipei County, TW)

2001-01-01

419

Microwave spectroscopy on a double quantum dot with an on-chip Josephson oscillator  

E-print Network

Microwave spectroscopy on a double quantum dot with an on-chip Josephson oscillator A W Holleitner://www.njp.org/) Received 19 November 1999; online 18 February 2000 Abstract. We present measurements on microwave spectroscopy on a double quantum dot with an on-chip microwave source. The quantum dots are realized in the two

Ludwig-Maximilians-Universität, München

420

Pressure dependence of photoluminescence spectra of self-assembled InAs/GaAs quantum dots  

E-print Network

Pressure dependence of photoluminescence spectra of self-assembled InAs/GaAs quantum dots F. J Photoluminescence (PL) measurements have been performed in InAs/GaAs self-assembled quantum dots (QDs) under high-organised quantum dots (QDs) studied under high excitation conditions at low temperatures and under high hydrostatic

Nabben, Reinhard

421

PHYSICAL REVIEW B 86, 235303 (2012) Dissecting biexciton wave functions of self-assembled quantum dots  

E-print Network

dots by double-quantum-coherence optical spectroscopy Benjamin P. Fingerhut,1 Marten Richter,1,2 Jun for utilization of quantum dots (QDs) for enhancing the efficiencies of solar cells, and for the generation-embedded quantum dots often leads to the association of single excitons into exciton complexes. The existence

Mukamel, Shaul

422

Correlations of conductance peaks and transmission phases in deformed quantum dots  

E-print Network

Correlations of conductance peaks and transmission phases in deformed quantum dots Reinhard Baltin of a deformed ballistic quantum dot weakly coupled to leads. We show that preferred single--particle levels on ballistic quantum dots are discussed. PACS numbers: 73.23.Hk, 73.23.Ps, 73.40.Gk Published in Eur. Phys. J

Hackenbroich, Gregor

423

Quantum Dots-in-a-Well (DWELL) Infrared Photodetectors with Confinement Enhancing Barriers  

E-print Network

Quantum Dots-in-a-Well (DWELL) Infrared Photodetectors with Confinement Enhancing Barriers Ajit V@chtm.unm.edu Abstract: Improvement in the performance of quantum dots-in-a-well (DWELL) detectors with confinementGaAs barrier layers around the dots in a well (DWELL) structure to enhance the quantum confinement of carriers

Krishna, Sanjay

424

Distance-Engineered Plasmon-Enhanced Light Harvesting in CdSe Quantum Dots  

E-print Network

Distance-Engineered Plasmon-Enhanced Light Harvesting in CdSe Quantum Dots Shengye Jin,,§, Erica De Supporting Information ABSTRACT: Improvement of light harvesting in semiconductor quantum dots (QDs. SECTION: Plasmonics, Optical Materials, and Hard Matter Semiconductor quantum dots (QDs) have received

425

Raman spectroscopy of electrochemically self-assembled CdS quantum dots  

E-print Network

Raman spectroscopy of electrochemically self-assembled CdS quantum dots A. Balandina) Department the lowest two subbands. The results suggest that quantum dot arrays, produced by inexpensive robust0003-6951 00 02202-6 Quantum dots represent the ultimate test bed for size quantization of both

426

Quantum Dots Encapsulated within Phospholipid Membranes: Phase-Dependent Structure, Photostability, and Site-Selective  

E-print Network

Quantum Dots Encapsulated within Phospholipid Membranes: Phase-Dependent Structure, Photostability is an efficient approach to transfer quantum dots (QDs) into aqueous solutions, which is important for renewable-Crick base-pairing. INTRODUCTION Luminescent semiconductor nanocrystals, or quantum dots (QDs), have

Salaita, Khalid

427

Observation of Individual Microtubule Motor Steps in Living Cells with Endocytosed Quantum Dots  

E-print Network

Observation of Individual Microtubule Motor Steps in Living Cells with Endocytosed Quantum Dots by following movements of endocytic vesicles that contain quantum dots (QDs) with a fast camera. The brightness and photostability of quantum dots allow us to record motor displacement traces with 300 µs time resolution and 1

Chen, Peng

428

Lead-position dependent regular oscillations and random fluctuations of conductance in graphene quantum dots  

E-print Network

quantum dots This article has been downloaded from IOPscience. Please scroll down to see the full text. For example, in a quantum-dot system, the conductance can depend on the lead positions. We investigate, for graphene quantum dots, the conductance variations with the lead positions. Since for graphene the types

Lai, Ying-Cheng

429

Theory of time-resolved Raman scattering and fluorescence emission from semiconductor quantum dots  

E-print Network

Theory of time-resolved Raman scattering and fluorescence emission from semiconductor quantum dots description of time-resolved Raman scattering and fluorescence emission of a coupled phonon-quantum dot system spectra of an InGaAs/GaAs-quantum dot are calculated for stationary and pulsed optical excitation

Nabben, Reinhard

430

Crossover from `mesoscopic' to `universal' phase for electron transmission in quantum dots  

E-print Network

Crossover from `mesoscopic' to `universal' phase for electron transmission in quantum dots M in coherent electron systems--that is, `mesoscopic' systems such as quantum dots--can yield infor- mation measurements on relatively large quantum dots1 recently revealed that the phase evolution for electrons

Heiblum, Mordehai "Moty"

431

Eigenvalues imbedded in the band spectrum for the periodic array of quantum dots  

E-print Network

Eigenvalues imbedded in the band spectrum for the periodic array of quantum dots V. A. Geyler a.­Petersburg, 197101, Russia Abstract Solvable model of a periodic array of quantum dots in a uniform magnetic field. II. Model We consider an array of quantum dots displaced in the nodes of a plane lattice \\Gamma which

432

Effect of the (OH) Surface Capping on ZnO Quantum Dots  

E-print Network

Effect of the (OH) Surface Capping on ZnO Quantum Dots H. Zhou1 ) (a), H. Alves (a), D. M. Hofmann; S10.1 ZnO quantum dots were prepared by the reaction of Zn2+ with OH­­ in alcoholic solution transition of ZnO quantum dots is strongly correlated with the presence of the surface (OH) groups

Nabben, Reinhard

433

Quantum-dot based avalanche photodiodes for mid-infrared Majeed M. Hayat a  

E-print Network

Quantum-dot based avalanche photodiodes for mid-infrared sensing Majeed M. Hayat a , Oh-Hyun Kwon b ABSTRACT A mid-infrared sensor is proposed in which an intersubband quantum-dot (QD) detector is integrated temperatures. Keywords: Quantum dots, avalanche photodiodes, infrared, sensors, mid-wave infrared, avalanche

Hayat, Majeed M.

434

Surfactant-Free, Drug-Quantum-Dot Coloaded Poly(lactide-co-glycolide) Nanoparticles: Towards Multifunctional  

Microsoft Academic Search

Nanoprecipitation was utilized to synthesize biodegradable and surfactant-free nanoparticles loaded with quantum dots. This protocol also yielded nanoparticles coloaded with both quantum dots and hydrophobic drug (Coenzyme Q10) molecules. Importantly, even though surfactants were not utilized during the nanoprecipitation procedure, these loaded nanoparticles did not aggregate. Dialysis efficiently removed unencapsulated quantum dots from nanoparticle suspensions without altering the physical properties

Barrett J. Nehilla; Philip G. Allen; Tejal A. Desai

435

Phase relaxation of one-particle states in closed quantum dots K. Held a,b  

E-print Network

­429 www.elsevier.com/locate/chaos #12;Quantum dots which contain a larger number of electrons N, Oð103 �Phase relaxation of one-particle states in closed quantum dots K. Held a,b , E. Eisenberg a,b , B to analyze the effect of dephasing of one-particle states on the magnetocon- ductance of closed quantum dots

Eisenberg, Eli

436

Compact quantum dots for single-molecule imaging.  

PubMed

Single-molecule imaging is an important tool for understanding the mechanisms of biomolecular function and for visualizing the spatial and temporal heterogeneity of molecular behaviors that underlie cellular biology (1-4). To image an individual molecule of interest, it is typically conjugated to a fluorescent tag (dye, protein, bead, or quantum dot) and observed with epifluorescence or total internal reflection fluorescence (TIRF) microscopy. While dyes and fluorescent proteins have been the mainstay of fluorescence imaging for decades, their fluorescence is unstable under high photon fluxes necessary to observe individual molecules, yielding only a few seconds of observation before complete loss of signal. Latex beads and dye-labeled beads provide improved signal stability but at the expense of drastically larger hydrodynamic size, which can deleteriously alter the diffusion and behavior of the molecule under study. Quantum dots (QDs) offer a balance between these two problematic regimes. These nanoparticles are composed of semiconductor materials and can be engineered with a hydrodynamically compact size with exceptional resistance to photodegradation (5). Thus in recent years QDs have been instrumental in enabling long-term observation of complex macromolecular behavior on the single molecule level. However these particles have still been found to exhibit impaired diffusion in crowded molecular environments such as the cellular cytoplasm and the neuronal synaptic cleft, where their sizes are still too large (4,6,7). Recently we have engineered the cores and surface coatings of QDs for minimized hydrodynamic size, while balancing offsets to colloidal stability, photostability, brightness, and nonspecific binding that have hindered the utility of compact QDs in the past (8,9). The goal of this article is to demonstrate the synthesis, modification, and characterization of these optimized nanocrystals, composed of an alloyed HgxCd1-xSe core coated with an insulating CdyZn1-yS shell, further coated with a multidentate polymer ligand modified with short polyethylene glycol (PEG) chains (Figure 1). Compared with conventional CdSe nanocrystals, HgxCd1-xSe alloys offer greater quantum yields of fluorescence, fluorescence at red and near-infrared wavelengths for enhanced signal-to-noise in cells, and excitation at non-cytotoxic visible wavelengths. Multidentate polymer coatings bind to the nanocrystal surface in a closed and flat conformation to minimize hydrodynamic size, and PEG neutralizes the surface charge to minimize nonspecific binding to cells and biomolecules. The end result is a brightly fluorescent nanocrystal with emission between 550-800 nm and a total hydrodynamic size near 12 nm. This is in the same size range as many soluble globular proteins in cells, and substantially smaller than conventional PEGylated QDs (25-35 nm). PMID:23093375

Smith, Andrew M; Nie, Shuming

2012-01-01

437

Proposal for ultra-high performance infrared quantum dot.  

PubMed

In this paper, effect of an introduced defect on electrical and optical properties of quantum box and spherical quantum dot is studied. 3D-self-consistent solution of the Schrödinger-Poisson equations for evaluation of the proposed complex quantum box and analytical solution for spherical quantum dot are used. It is shown that with increasing the defect size and height a considerable enhancement in matrix element, optical nonlinearities (second order, quadratic electro-optic effect and the resonant third order nonlinear susceptibilities), optical linear absorption coefficient ( 4.5 -10 nm, 10(-4) approximately 10(-2) m.V(-1), 10(-12) approximately 10(-9) m(2) / V (2) , 10(-11) approximately 10(-9) m(2) / V(2) and 4.7 x 10(2) approximately 3.8 x 10(4) cm(-1) respectively) and electroabsorption properties associated with intersublevel transition of centered defect quantum dot are examined. Also, it is shown that enhancement of optical nonlinearity is approximately independent of defect position that is so excellent from practical implementation point of view. A THZ-IR photodetector based on resonant tunneling spherical centered defect quantum dot (RT-SCDQD) operating at room temperature is also investigated. Inserting the centered defect in quantum dot increases the dipole transition matrix element and so increases the absorption coefficient considerably (1.05 x 10(6) approximately 7.33 x 10(6)at 83 microm ). Therefore the quantum efficiency in SCDQD structure enhances which leads to increasing the responsivity of the proposed system. The double barrier reduces the dark current. These improvements concludes to ultra high detectivity 5 x 10(16) 2.25 x 10(9) cm Hz (1/2)/W at 83 and 300 degrees K at 83 microm respectively. PMID:18542359

Rostami, A; Saghai, H Rasooli; Sadoogi, N; Nejad, H Baghban Asghari

2008-02-18

438

Electronic Interactions in Semiconductor Quantum Dots and Quantum Point Contacts  

NASA Astrophysics Data System (ADS)

We report several detailed experiments on electron transport through Quantum Point Contacts (QPCs) and lateral Quantum Dots (QDs), created in a Single-Electron Transistor (SET). In the experiment for QPCs, we present a zero-bias peak (ZBP) in the differential conductance, G, which splits in an external magnetic field. The observed splitting closely matches the Zeeman energy and shows very little dependence on gate voltage, suggesting that the mechanism responsible for the formation of the peak involves electron spin. We also show that the mechanism that leads to the formation of the ZBP is different from the conventional Kondo effect found in QDs. [1] In the second experiment, we present transport measurements of a QD in a spin-flip cotunneling regime and a quantitative comparison of the data to the microscopic theory by Lehman and Loss. The differential conductance is measured in the presence of an in-plane Zeeman field. We focus on the ratio of the nonlinear G at bias voltages exceeding the Zeeman threshold to G for those below the threshold. The data show good quantitative agreement with the theory with no adjustable parameters. We also compare the theoretical results to the predictions of a phenomenological form used for the determination of a heterostructure g-factor and find good agreement between the two. In the third experiment, we report the magnetic splitting, Delta K, of a Kondo peak in G for a QD while tuning the Kondo temperature, TK, along two different paths in the parameter space: varying the dot-lead coupling at a constant dot energy, and vice versa. At a high magnetic field, B, the changes of DeltaK with TK along the two paths have opposite signs, indicating that Delta K is not a universal function of TK. At low B, we observe a decrease in DeltaK with TK along both paths, in agreement with theoretical predictions. Furthermore, we find DeltaK/Delta < 1 at low B and DeltaK/Delta > 1 at high B, where Delta is the Zeeman energy of the bare spin, in the same system. [2] In the last experiment, we report the zero-bias differential conductance, of an SET in the Kondo regime as a function of temperature, T, and an in-plane magnetic field B. Scaled