Sample records for quantum dots synthesis

  1. Quantum dots: synthesis, bioapplications, and toxicity

    PubMed Central

    2012-01-01

    This review introduces quantum dots (QDs) and explores their properties, synthesis, applications, delivery systems in biology, and their toxicity. QDs are one of the first nanotechnologies to be integrated with the biological sciences and are widely anticipated to eventually find application in a number of commercial consumer and clinical products. They exhibit unique luminescence characteristics and electronic properties such as wide and continuous absorption spectra, narrow emission spectra, and high light stability. The application of QDs, as a new technology for biosystems, has been typically studied on mammalian cells. Due to the small structures of QDs, some physical properties such as optical and electron transport characteristics are quite different from those of the bulk materials. PMID:22929008

  2. Synthesis and characterization of infrared quantum dots

    E-print Network

    Harris, Daniel Kelly

    2014-01-01

    This thesis focuses on the development of synthetic methods to create application ready quantum dots (QDs) in the infrared for biological imaging and optoelectronic devices. I concentrated primarily on controlling the size ...

  3. Facile synthesis and photoluminescence mechanism of graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Zhou, Ligang; Zhang, Shenli; Wan, Neng; Pan, Wei; Shen, Wenzhong

    2014-12-01

    We report a facile hydrothermal synthesis of intrinsic fluorescent graphene quantum dots (GQDs) with two-dimensional morphology. This synthesis uses glucose, concentrate sulfuric acid, and deionized water as reagents. Concentrated sulfuric acid is found to play a key role in controlling the transformation of as-prepared hydrothermal products from amorphous carbon nanodots to well-crystallized GQDs. These GQDs show typical absorption characteristic for graphene, and have nearly excitation-independent ultraviolet and blue intrinsic emissions. Temperature-dependent PL measurements have demonstrated strong electron-electron scattering and electron-phonon interactions, suggesting a similar temperature behavior of GQDs to inorganic semiconductor quantum dots. According to optical studies, the ultraviolet emission is found to originate from the recombination of electron-hole pairs localized in the C=C bonds, while the blue emission is from the electron transition of sp2 domains.

  4. Bioconjugated silicon quantum dots from one-step green synthesis

    NASA Astrophysics Data System (ADS)

    Intartaglia, Romuald; Barchanski, Annette; Bagga, Komal; Genovese, Alessandro; Das, Gobind; Wagener, Philipp; di Fabrizio, Enzo; Diaspro, Alberto; Brandi, Fernando; Barcikowski, Stephan

    2012-02-01

    Biofunctionalized silicon quantum dots were prepared through a one step strategy avoiding the use of chemical precursors. UV-Vis spectroscopy, Raman spectroscopy and HAADF-STEM prove oligonucleotide conjugation to the surface of silicon nanoparticle with an average size of 4 nm. The nanoparticle size results from the size-quenching effect during in situ conjugation. Photoemissive properties, conjugation efficiency and stability of these pure colloids were studied and demonstrate the bio-application potential, e.g. for nucleic acid vector delivery with semiconducting, biocompatible nanoparticles.Biofunctionalized silicon quantum dots were prepared through a one step strategy avoiding the use of chemical precursors. UV-Vis spectroscopy, Raman spectroscopy and HAADF-STEM prove oligonucleotide conjugation to the surface of silicon nanoparticle with an average size of 4 nm. The nanoparticle size results from the size-quenching effect during in situ conjugation. Photoemissive properties, conjugation efficiency and stability of these pure colloids were studied and demonstrate the bio-application potential, e.g. for nucleic acid vector delivery with semiconducting, biocompatible nanoparticles. Electronic supplementary information (ESI) available: Experimental details of sample preparation, sample characterizations. Additional results of UV-vis, HAADF-STEM, Raman spectroscopy of bioconjugated silicon dots and ICP-OES of deionized water used for the synthesis are presented in Fig. S1, S3, S2, and S4 and Table S2, respectively. See DOI: 10.1039/c2nr11763k

  5. Quantum Dot Solar Cells

    NASA Technical Reports Server (NTRS)

    Raffaelle, Ryne P.; Castro, Stephanie L.; Hepp, Aloysius; Bailey, Sheila G.

    2002-01-01

    We have been investigating the synthesis of quantum dots of CdSe, CuInS2, and CuInSe2 for use in an intermediate bandgap solar cell. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Bawendi, et. al., in the early 1990's. However, unlike previous work in this area we have also utilized single-source precursor molecules in the synthesis process. We will present XRD, TEM, SEM and EDS characterization of our initial attempts at fabricating these quantum dots. Investigation of the size distributions of these nanoparticles via laser light scattering and scanning electron microscopy will be presented. Theoretical estimates on appropriate quantum dot composition, size, and inter-dot spacing along with potential scenarios for solar cell fabrication will be discussed.

  6. Continuous-flow reactor–based synthesis of carbohydrate and dihydrolipoic acid–capped quantum dots

    Microsoft Academic Search

    Paola Laurino; Raghavendra Kikkeri; Peter H Seeberger

    2011-01-01

    A detailed protocol for the large-scale synthesis of carbohydrate and dihydrolipoic acid (DHLA)-coated CdSe\\/ZnS and CdTe\\/ZnS nanoparticles using continuous flow reactors is described here. Three continuous flow microreaction systems, operating at three different temperatures, are used for the synthesis of mannose-, galactose- or DHLA-functionalized quantum dots (QDs). In the first step of synthesis, the CdSe and CdTe nanoparticles are prepared.

  7. Synthesis, biological targeting and photophysics of quantum dots

    NASA Astrophysics Data System (ADS)

    Clarke, Samuel Jon

    Quantum dots (QDs) are inorganic nanoparticles that have exceptional optical properties. Currently, QDs have failed to reach their potential as fluorescent probes in live cells, due to the nontrivial requirements for biological interfacing. The goal of this thesis is to address technical hurdles related to the reproducible synthesis of QDs, strategies for the specific targeting of QDs to biological cells and to understanding and exploitation of the photophysical properties. High quality QDs of varying composition (CdSe, CdTe and core/shell CdSe/ZnS) were synthesized with an organometallic method. To prepare biocompatible QDs, three strategies were used. The simplest strategy used small mercaptocarboxylic acids, while performance improvements were realized with engineered-peptide and lipid-micelle coatings. For specific biological targeting of the QDs, conjugation strategies were devised to attach biomolecules, while spectroscopic characterization methods were developed to assess conjugation efficiencies. To target gram-negative bacterial cells, an electrostatic self-assembly method was used to attach an antibiotic selective for this class of bacteria, polymyxin B. To target dopamine neurotransmitter receptor, a covalent conjugation method was used to attach dopamine, the endogenous ligand for that receptor. It was shown that dopamine molecule enabled electron transfer to QDs and the photophysics was studied in detail. A novel conjugation and targeting strategy was explored to enable the selective binding of QDs to polyhistidine epitopes on membrane proteins. Epifluorescence microscopy was used to evaluate the biological activity of the three QD probes. Combined, they add to the QD 'toolkit' for live-cell imaging. Finally, due to its negative implications in biological imaging, the fluorescent intermittency (blinking) of CdTe QDs was investigated. It was shown that mercaptocarboxylic acids contribute to the blinking suppression of the QDs, results that may aid in the design of nonblinking QDs. Overall, these findings should be useful in the future design of QDs for biological imaging and biosensing applications.

  8. Sized controlled synthesis, purification, and cell studies with silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Shiohara, Amane; Prabakar, Sujay; Faramus, Angelique; Hsu, Chia-Yen; Lai, Ping-Shan; Northcote, Peter T.; Tilley, Richard D.

    2011-08-01

    This article describes the size control synthesis of silicon quantum dots with simple microemulsion techniques. The silicon nanocrystals are small enough to be in the strong confinement regime and photoluminesce in the blue region of the visible spectrum and the emission can be tuned by changing the nanocrystal size. The silicon quantum dots were capped with allylamine either a platinum catalyst or UV-radiation. An extensive purification protocol is reported and assessed using 1H NMR to produce ultra pure silicon quantum dots suitable for biological studies. The highly pure quantum dots were used in cellular uptake experiments and monitored using confocal microscopy. The results showed that the amine terminated silicon nanocrystals accumulated in lysosome but not in nuclei and could be used as bio-markers to monitor cancer cells over long timescales.This article describes the size control synthesis of silicon quantum dots with simple microemulsion techniques. The silicon nanocrystals are small enough to be in the strong confinement regime and photoluminesce in the blue region of the visible spectrum and the emission can be tuned by changing the nanocrystal size. The silicon quantum dots were capped with allylamine either a platinum catalyst or UV-radiation. An extensive purification protocol is reported and assessed using 1H NMR to produce ultra pure silicon quantum dots suitable for biological studies. The highly pure quantum dots were used in cellular uptake experiments and monitored using confocal microscopy. The results showed that the amine terminated silicon nanocrystals accumulated in lysosome but not in nuclei and could be used as bio-markers to monitor cancer cells over long timescales. Electronic supplementary information (ESI) available. See DOI: 10.1039/c1nr10458f

  9. One-step ultrasonic synthesis of graphene quantum dots with high quantum yield and their application in sensing alkaline phosphatase.

    PubMed

    Zhu, Yanhong; Wang, Guangfeng; Jiang, Hong; Chen, Ling; Zhang, Xiaojun

    2015-01-18

    With only graphene oxide and KMnO4, the luminescent graphene quantum dots (GQDs) in high quantum yield were prepared by one-step synthesis using ultrasonication, and applied in the label-free, simple and fast fluorescence assay of alkaline phosphatase (ALP). PMID:25434403

  10. Microwave-assisted low temperature synthesis of wurtzite ZnS quantum dots

    SciTech Connect

    Shahid, Robina, E-mail: rkhan@kth.se [Division of Functional Materials, Royal Institute of Technology (KTH), 16440, Kista, Stockholm (Sweden); Toprak, Muhammet S., E-mail: toprak@kth.se [Division of Functional Materials, Royal Institute of Technology (KTH), 16440, Kista, Stockholm (Sweden); Muhammed, Mamoun [Division of Functional Materials, Royal Institute of Technology (KTH), 16440, Kista, Stockholm (Sweden)

    2012-03-15

    In this work we report, for the first time, on microwave assisted synthesis of wurtzite ZnS quantum dots (QDs) in controlled reaction at temperature as low as 150 Degree-Sign C. The synthesis can be done in different microwave absorbing solvents with multisource or single source precursors. The QDs are less than 3 nm in size as characterized by transmission electron microscopy (TEM) using selected area electron diffraction (SAED) patterns to confirm the wurtzite phase of ZnS QDs. The optical properties were investigated by UV-Vis absorption which shows blue shift in absorption compared to bulk wurtzite ZnS due to quantum confinement effects. The photoluminescence (PL) spectra of QDs reveal point defects related emission of ZnS QDs. - Graphical abstract: Microwave assisted synthesis of wurtzite ZnS quantum dots (QDs) have been achieved in controlled reaction at temperature as low as 150 Degree-Sign C. The synthesis was performed in different microwave absorbing solvents with multisource or single source precursors for very short reaction periods due to effective heating with microwaves. Highlights: Black-Right-Pointing-Pointer Wurtzite a high temperature phase of ZnS was synthesized at low temperature. Black-Right-Pointing-Pointer Low temperature synthesis was possible because of the use of microwave absorbing solvents. Black-Right-Pointing-Pointer Capping agent was used to control the size of Quantum Dots. Black-Right-Pointing-Pointer Two different systems were developed using single molecular precursor and multisource precursors.

  11. Green synthesis of highly efficient CdSe quantum dots for quantum-dots-sensitized solar cells

    SciTech Connect

    Gao, Bing; Shen, Chao; Zhang, Mengya; Yuan, Shuanglong; Yang, Yunxia, E-mail: yangyunxia@ecust.edu.cn, E-mail: grchen@ecust.edu.cn; Chen, Guorong, E-mail: yangyunxia@ecust.edu.cn, E-mail: grchen@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhang, Bo [Department of Physics, East China University of Science and Technology, Shanghai 200237 (China)

    2014-05-21

    Green synthesis of CdSe quantum dots for application in the quantum-dots-sensitized solar cells (QDSCs) is investigated in this work. The CdSe QDs were prepared with glycerol as the solvent, with sharp emission peak, full width at half maximum around 30?nm, and absorption peak from 475?nm to 510?nm. The reaction is environmental friendly and energy saving. What's more, the green synthesized CdSe QDs are coherence to the maximum remittance region of the solar spectrum and suitable as sensitizers to assemble onto TiO{sub 2} electrodes for cell devices application. What's more, the dynamic procedure of the carriers' excitation, transportation, and recombination in the QDSCs are discussed. Because the recombination of the electrons from the conduction band of TiO{sub 2}'s to the electrolyte affects the efficiency of the solar cells greatly, 3-Mercaptopropionic acid capped water-dispersible QDs were used to cover the surface of TiO{sub 2}. The resulting green synthesized CdSe QDSCs with Cu{sub 2}S as the electrode show a photovoltaic performance with a conversion efficiency of 3.39%.

  12. Synthesis of strongly fluorescent graphene quantum dots by cage-opening buckminsterfullerene.

    PubMed

    Chua, Chun Kiang; Sofer, Zden?k; Šimek, Petr; Jankovský, Ond?ej; Klímová, Kate?ina; Bakardjieva, Snejana; Hrdli?ková Ku?ková, Št?pánka; Pumera, Martin

    2015-03-24

    Graphene quantum dots is a class of graphene nanomaterials with exceptional luminescence properties. Precise dimension control of graphene quantum dots produced by chemical synthesis methods is currently difficult to achieve and usually provides a range of sizes from 3 to 25 nm. In this work, fullerene C60 is used as starting material, due to its well-defined dimension, to produce very small graphene quantum dots (?2-3 nm). Treatment of fullerene C60 with a mixture of strong acid and chemical oxidant induced the oxidation, cage-opening, and fragmentation processes of fullerene C60. The synthesized quantum dots were characterized and supported by LDI-TOF MS, TEM, XRD, XPS, AFM, STM, FTIR, DLS, Raman spectroscopy, and luminescence analyses. The quantum dots remained fully dispersed in aqueous suspension and exhibited strong luminescence properties, with the highest intensity at 460 nm under a 340 nm excitation wavelength. Further chemical treatments with hydrazine hydrate and hydroxylamine resulted in red- and blue-shift of the luminescence, respectively. PMID:25761306

  13. Synthesis and characterization of surface-modified colloidal CdTe Quantum Dots

    SciTech Connect

    Rajh, T. (Inst. of Nuclear Sciences, Belgrade (Yugoslavia)); Micic, O.I.; Nozik, A.J. (National Renewable Energy Lab., Golden, CO (United States))

    1993-11-18

    The controlled synthesis of quantized colloidal CdTe nanocrystals (in aqueous solutions) with narrow size distributions and stabilized against rapid oxidation was achieved by capping the quantum dot particles with 3-mercapto-1,2-propanediol. Nanocrystals (i.e., quantum dots) with mean diameters of 20, 25, 35, and 40 A were produced. Optical absorption spectra showed strong excitonic peaks at the smallest size; the absorption coefficient was shown to follow an inverse cube dependence on particle diameter, while the extinction coefficient per particle remained constant. The quantum yield for photoluminescence increased with decreasing particle size and reached 20% at 20 A. The valence band edges of the CdTe quantum dots were determined by pulse radiolysis experiments (hole injection from oxidizing radicals); the bandgaps were estimated from pulse radiolysis data (redox potentials of hole and electron injecting radicals) and from the optical spectra. The dependence of the CdTe bandgap on quantum dot size was found to be much weaker than predicted by the effective mass approximation; this result is consistent with recently published theoretical calculations by several groups. 36 refs., 5 figs., 1 tab.

  14. Synthesis and optical properties of colloidal core-shell semiconductor nanocrystals quantum dots for sensory application

    Microsoft Academic Search

    Pham Thu Nga; Nguyen Van Chuc; Vu Due Chinh; Nguyen Xuan Nghia; Phan Tien Dung; Pham Thai Cuong; Chu Viet Ha; Vu Hong Hanh; Vu Thi Kim Lien; Dao Nguyen Thuan; C. Barthou; P. Benalloul; M. Romanelli; A. Maitre

    2006-01-01

    We present results on the synthesis of core-shell CdSe\\/ZnS semiconductor nanocrystal quantum dots (NQDs) and their optical enhancement properties. A very strong and narrow photoluminescence is observed for sizes varying from 2 to 5 nm. Using an effective mass theory, we model the energy shift for the first excited state for core and core\\/shell NQDs. Core\\/shell heterostructure can be used

  15. Synthesis and characterization of quantum dots designed for biomedical use.

    PubMed

    Kuzyniak, Weronika; Adegoke, Oluwasesan; Sekhosana, Kutloano; D'Souza, Sarah; Tshangana, Sesethu Charmaine; Hoffmann, Björn; Ermilov, Eugeny A; Nyokong, Tebello; Höpfner, Michael

    2014-05-15

    Semiconductor quantum dots (QDs) have become promising nanoparticles for a wide variety of biomedical applications. However, the major drawback of QDs is their potential toxicity. Here, we determined possible cytotoxic effects of a set of QDs by systematic photophysical evaluation in vitro as well as in vivo. QDs were synthesized by the hydrothermal aqueous route with sizes in the range of 2.0-3.5 nm. Cytotoxic effects of QDs were studied in the human pancreatic carcinoid cell line BON. Cadmium telluride QDs with or without zinc sulfide shell and coated with 3-mercaptopropionic acid (MPA) were highly cytotoxic even at nanomolar concentrations. Capping with l-glutathione (GSH) or thioglycolic acid (TGA) reduced the cytotoxicity of cadmium telluride QDs and cadmium selenide QDs. Determination of the toxicity of QDs revealed IC50 values in the micromolar range. In vivo studies showed good tolerability of CdSe QDs with ZnS shell and GSH capping. We could demonstrate that QDs with ZnS shell and GSH capping exhibit low toxicity and good tolerability in cell models and living organisms. These QDs appear to be promising candidates for biomedical applications such as drug delivery for enhanced chemotherapy or targeted delivery of light sensitive substances for photodynamic therapy. PMID:24657286

  16. Synthesis of indium sulphide quantum dots in perfluoronated ionomer membrane

    SciTech Connect

    Sumi, R. [Centre for Nanotechnology Research, VIT University, Vellore (India); Warrier, Anita R.; Vijayan, C. [Department of Physics, Indian Institute of Technology, Chennai (India)

    2014-01-28

    In this paper, we demonstrate a simple and efficient method for synthesis of ?-indium sulphide (In{sub 2}S{sub 3}) nanoparticles embedded in an ionomer matrix (nafion membrane). The influence of reaction temperature on structural, compositional and optical properties of these films were analysed using X-Ray Diffraction, EDAX, UV-Vis absorption spectroscopy and photoluminescence studies. Average particle diameter was estimated using modified effective mass approximation method. Absorption spectra of In{sub 2}S{sub 3} nanoparticles show blue shift compared to bulk In{sub 2}S{sub 3}, indicating strong quantum size confinement effects. PL emission in the wavelength range 530–600 nm was recorded using a 488 nm line from an Ar{sup +} laser as the excitation source.

  17. Synthesis of indium sulphide quantum dots in perfluoronated ionomer membrane

    NASA Astrophysics Data System (ADS)

    Sumi, R.; Warrier, Anita R.; Vijayan, C.

    2014-01-01

    In this paper, we demonstrate a simple and efficient method for synthesis of ?-indium sulphide (In2S3) nanoparticles embedded in an ionomer matrix (nafion membrane). The influence of reaction temperature on structural, compositional and optical properties of these films were analysed using X-Ray Diffraction, EDAX, UV-Vis absorption spectroscopy and photoluminescence studies. Average particle diameter was estimated using modified effective mass approximation method. Absorption spectra of In2S3 nanoparticles show blue shift compared to bulk In2S3, indicating strong quantum size confinement effects. PL emission in the wavelength range 530-600 nm was recorded using a 488 nm line from an Ar+ laser as the excitation source.

  18. Synthesis and structural characterization of ZnTe/ZnSe core/shell tunable quantum dots

    E-print Network

    Guan, Juan

    2008-01-01

    Colloidal semiconductor nanocrystals or quantum dots have attracted much attention recently with their unique optical properties. Here we present a novel approach to synthesize ZnTe/ZnSe core/shell tunable quantum dots. ...

  19. Cluster-seeded synthesis of doped CdSe:Cu4 quantum dots.

    PubMed

    Jawaid, Ali M; Chattopadhyay, Soma; Wink, Donald J; Page, Leah E; Snee, Preston T

    2013-04-23

    We report here a method for synthesizing CdSe quantum dots (QDs) containing copper such that each QD is doped with four copper ions. The synthesis is a derivative of the cluster-seed method, whereby organometallic clusters act as nucleation centers for quantum dots. The method is tolerant of the chemical identity of the seed; as such, we have doped four copper ions into CdSe QDs using [Na(H2O)3]2[Cu4(SPh)6] as a cluster seed. The controlled doping allows us to monitor the photophysical properties of guest ions with X-ray spectroscopy, specifically XANES and EXAFS at the copper K-edge. These data reveal that copper can capture both electrons and holes from photoexcited CdSe QDs. When the dopant is oxidized, photoluminescence is quenched and the copper ions translocate within the CdSe matrix, which slows the return to an emissive state. PMID:23441602

  20. Droplet-based microreactor for synthesis of water-soluble Ag2S quantum dots.

    PubMed

    Shu, Yun; Jiang, Peng; Pang, Dai-Wen; Zhang, Zhi-Ling

    2015-07-10

    A droplet-based microreactor was used for synthesis of water-soluble Ag2S quantum dots (QDs). Monodispersed Ag2S nanoparticles with a surface of carboxylic acid-terminated were synthesized in the droplet microreactor. The x-ray powder diffraction results indicated products were monoclinic Ag2S nanocrystals. Furthermore, different-sized Ag2S QDs that were near-infrared-emitting or visible-emitting were continuously stably synthesized in droplet microreactors at different temperatures. We believe we offer a new method for obtaining different-sized Ag2S nanoparticles. PMID:26067160

  1. Droplet-based microreactor for synthesis of water-soluble Ag2S quantum dots

    NASA Astrophysics Data System (ADS)

    Shu, Yun; Jiang, Peng; Pang, Dai-Wen; Zhang, Zhi-Ling

    2015-07-01

    A droplet-based microreactor was used for synthesis of water-soluble Ag2S quantum dots (QDs). Monodispersed Ag2S nanoparticles with a surface of carboxylic acid-terminated were synthesized in the droplet microreactor. The x-ray powder diffraction results indicated products were monoclinic Ag2S nanocrystals. Furthermore, different-sized Ag2S QDs that were near-infrared-emitting or visible-emitting were continuously stably synthesized in droplet microreactors at different temperatures. We believe we offer a new method for obtaining different-sized Ag2S nanoparticles.

  2. Microchemical systems for the synthesis of nanostructures : quantum dots

    E-print Network

    Baek, Jinyoung

    2012-01-01

    We have developed a continuous multi-stage high-temperature and high-pressure microfluidic system. High-pressure conditions enabled the use low molecular weight solvents that have previously not been available for quantum ...

  3. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Wang, Yanli; Xu, Tao; Liao, Haobo; Yao, Chenjie; Liu, Yuan; Li, Zhen; Chen, Zhiwen; Pan, Dengyu; Sun, Litao; Wu, Minghong

    2014-10-01

    Graphene quantum dots (GQDs) have various alluring properties and potential applications, but their large-scale applications are limited by current synthetic methods that commonly produce GQDs in small amounts. Moreover, GQDs usually exhibit polycrystalline or highly defective structures and thus poor optical properties. Here we report the gram-scale synthesis of single-crystalline GQDs by a facile molecular fusion route under mild and green hydrothermal conditions. The synthesis involves the nitration of pyrene followed by hydrothermal treatment in alkaline aqueous solutions, where alkaline species play a crucial role in tuning their size, functionalization and optical properties. The single-crystalline GQDs are bestowed with excellent optical properties such as bright excitonic fluorescence, strong excitonic absorption bands extending to the visible region, large molar extinction coefficients and long-term photostability. These high-quality GQDs can find a large array of novel applications in bioimaging, biosensing, light emitting diodes, solar cells, hydrogen production, fuel cells and supercapacitors.

  4. Facile synthesis of monodisperse Co3O4 quantum dots with efficient oxygen evolution activity.

    PubMed

    Shi, Nan; Cheng, Wei; Zhou, Han; Fan, Tongxiang; Niederberger, Markus

    2015-01-25

    Monodisperse, water-dispersible Co3O4 quantum dots with sizes of around 4.5 nm are prepared through a simple solution method. The resultant cobalt oxide quantum dots exhibit excellent visible-light-driven oxygen evolution activities in the [Ru(bpy)3](2+)-persulfate system under mild pH conditions. PMID:25485907

  5. Microwave-assisted synthesis of water-dispersed CdTe/CdSe core/shell type II quantum dots

    PubMed Central

    2011-01-01

    A facile synthesis of mercaptanacid-capped CdTe/CdSe (core/shell) type II quantum dots in aqueous solution by means of a microwave-assisted approach is reported. The results of X-ray diffraction and high-resolution transmission electron microscopy revealed that the as-prepared CdTe/CdSe quantum dots had a core/shell structure with high crystallinity. The core/shell quantum dots exhibit tunable fluorescence emissions by controlling the thickness of the CdSe shell. The photoluminescent properties were dramatically improved through UV-illuminated treatment, and the time-resolved fluorescence spectra showed that there is a gradual increase of decay lifetime with the thickness of CdSe shell. PMID:21711922

  6. Tuning the synthesis of ternary lead chalcogenide quantum dots by balancing precursor reactivity.

    PubMed

    Smith, Danielle K; Luther, Joseph M; Semonin, Octavi E; Nozik, Arthur J; Beard, Matthew C

    2011-01-25

    We report the synthesis and characterization of composition-tunable ternary lead chalcogenide alloys PbSe(x)Te(1-x), PbS(x)Te(1-x), and PbS(x)Se(1-x). This work explores the relative reaction rates of chalcogenide precursors to produce alloyed quantum dots (QDs), and we find the highly reactive bis(trimethylsilyl) (TMS(2))-based precursors allow for the homogeneous incorporation of anions. By varying the Pb to oleic acid ratio, we demonstrate size control of similar composition alloys. We find the resulting QDs are Pb-rich but the Pb/anion ratio is size- and composition-dependent in all alloyed QD as well as in PbSe, PbTe, and PbS QDs and is consistent with the reaction rates of the anion precursors. A more reactive anion precursor results in a lower Pb/anion ratio. PMID:21141910

  7. Synthesis and characterization of intrinsically radiolabeled quantum dots for bimodal detection

    PubMed Central

    Sun, Minghao; Hoffman, David; Sundaresan, Gobalakrishnan; Yang, Likun; Lamichhane, Narottam; Zweit, Jamal

    2012-01-01

    A novel approach was developed to synthesize radioactive quantum dots (r-QDs) thereby enabling both optical and radionuclide signals to be detected from the same intrinsic bimodal probe. This proof-of-concept is exemplified by the incorporation of the radionuclide 109Cadmium into the core/shell of the nanoparticle. Green and near infrared (NIR) emission intrinsic r-QDs were synthesized and characterized. Zwitterionic and Poly-polyethlene glycol (PEGylated) ligands were synthesized and used to coat r-QDs. Zwitterionic NIR r-QDs (quantum yield = 11%) and PEGylated NIR r-QDs (quantum yield = 14%) with an average size of 13.8 nm and 16.8 nm were obtained respectively. The biodistribution of NIR zwitterionic and PEGylated r-QDs in nude mice was investigated and zwitterionic r-QDs showed longer blood circulation (t1/2 = 21.4±1.1 hrs) than their PEGylated counterparts (t1/2 = 6.4±0.5 min). Both zwitterionic and PEGylated r-QDs exhibited progressive accumulation in the liver and spleen, but the magnitude of the accumulation (%ID/g) was about 3-6 fold higher with the PEGylated r-QDs at all the time points. The results demonstrated the feasibility of r-QDs synthesis in quantitative yield and retention of fluorescence following incorporation of radioactivity into the core/shell of the nanoparticle. The gamma signal from the same fluorescent elemental material enabled quantitative and robust pharmacokinetic measurements and how these changed depended on the type of coating ligands used. This strategy for intrinsically radio-labeling the QDs is currently being implemented in our laboratory for the incorporation of other radiometals. PMID:23133807

  8. Ultrasmall silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Zwanenburg, F. A.; van Loon, A. A.; Steele, G. A.; van Rijmenam, C. E. W. M.; Balder, T.; Fang, Y.; Lieber, C. M.; Kouwenhoven, L. P.

    2009-06-01

    We report the realization of extremely small single quantum dots in p-type silicon nanowires, defined by Schottky tunnel barriers with Ni and NiSi contacts. Despite their ultrasmall size the NiSi-Si-NiSi nanowire quantum dots readily allow spectroscopy of at least ten consecutive holes, and additionally they display a pronounced excited-state spectrum. The Si channel lengths are visible in scanning electron microscopy images and match the dimensions predicted by a model based on the Poisson equation. The smallest dots (<12 nm) allow identification of the last charge and thus the creation of a single-charge quantum dot.

  9. Quantum Dots: Theory

    SciTech Connect

    Vukmirovic, Nenad; Wang, Lin-Wang

    2009-11-10

    This review covers the description of the methodologies typically used for the calculation of the electronic structure of self-assembled and colloidal quantum dots. These are illustrated by the results of their application to a selected set of physical effects in quantum dots.

  10. Synthesis, characterization and application of luminescent quantum dots and microcrystalline phosphors

    NASA Astrophysics Data System (ADS)

    Kang, Zhitao

    A phosphor is a substance which emits light when excited by radiation. For traditional powder phosphors impurity elements are usually incorporated into the host material to act as the luminescent centers. The fluorescent quantum dot (QD) is a new kind of phosphor, "quantum phosphor", with an extremely small size of 1˜10 nm and size dependent tunable emission color from the same pure semiconductor material due to quantum confinement. In this research Si QDs embedded in SiOx or SiNx thin films, which could emit light in the entire visible range from 440 nm to 840 nm by controlling their size and/or their matrix, were synthesized by evaporation or plasma enhanced chemical vapor deposition (PECVD) techniques. Various shades of "white" could be obtained from multi-layered SiNx film structures by controlling the size of Si QDs and layer thickness. It was shown that the combination of these films can produce white emission spectra with superior color rendering properties compared to conventional fluorescent tubes. Such Si-based QDs can be used as down-converting phosphors to coat a blue/UV LED to generate white light, providing a less expensive fabrication process to obtain advanced solid state lighting devices that, compared to conventional fragile lamps, are more efficient, longer lived, and provide a full sunlight spectrum. As a supplement, free CdTe QDs with emission colors spanning 520˜700 nm and quantum efficiency (QE) up to 54%, were synthesized using a colloidal chemical method for white LED applications. White PL and a range of emission colors were obtained from mixed CdTe QD samples excited by a 420 nm blue LED. Another part of this research was to develop a new x-ray powder phosphor, ZnTe:O, for biological imaging applications used in CCD-based synchrotron x-ray detectors. As a lower band-gap semiconductor, ZnTe could theoretically achieve a higher x-ray luminescence efficiency than its counterpart, ZnSe, which is an x-ray phosphor host with the highest known x-ray conversion efficiency. However, ZnTe had not been developed as an efficient phosphor material, probably because it is very sensitive to moisture during synthesis. Conventional wet synthesis techniques used for ZnS and ZnSe phosphors fabrication are not applicable to ZnTe phosphor synthesis. In this research, a unique dry synthesis process, including gaseous dry doping and etching procedures, was developed to synthesize ZnTe:O phosphors. The excellent x-ray luminescence results of oxygen doped ZnTe, including high efficiency, high resolution, fast decay, low afterglow and an improved spectral match to the CCD detector, indicated that ZnTe:O is a promising phosphor candidate for x-ray imaging applications.

  11. Electrochemical synthesis of small-sized red fluorescent graphene quantum dots as a bioimaging platform.

    PubMed

    Tan, Xiaoyun; Li, Yunchao; Li, Xiaohong; Zhou, Shixin; Fan, Louzhen; Yang, Shihe

    2015-02-14

    We report water-soluble, 3 nm uniform-sized graphene quantum dots (GQDs) with red emission prepared by electrochemical exfoliation of graphite in K2S2O8 solution. Such GQDs show a great potential as biological labels for cellular imaging. PMID:25567527

  12. Synthesis of high-Curie-temperature Fe0.02Ge0.98 quantum dots.

    PubMed

    Xiu, Faxian; Wang, Yong; Kou, Xufeng; Upadhyaya, Pramey; Zhou, Yi; Zou, Jin; Wang, Kang L

    2010-08-25

    Self-assembled Fe(0.02)Ge(0.98) dilute magnetic quantum dots show a high Curie temperature above 400 K. Such extraordinary magnetic properties can potentially resolve the critical problem of power dissipation in today's integrated circuits and lead to the realization of a new class of spintronics devices. PMID:20672800

  13. Controlled synthesis of ZnS quantum dots with cubic crystallinity by laser ablation in solution

    NASA Astrophysics Data System (ADS)

    Barberio, M.; Imbrogno, A.; Stranges, F.; Bonanno, A.; Xu, F.

    2015-05-01

    In this work, we propose using the pulsed laser ablation technique in solution as a ‘chemical-free’ method for forming biatomic or multiatomic semiconductor quantum dots. In particular, we present the results of the formation and characterization of ZnS nanoparticles by laser ablation in solution as a case study for all semiconductors of the III and IV groups. We obtain results comparable to those obtained by chemical methods without the use of surfactants and without changing the crystallinity of the precursor target. Colloidal solutions of nanoparticles with different dimensions were obtained by varying the irradiation time during laser ablation. A study of the morphology and changes in the band edge indicates the formation of ZnS quantum dots with dimensions <4 nm for an irradiation time of less than 10 s. The changes in the band edge were studied in terms of the effective mass approximation model, which indicates, for low irradiation times, the formation of quantum dots with radii ranging from 2.5–2.8 nm and band edges ranging from 4.21–4.15 eV. Raman measurements indicate that quantum dots have the same crystallinity as bulk grains, while photoluminescence measurements clearly show a rearrangement of Zn and S atoms, eliminating the vacancies defects of the bulk material.

  14. Synthesis of Highly Luminescent, Bio?Compatible ZnO Quantum Dots Doped with Na

    Microsoft Academic Search

    B. Vinitha; K. Manzoor; R. S. Ajimsha; P. M. Aneesh; M. K. Jayaraj

    2008-01-01

    Na doped ZnO quantum dots of average size 6 nm were prepared using wet chemical route at room temperature without any capping agents and the formation of nanoparticles is confirmed by transmission electron microscope (TEM) and x?ray diffraction (XRD) analysis. Optical band gap of ZnO: Na is found to be blue shifted with decrease in size due to quantum size effects.

  15. CdTe and CdSe quantum dots: synthesis, characterizations and applications in agriculture

    NASA Astrophysics Data System (ADS)

    Dieu Thuy Ung, Thi; Tran, Thi Kim Chi; Nga Pham, Thu; Nghia Nguyen, Duc; Khang Dinh, Duy; Liem Nguyen, Quang

    2012-12-01

    This paper highlights the results of the whole work including the synthesis of highly luminescent quantum dots (QDs), characterizations and testing applications of them in different kinds of sensors. Concretely, it presents: (i) the successful synthesis of colloidal CdTe and CdSe QDs, their core/shell structures with single- and/or double-shell made by CdS, ZnS or ZnSe/ZnS; (ii) morphology, structural and optical characterizations of the synthesized QDs; and (iii) testing examples of QDs as the fluorescence labels for agricultural-bio-medical objects (for tracing residual pesticide in agricultural products, residual clenbuterol in meat/milk and for detection of H5N1 avian influenza virus in breeding farms). Overall, the results show that the synthesized QDs have very good crystallinity, spherical shape and strongly emit at the desired wavelengths between ˜500 and 700 nm with the luminescence quantum yield (LQY) of 30–85%. These synthesized QDs were used in fabrication of the three testing fluorescence QD-based sensors for the detection of residual pesticides, clenbuterol and H5N1 avian influenza virus. The specific detection of parathion methyl (PM) pesticide at a content as low as 0.05 ppm has been realized with the biosensors made from CdTe/CdS and CdSe/ZnSe/ZnS QDs and the acetylcholinesterase (AChE) enzymes. Fluorescence resonance energy transfer (FRET)-based nanosensors using CdTe/CdS QDs conjugated with 2-amino-8-naphthol-6-sulfonic acid were fabricated that enable detection of diazotized clenbuterol at a content as low as 10 pg ml?1. For detection of H5N1 avian influenza virus, fluorescence biosensors using CdTe/CdS QDs bound on the surface of chromatophores extracted and purified from bacteria Rhodospirillum rubrum were prepared and characterized. The specific detection of H5N1 avian influenza virus in the range of 3–50 ng ?l?1 with a detection limit of 3 ng ?L?1 has been performed based on the antibody-antigen recognition.

  16. Quantum Dots—From Synthesis to Applications in Biomedicine and Life Sciences

    PubMed Central

    Drummen, Gregor P.C.

    2010-01-01

    Imagine devices or particles so small that they are invisible to the naked eye. Imagine that such entities could be used to patrol our bodies and autonomously augment endogenous defense and repair mechanisms. Imagine the defeat of illness at a fraction of the current costs. Bionanotechnology is the field of science that deals with just that: the development of imaging, tracking, targeting, sensing, diagnostic, and eventually therapeutic capabilities based on particles in the nanometer range, i.e., “nanoparticles”. Within the extensive group of nanoparticles, semiconducting quantum dots play a central and prominent role. Quantum dots excel at a myriad of physical properties, most notably their fluorescent properties, such as high quantum yield, photo-stability, broad absorption spectra, and their remarkable size-dependent emission-tunability. PMID:20162007

  17. Synthesis of Non-blinking Semiconductor Quantum Dots Emitting in the Near-Infrared

    SciTech Connect

    Dennis, Allison M. [Los Alamos National Laboratory; Mangum, Benjamin D. [Los Alamos National Laboratory; Piryatinski, Andrei [Los Alamos National Laboratory; Park, Young-Shin [Los Alamos National Laboratory; Htoon, Han [Los Alamos National Laboratory; Hollingsworth, Jennifer A. [Los Alamos National Laboratory

    2012-06-21

    Our previous work demonstrates that Quasi-Type II CdSe/CdS core-shell quantum dots with thick shells (3-5 nm) exhibit unique photophysical characteristics, including improved chemical robustness over typical thin-shelled core/shell systems and the elimination of blinking through suppression of nonradiative Auger recombination. Here we describe a new thick-shelled heterostructure, InP/CdS, which exhibits a Type II bandgap alignment producing near-infrared (NIR) emission. Samples with a range of shell thicknesses were synthesized, enabling shell-thickness-dependent study of the absorbance and emission spectra, fluorescence lifetimes, and quantum yields. InP/CdS/ZnS core/shell/shell structures were also synthesized to reduce cadmium exposure for applications in the biological environment. Single particle spectroscopy indicates reduced blinking and improved photostability with increasing shell thickness, resulting in thick-shelled dots that are appropriate for single-particle tracking measurements with NIR emission.

  18. Synthesis, structure, and optical properties of colloidal GaN quantum dots

    Microsoft Academic Search

    O. I. Mic´ic´; S. P. Ahrenkiel; D. Bertram; A. J. Nozik

    1999-01-01

    Colloidal chemistry was used to synthesize GaN quantum dots. A GaN precursor, polymeric gallium imide, {Ga(NH)3\\/2}n, which was prepared by the reaction of dimeric amidogallium with ammonia at room temperature, was heated in trioctylamine at 360 °C for one day to produce GaN nanocrystals. The GaN particles were separated, purified, and partially dispersed in a nonpolar solvent to yield transparent

  19. Application of Synthesized Quantum Dots for Cell Imaging

    Microsoft Academic Search

    Hengyi Xu; Feng Xu; Yonghua Xiong; Cuixiang Wan; Jingfei Zhang; Hua Wei; Jiang Zhu

    2009-01-01

    Quantum dots (QDs) have received considerable attention due to their advantages and are widely used in biological studies, especially for multiplexed staining assays and immunological assays. Here we report an easy method for quantum dot synthesis and encapsulation, and use for efficient bioconjugation with secondary antibody. For the application of QDs-antibody conjugates, we approached a fast dot blotting immunological assay,

  20. Electrochromic Nanocrystal Quantum Dots

    Microsoft Academic Search

    Congjun Wang; Moonsub Shim; Philippe Guyot-Sionnest

    2001-01-01

    The optical properties of colloidal semiconductor nanocrystal quantum dots can be tuned by an electrochemical potential. The injection of electrons into the Lowest Unoccupied Quantum Confined Orbital (LUQCO) leads to an extraordinary electrochromic response with novel characteristics. These include a strong size-tunable mid-infrared absorption corresponding to an intraband transition, a bleach of the visible interband exciton transitions and a quench

  1. Synthesis of positively charged CdTe quantum dots and detection for uric acid

    NASA Astrophysics Data System (ADS)

    Zhang, Tiliang; Sun, Xiangying; Liu, Bin

    2011-09-01

    The CdTe dots (QDs) coated with 2-Mercaptoethylamine was prepared in aqueous solution and characterized with fluorescence spectroscopy, UV-Vis absorption spectra, high-resolution transmission electron microscopy and infrared spectroscopy. When the ?ex = 350 nm, the fluorescence peak of positively charged CdTe quantum dots is at 592 nm. The uric acid is able to quench their fluorescence. Under optimum conditions, the change of fluorescence intensity is linearly proportional to the concentration of uric acid in the range 0.4000-3.600 ?mol L -1, and the limit of detection calculated according to IUPAC definitions is 0.1030 ?mol L -1. Compared with routine method, the present method determines uric acid in human serum with satisfactory results. The mechanism of this strategy is due to the interaction of the tautomeric keto/hydroxyl group of uric acid and the amino group coated at the CdTe QDs.

  2. Addition of Zn during the phosphine-based synthesis of indium phospide quantum dots: doping and surface passivation

    PubMed Central

    Vinokurov, Alexander A; Lebedev, Oleg I; Kuznetsova, Tatiana A; Dorofeev, Sergey G

    2015-01-01

    Summary Zinc-doped InP(Zn) colloidal quantum dots (QDs) with narrow size distribution and low defect concentration were grown for the first time via a novel phosphine synthetic route and over a wide range of Zn doping. We report the influence of Zn on the optical properties of the obtained quantum dots. We propose a mechanism for the introduction of Zn in the QDs and show that the incorporation of Zn atoms into the InP lattice leads to the formation of Zn acceptor levels and a luminescence tail in the red region of the spectra. Using photochemical etching with HF, we confirmed that the Zn dopant atoms are situated inside the InP nanoparticles. Moreover, doping with Zn is accompanied with the coverage of the QDs by a zinc shell. During the synthesis Zn myristate covers the QD nucleus and inhibits the particle growth. At the same time the zinc shell leads to an increase of the luminescence quantum yield through the reduction of phosphorous dangling bonds. A scenario for the growth of the colloidal InP(Zn) QDs was proposed and discussed. PMID:26114082

  3. Quantum Dot Light Emitting Diode

    SciTech Connect

    Keith Kahen

    2008-07-31

    The project objective is to create low cost coatable inorganic light emitting diodes, composed of quantum dot emitters and inorganic nanoparticles, which have the potential for efficiencies equivalent to that of LEDs and OLEDs and lifetime, brightness, and environmental stability between that of LEDs and OLEDs. At the end of the project the Recipient shall gain an understanding of the device physics and properties of Quantum-Dot LEDs (QD-LEDs), have reliable and accurate nanocrystal synthesis routines, and have formed green-yellow emitting QD-LEDs with a device efficiency greater than 3 lumens/W, a brightness greater than 400 cd/m2, and a device operational lifetime of more than 1000 hours. Thus the aim of the project is to break the current cost-efficiency paradigm by creating novel low cost inorganic LEDs composed of inorganic nanoparticles.

  4. Quantum Dot Light Emitting Diode

    SciTech Connect

    Kahen, Keith

    2008-07-31

    The project objective is to create low cost coatable inorganic light emitting diodes, composed of quantum dot emitters and inorganic nanoparticles, which have the potential for efficiencies equivalent to that of LEDs and OLEDs and lifetime, brightness, and environmental stability between that of LEDs and OLEDs. At the end of the project the Recipient shall gain an understanding of the device physics and properties of Quantum-Dot LEDs (QD-LEDs), have reliable and accurate nanocrystal synthesis routines, and have formed green-yellow emitting QD-LEDs with a device efficiency greater than 3 lumens/W, a brightness greater than 400 cd/m{sup 2}, and a device operational lifetime of more than 1000 hours. Thus the aim of the project is to break the current cost-efficiency paradigm by creating novel low cost inorganic LEDs composed of inorganic nanoparticles.

  5. Chiral quantum dot based materials

    NASA Astrophysics Data System (ADS)

    Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii

    2014-05-01

    Recently, the use of stereospecific chiral stabilising molecules has also opened another avenue of interest in the area of quantum dot (QD) research. The main goal of our research is to develop new types of technologically important quantum dot materials containing chiral defects, study their properties and explore their applications. The utilisation of chiral penicillamine stabilisers allowed the preparation of new water soluble white emitting CdS quantum nanostructures which demonstrated circular dichroism in the band-edge region of the spectrum. It was also demonstrated that all three types of QDs (D-, L-, and Rac penicillamine stabilised) show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. In this work the chiral CdS based quantum nanostructures have also been doped by copper metal ions and new chiral penicilamine stabilized CuS nanoparticles have been prepared and investigated. It was found that copper doping had a strong effect at low levels in the synthesis of chiral CdS nanostructures. We expect that this research will open new horizons in the chemistry of chiral nanomaterials and their application in biotechnology, sensing and asymmetric synthesis.

  6. One-step and rapid synthesis of high quality alloyed quantum dots (CdSe-CdS) in aqueous phase by microwave irradiation with controllable temperature

    SciTech Connect

    Qian Huifeng [College of Chemistry and Chemical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240 (China); Li Liang [College of Chemistry and Chemical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240 (China); Ren Jicun [College of Chemistry and Chemical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240 (China)]. E-mail: jicunren@sjtu.edu.cn

    2005-10-06

    In this paper, we presented a seed-mediated approach for rapid synthesis of high quality alloyed quantum dots (CdSe-CdS) in aqueous phase by microwave irradiation with controllable temperature in 1 h. In the synthesis, CdSe seeds were first formed by the reaction of NaHSe and Cd{sup 2+}, and then alloyed quantum dots (CdSe-CdS) were rapidly produced by releasing of sulfide ions from 3-mercaptopropionic acid as sulfide source with microwave irradiation. The alloyed quantum dots synthesized had good optical properties, the quantum yield was up to 25%, and the full width at half maximum of the emission spectrum peak was about 28 nm. The as-prepared alloyed CdSe-CdS QDs were characterized by XRD, XPS and ICP-AES in order to explore the structure and component of the alloyed nanocrystals and the reaction mechanism. We speculate that the alloyed CdSe-CdS quantum dots may exist a gradient internal structure according to our preliminary results.

  7. Quantum dot solar cells

    Microsoft Academic Search

    A. J Nozik

    2002-01-01

    Quantum dot (QD) solar cells have the potential to increase the maximum attainable thermodynamic conversion efficiency of solar photon conversion up to about 66% by utilizing hot photogenerated carriers to produce higher photovoltages or higher photocurrents. The former effect is based on miniband transport and collection of hot carriers in QD array photoelectrodes before they relax to the band edges

  8. Nanoparticles & Quantum Dots

    E-print Network

    Strathclyde, University of

    Nanoparticles & Quantum Dots in the SEM Paul Edwards & Robert Martin #12;Outline & Acknowledgments, David Flint & Nial Wheate (SIPBS); David Stirling (UWS) · Gold nanorods Yinan Zhang & Yu Chen (Physics Society: S.Brown, P.Nativo, J.-A.Smith, D.Stirling, P.R.Edwards, D.J.Flint, D.Graham & N

  9. Infrared Quantum Dot Intersubband

    E-print Network

    Krishna, Sanjay

    , targeting and tracking, medical diagnosis, law enforcement, environmental monitoring, and space science [1Infrared Quantum Dot Intersubband Photodetectors Are a Promising Technology for Multiwavelength IR, or QDIP. Recent advances in the epitaxial growth of strained heterostructures, such as Ga(In)As on Ga

  10. Colloidal quantum dot photovoltaics

    Microsoft Academic Search

    Susanna M. Thon; Edward H. Sargent

    2011-01-01

    Colloidal quantum dot solar cells offer the possibility of combining low-cost, low-temperature solution-processing with efficient photon harvesting over the entire solar spectrum. Their quantum size effect tunability offers a path to tandem and triple-junction cells. The first solution-processed infrared solar cells were reported in 2005; the latest devices offer greater than 5% AM1.5 PCE and many paths remain for further

  11. Facile synthesis of soluble graphene quantum dots and its improved property in detecting heavy metal ions.

    PubMed

    Zhou, Chengfeng; Jiang, Wei; Via, Brian K

    2014-06-01

    An effective approach to produce graphene quantum dots (GQDs) has been developed, which based on the cutting of graphene oxide (GO) powder into smaller pieces and being reduced by a green approach, using sodium polystyrene sulfonate (PSS) as a dispersant and l-ascorbic acid (l-AA) as the reducing agent, which is environmentally friendly. Then the as-prepared GQDs were further used for the detection of heavy metal ions Pb(2+). This kind of GQDs has greater solubility in water and is more biocompatible than GO that has been reduced by hydrazine hydrate. The few-layers of GQDs with defects and residual OH groups were shown to be particularly well suited for the determination of metal ions in the liquid phase using an electrochemical method, in which a remarkably low detection limit of 7×10(-9)M for Pb(2+) was achieved. PMID:24732395

  12. Quantum dot cascade laser

    NASA Astrophysics Data System (ADS)

    Zhuo, Ning; Liu, Feng Qi; Zhang, Jin Chuan; Wang, Li Jun; Liu, Jun Qi; Zhai, Shen Qiang; Wang, Zhan Guo

    2014-03-01

    We demonstrated an unambiguous quantum dot cascade laser based on InGaAs/GaAs/InAs/InAlAs heterostructure by making use of self-assembled quantum dots in the Stranski-Krastanow growth mode and two-step strain compensation active region design. The prototype generates stimulated emission at ? ~ 6.15 ?m and a broad electroluminescence band with full width at half maximum over 3 ?m. The characteristic temperature for the threshold current density within the temperature range of 82 to 162 K is up to 400 K. Moreover, our materials show the strong perpendicular mid-infrared response at about 1,900 cm-1. These results are very promising for extending the present laser concept to terahertz quantum cascade laser, which would lead to room temperature operation.

  13. Quantum dot cascade laser

    PubMed Central

    2014-01-01

    We demonstrated an unambiguous quantum dot cascade laser based on InGaAs/GaAs/InAs/InAlAs heterostructure by making use of self-assembled quantum dots in the Stranski-Krastanow growth mode and two-step strain compensation active region design. The prototype generates stimulated emission at ??~?6.15 ?m and a broad electroluminescence band with full width at half maximum over 3 ?m. The characteristic temperature for the threshold current density within the temperature range of 82 to 162 K is up to 400 K. Moreover, our materials show the strong perpendicular mid-infrared response at about 1,900 cm-1. These results are very promising for extending the present laser concept to terahertz quantum cascade laser, which would lead to room temperature operation. PACS 42.55.Px; 78.55.Cr; 78.67.Hc PMID:24666965

  14. PREFACE: Quantum Dot 2010

    NASA Astrophysics Data System (ADS)

    Taylor, Robert A.

    2010-09-01

    These conference proceedings contain the written papers of the contributions presented at Quantum Dot 2010 (QD2010). The conference was held in Nottingham, UK, on 26-30 April 2010. The conference addressed topics in research on: 1. Epitaxial quantum dots (including self-assembled and interface structures, dots defined by electrostatic gates etc): optical properties and electron transport quantum coherence effects spin phenomena optics of dots in cavities interaction with surface plasmons in metal/semiconductor structures opto-electronics applications 2. Novel QD structures: fabrication and physics of graphene dots, dots in nano-wires etc 3. Colloidal quantum dots: growth (shape control and hybrid nanocrystals such as metal/semiconductor, magnetic/semiconductor) assembly and surface functionalisation optical properties and spin dynamics electrical and magnetic properties applications (light emitting devices and solar cells, biological and medical applications, data storage, assemblers) The Editors Acknowledgements Conference Organising Committee: Maurice Skolnick (Chair) Alexander Tartakovskii (Programme Chair) Pavlos Lagoudakis (Programme Chair) Max Migliorato (Conference Secretary) Paola Borri (Publicity) Robert Taylor (Proceedings) Manus Hayne (Treasurer) Ray Murray (Sponsorship) Mohamed Henini (Local Organiser) International Advisory Committee: Yasuhiko Arakawa (Tokyo University, Japan) Manfred Bayer (Dortmund University, Germany) Sergey Gaponenko (Stepanov Institute of Physics, Minsk, Belarus) Pawel Hawrylak (NRC, Ottawa, Canada) Fritz Henneberger (Institute for Physics, Berlin, Germany) Atac Imamoglu (ETH, Zurich, Switzerland) Paul Koenraad (TU Eindhoven, Nethehrlands) Guglielmo Lanzani (Politecnico di Milano, Italy) Jungil Lee (Korea Institute of Science and Technology, Korea) Henri Mariette (CNRS-CEA, Grenoble, France) Lu Jeu Sham (San Diego, USA) Andrew Shields (Toshiba Research Europe, Cambridge, UK) Yoshihisa Yamamoto (Stanford University, USA) Artur Zrenner (Paderborn University, Germany) International Programme Committee: Alexander Eychmüller (TU Dresden, Germany) Jonathan Finley (TU Munich, Germany) Dan Gammon (NRL, Washington, USA) Alexander Govorov (Ohio University, USA) Neil Greenham (Cavendish Laboratory, UK) Vladimir Korenev (Ioffe Institute, Russia) Leo Kouwenhoven (TU Delft, Netherlands) Wolfgang Langbein (Cardiff University, UK) Xavier Marie (CNRS Toulouse, France) David Ritchie (Cambridge, UK) Andrew Sachrajda (IMS, Ottawa, Canada) Katerina Soulantica (University of Toulouse, France) Seigo Tarucha (University of Tokyo, Japan) Carlos Tejedor (UAM, Madrid, Spain) Euijoon Yoon (Seoul National University, Korea) Ulrike Woggon (Tu Berlin, Germany) Proceedings edited and compiled by Profesor Robert A Taylor, University of Oxford

  15. Novel synthesis of ?-cyclodextrin functionalized CdTe quantum dots as luminescent probes

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-Feng; Zhou, Min; Chang, Yan-Ping; Ren, Cui-Ling; Chen, Hong-Li; Chen, Xing-Guo

    2012-12-01

    A novel, inexpensive procedure for the preparation of highly fluorescent and water-soluble CdTe quantum dots (QDs) using ?-cyclodextrin (?-CD) as surface-coating agents was fabricated through the substitution reaction at the C-6 position of mono-6-deoxy-6-(p-tolylsulfonyl)-cyclodextrin (6-TsO-?-CD) by the sbnd NH2 of (3-aminopropyl)triethoxysilane-coated CdTe QDs (APTES/CdTe QDs) under mild conditions. X-ray powder diffraction (XRD), Fourier transform infrared spectra (FT-IR), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), ultraviolet and visible (UV-vis) spectrophotometer, and fluorescence (FL) spectrophotometer were used to characterize the obtained nanoparticles, which proved that the CdTe QDs have been effectively modified by ?-CD. The quantum yields (QYs) of CdTe QDs, APTES/CdTe QDs and ?-CD/APTES/CdTe QDs in water comparative to Rhodamine 6G were about 17%, 12%, and 9%, respectively. A pair of isomer o,p'-DDT and p,p'-DDT was chosen as the template molecules to evaluate the molecular recognition properties of ?-CD/APTES/CdTe QDs. The results revealed that ?-CD/APTES/CdTe QDs simultaneously possessed unique optical properties of QDs and excellent molecules recognition ability of ?-CD through combining their individual distinct advantages.

  16. Quantum Dots and Colors

    NSDL National Science Digital Library

    2014-09-18

    Students are introduced to the physical concept of the colors of rainbows as light energy in the form of waves with distinct wavelengths, but in a different manner than traditional kaleidoscopes. Looking at different quantum dot solutions, they make observations and measurements, and graph their data. They come to understand how nanoparticles interact with absorbing photons to produce colors. They learn the dependence of particle size and color wavelength and learn about real-world applications for using these colorful liquids.

  17. One-step colloidal synthesis of biocompatible water-soluble ZnS quantum dot/chitosan nanoconjugates

    PubMed Central

    2013-01-01

    Quantum dots (QDs) are luminescent semiconductor nanocrystals with great prospective for use in biomedical and environmental applications. Nonetheless, eliminating the potential cytotoxicity of the QDs made with heavy metals is still a challenge facing the research community. Thus, the aim of this work was to develop a novel facile route for synthesising biocompatible QDs employing carbohydrate ligands in aqueous colloidal chemistry with optical properties tuned by pH. The synthesis of ZnS QDs capped by chitosan was performed using a single-step aqueous colloidal process at room temperature. The nanobioconjugates were extensively characterised by several techniques, and the results demonstrated that the average size of ZnS nanocrystals and their fluorescent properties were influenced by the pH during the synthesis. Hence, novel 'cadmium-free’ biofunctionalised systems based on ZnS QDs capped by chitosan were successfully developed exhibiting luminescent activity that may be used in a large number of possible applications, such as probes in biology, medicine and pharmacy. PMID:24308633

  18. One-step colloidal synthesis of biocompatible water-soluble ZnS quantum dot/chitosan nanoconjugates

    NASA Astrophysics Data System (ADS)

    Ramanery, Fábio P.; Mansur, Alexandra AP; Mansur, Herman S.

    2013-12-01

    Quantum dots (QDs) are luminescent semiconductor nanocrystals with great prospective for use in biomedical and environmental applications. Nonetheless, eliminating the potential cytotoxicity of the QDs made with heavy metals is still a challenge facing the research community. Thus, the aim of this work was to develop a novel facile route for synthesising biocompatible QDs employing carbohydrate ligands in aqueous colloidal chemistry with optical properties tuned by pH. The synthesis of ZnS QDs capped by chitosan was performed using a single-step aqueous colloidal process at room temperature. The nanobioconjugates were extensively characterised by several techniques, and the results demonstrated that the average size of ZnS nanocrystals and their fluorescent properties were influenced by the pH during the synthesis. Hence, novel 'cadmium-free' biofunctionalised systems based on ZnS QDs capped by chitosan were successfully developed exhibiting luminescent activity that may be used in a large number of possible applications, such as probes in biology, medicine and pharmacy.

  19. Synthesis, solubilization, and surface functionalization of highly fluorescent quantum dots for cellular targeting through a small molecule

    NASA Astrophysics Data System (ADS)

    Galloway, Justin F.

    To achieve long-term fluorescence imaging with quantum dots (QDs), a CdSe core/shell must first be synthesized. The synthesis of bright CdSe QDs is not trivial and as a consequence, the role of surfactant in nucleation and growth was investigated. It was found that the type of surfactant used, either phosphonic or fatty acid, played a pivotal role in the size of the CdSe core. The study of surfactant on CdSe synthesis, ultimately led to an electrical passivation method that utilized a short-chained phosphonic acid and highly reactive organometallic precursors to achieve high quantum yield (QY) as has been previously described. The synthesis of QDs using organometallic precursors and a phosphonic acid for passivation resulted in 4 out of 9 batches of QDs achieving QYs greater than 50% and 8 out of 9 batches with QYs greater than 35%. The synthesis of CdSe QDs was done in organic solutions rendering the surface of the particle hydrophobic. To perform cell-targeting experiments, QDs must be transferred to water. The transfer of QDs to water was successfully accomplished by using single acyl chain lipids. A systematic study of different lipid combinations and coatings demonstrated that 20-40 mol% single acyl chained lipids were able to transfer QDs to water resulting in monodispersed, stable QDs without adversely affecting the QY. The advantage to water solubilization using single acyl chain lipids is that the QD have a hydrodynamic radius less than 15 nm, QYs that can exceed 50% and additional surface functionalization can be down using the reactive sites incorporated into the lipid bilayer. QDs that are bright and stable in water were studied for the purpose of targeting G protein-coupled Receptors (GPCR). GPCRs are transmembrane receptors that internalize extracellular cues, and thus mediate signal transduction. The cyclic Adenosine Monophosphate Receptor 1 of the model organism Dictyostelium disodium was the receptor of interest. The Halo protein, a genetically modified dehalogenase, was added to the N-terminus of the cAR1 receptor without resulting in a phenotype. The Halo protein fused to cAR1 was then shown to bind an organic fluorophore by the cleavage of a chloroalkane bond. Though QDs functionalized with a chloroalkane were able to bind free Halo protein, no specific binding to the Halo protein fused to cAR1 was observed.

  20. Clinical Potential of Quantum Dots

    PubMed Central

    Iga, Arthur M.; Robertson, John H. P.; Winslet, Marc C.; Seifalian, Alexander M.

    2007-01-01

    Advances in nanotechnology have led to the development of novel fluorescent probes called quantum dots. Quantum dots have revolutionalized the processes of tagging molecules within research settings and are improving sentinel lymph node mapping and identification in vivo studies. As the unique physical and chemical properties of these fluorescent probes are being unraveled, new potential methods of early cancer detection, rapid spread and therapeutic management, that is, photodynamic therapy are being explored. Encouraging results of optical and real time identification of sentinel lymph nodes and lymph flow using quantum dots in vivo models are emerging. Quantum dots have also superseded many of the limitations of organic fluorophores and are a promising alternative as a research tool. In this review, we examine the promising clinical potential of quantum dots, their hindrances for clinical use and the current progress in abrogating their inherent toxicity. PMID:18317518

  1. Quantum dot micropatterning on si.

    PubMed

    Lambert, K; Moreels, I; Thourhout, D Van; Hens, Z

    2008-06-01

    Using InP and PbSe quantum dots, we demonstrate that the Langmuir-Blodgett technique is well-suited to coat nonflat surfaces with quantum dot monolayers. This allows deposition on silicon substrates covered by a developed patterned resist, which results in monolayer patterns with micrometer resolution. Atomic force microscopy and scanning electron microscopy reveal the formation of a densely packed monolayer that replicates predefined structures with high selectivity after photoresist removal. A large variety of shapes can be reproduced and, due to the excellent adhesion of the quantum dots to the substrate, the hybrid approach can be repeated on the same substrate. This final possibility leads to complex, large-area quantum dot monolayer structures with micrometer spatial resolution that may combine different types of quantum dots. PMID:18442279

  2. Efficient Quantum Dot-Quantum Dot and Quantum Dot-Dye Energy Transfer in Biotemplated Assemblies

    PubMed Central

    Achermann, Marc; Jeong, Sohee; Balet, Laurent; Montano, Gabriel A.; Hollingsworth, Jennifer A.

    2011-01-01

    CdSe semiconductor nanocrystal quantum dots are assembled into nanowire-like arrays employing microtubule fibers as nanoscale molecular “scaffolds.” Spectrally and time-resolved energy-transfer analysis is used to assess the assembly of the nanoparticles into the hybrid inorganic-biomolecular structure. Specifically, we demonstrate that a comprehensive study of energy transfer between quantum-dot pairs on the biotemplate, and, alternatively, between quantum dots and molecular dyes embedded in the microtubule scaffold, comprises a powerful spectroscopic tool for evaluating the assembly process. In addition to revealing the extent to which assembly has occurred, the approach allows determination of particle-to-particle (and particle-to-dye) distances within the bio-mediated array. Significantly, the characterization is realized in situ, without need for further sample workup or risk of disturbing the solution-phase constructs. Furthermore, we find that the assemblies prepared in this way exhibit efficient quantum dot-quantum dot and quantum dot-dye energy transfer that affords faster energy-transfer rates compared to densely packed quantum dot arrays on planar substrates and small-molecule-mediated quantum dot/dye couples, respectively. PMID:21314178

  3. Single quantum dot nanowire photodetectors

    NASA Astrophysics Data System (ADS)

    van Kouwen, M. P.; van Weert, M. H. M.; Reimer, M. E.; Akopian, N.; Perinetti, U.; Algra, R. E.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.; Zwiller, V.

    2010-09-01

    We report InP nanowire photodetectors with a single InAsP quantum dot as light absorbing element. With excitation above the InP band gap, the nanowire photodetectors are efficient (quantum efficiency of 4%). Under resonant excitation of the quantum dot, the photocurrent amplitude depends on the linear polarization direction of the incident light. The photocurrent is enhanced (suppressed) for a polarization parallel (perpendicular) to the axis of the nanowire (contrast 0.83). The active detection volume under resonant excitation is 7×103 nm3. These results show the promising features of quantum dots embedded in nanowire devices for electrical light detection at high spatial resolution.

  4. Synthesis of radioactively labelled CdSe/CdS/ZnS quantum dots for in vivo experiments

    PubMed Central

    Stachowski, Gordon M; Bauer, Christoph; Waurisch, Christian; Bargheer, Denise; Nielsen, Peter; Heeren, Jörg; Hickey, Stephen G

    2014-01-01

    Summary During the last decades of nanoparticles research, many nanomaterials have been developed for applications in the field of bio-labelling. For the visualization of transport processes in the body, organs and cells, luminescent quantum dots (QDs) make for highly useful diagnostic tools. However, intercellular routes, bio-distribution, metabolism during degradation or quantification of the excretion of nanoparticles, and the study of the biological response to the QDs themselves are areas which to date have not been fully investigated. In order to aid in addressing those issues, CdSe/CdS/ZnS QDs were radioactively labelled, which allows quantification of the QD concentration in the whole body or in ex vivo samples by ?-counting. However, the synthesis of radioactively labelled QDs is not trivial since the coating process must be completely adapted, and material availability, security and avoidance of radioactive waste must be considered. In this contribution, the coating of CdSe/CdS QDs with a radioactive 65ZnS shell using a modified, operator-safe, SILAR procedure is presented. Under UV illumination, no difference in the photoluminescence of the radioactive and non-radioactive CdSe/CdS/ZnS colloidal solutions was observed. Furthermore, a down-scaled synthesis for the production of very small batches of 5 nmol QDs without loss in the fluorescence quality was developed. Subsequently, the radio-labelled QDs were phase transferred by encapsulation into an amphiphilic polymer. ?-counting of the radioactivity provided confirmation of the successful labelling and phase transfer of the QDs. PMID:25551066

  5. Facile and green synthesis of CdSe quantum dots in protein matrix: tuning of morphology and optical properties.

    PubMed

    Ahmed, M; Guleria, A; Rath, M C; Singh, A K; Adhikari, S; Sarkar, S K

    2014-08-01

    Herein, we have demonstrated a facile and green approach for the synthesis of Cadmium selenide (CdSe) quantum dots (QDs). The process was mediated by bovine serum albumin (BSA) and it was found that BSA plays the dual role of reducing agent as well as a stabilizing agent. The QDs exhibited sharp excitonic absorption features at ~500 nm and subsequently showed reasonably good photoluminescence (PL) at room temperature. The PL is seen to be strongly dependent on the concentration of the precursors and hence, the luminescence of these QDs could be conveniently tuned across the visible spectrum simply by varying molar ratio of the precursors. It can be envisaged from the fact that a red-shift of about 100 nm in the PL peak position was observed when the molar ratio of the precursors ([Cd2+]:[Se2-], in mM) was varied from 10:5 to 10:40. Subsequently, the charge carrier relaxation dynamics associated with the different molar ratio of precursors has been investigated and very interesting information regarding the energy level structures of these QDs were revealed. Most importantly, in conjunction with the optical tuning, the nanomorphology of these nanoparticles was found to vary with the change in molar ratios of Se and Cd precursors. This aspect can provide a new direction of controlling the shape of CdSe nanoparticles. The possible mechanism of the formation as well as for the shape variation of these nanoparticles with the molar ratios of precursors has been proposed, taking into account the role of amino acid residues (present in BSA). Moreover, the QDs were water soluble and possessed fairly good colloidal stability therefore, can have potential applications in catalysis and bio-labeling. On the whole, the present methodology of protein assisted synthesis is relatively new especially for semiconducting nanomaterials and may provide some unique and interesting aspects to control and fine tune the morphology vis-à-vis, their optical properties. PMID:25935997

  6. Green route synthesis of high quality CdSe quantum dots for applications in light emitting devices

    NASA Astrophysics Data System (ADS)

    Bera, Susnata; Singh, Shashi B.; Ray, S. K.

    2012-05-01

    Investigation was made on light emitting diodes fabricated using CdSe quantum dots. CdSe quantum dots were synthesized chemically using olive oil as the capping agent, instead of toxic phosphine. Room temperature photoluminescence investigation showed sharp 1st excitonic emission peak at 568 nm. Bi-layer organic/inorganic (P3HT/CdSe) hybrid light emitting devices were fabricated by solution process. The electroluminescence study showed low turn on voltage (˜2.2 V) .The EL peak intensity was found to increase by increasing the operating current.

  7. Liquid-phase plasma synthesis of silicon quantum dots embedded in carbon matrix for lithium battery anodes

    SciTech Connect

    Wei, Ying [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121000 (China); Yu, Hang; Li, Haitao; Ming, Hai; Pan, Keming; Huang, Hui [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); Liu, Yang, E-mail: yangl@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China)

    2013-10-15

    Graphical abstract: - Highlights: • Silicon quantum dots embedded in carbon matrix (SiQDs/C) were fabricated. • SiQDs/C exhibits excellent battery performance as anode materials with high specific capacity. • The good performance was attributed to the marriage of small sized SiQDs and carbon. - Abstract: Silicon quantum dots embedded in carbon matrix (SiQDs/C) nanocomposites were prepared by a novel liquid-phase plasma assisted synthetic process. The SiQDs/C nanocomposites were demonstrated to show high specific capacity, good cycling life and high coulmbic efficiency as anode materials for lithium-ion battery.

  8. Quantum Dots in a Polymer Composite: A Convenient Particle-in-a-Box Laboratory Experiment

    ERIC Educational Resources Information Center

    Rice, Charles V.; Giffin, Guinevere A.

    2008-01-01

    Semiconductor quantum dots are at the forefront of materials science chemistry with applications in biological imaging and photovoltaic technologies. We have developed a simple laboratory experiment to measure the quantum-dot size from fluorescence spectra. A major roadblock of quantum-dot based exercises is the particle synthesis and handling;…

  9. Quantum-CORMs: quantum dot sensitized CO releasing molecules.

    PubMed

    Ruggi, A; Zobi, F

    2015-06-28

    The synthesis and photodecomposition behaviour of a family of CO releasing molecules (CORMs) based on [Mn(CO)3bpy] derivatives connected to a semiconductor Quantum Dot (QD) sensitizer is described here. Compared to the non-sensitized complexes, such systems show a 2 to 6-fold increase of the photodecomposition rate upon irradiation with visible light. PMID:25997860

  10. Electron counting in quantum dots

    E-print Network

    Fominov, Yakov

    V] G2[mV] -7.5 -7 -6.5 -6 34 34.5 35 35.5 1 10 100 Counts/s #12;Microwave emission of a QPC · VoltageElectron counting in quantum dots Klaus Ensslin Solid State Physics ·Charge detection in quantum;Time-resolved detection of single electron transport source drain quantum dot kBT Schleser et al., APL

  11. Non-heavy-metal ZnS quantum dots with bright blue photoluminescence by a one-step aqueous synthesis

    NASA Astrophysics Data System (ADS)

    Li, Hui; Shih, Wan Y.; Shih, Wei-Heng

    2007-05-01

    We have examined the aqueous synthesis of non-heavy-metal ZnS quantum dots (QDs) using 3-mercaptopropionic acid (MPA) as the capping molecule at various pH and MPA:Zn:S ratios. Transmission electron microscopy (TEM) and x-ray diffraction (XRD) indicated that the aqueous ZnS QDs were 3-5 nm in size with a zinc blende structure. We showed that, at pH 12 with a MPA:Zn:S = 8:4:1 ratio, the ZnS QDs with optimal blue emission could be obtained in a one-step, room-temperature aqueous process that exhibited a quantum yield of 31%, higher than that of the commercial CdSe/ZnS core-shell QDs. The present ZnS QDs could pass through a 50 kD filter. This indicated that they were smaller than 5 nm in size, consistent with those estimated from the UV-vis absorption edge and the TEM image. At a lower pH (e.g. pH = 8), the room-temperature synthesized ZnS QDs exhibited no photoluminescence. Although further hydrothermal annealing at 100 °C could improve the photoluminescence of the ZnS QDs, the resultant emission was not as bright as that obtained at pH 12 at room temperature. The blue emission of aqueous ZnS QDs was likely the result of trap-state emissions involving the defect states of the QDs. The present ZnS QDs were bright, small and contained non-heavy-metal elements, thus offering the potential for in vivo bioimaging.

  12. An optically driven quantum dot quantum computer

    E-print Network

    G. D. Sanders; K. W. Kim; W. C. Holton

    1999-09-22

    We propose a quantum computer structure based on coupled asymmetric single-electron quantum dots. Adjacent dots are strongly coupled by means of electric dipole-dipole interactions enabling rapid computation rates. Further, the asymmetric structures can be tailored for a long coherence time. The result maximizes the number of computation cycles prior to loss of coherence.

  13. Green route synthesis of high quality CdSe quantum dots for applications in light emitting devices

    SciTech Connect

    Bera, Susnata, E-mail: susnata.bera@gmail.com [Department of Physics and Meteorology, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Singh, Shashi B. [Department of Physics and Meteorology, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Ray, S.K., E-mail: physkr@phy.iitkgp.ernet.in [Department of Physics and Meteorology, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2012-05-15

    Investigation was made on light emitting diodes fabricated using CdSe quantum dots. CdSe quantum dots were synthesized chemically using olive oil as the capping agent, instead of toxic phosphine. Room temperature photoluminescence investigation showed sharp 1st excitonic emission peak at 568 nm. Bi-layer organic/inorganic (P3HT/CdSe) hybrid light emitting devices were fabricated by solution process. The electroluminescence study showed low turn on voltage ({approx}2.2 V) .The EL peak intensity was found to increase by increasing the operating current. - Graphical abstract: Light emitting diode was fabricated using CdSe quantum dots using olive oil as the capping agent, instead of toxic phosphine. Bi-layer organic/inorganic (P3HT/CdSe) hybrid light emitting device shows strong electroluminescence in the range 630-661 nm. Highlights: Black-Right-Pointing-Pointer CdSe Quantum dots were synthesized using olive oil as the capping agent. Black-Right-Pointing-Pointer Light emitting device was fabricated using CdSe QDs/P3HT polymer heterojunction. Black-Right-Pointing-Pointer The I-V characteristics study showed low turn on voltage at {approx}2.2 V. Black-Right-Pointing-Pointer The EL peak intensity increases with increasing the operating current.

  14. Fundamentals and Applications of Semiconductor Nanocrystals : A study on the synthesis, optical properties, and interactions of quantum dots

    Microsoft Academic Search

    R. Koole

    2008-01-01

    This thesis focuses on both the fundamental aspects as well as applications of colloidal semiconductor nanocrystals, also called quantum dots (QDs). Due to the unique size-dependent optical and electronic properties of QDs, they hold great promise for a wide range of applications like solar cells, displays, lasers, or as contrast agent for bio-imaging. The work presented in this thesis can

  15. Quantum optics with single nanowire quantum dots

    NASA Astrophysics Data System (ADS)

    Akopian, N.; van Weert, M.; van Kouwen, M.; Algra, R.; Liu, L.; Patriarche, G.; Harmand, J.-C.; Bakkers, E.; Kouwenhoven, L.; Zwiller, V.

    2010-01-01

    In this paper we present our recent developments in control and manipulation of individual spins and photons in a single nanowire quantum dot. Specific examples include demonstration of optical excitation of single spin states, charge tunable quantum devices and single photon sources. We will also discuss our recent discovery of a new type of charge confinement - crystal phase quantum dots. They are formed from the same material with different crystal structure, and today can only be realized in nanowires.

  16. Synthesis and application of luminescent single CdS quantum dot encapsulated silica nanoparticles directed for precision optical bioimaging

    PubMed Central

    Veeranarayanan, Srivani; Poulose, Aby Cheruvathoor; Mohamed, M Sheikh; Nagaoka, Yutaka; Iwai, Seiki; Nakagame, Yuya; Kashiwada, Shosaku; Yoshida, Yasuhiko; Maekawa, Toru; Kumar, D Sakthi

    2012-01-01

    This paper presents the synthesis of aqueous cadmium sulfide (CdS) quantum dots (QDs) and silica-encapsulated CdS QDs by reverse microemulsion method and utilized as targeted bio-optical probes. We report the role of CdS as an efficient cell tag with fluorescence on par with previously documented cadmium telluride and cadmium selenide QDs, which have been considered to impart high levels of toxicity. In this study, the toxicity of bare QDs was efficiently quenched by encapsulating them in a biocompatible coat of silica. The toxicity profile and uptake of bare CdS QDs and silica-coated QDs, along with the CD31-labeled, silica-coated CdS QDs on human umbilical vein endothelial cells and glioma cells, were investigated. The effect of size, along with the time-dependent cellular uptake of the nanomaterials, has also been emphasized. Enhanced, high-specificity imaging toward endothelial cell lines in comparison with glioma cells was achieved with CD31 antibody-conjugated nanoparticles. The silica-coated nanomaterials exhibited excellent biocompatibility and greater photostability inside live cells, in addition to possessing an extended shelf life. In vivo biocompatibility and localization study of silica-coated CdS QDs in medaka fish embryos, following direct nanoparticle exposure for 24 hours, authenticated the nanomaterials’ high potential for in vivo imaging, augmented with superior biocompatibility. As expected, CdS QD-treated embryos showed 100% mortality, whereas the silica-coated QD-treated embryos stayed viable and healthy throughout and after the experiments, devoid of any deformities. We provide highly cogent and convincing evidence for such silica-coated QDs as a model nanoparticle in practice, to achieve in vitro and in vivo precision targeted imaging. PMID:22888233

  17. One step, microwave assisted green synthesis of biocompatible carbon quantum dots and their composites with [?-PW12O403-] for visible light photocatalysis

    NASA Astrophysics Data System (ADS)

    Sahasrabudhe, Atharva; Pant, Shashank; Chatti, Manjunath; Maiti, Binoy; De, Priyadarsi; Roy, Soumyajit

    2014-04-01

    We report a simple, rapid and green route for synthesis of fluorescent carbon quantum dots (CQDs) by microwave assisted pyrolysis method using polyleucine polymer (Boc-L-Leu-HEMA) as precursor and self-passivating agent. The as synthesized CQDs were found to possess low cytotoxicity, thus making them suitable candidates for bioimaging and bio-labelling. Moreover, nanocomposites of as prepared CQDs with [?-PW12O403-] polyoxometalate were synthesized and were shown to possess excellent photocatalytic properties under visible light towards degradation of organic dye pollutants. Based on the control experiments, a suitable mechanism has been proposed to explain the remarkable photoactivity of the CQD/[?-PW12O403-] composites.

  18. Hydrothermal synthesis of high-quality type-II CdTe\\/CdSe quantum dots with near-infrared fluorescence

    Microsoft Academic Search

    Jing Wang; Heyou Han

    2010-01-01

    A simple hydrothermal method is developed for the synthesis of high-quality, water-soluble, and near-infrared (NIR)-emitting type-II core\\/shell CdTe\\/CdSe quantum dots (QDs) by employing thiol-capped CdTe QDs as core templates and CdCl2 and Na2SeO3 as shell precursors. Compared with the original CdTe core QDs, the core\\/shell CdTe\\/CdSe QDs exhibit an obvious red-shifted emission, whose color can be tuned between visible and

  19. The synthesis of highly water-dispersible and targeted CdS quantum dots and it is used for bioimaging by confocal microscopy

    NASA Astrophysics Data System (ADS)

    Wei, Guangcheng; Yan, Miaomiao; Ma, Liying; Zhang, Huaibin

    2012-01-01

    Synthesis of a highly dispersed hydrophilic CdS nanocrystals and their use as fluorescence labeling for live cell imaging is reported here. By carefully manipulating the surface of CdS nanocrystals, the dispersions of CdS-MAA-PEI-FA nanocrystals with high photostability is prepared. The receptor-mediated delivery of folic acid conjugated quantum dots into folate-receptor-positive cell lines such as CBRH7919 liver cancer cells was demonstrated by confocal microscopy. In the future, the further modified CdS nanoparticles can be used for the tissue imaging in vivo studies.

  20. Preparation of chiral quantum dots.

    PubMed

    Moloney, Mícheál P; Govan, Joseph; Loudon, Alexander; Mukhina, Maria; Gun'ko, Yurii K

    2015-04-01

    Chiral quantum dots (QDs) are expected to have a range of potential applications in photocatalysis, as specific antibacterial and cytotoxic drug-delivery agents, in assays, as sensors in asymmetric synthesis and enantioseparation, and as fluorescent chiral nanoprobes in biomedical and analytical technologies. In this protocol, we present procedures for the synthesis of chiral optically active QD nanostructures and their quality control using spectroscopic studies and transmission electron microscopy imaging. We closely examine various synthetic routes for the preparation of chiral CdS, CdSe, CdTe and doped ZnS QDs, as well as of chiral CdS nanotetrapods. Most of these nanomaterials can be produced by a very fast (70 s) microwave-induced heating of the corresponding precursors in the presence of D- or L-chiral stabilizing coating ligands (stabilizers), which are crucial to generating optically active chiral QDs. Alternatively, chiral QDs can also be produced via the conventional hot injection technique, followed by a phase transfer in the presence of an appropriate chiral stabilizer. We demonstrate that the properties, structure and behavior of chiral QD nanostructures, as determined by various spectroscopic techniques, strongly depend on chiral stabilizers and that the chiral effects induced by them can be controlled via synthetic procedures. PMID:25741991

  1. Microstructure-controlled aerosol-gel synthesis of ZnO quantum dots dispersed in SiO2 nanospheres.

    PubMed

    Firmansyah, Dudi Adi; Kim, Sang-Gyu; Lee, Kwang-Sung; Zahaf, Riyan; Kim, Yong Ho; Lee, Donggeun

    2012-02-01

    ZnO quantum dots dispersed in a silica matrix were synthesized from a TEOS:Zn(NO(3))(2) solution by a one-step aerosol-gel method. It was demonstrated that the molar concentration ratio of Zn to Si (Zn/Si) in the aqueous solution was an efficient parameter with which to control the size, the degree of agglomeration, and the microstructure of ZnO quantum dots (QDs) in the SiO(2) matrix. When Zn/Si ? 0.5, unaggregated quantum dots as small as 2 nm were distributed preferentially inside SiO(2) spheres. When Zn/Si ? 1.0, however, ZnO QDs of ?7 nm were agglomerated and reached the SiO(2) surface. When decreasing the ratio of the Zn/Si, a blue shift in the band gap of ZnO was observed from the UV/Visible absorption spectra, representing the quantum size effect. The photoluminescence emission spectra at room temperature denoted two wide peaks of deep-level defect-related emissions at 2.2-2.8 eV. When decreasing Zn/Si, the first peak at ?2.3 eV was blue-shifted in keeping with the decrease in the size of the QDs. Interestingly, the second visible peak at 2.8 eV disappeared in the surface-exposed ZnO QDs when Zn/Si ? 1.0. PMID:22221080

  2. Room temperature synthesis of PbSe quantum dots in aqueous solution: stabilization by interactions with ligands

    NASA Astrophysics Data System (ADS)

    Primera-Pedrozo, Oliva M.; Arslan, Zikri; Rasulev, Bakhtiyor; Leszczynski, Jerzy

    2012-02-01

    An aqueous route of synthesis is described for rapid synthesis of lead selenide quantum dots (PbSe QDs) at room temperature in an attempt to produce water-soluble and stable nanocrystals. Several thiol-ligands, including thioglycolic acid (TGA), thioglycerol (TGC), 3-mercaptopropionic acid (MPA), 2-mercaptoethylamine hydrochloride (MEA), 6-mercaptohexanoic acid (MHA), and l-cysteine (l-cys), were used for capping/stabilization of PbSe QDs. The effects of the ligands on the stability of PbSe QDs were evaluated for a period of two months at room temperature under normal light conditions and at 4 °C in the dark. The TGA- and MEA-capped QDs exhibited the highest stability prior to purification, almost two months when kept in the dark at 4 °C. However, the stability of TGA-capped QDs was reduced substantially after purification to about 5 days under the same conditions, while MEA-capped QDs did not show any significant instability. The stabilization energies of Pb-thiolate complexes determined by theoretical DFT simulations supported the experimental results. The PbSe QDs capped with TGA, MPA and MEA were successfully purified and re-dispersed in water, while those stabilized with TGC, MHA and l-cys aggregated during purification attempts. The purified PbSe QDs possess very susceptible surface resulting in poor stability for about 30-45 min after re-dispersion in water. In the presence of an excess of free ligand, the stability increased up to 5 days for TGA-capped QDs at pH 7.19, 9-12 days for MPA-capped QDs at pH 7.3-7.5 and 45-47 days for MEA-capped QDs at pH 7.35. X-Ray diffraction (XRD) results showed that the QDs possess a cubic rock salt structure with the most intense peaks located at 2? = 25.3° (200) and 2? = 29.2° (100). TEM images showed that the size of the QDs ranges between 5 and 10 nm. ICP-MS results revealed that Pb : Se ratios were 1.26, 1.28, 3.85, 1.18, and 1.31 for the QDs capped with TGA, MPA, MEA, l-cys, and TGC, respectively. The proposed method is inexpensive, simple and utilizes environmentally friendly chemicals and solvents.

  3. Room temperature synthesis of PbSe quantum dots in aqueous solution: Stabilization by interactions with ligands

    PubMed Central

    Primera-Pedrozo, Oliva M.; Arslan, Zikri; Rasulev, Bakhtiyor; Leszczynski, Jerzy

    2011-01-01

    An aqueous route of synthesis is described for rapid synthesis of lead selenide quantum dots (PbSe QDs) at room temperature in an attempt to produce water-soluble and stable nanocrystals. Several thiol-ligands, including thioglycolic acid (TGA), thioglycerol (TGC), 3-mercaptopropionic acid (MPA), 2-mercaptoethyleamine hydrochloride (MEA), 6-mercaptohexanoic acid (MHA), and L-cysteine (L-cys), were used for capping/stabilization of PbSe QDs. The effects of the ligands on the stability of PbSe QDs were evaluated for a period of two months at room temperature under normal light conditions and at 4 °C in dark. The TGA- and MEA-capped QDs exhibited the highest stability prior to purification, almost two months when kept in dark at 4 °C. However, the stability of TGA-capped QDs was reduced substantially after purification to about 5 days under same conditions, while MEA-capped QDs did not show any significant instability. The stabilization energies of Pb-thiolate complexes determined by theoretical DFT simulations supported the experimental results. The PbSe QDs capped with TGA, MPA and MEA were successfully purified and re-dispersed in water, while those stabilized with TGC, MHA and L-cys aggregated during purification attempts. The purified PbSe QDs possess very susceptible surface resulting in poor stability for about 30 – 45 min after re-dispersion in water. In the presence of an excess of free ligand, the stability increased up to 5 days for TGA-capped QDs at pH 7.19, 9 –12 days for MPA-capped QDs at pH 7.3–7.5 and 45–47 days for MEA-capped QDs at pH 7.35. X-Ray Diffraction (XRD) results showed that the QDs possess a cubic rock salt structure with the most intense peaks located at 2? = 25.3° (200) and 2? = 29.2° (100). TEM images showed that the size of the QDs ranges between 5 and 10 nm. ICP-MS results revealed that Pb:Se ratio was 1.26, 1.28, 3.85, 1.18, and 1.31 for the QDs capped with TGA, MPA, MEA, L-Cys, and TGC, respectively. The proposed method is inexpensive, simple and utilizes environmentally friendly chemicals and solvents. PMID:22273747

  4. Synthesis CdSe(x)S(1-x) core/shell type quantum dots via one injection method.

    PubMed

    Chen, Liang-Yih; Chen, Ching-Hsiang; Tseng, Chih-Hsiang; Lai, Feng-Lu; Hwang, Bing-Joe

    2011-02-01

    The photoluminescence quantum yield (PL-QY) of ternary colloidal CdSe(x)S(1-x) quantum dots (QDs), which were prepared by a one-injection method, enhances with increasing S content. The possible enhancement mechanism was explored by structural analysis via X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). Both found that the enhancement of PL-QY of ternary CdSe(x)S(1-x) QDs strongly correlated with self-formed core/shell conformation in the non-coordination solution. PMID:21116527

  5. All inorganic colloidal quantum dot LEDs

    E-print Network

    Wood, Vanessa Claire

    2007-01-01

    This thesis presents the first colloidal quantum dot light emitting devices (QD-LEDs) with metal oxide charge transport layers. Colloidally synthesized quantum dots (QDs) have shown promise as the active material in ...

  6. Aqueous Cadmium Chalcogenide Quantum Dots: Synthesis, Characterization, Spectroscopic Investigation of Electron Transfer Properties and Photovoltaic Device Performance

    NASA Astrophysics Data System (ADS)

    Coughlin, Kathleen M.

    The research presented in this thesis will focus on (1) synthesis and characterization of aqueous CdSe quantum dots (QDs) as alternatives to organic QDs; (2) the roles that linkers and capping groups play on the physical and optical properties of aqueous QDs; (3) performance of QD-sensitized solar cells (QDSSC) incorporating magic-sized clusters (MSCs) vs regular QDs (RQDs) and as a function of the molecular linkers between QDs and TiO2; and (4) the effect of the polysulfide electrolyte on QD-functionalized TiO 2 films and their performance in QDSSCs. The use of QDs as light harvesters has grown over the last few decades due to their unique properties. Water-dispersible QDs are of increasing interest because their syntheses are straightforward, environmentally-benign and more cost-effective. CdSe and CdS QDs were synthesized at room temperature under ambient conditions, by combining a Cd precursor and either Na2SeSO3 (for CdSe) or Na2S2O3 (for CdS), in basic aqueous reaction mixtures. Three different ligands were utilized as capping groups (cysteinate (Cys), mercaptopropionate (MP), and mercaptosuccinate (MS)). Changing the capping-agent, the reagent concentrations and the temperature changed the photophysical properties of the QDs. When Cys was used as the capping-agent, MSCs were formed. When high concentrations of Cys were used or when the reaction mixture was heated, RQDs were formed. When MP and MS were used in the synthesis of CdSe, RQDs were formed. In the synthesis of CdS, MS caused the formation of RQDs, and MP caused formation of a mixture of RQDs and MSCs. Transient absorption spectroscopy and photoelectrochemical experiments were performed to understand the influence of capping-agent and electronic properties (MSCs vs. RQDs) on the efficiency of electron transfer from photoexcited QDs to TiO2. The Cys-CdSe-functionalized TiO2 exhibited more efficient electron injection and/or slower recombination, leading to improved efficiency of QDSSCs. Devices made with Cys-CdSe RQDs exhibited higher efficiencies than QDSSCs with Cys-CdSe MSCs, indicating that the presence of Cys induces greater efficiency in QDSSCs. For QDSSCs, a polysulfide electrolyte is commonly used instead of I-/I3-. Effects of the polysulfide electrolyte and Na2S on CdSe-functionalized TiO2 films were explored to elucidate the chemistry that occurs when CdSe is exposed to the electrolyte in the QDSSCs. Photophysical changes to the CdSe-functionalized films occurred when exposed to the polysulfide electrolyte. Upon immersion of CdSe-functionalized TiO¬2 films into solutions of Na2S, an initial red shift in the absorption spectrum was observed, followed by a decrease and blue shift of the band. Based on XPS analysis of the films, it was determined that the S within the electrolyte (1) replaced Se or (2) bound to the CdSe-functionalized film without replacing Se. Photoelectrochemical measurements were acquired to analyze device performance with varying [S] within the electrolyte. Upon increase of S, the efficiency of the device increased and gave rise to a better fill factor in the photocurrent-photovoltage data collected.

  7. Facile synthesis and characterization of water soluble ZnSe/ZnS quantum dots for cellar imaging

    NASA Astrophysics Data System (ADS)

    Shu, Chang; Huang, Bin; Chen, Xiangdong; Wang, Yan; Li, Xuequan; Ding, Li; Zhong, Wenying

    2013-03-01

    Strong fluorescence and low cytotoxicity ZnSe/ZnS quantum dots (QDs) were synthesized by a facile aqueous phase route. It overcame the defects such as instability and low quantum yield of the quantum dots synthesized by early aqueous phase route. L-Glutathione (GSH) and 3-mercaptopropaonic acid (MPA) were used as mixture stabilizers to synthesize high quality ZnSe/ZnS QDs. The samples were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectrometry (XPS) and their optical properties were investigated by using UV-vis spectrophotometer, fluorescence spectrophotometer (FL), IR spectrophotometer and confocal laser scanning microscope. The synthesized ZnSe/ZnS QDs illuminated blue fluorescence under ultraviolet lamp. Its water-soluble property is excellent and the fluorescence intensity of ZnSe/ZnS QDs almost did not change after 4 months at room temperature. The average diameter of ZnSe/ZnS nanocrystals is about 3 nm and quantum yield (QY) could reach to 70.6% after repeat determination. Low cytotoxicity was ensured by investigated SCG7901 and RAW264.7 cells. In comparison with cadmium based nanocrystals, ZnSe/ZnS QDs posed low cytotoxicity. The cells viability remained 96.7% when the QDs concentration was increased to 10 ?mol/L. The results in vitro indicate that ZnSe/ZnS QDs-based probes have good stability, low toxicity and biocompatibility for fluorescence imaging in cancer model system.

  8. Large-scale synthesis of high quality InP quantum dots in a continuous flow-reactor under supercritical conditions.

    PubMed

    Ippen, Christian; Schneider, Benjamin; Pries, Christopher; Kröpke, Stefan; Greco, Tonino; Holländer, Andreas

    2015-02-27

    The synthesis of indium phosphide quantum dots (QDs) in toluene under supercritical conditions was carried out in a macroscopic continuous flow reaction system. The results of first experiments are reported in comparison with analogous reactions in octadecene. The reaction system is described and details are provided about special procedures that are enabled by the continuous flow system for the screening of reaction conditions. The produced QDs show very narrow emission peaks with full width at half maximum down to 45 nm and reasonable photoluminescence quantum yields. The subsequent purification process is facilitated by the ease of removal of toluene, and the productivity of the system is increased by high temperature and high pressure conditions. PMID:25656681

  9. Large-scale synthesis of high quality InP quantum dots in a continuous flow-reactor under supercritical conditions

    NASA Astrophysics Data System (ADS)

    Ippen, Christian; Schneider, Benjamin; Pries, Christopher; Kröpke, Stefan; Greco, Tonino; Holländer, Andreas

    2015-02-01

    The synthesis of indium phosphide quantum dots (QDs) in toluene under supercritical conditions was carried out in a macroscopic continuous flow reaction system. The results of first experiments are reported in comparison with analogous reactions in octadecene. The reaction system is described and details are provided about special procedures that are enabled by the continuous flow system for the screening of reaction conditions. The produced QDs show very narrow emission peaks with full width at half maximum down to 45 nm and reasonable photoluminescence quantum yields. The subsequent purification process is facilitated by the ease of removal of toluene, and the productivity of the system is increased by high temperature and high pressure conditions.

  10. A colloidal quantum dot spectrometer.

    PubMed

    Bao, Jie; Bawendi, Moungi G

    2015-07-01

    Spectroscopy is carried out in almost every field of science, whenever light interacts with matter. Although sophisticated instruments with impressive performance characteristics are available, much effort continues to be invested in the development of miniaturized, cheap and easy-to-use systems. Current microspectrometer designs mostly use interference filters and interferometric optics that limit their photon efficiency, resolution and spectral range. Here we show that many of these limitations can be overcome by replacing interferometric optics with a two-dimensional absorptive filter array composed of colloidal quantum dots. Instead of measuring different bands of a spectrum individually after introducing temporal or spatial separations with gratings or interference-based narrowband filters, a colloidal quantum dot spectrometer measures a light spectrum based on the wavelength multiplexing principle: multiple spectral bands are encoded and detected simultaneously with one filter and one detector, respectively, with the array format allowing the process to be efficiently repeated many times using different filters with different encoding so that sufficient information is obtained to enable computational reconstruction of the target spectrum. We illustrate the performance of such a quantum dot microspectrometer, made from 195 different types of quantum dots with absorption features that cover a spectral range of 300 nanometres, by measuring shifts in spectral peak positions as small as one nanometre. Given this performance, demonstrable avenues for further improvement, the ease with which quantum dots can be processed and integrated, and their numerous finely tuneable bandgaps that cover a broad spectral range, we expect that quantum dot microspectrometers will be useful in applications where minimizing size, weight, cost and complexity of the spectrometer are critical. PMID:26135449

  11. Generation of singlet oxygen and other radical species by quantum dot and carbon dot nanosensitizers

    NASA Astrophysics Data System (ADS)

    Generalov, Roman; Christensen, Ingeborg L.; Chen, Wei; Sun, Ya-Ping; Kristensen, Solveig; Juzenas, Petras

    2009-06-01

    Medicinal applications of luminescent semiconductor quantum dots are of growing interest. In spite of the fact that their fabrication and imaging applications have been extensively investigated for the last decade, very little is documented on photodynamic action of quantum dots. In this study we demonstrate generation of singlet oxygen and other radical species upon exposure of quantum dots to blue light and therapeutic red light. Extent of radical production can be readily modified by antioxidants. Lay and scientific communities are two sites concerning potential hazards and enthusiastic applications of nanotechnology. Synthesis of quantum dots composed of less toxic materials is of great interest. A new candidate is a ubiquitous element carbon, which on nanoscale exhibits strong photoluminescence.

  12. Tunable quantum dot parametric source.

    PubMed

    Andronico, A; Favero, I; Ducci, S; Gérard, J M; Leo, G

    2013-09-23

    We report on the modeling of an electrically pumped nonlinear source for spontaneous parametric down-conversion in an AlGaAs single-sided Bragg waveguide. Laser emission from InAs quantum dots embedded in the waveguide core is designed to excite a Bragg pump mode at 950 nm. This mode is phase matched with two cross-polarized total-internal-reflection fundamental signal and idler modes around 1900 nm. Besides numerically evaluating the source efficiency, we discuss the crucial role played by the quantum dots in the practical implementation of the phase-matching condition along with the tuning capabilities of this promising active device. PMID:24104126

  13. One-Step Instant Synthesis of Protein-Conjugated Quantum Dots at Room Temperature

    PubMed Central

    He, Xuewen; Gao, Li; Ma, Nan

    2013-01-01

    We present a new general facile strategy for the preparation of protein-functionalized QDs in a single step at ambient conditions. We demonstrated that highly luminescent red to near-infrared (NIR) protein-functionalized QDs could be synthesized at room temperature in one second through a one-pot reaction that proceeds in aqueous solution. Herein protein-functionalized QDs were successfully constructed for a variety of proteins with a wide range of molecular weights and isoelectric points. The as-prepared protein-conjugated QDs exhibited high quantum yield, high photostabiliy and colloidal stability, and high functionalization efficiency. Importantly, the proteins attached to the QDs maintain their biological activities and are capable of catalyzing reactions and biotargeting. In particular, the as-prepared transferrin-QDs could be used to label cancer cells with high specificity. Moreover, we demonstrated that this synthetic strategy could be extended to prepare QDs functionalized with folic acids and peptides, which were also successfully applied to cancer cell imaging. PMID:24084780

  14. One-step aqueous synthesis of graphene-CdTe quantum dot-composed nanosheet and its enhanced photoresponses.

    PubMed

    Lu, Zhisong; Guo, Chun Xian; Yang, Hong Bin; Qiao, Yan; Guo, Jun; Li, Chang Ming

    2011-01-15

    Although CdTe nanocrystal has been applied in quantum dot (QD)-based solar cells, there is no report on a graphene-CdTe QD hybrid system and its photoresponses. In this work, graphene-CdTe QD composed nanosheets were one-step synthesized in aqueous solution using a hydrothermal method and demonstrated enhanced photoresponses, rendering potentials in optoelectronics applications. This work could provide an environmental-friendly and universal approach to fabricate graphene-based hybrid nanomaterials for various applications. PMID:21035813

  15. Synthesis of highly luminescent and biocompatible CdTe/CdS/ZnS quantum dots using microwave irradiation: a comparative study of different ligands.

    PubMed

    He, Hua; Sun, Xing; Wang, Xiaojuan; Xu, Hai

    2014-11-01

    We compared the effects of several ligands frequently used in aqueous synthesis, including L-cysteine, L-cysteine hydrochloride, N-acetyl-L-cysteine (NAC), glutathione and 3-mercaptopropionic acid, for microwave synthesis of CdTe quantum dots (QDs) in a sealed vessel with varied temperatures and times, and then developed a rapid microwave-assisted protocol for preparing highly luminescent, photostable and biocompatible CdTe/CdS/ZnS core-multishell QDs. The effects of molecular structures of these ligands on QD synthesis under high temperatures were explored. Among these ligands, NAC was found to be the optimal ligand in terms of the optical properties of resultant QDs and reaction conditions. The emission wavelength of NAC-capped CdTe QDs could reach 700 nm in 5 min by controlling the reaction temperature, and the resultant CdTe/CdS/ZnS core-multishell QDs could achieve the highest quantum yields up to 74% with robust photostability. In addition, the effects of temperature, growth time and shell-precursor ratio on shell growth were examined. Finally, cell culturing indicated the low cytotoxicity of CdTe/CdS/ZnS core-multishell QDs as compared to CdTe and CdTe/CdS QDs, suggesting their high potential for applications in biomedical imaging and diagnostics. PMID:24436082

  16. Quantum dot quantum cascade infrared photodetector

    SciTech Connect

    Wang, Xue-Jiao; Zhai, Shen-Qiang; Zhuo, Ning; Liu, Jun-Qi, E-mail: jqliu@semi.ac.cn, E-mail: fqliu@semi.ac.cn; Liu, Feng-Qi, E-mail: jqliu@semi.ac.cn, E-mail: fqliu@semi.ac.cn; Liu, Shu-Man; Wang, Zhan-Guo [Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences and Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, P.O. Box 912, Beijing 100083 (China)

    2014-04-28

    We demonstrate an InAs quantum dot quantum cascade infrared photodetector operating at room temperature with a peak detection wavelength of 4.3??m. The detector shows sensitive photoresponse for normal-incidence light, which is attributed to an intraband transition of the quantum dots and the following transfer of excited electrons on a cascade of quantum levels. The InAs quantum dots for the infrared absorption were formed by making use of self-assembled quantum dots in the Stranski–Krastanov growth mode and two-step strain-compensation design based on InAs/GaAs/InGaAs/InAlAs heterostructure, while the following extraction quantum stairs formed by LO-phonon energy are based on a strain-compensated InGaAs/InAlAs chirped superlattice. Johnson noise limited detectivities of 3.64?×?10{sup 11} and 4.83?×?10{sup 6} Jones at zero bias were obtained at 80?K and room temperature, respectively. Due to the low dark current and distinct photoresponse up to room temperature, this device can form high temperature imaging.

  17. Designed short RGD peptides for one-pot aqueous synthesis of integrin-binding CdTe and CdZnTe quantum dots.

    PubMed

    He, Hua; Feng, Min; Hu, Jing; Chen, Cuixia; Wang, Jiqian; Wang, Xiaojuan; Xu, Hai; Lu, Jian R

    2012-11-01

    We have designed a series of short RGD peptide ligands and developed one-pot aqueous synthesis of integrin-binding CdTe and CdZnTe quantum dots (QDs). We first examined the effects of different RGD peptides, including RGDS, CRGDS, Ac-CRGDS, CRGDS-CONH?, Ac-CRGDS-CONH?, RGDSC, CCRGDS, and CCCRGDS, on the synthesis of CdTe QDs. CRGDS were found to be the optimal ligand, providing the CdTe QDs with well-defined wavelength ranges (500-650 nm) and relatively high photoluminescence quantum yields (up to 15%). The key synthesis parameters (the pH value of the Cd²?-RGD precursors and the molar ratio of RGD/Cd²?) were assessed. In order to further improve the optical properties of the RGD-capped QDs, zinc was then incorporated by the simultaneous reaction of Cd²? and Zn²? with NaHTe. By using a mixture of CRGDS and cysteine as the stabilizer, the quantum yields of CdZnTe alloy QDs reached as high as 60% without any post-treatment, and they also showed excellent stability against time, pH, and salinity. Note that these properties could not be obtained with CRGDS or cysteine alone as the stabilizer. Finally, we demonstrated that the RGD-capped QDs preferentially bind to cell surfaces because of the specific recognition of the RGD sequence to cell surface integrin receptors. Our synthesis strategy based on RGD peptides thus represents a convenient route for opening up QD technologies for cell-specific tagging and labeling applicable to a wide range of diagnostics and therapy. PMID:23106442

  18. Aqueous synthesis of highly luminescent AgInS?-ZnS quantum dots and their biological applications.

    PubMed

    Regulacio, Michelle D; Win, Khin Yin; Lo, Seong Loong; Zhang, Shuang-Yuan; Zhang, Xinhai; Wang, Shu; Han, Ming-Yong; Zheng, Yuangang

    2013-03-21

    Highly emissive and air-stable AgInS2-ZnS quantum dots (ZAIS QDs) with quantum yields of up to 20% have been successfully synthesized directly in aqueous media in the presence of polyacrylic acid (PAA) and mercaptoacetic acid (MAA) as stabilizing and reactivity-controlling agents. The as-prepared water-dispersible ZAIS QDs are around 3 nm in size, possess the tetragonal chalcopyrite crystal structure, and exhibit long fluorescence lifetimes (>100 ns). In addition, these ZAIS QDs are found to exhibit excellent optical and colloidal stability in physiologically relevant pH values as well as very low cytotoxicity, which render them particularly suitable for biological applications. Their potential use in biological labelling of baculoviral vectors is demonstrated. PMID:23392168

  19. Quantum dot ternary-valued full-adder: Logic synthesis by a multiobjective design optimization based on a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Klymenko, M. V.; Remacle, F.

    2014-10-01

    A methodology is proposed for designing a low-energy consuming ternary-valued full adder based on a quantum dot (QD) electrostatically coupled with a single electron transistor operating as a charge sensor. The methodology is based on design optimization: the values of the physical parameters of the system required for implementing the logic operations are optimized using a multiobjective genetic algorithm. The searching space is determined by elements of the capacitance matrix describing the electrostatic couplings in the entire device. The objective functions are defined as the maximal absolute error over actual device logic outputs relative to the ideal truth tables for the sum and the carry-out in base 3. The logic units are implemented on the same device: a single dual-gate quantum dot and a charge sensor. Their physical parameters are optimized to compute either the sum or the carry out outputs and are compatible with current experimental capabilities. The outputs are encoded in the value of the electric current passing through the charge sensor, while the logic inputs are supplied by the voltage levels on the two gate electrodes attached to the QD. The complex logic ternary operations are directly implemented on an extremely simple device, characterized by small sizes and low-energy consumption compared to devices based on switching single-electron transistors. The design methodology is general and provides a rational approach for realizing non-switching logic operations on QD devices.

  20. Quantum dot ternary-valued full-adder: Logic synthesis by a multiobjective design optimization based on a genetic algorithm

    SciTech Connect

    Klymenko, M. V.; Remacle, F., E-mail: fremacle@ulg.ac.be [Department of Chemistry, B6c, University of Liege, B4000 Liege (Belgium)

    2014-10-28

    A methodology is proposed for designing a low-energy consuming ternary-valued full adder based on a quantum dot (QD) electrostatically coupled with a single electron transistor operating as a charge sensor. The methodology is based on design optimization: the values of the physical parameters of the system required for implementing the logic operations are optimized using a multiobjective genetic algorithm. The searching space is determined by elements of the capacitance matrix describing the electrostatic couplings in the entire device. The objective functions are defined as the maximal absolute error over actual device logic outputs relative to the ideal truth tables for the sum and the carry-out in base 3. The logic units are implemented on the same device: a single dual-gate quantum dot and a charge sensor. Their physical parameters are optimized to compute either the sum or the carry out outputs and are compatible with current experimental capabilities. The outputs are encoded in the value of the electric current passing through the charge sensor, while the logic inputs are supplied by the voltage levels on the two gate electrodes attached to the QD. The complex logic ternary operations are directly implemented on an extremely simple device, characterized by small sizes and low-energy consumption compared to devices based on switching single-electron transistors. The design methodology is general and provides a rational approach for realizing non-switching logic operations on QD devices.

  1. CuInS2 quantum dot-sensitized TiO2 nanorod array photoelectrodes: synthesis and performance optimization

    NASA Astrophysics Data System (ADS)

    Zhou, Zhengji; Yuan, Shengjie; Fan, Junqi; Hou, Zeliang; Zhou, Wenhui; Du, Zuliang; Wu, Sixin

    2012-11-01

    CuInS2 quantum dots (QDs) were deposited onto TiO2 nanorod arrays for different cycles by using successive ionic layer adsorption and reaction (SILAR) method. The effect of SILAR cycles on the light absorption and photoelectrochemical properties of the sensitized photoelectrodes was studied. With optimization of CuInS2 SILAR cycles and introduction of In2S3 buffer layer, quantum dot-sensitized solar cells assembled with 3-?m thick TiO2 nanorod film exhibited a short-circuit current density ( I sc) of 4.51 mA cm-2, an open-circuit voltage ( V oc) of 0.56 V, a fill factor (FF) of 0.41, and a power conversion efficiency ( ?) of 1.06%, respectively. This study indicates that SILAR process is a very promising strategy for preparing directly anchored semiconductor QDs on TiO2 nanorod surface in a straightforward but controllable way without any complicated fabrication procedures and introduction of a linker molecule.

  2. CuInS2 quantum dot-sensitized TiO2 nanorod array photoelectrodes: synthesis and performance optimization.

    PubMed

    Zhou, Zhengji; Yuan, Shengjie; Fan, Junqi; Hou, Zeliang; Zhou, Wenhui; Du, Zuliang; Wu, Sixin

    2012-01-01

    CuInS2 quantum dots (QDs) were deposited onto TiO2 nanorod arrays for different cycles by using successive ionic layer adsorption and reaction (SILAR) method. The effect of SILAR cycles on the light absorption and photoelectrochemical properties of the sensitized photoelectrodes was studied. With optimization of CuInS2 SILAR cycles and introduction of In2S3 buffer layer, quantum dot-sensitized solar cells assembled with 3-?m thick TiO2 nanorod film exhibited a short-circuit current density (Isc) of 4.51 mA cm-2, an open-circuit voltage (Voc) of 0.56 V, a fill factor (FF) of 0.41, and a power conversion efficiency (?) of 1.06%, respectively. This study indicates that SILAR process is a very promising strategy for preparing directly anchored semiconductor QDs on TiO2 nanorod surface in a straightforward but controllable way without any complicated fabrication procedures and introduction of a linker molecule. PMID:23181940

  3. CuInS2 quantum dot-sensitized TiO2 nanorod array photoelectrodes: synthesis and performance optimization

    PubMed Central

    2012-01-01

    CuInS2 quantum dots (QDs) were deposited onto TiO2 nanorod arrays for different cycles by using successive ionic layer adsorption and reaction (SILAR) method. The effect of SILAR cycles on the light absorption and photoelectrochemical properties of the sensitized photoelectrodes was studied. With optimization of CuInS2 SILAR cycles and introduction of In2S3 buffer layer, quantum dot-sensitized solar cells assembled with 3-?m thick TiO2 nanorod film exhibited a short-circuit current density (Isc) of 4.51 mA cm?2, an open-circuit voltage (Voc) of 0.56 V, a fill factor (FF) of 0.41, and a power conversion efficiency (?) of 1.06%, respectively. This study indicates that SILAR process is a very promising strategy for preparing directly anchored semiconductor QDs on TiO2 nanorod surface in a straightforward but controllable way without any complicated fabrication procedures and introduction of a linker molecule. PMID:23181940

  4. Facile synthesis and characterization of water soluble ZnSe/ZnS quantum dots for cellar imaging.

    PubMed

    Shu, Chang; Huang, Bin; Chen, Xiangdong; Wang, Yan; Li, Xuequan; Ding, Li; Zhong, Wenying

    2013-03-01

    Strong fluorescence and low cytotoxicity ZnSe/ZnS quantum dots (QDs) were synthesized by a facile aqueous phase route. It overcame the defects such as instability and low quantum yield of the quantum dots synthesized by early aqueous phase route. L-Glutathione (GSH) and 3-mercaptopropaonic acid (MPA) were used as mixture stabilizers to synthesize high quality ZnSe/ZnS QDs. The samples were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectrometry (XPS) and their optical properties were investigated by using UV-vis spectrophotometer, fluorescence spectrophotometer (FL), IR spectrophotometer and confocal laser scanning microscope. The synthesized ZnSe/ZnS QDs illuminated blue fluorescence under ultraviolet lamp. Its water-soluble property is excellent and the fluorescence intensity of ZnSe/ZnS QDs almost did not change after 4 months at room temperature. The average diameter of ZnSe/ZnS nanocrystals is about 3 nm and quantum yield (QY) could reach to 70.6% after repeat determination. Low cytotoxicity was ensured by investigated SCG7901 and RAW264.7 cells. In comparison with cadmium based nanocrystals, ZnSe/ZnS QDs posed low cytotoxicity. The cells viability remained 96.7% when the QDs concentration was increased to 10 ?mol/L. The results in vitro indicate that ZnSe/ZnS QDs-based probes have good stability, low toxicity and biocompatibility for fluorescence imaging in cancer model system. PMID:23266687

  5. Ultra-bright alkylated graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Feng, Lan; Tang, Xing-Yan; Zhong, Yun-Xin; Liu, Yue-Wen; Song, Xue-Huan; Deng, Shun-Liu; Xie, Su-Yuan; Yan, Jia-Wei; Zheng, Lan-Sun

    2014-10-01

    Highly efficient and stable photoluminescence (PL) are urgently desired for graphene quantum dots (GQDs) to facilitate their prospective applications as optical materials. Here, we report the facile and straightforward synthesis of alkylated graphene quantum dots (AGQDs) via the solvothermal reaction of propagatively alkylated graphene sheets (PAGenes). In contrast to most GQDs reported so far, the synthesized AGQDs process pH-independent and ultra-bright PL with a relative quantum yield of up to 65%. Structural and chemical composition characterization demonstrated that the synthesized AGQDs are nearly oxygen-defect-free with alkyl groups decorated on edges and basal plane, which may contribute to their greatly improved pH tolerance and high quantum efficiency. The photocatalytic performance of AGQDs-P25 nanocomposites was evaluated by the degradation of Rhodamine B under visible light. The photocatalytic rate is ca. 5.9 times higher than that of pure P25, indicating that AGQDs could harness the visible spectrum of sunlight for energy conversion or environmental therapy.Highly efficient and stable photoluminescence (PL) are urgently desired for graphene quantum dots (GQDs) to facilitate their prospective applications as optical materials. Here, we report the facile and straightforward synthesis of alkylated graphene quantum dots (AGQDs) via the solvothermal reaction of propagatively alkylated graphene sheets (PAGenes). In contrast to most GQDs reported so far, the synthesized AGQDs process pH-independent and ultra-bright PL with a relative quantum yield of up to 65%. Structural and chemical composition characterization demonstrated that the synthesized AGQDs are nearly oxygen-defect-free with alkyl groups decorated on edges and basal plane, which may contribute to their greatly improved pH tolerance and high quantum efficiency. The photocatalytic performance of AGQDs-P25 nanocomposites was evaluated by the degradation of Rhodamine B under visible light. The photocatalytic rate is ca. 5.9 times higher than that of pure P25, indicating that AGQDs could harness the visible spectrum of sunlight for energy conversion or environmental therapy. Electronic supplementary information (ESI) available: Additional figures (Fig. S1-S12). See DOI: 10.1039/c4nr03506b

  6. Spin states in graphene quantum dots

    Microsoft Academic Search

    Klaus Ensslin

    2011-01-01

    Graphene quantum dots [1,2], douple dots [3], rings [4] and nanoribbons [5] have been fabricated by electron beam lithography and dry etching. The orbital [1] properties of graphene quantum dots have been investigated in perpendicular magnetic fields and the details of the electron-hole crossover in graphene leads to a situation where electron (hole) states move down (up) in magnetic field

  7. Lifetime blinking in nonblinking nanocrystal quantum dots

    PubMed Central

    Galland, Christophe; Ghosh, Yagnaseni; Steinbrück, Andrea; Hollingsworth, Jennifer A.; Htoon, Han; Klimov, Victor I.

    2012-01-01

    Nanocrystal quantum dots are attractive materials for applications as nanoscale light sources. One impediment to these applications is fluctuations of single-dot emission intensity, known as blinking. Recent progress in colloidal synthesis has produced nonblinking nanocrystals; however, the physics underlying blinking suppression remains unclear. Here we find that ultra-thick-shell CdSe/CdS nanocrystals can exhibit pronounced fluctuations in the emission lifetimes (lifetime blinking), despite stable nonblinking emission intensity. We demonstrate that lifetime variations are due to switching between the neutral and negatively charged state of the nanocrystal. Negative charging results in faster radiative decay but does not appreciably change the overall emission intensity because of suppressed nonradiative Auger recombination for negative trions. The Auger process involving excitation of a hole (positive trion pathway) remains efficient and is responsible for charging with excess electrons, which occurs via Auger-assisted ionization of biexcitons accompanied by ejection of holes. PMID:22713750

  8. Hybrid passivated colloidal quantum dot solids

    NASA Astrophysics Data System (ADS)

    Ip, Alexander H.; Thon, Susanna M.; Hoogland, Sjoerd; Voznyy, Oleksandr; Zhitomirsky, David; Debnath, Ratan; Levina, Larissa; Rollny, Lisa R.; Carey, Graham H.; Fischer, Armin; Kemp, Kyle W.; Kramer, Illan J.; Ning, Zhijun; Labelle, André J.; Chou, Kang Wei; Amassian, Aram; Sargent, Edward H.

    2012-09-01

    Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions, leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states. Furthermore, the solution-based approach leverages recent progress in metal:chalcogen chemistry in the liquid phase. Here, we quantify the density of midgap trap states in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electron-hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device.

  9. CdS/CdSe quantum dot co-sensitized graphene nanocomposites via polymer brush templated synthesis for potential photovoltaic applications.

    PubMed

    Yan, Junfeng; Ye, Qian; Wang, Xiaolong; Yu, Bo; Zhou, Feng

    2012-03-21

    CdS/CdSe quantum dot (QDs) co-sensitized graphene sheets have been obtained via polymer brush templated synthesis. Firstly, the anionic functional polymer (polymethacrylate cadmium) was grafted via the surface initiated atomic transfer radical polymerization (ATRP) using a macromolecular initiator, which contains polymerized pyrene units for chemical anchoring on graphene surface and alkyl bromines to initiate ATRP. Then, the coordinated cadmium in the polymer chains can act as a source precursor for QDs. After reaction, polymer brushes can be recovered and act as the nanoreactor via the absorption of cadmium ions by carboxylate groups. So, high density QDs can be multiply uploaded onto the graphene surface by repeated steps. The as-prepared composite materials exhibited significantly enhanced visible light response compared to plain graphene, and have potential applications as the platform to build solar cell assembles. PMID:22349081

  10. Acid-free and oxone oxidant-assisted solvothermal synthesis of graphene quantum dots using various natural carbon materials as resources.

    PubMed

    Shin, Yonghun; Park, Jintaek; Hyun, Daesun; Yang, Junghee; Lee, Jae-Hyeok; Kim, Jae-Ho; Lee, Hyoyoung

    2015-03-19

    To prepare carbon-based fluorescent materials such as graphene quantum dots (GQDs), new and effective methods are needed to convert one-dimensional (1D) or two-dimensional (2D) carbon materials to 0D GQDs. Here, we report a novel acid-free and oxone oxidant-assisted solvothermal synthesis of GQDs using various natural carbon resources including graphite (G), multiwall carbon nanotubes (M), carbon fibers (CF), and charcoal (C). This acid-free method, not requiring the neutralization process of strong acids, exhibits a simple and eco-friendly purification process and also represents a recycling production process, together with mass production and high yield. Newly synthesized GQDs exhibited a strong blue photoluminescence (PL) under 365 nm UV light illumination. The PL emission peaks of all the recycled GQDs did not change. PMID:25757839

  11. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications.

    PubMed

    Zheng, Xin Ting; Ananthanarayanan, Arundithi; Luo, Kathy Qian; Chen, Peng

    2015-04-01

    The emerging graphene quantum dots (GQDs) and carbon dots (C-dots) have gained tremendous attention for their enormous potentials for biomedical applications, owing to their unique and tunable photoluminescence properties, exceptional physicochemical properties, high photostability, biocompatibility, and small size. This article aims to update the latest results in this rapidly evolving field and to provide critical insights to inspire more exciting developments. We comparatively review the properties and synthesis methods of these carbon nanodots and place emphasis on their biological (both fundamental and theranostic) applications. PMID:25521301

  12. Semiconductor double quantum dot micromaser

    NASA Astrophysics Data System (ADS)

    Liu, Y.-Y.; Stehlik, J.; Eichler, C.; Gullans, M. J.; Taylor, J. M.; Petta, J. R.

    2015-01-01

    The coherent generation of light, from masers to lasers, relies upon the specific structure of the individual emitters that lead to gain. Devices operating as lasers in the few-emitter limit provide opportunities for understanding quantum coherent phenomena, from terahertz sources to quantum communication. Here we demonstrate a maser that is driven by single-electron tunneling events. Semiconductor double quantum dots (DQDs) serve as a gain medium and are placed inside a high-quality factor microwave cavity. We verify maser action by comparing the statistics of the emitted microwave field above and below the maser threshold.

  13. Synthesis of cadmium telluride quantum wires and the similarity of their band gaps to those of equidiameter cadmium telluride quantum dots

    SciTech Connect

    Wang, Lin-Wang; Sun, Jianwei; Wang, Lin-Wang; Buhro, William E.

    2008-07-11

    High-quality colloidal CdTe quantum wires having purposefully controlled diameters in the range of 5-11 nm are grown by the solution-liquid-solid (SLS) method, using Bi-nanoparticle catalysts, cadmium octadecylphosphonate and trioctylphosphine telluride as precursors, and a TOPO solvent. The wires adopt the wurtzite structure, and grow along the [002] direction (parallel to the c axis). The size dependence of the band gaps in the wires are determined from the absorption spectra, and compared to the experimental results for high-quality CdTe quantum dots. In contrast to the predictions of an effective-mass approximation, particle-in-a-box model, and previous experimental results from CdSe and InP dot-wire comparisons, the band gaps of CdTe dots and wires of like diameter are found to be experimentally indistinguishable. The present results are analyzed using density functional theory under the local-density approximation by implementing a charge-patching method. The higher-level theoretical analysis finds the general existence of a threshold diameter, above which dot and wire band gaps converge. The origin and magnitude of this threshold diameter is discussed.

  14. Facile Synthesis of Molecularly Imprinted Graphene Quantum Dots for the Determination of Dopamine with Affinity-Adjustable.

    PubMed

    Zhou, Xi; Wang, Anqi; Yu, Chenfei; Wu, Shishan; Shen, Jian

    2015-06-10

    A facilely prepared fluorescence sensor was developed for dopamine (DA) determination based on polyindole/graphene quantum dots molecularly imprinted polymers (PIn/GQDs@MIPs). The proposed sensor exhibits a high sensitivity with a linear range of 5 × 10(-10) to 1.2 × 10(-6) M and the limit of detection as low as 1 × 10(-10) M in the determination of DA, which is probably due to the tailor-made imprinted cavities for binding DA thought hydrogen bonds between amine groups of DA and oxygen-containing groups of the novel composite. Furthermore, the prepared sensor can rebind DA in dual-type: a low affinity type (noncovalent interaction is off) and a high affinity type (noncovalent interaction is on), and the rebinding interaction can be adjusted by tuning the pH, which shows a unique potential for adjusting the binding interaction while keeping the specificity, allowing for wider applications. PMID:25603559

  15. Multimodal Mn-doped I-III-VI quantum dots for near infrared fluorescence and magnetic resonance imaging: from synthesis to in vivo application

    NASA Astrophysics Data System (ADS)

    Sitbon, Gary; Bouccara, Sophie; Tasso, Mariana; Francois, Aurélie; Bezdetnaya, Lina; Marchal, Frédéric; Beaumont, Marine; Pons, Thomas

    2014-07-01

    The development of sensitive multimodal contrast agents is a key issue to provide better global, multi-scale images for diagnostic or therapeutic purposes. Here we present the synthesis of Zn-Cu-In-(S, Se)/Zn1-xMnxS core-shell quantum dots (QDs) that can be used as markers for both near-infrared fluorescence imaging and magnetic resonance imaging (MRI). We first present the synthesis of Zn-Cu-In-(S, Se) cores coated with a thick ZnS shell doped with various proportions of Mn. Their emission wavelengths can be tuned over the NIR optical window suitable for deep tissue imaging. The incorporation of manganese ions (up to a few thousand ions per QD) confers them a paramagnetic character, as demonstrated by structural analysis and electron paramagnetic resonance spectroscopy. These QDs maintain their optical properties after transfer to water using ligand exchange. They exhibit T1-relaxivities up to 1400 mM-1 [QD] s-1 at 7 T and 300 K. We finally show that these QDs are suitable multimodal in vivo probes and demonstrate MRI and NIR fluorescence detection of regional lymph nodes in mice.The development of sensitive multimodal contrast agents is a key issue to provide better global, multi-scale images for diagnostic or therapeutic purposes. Here we present the synthesis of Zn-Cu-In-(S, Se)/Zn1-xMnxS core-shell quantum dots (QDs) that can be used as markers for both near-infrared fluorescence imaging and magnetic resonance imaging (MRI). We first present the synthesis of Zn-Cu-In-(S, Se) cores coated with a thick ZnS shell doped with various proportions of Mn. Their emission wavelengths can be tuned over the NIR optical window suitable for deep tissue imaging. The incorporation of manganese ions (up to a few thousand ions per QD) confers them a paramagnetic character, as demonstrated by structural analysis and electron paramagnetic resonance spectroscopy. These QDs maintain their optical properties after transfer to water using ligand exchange. They exhibit T1-relaxivities up to 1400 mM-1 [QD] s-1 at 7 T and 300 K. We finally show that these QDs are suitable multimodal in vivo probes and demonstrate MRI and NIR fluorescence detection of regional lymph nodes in mice. Electronic supplementary information (ESI) available: Determination of Mn content; magnetization measurements; additional TEM and spectroscopic data; additional NIR fluorescence image; MTT assay results. See DOI: 10.1039/c4nr02239d

  16. Spin fluctuations in quantum dots

    NASA Astrophysics Data System (ADS)

    Sharafutdinov, A. U.; Lyubshin, D. S.; Burmistrov, I. S.

    2014-11-01

    We explore the static longitudinal and dynamic transverse spin susceptibilities in quantum dots and nanoparticles within the framework of the Hamiltonian that extends the universal Hamiltonian to the case of uniaxial anisotropic exchange. For the limiting cases of Ising and Heisenberg exchange interactions, we ascertain how fluctuations of single-particle levels affect the Stoner instability in quantum dots. We reduce the problem to the statistics of extrema of a certain Gaussian process. We prove that, despite possible strong randomness of the single-particle levels, the spin susceptibility and all its moments diverge simultaneously at the point which is determined by the standard criterion of the Stoner instability involving the mean level spacing only.

  17. Quantitative multiplexed quantum dot immunohistochemistry

    SciTech Connect

    Sweeney, E.; Ward, T.H. [Clinical and Experimental Pharmacology, Paterson Institute for Cancer Research, Wilmslow Road, Manchester, 420 4BX (United Kingdom); Gray, N.; Womack, C. [AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TG (United Kingdom); Jayson, G. [Translational Angiogenesis Group, Paterson Institute for Cancer Research, Wilmslow Road, Manchester, M20 4BX (United Kingdom); Hughes, A. [AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TG (United Kingdom); Dive, C. [Clinical and Experimental Pharmacology, Paterson Institute for Cancer Research, Wilmslow Road, Manchester, 420 4BX (United Kingdom); Byers, R. [School of Cancer and Imaging Studies, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT (United Kingdom); Department of Histopathology, Manchester Royal Infirmary, Oxford Road, Manchester, M13 9WL (United Kingdom)], E-mail: richard.byers@cmmc.nhs.uk

    2008-09-19

    Quantum dots are photostable fluorescent semiconductor nanocrystals possessing wide excitation and bright narrow, symmetrical, emission spectra. These characteristics have engendered considerable interest in their application in multiplex immunohistochemistry for biomarker quantification and co-localisation in clinical samples. Robust quantitation allows biomarker validation, and there is growing need for multiplex staining due to limited quantity of clinical samples. Most reported multiplexed quantum dot staining used sequential methods that are laborious and impractical in a high-throughput setting. Problems associated with sequential multiplex staining have been investigated and a method developed using QDs conjugated to biotinylated primary antibodies, enabling simultaneous multiplex staining with three antibodies. CD34, Cytokeratin 18 and cleaved Caspase 3 were triplexed in tonsillar tissue using an 8 h protocol, each localised to separate cellular compartments. This demonstrates utility of the method for biomarker measurement enabling rapid measurement of multiple co-localised biomarkers on single paraffin tissue sections, of importance for clinical trial studies.

  18. Charges, spins (and phonons) in graphene quantum dots

    E-print Network

    Charges, spins (and phonons) in graphene quantum dots Klaus Ensslin Solid State Physics ·graphene in a Graphene Quantum Dot #12;Graphene dot with charge detector C. Stampfer, S. Hellmüller, J. Güttinger, F #12;Graphene quantum dots: orbital and spin effects QD area: 50 nm x 80 nm #12;Quantum dot states

  19. Development and characterization of silk fibroin coated quantum dots

    Microsoft Academic Search

    B. B. Nathwani; C. Needham; A. B. Mathur; K. E. Meissner

    2008-01-01

    Recent progress in the field of semiconductor nanocrystals or Quantum Dots (QDs) has seen them find wider acceptance as a tool in biomedical research labs. As produced, high quality QDs, synthesized by high temperature organometallic synthesis, are coated with a hydrophobic ligand. Therefore, they must be further processed to be soluble in water and to be made biocompatible. To accomplish

  20. Electronic properties of Graphene quantum dots

    Microsoft Academic Search

    Pawel Hawrylak; Pawel Potasz; A. Devrim Güçlü

    2009-01-01

    We study electronic properties of Graphene quantum dots in magnetic fields. Graphene quantum dots are atomically thick nanometer-scale islands constructed by connecting benzene molecules. Quantum dots with triangular and hexagonal shape have shown to have different edge properties [1,2], and triangular zig-zag structures have recently attracted attention due to their half-filled zero-energy edge states. In this work, we investigate electronic

  1. Functional microspheres of graphene quantum dots

    Microsoft Academic Search

    Yi Ding; Huhu Cheng; Ce Zhou; Yueqiong Fan; Jia Zhu; Huibo Shao; Liangti Qu

    2012-01-01

    Graphene-quantum-dot microspheres (GQDSs) have been prepared by assembly of graphene quantum dots (GQDs) via a water-in-oil (W\\/O) emulsion technique without the addition of any surfactants. Although made of quantum-sized graphene dots, the as-formed GQDSs are solid and remain intact after slight ultrasonication. The versatile W\\/O emulsion method allows the in situ intercalation of functional nanocomponents into the GQDSs for specific

  2. Surround-gated vertical nanowire quantum dots

    NASA Astrophysics Data System (ADS)

    van Weert, M. H. M.; den Heijer, M.; van Kouwen, M. P.; Algra, R. E.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.; Zwiller, V.

    2010-06-01

    We report voltage dependent photoluminescence experiments on single indium arsenide phosphide (InAsP) quantum dots embedded in vertical surround-gated indium phosphide (InP) nanowires. We show that by tuning the gate voltage, we can access different quantum dot charge states. We study the anisotropic exchange splitting by polarization analysis, and identify the neutral and singly charged exciton. These results are important for spin addressability in a charge tunable nanowire quantum dot.

  3. Substrate Modulated Graphene Quantum Dot

    Microsoft Academic Search

    Qiong Ma; Zhi-Rong Lin; Tao Tu; Guang-Can Guo; Guo-Ping Guo

    2009-01-01

    We propose a new method to use gapped graphene as barrier to confine electrons in gapless graphene and form a good quantum dot, which can be realized on an oxygen-terminated $SiO_{2}$ substrate partly H-passivated. In particular, we use ferromagnetic insulators deposited on top of barrier which give rise to a spin related energy spectrum and transport properties. Compared to the

  4. A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2,4,6-trinitrophenol in aqueous solution

    NASA Astrophysics Data System (ADS)

    Lin, Liping; Rong, Mingcong; Lu, Sisi; Song, Xinhong; Zhong, Yunxin; Yan, Jiawei; Wang, Yiru; Chen, Xi

    2015-01-01

    A facile bottom-up method for the synthesis of highly fluorescent nitrogen-doped graphene quantum dots (N-GQDs) has been developed via a one-step pyrolysis of citric acid and tris(hydroxymethyl)aminomethane. The obtained N-GQDs emitted strong blue fluorescence under 365 nm UV light excitation with a high quantum yield of 59.2%. They displayed excitation-independent behavior, high resistance to photobleaching and high ionic strength. In addition to the good linear relationship between the fluorescence intensity of the N-GQDs and pH in the range 2-7, the fluorescence intensity of the N-GQDs could be greatly quenched by the addition of a small amount of 2,4,6-trinitrophenol (TNP). A sensitive approach has been developed for the detection of TNP with a detection limit of 0.30 ?M, and a linearity ranging from 1 to 60 ?M TNP could be obtained. The approach was highly selective and suitable for TNP analysis in natural water samples.A facile bottom-up method for the synthesis of highly fluorescent nitrogen-doped graphene quantum dots (N-GQDs) has been developed via a one-step pyrolysis of citric acid and tris(hydroxymethyl)aminomethane. The obtained N-GQDs emitted strong blue fluorescence under 365 nm UV light excitation with a high quantum yield of 59.2%. They displayed excitation-independent behavior, high resistance to photobleaching and high ionic strength. In addition to the good linear relationship between the fluorescence intensity of the N-GQDs and pH in the range 2-7, the fluorescence intensity of the N-GQDs could be greatly quenched by the addition of a small amount of 2,4,6-trinitrophenol (TNP). A sensitive approach has been developed for the detection of TNP with a detection limit of 0.30 ?M, and a linearity ranging from 1 to 60 ?M TNP could be obtained. The approach was highly selective and suitable for TNP analysis in natural water samples. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06365a

  5. Solvothermal synthesis of InP quantum dots and their enhanced luminescent efficiency by post-synthetic treatments.

    PubMed

    Byun, Ho-June; Lee, Ju Chul; Yang, Heesun

    2011-03-01

    InP quantum dots (QDs) were solvothermally synthesized by using a greener phosphorus source of P(N(CH(3))(2))(3) instead of highly toxic P(TMS)(3) widely used, and subsequently subjected to a size-sorting processing. While as-grown QDs showed an undetectably low emission intensity, post-synthetic treatments such as photo-etching, photo-radiation, and photo-assisted ZnS shell coating gave rise to a substantial increase in emission efficiency due to the effective removal and passivation of surface states. The emission efficiency of the photo-etched QDs was further enhanced by a consecutive UV photo-radiation, attributable to the photo-oxidation at QD surface. Furthermore, a relatively thick ZnS shell on the surface of InP QDs that were surface-modified with hydrophilic ligands beforehand was photochemically generated in an aqueous solution at room temperature. The resulting InP/ZnS core/shell QDs, emitting from blue to red wavelengths, were more efficient than the above photo-treated InP QDs, and their luminescent properties (emission bandwidth and quantum yield) were comparable to those of InP QDs synthesized with P(TMS)(3). Structural, size, and compositional analyses on InP/ZnS QDs were also conducted to elucidate their core/shell structure. PMID:21194707

  6. Quantum dot enabled high color gamut LCDs

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Kan, Shihai; Lee, Ernie; Gensler, Steve; Hartlove, Jason

    2015-03-01

    Quantum dots are a new generation of phosphor material that have high photon conversion efficiency, narrow spectral line-widths and can be continuously tuned in their emission wavelengths. Since 2013, quantum dots have been adopted by the consumer electronics industry into LCDs to significantly increase their color performance. Compared to the OLED solution, quantum dot LCDs have higher energy efficiency, larger color gamut, longer lifetime, and are offered at a fraction of the cost of OLED panels. In this paper, we demonstrate that quantum-dot based LCDs can achieve more than 90% coverage of the ultra-wide color gamut, Rec. 2020, which is the new color standard for UHDTV.

  7. Supplementary information: Quantum dots encapsulated within phospholipid membranes

    E-print Network

    Salaita, Khalid

    membrane using H2O2. S11 7. PL of CdSe QDs encapsulated within DMPC lipid membrane in the gel and fluid. Synthesis and characterization of CdSe quantum dots (QDs). S2-S3 2. Preparation of Lipid-QD (L-QD) vesicles vesicles. S19-S20 11. Caption for Supplementary Video 1. S21 #12;S2 1. Synthesis and characterization of Cd

  8. Semiconductor Quantum Dots for Biomedicial Applications

    PubMed Central

    Shao, Lijia; Gao, Yanfang; Yan, Feng

    2011-01-01

    Semiconductor quantum dots (QDs) are nanometre-scale crystals, which have unique photophysical properties, such as size-dependent optical properties, high fluorescence quantum yields, and excellent stability against photobleaching. These properties enable QDs as the promising optical labels for the biological applications, such as multiplexed analysis of immunocomplexes or DNA hybridization processes, cell sorting and tracing, in vivo imaging and diagnostics in biomedicine. Meanwhile, QDs can be used as labels for the electrochemical detection of DNA or proteins. This article reviews the synthesis and toxicity of QDs and their optical and electrochemical bioanalytical applications. Especially the application of QDs in biomedicine such as delivering, cell targeting and imaging for cancer research, and in vivo photodynamic therapy (PDT) of cancer are briefly discussed. PMID:22247690

  9. Colloidal quantum dot photovoltaics: a path forward.

    PubMed

    Kramer, Illan J; Sargent, Edward H

    2011-11-22

    Colloidal quantum dots (CQDs) offer a path toward high-efficiency photovoltaics based on low-cost materials and processes. Spectral tunability via the quantum size effect facilitates absorption of specific wavelengths from across the sun's broad spectrum. CQD materials' ease of processing derives from their synthesis, storage, and processing in solution. Rapid advances have brought colloidal quantum dot photovoltaic solar power conversion efficiencies of 6% in the latest reports. These achievements represent important first steps toward commercially compelling performance. Here we review advances in device architecture and materials science. We diagnose the principal phenomenon-electronic states within the CQD film band gap that limit both current and voltage in devices-that must be cured for CQD PV devices to fulfill their promise. We close with a prescription, expressed as bounds on the density and energy of electronic states within the CQD film band gap, that should allow device efficiencies to rise to those required for the future of the solar energy field. PMID:21967723

  10. Facile synthesis of analogous graphene quantum dots with sp2 hybridized carbon atom dominant structures and their photovoltaic application

    NASA Astrophysics Data System (ADS)

    Huang, Zhengcheng; Shen, Yongtao; Li, Yu; Zheng, Wenjun; Xue, Yunjia; Qin, Chengqun; Zhang, Bo; Hao, Jingxiang; Feng, Wei

    2014-10-01

    Graphene quantum dot (GQD) is an emerging class of zero-dimensional nanocarbon material with many novel applications. It is of scientific importance to prepare GQDs with more perfect structures, that is, GQDs containing negligible oxygenous defects, for both optimizing their optical properties and helping in their photovoltaic applications. Herein, a new strategy for the facile preparation of ``pristine'' GQDs is reported. The method we presented is a combination of a bottom-up synthetic and a solvent-induced interface separation process, during which the target products with highly crystalline structure were selected by the organic solvent. The obtained organic soluble GQDs (O-GQDs) showed a significant difference in structure and composition compared with ordinary aqueous soluble GQDs, thus leading to a series of novel properties. Furthermore, O-GQDs were applied as electron-acceptors in a poly(3-hexylthiophene) (P3HT)-based organic photovoltaic device. The performance highlights that O-GQD has potential to be a novel electron-acceptor material due to the sp2 hybridized carbon atom dominant structure and good solubility in organic solvents.Graphene quantum dot (GQD) is an emerging class of zero-dimensional nanocarbon material with many novel applications. It is of scientific importance to prepare GQDs with more perfect structures, that is, GQDs containing negligible oxygenous defects, for both optimizing their optical properties and helping in their photovoltaic applications. Herein, a new strategy for the facile preparation of ``pristine'' GQDs is reported. The method we presented is a combination of a bottom-up synthetic and a solvent-induced interface separation process, during which the target products with highly crystalline structure were selected by the organic solvent. The obtained organic soluble GQDs (O-GQDs) showed a significant difference in structure and composition compared with ordinary aqueous soluble GQDs, thus leading to a series of novel properties. Furthermore, O-GQDs were applied as electron-acceptors in a poly(3-hexylthiophene) (P3HT)-based organic photovoltaic device. The performance highlights that O-GQD has potential to be a novel electron-acceptor material due to the sp2 hybridized carbon atom dominant structure and good solubility in organic solvents. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03658a

  11. Eco-friendly synthesis of size-controllable amine-functionalized graphene quantum dots with antimycoplasma properties

    NASA Astrophysics Data System (ADS)

    Jiang, Feng; Chen, Daiqin; Li, Ruimin; Wang, Yucheng; Zhang, Guoqiang; Li, Shumu; Zheng, Junpeng; Huang, Naiyan; Gu, Ying; Wang, Chunru; Shu, Chunying

    2013-01-01

    Size-controllable amine-functionalized graphene quantum dots (GQDs) are prepared by an eco-friendly method with graphene oxide sheets, ammonia and hydrogen peroxide as starting materials. Using a Sephadex G-25 gel column for fine separation, for the first time we obtain GQDs with either single or double layers. By atomic force microscopy characterization, we confirm that hydrogen peroxide and ammonia play a synergistic role on graphene oxide (GO), in which the former cuts the GO into small pieces and the latter passivates the active surface to give amine-modified GQDs. Due to the low cytotoxicity and excellent biocompatibility of the obtained amine-functionalized GQDs, besides the multiwavelength imaging properties of GQDs, for the first time we find that this kind of GQD exhibits good antimycoplasma properties. Given the superior antimycoplasma effect of the GQDs and their eco-friendly mass production with low cost, these new GQDs may offer opportunities for the development of new antimycoplasma agents, thus extending their widespread application in biomedicine.Size-controllable amine-functionalized graphene quantum dots (GQDs) are prepared by an eco-friendly method with graphene oxide sheets, ammonia and hydrogen peroxide as starting materials. Using a Sephadex G-25 gel column for fine separation, for the first time we obtain GQDs with either single or double layers. By atomic force microscopy characterization, we confirm that hydrogen peroxide and ammonia play a synergistic role on graphene oxide (GO), in which the former cuts the GO into small pieces and the latter passivates the active surface to give amine-modified GQDs. Due to the low cytotoxicity and excellent biocompatibility of the obtained amine-functionalized GQDs, besides the multiwavelength imaging properties of GQDs, for the first time we find that this kind of GQD exhibits good antimycoplasma properties. Given the superior antimycoplasma effect of the GQDs and their eco-friendly mass production with low cost, these new GQDs may offer opportunities for the development of new antimycoplasma agents, thus extending their widespread application in biomedicine. Electronic supplementary information (ESI) available: Experimental details and additional characterization data. See DOI: 10.1039/c2nr33191h

  12. Fabrication and characterization of surfactant-free PbSe quantum dot films and PbSe-polymer hybrid structures

    Microsoft Academic Search

    Gayan S Dedigamuwa

    2010-01-01

    This work describes an experimental investigation of methods of synthesis, determination of structural and physical properties, and analysis and correlation of the properties to the structures of semiconductor quantum dots and quantum dot-polymer hybrid structures. These structures are investigated for applications in flexible solar cell devices. The main synthesis process used in the work was a Laser-Assisted Spray (LAS) process

  13. Quantum dot phosphors and their application to inorganic electroluminescence device

    Microsoft Academic Search

    Takahisa Omata; Yuki Tani; Satoshi Kobayashi; S. Otsuka-Yao-Matsuo

    The colloidal semiconductor quantum dots (QDs), as represented by colloidal CdSe QDs, synthesized via a chemical solution route that is termed the hot-soap synthesis are excellent phosphors and are expected to be used in various light emission devices, because of their adjustable emission energy utilizing the quantum size effect and high luminosity. We have recently developed less-toxic and cadmium-free colloidal

  14. Facile synthesis of analogous graphene quantum dots with sp(2) hybridized carbon atom dominant structures and their photovoltaic application.

    PubMed

    Huang, Zhengcheng; Shen, Yongtao; Li, Yu; Zheng, Wenjun; Xue, Yunjia; Qin, Chengqun; Zhang, Bo; Hao, Jingxiang; Feng, Wei

    2014-11-01

    Graphene quantum dot (GQD) is an emerging class of zero-dimensional nanocarbon material with many novel applications. It is of scientific importance to prepare GQDs with more perfect structures, that is, GQDs containing negligible oxygenous defects, for both optimizing their optical properties and helping in their photovoltaic applications. Herein, a new strategy for the facile preparation of "pristine" GQDs is reported. The method we presented is a combination of a bottom-up synthetic and a solvent-induced interface separation process, during which the target products with highly crystalline structure were selected by the organic solvent. The obtained organic soluble GQDs (O-GQDs) showed a significant difference in structure and composition compared with ordinary aqueous soluble GQDs, thus leading to a series of novel properties. Furthermore, O-GQDs were applied as electron-acceptors in a poly(3-hexylthiophene) (P3HT)-based organic photovoltaic device. The performance highlights that O-GQD has potential to be a novel electron-acceptor material due to the sp(2) hybridized carbon atom dominant structure and good solubility in organic solvents. PMID:25247467

  15. Synthesis of water-dispersible zinc oxide quantum dots with antibacterial activity and low cytotoxicity for cell labeling

    NASA Astrophysics Data System (ADS)

    Hsu, Shan-hui; Lin, Ying Yi; Huang, Sherry; Lem, Kwok Wai; Huong Nguyen, Dinh; Lee, Dai Soo

    2013-11-01

    Typical photoluminescent semiconductor nanoparticles, called quantum dots (QDs), have potential applications in biological labeling. When used to label stem cells, QDs may impair the differentiation capacity of the stem cells. In this study, we synthesized zinc oxide (ZnO) QDs in methanol with an average size of ?2 nm. We then employed two different types of polyethylene glycol (PEG) molecules (SH-PEG-NH2 and NH2-PEG-NH2) to conjugate ZnO QDs and made them water-dispersible. Fourier transform infrared spectroscopy spectra indicated the attachment of PEG molecules on ZnO QDs. No obvious size alteration was observed for ZnO QDs after PEG conjugation. The water-dispersible ZnO QDs still retained the antibacterial activity and fluorescence intensity. The cytotoxicity evaluation revealed that ZnO QDs at higher concentrations decreased cell viability but were generally safe at 30 ppm or below. Cell lines of hepatocytes (HepG2), osteoblasts (MC3T3-E1) and mesenchymal stem cells (MSCs) were successfully labeled by the water-dispersible ZnO QDs at 30 ppm. The ZnO QD-labeled MSCs maintained their stemness and differentiation capacity. Therefore, we conclude that the water-dispersible ZnO QDs developed in this study have antibacterial activity, low cytotoxicity, and proper labeling efficiency, and can be used to label a variety of cells including stem cells.

  16. Synthesis and Optical Properties of Thiol Functionalized CdSe/ZnS (Core/Shell) Quantum Dots by Ligand Exchange

    SciTech Connect

    Zhu, Huaping [ORNL; Hu, Michael Z. [ORNL; Shao, Lei [ORNL; Yu, Kui [SIMS, NRC of Canada; Dabestani, Reza T [ORNL; Zaman, Md. Badruz [SIMS, NRC of Canada; Liao, Dr. Shijun [South China University of Technology, Guangzhou, PR China

    2014-01-01

    The colloidal photoluminescent quantum dots (QDs) of CdSe (core) and CdSe/ZnS (core/shell) were synthesized at different temperatures with different growth periods. The optical properties (i.e., UV/Vis spectra and photoluminescent emission spectra) of the resulting QDs were investigated. The CdSe/ZnS QDs exhibited higher photoluminescent (PL) efficiency and stability than their corresponding CdSe core QDs. Ligand exchange with various thiol molecules was performed to replace the initial surface passivation ligands, that is, trioctylphosphine oxide (TOPO) and trioctylphosphine (TOP), and the optical properties of the surface-modified QDs were studied. The thiol ligand molecules used included 1,4-benzenedimethanethiol, 1,16-hexadecanedithiol, 1,11-undecanedithiol, 11-mercapto-1-undecanol, and 1,8 octanedithiol. After the thiol functionalization, the CdSe/ZnS QDs exhibited significantly enhanced PL efficiency and storage stability. Besides surface passivation effect, such enhanced performance of thiol-functionalized QDs could be due to self-assembly formation of dimer/trimer clusters, in which QDs are linked by dithiol molecules. Effects of ligand concentration, type of ligand, and heating on the thiol stabilization of QDs were also discussed.

  17. Eco-friendly synthesis of size-controllable amine-functionalized graphene quantum dots with antimycoplasma properties.

    PubMed

    Jiang, Feng; Chen, Daiqin; Li, Ruimin; Wang, Yucheng; Zhang, Guoqiang; Li, Shumu; Zheng, Junpeng; Huang, Naiyan; Gu, Ying; Wang, Chunru; Shu, Chunying

    2013-02-01

    Size-controllable amine-functionalized graphene quantum dots (GQDs) are prepared by an eco-friendly method with graphene oxide sheets, ammonia and hydrogen peroxide as starting materials. Using a Sephadex G-25 gel column for fine separation, for the first time we obtain GQDs with either single or double layers. By atomic force microscopy characterization, we confirm that hydrogen peroxide and ammonia play a synergistic role on graphene oxide (GO), in which the former cuts the GO into small pieces and the latter passivates the active surface to give amine-modified GQDs. Due to the low cytotoxicity and excellent biocompatibility of the obtained amine-functionalized GQDs, besides the multiwavelength imaging properties of GQDs, for the first time we find that this kind of GQD exhibits good antimycoplasma properties. Given the superior antimycoplasma effect of the GQDs and their eco-friendly mass production with low cost, these new GQDs may offer opportunities for the development of new antimycoplasma agents, thus extending their widespread application in biomedicine. PMID:23282851

  18. Facile synthesis and step by step enhancement of blue photoluminescence from Ag-doped ZnS quantum dots

    E-print Network

    Sahai, Sonal; Shanker, Virendra; Singh, Nahar; Haranath, D; 10.1016/j.jcis.2011.02.030

    2012-01-01

    Our results pertaining to the step by step enhancement of photoluminescence (PL) intensity from ZnS:Ag,Al quantum dots (QDs) are presented. Initially, these QDs were synthesized using a simple co-precipitation technique involving a surfactant, polyvinylpyrrolidone (PVP), in de-ionised water. It was observed that the blue PL originated from ZnS:Ag,Al QDs was considerably weak and not suitable for any practical display application. Upon UV (365 nm) photolysis, the PL intensity augmented to ~170% and attained a saturation value after ~100 minutes of exposure. This is attributed to the photo-corrosion mechanism exerted by high-flux UV light on ZnS:Ag,Al QDs. Auxiliary enhancement of PL intensity to 250% has been evidenced by subjecting the QDs to high temperatures (200oC) and pressures (~120 bars) in a sulphur-rich atmosphere, which is due to the improvement in crystallanity of ZnS QDs. The origin of the bright blue PL has been discussed. The results were supported by x-ray phase analysis, high-resolution electro...

  19. Synthesis of size-controlled colloidal InAs quantum dots using triphenylarsine as a stable arsenic source

    NASA Astrophysics Data System (ADS)

    Uesugi, Hideo; Kita, Masao; Omata, Takahisa

    2015-04-01

    Colloidal indium arsenide (InAs) quantum dots (QDs) were synthesized by heating an organometallic solution containing the easy-to-handle arsenic source triphenylarsine and indium tribromide in a mixture of oleylamine, tri-n-octylphosphine and octadecene. The one-pot reaction was heated at 320 °C to give spherical, monodisperse QDs in less than 15 min; the size of the QDs was controlled in the range from 3 to 6 nm by changing the reaction time. Tetrahedral QDs composed of four enclosed {111} faces of zincblende InAs were obtained after reaction for 30 min. The dependence of the shape of the QDs on reaction time was rationalized in terms of the adsorption strength of the capping ligand. The obtained QDs exhibited size-dependent optical gaps and PL emission, indicating narrow size distribution and good crystal quality. Because the PL emission exhibited a large Stokes shift of 100-200 meV, the electronic transition responsible for the PL emission was related to defects inside the QDs, and must involve the relaxation of excited electrons at the quantized electron state 1Se because of the large size-dependent energy variation.

  20. Hydrothermal synthesis of high-quality thiol-stabilized CdTe(x)Se(1-x) alloyed quantum dots.

    PubMed

    Yang, Fanghong; Yang, Ping; Cao, Yongqiang

    2013-11-01

    Alloyed semiconductor quantum dots (QDs) enriched the synthetic routes for engineering materials with unique structural and optical properties. High-quality thiol-stabilized CdTe(x)Se(1-x) alloyed QDs were synthesized through a facile and economic hydrothermal method at 120 °C, a relatively low temperature. These water-soluble QDs were prepared using different capping agents including 3-mercaptopropionic acid (MPA) and L-cysteine (L-Cys). The photoluminescence (PL) intensity and stability of L-Cys-capped CdTe(x)Se(1-x) QDs were found to be higher than that of MPA-stabilized ones. The molar ratios of Se-to-Te upon preparation were adjusted for investigating the effect of composition on the properties of the resulting QDs. We also investigated the effect of the pH value of the reaction solution on the growth kinetics of the alloyed CdTe(x)Se(1-x) QDs. The resulting CdTe(x)Se(1-x) QDs were characterized by UV-vis absorbance and PL spectroscopy, powder X-ray diffraction, and transmission electron microscopy. Being coated with a CdS inorganic shell, the PL intensity and stability of the CdTe(x)Se(1-x)/CdS core-shell QDs were drastically enhanced, accompanied by the red-shift of the PL peak wavelength. Owing to the unique optical properties, the QDs hold great potential for application and have to be further exploited. PMID:23873206

  1. Surface processes during purification of InP quantum dots.

    PubMed

    Mordvinova, Natalia; Emelin, Pavel; Vinokurov, Alexander; Dorofeev, Sergey; Abakumov, Artem; Kuznetsova, Tatiana

    2014-01-01

    Recently, a new simple and fast method for the synthesis of InP quantum dots by using phosphine as phosphorous precursor and myristic acid as surface stabilizer was reported. Purification after synthesis is necessary to obtain samples with good optical properties. Two methods of purification were compared and the surface processes which occur during purification were studied. Traditional precipitation with acetone is accompanied by a small increase in photoluminescence. It occurs that during the purification the hydrolysis of the indium precursor takes place, which leads to a better surface passivation. The electrophoretic purification technique does not increase luminescence efficiency but yields very pure quantum dots in only a few minutes. Additionally, the formation of In(OH)3 during the low temperature synthesis was explained. Purification of quantum dots is a very significant part of postsynthetical treatment that determines the properties of the material. But this subject is not sufficiently discussed in the literature. The paper is devoted to the processes that occur at the surface of quantum dots during purification. A new method of purification, electrophoresis, is investigated and described in particular. PMID:25161857

  2. Electron localization in graphene quantum dots

    Microsoft Academic Search

    Prabath Hewageegana; Vadym Apalkov

    2008-01-01

    We study theoretically a localized state of an electron in a graphene quantum dot with a sharp boundary. Due to Klein's tunneling, the ``relativistic'' electron in graphene cannot be localized by any confinement potential. In this case the electronic states in a graphene quantum dot become resonances with finite trapping time. We consider these resonances as the states with complex

  3. Charge detection in graphene quantum dots

    Microsoft Academic Search

    J. Güttinger; C. Stampfer; S. Hellmüller; F. Molitor; T. Ihn; K. Ensslin

    2008-01-01

    We report measurements on a graphene quantum dot with an integrated graphene charge detector. The quantum dot device consists of a graphene island (diameter of ~200 nm) connected to source and drain contacts via two narrow graphene constrictions. From Coulomb diamond measurements a charging energy of 4.3 meV is extracted. The charge detector is based on a 45 nm wide

  4. Electron localization in graphene quantum dots

    Microsoft Academic Search

    Vadym Apalkov; Prabath Hewageegana

    2009-01-01

    We study theoretically a localized state of an electron in a graphene quantum dot with a sharp boundary. Due to Klein's tunneling, the relativistic electron in graphene cannot be localized by a confinement potential. In this case electron states in a graphene quantum dot become resonances with finite trapping time. We consider these resonances as the states with complex energy.

  5. STED nanoscopy with fluorescent quantum dots

    PubMed Central

    Hanne, Janina; Falk, Henning J.; Görlitz, Frederik; Hoyer, Patrick; Engelhardt, Johann; Sahl, Steffen J.; Hell, Stefan W.

    2015-01-01

    The widely popular class of quantum-dot molecular labels could so far not be utilized as standard fluorescent probes in STED (stimulated emission depletion) nanoscopy. This is because broad quantum-dot excitation spectra extend deeply into the spectral bands used for STED, thus compromising the transient fluorescence silencing required for attaining super-resolution. Here we report the discovery that STED nanoscopy of several red-emitting commercially available quantum dots is in fact successfully realized by the increasingly popular 775?nm STED laser light. A resolution of presently ?50?nm is demonstrated for single quantum dots, and sub-diffraction resolution is further shown for imaging of quantum-dot-labelled vimentin filaments in fibroblasts. The high quantum-dot photostability enables repeated STED recordings with >1,000 frames. In addition, we have evidence that the tendency of quantum-dot labels to blink is largely suppressed by combined action of excitation and STED beams. Quantum-dot STED significantly expands the realm of application of STED nanoscopy, and, given the high stability of these probes, holds promise for extended time-lapse imaging. PMID:25980788

  6. Tunneling current through a quantum dot array

    Microsoft Academic Search

    David M.-T. Kuo; G. Y. Guo; Yia-Chung Chang

    2001-01-01

    The tunneling current through a quantum dot array (QDA) is studied theoretically. Strong electron correlation effect is taken into account in the QDA in which the quantum dots provide a strong three-dimensional confinement effect. A mixed Hubbard and Anderson model is used to simulate the system. It is found that Coulomb charging splits the band resulting from interdot coupling into

  7. Quantum Confined Silicon Clathrate Quantum Dots

    NASA Astrophysics Data System (ADS)

    Lusk, Mark; Brawand, Nicholas

    2013-03-01

    Silicon (Si) allotropes can be synthesized in such a way that tetrahedrally bonded atoms form cage-like structures with bulk mechanical and opto-electronic properties distinct from those of diamond silicon (dSi). We use DFT, supplemented with many-body Green function analysis, to explore the structural stability of clathrate Si quantum dots (QDs) and to characterize their confinement as a function of crystal symmetry and size. Our results show that that there is a simple relationship between the confinement character of the QDs and the effective mass of the associated bulk crystals. Clathrate QDs and dSiQDs of the same size can exhibit differences of gap energies by as much as 2 eV. This offers the potential of synthesizing Si dots on the order of 1 nm that have optical gaps in the visible range but that do not rely on high-pressure routes such as those explored for the metastable BC8 and R8 phases. These results prompt the question as to how minimal quantum confinement can be in dots composed of Si. More broadly, clathrate QDs can in principle be synthesized for a wide range of semiconductors, and the design space can be further enriched via doping. Silicon (Si) allotropes can be synthesized in such a way that tetrahedrally bonded atoms form cage-like structures with bulk mechanical and opto-electronic properties distinct from those of diamond silicon (dSi). We use DFT, supplemented with many-body Green function analysis, to explore the structural stability of clathrate Si quantum dots (QDs) and to characterize their confinement as a function of crystal symmetry and size. Our results show that that there is a simple relationship between the confinement character of the QDs and the effective mass of the associated bulk crystals. Clathrate QDs and dSiQDs of the same size can exhibit differences of gap energies by as much as 2 eV. This offers the potential of synthesizing Si dots on the order of 1 nm that have optical gaps in the visible range but that do not rely on high-pressure routes such as those explored for the metastable BC8 and R8 phases. These results prompt the question as to how minimal quantum confinement can be in dots composed of Si. More broadly, clathrate QDs can in principle be synthesized for a wide range of semiconductors, and the design space can be further enriched via doping. NSF Renewable Energy Materials Research Science and Engineering Center (REMRSEC) and the Golden Energy Computing Organization (GECO)

  8. Quantum-dot supercrystals for future nanophotonics

    PubMed Central

    Baimuratov, Anvar S.; Rukhlenko, Ivan D.; Turkov, Vadim K.; Baranov, Alexander V.; Fedorov, Anatoly V.

    2013-01-01

    The study of supercrystals made of periodically arranged semiconductor quantum dots is essential for the advancement of emerging nanophotonics technologies. By combining the strong spatial confinement of elementary excitations inside quantum dots and exceptional design flexibility, quantum-dot supercrystals provide broad opportunities for engineering desired optical responses and developing superior light manipulation techniques on the nanoscale. Here we suggest tailoring the energy spectrum and wave functions of the supercrystals' collective excitations through the variation of different structural and material parameters. In particular, by calculating the excitonic spectra of quantum dots assembled in two-dimensional Bravais lattices we demonstrate a wide variety of spectrum transformation scenarios upon alterations in the quantum dot arrangement. This feature offers unprecedented control over the supercrystal's electromagnetic properties and enables the development of new nanophotonics materials and devices.

  9. Biocompatible Quantum Dots for Biological Applications

    PubMed Central

    Rosenthal, Sandra J.; Chang, Jerry C.; Kovtun, Oleg; McBride, James R.; Tomlinson, Ian D.

    2011-01-01

    Semiconductor quantum dots are quickly becoming a critical diagnostic tool for discerning cellular function at the molecular level. Their high brightness, long-lasting, sizetunable, and narrow luminescence set them apart from conventional fluorescence dyes. Quantum dots are being developed for a variety of biologically oriented applications, including fluorescent assays for drug discovery, disease detection, single protein tracking, and intracellular reporting. This review introduces the science behind quantum dots and describes how they are made biologically compatible. Several applications are also included, illustrating strategies toward target specificity, and are followed by a discussion on the limitations of quantum dot approaches. The article is concluded with a look at the future direction of quantum dots. PMID:21276935

  10. Polymer-coated quantum dots

    NASA Astrophysics Data System (ADS)

    Tomczak, Nikodem; Liu, Rongrong; Vancso, Julius G.

    2013-11-01

    Quantum Dots (QDs) are semiconductor nanocrystals with distinct photophysical properties finding applications in biology, biosensing, and optoelectronics. Polymeric coatings of QDs are used primarily to provide long-term colloidal stability to QDs dispersed in solutions and also as a source of additional functional groups used in further chemical derivatization of the nanoparticles. We review the coating methods, including multidentate and amphiphilic polymeric coatings, and grafting-to and grafting-from approaches. We highlight the most commonly used polymers and discuss how their chemical structure influences the coating properties.

  11. Synthesis, characterization and target protein binding of drug-conjugated quantum dots in vitro and in living cells

    NASA Astrophysics Data System (ADS)

    Choi, Youngseon; Kim, Minjung; Cho, Yoojin; Yun, Eunsuk; Song, Rita

    2013-02-01

    Elucidation of unknown target proteins of a drug is of great importance in understanding cell biology and drug discovery. There have been extensive studies to discover and identify target proteins in the cell. Visualization of targets using drug-conjugated probes has been an important approach to gathering mechanistic information of drug action at the cellular level. As quantum dot (QD) nanocrystals have attracted much attention as a fluorescent probe in the bioimaging area, we prepared drug-conjugated QD to explore the potential of target discovery. As a model drug, we selected a well-known anticancer drug, methotrexate (MTX), which has been known to target dihydrofolate reductase (DHFR) with high affinity binding (Kd = 0.54 nM). MTX molecules were covalently attached to amino-PEG-polymer-coated QDs. Specific interactions of MTX-conjugated QDs with DHFR were identified using agarose gel electrophoresis and fluorescence microscopy. Cellular uptake of the MTX-conjugated QDs in living CHO cells was investigated with regard to their localization and distribution pattern. MTX-QD was found to be internalized into the cells via caveolae-medicated endocytosis without significant sequestration in endosomes. A colocalization experiment of the MTX-QD conjugate with antiDHFR-TAT-QD also confirmed that MTX-QD binds to the target DHFR. This study showed the potential of the drug-QD conjugate to identify or visualize drug-target interactions in the cell, which is currently of great importance in the area of drug discovery and chemical biology.

  12. Single to quadruple quantum dots with tunable tunnel couplings

    SciTech Connect

    Takakura, T.; Noiri, A.; Obata, T.; Yoneda, J.; Yoshida, K. [Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Otsuka, T.; Tarucha, S. [Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); RIKEN, Center for Emergent Matter Science, 3-1 Wako-shi, Saitama 351-0198 (Japan)

    2014-03-17

    We prepare a gate-defined quadruple quantum dot to study the gate-tunability of single to quadruple quantum dots with finite inter-dot tunnel couplings. The measured charging energies of various double dots suggest that the dot size is governed by the gate geometry. For the triple and quadruple dots, we study the gate-tunable inter-dot tunnel couplings. For the triple dot, we find that the effective tunnel coupling between side dots significantly depends on the alignment of the center dot potential. These results imply that the present quadruple dot has a gate performance relevant for implementing spin-based four-qubits with controllable exchange couplings.

  13. Hybrid superconductor-quantum dot devices.

    PubMed

    De Franceschi, Silvano; Kouwenhoven, Leo; Schönenberger, Christian; Wernsdorfer, Wolfgang

    2010-10-01

    Advances in nanofabrication techniques have made it possible to make devices in which superconducting electrodes are connected to non-superconducting nanostructures such as quantum dots. The properties of these hybrid devices result from a combination of a macroscopic quantum phenomenon involving large numbers of electrons (superconductivity) and the ability to control single electrons, offered by quantum dots. Here we review research into electron transport and other fundamental processes that have been studied in these devices. We also describe potential applications, such as a transistor in which the direction of a supercurrent can be reversed by adding just one electron to a quantum dot. PMID:20852639

  14. Hybrid superconductor-quantum dot devices

    NASA Astrophysics Data System (ADS)

    de Franceschi, Silvano; Kouwenhoven, Leo; Schönenberger, Christian; Wernsdorfer, Wolfgang

    2010-10-01

    Advances in nanofabrication techniques have made it possible to make devices in which superconducting electrodes are connected to non-superconducting nanostructures such as quantum dots. The properties of these hybrid devices result from a combination of a macroscopic quantum phenomenon involving large numbers of electrons (superconductivity) and the ability to control single electrons, offered by quantum dots. Here we review research into electron transport and other fundamental processes that have been studied in these devices. We also describe potential applications, such as a transistor in which the direction of a supercurrent can be reversed by adding just one electron to a quantum dot.

  15. Charge detection in graphene quantum dots J. Gttinger,a

    E-print Network

    Ihn, Thomas

    Charge detection in graphene quantum dots J. Güttinger,a C. Stampfer, S. Hellmüller, F. Molitor, T on a graphene quantum dot with an integrated graphene charge detector. The quantum dot device consists­9 interference devices,10­12 and graphene quantum dots QDs .13­15 In this paper we present an integrated graphene

  16. Optophononics with coupled quantum dots.

    PubMed

    Kerfoot, Mark L; Govorov, Alexander O; Czarnocki, Cyprian; Lu, Davis; Gad, Youstina N; Bracker, Allan S; Gammon, Daniel; Scheibner, Michael

    2014-01-01

    Modern technology is founded on the intimate understanding of how to utilize and control electrons. Next to electrons, nature uses phonons, quantized vibrations of an elastic structure, to carry energy, momentum and even information through solids. Phonons permeate the crystalline components of modern technology, yet in terms of technological utilization phonons are far from being on par with electrons. Here we demonstrate how phonons can be employed to render a single quantum dot pair optically transparent. This phonon-induced transparency is realized via the formation of a molecular polaron, the result of a Fano-type quantum interference, which proves that we have accomplished making typically incoherent and dissipative phonons behave in a coherent and non-dissipative manner. We find the transparency to be widely tunable by electronic and optical means. Thereby we show amplification of weakest coupling channels. We further outline the molecular polaron's potential as a control element in phononic circuitry architecture. PMID:24534815

  17. Unraveling the Mesoscopic Character of Quantum Dots in Nanophotonics

    NASA Astrophysics Data System (ADS)

    Tighineanu, P.; Sørensen, A. S.; Stobbe, S.; Lodahl, P.

    2015-06-01

    We provide a microscopic theory for semiconductor quantum dots that explains the pronounced deviations from the prevalent point-dipole description that were recently observed in spectroscopic experiments on quantum dots in photonic nanostructures. The deviations originate from structural inhomogeneities generating a large circular quantum current density that flows inside the quantum dot over mesoscopic length scales. The model is supported by the experimental data, where a strong variation of the multipolar moments across the emission spectrum of quantum dots is observed. Our work enriches the physical understanding of quantum dots and is of significance for the fields of nanophotonics, quantum photonics, and quantum-information science, where quantum dots are actively employed.

  18. Quantum dot loaded immunomicelles for tumor imaging

    Microsoft Academic Search

    Aristarchos Papagiannaros; Jaydev Upponi; William Hartner; Dmitriy Mongayt; Tatyana Levchenko; Vladimir Torchilin

    2010-01-01

    BACKGROUND: Optical imaging is a promising method for the detection of tumors in animals, with speed and minimal invasiveness. We have previously developed a lipid coated quantum dot system that doubles the fluorescence of PEG-grafted quantum dots at half the dose. Here, we describe a tumor-targeted near infrared imaging agent composed of cancer-specific monoclonal anti-nucleosome antibody 2C5, coupled to quantum

  19. One-pot synthesis of water-dispersible Ag2S quantum dots with bright fluorescent emission in the second near-infrared window

    NASA Astrophysics Data System (ADS)

    Yang, Hua-Yan; Zhao, Yu-Wei; Zhang, Zheng-Yong; Xiong, Huan-Ming; Yu, Shao-Ning

    2013-02-01

    The second near-infrared window (NIR-II, wavelength of 1.0-1.4 ?m) is optimal for the bioimaging of live animals due to their low albedo and endogenous autofluorescence. Herein, we report a facile and one-pot biomimetic synthesis approach to prepare water-dispersible NIR-II-emitting ultrasmall Ag2S quantum dots (QDs). Photoluminescence spectra showed that the emission peaks could be tuned from 1294 to 1050 nm as the size of the Ag2S QDs varied from 6.8 to 1.6 nm. The x-ray diffraction patterns and x-ray photoelectron spectra confirmed that the products were monoclinic ?-Ag2S. Fourier transform infrared spectrograph analysis indicated that the products were protein-conjugated Ag2S QDs. Examination of cytotoxicity and the hemolysis test showed that the obtained Ag2S QDs had good biocompatibility, indicating that such a nanomaterial could be a new kind of fluorescent label for in vivo imaging.

  20. Low-cost and large-scale synthesis of CuInS2 and CuInS2/ZnS quantum dots in diesel

    NASA Astrophysics Data System (ADS)

    Thuy, Nguyen Thi Minh; Chi, Tran Thi Kim; Thuy, Ung Thi Dieu; Liem, Nguyen Quang

    2014-11-01

    In this paper, we present the results of the syntheses of CuInS2 (CIS) and CIS/ZnS core/shell quantum dots (QDs) by heating-up method using diesel as the high boiling-point reaction solvent. The influences of the synthesis parameters, namely the reaction temperature, growth time and the Cu:In molar ratio to the structure and optical properties of the obtained QDs were systematically investigated. CIS QDs were synthesised at the reaction temperatures of 200-230 °C for 5-45 min and the Cu:In molar ratios of 0.5:1-1.5:1. The optical characteristics from absorption and photoluminescence spectra have been used as indicators to the quality of the synthesised QDs, showing clearly that the highest quality CIS QDs were obtained at the reaction temperature of 210 °C for 15 min with the Cu:In molar ratio of 1:1. For such QDs, their mean size of 3.5 nm was determined directly from the transmission electron microscopy (TEM) image and calculated from their XRD pattern.

  1. Poly(glycidyl methacrylate) grafted CdSe quantum dots by surface-initiated atom transfer radical polymerization: Novel synthesis, characterization, properties, and cytotoxicity studies

    NASA Astrophysics Data System (ADS)

    Bach, Long Giang; Islam, Md. Rafiqul; Lee, Doh Chang; Lim, Kwon Taek

    2013-10-01

    A novel approach for the synthesis of poly(glycidyl methacrylate) grafted CdSe quantum dot (QDs) (PGMA-g-CdSe) was developed. The PGMA-g-CdSe nanohybrids were synthesized by the surface-initiated atom transfer radical polymerization of glycidyl methacrylate from the surface of the strategic initiator, CdSe-BrIB QDs prepared by the interaction of 2-bromoisobutyryl bromide (BrIB) and CdSe-OH QDs. The structure, morphology, and optical property of the PGMA-g-CdSe nanohybrids were analyzed by FT-IR, XPS, TGA, XRD, TEM, and PL. The as-synthesized PGMA-g-CdSe nanohybrids having multi-epoxide groups were employed for the direct coupling of biotin via ring-opening reaction of the epoxide groups to afford the Biotin-f-PGMA-g-CdSe nanobioconjugate. The covalent immobilization of biotin onto PGMA-g-CdSe was confirmed by FT-IR, XPS, and EDX. Biocompatibility and imaging properties of the Biotin-f-PGMA-g-CdSe were investigated by MTT bioassay and PL analysis, respectively. The cell viability study suggested that the biocompatibility was significantly enhanced by the functionalization of CdSe QDs by biotin and PGMA.

  2. Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells

    E-print Network

    George, Steven C.

    to Third-Generation Photovoltaic Solar Cells A. J. Nozik,*,, M. C. Beard, J. M. Luther, M. Law,§ R. J. Applications: Quantum Dot Solar Cells 6884 6.1. Quantum Dot Solar Cell Configurations 6885 6.1.1. Photoelectrodes Composed of Quantum Dot Arrays 6885 6.1.2. Quantum Dot-Sensitized Nanocrystalline TiO2 Solar Cells

  3. Spatially confined synthesis of SiOx nano-rod with size-controlled Si quantum dots in nano-porous anodic aluminum oxide membrane.

    PubMed

    Pai, Yi-Hao; Lin, Gong-Ru

    2011-01-17

    By depositing Si-rich SiOx nano-rod in nano-porous anodic aluminum oxide (AAO) membrane using PECVD, the spatially confined synthesis of Si quantum-dots (Si-QDs) with ultra-bright photoluminescence spectra are demonstrated after low-temperature annealing. Spatially confined SiOx nano-rod in nano-porous AAO membrane greatly increases the density of nucleated positions for Si-QD precursors, which essentially impedes the route of thermally diffused Si atoms and confines the degree of atomic self-aggregation. The diffusion controlled growth mechanism is employed to determine the activation energy of 6.284 kJ mole(-1) and diffusion length of 2.84 nm for SiO1.5 nano-rod in nano-porous AAO membrane. HRTEM results verify that the reduced geometric dimension of the SiOx host matrix effectively constrain the buried Si-QD size at even lower annealing temperature. The spatially confined synthesis of Si-QD essentially contributes the intense PL with its spectral linewidth shrinking from 210 to 140 nm and its peak intensity enhancing by two orders of magnitude, corresponding to the reduction on both the average Si-QD size and its standard deviation from 2.6 to 2.0 nm and from 25% to 12.5%, respectively. The red-shifted PL wavelength of the Si-QD reveals an inverse exponential trend with increasing temperature of annealing, which is in good agree with the Si-QD size simulation via the atomic diffusion theory. PMID:21263629

  4. Floquet Majorana Modes in Graphene Quantum Dots

    NASA Astrophysics Data System (ADS)

    Li, Yantao; Kundu, Arijit; Seradjeh, Babak

    2015-03-01

    We propose a possible way to realize Floquet Majorana fermions in graphene quantum dots connected by a superconducting island. The effective crossed Andreev reflection and hopping amplitudes between the dots are calculated as a function of system parameters. It is shown that the spin degeneracy is broken when the dots are driven out of phase. This all-electric, highly tunable device could be a realistic platform for uncovering dynamically generated Majorana fermions in graphene system.

  5. Record Charge Carrier Diffusion Length in Colloidal Quantum Dot Solids via Mutual Dot-To-Dot Surface Passivation.

    PubMed

    Carey, Graham H; Levina, Larissa; Comin, Riccardo; Voznyy, Oleksandr; Sargent, Edward H

    2015-06-01

    Through a combination of chemical and mutual dot-to-dot surface passivation, high-quality colloidal quantum dot solids are fabricated. The joint passivation techniques lead to a record diffusion length for colloidal quantum dots of 230 ± 20 nm. The technique is applied to create thick photovoltaic devices that exhibit high current density without losing fill factor. PMID:25899173

  6. Graphene quantum dots in perpendicular magnetic fields

    Microsoft Academic Search

    J. Güttinger; C. Stampfer; T. Frey; T. Ihn; K. Ensslin

    2009-01-01

    We report transport experiments on graphene quantum dots. We focus on excited state spectra in the near vicinity of the charge neutrality point and signatures of the electron-hole crossover as a function of a perpendicular magnetic field. Coulomb blockade resonances of a 50 nm wide and 80 nm long dot are visible at all gate voltages across the transport gap

  7. Coulomb blockade in graphene quantum dots

    Microsoft Academic Search

    Qiong Ma; Tao Tu; Zhi-Rong Lin; Guang-Can Guo; Guo-Ping Guo

    2009-01-01

    We study the conductance spectrum of graphene quantum dots, both single and multiple cases. The single electron tunneling phenomenon is investigated and the periodicity, amplitude and line shape of the Coulomb blockade oscillations at low temperatures are obtained. Further, we discuss the transport behavior when multiple dots are assembled in array and find a phase transition of conductance spectra from

  8. Quantum dots and prion proteins

    PubMed Central

    Sobrova, Pavlina; Blazkova, Iva; Chomoucka, Jana; Drbohlavova, Jana; Vaculovicova, Marketa; Kopel, Pavel; Hubalek, Jaromir; Kizek, Rene; Adam, Vojtech

    2013-01-01

    A diagnostics of infectious diseases can be done by the immunologic methods or by the amplification of nucleic acid specific to contagious agent using polymerase chain reaction. However, in transmissible spongiform encephalopathies, the infectious agent, prion protein (PrPSc), has the same sequence of nucleic acids as a naturally occurring protein. The other issue with the diagnosing based on the PrPSc detection is that the pathological form of prion protein is abundant only at late stages of the disease in a brain. Therefore, the diagnostics of prion protein caused diseases represent a sort of challenges as that hosts can incubate infectious prion proteins for many months or even years. Therefore, new in vivo assays for detection of prion proteins and for diagnosis of their relation to neurodegenerative diseases are summarized. Their applicability and future prospects in this field are discussed with particular aim at using quantum dots as fluorescent labels. PMID:24055838

  9. Quantum dot-based theranostics.

    PubMed

    Ho, Yi-Ping; Leong, Kam W

    2010-01-01

    Luminescent semiconductor nanocrystals, also known as quantum dots (QDs), have advanced the fields of molecular diagnostics and nanotherapeutics. Much of the initial progress for QDs in biology and medicine has focused on developing new biosensing formats to push the limit of detection sensitivity. Nevertheless, QDs can be more than passive bio-probes or labels for biological imaging and cellular studies. The high surface-to-volume ratio of QDs enables the construction of a "smart" multifunctional nanoplatform, where the QDs serve not only as an imaging agent but also a nanoscaffold catering for therapeutic and diagnostic (theranostic) modalities. This mini review highlights the emerging applications of functionalized QDs as fluorescence contrast agents for imaging or as nanoscale vehicles for delivery of therapeutics, with special attention paid to the promise and challenges towards QD-based theranostics. PMID:20648364

  10. Quantum dot-based theranostics

    PubMed Central

    Ho, Yi-Ping; Leong, Kam W.

    2010-01-01

    Luminescent semiconductor nanocrystals, also known as quantum dots (QDs), have advanced the fields of molecular diagnostics and nanotherapeutics. Much of the initial progress for QDs in biology and medicine has focused on developing new biosensing formats to push the limit of detection sensitivity. Nevertheless, QDs can be more than passive bio-probes or labels for biological imaging and cellular studies. The high surface-to-volume ratio of QDs enables the construction of a “smart” multifunctional nanoplatform, where the QDs serve not only as an imaging agent but also a nanoscaffold catering for therapeutic and diagnostic (theranostic) modalities. This mini review highlights the emerging applications of functionalized QDs as fluorescence contrast agents for imaging or as nanoscale vehicles for delivery of therapeutics, with special attention paid to the promise and challenges towards QD-based theranostics. PMID:20648364

  11. Quantum dot-based theranostics

    NASA Astrophysics Data System (ADS)

    Ho, Yi-Ping; Leong, Kam W.

    2010-01-01

    Luminescent semiconductor nanocrystals, also known as quantum dots (QDs), have advanced the fields of molecular diagnostics and nanotherapeutics. Much of the initial progress for QDs in biology and medicine has focused on developing new biosensing formats to push the limit of detection sensitivity. Nevertheless, QDs can be more than passive bio-probes or labels for biological imaging and cellular studies. The high surface-to-volume ratio of QDs enables the construction of a ``smart'' multifunctional nanoplatform, where the QDs serve not only as an imaging agent but also a nanoscaffold catering for therapeutic and diagnostic (theranostic) modalities. This mini review highlights the emerging applications of functionalized QDs as fluorescence contrast agents for imaging or as nanoscale vehicles for delivery of therapeutics, with special attention paid to the promise and challenges towards QD-based theranostics.

  12. Facile one-pot synthesis of MoS2 quantum dots-graphene-TiO2 composites for highly enhanced photocatalytic properties.

    PubMed

    Gao, Weiyin; Wang, Minqiang; Ran, Chenxin; Li, Le

    2015-01-31

    We reported a simple one-pot solvothermal approach to fabricate a MoS2 quantum dots (QDs)-graphene-TiO2 (MGT) composite photocatalyst with significantly improved photocatalysis properties, which is caused by the increased charge separation, visible-light absorbance, specific surface area and reaction sites upon the introduction of MoS2 QDs. PMID:25514834

  13. Photodetectors based on colloidal quantum dots

    E-print Network

    Oertel, David C. (David Charles)

    2007-01-01

    Inspired by recent work demonstrating photocurrent enhancement in quantum-dot (QD) solids via post-deposition chemical annealing and by recent successes incorporating single monolayers of QDs in light-emitting devices ...

  14. Luminescence blinking of a reacting quantum dot.

    PubMed

    Routzahn, Aaron L; Jain, Prashant K

    2015-04-01

    Luminescence blinking is an inherent feature of optical emission from individual fluorescent molecules and quantum dots. There have been intense efforts, although not with complete resolution, toward the understanding of the mechanistic origin of blinking and also its mitigation in quantum dots. As an advance in our microscopic view of blinking, we show that the luminescence blinking of a quantum dot becomes unusually heavy in the temporal vicinity of a reactive transformation. This stage of heavy blinking is a result of defects/dopants formed within the quantum dot on its path to conversion. The evolution of blinking behavior along the reaction path allows us to measure the lifetime of the critical dopant-related intermediate in the reaction. This work establishes luminescence blinking as a single-nanocrystal level probe of catalytic, photocatalytic, and electrochemical events occurring in the solid-state or on semiconductor surfaces. PMID:25730168

  15. Artificial atoms in interacting graphene quantum dots

    Microsoft Academic Search

    Wolfgang Häusler; Reinhold Egger

    2009-01-01

    We describe the theory of few Coulomb-correlated electrons in a magnetic quantum dot formed in graphene. While the corresponding nonrelativistic (Schrödinger) problem is well understood, a naive generalization to graphene's ``relativistic'' (Dirac-Weyl) spectrum encounters divergencies and is ill defined. We employ Sucher's projection formalism to overcome these problems. Exact diagonalization results for the two-electron quantum dot, i.e., the artificial helium

  16. Transmission and scarring in graphene quantum dots

    Microsoft Academic Search

    Liang Huang; Ying-Cheng Lai; David K. Ferry; Richard Akis; Stephen M. Goodnick

    2009-01-01

    We study electronic transport in quantum-dot structures made of graphene. Focusing on the rectangular dot geometry and utilizing the non-equilibrium Green's function to calculate the transmission in the tight-binding framework, we find significant fluctuations in the transmission as a function of the electron energy. The fluctuations are correlated with the formation of quantum scarring states, or pointer states in the

  17. Spin relaxation in graphene quantum dots

    Microsoft Academic Search

    Guido Burkard; Philipp Struck

    2010-01-01

    With its low concentration of nuclear spins and relatively weak spin-orbit coupling, graphene is a promising host material for electron spin qubits. We have calculated the spin relaxation time T1 of a single spin in graphene quantum dots [1,2] as a function of the externally applied magnetic field B. We find that in quantum dots without coupling between the valleys

  18. Spin States in Graphene Quantum Dots

    Microsoft Academic Search

    J. Güttinger; T. Frey; C. Stampfer; T. Ihn; K. Ensslin

    2010-01-01

    We investigate ground and excited state transport through small (d≈70nm) graphene quantum dots. The successive spin filling of orbital states is detected by measuring the difference between ground-state energies as a function of a magnetic field. For a magnetic field in-plane of the quantum dot the Zeeman splitting of spin states is measured. The results are compatible with a g

  19. Tunneling through Quantum Dots with Discrete Symmetries

    Microsoft Academic Search

    Yshai Avishai; Konstantin Kikoin

    2008-01-01

    We describe in this short review the influence of discrete symmetries in complex quantum dots on the Kondo co-tunneling through these nano-objects. These discrete symmetries stem from the geometrical structure of the tunneling devices (e.g spatial symmetry of multivalley quantum dot in a tunneling contact with leads). They affect the dynamical symmetry of spin multiplets characterizing the ground state and

  20. Tunneling Through Quantum Dots with Discrete Symmetries

    Microsoft Academic Search

    Yshai Avishai; Konstantin Kikoin

    2009-01-01

    We describe in this short review the influence of discrete symmetries in\\u000acomplex quantum dots on the Kondo co-tunneling through these nano-objects.\\u000aThese discrete symmetries stem from the geometrical structure of the tunneling\\u000adevices (e.g spatial symmetry of multivalley quantum dot in a tunneling contact\\u000awith leads). They affect the dynamical symmetry of spin multiplets\\u000acharacterizing the ground state and

  1. Optical Properties of Semiconductor Quantum Dots

    Microsoft Academic Search

    U. Perinetti

    2011-01-01

    This thesis presents different optical experiments performed on semiconductor quantum dots. These structures allow to confine a small number of electrons and holes to a tiny region of space, some nm across. The aim of this work was to study the basic properties of different types of quantum dots made of various materials and with different techniques.\\u000a\\u000aFirst we studied

  2. Tunneling current through a quantum dot array

    NASA Astrophysics Data System (ADS)

    Kuo, David M.-T.; Guo, G. Y.; Chang, Yia-Chung

    2001-12-01

    The tunneling current through a quantum dot array (QDA) is studied theoretically. Strong electron correlation effect is taken into account in the QDA in which the quantum dots provide a strong three-dimensional confinement effect. A mixed Hubbard and Anderson model is used to simulate the system. It is found that Coulomb charging splits the band resulting from interdot coupling into two subbands. The tunneling current is thus influenced significantly by both Coulomb charging and interdot coupling.

  3. Spatially separated excitons in quantum-dot quantum well structures

    Microsoft Academic Search

    Kai Chang; Jian-Bai Xia

    1998-01-01

    In the framework of the effective-mass envelope-function theory, the electronic and optical properties of a spherical core-shell quantum-dot quantum well (QDQW) structure with one and two wells have been investigated. The results show that the energies of electron and hole states depend sensitively on the well thickness and core radius of quantum-dot quantum well structure. An interesting spatially separated characteristic

  4. Quantum-Well to Quantum-Dot Tunneling

    Microsoft Academic Search

    Shun Lien Chuang Holonyak Jr.

    2002-01-01

    We have developed a tunneling formula for injection of carriers from a quantum well (QW) into a quantum dot (QD). Our theory is based on the transition-probability approach using the tunneling Hamiltonian of Bardeen [1]. An analytical expression is found for the tunneling rate. We show that the quantum-well to quantum-dot tunneling can be extremely fast when the well, barrier,

  5. Fabrication of Novel Germanium Oxide-cladded Germanium Quantum Dots and Quantum Dot Gate Nonvolatile Memory using Germanium Oxide-Germanium Qd's

    NASA Astrophysics Data System (ADS)

    Gogna, Mukesh

    In this dissertation, the floating gate type quantum dot gate nonvolatile memory device has been investigated. The electrical characterization and simulation of the fabricated quantum dot nonvolatile memory (QD-NVM) devices is presented. The electrical characterization includes program, erase, and read operations and the memory retention and endurance measurements. In addition, QD synthesis and their incorporation as the floating gate (along with material characterization) is presented in fabricated QD-NVM devices. The synthesis of the germanium oxide cladding on the germanium quantum dots is one of the key interests in this research. Owing to the electrical and physical isolation of the quantum dots due to germanium oxide cladding, it provides a larger threshold voltage shift due to tight packing and higher density of quantum dots. GeOx cladding on the QDs enhances the data retention by avoiding the lateral dot-to-dot conduction, thereby reducing charge leakage. A threshold voltage of 1.5 V was observed in the first GeOx-Ge QD-NVM device when pulsed with a 20 micros stress pulse. The experimental data indicates that there is about a 0.1 V shift in the threshold voltage of that device over a period of one year. Similarly, 1.6 V of threshold voltage shift was observed in the second device and the retention data indicates negligible shift in the threshold voltage over a period of one year. Similar results were observed in the II-VI based QD-NVM devices.

  6. Computational intelligence applied to the growth of quantum dots

    NASA Astrophysics Data System (ADS)

    Singulani, Anderson P.; Vilela Neto, Omar P.; Aurélio Pacheco, Marco C.; Vellasco, Marley B. R.; Pires, Maurício P.; Souza, Patrícia L.

    2008-11-01

    We apply two computational intelligence techniques, namely, artificial neural network and genetic algorithm to the growth of self-assembled quantum dots. The method relies on an existing database of growth parameters with a resulting quantum dot characteristic to be able to later obtain the growth parameters needed to reach a specific value for such a quantum dot characteristic. The computational techniques were used to associate the growth input parameters with the mean height of the deposited quantum dots. Trends of the quantum dot mean height behavior as a function of growth parameters were correctly predicted and the growth parameters required to minimize the quantum dot mean height were provided.

  7. Nanostructure assembly of indium sulphide quantum dots and their characterization.

    PubMed

    Vigneashwari, B; Ravichandran, V; Parameswaran, P; Dash, S; Tyagi, A K

    2008-02-01

    Nanocrystals (approximately 5 nm) of the semiconducting wide band gap material beta-In2S3 obtained by chemical synthesis through a hydrothermal route were characterized for phase and compositional purity. These nanoparticles exhibited quantum confinement characteristics as revealed by a blue-shifted optical absorption. These quantum dots of beta-In2S3 were electrically driven from a monodisperse colloidal suspension on to conducting glass substrates by Electophoretic Deposition (EPD) technique and nanostructural thin films were obtained. The crystalline and morphological structures of these deposits were investigated by X-ray diffraction and nanoscopic techniques. We report here that certain interesting nanostructural morphologies were observed in the two-dimensional quantum dot assemblies of beta-In2S3. The effect of the controlling parameters on the cluster growth and deposit integrity was also systematically studied through a series of experiments and the results are reported here. PMID:18464393

  8. Thermoelectric transport through strongly correlated quantum dots

    E-print Network

    T. A. Costi; V. Zlatic

    2010-07-08

    The thermoelectric properties of strongly correlated quantum dots, described by a single level Anderson model coupled to conduction electron leads, is investigated using Wilson's numerical renormalization group method. We calculate the electronic contribution, $K_{\\rm e}$, to the thermal conductance, the thermopower, $S$, and the electrical conductance, $G$, of a quantum dot as a function of both temperature, $T$, and gate voltage, ${\\rm v}_g$, for strong, intermediate and weak Coulomb correlations, $U$, on the dot. For strong correlations and in the Kondo regime, we find that the thermopower exhibits two sign changes, at temperatures $T_{1}({\\rm v}_g)$ and $T_{2}({\\rm v}_g)$ with $T_{1}< T_{2}$. Such sign changes in $S(T)$ are particularly sensitive signatures of strong correlations and Kondo physics. The relevance of this to recent thermopower measurements of Kondo correlated quantum dots is discussed. We discuss the figure of merit, power factor and the degree of violation of the Wiedemann-Franz law in quantum dots. The extent of temperature scaling in the thermopower and thermal conductance of quantum dots in the Kondo regime is also assessed.

  9. Quantum-dot-in-perovskite solids.

    PubMed

    Ning, Zhijun; Gong, Xiwen; Comin, Riccardo; Walters, Grant; Fan, Fengjia; Voznyy, Oleksandr; Yassitepe, Emre; Buin, Andrei; Hoogland, Sjoerd; Sargent, Edward H

    2015-07-15

    Heteroepitaxy-atomically aligned growth of a crystalline film atop a different crystalline substrate-is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned 'dots-in-a-matrix' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics. PMID:26178963

  10. Full-colour quantum dot displays fabricated by transfer printing

    Microsoft Academic Search

    Tae-Ho Kim; Kyung-Sang Cho; Eun Kyung Lee; Sang Jin Lee; Jungseok Chae; Jung Woo Kim; Do Hwan Kim; Jang-Yeon Kwon; Gehan Amaratunga; Sang Yoon Lee; Byoung Lyong Choi; Young Kuk; Jong Min Kim; Kinam Kim

    2011-01-01

    Light-emitting diodes with quantum dot luminophores show promise in the development of next-generation displays, because quantum dot luminophores demonstrate high quantum yields, extremely narrow emission, spectral tunability and high stability, among other beneficial characteristics. However, the inability to achieve size-selective quantum dot patterning by conventional methods hinders the realization of full-colour quantum dot displays. Here, we report the first demonstration

  11. Synthesis of Aqueous CdTe/CdS/ZnS Core/shell/shell Quantum Dots by a Chemical Aerosol Flow Method

    PubMed Central

    2010-01-01

    This work described a continuous method to synthesize CdTe/CdS/ZnS core/shell/shell quantum dots. In an integrated system by flawlessly combining the chemical aerosol flow system working at high temperature (200–300°C) to generate CdTe/CdS intermediate products and an additional heat-up setup at relatively low temperature to overcoat the ZnS shells, the CdTe/CdS/ZnS multishell structures were realized. The as-synthesized CdTe/CdS/ZnS core/shell/shell quantum dots are characterized by photoluminescence spectra, X-ray diffraction (XRD), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). Fluorescence and XRD results confirm that the obtained quantum dots have a core/shell/shell structure. It shows the highest quantum yield above 45% when compared to the rhodamine 6G. The core/shell/shell QDs were more stable via the oxidation experiment by H2O2. PMID:20652095

  12. Quantum Dots for quantitative flow cytometry

    PubMed Central

    Buranda, Tione; Wu, Yang; Sklar, Larry A.

    2014-01-01

    Summary In flow cytometry, the quantitation of fluorophore-tagged ligands and receptors on cells or at particulate surfaces is achieved by the use of standard beads of known calibration. To the best of our knowledge, only those calibration beads based on fluorescein, EGFP, phycoerythyrin and allophycocyanine are readily available from commercial sources. Because fluorophore based standards are specific to the selected fluorophore tag, their applicability is limited to the spectral region of resonance. Since quantum dots can be photo-excited over a continuous and broad spectral range governed by their size, it is possible to match the spectral range and width (absorbance and emission) of a wide range of fluorophores with appropriate quantum dots. Accordingly, quantitation of site coverage of the target fluorophores can be readily achieved using quantum dots whose emission spectra overlaps with the target fluorophore. This chapter will focus on the relevant spectroscopic concepts and molecular assembly of quantum dot fluorescence calibration beads. We will first examine the measurement and applicability of spectroscopic parameters, ?, ?, and %T to fluorescence calibration standards. Where, ? is the absorption coefficient of the fluorophore, ? is the quantum yield of the fluorophore and %T is the percent fraction of emitted light that is transmitted by the bandpass filter at the detector PMT. The modular construction of beads decorated with discrete quantities of quantum dots with defined spectroscopic parameters is presented in the context of a generalizable approach to calibrated measurements of fluorescence in flow cytometry. PMID:21116979

  13. Quantum dots for quantitative flow cytometry.

    PubMed

    Buranda, Tione; Wu, Yang; Sklar, Larry A

    2011-01-01

    In flow cytometry, the quantitation of fluorophore-tagged ligands and receptors on cells or at particulate surfaces is achieved by the use of standard beads of known calibration. To the best of our knowledge, only those calibration beads based on fluorescein, EGFP, phycoerythyrin and allophycocyanine are readily available from commercial sources. Because fluorophore-based standards are specific to the selected fluorophore tag, their applicability is limited to the spectral region of resonance. Since quantum dots can be photo-excited over a continuous and broad spectral range governed by their size, it is possible to match the spectral range and width (absorbance and emission) of a wide range of fluorophores with appropriate quantum dots. Accordingly, quantitation of site coverage of the target fluorophores can be readily achieved using quantum dots whose emission spectra overlaps with the target fluorophore.This chapter focuses on the relevant spectroscopic concepts and molecular assembly of quantum dot fluorescence calibration beads. We first examine the measurement and applicability of spectroscopic parameters, ?, ?, and %T to fluorescence calibration standards, where ? is the absorption coefficient of the fluorophore, ? is the quantum yield of the fluorophore, and %T is the percent fraction of emitted light that is transmitted by the bandpass filter at the detector PMT. The modular construction of beads decorated with discrete quantities of quantum dots with defined spectroscopic parameters is presented in the context of a generalizable approach to calibrated measurements of fluorescence in flow cytometry. PMID:21116979

  14. Study of the self-organization processes in lead sulfide quantum dots

    SciTech Connect

    Tarasov, S. A., E-mail: SATarasov@mail.ru; Aleksandrova, O. A.; Maksimov, A. I.; Maraeva, E. V.; Matyushkin, L. B.; Men’kovich, E. A.; Moshnikov, V. A. [St. Petersburg Electrotechnical University LETI (Russian Federation); Musikhin, S. F. [St. Petersburg State Polytechnic University (Russian Federation)

    2014-12-15

    A procedure is described for the synthesis of nanoparticles based on lead chalcogenides. The procedure combines the synthesis of colloidal quantum dots (QDs) in aqueous solutions with simultaneous organization of the QDs into ordered arrays. The processes of the self-organization of QDs are analyzed at the nano- and microscopic levels by the photoluminescence method, atomic-force microscopy, and optical microscopy.

  15. Quantum dots for light emitting diodes.

    PubMed

    Qasim, Khan; Lei, Wei; Li, Qing

    2013-05-01

    In this article we discuss the development and key advantages of quantum dot based light emitting diode (QD-LED) and other applications based on their color purity, stability, and solution processibility. Analysis of quantum dot based LEDs and the main challenges faced in this field, such as the QD luminescence quenching, QD charging in thin films, and external quantum efficiency are discussed in detail. The description about how different optical down-conversion and structures enabled researchers to overcome these challenges and to commercialize the products. The recent developments about how to overcome these difficulties have also been discussed in this article. PMID:23858829

  16. Pulse-gated quantum dot hybrid qubit

    E-print Network

    Teck Seng Koh; John King Gamble; Mark Friesen; M. A. Eriksson; S. N. Coppersmith

    2012-07-24

    A quantum dot hybrid qubit formed from three electrons in a double quantum dot has the potential for great speed, due to presence of level crossings where the qubit becomes charge-like. Here, we show how to take full advantage of the level crossings in a pulsed gating scheme, which decomposes the spin qubit into a series of charge transitions. We develop one and two-qubit dc quantum gates that are simpler than the previously proposed ac gates. We obtain closed form solutions for the control sequences and show that these sub-nanosecond gates can achieve high fidelities.

  17. Chaotic Dirac Billiard in Graphene Quantum Dots

    Microsoft Academic Search

    L. A. Ponomarenko; F. Schedin; M. I. Katsnelson; R. Yang; E. W. Hill; K. S. Novoselov; A. K. Geim

    2008-01-01

    The exceptional electronic properties of graphene, with its charge carriers mimicking relativistic quantum particles and its formidable potential in various applications, have ensured a rapid growth of interest in this new material. We report on electron transport in quantum dot devices carved entirely from graphene. At large sizes (>100 nanometers), they behave as conventional single-electron transistors, exhibiting periodic Coulomb blockade

  18. Magneto-transport of graphene quantum dots

    Microsoft Academic Search

    Kuei-Lin Chiu; Charles Smith; Malcolm Connolly; Simon Chorley; Jonathan Griffiths

    2011-01-01

    Graphene nanostructures continue to attract attention due to their customizable electronic properties and compatability with existing semiconductor device processing. The promise of long spin relaxation times makes graphene quantum dots - small islands of confined charge - particularly suited to quantum computing architectures that manipulate the spin degree of freedom. In order to probe the spin and charge dynamics of

  19. Optical properties of quantum wires and dots

    Microsoft Academic Search

    T. L. Reinecke; P. A. Knipp

    1996-01-01

    Recent work on the optical properties of quantum wire and quantum dot systems is discussed, including carrier, phonon and photon states, electronphonon scattering and excitonic effects. In realistic systems the geometry often results in the equations for the elementary excitations being non-separable. Numerical methods for calculating these excitations are discussed with emphasis on \\

  20. Probing relaxation times in graphene quantum dots

    PubMed Central

    Volk, Christian; Neumann, Christoph; Kazarski, Sebastian; Fringes, Stefan; Engels, Stephan; Haupt, Federica; Müller, André; Stampfer, Christoph

    2013-01-01

    Graphene quantum dots are attractive candidates for solid-state quantum bits. In fact, the predicted weak spin-orbit and hyperfine interaction promise spin qubits with long coherence times. Graphene quantum dots have been extensively investigated with respect to their excitation spectrum, spin-filling sequence and electron-hole crossover. However, their relaxation dynamics remain largely unexplored. This is mainly due to challenges in device fabrication, in particular concerning the control of carrier confinement and the tunability of the tunnelling barriers, both crucial to experimentally investigate decoherence times. Here we report pulsed-gate transient current spectroscopy and relaxation time measurements of excited states in graphene quantum dots. This is achieved by an advanced device design that allows to individually tune the tunnelling barriers down to the low megahertz regime, while monitoring their asymmetry. Measuring transient currents through electronic excited states, we estimate a lower bound for charge relaxation times on the order of 60–100?ns. PMID:23612294

  1. Sono-chemical successive ionic layer adsorption and reaction for the synthesis of CdS quantum dots onto mesoporous TiO2 photoanodes

    NASA Astrophysics Data System (ADS)

    Kim, Jae Ho; Kim, Geon Yang; Sohn, Sang Ho

    2015-07-01

    Aiming at high efficiency of quantum dot-sensitized solar cells (QDSCs) with CdS quantum dots (QDs)/mesoporous TiO2 (mp-TiO2) photoanodes, physical properties of CdS QDs/mp-TiO2 grown by sono-chemical successive ionic layer adsorption and reaction (SC-SILAR) process were studied. It is found that SC-SILAR process has less growth time and larger absorbance of CdS QDs besides a uniform penetration into mp-TiO2 films, compared with the conventional SILAR process. Experimental results show that SC-SILAR is an effective method for growing CdS QDs with high efficiency due to an extra sono-chemical energy of acoustic cavitation.

  2. Bichromatic dressing of a quantum dot detected by a remote second quantum dot

    NASA Astrophysics Data System (ADS)

    Maragkou, M.; Sánchez-Muñoz, C.; Lazi?, S.; Chernysheva, E.; van der Meulen, H. P.; González-Tudela, A.; Tejedor, C.; Martínez, L. J.; Prieto, I.; Postigo, P. A.; Calleja, J. M.

    2013-08-01

    We demonstrate an information transfer mechanism between two dissimilar remote InAs/GaAs quantum dots weakly coupled to a common photonic crystal microcavity. Bichromatic excitation in the s state of one of the dots leads to the formation of dressed states due to the coherent coupling to the laser field, in resonance with the quantum dot. Information on the resulting dressed structure is read out through the photoluminescence spectrum of the other quantum dot, as well as the cavity mode. The effect is also observed upon exchange of the excitation and detection quantum dots. This quantum dot intertalk is interpreted in terms of a cavity-mediated coupling involving acoustic phonons. A master equation for a three-level system coherently pumped by the two lasers quantitatively describes the behavior of our system. Our result presents an important step towards scalable solid-state quantum networking based on coupled multi-quantum-dot-cavity systems, without the need to use identical quantum emitters.

  3. Nanostructured architectures for colloidal quantum dot solar cells

    E-print Network

    Jean, Joel, S.M. Massachusetts Institute of Technology

    2013-01-01

    This thesis introduces a novel ordered bulk heterojunction architecture for colloidal quantum dot (QD) solar cells. Quantum dots are solution-processed nanocrystals whose tunable bandgap energies make them a promising ...

  4. Electron tunneling and spin relaxation in a lateral quantum dot

    E-print Network

    Amasha, Sami

    2008-01-01

    We report measurements that use real-time charge sensing to probe a single-electron lateral quantum dot. The charge sensor is a quantum point contact (QPC) adjacent to the dot and the sensitivity is comparable to other ...

  5. Synthesis and spectrum stability of high quality CdTe quantum dots capped with stearate groups in N-oleoylmorpholine solvent

    Microsoft Academic Search

    Xinmei Liu; Yang Jiang; Chun Wang; Shanying Li; Xinzheng Lan; Yan Chen; Honghai Zhong

    2010-01-01

    The stearate-capped CdTe quantum dots (QDs) have been first prepared via direct reaction of cadmium stearate with Te powder in N-oleoylmorpholine solvent, which was a kind of clean, air-stable and conveniently synthesized acylamide, and can readily dissolve precursors cadmium stearate and Te powder at a relative low temperature. The as-prepared CdTe QDs exhibited size-dependent optical properties, steep absorbance edge and

  6. A facile in situ synthesis route for CuInS(2) quantum-dots/In(2)S(3) co-sensitized photoanodes with high photoelectric performance.

    PubMed

    Wang, Yuan-Qiang; Rui, Yi-Chuan; Zhang, Qing-Hong; Li, Yao-Gang; Wang, Hong-Zhi

    2013-11-27

    CuInS2 quantum-dot sensitized TiO2 photoanodes with In2S3 buffer layer were in situ prepared via chemical bath deposition of In2S3, where the Cd-free In2S3 layer then reacted with TiO2/CuxS which employed a facile SILAR process to deposit CuxS quantum dots on TiO2 film, followed by a covering process with ZnS layer. Polysulfide electrolyte and Cu2S on FTO glass counter electrode were used to provide higher photovoltaic performance of the constructed devices. The characteristics of the quantum dots sensitized solar cells were studied in more detail by optical measurements, photocurrent-voltage performance measurements, and impedance spectroscopy. On the basis of optimal CuxS SILAR cycles, the best photovoltaic performance with power conversion efficiency (?) of 1.62% (Jsc = 6.49 mA cm(-2), Voc = 0.50 V, FF = 0.50) under full one-sun illumination was achieved by using Cu2S counter electrode. Cu2S-FTO electrode exhibits superior electrocatalytic ability for the polysulfide redox reactions relative to that of Pt-FTO electrode. PMID:24160726

  7. Polaron coupling in quantum dot molecules

    SciTech Connect

    Verzelen, O.; Ferreira, R.; Bastard, G.

    2001-08-15

    We report on the calculation of polaron energies in InAs quantum dot molecules. Polaron effects are larger in vertical than in lateral molecules. The far infrared absorption associated with molecular polaron transitions is calculated. It may show prominent lines associated with inter dot polaron transitions. We have also calculated the polaron relaxation time to thermodynamical equilibrium when its lifetime is limited by the decay of its phonon component due to crystal anharmonicity.

  8. Multi-Junction Solar Cell Spectral Tuning with Quantum Dots

    Microsoft Academic Search

    Ryne P. Raffaelle; Samar Sinharoy; John Andersen; David M. Wilt; Sheila G. Bailey

    2006-01-01

    We have theoretically analyzed the potential efficiency improvement to multi-junction solar cell efficiencies which are available through the incorporation of quantum dot using detailed balance calculations. We have also experimentally investigated the Stranski-Krastanov growth of self-organized InAs quantum dots and quantum dot arrays on lattice-matched GaAs by metallorganic vapor phase epitaxy (MOVPE). The morphology of the quantum dots were investigated

  9. Excitonic absorption in gate-controlled graphene quantum dots

    Microsoft Academic Search

    A. D. Güçlü; P. Potasz; P. Hawrylak

    2010-01-01

    We present a theory of excitonic processes in gate controlled graphene quantum dots. The dependence of the energy gap on shape, size, and edge for graphene quantum dots with up to a million atoms is predicted. Using a combination of tight-binding, Hartree-Fock and configuration interaction methods, we show that triangular graphene quantum dots with zigzag edges exhibit optical transitions simultaneously

  10. Quantum Dot Focal Plane Array with Plasmonic Resonator Sanjay Krishna

    E-print Network

    Krishna, Sanjay

    . Various optoelectronic devices such as lasers, detectors, filters and solar cells are expected to benefitQuantum Dot Focal Plane Array with Plasmonic Resonator Sanjay Krishna Electrical and Computer structures with quantum dot focal plane arrays. Keywords: infrared detectors, quantum dots-in-a-well (DWELL

  11. Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots

    Microsoft Academic Search

    V. I. Klimov; A. A. Mikhailovsky; Su Xu; A. Malko; J. A. Hollingsworth; C. A. Leatherdale; H.-J. Eisler; M. G. Bawendi

    2000-01-01

    The development of optical gain in chemically synthesized semiconductor nanoparticles (nanocrystal quantum dots) has been intensely studied as the first step toward nanocrystal quantum dot lasers. We examined the competing dynamical processes involved in optical amplification and lasing in nanocrystal quantum dots and found that, despite a highly efficient intrinsic nonradiative Auger recombination, large optical gain can be developed at

  12. Imaging vasculature and lymphatic flow in mice using quantum dots.

    PubMed

    Ballou, Byron; Ernst, Lauren A; Andreko, Susan; Fitzpatrick, James A J; Lagerholm, B Christoffer; Waggoner, Alan S; Bruchez, Marcel P

    2009-01-01

    Quantum dots are ideal probes for fluorescent imaging of vascular and lymphatic tissues. On injection into appropriate sites, red- and near-infrared-emitting quantum dots provide excellent definition of vasculature, lymphoid organs, and lymph nodes draining both normal tissues and tumors. We detail methods for use with commercially available quantum dots and discuss common difficulties. PMID:19685300

  13. Functional microspheres of graphene quantum dots.

    PubMed

    Ding, Yi; Cheng, Huhu; Zhou, Ce; Fan, Yueqiong; Zhu, Jia; Shao, Huibo; Qu, Liangti

    2012-06-29

    Graphene-quantum-dot microspheres (GQDSs) have been prepared by assembly of graphene quantum dots (GQDs) via a water-in-oil (W/O) emulsion technique without the addition of any surfactants. Although made of quantum-sized graphene dots, the as-formed GQDSs are solid and remain intact after slight ultrasonication. The versatile W/O emulsion method allows the in situ intercalation of functional nanocomponents into the GQDSs for specific applications. As exemplified by the Fe(3)O(4)-containing GQDSs, Fe(3)O(4)-GQDSs exhibit a large magnetic response. Furthermore, the embedded Fe(3)O(4) nanoparticles in GQDSs can act as the catalysts for the growth of carbon nanotubes (CNTs), which opens the opportunities for fabricating new complex structures of CNTs surrounding GQDSs by simple chemical vapor deposition. PMID:22653222

  14. Functional microspheres of graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Ding, Yi; Cheng, Huhu; Zhou, Ce; Fan, Yueqiong; Zhu, Jia; Shao, Huibo; Qu, Liangti

    2012-06-01

    Graphene-quantum-dot microspheres (GQDSs) have been prepared by assembly of graphene quantum dots (GQDs) via a water-in-oil (W/O) emulsion technique without the addition of any surfactants. Although made of quantum-sized graphene dots, the as-formed GQDSs are solid and remain intact after slight ultrasonication. The versatile W/O emulsion method allows the in situ intercalation of functional nanocomponents into the GQDSs for specific applications. As exemplified by the Fe3O4-containing GQDSs, Fe3O4-GQDSs exhibit a large magnetic response. Furthermore, the embedded Fe3O4 nanoparticles in GQDSs can act as the catalysts for the growth of carbon nanotubes (CNTs), which opens the opportunities for fabricating new complex structures of CNTs surrounding GQDSs by simple chemical vapor deposition.

  15. Three-terminal quantum-dot refrigerators

    NASA Astrophysics Data System (ADS)

    Zhang, Yanchao; Lin, Guoxing; Chen, Jincan

    2015-05-01

    Based on two capacitively coupled quantum dots in the Coulomb-blockade regime, a model of three-terminal quantum-dot refrigerators is proposed. With the help of the master equation, the transport properties of steady-state charge current and energy flow between two quantum dots and thermal reservoirs are revealed. It is expounded that such a structure can be used to construct a refrigerator by controlling the voltage bias and temperature ratio. The thermodynamic performance characteristics of the refrigerator are analyzed, including the cooling power, coefficient of performance (COP), maximum cooling power, and maximum COP. Moreover, the optimal regions of main performance parameters are determined. The influence of dissipative tunnel processes on the optimal performance is discussed in detail. Finally, the performance characteristics of the refrigerators operated in two different cases are compared.

  16. Collective Excitations in Cylindrical Quantum Dots Chains

    NASA Astrophysics Data System (ADS)

    Vergara, Jimena; Camacho, Angela

    2009-03-01

    We are interested in the study of collective excitations in quantum dot chains because these can be used to effectively transmit information at nano scale and to control spontaneous and stimulate electromagnetic emission in the quantum dots. [1] This work is centered in the study of semiconductor one-dimensional quantum dot arrays. Based on a tight-binding bandstructure calculation combined with a self consistent field approximation we obtain the dispersion relations and we analyze how the geometry of the dot affects the collective oscillation of charge and its propagation. We focus our study first on Coulomb interaction between charges as the main cause of the 1D plasmons neglecting tunneling to finally compare with the case where tunneling is allowed. We find out that Coulomb interaction plays an important role in these systems and that tunneling opens the energy spectrum permitting new excitations, which are good candidates to be used in nanometric devices. [1] A.V.Akimov, A.Mukherjee, C.L. Yu, D.E Chang, A.S.Zybrov, P.R. Hemmer, H Park and M.D Lukin, Generation of Single optical plasmons in metallic nanowires coupled to quantum dots, Nature 450, 402 (2007).

  17. Photodynamic antibacterial effect of graphene quantum dots.

    PubMed

    Ristic, Biljana Z; Milenkovic, Marina M; Dakic, Ivana R; Todorovic-Markovic, Biljana M; Milosavljevic, Momir S; Budimir, Milica D; Paunovic, Verica G; Dramicanin, Miroslav D; Markovic, Zoran M; Trajkovic, Vladimir S

    2014-05-01

    Synthesis of new antibacterial agents is becoming increasingly important in light of the emerging antibiotic resistance. In the present study we report that electrochemically produced graphene quantum dots (GQD), a new class of carbon nanoparticles, generate reactive oxygen species when photoexcited (470 nm, 1 W), and kill two strains of pathogenic bacteria, methicillin-resistant Staphylococcus aureus and Escherichia coli. Bacterial killing was demonstrated by the reduction in number of bacterial colonies in a standard plate count method, the increase in propidium iodide uptake confirming the cell membrane damage, as well as by morphological defects visualized by atomic force microscopy. The induction of oxidative stress in bacteria exposed to photoexcited GQD was confirmed by staining with a redox-sensitive fluorochrome dihydrorhodamine 123. Neither GQD nor light exposure alone were able to cause oxidative stress and reduce the viability of bacteria. Importantly, mouse spleen cells were markedly less sensitive in the same experimental conditions, thus indicating a fairly selective antibacterial photodynamic action of GQD. PMID:24612819

  18. Pulse-gated quantum dot hybrid qubit

    NASA Astrophysics Data System (ADS)

    Coppersmith, S. N.; Koh, Teck Seng; King Gamble, John; Eriksson, M. A.; Friesen, Mark

    2013-03-01

    A quantum dot hybrid qubit formed from three electrons in a double quantum dot has the potential for great speed, due to presence of level crossings where the qubit becomes charge-like. Here, we show how to exploit the level crossings to implement fast pulsed gating. We develop one- and two-qubit dc quantum gates that are simpler than the previously proposed ac gates. We obtain closed-form solutions for the control sequences and show that the gates are fast (sub-nanosecond) and can achieve high fidelities. A quantum dot hybrid qubit formed from three electrons in a double quantum dot has the potential for great speed, due to presence of level crossings where the qubit becomes charge-like. Here, we show how to exploit the level crossings to implement fast pulsed gating. We develop one- and two-qubit dc quantum gates that are simpler than the previously proposed ac gates. We obtain closed-form solutions for the control sequences and show that the gates are fast (sub-nanosecond) and can achieve high fidelities. Work supported by ARO (W911NF-08-1-0482) and NSF (DMR-0805045, PHY-1104660), and the National Science Foundation Graduate Research Fellowship (DGE-0718123).

  19. Single-dot optical emission from ultralow density well-isolated InP quantum dots

    SciTech Connect

    Ugur, A.; Hatami, F.; Masselink, W. T. [Department of Physics, Humboldt-Universitaet zu Berlin, Newtonstrasse 15, D-12489 Berlin (Germany); Vamivakas, A. N.; Lombez, L.; Atatuere, M. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2008-10-06

    We demonstrate a straightforward way to obtain single well-isolated quantum dots emitting in the visible part of the spectrum and characterize the optical emission from single quantum dots using this method. Self-assembled InP quantum dots are grown using gas-source molecular-beam epitaxy over a wide range of InP deposition rates, using an ultralow growth rate of about 0.01 atomic monolayers/s, a quantum-dot density of 1 dot/{mu}m{sup 2} is realized. The resulting isolated InP quantum dots embedded in an InGaP matrix are individually characterized without the need for lithographical patterning and masks on the substrate. Such low-density quantum dots show excitonic emission at around 670 nm with a linewidth limited by instrument resolution. This system is applicable as a single-photon source for applications such as quantum cryptography.

  20. Bilayer graphene quantum dot defined by topgates

    SciTech Connect

    Müller, André; Kaestner, Bernd; Hohls, Frank; Weimann, Thomas; Pierz, Klaus; Schumacher, Hans W., E-mail: hans.w.schumacher@ptb.de [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany)

    2014-06-21

    We investigate the application of nanoscale topgates on exfoliated bilayer graphene to define quantum dot devices. At temperatures below 500 mK, the conductance underneath the grounded gates is suppressed, which we attribute to nearest neighbour hopping and strain-induced piezoelectric fields. The gate-layout can thus be used to define resistive regions by tuning into the corresponding temperature range. We use this method to define a quantum dot structure in bilayer graphene showing Coulomb blockade oscillations consistent with the gate layout.

  1. Bilayer graphene quantum dot defined by topgates

    NASA Astrophysics Data System (ADS)

    Müller, André; Kaestner, Bernd; Hohls, Frank; Weimann, Thomas; Pierz, Klaus; Schumacher, Hans W.

    2014-06-01

    We investigate the application of nanoscale topgates on exfoliated bilayer graphene to define quantum dot devices. At temperatures below 500 mK, the conductance underneath the grounded gates is suppressed, which we attribute to nearest neighbour hopping and strain-induced piezoelectric fields. The gate-layout can thus be used to define resistive regions by tuning into the corresponding temperature range. We use this method to define a quantum dot structure in bilayer graphene showing Coulomb blockade oscillations consistent with the gate layout.

  2. Potential clinical applications of quantum dots

    PubMed Central

    Medintz, Igor L; Mattoussi, Hedi; Clapp, Aaron R

    2008-01-01

    The use of luminescent colloidal quantum dots in biological investigations has increased dramatically over the past several years due to their unique size-dependent optical properties and recent advances in biofunctionalization. In this review, we describe the methods for generating high-quality nanocrystals and report on current and potential uses of these versatile materials. Numerous examples are provided in several key areas including cell labeling, biosensing, in vivo imaging, bimodal magnetic-luminescent imaging, and diagnostics. We also explore toxicity issues surrounding these materials and speculate about the future uses of quantum dots in a clinical setting. PMID:18686776

  3. Spectroscopic Characterization of Streptavidin Functionalized Quantum dots1

    PubMed Central

    Wu, Yang; Lopez, Gabriel P.; Sklar, Larry A.; Buranda, Tione

    2007-01-01

    The spectroscopic properties of quantum dots can be strongly influenced by the conditions of their synthesis. In this work we have characterized several spectroscopic properties of commercial, streptavidin functionalized quantum dots (QD525, lot#1005-0045 and QD585, Lot#0905-0031 from Invitrogen). This is the first step in the development of calibration beads, to be used in a generalizable quantification scheme of multiple fluorescent tags in flow cytometry or microscopy applications. We used light absorption, photoexcitation, and emission spectra, together with excited-state lifetime measurements to characterize their spectroscopic behavior, concentrating on the 400-500nm wavelength ranges that are important in biological applications. Our data show an anomalous dependence of emission spectrum, lifetimes, and quantum yield (QY) on excitation wavelength that is particularly pronounced in the QD525. For QD525, QY values ranged from 0.2 at 480nm excitation up to 0.4 at 450nm and down again to 0.15 at 350nm. For QD585, QY values were constant at 0.2 between 500nm and 400nm, but dropped to 0.1 at 350nm. We attribute the wavelength dependences to heterogeneity in size and surface defects in the QD525, consistent with characteristics previously described in the chemistry literature. The results are discussed in the context of bridging the gap between what is currently known in the physical chemistry literature of quantum dots, and the quantitative needs of assay development in biological applications. PMID:17368555

  4. Theory of a double-quantum-dot spaser

    NASA Astrophysics Data System (ADS)

    Andrianov, E. S.; Pukhov, A. A.; Dorofeenko, A. V.; Vinogradov, A. P.; Lisyansky, A. A.

    2015-03-01

    We consider the influence of the number of quantum dots on spaser operation. It is shown that even in the presence of only two quantum dots, the spaser behaviour is qualitatively different from that of the previously studied spaser consisting of a nanoparticle and a single quantum dot. In particular, for nonzero detuning of resonant frequencies of a nanoparticle and quantum dots, an increase in the interaction constant between quantum dots first leads to a decrease in the spasing threshold and then to its growth and even the spasing breakdown.

  5. Quantum dot - polymer nanocomposites: New materials for dispersion, encapsulation, and electronic applications

    NASA Astrophysics Data System (ADS)

    Sill, Kevin N.

    Tremendous advances in the synthesis and functionalization of nanoparticles over the past twenty years have resulted in remarkable discoveries in the field of nanotechnology. One such development is found in quantum dots, semiconductor nanoparticles that exhibit unique optical and electronic properties not found in the bulk. Research efforts associated with the combination of quantum dots and polymers center on uniting the mechanical or processing properties of the polymer with the optical properties of the quantum dot. Simply blending polymers with nanoparticles typically leads to nanoparticle aggregation, which negates the inherent advantageous properties of the quantum dots. The development of organic and polymer ligands for nanoparticle surface modification enables the preparation of dispersed nanocomposites that retain, or even enhance, the original nanoparticle properties. Presented here is the synthesis of functionalized nanoparticles that are tailored for the growth of polymers directly from the particle surface. Initial studies focused on the preparation of nanoparticle-polymer hybrid materials where the nanoparticles were evenly dispersed throughout the polymer. A method was developed to cross-link polymers grafted from the nanoparticle in an encapsulating shell, with the goal of minimizing nanoparticle degradation. In addition, polymerization chemistry from quantum dot surfaces was modified and optimized to produce conjugated polymer-quantum dot composites. The coupling of these two electronically active components gave composite materials with very unique optical properties that hold potential as displays, sensors, and light-emitting materials.

  6. Optical properties of quantum-dot-doped liquid scintillators

    PubMed Central

    Aberle, C.; Li, J.J.; Weiss, S.; Winslow, L.

    2014-01-01

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO. PMID:25392711

  7. Optical properties of quantum-dot-doped liquid scintillators.

    PubMed

    Aberle, C; Li, J J; Weiss, S; Winslow, L

    2013-10-14

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO. PMID:25392711

  8. Synthesis of high-quality water-soluble near-infrared-emitting CdTe quantum dots capped with 3-mercaptobutyric acid.

    PubMed

    Ma, Kai-Guo; Bai, Jin-Yi; Fang, Tan; Guo, Hai-Qing

    2014-07-01

    Highly fluorescent CdTe quantum dots (QDs) with emission in red to near-infrared (NIR) wavelength were successfully prepared by using 3-mercaptobutyric acid (3MBA) as capping agent. The maximum of quantum yield (QY) could reach up to 82% for QDs with emission peak at 686 nm and FWHM of 66 nm at optimal conditions. The QY of these QDs could maintain above 65% in the 650-750 nm region and QDs with emission over 800 nm were still strong fluorescent (28-41%). These optical properties of CdTe quantum dots are among the best results prepared by the state-of-the-art methods, suggesting their promising applications in bio-imaging. The success of 3MBA as excellent capping agent in this method was attributed to the balanced chain length and methyl side chain in comparison to a series of linear and branched mercapto acids, namely thioglycolic acid, thiolactic acid, 3-mercaptopropionic acid, 4-mercaptobutyric acid, 5-mercaptovaleric acid, 4-mercaptovaleric acid and 3-mercapto-2-methylbutyric acid. PMID:24757965

  9. Chaotic Dirac billiard in graphene quantum dots.

    PubMed

    Ponomarenko, L A; Schedin, F; Katsnelson, M I; Yang, R; Hill, E W; Novoselov, K S; Geim, A K

    2008-04-18

    The exceptional electronic properties of graphene, with its charge carriers mimicking relativistic quantum particles and its formidable potential in various applications, have ensured a rapid growth of interest in this new material. We report on electron transport in quantum dot devices carved entirely from graphene. At large sizes (>100 nanometers), they behave as conventional single-electron transistors, exhibiting periodic Coulomb blockade peaks. For quantum dots smaller than 100 nanometers, the peaks become strongly nonperiodic, indicating a major contribution of quantum confinement. Random peak spacing and its statistics are well described by the theory of chaotic neutrino billiards. Short constrictions of only a few nanometers in width remain conductive and reveal a confinement gap of up to 0.5 electron volt, demonstrating the possibility of molecular-scale electronics based on graphene. PMID:18420930

  10. Transport properties of graphene quantum dots

    Microsoft Academic Search

    J. W. González; M. Pacheco; L. Rosales; P. A. Orellana

    2011-01-01

    In this work we present a theoretical study of transport properties of a double crossbar junction composed of segments of graphene ribbons with different widths forming a graphene quantum dot structure. The systems are described by a single-band tight binding Hamiltonian and the Green's function formalism using real space renormalization techniques. We show calculations of the local density of states,

  11. Spin qubits in graphene quantum dots

    Microsoft Academic Search

    Bjoern Trauzettel; Denis V. Bulaev; Daniel Loss; Guido Burkard

    2007-01-01

    The main characteristics of good qubits are long coherence times in combination with fast operating times. It is well known that carbon-based materials could increase the coherence times of spin qubits, which are among the most developed solid-state qubits. Here, we propose how to form spin qubits in graphene quantum dots. A crucial requirement to achieve this goal is to

  12. REVIEW ARTICLE Semiconductor quantum dot-sensitized

    E-print Network

    Cao, Guozhong

    of dye-sensitized solar cells (DSCs), which were first reported by O'Regan and Gra¨tzel in 1991 (8REVIEW ARTICLE Semiconductor quantum dot-sensitized solar cells Jianjun Tian1 * and Guozhong Cao2-sensitized solar cell (QDSC) is one of the burgeon- ing semiconductor QD solar cells that shows promising

  13. Quantum Dot Based Infrared Focal Plane Arrays

    Microsoft Academic Search

    Sanjay Krishna; Sarath D. Gunapala; Sumith V. Bandara; Cory Hill; David Z. Ting

    2007-01-01

    In the past decade, there has been active research on infrared detectors based on intersubband transitions in self-assembled quantum dots (QDs). In the past two years, at least four research groups have independently demonstrated focal plane arrays based on this technology. In this paper, the progress from the first raster scanned image obtained with a QD detector to the demonstration

  14. New small quantum dots for neuroscience

    NASA Astrophysics Data System (ADS)

    Selvin, Paul

    2014-03-01

    In "New Small Quantum Dots for Neuroscience," Paul Selvin (University of Illinois, Urbana-Champaign) notes how the details of synapsis activity in the brain involves chemical receptors that facilitate the creation of the electrical connection between two nerves. In order to understand the details of this neuroscience phenomenon you need to be able to "see" what is happening at the scale of these receptors, which is around 10 nanometers. This is smaller than the diffraction limit of normal microscopy and it takes place on a 3 dimensional structure. Selvin describes the development of small quantum dots (on the order of 6-9 microns) that are surface-sensitized to interact with the receptors. This allows the application of photo-activated localized microscopy (PALM), a superresolution microscopy that can be scanned through focus to develop a 3D map on a scale that is the same size as the emitter, which in this case are the small quantum dots. The quantum dots are stable in time and provide access to the receptors which allows the imaging of the interactions taking place at the synoptic level.

  15. Quantum dots in molecular detection of disease

    Microsoft Academic Search

    V. J. Bailey; C. M. Puleo; Y. P. Ho; H. C. Yeh; T. H. Wang

    2009-01-01

    The unique photophysical properties of semiconductor quantum dots (QDs) have made them ideal for use as spectral labels and luminescent probes. In this review, applications are presented in which QDs function as active participants in nanoscale biosensor assemblies, where replacing traditional molecular fluorophores results in improved assay performance. Specific focus is on disease detection with applications including multiplexed target detection,

  16. Silicon based quantum dot hybrid qubits

    NASA Astrophysics Data System (ADS)

    Kim, Dohun

    2015-03-01

    The charge and spin degrees of freedom of an electron constitute natural bases for constructing quantum two level systems, or qubits, in semiconductor quantum dots. The quantum dot charge qubit offers a simple architecture and high-speed operation, but generally suffers from fast dephasing due to strong coupling of the environment to the electron's charge. On the other hand, quantum dot spin qubits have demonstrated long coherence times, but their manipulation is often slower than desired for important future applications. This talk will present experimental progress of a `hybrid' qubit, formed by three electrons in a Si/SiGe double quantum dot, which combines desirable characteristics (speed and coherence) in the past found separately in qubits based on either charge or spin degrees of freedom. Using resonant microwaves, we first discuss qubit operations near the `sweet spot' for charge qubit operation. Along with fast (>GHz) manipulation rates for any rotation axis on the Bloch sphere, we implement two independent tomographic characterization schemes in the charge qubit regime: traditional quantum process tomography (QPT) and gate set tomography (GST). We also present resonant qubit operations of the hybrid qubit performed on the same device, DC pulsed gate operations of which were recently demonstrated. We demonstrate three-axis control and the implementation of dynamic decoupling pulse sequences. Performing QPT on the hybrid qubit, we show that AC gating yields ? rotation process fidelities higher than 93% for X-axis and 96% for Z-axis rotations, which demonstrates efficient quantum control of semiconductor qubits using resonant microwaves. We discuss a path forward for achieving fidelities better than the threshold for quantum error correction using surface codes. This work was supported in part by ARO (W911NF-12-0607), NSF (PHY-1104660), DOE (DE-FG02-03ER46028), and by the Laboratory Directed Research and Development program at Sandia National Laboratories under contract DE-AC04-94AL85000.

  17. Graphene quantum dots: Beyond a Dirac billiard

    Microsoft Academic Search

    Florian Libisch; Christoph Stampfer; Joachim Burgdörfer

    2009-01-01

    We present realistic simulations of quantum confinement effects in phase-coherent graphene quantum dots with linear dimensions of 10-40 nm. We determine wave functions and energy-level statistics in the presence of disorder resulting from edge roughness, charge impurities, or short-ranged scatterers. Marked deviations from a simple Dirac billiard for massless fermions are found. We find a remarkably stable dependence of the

  18. Solution-Processed Quantum Dot Photodetectors

    Microsoft Academic Search

    Gerasimos Konstantatos; Edward H. Sargent

    2009-01-01

    Digital imaging has traditionally been enabled by single-crystalline photodetectors. This approach typically either mandates the use of silicon as photon-to-electron converter or requires a hybrid-integrated solution. In contrast, solution-processed optoelectronic materials offer convenient integration of light-sensing materials atop an electronic readout circuit. Colloidal quantum dots offer particular advantages, combining solution-processing with the spectral tunability afforded by the quantum size effect.

  19. Optical properties of quantum wires and dots

    Microsoft Academic Search

    T. L. ReineckeI; P. Knipp

    Recent work on the optical properties of quantum wire and quantum dot systems is discussed, including carrier, phonon and\\u000a photon states, electronphonon scattering and excitonic effects. In realistic systems the geometry often results in the equations\\u000a for the elementary excitations being non-separable. Numerical methods for calculating these excitations are discussed with\\u000a emphasis on “boundary element methods”, which we have recently

  20. Electronic transient processes and optical spectra in quantum dots for quantum computing

    Microsoft Academic Search

    Karel Král; P. Zdenek; Z. Khas

    2004-01-01

    Quantum dot systems are studied theoretically from the point of view of realization of quantum bit using the orbital state of electronic motion in a quantum dot. Attention is paid to several effects which can influence significantly the application of quantum dot electronic orbital states in quantum computing, for example, the effect of upconversion of the population and the incomplete

  1. Non-Markovian full counting statistics in quantum dot molecules

    PubMed Central

    Xue, Hai-Bin; Jiao, Hu-Jun; Liang, Jiu-Qing; Liu, Wu-Ming

    2015-01-01

    Full counting statistics of electron transport is a powerful diagnostic tool for probing the nature of quantum transport beyond what is obtainable from the average current or conductance measurement alone. In particular, the non-Markovian dynamics of quantum dot molecule plays an important role in the nonequilibrium electron tunneling processes. It is thus necessary to understand the non-Markovian full counting statistics in a quantum dot molecule. Here we study the non-Markovian full counting statistics in two typical quantum dot molecules, namely, serially coupled and side-coupled double quantum dots with high quantum coherence in a certain parameter regime. We demonstrate that the non-Markovian effect manifests itself through the quantum coherence of the quantum dot molecule system, and has a significant impact on the full counting statistics in the high quantum-coherent quantum dot molecule system, which depends on the coupling of the quantum dot molecule system with the source and drain electrodes. The results indicated that the influence of the non-Markovian effect on the full counting statistics of electron transport, which should be considered in a high quantum-coherent quantum dot molecule system, can provide a better understanding of electron transport through quantum dot molecules. PMID:25752245

  2. Optical, magnetic and electronic properties of graphene quantum dots

    Microsoft Academic Search

    A. Devrim Guclu

    2011-01-01

    We present a theory of optical, magnetic and electronic properties of graphene quantum dots. We demonstrate that there exists a class of triangular graphene quantum dots with zigzag edges [1-8] which combines magnetic, optical and transport properties in a single-material structure. These dots exhibit robust magnetic moment and optical transitions simultaneously in the THz, visible and UV spectral ranges due

  3. Single-photon detection mechanism in a quantum dot transistor

    Microsoft Academic Search

    N. S. Beattie; B. E. Kardynal; A. J. Shields; I. Farrer; D. A. Ritchie; M. Pepper

    2005-01-01

    We study the transport mechanisms in a quantum dot MODFET by tuning the localization induced by charge stored on the quantum dots with light. The temperature dependence of the resistivity of a macroscopic sample reveals a hopping transport when the dots contain an excess of electrons. The resistance of a mesoscopic sample however, which is capable of detecting single photons,

  4. Unraveling the mystery of quantum-dot April 3, 2012

    E-print Network

    . At these tiny dimensions, the rules of quantum physics allow scientists to produce particles with finely tunable- 1 - Unraveling the mystery of quantum-dot blinking April 3, 2012 Unraveling the mystery of quantum-dot blinking Significant progress is being made in understanding the phenomenon of quantum

  5. In situ synthesis of binary cobalt-ruthenium nanofiber alloy counter electrode for electrolyte-free cadmium sulfide quantum dot solar cells

    NASA Astrophysics Data System (ADS)

    Du, Nan; Ren, Lei; Sun, Weifu; Jin, Xiao; Zhao, Qing; Cheng, Yuanyuan; Wei, Taihuei; Li, Qinghua

    2015-06-01

    A facile, low-cost and low-temperature fabrication approach of counter electrode is essential for pursuing robust photovoltaic devices. Herein, we develop a hydrothermal in situ growth of Cobalt-Ruthenium (Co-Ru) alloy nanofiber electrode for quantum dot solar cell (QDSC) applications. Colloidal CdS QDs with tunable absorption band edge are synthesized and used as light absorber. After optimizing the QDs with the highest photoluminescence quantum yield accompanied by considerable solar light absorption ability, QDSC based on Co-Ru alloy electrode delivers a much higher power conversion efficiency than its counterparts, i.e., either pure Co or Ru metal electrodes. In detail, Co-Ru alloy electrode exhibits high specific area, excellent electrical behavior, intimate interface contact, and good stability, thus leading to notable improved device performances. The impressive robust function of Co-Ru alloy with simple manufacturing procedure highlights its potential applications in robust QDSCs.

  6. Quantum Dot Photovoltaics in the Extreme Quantum Confinement Regime

    E-print Network

    of possible har- vesting of multiple excitons,7 9 and also as the small-bandgap junction in a tandem or triple-junctionQuantum Dot Photovoltaics in the Extreme Quantum Confinement Regime: The Surface-Chemical Origins reaching the earth. One oppor- tunity for further improvement in solution- cast solar cells' efficiency

  7. Large scale synthesis of graphene quantum dots (GQDs) from waste biomass and their use as an efficient and selective photoluminescence on-off-on probe for Ag+ ions

    NASA Astrophysics Data System (ADS)

    Suryawanshi, Anil; Biswal, Mandakini; Mhamane, Dattakumar; Gokhale, Rohan; Patil, Shankar; Guin, Debanjan; Ogale, Satishchandra

    2014-09-01

    Graphene quantum dots (GQDs) are synthesized from bio-waste and are further modified to produce amine-terminated GQDs (Am-GQDs) which have higher dispersibility and photoluminescence intensity than those of GQDs. A strong fluorescence quenching of Am-GQDs (switch-off) is observed for a number of metal ions, but only for the Ag+ ions is the original fluorescence regenerated (switch-on) upon addition of l-cysteine.Graphene quantum dots (GQDs) are synthesized from bio-waste and are further modified to produce amine-terminated GQDs (Am-GQDs) which have higher dispersibility and photoluminescence intensity than those of GQDs. A strong fluorescence quenching of Am-GQDs (switch-off) is observed for a number of metal ions, but only for the Ag+ ions is the original fluorescence regenerated (switch-on) upon addition of l-cysteine. Electronic supplementary information (ESI) available: HRTEM images, GQD SAED patterns and EDAX analysis of Am-GQD@Ag. See DOI: 10.1039/c4nr02494j

  8. Graphene quantum dots embedded in hexagonal boron nitride sheets

    NASA Astrophysics Data System (ADS)

    Li, Junwen; Shenoy, Vivek B.

    2011-01-01

    We have carried out first-principles calculations on electronic properties of graphene quantum dots embedded in hexagonal boron nitride monolayer sheets. The calculations with density functional theory show that the band gaps of quantum dots are determined by the quantum confinement effects and the hybridization of ? orbitals from B, N, and C atoms. The energy states near the Fermi level are found to be strongly localized within and in the vicinity of the quantum dots.

  9. Mitigation of Quantum Dot Cytotoxicity by Microencapsulation

    PubMed Central

    Romoser, Amelia; Ritter, Dustin; Majitha, Ravish; Meissner, Kenith E.; McShane, Michael; Sayes, Christie M.

    2011-01-01

    When CdSe/ZnS-polyethyleneimine (PEI) quantum dots (QDs) are microencapsulated in polymeric microcapsules, human fibroblasts are protected from acute cytotoxic effects. Differences in cellular morphology, uptake, and viability were assessed after treatment with either microencapsulated or unencapsulated dots. Specifically, QDs contained in microcapsules terminated with polyethylene glycol (PEG) mitigate contact with and uptake by cells, thus providing a tool to retain particle luminescence for applications such as extracellular sensing and imaging. The microcapsule serves as the “first line of defense” for containing the QDs. This enables the individual QD coating to be designed primarily to enhance the function of the biosensor. PMID:21814567

  10. Resonant tunneling through quantum-dot arrays

    SciTech Connect

    Chen, G.; Klimeck, G.; Datta, S. (School of Electrical Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)); Chen, G.; Goddard, W.A. III (Material and Molecular Simulation Center, Beckman Institute, California Institute of Technology, Pasadena, California 91125 (United States))

    1994-09-15

    We apply the Hubbard Hamiltonian to describe quantum-dot arrays weakly coupled to two contacts. Exact diagonalization is used to calculate the eigenstates of the arrays containing up to six dots and the linear-response conductance is then calculated as a function of the Fermi energy. In the atomic limit the conductance peaks form two distinct groups separated by the intradot Coulomb repulsion, while in the band limit the peaks occur in pairs. The crossover is studied. A finite interdot repulsion is found to cause interesting rearrangements in the conductance spectrum.

  11. Ultranarrow ionization resonances in a quantum dot under broadband excitation

    E-print Network

    Rudner, M. S.

    Semiconductor quantum dots driven by the broadband radiation fields of nearby quantum point contacts provide an interesting setting for probing dynamics in driven quantum systems at the nanoscale. We report on real-time ...

  12. Investigation of potential profile effects in quantum dot and onion-like quantum dot-quantum well on optical properties

    NASA Astrophysics Data System (ADS)

    Elyasi, P.; SalmanOgli, A.

    2014-05-01

    This paper investigates GaAs/AlGaAs modified quantum dot nanocrystal and GaAs/AlGaAs/GaAs/AlGaAs quantum dot-quantum well heteronanocrystal. These quantum dots have been analyzed by the finite element numerical methods. Simulations carried out for state n=1, l=0, and m=0 which are original, orbital, and magnetic state of quantum numbers. The effects of variation in radius layers such as total radius, GaAs core, shell and AlGaAs barriers radius on the wavelength and emission coefficient are studied. For the best time, it has also investigated the effect of mole fraction on emission coefficient. Meanwhile, one of the problems in biological applications is alteration of the emission wavelength of a quantum dot by changing in its dimension. This problem will be resolved by changing in potential profile.

  13. One step, microwave assisted green synthesis of biocompatible carbon quantum dots and their composites with [??PW{sub 12}O{sub 40}{sup 3?}] for visible light photocatalysis

    SciTech Connect

    Sahasrabudhe, Atharva, E-mail: atharva19101991@gmail.com; Pant, Shashank, E-mail: atharva19101991@gmail.com; Chatti, Manjunath, E-mail: atharva19101991@gmail.com; Maiti, Binoy, E-mail: atharva19101991@gmail.com; De, Priyadarsi, E-mail: atharva19101991@gmail.com; Roy, Soumyajit, E-mail: atharva19101991@gmail.com [Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur-741252, W.B. (India)

    2014-04-24

    We report a simple, rapid and green route for synthesis of fluorescent carbon quantum dots (CQDs) by microwave assisted pyrolysis method using polyleucine polymer (Boc-L-Leu-HEMA) as precursor and self-passivating agent. The as synthesized CQDs were found to possess low cytotoxicity, thus making them suitable candidates for bioimaging and bio-labelling. Moreover, nanocomposites of as prepared CQDs with [??PW{sub 12}O{sub 40}{sup 3?}] polyoxometalate were synthesized and were shown to possess excellent photocatalytic properties under visible light towards degradation of organic dye pollutants. Based on the control experiments, a suitable mechanism has been proposed to explain the remarkable photoactivity of the CQD/[??PW{sub 12}O{sub 40}{sup 3?}] composites.

  14. Theory of the Quantum Dot Hybrid Qubit

    NASA Astrophysics Data System (ADS)

    Friesen, Mark

    2015-03-01

    The quantum dot hybrid qubit, formed from three electrons in two quantum dots, combines the desirable features of charge qubits (fast manipulation) and spin qubits (long coherence times). The hybridized spin and charge states yield a unique energy spectrum with several useful properties, including two different operating regimes that are relatively immune to charge noise due to the presence of optimal working points or ``sweet spots.'' In this talk, I will describe dc and ac-driven gate operations of the quantum dot hybrid qubit. I will analyze improvements in the dephasing that are enabled by the sweet spots, and I will discuss the outlook for quantum hybrid qubits in terms of scalability. This work was supported in part by ARO (W911NF-12-0607), NSF (PHY-1104660), the USDOD, and the Intelligence Community Postdoctoral Research Fellowship Program. The views and conclusions contained in this presentation are those of the authors and should not be interpreted as representing the official policies or endorsements, either expressed or implied, of the US government.

  15. Miniband formation in a quantum dot crystal Olga L. Lazarenkovaa)

    E-print Network

    structure in a three-dimensional regimented array of semiconductor quantum dots using an envelope function regimented array of semiconductor quantum dots using an envelope function approximation. The regi- mentation are different from those of bulk and quantum well superlattices. It has also been established

  16. Graphene quantum dots embedded in hexagonal boron nitride sheets

    Microsoft Academic Search

    Junwen Li; Vivek B. Shenoy

    2011-01-01

    We have carried out first-principles calculations on electronic properties of graphene quantum dots embedded in hexagonal boron nitride monolayer sheets. The calculations with density functional theory show that the band gaps of quantum dots are determined by the quantum confinement effects and the hybridization of pi orbitals from B, N, and C atoms. The energy states near the Fermi level

  17. Facile labeling of lipoglycans with quantum dots

    SciTech Connect

    Morales Betanzos, Carlos; Gonzalez-Moa, Maria [Center for Innovations in Medicine, Biodesign Institute, Arizona State University, 1001 S. McAllister Av, Tempe, AZ 85287 (United States); Johnston, Stephen Albert [Center for Innovations in Medicine, Biodesign Institute, Arizona State University, 1001 S. McAllister Av, Tempe, AZ 85287 (United States); School of Life Sciences, Arizona State University 1711 S. Rural Road, Tempe, AZ 85287 (United States); Svarovsky, Sergei A. [Center for Innovations in Medicine, Biodesign Institute, Arizona State University, 1001 S. McAllister Av, Tempe, AZ 85287 (United States)], E-mail: Sergei.Svarovsky@asu.edu

    2009-02-27

    Bacterial endotoxins or lipopolysaccharides (LPS) are among the most potent activators of the innate immune system, yet mechanisms of their action and in particular the role of glycans remain elusive. Efficient non-invasive labeling strategies are necessary for studying interactions of LPS glycans with biological systems. Here we report a new method for labeling LPS and other lipoglycans with luminescent quantum dots. The labeling is achieved by partitioning of hydrophobic quantum dots into the core of various LPS aggregates without disturbing the native LPS structure. The biofunctionality of the LPS-Qdot conjugates is demonstrated by the labeling of mouse monocytes. This simple method should find broad applicability in studies concerned with visualization of LPS biodistribution and identification of LPS binding agents.

  18. Nanobeam photonic crystal cavity quantum dot laser

    E-print Network

    Gong, Yiyang; Shambat, Gary; Sarmiento, Tomas; Harris, James S; Vuckovic, Jelena

    2010-01-01

    The lasing behavior of one dimensional GaAs nanobeam cavities with embedded InAs quantum dots is studied at room temperature. Lasing is observed throughout the quantum dot PL spectrum, and the wavelength dependence of the threshold is calculated. We study the cavity lasers under both 780 nm and 980 nm pump, finding thresholds as low as 0.3 uW and 19 uW for the two pump wavelengths, respectively. Finally, the nanobeam cavity laser wavelengths are tuned by up to 7 nm by employing a fiber taper in near proximity to the cavities. The fiber taper is used both to efficiently pump the cavity and collect the cavity emission.

  19. Nanobeam photonic crystal cavity quantum dot laser.

    PubMed

    Gong, Yiyang; Ellis, Bryan; Shambat, Gary; Sarmiento, Tomas; Harris, James S; Vuckovic, Jelena

    2010-04-26

    The lasing behavior of one dimensional GaAs nanobeam cavities with embedded InAs quantum dots is studied at room temperature. Lasing is observed throughout the quantum dot PL spectrum, and the wavelength dependence of the threshold is calculated. We study the cavity lasers under both 780 nm and 980 nm pump, finding thresholds as low as 0.3 microW and 19 microW for the two pump wavelengths, respectively. Finally, the nanobeam cavity laser wavelengths are tuned by up to 7 nm by employing a fiber taper in near proximity to the cavities. The fiber taper is used both to efficiently pump the cavity and collect the cavity emission. PMID:20588722

  20. Synthesis of honeycomb-like mesoporous pyrite FeS2 microspheres as efficient counter electrode in quantum dots sensitized solar cells.

    PubMed

    Xu, Jun; Xue, Hongtao; Yang, Xia; Wei, Huaixin; Li, Wenyue; Li, Zhangpeng; Zhang, Wenjun; Lee, Chun-Sing

    2014-11-01

    Honeycomb-like mesoporous pyrite FeS2 microspheres, with diameters of 500-800 nm and pore sizes of 25-30 nm, are synthesized by a simple solvothermal approach. The mesoporous FeS2 microspheres are demonstrated to be an outstanding counter electrode (CE) material in quantum dot sensitized solar cells (QDSSCs) for electrocatalyzing polysulfide electrolyte regeneration. The cell using mesoporous FeS2 microspheres as CE shows 86.6% enhancement in power conversion efficiency (PCE) than the cell using traditional noble Pt CE. Furthermore, it also shows 11.4% enhancement in PCE than the cell using solid FeS2 microspheres as CE, due to the mesoporous structure facilitating better contact with polysulfide electrolyte and fast diffusion of redox couple species in electrolyte. PMID:24986216

  1. Microwave-Assisted Synthesis of Glutathione-Capped CdTe/CdSe Near-Infrared Quantum Dots for Cell Imaging.

    PubMed

    Chen, Xiaogang; Li, Liang; Lai, Yongxian; Yan, Jianna; Tang, Yichen; Wang, Xiuli

    2015-01-01

    These glutathione (GSH)-conjugated CdTe/CdSe core/shell quantum dot (QD) nanoparticles in aqueous solution were synthesized using a microwave-assisted approach. The prepared type II core/shell QD nanoparticles were characterized by UV-Vis absorption, photoluminescence (PL) spectroscopy, X-ray powder diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM). Results revealed that the QD nanoparticles exhibited good dispersity, a uniform size distribution and tunable fluorescence emission in the near-infrared (NIR) region. In addition, these nanoparticles exhibited good biocompatibility and photoluminescence in cell imaging. In particular, this type of core/shell NIR QDs may have potential applications in molecular imaging. PMID:25997004

  2. Microwave-Assisted Synthesis of Glutathione-Capped CdTe/CdSe Near-Infrared Quantum Dots for Cell Imaging

    PubMed Central

    Chen, Xiaogang; Li, Liang; Lai, Yongxian; Yan, Jianna; Tang, Yichen; Wang, Xiuli

    2015-01-01

    These glutathione (GSH)-conjugated CdTe/CdSe core/shell quantum dot (QD) nanoparticles in aqueous solution were synthesized using a microwave-assisted approach. The prepared type II core/shell QD nanoparticles were characterized by UV–Vis absorption, photoluminescence (PL) spectroscopy, X-ray powder diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM). Results revealed that the QD nanoparticles exhibited good dispersity, a uniform size distribution and tunable fluorescence emission in the near-infrared (NIR) region. In addition, these nanoparticles exhibited good biocompatibility and photoluminescence in cell imaging. In particular, this type of core/shell NIR QDs may have potential applications in molecular imaging. PMID:25997004

  3. Synthesis of fluorinated and nonfluorinated graphene quantum dots through a new top-down strategy for long-time cellular imaging.

    PubMed

    Sun, Hanjun; Ji, Haiwei; Ju, Enguo; Guan, Yijia; Ren, Jinsong; Qu, Xiaogang

    2015-02-23

    Herein, a new strategy has been developed through combining a microwave-assisted technique with hydrothermal treatment to reduce graphene waste and improve production yield of graphene quantum dots (GQDs) prepared by top-down methods. By using fluorinated graphene oxide (FGO) as a raw material, fluorinated GQDs and nonfluorinated GQDs can be synthesized. Additionally, in the fluorinated GQDs, the protective shell supplied by fluorine improves the pH stability of photoluminescence and the strong electron-withdrawing group, -F, reduces the ?-electron density of the aromatic structure; thus inhibiting reactivity toward singlet oxygen produced during irradiation and improving the photostability. Therefore, the as-prepared fluorinated GQDs with excellent photo- and pH stability are suitable for long-term cellular imaging. PMID:25614445

  4. Dielectric barrier discharge-assisted one-pot synthesis of carbon quantum dots as fluorescent probes for selective and sensitive detection of hydrogen peroxide and glucose.

    PubMed

    He, Duhong; Zheng, Chengbin; Wang, Qiang; He, Chunlin; Lee, Yong-Ill; Wu, Li; Hou, Xiandeng

    2015-09-01

    In this work, we proposed a dielectric barrier discharge (DBD)-assisted one-pot strategy to fabricate carbon quantum dots (CQDs) using only one reagent N, N-dimethylformamide (DMF) at atmospheric pressure and room temperature. The experimental conditions were carefully investigated, and the prepared CQDs were characterized by using UV-vis spectrophotometer, fluorescence spectrophotometer, Fourier transform infrared (FTIR) spectrometer, transmission electron microscopy (TEM) and X-ray photoelectron spectrometer (XPS). The CQDs have an average size of 3.6nm in diameter with narrow size distribution, and can be used as highly selective and sensitive fluorescence probes for hydrogen peroxide and glucose, with limits of detection of 3.8?M and 3.5?M, respectively. PMID:26003691

  5. IR quantum dot detectors with miniband tunnel extraction

    Microsoft Academic Search

    F. F. Schrey; D. P. Nguyen; T. Mueller; L. Rebohle; N. Regnault; R. Ferreira; G. Bastard; G. Strasser; K. Unterrainer

    2004-01-01

    By combining band gap engineering with the self-organised growth of quantum dots we present a scheme of adjusting the mid-infrared absorption properties to desired energy transitions in quantum dot based photodetectors (QDIPs). Embedding of the self organised InAs quantum dots into an AlAs\\/GaAs superlattice enables us to tune the optical transition energy by changing the superlattice period as well as

  6. Molecular spintronics: Coherent spin transfer in coupled quantum dots

    Microsoft Academic Search

    Florian Meier; Veronica Cerletti; Oliver Gywat; Daniel Loss; D. D. Awschalom

    2004-01-01

    Time-resolved Faraday rotation has recently demonstrated coherent transfer of electron spin between quantum dots coupled by conjugated molecules. Using a transfer Hamiltonian ansatz for the coupled quantum dots, we calculate the Faraday rotation signal as a function of the probe frequency in a pump-probe setup using neutral quantum dots. Additionally, we study the signal of one spin-polarized excess electron in

  7. Ultrafast nonlinear spectroscopy characterization of CdSe quantum dots

    Microsoft Academic Search

    Qiguang Yang; Seongmin Ma; Bagher Tabibi; Jaetae Seo; William Yu

    2008-01-01

    Frequency degenerate and nondegenerate two-photon absorption spectra of direct band gap semiconductor quantum dots, such as CdSe and CdTe, have attracted great attention recently because of their potential applications in nonlinear photonic devices. In this work, we used the femtosecond time-resolved photon echo technique to characterize the third-order nonlinear optical properties of CdSe quantum dots in toluene. The quantum dots

  8. The pinning effect in quantum dots

    SciTech Connect

    Monisha, P. J., E-mail: pjmonisha@gmail.com [School of Physics, University of Hyderabad, Hyderabad-500046 (India); Mukhopadhyay, Soma [Department of Physics, D V R College of Engineering and Technology, Hyderabad-502285 (India)

    2014-04-24

    The pinning effect is studied in a Gaussian quantum dot using the improved Wigner-Brillouin perturbation theory (IWBPT) in the presence of electron-phonon interaction. The electron ground state plus one phonon state is degenerate with the electron in the first excited state. The electron-phonon interaction lifts the degeneracy and the first excited states get pinned to the ground state plus one phonon state as we increase the confinement frequency.

  9. Carrier Dynamics in Colloidal Graphene Quantum Dots

    Microsoft Academic Search

    Cheng Sun; Xin Yan; Liang-Shi Li; John A. McGuire

    2011-01-01

    We describe carrier dynamics for single and multiple excitons in colloidal graphene quantum dots (GQDs). Strong confinement and corresponding size-tunable electronic structure make GQDs potentially useful sensitizers in photovoltaic devices. We have studied the optical response of GQDs consisting of 132 and 168 sp^2 hybridized carbon atoms dissolved in toluene with HOMO-LUMO transitions of 1.4-1.6 eV. From measurements of ultrafast

  10. Photoluminescence of Silicon-Germanium Quantum Dots

    NSDL National Science Digital Library

    Kolodzey, James

    This presentation, given at the Arizona Nanotechnology Cluster Symposium, introduces the topic of the photoluminescence of silicon-germainium quantum dots. Dr. James Kolodzey, of University of Delaware, presents the topic in powerpoint format. The presentation is loaded with helpful diagrams and images that capture the essence of Kolodzey's research. Overall, while the topic is advanced, the presentations allows users to better understand due to the helpful resources it contains.

  11. Optical Spectroscopy Of Single Quantum Dots

    Microsoft Academic Search

    Jan Valenta; Jan Linnros; Robert Juhasz; Frank Cichos; JÖrg Martin

    \\u000a The technique of single quantum dot spectroscopy (SQDS) measurements of individual nanocrystals (NCs) is nowadays widely applied\\u000a to study NCs of III-V and II- VI semiconductors [1]. It enables to observe effects that are hidden by significant inhomogeneous broadening inevitable in measurements on ensemble\\u000a of NCs. The SQDS measurements revealed several intriguing phenomena such as photoluminescence (PL) intermittence, spectral\\u000a diffusion

  12. Dark pulse quantum dot diode laser.

    PubMed

    Feng, Mingming; Silverman, Kevin L; Mirin, Richard P; Cundiff, Steven T

    2010-06-21

    We describe an operating regime for passively mode-locked quantum dot diode laser where the output consists of a train of dark pulses, i.e., intensity dips on a continuous background. We show that a dark pulse train is a solution to the master equation for mode-locked lasers. Using simulations, we study stability of the dark pulses and show they are consistent with the experimental results. PMID:20588468

  13. Zeeman Effect in Parabolic Quantum Dots

    Microsoft Academic Search

    R. Rinaldi; P. V. Giugno; R. Cingolani; H. Lipsanen; M. Sopanen; J. Tulkki; J. Ahopelto

    1996-01-01

    An unprecedentedly well resolved Zeeman effect has been observed when confined carriers moving along a closed mesoscopic path experience an external magnetic field orthogonal to the orbit plane. Large Zeeman splitting of excited higher angular momentum states is observed in the magnetoluminescence spectrum of quantum dots induced by self-organized InP islands on InGaAs\\/GaAs. The measured effect is quantitatively reproduced by

  14. Cadmium-free quantum dots in aqueous solution: Potential for fingermark detection, synthesis and an application to the detection of fingermarks in blood on non-porous surfaces.

    PubMed

    Moret, Sébastien; Bécue, Andy; Champod, Christophe

    2013-01-10

    The use of quantum dots (QDs) in the area of fingermark detection is currently receiving a lot of attention in the forensic literature. Most of the research efforts have been devoted to cadmium telluride (CdTe) quantum dots often applied as powders to the surfaces of interests. Both the use of cadmium and the nano size of these particles raise important issues in terms of health and safety. This paper proposes to replace CdTe QDs by zinc sulphide QDs doped with copper (ZnS:Cu) to address these issues. Zinc sulphide-copper doped QDs were successfully synthesized, characterized in terms of size and optical properties and optimized to be applied for the detection of impressions left in blood, where CdTe QDs proved to be efficient. Effectiveness of detection was assessed in comparison with CdTe QDs and Acid Yellow 7 (AY7, an effective blood reagent), using two series of depletive blood fingermarks from four donors prepared on four non-porous substrates, i.e. glass, transparent polypropylene, black polyethylene and aluminium foil. The marks were cut in half and processed separately with both reagents, leading to two comparison series (ZnS:Cu vs. CdTe, and ZnS:Cu vs. AY7). ZnS:Cu proved to be better than AY7 and at least as efficient as CdTe on most substrates. Consequently, copper-doped ZnS QDs constitute a valid substitute for cadmium-based QDs to detect blood marks on non-porous substrates and offer a safer alternative for routine use. PMID:23246071

  15. Effect of shells on photoluminescence of aqueous CdTe quantum dots

    SciTech Connect

    Yuan, Zhimin; Yang, Ping, E-mail: mse_yangp@ujn.edu.cn

    2013-07-15

    Graphical abstract: Size-tunable CdTe coated with several shells using an aqueous solution synthesis. CdTe/CdS/ZnS quantum dots exhibited high PL efficiency up to 80% which implies the promising applications for biomedical labeling. - Highlights: • CdTe quantum dots were fabricated using an aqueous synthesis. • CdS, ZnS, and CdS/ZnS shells were subsequently deposited on CdTe cores. • Outer ZnS shells provide an efficient confinement of electron and hole inside the QDs. • Inside CdS shells can reduce the strain on the QDs. • Aqueous CdTe/CdS/ZnS QDs exhibited high stability and photoluminescence efficiency of 80%. - Abstract: CdTe cores with various sizes were fabricated in aqueous solutions. Inorganic shells including CdS, ZnS, and CdS/ZnS were subsequently deposited on the cores through a similar aqueous procedure to investigate the effect of shells on the photoluminescence properties of the cores. In the case of CdTe/CdS/ZnS quantum dots, the outer ZnS shell provides an efficient confinement of electron and hole wavefunctions inside the quantum dots, while the middle CdS shell sandwiched between the CdTe core and ZnS shell can be introduced to obviously reduce the strain on the quantum dots because the lattice parameters of CdS is situated at the intermediate-level between those of CdTe and ZnS. In comparison with CdTe/ZnS core–shell quantum dots, the as-prepared water-soluble CdTe/CdS/ZnS quantum dots in our case can exhibit high photochemical stability and photoluminescence efficiency up to 80% in an aqueous solution, which implies the promising applications in the field of biomedical labeling.

  16. Nitride-based quantum dot visible lasers

    NASA Astrophysics Data System (ADS)

    Banerjee, A.; Frost, T.; Bhattacharya, P.

    2013-07-01

    Blue- and green-emitting laser heterostructures are grown by molecular beam epitaxy, incorporating InGaN/GaN quantum dots as the active medium. The quantum dot growth parameters are optimized to obtain the highest photoluminescence (PL) intensity and radiative efficiency. Injected carrier lifetimes in the quantum dots are measured by temperature-dependent and time-resolved PL measurements. The blue lasers (? = 479 nm) are characterized by threshold current densities of 1.8 kA cm-2 and 2.3 kA cm-2 under quasi-continuous wave bias for devices with Al0.08Ga0.92N and GaN waveguide cladding layers, respectively. The differential gain of these devices is 1.03 × 10-16 cm-2. A threshold current density of ˜1.65 kA cm-2 is measured for a green laser (? = 545 nm) with Al0.08Ga0.92N cladding under quasi-continuous wave bias.

  17. TOPICAL REVIEW: Quantum dots: lasers and amplifiers

    NASA Astrophysics Data System (ADS)

    Bimberg, Dieter; Ledentsov, Nikolai

    2003-06-01

    Continuous wave room-temperature output power of ~ 3 W for edge emitters and of 1.2 mW for vertical-cavity surface-emitting lasers is realized for GaAs-based devices using InAs quantum dots (QDs) operating at 1.3 µm. Characteristic temperatures up to 170 K below 330 K are realized. Simultaneously, differential efficiency exceeds 80% for these devices. Lasers emitting up to 12 W at 1140 1160 nm are useful as pump sources for Tm3+-doped fibres for frequency up-conversion to 470 nm. Both types of lasers show transparency current densities of 6 A cm-2 per dot layer, ?int = 98% and ?i around 1.5 cm-1. Long operation lifetimes (above 3000 h at 50 °C heatsink temperature at 1.5 W CW) and improved radiation hardness as compared to quantum well (QW) devices are manifested. Cut-off frequencies of about 10 GHz at 1100 nm and 6 GHz at 1300 nm and low ? factors resulting in reduced filamentation and improved M2 values in single-mode operation are realized. Quantum dot semiconductor optical amplifiers (QD SOAs) demonstrate gain recovery times of 120 140 fs, 4 7 times faster than bulk/QW SOAs. The breakthrough became possible due to the development of self-organized growth in QD technology.

  18. Imaging ligand-gated ion channels with quantum dots

    NASA Astrophysics Data System (ADS)

    Tomlinson, I. D.; Orndorff, Rebecca L.; Gussin, Hélène; Mason, John N.; Blakely, Randy D.; Pepperberg, David R.; Rosenthal, Sandra J.

    2007-02-01

    In this paper we report two different methodologies for labeling ligand-gated receptors. The first of these builds upon our earlier work with serotonin conjugated quantum dots and our studies with pegilated quantum dots to reduce non specific binding. In this approach a pegilated derivative of muscimol was synthesized and attached via an amide linkage to quantum dots coated in an amphiphillic polymer derivative of poly acrylamide. These conjugates were used to image the GABA C receptor in oocytes. An alternative approach was used to image tissue sections to study nicotinic acetylcholine receptors in the neuro muscular junction with biotinylated Bungerotoxin and streptavidin coated quantum dots.

  19. Engineered quantum dot single-photon sources

    NASA Astrophysics Data System (ADS)

    Buckley, Sonia; Rivoire, Kelley; Vu?kovi?, Jelena

    2012-12-01

    Fast, high efficiency and low error single-photon sources are required for the implementation of a number of quantum information processing applications. The fastest triggered single-photon sources to date have been demonstrated using epitaxially grown semiconductor quantum dots (QDs), which can be conveniently integrated with optical microcavities. Recent advances in QD technology, including demonstrations of high temperature and telecommunications wavelength single-photon emission, have made QD single-photon sources more practical. Here we discuss the applications of single-photon sources and their various requirements, before reviewing the progress made on a QD platform in meeting these requirements.

  20. Transport through evanescent waves in ballistic graphene quantum dots

    Microsoft Academic Search

    M. I. Katsnelson; F. Guinea

    2008-01-01

    We study the transport through evanescent waves in graphene quantum dots of different geometries. The transmission is suppressed when the leads are attached to edges of the same majority sublattice. Otherwise, the transmission depends exponentially on the distance between leads in rectangular dots and as a power law in circular dots. The transmission through junctions, where the transmitted and reflected

  1. Enhanced performance of quantum dot solar cells based on type II quantum dots

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Yang, Xiao-Guang; Luo, Shuai; Lv, Zun-Ren; Yang, Tao

    2014-10-01

    The characteristics of quantum dot solar cells (QDSCs) based on type II QDs are investigated theoretically. Based on a drift-diffusion model, we obtained a much higher open circuit voltage (Voc) as well as conversion efficiency in a type II QDSC, compared to type I QDSCs. The improved Voc and efficiency are mainly attributed to the much longer Auger recombination lifetime in type II QDs. Moreover, the influence of the carrier lifetime on devices' performance is discussed and clarified. In addition, an explicit criterion to determine the role of quantum dots in solar cells is put forward.

  2. Photoluminescence imaging of focused ion beam induced individual quantum dots.

    PubMed

    Lee, Jieun; Saucer, Timothy W; Martin, Andrew J; Tien, Deborah; Millunchick, Joanna M; Sih, Vanessa

    2011-03-01

    We report on scanning microphotoluminescence measurements that spectrally and spatially resolve emission from individual InAs quantum dots that were induced by focused ion beam patterning. Multilayers of quantum dots were spaced 2 ?m apart, with a minimum single dot emission line width of 160 ?eV, indicating good optical quality for dots patterned using this technique. Mapping 16 array sites, at least 65% were occupied by optically active dots and the spectral inhomogeneity was within 30 meV. PMID:21302932

  3. POSSIBLE DEFINTION OF QUANTUM BITS IN COUPLED QUANTUM DOTS

    E-print Network

    Ludwig-Maximilians-Universität, München

    reduction is the single-electron-transistor (SET). It consists of a small electron island ­ also called interaction of single electrons in this quantum dot and in the leads is becoming dominant. The repulsive then enables single electrons to tunnel sequentially through the SET. At first these SETs only could

  4. Quantum computation with two-dimensional graphene quantum dots

    Microsoft Academic Search

    Li Jie-Sen; Li Zhi-Bing; Yao Dao-Xin

    2012-01-01

    We study an array of graphene nano sheets that form a two-dimensional S = 1\\/2 Kagome spin lattice used for quantum computation. The edge states of the graphene nano sheets are used to form quantum dots to confine electrons and perform the computation. We propose two schemes of bang-bang control to combat decoherence and realize gate operations on this array

  5. Terahertz hot electron bolometric detectors based on graphene quantum dots

    NASA Astrophysics Data System (ADS)

    El Fatimy, A.; Myers-Ward, R. L.; Boyd, A. K.; Daniels, K. M.; Gaskill, D. K.; Barbara, P.

    2015-03-01

    We study graphene quantum dots patterned from epitaxial graphene on SiC with a resistance strongly dependent on temperature. The combination of weak electron-phonon coupling and small electronic heat capacity in graphene makes these quantum dots ideal hot-electron bolometers. We measure and characterize the THz optical response of devices with different dot sizes, at operating temperatures from 2.5K to 80K. The high responsivity, the potential for operation above 80 K and the process scalability show great promise towards practical applications of graphene quantum dot THz detectors. This work was sponsored by the U.S. Office of Naval Research (Award Number N000141310865).

  6. Design and fabrication of quantum-dot lasers

    E-print Network

    Nabanja, Sheila

    2008-01-01

    Semiconductor lasers using quantum-dots in their active regions have been reported to exhibit significant performance advantages over their bulk semiconductor and quantum-well counterparts namely: low threshold current, ...

  7. Robustness of edge states in graphene quantum dots

    Microsoft Academic Search

    M. Wimmer; A. R. Akhmerov; F. Guinea

    2010-01-01

    We analyze the single-particle states at the edges of disordered graphene quantum dots. We show that generic graphene quantum dots support a number of edge states proportional to circumference of the dot over the lattice constant. Our analytical theory agrees well with numerical simulations. Perturbations breaking electron-hole symmetry such as next-nearest-neighbor hopping or edge impurities shift the edge states away

  8. Adiabatic charge and spin pumping through interacting quantum dots

    Microsoft Academic Search

    Fernanda Deus; Alexis R Hernández; Mucio A Continentino

    2012-01-01

    In this paper we investigate adiabatic charge and spin pumping through interacting quantum dots using non-equilibrium Green’s function techniques and the equation-of-motion method. We treat the electronic correlations inside the dot using a Hartree–Fock approximation and succeed in obtaining closed analytic expressions for the Keldysh Green’s functions. These allow us to compute charge and spin currents through the quantum dot.

  9. Magneto-optics from type-II single quantum dots

    NASA Astrophysics Data System (ADS)

    Godoy, M. P. F.; Nakaema, M. K. K.; Iikawa, F.; Brasil, M. J. S. P.; Bortoleto, J. R. R.; Cotta, M. A.; Ribeiro, E.; Medeiros-Ribeiro, G.

    2004-02-01

    We investigated single InP quantum dots embedded in GaAs using micro-photoluminescence as a function of the excitation intensity. InP/GaAs dots exhibit a type-II band alignment, which leads to a spatial separation of the carriers. The effect of a magnetic field on these type-II quantum dots were also investigated through micro-photoluminescence measurements.

  10. Phonon bottleneck effects in rectangular graphene quantum dots

    Microsoft Academic Search

    Jun Qian; A. S. Michael; Mitra Dutta

    2010-01-01

    This paper considers dimensionally-confined graphene quantum dots, provides formulations for the electronic states and the optical phonons in these quantum dots. These results are used to calculate scattering rates for the optical deformation potential and phonon bottleneck effects are identified.

  11. Charge detection in a bilayer graphene quantum dot

    Microsoft Academic Search

    Stefan Fringes; Christian Volk; Caroline Norda; Bernat Terrés; Jan Dauber; Stephan Engels; Stefan Trellenkamp; Christoph Stampfer

    2011-01-01

    We show measurements on a bilayer graphene quantum dot with an integrated charge detector. The focus lies on enabling charge detection with a 30 nm wide bilayer graphene nanoribbon located approximately 35 nm next to a bilayer graphene quantum dot with an island diameter of about 100 nm. Local resonances in the nanoribbon can be successfully used to detect individual

  12. Geometry-dependent conductance oscillations in graphene quantum dots

    Microsoft Academic Search

    Liang Huang; Rui Yang; Ying-Cheng Lai

    2011-01-01

    Utilizing rectangular graphene quantum dots with zigzag horizontal boundaries as a paradigm, we find that the conductance of the dots can exhibit significant oscillations with the position of the leads. The oscillation patterns are a result of quantum interference determined by the band structure of the underlying graphene nanoribbon. In particular, the power spectrum of the conductance variation concentrates on

  13. Temperature dependent responsivity of quantum dot infrared photodetectors

    E-print Network

    Perera, A. G. Unil

    Temperature dependent responsivity of quantum dot infrared photodetectors S.Y. Wang a,*, M.C. Lo b of the responsivity of InAs/GaAs quantum dot infrared photodetectors was investigated with detailed measurement constant at different device temperatures and changes linearly with the bias voltage for B­C type device

  14. Nonequilibrium electron transport through quantum dots in the Kondo regime

    E-print Network

    Buse, Karsten

    Nonequilibrium electron transport through quantum dots in the Kondo regime P. Wölfle , J. Paaske voltage through quantum dots in the Kondo regime is described within the perturbative renormalization and local spectral function are calculated. We show how the Kondo effect is suppressed by nonequilibrium

  15. Manipulating Quantum Dots to Nanometer Precision by Control of Flow

    E-print Network

    Waks, Edo

    Manipulating Quantum Dots to Nanometer Precision by Control of Flow Chad Ropp, Roland Probst of Standards and Technology, Gaithersburg, Maryland 20899 ABSTRACT We present a method for manipulating on the dynamically manipulated QD. KEYWORDS Quantum dots, control, electroosmotic flow, subpixel averaging, photon

  16. Localisation microscopy with quantum dots using non-negative matrix

    E-print Network

    Williams, Chris

    Localisation microscopy with quantum dots using non-negative matrix factorisation Ondrej Mandula,1, Randall Division, London, UK 5Institute for Adaptive and Neural Computation, University of Edinburgh and blinking behaviour. This allows us to use quantum dots as bright and stable fluorophores for localisation

  17. Quantum Dots in Diagnostics and Detection: Principles and Paradigms

    PubMed Central

    Pisanic, T. R.; Zhang, Y.; Wang, T. H.

    2014-01-01

    Quantum dots are semiconductor nanocrystals that exhibit exceptional optical and electrical behaviors not found in their bulk counterparts. Following seminal work in the development of water-soluble quantum dots in the late 1990's, researchers have sought to develop interesting and novel ways of exploiting the extraordinary properties of quantum dots for biomedical applications. Since that time, over 10,000 articles have been published related to the use of quantum dots in biomedicine, many of which regard their use in detection and diagnostic bioassays. This review presents a didactic overview of fundamental physical phenomena associated with quantum dots and paradigm examples of how these phenomena can and have been readily exploited for manifold uses in nanobiotechnology with a specific focus on their implementation in in vitro diagnostic assays and biodetection. PMID:24770716

  18. Non-blinking quantum dot with a plasmonic nanoshell resonator

    NASA Astrophysics Data System (ADS)

    Ji, Botao; Giovanelli, Emerson; Habert, Benjamin; Spinicelli, Piernicola; Nasilowski, Michel; Xu, Xiangzhen; Lequeux, Nicolas; Hugonin, Jean-Paul; Marquier, Francois; Greffet, Jean-Jacques; Dubertret, Benoit

    2015-02-01

    Colloidal semiconductor quantum dots are fluorescent nanocrystals exhibiting exceptional optical properties, but their emission intensity strongly depends on their charging state and local environment. This leads to blinking at the single-particle level or even complete fluorescence quenching, and limits the applications of quantum dots as fluorescent particles. Here, we show that a single quantum dot encapsulated in a silica shell coated with a continuous gold nanoshell provides a system with a stable and Poissonian emission at room temperature that is preserved regardless of drastic changes in the local environment. This novel hybrid quantum dot/silica/gold structure behaves as a plasmonic resonator with a strong Purcell factor, in very good agreement with simulations. The gold nanoshell also acts as a shield that protects the quantum dot fluorescence and enhances its resistance to high-power photoexcitation or high-energy electron beams. This plasmonic fluorescent resonator opens the way to a new family of plasmonic nanoemitters with robust optical properties.

  19. Fast Hybrid Silicon Double-Quantum-Dot Qubit

    NASA Astrophysics Data System (ADS)

    Shi, Zhan; Simmons, C. B.; Prance, J. R.; Gamble, John King; Koh, Teck Seng; Shim, Yun-Pil; Hu, Xuedong; Savage, D. E.; Lagally, M. G.; Eriksson, M. A.; Friesen, Mark; Coppersmith, S. N.

    2012-04-01

    We propose a quantum dot qubit architecture that has an attractive combination of speed and fabrication simplicity. It consists of a double quantum dot with one electron in one dot and two electrons in the other. The qubit itself is a set of two states with total spin quantum numbers S2=3/4 (S=1/2) and Sz=-1/2, with the two different states being singlet and triplet in the doubly occupied dot. Gate operations can be implemented electrically and the qubit is highly tunable, enabling fast implementation of one- and two-qubit gates in a simpler geometry and with fewer operations than in other proposed quantum dot qubit architectures with fast operations. Moreover, the system has potentially long decoherence times. These are all extremely attractive properties for use in quantum information processing devices.

  20. Fast hybrid silicon double-quantum-dot qubit.

    PubMed

    Shi, Zhan; Simmons, C B; Prance, J R; Gamble, John King; Koh, Teck Seng; Shim, Yun-Pil; Hu, Xuedong; Savage, D E; Lagally, M G; Eriksson, M A; Friesen, Mark; Coppersmith, S N

    2012-04-01

    We propose a quantum dot qubit architecture that has an attractive combination of speed and fabrication simplicity. It consists of a double quantum dot with one electron in one dot and two electrons in the other. The qubit itself is a set of two states with total spin quantum numbers S(2)=3/4 (S=1/2) and S(z)=-1/2, with the two different states being singlet and triplet in the doubly occupied dot. Gate operations can be implemented electrically and the qubit is highly tunable, enabling fast implementation of one- and two-qubit gates in a simpler geometry and with fewer operations than in other proposed quantum dot qubit architectures with fast operations. Moreover, the system has potentially long decoherence times. These are all extremely attractive properties for use in quantum information processing devices. PMID:22540779

  1. One-pot green synthesis of oxygen-rich nitrogen-doped graphene quantum dots and their potential application in pH-sensitive photoluminescence and detection of mercury(II) ions.

    PubMed

    Shi, Bingfang; Zhang, Liangliang; Lan, Chuanqing; Zhao, Jingjin; Su, Yubin; Zhao, Shulin

    2015-09-01

    Nitrogen doping has been a powerful method to modulate the properties of carbon materials for various applications, and N-doped graphene quantum dots (GQDs) have gained remarkable interest because of their unique chemical, electronic, and optical properties. Herein, we introduce a facile one-pot solid-phase synthesis strategy for N-doped GQDs using citric acid (CA) as the carbon source and 3,4-dihydroxy-l-phenylalanine (l-DOPA) as the N source. The as-prepared N-GQDs with oxygen-rich functional groups are uniform with an average diameter of 12.5nm. Because of the introduction of nitrogen atoms, N-GQDs exhibit excitation-wavelength-independent fluorescence with the maximum emission at 445nm, and a high quantum yield of 18% is achieved at an excitation wavelength of 346nm. Furthermore, a highly efficient fluorosensor based on the as-prepared N-GQDs was developed for the detection of Hg(2+) because of the effective quenching effect of metal ions via nonradiative electron transfer. This fluorosensor exhibits high sensitivity toward Hg(2+) with a detection limit of 8.6nM. The selectivity experiments reveal that the fluorescent sensor is specific for Hg(2+). Most importantly, the practical use of the sensor based on N-GQDs for Hg(2+) detection was successfully demonstrated in river-water samples. PMID:26003702

  2. Facile synthesis and characterization of highly fluorescent and biocompatible N-acetyl-l-cysteine capped CdTe/CdS/ZnS core/shell/shell quantum dots in aqueous phase

    NASA Astrophysics Data System (ADS)

    Xiao, Qi; Huang, Shan; Su, Wei; Chan, W. H.; Liu, Yi

    2012-12-01

    The synthesis of water-soluble quantum dots (QDs) in aqueous phase has received much attention recently. To date various kinds of QDs such as CdTe, CdSe, CdTe/CdS and CdSe/ZnS have been synthesized by aqueous methods. However, generally poor-quality QDs (photoluminescent quantum yield (PLQY) lower than 30%) are obtained via this method and the 3-mercaptopropionic acid stabilizer is notorious for its toxicity and awful odor. Here we introduce a novel thiol ligand, N-acetyl-l-cysteine, as an ideal stabilizer that is successfully employed to synthesize high-quality CdTe/CdS/ZnS QDs via a simple aqueous phase. The core/shell/shell structures of the CdTe/CdS/ZnS QDs were verified by x-ray photoelectron spectroscopy, energy dispersive x-ray spectroscopy, x-ray powder diffraction and transmission electron microscopy. These QDs not only possess a high PLQY but also have excellent photostability and favorable biocompatibility, which is vital for many biological applications. This type of water-dispersed QD is a promising candidate for fluorescent probes in biological and medical fields.

  3. Competitive Performance of Carbon “QuantumDots in Optical Bioimaging

    PubMed Central

    Cao, Li; Yang, Sheng-Tao; Wang, Xin; Luo, Pengju G.; Liu, Jia-Hui; Sahu, Sushant; Liu, Yamin; Sun, Ya-Ping

    2012-01-01

    Carbon-based “quantumdots or carbon dots are surface-functionalized small carbon nanoparticles. For bright fluorescence emissions, the carbon nanoparticles may be surface-doped with an inorganic salt and then the same organic functionalization. In this study, carbon dots without and with the ZnS doping were prepared, followed by gel-column fractionation to harvest dots of 40% and 60% in fluorescence quantum yields, respectively. These highly fluorescent carbon dots were evaluated for optical imaging in mice, from which bright fluorescence images were obtained. Of particular interest was the observed competitive performance of the carbon dots in vivo to that of the well-established CdSe/ZnS QDs. The results suggest that carbon dots may be further developed into a new class of high-performance yet nontoxic contrast agents for optical bioimaging. PMID:22448196

  4. Aqueous synthesis of thiol-capped CdTe quantum dots and its photoluminescence enhancement via room temperature treatment with alkyl chain diamines

    NASA Astrophysics Data System (ADS)

    Liu, Xiangming; Tian, Jintao; Dai, Jinhui; Wang, Xin

    2014-03-01

    In this study the CdTe quantum dots (QDs) are synthesized in aqueous solution with three thiol-contained capping ligands of thioglycollic acid (TGA), 3-mercaptopropionic acid (MPA), and L-cysteine (LCys). The photoluminescence (PL) enhancement of the as-prepared QDs is also conducted via room temperature treatment with alkyl chain diamines. Our measurements on the ultraviolet-visible (UV-vis) absorption and fluorescence emission reveal that both the growth kinetics and the PL efficiency of the QDs vary a lot with the molecular structures of the three involved ligands. In comparison with TGA and LCys, MPA endows the QDs with a wide color tuning range from cyan to deep red and strong PL emission while its full width at half maximum (FWHM) is regretfully large. Notable enhancement on PL emission is achieved for the TGA and MPA capped QDs via room temperature treatment with diamines solutions while in the case of the QDs capped by LCys the enhancement is practically meaningless.

  5. Nondestructive chemical functionalization of MWNTs by poly(2-dimethylaminoethyl methacrylate) and their conjugation with CdSe quantum dots: Synthesis, properties, and cytotoxicity studies

    NASA Astrophysics Data System (ADS)

    Islam, Md. Rafiqul; Bach, Long Giang; Vo, Thanh-Sang; Tran, Thi-Nga; Lim, Kwon Taek

    2013-12-01

    Multi-walled carbon nanotubes (MWNTs) were functionalized with poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) in a nondestructive manner by UV-driven surface-initiated reversible addition fragmentation chain transfer (RAFT) polymerization. The RAFT agent having benzophenone groups was initially synthesized, and anchored to MWNTs through UV-triggered photoreaction. The subsequent RAFT polymerization of DMAEMA from the surface of MWNTs afforded PDMAEMA grafted MWNTs (MWNTs-g-PDMAEMA). The successful grafting of PDMAEMA on MWNTs via chemical linkage was confirmed by FT-IR, 1H NMR, XPS, EDX, TGA, TEM, and SEM analyses. A reversible dispersion phenomenon was observed in an aqueous solution of MWNTs-g-PDMAEMA as induced either by temperature or pH. The CdSe quantum dots (CdSe QDs) were attached to quaternized MWNTs-g-PDMAEMA to produce MWNTs-g-PDMAEMA-MeI/CdSe nanohybrids via electrostatic self-assembly. The formation of the nanohybrids was elucidated by EDS, TEM, and XRD. The cell viability assessment of the nanohybrids suggested their biocompatible character. The photoluminescence spectra of the nanohybrids indicated that the CdSe QDs significantly preserved its optical property after conjugation with MWNTs-g-PDMAEMA.

  6. Microwave-assisted synthesis of water soluble thiol capped CdSe/ZnS quantum dots and its interaction with sulfonylurea herbicides.

    PubMed

    Durán, Gema M; Plata, María R; Zougagh, Mohammed; Contento, Ana M; Ríos, Ángel

    2014-08-15

    A simple and fast procedure for water solubilization of CdSe/ZnS quantum dots (QDs) using microwave irradiation (MW) has been optimized. The CdSe/ZnS QDs were synthesized in organic media and water solubilization was achieved by replacing the initial hydrophobic ligands (TOPO and TOP) with hydrophilic heterobifunctional thiol ligands, such as L-cysteine (L-Cys), 3-mercaptopropionic acid (3-MPA) and cysteamine (CTAM). The use of MW irradiation allowed carrying out the modification of the surface thiol of QDs in a simple and fast way (only 40 s was required). Different optimization studies based on activation-time, irradiation-time, concentration of ligands, pH and lifetime fluorescent properties were carried out in order to obtain the best results for the solubilization of QDs. By the proposed method, the resulting water-soluble QDs exhibit a strong fluorescence emission at about 590 nm, with a high and reproducible photostability and acceptable yields. With the aim of contributing to exploiting the advantages of synthetized QDs from an analytical point of view, the different behavior with sulfonylurea herbicides (SUHs) were studied. PMID:24910058

  7. Fabrication of a graphene quantum dot device

    NASA Astrophysics Data System (ADS)

    Lee, Jeong Il; Kim, Eunseong

    2014-03-01

    Graphene, which exhibits a massless Dirac-like spectrum for its electrons, has shown impressive properties for nano-electronics applications including a high mobility and a width dependent bandgap. We will report the preliminary report on the transport property of the suspended graphene nano-ribbon(GNR) quantum dot device down to dilution refrigerator temperature. This GNR QD device was fabricated to realize an ideal probe to investigate Kondo physics--a characteristic phenomenon in the physics of strongly correlated electrons. We gratefully acknowledge the financial support by the National Research Foundation of Korea through the Creative Research Initiatives.

  8. Quantum Dots for Molecular Diagnostics of Tumors

    PubMed Central

    Zdobnova, T.A.; Lebedenko, E.N.; Deyev, S.?.

    2011-01-01

    Semiconductor quantum dots (QDs) are a new class of fluorophores with unique physical and chemical properties, which allow to appreciably expand the possibilities for the current methods of fluorescent imaging and optical diagnostics. Here we discuss the prospects of QD application for molecular diagnostics of tumors ranging from cancer-specific marker detection on microplates to non-invasive tumor imagingin vivo. We also point out the essential problems that require resolution in order to clinically promote QD, and we indicate innovative approaches to oncology which are implementable using QD. PMID:22649672

  9. Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots: origin of blue and green luminescence.

    PubMed

    Liu, Fei; Jang, Min-Ho; Ha, Hyun Dong; Kim, Je-Hyung; Cho, Yong-Hoon; Seo, Tae Seok

    2013-07-19

    Pristine graphene quantum dots and graphene oxide quantum dots are synthesized by chemical exfoliation from the graphite nanoparticles with high uniformity in terms of shape (circle), size (less than 4 nm), and thickness (monolayer). The origin of the blue and green photoluminescence of GQDs and GOQDs is attributed to intrinsic and extrinsic energy states, respectively. PMID:23712762

  10. Atomic and Molecular Quantum Theory Course Number: C561 10 Quantum Confinement in "Quantum dots", Thomas Fermi

    E-print Network

    Iyengar, Srinivasan S.

    Atomic and Molecular Quantum Theory Course Number: C561 10 Quantum Confinement in "Quantum dots S. Iyengar (instructor) #12;Atomic and Molecular Quantum Theory Course Number: C561 5 and Molecular Quantum Theory Course Number: C561 happens to optical transitions in quantum dots. As a result

  11. FIG. 1: Size-dependent color emission of quantum dots. This is a purely quantum mechanical FIG. 2: Size-dependent color emission of quantum dots. This is a purely quantum mechanical

    E-print Network

    Nielsen, Steven O.

    FIG. 1: Size-dependent color emission of quantum dots. This is a purely quantum mechanical effect. FIG. 2: Size-dependent color emission of quantum dots. This is a purely quantum mechanical effect. 1 #12;FIG. 3: Size-dependent color emission of quantum dots. This is a purely quantum mechanical effect

  12. Kondo and mixed-valence regimes in multilevel quantum dots

    SciTech Connect

    Chudnovskiy, A. L.; Ulloa, S. E.

    2001-04-15

    We investigate the dependence of the ground state of a multilevel quantum dot on the coupling to an external fermionic system and on the interactions in the dot. As the coupling to the external system increases, the rearrangement of the effective energy levels in the dot signals the transition from the Kondo regime to a mixed-valence (MV) regime. The MV regime in a two-level dot is characterized by an intrinsic mixing of the levels in the dot, resulting in nonperturbative subtunneling and supertunneling phenomena that strongly influence the Kondo effect.

  13. High responsivity, LWIR dots-in-a-well quantum dot infrared photodetectors

    Microsoft Academic Search

    D. T. Le; C. P. Morath; H. E. Norton; D. A. Cardimona; S. Raghavan; P. Rotella; S. A. Stintz; B. Fuchs; S. Krishna

    2003-01-01

    In this paper we report studies on normal incidence, InAs\\/In0.15Ga0.85As quantum dot infrared photodetectors (QDIPs) in the dots-in-a-well (DWELL) configuration. Three QDIP structures with similar dot and well dimensions were grown and devices were fabricated from each wafer. Of the three devices studied, the first served as the control, the second was grown with an additional 400 Å AlGaAs blocking

  14. Biosensing with Luminescent Semiconductor Quantum Dots

    PubMed Central

    Sapsford, Kim E.; Pons, Thomas; Medintz, Igor L.; Mattoussi, Hedi

    2006-01-01

    Luminescent semiconductor nanocrystals or quantum dots (QDs) are a recently developed class of nanomaterial whose unique photophysical properties are helping to create a new generation of robust fluorescent biosensors. QD properties of interest for biosensing include high quantum yields, broad absorption spectra coupled to narrow size-tunable photoluminescent emissions and exceptional resistance to both photobleaching and chemical degradation. In this review, we examine the progress in adapting QDs for several predominantly in vitro biosensing applications including use in immunoassays, as generalized probes, in nucleic acid detection and fluorescence resonance energy transfer (FRET) - based sensing. We also describe several important considerations when working with QDs mainly centered on the choice of material(s) and appropriate strategies for attaching biomolecules to the QDs.

  15. Electron states in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Dhayal, Suman S.; Ramaniah, Lavanya M.; Ruda, Harry E.; Nair, Selvakumar V.

    2014-11-01

    In this work, the electronic structures of quantum dots (QDs) of nine direct band gap semiconductor materials belonging to the group II-VI and III-V families are investigated, within the empirical tight-binding framework, in the effective bond orbital model. This methodology is shown to accurately describe these systems, yielding, at the same time, qualitative insights into their electronic properties. Various features of the bulk band structure such as band-gaps, band curvature, and band widths around symmetry points affect the quantum confinement of electrons and holes. These effects are identified and quantified. A comparison with experimental data yields good agreement with the calculations. These theoretical results would help quantify the optical response of QDs of these materials and provide useful input for applications.

  16. Semiconductor quantum dot-sensitized solar cells

    PubMed Central

    Tian, Jianjun; Cao, Guozhong

    2013-01-01

    Semiconductor quantum dots (QDs) have been drawing great attention recently as a material for solar energy conversion due to their versatile optical and electrical properties. The QD-sensitized solar cell (QDSC) is one of the burgeoning semiconductor QD solar cells that shows promising developments for the next generation of solar cells. This article focuses on recent developments in QDSCs, including 1) the effect of quantum confinement on QDSCs, 2) the multiple exciton generation (MEG) of QDs, 3) fabrication methods of QDs, and 4) nanocrystalline photoelectrodes for solar cells. We also make suggestions for future research on QDSCs. Although the efficiency of QDSCs is still low, we think there will be major breakthroughs in developing QDSCs in the future. PMID:24191178

  17. Filling of hole arrays with InAs quantum dots.

    PubMed

    Lee, Jennifer Y; Noordhoek, Mark J; Smereka, Peter; McKay, Hugh; Millunchick, Joanna M

    2009-07-15

    Focused ion beams are used to pattern GaAs(001) surfaces with an array of nanometer-deep holes upon which deposition of InAs results in quantum dot formation at the hole location. Experiments show that the size and quantity of quantum dots formed depend on growth parameters, and ion dose, which affects the size and shape of the resulting holes. Quantum dots fabricated in this fashion have a photoluminescence peak at 1.28 eV at 77 K, indicating that the ion irradiation due to patterning does not destroy their optical activity. Kinetic Monte Carlo simulations that include elastic relaxation qualitatively model the growth of dots in nanometer-deep holes, and demonstrate that growth temperature, depth of the holes, and the angle of the hole sidewalls strongly influence the number of quantum dots that form at their perimeter. PMID:19546494

  18. Filling of hole arrays with InAs quantum dots

    NASA Astrophysics Data System (ADS)

    Lee, Jennifer Y.; Noordhoek, Mark J.; Smereka, Peter; McKay, Hugh; Millunchick, Joanna M.

    2009-07-01

    Focused ion beams are used to pattern GaAs(001) surfaces with an array of nanometer-deep holes upon which deposition of InAs results in quantum dot formation at the hole location. Experiments show that the size and quantity of quantum dots formed depend on growth parameters, and ion dose, which affects the size and shape of the resulting holes. Quantum dots fabricated in this fashion have a photoluminescence peak at 1.28 eV at 77 K, indicating that the ion irradiation due to patterning does not destroy their optical activity. Kinetic Monte Carlo simulations that include elastic relaxation qualitatively model the growth of dots in nanometer-deep holes, and demonstrate that growth temperature, depth of the holes, and the angle of the hole sidewalls strongly influence the number of quantum dots that form at their perimeter.

  19. RKKY interaction in a chirally coupled double quantum dot system

    SciTech Connect

    Heine, A. W.; Tutuc, D.; Haug, R. J. [Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstr. 2, 30167 Hannover (Germany); Zwicknagl, G. [Institut für Mathematische Physik, TU Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig (Germany); Schuh, D. [Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätstr. 31, 93053 Regensburg (Germany); Wegscheider, W. [Laboratorium für Festkörperphysik, ETH Zürich, Schafmattstr. 16, 8093 Zürich, Switzerland and Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätstr. 31, 93053 Regens (Germany)

    2013-12-04

    The competition between the Kondo effect and the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction is investigated in a double quantum dots system, coupled via a central open conducting region. A perpendicular magnetic field induces the formation of Landau Levels which in turn give rise to the so-called Kondo chessboard pattern in the transport through the quantum dots. The two quantum dots become therefore chirally coupled via the edge channels formed in the open conducting area. In regions where both quantum dots exhibit Kondo transport the presence of the RKKY exchange interaction is probed by an analysis of the temperature dependence. The thus obtained Kondo temperature of one dot shows an abrupt increase at the onset of Kondo transport in the other, independent of the magnetic field polarity, i.e. edge state chirality in the central region.

  20. Quantum Dot-Based Nanoprobes for In Vivo Targeted Imaging

    PubMed Central

    Zhu, Yian; Hong, Hao; Xu, Zhi Ping; Li, Zhen; Cai, Weibo

    2013-01-01

    Fluorescent semiconductor quantum dots (QDs) have attracted tremendous attention over the last decade. The superior optical properties of QDs over conventional organic dyes make them attractive labels for a wide variety of biomedical applications, whereas their potential toxicity and instability in biological environment has puzzled scientific researchers. Much research effort has been devoted to surface modification and functionalization of QDs to make them versatile probes for biomedical applications, and significant progress has been made over the last several years. This review article aims to describe the current state-of-the-art of the synthesis, modification, bioconjugation, and applications of QDs for in vivo targeted imaging. In addition, QD-based multifunctional nanoprobes are also summarized. PMID:24206136

  1. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics

    PubMed Central

    Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S.

    2005-01-01

    Research on fluorescent semiconductor nanocrystals (also known as quantum dots or qdots) has evolved over the past two decades from electronic materials science to biological applications. We review current approaches to the synthesis, solubilization, and functionalization of qdots and their applications to cell and animal biology. Recent examples of their experimental use include the observation of diffusion of individual glycine receptors in living neurons and the identification of lymph nodes in live animals by near-infrared emission during surgery. The new generations of qdots have far-reaching potential for the study of intracellular processes at the single-molecule level, high-resolution cellular imaging, long-term in vivo observation of cell trafficking, tumor targeting, and diagnostics. PMID:15681376

  2. Bandgap engineering of coal-derived graphene quantum dots.

    PubMed

    Ye, Ruquan; Peng, Zhiwei; Metzger, Andrew; Lin, Jian; Mann, Jason A; Huang, Kewei; Xiang, Changsheng; Fan, Xiujun; Samuel, Errol L G; Alemany, Lawrence B; Martí, Angel A; Tour, James M

    2015-04-01

    Bandgaps of photoluminescent graphene quantum dots (GQDs) synthesized from anthracite have been engineered by controlling the size of GQDs in two ways: either chemical oxidative treatment and separation by cross-flow ultrafiltration, or by a facile one-step chemical synthesis using successively higher temperatures to render smaller GQDs. Using these methods, GQDs were synthesized with tailored sizes and bandgaps. The GQDs emit light from blue-green (2.9 eV) to orange-red (2.05 eV), depending on size, functionalities and defects. These findings provide a deeper insight into the nature of coal-derived GQDs and demonstrate a scalable method for production of GQDs with the desired bandgaps. PMID:25757413

  3. Bioconjugated Quantum Dots for In Vivo Molecular and Cellular Imaging

    PubMed Central

    Smith, Andrew M.; Duan, Hongwei; Mohs, Aaron M.; Nie, Shuming

    2008-01-01

    Semiconductor quantum dots (QDs) are tiny light-emitting particles on the nanometer scale, and are emerging as a new class of fluorescent labels for biology and medicine. In comparison with organic dyes and fluorescent proteins, they have unique optical and electronic properties, with size-tunable light emission, superior signal brightness, resistance to photobleaching, and broad absorption spectra for simultaneous excitation of multiple fluorescence colors. QDs also provide a versatile nanoscale scaffold for designing multifunctional nanoparticles with both imaging and therapeutic functions. When linked with targeting ligands such as antibodies, peptides or small molecules, QDs can be used to target tumor biomarkers as well as tumor vasculatures with high affinity and specificity. Here we discuss the synthesis and development of state-of-the-art QD probes and their use for molecular and cellular imaging. We also examine key issues for in vivo imaging and therapy, such as nanoparticle biodistribution, pharmacokinetics, and toxicology. PMID:18495291

  4. Electron Spin Qubits in Si/SiGe Quantum Dots

    NASA Astrophysics Data System (ADS)

    Eriksson, Mark

    2010-10-01

    It is intriguing that silicon, the central material of modern classical electronics, also has properties well suited to quantum electronics. Recent advances in Si/SiGe quantum devices have enabled the creation of high-quality silicon quantum dots, also known as artificial atoms. Motivated in part by the potential for very long spin coherence times in this material, we are pursuing the development of individual electron spin qubits in silicon quantum dots. I will discuss recent demonstrations of single-shot spin measurement in a Si/SiGe quantum dot spin qubit, and the demonstration of spin-relaxation times longer than one second in such a system. These and similar measurements depend on a knowledge of tunnel rates between quantum dots and nearby reservoirs or between pairs of quantum dots. Measurements of such rates provide an opportunity to revisit classic experiments in quantum mechanics. At the same time, the unique features of the silicon conduction band lead to novel and unexpected effects, demonstrating that Si/SiGe quantum dots provide a highly controlled experimental system in which to study ideas at the heart of quantum physics.

  5. Monolithic quantum dot sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Samadpour, M.; Ghane, Z.; Ghazyani, N.; Tajabadi, F.; Taghavinia, N.

    2013-12-01

    We report a new design of solar cells based on semiconductor quantum dots (QDs), monolithic quantum dot sensitized solar cells (MQDSCs). MQDSCs offer the prospect of having lower cost and a simpler manufacturing process in comparison to conventional double substrate QDSCs. Our proposed monolithic QDSCs have a triple-layer structure, composed of a CdS sensitized mesoporous TiO2 photoanode, a scattering layer made by a core-shell structure of TiO2/SiO2, and a carbon active/graphite counter electrode layer, which are all deposited on a single fluorine doped tin oxide (FTO) glass substrate. Mesoporous TiO2 was sensitized with CdS QDs by successive ionic layer adsorption and reaction. Here, non-conventional solvents were utilized, which made it possible to deposit the CdS QDs in our monolithic structure. The measured photovoltaic properties and simple preparation method show that MQDSCs can be introduced as promising structures to make low-cost QDSCs in the near future.

  6. Quantum Dot Enabled Molecular Sensing and Diagnostics

    PubMed Central

    Zhang, Yi; Wang, Tza-Huei

    2012-01-01

    Since its emergence, semiconductor nanoparticles known as quantum dots (QDs) have drawn considerable attention and have quickly extended their applicability to numerous fields within the life sciences. This is largely due to their unique optical properties such as high brightness and narrow emission band as well as other advantages over traditional organic fluorophores. New molecular sensing strategies based on QDs have been developed in pursuit of high sensitivity, high throughput, and multiplexing capabilities. For traditional biological applications, QDs have already begun to replace traditional organic fluorophores to serve as simple fluorescent reporters in immunoassays, microarrays, fluorescent imaging applications, and other assay platforms. In addition, smarter, more advanced QD probes such as quantum dot fluorescence resonance energy transfer (QD-FRET) sensors, quenching sensors, and barcoding systems are paving the way for highly-sensitive genetic and epigenetic detection of diseases, multiplexed identification of infectious pathogens, and tracking of intracellular drug and gene delivery. When combined with microfluidics and confocal fluorescence spectroscopy, the detection limit is further enhanced to single molecule level. Recently, investigations have revealed that QDs participate in series of new phenomena and exhibit interesting non-photoluminescent properties. Some of these new findings are now being incorporated into novel assays for gene copy number variation (CNV) studies and DNA methylation analysis with improved quantification resolution. Herein, we provide a comprehensive review on the latest developments of QD based molecular diagnostic platforms in which QD plays a versatile and essential role. PMID:22916072

  7. Competing interactions in semiconductor quantum dots

    DOE PAGESBeta

    van den Berg, R.; Brandino, G. P.; El Araby, O.; Konik, R. M.; Gritsev, V.; Caux, J. -S.

    2014-10-01

    We introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions at longer times. Onmore »the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.« less

  8. Colloidal quantum dot light-emitting devices.

    PubMed

    Wood, Vanessa; Bulovi?, Vladimir

    2010-01-01

    Colloidal quantum dot light-emitting devices (QD-LEDs) have generated considerable interest for applications such as thin film displays with improved color saturation and white lighting with a high color rendering index (CRI). We review the key advantages of using quantum dots (QDs) in display and lighting applications, including their color purity, solution processability, and stability. After highlighting the main developments in QD-LED technology in the past 15 years, we describe the three mechanisms for exciting QDs - optical excitation, Förster energy transfer, and direct charge injection - that have been leveraged to create QD-LEDs. We outline the challenges facing QD-LED development, such as QD charging and QD luminescence quenching in QD thin films. We describe how optical downconversion schemes have enabled researchers to overcome these challenges and develop commercial lighting products that incorporate QDs to achieve desirable color temperature and a high CRI while maintaining efficiencies comparable to inorganic white LEDs (>65 lumens per Watt). We conclude by discussing some current directions in QD research that focus on achieving higher efficiency and air-stable QD-LEDs using electrical excitation of the luminescent QDs. PMID:22110863

  9. Competing interactions in semiconductor quantum dots

    DOE PAGESBeta

    van den Berg, R. [Univ. of Amsterdam (Netherlands). Inst. for Theoretical Physics; Brandino, G. P. [Univ. of Amsterdam (Netherlands). Inst. for Theoretical Physics; El Araby, O. [Univ. of Amsterdam (Netherlands). Inst. for Theoretical Physics; Konik, R. M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gritsev, V. [Univ. of Amsterdam (Netherlands). Inst. for Theoretical Physics; Caux, J. -S. [Univ. of Amsterdam (Netherlands). Inst. for Theoretical Physics

    2014-10-01

    We introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions at longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.

  10. Preparation of AgInS? quantum dot/In?S? co-sensitized photoelectrodes by a facile aqueous-phase synthesis route and their photovoltaic performance.

    PubMed

    Wang, Yuanqiang; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi

    2015-04-14

    In an aqueous-phase system, AgInS2 quantum dot (QD) sensitized TiO2 photoanodes were prepared in situ by the reaction of ?-In2S3 nanocrystals and as-prepared TiO2/Ag2S-QD electrodes, followed by a covering process with a ZnS passivation layer. A facile successive ionic layer adsorption and reaction (SILAR) method was adopted to obtain TiO2/Ag2S-QD electrodes. ?-In2S3 nanocrystals synthesized by the chemical bath deposition (CBD) process serve as the reactant of AgInS2 as well as a buffer layer between the interfaces of TiO2 and AgInS2-QDs. A polysulfide electrolyte and a Pt-coated FTO glass count electrode were used to test the photovoltaic performance of the constructed devices. The characteristics of the sensitized photoelectrodes were studied in more detail by electron microscopy, X-ray techniques, and optical and photoelectric performance measurements. AgInS2 is the main photo-sensitizer for TiO2/AgInS2-QD/In2S3 electrodes and excess In2S3 appears on the surface of the electrodes. Based on the optimal Ag2S SILAR cycle, the best photovoltaic performance of the prepared TiO2/AgInS2-QD/In2S3 electrode with the short-circuit photocurrent density (Jsc) of 7.87 mA cm(-2) and power conversion efficiency (?) of 0.70% under full one-sun illumination was achieved. PMID:25779613

  11. Magneto-optical studies of quantum dots

    NASA Astrophysics Data System (ADS)

    Russ, Andreas Hans

    Significant effort in condensed matter physics has recently been devoted to the field of "spintronics" which seeks to utilize the spin degree of freedom of electrons. Unlike conventional electronics that rely on the electron charge, devices exploiting their spin have the potential to yield new and novel technological applications, including spin transistors, spin filters, and spin-based memory devices. Any such application has the following essential requirements: 1) Efficient electrical injection of spin-polarized carriers; 2) Long spin lifetimes; 3) Ability to control and manipulate electron spins; 4) Effective detection of spin-polarized carriers. Recent work has demonstrated efficient electrical injection from ferromagnetic contacts such as Fe and MnAs, utilizing a spin-Light Emitting Diode (spin-LED) as a method of detection. Semiconductor quantum dots (QDs) are attractive candidates for satisfying requirements 2 and 3 as their zero dimensionality significantly suppresses many spin-flip mechanisms leading to long spin coherence times, as well as enabling the localization and manipulation of a controlled number of electrons and holes. This thesis is composed of three projects that are all based on the optical properties of QD structures including: I) Intershell exchange between spin-polarized electrons occupying adjacent shells in InAs QDs; II) Spin-polarized multiexitons in InAs QDs in the presence of spin-orbit interactions; III) The optical Aharonov-Bohm effect in AlxGa1-xAs/AlyGa1-yAs quantum wells (QWs). In the following we introduce some of the basic optical properties of quantum dots, describe the main tool (spin-LED) employed in this thesis to inject and detect spins in these QDs, and conclude with the optical Aharonov-Bohm effect (OAB) in type-II QDs.

  12. Factorization of the Dirac equation and a graphene quantum dot

    NASA Astrophysics Data System (ADS)

    Zahidi, Youness; Jellal, Ahmed; Bahlouli, Hocine; El Bouziani, Mohammed

    2014-10-01

    We consider a quantum dot described using a cylindrically symmetrical 2D Dirac equation. The potentials representing the quantum dot are taken to be of different types of potential configuration, scalar, vector, and pseudo-scalar to enable us to enrich our study. Using various potential configurations, we found that in the presence of a mass term, an electrostatically confined quantum dot can accommodate true bound states, which is in agreement with our previous work. The differential cross section associated with one specific potential configuration has been computed and discussed as a function of the various potential parameters.

  13. Factorization of Dirac Equation and Graphene Quantum Dot

    E-print Network

    Youness Zahidi; Ahmed Jellal; Hocine Bahlouli; Mohammed El Bouziani

    2014-05-14

    We consider a quantum dot described by a cylindrically symmetric 2D Dirac equation. The potentials representing the quantum dot are taken to be of different types of potential configuration, scalar, vector and pseudo-scalar to enable us to enrich our study. Using various potential configurations, we found that in the presence of a mass term an electrostatically confined quantum dot can accommodate true bound states, which is in agreement with previous work. The differential cross section associated with one specific potential configuration has been computed and discussed as function of the various potential parameters.

  14. Imaging GABAc Receptors with Ligand-Conjugated Quantum Dots

    PubMed Central

    Tomlinson, Ian D.; Gussin, Hélène A.; Little, Deborah M.; Warnement, Michael R.; Qian, Haohua; Pepperberg, David R.; Rosenthal, Sandra J.

    2007-01-01

    We report a methodology for labeling the GABAc receptor on the surface membrane of intact cells. This work builds upon our earlier work with serotonin-conjugated quantum dots and our studies with PEGylated quantum dots to reduce nonspecific binding. In the current approach, a PEGylated derivative of muscimol was synthesized and attached via an amide linkage to quantum dots coated in an amphiphilic polymer derivative of a modified polyacrylamide. These conjugates were used to image GABAC receptors heterologously expressed in Xenopus laevis oocytes. PMID:18437227

  15. Single electron charging in optically active nanowire quantum dots.

    PubMed

    van Kouwen, Maarten P; Reimer, Michael E; Hidma, Anne W; van Weert, Maarten H M; Algra, Rienk E; Bakkers, Erik P A M; Kouwenhoven, Leo P; Zwiller, Val

    2010-05-12

    We report optical experiments of a charge tunable, single nanowire quantum dot subject to an electric field tuned by two independent voltages. First, we control tunneling events through an applied electric field along the nanowire growth direction. Second, we modify the chemical potential in the nanowire with a back-gate. We combine these two field-effects to isolate a single electron and independently tune the tunnel coupling of the quantum dot with the contacts. Such charge control is a first requirement for opto-electrical single electron spin experiments on a nanowire quantum dot. PMID:20387798

  16. Dot-bound and dispersive states in graphene quantum dot superlattices

    NASA Astrophysics Data System (ADS)

    Pieper, A.; Heinisch, R. L.; Wellein, G.; Fehske, H.

    2014-04-01

    We consider a square lattice configuration of circular gate-defined quantum dots in an unbiased graphene sheet and calculate the electronic, particularly spectral properties of finite albeit actual sample sized systems by means of a numerically exact kernel polynomial expansion technique. Analyzing the local density of states and the momentum resolved photoemission spectrum we find clear evidence for a series of quasibound states at the dots, which can be probed by optical measurements. We further analyze the interplay of the superlattice structure with dot-localized modes on the electron energy dispersion. Effects of disordered dot lattices are discussed too.

  17. Interband optical absorption in a circular graphene quantum dot

    Microsoft Academic Search

    M Gruji?; M Zarenia; M Tadi?; F M Peeters

    2012-01-01

    We investigate the energy levels and optical properties of a circular graphene quantum dot in the presence of an external magnetic field perpendicular to the dot. Based on the Dirac–Weyl equation and assuming zero outward current at the edge of the dot we present the results for two different types of boundary conditions, i.e. infinite-mass (IMBC) and zigzag boundary conditions.

  18. Few Electron Quantum Dots in Si/SiGe

    NASA Astrophysics Data System (ADS)

    Shaji, Nakul; Simmons, Christie; Klein, Levente; Savage, Don; Coppersmith, Susan; Friesen, Mark; Qin, Hua; Blick, Robert; Eriksson, Mark

    2007-03-01

    Quantum information processing in silicon-based materials offers potential advantages like low spin orbit coupling and long spin coherence times. We report the fabrication and measurement of few electron quantum dots in strained Si/SiGe heterostructures. The quantum dots are formed by depleting the underlying two-dimensional electron gas using Schottky top gates. The design incorporates a capacitively coupled quantum point contact charge sensor to enable the read out of the number of electrons in the quantum dot. Low-noise measurement through the quantum dot reveals stable coulomb diamonds in the few electron regime. Interesting effects such as Kondo coupling of electron spins with the leads and Fano lineshapes for the coulomb peaks are observed in our measurements. We have investigated in detail the ground state and excited state transport spectroscopy through the quantum dots in the few electron limit at a base temperature of 20mK. In the presence of an external magnetic field (up to 4 Tesla) applied normal to the plane of electron transport we observe shifts in peak height and position enabling a discussion of the nature of these transport channels in our quantum dot.

  19. What Quantum Dots Can Do for You

    NASA Astrophysics Data System (ADS)

    Salamo, Gregory

    2008-03-01

    Recent clever techniques for fabricating nanosize materials, one-atomic-layer-at-a-time, have simultaneously opened a door to a fantastic adventure at the frontier of physics, chemistry, biology, and engineering. Nanosize materials simply do not behave as the bulk. Indeed, the rules that govern the growth and behavior of these tiny structures are unexplored. In this talk we will discuss our recent efforts to be the architect of their shape, size, density, and position of nanostructures and along the way, the interactions between them that lead to their optical and electrical behavior. While self-assembly is providing exciting quantum dot (QD) structures to explore, like the QD molecules shown here, it is equally exciting to try to use the rules we uncover to encourage QD formation to take a desired path. Can we understand the formation of faceted nanostructures? Can we encourage or seed dot structures to form specific arrays? Is it possible to engineer greater homogeneity of dot shape and size? Can we design both the optical and electrical behavior of either individual or arrays of nanostructures to mimic those we find in nature? In this talk we will review our progress to answer these questions and discuss the possibilities and challenges ahead. For example, we will discuss the formation of individual faceted nanostructures as well as the fabrication of a vertically and laterally ordered QD stacks forming three-dimensional QD arrays. As another example, we will discuss the importance of surfaces with high Miller indices, as a template to the formation of nanostructures as well as their potential role in determining the shape and increased size uniformity of the confined structures. Importantly, these observations lead to an even more basic question of when and why high index surfaces are stable. Indeed, we have found that in order to understand the origin of high index surfaces that bound nanostructures we have to study them directly.

  20. Quantum Phase Transitions in Cavity Coupled Dot systems

    NASA Astrophysics Data System (ADS)

    Kasisomayajula, Vijay; Russo, Onofrio

    2011-03-01

    We investigate a Quantum Dot System, in which the transconductance, in part, is due to spin coupling, with each dot subjected to a biasing voltage. When this system is housed in a QED cavity, the cavity dot coupling alters the spin coupling of the coupled dots significantly via the Purcell Effect. In this paper we show the extent to which one can control the various coupling parameters: the inter dot coupling, the individual dots coupling with the cavity and the coupled dots coupling with the cavity as a single entity. We show that the dots coupled to each other and to the cavity, the spin transport can be controlled selectively. We derive the conditions for such control explicitly. Further, we discuss the Quantum phase transition effects due to the charge and spin transport through the dots. The electron transport through the dots, electron-electron spin interaction and the electron-photon interaction are treated using the Non-equilibrium Green's Function Formalism. http://publish.aps.org/search/field/author/Trif_Mircea (Trif Mircea), http://publish.aps.org/search/field/author/Golovach_Vitaly_N (Vitaly N. Golovach), and http://publish.aps.org/search/field/author/Loss_Daniel (Daniel Loss), Phys. Rev. B 75, 085307 (2007)

  1. Quantum-dot cellular automata G. L. Snider,a)

    E-print Network

    Orlov, Alexei

    and tunnel junctions. An improved design of the cell is presented in which all four dots of the cell are coupled by tunnel junctions. A noninvasive electrometer is presented which improves the sensitivity . A basic QCA cell consists of four quantum dots in a square array coupled by tunnel barriers. Electrons

  2. Digital Logic Gate Using Quantum-Dot Cellular

    E-print Network

    Orlov, Alexei

    electrons. The logic gate consists of a cell, composed of four dots connected in a ring by tunnel junctions architecture can be imple- mented in many systems, we choose the metal tunnel junction implementation described is a nanostructure-compatible compu- tation paradigm that uses arrays of quantum-dot cells to implement digital logic

  3. Density-dependent carrier dynamics in a quantum dots-in-a-well heterostructure

    E-print Network

    Krishna, Sanjay

    The incorporation of semiconductor quantum dots into different heterostructures for applications in nanoscale lasingDensity-dependent carrier dynamics in a quantum dots-in-a-well heterostructure R. P. Prasankumar,1 dots-in-a-well DWELL heterostructure. We observe excitation-dependent shifts of the quantum dot energy

  4. CdTe and CdSe Quantum Dots Cytotoxicity: A Comparative Study on Microorganisms

    PubMed Central

    Gomes, Suzete A.O.; Vieira, Cecilia Stahl; Almeida, Diogo B.; Santos-Mallet, Jacenir R.; Menna-Barreto, Rubem F. S.; Cesar, Carlos L.; Feder, Denise

    2011-01-01

    Quantum dots (QDs) are colloidal semiconductor nanocrystals of a few nanometers in diameter, being their size and shape controlled during the synthesis. They are synthesized from atoms of group II–VI or III–V of the periodic table, such as cadmium telluride (CdTe) or cadmium selenium (CdSe) forming nanoparticles with fluorescent characteristics superior to current fluorophores. The excellent optical characteristics of quantum dots make them applied widely in the field of life sciences. Cellular uptake of QDs, location and translocation as well as any biological consequence, such as cytotoxicity, stimulated a lot of scientific research in this area. Several studies pointed to the cytotoxic effect against micoorganisms. In this mini-review, we overviewed the synthesis and optical properties of QDs, and its advantages and bioapplications in the studies about microorganisms such as protozoa, bacteria, fungi and virus. PMID:22247686

  5. Hyper-parallel photonic quantum computation with coupled quantum dots

    PubMed Central

    Ren, Bao-Cang; Deng, Fu-Guo

    2014-01-01

    It is well known that a parallel quantum computer is more powerful than a classical one. So far, there are some important works about the construction of universal quantum logic gates, the key elements in quantum computation. However, they are focused on operating on one degree of freedom (DOF) of quantum systems. Here, we investigate the possibility of achieving scalable hyper-parallel quantum computation based on two DOFs of photon systems. We construct a deterministic hyper-controlled-not (hyper-CNOT) gate operating on both the spatial-mode and the polarization DOFs of a two-photon system simultaneously, by exploiting the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics (QED). This hyper-CNOT gate is implemented by manipulating the four qubits in the two DOFs of a two-photon system without auxiliary spatial modes or polarization modes. It reduces the operation time and the resources consumed in quantum information processing, and it is more robust against the photonic dissipation noise, compared with the integration of several cascaded CNOT gates in one DOF. PMID:24721781

  6. Hyper-parallel photonic quantum computation with coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Ren, Bao-Cang; Deng, Fu-Guo

    2014-04-01

    It is well known that a parallel quantum computer is more powerful than a classical one. So far, there are some important works about the construction of universal quantum logic gates, the key elements in quantum computation. However, they are focused on operating on one degree of freedom (DOF) of quantum systems. Here, we investigate the possibility of achieving scalable hyper-parallel quantum computation based on two DOFs of photon systems. We construct a deterministic hyper-controlled-not (hyper-CNOT) gate operating on both the spatial-mode and the polarization DOFs of a two-photon system simultaneously, by exploiting the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics (QED). This hyper-CNOT gate is implemented by manipulating the four qubits in the two DOFs of a two-photon system without auxiliary spatial modes or polarization modes. It reduces the operation time and the resources consumed in quantum information processing, and it is more robust against the photonic dissipation noise, compared with the integration of several cascaded CNOT gates in one DOF.

  7. Kinetic analysis of the temperature dependence of PbSe colloidal quantum dot photoluminescence: Effects of synthesis process and oxygen exposure

    NASA Astrophysics Data System (ADS)

    Foell, Charles A.; Abel, Keith A.; van Veggel, Frank C. J. M.; Young, Jeff F.

    2014-01-01

    A kinetic model is derived and used to analyze recently published works and new data on the temperature dependence of the spectrally integrated photoluminescence (PL) from thick-film formulations of PbSe colloidal quantum dots (QDs), with particular attention to the effects of air exposure. The model assumes that the excitons thermalize within a ground-state manifold of states and treats the distribution of radiative and nonradiative decay rates within the distribution as generally as possible, while using a minimal number of free parameters. By adjusting the parameters of the model, good fits are obtained for the wide range of integrated PL behaviors reported in [J. Phys. Chem. Lett. 2, 889 (2011), 10.1021/jz2001979; ACS Nano 6, 5498 (2012), 10.1021/nn301405j; Phys. Rev. B 82, 165435 (2010), 10.1103/PhysRevB.82.165435] and the new data presented in this manuscript. By comparing the extracted parameters we deduce the following: (i) All of the samples in the first two references emit from two distinct clusters of states separated by an energy of 55 to 80 meV regardless of air exposure, while there is only one cluster of emissive states that contributes to the emission reported in the third reference. (ii) In the absence of intentional air exposure, the nonradiative decay from all samples can be described by a single Arrhenius-like process. (iii) Although air-exposure effects are reversible in some samples and irreversible in others, the changes in integrated PL behavior brought about by air-exposure forces the introduction of a common, low-activation-energy nonradiative pathway in all cases. (iv) The low-lying emissive cluster of the two-emissive-cluster samples exhibits behavior similar to the single emissive cluster of the other samples. (v) Many hours of air exposure do not trend either the radiative or nonradiative behavior of the dual-emissive-cluster samples towards the behavior of the single-emissive-cluster samples.

  8. Capillary electrophoresis of quantum dots: minireview.

    PubMed

    Stanisavljevic, Maja; Vaculovicova, Marketa; Kizek, Rene; Adam, Vojtech

    2014-07-01

    It has been already three decades, since the fluorescent nanocrystals called quantum dots (QDs) appeared and attracted attention of a broad scientific community. Their excellent not only optical but also electronic properties predetermined QDs for utilization in a variety of areas. Besides lasers, solar cells, and/or computers, QDs have established themselves in the field of (bio)chemical labeling as well as medical imaging. However, due to the numerous application possibilities of QDs, there are high demands on their properties that need to be precisely controlled and characterized. CE with its versatile modes and possibilities of detection was found to be an effective tool not only for characterization of QDs size and/or surface properties but also for monitoring of their interactions with other molecules of interest. In this minireview, we are giving short insight in analysis of QDs by CE, and summarizing the advantages of this method for QDs characterization. PMID:24648211

  9. Negative-Band-Gap Quantum Dots

    NASA Astrophysics Data System (ADS)

    Malkova, Natalia; Bryant, Garnett W.

    2011-12-01

    The spectrum of quantum dots (QDs) made from semiconductors like HgTe and HgS changes from negative gap to positive gap with decreasing size. Furthermore, intrinsic surface states, which are not related to dangling bonds, appear in the negative gap regime. We investigate theoretically the evolution of the spectrum of HgS QDs with decreasing size and show how states evolve from a negative gap to a positive gap as confinement is increased. The lowest confined electron level evolves into an intrinsic surface state with increasing size. This surface state is not derived from a bulk HgS bands. We demonstrate that surface states found do not have characteristic topological properties.

  10. Luminescence studies of individual quantum dot photocatalysts.

    PubMed

    Amirav, Lilac; Alivisatos, A Paul

    2013-09-01

    Using far-field optical microscopy we report the first measurements of photoluminescence from single nanoparticle photocatalysts. Fluence-dependent luminescence is investigated from metal-semiconductor heterojunction quantum dot catalysts exposed to a variety of environments, ranging from gaseous argon to liquid water containing a selection of hole scavengers. The catalysts each exhibit characteristic nonlinear fluence dependence. From these structurally and environmentally sensitive trends, we disentangle the separate rate-determining steps in each particle across the very wide range of time scales, which follow the initial light absorption process. This information will significantly benefit the design of effective artificial photocatalytic systems for renewable direct solar-to-fuel energy conversion. PMID:23895591

  11. Highly Fluorescent Noble Metal Quantum Dots

    PubMed Central

    Zheng, Jie; Nicovich, Philip R.; Dickson, Robert M.

    2009-01-01

    Highly fluorescent, water-soluble, few-atom noble metal quantum dots have been created that behave as multi-electron artificial atoms with discrete, size-tunable electronic transitions throughout the visible and near IR. These “molecular metals” exhibit highly polarizable transitions and scale in size according to the simple relation, Efermi/N1/3, predicted by the free electron model of metallic behavior. This simple scaling indicates that fluorescence arises from intraband transitions of free electrons and that these conduction electron transitions are the low number limit of the plasmon – the collective dipole oscillations occurring when a continuous density of states is reached. Providing the “missing link” between atomic and nanoparticle behavior in noble metals, these emissive, water-soluble Au nanoclusters open new opportunities for biological labels, energy transfer pairs, and light emitting sources in nanoscale optoelectronics. PMID:17105412

  12. Correlation energy of anisotropic quantum dots

    SciTech Connect

    Zhao Yan; Loos, Pierre-Francois; Gill, Peter M. W. [Research School of Chemistry, Australian National University, Canberra, ACT 0200 (Australia)

    2011-09-15

    We study the D-dimensional high-density correlation energy E{sub c} of the singlet ground state of two electrons confined by a harmonic potential with Coulombic repulsion. We allow the harmonic potential to be anisotropic and examine the behavior of E{sub c} as a function of the anisotropy {alpha}{sup -1}. In particular, we are interested in the limit where the anisotropy goes to infinity ({alpha}{yields}0) and the electrons are restricted to a lower-dimensional space. We show that tuning the value of {alpha} from 0 to 1 allows a smooth dimensional interpolation and we demonstrate that the usual model, in which a quantum dot is treated as a two-dimensional system, is inappropriate. Finally, we provide a simple function which reproduces the behavior of E{sub c} over the entire range of {alpha}.

  13. Fabrication Technology and Measurement of Coupled Quantum Dot Devices

    NASA Astrophysics Data System (ADS)

    Burkhardt, Martin

    1995-01-01

    This thesis describes the fabrication and measurement of planar tunneling devices. X-ray lithography was used to define gate patterns in order to achieve lateral electrostatic confinement in a two-dimensional electron gas. Technologies were developed for the printing of features with linewidths of 50 nm and below, a lithographic resolution which is necessary for the fabrication of narrow tunneling barriers. Development of technologies such as this can also be used for large -scale fabrication of silicon and GaAs devices and circuits with critical dimensions of 100 nm and below. Quantum dots, in which the capacitances to the dot were minimized, were fabricated using high resolution lithography. Decreased capacitances to the dot increase the charging energy of a quantum dot, making it possible to observe single electron effects at elevated temperatures. The conductance of a device, featuring eight electrodes to control size and shape of a quantum dot, was measured in a Heliox insertion probe at a temperature of 300 mK. Measurements of several quantum dot sizes were performed and the results were discussed. The same device was biased to produce two unequal quantum dots in series. The results are discussed and compared with theoretical predictions. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  14. Polarons in semiconductor quantum dots and their role in the quantum kinetics of carrier relaxation

    Microsoft Academic Search

    J. Seebeck; T. R. Nielsen; P. Gartner; F. Jahnke

    2005-01-01

    While time-dependent perturbation theory shows inefficient carrier-phonon scattering in semiconductor quantum dots, we demonstrate that a quantum kinetic description of carrier-phonon interaction predicts fast carrier capture and relaxation. The considered processes do not fulfill energy conservation in terms of free-carrier energies because polar coupling of localized quantum-dot states strongly modifies this picture.

  15. Physica E 26 (2005) 6366 Photoluminescence of tetrahedral quantum-dot quantum wells

    E-print Network

    Fonoberov, Vladimir

    2005-01-01

    -adiabatic approach a quantitative interpretation of the photoluminescence (PL) spectrum of a single CdS/HgS/CdS QDQW-adiabatic approach 1. Introduction Preparation of the CdS quantum dots with HgS quantum wells (QDQWs) was described dots (QDs). Excitons, localized in the HgS quantum well, are separated from the localized surface

  16. Statistical electron excitation in a double quantum dot induced by two independent quantum point contacts

    E-print Network

    Ihn, Thomas

    with time-resolved charge detection resulted in a frequency- selective detector for microwave radiation the quantum point contact. We identify the dominant absorption and emission mechanisms in a double quantum dot quantum dot and its environment was investigated in detail in previous works4­10 using microwave

  17. Study of field driven electroluminescence in colloidal quantum dot solids

    E-print Network

    Bozyigit, Deniz

    Semiconductor nanocrystals, or quantum dots(QDs), promise to drive advances in electronic light generation. It was recently shown that long range transport of charge, which is typically required for electric excitation and ...

  18. Franck-Condon blockade in suspended carbon nanotube quantum dots

    E-print Network

    von Oppen, Felix

    Stampfer1,3* , Kevin Inderbitzin1 , Lukas Durrer3 , Christofer Hierold3 , Eros Mariani4 , Maximilian G suspended CNT quantum dot device are shown in Figs. 1a, 1b and 1c. The CNT is electrically and mechanically

  19. Engineering a Robust Photovoltaic Device with Quantum Dots and Bacteriorhodopsin

    E-print Network

    Renugopalakrishnan, Venkatesan

    We present a route toward a radical improvement in solar cell efficiency using resonant energy transfer and sensitization of semiconductor metal oxides with a light-harvesting quantum dot (QD)/bacteriorhodopsin (bR) layer ...

  20. Heterovalent cation substitutional doping for quantum dot homojunction solar cells

    PubMed Central

    Stavrinadis, Alexandros; Rath, Arup K.; de Arquer, F. Pelayo García; Diedenhofen, Silke L.; Magén, César; Martinez, Luis; So, David; Konstantatos, Gerasimos

    2013-01-01

    Colloidal quantum dots have emerged as a material platform for low-cost high-performance optoelectronics. At the heart of optoelectronic devices lies the formation of a junction, which requires the intimate contact of n-type and p-type semiconductors. Doping in bulk semiconductors has been largely deployed for many decades, yet electronically active doping in quantum dots has remained a challenge and the demonstration of robust functional optoelectronic devices had thus far been elusive. Here we report an optoelectronic device, a quantum dot homojunction solar cell, based on heterovalent cation substitution. We used PbS quantum dots as a reference material, which is a p-type semiconductor, and we employed Bi-doping to transform it into an n-type semiconductor. We then combined the two layers into a homojunction device operating as a solar cell robustly under ambient air conditions with power conversion efficiency of 2.7%. PMID:24346430

  1. A fast "hybrid" silicon double quantum dot qubit

    E-print Network

    Shi, Zhan; Prance, J R; Gamble, John King; Koh, Teck Seng; Shim, Yun-Pil; Hu, Xuedong; Savage, D E; Lagally, M G; Eriksson, M A; Friesen, Mark; Coppersmith, S N

    2011-01-01

    We propose a quantum dot qubit architecture that has an attractive combination of speed and fabrication simplicity. It consists of a double quantum dot with one electron in one dot and two electrons in the other. The qubit itself is a set of two states with total spin quantum numbers $S^2=3/4$ ($S=\\half$) and $S_z = -\\half$, with the two different states being singlet and triplet in the doubly occupied dot. The architecture is relatively simple to fabricate, a universal set of fast operations can be implemented electrically, and the system has potentially long decoherence times. These are all extremely attractive properties for use in quantum information processing devices.

  2. A fast "hybrid" silicon double quantum dot qubit

    E-print Network

    Zhan Shi; C. B. Simmons; J. R. Prance; John King Gamble; Teck Seng Koh; Yun-Pil Shim; Xuedong Hu; D. E. Savage; M. G. Lagally; M. A. Eriksson; Mark Friesen; S. N. Coppersmith

    2011-10-30

    We propose a quantum dot qubit architecture that has an attractive combination of speed and fabrication simplicity. It consists of a double quantum dot with one electron in one dot and two electrons in the other. The qubit itself is a set of two states with total spin quantum numbers $S^2=3/4$ ($S=\\half$) and $S_z = -\\half$, with the two different states being singlet and triplet in the doubly occupied dot. The architecture is relatively simple to fabricate, a universal set of fast operations can be implemented electrically, and the system has potentially long decoherence times. These are all extremely attractive properties for use in quantum information processing devices.

  3. A fast ``hybrid'' silicon double quantum dot qubit

    NASA Astrophysics Data System (ADS)

    Koh, Teck Seng; Shi, Zhan; Simmons, C. B.; Prance, J. R.; King Gamble, John; Shim, Yun-Pil; Hu, Xuedong; Savage, D. E.; Lagally, M. G.; Eriksson, M. A.; Friesen, Mark; Coppersmith, S. N.

    2012-02-01

    We propose a quantum dot qubit architecture that has an attractive combination of speed and fabrication simplicity. It consists of a double quantum dot with one electron in one dot and two electrons in the other. The qubit itself is a set of two states with total spin quantum numbers S^2 = 3/4 (S = 1/2) and Sz = -1/2, with the two different states being singlet and triplet in the doubly occupied dot. The architecture is relatively simple to fabricate, a universal set of fast operations can be implemented electrically, and the system has potentially long decoherence times. These are all extremely attractive properties for use in quantum information processing devices.

  4. Quantum dot conjugates in a sub-micrometer fluidic channel

    DOEpatents

    Stavis, Samuel M.; Edel, Joshua B.; Samiee, Kevan T.; Craighead, Harold G.

    2010-04-13

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  5. Acetone sensing property of ZnO quantum dots embedded on PVP

    Microsoft Academic Search

    S. S. Nath; M. Choudhury; D. Chakdar; G. Gope; R. K. Nath

    2010-01-01

    We report synthesis of ZnO quantum dot embedded in polyvinylpyrrolidone (PVP) matrix and its functioning as acetone sensor. The specimen is prepared via quenching technique where bulk ZnO powder is calcined at very high temperature of 1200°C and then quenched into ice cold polyvinylpyrrolidone solution. The samples have been characterized by using UV\\/vis spectroscopy, X-ray diffraction study, high resolution transmission

  6. Sulfated Carbon Quantum Dots as Efficient Visible-Light Switchable Acid Catalysts for Room-Temperature Ring-Opening Reactions.

    PubMed

    Li, Haitao; Sun, Chenghua; Ali, Muataz; Zhou, Fengling; Zhang, Xinyi; MacFarlane, Douglas R

    2015-07-13

    Acid catalytic processes play a classic and important role in modern organic synthesis. How well the acid can be controlled often plays the key role in the controllable synthesis of the products with high conversion yield and selectivity. The preparation of a novel, photo-switchable solid-acid catalyst based on carbon quantum dots is described. The carbon quantum dots are decorated with small amounts of hydrogensulfate groups and thus exhibit a photogenerated acidity that produces a highly efficient acid catalysis of the ring opening of epoxides with methanol and other primary alcohols. This reversible, light-switchable acidity is shown to be due to photoexcitation and charge separation in the carbon quantum dots, which create an electron withdrawing effect from the acidic groups. The catalyst is easily separated by filtration, and we demonstrate multiple cycles of its recovery and reuse. PMID:26032183

  7. Multi-million atom electronic structure calculations for quantum dots

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad

    Quantum dots grown by self-assembly process are typically constructed by 50,000 to 5,000,000 structural atoms which confine a small, countable number of extra electrons or holes in a space that is comparable in size to the electron wavelength. Under such conditions quantum dots can be interpreted as artificial atoms with the potential to be custom tailored to new functionality. In the past decade or so, these nanostructures have attracted significant experimental and theoretical attention in the field of nanoscience. The new and tunable optical and electrical properties of these artificial atoms have been proposed in a variety of different fields, for example in communication and computing systems, medical and quantum computing applications. Predictive and quantitative modeling and simulation of these structures can help to narrow down the vast design space to a range that is experimentally affordable and move this part of nanoscience to nano-Technology. Modeling of such quantum dots pose a formidable challenge to theoretical physicists because: (1) Strain originating from the lattice mismatch of the materials penetrates deep inside the buffer surrounding the quantum dots and require large scale (multi-million atom) simulations to correctly capture its effect on the electronic structure, (2) The interface roughness, the alloy randomness, and the atomistic granularity require the calculation of electronic structure at the atomistic scale. Most of the current or past theoretical calculations are based on continuum approach such as effective mass approximation or k.p modeling capturing either no or one of the above mentioned effects, thus missing some of the essential physics. The Objectives of this thesis are: (1) to model and simulate the experimental quantum dot topologies at the atomistic scale; (2) to theoretically explore the essential physics i.e. long range strain, linear and quadratic piezoelectricity, interband optical transition strengths, quantum confined stark shift, coherent coupling of electronic states in a quantum dot molecule etc.; (3) to assess the potential use of the quantum dots in real device implementation and to provide physical insight to the experimentalists. Full three dimensional strain and electronic structure simulations of quantum dot structures containing multi-million atoms are done using NEMO 3-D. Both single and vertically stacked quantum dot structures are analyzed in detail. The results show that the strain and the piezoelectricity significantly impact the electronic structure of these devices. This work shows that the InAs quantum dots when placed in the InGaAs quantum well red shifts the emission wavelength. Such InAs/GaAs-based optical devices can be used for optical-fiber based communication systems at longer wavelengths (1.3um -- 1.5um). Our atomistic simulations of InAs/InGaAs/GaAs quantum dots quantitatively match with the experiment and give the critical insight of the physics involved in these structures. A single quantum dot molecule is studied for coherent quantum coupling of electronic states under the influence of static electric field applied in the growth direction. Such nanostructures can be used in the implementation of quantum information technologies. A close quantitative match with the experimental optical measurements allowed us to get a physical insight into the complex physics of quantum tunnel couplings of electronic states as the device operation switches between atomic and molecular regimes. Another important aspect is to design the quantum dots for a desired isotropic polarization of the optical emissions. Both single and coupled quantum dots are studied for TE/TM ratio engineering. The atomistic study provides a detailed physical analysis of these computationally expensive large nanostructures and serves as a guide for the experimentalists for the design of the polarization independent devices for the optical communication systems.

  8. Quantum Electrodynamics of Quantum Dot-Metal Nanoparticles Molecules

    E-print Network

    Ridolfo, A; Fina, N; Saija, R; Savasta, S

    2010-01-01

    We study theoretically the quantum optical properties of hybrid molecules composed of an individual quantum dot and a metallic nanoparticle. We calculate the resonance fluorescence of this hybrid system. Its incoherent part, the one arising from nonlinear quantum processes, results to be enhanced by more than two orders of magnitude as compared to that in the absence of the metallic nanoparticle. Scattering spectra at different excitation powers and nonperturbative calculations of intensity-field correlation functions show that this system can act as a nonlinear ultra-compact two-photon switch for incident photons, where the presence (or absence) of a single incident photon field is sufficient to allow (or prevent) the scattering of subsequent photons. We also find that a small frequency shift of the incident light field may cause changes in the intensity field correlation function of orders of magnitude.

  9. Quantum Electrodynamics of Quantum Dot-Metal Nanoparticles Molecules

    E-print Network

    A. Ridolfo; O. Di Stefano; N. Fina; R. Saija; S. Savasta

    2010-04-09

    We study theoretically the quantum optical properties of hybrid molecules composed of an individual quantum dot and a metallic nanoparticle. We calculate the resonance fluorescence of this hybrid system. Its incoherent part, the one arising from nonlinear quantum processes, results to be enhanced by more than two orders of magnitude as compared to that in the absence of the metallic nanoparticle. Scattering spectra at different excitation powers and nonperturbative calculations of intensity-field correlation functions show that this system can act as a nonlinear ultra-compact two-photon switch for incident photons, where the presence (or absence) of a single incident photon field is sufficient to allow (or prevent) the scattering of subsequent photons. We also find that a small frequency shift of the incident light field may cause changes in the intensity field correlation function of orders of magnitude.

  10. Transport Through Andreev Bound States in a Graphene Quantum Dot

    Microsoft Academic Search

    Travis Dirks; Taylor L. Hughes; Siddhartha Lal; Bruno Uchoa; Yung-Fu Chen; Cesar Chialvo; Paul M. Goldbart; Nadya Mason

    2011-01-01

    We have performed transport measurements on a graphene-insulator-superconductor junction, and report the direct observation of sharp, gate-tunable Andreev bound states (ABS) in a graphene quantum dot (QD)[1]. The quantum dot is formed underneath the superconducting lead by local gating due to a work-function mismatch. We show that the ABS form when the discrete QD levels are proximity coupled to the

  11. Time-dependent single-electron transport through quantum dots

    Microsoft Academic Search

    Toshimasa Fujisawa; Toshiaki Hayashi; Satoshi Sasaki

    2006-01-01

    We describe time-dependent single-electron transport through quantum dots in the Coulomb blockade regime. Coherent dynamics of a single charge qubit in a double quantum dot is discussed with full one-qubit manipulation. Strength of decoherence is controlled with the applied voltage, but uncontrolled decoherence arises from electron-phonon coupling and background fluctuations. Then energy-relaxation dynamics is discussed for orbital and spin degree

  12. Single Photon Detection with a Quantum Dot Transistor

    Microsoft Academic Search

    Andrew J. Shields; Martin P. O'Sullivan; Ian Farrer; David A. Ritchie; Mark L. Leadbeater; Nalin K. Patel; Richard A. Hogg; Carl E. Norman; Neil J. Curson; Michael Pepper

    2001-01-01

    We propose and demonstrate a type of GaAs\\/AlGaAs modulation-doped field effect transistor (FET) which is sensitive to single photons. The FET contains a layer of InAs quantum dots formed using an in-situ, self-organising method, adjacent to the channel and separated from it by a thin AlGaAs barrier. Capture of a single photo-excited carrier by a quantum dot leads to a

  13. Visualization and Transport of Quantum Dot Nanomaterials in Porous Media

    Microsoft Academic Search

    C. J. G. Darnault; S. M. C. Bonina; B. Uyusur; P. T. Snee

    This paper presents our research on the visualization and transport phenomena of quantum dot nanomaterials in porous media.\\u000a It includes the development of a non-intrusive, high spatial and temporal resolution method to visualize transport and measure\\u000a quantum dot nanomaterials concentration in porous media, allowing to characterize the mechanisms that control the transport,\\u000a or lack of mobility, of engineered nanomaterials —

  14. Theory of relaxation oscillations in semiconductor quantum dot lasers

    Microsoft Academic Search

    Ermin Malic; Kwang J. Ahn; Moritz J. P. Bormann; Philipp Hövel; Eckehard Schöll; Andreas Knorr; Matthias Kuntz; Dieter Bimberg

    2006-01-01

    A microscopic approach combining rate equations for photon and electron\\/hole occupations with kinetic equations for Coulomb scattering rates involving quantum dot and wetting layer states in InAs\\/GaAs quantum dot lasers is presented. The authors find strong damping of relaxation oscillations on a picosecond to nanosecond time scale depending on the type of the initial perturbation, similar to the damping observed

  15. Point contact readout for a quantum dot terahertz sensor

    NASA Astrophysics Data System (ADS)

    Pelling, S.; Davis, R.; Kulik, L.; Tzalenchuk, A.; Kubatkin, S.; Ueda, T.; Komiyama, S.; Antonov, V. N.

    2008-08-01

    We introduce a terahertz radiation sensor in which the photon-induced ionization state of a quantum dot is monitored by a point contact formed in the same semiconductor heterostructure. For comparison we used a readout based on a single electron transistor coupled to the same quantum dot. The experiments prove functionality of the point contact-based device with additional practical advantage of a higher operation temperature up to 1.5K and ease of nanofabrication.

  16. Multi-million atom electronic structure calculations for quantum dots

    Microsoft Academic Search

    Muhammad Usman

    2010-01-01

    Quantum dots grown by self-assembly process are typically constructed by 50,000 to 5,000,000 structural atoms which confine a small, countable number of extra electrons or holes in a space that is comparable in size to the electron wavelength. Under such conditions quantum dots can be interpreted as artificial atoms with the potential to be custom tailored to new functionality. In

  17. Coulomb Damped Relaxation Oscillations in Semiconductor Quantum Dot Lasers

    Microsoft Academic Search

    Ermin Malic; Moritz J. P. Bormann; P. Hovel; M. Kuntz; D. Bimberg; Andreas Knorr; Eckehard Scholl

    2007-01-01

    We present a theoretical simulation of the turn-on dynamics of InAs\\/GaAs quantum dot semiconductor lasers driven by electrical current pulses. Our approach goes beyond standard phenomenological rate equations. It contains microscopically calculated Coulomb scattering rates, which describe Auger transitions between quantum dots and the wetting layer. In agreement with the experimental results, we predict a strong damping of relaxation oscillations

  18. Long-distance coherent coupling in a quantum dot array.

    PubMed

    Braakman, F R; Barthelemy, P; Reichl, C; Wegscheider, W; Vandersypen, L M K

    2013-06-01

    Controlling long-distance quantum correlations is central to quantum computation and simulation. In quantum dot arrays, experiments so far rely on nearest-neighbour couplings only, and inducing long-distance correlations requires sequential local operations. Here, we show that two distant sites can be tunnel-coupled directly. The coupling is mediated by virtual occupation of an intermediate site, with a strength that is controlled via the energy detuning of this site. It permits a single charge to oscillate coherently between the outer sites of a triple dot array without passing through the middle, as demonstrated through the observation of Landau-Zener-Stückelberg interference. The long-distance coupling significantly improves the prospects of fault-tolerant quantum computation using quantum dot arrays, and opens up new avenues for performing quantum simulations in nanoscale devices. PMID:23624695

  19. Electronic levels in self-assembled quantum dots

    NASA Astrophysics Data System (ADS)

    Cocoletzi, Gregorio H.; López-Bolaños, R.; Ulloa, S. E.

    2000-03-01

    Self-assembled quantum dots may be produced as a result of deposition of a semiconductor on a substrate with different lattice parameter. Optical and electronic properties of these interesting systems have been extensively studied in recent years. In this work, we explore the confinement effects on the energy levels of electrons in isolated and coupled pairs of InAs quantum dots grown on GaAs, modelled as cylinders. To solve the Schroedinger equation in the effective mass approximation for the coupled dots, we use the superposition of the wave functions of the isolated dots to obtain the energy splitting as a function of the sample structural parameters and the separation between dots.

  20. Quantum Monte Carlo finite temperature electronic structure of quantum dots

    NASA Astrophysics Data System (ADS)

    Leino, Markku; Rantala, Tapio T.

    2002-08-01

    Quantum Monte Carlo methods allow a straightforward procedure for evaluation of electronic structures with a proper treatment of electronic correlations. This can be done even at finite temperatures [1]. We test the Path Integral Monte Carlo (PIMC) simulation method [2] for one and two electrons in one and three dimensional harmonic oscillator potentials and apply it in evaluation of finite temperature effects of single and coupled quantum dots. Our simulations show the correct finite temperature excited state populations including degeneracy in cases of one and three dimensional harmonic oscillators. The simulated one and two electron distributions of a single and coupled quantum dots are compared to those from experiments and other theoretical (0 K) methods [3]. Distributions are shown to agree and the finite temperature effects are discussed. Computational capacity is found to become the limiting factor in simulations with increasing accuracy. Other essential aspects of PIMC and its capability in this type of calculations are also discussed. [1] R.P. Feynman: Statistical Mechanics, Addison Wesley, 1972. [2] D.M. Ceperley, Rev.Mod.Phys. 67, 279 (1995). [3] M. Pi, A. Emperador and M. Barranco, Phys.Rev.B 63, 115316 (2001).

  1. Optically induced magnetic moments in symmetric graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Kavousanaki, Eleftheria G.; Dani, Keshav M.

    2015-01-01

    Using the tight-binding model, we classify the eigenstates of symmetric graphene quantum dots based on their discrete rotational symmetry. In the presence of an external magnetic field, we identify a Zeeman-like behavior arising from the electronic orbital wave functions, with a constant g value for a variety of quantum dot shapes, sizes, and edge structures. The discrete rotational symmetry of the dots also leads to anomalous optical selection rules, thereby suggesting a way to optically induce a magnetic moment in these nanostructures.

  2. Near Field Photon Emission and Revival in Quantum Dot Qubits

    NASA Astrophysics Data System (ADS)

    Tafur, S.; Leuenberger, M. N.

    2011-03-01

    Modeling the spontaneous emission of photons coupled to the electronic states of quantum dots is important for understanding quantum interactions and entanglement in condensed matter as applied to proposed solid-state quantum computers, quantum networks, single photon emitters, and single photon detectors. A quantum dot initially in an excited state can be experimentally observed to decay to its ground state and the observed homodyne tomography of the emitted photon can yield information about the qubit state of the emitter. Though the characteristic lifetime of photon emission is traditionally modeled via the Weisskopf-Wigner approximation, we seek to model the fully quantized spontaneous emission, including near field effects, of a photon from the excited state of a quantum dot beyond the Markovian limit. We further investigate subsequent interactions between the emitted photon and adjacent quantum dots in an effort to describe multipartite entanglement. We propose the use of discretized central-difference approximations of space and time partial derivatives, similar to finite-difference time domain models, to describe single photon states via single photon operators. Additionally, within the future scope of this model, we seek results in the Purcell and Rabi regimes for spontaneous emission events from quantum dots embedded in micro-cavities. NSF (Grant No. ECCS-0725514), DARPA/MTO (Grant No. HR0011-08-1-0059), NSF (Grant No. ECCS-0901784), and AFOSR (Grant No. FA9550-09-1-0450).

  3. Evidence for edge state photoluminescence in graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Lingam, Kiran; Podila, Ramakrishna; Qian, Haijun; Serkiz, Steve; Rao, Apparao M.

    2013-03-01

    For a practical realization of graphene-based logic devices, opening of a band gap in graphene is crucial and has proved challenging. To this end, several synthesis techniques including unzipping of carbon nanotubes, chemical vapor deposition and other bottom-up fabrication techniques have been pursued for the bulk production of graphene nanoribbons (GNRs) and graphene quantum dots (GQDs). However, only a limited progress has been made towards a fundamental understanding of the electronic and optical properties of GQDs. In particular, the origin of strong photoluminescence (PL) in GQDs, which has been attributed to the presence of emissive surface traps and/or the edge states in GQD, remains inconclusive to date. Here, we experimentally show that the PL is independent of the functional groups attached to the GQDs. Following a series of annealing experiments, we further show that the PL in GQDs originates from the edge states, and an edge-passivation subsequent to synthesis quenches PL. These results are consistent with comparative studies on other carbon nanostructures such as GNRs and carbon nano-onions.

  4. Lead selenide quantum dot polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Waldron, Dennis L.; Preske, Amanda; Zawodny, Joseph M.; Krauss, Todd D.; Gupta, Mool C.

    2015-02-01

    Optical absorption and fluorescence properties of PbSe quantum dots (QDs) in an Angstrom Bond AB9093 epoxy polymer matrix to form a nanocomposite were investigated. To the authors’ knowledge, this is the first reported use of AB9093 as a QD matrix material and it was shown to out-perform the more common poly(methyl methacrylate) matrix in terms of preserving the optical properties of the QD, resulting in the first reported quantum yield (QY) for PbSe QDs in a polymer matrix, 26%. The 1-s first excitonic absorption peak of the QDs in a polymer matrix red shifted 65 nm in wavelength compared to QDs in a hexane solution, while the emission peak in the polymer matrix red shifted by 38 nm. The fluorescence QY dropped from 55% in hexane to 26% in the polymer matrix. A time resolved fluorescence study of the QDs showed single exponential lifetimes of 2.34 and 1.34 ?s in toluene solution and the polymer matrix respectively.

  5. Optical Studies of Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Yükselici, H.; Allahverdi, Ç.; A??ko?lu, A.; Ünlü, H.; Baysal, A.; Çulha, M.; ?nce, R.; ?nce, A.; Feeney, M.; Athalin, H.

    Optical absorption (ABS), steady-state photoluminescence (PL), resonant Raman, and photoabsorption (PA) spectroscopies are employed to study quantum-size effects in II-VI semiconductor quantum dots (QDs) grown in glass samples. We observe a size-dependent shift in the energetic position of the first exciton peak and have examined the photoinduced evolution of the differential absorption spectra. The Raman shifts of the phonon modes are employed to monitor stoichiometric changes in the composition of the QDs during growth. Two sets of glass samples were prepared from color filters doped with CdS x Se1 - x and Zn x Cd1 - x Te. We analyze the optical properties of QDs through the ABS, PL, resonant Raman, and PA spectroscopies. The glass samples were prepared from commercially available semiconductor doped filters by a two-step thermal treatment. The average size of QDs is estimated from the energetic position of the first exciton peak in the ABS spectrum. A calculation based on a quantized-state effective mass model in the strong confinement regime predicts that the average radius of QDs in the glass samples ranges from 2.9 to 4.9 nm for CdTe and from 2.2 to 9.3 nm for CdS0. 08Se0. 92. We have also studied the nonlinear optical properties of QDs by reviewing the results of size-dependent photoinduced modulations in the first exciton band of CdTe QDs studied by PA spectroscopy.

  6. High efficiency photodetectors fabricated by electrostatic layer-by-layer self-assembly of CdTe quantum dots

    E-print Network

    Lin, Lih Y.

    High efficiency photodetectors fabricated by electrostatic layer-by-layer self-assembly of CdTe 20 October 2008 We demonstrate high-performance photodetectors from multilayers of CdTe quantum dots. The synthesis of CdTe QDs in aqueous solution using cadmium perchlorate hydrate and Al2Te3 was previously re

  7. InAs(ZnCdS) Quantum Dots Optimized for Biological Imaging in the Near-Infrared

    E-print Network

    Allen, Peter M.

    We present the synthesis of InAs quantum dots (QDs) with a ZnCdS shell with bright and stable emission in the near-infrared (NIR, 700?900 nm) region for biological imaging applications. We demonstrate how NIR QDs can image ...

  8. Effect of carrier dynamics and temperature on two-state lasing in semiconductor quantum dot lasers

    SciTech Connect

    Korenev, V. V., E-mail: korenev@spbau.ru; Savelyev, A. V.; Zhukov, A. E.; Omelchenko, A. V.; Maximov, M. V. [Saint Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)] [Saint Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)

    2013-10-15

    It is analytically shown that the both the charge carrier dynamics in quantum dots and their capture into the quantum dots from the matrix material have a significant effect on two-state lasing phenomenon in quantum dot lasers. In particular, the consideration of desynchronization in electron and hole capture into quantum dots allows one to describe the quenching of ground-state lasing observed at high injection currents both qualitatevely and quantitatively. At the same time, an analysis of the charge carrier dynamics in a single quantum dot allowed us to describe the temperature dependences of the emission power via the ground- and excited-state optical transitions of quantum dots.

  9. Cooper pair splitting in parallel quantum dot Josephson junctions.

    PubMed

    Deacon, R S; Oiwa, A; Sailer, J; Baba, S; Kanai, Y; Shibata, K; Hirakawa, K; Tarucha, S

    2015-01-01

    Devices to generate on-demand non-local spin entangled electron pairs have potential application as solid-state analogues of the entangled photon sources used in quantum optics. Recently, Andreev entanglers that use two quantum dots as filters to adiabatically split and separate the quasi-particles of Cooper pairs have shown efficient splitting through measurements of the transport charge but the spin entanglement has not been directly confirmed. Here we report measurements on parallel quantum dot Josephson junction devices allowing a Josephson current to flow due to the adiabatic splitting and recombination of the Cooper pair between the dots. The evidence for this non-local transport is confirmed through study of the non-dissipative supercurrent while tuning independently the dots with local electrical gates. As the Josephson current arises only from processes that maintain the coherence, we can confirm that a current flows from the spatially separated entangled pair. PMID:26130172

  10. Adiabatic charge and spin pumping through interacting quantum dots.

    PubMed

    Deus, Fernanda; Hernández, Alexis R; Continentino, Mucio A

    2012-09-01

    In this paper we investigate adiabatic charge and spin pumping through interacting quantum dots using non-equilibrium Green's function techniques and the equation-of-motion method. We treat the electronic correlations inside the dot using a Hartree-Fock approximation and succeed in obtaining closed analytic expressions for the Keldysh Green's functions. These allow us to compute charge and spin currents through the quantum dot. Depending on the parameters of the quantum dot and its coupling to the reservoirs, we show that it can be found in two different regimes: the magnetic regime and the non-magnetic regime. In the magnetic regime we find a non-vanishing spin current in addition to the charge current present in both cases. PMID:22885672

  11. Efficiency vs. multi-photon contribution test for quantum dots

    E-print Network

    Ana Predojevic; Miroslav Jezek; Tobias Huber; Harishankar Jayakumar; Thomas Kauten; Glenn S. Solomon; Radim Filip; Gregor Weihs

    2014-03-19

    The development of linear quantum computing within integrated circuits demands high quality semiconductor single photon sources. In particular, for a reliable single photon source it is not sufficient to have a low multi-photon component, but also to possess high efficiency. We investigate the photon statistics of the emission from a single quantum dot with a method that is able to sensitively detect the trade-off between the efficiency and the multi-photon contribution. Our measurements show, that the light emitted from the quantum dot when it is resonantly excited possess a very low multi-photon content. Additionally, we demonstrated, for the first time, the non-Gaussian nature of the quantum state emitted from a single quantum dot.

  12. Single-photon superradiance from a quantum dot

    E-print Network

    Tighineanu, P; Lehmann, T B; Beere, H E; Ritchie, D A; Lodahl, P; Stobbe, S

    2015-01-01

    We report on the observation of single-photon superradiance from an exciton in a semiconductor quantum dot. The confinement by the quantum dot is strong enough for it to mimic a two-level atom, yet sufficiently weak to ensure superradiance. The electrostatic interaction between the electron and the hole comprising the exciton gives rise to an anharmonic spectrum, which we exploit to prepare the superradiant quantum state deterministically with a laser pulse. We observe a five-fold enhancement of the oscillator strength compared to conventional quantum dots. The enhancement is limited by the base temperature of our cryostat and may lead to oscillator strengths above 1000 from a single quantum emitter at optical frequencies.

  13. Thermopower of few-electron quantum dots with Kondo correlations

    NASA Astrophysics Data System (ADS)

    Ye, Lvzhou

    2015-03-01

    The thermopower of few-electron quantum dots is crucially influenced by on-dot electron-electron interactions, particularly in the presence of Kondo correlations. We present a comprehensive picture which elucidates the underlying relations between the thermopower and the spectral density function of two-level quantum dots. The effects of various electronic states, including the Kondo states originating from both spin and orbital degrees of freedom, are clearly unraveled. With these insights, we have exemplified an effective and viable way to control the sign of thermopower of Kondo-correlated quantum dots. This is realized by tuning the temperature and by selecting the appropriate level spacing and Coulomb repulsion strength. Such a physical picture is affirmed by accurate numerical data obtained with a hierarchical equations of motion approach. Our understandings and findings provide useful insights into controlling the direction of electric (heat) current through a quantum dot by applying a temperature (voltage) gradient across the two coupling leads. This may have important implications for novel thermoelectric applications of quantum dots. The support from the Natural Science Foundation of China (Grants No. 21033008, No. 21233007, No. 21303175, and No. 21322305) and the Strategic Priority Research Program (B) of the CAS (XDB01020000) is gratefully appreciated.

  14. Electronic and optical properties of semiconductor and graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Sheng, Wei-dong; Korkusinski, Marek; Güçlü, Alev Devrim; Zielinski, Michal; Potasz, Pawel; Kadantsev, Eugene S.; Voznyy, Oleksandr; Hawrylak, Pawel

    2012-06-01

    Our recent work on the electronic and optical properties of semiconductor and graphene quantum dots is reviewed. For strained self-assembled InAs quantum dots on GaAs or InP substrate atomic positions and strain distribution are described using valence-force field approach and continuous elasticity theory. The strain is coupled with the effective mass, k · p, effective bond-orbital and atomistic tight-binding models for the description of the conduction and valence band states. The single-particle states are used as input to the calculation of optical properties, with electron-electron interactions included via configuration interaction (CI) method. This methodology is used to describe multiexciton complexes in quantum dot lasers, and in particular the hidden symmetry as the underlying principle of multiexciton energy levels, manipulating emission from biexcitons for entangled photon pairs, and optical control and detection of electron spins using gates. The self-assembled quantum dots are compared with graphene quantum dots, one carbon atom-thick nanostructures. It is shown that the control of size, shape and character of the edge of graphene dots allows to manipulate simultaneously the electronic, optical, and magnetic properties in a single material system.

  15. Influence of phonons on exciton-photon interaction and photon statistics of a quantum dot

    Microsoft Academic Search

    M. Bagheri Harouni; R. Roknizadeh; M. H. Naderi

    2009-01-01

    In this paper, we investigate phonon effects on the optical properties of a spherical quantum dot. For this purpose, we consider the interaction of a spherical quantum dot with classical and quantum fields while the exciton of quantum dot interacts with a solid-state reservoir. We show that phonons strongly affect the Rabi oscillations and optical coherence on first picoseconds of

  16. Ground States and Excited States in a Tunable Graphene Quantum Dot

    Microsoft Academic Search

    Lin-Jun Wang; Gang Cao; Tao Tu; Hai-Ou Li; Cheng Zhou; Xiao-Jie Hao; Guang-Can Guo; Guo-Ping Guo

    2011-01-01

    We prepare an etched gate tunable quantum dot in single-layer graphene and present transport measurement in this system. We extract the information of the ground states and excited states of the graphene quantum dot, as denoted by the presence of characteristic Coulomb blockade diamond diagrams. The results demonstrate that the quantum dot in single-layer graphene bodes well for future quantum

  17. Ternary I–III–VI Quantum Dots Luminescent in the Red to Near Infrared

    PubMed Central

    Allen, Peter M.; Bawendi, Moungi G.

    2008-01-01

    We report the synthesis of a size series of copper indium selenide quantum dots (QDs) of various stoichiometries exhibiting photoluminescence (PL) from the red to near infrared (NIR). The synthetic method is modular and we have extended it to the synthesis of luminescent silver indium diselenide QDs. Previous reports on QDs luminescent in the NIR region have been primarily restricted to binary semiconductor systems, such as InAs, PbS, and CdTe. This work seeks to expand the availability of luminescent QD materials to ternary I–III–VI semiconductor systems. PMID:18582061

  18. Development and characterization of silk fibroin coated quantum dots

    NASA Astrophysics Data System (ADS)

    Nathwani, B. B.; Needham, C.; Mathur, A. B.; Meissner, K. E.

    2008-02-01

    Recent progress in the field of semiconductor nanocrystals or Quantum Dots (QDs) has seen them find wider acceptance as a tool in biomedical research labs. As produced, high quality QDs, synthesized by high temperature organometallic synthesis, are coated with a hydrophobic ligand. Therefore, they must be further processed to be soluble in water and to be made biocompatible. To accomplish this, the QDs are generally coated with a synthetic polymer (eg. block copolymers) or the hydrophobic surface ligands exchanged with hydrophilic material (eg. thiols). Advances in this area have enabled the QDs to experience a smooth transition from being simple inorganic fluorophores to being smart sensors, which can identify specific cell marker proteins and help in diagnosis of diseases such as cancer. In order to improve the biocompatibility and utility of the QDs, we report the development of a procedure to coat QDs with silk fibroin, a fibrous crystalline protein extracted from Bombyx Mori silkworm. Following the coating process, we characterize the size, quantum yield and two-photon absorption cross section of the silk coated QDs. Additionally, the results of biocompatibility studies carried out to compare the properties of these QD-silks with conventional QDs are presented. These natural polymer coatings on QDs could enhance the intracellular delivery and enable the use of these nanocrystals as an imaging tool for studying subcellular machinery at the molecular level.

  19. Charge Sensing and Controllable Tunnel Coupling in a Si/SiGe Double Quantum Dot

    NASA Astrophysics Data System (ADS)

    Simmons, C. B.; Thalakulam, Madhu; Rosemeyer, B. M.; van Bael, B. J.; Sackmann, E. K.; Savage, D. E.; Lagally, M. G.; Joynt, R.; Friesen, Mark; Coppersmith, S. N.; Eriksson, M. A.

    2009-09-01

    We report integrated charge sensing measurements on a Si/SiGe double quantum dot. The quantum dot is shown to be tunable from a single, large dot to a well-isolated double dot. Charge sensing measurements enable the extraction of the tunnel coupling, t, between the quantum dots as a function of the voltage on the top gates defining the device. Control of the voltage on a single such gate tunes the barrier separating the two dots. The measured tunnel coupling is an exponential function of the gate voltage. The ability to control t is an important step towards controlling spin qubits in silicon quantum dots.

  20. Charge sensing and controllable tunnel coupling in a Si/SiGe double quantum dot.

    PubMed

    Simmons, C B; Thalakulam, Madhu; Rosemeyer, B M; Van Bael, B J; Sackmann, E K; Savage, D E; Lagally, M G; Joynt, R; Friesen, Mark; Coppersmith, S N; Eriksson, M A

    2009-09-01

    We report integrated charge sensing measurements on a Si/SiGe double quantum dot. The quantum dot is shown to be tunable from a single, large dot to a well-isolated double dot. Charge sensing measurements enable the extraction of the tunnel coupling t between the quantum dots as a function of the voltage on the top gates defining the device. Control of the voltage on a single such gate tunes the barrier separating the two dots. The measured tunnel coupling is an exponential function of the gate voltage. The ability to control t is an important step toward controlling spin qubits in silicon quantum dots. PMID:19645459

  1. Analysis of electron localization in a coupled quantum dot structure via variational approach: numerical results and application in quantum-dot cellular automata

    E-print Network

    George Andre Pereira The; Rubens Viana Ramos; Sergio Antenor de Carvalho

    2007-05-22

    Analysis of quantum dot structures is a current topic with important applications in solid-state digital logic design, quantum information technology and quantum optics. In this work, we show a variational formulation for the solution of the effective two-level approach of the analysis of electron localization in two coupled quantum dots. Numerical results are presented as well the use of electron localization in the realization of a configurable logic circuit using quantum-dot cellular automata.

  2. Optically active quantum dots in monolayer WSe2

    NASA Astrophysics Data System (ADS)

    Srivastava, Ajit; Sidler, Meinrad; Allain, Adrien V.; Lembke, Dominik S.; Kis, Andras; Imamo?lu, A.

    2015-06-01

    Semiconductor quantum dots have emerged as promising candidates for the implementation of quantum information processing, because they allow for a quantum interface between stationary spin qubits and propagating single photons. In the meantime, transition-metal dichalcogenide monolayers have moved to the forefront of solid-state research due to their unique band structure featuring a large bandgap with degenerate valleys and non-zero Berry curvature. Here, we report the observation of zero-dimensional anharmonic quantum emitters, which we refer to as quantum dots, in monolayer tungsten diselenide, with an energy that is 20–100?meV lower than that of two-dimensional excitons. Photon antibunching in second-order photon correlations unequivocally demonstrates the zero-dimensional anharmonic nature of these quantum emitters. The strong anisotropic magnetic response of the spatially localized emission peaks strongly indicates that radiative recombination stems from localized excitons that inherit their electronic properties from the host transition-metal dichalcogenide. The large ?1?meV zero-field splitting shows that the quantum dots have singlet ground states and an anisotropic confinement that is most probably induced by impurities or defects. The possibility of achieving electrical control in van der Waals heterostructures and to exploit the spin–valley degree of freedom renders transition-metal-dichalcogenide quantum dots interesting for quantum information processing.

  3. Optically active quantum dots in monolayer WSe2.

    PubMed

    Srivastava, Ajit; Sidler, Meinrad; Allain, Adrien V; Lembke, Dominik S; Kis, Andras; Imamo?lu, A

    2015-06-01

    Semiconductor quantum dots have emerged as promising candidates for the implementation of quantum information processing, because they allow for a quantum interface between stationary spin qubits and propagating single photons. In the meantime, transition-metal dichalcogenide monolayers have moved to the forefront of solid-state research due to their unique band structure featuring a large bandgap with degenerate valleys and non-zero Berry curvature. Here, we report the observation of zero-dimensional anharmonic quantum emitters, which we refer to as quantum dots, in monolayer tungsten diselenide, with an energy that is 20-100?meV lower than that of two-dimensional excitons. Photon antibunching in second-order photon correlations unequivocally demonstrates the zero-dimensional anharmonic nature of these quantum emitters. The strong anisotropic magnetic response of the spatially localized emission peaks strongly indicates that radiative recombination stems from localized excitons that inherit their electronic properties from the host transition-metal dichalcogenide. The large ?1?meV zero-field splitting shows that the quantum dots have singlet ground states and an anisotropic confinement that is most probably induced by impurities or defects. The possibility of achieving electrical control in van der Waals heterostructures and to exploit the spin-valley degree of freedom renders transition-metal-dichalcogenide quantum dots interesting for quantum information processing. PMID:25938570

  4. Entanglement of Electron Spins in Two Coupled Quantum Dots

    NASA Astrophysics Data System (ADS)

    Chen, Yuanzhen; Webb, Richard

    2004-03-01

    We study the entanglement of electron spins in a coupled quantum dots system at 70 mK. Two quantum dots are fabricated in a GaAs/AlGaAs heterostructure containing a high mobility 2-D electron gas. The two dots can be tuned independently and the electron spins in the dots are coupled through an exchange interaction between them. An exchange gate is used to vary the height and width of a potential barrier between the two dots, thus controlling the strength of the exchange interaction. Electrons are injected to the coupled dots by two independent DC currents and the output of the dots is incident on a beam splitter, which introduces quantum interferences. Cross-correlations of the shot noise of currents from the two output channels are measured and compared with theory (1). *Work supported by LPS and ARDA under MDA90401C0903 and NSF under DMR 0103223. (1) Burkard, Loss, & Sukhorukov, Phys. Rev. B61, R16303 (2000).

  5. Controlled Photon Switch Assisted by Coupled Quantum Dots.

    PubMed

    Luo, Ming-Xing; Ma, Song-Ya; Chen, Xiu-Bo; Wang, Xiaojun

    2015-01-01

    Quantum switch is a primitive element in quantum network communication. In contrast to previous switch schemes on one degree of freedom (DOF) of quantum systems, we consider controlled switches of photon system with two DOFs. These controlled photon switches are constructed by exploring the optical selection rules derived from the quantum-dot spins in one-sided optical microcavities. Several double controlled-NOT gate on different joint systems are greatly simplified with an auxiliary DOF of the controlling photon. The photon switches show that two DOFs of photons can be independently transmitted in quantum networks. This result reduces the quantum resources for quantum network communication. PMID:26095049

  6. Controlled Photon Switch Assisted by Coupled Quantum Dots

    PubMed Central

    Luo, Ming-Xing; Ma, Song-Ya; Chen, Xiu-Bo; Wang, Xiaojun

    2015-01-01

    Quantum switch is a primitive element in quantum network communication. In contrast to previous switch schemes on one degree of freedom (DOF) of quantum systems, we consider controlled switches of photon system with two DOFs. These controlled photon switches are constructed by exploring the optical selection rules derived from the quantum-dot spins in one-sided optical microcavities. Several double controlled-NOT gate on different joint systems are greatly simplified with an auxiliary DOF of the controlling photon. The photon switches show that two DOFs of photons can be independently transmitted in quantum networks. This result reduces the quantum resources for quantum network communication. PMID:26095049

  7. Probing the core-shell-shell structure of CdSe/CdTe/CdS type II quantum dots for solar cell applications

    NASA Astrophysics Data System (ADS)

    Lewis, E. A.; Page, R. C.; Binks, D. J.; Pennycook, T. J.; O'Brien, P.; Haigh, S. J.

    2014-06-01

    A greater understanding of multiple exciton generation in heterostructured colloidal quantum dots can be achieved through detailed modelling, and used to optimise their design for solar cell applications. However, such modelling requires an accurate knowledge of the physical structure of the quantum dots. Here we report the use of high angle annular dark field (HAADF) scanning transmission electron microscope (STEM) imaging to study the size and shape of CdSe/CdTe/CdS type II quantum dots at each of the three stages of their synthesis.

  8. Real-time path integrals for quantum dots: Quantum dissipative dynamics with superohmic environment coupling

    NASA Astrophysics Data System (ADS)

    Vagov, A.; Croitoru, M. D.; Glässl, M.; Axt, V. M.; Kuhn, T.

    2011-03-01

    Based on a representation of the functional integral as the time evolution of the augmented density matrix we have worked out an implementation of the real-time path integral approach that is applicable to the dynamics of quantum dissipative systems with superohmic coupling to the environment. As a prototype for such a system we consider a laser-driven strongly confined semiconductor quantum dot coupled to acoustic phonons. First applications of this approach to quantum dot systems have already been published. Here, we provide a detailed description of the implementation, including a discussion of numerical issues and extend the formalism from two-level quantum dot models with a pure-dephasing type carrier-phonon coupling to the case of multiple electronic levels. The method allows for numerically exact calculations of the dot dynamics at strong dot-phonon and dot-laser coupling and at long times, usually inaccessible by other approaches.

  9. Mesoscopic to universal crossover of transmission phase of multi-level quantum dots

    Microsoft Academic Search

    C. Karrasch; T. Hecht; A. Weichselbaum; Y. Oreg; J. von Delft; V. Meden

    Transmission phasemeasurements of many-electron quantum dots (small mean level spacing ?) revealed universal phase lapses bybetween consecutive resonances. In contrast, for dots with only a few electrons (large ?), the appearance or not of a phase lapse depends on the dot parameters. We show that a model of a multi-level quantum dot with local Coulomb interactions and arbitrary level-lead couplings

  10. On-chip generation and guiding of quantum light from a site-controlled quantum dot

    SciTech Connect

    Jamil, Ayesha; Farrer, Ian; Griffiths, Jonathan P.; Jones, Geb A. C.; Ritchie, David A. [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)] [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Skiba-Szymanska, Joanna; Kalliakos, Sokratis; Ward, Martin B.; Ellis, David J. P.; Shields, Andrew J., E-mail: andrew.shields@crl.toshiba.co.uk [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge, CB4 0GZ (United Kingdom); Schwagmann, Andre; Brody, Yarden [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom) [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge, CB4 0GZ (United Kingdom)

    2014-03-10

    We demonstrate the emission and routing of single photons along a semiconductor chip originating from carrier recombination in an actively positioned InAs quantum dot. Device–scale arrays of quantum dots are formed by a two–step regrowth process. We precisely locate the propagating region of a unidirectional photonic crystal waveguide with respect to the quantum dot nucleation site. Under pulsed optical excitation, the multiphoton emission probability from the waveguide's exit is 12%?±?5% before any background correction. Our results are a major step towards the deterministic integration of a quantum emitter with the waveguiding components of photonic quantum circuits.

  11. Near-infrared emitting CdTe0.5Se0.5/Cd0.5Zn0.5S quantum dots: synthesis and bright luminescence

    PubMed Central

    2012-01-01

    We present how CdTe0.5Se0.5 cores can be coated with Cd0.5Zn0.5S shells at relatively low temperature (around 200°C) via facile synthesis using organic ammine ligands. The cores were firstly fabricated via a less toxic procedure using CdO, trioctylphosphine (TOP), Se, Te, and trioctylamine. The cores with small sizes (3.2-3.5 nm) revealed green and yellow photoluminescence (PL) and spherical morphologies. Hydrophobic core/shell CdTe0.5Se0.5/Cd0.5Zn0.5S quantum dots (QDs) with tunable PL between green and near-infrared (a maximum PL peak wavelength of 735 nm) were then created through a facile shell coating procedure using trioctylphosphine selenium with cadmium and zinc acetate. The QDs exhibited high PL efficiencies up to 50% because of the formation of a protective Cd0.5Zn0.5S shell on the CdTe0.5Se0.5 core, even though the PL efficiency of the cores is low (?1%). Namely, the slow growth process of the shell plays an important role for getting high PL efficiencies. The properties of the QDs are largely determined by the properties of CdTe0.5Se0.5 cores and shells preparation conditions such as reaction temperature and time. The core/shell QDs exhibited a small size diameter. For example, the average diameter of the QDs with a PL peak wavelength of 735 nm is 6.1 nm. Small size and tunable bright PL makes the QDs utilizable as bioprobes because the size of QD-based bioprobes is considered as the major limitation for their broad applications in biological imaging. PMID:23130948

  12. Single-electron quantum dot in Si /SiGe with integrated charge sensing

    NASA Astrophysics Data System (ADS)

    Simmons, C. B.; Thalakulam, Madhu; Shaji, Nakul; Klein, Levente J.; Qin, Hua; Blick, R. H.; Savage, D. E.; Lagally, M. G.; Coppersmith, S. N.; Eriksson, M. A.

    2007-11-01

    Single-electron occupation is an essential component to the measurement and manipulation of spin in quantum dots, capabilities that are important for quantum information processing. Si /SiGe is of interest for semiconductor spin qubits, but single-electron quantum dots have not yet been achieved in this system. We report the fabrication and measurement of a top-gated quantum dot occupied by a single electron in a Si /SiGe heterostructure. Transport through the quantum dot is directly correlated with charge sensing from an integrated quantum point contact, and this charge sensing is used to confirm single-electron occupancy in the quantum dot.

  13. Vertical transport and tunnelling through squeezable quantum dots

    NASA Astrophysics Data System (ADS)

    Blanc, N.; Guéret, P.; Germann, R.; Rothuizen, H.

    1993-06-01

    Resonant tunnelling through zero-dimensional states in a laterally confined double-barrier quantum well heterostructure has been investigated. The lateral confinement is provided by a Schottky gate which allows continuous squeezing of the current channel to diameters smaller than 100 nm. The conductance data on submicron dots exhibit well-resolved peaks, the position of which depends on both channel diameter and applied magneticfield. The measured displacement of the conductance peaks with decreasing channel diameter provides direct evidence of quantum confinement in the dot. In addition magnetotunneling measurements lend experimental support to the observation of zero-dimensional states with positive and negative azimuthal quantum number ?.

  14. Deformation potential dominated phonons in ZnS quantum dots

    E-print Network

    S. Dhara; A. K. Arora; Jay Ghatak; K. H. Chen; C. P. Liu; L. C. Chen; Y. Tzeng; Baldev Raj

    2008-07-06

    Strong deformation potential (DP) dominated Raman spectra are reported for quantum confined cubic ZnS nanoclusters under off-resonance conditions allowed only in quantum dots. A flurry of zone boundary phonons is demonstrated in the scattering process. Transverse optic (TO) mode in the multi-phonon process shows only even order overtones suggesting the dominance of a two-phonon process (having large DP value in ZnS) and its integral multiples. Two-phonon TO modes corresponding to A1 and B2 symmetries are also demonstrated under off-resonance conditions which are allowed only in quantum dots.

  15. Pulse-Gated Quantum-Dot Hybrid Qubit

    NASA Astrophysics Data System (ADS)

    Koh, Teck Seng; Gamble, John King; Friesen, Mark; Eriksson, M. A.; Coppersmith, S. N.

    2012-12-01

    A quantum-dot hybrid qubit formed from three electrons in a double quantum dot has the potential for great speed, due to the presence of level crossings where the qubit becomes chargelike. Here, we show how to exploit the level crossings to implement fast pulsed gating. We develop one- and two-qubit dc quantum gates that are simpler than the previously proposed ac gates. We obtain closed-form solutions for the control sequences and show that the gates are fast (subnanosecond) and can achieve high fidelities.

  16. Pulse-gated quantum-dot hybrid qubit.

    PubMed

    Koh, Teck Seng; Gamble, John King; Friesen, Mark; Eriksson, M A; Coppersmith, S N

    2012-12-21

    A quantum-dot hybrid qubit formed from three electrons in a double quantum dot has the potential for great speed, due to the presence of level crossings where the qubit becomes chargelike. Here, we show how to exploit the level crossings to implement fast pulsed gating. We develop one- and two-qubit dc quantum gates that are simpler than the previously proposed ac gates. We obtain closed-form solutions for the control sequences and show that the gates are fast (subnanosecond) and can achieve high fidelities. PMID:23368440

  17. Bound states in the continuum in graphene quantum dot structures

    Microsoft Academic Search

    J. W. González; M. Pacheco; L. Rosales; P. A. Orellana

    2010-01-01

    The existence of bound states in the continuum was predicted at the dawn of quantum mechanics by von Neumann and Wigner. In this work we discuss the mechanism of formation of these exotic states and the feasibility to observe them experimentally in symmetrical heterostructures composed by segments of graphene ribbons with different widths forming a graphene quantum dot. We identify

  18. A voltage tunable quantum dot photodetector for terahertz detection

    Microsoft Academic Search

    Wei Wu; Dibyendu Dey; Hooman Mohseni

    2010-01-01

    A voltage tunable quantum dot (QD) photodetector for terahertz detection based on intersublevel transitions is proposed. The intersublevels are formed by the lateral electrical confinement applied on quantum wells and the transitions between them can be strongly tuned by the confinement. Under normal incidence, the peak detection wavelengths can be tuned from ~50 to ~90 µm (6.0 to ~3.3 THz)

  19. Efficient Single Photon Detection by Quantum Dot Resonant Tunneling Diodes

    Microsoft Academic Search

    J. C. Blakesley; P. See; A. J. Shields; B. E. Kardynal; P. Atkinson; I. Farrer; D. A. Ritchie

    2005-01-01

    We demonstrate that the resonant tunnel current through a double-barrier structure is sensitive to the capture of single photoexcited holes by an adjacent layer of quantum dots. This phenomenon could allow the detection of single photons with low dark count rates and high quantum efficiencies. The magnitude of the sensing current may be controlled via the thickness of the tunnel

  20. Electrical control of single hole spins in nanowire quantum dots

    NASA Astrophysics Data System (ADS)

    Pribiag, V. S.; Nadj-Perge, S.; Frolov, S. M.; van den Berg, J. W. G.; van Weperen, I.; Plissard, S. R.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.

    2013-03-01

    The development of viable quantum computation devices will require the ability to preserve the coherence of quantum bits (qubits). Single electron spins in semiconductor quantum dots are a versatile platform for quantum information processing, but controlling decoherence remains a considerable challenge. Hole spins in III-V semiconductors have unique properties, such as a strong spin-orbit interaction and weak coupling to nuclear spins, and therefore, have the potential for enhanced spin control and longer coherence times. A weaker hyperfine interaction has previously been reported in self-assembled quantum dots using quantum optics techniques, but the development of hole-spin-based electronic devices in conventional III-V heterostructures has been limited by fabrication challenges. Here, we show that gate-tunable hole quantum dots can be formed in InSb nanowires and used to demonstrate Pauli spin blockade and electrical control of single hole spins. The devices are fully tunable between hole and electron quantum dots, which allows the hyperfine interaction strengths, g-factors and spin blockade anisotropies to be compared directly in the two regimes.

  1. Quantum dots: Time to get the nukes out

    NASA Astrophysics Data System (ADS)

    Schroer, Michael D.; Petta, Jason R.

    2008-07-01

    The ability to electrically control spin dynamics in quantum dots makes them one of the most promising platforms for solid-state quantum-information processing. Minimizing the influence of the nuclear spin environment is an important step towards realizing such promise.

  2. Emission Properties of Quantum Dots in a Levitated Microdrop

    Microsoft Academic Search

    J. Schaefer; J. P. Mondia; R. Sharma; Z. H. Lu; L. J. Wang; A. S. Susha; A. L. Rogach

    2007-01-01

    Spherical microcavities doped with semiconductor nanocrystal quantum dots (QDs) have been extensively studied for their fundamental optical properties and for their potential in application such as biolabeling and telecommunications. The spherical microcavities provide a strong 3-dimensional resonant feedback system with a high Q and small mode volume. QDs have tunable emission properties and high quantum yields. To date, most studies

  3. Controlled Dephasing of a Quantum Dot in the Kondo Regime

    Microsoft Academic Search

    Alessandro Silva; Shimon Levit

    2001-01-01

    In this work we analyze how coherent transport through a Quantum Dot (QD) in the Kondo regime is affected by the weak capacitive interaction with a nearby biased Quantum Point Contact (QPC). We find that when the QD-QPC interaction is weak the width of the Kondo resonance is hardly affected by it. However, the spectral weight of the Kondo peak

  4. Folded-light-path colloidal quantum dot solar cells.

    PubMed

    Koleilat, Ghada I; Kramer, Illan J; Wong, Chris T O; Thon, Susanna M; Labelle, André J; Hoogland, Sjoerd; Sargent, Edward H

    2013-01-01

    Colloidal quantum dot photovoltaics combine low-cost solution processing with quantum size-effect tuning to match absorption to the solar spectrum. Rapid advances have led to certified solar power conversion efficiencies of over 7%. Nevertheless, these devices remain held back by a compromise in the choice of quantum dot film thickness, balancing on the one hand the need to maximize photon absorption, mandating a thicker film, and, on the other, the need for efficient carrier extraction, a consideration that limits film thickness. Here we report an architecture that breaks this compromise by folding the path of light propagating in the colloidal quantum dot solid. Using this method, we achieve a substantial increase in short-circuit current, ultimately leading to improved power conversion efficiency. PMID:23835564

  5. Carbon Quantum Dots for Zebrafish Fluorescence Imaging

    PubMed Central

    Kang, Yan-Fei; Li, Yu-Hao; Fang, Yang-Wu; Xu, Yang; Wei, Xiao-Mi; Yin, Xue-Bo

    2015-01-01

    Carbon quantum dots (C-QDs) are becoming a desirable alternative to metal-based QDs and dye probes owing to their high biocompatibility, low toxicity, ease of preparation, and unique photophysical properties. Herein, we describe fluorescence bioimaging of zebrafish using C-QDs as probe in terms of the preparation of C-QDs, zebrafish husbandry, embryo harvesting, and introduction of C-QDs into embryos and larvae by soaking and microinjection. The multicolor of C-QDs was validated with their imaging for zebrafish embryo. The distribution of C-QDs in zebrafish embryos and larvae were successfully observed from their fluorescence emission. the bio-toxicity of C-QDs was tested with zebrafish as model and C-QDs do not interfere to the development of zebrafish embryo. All of the results confirmed the high biocompatibility and low toxicity of C-QDs as imaging probe. The absorption, distribution, metabolism and excretion route (ADME) of C-QDs in zebrafish was revealed by their distribution. Our work provides the useful information for the researchers interested in studying with zebrafish as a model and the applications of C-QDs. The operations related zebrafish are suitable for the study of the toxicity, adverse effects, transport, and biocompatibility of nanomaterials as well as for drug screening with zebrafish as model. PMID:26135470

  6. Graphene quantum dots derived from carbon fibers.

    PubMed

    Peng, Juan; Gao, Wei; Gupta, Bipin Kumar; Liu, Zheng; Romero-Aburto, Rebeca; Ge, Liehui; Song, Li; Alemany, Lawrence B; Zhan, Xiaobo; Gao, Guanhui; Vithayathil, Sajna Antony; Kaipparettu, Benny Abraham; Marti, Angel A; Hayashi, Takuya; Zhu, Jun-Jie; Ajayan, Pulickel M

    2012-02-01

    Graphene quantum dots (GQDs), which are edge-bound nanometer-size graphene pieces, have fascinating optical and electronic properties. These have been synthesized either by nanolithography or from starting materials such as graphene oxide (GO) by the chemical breakdown of their extended planar structure, both of which are multistep tedious processes. Here, we report that during the acid treatment and chemical exfoliation of traditional pitch-based carbon fibers, that are both cheap and commercially available, the stacked graphitic submicrometer domains of the fibers are easily broken down, leading to the creation of GQDs with different size distribution in scalable amounts. The as-produced GQDs, in the size range of 1-4 nm, show two-dimensional morphology, most of which present zigzag edge structure, and are 1-3 atomic layers thick. The photoluminescence of the GQDs can be tailored through varying the size of the GQDs by changing process parameters. Due to the luminescence stability, nanosecond lifetime, biocompatibility, low toxicity, and high water solubility, these GQDs are demonstrated to be excellent probes for high contrast bioimaging and biosensing applications. PMID:22216895

  7. Quantum dot mediated imaging of atherosclerosis

    NASA Astrophysics Data System (ADS)

    Jayagopal, Ashwath; Su, Yan Ru; Blakemore, John L.; Linton, MacRae F.; Fazio, Sergio; Haselton, Frederick R.

    2009-04-01

    The progression of atherosclerosis is associated with leukocyte infiltration within lesions. We describe a technique for the ex vivo imaging of cellular recruitment in atherogenesis which utilizes quantum dots (QD) to color-code different cell types within lesion areas. Spectrally distinct QD were coated with the cell-penetrating peptide maurocalcine to fluorescently-label immunomagnetically isolated monocyte/macrophages and T lymphocytes. QD-maurocalcine bioconjugates labeled both cell types with a high efficiency, preserved cell viability, and did not perturb native leukocyte function in cytokine release and endothelial adhesion assays. QD-labeled monocyte/macrophages and T lymphocytes were reinfused in an ApoE-/- mouse model of atherosclerosis and age-matched controls and tracked for up to four weeks to investigate the incorporation of cells within aortic lesion areas, as determined by oil red O (ORO) and immunofluorescence ex vivo staining. QD-labeled cells were visible in atherosclerotic plaques within two days of injection, and the two cell types colocalized within areas of subsequent ORO staining. Our method for tracking leukocytes in lesions enables high signal-to-noise ratio imaging of multiple cell types and biomarkers simultaneously within the same specimen. It also has great utility in studies aimed at investigating the role of distinct circulating leukocyte subsets in plaque development and progression.

  8. Amino-functionalized graphene quantum dots: origin of tunable heterogeneous photoluminescence

    NASA Astrophysics Data System (ADS)

    Sandeep KumarThese Authors Contributed Equally To The Present Work., G.; Roy, Rajarshi; Sen, Dipayan; Ghorai, Uttam Kumar; Thapa, Ranjit; Mazumder, Nilesh; Saha, Subhajit; Chattopadhyay, Kalyan K.

    2014-02-01

    Graphene quantum dots are known to exhibit tunable photoluminescence (PL) through manipulation of edge functionality under various synthesis conditions. Here, we report observation of excitation dependent anomalous m-n type fingerprint PL transition in synthesized amino functionalized graphene quantum dots (5-7 nm). The effect of band-to-band ?*-? and interstate to band n-? induced transitions led to effective multicolor emission under changeable excitation wavelength in the functionalized system. A reasonable assertion that equi-coupling of ?*-? and n-? transitions activated the heterogeneous dual mode cyan emission was made upon observation of the PL spectra. Furthermore, investigation of incremented dimensional scaling through facile synthesis of amino functionalized quantum graphene flakes (20-30 nm) revealed it had negligible effect on the modulated PL pattern. Moreover, an effort was made to trace the origin of excitation dependent tunable heterogeneous photoluminescence through the framework of energy band diagram hypothesis and first principles analysis. Ab initio results suggested formation of an interband state as a manifestation of p orbital hybridization between C-N atoms at the edge sites. Therefore comprehensive theoretical and experimental analysis revealed that newly created energy levels can exist as an interband within the energy gap in functionalized graphene quantum structures yielding excitation dependent tunable PL for optoelectronic applications.Graphene quantum dots are known to exhibit tunable photoluminescence (PL) through manipulation of edge functionality under various synthesis conditions. Here, we report observation of excitation dependent anomalous m-n type fingerprint PL transition in synthesized amino functionalized graphene quantum dots (5-7 nm). The effect of band-to-band ?*-? and interstate to band n-? induced transitions led to effective multicolor emission under changeable excitation wavelength in the functionalized system. A reasonable assertion that equi-coupling of ?*-? and n-? transitions activated the heterogeneous dual mode cyan emission was made upon observation of the PL spectra. Furthermore, investigation of incremented dimensional scaling through facile synthesis of amino functionalized quantum graphene flakes (20-30 nm) revealed it had negligible effect on the modulated PL pattern. Moreover, an effort was made to trace the origin of excitation dependent tunable heterogeneous photoluminescence through the framework of energy band diagram hypothesis and first principles analysis. Ab initio results suggested formation of an interband state as a manifestation of p orbital hybridization between C-N atoms at the edge sites. Therefore comprehensive theoretical and experimental analysis revealed that newly created energy levels can exist as an interband within the energy gap in functionalized graphene quantum structures yielding excitation dependent tunable PL for optoelectronic applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05376h

  9. Kondo effect in coupled quantum dots under magnetic fields

    SciTech Connect

    Aono, Tomosuke; Eto, Mikio

    2001-08-15

    The Kondo effect in coupled quantum dots is investigated theoretically under magnetic fields. We show that the magnetoconductance (MC) illustrates the peak structures of Kondo resonant spectra. When the dot-dot tunneling coupling V{sub C} is smaller than the dot-lead coupling {Delta} (level broadening), Kondo resonant levels appear at the Fermi level (E{sub F}). The Zeeman splitting of the levels weakens the Kondo effect, which results in a negative MC. When V{sub C} is larger than {Delta}, the Kondo resonances form bonding and antibonding levels, located below and above E{sub F}, respectively. We observe a positive MC since the Zeeman splitting increases the overlap between the levels at E{sub F}. In the presence of antiferromagnetic spin coupling between the dots, the sign of the MC can change as a function of the gate voltage.

  10. Infrared Quantum Dots** By Edward H. Sargent*

    E-print Network

    rigid or flexible, smooth or rough, flat or curved, inorganic or organic (including biological luminescent dots are available in organic and aqueous solvents. Electroluminescent devices based on solution

  11. Electron-Tunneling Modulation in Percolating Network of Graphene Quantum Dots: Fabrication, Phenomenological Understanding, and

    E-print Network

    Berry, Vikas

    : Graphene, quantum dots, electron tunneling, humidity sensor, nano arrays, microfibers Graphene quantum dots the polymer's hygroscopic nature for applications as humidity and pressure sensors operating via elec, Phenomenological Understanding, and Humidity/Pressure Sensing Applications T. S. Sreeprasad, Alfredo Alexander

  12. Observation of excited states in a graphene quantum dot S. Schnez,a

    E-print Network

    Ihn, Thomas

    Observation of excited states in a graphene quantum dot S. Schnez,a F. Molitor, C. Stampfer, J demonstrate that excited states in single-layer graphene quantum dots can be detected via direct transport

  13. Temperature Dependence of Single CdSe/ZnS Quantum Dots Luminescence Lifetime

    E-print Network

    Paris-Sud XI, Université de

    Temperature Dependence of Single CdSe/ZnS Quantum Dots Luminescence Lifetime Olivier Labeau dependence of the luminescence decay of single CdSe/ZnS quantum dots between 2 and 140 K. For the first time

  14. A Quantum Dot with Spin-Orbit Interaction--Analytical Solution

    ERIC Educational Resources Information Center

    Basu, B.; Roy, B.

    2009-01-01

    The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.

  15. Quantum dot loading in strong alkaline: improved performance in quantum-dot sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Bo, Fan; Wang, Chunlei; Xu, Shuhong; Zhang, Chufan; Wang, Zhuyuan; Cui, Yiping

    2014-07-01

    For the first time, we demonstrate that the conversion efficiency of CdTe quantum-dot sensitized solar cells could be effectively improved by using a strong alkaline environment during deposition of quantum dots (QDs) onto the TiO2 mesoporous electrode. Alkalis play three unique roles during the deposition: (i) decreasing the inter-particle electrostatic force between TiO2 nanoparticles and QDs to improve QD deposition; (ii) spontaneous formation of Cd(OH)2 during the deposition, which contributes to improvement of device efficiency; (iii) enhancing QD stability by hindering ligands' detachment from QD surface. With these advantages, improved QD loading onto a TiO2 photoanode has been achieved, from barely loading to dense, uniform QD loading with an optimized NaOH addition. Using this method, the overall efficiency of CdTe sensitized solar cell exceeds 2.1% when coupled with a Cu2S cathode—an almost 40% increase of efficiency compared with QDs deposited under a relatively low pH environment.

  16. Time-resolved charge detection in graphene quantum dots

    Microsoft Academic Search

    J. Güttinger; J. Seif; C. Stampfer; A. Capelli; K. Ensslin; T. Ihn

    2011-01-01

    We present real-time detection measurements of electron tunneling in a graphene quantum dot. By counting single-electron charging events on the dot, the tunneling process in a graphene constriction and the role of localized states are studied in detail. In the regime of low charge detector bias we see only a single time-dependent process in the tunneling rate which can be

  17. Electron energy level statistics in graphene quantum dots

    Microsoft Academic Search

    H. De Raedt; M. I. Katsnelson

    2009-01-01

    Motivated by recent experimental observations of size quantization of electron energy levels in graphene quantum dots [7]\\u000a we investigate the level statistics in the simplest tight-binding model for different dot shapes by computer simulation. The\\u000a results are in a reasonable agreement with the experiment which confirms qualitatively interpretation of observed level statistics\\u000a in terms of “Dirac billiards” without taking into

  18. Site and energy-controlled pyramidal quantum dot heterostructures

    Microsoft Academic Search

    E. Kapon; E. Pelucchi; S. Watanabe; A. Malko; M. H. Baier; K. Leifer; B. Dwir; F. Michelini; M.-A. Dupertuis

    2004-01-01

    The formation mechanisms, structure and optoelectronic properties of Ga(In)As\\/(Al)GaAs quantum dot (QD) heterostructures grown by organometallic chemical vapor deposition on patterned (111)B GaAs substrates are reviewed. With this approach, it is possible to prepare high-quality semiconductor QDs whose position on a substrate is precisely controlled via a pre-growth photolithography step. The dots are formed at the center of an inverted,

  19. Ordering Effects In Self-Organized Quantum-Dot Stacks

    NASA Astrophysics Data System (ADS)

    Kunert, R.; Schöll, E.; Pohl, U. W.

    2011-12-01

    Deviations from ideal ordering in quantum-dot stacks observed in experiment are compared to growth simulations based on a kinetic Monte Carlo model. Anticorrelated vertical alignment with a weak specificity is only found if the first layer is well ordered. Randomly distributed dots in the first layer lead to correlated vertical alignment preferentially for thin spacers and increased temperature, with gradually improving ordering regarding sizes and arrangement.

  20. Two-electron quantum dots as scalable qubits

    Microsoft Academic Search

    J. H. Jefferson; M. Fearn; D. L. Tipton; T. P. Spiller

    2002-01-01

    We show that two electrons confined in a square semiconductor quantum dot have two isolated low-lying energy eigenstates, which have the potential to form the basis of scalable computing elements (qubits). Initialization, one-qubit and two-qubit universal gates, and readout are performed using electrostatic gates and magnetic fields. Two-qubit transformations are performed via the Coulomb interaction between electrons on adjacent dots.

  1. Two-electron quantum dots as scalable qubits

    Microsoft Academic Search

    J. H. Jefferson; M. Fearn; D. L. J. Tipton; T. P. Spiller

    2002-01-01

    We show that two electrons confined in a square semiconductor quantum dot\\u000ahave two isolated low-lying energy eigenstates, which have the potential to\\u000aform the basis of scalable computing elements (qubits). Initialisation,\\u000aone-qubit and two-qubit universal gates, and readout are performed using\\u000aelectrostatic gates and magnetic fields. Two-qubit transformations are\\u000aperformed via the Coulomb interaction between electrons on adjacent dots.

  2. Ultrafast optical control of individual quantum dot spin qubits

    NASA Astrophysics Data System (ADS)

    De Greve, Kristiaan; Press, David; McMahon, Peter L.; Yamamoto, Yoshihisa

    2013-09-01

    Single spins in semiconductor quantum dots form a promising platform for solid-state quantum information processing. The spin-up and spin-down states of a single electron or hole, trapped inside a quantum dot, can represent a single qubit with a reasonably long decoherence time. The spin qubit can be optically coupled to excited (charged exciton) states that are also trapped in the quantum dot, which provides a mechanism to quickly initialize, manipulate and measure the spin state with optical pulses, and to interface between a stationary matter qubit and a ‘flying’ photonic qubit for quantum communication and distributed quantum information processing. The interaction of the spin qubit with light may be enhanced by placing the quantum dot inside a monolithic microcavity. An entire system, consisting of a two-dimensional array of quantum dots and a planar microcavity, may plausibly be constructed by modern semiconductor nano-fabrication technology and could offer a path toward chip-sized scalable quantum repeaters and quantum computers. This article reviews the recent experimental developments in optical control of single quantum dot spins for quantum information processing. We highlight demonstrations of a complete set of all-optical single-qubit operations on a single quantum dot spin: initialization, an arbitrary SU(2) gate, and measurement. We review the decoherence and dephasing mechanisms due to hyperfine interaction with the nuclear-spin bath, and show how the single-qubit operations can be combined to perform spin echo sequences that extend the qubit decoherence from a few nanoseconds to several microseconds, more than 5 orders of magnitude longer than the single-qubit gate time. Two-qubit coupling is discussed, both within a single chip by means of exchange coupling of nearby spins and optically induced geometric phases, as well as over longer-distances. Long-distance spin-spin entanglement can be generated if each spin can emit a photon that is entangled with the spin, and these photons are then interfered. We review recent work demonstrating entanglement between a stationary spin qubit and a flying photonic qubit. These experiments utilize the polarization- and frequency-dependent spontaneous emission from the lowest charged exciton state to single spin Zeeman sublevels.

  3. Multicolor 3D super-resolution imaging by quantum dot stochastic optical reconstruction microscopy.

    PubMed

    Xu, Jianquan; Tehrani, Kayvan F; Kner, Peter

    2015-03-24

    We demonstrate multicolor three-dimensional super-resolution imaging with quantum dots (QSTORM). By combining quantum dot asynchronous spectral blueing with stochastic optical reconstruction microscopy and adaptive optics, we achieve three-dimensional imaging with 24 nm lateral and 37 nm axial resolution. By pairing two short-pass filters with two appropriate quantum dots, we are able to image single blueing quantum dots on two channels simultaneously, enabling multicolor imaging with high photon counts. PMID:25703291

  4. Carrier dynamics in stacked InP\\/GaAs quantum dots

    Microsoft Academic Search

    A. B. Veloso; M. K. K. Nakaema; M. P. F. de Godoy; J. M. J. Lopes; F. Iikawa; M. J. S. P. Brasil; J. R. R. Bortoleto; M. A. Cotta; P. F. P. Fichtner; M. Morschbächer; J. R. Madureira

    2007-01-01

    We investigated two stacked layers of InP\\/GaAs type-II quantum dots by transmission electron microscopy and optical spectroscopy. The results reveal that InP quantum dots formed in two quantum dot layers are more uniform than those from a single layer structure. The thermal activation energies as well as the photoluminescence decays are rather independent of the separation between quantum dot layers

  5. Compact Quantum Dots for Single-molecule Imaging

    PubMed Central

    Smith, Andrew M.; Nie, Shuming

    2012-01-01

    Single-molecule imaging is an important tool for understanding the mechanisms of biomolecular function and for visualizing the spatial and temporal heterogeneity of molecular behaviors that underlie cellular biology 1-4. To image an individual molecule of interest, it is typically conjugated to a fluorescent tag (dye, protein, bead, or quantum dot) and observed with epifluorescence or total internal reflection fluorescence (TIRF) microscopy. While dyes and fluorescent proteins have been the mainstay of fluorescence imaging for decades, their fluorescence is unstable under high photon fluxes necessary to observe individual molecules, yielding only a few seconds of observation before complete loss of signal. Latex beads and dye-labeled beads provide improved signal stability but at the expense of drastically larger hydrodynamic size, which can deleteriously alter the diffusion and behavior of the molecule under study. Quantum dots (QDs) offer a balance between these two problematic regimes. These nanoparticles are composed of semiconductor materials and can be engineered with a hydrodynamically compact size with exceptional resistance to photodegradation 5. Thus in recent years QDs have been instrumental in enabling long-term observation of complex macromolecular behavior on the single molecule level. However these particles have still been found to exhibit impaired diffusion in crowded molecular environments such as the cellular cytoplasm and the neuronal synaptic cleft, where their sizes are still too large 4,6,7. Recently we have engineered the cores and surface coatings of QDs for minimized hydrodynamic size, while balancing offsets to colloidal stability, photostability, brightness, and nonspecific binding that have hindered the utility of compact QDs in the past 8,9. The goal of this article is to demonstrate the synthesis, modification, and characterization of these optimized nanocrystals, composed of an alloyed HgxCd1-xSe core coated with an insulating CdyZn1-yS shell, further coated with a multidentate polymer ligand modified with short polyethylene glycol (PEG) chains (Figure 1). Compared with conventional CdSe nanocrystals, HgxCd1-xSe alloys offer greater quantum yields of fluorescence, fluorescence at red and near-infrared wavelengths for enhanced signal-to-noise in cells, and excitation at non-cytotoxic visible wavelengths. Multidentate polymer coatings bind to the nanocrystal surface in a closed and flat conformation to minimize hydrodynamic size, and PEG neutralizes the surface charge to minimize nonspecific binding to cells and biomolecules. The end result is a brightly fluorescent nanocrystal with emission between 550-800 nm and a total hydrodynamic size near 12 nm. This is in the same size range as many soluble globular proteins in cells, and substantially smaller than conventional PEGylated QDs (25-35 nm). PMID:23093375

  6. Highly enhanced affinity of multidentate versus bidentate zwitterionic ligands for long-term quantum dot bioimaging.

    PubMed

    Giovanelli, Emerson; Muro, Eleonora; Sitbon, Gary; Hanafi, Mohamed; Pons, Thomas; Dubertret, Benoît; Lequeux, Nicolas

    2012-10-30

    High colloidal stability in aqueous conditions is a prerequisite for fluorescent nanocrystals, otherwise known as "quantum dots", intended to be used in any long-term bioimaging experiment. This essential property implies a strong affinity between the nanoparticles themselves and the ligands they are coated with. To further improve the properties of the bidentate monozwitterionic ligand previously developed in our team, we synthesized a multidentate polyzwitterionic ligand, issued from the copolymerization of a bidentate monomer and a monozwitterionic one. The nanocrystals passivated by this polymeric ligand showed an exceptional colloidal stability, regardless of the medium conditions (pH, salinity, dilution, and biological environment), and we demonstrated the affinity of the polymer exceeded by 3 orders of magnitude that of the bidentate ligand (desorption rates assessed by a competition experiment). The synthesis of the multidentate polyzwitterionic ligand proved also to be easily tunable and allowed facile functionalization of the corresponding quantum dots, which led to successful specific biomolecules targeting. PMID:23006042

  7. Quantum interference in exciton-Mn spin interactions in a CdTe semiconductor quantum dot

    E-print Network

    A. Trojnar; M. Korkusinski; E. Kadantsev; P. Hawrylak; M. Goryca; T. Kazimierczuk; P. Kossacki; P. Wojnar; M. Potemski

    2011-05-04

    We show theoretically and experimentally the existence of a new quantum interference(QI) effect between the electron-hole interactions and the scattering by a single Mn impurity. Theoretical model, including electron-valence hole correlations, the short and long range exchange interaction of Mn ion with the heavy hole and with electron and anisotropy of the quantum dot, is compared with photoluminescence spectroscopy of CdTe dots with single magnetic ions. We show how design of the electronic levels of a quantum dot enable the design of an exciton, control of the quantum interference and hence engineering of light-Mn interaction.

  8. Quantum interference in exciton-Mn spin interactions in a CdTe semiconductor quantum dot

    E-print Network

    Trojnar, A; Kadantsev, E; Hawrylak, P; Goryca, M; Kazimierczuk, T; Kossacki, P; Wojnar, P; Potemski, M

    2011-01-01

    We show theoretically and experimentally the existence of a new quantum interference(QI) effect between the electron-hole interactions and the scattering by a single Mn impurity. Theoretical model, including electron-valence hole correlations, the short and long range exchange interaction of Mn ion with the heavy hole and with electron and anisotropy of the quantum dot, is compared with photoluminescence spectroscopy of CdTe dots with single magnetic ions. We show how design of the electronic levels of a quantum dot enable the design of an exciton, control of the quantum interference and hence engineering of light-Mn interaction.

  9. Quantum dot solar concentrators: Electrical conversion efficiencies and comparative concentrating factors of fabricated devices

    Microsoft Academic Search

    S. J. Gallagher; Brian Norton; P. C. Eames

    2007-01-01

    A novel, non-tracking concentrator is described, which uses nano-scale quantum dot technology to render the concept of a fluorescent dye solar concentrator (FSC) a practical proposition. The quantum dot solar concentrator (QDSC) comprises quantum dots (QDs) seeded in materials such as plastics and glasses that are suitable for incorporation into building façades. Photovoltaic (PV) cells attached to the edges convert

  10. Rapid degradation of CdSe/ZnS colloidal quantum dots exposed to gamma irradiation

    E-print Network

    New Mexico, University of

    Rapid degradation of CdSe/ZnS colloidal quantum dots exposed to gamma irradiation Nathan J. Withers of 137 Cs gamma irradiation on photoluminescent properties of CdSe/ZnS colloidal quantum dots on irradiation dose. CdSe/ZnS quantum dots show poor radiation hardness, and severely degrade after less than 20

  11. Optically pumped InAs quantum dot microdisk lasers J. Y. Xu, and W. H. Xiangb)

    E-print Network

    Ho, Seng-Tiong

    As quantum dot embedded GaAs microdisks under optical pumping. Above the lasing threshold, a drastic increase. Recently, there have been many advances in the fabrication of both semiconductor quantum dots and semi. Semiconductor lasers with quantum dots as active media have been demonstrated.1­6 On the other hand, high

  12. Luminescent quantum dots fluorescence resonance energy transfer-based probes for enzymatic activity and enzyme inhibitors.

    PubMed

    Shi, Lifang; Rosenzweig, Nitsa; Rosenzweig, Zeev

    2007-01-01

    The paper describes the development and characterization of analytical properties of quantum dot-based probes for enzymatic activity and for screening enzyme inhibitors. The luminescent probes are based on fluorescence resonance energy transfer (FRET) between luminescent quantum dots that serve as donors and rhodamine acceptors that are immobilized to the surface of the quantum dots through peptide linkers. Peptide-coated CdSe/ZnS quantum dots were prepared using a one-step ligand exchange process in which RGDC peptide molecules replace trioctylphosphine oxide (TOPO) molecules as the capping ligands of the quantum dots. The peptide molecules were bound to the surface of the CdSe/ZnS quantum dots through the thiol group of the peptide cysteine residue. The peptide-coated quantum dots were labeled with rhodamine to form the FRET probes. The emission quantum yield of the quantum dot FRET probes was 4-fold lower than the emission quantum yield of TOPO-capped quantum dots. However, the quantum dot FRET probes were sufficiently bright to enable quantitative enzyme and enzyme inhibition assays. The probes were used first to test the enzymatic activity of trypsin in solution based on FRET signal changes of the quantum dot-based enzymatic probes in the presence of proteolytic enzymes. For example, exposure of the quantum dot FRET probes to 500 microg/mL trypsin for 15 min resulted in 60% increase in the photoluminescence of the quantum dots and a corresponding decrease in the emission of the rhodamine molecules. These changes resulted from the release of rhodamine molecules from the surface of the quantum dots due to enzymatic cleavage of the peptide molecules. The quantum dot FRET-based probes were used to monitor the enzymatic activity of trypsin and to screen trypsin inhibitors for their inhibition efficiency. PMID:17194141

  13. Graphene quantum dots embedded in hexagonal boron nitride sheets

    Microsoft Academic Search

    Junwen Li; Vivek B. Shenoy

    2010-01-01

    We have carried out first-principles calculations on electronic properties of\\u000agraphene quantum dots embedded in hexagonal boron nitride monolayer sheets. The\\u000acalculations with density functional theory show that the band gaps of quantum\\u000adots are determined by the quantum confinement effects and the hybridization of\\u000a{\\\\pi} orbitals from B, N and C atoms. The energy states near the Fermi level

  14. Dead zones in colloidal quantum dot photovoltaics: evidence and implications

    E-print Network

    for illumination through the top vs. bottom of PbS colloidal quantum dot (CQD) PV devices. The external quantum efficiency spectra of FTO/TiO2/PbS CQD/ITO PV devices with various PbS layer thicknesses were measured and the internal quantum efficiency as a function of distance from the TiO2 interface in the devices, a substantial

  15. Enhanced refractive index without absorption in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Chen, Nan; Shui, Tao; Qian, Biqi; Wang, Zhiping; Yu, Benli

    2015-04-01

    We investigate the absorptive-dispersive properties of a weak probe field in a ladder-type quantum dot. It is found that the enhanced refraction index without absorption can be easily controlled via adjusting properly the corresponding parameters of the system. Our scheme may provide some new possibilities for technological applications in dispersion compensation and solid-state quantum communication for quantum information processing.

  16. Quantum Dot Solar Cells with Multiple Exciton Generation

    Microsoft Academic Search

    M. C. Hanna; M. C. Beard; J. C. Johnson; J. Murphy; R. J. Ellingson; A. J. Nozik

    2005-01-01

    We have measured the quantum yield of the multiple exciton generation (MEG) process in quantum dots (QDs) of the lead-salt semiconductor family (PbSe, PbTe, and PbS) using fs pump-probe transient absorption measurements. Very high quantum yields (up to 300%) for charge carrier generation from MEG have been measured in all of the Pb-VI QDs. We have calculated the potential maximum

  17. Enhanced refractive index without absorption in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Chen, Nan; Shui, Tao; Qian, Biqi; Wang, Zhiping; Yu, Benli

    2015-07-01

    We investigate the absorptive-dispersive properties of a weak probe field in a ladder-type quantum dot. It is found that the enhanced refraction index without absorption can be easily controlled via adjusting properly the corresponding parameters of the system. Our scheme may provide some new possibilities for technological applications in dispersion compensation and solid-state quantum communication for quantum information processing.

  18. Top-gated few-electron double quantum dot in Si/SiGe

    NASA Astrophysics Data System (ADS)

    Shaji, Nakul; Simmons, Christine B.; Klein, Levente J.; Qin, Hua; Savage, Donald E.; Lagally, M. G.; Coppersmith, Susan N.; Joynt, Robert; Friesen, Mark; Blick, Robert H.; Eriksson, Mark A.

    2008-01-01

    A few-electron quantum dot utilizing Schottky, metal top gates in a modulation doped Si/SiGe heterostructure was realized and non-linear transport through the dot was studied. By carefully tuning the capacitively coupled gates, the single quantum dot was transformed into two tunnel-coupled quantum dots in series. The resulting double quantum dot was tuned to the few-electron regime and the charge stability diagram was studied as a function of the gate voltages. Understanding of such a double dot system is essential for the practical implementation of exchange-mediated multi-qubit systems in silicon devices.

  19. Excitons recombination engineering in self assembled quantum dots

    NASA Astrophysics Data System (ADS)

    Petroff, Pierre

    2000-03-01

    We demonstrate using band gap engineering in self assembled quantum dot structures that excitons can be stored for several seconds . The optically generated excitons are dissociated and stored as separated electron hole pairs into coupled quantum dot pairs. A bias voltage restores the excitons which recombine radiatively to provide a read out optical signal. The localization of the spatially separated electron hole pair in quantum dots is responsible for the ultra long storage times which are on the order of several seconds. The present limits of this optical storage medium as a function of time and temperature are discussed. Acknowledgements: This research was done in collaboration with T.Lundstrom, W.Schoenfeld, H.Lee and was financed by DARPA, ARO and QUEST the NSF-STC center at UCSB.

  20. Strain-tunable quantum dot embedded in a nanowire antenna

    NASA Astrophysics Data System (ADS)

    Kremer, P. E.; Dada, A. C.; Kumar, P.; Ma, Y.; Kumar, S.; Clarke, E.; Gerardot, B. D.

    2014-11-01

    We demonstrate an elastically tunable self-assembled quantum dot in a nanowire antenna that emits single photons with resolution-limited spectral linewidths. The single-photon device is composed of a single quantum dot embedded in a top-down fabricated nanowire waveguide integrated onto a piezoelectric actuator. Nonresonant excitation leads to static (fluctuating) charges likely at the nanowire surface, causing DC Stark shifts (inhomogeneous broadening); for low excitation powers, the effects are not observed, and resolution-limited linewidths are obtained. Despite significant strain-field relaxation in the high-aspect-ratio nanowires, we achieve up to 1.2-meV tuning of a dot's transition energy. Single-photon sources with high brightness, resolution-limited linewidths, and wavelength tunability are promising for future quantum technologies.

  1. Charge transfer magnetoexciton formation at vertically coupled quantum dots

    PubMed Central

    2012-01-01

    A theoretical investigation is presented on the properties of charge transfer excitons at vertically coupled semiconductor quantum dots in the presence of electric and magnetic fields directed along the growth axis. Such excitons should have two interesting characteristics: an extremely long lifetime and a permanent dipole moment. We show that wave functions and the low-lying energies of charge transfer exciton can be found exactly for a special morphology of quantum dots that provides a parabolic confinement inside the layers. To take into account a difference between confinement potentials of an actual structure and of our exactly solvable model, we use the Galerkin method. The density of energy states is calculated for different InAs/GaAs quantum dots’ dimensions, the separation between layers, and the strength of the electric and magnetic fields. A possibility of a formation of a giant dipolar momentum under external electric field is predicted. PMID:23092373

  2. Highly sensitive humidity sensing properties of carbon quantum dots films

    SciTech Connect

    Zhang, Xing; Ming, Hai; Liu, Ruihua; Han, Xiao [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China)] [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China)] [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); Liu, Yang, E-mail: yangl@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China)] [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); Zhang, Yonglai, E-mail: yonglaizhang@jlu.edu.cn [Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong (China) [Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong (China); State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China)

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ? A humidity sensing device was fabricated based on carbon quantum dots (CQDs) films. ? The conductivity of the CQDs films shows a linear and rapid response to atmosphere humidity. ? The humidity sensing property was due to the hydrogen bonds between the functional groups on CQDs. -- Abstract: We reported the fabrication of a humidity sensing device based on carbon quantum dots (CQDs) film. The conductivity of the CQDs film has a linear and rapid response to relative humidity, providing the opportunity for the fabrication of humidity sensing devices. The mechanism of our humidity sensor was proposed to be the formation of hydrogen bonds between carbon quantum dots and water molecules in the humidity environment, which significantly promote the electrons migration. In a control experiment, this hypothesis was confirmed by comparing the humidity sensitivity of candle soot (i.e. carbon nanoparticles) with and without oxygen containing groups on the surfaces.

  3. Synthesis of Zn-Cu-In-S/ZnS Core/Shell Quantum Dots with Inhibited Blue-Shift Photoluminescence and Applications for Tumor Targeted Bioimaging

    PubMed Central

    Guo, Weisheng; chen, Na; Tu, Yu; Dong, Chunhong; Zhang, Bingbo; Hu, Chunhong; Chang, Jin

    2013-01-01

    A facile strategy is reported here for synthesis of Zn-Cu-In-S/ZnS (ZCIS/ZnS) core/shell QDs to address the synthetic issues that the unexpected blue-shift of CuInS2-based nanocrystals. In this strategy, Zn2+ ions are intentionally employed for the synthesis of alloyed ZCIS core QDs before ZnS shell coating, which contributes to the reduced blue-shift in photoluminescence (PL) emission. The experimental results demonstrate this elaborate facile strategy is effective for the reduction of blue-shift during shell growth. Particularly, a hypothesis is proposed and proved for explanation of this effective strategy. Namely, both cation exchange inhibition and ions accumulation are involved during the synthesis of ZCIS/ZnS QDs. Furthermore, the obtained near infrared (NIR) ZCIS/ZnS QDs are transferred into aqueous phase by a polymer coating technique and coupled with cyclic Arg-Gly-Asp peptide (cRGD) peptides. After confirmation of biocompability by cytotoxicity test on normal 3T3 cells, these QDs are injected via tail vein into nude mice bearing U87 MG tumor. The result indicates that the signals detected in the tumor region are much more distinguishing injected with ZCIS/ZnS-cRGD QDs than that injected with ZCIS/ZnS QDs. PMID:23422883

  4. Fluorescence relaxation dynamics of CdSe and CdSe/CdS core/shell quantum dots

    SciTech Connect

    Kaur, Gurvir; Kaur, Harmandeep [Centre of Advanced Study in Physics, Department of Physics, Panjab University, Chandigarh-160014 (India); Tripathi, S. K., E-mail: surya@pu.ac.in [Centre of Advanced Study in Physics, Panjab University, Chandigarh- 160014 (India)

    2014-04-24

    Time-resolved fluorescence spectra for colloidal CdSe and CdSe/CdS core/shell quantum dots have been investigated to know their electron relaxation dynamics at the maximum steady state fluorescence intensity. CdSe core and CdSe/CdS type I core-shell materials with different shell (CdS) thicknesses have been synthesized using mercaptoacetic acid as a capping agent. Steady state absorption and emission studies confirmed successful synthesis of CdSe and CdSe/CdS core-shell quantum dots. The fluorescence shows a tri-exponential decay with lifetimes 57.39, 7.82 and 0.96 ns for CdSe quantum dots. The lifetime of each recombination decreased with growth of CdS shell over the CdSe core, with maximum contribution to fluorescence by the fastest transition.

  5. Valley-orbit hybrid states in Si quantum dots

    NASA Astrophysics Data System (ADS)

    Gamble, John; Friesen, Mark; Coppersmith, S. N.

    2013-03-01

    The conduction band for electrons in layered Si nanostructures oriented along (001) has two low-lying valleys. Most theoretical treatments assume that these valleys are decoupled from the long-wavelength physics of electron confinement. In this work, we show that even a minimal amount of disorder (a single atomic step at the quantum well interface) is sufficient to mix valley states and electron orbitals, causing a significant distortion of the long-wavelength electron envelope. For physically realistic electric fields and dot sizes, this valley-orbit coupling impacts all electronic states in Si quantum dots, implying that one must always consider valley-orbit hybrid states, rather than distinct valley and orbital degrees of freedom. We discuss the ramifications of our results on silicon quantum dot qubits. The conduction band for electrons in layered Si nanostructures oriented along (001) has two low-lying valleys. Most theoretical treatments assume that these valleys are decoupled from the long-wavelength physics of electron confinement. In this work, we show that even a minimal amount of disorder (a single atomic step at the quantum well interface) is sufficient to mix valley states and electron orbitals, causing a significant distortion of the long-wavelength electron envelope. For physically realistic electric fields and dot sizes, this valley-orbit coupling impacts all electronic states in Si quantum dots, implying that one must always consider valley-orbit hybrid states, rather than distinct valley and orbital degrees of freedom. We discuss the ramifications of our results on silicon quantum dot qubits. This work was supported in part by ARO (W911NF-08-1-0482) and NSF (DMR-0805045).

  6. Realistic model of a vertical pillar quantum dot: Analysis of individual dot data

    NASA Astrophysics Data System (ADS)

    Maksym, P. A.; Nishi, Y.; Austing, D. G.; Hatano, T.; Kouwenhoven, L. P.; Aoki, H.; Tarucha, S.

    2009-03-01

    An accurate model of a vertical pillar quantum dot is described. The full three-dimensional structure of the device containing the dot is taken into account and this leads to an effective two-dimensional model in which electrons move in the two lateral dimensions, the confinement is parabolic, and the interaction potential is very different from the bare Coulomb potential. The potentials are found from the device structure and a few adjustable parameters. Numerically stable calculation procedures for the interaction potential are detailed and procedures for deriving parameter values from experimental addition energy and chemical potential data are described. The model is able to explain magnetic-field-dependent addition energy and chemical potential data for an individual dot to an accuracy of about 5%, the accuracy level needed to determine ground-state quantum numbers from experimental transport data. Applications to excited state transport data are also described.

  7. Spins in few-electron quantum dots Center for Spintronics and Quantum Computation, University of California,

    E-print Network

    Petta, Jason

    Spins in few-electron quantum dots R. Hanson* Center for Spintronics and Quantum Computation; publisher error corrected 4 October 2007 The canonical example of a quantum-mechanical two-level system is spin. The simplest picture of spin is a magnetic moment pointing up or down. The full quantum

  8. Proposal for ultra-high performance infrared quantum dot.

    PubMed

    Rostami, A; Saghai, H Rasooli; Sadoogi, N; Nejad, H Baghban Asghari

    2008-02-18

    In this paper, effect of an introduced defect on electrical and optical properties of quantum box and spherical quantum dot is studied. 3D-self-consistent solution of the Schrödinger-Poisson equations for evaluation of the proposed complex quantum box and analytical solution for spherical quantum dot are used. It is shown that with increasing the defect size and height a considerable enhancement in matrix element, optical nonlinearities (second order, quadratic electro-optic effect and the resonant third order nonlinear susceptibilities), optical linear absorption coefficient ( 4.5 -10 nm, 10(-4) approximately 10(-2) m.V(-1), 10(-12) approximately 10(-9) m(2) / V (2) , 10(-11) approximately 10(-9) m(2) / V(2) and 4.7 x 10(2) approximately 3.8 x 10(4) cm(-1) respectively) and electroabsorption properties associated with intersublevel transition of centered defect quantum dot are examined. Also, it is shown that enhancement of optical nonlinearity is approximately independent of defect position that is so excellent from practical implementation point of view. A THZ-IR photodetector based on resonant tunneling spherical centered defect quantum dot (RT-SCDQD) operating at room temperature is also investigated. Inserting the centered defect in quantum dot increases the dipole transition matrix element and so increases the absorption coefficient considerably (1.05 x 10(6) approximately 7.33 x 10(6)at 83 microm ). Therefore the quantum efficiency in SCDQD structure enhances which leads to increasing the responsivity of the proposed system. The double barrier reduces the dark current. These improvements concludes to ultra high detectivity 5 x 10(16) 2.25 x 10(9) cm Hz (1/2)/W at 83 and 300 degrees K at 83 microm respectively. PMID:18542359

  9. Effects of dot height uniformity on the performance of 1.3 ?m InAs quantum dot lasers

    Microsoft Academic Search

    Wei-Sheng Liu; Holin Chang; Jen-Inn Chyi

    2005-01-01

    We have systematically investigated the growth parameters of InAs quantum dots (QDs) so as to preserve the uniformity of dot height for 1.3 ?m QD laser diodes. Devices that are prepared using the optimized growth conditions exhibit threshold current as low as 50 mA, and internal quantum efficiency as high as 63% under continuous-wave operation.

  10. Observation of the Kondo effect in a quadruple quantum dot

    NASA Astrophysics Data System (ADS)

    Shang, Runan; Li, Hai-Ou; Cao, Gang; Yu, Guodong; Xiao, Ming; Tu, Tao; Guo, Guang-Can; Jiang, Hongwen; Chang, A. M.; Guo, Guo-Ping

    2015-06-01

    We investigate the Kondo effect in a quadruple-quantum-dot device of coupled double quantum dots (DQDs), which simultaneously contain intra-DQD and inter-DQD coupling. A variety of novel behaviors are observed. The differential conductance dI/dV is measured in the upper DQDs as a function of source drain bias. It is found to exhibit multiple peaks, including a zero-bias peak, where the number of peaks exceeds five. Alternatively, tuning the lower DQDs yielded regions of four peaks. In addition, a Kondo effect switcher is demonstrated, using the lower DQDs as the controller.

  11. Properties of Quantum-Dot-Doped Liquid Scintillators

    NASA Astrophysics Data System (ADS)

    Coy, Christopher

    2014-03-01

    Novel scintillators based on semiconducting nanocrystals called quantum dots have unique optical and chemical properties that make them interesting for future neutrino experiments especially those searching for neutrino-less double beta decay. In this talk, we report the results of laboratory-scale measurements for three candidate quantum-dot-doped scintillators. We focus on the key properties required for large-scale neutrino experiments, which are the emission spectrum, the attenuation length and the stability. I would like to follow the talk by Andrey Elagin on directionality in scintillators and precede Athena Ierokomos' talk on light yield in scintillators.

  12. Intensity noise in quantum-dot laser diodes

    SciTech Connect

    Wolfl, F.; Ryan, J. F.; Fox, A. M.; Ashmore, A. D.; Mowbray, D. J.; Skolnick, M. S.; Hopkinson, M.; Hill, G.

    2001-06-04

    We present intensity noise studies of a self-organized InAs/GaAs quantum-dot laser. The noise power measured for the full emission spectrum was found to be smaller than that for separate longitudinal mode groups. This noise cancellation indicates that the intensity fluctuations of the mode groups were anticorrelated, with typical values of the normalized correlation coefficient of around {minus}0.50. This surprisingly high value is not consistent with the model of the quantum-dot laser as an inhomogeneous ensemble of independent microlasers. {copyright} 2001 American Institute of Physics.

  13. Overview of Stabilizing Ligands for Biocompatible Quantum Dot Nanocrystals

    PubMed Central

    Zhang, Yanjie; Clapp, Aaron

    2011-01-01

    Luminescent colloidal quantum dots (QDs) possess numerous advantages as fluorophores in biological applications. However, a principal challenge is how to retain the desirable optical properties of quantum dots in aqueous media while maintaining biocompatibility. Because QD photophysical properties are directly related to surface states, it is critical to control the surface chemistry that renders QDs biocompatible while maintaining electronic passivation. For more than a decade, investigators have used diverse strategies for altering the QD surface. This review summarizes the most successful approaches for preparing biocompatible QDs using various chemical ligands. PMID:22247651

  14. Lateral photoconductivity in structures with Ge/Si quantum dots

    SciTech Connect

    Panevin, V. Yu., E-mail: pvyu@rphf.spbstu.ru; Sofronov, A. N.; Vorobjev, L. E.; Firsov, D. A.; Shalygin, V. A.; Vinnichenko, M. Ya.; Balagula, R. M. [St. Petersburg State Polytechnical University (Russian Federation); Tonkikh, A. A.; Werner, P. [Max Planck Institute of Microstructure Physics (Germany); Fuhrman, B. [Interdisziplinäres Zentrum für Materialwissenschaften (IZM), Martin-Luther-Universität Halle-Wittenberg (Germany); Schmidt, G. [Institut für Physik, Martin-Luther-Universität Halle-Wittenberg (Germany)

    2013-12-15

    The spectra of lateral photoconductivity and optical absorption caused by the intraband optical transitions of holes in Ge/Si quantum dots are studied at different lattice temperatures. Polarization-dependent spectral features related to the transitions of holes from the quantum dot (QD) ground state are revealed in the optical spectra. Temperature photoconductivity quenching caused by the reverse trapping of nonequilibrium free holes by the QD bound state is observed. The obtained experimental data make it possible to determine the height of the surface band bending at the QD heterointerface.

  15. Entanglement dynamics of photon pairs emitted from quantum dots

    SciTech Connect

    Zou, Yang; Gong, Ming; Li, Chuan-Feng; Chen, Geng; Tang, Jian-Shun; Guo, Guang-Can [Key Laboratory of Quantum Information, University of Science and Technology of China, CAS, Hefei 230026 (China)

    2010-06-15

    We present a model that describes states of photon pairs, which have been generated by biexciton cascade decays of self-assembled quantum dots, the use of which yields a finding that agrees well with the experimental result. Furthermore, we calculate the concurrence and determine the temperature behavior associated with the so-called entanglement sudden death that prevents quantum dots emitting entangled photon pairs at raised temperatures. The relationship between the fine-structure splitting and the sudden death temperature is also provided.

  16. Interactions of quantum dots with donor blood erythrocytes in vitro.

    PubMed

    Pleskova, S N; Pudovkina, E E; Mikheeva, E R; Gorshkova, E N

    2014-01-01

    The effects of quantum dots CdSe/ZnS-mercaptopropionic acid, (CdSe/CdZnS)ZnS-polyT, and CdSeCdSZnS/polyT/SiO2-NH2 on human erythrocytes were studied. The nanomaterials reduced signifi cantly the erythrocyte sedimentation rate and modified the erythrocyte membrane resistance to induced (acid and hypo-osmotic) hemolysis. Evaluation of the erythrocyte morphology by atomic force microscopy in the control and after exposure to quantum dots showed significant differences in erythrocyte size and changes in their morphology as a result of exposure to the nanomaterials. PMID:24771382

  17. Quantum nondemolition measurement of a single electron spin in a quantum dot

    E-print Network

    Mitsuro Sugita; Susumu Machida; Yoshihisa Yamamoto

    2003-01-15

    We propose a scheme for the quantum nondemolition (QND) measurement of a single electron spin in a single quantum dot (QD). Analytical expressions are obtained for the optical Faraday effect between a quantum dot exciton and microcavity field. The feasibility of the QND measurement of a single electron spin is discussed for a GaAs/AlAs microcavity with an InAs QD.

  18. Quantum transport through the system of parallel quantum dots with Majorana bound states

    SciTech Connect

    Wang, Ning; Li, Yuxian, E-mail: yxli@mail.hebtu.edu.cn [College of Physics and Information Engineering and Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China); Lv, Shuhui [School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018 (China)

    2014-02-28

    We study the tunneling transport properties through a system of parallel quantum dots which are coupled to Majorana bound states (MBSs). The conductance and spectral function are computed using the retarded Green's function method based on the equation of motion. The conductance of the system is 2e{sup 2}/h at zero Fermi energy and is robust against the coupling between the MBSs and the quantum dots. The dependence of the Fermi energy on the spectral function is different for the first dot (dot1) than for the second dot (dot2) with fixed dot2-MBSs coupling. The influence of the Majorana bound states on the spectral function was studied for the series and parallel configurations of the system. It was found that when the configuration is in series, the Majorana bound states play an important role, resulting in a spectral function with three peaks. However, the spectral function shows two peaks when the system is in a parallel configuration. The zero Fermi energy spectral function is always 1/2 not only in series but also in the parallel configuration and robust against the coupling between the MBSs and the quantum dots. The phase diagram of the Fermi energy versus the quantum dot energy levels was also investigated.

  19. Plasmonic Cavity Transparency Induced by a Single Quantum Dot

    NASA Astrophysics Data System (ADS)

    Hartsfield, Thomas; Chang, Wei-Shun; Yang, Sung-Cheol; Ma, Tzuhsuan; Shi, Jinwei; Sun, Liuyang; Shvets, Gennady; Link, Stephan; Li, Xiaoqin

    2015-03-01

    There are a large number of studies devoted to designing and characterizing plasmonic cavities. However, few experiments investigate interaction of individual quantum absorbers and emitters with a plasmonic cavity, which is essential for exploring cavity quantum electrodynamic (QED) effects. The main experimental challenge lies in the difficulty of placing an absorber and emitter at the desired positions. The very virtue of the small mode volume of plasmonic cavities demands precise spatial placement of emitters. Here, we study the simplest plasmonic cavity: a spherical metallic nanoparticle (MNP). By placing a semiconductor quantum dot (QD) controllably in the close proximity of the MNP cavity, its scattering spectrum is modified drastically. A Fano resonance is observed due to interference between the plasmonic resonance of the MNP and the exciton resonance in the QD. Our experiment demonstrates that transparency of the MNP cavity can be effectively induced by a single quantum dot, achieving an important step toward realizing plasmonic quantum devices.

  20. Photovoltaic devices based on quantum dot functionalized nanowire arrays embedded in an organic matrix

    NASA Astrophysics Data System (ADS)

    Kung, Patrick; Harris, Nicholas; Shen, Gang; Wilbert, David S.; Baughman, William; Balci, Soner; Dawahre, Nabil; Butler, Lee; Rivera, Elmer; Nikles, David; Kim, Seongsin M.

    2012-01-01

    Quantum dot (QD) functionalized nanowire arrays are attractive structures for low cost high efficiency solar cells. QDs have the potential for higher quantum efficiency, increased stability and lifetime compared to traditional dyes, as well as the potential for multiple electron generation per photon. Nanowire array scaffolds constitute efficient, low resistance electron transport pathways which minimize the hopping mechanism in the charge transport process of quantum dot solar cells. However, the use of liquid electrolytes as a hole transport medium within such scaffold device structures have led to significant degradation of the QDs. In this work, we first present the synthesis uniform single crystalline ZnO nanowire arrays and their functionalization with InP/ZnS core-shell quantum dots. The structures are characterized using electron microscopy, optical absorption, photoluminescence and Raman spectroscopy. Complementing photoluminescence, transmission electron microanalysis is used to reveal the successful QD attachment process and the atomistic interface between the ZnO and the QD. Energy dispersive spectroscopy reveals the co-localized presence of indium, phosphorus, and sulphur, suggestive of the core-shell nature of the QDs. The functionalized nanowire arrays are subsequently embedded in a poly-3(hexylthiophene) hole transport matrix with a high degree of polymer infiltration to complete the device structure prior to measurement.

  1. Effects of Shape and Strain Distribution of Quantum Dots on Optical Transition in the Quantum Dot Infrared Photodetectors.

    PubMed

    Yang, X-F; Chen, X-S; Lu, W; Fu, Y

    2008-12-01

    We present a systemic theoretical study of the electronic properties of the quantum dots inserted in quantum dot infrared photodetectors (QDIPs). The strain distribution of three different shaped quantum dots (QDs) with a same ratio of the base to the vertical aspect is calculated by using the short-range valence-force-field (VFF) approach. The calculated results show that the hydrostatic strain varepsilon(H) varies little with change of the shape, while the biaxial strain varepsilon(B) changes a lot for different shapes of QDs. The recursion method is used to calculate the energy levels of the bound states in QDs. Compared with the strain, the shape plays a key role in the difference of electronic bound energy levels. The numerical results show that the deference of bound energy levels of lenslike InAs QD matches well with the experimental results. Moreover, the pyramid-shaped QD has the greatest difference from the measured experimental data. PMID:20596318

  2. Scattering phase of quantum dots: Emergence of universal behavior

    NASA Astrophysics Data System (ADS)

    Jacquod, Philippe; Jalabert, Rodolfo; Molina, Rafael; Weinmann, Dietmar

    2013-03-01

    We investigate scattering through chaotic ballistic quantum dots in the Coulomb-blockade regime. Focusing on the scattering phase, we show that long universal sequences emerge in the short wavelength limit of many electrons on the dot, where phase lapses of ? systematically occur in between two consecutive resonances. We further argue that such universal sequences become shorter and shorter as the wavelength becomes larger/the number of electrons on the dot is reduced. Our results are corroborated by numerics and are in qualitative and quantitative agreement with experimental results. We finally present numerical data on models of interacting electrons to show that strong correlations do not alter our conclusions. We investigate scattering through chaotic ballistic quantum dots in the Coulomb-blockade regime. Focusing on the scattering phase, we show that long universal sequences emerge in the short wavelength limit of many electrons on the dot, where phase lapses of ? systematically occur in between two consecutive resonances. We further argue that such universal sequences become shorter and shorter as the wavelength becomes larger/the number of electrons on the dot is reduced. Our results are corroborated by numerics and are in qualitative and quantitative agreement with experimental results. We finally present numerical data on models of interacting electrons to show that strong correlations do not alter our conclusions. Supported by the Spanish MICINN through project FIS2009-07277, the NSF under grant No DMR-0706319, and the ANR through grant ANR-08-BLAN-0030-02

  3. Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals

    NASA Astrophysics Data System (ADS)

    Dong, Yongqiang; Lin, Jianpeng; Chen, Yingmei; Fu, Fengfu; Chi, Yuwu; Chen, Guonan

    2014-06-01

    Six coal samples of different ranks have been used to prepare single-layer graphene quantum dots (S-GQDs). After chemical oxidation and a series of centrifugation separation, every coal could be treated into two fractions, namely, CoalA and CoalB. According to the characterization results of TEM, AFM, XRD, Raman and FTIR, CoalA was revealed to be mainly composed of S-GQDs, which have an average height of about 0.5 nm and an average plane dimension of about 10 nm. The obtained S-GQDs showed excitation-dependent fluorescence and excellent electrochemiluminescence. CoalB was found to be some other carbon-based nanomaterials (CNMs), including agglomerated GQDs, graphene oxide, carbon quantum dots and agglomerated carbon nanocrystals. Generally, low-ranked coals might be more suitable for the preparation of S-GQDs. The production yield of S-GQDs from the six investigated coals decreased from 56.30% to 14.66% when the coal rank increased gradually. In contrast, high-ranked coals had high production yield of CoalB and might be more suitable for preparing other CNMs that were contained in CoalB, although those CNMs were difficult to separate from each other in our experiment.Six coal samples of different ranks have been used to prepare single-layer graphene quantum dots (S-GQDs). After chemical oxidation and a series of centrifugation separation, every coal could be treated into two fractions, namely, CoalA and CoalB. According to the characterization results of TEM, AFM, XRD, Raman and FTIR, CoalA was revealed to be mainly composed of S-GQDs, which have an average height of about 0.5 nm and an average plane dimension of about 10 nm. The obtained S-GQDs showed excitation-dependent fluorescence and excellent electrochemiluminescence. CoalB was found to be some other carbon-based nanomaterials (CNMs), including agglomerated GQDs, graphene oxide, carbon quantum dots and agglomerated carbon nanocrystals. Generally, low-ranked coals might be more suitable for the preparation of S-GQDs. The production yield of S-GQDs from the six investigated coals decreased from 56.30% to 14.66% when the coal rank increased gradually. In contrast, high-ranked coals had high production yield of CoalB and might be more suitable for preparing other CNMs that were contained in CoalB, although those CNMs were difficult to separate from each other in our experiment. Electronic supplementary information (ESI) available: Elemental analysis results of coal samples, FTIR spectra of CoalA and CoalB, ECL responses of CoalA/S2O82-. See DOI: 10.1039/c4nr01482k

  4. RKKY interaction between quantum dot spins tuned by the quantum dot level

    NASA Astrophysics Data System (ADS)

    Yang, Mou; Li, Shu-Shen

    2006-08-01

    We have investigated the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between two quantum dot (QD) spins mediated by a two-dimensional electron gas in the simplest case. The oscillation of the RKKY interaction versus the distance between the two QDs consists of two ingredients with different periods. The RKKY interaction undulates with the variation of the singly occupied QD level, which provides us a way to tune the magnitude and the sign of the RKKY interaction by pushing the QD level up and down. These conclusions are quite different from the usual result obtained by replacing the s-d exchange interaction with its value at the Fermi level. The influence on the RKKY interaction brought about under more realistic conditions is also discussed.

  5. Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors

    PubMed Central

    Chou, Kenny F.; Dennis, Allison M.

    2015-01-01

    Förster (or fluorescence) resonance energy transfer amongst semiconductor quantum dots (QDs) is reviewed, with particular interest in biosensing applications. The unique optical properties of QDs provide certain advantages and also specific challenges with regards to sensor design, compared to other FRET systems. The brightness and photostability of QDs make them attractive for highly sensitive sensing and long-term, repetitive imaging applications, respectively, but the overlapping donor and acceptor excitation signals that arise when QDs serve as both the donor and acceptor lead to high background signals from direct excitation of the acceptor. The fundamentals of FRET within a nominally homogeneous QD population as well as energy transfer between two distinct colors of QDs are discussed. Examples of successful sensors are highlighted, as is cascading FRET, which can be used for solar harvesting. PMID:26057041

  6. Theory of fast quantum control of excitons in semiconductor quantum dot

    NASA Astrophysics Data System (ADS)

    Piermarocchi, Carlo; Chen, Pochung; Sham, Lu J.

    2002-03-01

    Optical techniques for the quantum control of multiexciton states in semiconductor quantum dots are theoretically explored. Composite bichromatic pulses obtained by phase-locking and superposing ultrafast pulses reduce the time of elementary quantum operations on excitons and biexcitons. Fidelity of the operations demonstrates that the control of excitons with composite pulses can be realized in the femtosecond domain. An analytical tool, based on the Magnus expansion, is given to design the components of the composite pulses. The technique is applied to the optical design of a 2-qubit Quantum Fourier Transform in a single quantum dot. A modified Quantum Fourier Transform with bit reversal is proposed. It turns out to be more convenient for systems where qubit manipulation is realized by Rabi rotations. Finally, the quantum control of excitons in doped quantum dots is discussed. Raman spin-flip techniques are proposed to realize a fast optical control of qubits encoded in the electronic spins.

  7. Physical optimization of quantum error correction circuits with spatially separated quantum dot spins.

    PubMed

    Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2013-05-20

    We propose an efficient protocol for optimizing the physical implementation of three-qubit quantum error correction with spatially separated quantum dot spins via virtual-photon-induced process. In the protocol, each quantum dot is trapped in an individual cavity and each two cavities are connected by an optical fiber. We propose the optimal quantum circuits and describe the physical implementation for correcting both the bit flip and phase flip errors by applying a series of one-bit unitary rotation gates and two-bit quantum iSWAP gates that are produced by the long-range interaction between two distributed quantum dot spins mediated by the vacuum fields of the fiber and cavity. The protocol opens promising perspectives for long distance quantum communication and distributed quantum computation networks. PMID:23736467

  8. Graphene quantum dots: localized states, edges and bilayer systems

    NASA Astrophysics Data System (ADS)

    Ensslin, Klaus

    2014-03-01

    Graphene quantum dots show Coulomb blockade, excited states and their orbital and spin properties have been investigated in high magnetic fields. Most quantum dots fabricated to date are fabricated with electron beam lithography and dry etching which generally leads to uncontrolled and probably rough edges. We demonstrate that devices with reduced bulk disorder fabricated on BN substrates display similar localized states as those fabricated on the more standard SiO2 substrates. For a highly symmetric quantum dot with short tunnel barriers the experimentally detected transport features can be explained by three localized states, 1 in the dot and 2 in the constrictions. A way to overcome edge roughness and the localized states related to this are bilayer devices where a band gap can be induced by suitable top and back gate voltages. By placing bilayer graphene between two BN layers high electronic quality can be achieved as documented by the observation of broken symmetry states in the quantum Hall regime. We discuss how this method can be exploited to achieve smoother and better tunable graphene quantum devices. This work was done in collaboration with D. Bischoff, P. Simonet, A. Varlet, Y. Tian, and T. Ihn.

  9. Simulations of the spontaneous emission of a quantum dot near a gap plasmon waveguide

    NASA Astrophysics Data System (ADS)

    Perera, Chamanei S.; Vernon, Kristy C.; Mcleod, Angus

    2014-02-01

    In this paper, we modeled a quantum dot at near proximity to a gap plasmon waveguide to study the quantum dot-plasmon interactions. Assuming that the waveguide is single mode, this paper is concerned about the dependence of spontaneous emission rate of the quantum dot on waveguide dimensions such as width and height. We compare coupling efficiency of a gap waveguide with symmetric configuration and asymmetric configuration illustrating that symmetric waveguide has a better coupling efficiency to the quantum dot. We also demonstrate that optimally placed quantum dot near a symmetric waveguide with 50 nm × 50 nm cross section can capture 80% of the spontaneous emission into a guided plasmon mode.

  10. Probing charge fluctuator correlations using quantum dot pairs

    NASA Astrophysics Data System (ADS)

    Purohit, V.; Braunecker, B.; Lovett, B. W.

    2015-06-01

    We study a pair of quantum dot exciton qubits interacting with a number of fluctuating charges that can induce a Stark shift of both exciton transition energies. We do this by solving the optical master equation using a numerical transfer matrix method. We find that the collective influence of the charge environment on the dots can be detected by measuring the correlation between the photons emitted when each dot is driven independently. Qubits in a common charge environment display photon bunching, if both dots are driven on resonance or if the driving laser detunings have the same sense for both qubits, and antibunching if the laser detunings have opposite signs. We also show that it is possible to detect several charges fluctuating at different rates using this technique. Our findings expand the possibility of measuring qubit dynamics in order to investigate the fundamental physics of the environmental noise that causes decoherence.

  11. Quantum strain sensor with a topological insulator HgTe quantum dot

    NASA Astrophysics Data System (ADS)

    Korkusinski, Marek; Hawrylak, Pawel

    2014-05-01

    We present a theory of electronic properties of HgTe quantum dot and propose a strain sensor based on a strain-driven transition from a HgTe quantum dot with inverted bandstructure and robust topologically protected quantum edge states to a normal state without edge states in the energy gap. The presence or absence of edge states leads to large on/off ratio of conductivity across the quantum dot, tunable by adjusting the number of conduction channels in the source-drain voltage window. The electronic properties of a HgTe quantum dot as a function of size and applied strain are described using eight-band Luttinger and Bir-Pikus Hamiltonians, with surface states identified with chirality of Luttinger spinors and obtained through extensive numerical diagonalization of the Hamiltonian.

  12. Quantum dot-sized organic fluorescent dots for long-term cell tracing

    NASA Astrophysics Data System (ADS)

    Li, Kai; Tang, Ben Zhong; Liu, Bin

    2014-03-01

    Fluorescence techniques have been extensively employed to develop non-invasive methodologies for tracking and understanding complex biological processes both in vitro and in vivo, which is of high importance in modern life science research. Among a variety of fluorescent probes, inorganic semiconductor quantum dots (QDs) have shown advantages in terms of better photostability, larger Stokes shift and more feasible surface functionalization. However, their intrinsic toxic heavy metal components and unstable fluorescence at low pH greatly impede the applications of QDs in in vivo studies. In this work, we developed novel fluorescent probes that can outperform currently available QD based probes in practice. Using conjugated oligomer with aggregation-induced emission characteristics as the fluorescent domain and biocompatible lipid-PEG derivatives as the encapsulation matrix, the obtained organic dots have shown higher brightness, better stability in biological medium and comparable size and photostability as compared to their counterparts of inorganic QDs. More importantly, unlike QD-based probes, the organic fluorescent dots do not blink, and also do not contain heavy metal ions that could be potentially toxic when applied for living biosubstrates. Upon surface functionalization with a cell-penetrating peptide, the organic dots greatly outperform inorganic quantum dots in both in vitro and in vivo long-term cell tracing studies, which will be beneficial to answer crucial questions in stem cell/immune cell therapies. Considering the customized fluorescent properties and surface functionalities of the organic dots, a series of biocompatible organic dots will be developed to serve as a promising platform for multifarious bioimaging tasks in future.

  13. Graphene quantum dots formed by a spatial modulation of the Dirac gap

    Microsoft Academic Search

    G. Giavaras; Franco Nori

    2010-01-01

    An electrostatic quantum dot cannot be formed in monolayer graphene because of the Klein tunneling. However, a dot can be formed with the help of a uniform magnetic field. As shown here, a spatial modulation of the Dirac gap leads to confined states with discrete energy levels, thus defining a dot, without applying external electric and magnetic fields. Gap-induced dot

  14. Quantum control and process tomography of a semiconductor quantum dot hybrid qubit.

    PubMed

    Kim, Dohun; Shi, Zhan; Simmons, C B; Ward, D R; Prance, J R; Koh, Teck Seng; Gamble, John King; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, Mark A

    2014-07-01

    The similarities between gated quantum dots and the transistors in modern microelectronics--in fabrication methods, physical structure and voltage scales for manipulation--have led to great interest in the development of quantum bits (qubits) in semiconductor quantum dots. Although quantum dot spin qubits have demonstrated long coherence times, their manipulation is often slower than desired for important future applications, such as factoring. Furthermore, scalability and manufacturability are enhanced when qubits are as simple as possible. Previous work has increased the speed of spin qubit rotations by making use of integrated micromagnets, dynamic pumping of nuclear spins or the addition of a third quantum dot. Here we demonstrate a qubit that is a hybrid of spin and charge. It is simple, requiring neither nuclear-state preparation nor micromagnets. Unlike previous double-dot qubits, the hybrid qubit enables fast rotations about two axes of the Bloch sphere. We demonstrate full control on the Bloch sphere with ?-rotation times of less than 100 picoseconds in two orthogonal directions, which is more than an order of magnitude faster than any other double-dot qubit. The speed arises from the qubit's charge-like characteristics, and its spin-like features result in resistance to decoherence over a wide range of gate voltages. We achieve full process tomography in our electrically controlled semiconductor quantum dot qubit, extracting high fidelities of 85 per cent for X rotations (transitions between qubit states) and 94 per cent for Z rotations (phase accumulation between qubit states). PMID:24990747

  15. Quantum control and process tomography of a semiconductor quantum dot hybrid qubit

    NASA Astrophysics Data System (ADS)

    Kim, Dohun; Shi, Zhan; Simmons, C. B.; Ward, D. R.; Prance, J. R.; Koh, Teck Seng; Gamble, John King; Savage, D. E.; Lagally, M. G.; Friesen, Mark; Coppersmith, S. N.; Eriksson, Mark A.

    2014-07-01

    The similarities between gated quantum dots and the transistors in modern microelectronics--in fabrication methods, physical structure and voltage scales for manipulation--have led to great interest in the development of quantum bits (qubits) in semiconductor quantum dots. Although quantum dot spin qubits have demonstrated long coherence times, their manipulation is often slower than desired for important future applications, such as factoring. Furthermore, scalability and manufacturability are enhanced when qubits are as simple as possible. Previous work has increased the speed of spin qubit rotations by making use of integrated micromagnets, dynamic pumping of nuclear spins or the addition of a third quantum dot. Here we demonstrate a qubit that is a hybrid of spin and charge. It is simple, requiring neither nuclear-state preparation nor micromagnets. Unlike previous double-dot qubits, the hybrid qubit enables fast rotations about two axes of the Bloch sphere. We demonstrate full control on the Bloch sphere with ?-rotation times of less than 100 picoseconds in two orthogonal directions, which is more than an order of magnitude faster than any other double-dot qubit. The speed arises from the qubit's charge-like characteristics, and its spin-like features result in resistance to decoherence over a wide range of gate voltages. We achieve full process tomography in our electrically controlled semiconductor quantum dot qubit, extracting high fidelities of 85 per cent for X rotations (transitions between qubit states) and 94 per cent for Z rotations (phase accumulation between qubit states).

  16. Height control of self-assembled quantum dots by strain engineering during capping

    NASA Astrophysics Data System (ADS)

    Grossi, D. F.; Smereka, P.; Keizer, J. G.; Ulloa, J. M.; Koenraad, P. M.

    2014-10-01

    Strain engineering during the capping of III-V quantum dots has been explored as a means to control the height of strained self-assembled quantum dots. Results of Kinetic Monte Carlo simulations are confronted with cross-sectional Scanning Tunnel Microscopy (STM) measurements performed on InAs quantum dots grown by molecular beam epitaxy. We studied InAs quantum dots that are capped by InxGa(1-x)As layers of different indium compositions. Both from our realistic 3D kinetic Monte Carlo simulations and the X-STM measurements on real samples, a trend in the height of the capped quantum dot is found as a function of the lattice mismatch between the quantum dot material and the capping layer. Results obtained on additional material combinations show a generic role of the elastic energy in the control of the quantum dot morphology by strain engineering during capping.

  17. Height control of self-assembled quantum dots by strain engineering during capping

    SciTech Connect

    Grossi, D. F., E-mail: d.grossi@tue.nl; Koenraad, P. M. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven (Netherlands); Smereka, P. [Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109 (United States); Keizer, J. G. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven (Netherlands); Australian Research Council Centre of Excellence for Quantum Computation and Communications, School of Physics, University of New South Wales, Sydney 2052 (Australia); Ulloa, J. M. [Institute for Systems based on Optoelectronics and Microtechnology (ISOM), Universidad Politecnica de Madrid, Avenida Complutense 30, 28040 Madrid (Spain)

    2014-10-06

    Strain engineering during the capping of III-V quantum dots has been explored as a means to control the height of strained self-assembled quantum dots. Results of Kinetic Monte Carlo simulations are confronted with cross-sectional Scanning Tunnel Microscopy (STM) measurements performed on InAs quantum dots grown by molecular beam epitaxy. We studied InAs quantum dots that are capped by In{sub x}Ga{sub (1?x)}As layers of different indium compositions. Both from our realistic 3D kinetic Monte Carlo simulations and the X-STM measurements on real samples, a trend in the height of the capped quantum dot is found as a function of the lattice mismatch between the quantum dot material and the capping layer. Results obtained on additional material combinations show a generic role of the elastic energy in the control of the quantum dot morphology by strain engineering during capping.

  18. Out-of-Equilibrium Kondo Effect in Double Quantum Dots

    SciTech Connect

    Aguado, Ramon; Langreth, David C.

    2000-08-28

    The out-of-equilibrium transport properties of a double quantum dot system in the Kondo regime are studied theoretically by means of a two-impurity Anderson Hamiltonian with interimpurity hopping. The Hamiltonian is solved by means of a nonequilibrium generalization of the slave-boson mean-field theory. It is demonstrated that measurements of the differential conductance dI/dV , for appropriate values of voltages and tunneling couplings, can give a direct observation of the coherent superposition between the many-body Kondo states of each dot. For large voltages and arbitrarily large interdot tunneling, there is a critical voltage above which the physical behavior of the system again resembles that of two decoupled quantum dots. (c) 2000 The American Physical Society.

  19. Magnetic exchange and nonequilibrium spin current through interacting quantum dots

    NASA Astrophysics Data System (ADS)

    Hoffman, Silas; Tserkovnyak, Yaroslav

    2015-06-01

    We develop a theory for charge and spin currents between two canted magnetic leads flowing through a quantum dot with an arbitrary local interaction. For a noncollinear magnetic configuration, we calculate equilibrium and nonequilibrium currents biased by voltage or temperature difference or pumped by magnetic dynamics. We are able to explicitly separate the equilibrium and nonequilibrium contributions to the spin current, both of which can be written in terms of the full retarded Green's function on the dot. Taking the specific example of a single-level quantum dot with a large on-site Coulomb interaction, we calculate the total spin current near the Kondo regime, which we find to be generally enhanced in magnitude as compared to the noninteracting case.

  20. Molecular Polaron Formation of Acoustic Phonons in Quantum Dot Molecules

    NASA Astrophysics Data System (ADS)

    Casara, Joshua; Jacobs, Andrew; Czarnocki, Cyprian; Monteros, Alessandro; Peev, Thomas; Tin Yau Tse, Joshua; Gad, Youstina; Scheibner, Michael

    2015-03-01

    In a recent experimental study, coherent and non-dissipative behavior of optical phonons was achieved via the generation of molecular polarons in a coupled quantum dot pair. An optical transparency caused by a Fano-type resonant quantum interference between discrete interdot excitons and continuum single dot-like polaron states revealed the molecular polaron. It has been shown that the phonon-induced transparency is highly controllable by electric field, excitation energy and power. Here we review the molecular polaron formation via optical phonons and we investigate an analogous transparency induced by acoustic phonons. Photoluminescence excitation spectroscopy is used to probe the characteristics of the transparency. The study tests the molecular polaron formation as a function of the longitudinal acoustic phonon density of states in the range from 10 meV to 20 meV above the bare single dot-like neutral exciton ground state transition.