Science.gov

Sample records for quantum efficiency cathode

  1. Very high quantum efficiency PMTs with bialkali photo-cathode

    NASA Astrophysics Data System (ADS)

    Mirzoyan, R.; Laatiaoui, M.; Teshima, M.

    2006-11-01

    Since the mid-1960s and until today the classical PMTs with semitransparent bialkali photo-cathode provide peak Quantum Efficiency (QE) of ˜25%. About 2 years ago we started a program with the PMT manufacturers Hamamatsu, Photonis and Electron Tubes for boosting up the QE of bialkali PMTs. In the mean time we have obtained several batches of experimental PMTs from the above-mentioned manufacturers and measured few samples with QE values as high as 32-36% in the peak. Also, we want to report on the modest (5-7) % increase of the QE of the PMTs with flat input window after sandblasting. Earlier we have reported that by coating the hemi-spherical input window of bialkali PMTs with a milky layer we could enhance their QE by ˜10-20% for wavelengths ˜320 nm. Assuming that the industry can reliably produce PMTs with 32-35% QE in the peak, by applying the milky layer coating technique to the PMTs with hemi-spherical input window one shall be able to achieve peak QE values of ˜35-40%. Being by an order of magnitude cheaper and providing a matching level of QE such PMTs will become strong competitors for hybrid photo-diodes (HPD) with GaAsP photo-cathode.

  2. Quantum efficiency temporal response and lifetime of a GaAs cathode in SRF electron gun

    SciTech Connect

    Wang, E.; Ben-Zvi, I.; Kewisch, J.; Burrill, A.; Rao, T.; Wu, Q.; Holmes, D.

    2010-05-23

    RF electron guns with a strained super lattice GaAs cathode can generate polarized electron beam of higher brightness and lower emittance than do DC guns, due to their higher field gradient at the cathode's surface. In a normal conducting RF gun, the extremely high vaccum required by these cathodes can not be met. We report on an experiment with a superconducting SRF gun, which can maintain a vacuum of nearly 10-12 torr because of cryo-pumping at the temperature of 4.2K. With conventional activation, we obtained a QE of 3% at 532 nm, with lifetime of nearly 3 days in the preparation chamber. We plan to use this cathode in a 1.3 GHz 1/2 cell SRF gun to study its performance. In addition, we studied the multipacting at the location of cathode. A new model based on the Forkker-Planck equation which can estimate the bunch length of the electron beam is discussed in this paper. Future particle accelerators such as eRHIC and ILC require high brightness, high current polarized electrons Recently, using a superlattice crystal, the maximum polarization of 95% was reached. Activation with Cs,O lowers the electron affinity and makes it energetically possible for all the electrons excited in to the conduction band and reach the surface to escape into the vacuum. Presently the polarized electron sources are based on DC gun, such as that at the CEBAF at Jlab. In these devices, the life time of the cathode is extended due to the reduced back bombardment in their UHV conditions. However, the low accelerating gradient of the DC guns lead to poor longitudinal emittance. The higher accelerating gradient of the RF gun generates low emittance beams. Superconducting RF guns combine the excellent vacuum conditions of the DC guns with the higher accelerating gradients of the RF guns and provide potentially a long lived cathode with very low transverse and longitudinal emittance. In our work at BNL, we successfully activated the GaAs. The quantum efficient is 3% at 532 nm and is expected

  3. Establishing reliable good initial quantum efficiency and in-situ laser cleaning for the copper cathodes in the RF gun

    NASA Astrophysics Data System (ADS)

    Zhou, F.; Sheppard, J. C.; Vecchione, T.; Jongewaard, E.; Brachmann, A.; Corbett, J.; Gilevich, S.; Weathersby, S.

    2015-05-01

    Establishing good initial quantum efficiency (QE) and reliable in-situ cleaning for copper cathode in the RF gun is of critical importance for the RF gun operations. Recent studies on the SLAC RF gun test bed indicated that the pre-cleaning (plasma cleaning) in the test chamber followed by copper cathode exposure to air for cathode change leads to a very low initial QE in the RF gun, and also demonstrated that without the pre-cleaning good initial QE >4×10-5 can be routinely achieved in the RF gun with the cathodes of QE <1×10-7 measured in the test chamber. QE can decay over the time in the RF gun. The in-situ laser cleaning technique for copper cathodes in the RF gun is established and refined in comparison to previous cleaning at the linac coherent light source, resulting in an improved QE and emittance evolutions. The physics of the laser cleaning process is discussed. It is believed that the reflectivity change is one of the major factors for the QE boost with the laser cleaning.

  4. Quantum Yield of Gold-Cathode Photomultipliers

    NASA Technical Reports Server (NTRS)

    Childs, Charles B.

    1961-01-01

    Two gold-cathode EMI 6255G tubes have been investigated for their quantum yield between 3100 and 1900 A. The tubes had cathodes of different appearances. One of these, numbered 3012, had a slight bluish tinge and was very transparent to visible light; the other, numbered 3021, had a definite gold coloration. The relative quantum yield of each tube was determined with the aid of a Cary model 14 recording spectrophotometer used as a monochromator. The monochromator relative-energy output was determined from the current output of a sodium-salicylate-coated RCA 1P21 photomultiplier. Each gold-cathode tube was then operated at 3000 v, and the central 1.8 cm cube of the cathode was exposed to the monochromator output.

  5. The Quantum Efficiency and Thermal Emittance of Metal Photocathodes

    SciTech Connect

    Dowell, David H.; Schmerge, John F.; /SLAC

    2009-03-04

    Modern electron beams have demonstrated the brilliance needed to drive free electron lasers at x-ray wavelengths, with the principle improvements occurring since the invention of the photocathode gun. The state-of-the-art normalized emittance electron beams are now becoming limited by the thermal emittance of the cathode. In both DC and RF photocathode guns, details of the cathode emission physics strongly influence the quantum efficiency and the thermal emittance. Therefore improving cathode performance is essential to increasing the brightness of beams. It is especially important to understand the fundamentals of cathode quantum efficiency and thermal emittance. This paper investigates the relationship between the quantum efficiency and the thermal emittance of metal cathodes using the Fermi-Dirac model for the electron distribution. We derive the thermal emittance and its relationship to the quantum efficiency, and compare our results to those of others.

  6. Sorting quantum systems efficiently

    NASA Astrophysics Data System (ADS)

    Ionicioiu, Radu

    2016-05-01

    Measuring the state of a quantum system is a fundamental process in quantum mechanics and plays an essential role in quantum information and quantum technologies. One method to measure a quantum observable is to sort the system in different spatial modes according to the measured value, followed by single-particle detectors on each mode. Examples of quantum sorters are polarizing beam-splitters (PBS) – which direct photons according to their polarization – and Stern-Gerlach devices. Here we propose a general scheme to sort a quantum system according to the value of any d-dimensional degree of freedom, such as spin, orbital angular momentum (OAM), wavelength etc. Our scheme is universal, works at the single-particle level and has a theoretical efficiency of 100%. As an application we design an efficient OAM sorter consisting of a single multi-path interferometer which is suitable for a photonic chip implementation.

  7. Sorting quantum systems efficiently.

    PubMed

    Ionicioiu, Radu

    2016-01-01

    Measuring the state of a quantum system is a fundamental process in quantum mechanics and plays an essential role in quantum information and quantum technologies. One method to measure a quantum observable is to sort the system in different spatial modes according to the measured value, followed by single-particle detectors on each mode. Examples of quantum sorters are polarizing beam-splitters (PBS) - which direct photons according to their polarization - and Stern-Gerlach devices. Here we propose a general scheme to sort a quantum system according to the value of any d-dimensional degree of freedom, such as spin, orbital angular momentum (OAM), wavelength etc. Our scheme is universal, works at the single-particle level and has a theoretical efficiency of 100%. As an application we design an efficient OAM sorter consisting of a single multi-path interferometer which is suitable for a photonic chip implementation. PMID:27142705

  8. Sorting quantum systems efficiently

    PubMed Central

    Ionicioiu, Radu

    2016-01-01

    Measuring the state of a quantum system is a fundamental process in quantum mechanics and plays an essential role in quantum information and quantum technologies. One method to measure a quantum observable is to sort the system in different spatial modes according to the measured value, followed by single-particle detectors on each mode. Examples of quantum sorters are polarizing beam-splitters (PBS) – which direct photons according to their polarization – and Stern-Gerlach devices. Here we propose a general scheme to sort a quantum system according to the value of any d-dimensional degree of freedom, such as spin, orbital angular momentum (OAM), wavelength etc. Our scheme is universal, works at the single-particle level and has a theoretical efficiency of 100%. As an application we design an efficient OAM sorter consisting of a single multi-path interferometer which is suitable for a photonic chip implementation. PMID:27142705

  9. Efficient quantum secret sharing

    NASA Astrophysics Data System (ADS)

    Qin, Huawang; Dai, Yuewei

    2016-05-01

    An efficient quantum secret sharing scheme is proposed, in which the dealer generates some single particles and then uses the operations of quantum-controlled-not and Hadamard gate to encode a determinate secret into these particles. The participants get their shadows by performing the single-particle measurements on their particles, and even the dealer cannot know their shadows. Compared to the existing schemes, our scheme is more practical within the present technologies.

  10. Efficient quantum walk on a quantum processor.

    PubMed

    Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L; Wang, Jingbo B; Matthews, Jonathan C F

    2016-01-01

    The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor. PMID:27146471

  11. Efficient quantum walk on a quantum processor

    PubMed Central

    Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.

    2016-01-01

    The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor. PMID:27146471

  12. Efficient quantum walk on a quantum processor

    NASA Astrophysics Data System (ADS)

    Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.

    2016-05-01

    The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor.

  13. Efficient Quantum Information Processing via Quantum Compressions

    NASA Astrophysics Data System (ADS)

    Deng, Y.; Luo, M. X.; Ma, S. Y.

    2016-01-01

    Our purpose is to improve the quantum transmission efficiency and reduce the resource cost by quantum compressions. The lossless quantum compression is accomplished using invertible quantum transformations and applied to the quantum teleportation and the simultaneous transmission over quantum butterfly networks. New schemes can greatly reduce the entanglement cost, and partially solve transmission conflictions over common links. Moreover, the local compression scheme is useful for approximate entanglement creations from pre-shared entanglements. This special task has not been addressed because of the quantum no-cloning theorem. Our scheme depends on the local quantum compression and the bipartite entanglement transfer. Simulations show the success probability is greatly dependent of the minimal entanglement coefficient. These results may be useful in general quantum network communication.

  14. Photoconductive Cathode Interlayer for Highly Efficient Inverted Polymer Solar Cells.

    PubMed

    Nian, Li; Zhang, Wenqiang; Zhu, Na; Liu, Linlin; Xie, Zengqi; Wu, Hongbin; Würthner, Frank; Ma, Yuguang

    2015-06-10

    A highly photoconductive cathode interlayer was achieved by doping a 1 wt % light absorber, such as perylene bisimide, into a ZnO thin film, which absorbs a very small amount of light but shows highly increased conductivity of 4.50 × 10(-3) S/m under sunlight. Photovoltaic devices based on this kind of photoactive cathode interlayer exhibit significantly improved device performance, which is rather insensitive to the thickness of the cathode interlayer over a broad range. Moreover, a power conversion efficiency as high as 10.5% was obtained by incorporation of our photoconductive cathode interlayer with the PTB7-Th:PC71BM active layer, which is one of the best results for single-junction polymer solar cells. PMID:26016386

  15. Continuum and Quantum-Chemical Modeling of Oxygen Reduction on the Cathode in a Solid Oxide Fuel Cell

    SciTech Connect

    Choi, Yongman; Mebane, David S.; Wang, Jeng-Han; Liu, Meilin

    2009-10-08

    Solid oxide fuel cells (SOFCs) have several advantages over other types of fuels cells such as high-energy efficiency and excellent fuel flexibility. To be economically competitive, however, new materials with extraordinary transport and catalytic properties must be developed to dramatically improve the performance while reducing the cost. This article reviews recent advancements in understanding oxygen reduction on various cathode materials using phenomenological and quantum chemical approaches in order to develop novel cathode materials with high catalytic activity toward oxygen reduction. We summarize a variety of results relevant to understanding the interactions between O2 and cathode materials at the molecular level as predicted using quantum-chemical cal-culations and probed using in situ surface vibrational spectroscopy. It is hoped that this in-depth understanding may provide useful insights into the design of novel cath-ode materials for a new generation of SOFCs.

  16. Efficient Quantum Pseudorandomness

    NASA Astrophysics Data System (ADS)

    Brandão, Fernando G. S. L.; Harrow, Aram W.; Horodecki, Michał

    2016-04-01

    Randomness is both a useful way to model natural systems and a useful tool for engineered systems, e.g., in computation, communication, and control. Fully random transformations require exponential time for either classical or quantum systems, but in many cases pseudorandom operations can emulate certain properties of truly random ones. Indeed, in the classical realm there is by now a well-developed theory regarding such pseudorandom operations. However, the construction of such objects turns out to be much harder in the quantum case. Here, we show that random quantum unitary time evolutions ("circuits") are a powerful source of quantum pseudorandomness. This gives for the first time a polynomial-time construction of quantum unitary designs, which can replace fully random operations in most applications, and shows that generic quantum dynamics cannot be distinguished from truly random processes. We discuss applications of our result to quantum information science, cryptography, and understanding the self-equilibration of closed quantum dynamics.

  17. Efficient Quantum Pseudorandomness.

    PubMed

    Brandão, Fernando G S L; Harrow, Aram W; Horodecki, Michał

    2016-04-29

    Randomness is both a useful way to model natural systems and a useful tool for engineered systems, e.g., in computation, communication, and control. Fully random transformations require exponential time for either classical or quantum systems, but in many cases pseudorandom operations can emulate certain properties of truly random ones. Indeed, in the classical realm there is by now a well-developed theory regarding such pseudorandom operations. However, the construction of such objects turns out to be much harder in the quantum case. Here, we show that random quantum unitary time evolutions ("circuits") are a powerful source of quantum pseudorandomness. This gives for the first time a polynomial-time construction of quantum unitary designs, which can replace fully random operations in most applications, and shows that generic quantum dynamics cannot be distinguished from truly random processes. We discuss applications of our result to quantum information science, cryptography, and understanding the self-equilibration of closed quantum dynamics. PMID:27176509

  18. Focus on quantum efficiency

    NASA Astrophysics Data System (ADS)

    Buchleitner, Andreas; Burghardt, Irene; Cheng, Yuan-Chung; Scholes, Gregory D.; Schwarz, Ulrich T.; Weber-Bargioni, Alexander; Wellens, Thomas

    2014-10-01

    Technologies which convert light into energy, and vice versa, rely on complex, microscopic transport processes in the condensed phase, which obey the laws of quantum mechanics, but hitherto lack systematic analysis and modeling. Given our much improved understanding of multicomponent, disordered, highly structured, open quantum systems, this ‘focus on’ collection collects cutting-edge research on theoretical and experimental aspects of quantum transport in truly complex systems as defined, e.g., by the macromolecular functional complexes at the heart of photosynthesis, by organic quantum wires, or even photovoltaic devices. To what extent microscopic quantum coherence effects can (be made to) impact on macroscopic transport behavior is an equally challenging and controversial question, and this ‘focus on’ collection provides a setting for the present state of affairs, as well as for the ‘quantum opportunities’ on the horizon.

  19. Fully transparent quantum dot light-emitting diode integrated with graphene anode and cathode.

    PubMed

    Seo, Jung-Tak; Han, Junebeom; Lim, Taekyung; Lee, Ki-Heon; Hwang, Jungseek; Yang, Heesun; Ju, Sanghyun

    2014-12-23

    A fully transparent quantum dot light-emitting diode (QD-LED) was fabricated by incorporating two types (anode and cathode) of graphene-based electrodes, which were controlled in their work functions and sheet resistances. Either gold nanoparticles or silver nanowires were inserted between layers of graphene to control the work function, whereas the sheet resistance was determined by the number of graphene layers. The inserted gold nanoparticles or silver nanowires in graphene films caused a charge transfer and changed the work function to 4.9 and 4.3 eV, respectively, from the original work function (4.5 eV) of pristine graphene. Moreover the sheet resistance values for the anode and cathode electrodes were improved from ∼63,000 to ∼110 Ω/sq and from ∼100,000 to ∼741 Ω/sq as the number of graphene layers increased from 1 to 12 and from 1 to 8, respectively. The main peak wavelength, luminance, current efficiency, and optical transmittance of the fully transparent QD-LED integrated with graphene anode and cathode were 535 nm, ∼358 cd/m2, ∼0.45 cd/A, and 70-80%, respectively. The findings of the study are expected to lay a foundation for the production of high-efficiency, fully transparent, and flexible displays using graphene-based electrodes. PMID:25426762

  20. Efficient quantum memory for light.

    PubMed

    Hedges, Morgan P; Longdell, Jevon J; Li, Yongmin; Sellars, Matthew J

    2010-06-24

    Storing and retrieving a quantum state of light on demand, without corrupting the information it carries, is an important challenge in the field of quantum information processing. Classical measurement and reconstruction strategies for storing light must necessarily destroy quantum information as a consequence of the Heisenberg uncertainty principle. There has been significant effort directed towards the development of devices-so-called quantum memories-capable of avoiding this penalty. So far, successful demonstrations of non-classical storage and on-demand recall have used atomic vapours and have been limited to low efficiencies, of less than 17 per cent, using weak quantum states with an average photon number of around one. Here we report a low-noise, highly efficient (up to 69 per cent) quantum memory for light that uses a solid-state medium. The device allows the storage and recall of light more faithfully than is possible using a classical memory, for weak coherent states at the single-photon level through to bright states of up to 500 photons. For input coherent states containing on average 30 photons or fewer, the performance exceeded the no-cloning limit. This guaranteed that more information about the inputs was retrieved from the memory than was left behind or destroyed, a feature that will provide security in communications applications. PMID:20577210

  1. Duality quantum computer and the efficient quantum simulations

    NASA Astrophysics Data System (ADS)

    Wei, Shi-Jie; Long, Gui-Lu

    2016-03-01

    Duality quantum computing is a new mode of a quantum computer to simulate a moving quantum computer passing through a multi-slit. It exploits the particle wave duality property for computing. A quantum computer with n qubits and a qudit simulates a moving quantum computer with n qubits passing through a d-slit. Duality quantum computing can realize an arbitrary sum of unitaries and therefore a general quantum operator, which is called a generalized quantum gate. All linear bounded operators can be realized by the generalized quantum gates, and unitary operators are just the extreme points of the set of generalized quantum gates. Duality quantum computing provides flexibility and a clear physical picture in designing quantum algorithms, and serves as a powerful bridge between quantum and classical algorithms. In this paper, after a brief review of the theory of duality quantum computing, we will concentrate on the applications of duality quantum computing in simulations of Hamiltonian systems. We will show that duality quantum computing can efficiently simulate quantum systems by providing descriptions of the recent efficient quantum simulation algorithm of Childs and Wiebe (Quantum Inf Comput 12(11-12):901-924, 2012) for the fast simulation of quantum systems with a sparse Hamiltonian, and the quantum simulation algorithm by Berry et al. (Phys Rev Lett 114:090502, 2015), which provides exponential improvement in precision for simulating systems with a sparse Hamiltonian.

  2. Efficient universal blind quantum computation.

    PubMed

    Giovannetti, Vittorio; Maccone, Lorenzo; Morimae, Tomoyuki; Rudolph, Terry G

    2013-12-01

    We give a cheat sensitive protocol for blind universal quantum computation that is efficient in terms of computational and communication resources: it allows one party to perform an arbitrary computation on a second party's quantum computer without revealing either which computation is performed, or its input and output. The first party's computational capabilities can be extremely limited: she must only be able to create and measure single-qubit superposition states. The second party is not required to use measurement-based quantum computation. The protocol requires the (optimal) exchange of O(Jlog2(N)) single-qubit states, where J is the computational depth and N is the number of qubits needed for the computation. PMID:24476238

  3. Efficient Universal Blind Quantum Computation

    NASA Astrophysics Data System (ADS)

    Giovannetti, Vittorio; Maccone, Lorenzo; Morimae, Tomoyuki; Rudolph, Terry G.

    2013-12-01

    We give a cheat sensitive protocol for blind universal quantum computation that is efficient in terms of computational and communication resources: it allows one party to perform an arbitrary computation on a second party’s quantum computer without revealing either which computation is performed, or its input and output. The first party’s computational capabilities can be extremely limited: she must only be able to create and measure single-qubit superposition states. The second party is not required to use measurement-based quantum computation. The protocol requires the (optimal) exchange of O(Jlog⁡2(N)) single-qubit states, where J is the computational depth and N is the number of qubits needed for the computation.

  4. Vacuum-free transparent quantum dot light-emitting diodes with silver nanowire cathode

    PubMed Central

    Jing, Pengtao; Ji, Wenyu; Zeng, Qinghui; Li, Di; Qu, Songnan; Wang, Jia; Zhang, Dandan

    2015-01-01

    Efficient transparent quantum-dot light emitting diodes (QD-LEDs) are demonstrated by using a silver nanowire (AgNW) cathode. The devices are fabricated through a solution technique, not any vacuum processes are involved. Almost identical performance is obtained for both sides of the transparent device, which is primary due to the high transmittance of AgNW cathode. The maximum luminance (efficiency) for ITO and AgNW side is 25,040 cd/m2 (5.6 cd/A) and 23,440 cd/m2 (5.2 cd/A), respectively. The average specular transmittance of the device (involving the glass substrate) is over 60% in the visible range. This study indicates that AgNW electrodes can serve as a cost-effective, flexible alternative to ITO, and thereby improve the economic viability and mechanical stability of QD-LEDs. All the results suggest that this is an important progress toward producing transparent QD-LEDs based displays and lighting sources. PMID:26198668

  5. Efficiency and formalism of quantum games

    SciTech Connect

    Lee, C.F.; Johnson, Neil F.

    2003-02-01

    We show that quantum games are more efficient than classical games and provide a saturated upper bound for this efficiency. We also demonstrate that the set of finite classical games is a strict subset of the set of finite quantum games. Our analysis is based on a rigorous formulation of quantum games, from which quantum versions of the minimax theorem and the Nash equilibrium theorem can be deduced.

  6. Enhanced quantum efficiency bialkali photo multiplier tubes

    NASA Astrophysics Data System (ADS)

    Mirzoyan, Razmick; Goebel, Florian; Hose, Juergen; Hsu, Ching Cheng; Ninković, Jelena; Paneque, David; Rudert, Agnes; Teshima, Masahiro

    2007-03-01

    Currently, the classical PMTs with semitransparent bialkali photo cathode show peak quantum efficiency (QE) of ˜25-27%. Although the above-mentioned peak QE was achieved already ˜40 years ago, nevertheless one cannot report any significant increase since then. A couple of years ago we started a development program with the main PMT manufacturers Photonis, Electron Tubes and Hamamatsu, aiming to boost-up the peak QE of the (1-2)″ size bialkali PMTs. Today we want to report that our efforts were successful: all of the three above-mentioned companies succeeded to boost the peak QE of bialkali PMTs to the level of 30-35%. In this report, we want to show the QE measurements of different tubes and discuss the future prospects. For example, it shall be possible to use the diffuse-scattering matt lacquer coating technique in order to enhance further the QE. In our previous experience application of that coating provided ˜15% increase in QE for 1-1.5″ hemispherical tubes.

  7. Verification of high efficient broad beam cold cathode ion source.

    PubMed

    Abdel Reheem, A M; Ahmed, M M; Abdelhamid, M M; Ashour, A H

    2016-08-01

    An improved form of cold cathode ion source has been designed and constructed. It consists of stainless steel hollow cylinder anode and stainless steel cathode disc, which are separated by a Teflon flange. The electrical discharge and output characteristics have been measured at different pressures using argon, nitrogen, and oxygen gases. The ion exit aperture shape and optimum distance between ion collector plate and cathode disc are studied. The stable discharge current and maximum output ion beam current have been obtained using grid exit aperture. It was found that the optimum distance between ion collector plate and ion exit aperture is equal to 6.25 cm. The cold cathode ion source is used to deposit aluminum coating layer on AZ31 magnesium alloy using argon ion beam current which equals 600 μA. Scanning electron microscope and X-ray diffraction techniques used for characterizing samples before and after aluminum deposition. PMID:27587108

  8. Verification of high efficient broad beam cold cathode ion source

    NASA Astrophysics Data System (ADS)

    Abdel Reheem, A. M.; Ahmed, M. M.; Abdelhamid, M. M.; Ashour, A. H.

    2016-08-01

    An improved form of cold cathode ion source has been designed and constructed. It consists of stainless steel hollow cylinder anode and stainless steel cathode disc, which are separated by a Teflon flange. The electrical discharge and output characteristics have been measured at different pressures using argon, nitrogen, and oxygen gases. The ion exit aperture shape and optimum distance between ion collector plate and cathode disc are studied. The stable discharge current and maximum output ion beam current have been obtained using grid exit aperture. It was found that the optimum distance between ion collector plate and ion exit aperture is equal to 6.25 cm. The cold cathode ion source is used to deposit aluminum coating layer on AZ31 magnesium alloy using argon ion beam current which equals 600 μA. Scanning electron microscope and X-ray diffraction techniques used for characterizing samples before and after aluminum deposition.

  9. Outcoupling efficiency of OLEDs with 2D periodical corrugation at the cathode

    NASA Astrophysics Data System (ADS)

    Belousov, Sergei; Bogdanova, Maria; Teslyuk, Anton

    2016-03-01

    We study theoretically the optical performance of organic light-emitting diodes (OLEDs) with 2D periodical corrugation at the cathode. We show how emergence of radiative surface plasmon resonances at the 2D corrugated cathode leads to the enhancement of the outcoupling efficiency of the OLED, which is primarily due to the outcoupling of emission generated by vertically oriented emitting excitons in the emission layer. We analyze the outcoupling efficiency of the OLED as a function of geometrical parameters of the corrugation and establish design rules for optimal outcoupling enhancement with the 2D corrugation at the cathode.

  10. Quantum efficiency of a double quantum dot microwave photon detector

    NASA Astrophysics Data System (ADS)

    Wong, Clement; Vavilov, Maxim

    Motivated by recent interest in implementing circuit quantum electrodynamics with semiconducting quantum dots, we study charge transfer through a double quantum dot (DQD) capacitively coupled to a superconducting cavity subject to a microwave field. We analyze the DQD current response using input-output theory and determine the optimal parameter regime for complete absorption of radiation and efficient conversion of microwave photons to electric current. For experimentally available DQD systems, we show that the cavity-coupled DQD operates as a photon-to-charge converter with quantum efficiencies up to 80% C.W. acknowledges support by the Intelligence Community Postdoctoral Research Fellowship Program.

  11. High efficiency ionizer using a hollow cathode discharge plasma

    SciTech Connect

    Alessi, J.G.; Prelec, K.

    1984-01-01

    A proposal for an ionizer using a hollow cathode discharge plasma is described. Ionization is via the very high current density electron beam component in the plasma, as well as from charge exchange with plasma ions. Extraction of a He/sup +/ current corresponding to approximately 50% of the incoming atomic beam flux should be possible.

  12. Photosensor with enhanced quantum efficiency

    NASA Technical Reports Server (NTRS)

    Janesick, James R. (Inventor); Elliott, Stythe T. (Inventor)

    1989-01-01

    A method to significantly increase the quantum efficiency (QE) of a CCD (or similar photosensor) applied in the UV, far UV and low energy x-ray regions of the spectrum. The increase in QE is accomplished by overthinning the backside of a CCD substrate beyond the epitaxial interface and UV flooding the sensor prior to use. The UV light photoemits electrons to the thinned surface and charges the backside negatively. This in turn forms an accumulation layer of holes near the Si-SiO.sub.2 interface creating an electric field gradient in the silicon which directs the photogenerated signal to the frontside where they are collected in pixel locations and later transferred. An oxide film, in which the backside charge resides, must have quality equivalent to a well aged native oxide which typically takes several years to form under ambient conditions. To reduce the amount of time in growing an oxide of sufficient quality, a process has been developed to grow an oxide by using deionized steam at 95.degree. C. which takes less than one hour to grow.

  13. Robust and efficient in situ quantum control

    NASA Astrophysics Data System (ADS)

    Ferrie, Christopher; Moussa, Osama

    2015-05-01

    Precision control of quantum systems is the driving force for both quantum technology and the probing of physics at the quantum and nanoscale levels. We propose an implementation-independent method for in situ quantum control that leverages recent advances in the direct estimation of quantum gate fidelity. Our algorithm takes account of the stochasticity of the problem, is suitable for closed-loop control, and requires only a constant number of fidelity-estimating experiments per iteration independent of the dimension of the control space. It is efficient and robust to both statistical and technical noise.

  14. Counterfactual quantum key distribution with high efficiency

    SciTech Connect

    Sun Ying; Wen Qiaoyan

    2010-11-15

    In a counterfactual quantum key distribution scheme, a secret key can be generated merely by transmitting the split vacuum pulses of single particles. We improve the efficiency of the first quantum key distribution scheme based on the counterfactual phenomenon. This scheme not only achieves the same security level as the original one but also has higher efficiency. We also analyze how to achieve the optimal efficiency under various conditions.

  15. Enhanced Oxygen and Hydroxide Transport in a Cathode Interface by Efficient Antibacterial Property of a Silver Nanoparticle-Modified, Activated Carbon Cathode in Microbial Fuel Cells.

    PubMed

    Li, Da; Qu, Youpeng; Liu, Jia; Liu, Guohong; Zhang, Jie; Feng, Yujie

    2016-08-17

    A biofilm growing on an air cathode is responsible for the decreased performance of microbial fuel cells (MFCs). For the undesired biofilm to be minimized, silver nanoparticles were synthesized on activated carbon as the cathodic catalyst (Ag/AC) in MFCs. Ag/AC enhanced maximum power density by 14.6% compared to that of a bare activated carbon cathode (AC) due to the additional silver catalysis. After operating MFCs over five months, protein content on the Ag/AC cathode was only 38.3% of that on the AC cathode, which resulted in a higher oxygen concentration diffusing through the Ag/AC cathode. In addition, a lower pH increment (0.2 units) was obtained near the Ag/AC catalyst surface after biofouling compared to 0.8 units of the AC cathode, indicating that less biofilm on the Ag/AC cathode had a minor resistance on hydroxide transported from the catalyst layer interfaces to the bulk solution. Therefore, less decrements of the Ag/AC activity and MFC performance were obtained. This result indicated that accelerated transport of oxygen and hydroxide, benefitting from the antibacterial property of the cathode, could efficiently maintain higher cathode stability during long-term operation. PMID:27441786

  16. Efficient entanglement distillation without quantum memory

    PubMed Central

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J.; Fiurášek, Jaromír; Schnabel, Roman

    2016-01-01

    Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution. PMID:27241946

  17. Efficient entanglement distillation without quantum memory.

    PubMed

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J; Fiurášek, Jaromír; Schnabel, Roman

    2016-01-01

    Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution. PMID:27241946

  18. Efficient entanglement distillation without quantum memory

    NASA Astrophysics Data System (ADS)

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J.; Fiurášek, Jaromír; Schnabel, Roman

    2016-05-01

    Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution.

  19. Efficient Toffoli Gate in Circuit Quantum Electrodynamics

    NASA Astrophysics Data System (ADS)

    Reed, Matthew; Dicarlo, Leonardo; Sun, Luyan; Frunzio, Luigi; Schoelkopf, Robert

    2011-03-01

    The fidelity of quantum gates in circuit quantum electrodynamics is typically limited by qubit decoherence. As such, significant improvements can be realized by shortening gate duration. The three-qubit Toffoli gate, also called the controlled-controlled NOT, is an important operation in basic quantum error correction. We report a scheme for a Toffoli gate that exploits interactions with non-computational excited states of transmon qubits which can be executed faster than an equivalent construction using one- and two-qubit gates. The application of this gate to efficient measurement-free quantum error correction will be discussed. Research supported by NSF, NSA, and ARO.

  20. Efficient networks for quantum factoring

    SciTech Connect

    Beckman, D.; Chari, A.N.; Devabhaktuni, S.; Preskill, J.

    1996-08-01

    We consider how to optimize memory use and computation time in operating a quantum computer. In particular, we estimate the number of memory quantum bits (qubits) and the number of operations required to perform factorization, using the algorithm suggested by Shor [in {ital Proceedings} {ital of} {ital the} 35{ital th} {ital Annual} {ital Symposium} {ital on} {ital Foundations} {ital of} {ital Computer} {ital Science}, edited by S. Goldwasser (IEEE Computer Society, Los Alamitos, CA, 1994), p. 124]. A {ital K}-bit number can be factored in time of order {ital K}{sup 3} using a machine capable of storing 5{ital K}+1 qubits. Evaluation of the modular exponential function (the bottleneck of Shor{close_quote}s algorithm) could be achieved with about 72{ital K}{sup 3} elementary quantum gates; implementation using a linear ion trap would require about 396{ital K}{sup 3} laser pulses. A proof-of-principle demonstration of quantum factoring (factorization of 15) could be performed with only 6 trapped ions and 38 laser pulses. Though the ion trap may never be a useful computer, it will be a powerful device for exploring experimentally the properties of entangled quantum states. {copyright} {ital 1996 The American Physical Society.}

  1. Conditional efficient multiuser quantum cryptography network

    NASA Astrophysics Data System (ADS)

    Xue, Peng; Li, Chuan-Feng; Guo, Guang-Can

    2002-02-01

    We propose a conditional quantum key distribution scheme with three nonorthogonal states. Combined with the idea presented by Lo et al. (H.-K. Lo, H. F. Chau, and M. Ardehali, e-print arXiv: quant-ph/0011056), the efficiency of this scheme is increased to tend to 100%. Also, such a refined data analysis guarantees the security of our scheme against the most general eavesdropping strategy. Then, based on the scheme, we present a quantum cryptography network with the addition of a device called ``space optical switch.'' Moreover, we give out a realization of a quantum random number generator. Thus, a feasible experimental scheme of this efficient quantum cryptography network is completely given.

  2. Efficient multiparty quantum-secret-sharing schemes

    SciTech Connect

    Xiao Li; Deng Fuguo; Long Guilu; Pan Jianwei

    2004-05-01

    In this work, we generalize the quantum-secret-sharing scheme of Hillery, Buzek, and Berthiaume [Phys. Rev. A 59, 1829 (1999)] into arbitrary multiparties. Explicit expressions for the shared secret bit is given. It is shown that in the Hillery-Buzek-Berthiaume quantum-secret-sharing scheme the secret information is shared in the parity of binary strings formed by the measured outcomes of the participants. In addition, we have increased the efficiency of the quantum-secret-sharing scheme by generalizing two techniques from quantum key distribution. The favored-measuring-basis quantum-secret-sharing scheme is developed from the Lo-Chau-Ardehali technique [H. K. Lo, H. F. Chau, and M. Ardehali, e-print quant-ph/0011056] where all the participants choose their measuring-basis asymmetrically, and the measuring-basis-encrypted quantum-secret-sharing scheme is developed from the Hwang-Koh-Han technique [W. Y. Hwang, I. G. Koh, and Y. D. Han, Phys. Lett. A 244, 489 (1998)] where all participants choose their measuring basis according to a control key. Both schemes are asymptotically 100% in efficiency, hence nearly all the Greenberger-Horne-Zeilinger states in a quantum-secret-sharing process are used to generate shared secret information.

  3. Extreme ultraviolet quantum detection efficiency of rubidium bromide opaque photocathodes

    NASA Technical Reports Server (NTRS)

    Siegmund, Oswald H. W.; Gaines, Geoffrey A.

    1990-01-01

    Measurements are presented of the quantum detection efficiency (QDE) of three samples of RbBr photocathode layers over the 44-150-A wavelength range. The QDE of RbBr-coated microchannel plate (MCP) was measured using a back-to-back Z-stack MCP configuration in a detector with a wedge and strip position-sensitive anode, of the type described by Siegmund et al. (1984). To assess the stability of RbBr layer, the RbBr photocathode was exposed to air at about 30 percent humidity for 20 hr. It was found that the QDE values for the aged cathode were within the QDE measurement errors of the original values. A simple QDE model was developed, and it was found that its predictions are in accord with the QDE measurements.

  4. Efficient polymer light-emitting diode with air-stable aluminum cathode

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, D.; Wetzelaer, G. A. H.; Doumon, N. Y.; Blom, P. W. M.

    2016-03-01

    The fast degradation of polymer light-emitting diodes (PLEDs) in ambient conditions is primarily due to the oxidation of highly reactive metals, such as barium or calcium, which are used as cathode materials. Here, we report the fabrication of PLEDs using an air-stable partially oxidized aluminum (AlOx) cathode. Usually, the high work function of aluminum (4.2 eV) imposes a high barrier for injecting electrons into the lowest unoccupied molecular orbital (LUMO) of the emissive polymer (2.9 eV below the vacuum level). By partially oxidizing aluminum, its work function is decreased, but not sufficiently low for efficient electron injection. Efficient injection is obtained by inserting an electron transport layer of poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,8-diyl)] (F8BT), which has its LUMO at 3.3 eV below vacuum, between the AlOx cathode and the emissive polymer. The intermediate F8BT layer not only serves as a hole-blocking layer but also provides an energetic staircase for electron injection from AlOx into the emissive layer. PLEDs with an AlOx cathode and F8BT interlayer exhibit a doubling of the efficiency as compared to conventional Ba/Al PLEDs, and still operate even after being kept in ambient atmosphere for one month without encapsulation.

  5. Using elastin protein to develop highly efficient air cathodes for lithium-O2 batteries

    NASA Astrophysics Data System (ADS)

    Guo, Guilue; Yao, Xin; Ang, Huixiang; Tan, Huiteng; Zhang, Yu; Guo, Yuanyuan; Fong, Eileen; Yan, Qingyu

    2016-01-01

    Transition metal-nitrogen/carbon (M-N/C, M = Fe, Co) catalysts are synthesized using environmentally friendly histidine-tag-rich elastin protein beads, metal sulfate and water soluble carbon nanotubes followed by post-annealing and acid leaching processes. The obtained catalysts are used as cathode materials in lithium-O2 batteries. It has been discovered that during discharge, Li2O2 nanoparticles first nucleate and grow around the bead-decorated CNT regions (M-N/C centres) and coat on the catalysts at a high degree of discharge. The Fe-N/C catalyst-based cathodes deliver a capacity of 12 441 mAh g-1 at a current density of 100 mA g-1. When they were cycled at a limited capacity of 800 mAh g-1 at current densities of 200 or 400 mA g-1, these cathodes showed stable charge voltages of ˜3.65 or 3.90 V, corresponding to energy efficiencies of ˜71.2 or 65.1%, respectively. These results are considerably superior to those of the cathodes based on bare annealed CNTs, which prove that the Fe-N/C catalysts developed here are promising for use in non-aqueous lithium-O2 battery cathodes.

  6. Using elastin protein to develop highly efficient air cathodes for lithium-O2 batteries.

    PubMed

    Guo, Guilue; Yao, Xin; Ang, Huixiang; Tan, Huiteng; Zhang, Yu; Guo, Yuanyuan; Fong, Eileen; Yan, Qingyu

    2016-01-29

    Transition metal-nitrogen/carbon (M-N/C, M = Fe, Co) catalysts are synthesized using environmentally friendly histidine-tag-rich elastin protein beads, metal sulfate and water soluble carbon nanotubes followed by post-annealing and acid leaching processes. The obtained catalysts are used as cathode materials in lithium-O2 batteries. It has been discovered that during discharge, Li2O2 nanoparticles first nucleate and grow around the bead-decorated CNT regions (M-N/C centres) and coat on the catalysts at a high degree of discharge. The Fe-N/C catalyst-based cathodes deliver a capacity of 12,441 mAh g(-1) at a current density of 100 mA g(-1). When they were cycled at a limited capacity of 800 mAh g(-1) at current densities of 200 or 400 mA g(-1), these cathodes showed stable charge voltages of ∼3.65 or 3.90 V, corresponding to energy efficiencies of ∼71.2 or 65.1%, respectively. These results are considerably superior to those of the cathodes based on bare annealed CNTs, which prove that the Fe-N/C catalysts developed here are promising for use in non-aqueous lithium-O2 battery cathodes. PMID:26657319

  7. Quantum efficiency and false positive rate

    PubMed Central

    Hallett, P. E.

    1969-01-01

    1. This paper presents an analysis of the efficiency of performance at the absolute threshold of human vision. The data are from the same series as the previous papers (Hallett, 1969b, c) and consist of frequency-of-seeing curves, thresholds, false positive rates and equivalent background measurements, accumulated as small samples over a number of days. 2. Quantum efficiency is defined here as the ratio of the thresholds of an ideal and a real detector performing the same task with the same sampling error. This avoids the problem as to whether the frequency-of-seeing curve of the real detector is exactly a Poisson sum or not. 3. The long-term quantum efficiency can be low (about 0·04) as a result of drifts in the mean threshold. 4. The average short-term quantum efficiency is in the region of 0·1, which is roughly the physiological limit set by Rushton's (1956b) measurements of rhodopsin density in the living rods. If this is correct, then the absorption of a quantum, and not the bleaching of a rhodopsin molecule, is sufficient for the generation of a neural event. 5. Application of a simple signal/noise theory to the data gives solutions close to those suggested by Barlow (1956) and shows that false positives almost invariably arise from errors subsequent to the signal/noise decision process. PMID:5784295

  8. Phase III Advanced Anodes and Cathodes Utilized in Energy Efficient Aluminum Production Cells

    SciTech Connect

    R.A. Christini; R.K. Dawless; S.P. Ray; D.A. Weirauch, Jr.

    2001-11-05

    During Phase I of the present program, Alcoa developed a commercial cell concept that has been estimated to save 30% of the energy required for aluminum smelting. Phase ii involved the construction of a pilot facility and operation of two pilots. Phase iii of the Advanced Anodes and Cathodes Program was aimed at bench experiments to permit the resolution of certain questions to be followed by three pilot cells. All of the milestones related to materials, in particular metal purity, were attained with distinct improvements over work in previous phases of the program. NiO additions to the ceramic phase and Ag additions to the Cu metal phase of the cermet improved corrosion resistance sufficiently that the bench scale pencil anodes met the purity milestones. Some excellent metal purity results have been obtained with anodes of the following composition: Further improvements in anode material composition appear to be dependent on a better understanding of oxide solubilities in molten cryolite. For that reason, work was commissioned with an outside consultant to model the MeO - cryolite systems. That work has led to a better understanding of which oxides can be used to substitute into the NiO-Fe2O3 ceramic phase to stabilize the ferrites and reduce their solubility in molten cryolite. An extensive number of vertical plate bench electrolysis cells were run to try to find conditions where high current efficiencies could be attained. TiB2-G plates were very inconsistent and led to poor wetting and drainage. Pure TiB2 did produce good current efficiencies at small overlaps (shadowing) between the anodes and cathodes. This bench work with vertical plate anodes and cathodes reinforced the importance of good cathode wetting to attain high current efficiencies. Because of those conclusions, new wetting work was commissioned and became a major component of the research during the third year of Phase III. While significant progress was made in several areas, much work needs to be

  9. Cathodes incorporating thin fluoride layers for efficient injection in blue polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Brown, Thomas M.; Millard, Ian S.; Lacey, David; Burroughes, Jeremy H.; Friend, Richard H.; Cacialli, Franco

    2002-02-01

    Efficient blue Polymer Light-Emitting Diodes (PLEDs) were fabricated by evaporating thin LiF layers between Al or Ca cathodes. Electroabsorption measurements of the built-in potential across the diodes show that devices fabricated with LiF/Ca/Al cathodes exhibit the smallest average barrier height and operating voltage (compared to both Ca and LiF/Al currently amongst the most efficient electron injectors). The turn-on bias is essentially equivalent to the built-in potential (~2.7 V), indicating an effective minimisation of the barrier to electron injection. Results are also compared with devices incorporating CsF layers and are correlated with the electroluminescent characteristics of the LEDs. A very strong dependence (~ exponential) between the built-in potential and the current and luminance at a fixed electric field (0.5MV/cm) is observed and is explained with the reduction of the cathodic barrier height brought about by the different cathode multilayers.

  10. Efficient inverted organic light-emitting devices with self or intentionally Ag-doped interlayer modified cathode

    SciTech Connect

    Liu, Wenbo; Liu, Shihao; Yu, Jing; Zhang, Wei; Wen, Xuemei; Yin, Yongming; Zhang, Letian; Chen, Ping; Xie, Wenfa

    2014-03-03

    Green phosphorescent inverted organic light-emitting devices (IOLEDs) with self or intentionally Ag-doped interlayer modified cathode were demonstrated. The IOLEDs show low driving voltage and high efficiency. For example, the efficiency of inverted bottom-emitting OLED with ITO cathode is comparable with the conventional bottom-emitting OLED with ITO anode. The top-emitting IOLED with Ag cathode shows high current efficiency of 76.4 cd/A which is 2.38 times of that of the conventional bottom-emitting OLED with ITO anode. The results indicate that the electron injection from cathode was observably improved by the Ag-doped interlayer and such interlayer is cathode independent relatively.

  11. Quantum Otto cycle efficiency on coupled qudits

    NASA Astrophysics Data System (ADS)

    Ivanchenko, E. A.

    2015-09-01

    Properties of the coupled particles with spin 3/2 (quartits) in a constant magnetic field, as a working substance in the quantum Otto cycle of the heat engine, are considered. It is shown that this system as a converter of heat energy in work (i) shows the efficiency 1 at the negative absolute temperatures of heat baths, (ii) at the temperatures of the opposite sign the efficiency approaches 1, (iii) at the positive temperatures of heat baths antiferromagnetic interaction raises efficiency threefold in comparison with uncoupled particles.

  12. Quantum Otto cycle efficiency on coupled qudits.

    PubMed

    Ivanchenko, E A

    2015-09-01

    Properties of the coupled particles with spin 3/2 (quartits) in a constant magnetic field, as a working substance in the quantum Otto cycle of the heat engine, are considered. It is shown that this system as a converter of heat energy in work (i) shows the efficiency 1 at the negative absolute temperatures of heat baths, (ii) at the temperatures of the opposite sign the efficiency approaches 1, (iii) at the positive temperatures of heat baths antiferromagnetic interaction raises efficiency threefold in comparison with uncoupled particles. PMID:26465443

  13. Efficient quantum optical state engineering and applications

    NASA Astrophysics Data System (ADS)

    McCusker, Kevin T.

    Over a century after the modern prediction of the existence of individual particles of light by Albert Einstein, a reliable source of this simple quantum state of one photon does not exist. While common light sources such as a light bulb, LED, or laser can produce a pulse of light with an average of one photon, there is (currently) no way of knowing the number of photons in that pulse without first absorbing (and thereby destroying) them. Spontaneous parametric down-conversion, a process in which one high-energy photon splits into two lower-energy photons, allows us to prepare a single-photon state by detecting one of the photons, which then heralds the existence of its twin. This process has been the workhorse of quantum optics, allowing demonstrations of a myriad of quantum processes and protocols, such as entanglement, cryptography, superdense coding, teleportation, and simple quantum computing demonstrations. All of these processes would benefit from better engineering of the underlying down-conversion process, but despite significant effort (both theoretical and experimental), optimization of this process is ongoing. The focus of this work is to optimize certain aspects of a down-conversion source, and then use this tool in novel experiments not otherwise feasible. Specifically, the goal is to optimize the heralding efficiency of the down-conversion photons, i.e., the probability that if one photon is detected, the other photon is also detected. This source is then applied to two experiments (a single-photon source, and a quantum cryptography implementation), and the detailed theory of an additional application (a source of Fock states and path-entangled states, called N00N states) is discussed, along with some other possible applications.

  14. Quantum wells for high-efficiency photovoltaics

    NASA Astrophysics Data System (ADS)

    Alonso-Álvarez, Diego; Ekins-Daukes, Nicholas

    2016-03-01

    Over the last couple of decades, there has been an intense research on strain balanced semiconductor quantum wells (QW) to increase the efficiency of multi-junction solar (MJ) solar cells grown monolithically on germanium. So far, the most successful application of QWs have required just to tailor a few tens of nanometers the absorption edge of a given subcell in order to reach the optimum spectral position. However, the demand for higher efficiency devices requiring 3, 4 or more junctions, represents a major difference in the challenges QWs must face: tailoring the absorption edge of a host material is not enough, but a complete new device, absorbing light in a different spectral region, must be designed. Among the most important issues to solve is the need for an optically thick structure to absorb enough light while keeping excellent carrier extraction using highly strained materials. Improvement of the growth techniques, smarter device designs - involving superlattices and shifted QWs, for example - or the use of quantum wires rather than QWs, have proven to be very effective steps towards high efficient MJ solar cells based on nanostructures in the last couple of years. But more is to be done to reach the target performances. This work discusses all these challenges, the limitations they represent and the different approaches that are being used to overcome them.

  15. High Quantum Efficiency OLED Lighting Systems

    SciTech Connect

    Shiang, Joseph

    2011-09-30

    The overall goal of the program was to apply improvements in light outcoupling technology to a practical large area plastic luminaire, and thus enable the product vision of an extremely thin form factor high efficiency large area light source. The target substrate was plastic and the baseline device was operating at 35 LPW at the start of the program. The target LPW of the program was a >2x improvement in the LPW efficacy and the overall amount of light to be delivered was relatively high 900 lumens. Despite the extremely difficult challenges associated with scaling up a wet solution process on plastic substrates, the program was able to make substantial progress. A small molecule wet solution process was successfully implemented on plastic substrates with almost no loss in efficiency in transitioning from the laboratory scale glass to large area plastic substrates. By transitioning to a small molecule based process, the LPW entitlement increased from 35 LPW to 60 LPW. A further 10% improvement in outcoupling efficiency was demonstrated via the use of a highly reflecting cathode, which reduced absorptive loss in the OLED device. The calculated potential improvement in some cases is even larger, ~30%, and thus there is considerable room for optimism in improving the net light coupling efficacy, provided absorptive loss mechanisms are eliminated. Further improvements are possible if scattering schemes such as the silver nanowire based hard coat structure are fully developed. The wet coating processes were successfully scaled to large area plastic substrate and resulted in the construction of a 900 lumens luminaire device.

  16. Power-Efficient, High-Current-Density, Long-Life Thermionic Cathode Developed for Microwave Amplifier Applications

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.

    2002-01-01

    A power-efficient, miniature, easily manufactured, reservoir-type barium-dispenser thermionic cathode has been developed that offers the significant advantages of simultaneous high electron-emission current density (>2 A/sq cm) and very long life (>100,000 hr of continuous operation) when compared with the commonly used impregnated-type barium-dispenser cathodes. Important applications of this cathode are a wide variety of microwave and millimeter-wave vacuum electronic devices, where high output power and reliability (long life) are essential. We also expect it to enable the practical development of higher purveyance electron guns for lower voltage and more reliable device operation. The low cathode heater power and reduced size and mass are expected to be particularly beneficial in traveling-wave-tube amplifiers (TWTA's) for space communications, where future NASA mission requirements include smaller onboard spacecraft systems, higher data transmission rates (high frequency and output power) and greater electrical efficiency.

  17. Efficient Controlled Quantum Secure Direct Communication Protocols

    NASA Astrophysics Data System (ADS)

    Patwardhan, Siddharth; Moulick, Subhayan Roy; Panigrahi, Prasanta K.

    2016-03-01

    We study controlled quantum secure direct communication (CQSDC), a cryptographic scheme where a sender can send a secret bit-string to an intended recipient, without any secure classical channel, who can obtain the complete bit-string only with the permission of a controller. We report an efficient protocol to realize CQSDC using Cluster state and then go on to construct a (2-3)-CQSDC using Brown state, where a coalition of any two of the three controllers is required to retrieve the complete message. We argue both protocols to be unconditionally secure and analyze the efficiency of the protocols to show it to outperform the existing schemes while maintaining the same security specifications.

  18. Efficient Controlled Quantum Secure Direct Communication Protocols

    NASA Astrophysics Data System (ADS)

    Patwardhan, Siddharth; Moulick, Subhayan Roy; Panigrahi, Prasanta K.

    2016-07-01

    We study controlled quantum secure direct communication (CQSDC), a cryptographic scheme where a sender can send a secret bit-string to an intended recipient, without any secure classical channel, who can obtain the complete bit-string only with the permission of a controller. We report an efficient protocol to realize CQSDC using Cluster state and then go on to construct a (2-3)-CQSDC using Brown state, where a coalition of any two of the three controllers is required to retrieve the complete message. We argue both protocols to be unconditionally secure and analyze the efficiency of the protocols to show it to outperform the existing schemes while maintaining the same security specifications.

  19. Efficient multilayer white polymer light-emitting diodes with aluminum cathodes

    NASA Astrophysics Data System (ADS)

    Niu, Xiaodi; Qin, Chuanjiang; Zhang, Baohua; Yang, Junwei; Xie, Zhiyuan; Cheng, Yanxiang; Wang, Lixiang

    2007-05-01

    Efficient multilayer white polymer light-emitting diodes (WPLEDs) with aluminum cathodes are fabricated. The multilayer structure is composed of a water soluble hole-injection layer, a toluene-soluble emissive layer, and an alcohol-soluble emissive layer. The polarity difference of the solvents used for spin coating these polymers allows for realization of the multilayer polymer structure. The recombination zone confined at the interface of the two emissive polymers avoids exciton quenching by electrodes, and white emission is realized by harvesting photons emitted from the two emissive polymers. A maximum luminous efficiency of 16.9cd/A and a power efficiency of 11.1lm/W are achieved for this WPLED.

  20. Quantum efficiencies of bacteriorhodopsin photochemical reactions

    SciTech Connect

    Xie, A.H. )

    1990-11-01

    Determination of quantum efficiencies of bacteriorhodopsin (bR) photoreactions is an essential step toward a full understanding of its light-driven proton-pumping mechanism. The bR molecules can be photoconverted into and from a K state, which is stable at 110 K. I measured the absorption spectra of pure bR, and the photoequilibrium states of bR and K generated with 420, 460, 500, 510, 520, 540, 560, 570, 580, 590, and 600 nm illumination at 110 K. The fraction of the K population in the photoequilibrium state, fk, is determined by AbR and AK the absorbances of the bR and K states at the excitation wavelengths, and also by phi 1 and phi 2, the quantum efficiencies for the bR to K and K to bR photoconversion: fK = phi 1 AbR/(phi 1AbR + phi 2Ak). By assuming that the ratio phi 1/phi 2 is the same at two different but close wavelengths, for example 570 and 580 nm, the value of phi 1/phi 2 at 570 and 580 nm was determined to be 0.55 +/- 0.02, and the spectrum of the K state was obtained with the peak absorbance at 607 nm. The values of phi 1/phi 2 at the other excitation wavelengths were then evaluated using the known K spectrum, and show almost no dependence on the excitation wavelength within the main band. The result phi 1/phi 2 = 0.55 +/- 0.02 disagrees with those of many other groups. The advantages of this method over others are its minimal assumptions and its straightforward procedure.

  1. Duality quantum algorithm efficiently simulates open quantum systems

    PubMed Central

    Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu

    2016-01-01

    Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm. PMID:27464855

  2. Duality quantum algorithm efficiently simulates open quantum systems

    NASA Astrophysics Data System (ADS)

    Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu

    2016-07-01

    Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm.

  3. Duality quantum algorithm efficiently simulates open quantum systems.

    PubMed

    Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu

    2016-01-01

    Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d(3)) in contrast to O(d(4)) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm. PMID:27464855

  4. High Efficiency Colloidal Quantum Dot Phosphors

    SciTech Connect

    Kahen, Keith

    2013-12-31

    The project showed that non-Cd containing, InP-based nanocrystals (semiconductor materials with dimensions of ~6 nm) have high potential for enabling next-generation, nanocrystal-based, on chip phosphors for solid state lighting. Typical nanocrystals fall short of the requirements for on chip phosphors due to their loss of quantum efficiency under the operating conditions of LEDs, such as, high temperature (up to 150 °C) and high optical flux (up to 200 W/cm2). The InP-based nanocrystals invented during this project maintain high quantum efficiency (>80%) in polymer-based films under these operating conditions for emission wavelengths ranging from ~530 to 620 nm. These nanocrystals also show other desirable attributes, such as, lack of blinking (a common problem with nanocrystals which limits their performance) and no increase in the emission spectral width from room to 150 °C (emitters with narrower spectral widths enable higher efficiency LEDs). Prior to these nanocrystals, no nanocrystal system (regardless of nanocrystal type) showed this collection of properties; in fact, other nanocrystal systems are typically limited to showing only one desirable trait (such as high temperature stability) but being deficient in other properties (such as high flux stability). The project showed that one can reproducibly obtain these properties by generating a novel compositional structure inside of the nanomaterials; in addition, the project formulated an initial theoretical framework linking the compositional structure to the list of high performance optical properties. Over the course of the project, the synthetic methodology for producing the novel composition was evolved to enable the synthesis of these nanomaterials at a cost approximately equal to that required for forming typical conventional nanocrystals. Given the above results, the last major remaining step prior to scale up of the nanomaterials is to limit the oxidation of these materials during the tens of

  5. Fast and efficient photodetection in nanoscale quantum-dot junctions.

    PubMed

    Prins, Ferry; Buscema, Michele; Seldenthuis, Johannes S; Etaki, Samir; Buchs, Gilles; Barkelid, Maria; Zwiller, Val; Gao, Yunan; Houtepen, Arjan J; Siebbeles, Laurens D A; van der Zant, Herre S J

    2012-11-14

    We report on a photodetector in which colloidal quantum dots directly bridge nanometer-spaced electrodes. Unlike in conventional quantum-dot thin film photodetectors, charge mobility no longer plays a role in our quantum-dot junctions as charge extraction requires only two individual tunnel events. We find an efficient photoconductive gain mechanism with external quantum efficiencies of 38 electrons-per-photon in combination with response times faster than 300 ns. This compact device-architecture may open up new routes for improved photodetector performance in which efficiency and bandwidth do not go at the cost of one another. PMID:23094869

  6. Al-TiO₂ composite-modified single-layer graphene as an efficient transparent cathode for organic solar cells.

    PubMed

    Zhang, Di; Xie, Fengxian; Lin, Peng; Choy, Wallace C H

    2013-02-26

    While there are challenges in tuning the properties of graphene (surface wettability, work function alignment, and carrier transport) for realizing an efficient graphene cathode in organic solar cells (OSCs), we propose and demonstrate using an Al-TiO₂ composite to modify single-layer graphene as an efficient cathode for OSCs. To unveil the contributions of the composite in addressing the aforementioned challenges, the evaporated aluminum nanoclusters in the composite benefit the graphene cathode by simultaneously achieving two roles of improving its surface wettability for subsequent TiO₂ deposition and reducing its work function to offer better energy alignment. To address challenges related to charge transport, solution-processed TiO₂ with excellent electron transport can offer charge extraction enhancement to the graphene cathode, which is essential to efficient devices. However, it is a well-known issue for methods such as spin-coating to produce uniform films on the initially hydrophobic graphene, even with improved wettability. The undesirable morphology of TiO₂ by such methods considerably inhibits its effectiveness in enhancing charge extraction. We propose a self-assembly method to deposit the solution-processed TiO₂ on the Al-covered graphene for forming the Al-TiO₂ composite. Compared with spin-coating, the self-assembly method is found to achieve more uniform coating on the graphene surface, with highly controllable thickness. Consequently, the graphene cathode modified with the Al-TiO₂ composite in inverted OSCs gives rise to enhanced power conversion efficiency of 2.58%, which is 2-fold of the previously best reported efficiency (1.27%) for graphene cathode OSCs, reaching ∼75% performance of control devices using indium tin oxide. PMID:23327464

  7. K2CsSb Cathode Development

    SciTech Connect

    Smedley,J.; Rao, T.; Wang, E.

    2008-10-01

    K{sub 2}CsSb is an attractive photocathode for high current applications. With a quantum efficiency of >4% at 532nm and >10% at 355nm, it is the only cathode to have demonstrated an average current of 35mA in an accelerator environment We describe ongoing cathode development work. for the energy recovery linac being constructed at BNL Several cathodes have been created on both copper and stainless steel substrates, and their spatial uniformity and spectral response have been characterized. Preliminary lifetime measurements have been performed at high average current densities (>1 mA/mm{sup 2}).

  8. One-Step Synthesis of Self-Supported Nickel Phosphide Nanosheet Array Cathodes for Efficient Electrocatalytic Hydrogen Generation.

    PubMed

    Wang, Xiaoguang; Kolen'ko, Yury V; Bao, Xiao-Qing; Kovnir, Kirill; Liu, Lifeng

    2015-07-01

    Nickel phosphide is an emerging low-cost, earth-abundant catalyst that can efficiently reduce water to generate hydrogen. However, the synthesis of nickel phosphide catalysts usually involves multiple steps and is laborious. Herein, a convenient and straightforward approach to the synthesis of a three-dimensional (3D) self-supported biphasic Ni5 P4 -Ni2 P nanosheet (NS) array cathode is presented, which is obtained by direct phosphorization of commercially available nickel foam using phosphorus vapor. The synthesized 3D Ni5 P4 -Ni2 P-NS array cathode exhibits outstanding electrocatalytic activity and long-term durability toward the hydrogen evolution reaction (HER) in acidic medium. The fabrication procedure reported here is scalable, showing substantial promise for use in water electrolysis. More importantly, the approach can be readily extended to synthesize other self-supported transition metal phosphide HER cathodes. PMID:26032688

  9. A scheme for efficient quantum computation with linear optics

    NASA Astrophysics Data System (ADS)

    Knill, E.; Laflamme, R.; Milburn, G. J.

    2001-01-01

    Quantum computers promise to increase greatly the efficiency of solving problems such as factoring large integers, combinatorial optimization and quantum physics simulation. One of the greatest challenges now is to implement the basic quantum-computational elements in a physical system and to demonstrate that they can be reliably and scalably controlled. One of the earliest proposals for quantum computation is based on implementing a quantum bit with two optical modes containing one photon. The proposal is appealing because of the ease with which photon interference can be observed. Until now, it suffered from the requirement for non-linear couplings between optical modes containing few photons. Here we show that efficient quantum computation is possible using only beam splitters, phase shifters, single photon sources and photo-detectors. Our methods exploit feedback from photo-detectors and are robust against errors from photon loss and detector inefficiency. The basic elements are accessible to experimental investigation with current technology.

  10. A novel carbon black graphite hybrid air-cathode for efficient hydrogen peroxide production in bioelectrochemical systems

    NASA Astrophysics Data System (ADS)

    Li, Nan; An, Jingkun; Zhou, Lean; Li, Tian; Li, Junhui; Feng, Cuijuan; Wang, Xin

    2016-02-01

    Carbon black and graphite hybrid air-cathode is proved to be effective for H2O2 production in bioelectrochemical systems. The optimal mass ratio of carbon black to graphite is 1:5 with the highest H2O2 yield of 11.9 mg L-1 h-1 cm-2 (12.3 mA cm-2). Continuous flow is found to improve the current efficiency due to the avoidance of H2O2 accumulation. In the biological system, the highest H2O2 yield reaches 3.29 mg L-1h-1 (0.079 kg m-3day-1) with a current efficiency of 72%, which is higher than the abiotic system at the same current density. H2O2 produced in this system is mainly from the oxygen diffused through this air-cathode (>66%), especially when a more negative cathode potential is applied (94% at -1.0 V). This hybrid air-cathode has advantages of high H2O2 yield, high current density and no need of aeration, which make the synthesis of H2O2 more efficient and economical.

  11. GENERAL: Efficient quantum secure communication with a publicly known key

    NASA Astrophysics Data System (ADS)

    Li, Chun-Yan; Li, Xi-Han; Deng, Fu-Guo; Zhou, Hong-Yu

    2008-07-01

    This paper presents a simple way for an eavesdropper to eavesdrop freely the secret message in the experimental realization of quantum communication protocol proposed by Beige et al (2002 Acta Phys. Pol. A 101 357). Moreover, it introduces an efficient quantum secure communication protocol based on a publicly known key with decoy photons and two biased bases by modifying the original protocol. The total efficiency of this new protocol is double that of the original one. With a low noise quantum channel, this protocol can be used for transmitting a secret message. At present, this protocol is good for generating a private key efficiently.

  12. A high-efficiency double quantum dot heat engine

    NASA Astrophysics Data System (ADS)

    Liu, Y. S.; Yang, X. F.; Hong, X. K.; Si, M. S.; Chi, F.; Guo, Y.

    2013-08-01

    High-efficiency heat engine requires a large output power at the cost of less input heat energy as possible. Here we propose a heat engine composed of serially connected two quantum dots sandwiched between two metallic electrodes. The efficiency of the heat engine can approach the maximum allowable Carnot efficiency ηC. We also find that the strong intradot Coulomb interaction can induce additional work regions for the heat engine, whereas the interdot Coulomb interaction always suppresses the efficiency. Our results presented here indicate a way to fabricate high-efficiency quantum-dot thermoelectric devices.

  13. Efficient self-consistent quantum transport simulator for quantum devices

    SciTech Connect

    Gao, X. Mamaluy, D.; Nielsen, E.; Young, R. W.; Lilly, M. P.; Bishop, N. C.; Carroll, M. S.; Muller, R. P.; Shirkhorshidian, A.

    2014-04-07

    We present a self-consistent one-dimensional (1D) quantum transport simulator based on the Contact Block Reduction (CBR) method, aiming for very fast and robust transport simulation of 1D quantum devices. Applying the general CBR approach to 1D open systems results in a set of very simple equations that are derived and given in detail for the first time. The charge self-consistency of the coupled CBR-Poisson equations is achieved by using the predictor-corrector iteration scheme with the optional Anderson acceleration. In addition, we introduce a new way to convert an equilibrium electrostatic barrier potential calculated from an external simulator to an effective doping profile, which is then used by the CBR-Poisson code for transport simulation of the barrier under non-zero biases. The code has been applied to simulate the quantum transport in a double barrier structure and across a tunnel barrier in a silicon double quantum dot. Extremely fast self-consistent 1D simulations of the differential conductance across a tunnel barrier in the quantum dot show better qualitative agreement with experiment than non-self-consistent simulations.

  14. Efficient self-consistent quantum transport simulator for quantum devices

    NASA Astrophysics Data System (ADS)

    Gao, X.; Mamaluy, D.; Nielsen, E.; Young, R. W.; Shirkhorshidian, A.; Lilly, M. P.; Bishop, N. C.; Carroll, M. S.; Muller, R. P.

    2014-04-01

    We present a self-consistent one-dimensional (1D) quantum transport simulator based on the Contact Block Reduction (CBR) method, aiming for very fast and robust transport simulation of 1D quantum devices. Applying the general CBR approach to 1D open systems results in a set of very simple equations that are derived and given in detail for the first time. The charge self-consistency of the coupled CBR-Poisson equations is achieved by using the predictor-corrector iteration scheme with the optional Anderson acceleration. In addition, we introduce a new way to convert an equilibrium electrostatic barrier potential calculated from an external simulator to an effective doping profile, which is then used by the CBR-Poisson code for transport simulation of the barrier under non-zero biases. The code has been applied to simulate the quantum transport in a double barrier structure and across a tunnel barrier in a silicon double quantum dot. Extremely fast self-consistent 1D simulations of the differential conductance across a tunnel barrier in the quantum dot show better qualitative agreement with experiment than non-self-consistent simulations.

  15. Determination of the Quantum Efficiency of a Light Detector

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2008-01-01

    The "quantum efficiency" (QE) is an important property of a light detector. This quantity can be determined in the undergraduate physics laboratory. The experimentally determined QE of a silicon photodiode appeared to be in reasonable agreement with expected values. The experiment confirms the quantum properties of light and seems to be a useful…

  16. Efficient quantum circuits for Toeplitz and Hankel matrices

    NASA Astrophysics Data System (ADS)

    Mahasinghe, A.; Wang, J. B.

    2016-07-01

    Toeplitz and Hankel matrices have been a subject of intense interest in a wide range of science and engineering related applications. In this paper, we show that quantum circuits can efficiently implement sparse or Fourier-sparse Toeplitz and Hankel matrices. This provides an essential ingredient for solving many physical problems with Toeplitz or Hankel symmetry in the quantum setting with deterministic queries.

  17. Wide-Band, High-Quantum-Efficiency Photodetector

    NASA Technical Reports Server (NTRS)

    Jackson, Deborah; Wilson, Daniel; Stern, Jeffrey

    2007-01-01

    A design has been proposed for a photodetector that would exhibit a high quantum efficiency (as much as 90 percent) over a wide wavelength band, which would typically be centered at a wavelength of 1.55 m. This and similar photodetectors would afford a capability for detecting single photons - a capability that is needed for research in quantum optics as well as for the practical development of secure optical communication systems for distribution of quantum cryptographic keys. The proposed photodetector would be of the hot-electron, phonon-cooled, thin-film superconductor type. The superconducting film in this device would be a meandering strip of niobium nitride. In the proposed photodetector, the quantum efficiency would be increased through incorporation of optiA design has been proposed for a photodetector that would exhibit a high quantum efficiency (as much as 90 percent) over a wide wavelength band, which would typically be centered at a wavelength of 1.55 m. This and similar photodetectors would afford a capability for detecting single photons - a capability that is needed for research in quantum optics as well as for the practical development of secure optical communication systems for distribution of quantum cryptographic keys. The proposed photodetector would be of the hot-electron, phonon-cooled, thin-film superconductor type. The superconducting film in this device would be a meandering strip of niobium nitride. In the proposed photodetector, the quantum efficiency would be increased through incorporation of opti-

  18. Surface Characterization of the LCLS RF Gun Cathode

    SciTech Connect

    Brachmann, Axel; Decker, Franz-Josef; Ding, Yuantao; Dowell, David; Emma, Paul; Frisch, Josef; Gilevich, Sasha; Hays, Gregory; Hering, Philippe; Huang, Zhirong; Iverson, Richard; Loos, Henrik; Miahnahri, Alan; Nordlund, Dennis; Nuhn, Heinz-Dieter; Pianetta, Piero; Turner, James; Welch, James; White, William; Wu, Juhao; Xiang, Dao; /SLAC

    2012-06-25

    The first copper cathode installed in the LCLS RF gun was used during LCLS commissioning for more than a year. However, after high charge operation (> 500 pC), the cathode showed a decline of quantum efficiency within the area of drive laser illumination. They report results of SEM, XPS and XAS studies that were carried out on this cathode after it was removed from the gun. X-ray absorption and X-ray photoelectron spectroscopy reveal surface contamination by various hydrocarbon compounds. In addition they report on the performance of the second installed cathode with emphasis on the spatial distribution of electron emission.

  19. Quantum Life: How photosynthetic organisms use quantum coherence to enhance the efficiency of energy transport

    NASA Astrophysics Data System (ADS)

    Lloyd, Seth

    2014-03-01

    Femtosecond spectroscopy reveals significant quantum coherence in excitonic transport in photosynthetic organisms. How and why are living systems using quantum mechanics? This talk presents a simple theory of how to optimize energy transport in quantum systems that possess noise and disorder. Too much quantum coherence leads to destructive interference and localization, while too little coherence prevents energy from moving at all, via the watchdog or quantum Zeno effect. With just the right amount of quantum coherence, however, energy can move through photosynthetic complexes with almost 100% efficiency. This talk explains how plants and photosynthetic bacteria attain such high efficiencies for energy transport, and discusses how human-made systems could be designed to attain similar efficiencies.

  20. High Quantum Efficiency AlGaN/InGaN Photodetectors

    SciTech Connect

    Buckley, James H; Leopold, Daniel

    2009-11-24

    High efficiency photon counting detectors in use today for high energy particle detection applications have a significant spectral mismatch with typical sources and have a number of practical problems compared with conventional bialkali photomultiplier tubes. Numerous high energy physics experiments that employ scintillation light detectors or Cherenkov detectors would benefit greatly from photomultipliers with higher quantum efficiencies. The need for extending the sensitivity of photon detectors to the blue and UV wavebands comes from the fact that both Cherenkov light and some scintillators have an emission spectrum which is peaked at short wavelengths. This research involves the development of high quantum efficiency, high gain, UV/blue photon counting detectors based on AlGaN/InGaN photocathode heterostructures grown by molecular beam epitaxy (MBE). The work could eventually lead to nearly ideal light detectors with a number of distinct advantages over existing technologies for numerous applications in high-energy physics and particle astrophysics. Potential advantages include much lower noise detection, better stability and radiation resistance than other cathode structures, very low radioactive background levels for deep underground experiments and high detection efficiency of individual UV-visible photons. We are also working on the development of photocathodes with intrinsic gain, initially improving the detection efficiency of hybrid semiconductor-vacuum tube devices, and eventually leading to an all-solid-state photomultiplier device.

  1. Absolute biphoton meter of the quantum efficiency of photomultipliers

    NASA Astrophysics Data System (ADS)

    Ginzburg, V. M.; Keratishvili, N. G.; Korzhenevich, E. L.; Lunev, G. V.; Sapritskii, V. I.

    1992-07-01

    An biphoton absolute meter of photomultiplier quantum efficiency is presented which is based on spontaneous parametric down-conversion. Calculation and experiment results were obtained which made it possible to choose the parameters of the setup that guarantee a linear dependence of wavelength on the Z coordinate (along the axicon axis). Results of a series of absolute measurements of the quantum efficiency of a specific photomultiplier (FEU-136) are presented.

  2. Direct determination of quantum efficiency of semiconducting films

    DOEpatents

    Faughnan, B.W.; Hanak, J.J.

    Photovoltaic quantum efficiency of semiconductor samples is determined directly, without requiring that a built-in photovoltage be generated by the sample. Electrodes are attached to the sample so as to form at least one Schottky barrier therewith. When illuminated, the generated photocurrent carriers are collected by an external bias voltage impressed across the electrodes. The generated photocurrent is measured, and photovoltaic quantum efficiency is calculated therefrom.

  3. Direct determination of quantum efficiency of semiconducting films

    DOEpatents

    Faughnan, Brian W.; Hanak, Joseph J.

    1986-01-01

    Photovoltaic quantum efficiency of semiconductor samples is determined directly, without requiring that a built-in photovoltage be generated by the sample. Electrodes are attached to the sample so as to form at least one Schottky barrier therewith. When illuminated, the generated photocurrent carriers are collected by an external bias voltage impressed across the electrodes. The generated photocurrent is measured, and photovoltaic quantum efficiency is calculated therefrom.

  4. Quantum Efficient Detectors for Use in Absolute Calibration

    NASA Technical Reports Server (NTRS)

    Faust, Jessica; Eastwood, Michael; Pavri, Betina; Raney, James

    1998-01-01

    The trap or quantum efficient detector has a quantum efficiency of greater than 0.98 for the region from 450 to 900 nm. The region of flattest response is from 600 to 900 nm. The QED consists of three windowless Hamamatsu silicon detectors. The QED was mounted below AVIRIS to monitor the Spectralon panel for changes in radiance during radiometric calibration. The next step is to permanently mount the detector to AVIRIS and monitor the overall radiance of scenes along with calibration.

  5. Optimal entanglement generation for efficient hybrid quantum repeaters

    SciTech Connect

    Azuma, Koji; Sota, Naoya; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki; Namiki, Ryo; Oezdemir, Sahin Kaya

    2009-12-15

    We propose a realistic protocol to generate entanglement between quantum memories at neighboring nodes in hybrid quantum repeaters. Generated entanglement includes only one type of error, which enables efficient entanglement distillation. In contrast to the known protocols with such a property, our protocol with ideal detectors achieves the theoretical limit of the success probability and the fidelity to a Bell state, promising higher efficiencies in the repeaters. We also show that the advantage of our protocol remains even with realistic threshold detectors.

  6. Efficient Measurement of Multiparticle Entanglement with Embedding Quantum Simulator.

    PubMed

    Chen, Ming-Cheng; Wu, Dian; Su, Zu-En; Cai, Xin-Dong; Wang, Xi-Lin; Yang, Tao; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2016-02-19

    The quantum measurement of entanglement is a demanding task in the field of quantum information. Here, we report the direct and scalable measurement of multiparticle entanglement with embedding photonic quantum simulators. In this embedding framework [R. Di Candia et al. Phys. Rev. Lett. 111, 240502 (2013)], the N-qubit entanglement, which does not associate with a physical observable directly, can be efficiently measured with only two (for even N) and six (for odd N) local measurement settings. Our experiment uses multiphoton quantum simulators to mimic dynamical concurrence and three-tangle entangled systems and to track their entanglement evolutions. PMID:26943520

  7. Magnetic control of breakdown: Toward energy-efficient hollow-cathode magnetron discharges

    SciTech Connect

    Baranov, O.; Romanov, M.; Kumar, S.; Zong, X. X.; Ostrikov, K.

    2011-03-15

    Characteristics of electrical breakdown of a planar magnetron enhanced with an electromagnet and a hollow-cathode structure, are studied experimentally and numerically. At lower pressures the breakdown voltage shows a dependence on the applied magnetic field, and the voltage necessary to achieve the self-sustained discharge regime can be significantly reduced. At higher pressures, the dependence is less sensitive to the magnetic field magnitude and shows a tendency of increased breakdown voltage at the stronger magnetic fields. A model of the magnetron discharge breakdown is developed with the background gas pressure and the magnetic field used as parameters. The model describes the motion of electrons, which gain energy by passing the electric field across the magnetic field and undergo collisions with neutrals, thus generating new bulk electrons. The electrons are in turn accelerated in the electric field and effectively ionize a sufficient amount of neutrals to enable the discharge self-sustainment regime. The model is based on the assumption about the combined classical and near-wall mechanisms of electron conductivity across the magnetic field, and is consistent with the experimental results. The obtained results represent a significant advance toward energy-efficient multipurpose magnetron discharges.

  8. Quantum effects improve the energy efficiency of feedback control.

    PubMed

    Horowitz, Jordan M; Jacobs, Kurt

    2014-04-01

    The laws of thermodynamics apply equally well to quantum systems as to classical systems, and because of this, quantum effects do not change the fundamental thermodynamic efficiency of isothermal refrigerators or engines. We show that, despite this fact, quantum mechanics permits measurement-based feedback control protocols that are more thermodynamically efficient than their classical counterparts. As part of our analysis, we perform a detailed accounting of the thermodynamics of unitary feedback control and elucidate the sources of inefficiency in measurement-based and coherent feedback. PMID:24827219

  9. Characterization of quantum efficiency and robustness of cesium-based photocathodes

    NASA Astrophysics Data System (ADS)

    Montgomery, Eric J.

    High quantum efficiency, robust photocathodes produce picosecond-pulsed, high-current electron beams for photoinjection applications like free electron lasers. In photoinjectors, a pulsed drive laser incident on the photocathode causes photoemission of short, dense bunches of electrons, which are then accelerated into a relativistic, high quality beam. Future free electron lasers demand reliable photocathodes with long-lived quantum efficiency at suitable drive laser wavelengths to maintain high current density. But faced with contamination, heating, and ion back-bombardment, the highest efficiency photocathodes find their delicate cesium-based coatings inexorably lost. In answer, the work herein presents careful, focused studies on cesium-based photocathodes, particularly motivated by the cesium dispenser photocathode. This is a novel device comprised of an efficiently photoemissive, cesium-based coating deposited onto a porous sintered tungsten substrate, beneath which is a reservoir of elemental cesium. Under controlled heating cesium diffuses from the reservoir through the porous substrate and across the surface to replace cesium lost to harsh conditions---recently shown to significantly extend the lifetime of cesium-coated metal cathodes. This work first reports experiments on coated metals to validate and refine an advanced theory of photoemission already finding application in beam simulation codes. Second, it describes a new theory of photoemission from much higher quantum efficiency cesium-based semiconductors and verifies its predictions with independent experiment. Third, it investigates causes of cesium loss from both coated metal and semiconductor photocathodes and reports remarkable rejuvenation of full quantum efficiency for contaminated cesium-coated surfaces, affirming the dispenser prescription of cesium resupply. And fourth, it details continued advances in cesium dispenser design with much-improved operating characteristics: lower temperature

  10. Efficient Luminescence from Perovskite Quantum Dot Solids.

    PubMed

    Kim, Younghoon; Yassitepe, Emre; Voznyy, Oleksandr; Comin, Riccardo; Walters, Grant; Gong, Xiwen; Kanjanaboos, Pongsakorn; Nogueira, Ana F; Sargent, Edward H

    2015-11-18

    Nanocrystals of CsPbX3 perovskites are promising materials for light-emitting optoelectronics because of their colloidal stability, optically tunable bandgap, bright photoluminescence, and excellent photoluminescence quantum yield. Despite their promise, nanocrystal-only films of CsPbX3 perovskites have not yet been fabricated; instead, highly insulating polymers have been relied upon to compensate for nanocrystals' unstable surfaces. We develop solution chemistry that enables single-step casting of perovskite nanocrystal films and overcomes problems in both perovskite quantum dot purification and film fabrication. Centrifugally cast films retain bright photoluminescence and achieve dense and homogeneous morphologies. The new materials offer a platform for optoelectronic applications of perovskite quantum dot solids. PMID:26529572

  11. Cathodic arcs

    SciTech Connect

    Anders, Andre

    2003-10-29

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas standout due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bias. Industrial processes often use cathodic arc plasma in reactive mode. In contrast, the science of arcs has focused on the case of vacuum arcs. Future research directions include closing the knowledge gap for reactive mode, large area coating, linear sources and filters, metal plasma immersion process, with application in high-tech and biomedical fields.

  12. Popescu-Rohrlich correlations imply efficient instantaneous nonlocal quantum computation

    NASA Astrophysics Data System (ADS)

    Broadbent, Anne

    2016-08-01

    In instantaneous nonlocal quantum computation, two parties cooperate in order to perform a quantum computation on their joint inputs, while being restricted to a single round of simultaneous communication. Previous results showed that instantaneous nonlocal quantum computation is possible, at the cost of an exponential amount of prior shared entanglement (in the size of the input). Here, we show that a linear amount of entanglement suffices, (in the size of the computation), as long as the parties share nonlocal correlations as given by the Popescu-Rohrlich box. This means that communication is not required for efficient instantaneous nonlocal quantum computation. Exploiting the well-known relation to position-based cryptography, our result also implies the impossibility of secure position-based cryptography against adversaries with nonsignaling correlations. Furthermore, our construction establishes a quantum analog of the classical communication complexity collapse under nonsignaling correlations.

  13. Efficient arbitrated quantum signature and its proof of security

    NASA Astrophysics Data System (ADS)

    Li, Qin; Li, Chengqing; Long, Dongyang; Chan, Wai Hong; Wang, Changji

    2013-07-01

    In this paper, an efficient arbitrated quantum signature scheme is proposed by combining quantum cryptographic techniques and some ideas in classical cryptography. In the presented scheme, the signatory and the receiver can share a long-term secret key with the arbitrator by utilizing the key together with a random number. While in previous quantum signature schemes, the key shared between the signatory and the arbitrator or between the receiver and the arbitrator could be used only once, and thus each time when a signatory needs to sign, the signatory and the receiver have to obtain a new key shared with the arbitrator through a quantum key distribution protocol. Detailed theoretical analysis shows that the proposed scheme is efficient and provably secure.

  14. The quantum efficiency of dispenser photocathodes: Comparison of theory to experiment

    NASA Astrophysics Data System (ADS)

    Jensen, Kevin L.; Feldman, Donald W.; O'Shea, Patrick G.

    2004-11-01

    The quantum efficiency (QE) characteristics of commercially available dispenser cathodes were measured, giving QEs of (for Scandate) 6.5×10-5, 2.0×10-4, and 8.0×10-4, and (for M-type) 3.0×10-4, 1.4×10-3, and 2.6×10-3, for wavelengths of 532, 355, and 266nm, respectively, corresponding to harmonics of an Nd:YAG laser. A time-dependent photoemission model was developed to analyze the data, as well as dispenser and metal photocathode data in the literature, and quantitatively good agreement is found, demonstrating the utility of the code as a predictive estimator of performance.

  15. Carbon Quantum Dot Surface-Engineered VO2 Interwoven Nanowires: A Flexible Cathode Material for Lithium and Sodium Ion Batteries.

    PubMed

    Balogun, Muhammad-Sadeeq; Luo, Yang; Lyu, Feiyi; Wang, Fuxin; Yang, Hao; Li, Haibo; Liang, Chaolun; Huang, Miao; Huang, Yongchao; Tong, Yexiang

    2016-04-20

    The use of electrode materials in their powdery form requires binders and conductive additives for the fabrication of the cells, which leads to unsatisfactory energy storage performance. Recently, a new strategy to design flexible, binder-, and additive-free three-dimensional electrodes with nanoscale surface engineering has been exploited in boosting the storage performance of electrode materials. In this paper, we design a new type of free-standing carbon quantum dot coated VO2 interwoven nanowires through a simple fabrication process and demonstrate its potential to be used as cathode material for lithium and sodium ion batteries. The versatile carbon quantum dots that are vastly flexible for surface engineering serve the function of protecting the nanowire surface and play an important role in the diffusion of electrons. Also, the three-dimensional carbon cloth coated with VO2 interwoven nanowires assisted in the diffusion of ions through the inner and the outer surface. With this unique architecture, the carbon quantum dot nanosurface engineered VO2 electrode exhibited capacities of 420 and 328 mAh g(-1) at current density rate of 0.3 C for lithium and sodium storage, respectively. This work serves as a milestone for the potential replacement of lithium ion batteries and next generation postbatteries. PMID:27028048

  16. An efficient approach to cathode operational parameters optimization for microbial fuel cell using response surface methodology

    PubMed Central

    2014-01-01

    Background In the recent study, optimum operational conditions of cathode compartment of microbial fuel cell were determined by using Response Surface Methodology (RSM) with a central composite design to maximize power density and COD removal. Methods The interactive effects of parameters such as, pH, buffer concentration and ionic strength on power density and COD removal were evaluated in two-chamber microbial batch-mode fuel cell. Results Power density and COD removal for optimal conditions (pH of 6.75, buffer concentration of 0.177 M and ionic strength of cathode chamber of 4.69 mM) improve by 17 and 5%, respectively, in comparison with normal conditions (pH of 7, buffer concentration of 0.1 M and ionic strength of 2.5 mM). Conclusions In conclusion, results verify that response surface methodology could successfully determine cathode chamber optimum operational conditions. PMID:24423039

  17. Titanate cathodes with enhanced electrical properties achieved via growing surface Ni particles toward efficient carbon dioxide electrolysis.

    PubMed

    Gan, Lizhen; Ye, Lingting; Tao, Shanwen; Xie, Kui

    2016-01-28

    Ionic conduction in perovskite oxide is commonly tailored by element doping in lattices to create charge carriers, while few studies have been focused on ionic conduction enhancement through tailoring microstructures. In this work, remarkable enhancement of ionic conduction in titanate has been achieved via in situ growing active nickel nanoparticles on an oxide surface by controlling the oxide material nonstoichiometry. The combined use of XRD, SEM, XPS and EDS indicates that the exsolution/dissolution of the nickel nanoparticles is completely reversible in redox cycles. With the synergetic effect of enhanced ionic conduction of titanate and the presence of catalytic active Ni nanocatalysts, significant improvement of electrocatalytic performances of the titanate cathode is demonstrated. A current density of 0.3 A cm(-2) with a Faradic efficiency of 90% has been achieved for direct carbon dioxide electrolysis in a 2 mm-thick YSZ-supported solid oxide electrolyzer with the modified titanate cathode at 2 V and 1073 K. PMID:26743799

  18. Holmium fibre laser with record quantum efficiency

    SciTech Connect

    Kurkov, Andrei S; Sholokhov, E M; Tsvetkov, V B; Marakulin, A V; Minashina, L A; Medvedkov, O I; Kosolapov, A F

    2011-06-30

    We report holmium-doped fibre lasers with a Ho{sup 3+} concentration of 1.6 x 10{sup 19} cm{sup -3} and lasing wavelengths of 2.02, 2.05, 2.07 and 2.1 {mu}m at a pump wavelength of 1.15 {mu}m. The slope efficiency of the lasers has been measured. The maximum efficiency, 0.455, has been obtained at a lasing wavelength of 2.05 {mu}m. The laser efficiency is influenced by both the optical loss in the wing of a vibrational absorption band of silica and active-ion clustering. (lasers)

  19. Quantum Efficiency Enhancement in CsI/Metal Photocathodes

    SciTech Connect

    Kong, Lingmei; Joly, Alan G.; Droubay, Timothy C.; Hess, Wayne P.

    2015-02-01

    High quantum efficiency enhancement is found for hybrid metal-insulator photocathodes consisting of thin films of CsI deposited on Cu(100), Ag(100), Au(111) and Au films irradiated by 266 nm laser pulses. Low work functions (near or below 2 eV) are observed following ultraviolet laser activation. Work functions are reduced by roughly 3 eV from that of clean metal surfaces. We discuss various mechanisms of quantum efficiency enhancement for alkali halide/metal photocathode systems and conclude that the large change in work function, due to Cs accumulation of Cs metal at the metal-alkali halide interface, is the dominant mechanism for quantum efficiency enhancement

  20. Effects of superpositions of quantum states on quantum isoenergetic cycles: Efficiency and maximum power output

    NASA Astrophysics Data System (ADS)

    Niu, X. Y.; Huang, X. L.; Shang, Y. F.; Wang, X. Y.

    2015-04-01

    Superposition principle plays a crucial role in quantum mechanics, thus its effects on thermodynamics is an interesting topic. Here, the effects of superpositions of quantum states on isoenergetic cycle are studied. We find superposition can improve the heat engine efficiency and release the positive work condition in general case. In the finite time process, we find the efficiency at maximum power output in superposition case is lower than the nonsuperposition case. This efficiency depends on one index of the energy spectrum of the working substance. This result does not mean the superposition discourages the heat engine performance. For fixed efficiency or fixed power, the superposition improves the power or efficiency respectively. These results show how quantum mechanical properties affect the thermodynamical cycle.

  1. Efficient passivated phthalocyanine-quantum dot solar cells.

    PubMed

    Blas-Ferrando, Vicente M; Ortiz, Javier; González-Pedro, Victoria; Sánchez, Rafael S; Mora-Seró, Iván; Fernández-Lázaro, Fernando; Sastre-Santos, Ángela

    2015-01-31

    The power conversion efficiency of CdSe and CdS quantum dot sensitized solar cells is enhanced by passivation with asymmetrically substituted phthalocyanines. The introduction of the phthalocyanine dye increases the efficiency up to 45% for CdSe and 104% for CdS. The main mechanism causing this improvement is the quantum dot passivation. This study highlights the possibilities of a new generation of dyes designed to be directly linked to QDs instead of the TiO2 electrodes. PMID:25519050

  2. Verification of Absolute Calibration of Quantum Efficiency for LSST CCDs

    NASA Astrophysics Data System (ADS)

    Coles, Rebecca; Chiang, James; Cinabro, David; Gilbertson, Woodrow; Haupt, justine; Kotov, Ivan; Neal, Homer; Nomerotski, Andrei; O'Connor, Paul; Stubbs, Christopher; Takacs, Peter

    2016-01-01

    We describe a system to measure the Quantum Efficiency in the wavelength range of 300nm to 1100nm of 40x40 mm n-channel CCD sensors for the construction of the 3.2 gigapixel LSST focal plane. The technique uses a series of instruments to create a very uniform flux of photons of controllable intensity in the wavelength range of interest across the face of the sensor. This allows the absolute Quantum Efficiency to be measured with an accuracy in the 1% range. This system will be part of a production facility at Brookhaven National Lab for the basic components of the LSST camera.

  3. Quantum efficiency of transmission-mode AlxGa1-xAs/GaAs photocathodes with graded-composition and exponential-doping structure

    NASA Astrophysics Data System (ADS)

    Feng, Cheng; Zhang, Yijun; Qian, Yunsheng; Xu, Yuan; Liu, Xinxin; Jiao, Gangcheng

    2016-06-01

    A transmission-mode AlxGa1-xAs/GaAs photocathode with the combination of composition-graded AlxGa1-xAs window layer and exponential-doping GaAs emission layer is developed to maximize the cathode performance. The theoretical quantum efficiency model with this complex structure containing twofold built-in electric fields is deduced by solving the one dimensional continuity equations combined with the three-step model. By comparison of spectral characteristics of photocathodes with different composition and doping structures, and through analysis of cathode structure parameters, it is found that the twofold built-in electric fields can effectively improve photoemission performance of AlxGa1-xAs/GaAs photocathode, which is related to Al proportion variation range and thicknesses of window layer and emission layer. The quantum efficiency model would provide theoretical guidance for better design of transmission-mode graded bandgap photocathodes.

  4. Pure sources and efficient detectors for optical quantum information processing

    NASA Astrophysics Data System (ADS)

    Zielnicki, Kevin

    Over the last sixty years, classical information theory has revolutionized the understanding of the nature of information, and how it can be quantified and manipulated. Quantum information processing extends these lessons to quantum systems, where the properties of intrinsic uncertainty and entanglement fundamentally defy classical explanation. This growing field has many potential applications, including computing, cryptography, communication, and metrology. As inherently mobile quantum particles, photons are likely to play an important role in any mature large-scale quantum information processing system. However, the available methods for producing and detecting complex multi-photon states place practical limits on the feasibility of sophisticated optical quantum information processing experiments. In a typical quantum information protocol, a source first produces an interesting or useful quantum state (or set of states), perhaps involving superposition or entanglement. Then, some manipulations are performed on this state, perhaps involving quantum logic gates which further manipulate or entangle the intial state. Finally, the state must be detected, obtaining some desired measurement result, e.g., for secure communication or computationally efficient factoring. The work presented here concerns the first and last stages of this process as they relate to photons: sources and detectors. Our work on sources is based on the need for optimized non-classical states of light delivered at high rates, particularly of single photons in a pure quantum state. We seek to better understand the properties of spontaneous parameteric downconversion (SPDC) sources of photon pairs, and in doing so, produce such an optimized source. We report an SPDC source which produces pure heralded single photons with little or no spectral filtering, allowing a significant rate enhancement. Our work on detectors is based on the need to reliably measure single-photon states. We have focused on

  5. An efficient quantum search engine on unsorted database

    NASA Astrophysics Data System (ADS)

    Lu, Songfeng; Zhang, Yingyu; Liu, Fang

    2013-10-01

    We consider the problem of finding one or more desired items out of an unsorted database. Patel has shown that if the database permits quantum queries, then mere digitization is sufficient for efficient search for one desired item. The algorithm, called factorized quantum search algorithm, presented by him can locate the desired item in an unsorted database using O() queries to factorized oracles. But the algorithm requires that all the attribute values must be distinct from each other. In this paper, we discuss how to make a database satisfy the requirements, and present a quantum search engine based on the algorithm. Our goal is achieved by introducing auxiliary files for the attribute values that are not distinct, and converting every complex query request into a sequence of calls to factorized quantum search algorithm. The query complexity of our algorithm is O() for most cases.

  6. Use of non evaporable getter pumps to ensure long term performances of high quantum efficiency photocathodes

    SciTech Connect

    Sertore, Daniele Michelato, Paolo; Monaco, Laura; Manini, Paolo; Siviero, Fabrizio

    2014-05-15

    High quantum efficiency photocathodes are routinely used as laser triggered emitters in the advanced high brightness electron sources based on radio frequency guns. The sensitivity of “semiconductor” type photocathodes to vacuum levels and gas composition requires special care during preparation and handling. This paper will discuss the results obtained using a novel pumping approach based on coupling a 20 l s{sup −1} sputter ion getter pump with a CapaciTorr® D100 non evaporable getter (NEG) pump. A pressure of 8⋅10{sup −8} Pa was achieved using only a sputter ion pump after a 6 day bake-out. With the addition of a NEG pump, a pressure of 2⋅10{sup −9} Pa was achieved after a 2 day bake-out. These pressure values were maintained without power due to the ability of the NEG to pump gases by chemical reaction. Long term monitoring of cathodes quantum efficiencies was also carried out at different photon wavelengths for more than two years, showing no degradation of the photoemissive film properties.

  7. High-quantum efficiency, long-lived luminescing refractory oxides

    DOEpatents

    Chen, Y.; Gonzalez, R.; Summers, G.P.

    A crystal having a high-quantum efficiency and a long period of luminescence is formed of MgO or CaO and possessing a concentration ratio of H/sup -/ ions to F centers in the range of about 0.05 to about 10.

  8. High-quantum efficiency, long-lived luminescing refractory oxides

    DOEpatents

    Chen, Yok; Gonzalez, Roberto; Summers, Geoffrey P.

    1984-01-01

    A crystal having a high-quantum efficiency and a long period of luminescence is formed of an oxide selected from the group consisting of magnesium oxide and calcium oxide and possessing a concentration ratio of H.sup.- ions to F centers in the range of about 0.05 to about 10.

  9. Origins of low energy-transfer efficiency between patterned GaN quantum well and CdSe quantum dots

    SciTech Connect

    Xu, Xingsheng

    2015-03-02

    For hybrid light emitting devices (LEDs) consisting of GaN quantum wells and colloidal quantum dots, it is necessary to explore the physical mechanisms causing decreases in the quantum efficiencies and the energy transfer efficiency between a GaN quantum well and CdSe quantum dots. This study investigated the electro-luminescence for a hybrid LED consisting of colloidal quantum dots and a GaN quantum well patterned with photonic crystals. It was found that both the quantum efficiency of colloidal quantum dots on a GaN quantum well and the energy transfer efficiency between the patterned GaN quantum well and the colloidal quantum dots decreased with increases in the driving voltage or the driving time. Under high driving voltages, the decreases in the quantum efficiency of the colloidal quantum dots and the energy transfer efficiency can be attributed to Auger recombination, while those decreases under long driving time are due to photo-bleaching and Auger recombination.

  10. High-efficiency tomographic reconstruction of quantum states by quantum nondemolition measurements

    SciTech Connect

    Huang, J. S.; Wei, L. F.; Oh, C. H.

    2011-03-15

    We propose a high-efficiency scheme to tomographically reconstruct an unknown quantum state by using a series of quantum nondemolition (QND) measurements. The proposed QND measurements of the qubits are implemented by probing the stationary transmissions through a driven dispersively coupled resonator. It is shown that only one kind of QND measurement is sufficient to determine all the diagonal elements of the density matrix of the detected quantum state. The remaining nondiagonal elements can be similarly determined by transferring them to the diagonal locations after a series of unitary operations. Compared with the tomographic reconstructions based on the usual destructive projective measurements (wherein one such measurement can determine only one diagonal element of the density matrix), the present reconstructive approach exhibits significantly high efficiency. Specifically, our generic proposal is demonstrated by the experimental circuit quantum electrodynamics systems with a few Josephson charge qubits.

  11. Iron-rich nanoparticle encapsulated, nitrogen doped porous carbon materials as efficient cathode electrocatalyst for microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Lu, Guolong; Zhu, Youlong; Lu, Lu; Xu, Kongliang; Wang, Heming; Jin, Yinghua; Jason Ren, Zhiyong; Liu, Zhenning; Zhang, Wei

    2016-05-01

    Developing efficient, readily available, and sustainable electrocatalysts for oxygen reduction reaction (ORR) in neutral medium is of great importance to practical applications of microbial fuel cells (MFCs). Herein, a porous nitrogen-doped carbon material with encapsulated Fe-based nanoparticles (Fe-Nx/C) has been developed and utilized as an efficient ORR catalyst in MFCs. The material was obtained through pyrolysis of a highly porous organic polymer containing iron(II) porphyrins. The characterizations of morphology, crystalline structure and elemental composition reveal that Fe-Nx/C consists of well-dispersed Fe-based nanoparticles coated by N-doped graphitic carbon layer. ORR catalytic performance of Fe-Nx/C has been evaluated through cyclic voltammetry and rotating ring-disk electrode measurements, and its application as a cathode electrocatalyst in an air-cathode single-chamber MFC has been investigated. Fe-Nx/C exhibits comparable or better performance in MFCs than 20% Pt/C, displaying higher cell voltage (601 mV vs. 591 mV), maximum power density (1227 mW m-2 vs. 1031 mW m-2) and Coulombic efficiency (50% vs. 31%). These findings indicate that Fe-Nx/C is more tolerant and durable than Pt/C in a system with bacteria metabolism and thus holds great potential for practical MFC applications.

  12. Coherence-enhanced efficiency of feedback-driven quantum engines

    NASA Astrophysics Data System (ADS)

    Brandner, Kay; Bauer, Michael; Schmid, Michael T.; Seifert, Udo

    2015-06-01

    A genuine feature of projective quantum measurements is that they inevitably alter the mean energy of the observed system if the measured quantity does not commute with the Hamiltonian. Compared to the classical case, Jacobs proved that this additional energetic cost leads to a stronger bound on the work extractable after a single measurement from a system initially in thermal equilibrium (2009 Phys. Rev. A 80 012322). Here, we extend this bound to a large class of feedback-driven quantum engines operating periodically and in finite time. The bound thus implies a natural definition for the efficiency of information to work conversion in such devices. For a simple model consisting of a laser-driven two-level system, we maximize the efficiency with respect to the observable whose measurement is used to control the feedback operations. We find that the optimal observable typically does not commute with the Hamiltonian and hence would not be available in a classical two level system. This result reveals that periodic feedback engines operating in the quantum realm can exploit quantum coherences to enhance efficiency.

  13. Efficient computations of quantum canonical Gibbs state in phase space

    NASA Astrophysics Data System (ADS)

    Bondar, Denys I.; Campos, Andre G.; Cabrera, Renan; Rabitz, Herschel A.

    2016-06-01

    The Gibbs canonical state, as a maximum entropy density matrix, represents a quantum system in equilibrium with a thermostat. This state plays an essential role in thermodynamics and serves as the initial condition for nonequilibrium dynamical simulations. We solve a long standing problem for computing the Gibbs state Wigner function with nearly machine accuracy by solving the Bloch equation directly in the phase space. Furthermore, the algorithms are provided yielding high quality Wigner distributions for pure stationary states as well as for Thomas-Fermi and Bose-Einstein distributions. The developed numerical methods furnish a long-sought efficient computation framework for nonequilibrium quantum simulations directly in the Wigner representation.

  14. Intermediate Band Solar Cell with Extreme Broadband Spectrum Quantum Efficiency

    NASA Astrophysics Data System (ADS)

    Datas, A.; López, E.; Ramiro, I.; Antolín, E.; Martí, A.; Luque, A.; Tamaki, R.; Shoji, Y.; Sogabe, T.; Okada, Y.

    2015-04-01

    We report, for the first time, about an intermediate band solar cell implemented with InAs/AlGaAs quantum dots whose photoresponse expands from 250 to ˜6000 nm . To our knowledge, this is the broadest quantum efficiency reported to date for a solar cell and demonstrates that the intermediate band solar cell is capable of producing photocurrent when illuminated with photons whose energy equals the energy of the lowest band gap. We show experimental evidences indicating that this result is in agreement with the theory of the intermediate band solar cell, according to which the generation recombination between the intermediate band and the valence band makes this photocurrent detectable.

  15. NREL Researchers Demonstrate External Quantum Efficiency Surpassing 100% in a Quantum Dot Solar Cell (Fact Sheet)

    SciTech Connect

    Not Available

    2011-12-01

    A new device that produces and collects multiple electrons per photon could yield inexpensive, high-efficiency photovoltaics. A new device developed through research at the National Renewable Energy Laboratory (NREL) reduces conventional losses in photovoltaic (PV) solar cells, potentially increasing the power conversion efficiency-but not the cost-of the solar cells. Solar cells convert optical energy from the sun into usable electricity; however, almost 50% of the incident energy is lost as heat with present-day technologies. High-efficiency, multi-junction cells reduce this heat loss, but their cost is significantly higher. NREL's new device uses excess energy in solar photons to create extra charges rather than heat. This was achieved using 5-nanometer-diameter quantum dots of lead selenide (PbSe) tightly packed into a film. The researchers chemically treated the film, and then fabricated a device that yielded an external quantum efficiency (number of electrons produced per incident photon) exceeding 100%, a value beyond that of all current solar cells for any incident photon. Quantum dots are known to efficiently generate multiple excitons (a bound electron-hole pair) per absorbed high-energy photon, and this device definitively demonstrates the collection of multiple electrons per photon in a PV cell. The internal quantum efficiency corrects for photons that are not absorbed in the photoactive layer and shows that the PbSe film generates 30% to 40% more electrons in the high-energy spectral region than is possible with a conventional solar cell. While the unoptimized overall power conversion efficiency is still low (less than 5%), the results have important implications for PV because such high quantum efficiency can lead to more electrical current produced than possible using present technologies. Furthermore, this fabrication is also amenable to inexpensive, high-throughput roll-to-roll manufacturing.

  16. Analysis of the efficiency of intermediate band solar cells based on quantum dot supercrystals

    SciTech Connect

    Heshmati, S; Golmohammadi, S; Abedi, K; Taleb, H

    2014-03-28

    We have studied the influence of the quantum-dot (QD) width and the quantum-dot conduction band (QD-CB) offset on the efficiency of quantum-dot intermediate band solar cells (QD-IBSCs). Simulation results demonstrate that with increasing QD-CB offset and decreasing QD width, the maximum efficiency is achieved. (laser applications and other topics in quantum electronics)

  17. High-efficiency ferroelectric-film solar cells with an n-type Cu₂O cathode buffer layer.

    PubMed

    Cao, Dawei; Wang, Chunyan; Zheng, Fengang; Dong, Wen; Fang, Liang; Shen, Mingrong

    2012-06-13

    Because of the existence of interface Schottky barriers and depolarization electric field, ferroelectric films sandwiched between top and bottom electrodes are strongly expected to be used as a new kind of solar cells. However, the photocurrent with a typical order of μA/cm(2) is too low to be practical. Here we demonstrate that the insertion of an n-type cuprous oxide (Cu(2)O) layer between the Pb(Zr,Ti)O(3) (PZT) film and the cathode Pt contact in a ITO/PZT/Pt cell leads to the short-circuit photocurrent increasing 120-fold to 4.80 mA/cm(2) and power conversion efficiency increasing of 72-fold to 0.57% under AM1.5G (100 mW/cm(2)) illumination. Ultraviolet photoemission spectroscopy and dark J-V characteristic show an ohmic contact on Pt/Cu(2)O, an n(+)-n heterojunction on Cu(2)O/PZT and a Schottky barrier on PZT/ITO, which provide a favorable energy level alignment for efficient electron-extraction on the cathode. Our work opens up a promising new method that has the potential for fulfilling cost-effective ferroelectric-film photovoltaic. PMID:22582756

  18. Biexciton Dissociation Efficiency at Quantum Dot-Oxide Interfaces

    NASA Astrophysics Data System (ADS)

    Bonn, Mischa; Wang, Hai; Canovas, Enrique

    Harvesting multiexcitons populating semiconductor quantum dots (generated by carrier multiplication, CM) has been proposed as a path towards higher efficiencies in photovoltaic devices. Although CM efficiency has been widely interrogated in colloidal QD solutions, less focus has been placed on the physics regarding biexciton collection at electrodes. We investigate interfacial biexciton transfer dynamics from PbS quantum dots directly nucleated onto mesoporous SnO2 films as a function of impinging photon flux and photon energy. A priori, this system seems very well-suited for achieving efficient biexciton dissociation, as the ultrafast QD-to-oxide transfer rate for 800nm excitation is substantially faster than Auger relaxation. Remarkably, the biexciton dissociation efficiency is below the detection efficiency, i.e. essentially zero. This seemingly counterintuitive result can be understood by noting that efficient hot electron transfer at the QD-oxide interface can compete with CM within the QDs. Hot electron transfer is observed to occur on sub-100 fs timescales, nulling the CM efficiency. Implications of these results for solar energy conversion are discussed.

  19. A scalable quantum architecture using efficient non-local gates

    NASA Astrophysics Data System (ADS)

    Brennen, Gavin

    2003-03-01

    Many protocols for quantum information processing use a control sequence or circuit of interactions between qubits and control fields wherein arbitrary qubits can be made to interact with one another. The primary problem with many ``physically scalable" architectures is that the qubits are restricted to nearest neighbor interactions and quantum wires between distant qubits do not exist. Because of errors, nearest neighbor interactions often present difficulty with scalability. We describe a protocol that efficiently performs non-local gates between elements of separated static logical qubits using a bus of dynamic qubits as a refreshable entanglement resource. Imperfect resource preparation due to error propagation from noisy gates and measurement errors can purified within the bus channel. Because of the inherent parallelism of entanglement swapping, communication latency within the quantum computer can be significantly reduced.

  20. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: A modular vacuum ultraviolet source

    SciTech Connect

    Sloan Roberts, F.; Anderson, Scott L.

    2013-12-15

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a “soft” photoionization source for gas-phase mass spectrometry.

  1. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: a modular vacuum ultraviolet source.

    PubMed

    Roberts, F Sloan; Anderson, Scott L

    2013-12-01

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a "soft" photoionization source for gas-phase mass spectrometry. PMID:24387477

  2. Rate-loss analysis of an efficient quantum repeater architecture

    NASA Astrophysics Data System (ADS)

    Guha, Saikat; Krovi, Hari; Fuchs, Christopher A.; Dutton, Zachary; Slater, Joshua A.; Simon, Christoph; Tittel, Wolfgang

    2015-08-01

    We analyze an entanglement-based quantum key distribution (QKD) architecture that uses a linear chain of quantum repeaters employing photon-pair sources, spectral-multiplexing, linear-optic Bell-state measurements, multimode quantum memories, and classical-only error correction. Assuming perfect sources, we find an exact expression for the secret-key rate, and an analytical description of how errors propagate through the repeater chain, as a function of various loss-and-noise parameters of the devices. We show via an explicit analytical calculation, which separately addresses the effects of the principle nonidealities, that this scheme achieves a secret-key rate that surpasses the Takeoka-Guha-Wilde bound—a recently found fundamental limit to the rate-vs-loss scaling achievable by any QKD protocol over a direct optical link—thereby providing one of the first rigorous proofs of the efficacy of a repeater protocol. We explicitly calculate the end-to-end shared noisy quantum state generated by the repeater chain, which could be useful for analyzing the performance of other non-QKD quantum protocols that require establishing long-distance entanglement. We evaluate that shared state's fidelity and the achievable entanglement-distillation rate, as a function of the number of repeater nodes, total range, and various loss-and-noise parameters of the system. We extend our theoretical analysis to encompass sources with nonzero two-pair-emission probability, using an efficient exact numerical evaluation of the quantum state propagation and measurements. We expect our results to spur formal rate-loss analysis of other repeater protocols and also to provide useful abstractions to seed analyses of quantum networks of complex topologies.

  3. Plasmon-mediated emergence of collective emission and enhanced quantum efficiency in quantum dot films

    NASA Astrophysics Data System (ADS)

    Praveena, M.; Mukherjee, Arnab; Venkatapathi, Murugesan; Basu, J. K.

    2015-12-01

    We present experimental and theoretical results on monolayer colloidal cadmium selenide quantum dot films embedded with tiny gold nanoparticles. By varying the density of the embedded gold nanoparticles, we were able to engineer a plasmon-mediated crossover from emission quenching to enhancement regime at interparticle distances for which only quenching of emission is expected. This crossover and a nonmonotonic variation of photoluminescence intensity and decay rate, in experiments, is explained in terms of a model for plasmon-mediated collective emission of quantum emitters which points to the emergence of a new regime in plasmon-exciton interactions. The presented methodology to achieve enhancement in optical quantum efficiency for optimal doping of gold nanoparticles in such ultrathin high-density quantum dot films can be beneficial for new-generation displays and photodetectors.

  4. Efficient tools for quantum metrology with uncorrelated noise

    NASA Astrophysics Data System (ADS)

    Kołodyński, Jan; Demkowicz-Dobrzański, Rafał

    2013-07-01

    Quantum metrology offers enhanced performance in experiments on topics such as gravitational wave-detection, magnetometry or atomic clock frequency calibration. The enhancement, however, requires a delicate tuning of relevant quantum features, such as entanglement or squeezing. For any practical application, the inevitable impact of decoherence needs to be taken into account in order to correctly quantify the ultimate attainable gain in precision. We compare the applicability and the effectiveness of various methods of calculating the ultimate precision bounds resulting from the presence of decoherence. This allows us to place a number of seemingly unrelated concepts into a common framework and arrive at an explicit hierarchy of quantum metrological methods in terms of the tightness of the bounds they provide. In particular, we show a way to extend the techniques originally proposed in Demkowicz-Dobrzański et al (2012 Nature Commun. 3 1063), so that they can be efficiently applied not only in the asymptotic but also in the finite number of particles regime. As a result, we obtain a simple and direct method, yielding bounds that interpolate between the quantum enhanced scaling characteristic for a small number of particles and the asymptotic regime, where quantum enhancement amounts to a constant factor improvement. Methods are applied to numerous models, including noisy phase and frequency estimation, as well as the estimation of the decoherence strength itself.

  5. Investigation of the quantum efficiency of optical heterodyne detectors

    NASA Technical Reports Server (NTRS)

    Batchman, T. E.

    1984-01-01

    The frequency response and quantum efficiency of optical photodetectors for heterodyne receivers is investigated. The measurements utilized two spectral lines from the output of two lasers as input to the photodetectors. These lines are easily measurable in power and frequency and hence serve as known inputs. By measuring the output current of the photodetector the quantum efficiency is determined as a function of frequency separation between the two input signals. An investigation of the theoretical basis and accuracy of this type of measurement relative to similar measurements utilizing risetime is undertaken. A theoretical study of the heterodyne process in photodetectors based on semiconductor physics is included so that higher bandwidth detectors may be designed. All measurements are made on commercially available detectors and manufacturers' specifications for normal photodetector operation are compared to the measured heterodyne characteristics.

  6. Enhanced quantum efficiency from hybrid cesium halide/copper photocathodes

    NASA Astrophysics Data System (ADS)

    Kong, Lingmei; Joly, Alan G.; Droubay, Timothy C.; Gong, Yu; Hess, Wayne P.

    2014-04-01

    The quantum efficiency (QE) of Cu is found to increase dramatically when coated by a CsI film and then irradiated by a UV laser. Over three orders of magnitude quantum efficiency enhancement at 266 nm is observed in CsI/Cu(100), indicating potential application in future photocathode devices. Upon laser irradiation, a large work function reduction to a value less than 2 eV is also observed, significantly greater than for similarly treated CsBr/Cu(100). The initial QE enhancement, prior to laser irradiation, is attributed to interface interaction and the intrinsic properties of the Cs halide film. Further QE enhancement following activation is attributed to formation of inter-band states and Cs metal accumulation at the interface induced by laser irradiation.

  7. Resonant infrared detector with substantially unit quantum efficiency

    NASA Technical Reports Server (NTRS)

    Farhoomand, Jam (Inventor); Mcmurray, Robert E., Jr. (Inventor)

    1994-01-01

    A resonant infrared detector includes an infrared-active layer which has first and second parallel faces and which absorbs radiation of a given wavelength. The detector also includes a first tuned reflective layer, disposed opposite the first face of the infrared-active layer, which reflects a specific portion of the radiation incident thereon and allows a specific portion of the incident radiation at the given wavelength to reach the infrared-active layer. A second reflective layer, disposed opposite the second face of the infrared-active layer, reflects back into the infrared-active layer substantially all of the radiation at the given wavelength which passes through the infrared-active layer. The reflective layers have the effect of increasing the quantum efficiency of the infrared detector relative to the quantum efficiency of the infrared-active layer alone.

  8. Enhanced Quantum Efficiency From Hybrid Cesium Halide/Copper Photocathode

    SciTech Connect

    Kong, Lingmei; Joly, Alan G.; Droubay, Timothy C.; Gong, Yu; Hess, Wayne P.

    2014-04-28

    The quantum efficiency of Cu is found to increase dramatically when coated by a CsI film and then irradiated by a UV laser. Over three orders of magnitude quantum efficiency enhancement at 266 nm is observed in CsI/Cu(100), indicating potential application in future photocathode devices. Upon laser irradiation, a large work function reduction to a value less than 2 eV is also observed, significantly greater than for similarly treated CsBr/Cu(100). The initial QE enhancement, prior to laser irradiation, is attributed to interface interaction, surface cleanliness and the intrinsic properties of the Cs halide film. Further QE enhancement following activation is attributed to formation of inter-band states and Cs metal accumulation at the interface induced by laser irradiation.

  9. Enhanced quantum efficiency from hybrid cesium halide/copper photocathodes

    SciTech Connect

    Kong, Lingmei; Joly, Alan G.; Droubay, Timothy C.; Gong, Yu; Hess, Wayne P.

    2014-04-28

    The quantum efficiency (QE) of Cu is found to increase dramatically when coated by a CsI film and then irradiated by a UV laser. Over three orders of magnitude quantum efficiency enhancement at 266 nm is observed in CsI/Cu(100), indicating potential application in future photocathode devices. Upon laser irradiation, a large work function reduction to a value less than 2 eV is also observed, significantly greater than for similarly treated CsBr/Cu(100). The initial QE enhancement, prior to laser irradiation, is attributed to interface interaction and the intrinsic properties of the Cs halide film. Further QE enhancement following activation is attributed to formation of inter-band states and Cs metal accumulation at the interface induced by laser irradiation.

  10. Fully efficient time-parallelized quantum optimal control algorithm

    NASA Astrophysics Data System (ADS)

    Riahi, M. K.; Salomon, J.; Glaser, S. J.; Sugny, D.

    2016-04-01

    We present a time-parallelization method that enables one to accelerate the computation of quantum optimal control algorithms. We show that this approach is approximately fully efficient when based on a gradient method as optimization solver: the computational time is approximately divided by the number of available processors. The control of spin systems, molecular orientation, and Bose-Einstein condensates are used as illustrative examples to highlight the wide range of applications of this numerical scheme.

  11. Internal quantum efficiency analysis of solar cell by genetic algorithm

    SciTech Connect

    Xiong, Kanglin; Yang, Hui; Lu, Shulong; Zhou, Taofei; Wang, Rongxin; Qiu, Kai; Dong, Jianrong; Jiang, Desheng

    2010-11-15

    To investigate factors limiting the performance of a GaAs solar cell, genetic algorithm is employed to fit the experimentally measured internal quantum efficiency (IQE) in the full spectra range. The device parameters such as diffusion lengths and surface recombination velocities are extracted. Electron beam induced current (EBIC) is performed in the base region of the cell with obtained diffusion length agreeing with the fit result. The advantage of genetic algorithm is illustrated. (author)

  12. Simulations of multipacting in the cathode stalk and FPC of 112 MHz superconducting electron gun

    SciTech Connect

    Xin T.; Ben-Zvi, I.; Belomestnykh, S.; Chang, X.; Rao, T.; Skaritka, J.; Wu, Q.; Wang, E.; Liang, X.

    2012-05-20

    A 112 MHz superconducting quarter-wave resonator electron gun will be used as the injector of the Coherent Electron Cooling (CEC) proof-of-principle experiment at BNL. Furthermore, this electron gun can be used for testing of the performance of various high quantum efficiency photocathodes. In a previous paper, we presented the design of the cathode stalks and a Fundamental Power Coupler (FPC). In this paper we present updated designs of the cathode stalk and FPC. Multipacting in the cathode stalk and FPC was simulated using three different codes. All simulation results show no serious multipacting in the cathode stalk and FPC.

  13. Internal quantum efficiency enhancement of GaInN/GaN quantum-well structures using Ag nanoparticles

    SciTech Connect

    Iida, Daisuke; Fadil, Ahmed Ou, Yiyu; Kopylov, Oleksii; Ou, Haiyan; Chen, Yuntian; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu

    2015-09-15

    We report internal quantum efficiency enhancement of thin p-GaN green quantum-well structure using self-assembled Ag nanoparticles. Temperature dependent photoluminescence measurements are conducted to determine the internal quantum efficiency. The impact of excitation power density on the enhancement factor is investigated. We obtain an internal quantum efficiency enhancement by a factor of 2.3 at 756 W/cm{sup 2}, and a factor of 8.1 at 1 W/cm{sup 2}. A Purcell enhancement up to a factor of 26 is estimated by fitting the experimental results to a theoretical model for the efficiency enhancement factor.

  14. Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120%.

    PubMed

    Böhm, Marcus L; Jellicoe, Tom C; Tabachnyk, Maxim; Davis, Nathaniel J L K; Wisnivesky-Rocca-Rivarola, Florencia; Ducati, Caterina; Ehrler, Bruno; Bakulin, Artem A; Greenham, Neil C

    2015-12-01

    Multiple exciton generation (MEG) in semiconducting quantum dots is a process that produces multiple charge-carrier pairs from a single excitation. MEG is a possible route to bypass the Shockley-Queisser limit in single-junction solar cells but it remains challenging to harvest charge-carrier pairs generated by MEG in working photovoltaic devices. Initial yields of additional carrier pairs may be reduced due to ultrafast intraband relaxation processes that compete with MEG at early times. Quantum dots of materials that display reduced carrier cooling rates (e.g., PbTe) are therefore promising candidates to increase the impact of MEG in photovoltaic devices. Here we demonstrate PbTe quantum dot-based solar cells, which produce extractable charge carrier pairs with an external quantum efficiency above 120%, and we estimate an internal quantum efficiency exceeding 150%. Resolving the charge carrier kinetics on the ultrafast time scale with pump-probe transient absorption and pump-push-photocurrent measurements, we identify a delayed cooling effect above the threshold energy for MEG. PMID:26488847

  15. Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120%

    PubMed Central

    2015-01-01

    Multiple exciton generation (MEG) in semiconducting quantum dots is a process that produces multiple charge-carrier pairs from a single excitation. MEG is a possible route to bypass the Shockley-Queisser limit in single-junction solar cells but it remains challenging to harvest charge-carrier pairs generated by MEG in working photovoltaic devices. Initial yields of additional carrier pairs may be reduced due to ultrafast intraband relaxation processes that compete with MEG at early times. Quantum dots of materials that display reduced carrier cooling rates (e.g., PbTe) are therefore promising candidates to increase the impact of MEG in photovoltaic devices. Here we demonstrate PbTe quantum dot-based solar cells, which produce extractable charge carrier pairs with an external quantum efficiency above 120%, and we estimate an internal quantum efficiency exceeding 150%. Resolving the charge carrier kinetics on the ultrafast time scale with pump–probe transient absorption and pump–push–photocurrent measurements, we identify a delayed cooling effect above the threshold energy for MEG. PMID:26488847

  16. Efficient quantum trajectory representation of wavefunctions evolving in imaginary time

    SciTech Connect

    Garashchuk, Sophya; Mazzuca, James; Vazhappilly, Tijo

    2011-07-21

    The Boltzmann evolution of a wavefunction can be recast as imaginary-time dynamics of the quantum trajectory ensemble. The quantum effects arise from the momentum-dependent quantum potential - computed approximately to be practical in high-dimensional systems - influencing the trajectories in addition to the external classical potential [S. Garashchuk, J. Chem. Phys. 132, 014112 (2010)]. For a nodeless wavefunction represented as {psi}(x, t) = exp ( -S(x, t)/({Dirac_h}/2{pi})) with the trajectory momenta defined by {nabla}S(x, t), analysis of the Lagrangian and Eulerian evolution shows that for bound potentials the former is more accurate while the latter is more practical because the Lagrangian quantum trajectories diverge with time. Introduction of stationary and time-dependent components into the wavefunction representation generates new Lagrangian-type dynamics where the trajectory spreading is controlled improving efficiency of the trajectory description. As an illustration, different types of dynamics are used to compute zero-point energy of a strongly anharmonic well and low-lying eigenstates of a high-dimensional coupled harmonic system.

  17. Efficient quantum trajectory representation of wavefunctions evolving in imaginary time.

    PubMed

    Garashchuk, Sophya; Mazzuca, James; Vazhappilly, Tijo

    2011-07-21

    The Boltzmann evolution of a wavefunction can be recast as imaginary-time dynamics of the quantum trajectory ensemble. The quantum effects arise from the momentum-dependent quantum potential--computed approximately to be practical in high-dimensional systems--influencing the trajectories in addition to the external classical potential [S. Garashchuk, J. Chem. Phys. 132, 014112 (2010)]. For a nodeless wavefunction represented as ψ(x, t) = exp(-S(x, t)/ħ) with the trajectory momenta defined by ∇S(x, t), analysis of the Lagrangian and Eulerian evolution shows that for bound potentials the former is more accurate while the latter is more practical because the Lagrangian quantum trajectories diverge with time. Introduction of stationary and time-dependent components into the wavefunction representation generates new Lagrangian-type dynamics where the trajectory spreading is controlled improving efficiency of the trajectory description. As an illustration, different types of dynamics are used to compute zero-point energy of a strongly anharmonic well and low-lying eigenstates of a high-dimensional coupled harmonic system. PMID:21786984

  18. Colloidal CdTe/HgTe quantum dots with high photoluminescence quantum efficiency at room temperature

    NASA Astrophysics Data System (ADS)

    Kershaw, Stephen V.; Burt, Mike; Harrison, Mike; Rogach, Andrey; Weller, Horst; Eychmüller, Alex

    1999-09-01

    We have used an aqueous colloidal growth technique to form hybrid CdTe/HgTe quantum dots with a broad, strong fluorescence in the infrared (800-1200 nm). The quantum efficiency is high, around 44%, when pumped in the visible (488 nm), and the excited state lifetime is around 130 ns, making the material interesting as an optical amplifier medium. Using a pump-probe experiment, we have demonstrated weak optical amplification in a dilute aqueous suspension of CdTe/HgTe dots in the short wavelength wing of the emission spectrum at 808 nm.

  19. Integrating NiCo Alloys with Their Oxides as Efficient Bifunctional Cathode Catalysts for Rechargeable Zinc-Air Batteries.

    PubMed

    Liu, Xien; Park, Minjoon; Kim, Min Gyu; Gupta, Shiva; Wu, Gang; Cho, Jaephil

    2015-08-10

    The lack of high-efficient, low-cost, and durable bifunctional electrocatalysts that act simultaneously for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) is currently one of the major obstacles to commercializing the electrical rechargeability of zinc-air batteries. A nanocomposite CoO-NiO-NiCo bifunctional electrocatalyst supported by nitrogen-doped multiwall carbon nanotubes (NCNT/CoO-NiO-NiCo) exhibits excellent activity and stability for the ORR/OER in alkaline media. More importantly, real air cathodes made from the bifunctional NCNT/CoO-NiO-NiCo catalysts further demonstrated superior performance to state-of-the-art Pt/C or Pt/C+IrO2 catalysts in primary and rechargeable zinc-air batteries. PMID:26118973

  20. Energy-efficient modification of reduction-melting for lead recovery from cathode ray tube funnel glass

    SciTech Connect

    Okada, Takashi Yonezawa, Susumu

    2013-08-15

    Highlights: • We recovered Pb from cathode ray tube funnel glass using reduction melting process. • We modified the melting process to achieve Pb recovery with low energy consumption. • Pb in the funnel glass is efficiently recovered at 1000 °C by adding Na{sub 2}CO{sub 3}. • Pb remaining in the glass after reduction melting is extracted with 1 M HCl. • 98% of Pb in the funnel glass was recovered by reduction melting and HCl leaching. - Abstract: Lead can be recovered from funnel glass of waste cathode ray tubes via reduction melting. While low-temperature melting is necessary for reduced energy consumption, previously proposed methods required high melting temperatures (1400 °C) for the reduction melting. In this study, the reduction melting of the funnel glass was performed at 900–1000 °C using a lab-scale reactor with varying concentrations of Na{sub 2}CO{sub 3} at different melting temperatures and melting times. The optimum Na{sub 2}CO{sub 3} dosage and melting temperature for efficient lead recovery was 0.5 g per 1 g of the funnel glass and 1000 °C respectively. By the reduction melting with the mentioned conditions, 92% of the lead in the funnel glass was recovered in 60 min. However, further lead recovery was difficult because the rate of the lead recovery decreased as with the recovery of increasing quantity of the lead from the glass. Thus, the lead remaining in the glass after the reduction melting was extracted with 1 M HCl, and the lead recovery improved to 98%.

  1. Intermediate band solar cell with extreme broadband spectrum quantum efficiency.

    PubMed

    Datas, A; López, E; Ramiro, I; Antolín, E; Martí, A; Luque, A; Tamaki, R; Shoji, Y; Sogabe, T; Okada, Y

    2015-04-17

    We report, for the first time, about an intermediate band solar cell implemented with InAs/AlGaAs quantum dots whose photoresponse expands from 250 to ∼6000  nm. To our knowledge, this is the broadest quantum efficiency reported to date for a solar cell and demonstrates that the intermediate band solar cell is capable of producing photocurrent when illuminated with photons whose energy equals the energy of the lowest band gap. We show experimental evidence indicating that this result is in agreement with the theory of the intermediate band solar cell, according to which the generation recombination between the intermediate band and the valence band makes this photocurrent detectable. PMID:25933339

  2. Efficient Biologically Inspired Photocell Enhanced by Delocalized Quantum States

    NASA Astrophysics Data System (ADS)

    Creatore, C.; Parker, M. A.; Emmott, S.; Chin, A. W.

    2013-12-01

    Artificially implementing the biological light reactions responsible for the remarkably efficient photon-to-charge conversion in photosynthetic complexes represents a new direction for the future development of photovoltaic devices. Here, we develop such a paradigm and present a model photocell based on the nanoscale architecture and molecular elements of photosynthetic reaction centers. Quantum interference of photon absorption and emission induced by the dipole-dipole interaction between molecular excited states guarantees an enhanced light-to-current conversion and power generation for a wide range of electronic, thermal, and optical parameters for optimized dipolar geometries. This result opens a promising new route for designing artificial light-harvesting devices inspired by biological photosynthesis and quantum technologies.

  3. Noise performance of high-efficiency germanium quantum dot photodetectors

    NASA Astrophysics Data System (ADS)

    Siontas, Stylianos; Liu, Pei; Zaslavsky, Alexander; Pacifici, Domenico

    2016-08-01

    We report on the noise analysis of high performance germanium quantum dot (Ge QD) photodetectors with responsivity up to ˜2 A/W and internal quantum efficiency up to ˜400%, over the 400-1100 nm wavelength range and at a reverse bias of -10 V. Photolithography was performed to define variable active-area devices that show suppressed dark current, leading to a higher signal-to-noise ratio, up to 105, and specific detectivity D * ≃ 6 × 10 12 cm Hz 1 / 2 W-1. These figures of merit suggest Ge QDs as a promising alternative material for high-performance photodetectors working in the visible to near-infrared spectral range.

  4. Quantum Coherence in Photosynthesis for Efficient Solar Energy Conversion

    PubMed Central

    Romero, Elisabet; Augulis, Ramunas; Novoderezhkin, Vladimir I.; Ferretti, Marco; Thieme, Jos; Zigmantas, Donatas; van Grondelle, Rienk

    2014-01-01

    The crucial step in the conversion of solar to chemical energy in Photosynthesis takes place in the reaction center where the absorbed excitation energy is converted into a stable charge separated state by ultrafast electron transfer events. However, the fundamental mechanism responsible for the near unity quantum efficiency of this process is unknown. Here we elucidate the role of coherence in determining the efficiency of charge separation in the plant photosystem II reaction centre (PSII RC) by comprehensively combining experiment (two-dimensional electronic spectroscopy) and theory (Redfield theory). We reveal the presence of electronic coherence between excitons as well as between exciton and charge transfer states which we argue to be maintained by vibrational modes. Furthermore, we present evidence for the strong correlation between the degree of electronic coherence and efficient and ultrafast charge separation. We propose that this coherent mechanism will inspire the development of new energy technologies. PMID:26870153

  5. Highly efficient metallic optical incouplers for quantum well infrared photodetectors

    PubMed Central

    Liu, Long; Chen, Yu; Huang, Zhong; Du, Wei; Zhan, Peng; Wang, Zhenlin

    2016-01-01

    Herein, we propose a highly efficient metallic optical incoupler for a quantum well infrared photodetector (QWIP) operating in the spectrum range of 14~16 μm, which consists of an array of metal micropatches and a periodically corrugated metallic back plate sandwiching a semiconductor active layer. By exploiting the excitations of microcavity modes and hybrid spoof surface plasmons (SSPs) modes, this optical incoupler can convert infrared radiation efficiently into the quantum wells (QWs) layer of semiconductor region with large electrical field component (Ez) normal to the plane of QWs. Our further numerical simulations for optimization indicate that by tuning microcavity mode to overlap with hybrid SSPs mode in spectrum, a coupled mode is formed, which leads to 33-fold enhanced light absorption for QWs centered at wavelength of 14.5 μm compared with isotropic absorption of QWs without any metallic microstructures, as well as a large value of coupling efficiency (η) of |Ez|2 ~ 6. This coupled mode shows a slight dispersion over ~40° and weak polarization dependence, which is quite beneficial to the high performance infrared photodetectors. PMID:27456691

  6. Quantum Dot Solar Cells: High Efficiency through Multiple Exciton Generation

    SciTech Connect

    Hanna, M. C.; Ellingson, R. J.; Beard, M.; Yu, P.; Micic, O. I.; Nozik, A. J.; c.

    2005-01-01

    Impact ionization is a process in which absorbed photons in semiconductors that are at least twice the bandgap can produce multiple electron-hole pairs. For single-bandgap photovoltaic devices, this effect produces greatly enhanced theoretical thermodynamic conversion efficiencies that range from 45-85%, depending upon solar concentration, the cell temperature, and the number of electron-hole pairs produced per photon. For quantum dots (QDs), electron-hole pairs exist as excitons. We have observed astoundingly efficient multiple exciton generation (MEG) in QDs of PbSe (bulk Eg = 0.28 eV), ranging in diameter from 3.9 to 5.7nm (Eg = 0.73, 0.82, and 0.91 eV, respectively). The effective masses of electron and holes are about equal in PbSe, and the onset for efficient MEG occurs at about three times the QD HOMO-LUMO transition (its ''bandgap''). The quantum yield rises quickly after the onset and reaches 300% at 4 x Eg (3.64 eV) for the smallest QD; this means that every QD in the sample produces three electron-hole pairs/photon.

  7. Highly efficient metallic optical incouplers for quantum well infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Liu, Long; Chen, Yu; Huang, Zhong; Du, Wei; Zhan, Peng; Wang, Zhenlin

    2016-07-01

    Herein, we propose a highly efficient metallic optical incoupler for a quantum well infrared photodetector (QWIP) operating in the spectrum range of 14~16 μm, which consists of an array of metal micropatches and a periodically corrugated metallic back plate sandwiching a semiconductor active layer. By exploiting the excitations of microcavity modes and hybrid spoof surface plasmons (SSPs) modes, this optical incoupler can convert infrared radiation efficiently into the quantum wells (QWs) layer of semiconductor region with large electrical field component (Ez) normal to the plane of QWs. Our further numerical simulations for optimization indicate that by tuning microcavity mode to overlap with hybrid SSPs mode in spectrum, a coupled mode is formed, which leads to 33-fold enhanced light absorption for QWs centered at wavelength of 14.5 μm compared with isotropic absorption of QWs without any metallic microstructures, as well as a large value of coupling efficiency (η) of |Ez|2 ~ 6. This coupled mode shows a slight dispersion over ~40° and weak polarization dependence, which is quite beneficial to the high performance infrared photodetectors.

  8. Highly efficient metallic optical incouplers for quantum well infrared photodetectors.

    PubMed

    Liu, Long; Chen, Yu; Huang, Zhong; Du, Wei; Zhan, Peng; Wang, Zhenlin

    2016-01-01

    Herein, we propose a highly efficient metallic optical incoupler for a quantum well infrared photodetector (QWIP) operating in the spectrum range of 14~16 μm, which consists of an array of metal micropatches and a periodically corrugated metallic back plate sandwiching a semiconductor active layer. By exploiting the excitations of microcavity modes and hybrid spoof surface plasmons (SSPs) modes, this optical incoupler can convert infrared radiation efficiently into the quantum wells (QWs) layer of semiconductor region with large electrical field component (Ez) normal to the plane of QWs. Our further numerical simulations for optimization indicate that by tuning microcavity mode to overlap with hybrid SSPs mode in spectrum, a coupled mode is formed, which leads to 33-fold enhanced light absorption for QWs centered at wavelength of 14.5 μm compared with isotropic absorption of QWs without any metallic microstructures, as well as a large value of coupling efficiency (η) of |Ez|(2) ~ 6. This coupled mode shows a slight dispersion over ~40° and weak polarization dependence, which is quite beneficial to the high performance infrared photodetectors. PMID:27456691

  9. SPECIAL ISSUE DEVOTED TO THE 80TH ANNIVERSARY OF ACADEMICIAN N G BASOV'S BIRTH: Threshold and efficiency of a laser cathode-ray tube at room temperature

    NASA Astrophysics Data System (ADS)

    Kozlovskii, Vladimir I.; Popov, Yurii M.

    2003-01-01

    The main factors determining the lasing threshold and efficiency of a laser cathode-ray tube at room temperature are considered. Recent achievements obtained by using laser screens made of the II — VI compound single crystals are discussed. It is shown that multilayer heterostructures allow the reduction in the lasing threshold by several times.

  10. Efficient Quantum Compression for Ensembles of Identically Prepared Mixed States

    NASA Astrophysics Data System (ADS)

    Yang, Yuxiang; Chiribella, Giulio; Ebler, Daniel

    2016-02-01

    We present one-shot compression protocols that optimally encode ensembles of N identically prepared mixed states into O (log N ) qubits. In contrast to the case of pure-state ensembles, we find that the number of encoding qubits drops down discontinuously as soon as a nonzero error is tolerated and the spectrum of the states is known with sufficient precision. For qubit ensembles, this feature leads to a 25% saving of memory space. Our compression protocols can be implemented efficiently on a quantum computer.

  11. High quantum efficiency S-20 photocathodes in photon counting detectors

    NASA Astrophysics Data System (ADS)

    Orlov, D. A.; DeFazio, J.; Duarte Pinto, S.; Glazenborg, R.; Kernen, E.

    2016-04-01

    Based on conventional S-20 processes, a new series of high quantum efficiency (QE) photocathodes has been developed that can be specifically tuned for use in the ultraviolet, blue or green regions of the spectrum. The QE values exceed 30% at maximum response, and the dark count rate is found to be as low as 30 Hz/cm2 at room temperature. This combination of properties along with a fast temporal response makes these photocathodes ideal for application in photon counting detectors, which is demonstrated with an MCP photomultiplier tube for single and multi-photoelectron detection.

  12. Surface and bulk contribution to Cu(111) quantum efficiency

    SciTech Connect

    Pedersoli, Emanuele; Greaves, Corin Michael Ricardo; Wan, Weishi; Coleman-Smith, Christopher; Padmore, Howard A.; Pagliara, Stefania; Cartella, Andrea; Lamarca, Fabrizio; Ferrini, Gabriele; Galimberti, Gianluca; Montagnese, Matteo; dal Conte, Stefano; Parmigiani, Fulvio

    2008-11-04

    The quantum efficiency (QE) of Cu(111) is measured for different impinging light angles with photon energies just above the work function. We observe that the vectorial photoelectric effect, an enhancement of the QE due to illumination with light with an electric vector perpendicular to the sample surface, is stronger in the more surface sensitive regime. This can be explained by a contribution to photoemission due to the variation in the electromagnetic potential at the surface. The contributions of bulk and surface electrons can then be determined.

  13. Deterministic and efficient quantum cryptography based on Bell's theorem

    SciTech Connect

    Chen Zengbing; Pan Jianwei; Zhang Qiang; Bao Xiaohui; Schmiedmayer, Joerg

    2006-05-15

    We propose a double-entanglement-based quantum cryptography protocol that is both efficient and deterministic. The proposal uses photon pairs with entanglement both in polarization and in time degrees of freedom; each measurement in which both of the two communicating parties register a photon can establish one and only one perfect correlation, and thus deterministically create a key bit. Eavesdropping can be detected by violation of local realism. A variation of the protocol shows a higher security, similar to the six-state protocol, under individual attacks. Our scheme allows a robust implementation under the current technology.

  14. Modeling the quantum efficiency of controlled porosity dispenser photocathodes

    NASA Astrophysics Data System (ADS)

    Pan, Z.; Jensen, K.; O'Shea, P.

    2012-01-01

    A theoretical model of diffusion, evaporation, and rejuvenation of cesium on the surface of a controlled porosity dispenser photocathode is developed. The model applies a novel hexagonal meshgrid for increased numerical accuracy. For activation temperatures within the range of 400 K-1000 K, simulation found differences of less than 5% between the quantum efficiency (QE) maximum and minimum over ideal homogenous surfaces. Simulations suggest more variation for real cases to include real surface non uniformity. Changes in the QE map across the surface suggest that the emittance can change depending on temperature. Extensions to the model as well as connections to experiment are discussed.

  15. Efficient teleportation between remote single-atom quantum memories.

    PubMed

    Nölleke, Christian; Neuzner, Andreas; Reiserer, Andreas; Hahn, Carolin; Rempe, Gerhard; Ritter, Stephan

    2013-04-01

    We demonstrate teleportation of quantum bits between two single atoms in distant laboratories. Using a time-resolved photonic Bell-state measurement, we achieve a teleportation fidelity of (88.0 ± 1.5)%, largely determined by our entanglement fidelity. The low photon collection efficiency in free space is overcome by trapping each atom in an optical cavity. The resulting success probability of 0.1% is almost 5 orders of magnitude larger than in previous experiments with remote material qubits. It is mainly limited by photon propagation and detection losses and can be enhanced with a cavity-based deterministic Bell-state measurement. PMID:25166964

  16. CdSe Quantum-Dot-Sensitized Solar Cell with ~100% Internal Quantum Efficiency

    SciTech Connect

    Fuke, Nobuhiro; Hoch, Laura B.; Koposov, Alexey Y.; Manner, Virginia W.; Werder, Donald J.; Fukui, Atsushi; Koide, Naoki; Katayama, Hiroyuki; Sykora, Milan

    2010-10-20

    We have constructed and studied photoelectrochemical solar cells (PECs) consisting of a photoanode prepared by direct deposition of independently synthesized CdSe nanocrystal quantum dots (NQDs) onto a nanocrystalline TiO2 film (NQD/TiO2), aqueous Na2S or Li2S electrolyte, and a Pt counter electrode. We show that light harvesting efficiency (LHE) of the NQD/TiO2 photoanode is significantly enhanced when the NQD surface passivation is changed from tri-n-octylphosphine oxide (TOPO) to 4-butylamine (BA). In the PEC the use of NQDs with a shorter passivating ligand, BA, leads to a significant enhancement in both the electron injection efficiency at the NQD/TiO2 interface and charge collection efficiency at the NQD/electrolyte interface, with the latter attributed mostly to a more efficient diffusion of the electrolyte through the pores of the photoanode. We show that by utilizing BA-capped NQDs and aqueous Li2S as an electrolyte, it is possible to achieve ~100% internal quantum efficiency of photon-to-electron conversion, matching the performance of dye-sensitized solar cells.

  17. Dynamical decoupling efficiency versus quantum non-Markovianity

    NASA Astrophysics Data System (ADS)

    Addis, Carole; Ciccarello, Francesco; Cascio, Michele; Massimo Palma, G.; Maniscalco, Sabrina

    2015-12-01

    We investigate the relationship between non-Markovianity and the effectiveness of a dynamical decoupling (DD) protocol for qubits undergoing pure dephasing. We consider an exact model in which dephasing arises due to a bosonic environment with a spectral density of the Ohmic class. This is parametrized by an Ohmicity parameter by changing which we can model both Markovian and non-Markovian environments. Interestingly, we find that engineering a non-Markovian environment is detrimental to the efficiency of the DD scheme, leading to a worse coherence preservation. We show that each DD pulse reverses the flow of quantum information and, on this basis, we investigate the connection between DD efficiency and the reservoir spectral density. Finally, in the spirit of reservoir engineering, we investigate the optimum system-reservoir parameters for achieving maximum stationary coherences.

  18. Jefferson Lab IR demo FEL photocathode quantum efficiency scanner

    NASA Astrophysics Data System (ADS)

    Gubeli, J.; Evans, R.; Grippo, A.; Jordan, K.; Shinn, M.; Siggins, T.

    2001-12-01

    Jefferson Laboratory's Free Electron Laser (FEL) incorporates a cesiated gallium arsenide (GaAs) DC photocathode gun as its electron source. By using a set of scanning mirrors, the surface of the GaAs wafer is illuminated with a 543.5nm helium-neon laser. Measuring the current flow across the biased photocathode generates a quantum efficiency (QE) map of the 1-in. diameter wafer surface. The resulting QE map provides a very detailed picture of the efficiency of the wafer surface. By generating a QE map in a matter of minutes, the photocathode scanner has proven to be an exceptional tool in quickly determining sensitivity and availability of the photocathode for operation.

  19. Enhanced electron extraction capability of polymer solar cells via modifying the cathode buffer layer with inorganic quantum dots.

    PubMed

    Li, Zhiqi; Li, Shujun; Zhang, Zhihui; Zhang, Xinyuan; Li, Jingfeng; Liu, Chunyu; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2016-04-20

    Enhanced performance of polymer solar cells (PSCs) based on the blend of poly[N-9''-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT):[6,6]-phenyl-C70-butyric acid methyl ester (PC71BM) is demonstrated by titanium dioxide (TiO2) interface modification via CuInS2/ZnS quantum dots (CZdots). Devices with a TiO2/CZdots composite buffer layer exhibit both a high short-circuit current density (Jsc) and fill factor (FF), leading to a power conversion efficiency (PCE) up to 7.01%. The charge transport recombination mechanisms are investigated by an impedance behavior model, which indicates that TiO2 interfacial modification results in not only increasing the electron extraction but also reducing impedance. This study provides an important and beneficial approach to develop high efficiency PSCs. PMID:27055908

  20. Fully depleted, thick, monolithic CMOS pixels with high quantum efficiency

    NASA Astrophysics Data System (ADS)

    Clarke, A.; Stefanov, K.; Johnston, N.; Holland, A.

    2015-04-01

    The Centre for Electronic Imaging (CEI) has an active programme of evaluating and designing Complementary Metal-Oxide Semiconductor (CMOS) image sensors with high quantum efficiency, for applications in near-infrared and X-ray photon detection. This paper describes the performance characterisation of CMOS devices made on a high resistivity 50 μ m thick p-type substrate with a particular focus on determining the depletion depth and the quantum efficiency. The test devices contain 8 × 8 pixel arrays using CCD-style charge collection, which are manufactured in a low voltage CMOS process by ESPROS Photonics Corporation (EPC). Measurements include determining under which operating conditions the devices become fully depleted. By projecting a spot using a microscope optic and a LED and biasing the devices over a range of voltages, the depletion depth will change, causing the amount of charge collected in the projected spot to change. We determine if the device is fully depleted by measuring the signal collected from the projected spot. The analysis of spot size and shape is still under development.

  1. Efficient quantum modeling of inelastic interactions in nanodevices

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Lannoo, M.; Cavassilas, N.; Luisier, M.; Bescond, M.

    2016-05-01

    This paper presents an efficient direct quantum method to model inelastic scattering in nanoelectronic structures including degenerate band extrema. It couples the Born series expansion of the nonequilibrium Green's function (NEGF) to an analytic continuation based on the Padé approximant technique. Using a two-band k .p Hamiltonian, we analyze the electron transport through a linear chain in the presence of both optical and acoustic phonons. Results are consistently compared with the usual, computationally expensive, self-consistent Born approximation (SCBA). We find that our approach provides a much better convergence for both types of phonons in the presence of strong multiband coupling. The calculation of the current to the fifth order in the interactions is sufficient to reproduce the influence of all considered phonon interactions. We also show that the method can be applied to the calculation of the density of carriers which depicts however a slower convergence rate than the current. The capability to efficiently calculate both current and carrier density represents a clear advantage in a context of increasing request for atomistic quantum simulations.

  2. Evaluation of new large area PMT with high quantum efficiency

    NASA Astrophysics Data System (ADS)

    Lei, Xiang-Cui; Heng, Yue-Kun; Qian, Sen; Xia, Jing-Kai; Liu, Shu-Lin; Wu, Zhi; Yan, Bao-Jun; Xu, Mei-Hang; Wang, Zheng; Li, Xiao-Nan; Ruan, Xiang-Dong; Wang, Xiao-Zhuang; Yang, Yu-Zhen; Wang, Wen-Wen, Wang; Can, Fang; Feng-Jiao, Luo; Liang, Jing-Jing; Yang, Lu-Ping; Yang, Biao

    2016-02-01

    The neutrino detector of the Jiangmen Underground Neutrino Observatory (JUNO) is designed to use 20 kilotons of liquid scintillator and approximately 16 000 20 inch photomultipliers (PMTs). One of the options is to use the 20 inch R12860 PMT with high quantum efficiency which has recently been developed by Hamamatsu Photonics. The performance of the newly developed PMT preproduction samples is evaluated. The results show that its quantum efficiency is 30% at 400 nm. Its Peak/Valley (P/V) ratio for the single photoelectron is 4.75 and the dark count rate is 27 kHz at the threshold of 3 mV while the gain is at 1 × 107. The transit time spread of a single photoelectron is 2.86 ns. Generally the performances of this new 20 inch PMT are improved over the old one of R3600. Supported by Strategic Priority Research Program of Chinese Academy of Sciences (X-DA10010200), Key Deployment Project of Chinese Academy of Sciences and CAS Center for Excellence in Particle Physics (CCEPP)

  3. Highly ordered and ultra-long carbon nanotube arrays as air cathodes for high-energy-efficiency Li-oxygen batteries

    NASA Astrophysics Data System (ADS)

    Yu, Ruimin; Fan, Wugang; Guo, Xiangxin; Dong, Shaoming

    2016-02-01

    Carbonaceous air cathodes with rational architecture are vital for the nonaqueous Li-O2 batteries to achieve large energy density, high energy efficiency and long cycle life. In this work, we report the cathodes made of highly ordered and vertically aligned carbon nanotubes grown on permeable Ta foil substrates (VACNTs-Ta) via thermal chemical vapour deposition. The VACNTs-Ta, composed of uniform carbon nanotubes with approximately 240 μm in superficial height, has the super large surface area. Meanwhile, the oriented carbon nanotubes provide extremely outstanding passageways for Li ions and oxygen species. Electrochemistry tests of VACNTs-Ta air cathodes show enhancement in discharge capacity and cycle life compared to those made from short-range oriented and disordered carbon nanotubes. By further combining with the LiI redox mediator that is dissolved in the tetraethylene dimethyl glycol based electrolytes, the batteries exhibit more than 200 cycles at the current density of 200 mA g-1 with a cut-off discharge capacity of 1000 mAh g-1, and their energy efficiencies increase from 50% to 82%. The results here demonstrate the importance of cathode construction for high-energy-efficiency and long-life Li-O2 batteries.

  4. UV photoemission from metal cathodes for picosecond power switches

    SciTech Connect

    Fischer, J.; Srinivasan-RAo, T.; Tsang, T.

    1989-01-01

    Results are reported of photoemission studies using laser pulses of 10 ps duration and 4.66 eV photon energy on metal cathodes. These included thin wires, flat surfaces and an yttrium cathode with a grainy surface. The measurements of current density and quantum efficiency under low and high surface fields indicate that field assisted efficiencies exceeding 0.1% and current densities exceeding 10/sup 5/ A/cm/sup 2/ are obtainable. The results are compared to the requirements of switch power applications. 24 refs., 13 figs., 1 tab.

  5. Highly efficient inverted organic solar cells using amino acid modified indium tin oxide as cathode

    SciTech Connect

    Li, Aiyuan; Nie, Riming; Deng, Xianyu; Wei, Huaixin; Li, Yanqing; Tang, Jianxin; Zheng, Shizhao; Wong, King-Young

    2014-03-24

    In this paper, we report that highly efficient inverted organic solar cells were achieved by modifying the surface of indium tin oxide (ITO) using an amino acid, Serine (Ser). With the modification of the ITO surface, device efficiency was significantly enhanced from 0.63% to 4.17%, accompanied with an open circuit voltage (Voc) that was enhanced from 0.30 V to 0.55 V. Ultraviolet and X-ray photoelectron spectroscopy studies indicate that the work function reduction induced by the amino acid modification resulting in the decreased barrier height at the ITO/organic interface played a crucial role in the enhanced performances.

  6. Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modeling

    NASA Astrophysics Data System (ADS)

    Slooff, L. H.; Veenstra, S. C.; Kroon, J. M.; Moet, D. J. D.; Sweelssen, J.; Koetse, M. M.

    2007-04-01

    A power conversion efficiency of 4.2% (AM1.5, 1000W/m2) is measured for an organic solar cell based on an active layer of an alternating copolymer, containing a fluorene and a benzothiadiazole unit with two neighboring thiophene rings, and a fullerene derivative. Using optical modeling, the absorption profile in the active layer of the solar cell is calculated and used to calculate the maximum short circuit current. The calculated currents are compared with measured currents from current-voltage measurements for various film thicknesses. From this the internal quantum efficiency is estimated to be 75% at the maximum for the best device.

  7. Broadband quantum efficiency enhancement in high index nanowire resonators.

    PubMed

    Yang, Yiming; Peng, Xingyue; Hyatt, Steven; Yu, Dong

    2015-05-13

    Light trapping in subwavelength semiconductor nanowires (NWs) offers a promising approach to simultaneously reducing material consumption and enhancing photovoltaic performance. Nevertheless, the absorption efficiency of a NW, defined by the ratio of optical absorption cross section to the NW diameter, lingers around 1 in existing NW photonic devices, and the absorption enhancement suffers from a narrow spectral width. Here, we show that the absorption efficiency can be significantly improved in NWs with higher refractive indices, by an experimental observation of up to 350% apparent external quantum efficiency in lead sulfide NW resonators, a 3-fold increase compared to Si NWs. Furthermore, broadband absorption enhancement is achieved in single tapered NWs, where light of various wavelengths is absorbed at segments with different diameters. Overall, the single NW Schottky junction solar cells benefit from optical resonance, near bandgap open circuit voltage, and long minority carrier diffusion length, demonstrating power conversion efficiency comparable to Si and III-V single NW coaxial p-n junction cells but with much simpler fabrication processes. PMID:25919358

  8. Coherent nanocavity structures for enhancement in internal quantum efficiency of III-nitride multiple quantum wells

    SciTech Connect

    Kim, T.; Liu, B.; Smith, R.; Athanasiou, M.; Gong, Y.; Wang, T.

    2014-04-21

    A “coherent” nanocavity structure has been designed on two-dimensional well-ordered InGaN/GaN nanodisk arrays with an emission wavelength in the green spectral region, leading to a massive enhancement in resonance mode in the green spectra region. By means of a cost-effective nanosphere lithography technique, we have fabricated such a structure on an InGaN/GaN multiple quantum well epiwafer and have observed the “coherent” nanocavity effect, which leads to an enhanced spontaneous emission (SE) rate. The enhanced SE rate has been confirmed by time resolved photoluminescence measurements. Due to the coherent nanocavity effect, we have achieved a massive improvement in internal quantum efficiency with a factor of 88, compared with the as-grown sample, which could be significant to bridge the “green gap” in solid-state lighting.

  9. Pseudospectral Gaussian quantum dynamics: Efficient sampling of potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Heaps, Charles W.; Mazziotti, David A.

    2016-04-01

    Trajectory-based Gaussian basis sets have been tremendously successful in describing high-dimensional quantum molecular dynamics. In this paper, we introduce a pseudospectral Gaussian-based method that achieves accurate quantum dynamics using efficient, real-space sampling of the time-dependent basis set. As in other Gaussian basis methods, we begin with a basis set expansion using time-dependent Gaussian basis functions guided by classical mechanics. Unlike other Gaussian methods but characteristic of the pseudospectral and collocation methods, the basis set is tested with N Dirac delta functions, where N is the number of basis functions, rather than using the basis function as test functions. As a result, the integration for matrix elements is reduced to function evaluation. Pseudospectral Gaussian dynamics only requires O ( N ) potential energy calculations, in contrast to O ( N 2 ) evaluations in a variational calculation. The classical trajectories allow small basis sets to sample high-dimensional potentials. Applications are made to diatomic oscillations in a Morse potential and a generalized version of the Henon-Heiles potential in two, four, and six dimensions. Comparisons are drawn to full analytical evaluation of potential energy integrals (variational) and the bra-ket averaged Taylor (BAT) expansion, an O ( N ) approximation used in Gaussian-based dynamics. In all cases, the pseudospectral Gaussian method is competitive with full variational calculations that require a global, analytical, and integrable potential energy surface. Additionally, the BAT breaks down when quantum mechanical coherence is particularly strong (i.e., barrier reflection in the Morse oscillator). The ability to obtain variational accuracy using only the potential energy at discrete points makes the pseudospectral Gaussian method a promising avenue for on-the-fly dynamics, where electronic structure calculations become computationally significant.

  10. Pseudospectral Gaussian quantum dynamics: Efficient sampling of potential energy surfaces.

    PubMed

    Heaps, Charles W; Mazziotti, David A

    2016-04-28

    Trajectory-based Gaussian basis sets have been tremendously successful in describing high-dimensional quantum molecular dynamics. In this paper, we introduce a pseudospectral Gaussian-based method that achieves accurate quantum dynamics using efficient, real-space sampling of the time-dependent basis set. As in other Gaussian basis methods, we begin with a basis set expansion using time-dependent Gaussian basis functions guided by classical mechanics. Unlike other Gaussian methods but characteristic of the pseudospectral and collocation methods, the basis set is tested with N Dirac delta functions, where N is the number of basis functions, rather than using the basis function as test functions. As a result, the integration for matrix elements is reduced to function evaluation. Pseudospectral Gaussian dynamics only requires O(N) potential energy calculations, in contrast to O(N(2)) evaluations in a variational calculation. The classical trajectories allow small basis sets to sample high-dimensional potentials. Applications are made to diatomic oscillations in a Morse potential and a generalized version of the Henon-Heiles potential in two, four, and six dimensions. Comparisons are drawn to full analytical evaluation of potential energy integrals (variational) and the bra-ket averaged Taylor (BAT) expansion, an O(N) approximation used in Gaussian-based dynamics. In all cases, the pseudospectral Gaussian method is competitive with full variational calculations that require a global, analytical, and integrable potential energy surface. Additionally, the BAT breaks down when quantum mechanical coherence is particularly strong (i.e., barrier reflection in the Morse oscillator). The ability to obtain variational accuracy using only the potential energy at discrete points makes the pseudospectral Gaussian method a promising avenue for on-the-fly dynamics, where electronic structure calculations become computationally significant. PMID:27131532

  11. Energy-efficient modification of reduction-melting for lead recovery from cathode ray tube funnel glass.

    PubMed

    Okada, Takashi; Yonezawa, Susumu

    2013-08-01

    Lead can be recovered from funnel glass of waste cathode ray tubes via reduction melting. While low-temperature melting is necessary for reduced energy consumption, previously proposed methods required high melting temperatures (1400 °C) for the reduction melting. In this study, the reduction melting of the funnel glass was performed at 900-1000 °C using a lab-scale reactor with varying concentrations of Na(2)CO(3) at different melting temperatures and melting times. The optimum Na(2)CO(3) dosage and melting temperature for efficient lead recovery was 0.5 g per 1g of the funnel glass and 1000 °C respectively. By the reduction melting with the mentioned conditions, 92% of the lead in the funnel glass was recovered in 60 min. However, further lead recovery was difficult because the rate of the lead recovery decreased as with the recovery of increasing quantity of the lead from the glass. Thus, the lead remaining in the glass after the reduction melting was extracted with 1M HCl, and the lead recovery improved to 98%. PMID:23711698

  12. The engineering of quantum dots for efficient solar energy capture

    NASA Astrophysics Data System (ADS)

    Pietryga, Jeffrey

    Over the past decade, exciting advances have been made in the use of semiconductor nanocrystal quantum dots (QDs) for capture of solar energy, including efficient and inexpensive solar cells based on simple, single-component lead chalcogenide QDs. Such devices take advantage of key advantages offered by QDs, including the ability to control bandgap with particle size, and to alter carrier concentrations using surface modification. Remaining essentially untapped, however, is the much larger potential offered by heterostructured QDs to exhibit new functionality that will enable truly unprecedented device performance. In this talk, I will present recent results from our efforts in application-inspired band-structure engineering of heterostructured QDs. Specifically, I will examine how the selective combination of semiconductor materials in a simple core/shell geometry can result in QDs with radically altered properties optimized for use in applications such as carrier-multiplication-enhanced solar cells, and highly efficient luminescent solar concentrators. I will use these examples to demonstrate the general ability of solution-synthesized nanomaterials to contribute to the overall goal of efficient solar energy capture and conversion in a variety of roles. This work was performed within the Center for Advanced Solar Photophysics, a DOE Energy Frontier Research Center.

  13. Efficient multiparty quantum key agreement protocol based on commutative encryption

    NASA Astrophysics Data System (ADS)

    Sun, Zhiwei; Huang, Jiwu; Wang, Ping

    2016-05-01

    A secure multiparty quantum key agreement protocol using single-qubit states is proposed. The agreement key is computed by performing exclusive-OR operation on all the participants' secret keys. Based on the commutative property of the commutative encryption, the exclusive-OR operation can be performed on the plaintext in the encrypted state without decrypting it. Thus, it not only protects the final shared key, but also reduces the complexity of the computation. The efficiency of the proposed protocol, compared with previous multiparty QKA protocols, is also improved. In the presented protocol, entanglement states, joint measurement and even the unitary operations are not needed, and only rotation operations and single-state measurement are required, which are easier to be realized with current technology.

  14. Determination of quantum efficiency in fluorescing turbid media.

    PubMed

    Coppel, Ludovic Gustafsson; Andersson, Mattias; Edström, Per

    2011-06-10

    A method is proposed to estimate the optical parameters in a fluorescing turbid medium with strong absorption for which traditional Kubelka-Munk theory is not applicable, using a model for the radiative properties of optically thick fluorescent turbid media of finite thickness proposed in 2009 [J. Opt. Soc. Am. A26, 1896 (2009)]. The method is successfully applied to uncoated papers with different thicknesses. It is found that the quantum efficiency of fluorescent whitening agents (FWAs) is nearly independent of the fiber type, FWA type, FWA concentration, and filler additive concentration used in this study. The results enable an estimation of the model parameters as function of the FWA concentration and substrate composition. This is necessary in order to use the model for optimizing fluorescence in the paper and textile industries. PMID:21673784

  15. Highly Efficient Long-Distance Quantum Communication: a Blueprint for Implementation

    NASA Astrophysics Data System (ADS)

    Li, Linshu; Muralidharan, Sreraman; Kim, Jungsang; Lutkenhaus, Norbert; Lukin, Mikhail; Jiang, Liang

    2015-03-01

    Quantum repeaters provide a way for long distance quantum communication through optical fiber networks. Transmission losses and operation errors are two major challenges to the implementation of quantum repeaters. At each intermediate repeater station, transmission losses can be overcome using either heralded entanglement generation or quantum error correction, while operation errors can be corrected via entanglement purification or quantum error correction. Depending on the mechanisms used to correct loss and operation errors respectively, three generations of quantum repeaters have been proposed. We present a quantitative comparison of different quantum repeater schemes by evaluating the time- and qubit-resource consumed simultaneously. We can identify the most efficient scheme for given technological capabilities, which are characterized by fiber coupling efficiency, local gate fidelity, and local gate speed. Our work provides a roadmap for high-speed quantum networks across continental distances. Linshu and Sreraman contributed equally to this work.

  16. Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode.

    PubMed

    Jacobson, Kyle S; Drew, David M; He, Zhen

    2011-01-01

    Microbial desalination cells (MDCs) hold great promise for drinking water production because of potential energy savings during the desalination process. In this study, we developed a continuously operated MDC--upflow microbial desalination cell (UMDC) for the purpose of salt removal. During the 4-month operation, the UMDC constantly removed salts and generated bio-electricity. At a hydraulic retention time (HRT) of 4 days (salt solution) and current production of ∼62 mA, the UMDC was able to remove more than 99% of NaCl from the salt solution that had an initial salt concentration of 30 g total dissolved solids (TDS)/L. In addition, the TDS removal rate was 7.50 g TDSL(-1)d(-1) (salt solution volume) or 5.25 g TDSL(-1)d(-1) (wastewater volume), and the desalinated water met the drinking water standard, in terms of TDS concentration. A high charge transfer efficiency of 98.6% or 81% was achieved at HRT 1 or 4d. The UMDC produced a maximum power density of 30.8 W/m(3). The phenomena of bipolar electrodialysis and proton transport in the UMDC were discussed. These results demonstrated the potential of the UMDC as either a sole desalination process or a pre-desalination reactor for downstream desalination processes. PMID:20584603

  17. High-conjugation-efficiency aqueous CdSe quantum dots.

    PubMed

    Au, Giang H T; Shih, Wan Y; Shih, Wei-Heng

    2013-11-12

    Quantum dots (QDs) are photoluminescent nanoparticles that can be directly or indirectly coupled with a receptor such as an antibody to specifically image a target biomolecule such as an antigen. Recent studies have shown that QDs can be directly made at room temperature and in an aqueous environment (AQDs) with 3-mercaptopropionic acid (MPA) as the capping ligand without solvent and ligand exchange typically required by QDs made by the organic solvent routes (OQDs). In this study, we have synthesized CdSe AQDs and compared their conjugation efficiency and imaging efficacy with commercial carboxylated OQDs in HT29 colon cancer cells using a primary antibody-biotinylated secondary antibody-streptavidin (SA) sandwich. We showed that the best imaging condition for AQDs occurred when one AQD was bound with 3 ± 0.3 SA with a nominal SA/AQD ratio of 4 corresponding to an SA conjugation efficiency of 75 ± 7.5%. In comparison, for commercial CdSe-ZnS OQDs to achieve 2.7 ± 0.4 bound SAs per OQD for comparable imaging efficacy a nominal SA/OQD ratio of 80 was needed corresponding to an SA conjugation efficiency of 3.4 ± 0.5% for CdSe-ZnS OQDs. The more than 10 times better SA conjugation efficiency of the CdSe AQDs as compared to that of the CdSe-ZnS OQDs was attributed to more capping molecules on the AQD surface as a result of the direct aqueous synthesis. More capping molecules on the AQD surface also allowed the SA-AQD conjugate to be stable in cell culture medium for more than three days without losing their staining capability in a flowing cell culture medium. In contrast, SA-OQD conjugates aggregated in cell culture medium and in phosphate buffer saline solution over time. PMID:24151632

  18. Hydrogen and oxygen production by photosynthetic water splitting: Energy and quantum conversion efficiencies

    SciTech Connect

    Greenbaum, E.

    1985-01-01

    Absolute energy and quantum conversion efficiencies based on incident radiation have been measured for five species of green algae. Experiments have been performed with broadband illumination and monochromatic illumination. Maximum efficiencies were obtained in the linear low-intensity portion of the light saturation curve. At these intensities, equivalent solar energy conversion efficiencies of 2-3% were obtained with Chlamydomonas reinhardtil 137C(+). Although this efficiency decreased to less than 0.01% at equivalent incident solar irradiances above 100 w/m)sup)2)), a knowledge of the structure of photosynthetic units and the turnover time of photosynthesis suggest a procedure to overcome this limitation. Using monochromatic illumination at 700 nm, quantum efficiencies were computed from measured energy conversion efficiencies. The maximum measured quantum efficiency for photobiological hydrogen production was 6.3% in the marine species Chlamydomonas D. This value is about 25% of the maximum theoretical value of the quantum efficiency of photobiological hydrogen production. 19 refs., 6 figs.

  19. High power-efficiency terahertz quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Li, Yuan-Yuan; Liu, Jun-Qi; Liu, Feng-Qi; Zhang, Jin-Chuan; Zhai, Shen-Qiang; Zhuo, Ning; Wang, Li-Jun; Liu, Shu-Man; Wang, Zhan-Guo

    2016-08-01

    We demonstrate continuous-wave (CW) high power-efficiency terahertz quantum cascade laser based on semi-insulating surface-plasmon waveguide with epitaxial-side down (Epi-down) mounting process. The performance of the device is analyzed in detail. The laser emits at a frequency of ∼ 3.27 THz and has a maximum CW operating temperature of ∼ 70 K. The peak output powers are 177 mW in pulsed mode and 149 mW in CW mode at 10 K for 130-μm-wide Epi-down mounted lasers. The record wall-plug efficiencies in direct measurement are 2.26% and 2.05% in pulsed and CW mode, respectively. Project supported by the National Basic Research Program of China (Grant Nos. 2014CB339803 and 2013CB632801), the Special-funded Program on National Key Scientific Instruments and Equipment Development, China (Grant No. 2011YQ13001802-04), and the National Natural Science Foundation of China (Grant No. 61376051).

  20. Towards a Robust, Efficient Dispenser Photocathode: the Effect of Recesiation on Quantum Efficiency

    SciTech Connect

    Montgomery, Eric J.; Pan Zhigang; Leung, Jessica; Feldman, Donald W.; O'Shea, Patrick G.; Jensen, Kevin L.

    2009-01-22

    Future electron accelerators and Free Electron Lasers (FELs) require high brightness electron sources; photocathodes for such devices are challenged to maintain long life and high electron emission efficiency (high quantum efficiency, or QE). The UMD dispenser photocathode design addresses this tradeoff of robustness and QE. In such a dispenser, a cesium-based surface layer is deposited on a porous substrate. The surface layer can be replenished from a subsurface cesium reservoir under gentle heating, allowing cesium to diffuse controllably to the surface and providing demonstrably more robust photocathodes. In support of the premise that recesiation is able to restore contaminated photocathodes, we here report controlled contamination of cesium-based surface layers with subsequent recesiation and the resulting effect on QE. Contaminant gases investigated include examples known from the vacuum environment of typical electron guns.

  1. Towards a Robust, Efficient Dispenser Photocathode: the Effect of Recesiation on Quantum Efficiency

    NASA Astrophysics Data System (ADS)

    Montgomery, Eric J.; Pan, Zhigang; Leung, Jessica; Feldman, Donald W.; O'Shea, Patrick G.; Jensen, Kevin L.

    2009-01-01

    Future electron accelerators and Free Electron Lasers (FELs) require high brightness electron sources; photocathodes for such devices are challenged to maintain long life and high electron emission efficiency (high quantum efficiency, or QE). The UMD dispenser photocathode design addresses this tradeoff of robustness and QE. In such a dispenser, a cesium-based surface layer is deposited on a porous substrate. The surface layer can be replenished from a subsurface cesium reservoir under gentle heating, allowing cesium to diffuse controllably to the surface and providing demonstrably more robust photocathodes. In support of the premise that recesiation is able to restore contaminated photocathodes, we here report controlled contamination of cesium-based surface layers with subsequent recesiation and the resulting effect on QE. Contaminant gases investigated include examples known from the vacuum environment of typical electron guns.

  2. Measurement and analysis of thermal photoemission from a dispenser cathode

    NASA Astrophysics Data System (ADS)

    Jensen, Kevin L.; Feldman, Donald W.; Virgo, Matt; O'Shea, Patrick G.

    2003-08-01

    Photocathodes for free electron lasers (FELs) are required to produce nano-Coulomb pulses in picosecond time scales with demonstrable reliability, lifetime, and efficiency. Dispenser cathodes, traditionally a rugged and long-lived thermionic source, are under investigation to determine their utility as a photocathode and have shown promise. The present study describes theoretical models under development to analyze experimental data from dispenser cathodes and to create predictive time-dependent models to predict their performance as an FEL source. Here, a steady-state model of a dispenser cathode with partial coverage of a low work function coating and surface nonuniformity is developed. Quantitative agreement is found for experimental data, especially with regard to temperature, field, laser intensity, and quantum efficiency versus laser wavelength dependence. In particular, for long wavelength incident lasers of sufficient intensity, the majority of the absorbed energy heats the electron gas and background lattice, and photoemission from the heated electron distribution constitutes the emitted current.

  3. Toward efficient fiber-based quantum interface (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Soshenko, Vladimir; Vorobyov, Vadim V.; Bolshedvorsky, Stepan; Lebedev, Nikolay; Akimov, Alexey V.; Sorokin, Vadim; Smolyaninov, Andrey

    2016-04-01

    NV center in diamond is attracting a lot of attention in quantum information processing community [1]. Been spin system in clean and well-controlled environment of diamond it shows outstanding performance as quantum memory even at room temperature, spin control with single shot optical readout and possibility to build up quantum registers even on single NV center. Moreover, NV centers could be used as high-resolution sensitive elements of detectors of magnetic or electric field, temperature, tension, force or rotation. For all of these applications collection of the light emitted by NV center is crucial point. There were number of approaches suggested to address this issue, proposing use of surface plasmoms [2], manufacturing structures in diamond [3] etc. One of the key feature of any practically important interface is compatibility with the fiber technology. Several groups attacking this problem using various approaches. One of them is placing of nanodiamonds in the holes of photonic crystal fiber [4], another is utilization of AFM to pick and place nanodiamond on the tapered fiber[5]. We have developed a novel technique of placing a nanodiamond with single NV center on the tapered fiber by controlled transfer of a nanodiamond from one "donor" tapered fiber to the "target" clean tapered fiber. We verify our ability to transfer only single color centers by means of measurement of second order correlation function. With this technique, we were able to double collection efficiency of confocal microscope. The majority of the factors limiting the collection of photons via optical fiber are technical and may be removed allowing order of magnitude improved in collection. We also discuss number of extensions of this technique to all fiber excitation and integration with nanostructures. References: [1] Marcus W. Doherty, Neil B. Manson, Paul Delaney, Fedor Jelezko, Jörg Wrachtrup, Lloyd C.L. Hollenberg , " The nitrogen-vacancy colour centre in diamond," Physics Reports

  4. Detective quantum efficiency of electron area detectors in electron microscopy

    PubMed Central

    McMullan, G.; Chen, S.; Henderson, R.; Faruqi, A.R.

    2009-01-01

    Recent progress in detector design has created the need for a careful side-by-side comparison of the modulation transfer function (MTF) and resolution-dependent detective quantum efficiency (DQE) of existing electron detectors with those of detectors based on new technology. We present MTF and DQE measurements for four types of detector: Kodak SO-163 film, TVIPS 224 charge coupled device (CCD) detector, the Medipix2 hybrid pixel detector, and an experimental direct electron monolithic active pixel sensor (MAPS) detector. Film and CCD performance was measured at 120 and 300 keV, while results are presented for the Medipix2 at 120 keV and for the MAPS detector at 300 keV. In the case of film, the effects of electron backscattering from both the holder and the plastic support have been investigated. We also show that part of the response of the emulsion in film comes from light generated in the plastic support. Computer simulations of film and the MAPS detector have been carried out and show good agreement with experiment. The agreement enables us to conclude that the DQE of a backthinned direct electron MAPS detector is likely to be equal to, or better than, that of film at 300 keV. PMID:19497671

  5. Effects of image processing on the detective quantum efficiency

    NASA Astrophysics Data System (ADS)

    Park, Hye-Suk; Kim, Hee-Joung; Cho, Hyo-Min; Lee, Chang-Lae; Lee, Seung-Wan; Choi, Yu-Na

    2010-04-01

    Digital radiography has gained popularity in many areas of clinical practice. This transition brings interest in advancing the methodologies for image quality characterization. However, as the methodologies for such characterizations have not been standardized, the results of these studies cannot be directly compared. The primary objective of this study was to standardize methodologies for image quality characterization. The secondary objective was to evaluate affected factors to Modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) according to image processing algorithm. Image performance parameters such as MTF, NPS, and DQE were evaluated using the international electro-technical commission (IEC 62220-1)-defined RQA5 radiographic techniques. Computed radiography (CR) images of hand posterior-anterior (PA) for measuring signal to noise ratio (SNR), slit image for measuring MTF, white image for measuring NPS were obtained and various Multi-Scale Image Contrast Amplification (MUSICA) parameters were applied to each of acquired images. In results, all of modified images were considerably influence on evaluating SNR, MTF, NPS, and DQE. Modified images by the post-processing had higher DQE than the MUSICA=0 image. This suggests that MUSICA values, as a post-processing, have an affect on the image when it is evaluating for image quality. In conclusion, the control parameters of image processing could be accounted for evaluating characterization of image quality in same way. The results of this study could be guided as a baseline to evaluate imaging systems and their imaging characteristics by measuring MTF, NPS, and DQE.

  6. Quantum afterburner: improving the efficiency of an ideal heat engine.

    PubMed

    Scully, Marlan O

    2002-02-01

    By using a laser and maser in tandem, it is possible to obtain laser action in the hot exhaust gases of a heat engine. Such a "quantum afterburner" involves the internal quantum states of the working molecules as well as the techniques of cavity quantum electrodynamics and is therefore in the domain of quantum thermodynamics. It is shown that Otto cycle engine performance can be improved beyond that of the "ideal" Otto heat engine. Furthermore, the present work demonstrates a new kind of lasing without initial inversion. PMID:11863710

  7. Quantum Afterburner: Improving the Efficiency of an Ideal Heat Engine

    NASA Astrophysics Data System (ADS)

    Scully, Marlan O.

    2002-02-01

    By using a laser and maser in tandem, it is possible to obtain laser action in the hot exhaust gases of a heat engine. Such a ``quantum afterburner'' involves the internal quantum states of the working molecules as well as the techniques of cavity quantum electrodynamics and is therefore in the domain of quantum thermodynamics. It is shown that Otto cycle engine performance can be improved beyond that of the ``ideal'' Otto heat engine. Furthermore, the present work demonstrates a new kind of lasing without initial inversion.

  8. Using G-quadruplex/hemin to "switch-on" the cathodic photocurrent of p-type PbS quantum dots: toward a versatile platform for photoelectrochemical aptasensing.

    PubMed

    Wang, Guang-Li; Shu, Jun-Xian; Dong, Yu-Ming; Wu, Xiu-Ming; Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2015-03-01

    We present a novel photoelectrochemical (PEC) biosensing platform by taking advantage of the phenomenon that hemin intercalated in G-quadruplex "switched-on" the cathode photocurrent of p-type PbS quantum dots (QDs). Photoinduced electron transfer between PbS QDs and G-quadruplex/hemin(III) complexes with the subsequent catalytic oxygen reduction by the reduced G-quadruplex/hemin(II) led to an obvious enhancement in the cathodic photocurrent of the PbS QDs. For the detection process, in the presence of hemin, the specific recognition of the targets with the sensing sequence would trigger the formation of a stable G-quadruplex/hemin complex, which will result in reduced charge recombination and hence amplified photocurrent intensity of the PbS QDs. By using different target sequences, the developed system made possible a novel, label-free "switch-on" PEC aptasensor toward versatile biomolecular targets such as DNA and thrombin. Especially, with ambient oxygen to regenerate G-quadruplex/hemin(II) to G-quadruplex/hemin(III), this substrate-free strategy not only promoted the photoelectric effect and thus the enhanced sensitivity of the system, but also avoided the addition of supplementary substrates of G-quadruplex/hemin such as H2O2 and organic substances. PMID:25649393

  9. Sensitive Bioanalysis Based on in-Situ Droplet Anodic Stripping Voltammetric Detection of CdS Quantum Dots Label after Enhanced Cathodic Preconcentration.

    PubMed

    Qin, Xiaoli; Wang, Linchun; Xie, Qingji

    2016-01-01

    We report a protocol of CdS-labeled sandwich-type amperometric bioanalysis with high sensitivity, on the basis of simultaneous chemical-dissolution/cathodic-enrichment of the CdS quantum dot biolabel and anodic stripping voltammetry (ASV) detection of Cd directly on the bioelectrode. We added a microliter droplet of 0.1 M aqueous HNO₃ to dissolve CdS on the bioelectrode and simultaneously achieved the potentiostatic cathodic preconcentration of Cd by starting the potentiostatic operation before HNO₃ addition, which can largely increase the ASV signal. Our protocol was used for immunoanalysis and aptamer-based bioanalysis of several proteins, giving limits of detection of 4.5 fg·mL(-1) for human immunoglobulin G, 3.0 fg·mL(-1) for human carcinoembryonic antigen (CEA), 4.9 fg·mL(-1) for human α-fetoprotein (AFP), and 0.9 fM for thrombin, which are better than many reported results. The simultaneous and sensitive analysis of CEA and AFP at two screen-printed carbon electrodes was also conducted by our protocol. PMID:27563894

  10. Observation and Measurement of Temperature Rise and Distribution on GaAs Photo-cathode Wafer with a 532nm Drive Laser and a Thermal Imaging Camera

    SciTech Connect

    Shukui Zhang, Stephen Benson, Carlos Hernandez-Garcia

    2011-03-01

    Significant temperature rise and gradient are observed from a GaAs photo-cathode wafer irradiated at various power levels with over 20W laser power at 532nm wavelength. The laser power absorption and dissipated thermal distribution are measured. The result shows a clear indication that proper removal of laser induced heat from the cathode needs to be considered seriously when designing a high average current or low quantum efficiency photo-cathode electron gun. The measurement method presented here provides a useful way to obtain information about both temperature and thermal profiles, it also applies to cathode heating study with other heating devices such as electrical heaters.

  11. Photo-acoustic spectroscopy and quantum efficiency of Yb{sup 3+} doped alumino silicate glasses

    SciTech Connect

    Kuhn, Stefan Tiegel, Mirko; Herrmann, Andreas; Rüssel, Christian; Engel, Sebastian; Wenisch, Christoph; Gräf, Stephan; Müller, Frank A.; Körner, Jörg; Seifert, Reinhard; Yue, Fangxin; Klöpfel, Diethardt; Hein, Joachim; Kaluza, Malte C.

    2015-09-14

    In this contribution, we analyze the effect of several preparation methods of Yb{sup 3+} doped alumino silicate glasses on their quantum efficiency by using photo-acoustic measurements in comparison to standard measurement methods including the determination via the fluorescence lifetime and an integrating sphere setup. The preparation methods focused on decreasing the OH concentration by means of fluorine-substitution and/or applying dry melting atmospheres, which led to an increase in the measured fluorescence lifetime. However, it was found that the influence of these methods on radiative properties such as the measured fluorescence lifetime alone does not per se give exact information about the actual quantum efficiency of the sample. The determination of the quantum efficiency by means of fluorescence lifetime shows inaccuracies when refractive index changing elements such as fluorine are incorporated into the glass. Since fluorine not only eliminates OH from the glass but also increases the “intrinsic” radiative fluorescence lifetime, which is needed to calculate the quantum efficiency, it is difficult to separate lifetime quenching from purely radiative effects. The approach used in this contribution offers a possibility to disentangle radiative from non-radiative properties which is not possible by using fluorescence lifetime measurements alone and allows an accurate determination of the quantum efficiency of a given sample. The comparative determination by an integrating sphere setup leads to the well-known problem of reabsorption which embodies itself in the measurement of too low quantum efficiencies, especially for samples with small quantum efficiencies.

  12. Introduction: From Efficient Quantum Computation to Nonextensive Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Prosen, Tomaz

    These few pages will attempt to make a short comprehensive overview of several contributions to this volume which concern rather diverse topics. I shall review the following works, essentially reversing the sequence indicated in my title: First, by C. Tsallis on the relation of nonextensive statistics to the stability of quantum motion "on the edge of quantum chaos".

  13. Enhancement of Quantum Efficiency of Organic Light Emitting Devices by Doping Magnetic Nanoparticles

    SciTech Connect

    Sun, Chengjun; Wu, Yue; Xu, Zhihua; Hu, Bin; Bai, Jianmin; Wang, Jian-Ping; Shen, Jian

    2007-01-01

    Magnetic nanoparticles of CoFe are used as dopants to enhance the quantum efficiency of electroluminance in a single layer organic light emitting device (OLED). The enhancement of quantum efficiency increases with both increasing density of CoFe nanoparticles and external magnetic field. For a given OLED with 0.1 wt % doping, the enhancement of the quantum efficiency reaches {approx}27% and {approx}32% without and with a magnetic field, respectively. The origin of these improvements could be attributed to the simultaneous increases of the portion of excitons among total charge carriers and the fraction of singlets among the total excitons

  14. Optimal efficiency of quantum transport in a disordered trimer

    NASA Astrophysics Data System (ADS)

    Giusteri, Giulio G.; Celardo, G. Luca; Borgonovi, Fausto

    2016-03-01

    Disordered quantum networks, such as those describing light-harvesting complexes, are often characterized by the presence of peripheral ringlike structures, where the excitation is initialized, and inner structures and reaction centers (RCs), where the excitation is trapped and transferred. The peripheral rings often display distinguished coherent features: Their eigenstates can be separated, with respect to the transfer of excitation, into two classes of superradiant and subradiant states. Both are important to optimize transfer efficiency. In the absence of disorder, superradiant states have an enhanced coupling strength to the RC, while the subradiant ones are basically decoupled from it. Static on-site disorder induces a coupling between subradiant and superradiant states, thus creating an indirect coupling to the RC. The problem of finding the optimal transfer conditions, as a function of both the RC energy and the disorder strength, is very complex even in the simplest network, namely, a three-level system. In this paper we analyze such trimeric structure, choosing as the initial condition an excitation on a subradiant state, rather than the more common choice of an excitation localized on a single site. We show that, while the optimal disorder is of the order of the superradiant coupling, the optimal detuning between the initial state and the RC energy strongly depends on system parameters: When the superradiant coupling is much larger than the energy gap between the superradiant and the subradiant levels, optimal transfer occurs if the RC energy is at resonance with the subradiant initial state, whereas we find an optimal RC energy at resonance with a virtual dressed state when the superradiant coupling is smaller than or comparable to the gap. The presence of dynamical noise, which induces dephasing and decoherence, affects the resonance structure of energy transfer producing an additional incoherent resonance peak, which corresponds to the RC energy being

  15. Quantum Fisher information as efficient entanglement witness in many-body systems

    NASA Astrophysics Data System (ADS)

    Hauke, Philipp

    2016-05-01

    Large-scale entanglement in quantum many-body systems is typically difficult to quantify experimentally. Here, we discuss scenarios where many-body entanglement becomes accessible via the quantum Fisher information (QFI), a known witness for genuinely multipartite entanglement as a resource for quantum-enhanced metrology. First, we introduce a direct relation of the QFI in thermal states with linear response functions, which makes the QFI measurable with standard methods in optical-lattice and solid-state experiments. Using this relationship, we show that close to continuous quantum phase transitions the QFI, and thus multipartite entanglement, is strongly divergent. Second, we demonstrate that the QFI can witness many-body localized phases, showing a characteristic growth of entanglement at long times after a quantum quench. These results demonstrate that the quantum Fisher information represents a useful and efficiently measurable witness for entanglement in quantum many-body settings.

  16. Quantum efficiency affected by localized carrier distribution near the V-defect in GaN based quantum well

    SciTech Connect

    Cho, Yong-Hee Shim, Mun-Bo; Hwang, Sangheum; Kim, Sungjin; Kim, Jun-Youn; Kim, Jaekyun; Park, Young-Soo; Park, Seoung-Hwan

    2013-12-23

    It is known that due to the formation of in-plane local energy barrier, V-defects can screen the carriers which non-radiatively recombine in threading dislocations (TDs) and hence, enhance the internal quantum efficiency in GaN based light-emitting diodes. By a theoretical modeling capable of describing the inhomogeneous carrier distribution near the V-defect in GaN based quantum wells, we show that the efficient suppression of non-radiative (NR) recombination via TD requires the local energy barrier height of V-defect larger than ∼80 meV. The NR process in TD combined with V-defect influences the quantum efficiency mainly in the low injection current density regime suitably described by the linear dependence of carrier density. We provide a simple phenomenological expression for the NR recombination rate based on the model result.

  17. Anomalous quantum efficiency for photoconduction and its power dependence in metal oxide semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Chen, R. S.; Wang, W. C.; Lu, M. L.; Chen, Y. F.; Lin, H. C.; Chen, K. H.; Chen, L. C.

    2013-07-01

    The quantum efficiency and carrier lifetime that decide the photoconduction (PC) efficiencies in the metal oxide semiconductor nanowires (NWs) have been investigated. The experimental result surprisingly shows that the SnO2, TiO2, WO3, and ZnO NWs reveal extraordinary quantum efficiencies in common, which are over one to three orders of magnitude lower than the theoretical expectation. The surface depletion region (SDR)-controlled photoconductivity is proposed to explain the anomalous quantum efficiency and its power dependence. The inherent difference between the metal oxide nanostructures such as carrier lifetime, carrier concentration, and dielectric constant leading to the distinct PC performance and behavior are also discussed.The quantum efficiency and carrier lifetime that decide the photoconduction (PC) efficiencies in the metal oxide semiconductor nanowires (NWs) have been investigated. The experimental result surprisingly shows that the SnO2, TiO2, WO3, and ZnO NWs reveal extraordinary quantum efficiencies in common, which are over one to three orders of magnitude lower than the theoretical expectation. The surface depletion region (SDR)-controlled photoconductivity is proposed to explain the anomalous quantum efficiency and its power dependence. The inherent difference between the metal oxide nanostructures such as carrier lifetime, carrier concentration, and dielectric constant leading to the distinct PC performance and behavior are also discussed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01635h

  18. Single junction inverted polymer solar cell reaching power conversion efficiency 10.31% by employing dual-doped zinc oxide nano-film as cathode interlayer.

    PubMed

    Liao, Sih-Hao; Jhuo, Hong-Jyun; Yeh, Po-Nan; Cheng, Yu-Shan; Li, Yi-Lun; Lee, Yu-Hsuan; Sharma, Sunil; Chen, Show-An

    2014-01-01

    We present high efficiency and stable inverted PSCs (i-PSC) by employing sol-gel processed simultaneously doped ZnO by Indium and fullerene derivative (BisNPC60-OH) (denoted as InZnO-BisC60) film as cathode interlayer and PTB7-Th:PC71BM as the active layer (where PTB7-Th is a low bandgap polymer we proposed previously). This dual-doped ZnO, InZnO-BisC60, film shows dual and opposite gradient dopant concentration profiles, being rich in fullerene derivative at the cathode surface in contact with active layer and rich in In at the cathode surface in contact with the ITO surface. Such doping in ZnO not only gives improved surface conductivity by a factor of 270 (from 0.015 to 4.06 S cm(-1)) but also provides enhanced electron mobility by a factor of 132 (from 8.25*10(-5) to 1.09*10(-2) cm(2) V(-1) s(-1)). The resulting i-PSC exhibits the improved PCE 10.31% relative to that with ZnO without doping 8.25%. This PCE 10.31% is the best result among the reported values so far for single junction PSC. PMID:25351472

  19. Single Junction Inverted Polymer Solar Cell Reaching Power Conversion Efficiency 10.31% by Employing Dual-Doped Zinc Oxide Nano-Film as Cathode Interlayer

    NASA Astrophysics Data System (ADS)

    Liao, Sih-Hao; Jhuo, Hong-Jyun; Yeh, Po-Nan; Cheng, Yu-Shan; Li, Yi-Lun; Lee, Yu-Hsuan; Sharma, Sunil; Chen, Show-An

    2014-10-01

    We present high efficiency and stable inverted PSCs (i-PSC) by employing sol-gel processed simultaneously doped ZnO by Indium and fullerene derivative (BisNPC60-OH) (denoted as InZnO-BisC60) film as cathode interlayer and PTB7-Th:PC71BM as the active layer (where PTB7-Th is a low bandgap polymer we proposed previously). This dual-doped ZnO, InZnO-BisC60, film shows dual and opposite gradient dopant concentration profiles, being rich in fullerene derivative at the cathode surface in contact with active layer and rich in In at the cathode surface in contact with the ITO surface. Such doping in ZnO not only gives improved surface conductivity by a factor of 270 (from 0.015 to 4.06 S cm-1) but also provides enhanced electron mobility by a factor of 132 (from 8.25*10-5 to 1.09*10-2 cm2 V-1 s-1). The resulting i-PSC exhibits the improved PCE 10.31% relative to that with ZnO without doping 8.25%. This PCE 10.31% is the best result among the reported values so far for single junction PSC.

  20. Single Junction Inverted Polymer Solar Cell Reaching Power Conversion Efficiency 10.31% by Employing Dual-Doped Zinc Oxide Nano-Film as Cathode Interlayer

    PubMed Central

    Liao, Sih-Hao; Jhuo, Hong-Jyun; Yeh, Po-Nan; Cheng, Yu-Shan; Li, Yi-Lun; Lee, Yu-Hsuan; Sharma, Sunil; Chen, Show-An

    2014-01-01

    We present high efficiency and stable inverted PSCs (i-PSC) by employing sol-gel processed simultaneously doped ZnO by Indium and fullerene derivative (BisNPC60-OH) (denoted as InZnO-BisC60) film as cathode interlayer and PTB7-Th:PC71BM as the active layer (where PTB7-Th is a low bandgap polymer we proposed previously). This dual-doped ZnO, InZnO-BisC60, film shows dual and opposite gradient dopant concentration profiles, being rich in fullerene derivative at the cathode surface in contact with active layer and rich in In at the cathode surface in contact with the ITO surface. Such doping in ZnO not only gives improved surface conductivity by a factor of 270 (from 0.015 to 4.06 S cm−1) but also provides enhanced electron mobility by a factor of 132 (from 8.25*10−5 to 1.09*10−2 cm2 V−1 s−1). The resulting i-PSC exhibits the improved PCE 10.31% relative to that with ZnO without doping 8.25%. This PCE 10.31% is the best result among the reported values so far for single junction PSC. PMID:25351472

  1. Enhancement of Radiative Efficiency with Staggered InGaN Quantum Well Light Emitting Diodes

    SciTech Connect

    Tansu, Nelson; Dierolf, Volkmar; Huang, Gensheng; Penn, Samson; Zhao, Hongping; Liu, Guangyu; Li, Xiaohang; Poplawsky, Jonathan

    2011-07-14

    The technology on the large overlap InGaN QWs developed in this program is currently implemented in commercial technology in enhancing the internal quantum efficiency in major LED industry in US and Asia. The scientific finding from this work supported by the DOE enabled the implementation of this step-like staggered quantum well in the commercial LEDs.

  2. The role of surface passivation for efficient and photostable PbS quantum dot solar cells

    NASA Astrophysics Data System (ADS)

    Cao, Yiming; Stavrinadis, Alexandros; Lasanta, Tania; So, David; Konstantatos, Gerasimos

    2016-04-01

    For any emerging photovoltaic technology to become commercially relevant, both its power conversion efficiency and photostability are key parameters to be fulfilled. Colloidal quantum dot solar cells are a solution-processed, low-cost technology that has reached an efficiency of about 9% by judiciously controlling the surface of the quantum dots to enable surface passivation and tune energy levels. However, the role of the quantum dot surface on the stability of these solar cells has remained elusive. Here we report on highly efficient and photostable quantum dot solar cells with efficiencies of 9.6% (and independently certificated values of 8.7%). As a result of optimized surface passivation and the suppression of hydroxyl ligands—which are found to be detrimental for both efficiency and photostability—the efficiency remains within 80% of its initial value after 1,000 h of continuous illumination at AM1.5G. Our findings provide insights into the role of the quantum dot surface in both the stability and efficiency of quantum dot solar cells.

  3. Robust Timing Synchronization for Aviation Communications, and Efficient Modulation and Coding Study for Quantum Communication

    NASA Technical Reports Server (NTRS)

    Xiong, Fugin

    2003-01-01

    One half of Professor Xiong's effort will investigate robust timing synchronization schemes for dynamically varying characteristics of aviation communication channels. The other half of his time will focus on efficient modulation and coding study for the emerging quantum communications.

  4. Host Engineering for High Quantum Efficiency Blue and White Fluorescent Organic Light-Emitting Diodes.

    PubMed

    Song, Wook; Lee, Inho; Lee, Jun Yeob

    2015-08-01

    High quantum efficiency in blue and white fluorescence organic light-emitting diodes is achieved by developing a novel device architecture with fluorescent emitters doped in a thermally activated delayed fluorescent emitter as a host material. PMID:26078193

  5. Influence of fouling on the efficiency of sacrificial anodes in providing cathodic protection in Southeast Asian tropical seawater.

    PubMed

    Blackwood, D J; Lim, C S; Teo, S L M

    2010-10-01

    Aluminum and zinc based sacrificial anodes are routinely used to provide corrosion protection to metals (typically steel) exposed to seawater, for example in steel pipelines and storage tanks. However, the high fouling rates experienced in South East Asia means that both the anodes and the metals to be protected rapidly become coated with macrofoulers, which could potentially prevent the anodes from being effective. The present study, involving exposure tests of up to 18 months, indicates that both aluminum and zinc sacrificial anodes remain effective even after being completely coated with biofouling. Furthermore, it was easier to remove the biofouling on the cathodically protected samples than on their unprotected counterparts, possibly due to the higher local pH produced by cathodic protection at the metal and seawater interface. PMID:20818571

  6. Efficient and persistent cold cathode emission from CuPc nanotubes: a joint experimental and simulation investigation.

    PubMed

    Ghorai, Uttam Kumar; Das, Swati; Saha, Subhajit; Mazumder, Nilesh; Sen, Dipayan; Chattopadhyay, Kalyan Kumar

    2014-06-28

    In the current report, chemically synthesized copper phthalocyanine (CuPc) nanotubes are shown to exhibit unprecedentedly well cold cathode emission characteristics with turn-on field (3.2 V μ m(-1)) and stable emission during long intervals (200 min). Simulation of electric field distribution via finite element method around an isolated nanotube emitter in a manner parallel to the experimental setup (inter-electrode distance = 180 μm) exhibits good corroboration of theoretical premises with experimental findings. Obtained results strongly indicate CuPc nanotubes to be potential candidate as cold cathode emitter for electron emission based applications such as field emission displays and vacuum nano-electronic devices. PMID:24816492

  7. Photo-emission studies from Zn cathodes under plasma phase

    NASA Astrophysics Data System (ADS)

    Belloni, F.; Caretto, G.; Lorusso, A.; Nassisi, V.; Perrone, A.; Siciliano, M. V.

    2005-10-01

    In this paper, we report investigations of the electron emission from pure Zn cathodes irradiated by UV laser pulses of 23 ns (full-width at half-maximum) at a wavelength of 248 nm (5 eV). The metal cathodes were tested in a vacuum photodiode chamber at 10(-5) Pa. They were irradiated at normal incidence and the anode-cathode distance was set at 3 mm. The maximum applied accelerating voltage was 18 kV, limited by the electrical breakdown of the photodiode gap. Under the above experimental conditions, a maximum applied electric field of 6 MV/m resulted. In the saturation regime, the measured quantum efficiency value increased with the accelerating voltage due to the plasma formation. The highest output current was achieved with 14 mJ laser energy, 18 kV accelerating voltage and its value was 12 A, corresponding to a global quantum efficiency (GQE) approximately of 1 x 10(-4). The temporal quantum efficiency was 1.0 x 10(-4) at the laser pulse onset time and 1.4 x 10(-4) at the pulse tail. We calculated the target temperature at the maximum laser energy. Its value allowed us to obtain output pulses of the same laser temporal profile. Tests performed with a lower laser photon energy (4.02 eV) demonstrated a GQE of two orders of magnitude lower.

  8. Stable, high quantum efficiency silicon photodiodes for vacuum-UV applications

    NASA Technical Reports Server (NTRS)

    Korde, Raj; Canfield, L. Randall; Wallis, Brad

    1988-01-01

    Silicon photodiodes have been developed by defect-free phosphorus diffusion having practically no carrier recombination at the SiSiO2 interface or in the front diffused region. The quantum efficiency of these photodiodes was found to be around 120 percent at 100 nm. Unlike the previously tested silicon photodiodes, the developed photodiodes exhibit extremely stable quantum efficiency over extended periods of time. The possibility of using these photodiodes as vacuum ultraviolet detector standards is being currently investigated.

  9. 6.5% efficient perovskite quantum-dot-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Im, Jeong-Hyeok; Lee, Chang-Ryul; Lee, Jin-Wook; Park, Sang-Won; Park, Nam-Gyu

    2011-10-01

    Highly efficient quantum-dot-sensitized solar cell is fabricated using ca. 2-3 nm sized perovskite (CH3NH3)PbI3 nanocrystal. Spin-coating of the equimolar mixture of CH3NH3I and PbI2 in γ-butyrolactone solution (perovskite precursor solution) leads to (CH3NH3)PbI3 quantum dots (QDs) on nanocrystalline TiO2 surface. By electrochemical junction with iodide/iodine based redox electrolyte, perovskite QD-sensitized 3.6 μm-thick TiO2 film shows maximum external quantum efficiency (EQE) of 78.6% at 530 nm and solar-to-electrical conversion efficiency of 6.54% at AM 1.5G 1 sun intensity (100 mW cm-2), which is by far the highest efficiency among the reported inorganic quantum dot sensitizers.Highly efficient quantum-dot-sensitized solar cell is fabricated using ca. 2-3 nm sized perovskite (CH3NH3)PbI3 nanocrystal. Spin-coating of the equimolar mixture of CH3NH3I and PbI2 in γ-butyrolactone solution (perovskite precursor solution) leads to (CH3NH3)PbI3 quantum dots (QDs) on nanocrystalline TiO2 surface. By electrochemical junction with iodide/iodine based redox electrolyte, perovskite QD-sensitized 3.6 μm-thick TiO2 film shows maximum external quantum efficiency (EQE) of 78.6% at 530 nm and solar-to-electrical conversion efficiency of 6.54% at AM 1.5G 1 sun intensity (100 mW cm-2), which is by far the highest efficiency among the reported inorganic quantum dot sensitizers. Electronic supplementary information (ESI) available. See DOI: 10.1039/c1nr10867k

  10. Efficient quantum key distribution scheme with pre-announcing the basis

    NASA Astrophysics Data System (ADS)

    Gao, Jingliang; Zhu, Changhua; Xiao, Heling

    2014-03-01

    We devise a new quantum key distribution scheme that is more efficient than the BB84 protocol. By pre-announcing the basis, Alice and Bob are more likely to use the same basis to prepare and measure the qubits, thus achieving a higher efficiency. The error analysis is revised and its security against any eavesdropping is proven briefly. Furthermore we show that, compared with the LCA scheme, our modification can be applied in more quantum channels.

  11. How to squeeze high quantum efficiency and high time resolution out of a SPAD

    NASA Technical Reports Server (NTRS)

    Lacaita, A.; Zappa, F.; Cova, Sergio; Ripamonti, Giancarlo; Spinelli, A.

    1993-01-01

    We address the issue whether Single-Photon Avalanche Diodes (SPADs) can be suitably designed to achieve a trade-off between quantum efficiency and time resolution performance. We briefly recall the physical mechanisms setting the time resolution of avalanche photodiodes operated in single-photon counting, and we give some criteria for the design of SPADs with a quantum efficiency better than l0 percent at 1064 nm together with a time resolution below 50 ps rms.

  12. Enhanced internal quantum efficiency and light extraction efficiency from textured GaN/AlGaN quantum wells grown by molecular beam epitaxy

    SciTech Connect

    Cabalu, J.S.; Thomidis, C.; Moustakas, T.D.; Riyopoulos, S.; Zhou Lin; Smith, David J.

    2006-03-15

    GaN/Al{sub 0.2}Ga{sub 0.8}N multiple quantum wells (MQWs) were grown by molecular beam epitaxy on randomly textured and atomically smooth (0001) GaN templates. Smooth and textured GaN templates were deposited on (0001) sapphire substrates by varying the III/V ratio and the substrate temperature during growth by the hydride vapor-phase epitaxy method. We find that the MQWs replicate the texture of the GaN template, which was found to have a Gaussian distribution. The peak photoluminescence intensity from the textured MQWs is always higher than from the smooth MQWs and for GaN (7 nm)/Al{sub 0.2}Ga{sub 0.8}N (8 nm) MQWs, it is 700 times higher than that from similarly produced MQWs on smooth GaN templates. This result is attributed partly to the enhancement in light extraction efficiency and partly to the enhancement in internal quantum efficiency. The origin of the increase in internal quantum efficiency is partly due to the reduction of the quantum-confined Stark effect, since the polarization vector intersects the quantum well (QW) planes at angles smaller than 90 deg. , and partly due to the charge redistribution in the QWs caused by the polarization component parallel to the planes of the QWs.

  13. Room-temperature efficient light detection by amorphous Ge quantum wells

    PubMed Central

    2013-01-01

    In this work, ultrathin amorphous Ge films (2 to 30 nm in thickness) embedded in SiO2 layers were grown by magnetron sputtering and employed as proficient light sensitizer in photodetector devices. A noteworthy modification of the visible photon absorption is evidenced due to quantum confinement effects which cause both a blueshift (from 0.8 to 1.8 eV) in the bandgap and an enhancement (up to three times) in the optical oscillator strength of confined carriers. The reported quantum confinement effects have been exploited to enhance light detection by Ge quantum wells, as demonstrated by photodetectors with an internal quantum efficiency of 70%. PMID:23496870

  14. Characterization of Si nanostructures using internal quantum efficiency measurements

    SciTech Connect

    ZAIDI,SALEEM H.

    2000-04-01

    Hemispherical reflectance and internal quantum efficiency measurements have been employed to evaluate the response of Si nanostructured surfaces formed by using random and periodic reactive ion etching techniques. Random RIE-textured surfaces have demonstrated solar weighted reflectance of {approx} 3% over 300--1,200-nm spectral range even without the benefit of anti-reflection films. Random RIE-texturing has been found to be applicable over large areas ({approximately} 180 cm{sup 2}) of both single and multicrystalline Si surfaces. Due to the surface contamination and plasma-induced damage, RIE-textured surfaces did not initially provide increased short circuit current as expected from the enhanced absorption. Improved processing combined with wet-chemical damage removal etches resulted in significant improvement in the short circuit current with IQEs comparable to the random, wet-chemically textured surfaces. An interesting feature of the RIE-textured surfaces was their superior performance in the near IR spectral range. The response of RIE-textured periodic surfaces can be broadly classified into three distinct regimes. One-dimensional grating structures with triangular profiles are characterized by exceptionally low, polarization-independent reflective behavior. The reflectance response of such surfaces is similar to a graded-index anti-reflection film. The IQE response from these surfaces is severely degraded in the UV-Visible spectral region due to plasma-induced surface damage. One-dimensional grating structures with rectangular profiles exhibit spectrally selective absorptive behavior with somewhat similar IQE response. The third type of grating structure combines broadband anti-reflection behavior with significant IQE enhancement in 800--1,200-nm spectral region. The hemispherical reflectance of these 2D grating structures is comparable to random RIE-textured surfaces. The IQE enhancement in the long wavelength spectral region can be attributed to

  15. Efficient Three-Party Quantum Dialogue Protocol Based on the Continuous Variable GHZ States

    NASA Astrophysics Data System (ADS)

    Yu, Zhen-Bo; Gong, Li-Hua; Zhu, Qi-Biao; Cheng, Shan; Zhou, Nan-Run

    2016-07-01

    Based on the continuous variable GHZ entangled states, an efficient three-party quantum dialogue protocol is devised, where each legitimate communication party could simultaneously deduce the secret information of the other two parties with perfect efficiency. The security is guaranteed by the correlation of the continuous variable GHZ entangled states and the randomly selected decoy states. Furthermore, the three-party quantum dialogue protocol is directly generalized to an N-party quantum dialogue protocol by using the n-tuple continuous variable GHZ entangled states.

  16. Efficient Three-Party Quantum Dialogue Protocol Based on the Continuous Variable GHZ States

    NASA Astrophysics Data System (ADS)

    Yu, Zhen-Bo; Gong, Li-Hua; Zhu, Qi-Biao; Cheng, Shan; Zhou, Nan-Run

    2016-02-01

    Based on the continuous variable GHZ entangled states, an efficient three-party quantum dialogue protocol is devised, where each legitimate communication party could simultaneously deduce the secret information of the other two parties with perfect efficiency. The security is guaranteed by the correlation of the continuous variable GHZ entangled states and the randomly selected decoy states. Furthermore, the three-party quantum dialogue protocol is directly generalized to an N-party quantum dialogue protocol by using the n-tuple continuous variable GHZ entangled states.

  17. Efficiency at Maximum Power Output of a Quantum-Mechanical Brayton Cycle

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan; He, Ji-Zhou; Gao, Yong; Wang, Jian-Hui

    2014-03-01

    The performance in finite time of a quantum-mechanical Brayton engine cycle is discussed, without introduction of temperature. The engine model consists of two quantum isoenergetic and two quantum isobaric processes, and works with a single particle in a harmonic trap. Directly employing the finite-time thermodynamics, the efficiency at maximum power output is determined. Extending the harmonic trap to a power-law trap, we find that the efficiency at maximum power is independent of any parameter involved in the model, but depends on the confinement of the trapping potential.

  18. Quantum efficiency of a channel electron multiplier in the far ultraviolet

    NASA Technical Reports Server (NTRS)

    Paresce, F.

    1975-01-01

    Variation of the quantum efficiency of a channel electron multiplier (CEM) in the wavelength range from 1200 to 2536 A is studied. Emphasis is on measurement of CEM sensitivity longward of 1500 A. Results indicate an overall rapid decrease in quantum efficiency with increasing wavelength, with little evidence for a possible change in slope in the range from 2000 to 2500 A. The lowest efficiency measured is 4.5 + or -2.5 times 10 to the minus ninth count/photon at 2536 A. These efficiencies should ensure that unwanted radiation longward of 1500 A can be effectively removed from the bandpass of the instrument.

  19. Functionally Graded Cathodes for Solid Oxide Fuel Cells

    SciTech Connect

    YongMan Choi; Meilin Liu

    2006-09-30

    novel combustion chemical vapor deposition (CCVD) technique. (5) Application of advanced quantum chemical calculations to interpret measured spectroscopic information, as well as to guide design of high efficient cathode materials.

  20. Dissipation-enabled efficient excitation transfer from a single photon to a single quantum emitter

    NASA Astrophysics Data System (ADS)

    Trautmann, N.; Alber, G.

    2016-05-01

    We propose a scheme for triggering a dissipation-dominated highly efficient excitation transfer from a single-photon wave packet to a single quantum emitter. This single-photon-induced optical pumping turns dominant dissipative processes, such as spontaneous photon emission by the emitter or cavity decay, into valuable tools for quantum information processing and quantum communication. It works for an arbitrarily shaped single-photon wave packet with sufficiently small bandwidth provided a matching condition is satisfied which balances the dissipative rates involved. Our scheme does not require additional laser pulses or quantum feedback and does not rely on high finesse optical resonators. In particular, it can be used to enhance significantly the coupling of a single photon to a single quantum emitter implanted in a one-dimensional waveguide or even in a free space scenario. We demonstrate the usefulness of our scheme for building a deterministic quantum memory and a deterministic frequency converter between photonic qubits of different wavelengths.

  1. Power Conversion Efficiency and Device Stability Improvement of Inverted Perovskite Solar Cells by Using a ZnO:PFN Composite Cathode Buffer Layer.

    PubMed

    Jia, Xiaorui; Zhang, Lianping; Luo, Qun; Lu, Hui; Li, Xueyuan; Xie, Zhongzhi; Yang, Yongzhen; Li, Yan-Qing; Liu, Xuguang; Ma, Chang-Qi

    2016-07-20

    We have demonstrated in this article that both power conversion efficiency (PCE) and performance stability of inverted planar heterojunction perovskite solar cells can be improved by using a ZnO:PFN nanocomposite (PFN: poly[(9,9-bis(3'-(N,N-dimethylamion)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctyl)-fluorene]) as the cathode buffer layer (CBL). This nanocomposite could form a compact and defect-less CBL film on the perovskite/PC61BM surface (PC61BM: phenyl-C61-butyric acid methyl ester). In addition, the high conductivity of the nanocomposite layer makes it works well at a layer thickness of 150 nm. Both advantages of the composite layer are helpful in reducing interface charge recombination and improving device performance. The power conversion efficiency (PCE) of the best ZnO:PFN CBL based device was measured to be 12.76%, which is higher than that of device without CBL (9.00%), or device with ZnO (7.93%) or PFN (11.30%) as the cathode buffer layer. In addition, the long-term stability is improved by using ZnO:PFN composite cathode buffer layer when compare to that of the reference cells. Almost no degradation of open circuit voltage (VOC) and fill factor (FF) was found for the device having ZnO:PFN, suggesting that ZnO:PFN is able to stabilize the interface property and consequently improve the solar cell performance stability. PMID:27349330

  2. Practical attacks on decoy-state quantum-key-distribution systems with detector efficiency mismatch

    NASA Astrophysics Data System (ADS)

    Fei, Yangyang; Gao, Ming; Wang, Weilong; Li, Chaobo; Ma, Zhi

    2015-05-01

    To the active-basis-choice decoy-state quantum-key-distribution systems with detector efficiency mismatch, we present a modified attack strategy, which is based on the faked states attack, with quantum nondemolition measurement ability to restress the threat of detector efficiency mismatch. Considering that perfect quantum nondemolition measurement ability doesn't exist in real life, we also propose a practical attack strategy using photon number resolving detectors. Theoretical analysis and numerical simulation results show that, without changing the channel, our attack strategies are serious threats to decoy-state quantum-key-distribution systems. The eavesdropper may get some information about the secret key without causing any alarms. Besides, the lower bound of detector efficiency mismatch to run our modified faked states attack successfully with perfect quantum nondemolition measurement ability is also given out, which provides the producers of quantum-key-distribution systems with a reference and can be treated as the approximate secure bound of detector efficiency mismatch in decoy-state quantum-key-distribution systems.

  3. Terahertz Quantum Cascade Laser With Efficient Coupling and Beam Profile

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Kawamura, Jonathan H.; Lin, Robert H.; Williams, Benjamin

    2012-01-01

    Quantum cascade lasers (QCLs) are unipolar semiconductor lasers, where the wavelength of emitted radiation is determined by the engineering of quantum states within the conduction band in coupled multiple-quantum-well heterostructures to have the desired energy separation. The recent development of terahertz QCLs has provided a new generation of solid-state sources for radiation in the terahertz frequency range. Terahertz QCLs have been demonstrated from 0.84 to 5.0 THz both in pulsed mode and continuous wave mode (CW mode). The approach employs a resonant-phonon depopulation concept. The metal-metal (MM) waveguide fabrication is performed using Cu-Cu thermo-compression bonding to bond the GaAs/AlGaAs epitaxial layer to a GaAs receptor wafer.

  4. Efficient hybrid-symbolic methods for quantum mechanical calculations

    NASA Astrophysics Data System (ADS)

    Scott, T. C.; Zhang, Wenxing

    2015-06-01

    We present hybrid symbolic-numerical tools to generate optimized numerical code for rapid prototyping and fast numerical computation starting from a computer algebra system (CAS) and tailored to any given quantum mechanical problem. Although a major focus concerns the quantum chemistry methods of H. Nakatsuji which has yielded successful and very accurate eigensolutions for small atoms and molecules, the tools are general and may be applied to any basis set calculation with a variational principle applied to its linear and non-linear parameters.

  5. Synthesis of iron oxide/partly graphitized carbon composites as a high-efficiency and low-cost cathode catalyst for microbial fuel cells.

    PubMed

    Ma, Ming; Dai, Ying; Zou, Jin-long; Wang, Lei; Pan, Kai; Fu, Hong-gang

    2014-08-27

    Waste cornstalks and pomelo skins are used as carbon resources for preparing nanocomposites of iron oxide and partly graphitized carbon (Fe3O4/PGC-CS and Fe3O4/PGC-PS). The results showed that Fe3O4 with a face-centered cubic structure is uniformly dispersed on the skeleton of Fe3O4/GC, and the highest SBET values of Fe3O4/PGC-CS (476.5 m(2) g(-1)) and Fe3O4/PGC-PS (547.7 m(2) g(-1)) are obtained at 1000 °C. The electrical conductivity and density of catalytic active sites are correspondingly improved by the introduction of Fe species. Microbial fuel cells (MFCs) with a mixed composite (Fe3O4/PGC-CS:Fe3O4/PGC-PS = 1:1) cathode (three-dimensional structures) generate the highest power density of 1502 ± 30 mW m(-2), which is 26.01% higher than that of Pt/C (1192 ± 33 mW m(-2)) and only declines by 7.12% after 18 cycles. The Fe3O4/PGC-CS cathode has the highest Coulombic efficiency (24.3 ± 0.7%). The Fe3O4/PGC composites exhibit high oxygen reduction reactivity, low charge transfer resistances, and long-term stability and can be used as a low-cost and high-efficiency catalyst for MFCs. PMID:25084054

  6. Efficient Integration of Quantum Mechanical Wave Equations by Unitary Transforms

    SciTech Connect

    Bauke, Heiko; Keitel, Christoph H.

    2009-08-13

    The integration of time dependent quantum mechanical wave equations is a fundamental problem in computational physics and computational chemistry. The energy and momentum spectrum of a wave function imposes fundamental limits on the performance of numerical algorithms for this problem. We demonstrate how unitary transforms can help to surmount these limitations.

  7. Cathode materials review

    SciTech Connect

    Daniel, Claus Mohanty, Debasish Li, Jianlin Wood, David L.

    2014-06-16

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO{sub 2} cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  8. Cathode materials review

    NASA Astrophysics Data System (ADS)

    Daniel, Claus; Mohanty, Debasish; Li, Jianlin; Wood, David L.

    2014-06-01

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  9. 'Giant' CdSe/CdS core/shell nanocrystal quantum dots as efficient electroluminescent materials: strong influence of shell thickness on light-emitting diode performance.

    PubMed

    Pal, Bhola N; Ghosh, Yagnaseni; Brovelli, Sergio; Laocharoensuk, Rawiwan; Klimov, Victor I; Hollingsworth, Jennifer A; Htoon, Han

    2012-01-11

    We use a simple device architecture based on a poly(3,4-ethylendioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-coated indium tin oxide anode and a LiF/Al cathode to assess the effects of shell thickness on the properties of light-emitting diodes (LEDs) comprising CdSe/CdS core/shell nanocrystal quantum dots (NQDs) as the emitting layer. Specifically, we are interested in determining whether LEDs based on thick-shell nanocrystals, so-called "giant" NQDs, afford enhanced performance compared to their counterparts incorporating thin-shell systems. We observe significant improvements in device performance as a function of increasing shell thickness. While the turn-on voltage remains approximately constant for all shell thicknesses (from 4 to 16 CdS monolayers), external quantum efficiency and maximum luminance are found to be about one order of magnitude higher for thicker shell nanocrystals (≥13 CdS monolayers) compared to thinner shell structures (<9 CdS monolayers). The thickest-shell nanocrystals (16 monolayers of CdS) afforded an external quantum efficiency and luminance of 0.17% and 2000 Cd/m(2), respectively, with a remarkably low turn-on voltage of ~3.0 V. PMID:22148981

  10. Towards communication-efficient quantum oblivious key distribution

    NASA Astrophysics Data System (ADS)

    Panduranga Rao, M. V.; Jakobi, M.

    2013-01-01

    Symmetrically private information retrieval, a fundamental problem in the field of secure multiparty computation, is defined as follows: A database D of N bits held by Bob is queried by a user Alice who is interested in the bit Db in such a way that (1) Alice learns Db and only Db and (2) Bob does not learn anything about Alice's choice b. While solutions to this problem in the classical domain rely largely on unproven computational complexity theoretic assumptions, it is also known that perfect solutions that guarantee both database and user privacy are impossible in the quantum domain. Jakobi [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.83.022301 83, 022301 (2011)] proposed a protocol for oblivious transfer using well-known quantum key device (QKD) techniques to establish an oblivious key to solve this problem. Their solution provided a good degree of database and user privacy (using physical principles like the impossibility of perfectly distinguishing nonorthogonal quantum states and the impossibility of superluminal communication) while being loss-resistant and implementable with commercial QKD devices (due to the use of the Scarani-Acin-Ribordy-Gisin 2004 protocol). However, their quantum oblivious key distribution (QOKD) protocol requires a communication complexity of O(NlogN). Since modern databases can be extremely large, it is important to reduce this communication as much as possible. In this paper, we first suggest a modification of their protocol wherein the number of qubits that need to be exchanged is reduced to O(N). A subsequent generalization reduces the quantum communication complexity even further in such a way that only a few hundred qubits are needed to be transferred even for very large databases.

  11. An efficient quantum light–matter interface with sub-second lifetime

    NASA Astrophysics Data System (ADS)

    Yang, Sheng-Jun; Wang, Xu-Jie; Bao, Xiao-Hui; Pan, Jian-Wei

    2016-06-01

    Quantum repeaters hold promise for scalable long-distance quantum communication. The basic building block is a quantum light–matter interface that generates non-classical correlations between light and a quantum memory. Significant progress has been made in improving the performance of this interface, but further development of quantum repeater is hindered by the difficulty of integrating the key capabilities into a single system. Here we report a high-performance interface with an efficiency and lifetime that fulfil the requirement of a quantum repeater. By confining cold atoms with a three-dimensional optical lattice and enhancing the atom–photon coupling with a ring cavity, we observe an initial retrieval efficiency of 76 ± 5% together with a 1/e lifetime of 0.22 ± 0.01 s, which supports a sub-Hz entanglement distribution of up to 1,000 km through the Duan-Lukin-Cirac-Zoller (DLCZ) protocol. Together with an efficient telecom interface and moderate multiplexing, our result may enable a quantum repeater system that beats direct transmission in the near future.

  12. III-nitride quantum dots for ultra-efficient solid-state lighting: III-nitride quantum dots for ultra-efficient solid-state lighting

    DOE PAGESBeta

    Wierer, Jonathan J.; Tansu, Nelson; Fischer, Arthur J.; Tsao, Jeffrey Y.

    2016-05-23

    III-nitride light-emitting diodes (LEDs) and laser diodes (LDs) are ultimately limited in performance due to parasitic Auger recombination. For LEDs, the consequences are poor efficiencies at high current densities; for LDs, the consequences are high thresholds and limited efficiencies. Here, we present arguments for III-nitride quantum dots (QDs) as active regions for both LEDs and LDs, to circumvent Auger recombination and achieve efficiencies at higher current densities that are not possible with quantum wells. QD-based LDs achieve gain and thresholds at lower carrier densities before Auger recombination becomes appreciable. QD-based LEDs achieve higher efficiencies at higher currents because of highermore » spontaneous emission rates and reduced Auger recombination. The technical challenge is to control the size distribution and volume of the QDs to realize these benefits. If constructed properly, III-nitride light-emitting devices with QD active regions have the potential to outperform quantum well light-emitting devices, and enable an era of ultra-efficient solidstate lighting.« less

  13. Efficient quantum state transfer in an engineered chain of quantum bits

    NASA Astrophysics Data System (ADS)

    Sandberg, Martin; Knill, Emanuel; Kapit, Eliot; Vissers, Michael R.; Pappas, David P.

    2016-03-01

    We present a method of performing quantum state transfer in a chain of superconducting quantum bits. Our protocol is based on engineering the energy levels of the qubits in the chain and tuning them all simultaneously with an external flux bias. The system is designed to allow sequential adiabatic state transfers, resulting in on-demand quantum state transfer from one end of the chain to the other. Numerical simulations of the master equation using realistic parameters for capacitive nearest-neighbor coupling, energy relaxation, and dephasing show that fast, high-fidelity state transfer should be feasible using this method.

  14. Efficient Multi-Dimensional Simulation of Quantum Confinement Effects in Advanced MOS Devices

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Ancona, Mario G.; Rafferty, Conor S.; Yu, Zhiping

    2000-01-01

    We investigate the density-gradient (DG) transport model for efficient multi-dimensional simulation of quantum confinement effects in advanced MOS devices. The formulation of the DG model is described as a quantum correction ot the classical drift-diffusion model. Quantum confinement effects are shown to be significant in sub-100nm MOSFETs. In thin-oxide MOS capacitors, quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion of quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion of quantum effects in simulations dramatically improves the match between C-V simulations and measurements for oxide thickness down to 2 nm. Significant quantum corrections also occur in the I-V characteristics of short-channel (30 to 100 nm) n-MOSFETs, with current drive reduced by up to 70%. This effect is shown to result from reduced inversion charge due to quantum confinement of electrons in the channel. Also, subthreshold slope is degraded by 15 to 20 mV/decade with the inclusion of quantum effects via the density-gradient model, and short channel effects (in particular, drain-induced barrier lowering) are noticeably increased.

  15. Nearly 100% internal quantum efficiency in undoped electroluminescent devices employing pure organic emitters.

    PubMed

    Zhang, Qisheng; Tsang, Daniel; Kuwabara, Hirokazu; Hatae, Yasuhiro; Li, Bo; Takahashi, Takehiro; Lee, Sae Youn; Yasuda, Takuma; Adachi, Chihaya

    2015-03-25

    The design of efficient and concentration-insensitive metal-free thermally activateddelayed fluorescence (TADF) materials is reported. Blue and green organic light-emitting diodes (OLEDs) containing a hole-transport layer, an undoped TADF emissive layer, and an electron-transport layer achieve maximum external quantum efficiencies of 19%, which is comparable to the best doped OLEDs. PMID:25678335

  16. High heralding-efficiency of near-IR fiber coupled photon pairs for quantum technologies

    NASA Astrophysics Data System (ADS)

    Dixon, P. Ben; Murphy, Ryan; Rosenberg, Danna; Grein, Matthew E.; Stelmakh, Veronika; Bennink, Ryan S.; Wong, Franco N. C.

    2015-05-01

    We report on the development and use of a high heralding-efficiency, single-mode-fiber coupled telecom-band source of entangled photons for quantum technology applications. The source development efforts consisted of theoretical and experimental efforts and we demonstrated a correlated-mode coupling efficiency of 97% ± 2%, the highest efficiency yet achieved for this type of system. We then incorporated these beneficial source development techniques in a Sagnac configured telecom-band entangled photon source that generates photon pairs entangled in both time/energy and polarization degrees of freedom. We made use of these highly desirable entangled states to investigate several promising quantum technologies.

  17. High heralding-efficiency of near-IR fiber coupled photon pairs for quantum technologies

    SciTech Connect

    Dixon, P. Ben; Murphy, Ryan; Rosenberg, Danna; Grein, Matthew E.; Stelmakh, Veronika; Bennink, Ryan S; Wong, Franco N. C.

    2015-01-01

    We report on the development and use of a high heralding-efficiency, single-mode-fiber coupled telecom-band source of entangled photons for quantum technology applications. The source development efforts consisted of theoretical and experimental efforts and we demonstrated a correlated-mode coupling efficiency of 97% 2%, the highest efficiency yet achieved for this type of system. We then incorporated these beneficial source development techniques in a Sagnac configured telecom-band entangled photon source that generates photon pairs entangled in both time/energy and polarization degrees of freedom. We made use of these highly desirable entangled states to investigate several promising quantum technologies.

  18. Efficient mode conversion in an optical nanoantenna mediated by quantum emitters

    NASA Astrophysics Data System (ADS)

    Straubel, J.; Filter, R.; Rockstuhl, C.; Słowik, K.

    2016-05-01

    Converting signals between different electromagnetic modes is an asset for future information technologies. In general, slightly asymmetric optical nanoantennas enable the coupling between bright and dark modes sustained by an optical nanoantenna. However, the conversion efficiency might be very low. Here, we show that the additional incorporation of a quantum emitter allows to tremendously enhance this efficiency. The enhanced local density of states cycles the quantum emitter between its upper and lower level at an extremely hight rate; hence converting the energy very efficient. The process is robust with respect to possible experimental tolerances and adds a new ingredient to be exploited while studying and applying coupling phenomena in optical nanosystems.

  19. Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120%

    PubMed Central

    Davis, Nathaniel J. L. K.; Böhm, Marcus L.; Tabachnyk, Maxim; Wisnivesky-Rocca-Rivarola, Florencia; Jellicoe, Tom C.; Ducati, Caterina; Ehrler, Bruno; Greenham, Neil C.

    2015-01-01

    Multiple-exciton generation—a process in which multiple charge-carrier pairs are generated from a single optical excitation—is a promising way to improve the photocurrent in photovoltaic devices and offers the potential to break the Shockley–Queisser limit. One-dimensional nanostructures, for example nanorods, have been shown spectroscopically to display increased multiple exciton generation efficiencies compared with their zero-dimensional analogues. Here we present solar cells fabricated from PbSe nanorods of three different bandgaps. All three devices showed external quantum efficiencies exceeding 100% and we report a maximum external quantum efficiency of 122% for cells consisting of the smallest bandgap nanorods. We estimate internal quantum efficiencies to exceed 150% at relatively low energies compared with other multiple exciton generation systems, and this demonstrates the potential for substantial improvements in device performance due to multiple exciton generation. PMID:26411283

  20. Anomalous quantum efficiency for photoconduction and its power dependence in metal oxide semiconductor nanowires.

    PubMed

    Chen, R S; Wang, W C; Lu, M L; Chen, Y F; Lin, H C; Chen, K H; Chen, L C

    2013-08-01

    The quantum efficiency and carrier lifetime that decide the photoconduction (PC) efficiencies in the metal oxide semiconductor nanowires (NWs) have been investigated. The experimental result surprisingly shows that the SnO2, TiO2, WO3, and ZnO NWs reveal extraordinary quantum efficiencies in common, which are over one to three orders of magnitude lower than the theoretical expectation. The surface depletion region (SDR)-controlled photoconductivity is proposed to explain the anomalous quantum efficiency and its power dependence. The inherent difference between the metal oxide nanostructures such as carrier lifetime, carrier concentration, and dielectric constant leading to the distinct PC performance and behavior are also discussed. PMID:23779084

  1. Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120.

    PubMed

    Davis, Nathaniel J L K; Böhm, Marcus L; Tabachnyk, Maxim; Wisnivesky-Rocca-Rivarola, Florencia; Jellicoe, Tom C; Ducati, Caterina; Ehrler, Bruno; Greenham, Neil C

    2015-01-01

    Multiple-exciton generation-a process in which multiple charge-carrier pairs are generated from a single optical excitation-is a promising way to improve the photocurrent in photovoltaic devices and offers the potential to break the Shockley-Queisser limit. One-dimensional nanostructures, for example nanorods, have been shown spectroscopically to display increased multiple exciton generation efficiencies compared with their zero-dimensional analogues. Here we present solar cells fabricated from PbSe nanorods of three different bandgaps. All three devices showed external quantum efficiencies exceeding 100% and we report a maximum external quantum efficiency of 122% for cells consisting of the smallest bandgap nanorods. We estimate internal quantum efficiencies to exceed 150% at relatively low energies compared with other multiple exciton generation systems, and this demonstrates the potential for substantial improvements in device performance due to multiple exciton generation. PMID:26411283

  2. Efficiencies of two-level weak dissipation quantum Carnot engines at the maximum power output

    NASA Astrophysics Data System (ADS)

    Guo, Juncheng; Wang, Junyi; Wang, Yuan; Chen, Jincan

    2013-04-01

    A weak-dissipation cycle model of two-level quantum Carnot engines is proposed by adopting a generic energy spectrum and the superposition effect of quantum systems. Expressions for the power output and efficiency of the cycle are derived. The optimal relation between the power output and the efficiency is obtained and the optimally operating region of the cycle is determined. Moreover, analytical expression for the efficiency of the cycle at the maximum power output is deduced and the lower and upper bounds of the efficiency at the maximum power output are given. The results obtained are general and can be directly used to discuss the optimal performance characteristics of several types of two-level quantum Carnot engines.

  3. Efficiency of quantum energy teleportation within spin-1/2 particle pairs

    NASA Astrophysics Data System (ADS)

    Frey, Michael R.

    2016-03-01

    A protocol for quantum energy teleportation (QET) is known for a so-called minimal spin-1/2 particle pair model. We extend this protocol to explicitly admit quantum weak measurements at its first stage. The extended protocol is applied beyond the minimal model to spin-1/2 particle pairs whose Hamiltonians are of a general class characterized by orthogonal pairs of entangled eigenstates. The energy transfer efficiency of the extended QET protocol is derived for this setting, and we show that weaker measurement yields greater efficiency. In the minimal particle pair model, for example, the efficiency can be doubled by this means. We also show that the QET protocol's transfer efficiency never exceeds 100 %, supporting the understanding that quantum energy teleportation is, indeed, an energy transfer protocol, rather than a protocol for remotely catalyzing local extraction of system energy already present.

  4. Efficient optimal minimum error discrimination of symmetric quantum states

    NASA Astrophysics Data System (ADS)

    Assalini, Antonio; Cariolaro, Gianfranco; Pierobon, Gianfranco

    2010-01-01

    This article deals with the quantum optimal discrimination among mixed quantum states enjoying geometrical uniform symmetry with respect to a reference density operator ρ0. It is well known that the minimal error probability is given by the positive operator-valued measure obtained as a solution of a convex optimization problem, namely a set of operators satisfying geometrical symmetry, with respect to a reference operator Π0 and maximizing Tr(ρ0Π0). In this article, by resolving the dual problem, we show that the same result is obtained by minimizing the trace of a semidefinite positive operator X commuting with the symmetry operator and such that X⩾ρ0. The new formulation gives a deeper insight into the optimization problem and allows to obtain closed-form analytical solutions, as shown by a simple but not trivial explanatory example. In addition to the theoretical interest, the result leads to semidefinite programming solutions of reduced complexity, allowing to extend the numerical performance evaluation to quantum communication systems modeled in Hilbert spaces of large dimension.

  5. Quantum Dots Promise to Significantly Boost Solar Cell Efficiencies (Fact Sheet)

    SciTech Connect

    Not Available

    2013-08-01

    In the search for a third generation of solar-cell technologies, a leading candidate is the use of 'quantum dots' -- tiny spheres of semiconductor material measuring only about 2-10 billionths of a meter in diameter. Quantum dots have the potential to dramatically increase the efficiency of converting sunlight into energy -- perhaps even doubling it in some devices -- because of their ability to generate more than one bound electron-hole pair, or exciton, per incoming photon. NREL has produced quantum dots using colloidal suspensions; then, using molecular self-assembly, they have been fabricated into the first-ever quantum-dot solar cells. While these devices operate with only 4.4% efficiency, they demonstrate the capability for low-cost manufacturing.

  6. A Highly Efficient Hybrid GaAs Solar Cell Based on Colloidal-Quantum-Dot-Sensitization

    PubMed Central

    Han, Hau-Vei; Lin, Chien-Chung; Tsai, Yu-Lin; Chen, Hsin-Chu; Chen, Kuo-Ju; Yeh, Yun-Ling; Lin, Wen-Yi; Kuo, Hao-Chung; Yu, Peichen

    2014-01-01

    This paper presents a hybrid design, featuring a traditional GaAs-based solar cell combined with various colloidal quantum dots. This hybrid design effectively boosts photon harvesting at long wavelengths while enhancing the collection of photogenerated carriers in the ultraviolet region. The merits of using highly efficient semiconductor solar cells and colloidal quantum dots were seamlessly combined to increase overall power conversion efficiency. Several photovoltaic parameters, including short-circuit current density, open circuit voltage, and external quantum efficiency, were measured and analyzed to investigate the performance of this hybrid device. Offering antireflective features at long wavelengths and luminescent downshifting for high-energy photons, the quantum dots effectively enhanced overall power conversion efficiency by as high as 24.65% compared with traditional GaAs-based devices. The evolution of weighted reflectance as a function of the dilution factor of QDs was investigated. Further analysis of the quantum efficiency response showed that the luminescent downshifting effect can be as much as 6.6% of the entire enhancement of photogenerated current. PMID:25034623

  7. Finding the quantum thermoelectric with maximal efficiency and minimal entropy production at given power output

    NASA Astrophysics Data System (ADS)

    Whitney, Robert S.

    2015-03-01

    We investigate the nonlinear scattering theory for quantum systems with strong Seebeck and Peltier effects, and consider their use as heat engines and refrigerators with finite power outputs. This paper gives detailed derivations of the results summarized in a previous paper [R. S. Whitney, Phys. Rev. Lett. 112, 130601 (2014), 10.1103/PhysRevLett.112.130601]. It shows how to use the scattering theory to find (i) the quantum thermoelectric with maximum possible power output, and (ii) the quantum thermoelectric with maximum efficiency at given power output. The latter corresponds to a minimal entropy production at that power output. These quantities are of quantum origin since they depend on system size over electronic wavelength, and so have no analog in classical thermodynamics. The maximal efficiency coincides with Carnot efficiency at zero power output, but decreases with increasing power output. This gives a fundamental lower bound on entropy production, which means that reversibility (in the thermodynamic sense) is impossible for finite power output. The suppression of efficiency by (nonlinear) phonon and photon effects is addressed in detail; when these effects are strong, maximum efficiency coincides with maximum power. Finally, we show in particular limits (typically without magnetic fields) that relaxation within the quantum system does not allow the system to exceed the bounds derived for relaxation-free systems, however, a general proof of this remains elusive.

  8. Optimization of the Energy Level Alignment between the Photoactive Layer and the Cathode Contact Utilizing Solution-Processed Hafnium Acetylacetonate as Buffer Layer for Efficient Polymer Solar Cells.

    PubMed

    Yu, Lu; Li, Qiuxiang; Shi, Zhenzhen; Liu, Hao; Wang, Yaping; Wang, Fuzhi; Zhang, Bing; Dai, Songyuan; Lin, Jun; Tan, Zhan'ao

    2016-01-13

    The insertion of an appropriate interfacial buffer layer between the photoactive layer and the contact electrodes makes a great impact on the performance of polymer solar cells (PSCs). Ideal interfacial buffer layers could minimize the interfacial traps and the interfacial barriers caused by the incompatibility between the photoactive layer and the electrodes. In this work, we utilized solution-processed hafnium(IV) acetylacetonate (Hf(acac)4) as an effective cathode buffer layer (CBL) in PSCs to optimize the energy level alignment between the photoactive layer and the cathode contact, with the short-circuit current density (Jsc), open-circuit voltage (Voc), and fill factor (FF) all simultaneously improved with Hf(acac)4 CBL, leading to enhanced power conversion efficiencies (PCEs). Ultraviolet photoemission spectroscopy (UPS) and scanning Kelvin probe microscopy (SKPM) were performed to confirm that the interfacial dipoles were formed with the same orientation direction as the built-in potential between the photoactive layer and Hf(acac)4 CBL, benefiting the exciton separation and electron transport/extraction. In addition, the optical characteristics and surface morphology of the Hf(acac)4 CBL were also investigated. PMID:26684416

  9. Nitrogen-Doped Carbon Nanoparticle-Carbon Nanofiber Composite as an Efficient Metal-Free Cathode Catalyst for Oxygen Reduction Reaction.

    PubMed

    Panomsuwan, Gasidit; Saito, Nagahiro; Ishizaki, Takahiro

    2016-03-23

    Metal-free nitrogen-doped carbon materials are currently considered at the forefront of potential alternative cathode catalysts for the oxygen reduction reaction (ORR) in fuel cell technology. Despite numerous efforts in this area over the past decade, rational design and development of a new catalyst system based on nitrogen-doped carbon materials via an innovative approach still present intriguing challenges in ORR catalysis research. Herein, a new kind of nitrogen-doped carbon nanoparticle-carbon nanofiber (NCNP-CNF) composite with highly efficient and stable ORR catalytic activity has been developed via a new approach assisted by a solution plasma process. The integration of NCNPs and CNFs by the solution plasma process can lead to a unique morphological feature and modify physicochemical properties. The NCNP-CNF composite exhibits a significantly enhanced ORR activity through a dominant four-electron pathway in an alkaline solution. The enhancement in ORR activity of NCNP-CNF composite can be attributed to the synergistic effects of good electron transport from highly graphitized CNFs as well as abundance of exposed catalytic sites and meso/macroporosity from NCNPs. More importantly, NCNP-CNF composite reveals excellent long-term durability and high tolerance to methanol crossover compared with those of a commercial 20 wt % supported on Vulcan XC-72. We expect that NCNP-CNF composite prepared by this synthetic approach can be a promising metal-free cathode catalyst candidate for ORR in fuel cells and metal-air batteries. PMID:26908214

  10. Photoemission experiments of a large area scandate dispenser cathode

    NASA Astrophysics Data System (ADS)

    Zhang, Huang; Liu, Xing-guang; Chen, Yi; Chen, De-biao; Jiang, Xiao-guo; Yang, An-min; Xia, Lian-sheng; Zhang, Kai-zhi; Shi, Jin-shui; Zhang, Lin-wen

    2010-09-01

    A 100-mm-diameter scandate dispenser cathode was tested as a photocathode with a 10 ns Nd:YAG laser (266 nm) on an injector test stand for linear induction accelerators. This thermionic dispenser cathode worked at temperatures ranging from room temperature to 930 °C (below or near the thermionic emission threshold) while the vacuum was better than 4×10 -7 Torr. The laser pulse was synchronized with a 120 ns diode voltage pulse stably and they were in single pulse mode. Emission currents were measured by a Faraday cup. The maximum peak current collected at the anode was about 100 A. The maximum quantum efficiency measured at low laser power was 2.4×10 -4. Poisoning effect due to residual gas was obvious and uninterrupted heating was needed to keep cathode's emission capability. The cathode was exposed to air one time between experiments and recovered after being reconditioned. Photoemission uniformity of the cathode was also explored by changing the laser spot's position.

  11. Efficient quantum dialogue using entangled states and entanglement swapping without information leakage

    NASA Astrophysics Data System (ADS)

    Wang, He; Zhang, Yu Qing; Liu, Xue Feng; Hu, Yu Pu

    2016-06-01

    We propose a novel quantum dialogue protocol by using the generalized Bell states and entanglement swapping. In the protocol, a sequence of ordered two-qutrit entangled states acts as quantum information channel for exchanging secret messages directly and simultaneously. Besides, a secret key string is shared between the communicants to overcome information leakage. Different from those previous information leakage-resistant quantum dialogue protocols, the particles, composed of one of each pair of entangled states, are transmitted only one time in the proposed protocol. Security analysis shows that our protocol can overcome information leakage and resist several well-known attacks. Moreover, the efficiency of our scheme is acceptable.

  12. Hierarchy of Efficiently Computable and Faithful Lower Bounds to Quantum Discord

    NASA Astrophysics Data System (ADS)

    Piani, Marco

    2016-08-01

    Quantum discord expresses a fundamental nonclassicality of correlations that is more general than entanglement, but that, in its standard definition, is not easily evaluated. We derive a hierarchy of computationally efficient lower bounds to the standard quantum discord. Every nontrivial element of the hierarchy constitutes by itself a valid discordlike measure, based on a fundamental feature of quantum correlations: their lack of shareability. Our approach emphasizes how the difference between entanglement and discord depends on whether shareability is intended as a static property or as a dynamical process.

  13. Radical-Ion-Pair Spin Decoherence and the Quantum Efficiency of Photosynthetic Charge Separation

    NASA Astrophysics Data System (ADS)

    Kominis, Iannis; Dellis, A. T.

    2014-03-01

    We have pioneered the fundamental quantum dynamics of radical-ion-pair reactions, elucidating the basic spin-decoherence mechanism pertaining to these biochemical reactions. Radical-ion pair reactions appear in the avian magnetic compass, but more importantly, they participate in the cascade of electron-transfer reactions taking place in photosynthetic reaction centers. We will here present new insights on how the fundamental quantum dynamics of radical-ion pair reactions affect the quantum efficiency of charge separation in photosynthetic reaction centers.

  14. Hierarchy of Efficiently Computable and Faithful Lower Bounds to Quantum Discord.

    PubMed

    Piani, Marco

    2016-08-19

    Quantum discord expresses a fundamental nonclassicality of correlations that is more general than entanglement, but that, in its standard definition, is not easily evaluated. We derive a hierarchy of computationally efficient lower bounds to the standard quantum discord. Every nontrivial element of the hierarchy constitutes by itself a valid discordlike measure, based on a fundamental feature of quantum correlations: their lack of shareability. Our approach emphasizes how the difference between entanglement and discord depends on whether shareability is intended as a static property or as a dynamical process. PMID:27588837

  15. Efficient quantum dialogue using entangled states and entanglement swapping without information leakage

    NASA Astrophysics Data System (ADS)

    Wang, He; Zhang, Yu Qing; Liu, Xue Feng; Hu, Yu Pu

    2016-03-01

    We propose a novel quantum dialogue protocol by using the generalized Bell states and entanglement swapping. In the protocol, a sequence of ordered two-qutrit entangled states acts as quantum information channel for exchanging secret messages directly and simultaneously. Besides, a secret key string is shared between the communicants to overcome information leakage. Different from those previous information leakage-resistant quantum dialogue protocols, the particles, composed of one of each pair of entangled states, are transmitted only one time in the proposed protocol. Security analysis shows that our protocol can overcome information leakage and resist several well-known attacks. Moreover, the efficiency of our scheme is acceptable.

  16. Efficient Raman generation in a waveguide: A route to ultrafast quantum random number generation

    SciTech Connect

    England, D. G.; Bustard, P. J.; Moffatt, D. J.; Nunn, J.; Lausten, R.; Sussman, B. J.

    2014-02-03

    The inherent uncertainty in quantum mechanics offers a source of true randomness which can be used to produce unbreakable cryptographic keys. We discuss the development of a high-speed random number generator based on the quantum phase fluctuations in spontaneously initiated stimulated Raman scattering (SISRS). We utilize the tight confinement and long interaction length available in a Potassium Titanyl Phosphate waveguide to generate highly efficient SISRS using nanojoule pulse energies, reducing the high pump power requirements of the previous approaches. We measure the random phase of the Stokes output using a simple interferometric setup to yield quantum random numbers at 145 Mbps.

  17. An efficient (t,n) threshold quantum secret sharing without entanglement

    NASA Astrophysics Data System (ADS)

    Qin, Huawang; Dai, Yuewei

    2016-04-01

    An efficient (t,n) threshold quantum secret sharing (QSS) scheme is proposed. In our scheme, the Hash function is used to check the eavesdropping, and no particles need to be published. So the utilization efficiency of the particles is real 100%. No entanglement is used in our scheme. The dealer uses the single particles to encode the secret information, and the participants get the secret through measuring the single particles. Compared to the existing schemes, our scheme is simpler and more efficient.

  18. Efficient single-photon entanglement concentration for quantum communications

    NASA Astrophysics Data System (ADS)

    Zhou, Lan; Sheng, Yu-Bo

    2014-02-01

    We present two entanglement concentration protocols for single-photon entanglement. The first protocol is implemented with linear optics. With the help of the 50:50 beam splitter, variable beam splitter and an auxiliary photon, a less-entangled single-photon state can be concentrated into a maximally single-photon entangled state with some probability. The second protocol is implemented with the cross-Kerr nonlinearity. With the help of the cross-Kerr nonlinearity, the sophisticated single photon detector is not required. Moreover, the second protocol can be reused to get higher success probability. All these advantages may make the protocols useful in the long-distance quantum communication.

  19. An efficient quantum scheme for Private Set Intersection

    NASA Astrophysics Data System (ADS)

    Shi, Run-hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun

    2016-01-01

    Private Set Intersection allows a client to privately compute set intersection with the collaboration of the server, which is one of the most fundamental and key problems within the multiparty collaborative computation of protecting the privacy of the parties. In this paper, we first present a cheat-sensitive quantum scheme for Private Set Intersection. Compared with classical schemes, our scheme has lower communication complexity, which is independent of the size of the server's set. Therefore, it is very suitable for big data services in Cloud or large-scale client-server networks.

  20. Introduction: From Efficient Quantum Computation to Nonextensive Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Prosen, Tomaz

    These few pages will attempt to make a short comprehensive overview of several contributions to this volume which concern rather diverse topics. I shall review the following works, essentially reversing the sequence indicated in my title: • First, by C. Tsallis on the relation of nonextensive statistics to the stability of quantum motion on the edge of quantum chaos. • Second, the contribution by P. Jizba on information theoretic foundations of generalized (nonextensive) statistics. • Third, the contribution by J. Rafelski on a possible generalization of Boltzmann kinetics, again, formulated in terms of nonextensive statistics. • Fourth, the contribution by D.L. Stein on the state-of-the-art open problems in spin glasses and on the notion of complexity there. • Fifth, the contribution by F.T. Arecchi on the quantum-like uncertainty relations and decoherence appearing in the description of perceptual tasks of the brain. • Sixth, the contribution by G. Casati on the measurement and information extraction in the simulation of complex dynamics by a quantum computer. Immediately, the following question arises: What do the topics of these talks have in common? Apart from the variety of questions they address, it is quite obvious that the common denominator of these contributions is an approach to describe and control "the complexity" by simple means. One of the very useful tools to handle such problems, also often used or at least referred to in several of the works presented here, is the concept of Tsallis entropy and nonextensive statistics.

  1. Efficient Multi-Dimensional Simulation of Quantum Confinement Effects in Advanced MOS Devices

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Rafferty, Conor S.; Ancona, Mario G.; Yu, Zhi-Ping

    2000-01-01

    We investigate the density-gradient (DG) transport model for efficient multi-dimensional simulation of quantum confinement effects in advanced MOS devices. The formulation of the DG model is described as a quantum correction to the classical drift-diffusion model. Quantum confinement effects are shown to be significant in sub-100nm MOSFETs. In thin-oxide MOS capacitors, quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion or quantum effects in simulations dramatically improves the match between C-V simulations and measurements for oxide thickness down to 2 nm. Significant quantum corrections also occur in the I-V characteristics of short-channel (30 to 100 nm) n-MOSFETs, with current drive reduced by up to 70%. This effect is shown to result from reduced inversion charge due to quantum confinement of electrons in the channel. Also, subthreshold slope is degraded by 15 to 20 mV/decade with the inclusion of quantum effects via the density-gradient model, and short channel effects (in particular, drain-induced barrier lowering) are noticeably increased.

  2. Efficient Synthesis of Universal Repeat-Until-Success Quantum Circuits

    NASA Astrophysics Data System (ADS)

    Bocharov, Alex; Roetteler, Martin; Svore, Krysta M.

    2015-02-01

    Recently it was shown that the resources required to implement unitary operations on a quantum computer can be reduced by using probabilistic quantum circuits called repeat-until-success (RUS) circuits. However, the previously best-known algorithm to synthesize a RUS circuit for a given target unitary requires exponential classical runtime. We present a probabilistically polynomial-time algorithm to synthesize a RUS circuit to approximate any given single-qubit unitary to precision ɛ over the Clifford+T basis. Surprisingly, the T count of the synthesized RUS circuit surpasses the theoretical lower bound of 3 log2(1 /ɛ ) that holds for purely unitary single-qubit circuit decomposition. By taking advantage of measurement and an ancilla qubit, RUS circuits achieve an expected T count of 1.15 log2(1 /ɛ ) for single-qubit z rotations. Our method leverages the fact that the set of unitaries implementable by RUS protocols has a higher density in the space of all unitaries compared to the density of purely unitary implementations.

  3. Efficient synthesis of probabilistic quantum circuits with fallback

    NASA Astrophysics Data System (ADS)

    Bocharov, Alex; Roetteler, Martin; Svore, Krysta M.

    2015-05-01

    Repeat-until-success (RUS) circuits can approximate a given single-qubit unitary with an expected number of T gates of about 1/3 of what is required by optimal, deterministic, ancilla-free decompositions over the Clifford + T gate set. In this work, we introduce a more general and conceptually simpler circuit decomposition method that allows for synthesis into protocols that probabilistically implement quantum circuits over several universal gate sets including, but not restricted to, the Clifford + T gate set. The protocol, which we call probabilistic quantum circuits with fallback (PQF), implements a walk on a discrete Markov chain in which the target unitary is an absorbing state and in which transitions are induced by multiqubit unitaries followed by measurements. In contrast to RUS protocols, the presented PQF protocols are guaranteed to terminate after a finite number of steps. Specifically, we apply our method to the Clifford + T , Clifford + V , and Clifford + π /12 gate sets to achieve decompositions with expected gate counts of logb(1 /ɛ ) +O {ln[ln(1 /ɛ ) ] } , where b is a quantity related to the expansion property of the underlying universal gate set.

  4. High Performance PbS Quantum Dot/Graphene Hybrid Solar Cell with Efficient Charge Extraction.

    PubMed

    Kim, Byung-Sung; Neo, Darren C J; Hou, Bo; Park, Jong Bae; Cho, Yuljae; Zhang, Nanlin; Hong, John; Pak, Sangyeon; Lee, Sanghyo; Sohn, Jung Inn; Assender, Hazel E; Watt, Andrew A R; Cha, SeungNam; Kim, Jong Min

    2016-06-01

    Hybrid colloidal quantum dot (CQD) solar cells are fabricated from multilayer stacks of lead sulfide (PbS) CQD and single layer graphene (SG). The inclusion of graphene interlayers is shown to increase power conversion efficiency by 9.18%. It is shown that the inclusion of conductive graphene enhances charge extraction in devices. Photoluminescence shows that graphene quenches emission from the quantum dot suggesting spontaneous charge transfer to graphene. CQD photodetectors exhibit increased photoresponse and improved transport properties. We propose that the CQD/SG hybrid structure is a route to make CQD thin films with improved charge extraction, therefore resulting in improved solar cell efficiency. PMID:27213219

  5. Absolute determination of photoluminescence quantum efficiency using an integrating sphere setup

    SciTech Connect

    Leyre, S.; Coutino-Gonzalez, E.; Hofkens, J.; Joos, J. J.; Poelman, D.; Smet, P. F.; Ryckaert, J.; Meuret, Y.; Durinck, G.; Hanselaer, P.

    2014-12-15

    An integrating sphere-based setup to obtain a quick and reliable determination of the internal quantum efficiency of strongly scattering luminescent materials is presented. In literature, two distinct but similar measurement procedures are frequently mentioned: a “two measurement” and a “three measurement” approach. Both methods are evaluated by applying the rigorous integrating sphere theory. It was found that both measurement procedures are valid. Additionally, the two methods are compared with respect to the uncertainty budget of the obtained values of the quantum efficiency. An inter-laboratory validation using the two distinct procedures was performed. The conclusions from the theoretical study were confirmed by the experimental data.

  6. A non-doped phosphorescent organic light-emitting device with above 31% external quantum efficiency.

    PubMed

    Wang, Qi; Oswald, Iain W H; Yang, Xiaolong; Zhou, Guijiang; Jia, Huiping; Qiao, Qiquan; Chen, Yonghua; Hoshikawa-Halbert, Jason; Gnade, Bruce E

    2014-12-23

    The demonstrated square-planar Pt(II)-complex has reduced triplet-triplet quenching and therefore a near unity quantum yield in the neat thin film. A non-doped phosphorescent organic light-emitting diode (PhOLED) based on this emitter achieves (31.1 ± 0.1)% external quantum efficiency without any out-coupling, which shows that a non-doped PhOLED can be comparable in efficiency to the best doped devices with very complicated device structures. PMID:25219957

  7. Quantum Efficiency for Electron-Hole Pair Generation by Infrared Irradiation in Germanium Cryogenic Detectors

    NASA Astrophysics Data System (ADS)

    Domange, J.; Broniatowski, A.; Olivieri, E.; Chapellier, M.; Dumoulin, L.

    2009-12-01

    A study is made of the quantum efficiency of a coplanar grid ionization/heat Ge detector operated at cryogenic temperatures for dark matter search. Carrier generation is performed with infra-red LEDs of different wavelengths (1.30, 1.45, and 1.65 μm) near the optical bandgap of germanium. The corresponding quantum efficiency is obtained from an analysis of the Joule (Luke-Neganov) effect. This investigation is part of a program to optimize the reset procedure of the detectors in the Edelweiss-II dark matter search experiment at the Modane Underground Laboratory.

  8. High Performance PbS Quantum Dot/Graphene Hybrid Solar Cell with Efficient Charge Extraction

    PubMed Central

    2016-01-01

    Hybrid colloidal quantum dot (CQD) solar cells are fabricated from multilayer stacks of lead sulfide (PbS) CQD and single layer graphene (SG). The inclusion of graphene interlayers is shown to increase power conversion efficiency by 9.18%. It is shown that the inclusion of conductive graphene enhances charge extraction in devices. Photoluminescence shows that graphene quenches emission from the quantum dot suggesting spontaneous charge transfer to graphene. CQD photodetectors exhibit increased photoresponse and improved transport properties. We propose that the CQD/SG hybrid structure is a route to make CQD thin films with improved charge extraction, therefore resulting in improved solar cell efficiency. PMID:27213219

  9. A Novel Implementation of Efficient Algorithms for Quantum Circuit Synthesis

    NASA Astrophysics Data System (ADS)

    Zeller, Luke

    In this project, we design and develop a computer program to effectively approximate arbitrary quantum gates using the discrete set of Clifford Gates together with the T gate (π/8 gate). Employing recent results from Mosca et. al. and Giles and Selinger, we implement a decomposition scheme that outputs a sequence of Clifford, T, and Tt gates that approximate the input to within a specified error range ɛ. Specifically, the given gate is first rounded to an element of Z[1/2, i] with a precision determined by ɛ, and then exact synthesis is employed to produce the resulting gate. It is known that this procedure is optimal in approximating an arbitrary single qubit gate. Our program, written in Matlab and Python, can complete both approximate and exact synthesis of qubits. It can be used to assist in the experimental implementation of an arbitrary fault-tolerant single qubit gate, for which direct implementation isn't feasible.

  10. High-Efficiency Iron Photosensitizer Explained with Quantum Wavepacket Dynamics.

    PubMed

    Pápai, Mátyás; Vankó, György; Rozgonyi, Tamás; Penfold, Thomas J

    2016-06-01

    Fe(II) complexes have long been assumed unsuitable as photosensitizers because of their low-lying nonemissive metal centered (MC) states, which inhibit electron transfer. Herein, we describe the excited-state relaxation of a novel Fe(II) complex that incorporates N-heterocyclic carbene ligands designed to destabilize the MC states. Using first-principles quantum nuclear wavepacket simulations we achieve a detailed understanding of the photoexcited decay mechanism, demonstrating that it is dominated by an ultrafast intersystem crossing from (1)MLCT-(3)MLCT proceeded by slower kinetics associated with the conversion into the (3)MC states. The slowest component of the (3)MLCT decay, important in the context of photosensitizers, is much longer than related Fe(II) complexes because the population transfer to the (3)MC states occurs in a region of the potential where the energy gap between the (3)MLCT and (3)MC states is large, making the population transfer inefficient. PMID:27187868

  11. Towards a highly efficient quantum spin-photon interface for an NV centre based quantum network

    NASA Astrophysics Data System (ADS)

    Bogdanovic, Stefan; Bonato, Cristian; van Dam, Suzanne; Reiserer, Andreas; Zwerver, Anne-Marije; Hanson, Ronald; Quantum Transport Team

    Nitrogen-vacancy (NV) centers in diamond recently emerged as promising candidates for realizing quantum information algorithms due to their remarkable versatility. The spin of these optically active defects can be entangled with their emitted photons, making them an excellent optical interface from the perspective of quantum communication.Recently, we have demonstrated the first building blocks of such networks, performing kilometer scale entanglement of two NV centers and teleportation of quantum information.(1) However, our current protocols are inefficient due to the low emission of NV center's resonant photons into the zero phonon line (ZPL).Here we present our efforts of coupling a single NV center emitter in a diamond membrane to a fiber-based Fabry-Perot microcavity with high finesse (F >104) at cryogenic temperatures. This approach allows spectral tuning of the cavity resonance to the ZPL emission of the NV center, thereby significantly enhancing the resonant photon emission via Purcell effect. Furthermore, the bulk environment of the NV centers protects their spin properties against surface proximity effects, which is of crucial importance for quantum information processing applications. (1) B.Hensen et al., Nature 526, 682 (2015)

  12. Heralded high-efficiency quantum repeater with atomic ensembles assisted by faithful single-photon transmission

    PubMed Central

    Li, Tao; Deng, Fu-Guo

    2015-01-01

    Quantum repeater is one of the important building blocks for long distance quantum communication network. The previous quantum repeaters based on atomic ensembles and linear optical elements can only be performed with a maximal success probability of 1/2 during the entanglement creation and entanglement swapping procedures. Meanwhile, the polarization noise during the entanglement distribution process is harmful to the entangled channel created. Here we introduce a general interface between a polarized photon and an atomic ensemble trapped in a single-sided optical cavity, and with which we propose a high-efficiency quantum repeater protocol in which the robust entanglement distribution is accomplished by the stable spatial-temporal entanglement and it can in principle create the deterministic entanglement between neighboring atomic ensembles in a heralded way as a result of cavity quantum electrodynamics. Meanwhile, the simplified parity-check gate makes the entanglement swapping be completed with unity efficiency, other than 1/2 with linear optics. We detail the performance of our protocol with current experimental parameters and show its robustness to the imperfections, i.e., detuning and coupling variation, involved in the reflection process. These good features make it a useful building block in long distance quantum communication. PMID:26502993

  13. Scaling-Up Quantum Heat Engines Efficiently via Shortcuts to Adiabaticity

    NASA Astrophysics Data System (ADS)

    Beau, Mathieu; Jaramillo, Juan; del Campo, Adolfo

    2016-04-01

    The finite-time operation of a quantum heat engine that uses a single particle as a working medium generally increases the output power at the expense of inducing friction that lowers the cycle efficiency. We propose to scale up a quantum heat engine utilizing a many-particle working medium in combination with the use of shortcuts to adiabaticity to boost the nonadiabatic performance by eliminating quantum friction and reducing the cycle time. To this end, we first analyze the finite-time thermodynamics of a quantum Otto cycle implemented with a quantum fluid confined in a time-dependent harmonic trap. We show that nonadiabatic effects can be controlled and tailored to match the adiabatic performance using a variety of shortcuts to adiabaticity. As a result, the nonadiabatic dynamics of the scaled-up many-particle quantum heat engine exhibits no friction and the cycle can be run at maximum efficiency with a tunable output power. We demonstrate our results with a working medium consisting of particles with inverse-square pairwise interactions, that includes noninteracting and hard-core bosons as limiting cases.

  14. Heralded high-efficiency quantum repeater with atomic ensembles assisted by faithful single-photon transmission.

    PubMed

    Li, Tao; Deng, Fu-Guo

    2015-01-01

    Quantum repeater is one of the important building blocks for long distance quantum communication network. The previous quantum repeaters based on atomic ensembles and linear optical elements can only be performed with a maximal success probability of 1/2 during the entanglement creation and entanglement swapping procedures. Meanwhile, the polarization noise during the entanglement distribution process is harmful to the entangled channel created. Here we introduce a general interface between a polarized photon and an atomic ensemble trapped in a single-sided optical cavity, and with which we propose a high-efficiency quantum repeater protocol in which the robust entanglement distribution is accomplished by the stable spatial-temporal entanglement and it can in principle create the deterministic entanglement between neighboring atomic ensembles in a heralded way as a result of cavity quantum electrodynamics. Meanwhile, the simplified parity-check gate makes the entanglement swapping be completed with unity efficiency, other than 1/2 with linear optics. We detail the performance of our protocol with current experimental parameters and show its robustness to the imperfections, i.e., detuning and coupling variation, involved in the reflection process. These good features make it a useful building block in long distance quantum communication. PMID:26502993

  15. Step-by-step magic state encoding for efficient fault-tolerant quantum computation

    PubMed Central

    Goto, Hayato

    2014-01-01

    Quantum error correction allows one to make quantum computers fault-tolerant against unavoidable errors due to decoherence and imperfect physical gate operations. However, the fault-tolerant quantum computation requires impractically large computational resources for useful applications. This is a current major obstacle to the realization of a quantum computer. In particular, magic state distillation, which is a standard approach to universality, consumes the most resources in fault-tolerant quantum computation. For the resource problem, here we propose step-by-step magic state encoding for concatenated quantum codes, where magic states are encoded step by step from the physical level to the logical one. To manage errors during the encoding, we carefully use error detection. Since the sizes of intermediate codes are small, it is expected that the resource overheads will become lower than previous approaches based on the distillation at the logical level. Our simulation results suggest that the resource requirements for a logical magic state will become comparable to those for a single logical controlled-NOT gate. Thus, the present method opens a new possibility for efficient fault-tolerant quantum computation. PMID:25511387

  16. Step-by-step magic state encoding for efficient fault-tolerant quantum computation

    NASA Astrophysics Data System (ADS)

    Goto, Hayato

    2014-12-01

    Quantum error correction allows one to make quantum computers fault-tolerant against unavoidable errors due to decoherence and imperfect physical gate operations. However, the fault-tolerant quantum computation requires impractically large computational resources for useful applications. This is a current major obstacle to the realization of a quantum computer. In particular, magic state distillation, which is a standard approach to universality, consumes the most resources in fault-tolerant quantum computation. For the resource problem, here we propose step-by-step magic state encoding for concatenated quantum codes, where magic states are encoded step by step from the physical level to the logical one. To manage errors during the encoding, we carefully use error detection. Since the sizes of intermediate codes are small, it is expected that the resource overheads will become lower than previous approaches based on the distillation at the logical level. Our simulation results suggest that the resource requirements for a logical magic state will become comparable to those for a single logical controlled-NOT gate. Thus, the present method opens a new possibility for efficient fault-tolerant quantum computation.

  17. Efficient spin filter using multi-terminal quantum dot with spin-orbit interaction

    PubMed Central

    2011-01-01

    We propose a multi-terminal spin filter using a quantum dot with spin-orbit interaction. First, we formulate the spin Hall effect (SHE) in a quantum dot connected to three leads. We show that the SHE is significantly enhanced by the resonant tunneling if the level spacing in the quantum dot is smaller than the level broadening. We stress that the SHE is tunable by changing the tunnel coupling to the third lead. Next, we perform a numerical simulation for a multi-terminal spin filter using a quantum dot fabricated on semiconductor heterostructures. The spin filter shows an efficiency of more than 50% when the conditions for the enhanced SHE are satisfied. PACS numbers: 72.25.Dc,71.70.Ej,73.63.Kv,85.75.-d PMID:21711500

  18. High efficiency frequency upconversion of photons carrying orbital angular momentum for a quantum information interface.

    PubMed

    Tang, Ruikai; Li, Xiongjie; Wu, Wenjie; Pan, Haifeng; Zeng, Heping; Wu, E

    2015-04-20

    The orbital angular momentum (OAM) of light shows great potential in quantum communication. The transmission wavelength for telecom is usually around 1550 nm, while the common quantum information storage and processing devices based on atoms, ions or NV color centers are for photons in visible regime. Here we demonstrate a quantum information interface based on the frequency upconversion for photons carrying OAM states from telecom wavelength to visible regime by sum-frequency generation with high quantum conversion efficiency. The infrared photons at 1558 nm carrying different OAM values were converted to the visible regime of 622.2 nm, and the OAM value of the signal photons was well preserved in the frequency upconversion process with pump beam in Gaussian profile. PMID:25969020

  19. Virtual cathode microwave devices: Basics

    NASA Astrophysics Data System (ADS)

    Thode, L. E.; Snell, C. M.

    Unlike a conventional microwave tube, a virtual-cathode device operates above the space-charge limit where the depth of the space-charge potential can cause electron reflection. The region associated with this electron reflection is referred to as a virtual cathode. Microwaves can be generated through oscillations in the position of the virtual cathode and through the bunching of electrons trapped in a potential well between the real and virtual cathodes. These two mechanisms are competitive. There are three basic classes of virtual cathode devices: (1) reflex triode; (2) reditron and side-shoot vircator; and (3) reflex diode or vircator. The reflex diode is the highest power virtual-cathode device. For the reflex diode the energy exchange between the beam and electromagnetic wave occurs in both the axial and radial directions. In some designs the oscillating virtual-cathode frequency exceeds the reflexing-electron frequency while in other designs the reflexing-electron frequency exceeds the oscillating virtual-cathode frequency. For the flex diode, a periodic disruption in magnetic insulation can modulate the high-frequency microwave power. Overall, particle-in-cell simulation predictions and axial reflex diode experiments are in good agreement. Although frequency stability and phase locking of the reflex diode have been demonstrated, little progress has been made in efficiency enhancement.

  20. Virtual cathode microwave devices -- Basics

    SciTech Connect

    Thode, L.E.; Snell, C.M.

    1991-01-01

    Unlike a conventional microwave tube, a virtual-cathode device operates above the space-charge limit where the depth of the space-charge potential can cause electron reflection. The region associated with this electron reflection is referred to as a virtual cathode. Microwaves can be generated through oscillations in the position of the virtual cathode and through the bunching of electrons trapped in a potential well between the real and virtual cathodes. These two mechanisms are competitive. There are three basic classes of virtual cathode devices: (1) reflex triode; (2) reditron and side-shoot vircator; and (3) reflex diode or vircator. The reflex diode is the highest power virtual-cathode device. For the reflex diode the energy exchange between the beam and electromagnetic wave occurs in both the axial and radial directions. In some designs the oscillating-virtual-cathode frequency exceeds the reflexing-electron frequency exceeds the oscillating-virtual-cathode frequency. For the flex diode a periodic disruption in magnetic insulation can modulate the high- frequency microwave power. Overall, particle-in-cell simulation predictions and axial reflex diode experiments are in good agreement. Although frequency stability and phase locking of the reflex diode have been demonstrated, little progress has been made in efficiency enhancement. 58 refs., 11 figs.

  1. Enhanced carrier collection efficiency and reduced quantum state absorption by electron doping in self-assembled quantum dot solar cells

    SciTech Connect

    Li, Tian E-mail: dage@ece.umd.edu; Dagenais, Mario E-mail: dage@ece.umd.edu; Lu, Haofeng; Fu, Lan; Tan, Hark Hoe; Jagadish, Chennupati

    2015-02-02

    Reduced quantum dot (QD) absorption due to state filling effects and enhanced electron transport in doped QDs are demonstrated to play a key role in solar energy conversion. Reduced QD state absorption with increased n-doping is observed in the self-assembled In{sub 0.5}Ga{sub 0.5}As/GaAs QDs from high resolution below-bandgap external quantum efficiency (EQE) measurement, which is a direct consequence of the Pauli exclusion principle. We also show that besides partial filling of the quantum states, electron-doping produces negatively charged QDs that exert a repulsive Coulomb force on the mobile electrons, thus altering the electron trajectory and reducing the probability of electron capture, leading to an improved collection efficiency of photo-generated carriers, as indicated by an absolute above-bandgap EQE measurement. The resulting redistribution of the mobile electron in the planar direction is further validated by the observed photoluminescence intensity dependence on doping.

  2. Highly efficient multiple-layer CdS quantum dot sensitized III-V solar cells.

    PubMed

    Lin, Chien-Chung; Han, Hau-Vei; Chen, Hsin-Chu; Chen, Kuo-Ju; Tsai, Yu-Lin; Lin, Wein-Yi; Kuo, Hao-Chung; Yu, Peichen

    2014-02-01

    In this review, the concept of utilization of solar spectrum in order to increase the solar cell efficiency is discussed. Among the three mechanisms, down-shifting effect is investigated in detail. Organic dye, rare-earth minerals and quantum dots are three most popular down-shift materials. While the enhancement of solar cell efficiency was not clearly observed in the past, the advances in quantum dot fabrication have brought strong response out of the hybrid platform of a quantum dot solar cell. A multiple layer structure, including PDMS as the isolation layer, is proposed and demonstrated. With the help of pulse spray system, precise control can be achieved and the optimized concentration can be found. PMID:24749412

  3. Computational Design of a Family of Light-Driven Rotary Molecular Motors with Improved Quantum Efficiency

    PubMed Central

    2015-01-01

    Two new light-driven molecular rotary motors based on the N-alkylated indanylidene benzopyrrole frameworks are proposed and studied using quantum chemical calculations and nonadiabatic molecular dynamics simulations. These new motors perform pure axial rotation, and the photochemical steps of the rotary cycle are dominated by the fast bond-length-alternation motion that enables ultrafast access to the S1/S0 intersection. The new motors are predicted to display a quantum efficiency higher than that of the currently available synthetic all-hydrocarbon motors. Remarkably, the quantum efficiency is not governed by the topography (peaked versus sloped) of the minimum-energy conical intersection, whereas the S1 decay time depends on the topography as well as on the energy of the intersection relative to the S1 minimum. It is the axial chirality (helicity), rather than the point chirality, that controls the sense of rotation of the motor. PMID:26670164

  4. Work and efficiency of quantum Otto cycles in power-law trapping potentials.

    PubMed

    Zheng, Yuanjian; Poletti, Dario

    2014-07-01

    We study the performance of a quantum Otto cycle operating in trapping potentials of different shapes. We show that, while both the mean work output and the efficiency of two Otto cycles in different trapping potentials can be made equal, the work probability distribution will still be strongly affected by the difference in structure of the energy levels. To exemplify our results, we study the family of potentials of the form V(t)(x) ∼ x(2q). This family of potentials possesses a simple scaling property that allows for analytical insights into the efficiency and work output of the cycle. We perform a comparison of quantum Otto cycles in various physically relevant scenarios and find that in certain instances, the efficiency of the cycle is greater when using potentials with larger values of q, while in other cases, the efficiency is greater with harmonic traps. PMID:25122289

  5. Extracting the emitter orientation in organic light-emitting diodes from external quantum efficiency measurements

    SciTech Connect

    Schmidt, Tobias D. Reichardt, Lukas J.; Wehrmeister, Sebastian; Scholz, Bert J.; Mayr, Christian; Brütting, Wolfgang; Rausch, Andreas F.; Wehlus, Thomas; Reusch, Thilo C. G.; Ciarnáin, Rossá Mac; Danz, Norbert

    2014-07-28

    Emitter orientation will play a major role in future applications of organic light-emitting diodes due to its strong impact on the efficiency of the devices. Up to now, determining the orientation of transition dipole moments required elaborate angular-dependent measurements of the light emission pattern. In this paper, we present a simplified and straightforward method to extract the emitter orientation from external quantum efficiency measurements. We demonstrate the validity of the method on three different dye-doped emitting systems.

  6. Manipulation of nanoscale V-pits to optimize internal quantum efficiency of InGaN multiple quantum wells

    SciTech Connect

    Chang, Chiao-Yun; Li, Heng; Shih, Yang-Ta; Lu, Tien-Chang

    2015-03-02

    We systematically investigated the influence of nanoscale V-pits on the internal quantum efficiency (IQE) of InGaN multiple quantum wells (MQWs) by adjusting the underlying superlattices (SLS). The analysis indicated that high barrier energy of sidewall MQWs on V-pits and long diffusion distance between the threading dislocation (TD) center and V-pit boundary were crucial to effectively passivate the non-radiative centers of TDs. For a larger V-pit, the thicker sidewall MQW on V-pit would decrease the barrier energy. On the contrary, a shorter distance between the TD center and V-pit boundary would be observed in a smaller V-pit, which could increase the carrier capturing capability of TDs. An optimized V-pit size of approximately 200–250 nm in our experiment could be concluded for MQWs with 15 pairs SLS, which exhibited an IQE value of 70%.

  7. Better Solar Cells and Manufacturing Processes Using NREL's Ultrafast Quantum Efficiency Method (Fact Sheet)

    SciTech Connect

    Not Available

    2011-08-01

    Fact sheet on the FlashQE system, a 2011 R&D 100 Award winner. A solid-state optical system by NREL and Tau Science measures solar cell quantum efficiency in less than a second, enabling a suite of new capabilities for solar cell manufacturers.

  8. Separation of photoactive conformers based on hindered diarylethenes: efficient modulation in photocyclization quantum yields.

    PubMed

    Li, Wenlong; Jiao, Changhong; Li, Xin; Xie, Yongshu; Nakatani, Keitaro; Tian, He; Zhu, Weihong

    2014-04-25

    Endowing both solvent independency and excellent thermal bistability, the benzobis(thiadiazole)-bridged diarylethene system provides an efficient approach to realize extremely high photocyclization quantum yields (Φo-c , up to 90.6 %) by both separating completely pure anti-parallel conformer and suppressing intramolecular charge transfer (ICT). PMID:24668917

  9. FLUORESCENCE ASSESSMENT OF THE MAXIMUM QUANTUM EFFICIENCY PHOTOSYNTHESIS IN THE WESTERN NORTH ATLANTIC

    EPA Science Inventory

    The maximum quantum efficiency of phytoplankton photosystem II photochemistry was assessed using a pump and probe fluorometer on an offshore-onshore transect from the oligotrophic blue waters of the western Sargasso Sea to the eutrophic waters of lower Delaware Bay. ow values of ...

  10. High-efficiency quantum steganography based on the tensor product of Bell states

    NASA Astrophysics Data System (ADS)

    Xu, ShuJiang; Chen, XiuBo; Niu, XinXin; Yang, YiXian

    2013-09-01

    In this paper, we first propose a hidden rule among the secure message, the initial tensor product of two Bell states and the final tensor product when respectively applying local unitary transformations to the first particle of the two initial Bell states, and then present a high-efficiency quantum steganography protocol under the control of the hidden rule. In the proposed quantum steganography scheme, a hidden channel is established to transfer a secret message within any quantum secure direct communication (QSDC) scheme that is based on 2-level quantum states and unitary transformations. The secret message hiding/unhiding process is linked with the QSDC process only by unitary transformations. To accurately describe the capacity of a steganography scheme, a quantitative measure, named embedding efficiency, is introduced in this paper. The performance analysis shows that the proposed steganography scheme achieves a high efficiency as well as a good imperceptibility. Moreover, it is shown that this scheme can resist all serious attacks including the intercept-resend attack, measurement-resend attack, auxiliary particle attack and even the Denial of Service attack. To improve the efficiency of the proposed scheme, the hidden rule is extended based on the tensor product of multiple Bell states.

  11. Design strategy for 25% external quantum efficiency in green and blue thermally activated delayed fluorescent devices.

    PubMed

    Lee, Dong Ryun; Kim, Mounggon; Jeon, Sang Kyu; Hwang, Seok-Ho; Lee, Chil Won; Lee, Jun Yeob

    2015-10-21

    Carbazole- and triazine-derived thermally activated delayed fluorescent (TADF) emitters, with three donor units and an even distribution of the highest occupied molecular orbital, achieve high external quantum efficiencies of above 25% in blue and green TADF devices. PMID:26308481

  12. Improved quantum efficiency of highly efficient perovskite BaSnO₃-based dye-sensitized solar cells.

    PubMed

    Shin, Seong Sik; Kim, Ju Seong; Suk, Jae Ho; Lee, Kee Doo; Kim, Dong Wook; Park, Jong Hoon; Cho, In Sun; Hong, Kug Sun; Kim, Jin Young

    2013-02-26

    Ternary oxides are potential candidates as an electron-transporting material that can replace TiO₂ in dye-sensitized solar cells (DSSCs), as their electronic/optical properties can be easily controlled by manipulating the composition and/or by doping. Here, we report a new highly efficient DSSC using perovskite BaSnO₃ (BSO) nanoparticles. In addition, the effects of a TiCl₄ treatment on the physical, chemical, and photovoltaic properties of the BSO-based DSSCs are investigated. The TiCl₄ treatment was found to form an ultrathin TiO₂ layer on the BSO surface, the thickness of which increases with the treatment time. The formation of the TiO₂ shell layer improved the charge-collection efficiency by enhancing the charge transport and suppressing the charge recombination. It was also found that the TiCl₄ treatment significantly reduces the amount of surface OH species, resulting in reduced dye adsorption and reduced light-harvesting efficiency. The trade-off effect between the charge-collection and light-harvesting efficiencies resulted in the highest quantum efficiency (i.e., short-circuit photocurrent density), leading to the highest conversion efficiency of 5.5% after a TiCl₄ treatment of 3 min (cf. 4.5% for bare BSO). The conversion efficiency could be increased further to 6.2% by increasing the thickness of the BSO film, which is one of the highest efficiencies from non-TiO₂-based DSSCs. PMID:23316913

  13. Efficient Förster transfer mediated by excitons in InGaN/GaN quantum well/polyfluorene heterostructures

    NASA Astrophysics Data System (ADS)

    Itskos, G.; Heliotis, G.; Belton, C.; Watson, I. M.; Dawson, M. D.; Bradley, D. D. C.; Murray, R.

    2007-04-01

    We report on novel InGaN/GaN quantum well/polyfluorene heterostructures where efficient Förster energy transfer from the well to the organic layer occurs. We show that Mott-Wannier excitons dominate the quantum well luminescence in the quantum wells in the 77 to at least 225 K range and are responsible for the efficient energy channeling to the polyfluorene films.

  14. Heterostructures for Increased Quantum Efficiency in Nitride LEDs

    SciTech Connect

    Davis, Robert F.

    2010-09-30

    Task 1. Development of an advanced LED simulator useful for the design of efficient nitride-based devices. Simulator will contain graphical interface software that can be used to specify the device structure, the material parameters, the operating conditions and the desired output results. Task 2. Theoretical and experimental investigations regarding the influence on the microstructure, defect concentration, mechanical stress and strain and IQE of controlled changes in the chemistry and process route of deposition of the buffer layer underlying the active region of nitride-based blue- and greenemitting LEDs. Task 3. Theoretical and experimental investigations regarding the influence on the physical properties including polarization and IQE of controlled changes in the geometry, chemistry, defect density, and microstructure of components in the active region of nitride-based blue- and green-emitting LEDs. Task 4. Theoretical and experimental investigations regarding the influence on IQE of novel heterostructure designs to funnel carriers into the active region for enhanced recombination efficiency and elimination of diffusion beyond this region. Task 5. Theoretical and experimental investigations regarding the influence of enhanced p-type doping on the chemical, electrical, and microstructural characteristics of the acceptor-doped layers, the hole injection levels at Ohmic contacts, the specific contact resistivity and the IQE of nitride-based blue- and green-emitting LEDs. Development and optical and electrical characterization of reflective Ohmic contacts to n- and p-type GaN films.

  15. Area laws and efficient descriptions of quantum many-body states

    NASA Astrophysics Data System (ADS)

    Ge, Yimin; Eisert, Jens

    2016-08-01

    It is commonly believed that area laws for entanglement entropies imply that a quantum many-body state can be faithfully represented by efficient tensor network states—a conjecture frequently stated in the context of numerical simulations and analytical considerations. In this work, we show that this is in general not the case, except in one-dimension. We prove that the set of quantum many-body states that satisfy an area law for all Renyi entropies contains a subspace of exponential dimension. We then show that there are states satisfying area laws for all Renyi entropies but cannot be approximated by states with a classical description of small Kolmogorov complexity, including polynomial projected entangled pair states or states of multi-scale entanglement renormalisation. Not even a quantum computer with post-selection can efficiently prepare all quantum states fulfilling an area law, and we show that not all area law states can be eigenstates of local Hamiltonians. We also prove translationally and rotationally invariant instances of these results, and show a variation with decaying correlations using quantum error-correcting codes.

  16. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide.

    PubMed

    Arcari, M; Söllner, I; Javadi, A; Lindskov Hansen, S; Mahmoodian, S; Liu, J; Thyrrestrup, H; Lee, E H; Song, J D; Stobbe, S; Lodahl, P

    2014-08-29

    A quantum emitter efficiently coupled to a nanophotonic waveguide constitutes a promising system for the realization of single-photon transistors, quantum-logic gates based on giant single-photon nonlinearities, and high bit-rate deterministic single-photon sources. The key figure of merit for such devices is the β factor, which is the probability for an emitted single photon to be channeled into a desired waveguide mode. We report on the experimental achievement of β=98.43%±0.04% for a quantum dot coupled to a photonic crystal waveguide, corresponding to a single-emitter cooperativity of η=62.7±1.5. This constitutes a nearly ideal photon-matter interface where the quantum dot acts effectively as a 1D "artificial" atom, since it interacts almost exclusively with just a single propagating optical mode. The β factor is found to be remarkably robust to variations in position and emission wavelength of the quantum dots. Our work demonstrates the extraordinary potential of photonic crystal waveguides for highly efficient single-photon generation and on-chip photon-photon interaction. PMID:25215983

  17. Internal quantum efficiency of III-nitride quantum dot superlattices grown by plasma-assisted molecular-beam epitaxy

    SciTech Connect

    Gacevic, Z.; Kehagias, Th.; Koukoula, T.; Komninou, Ph.

    2011-05-15

    We present a study of the optical properties of GaN/AlN and InGaN/GaN quantum dot (QD) superlattices grown via plasma-assisted molecular-beam epitaxy, as compared to their quantum well (QW) counterparts. The three-dimensional/two-dimensional nature of the structures has been verified using atomic force microscopy and transmission electron microscopy. The QD superlattices present higher internal quantum efficiency as compared to the respective QWs as a result of the three-dimensional carrier localization in the islands. In the QW samples, photoluminescence (PL) measurements point out a certain degree of carrier localization due to structural defects or thickness fluctuations, which is more pronounced in InGaN/GaN QWs due to alloy inhomogeneity. In the case of the QD stacks, carrier localization on potential fluctuations with a spatial extension smaller than the QD size is observed only for the InGaN QD-sample with the highest In content (peak emission around 2.76 eV). These results confirm the efficiency of the QD three-dimensional confinement in circumventing the potential fluctuations related to structural defects or alloy inhomogeneity. PL excitation measurements demonstrate efficient carrier transfer from the wetting layer to the QDs in the GaN/AlN system, even for low QD densities ({approx}10{sup 10} cm{sup -3}). In the case of InGaN/GaN QDs, transport losses in the GaN barriers cannot be discarded, but an upper limit to these losses of 15% is deduced from PL measurements as a function of the excitation wavelength.

  18. Carbon black-derived graphene quantum dots composited with carbon aerogel as a highly efficient and stable reduction catalyst for the iodide/tri-iodide couple

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Chieh; Lu, Shih-Yuan

    2014-12-01

    A microwave-assisted oxidative cleavage process is developed to prepare graphene quantum dots (GQDs) from carbon black. The size evolution of the resulting carbonaceous products is studied. In one hour, GQDs of a size less than 10 nm and thickness less than 2 nm are obtained. These GQDs are further composited with mesoporous carbon aerogels (CA) by a filtration process to form GQD-decorated CA composites (GQD/CA). The GQD/CA composite is applied as a catalyst electrode for the reduction of I3- to I-, a critical electrolyte regeneration reaction in dye-sensitized solar cells (DSSCs). Also investigated are Pt electrodes, the expensive traditional counter electrode material for DSSCs, and plain CA electrodes for comparison. Based on data derived from cyclic voltammograms and Tafel plots, the GQD/CA composite exhibits catalytic efficiencies comparable to that of Pt electrodes and better than that of plain CA electrodes. The GQD/CA electrodes, however, surpass the Pt electrodes in terms of long-term stability. The cathodic current drops significantly after 500 cycles for the Pt and plain CA electrodes, whereas the cathodic current is slightly increased for the GQD/CA electrodes. The GQD/CA composite thus proves to be an inexpensive, efficient, and stable alternative to Pt as the counter electrode material for DSSCs.A microwave-assisted oxidative cleavage process is developed to prepare graphene quantum dots (GQDs) from carbon black. The size evolution of the resulting carbonaceous products is studied. In one hour, GQDs of a size less than 10 nm and thickness less than 2 nm are obtained. These GQDs are further composited with mesoporous carbon aerogels (CA) by a filtration process to form GQD-decorated CA composites (GQD/CA). The GQD/CA composite is applied as a catalyst electrode for the reduction of I3- to I-, a critical electrolyte regeneration reaction in dye-sensitized solar cells (DSSCs). Also investigated are Pt electrodes, the expensive traditional counter

  19. Ascorbic Acid-Assisted Synthesis of Mesoporous Sodium Vanadium Phosphate Nanoparticles with Highly sp(2) -Coordinated Carbon Coatings as Efficient Cathode Materials for Rechargeable Sodium-Ion Batteries.

    PubMed

    Hung, Tai-Feng; Cheng, Wei-Jen; Chang, Wen-Sheng; Yang, Chang-Chung; Shen, Chin-Chang; Kuo, Yu-Lin

    2016-07-18

    Herein, mesoporous sodium vanadium phosphate nanoparticles with highly sp(2) -coordinated carbon coatings (meso-Na3 V2 (PO4 )3 /C) were successfully synthesized as efficient cathode material for rechargeable sodium-ion batteries by using ascorbic acid as both the reductant and carbon source, followed by calcination at 750 °C in an argon atmosphere. Their crystalline structure, morphology, surface area, chemical composition, carbon nature and amount were systematically explored. Following electrochemical measurements, the resultant meso-Na3 V2 (PO4 )3 /C not only delivered good reversible capacity (98 mAh g(-1) at 0.1 A g(-1) ) and superior rate capability (63 mAh g(-1) at 1 A g(-1) ) but also exhibited comparable cycling performance (capacity retention: ≈74 % at 450 cycles at 0.4 A g(-1) ). Moreover, the symmetrical sodium-ion full cell with excellent reversibility and cycling stability was also achieved (capacity retention: 92.2 % at 0.1 A g(-1) with 99.5 % coulombic efficiency after 100 cycles). These attributes are ascribed to the distinctive mesostructure for facile sodium-ion insertion/extraction and their continuous sp(2) -coordinated carbon coatings, which facilitate electronic conduction. PMID:27346677

  20. Highly Efficient Storage of Pulse Energy Produced by Triboelectric Nanogenerator in Li3V2(PO4)3/C Cathode Li-Ion Batteries.

    PubMed

    Nan, Xihui; Zhang, Changkun; Liu, Chaofeng; Liu, Mengmeng; Wang, Zhong Lin; Cao, Guozhong

    2016-01-13

    Triboelectric nanogenerator (TENG) has been considered as a new type of energy harvesting technology, which employs the coupling effects of triboelectrification and electrostatic induction. One key factor having limited its application is the energy storage. In this work, a high performance Li3V2(PO4)3/C material synthesized by low-cost hydrothermal method followed with subsequent annealing treatment was studied to efficiently store the power generated by a radial-arrayed rotary TENG. Not only does the Li3V2(PO4)3/C exhibit a discharge capacity of 128 mAh g(-1) at 1 C with excellent cyclic stability (capacity retention is 90% after 1000 cycles at a rate of 5 C) in Li-ion battery, but also shows outstanding energy conversion efficiency (83.4%) compared with the most popular cathodic materials: LiFePO4 (74.4%), LiCoO2 (66.1%), and LiMn2O4 (73.6%) when it was charged by high frequency and large current electricity directly from by TENG. PMID:26681671

  1. III-nitride quantum dots for ultra-efficient solid-state lighting

    DOE PAGESBeta

    Wierer, Jr., Jonathan J.; Tansu, Nelson; Fischer, Arthur J.; Tsao, Jeffrey Y.

    2016-05-01

    III-nitride light-emitting diodes (LEDs) and laser diodes (LDs) are ultimately limited in performance due to parasitic Auger recombination. For LEDs, the consequences are poor efficiencies at high current densities; for LDs, the consequences are high thresholds and limited efficiencies. Here, we present arguments for III-nitride quantum dots (QDs) as active regions for both LEDs and LDs, to circumvent Auger recombination and achieve efficiencies at higher current densities that are not possible with quantum wells. QD-based LDs achieve gain and thresholds at lower carrier densities before Auger recombination becomes appreciable. QD-based LEDs achieve higher efficiencies at higher currents because of highermore » spontaneous emission rates and reduced Auger recombination. The technical challenge is to control the size distribution and volume of the QDs to realize these benefits. In conclusion, if constructed properly, III-nitride light-emitting devices with QD active regions have the potential to outperform quantum well light-emitting devices, and enable an era of ultra-efficient solidstate lighting.« less

  2. Highly efficient quantum dot near-infrared light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Gong, Xiwen; Yang, Zhenyu; Walters, Grant; Comin, Riccardo; Ning, Zhijun; Beauregard, Eric; Adinolfi, Valerio; Voznyy, Oleksandr; Sargent, Edward H.

    2016-04-01

    Colloidal quantum dots (CQDs) are emerging as promising materials for constructing infrared sources in view of their tunable luminescence, high quantum efficiency and compatibility with solution processing. However, CQD films available today suffer from a compromise between luminescence efficiency and charge transport, and this leads to unacceptably high power consumption. Here, we overcome this issue by embedding CQDs in a high-mobility hybrid perovskite matrix. The new composite enhances radiative recombination in the dots by preventing transport-assisted trapping losses; yet does so without increasing the turn-on voltage. Through compositional engineering of the mixed halide matrix, we achieve a record electroluminescence power conversion efficiency of 4.9%. This surpasses the performance of previously reported CQD near-infrared devices two-fold, indicating great potential for this hybrid QD-in-perovskite approach.

  3. Triarylboron-Based Fluorescent Organic Light-Emitting Diodes with External Quantum Efficiencies Exceeding 20 .

    PubMed

    Suzuki, Katsuaki; Kubo, Shosei; Shizu, Katsuyuki; Fukushima, Tatsuya; Wakamiya, Atsushi; Murata, Yasujiro; Adachi, Chihaya; Kaji, Hironori

    2015-12-01

    Triarylboron compounds have attracted much attention, and found wide use as functional materials because of their electron-accepting properties arising from the vacant p orbitals on the boron atoms. In this study, we design and synthesize new donor-acceptor triarylboron emitters that show thermally activated delayed fluorescence. These emitters display sky-blue to green emission and high photoluminescence quantum yields of 87-100 % in host matrices. Organic light-emitting diodes using these emitting molecules as dopants exhibit high external quantum efficiencies of 14.0-22.8 %, which originate from efficient up-conversion from triplet to singlet states and subsequent efficient radiative decay from singlet to ground states. PMID:26563845

  4. Efficient mode conversion in an optical nanoantenna mediated by quantum emitters.

    PubMed

    Straubel, J; Filter, R; Rockstuhl, C; Słowik, K

    2016-05-15

    Converting signals at low intensities between different electromagnetic modes is an asset for future information technologies. In general, slightly asymmetric optical nanoantennas enable the coupling between bright and dark modes that they sustain. However, the conversion efficiency might be very low. Here, we show that the additional incorporation of a quantum emitter allows us to tremendously enhance this efficiency. The enhanced local density of states cycles the quantum emitter between its upper and lower level at an extremely high rate, hence converting the energy very efficiently. The process is robust with respect to possible experimental tolerances, and adds a new ingredient to be exploited while studying and applying coupling phenomena in optical nanosystems. PMID:27176986

  5. Further investigation of CsI-coated microchannel plate quantum efficiencies

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.

    1988-01-01

    Previously, pulse-counting detection efficiencies measured for CsI-coated microchannel plate (MCP) detectors (two-stage chevron configuration with a single collecting anode) have been reported to be 15-20 percent near Lyman-alpha (1216 A), compared to typical 65 percent quantum yields of opaque CsI photocathodes. To investigate the possibility that an improvement in quantum yield could result from use of MCPs with a bias angle of about 25 deg instead of 8 deg as used previously, the previous measurements were reported with new MCPs having the larger bias angle. No significant improvement in detection efficiency was achieved; the new detector tests still yielded maximum efficiencies of the order of 20 percent near 1216 A.

  6. Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths

    PubMed Central

    Kahl, Oliver; Ferrari, Simone; Kovalyuk, Vadim; Goltsman, Gregory N.; Korneev, Alexander; Pernice, Wolfram H. P.

    2015-01-01

    Superconducting nanowire single-photon detectors (SNSPDs) provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, compatibility with an integrated optical platform is a crucial requirement for applications in emerging quantum photonic technologies. Here we present SNSPDs embedded in nanophotonic integrated circuits which achieve internal quantum efficiencies close to unity at 1550 nm wavelength. This allows for the SNSPDs to be operated at bias currents far below the critical current where unwanted dark count events reach milli-Hz levels while on-chip detection efficiencies above 70% are maintained. The measured dark count rates correspond to noise-equivalent powers in the 10−19 W/Hz−1/2 range and the timing jitter is as low as 35 ps. Our detectors are fully scalable and interface directly with waveguide-based optical platforms. PMID:26061283

  7. Efficient Quantum Secure Direct Communication Using the Orbital Angular Momentum of Single Photons

    NASA Astrophysics Data System (ADS)

    Jian, Zhuo-Ru; Jin, Guang-Sheng; Wang, Tie-Jun

    2016-03-01

    Quantum secure direct communication (QSDC) is to transmit information directly through quantum channels without generating secret keys. The efficiencies of QSDC rely on the capacity of qubits. Exploiting orbital angular momentum of single photons, we proposed a high-capacity one-time pad QSDC protocol. The information is encoded on the Hermite-Gauss mode and transmitted directly on the Laguerre-Gauss mode of the photon pluses. The proposed system provides a high coding space, and the proposed protocol is robust against collective-dephasing channel noise.

  8. Optimization schemes for efficient multiple exciton generation and extraction in colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Damtie, Fikeraddis A.; Karki, Khadga J.; Pullerits, Tõnu; Wacker, Andreas

    2016-08-01

    Multiple exciton generation (MEG) is a process in which more than one electron hole pair is generated per absorbed photon. It allows us to increase the efficiency of solar energy harvesting. Experimental studies have shown the multiple exciton generation yield of 1.2 in isolated colloidal quantum dots. However real photoelectric devices require the extraction of electron hole pairs to electric contacts. We provide a systematic study of the corresponding quantum coherent processes including extraction and injection and show that a proper design of extraction and injection rates enhances the yield significantly up to values around 1.6.

  9. Efficient near-infrared quantum cutting in NaYF4: Ho3+, Yb3+ for solar photovoltaics.

    PubMed

    Deng, Kaimo; Gong, Tao; Hu, Lingxun; Wei, Xiantao; Chen, Yonghu; Yin, Min

    2011-01-31

    Quantum cutting converting a ultraviolet photon into two near-infrared photons has been demonstrated by spectroscopic measurements in NaYF4:Ho3+,Yb3+ synthesized by hydrothermal method. Evidence is provided to confirm the occurrence of quantum cutting. Upon excitation of Ho3+ 5G4 level, near-infrared quantum cutting could occur through a two-step resonance energy transfer from Ho3+ to Yb3+ by cross relaxation, with a maximum quantum efficiency of 155.2%. This result reveals the possibility of violet to near-infrared quantum cutting with a quantum efficiency larger than 100% in Ho3+/Yb3+ codoped fluorides, suggesting the possible application in modifying the solar spectrum to enhance the efficiency of silicon solar cells. PMID:21368989

  10. Limits to solar power conversion efficiency with applications to quantum and thermal systems

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Buoncristiani, A. M.; Smith, B. T.

    1983-01-01

    An analytical framework is presented that permits examination of the limit to the efficiency of various solar power conversion devices. Thermodynamic limits to solar power efficiency are determined for both quantum and thermal systems, and the results are applied to a variety of devices currently considered for use in space systems. The power conversion efficiency for single-threshold energy quantum systems receiving unconcentrated air mass zero solar radiation is limited to 31 percent. This limit applies to photovoltaic cells directly converting solar radiation, or indirectly, as in the case of a thermophotovoltaic system. Photoelectrochemical cells rely on an additional chemical reaction at the semiconductor-electrolyte interface, which introduces additional second-law demands and a reduction of the solar conversion efficiency. Photochemical systems exhibit even lower possible efficiencies because of their relatively narrow absorption bands. Solar-powered thermal engines in contact with an ambient reservoir at 300 K and operating at maximum power have a peak conversion efficiency of 64 percent, and this occurs for a thermal reservoir at a temperature of 2900 K. The power conversion efficiency of a solar-powered liquid metal magnetohydrodydnamic generator, a solar-powered steam turbine electric generator, and an alkali metal thermoelectric converter is discussed.

  11. Limits to solar power conversion efficiency with applications to quantum and thermal systems

    NASA Astrophysics Data System (ADS)

    Byvik, C. E.; Buoncristiani, A. M.; Smith, B. T.

    1983-12-01

    An analytical framework is presented that permits examination of the limit to the efficiency of various solar power conversion devices. Thermodynamic limits to solar power efficiency are determined for both quantum and thermal systems, and the results are applied to a variety of devices currently considered for use in space systems. The power conversion efficiency for single-threshold energy quantum systems receiving unconcentrated air mass zero solar radiation is limited to 31 percent. This limit applies to photovoltaic cells directly converting solar radiation, or indirectly, as in the case of a thermophotovoltaic system. Photoelectrochemical cells rely on an additional chemical reaction at the semiconductor-electrolyte interface, which introduces additional second-law demands and a reduction of the solar conversion efficiency. Photochemical systems exhibit even lower possible efficiencies because of their relatively narrow absorption bands. Solar-powered thermal engines in contact with an ambient reservoir at 300 K and operating at maximum power have a peak conversion efficiency of 64 percent, and this occurs for a thermal reservoir at a temperature of 2900 K. The power conversion efficiency of a solar-powered liquid metal magnetohydrodydnamic generator, a solar-powered steam turbine electric generator, and an alkali metal thermoelectric converter is discussed.

  12. An efficient matrix product operator representation of the quantum chemical Hamiltonian

    NASA Astrophysics Data System (ADS)

    Keller, Sebastian; Dolfi, Michele; Troyer, Matthias; Reiher, Markus

    2015-12-01

    We describe how to efficiently construct the quantum chemical Hamiltonian operator in matrix product form. We present its implementation as a density matrix renormalization group (DMRG) algorithm for quantum chemical applications. Existing implementations of DMRG for quantum chemistry are based on the traditional formulation of the method, which was developed from the point of view of Hilbert space decimation and attained higher performance compared to straightforward implementations of matrix product based DMRG. The latter variationally optimizes a class of ansatz states known as matrix product states, where operators are correspondingly represented as matrix product operators (MPOs). The MPO construction scheme presented here eliminates the previous performance disadvantages while retaining the additional flexibility provided by a matrix product approach, for example, the specification of expectation values becomes an input parameter. In this way, MPOs for different symmetries — abelian and non-abelian — and different relativistic and non-relativistic models may be solved by an otherwise unmodified program.

  13. An efficient matrix product operator representation of the quantum chemical Hamiltonian.

    PubMed

    Keller, Sebastian; Dolfi, Michele; Troyer, Matthias; Reiher, Markus

    2015-12-28

    We describe how to efficiently construct the quantum chemical Hamiltonian operator in matrix product form. We present its implementation as a density matrix renormalization group (DMRG) algorithm for quantum chemical applications. Existing implementations of DMRG for quantum chemistry are based on the traditional formulation of the method, which was developed from the point of view of Hilbert space decimation and attained higher performance compared to straightforward implementations of matrix product based DMRG. The latter variationally optimizes a class of ansatz states known as matrix product states, where operators are correspondingly represented as matrix product operators (MPOs). The MPO construction scheme presented here eliminates the previous performance disadvantages while retaining the additional flexibility provided by a matrix product approach, for example, the specification of expectation values becomes an input parameter. In this way, MPOs for different symmetries - abelian and non-abelian - and different relativistic and non-relativistic models may be solved by an otherwise unmodified program. PMID:26723662

  14. An efficient matrix product operator representation of the quantum chemical Hamiltonian

    SciTech Connect

    Keller, Sebastian Reiher, Markus; Dolfi, Michele Troyer, Matthias

    2015-12-28

    We describe how to efficiently construct the quantum chemical Hamiltonian operator in matrix product form. We present its implementation as a density matrix renormalization group (DMRG) algorithm for quantum chemical applications. Existing implementations of DMRG for quantum chemistry are based on the traditional formulation of the method, which was developed from the point of view of Hilbert space decimation and attained higher performance compared to straightforward implementations of matrix product based DMRG. The latter variationally optimizes a class of ansatz states known as matrix product states, where operators are correspondingly represented as matrix product operators (MPOs). The MPO construction scheme presented here eliminates the previous performance disadvantages while retaining the additional flexibility provided by a matrix product approach, for example, the specification of expectation values becomes an input parameter. In this way, MPOs for different symmetries — abelian and non-abelian — and different relativistic and non-relativistic models may be solved by an otherwise unmodified program.

  15. Absolute quantum cutting efficiency of Tb{sup 3+}-Yb{sup 3+} co-doped glass

    SciTech Connect

    Duan, Qianqian; Qin, Feng; Zhang, Zhiguo; Zhao, Hua; Cao, Wenwu

    2013-12-07

    The absolute quantum cutting efficiency of Tb{sup 3+}-Yb{sup 3+} co-doped glass was quantitatively measured by an integrating sphere detection system, which is independent of the excitation power. As the Yb{sup 3+} concentration increases, the near infrared quantum efficiency exhibited an exponential growth with an upper limit of 13.5%, but the visible light efficiency was reduced rapidly. As a result, the total quantum efficiency monotonically decreases rather than increases as theory predicted. In fact, the absolute quantum efficiency was far less than the theoretical value due to the low radiative efficiency of Tb{sup 3+} (<61%) and significant cross-relaxation nonradiative loss between Yb{sup 3+} ions.

  16. Numerical simulation of quantum efficiency and surface recombination in HgCdTe IR photon-trapping structures

    NASA Astrophysics Data System (ADS)

    Schuster, Jonathan; Bellotti, Enrico

    2013-06-01

    We have investigated the quantum effiency in HgCdTe photovoltaic pixel arrays employing a photon-trapping structure realized with a periodic array of pillars intended to provide broadband operation. We have found that the quantum efficiency depends heavily on the passivation of the pillar surface. Pillars passivated with anodicoxide have a large fixed positive charge on the pillar surface. We use our three-dimensional numerical simulation model to study the effect of surface charge and surface recombination velocity on the exterior of the pillars. We then evaluate the quantum efficiency of this structure subject to different surface conditions. We have found that by themselves, the surface charge and surface recombination are detrimental to the quantum efficiency but the quantum efficiency is recovered when both phenomena are present. We will discuss the effects of these phenomena and the trade offs that exist between the two.

  17. Green synthesis of highly efficient CdSe quantum dots for quantum-dots-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Gao, Bing; Shen, Chao; Zhang, Bo; Zhang, Mengya; Yuan, Shuanglong; Yang, Yunxia; Chen, Guorong

    2014-05-01

    Green synthesis of CdSe quantum dots for application in the quantum-dots-sensitized solar cells (QDSCs) is investigated in this work. The CdSe QDs were prepared with glycerol as the solvent, with sharp emission peak, full width at half maximum around 30 nm, and absorption peak from 475 nm to 510 nm. The reaction is environmental friendly and energy saving. What's more, the green synthesized CdSe QDs are coherence to the maximum remittance region of the solar spectrum and suitable as sensitizers to assemble onto TiO2 electrodes for cell devices application. What's more, the dynamic procedure of the carriers' excitation, transportation, and recombination in the QDSCs are discussed. Because the recombination of the electrons from the conduction band of TiO2's to the electrolyte affects the efficiency of the solar cells greatly, 3-Mercaptopropionic acid capped water-dispersible QDs were used to cover the surface of TiO2. The resulting green synthesized CdSe QDSCs with Cu2S as the electrode show a photovoltaic performance with a conversion efficiency of 3.39%.

  18. Multiple Hollow Cathode Wear Testing

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    1994-01-01

    A hollow cathode-based plasma contactor has been baselined for use on the Space Station to reduce station charging. The plasma contactor provides a low impedance connection to space plasma via a plasma produced by an arc discharge. The hollow cathode of the plasma contactor is a refractory metal tube, through which xenon gas flows, which has a disk-shaped plate with a centered orifice at the downstream end of the tube. Within the cathode, arc attachment occurs primarily on a Type S low work function insert that is next to the orifice plate. This low work function insert is used to reduce cathode operating temperatures and energy requirements and, therefore, achieve increased efficiency and longevity. The operating characteristics and lifetime capabilities of this hollow cathode, however, are greatly reduced by oxygen bearing contaminants in the xenon gas. Furthermore, an optimized activation process, where the cathode is heated prior to ignition by an external heater to drive contaminants such as oxygen and moisture from the insert absorbed during exposure to ambient air, is necessary both for cathode longevity and a simplified power processor. In order to achieve the two year (approximately 17,500 hours) continuous operating lifetime requirement for the plasma contactor, a test program was initiated at NASA Lewis Research Center to demonstrate the extended lifetime capabilities of the hollow cathode. To date, xenon hollow cathodes have demonstrated extended lifetimes with one test having operated in excess of 8000 hours in an ongoing test utilizing contamination control protocols developed by Sarver-Verhey. The objectives of this study were to verify the transportability of the contamination control protocols developed by Sarver-Verhey and to evaluate cathode contamination control procedures, activation processes, and cathode-to-cathode dispersions in operating characteristics with time. These were accomplished by conducting a 2000 hour wear test of four hollow

  19. Efficiency at maximum power of a quantum Otto cycle within finite-time or irreversible thermodynamics

    NASA Astrophysics Data System (ADS)

    Wu, Feilong; He, Jizhou; Ma, Yongli; Wang, Jianhui

    2014-12-01

    We consider the efficiency at maximum power of a quantum Otto engine, which uses a spin or a harmonic system as its working substance and works between two heat reservoirs at constant temperatures Th and Tc (quantum statistics, the efficiencies at maximum power based on these two different kinds of quantum systems are bounded from the upper side by the same expression ηmp≤η+≡ηC2/[ηC-(1 -ηC) ln(1 -ηC) ] with ηC=1 -Tc/Th as the Carnot efficiency. This expression ηmp possesses the same universality of the CA efficiency ηCA=1 -√{1 -ηC } at small relative temperature difference. Within the context of irreversible thermodynamics, we calculate the Onsager coefficients and show that the value of ηCA is indeed the upper bound of EMP for an Otto engine working in the linear-response regime.

  20. High-quantum-efficiency C-QWIP FPA-based IR cameras

    NASA Astrophysics Data System (ADS)

    Devitt, John; Forrai, David P.; Endres, Darrel; Rawe, Richard; Fischer, Bob; Choi, K. K.; Swaminathan, V.

    2006-05-01

    Current generation QWIP detectors, although very cost effective, have relatively narrow spectral range and low quantum efficiencies. Tactical operation is generally limited to a single spectral band. These limitations arise from the design approach and restrict applications to those that can tolerate these performance limitations. Using recent device design improvements, a novel material, and special processing approaches, High Quantum Efficiency Dual Band C-QWIP detectors are currently being developed. These are expected to overcome traditional limitations in the QWIP design approach and deliver extremely high performance. In the first phase of the program, single color LWIR and VLWIR C-QWIP FPAs in large (1024x1024) format will be demonstrated with targeted peak quantum efficiency of 35%, and correspondingly high BLIP operating temperatures. In the next phase of the program, the team will continue to improve QE towards 50% with conversion efficiency of 75%, and demonstrate dual band MW/LW FPAs. The detector gain will be optimized for operation in either low background or high background applications. These goals will be accomplished using highly producible/low cost materials and processes. System considerations include ROIC well capacity, noise performance, as optics configuration and other concerns will be addressed. A robust design for high performance in a variety of applications will be shown. This work is being performed by the Army Research Laboratory (ARL) and L-3 Cincinnati Electronics (CE), with funding provided by the Missile Defense Agency.

  1. Quantum efficiency harmonic analysis of exciton annihilation in organic light emitting diodes

    SciTech Connect

    Price, J. S.; Giebink, N. C.

    2015-06-29

    Various exciton annihilation processes are known to impact the efficiency roll-off of organic light emitting diodes (OLEDs); however, isolating and quantifying their contribution in the presence of other factors such as changing charge balance continue to be a challenge for routine device characterization. Here, we analyze OLED electroluminescence resulting from a sinusoidal dither superimposed on the device bias and show that nonlinearity between recombination current and light output arising from annihilation mixes the quantum efficiency measured at different dither harmonics in a manner that depends uniquely on the type and magnitude of the annihilation process. We derive a series of analytical relations involving the DC and first harmonic external quantum efficiency that enable annihilation rates to be quantified through linear regression independent of changing charge balance and evaluate them for prototypical fluorescent and phosphorescent OLEDs based on the emitters 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran and platinum octaethylporphyrin, respectively. We go on to show that, in most cases, it is sufficient to calculate the needed quantum efficiency harmonics directly from derivatives of the DC light versus current curve, thus enabling this analysis to be conducted solely from standard light-current-voltage measurement data.

  2. Efficiency at maximum power of a quantum Otto cycle within finite-time or irreversible thermodynamics.

    PubMed

    Wu, Feilong; He, Jizhou; Ma, Yongli; Wang, Jianhui

    2014-12-01

    We consider the efficiency at maximum power of a quantum Otto engine, which uses a spin or a harmonic system as its working substance and works between two heat reservoirs at constant temperatures T(h) and T(c) (quantum statistics, the efficiencies at maximum power based on these two different kinds of quantum systems are bounded from the upper side by the same expression η(mp)≤η(+)≡η(C)(2)/[η(C)-(1-η(C))ln(1-η(C))] with η(C)=1-T(c)/T(h) as the Carnot efficiency. This expression η(mp) possesses the same universality of the CA efficiency η(CA)=1-√(1-η(C)) at small relative temperature difference. Within the context of irreversible thermodynamics, we calculate the Onsager coefficients and show that the value of η(CA) is indeed the upper bound of EMP for an Otto engine working in the linear-response regime. PMID:25615071

  3. High Quantum Efficiency Nanopillar Photodiodes Overcoming the Diffraction Limit of Light.

    PubMed

    Lee, Wook-Jae; Senanayake, Pradeep; Farrell, Alan C; Lin, Andrew; Hung, Chung-Hong; Huffaker, Diana L

    2016-01-13

    InAs1-xSbx nanowires have recently attracted interest for infrared sensing applications due to the small bandgap and high thermal conductivity. However, previous reports on nanowire-based infrared sensors required low operating temperatures in order to mitigate the high dark current and have shown poor sensitivities resulting from reduced light coupling efficiency beyond the diffraction limit. Here, InAsSb nanopillar photodiodes with high quantum efficiency are achieved by partially coating the nanopillar with metal that excites localized surface plasmon resonances, leading to quantum efficiencies of ∼29% at 2390 nm. These high quantum efficiency nanopillar photodiodes, with 180 nm diameters and 1000 nm heights, allow operation at temperatures as high as 220 K and exhibit a detection wavelength up to 3000 nm, well beyond the diffraction limit. The InAsSb nanopillars are grown on low cost GaAs (111)B substrates using an InAs buffer layer, making our device architecture a promising path toward low-cost infrared focal plane arrays with high operating temperature. PMID:26682745

  4. Efficient quantum state-estimation and feedback on trapped ions using unsharp measurement

    NASA Astrophysics Data System (ADS)

    Uys, Hermann; Burd, Shaun; Choudhary, Sujit; Goyal, Sandeep; Konrad, Thomas

    2013-05-01

    Parameter estimation and closed-loop feedback control is ubiquitous in every branch of classical science and engineering. Similar control of quantum systems is usually impossible due to two difficulties. Firstly, quantum phenomena are often short lived due to decoherence, and secondly, attempts to estimate the state of a quantum system through projective measurement, strongly disrupt the dynamics. One alternative is to use unsharp measurements, which are less invasive, but lead to less information gain about the system. A sequence of unsharp measurements, however, carried out in the presence of stronger dynamics, promise real-time state monitoring and control via feedback. Such measurements can be realised by periodically entangling an auxiliary quantum system with the target quantum system, and then carrying out projective measurements on the auxiliary system only. In this talk we discuss an efficient method of estimating both the state of a two-level system and the strength of its coupling to a drive field using unsharp measurement. We then model closed loop feedback control of the two-level dynamics, and explore the level of control over the parameter regime of the model. Finally, we summarize the prospects for implementing the scheme using trapped ions. This work was partially funded by the South African National Research Foundation.

  5. Atomic thermal motion effect on efficiency of a high-speed quantum memory

    NASA Astrophysics Data System (ADS)

    Tikhonov, Kirill; Golubeva, Tania; Golubev, Yuri

    2015-11-01

    We discuss the influence of atomic thermal motion on the efficiency of multimode quantum memory in two configurations: over the free expand of atoms cooled beforehand in a magneto-optical trap, and over complete mixing of atoms in a closed cell at room temperature. We consider the high-speed quantum memory, and assume that writing and retrieval are short enough, and the displacements of atoms during these stages are negligibly small. At the same time we take in account thermal motion during the storage time, which, as well known, must be much longer than durations of all the other memory processes for successful application of memory cell in communication and computation. We will analyze this influence in terms of eigenmodes of the full memory cycle and show that distortion of the eigenmodes, caused by thermal motion, leads to the efficiency reduction. We will demonstrate, that in the multimode memory this interconnection has complicated character.

  6. Tuning the Quantum Efficiency of Random Lasers - Intrinsic Stokes-Shift and Gain

    PubMed Central

    Lubatsch, Andreas; Frank, Regine

    2015-01-01

    We report the theoretical analysis for tuning the quantum efficiency of solid state random lasers. Vollhardt-Wölfle theory of photonic transport in disordered non-conserving and open random media, is coupled to lasing dynamics and solved positionally dependent. The interplay of non-linearity and homogeneous non-radiative frequency conversion by means of a Stokes-shift leads to a reduction of the quantum efficiency of the random laser. At the threshold a strong decrease of the spot-size in the stationary state is found due to the increase of non-radiative losses. The coherently emitted photon number per unit of modal surface is also strongly reduced. This result allows for the conclusion that Stokes-shifts are not sufficient to explain confined and extended mode regimes. PMID:26593237

  7. Quantum Efficiency Characterization and Optimization of a Tungsten Transition-Edge Sensor for ALPS II

    NASA Astrophysics Data System (ADS)

    Bastidon, Noëmie; Horns, Dieter; Lindner, Axel

    2016-07-01

    The ALPS II experiment, Any Light Particle Search II at DESY in Hamburg, will look for sub-eV mass new fundamental bosons (e.g., axion-like particles, hidden photons, and other weakly interacting sub-eV particles) in the next years by means of a light-shining-through-wall setup. The ALPS II photosensor is a tungsten transition-edge sensor (W-TES) optimized for 1064 nm photons. This TES, operated at 80 mK, has already allowed single infrared photon detections as well as non-dispersive spectroscopy with very low background rates. The demonstrated quantum efficiency for such TES is up to 95 % (1064 nm) as has been already demonstrated by the US National Institute of Standards and Technology. A back-to-back measurement of the ALPS TES quantum efficiency using a calibrated charge-coupled device camera has lead to a first estimation of 30 %. Improvement methods are discussed.

  8. Tuning the Quantum Efficiency of Random Lasers - Intrinsic Stokes-Shift and Gain.

    PubMed

    Lubatsch, Andreas; Frank, Regine

    2015-01-01

    We report the theoretical analysis for tuning the quantum efficiency of solid state random lasers. Vollhardt-Wölfle theory of photonic transport in disordered non-conserving and open random media, is coupled to lasing dynamics and solved positionally dependent. The interplay of non-linearity and homogeneous non-radiative frequency conversion by means of a Stokes-shift leads to a reduction of the quantum efficiency of the random laser. At the threshold a strong decrease of the spot-size in the stationary state is found due to the increase of non-radiative losses. The coherently emitted photon number per unit of modal surface is also strongly reduced. This result allows for the conclusion that Stokes-shifts are not sufficient to explain confined and extended mode regimes. PMID:26593237

  9. External quantum efficiency above 100% in a singlet-exciton-fission-based organic photovoltaic cell.

    PubMed

    Congreve, Daniel N; Lee, Jiye; Thompson, Nicholas J; Hontz, Eric; Yost, Shane R; Reusswig, Philip D; Bahlke, Matthias E; Reineke, Sebastian; Van Voorhis, Troy; Baldo, Marc A

    2013-04-19

    Singlet exciton fission transforms a molecular singlet excited state into two triplet states, each with half the energy of the original singlet. In solar cells, it could potentially double the photocurrent from high-energy photons. We demonstrate organic solar cells that exploit singlet exciton fission in pentacene to generate more than one electron per incident photon in a portion of the visible spectrum. Using a fullerene acceptor, a poly(3-hexylthiophene) exciton confinement layer, and a conventional optical trapping scheme, we show a peak external quantum efficiency of (109 ± 1)% at wavelength λ = 670 nanometers for a 15-nanometer-thick pentacene film. The corresponding internal quantum efficiency is (160 ± 10)%. Analysis of the magnetic field effect on photocurrent suggests that the triplet yield approaches 200% for pentacene films thicker than 5 nanometers. PMID:23599489

  10. "High Quantum Efficiency of Band-Edge Emission from ZnO Nanowires"

    SciTech Connect

    GARGAS, DANIEL; GAO, HANWEI; WANG, HUNGTA; PEIDONG, YANG

    2010-12-01

    External quantum efficiency (EQE) of photoluminescence as high as 20 percent from isolated ZnO nanowires were measured at room temperature. The EQE was found to be highly dependent on photoexcitation density, which underscores the importance of uniform optical excitation during the EQE measurement. An integrating sphere coupled to a microscopic imaging system was used in this work, which enabled the EQE measurement on isolated ZnO nanowires. The EQE values obtained here are significantly higher than those reported for ZnO materials in forms of bulk, thin films or powders. Additional insight on the radiative extraction factor of one-dimensional nanostructures was gained by measuring the internal quantum efficiency of individual nanowires. Such quantitative EQE measurements provide a sensitive, noninvasive method to characterize the optical properties of low-dimensional nanostructures and allow tuning of synthesis parameters for optimization of nanoscale materials.

  11. High quantum efficiency of band-edge emission from ZnO nanowires.

    PubMed

    Gargas, Daniel J; Gao, Hanwei; Wang, Hungta; Yang, Peidong

    2011-09-14

    External quantum efficiency (EQE) of photoluminescence as high as 20% from isolated ZnO nanowires were measured at room temperature. The EQE was found to be highly dependent on photoexcitation density, which underscores the importance of uniform optical excitation during the EQE measurement. An integrating sphere coupled to a microscopic imaging system was used in this work, which enabled the EQE measurement on isolated ZnO nanowires. The EQE values obtained here are significantly higher than those reported for ZnO materials in forms of bulk, thin films or powders. Additional insight on the radiative extraction factor of one-dimensional nanostructures was gained by measuring the internal quantum efficiency of individual nanowires. Such quantitative EQE measurements provide a sensitive, noninvasive method to characterize the optical properties of low-dimensional nanostructures and allow tuning of synthesis parameters for optimization of nanoscale materials. PMID:21859081

  12. Photoelectrons beam measurement from a magnesium cathode in a RF electron gun

    SciTech Connect

    Wang, X.J.; Srinivasan-Rao, T.; Batchelor, K.; Ben-Zvi, I.; Fischer, J.

    1994-09-01

    The performance of a magnesium cathode in a one-and-half cell photocathode RF gun measured at the Brookhaven Accelerator Test Facility (ATF). The frequency quadrupled Nd:YAG laser (266 nm) was used to stimulate the photoelectron emissions. For a normal incident laser pulse, the quantum efficiency of the magnesium at 10{sup {minus}7} torr was measured to be 5 {times} 10{sup {minus}4}, which is more than 20 times the value for copper under similar conditions.

  13. Efficient delivery of quantum dots in live cells by gold nanoparticle mediated photoporation

    NASA Astrophysics Data System (ADS)

    Xiong, Ranhua; Joris, Freya; De Cock, Ine; Demeester, Jo; De Smedt, Stefaan C.; Skirtach, Andre G.; Braeckmans, Kevin

    2015-03-01

    There is considerable interest in using Quantum Dots (QDs) as fluorescent probes such for cellular imaging due to unique advantages in comparison with conventional molecular dyes. However, cytosolic delivery of QDs into live cells remains a major challenge. Here we demonstrate highly efficient delivery of PEG-coated QDs into live cells by means of laser-induced vapour nanobubbles. Using this procedure we succeeded in high-throughput loading of ~80% of cells while maintaining a cell viability of ~85%.

  14. Fabrication of multi-layered absorption structure for high quantum efficiency photon detectors

    SciTech Connect

    Fujii, Go; Fukuda, Daiji; Numata, Takayuki; Yoshizawa, Akio; Tsuchida, Hidemi; Fujino, Hidetoshi; Ishii, Hiroyuki; Itatani, Taro; Zama, Tatsuya; Inoue, Shuichiro

    2009-12-16

    We report on some efforts to improve a quantum efficiency of titanium-based optical superconducting transition edge sensors using the multi-layered absorption structure for maximizing photon absorption in the Ti layer. Using complex refractive index values of each film measured by a Spectroscopic Ellipsometry, we designed and optimized by a simulation code. An absorption measurement of fabricated structure was in good agreement with the design and was higher than 99% at optimized wavelength of 1550 nm.

  15. Design parameters of a resonant infrared photoconductor with unity quantum efficiency

    NASA Technical Reports Server (NTRS)

    Farhoomand, Jam; Mcmurray, Robert E., Jr.

    1991-01-01

    This paper proposes a concept of a resonant infrared photoconductor that has characteristics of 100 percent quantum efficiency, high photoconductive gain, and very low noise equivalent power. Central to this concept is an establishment of a high-finesse absorption cavity internal to the detector element. A theoretical analysis is carried out, demonstrating this concept and providing some design guidelines. A Ge:Ga FIR detector is presently being fabricated using this approach.

  16. External quantum efficiency exceeding 100% in a singlet-exciton-fission-based solar cell

    NASA Astrophysics Data System (ADS)

    Baldo, Marc

    2013-03-01

    Singlet exciton fission can be used to split a molecular excited state in two. In solar cells, it promises to double the photocurrent from high energy photons, thereby breaking the single junction efficiency limit. We demonstrate organic solar cells that exploit singlet exciton fission in pentacene to generate more than one electron per incident photon in the visible spectrum. Using a fullerene acceptor, a poly(3-hexylthiophene) exciton confinement layer, and a conventional optical trapping scheme, the peak external quantum efficiency is (109 +/-1)% at λ = 670 nm for a 15-nm-thick pentacene film. The corresponding internal quantum efficiency is (160 +/-10)%. Independent confirmation of the high internal efficiency is obtained by analysis of the magnetic field effect on photocurrent, which determines that the triplet yield approaches 200% for pentacene films thicker than 5 nm. To our knowledge, this is the first solar cell to generate quantum efficiencies above 100% in the visible spectrum. Alternative multiple exciton generation approaches have been demonstrated previously in the ultraviolet, where there is relatively little sunlight. Singlet exciton fission differs from these other mechanisms because spin conservation disallows the usual dominant loss process: a thermal relaxation of the high-energy exciton into a single low-energy exciton. Consequently, pentacene is efficient in the visible spectrum at λ = 670 nm because only the collapse of the singlet exciton into twotriplets is spin-allowed. Supported as part of the Center for Excitonics, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001088.

  17. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation

    NASA Astrophysics Data System (ADS)

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-01

    Light isotopes separation, such as 3He/4He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as 3He/4He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high 3He/4He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application.

  18. Heterogeneous photocatalysis for air and water treatment: Fundamental needs for quantum efficiency enhancement

    SciTech Connect

    Ollis, D.F.

    1996-09-01

    In the remediation industries, a useful treatment technology must be {open_quotes}general, robust, and cheap{close_quotes}. Among oxidation processes, heterogeneous photocatalysis is now broadly demonstrated to destroy common water and air contaminants. The potential process uses of highly stable titania, long lived lamps (one year), and room temperature operation, indicating a simple and robust process. We are left to address the third criterion: Can photocatalysis be {open_quotes}cheap{close_quotes}? In both liquid phase and gas phase treatment and purification by photocatalysis, it is established that the primary barrier to commercialization is often cost. Cost in return is dominated by the efficiency with which solar or lamp photons are harvested for productive light, and subsequent dark, reactions. This paper therefore defines fundamental needs in photocatalysis for pollution control in terms of activities which could lead to quantum efficiency enhancement. We first recall three related definitions. The quantum yield (QY) is the ratio of molecules of reactant converted per photon absorbed, a fundamental quantity. A less fundamental, but more easily measured variable is the quantum efficiency (QE), the ratio of molecules converted per photon entering the reactor. A third variable is the energy required per order of magnitude pollutant reduction, or EEO, a definition which provides for easy energy cost comparisons among different technologies. Each measure cited here reflects the photon, and thus the electrical, cost of this photochemistry.

  19. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation.

    PubMed

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-01

    Light isotopes separation, such as (3)He/(4)He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as (3)He/(4)He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high (3)He/(4)He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application. PMID:26813491

  20. Efficient photon extraction from a quantum dot in a broad-band planar cavity antenna

    SciTech Connect

    Ma, Yong Kremer, Peter E.; Gerardot, Brian D.

    2014-01-14

    We analyse the extraction of photons emitted from single InAs quantum dots embedded in planar microcavities. The structures are designed to achieve broad-band operation and high-collection efficiency from a device requiring straightforward fabrication, even with electrical contacts. The designs consist of a quantum dot in a GaAs membrane with asymmetric top and bottom mirrors and a top-side solid immersion lens (SIL). Four separate cases are considered in our design: a GaAs membrane only (case 1), GaAs membrane with a glass SIL on top (case 2), a GaAs membrane with a glass SIL on top and a back mirror consisting of Au (case 3), a GaAs membrane with a glass SIL on top of a distribute Bragg reflector mirror and Au back mirror (case 4). Both finite difference time domain and analytical simulations are used to calculate the electric field, power density, and far-field radiation pattern. For optimized structures (case 4), we obtain significant extraction efficiencies (>50%) with modest Purcell enhancements (∼20%) and a large spectral full-width-half-maximum (>100 nm). The high-extraction efficiency, broad-band operation, and facile fabrication make the proposed structures promising for realistic quantum dot devices.

  1. Efficient photon extraction from a quantum dot in a broad-band planar cavity antenna

    NASA Astrophysics Data System (ADS)

    Ma, Yong; Kremer, Peter E.; Gerardot, Brian D.

    2014-01-01

    We analyse the extraction of photons emitted from single InAs quantum dots embedded in planar microcavities. The structures are designed to achieve broad-band operation and high-collection efficiency from a device requiring straightforward fabrication, even with electrical contacts. The designs consist of a quantum dot in a GaAs membrane with asymmetric top and bottom mirrors and a top-side solid immersion lens (SIL). Four separate cases are considered in our design: a GaAs membrane only (case 1), GaAs membrane with a glass SIL on top (case 2), a GaAs membrane with a glass SIL on top and a back mirror consisting of Au (case 3), a GaAs membrane with a glass SIL on top of a distribute Bragg reflector mirror and Au back mirror (case 4). Both finite difference time domain and analytical simulations are used to calculate the electric field, power density, and far-field radiation pattern. For optimized structures (case 4), we obtain significant extraction efficiencies (>50%) with modest Purcell enhancements (˜20%) and a large spectral full-width-half-maximum (>100 nm). The high-extraction efficiency, broad-band operation, and facile fabrication make the proposed structures promising for realistic quantum dot devices.

  2. Quantum efficiency performances of the NIR European Large Format Array detectors tested at ESTEC

    NASA Astrophysics Data System (ADS)

    Crouzet, P.-E.; Duvet, L.; de Wit, F.; Beaufort, T.; Blommaert, S.; Butler, B.; Van Duinkerken, G.; ter Haar, J.; Heijnen, J.; van der Luijt, K.; Smit, H.

    2015-10-01

    Publisher's Note: This paper, originally published on 10/12/2015, was replaced with a corrected/revised version on 10/23/2015. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. The Payload Technology Validation Section (SRE-FV) at ESTEC has the goal to validate new technology for future or on-going mission. In this framework, a test set up to characterize the quantum efficiency of near-infrared (NIR) detectors has been created. In the context of the NIR European Large Format Array ("LFA"), 3 deliverables detectors coming from SELEX-UK/ATC (UK) on one side, and CEA/LETI- CEA/IRFU-SOFRADIR (FR) on the other side were characterized. The quantum efficiency of an HAWAII-2RG detector from Teledyne was as well measured. The capability to compare on the same setup detectors from different manufacturers is a unique asset for the future mission preparation office. This publication will present the quantum efficiency results of a HAWAII-2RG detector from Teledyne with a 2.5um cut off compared to the LFA European detectors prototypes developed independently by SELEX-UK/ATC (UK) on one side, and CEA/LETI- CEA/IRFU-SOFRADIR (FR) on the other side.

  3. Above 30% external quantum efficiency in green delayed fluorescent organic light-emitting diodes.

    PubMed

    Lee, Dong Ryun; Kim, Bo Seong; Lee, Chil Won; Im, Yirang; Yook, Kyoung Soo; Hwang, Seok-Ho; Lee, Jun Yeob

    2015-05-13

    Highly efficient green thermally activated delayed fluorescent organic light-emitting diodes with an external quantum efficiency of 31.2% were investigated by using 3-(3-(carbazole-9-yl)phenyl) pyrido[3',2':4,5]furo[2,3-b]pyridine (3CzPFP) derived from carbazole and pyrido[3',2':4,5]furo[2,3-b]pyridine. The host material showed well-matched photoluminescence emission with absorption of the green dopant material, (4s,6s)-2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) and harvested all excitons of 4CzIPN. The 3CzPFP:4CzIPN film exhibited high photoluminescence quantum yield of 100%, and the green delayed fluorescence device employing the 3CzPFP host showed high maximum quantum efficiency of 31.2 ± 0.5% at 1% doping after optimization of the device structure. PMID:25924007

  4. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation

    PubMed Central

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-01

    Light isotopes separation, such as 3He/4He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as 3He/4He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high 3He/4He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application. PMID:26813491

  5. Extreme ultraviolet quantum efficiency of opaque alkali halide photocathodes on microchannel plates

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Everman, E.; Vallerga, J. V.; Lampton, M.

    1988-01-01

    Comprehensive measurements are presented for the quantum detection efficiency (QDE) of the microchannel plate materials CsI, KBr, KCl, and MgF2, over the 44-1800 A wavelength range. QDEs in excess of 40 percent are achieved by several materials in specific wavelength regions of the EUV. Structure is noted in the wavelength dependence of the QDE that is directly related to the valence-band/conduction-band gap energy and the onset of atomic-like resonant transitions. A simple photocathode model allows interpretation of these features, together with the QDE efficiency variation, as a function of illumination angle.

  6. Precision, all-optical measurement of external quantum efficiency in semiconductors

    NASA Astrophysics Data System (ADS)

    Wang, Chengao; Li, Chia-Yeh; Hasselbeck, Michael P.; Imangholi, Babak; Sheik-Bahae, Mansoor

    2011-05-01

    External quantum efficiency of semiconductor photonic devices is directly measured by wavelength-dependent laser-induced temperature change (scanning laser calorimetry) with very high accuracy. Maximum efficiency is attained at an optimum photo-excitation level that can be determined with an independent measurement of power-dependent temperature or power-dependent photoluminescence. Time-resolved photoluminescence lifetime and power-dependent photoluminescence measurements are used to evaluate unprocessed heterostructures for critical performance parameters. The crucial importance of parasitic background absorption is discussed.

  7. Mesoporous CuCo2O4 nanoparticles as an efficient cathode catalyst for Li-O2 batteries

    NASA Astrophysics Data System (ADS)

    Wang, Peng-Xiang; Shao, Lin; Zhang, Nai-Qing; Sun, Ke-Ning

    2016-09-01

    Extremely high energy density and environment friendly reaction make Li-O2 batteries a promising energy storage system. In order to improve the energy efficiency and cycle life of Li-O2 battery, spinel mesoporous CuCo2O4 was successfully synthesized by a facile hydrothermal method and investigated in Li-O2 batteries. The electrochemical measurements show that mesoporous CuCo2O4 possess higher oxygen reduction and oxygen evolution activity than bulk CuCo2O4 both in alkaline and non-aqueous solution. Owing to the inherent catalytic activity, high conductivity and facile mass transfer of mesoporous CuCo2O4, Li-O2 battery shows enhanced electrochemical performances, including much lower charge overpotential and a high capacity up to 5288 mAh g-1. When restricting the discharge capacity at 500 mAh g-1, it could operate over 80 cycles and exhibit superior cycle stability. These results indicate that mesoporous CuCo2O4 nanoparticles are appropriate bifunctional catalysts for Li-O2 batteries.

  8. QE Tests with Nb-Pb SRF Photoinjector and Arc Deposited Cathodes

    SciTech Connect

    J.K. Sekutowicz, P. Kneisel, R. Nietubyc, T. Rao, J. Smedley

    2010-05-01

    In this contribution, we report Quantum Efficiency (QE) test results with a hybrid lead/niobium superconducting RF (SRF) photoinjector at 2K and new Pb arc deposited cathodes at 300K. The ultimate goal of our effort is to build a Nb injector with the superconducting cathode made of lead, which, as reported in the past, demonstrated superior QE compared to other metallic superconducting elements. At first, we present the test results obtained with a 1.6-cell high purity Nb cavity with the emitting lead spot in the center of the back plate. The QE test results at room temperature and the SEM surface analysis of eight Pb cathodes, deposited recently under various conditions, are discussed in the second part of this contribution.

  9. Efficiency at maximum power output of quantum heat engines under finite-time operation.

    PubMed

    Wang, Jianhui; He, Jizhou; Wu, Zhaoqi

    2012-03-01

    We study the efficiency at maximum power, η(m), of irreversible quantum Carnot engines (QCEs) that perform finite-time cycles between a hot and a cold reservoir at temperatures T(h) and T(c), respectively. For QCEs in the reversible limit (long cycle period, zero dissipation), η(m) becomes identical to the Carnot efficiency η(C)=1-T(c)/T(h). For QCE cycles in which nonadiabatic dissipation and the time spent on two adiabats are included, the efficiency η(m) at maximum power output is bounded from above by η(C)/(2-η(C)) and from below by η(C)/2. In the case of symmetric dissipation, the Curzon-Ahlborn efficiency η(CA)=1-√(T(c)/T(h)) is recovered under the condition that the time allocation between the adiabats and the contact time with the reservoir satisfy a certain relation. PMID:22587076

  10. Efficiency, Power and Period of a model quantum heat engine working in a finite time

    NASA Astrophysics Data System (ADS)

    Bekele, Mulugeta; Dima, Tolasa A.; Alemye, Mekuannent; Chegeno, Warga

    We take a spin-half quantum particle undergoing Carnot type cyclic process in a finite time assisted by two heat reservoirs and an external magnetic field. We find that the power of the heat engine is maximum at a particular period of the cyclic process and efficiency at the maximum power is at least half of the Carnot efficiency. We further apply the Omega-criterion for a figure of merit representing a compromise between useful power and lost power determining the corresponding efficiency for the optimization criterion to be at least three fourth of the Carnot efficiency. The authers are thankful to the International Science programme, IPS, Uppsala, Sweden for their support to our research lab.

  11. Internal quantum efficiency improvement of InGaN/GaN multiple quantum well green light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Znajdek, K.; SibińSki, M.; StrąKowska, A.; Lisik, Z.

    2016-01-01

    In recent years, GaN-based light-emitting diode (LED) has been widely used in various applications, such as RGB lighting system, full-colour display and visible-light communication. However, the internal quantum efficiency (IQE) of green LEDs is significantly lower than that of other visible spectrum LED. This phenomenon is called "green gap". This paper briefly describes the physical mechanism of the low IQE for InGaN/GaN multiple quantum well (MQW) green LED at first. The IQE of green LED is limited by the defects and the internal electric field in MQW. Subsequently, we discuss the recent progress in improving the IQE of green LED in detail. These strategies can be divided into two categories. Some of these methods were proposed to enhance crystal quality of InGaN/GaN MQW with high In composition and low density of defects by modifying the growth conditions. Other methods focused on increasing electron-hole wave function overlap by eliminating the polarization effect.

  12. Efficient single-photon emitters based on Bragg microcavities containing selectively positioned InAs quantum dots

    SciTech Connect

    Gaisler, V. A. Gaisler, A. V.; Jaroshevich, A. S.; Derebezov, I. A.; Kachanova, M. M.; Zhivodkov, Yu. A.; Gavrilova, T. A.; Medvedev, A. S.; Nenasheva, L. A.; Grachev, K. V.; Sandyrev, V. K.; Kozhuhov, A. S.; Shayahmetov, V. M.; Kalagin, A. K.; Bakarov, A. K.; Dmitriev, D. V.; Toropov, A. I.; Shcheglov, D. V.; Latyshev, A. V.; Aseev, A. L.

    2015-01-15

    A semiconductor Bragg microcavity structure for single photon emitters is designed and implemented. The design provides the efficient current pumping of selectively positioned InAs quantum dots within a micrometer-size aperture, high external quantum yield, and low divergence of the emitted radiation.

  13. Enhanced efficiency in polymer light-emitting diodes due to the improvement of charge-injection balance

    SciTech Connect

    Lin, Y.-J.; Chou, W.-Y.; Lin, S.-T.

    2006-02-13

    The authors report the enhancement of efficiency of polymer light-emitting diodes (PLEDs) in the study. According to the experimental results, we find that PLEDs, fabricated on irradiated indium-tin-oxide surfaces by KrF excimer laser, with an organic layer between the cathode and the emitting layer may lead to the improvement of charge-injection balance and prevention of cathode metal quenching, resulting in a remarkable increase in external quantum efficiency.

  14. Rotating dipole and quadrupole field for a multiple cathode system

    SciTech Connect

    Chang, X.; Ben-Zvi, I.; Kewisch, J.; Litvinenko, V.; Meng, W.; Pikin, A.; Ptitsyn, V.; Rao, T.; Sheehy, B.; Skarita, J.; Wang, E.; Wu, Q.; Xin, T.

    2011-03-28

    A multiple cathode system has been designed to provide the high average current polarized electron bunches for the future electron-ion collider eRHIC [1]. One of the key research topics in this design is the technique to generate a combined dipole and quadrupole rotating field at high frequency (700 kHz). This type of field is necessary for combining bunches from different cathodes to the same axis with minimum emittance growth. Our simulations and the prototype test results to achieve this will be presented. The future eRHIC project, next upgrade of EHIC, will be the first electron-heavy ion collider in the world. For polarized-electron and polarized proton collisions, it requires a polarized electron source with high average current ({approx}50 mA), short bunch ({approx}3 mm), emittance of about 20 {micro}m and energy spread of {approx}1% at 10 MeV. The state-of-art polarized electron cathode can generate average current of about more than 1 mA, but much less than 50 mA. The current is limited by the quantum efficiency, lifetime, space charge and ultra-high vacuum requirement of the polarized cathode. A possible approach to achieve the 50 mA beam is to employ multiple cathodes, such as 20 cathodes, and combine the multiple bunched beams from cathodes to the same axis. We name it as 'Gatling gun' because its operations bear similarity to a multi-barrel Gatling gun. The electron spin direction is not affected by electric field but will follow to the direction of the magnetic bending. This requires that, to preserve the spin polarization from cathode, the fixed bending field after the solenoid and the rotating bending field in combiner must be either a pair of electric bendings or a pair of magnetic bendings. We choose the scheme with a pair of magnetic bendings because it is much easier than the scheme with a pair of electric bendings at our 200 keV electron energy level.

  15. On the efficient path integral evaluation of thermal rate constants within the quantum instanton approximation

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takeshi; Miller, William H.

    2004-02-01

    We present an efficient path integral approach for evaluating thermal rate constants within the quantum instanton (QI) approximation that was recently introduced to overcome the quantitative deficiencies of the earlier semiclassical instanton approach [Miller, Zhao, Ceotto, and Yang, J. Chem. Phys. 119, 1329 (2003)]. Since the QI rate constant is determined solely by properties of the (quantum) Boltzmann operator (specifically, by the zero time properties of the flux-flux and delta-delta correlation functions), it can be evaluated by well-established techniques of imaginary time path integrals even for quite complex chemical reactions. Here we present a series of statistical estimators for relevant quantities which can be evaluated straightforwardly with any nonlinear reaction coordinates and general Hamiltonians in Cartesian space. To facilitate the search for the optimal dividing surfaces required by the QI approximation, we introduce a two-dimensional quantum free energy surface associated with the delta-delta correlation function and describe how an adaptive umbrella sampling can be used effectively to construct such a free energy surface. The overall computational procedure is illustrated by the application to a hydrogen exchange reaction in gas phase, which shows excellent agreement of the QI rates with those obtained from quantum scattering calculations.

  16. On the efficient path integral evaluation of thermal rate constants within the quantum instanton approximation.

    PubMed

    Yamamoto, Takeshi; Miller, William H

    2004-02-15

    We present an efficient path integral approach for evaluating thermal rate constants within the quantum instanton (QI) approximation that was recently introduced to overcome the quantitative deficiencies of the earlier semiclassical instanton approach [Miller, Zhao, Ceotto, and Yang, J. Chem. Phys. 119, 1329 (2003)]. Since the QI rate constant is determined solely by properties of the (quantum) Boltzmann operator (specifically, by the zero time properties of the flux-flux and delta-delta correlation functions), it can be evaluated by well-established techniques of imaginary time path integrals even for quite complex chemical reactions. Here we present a series of statistical estimators for relevant quantities which can be evaluated straightforwardly with any nonlinear reaction coordinates and general Hamiltonians in Cartesian space. To facilitate the search for the optimal dividing surfaces required by the QI approximation, we introduce a two-dimensional quantum free energy surface associated with the delta-delta correlation function and describe how an adaptive umbrella sampling can be used effectively to construct such a free energy surface. The overall computational procedure is illustrated by the application to a hydrogen exchange reaction in gas phase, which shows excellent agreement of the QI rates with those obtained from quantum scattering calculations. PMID:15268461

  17. Simultaneously improved capacity and initial coulombic efficiency of Li-rich cathode Li[Li0.2Mn0.54Co0.13Ni0.13]O2 by enlarging crystal cell from a nanoplate precursor

    NASA Astrophysics Data System (ADS)

    Dai, Dongmei; Li, Bao; Tang, Hongwei; Chang, Kun; Jiang, Kai; Chang, Zhaorong; Yuan, Xiaozi

    2016-03-01

    Li-rich manganese layered oxide is one of the most promising cathode materials that meet the requirements for high-energy-density Li-ion batteries. However, a large irreversible capacity loss at the first cycle makes it difficult to be an applicable cathode material. Although wide investigations have been carried out to overcome such defect, researchers are still beset by the problems of how to concurrently improve the multiple performances of the cathode. In this work, Li[Li0.2Mn0.54Co0.13Ni0.13]O2 is synthesized, which delivers both improved high-energy capacity of 308 mAh g-1 and enhanced initial coulombic efficiency of 85%. The corresponding values of a contrast sample are only 245 mAh g-1 and 77%, respectively. Based on the data of bond distances, crystal cell parameters, and the calculated electron cloud density revealed by Rietveld analysis, an enlarged crystal cell mechanism is proposed. The improved performances are originated from the enlarged crystal cell, which facilitates the Li+ delithiation/lithiation from the octahedral and tetrahedral sites, accordingly increasing the discharge capacity and initial coulombic efficiency. The proposed method offers a strategy to simultaneously increase the initial coulombic efficiency and the specific capacity for Li ion batteries.

  18. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers.

    PubMed

    Arbabi, Amir; Briggs, Ryan M; Horie, Yu; Bagheri, Mahmood; Faraon, Andrei

    2015-12-28

    Light emitted from single-mode semiconductor lasers generally has large divergence angles, and high numerical aperture lenses are required for beam collimation. Visible and near infrared lasers are collimated using aspheric glass or plastic lenses, yet collimation of mid-infrared quantum cascade lasers typically requires more costly aspheric lenses made of germanium, chalcogenide compounds, or other infrared-transparent materials. Here we report mid-infrared dielectric metasurface flat lenses that efficiently collimate the output beam of single-mode quantum cascade lasers. The metasurface lenses are composed of amorphous silicon posts on a flat sapphire substrate and can be fabricated at low cost using a single step conventional UV binary lithography. Mid-infrared radiation from a 4.8 μm distributed-feedback quantum cascade laser is collimated using a polarization insensitive metasurface lens with 0.86 numerical aperture and 79% transmission efficiency. The collimated beam has a half divergence angle of 0.36° and beam quality factor of M2=1.02. PMID:26831996

  19. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Arbabi, Amir; Briggs, Ryan M.; Horie, Yu; Bagheri, Mahmood; Faraon, Andrei

    2015-12-01

    Light emitted from single-mode semiconductor lasers generally has large divergence angles, and high numerical aperture lenses are required for beam collimation. Visible and near infrared lasers are collimated using aspheric glass or plastic lenses, yet collimation of mid-infrared quantum cascade lasers typically requires more costly aspheric lenses made of germanium, chalcogenide compounds, or other infrared-transparent materials. Here we report mid-infrared dielectric metasurface flat lenses that efficiently collimate the output beam of single-mode quantum cascade lasers. The metasurface lenses are composed of amorphous silicon posts on a flat sapphire substrate and can be fabricated at low cost using a single step conventional UV binary lithography. Mid-infrared radiation from a 4.8 $\\mu$m distributed-feedback quantum cascade laser is collimated using a polarization insensitive metasurface lens with 0.86 numerical aperture and 79% transmission efficiency. The collimated beam has a half divergence angle of 0.36$^\\circ$ and beam quality factor of $M^2$=1.02.

  20. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction.

    PubMed

    Lei, Fengcai; Liu, Wei; Sun, Yongfu; Xu, Jiaqi; Liu, Katong; Liang, Liang; Yao, Tao; Pan, Bicai; Wei, Shiqiang; Xie, Yi

    2016-01-01

    Ultrathin metal layers can be highly active carbon dioxide electroreduction catalysts, but may also be prone to oxidation. Here we construct a model of graphene confined ultrathin layers of highly reactive metals, taking the synthetic highly reactive tin quantum sheets confined in graphene as an example. The higher electrochemical active area ensures 9 times larger carbon dioxide adsorption capacity relative to bulk tin, while the highly-conductive graphene favours rate-determining electron transfer from carbon dioxide to its radical anion. The lowered tin-tin coordination numbers, revealed by X-ray absorption fine structure spectroscopy, enable tin quantum sheets confined in graphene to efficiently stabilize the carbon dioxide radical anion, verified by 0.13 volts lowered potential of hydroxyl ion adsorption compared with bulk tin. Hence, the tin quantum sheets confined in graphene show enhanced electrocatalytic activity and stability. This work may provide a promising lead for designing efficient and robust catalysts for electrolytic fuel synthesis. PMID:27585984

  1. Thermodynamic limits to the efficiency of solar energy conversion by quantum devices

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Byvik, C. E.; Smith, B. T.

    1981-01-01

    The second law of thermodynamics imposes a strict limitation to the energy converted from direct solar radiation to useful work by a quantum device. This limitation requires that the amount of energy converted to useful work (energy in any form other than heat) can be no greater than the change in free energy of the radiation fields. Futhermore, in any real energy conversion device, not all of this available free energy in the radiation field can be converted to work because of basic limitations inherent in the device itself. A thermodynamic analysis of solar energy conversion by a completely general prototypical quantum device is presented. This device is completely described by two parameters, its operating temperature T sub R and the energy threshold of its absorption spectrum. An expression for the maximum thermodynamic efficiency of a quantum solar converter was derived in terms of these two parameters and the incident radiation spectrum. Efficiency curves for assumed solar spectral irradiance corresponding to air mass zero and air mass 1.5 are presented.

  2. High quantum-efficiency photon-number-resolving detector for photonic on-chip information processing.

    PubMed

    Calkins, Brice; Mennea, Paolo L; Lita, Adriana E; Metcalf, Benjamin J; Kolthammer, W Steven; Lamas-Linares, Antia; Spring, Justin B; Humphreys, Peter C; Mirin, Richard P; Gates, James C; Smith, Peter G R; Walmsley, Ian A; Gerrits, Thomas; Nam, Sae Woo

    2013-09-23

    The integrated optical circuit is a promising architecture for the realization of complex quantum optical states and information networks. One element that is required for many of these applications is a high-efficiency photon detector capable of photon-number discrimination. We present an integrated photonic system in the telecom band at 1550 nm based on UV-written silica-on-silicon waveguides and modified transition-edge sensors capable of number resolution and over 40 % efficiency. Exploiting the mode transmission failure of these devices, we multiplex three detectors in series to demonstrate a combined 79 % ± 2 % detection efficiency with a single pass, and 88 % ± 3 % at the operating wavelength of an on-chip terminal reflection grating. Furthermore, our optical measurements clearly demonstrate no significant unexplained loss in this system due to scattering or reflections. This waveguide and detector design therefore allows the placement of number-resolving single-photon detectors of predictable efficiency at arbitrary locations within a photonic circuit - a capability that offers great potential for many quantum optical applications. PMID:24104153

  3. Efficient amplitude-modulated pulses for triple- to single-quantum coherence conversion in MQMAS NMR.

    PubMed

    Colaux, Henri; Dawson, Daniel M; Ashbrook, Sharon E

    2014-08-01

    The conversion between multiple- and single-quantum coherences is integral to many nuclear magnetic resonance (NMR) experiments of quadrupolar nuclei. This conversion is relatively inefficient when effected by a single pulse, and many composite pulse schemes have been developed to improve this efficiency. To provide the maximum improvement, such schemes typically require time-consuming experimental optimization. Here, we demonstrate an approach for generating amplitude-modulated pulses to enhance the efficiency of the triple- to single-quantum conversion. The optimization is performed using the SIMPSON and MATLAB packages and results in efficient pulses that can be used without experimental reoptimisation. Most significant signal enhancements are obtained when good estimates of the inherent radio-frequency nutation rate and the magnitude of the quadrupolar coupling are used as input to the optimization, but the pulses appear robust to reasonable variations in either parameter, producing significant enhancements compared to a single-pulse conversion, and also comparable or improved efficiency over other commonly used approaches. In all cases, the ease of implementation of our method is advantageous, particularly for cases with low sensitivity, where the improvement is most needed (e.g., low gyromagnetic ratio or high quadrupolar coupling). Our approach offers the potential to routinely improve the sensitivity of high-resolution NMR spectra of nuclei and systems that would, perhaps, otherwise be deemed "too challenging". PMID:25047226

  4. High internal quantum efficiency in fullerene solar cells based on crosslinked polymer donor networks

    PubMed Central

    Liu, Bo; Png, Rui-Qi; Zhao, Li-Hong; Chua, Lay-Lay; Friend, Richard H.; Ho, Peter K.H.

    2012-01-01

    The power conversion efficiency of organic photovoltaic cells depends crucially on the morphology of their donor–acceptor heterostructure. Although tremendous progress has been made to develop new materials that better cover the solar spectrum, this heterostructure is still formed by a primitive spontaneous demixing that is rather sensitive to processing and hence difficult to realize consistently over large areas. Here we report that the desired interpenetrating heterostructure with built-in phase contiguity can be fabricated by acceptor doping into a lightly crosslinked polymer donor network. The resultant nanotemplated network is highly reproducible and resilient to phase coarsening. For the regioregular poly(3-hexylthiophene):phenyl-C61-butyrate methyl ester donor–acceptor model system, we obtained 20% improvement in power conversion efficiency over conventional demixed biblend devices. We reached very high internal quantum efficiencies of up to 0.9 electron per photon at zero bias, over an unprecedentedly wide composition space. Detailed analysis of the power conversion, power absorbed and internal quantum efficiency landscapes reveals the separate contributions of optical interference and donor–acceptor morphology effects. PMID:23271655

  5. Efficient Amplitude-Modulated Pulses for Triple- to Single-Quantum Coherence Conversion in MQMAS NMR

    PubMed Central

    2014-01-01

    The conversion between multiple- and single-quantum coherences is integral to many nuclear magnetic resonance (NMR) experiments of quadrupolar nuclei. This conversion is relatively inefficient when effected by a single pulse, and many composite pulse schemes have been developed to improve this efficiency. To provide the maximum improvement, such schemes typically require time-consuming experimental optimization. Here, we demonstrate an approach for generating amplitude-modulated pulses to enhance the efficiency of the triple- to single-quantum conversion. The optimization is performed using the SIMPSON and MATLAB packages and results in efficient pulses that can be used without experimental reoptimisation. Most significant signal enhancements are obtained when good estimates of the inherent radio-frequency nutation rate and the magnitude of the quadrupolar coupling are used as input to the optimization, but the pulses appear robust to reasonable variations in either parameter, producing significant enhancements compared to a single-pulse conversion, and also comparable or improved efficiency over other commonly used approaches. In all cases, the ease of implementation of our method is advantageous, particularly for cases with low sensitivity, where the improvement is most needed (e.g., low gyromagnetic ratio or high quadrupolar coupling). Our approach offers the potential to routinely improve the sensitivity of high-resolution NMR spectra of nuclei and systems that would, perhaps, otherwise be deemed “too challenging”. PMID:25047226

  6. FRET efficiency in surface complexes of CdSe/ZnS quantum dots with azo-dyes

    NASA Astrophysics Data System (ADS)

    Annas, Kirill I.; Gromova, Yuliya A.; Orlova, Anna O.; Maslov, Vladimir G.; Fedorov, Anatoly V.; Baranov, Alexander V.

    2016-04-01

    Photoinduced dissociation of surface complexes of CdSe/ZnS quantum dots with azo-dye 1-(2- pyridylazo)-2-naphthol (PAN) was investigated. It was shown that the Förster resonance energy transfer contributes in the complexes photodissociation rate, which depends on resonance condition between electronic levels of donor (quantum dots) and acceptor (azo-dye) and donor photoluminescent quantum yield. It has allowed to estimate energy transfer efficiency in the complexes and disclosed a new nonradiative channel that has minor contribution in the deactivation of excited states of quantum dots in the complexes.

  7. The truth about the 1st cycle Coulombic efficiency of LiNi1/3Co1/3Mn1/3O2 (NCM) cathodes.

    PubMed

    Kasnatscheew, J; Evertz, M; Streipert, B; Wagner, R; Klöpsch, R; Vortmann, B; Hahn, H; Nowak, S; Amereller, M; Gentschev, A-C; Lamp, P; Winter, M

    2016-02-01

    The 1st cycle Coulombic efficiency (CE) of LiNi1/3Co1/3Mn1/3O2 (NCM) at 4.6 V vs. Li/Li(+) has been extensively investigated in NCM/Li half cells. It could be proven that the major part of the observed overall specific capacity loss (in total 36.3 mA h g(-1)) is reversible and induced by kinetic limitations, namely an impeded lithiation reaction during discharge. A measure facilitating the lithiation reaction, i.e. a constant potential (CP) step at the discharge cut-off potential, results in an increase in specific discharge capacity of 22.1 mA h g(-1). This capacity increase during the CP step could be proven as a relithiation process by Li(+) content determination in NCM via an ICP-OES measurement. In addition, a specific capacity loss of approx. 4.2 mA h g(-1) could be determined as an intrinsic reaction to the NCM cathode material at room temperature (RT). In total, less than 10.0 mA h g(-1) (=28% of the overall capacity loss) can be attributed to irreversible reactions, mainly to irreversible structural changes of NCM. Thus, the impact of parasitic reactions, such as oxidative electrolyte decomposition, on the irreversible capacity is negligible and could also be proven by on-line MS. As a consequence, the determination of the amount of extracted Li(+) ("Li(+) extraction ratio") so far has been incorrect and must be calculated by the charge capacity (=delithiation amount) divided by the theoretical capacity. In a NCM/graphite full cell the relithiation amount during the constant voltage (CV) step is smaller than in the half cell, due to irreversible Li(+) loss at graphite. PMID:26771035

  8. Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Wen, QiaoYan; Liu, Bin; Gao, Fei; Sun, Ying

    2013-09-01

    We present a protocol for quantum private comparison of equality (QPCE) with the help of a semi-honest third party (TP). Instead of employing the entanglement, we use single photons to achieve the comparison in this protocol. By utilizing collective eavesdropping detection strategy, our protocol has the advantage of higher qubit efficiency and lower cost of implementation. In addition to this protocol, we further introduce three robust versions which can be immune to collective dephasing noise, collective-rotation noise and all types of unitary collective noise, respectively. Finally, we show that our protocols can be secure against the attacks from both the outside eavesdroppers and the inside participants by using the theorems on quantum operation discrimination.

  9. Analysis of the scatter effect on detective quantum efficiency of digital mammography

    NASA Astrophysics Data System (ADS)

    Park, Jiwoong; Yun, Seungman; Kim, Dong Woon; Baek, Cheol-Ha; Youn, Hanbean; Jeon, Hosang; Kim, Ho Kyung

    2016-03-01

    The scatter effect on detective quantum efficiency (DQE) of digital mammography is investigated using the cascaded-systems model. The cascaded-systems model includes a scatter-reduction device as a binomial selection stage. Quantum-noise-limited operation approximates the system DQE into the multiplication form of the scatter-reduction device DQE and the conventional detector DQE. The developed DQE model is validated in comparisons with the measured results using a CMOS flat-panel detector under scatter environments. For various scatter-reduction devices, the slot-scan method shows the best scatter-cleanup performance in terms of DQE, and the scatter-cleanup performance of the conventional one-dimensional grid is rather worse than the air gap. The developed model can also be applied to general radiography and will be very useful for a better design of imaging chain.

  10. InAs/GaAs p-type quantum dot infrared photodetector with higher efficiency

    SciTech Connect

    Lao, Yan-Feng; Wolde, Seyoum; Unil Perera, A. G.; Zhang, Y. H.; Wang, T. M.; Liu, H. C.; Kim, J. O.; Schuler-Sandy, Ted; Tian, Zhao-Bing; Krishna, S. S.

    2013-12-09

    An InAs/GaAs quantum dot infrared photodetector (QDIP) based on p-type valence-band intersublevel hole transitions as opposed to conventional electron transitions is reported. Two response bands observed at 1.5–3 and 3–10 μm are due to transitions from the heavy-hole to spin-orbit split-off QD level and from the heavy-hole to heavy-hole level, respectively. Without employing optimized structures (e.g., the dark current blocking layer), the demonstrated QDIP displays promising characteristics, including a specific detectivity of 1.8×10{sup 9} cm·Hz{sup 1/2}/W and a quantum efficiency of 17%, which is about 5% higher than that of present n-type QDIPs. This study shows the promise of utilizing hole transitions for developing QDIPs.

  11. Highly durable and efficient quantum dot-sensitized solar cells based on oligomer gel electrolytes.

    PubMed

    Kim, Heejin; Hwang, Insung; Yong, Kijung

    2014-07-23

    For stable quantum dot-sensitized solar cells, an oligomer-contained gel electrolyte was employed with a carbon-based counter electrode and a hierarchically shelled ZnO photoelectrode. Poly(ethylene glycol) dimethyl-ether (PEGDME) was added to the polysulfide electrolyte to enhance the stability of the methanol-based electrolyte. In addition, the nanocomposite gel electrolyte with fumed silica was used, which provided a solid three-dimensional network. A quantum-dot-modified ZnO nanowire photoanode enhanced the visible light harvesting, and a Pt/CNT-RGO counter electrode increased the catalytic activity. The oligomer gel electrolyte prevented the liquid electrolyte from leaking, and the carbon-based counter electrode retarded chemical poisoning at the counter electrode. The optimized cell exhibited 5.45% photoelectric conversion efficiency with long-term stability demonstrated over 5000 s operation time. PMID:24987930

  12. Multidentate Polymer Coatings for Compact and Homogeneous Quantum Dots with Efficient Bioconjugation.

    PubMed

    Ma, Liang; Tu, Chunlai; Le, Phuong; Chitoor, Shweta; Lim, Sung Jun; Zahid, Mohammad U; Teng, Kai Wen; Ge, Pinghua; Selvin, Paul R; Smith, Andrew M

    2016-03-16

    Quantum dots are fluorescent nanoparticles used to detect and image proteins and nucleic acids. Compared with organic dyes and fluorescent proteins, these nanocrystals have enhanced brightness, photostability, and wavelength tunability, but their larger size limits their use. Recently, multidentate polymer coatings have yielded stable quantum dots with small hydrodynamic dimensions (≤10 nm) due to high-affinity, compact wrapping around the nanocrystal. However, this coating technology has not been widely adopted because the resulting particles are frequently heterogeneous and clustered, and conjugation to biological molecules is difficult to control. In this article we develop new polymeric ligands and optimize coating and bioconjugation methodologies for core/shell CdSe/CdxZn1-xS quantum dots to generate homogeneous and compact products. We demonstrate that "ligand stripping" to rapidly displace nonpolar ligands with hydroxide ions allows homogeneous assembly with multidentate polymers at high temperature. The resulting aqueous nanocrystals are 7-12 nm in hydrodynamic diameter, have quantum yields similar to those in organic solvents, and strongly resist nonspecific interactions due to short oligoethylene glycol surfaces. Compared with a host of other methods, this technique is superior for eliminating small aggregates identified through chromatographic and single-molecule analysis. We also demonstrate high-efficiency bioconjugation through azide-alkyne click chemistry and self-assembly with hexa-histidine-tagged proteins that eliminate the need for product purification. The conjugates retain specificity of the attached biomolecules and are exceptional probes for immunofluorescence and single-molecule dynamic imaging. These results are expected to enable broad utilization of compact, biofunctional quantum dots for studying crowded macromolecular environments such as the neuronal synapse and cellular cytoplasm. PMID:26863113

  13. A fast and efficient algorithm for Slater determinant updates in quantum Monte Carlo simulations

    SciTech Connect

    Nukala, Phani K. V. V.; Kent, P. R. C.

    2009-05-28

    We present an efficient low-rank updating algorithm for updating the trial wave functions used in quantum Monte Carlo (QMC) simulations. The algorithm is based on low-rank updating of the Slater determinants. In particular, the computational complexity of the algorithm is O(kN) during the kth step compared to traditional algorithms that require O(N{sup 2}) computations, where N is the system size. For single determinant trial wave functions the new algorithm is faster than the traditional O(N{sup 2}) Sherman-Morrison algorithm for up to O(N) updates. For multideterminant configuration-interaction-type trial wave functions of M+1 determinants, the new algorithm is significantly more efficient, saving both O(MN{sup 2}) work and O(MN{sup 2}) storage. The algorithm enables more accurate and significantly more efficient QMC calculations using configuration-interaction-type wave functions.

  14. A fast and efficient algorithm for Slater determinant updates in quantum Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Nukala, Phani K. V. V.; Kent, P. R. C.

    2009-05-01

    We present an efficient low-rank updating algorithm for updating the trial wave functions used in quantum Monte Carlo (QMC) simulations. The algorithm is based on low-rank updating of the Slater determinants. In particular, the computational complexity of the algorithm is O(kN) during the kth step compared to traditional algorithms that require O(N2) computations, where N is the system size. For single determinant trial wave functions the new algorithm is faster than the traditional O(N2) Sherman-Morrison algorithm for up to O(N ) updates. For multideterminant configuration-interaction-type trial wave functions of M +1 determinants, the new algorithm is significantly more efficient, saving both O(MN2) work and O(MN2) storage. The algorithm enables more accurate and significantly more efficient QMC calculations using configuration-interaction-type wave functions.

  15. A fast and efficient algorithm for Slater determinant updates in quantum Monte Carlo simulations.

    PubMed

    Nukala, Phani K V V; Kent, P R C

    2009-05-28

    We present an efficient low-rank updating algorithm for updating the trial wave functions used in quantum Monte Carlo (QMC) simulations. The algorithm is based on low-rank updating of the Slater determinants. In particular, the computational complexity of the algorithm is O(kN) during the kth step compared to traditional algorithms that require O(N(2)) computations, where N is the system size. For single determinant trial wave functions the new algorithm is faster than the traditional O(N(2)) Sherman-Morrison algorithm for up to O(N) updates. For multideterminant configuration-interaction-type trial wave functions of M+1 determinants, the new algorithm is significantly more efficient, saving both O(MN(2)) work and O(MN(2)) storage. The algorithm enables more accurate and significantly more efficient QMC calculations using configuration-interaction-type wave functions. PMID:19485435

  16. A Fast and efficient Algorithm for Slater Determinant Updates in Quantum Monte Carlo Simulations

    SciTech Connect

    Nukala, Phani K; Kent, Paul R

    2009-01-01

    We present an efficient low-rank updating algorithm for updating the trial wavefunctions used in Quantum Monte Carlo (QMC) simulations. The algorithm is based on low-rank updating of the Slater determinants. In particular, the computational complexity of the algorithm is $\\mathcal{O}(k N)$ during the $k$-th step compared with traditional algorithms that require $\\mathcal{O}(N^2)$ computations, where $N$ is the system size. For single determinant trial wavefunctions the new algorithm is faster than the traditional $\\mathcal{O}(N^2)$ Sherman-Morrison algorithm for up to $\\mathcal{O}(N)$ updates. For multideterminant configuration-interaction type trial wavefunctions of $M+1$ determinants, the new algorithm is significantly more efficient, saving both $\\mathcal{O}(MN^2)$ work and $\\mathcal{O}(MN^2)$ storage. The algorithm enables more accurate and significantly more efficient QMC calculations using configuration interaction type wavefunctions.

  17. Quantum dot thermometry evaluation of geometry dependent heating efficiency in gold nanoparticles.

    PubMed

    Maestro, Laura M; Haro-González, Patricia; Sánchez-Iglesias, Ana; Liz-Marzán, Luis M; García Solé, José; Jaque, Daniel

    2014-02-18

    Quantum dot based thermometry, in combination with double beam confocal microscopy, was used to investigate the absorption/heating efficiency of gold nanoparticles with different morphologies (nanorods, nanocages, nanoshells, and nanostars), all of them with an intense localized surface plasmon resonance within the first biological window, at around 808 nm. The heating efficiency was found to be strongly dependent on the geometry of the nanostructure, with the largest values found for gold nanorods and long-edge gold nanostars, both of them with heating efficiencies close to 100%. Gold nanorods and nanocages were found to have the largest absorption cross section per unit mass among all the studied geometries, emerging as optimum photothermal agents with minimum metal loading for biosystems. PMID:24495155

  18. Hollow cathode apparatus

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1984-01-01

    A hollow cathode apparatus is described, which can be rapidly and reliably started. An ignitor positioned upstream from the hollow cathode, generates a puff of plasma that flows with the primary gas to be ionized through the cathode. The plasma puff creates a high voltage breakdown between the downstream end of the cathode and a keeper electrode, to heat the cathode to an electron-emitting temperature.

  19. Necessary detection efficiencies for secure quantum key distribution and bound randomness

    NASA Astrophysics Data System (ADS)

    Acín, Antonio; Cavalcanti, Daniel; Passaro, Elsa; Pironio, Stefano; Skrzypczyk, Paul

    2016-01-01

    In recent years, several hacking attacks have broken the security of quantum cryptography implementations by exploiting the presence of losses and the ability of the eavesdropper to tune detection efficiencies. We present a simple attack of this form that applies to any protocol in which the key is constructed from the results of untrusted measurements performed on particles coming from an insecure source or channel. Because of its generality, the attack applies to a large class of protocols, from standard prepare-and-measure to device-independent schemes. Our attack gives bounds on the critical detection efficiencies necessary for secure quantum key distribution, which show that the implementation of most partly device-independent solutions is, from the point of view of detection efficiency, almost as demanding as fully device-independent ones. We also show how our attack implies the existence of a form of bound randomness, namely nonlocal correlations in which a nonsignalling eavesdropper can find out a posteriori the result of any implemented measurement.

  20. High-Efficiency Colloidal Quantum Dot Photovoltaics via Robust Self-Assembled Monolayers.

    PubMed

    Kim, Gi-Hwan; García de Arquer, F Pelayo; Yoon, Yung Jin; Lan, Xinzheng; Liu, Mengxia; Voznyy, Oleksandr; Jagadamma, Lethy Krishnan; Abbas, Abdullah Saud; Yang, Zhenyu; Fan, Fengjia; Ip, Alexander H; Kanjanaboos, Pongsakorn; Hoogland, Sjoerd; Kim, Jin Young; Sargent, Edward H

    2015-11-11

    The optoelectronic tunability offered by colloidal quantum dots (CQDs) is attractive for photovoltaic applications but demands proper band alignment at electrodes for efficient charge extraction at minimal cost to voltage. With this goal in mind, self-assembled monolayers (SAMs) can be used to modify interface energy levels locally. However, to be effective SAMs must be made robust to treatment using the various solvents and ligands required for to fabricate high quality CQD solids. We report robust self-assembled monolayers (R-SAMs) that enable us to increase the efficiency of CQD photovoltaics. Only by developing a process for secure anchoring of aromatic SAMs, aided by deposition of the SAMs in a water-free deposition environment, were we able to provide an interface modification that was robust against the ensuing chemical treatments needed in the fabrication of CQD solids. The energy alignment at the rectifying interface was tailored by tuning the R-SAM for optimal alignment relative to the CQD quantum-confined electron energy levels. This resulted in a CQD PV record power conversion efficiency (PCE) of 10.7% with enhanced reproducibility relative to controls. PMID:26509283

  1. High-efficiency red electroluminescent device based on multishelled InP quantum dots.

    PubMed

    Jo, Jung-Ho; Kim, Jong-Hoon; Lee, Ki-Heon; Han, Chang-Yeol; Jang, Eun-Pyo; Do, Young Rag; Yang, Heesun

    2016-09-01

    We report on the synthesis of highly fluorescent red-emitting InP quantum dots (QDs) and their application to the fabrication of a high-efficiency QD-light-emitting diode (QLED). The core/shell heterostructure of the QDs is elaborately tailored toward a multishelled structure with a composition-gradient ZnSeS intermediate shell and an outer ZnS shell. Using the resulting InP/ZnSeS/ZnS QDs as an emitting layer, all-solution-processible red InP QLEDs are fabricated with a hybrid multilayered device structure having an organic hole transport layer (HTL) and an inorganic ZnO nanoparticle electron transport layer. Two HTLs of poly(9-vinlycarbazole) or poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl))diphenyl-amine), whose hole mobilities are different by at least three orders of magnitude, are individually applied for QLED fabrication and such HTL-dependent device performances are compared. Our best red device displays exceptional figures of merit such as a maximum luminance of 2849  cd/m2, a current efficiency of 4.2  cd/A, and an external quantum efficiency of 2.5%. PMID:27607953

  2. Testing a GaAs cathode in SRF gun

    SciTech Connect

    Wang, E.; Kewisch, J.; Ben-Zvi, I.; Burrill, A.; Rao, T.; Wu, Q.; Holmes, D.

    2011-03-28

    accelerating gradient of the RF guns, potentially offering a long lived cathode with very low emittance. Testing this concept requires preparation of the cathode, transportation to the SRF gun and evaluation of the performance of the cathode and the gun at cryogenic temperatures. In our work at BNL, we successfully activated the bulk GaAs in the preparation chamber. The highest quantum efficient was 10% at 532 nm that fell to 0.5% after 100 hours. We explored three different ways to activate the GaAs. We verified that the GaAs photocathode remains stable for 30 hours in a 10{sup -11} Torr vacuum. Passing the photocathode through the low 10{sup -9} Torr transfer section in several seconds caused the QE to drop to 0.8%. The photocathode with 0.8% QE can be tested for the SRF gun. The gun and beam pipe were prepared and assembled. After baking at 200 C baking, the vacuum of the gun and beam pipe can sustain a low 10{sup -11} Torr at room temperature. The final test to extract electrons from the gun is ongoing. In this paper, we discuss our progress with this SRF gun and the results of the photocathode in preparation chamber and in magnet transfer line.

  3. Quantum efficiency test set up performances for NIR detector characterization at ESTEC

    NASA Astrophysics Data System (ADS)

    Crouzet, P.-E.; Duvet, L.; De Wit, F.; Beaufort, T.; Blommaert, S.; Butler, B.; Van Duinkerken, G.; ter Haar, J.; Heijnen, J.; van der Luijt, K.; Smit, H.; Viale, T.

    2014-07-01

    The Payload Technology Validation Section (Future mission preparation Office) at ESTEC is in charge of specific mission oriented validation activities, for science and robotic exploration missions, aiming at reducing development risks in the implementation phase. These activities take place during the early mission phases or during the implementation itself. In this framework, a test set up to characterize the quantum efficiency of near infrared detectors has been developed. The first detector to be tested will an HAWAII-2RG detector with a 2.5μm cut off, it will be used as commissioning device in preparation to the tests of prototypes European detectors developed under ESA funding. The capability to compare on the same setup detectors from different manufacturers will be a unique asset for the future mission preparation office. This publication presents the performances of the quantum efficiency test bench to prepare measurements on the HAWAII-2RG detector. A SOFRADIR Saturn detector has been used as a preliminary test vehicle for the bench. A test set up with a lamp, chopper, monochromator, pinhole and off axis mirrors allows to create a spot of 1mm diameter between 700nm and 2.5μm.The shape of the beam has been measured to match the rms voltage read by the Merlin Lock -in amplifier and the amplitude of the incoming signal. The reference detectors have been inter-calibrated with an uncertainty up to 3 %. For the measurement with HAWAII-2RG detector, the existing cryostat [1] has been modified to adapt cold black baffling, a cold filter wheel and a sapphire window. An statistic uncertainty of +/-2.6% on the quantum efficiency on the detector under test measurement is expected.

  4. Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co2-xFexO5+δ

    NASA Astrophysics Data System (ADS)

    Choi, Sihyuk; Yoo, Seonyoung; Kim, Jiyoun; Park, Seonhye; Jun, Areum; Sengodan, Sivaprakash; Kim, Junyoung; Shin, Jeeyoung; Jeong, Hu Young; Choi, Yongman; Kim, Guntae; Liu, Meilin

    2013-08-01

    Solid oxide fuel cells (SOFC) are the cleanest, most efficient, and cost-effective option for direct conversion to electricity of a wide variety of fuels. While significant progress has been made in anode materials with enhanced tolerance to coking and contaminant poisoning, cathodic polarization still contributes considerably to energy loss, more so at lower operating temperatures. Here we report a synergistic effect of co-doping in a cation-ordered double-perovskite material, PrBa0.5Sr0.5Co2-xFexO5+δ, which has created pore channels that dramatically enhance oxygen ion diffusion and surface oxygen exchange while maintaining excellent compatibility and stability under operating conditions. Test cells based on these cathode materials demonstrate peak power densities ~2.2 W cm-2 at 600°C, representing an important step toward commercially viable SOFC technologies.

  5. Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co2−xFexO5+δ

    PubMed Central

    Choi, Sihyuk; Yoo, Seonyoung; Kim, Jiyoun; Park, Seonhye; Jun, Areum; Sengodan, Sivaprakash; Kim, Junyoung; Shin, Jeeyoung; Jeong, Hu Young; Choi, YongMan; Kim, Guntae; Liu, Meilin

    2013-01-01

    Solid oxide fuel cells (SOFC) are the cleanest, most efficient, and cost-effective option for direct conversion to electricity of a wide variety of fuels. While significant progress has been made in anode materials with enhanced tolerance to coking and contaminant poisoning, cathodic polarization still contributes considerably to energy loss, more so at lower operating temperatures. Here we report a synergistic effect of co-doping in a cation-ordered double-perovskite material, PrBa0.5Sr0.5Co2−xFexO5+δ, which has created pore channels that dramatically enhance oxygen ion diffusion and surface oxygen exchange while maintaining excellent compatibility and stability under operating conditions. Test cells based on these cathode materials demonstrate peak power densities ~2.2 W cm−2 at 600°C, representing an important step toward commercially viable SOFC technologies. PMID:23945630

  6. Nanotube cathodes.

    SciTech Connect

    Overmyer, Donald L.; Lockner, Thomas Ramsbeck; Siegal, Michael P.; Miller, Paul Albert

    2006-11-01

    Carbon nanotubes have shown promise for applications in many diverse areas of technology. In this report we describe our efforts to develop high-current cathodes from a variety of nanotubes deposited under a variety of conditions. Our goal was to develop a one-inch-diameter cathode capable of emitting 10 amperes of electron current for one second with an applied potential of 50 kV. This combination of current and pulse duration significantly exceeds previously reported nanotube-cathode performance. This project was planned for two years duration. In the first year, we tested the electron-emission characteristics of nanotube arrays fabricated under a variety of conditions. In the second year, we planned to select the best processing conditions, to fabricate larger cathode samples, and to test them on a high-power relativistic electron beam generator. In the first year, much effort was made to control nanotube arrays in terms of nanotube diameter and average spacing apart. When the project began, we believed that nanotubes approximately 10 nm in diameter would yield sufficient electron emission properties, based on the work of others in the field. Therefore, much of our focus was placed on measured field emission from such nanotubes grown on a variety of metallized surfaces and with varying average spacing between individual nanotubes. We easily reproduced the field emission properties typically measured by others from multi-wall carbon nanotube arrays. Interestingly, we did this without having the helpful vertical alignment to enhance emission; our nanotubes were randomly oriented. The good emission was most likely possible due to the improved crystallinity, and therefore, electrical conductivity, of our nanotubes compared to those in the literature. However, toward the end of the project, we learned that while these 10-nm-diameter CNTs had superior crystalline structure to the work of others studying field emission from multi-wall CNT arrays, these nanotubes still

  7. Highly efficient yttrium-doped ZnO nanorods for quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Kyoung; Gopi, Chandu V. V. M.; Srinivasa Rao, S.; Punnoose, Dinah; Kim, Hee-Je

    2016-03-01

    Yttrium-doped ZnO nanorod arrays were applied to photoanodes of quantum dot-sensitized solar cells (QDSCs). The introduction of yttrium to ZnO nanostructures facilitates the growth of ZnO nanorods and increases the amount of QD deposition with a large surface area. Furthermore, lower electrical resistance and longer electron lifetime were achieved with yttrium-doping owing to fewer defects and trap sites on the surface of yttrium-doped ZnO nanorods. As a result, the conversion efficiency of 3.3% was achieved with the optimized concentration of yttrium.

  8. Low-threshold, high quantum efficiency stop-cleaved InGaAsP semiconductor lasers

    SciTech Connect

    Antreasyan, A.; Chen, C.Y.; Napholtz, S.G.; Wilt, D.P.

    1985-08-15

    InGaAsP double-channel--planar-buried-heterostructure lasers with stop-cleaved mirrors emitting at 1.3 ..mu..m have been fabricated. Threshold currents as low as 18 mA and differential quantum efficiencies as high as 39% have been obtained. Furthermore, we have achieved a yield greater than 50% in obtaining good quality facets utilizing the stop-cleaving technique. Our result represents one of the lowest threshold currents obtained so far at 1.3-..mu..m wavelength among the structures designed for monolithic optoelectronic integration.

  9. III-V photocathode with nitrogen doping for increased quantum efficiency

    NASA Technical Reports Server (NTRS)

    James, L. W. (Inventor)

    1976-01-01

    An increase in the quantum efficiency of a 3-5 photocathode is achieved by doping its semiconductor material with an acceptor and nitrogen, a column-5 isoelectronic element, that introduces a spatially localized energy level just below the conduction band similar to a donor level to which optical transitions can occur. This increases the absorption coefficient, alpha without compensation of the acceptor dopant. A layer of a suitable 1-5, 1-6 or 1-7 compound is included as an activation layer on the electron emission side to lower the work function of the photocathode.

  10. Quantum Efficiency and Topography of Heated and Plasma-Cleaned Copper Photocathode Surfaces

    SciTech Connect

    Palmer, Dennis T.; Kirby, R.E.; King, F.K.; /SLAC

    2005-08-04

    We present measurements of photoemission quantum efficiency (QE) for copper photocathodes heated and cleaned by low energy argon and hydrogen ion plasma. The QE and surface roughness parameters were measured before and after processing and surface chemical composition was tracked in-situ with x-ray photoelectron spectroscopy (XPS). Thermal annealing at 230 C was sufficient to improve the QE by 3-4 orders of magnitude, depending on the initial QE. Exposure to residual gas slowly reduced the QE but it was easily restored by argon ion cleaning for a few minutes. XPS showed that the annealing or ion bombardment removed surface water and hydrocarbons.

  11. Efficient quantum secret sharing scheme with two-particle entangled states

    NASA Astrophysics Data System (ADS)

    Zhu, Zhen-Chao; Zhang, Yu-Qing; Fu, An-Min

    2011-04-01

    This paper proposes a protocol for multi-party quantum secret sharing utilizing four non-orthogonal two-particle entangled states following some ideas in the schemes proposed by Liu et al. (2006 Chin. Phys. Lett. 23 3148) and Zhang et al. (2009 Chin. Phys. B 18 2149) respectively. The theoretical efficiency for qubits of the new protocol is improved from 50% to approaching 100%. All the entangled states can be used for generating the private key except those used for the eavesdropping check. The validity of a probable attack called opaque cheat attack to this kind of protocols is considered in the paper for the first time.

  12. Efficient heralding of photonic qubits with applications to device-independent quantum key distribution

    SciTech Connect

    Pitkanen, David; Ma Xiongfeng; Luetkenhaus, Norbert; Wickert, Ricardo; Loock, Peter van

    2011-08-15

    We present an efficient way of heralding photonic qubit signals using linear optics devices. First, we show that one can obtain asymptotically perfect heralding and unit success probability with growing resources. Second, we show that even using finite resources, we can improve qualitatively and quantitatively over earlier heralding results. In the latter scenario, we can obtain perfect heralded photonic qubits while maintaining a finite success probability. We demonstrate the advantage of our heralding scheme by predicting key rates for device-independent quantum key distribution, taking imperfections of sources and detectors into account.

  13. Efficient iron sulfide counter electrode for quantum dots-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Chen, Haining; Zhu, Liqun; Liu, Huicong; Li, Weiping

    2014-01-01

    Iron sulfide is explored as the counter electrode (CE) in quantum dots-sensitized solar cells (QDSCs), which is prepared by simply immersing carbon steel in Na2S solution. The photoelectrochemical performance and the electrocatalytic property of iron sulfide are much higher than those of Pt and are very close to those of Cu2S. Since the preparation method of iron sulfide CE is simple, carbon steel substrate is stable in polysulfide electrolyte, the storage of Fe element in earth is very abundant and iron ions are environmentally friendly, iron sulfide shows much prospect as the efficient, stable, lost-cost and environmentally friendly CE of QDSCs.

  14. Microwave generators: oscillating virtual cathodes and reflexing electrons

    SciTech Connect

    Kwan, T.J.T.; Thode, L.E.

    1983-01-01

    Simulation of the generation of a relativistic electron beam in a foil diode configuration and of the subsequent intense microwave generation resulting from the formation of the virtual cathode is presented. The oscillating virtual cathode and the trapped beam electrons between the real and the virtual cathodes were found to generate microwaves. Generation of high-power microwaves with about 10% efficiency might be reasonably expected from such a virtual-cathode configuration.

  15. Efficient continuous-time quantum Monte Carlo method for the ground state of correlated fermions

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Iazzi, Mauro; Corboz, Philippe; Troyer, Matthias

    2015-06-01

    We present the ground state extension of the efficient continuous-time quantum Monte Carlo algorithm for lattice fermions of M. Iazzi and M. Troyer, Phys. Rev. B 91, 241118 (2015), 10.1103/PhysRevB.91.241118. Based on continuous-time expansion of an imaginary-time projection operator, the algorithm is free of systematic error and scales linearly with projection time and interaction strength. Compared to the conventional quantum Monte Carlo methods for lattice fermions, this approach has greater flexibility and is easier to combine with powerful machinery such as histogram reweighting and extended ensemble simulation techniques. We discuss the implementation of the continuous-time projection in detail using the spinless t -V model as an example and compare the numerical results with exact diagonalization, density matrix renormalization group, and infinite projected entangled-pair states calculations. Finally we use the method to study the fermionic quantum critical point of spinless fermions on a honeycomb lattice and confirm previous results concerning its critical exponents.

  16. Near-Unity Internal Quantum Efficiency of Luminescent Silicon Nanocrystals with Ligand Passivation.

    PubMed

    Sangghaleh, Fatemeh; Sychugov, Ilya; Yang, Zhenyu; Veinot, Jonathan G C; Linnros, Jan

    2015-07-28

    Spectrally resolved photoluminescence (PL) decays were measured for samples of colloidal, ligand-passivated silicon nanocrystals. These samples have PL emission energies with peak positions in the range ∼1.4-1.8 eV and quantum yields of ∼30-70%. Their ensemble PL decays are characterized by a stretched-exponential decay with a dispersion factor of ∼0.8, which changes to an almost monoexponential character at fixed detection energies. The dispersion factors and decay rates for various detection energies were extracted from spectrally resolved curves using a mathematical approach that excluded the effect of homogeneous line width broadening. Since nonradiative recombination would introduce a random lifetime variation, leading to a stretched-exponential decay for an ensemble, we conclude that the observed monoexponential decay in size-selected ensembles signifies negligible nonradiative transitions of a similar strength to the radiative one. This conjecture is further supported as extracted decay rates agree with radiative rates reported in the literature, suggesting 100% internal quantum efficiency over a broad range of emission wavelengths. The apparent differences in the quantum yields can then be explained by a varying fraction of "dark" or blinking nanocrystals. PMID:26083194

  17. Efficient inorganic solid solar cells composed of perovskite and PbS quantum dots

    NASA Astrophysics Data System (ADS)

    Li, Yi; Zhu, Jun; Huang, Yang; Wei, Junfeng; Liu, Feng; Shao, Zhipeng; Hu, Linhua; Chen, Shuanghong; Yang, Shangfeng; Tang, Junwang; Yao, Jianxi; Dai, Songyuan

    2015-05-01

    Lead halide perovskite solar cells have attracted great interest due to their high efficiency and simple fabrication process. However, the high efficiency heavily relies on expensive organic hole-transporting materials (OHTMs) such as 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-MeOTAD), it is preferable to replace these expensive OHTMs by inorganic and low cost materials. Here, we report colloidal PbS quantum dots synthesized by a facile method and used as the inorganic hole-transporting material in a hybrid perovskite solar cell. By controlling the crystalline morphology of the perovskite capping layer, the recombination process is significantly retarded. Furthermore, a pure inorganic solar cell prepared by a two-step process demonstrated a nearly 8% power conversion efficiency due to efficient charge separation by a cascade of junctions and retarding charge recombination by a void-free capping layer. The stability of the inorganic solar cell was also tested with a little decay observed within ca. 100 h.Lead halide perovskite solar cells have attracted great interest due to their high efficiency and simple fabrication process. However, the high efficiency heavily relies on expensive organic hole-transporting materials (OHTMs) such as 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-MeOTAD), it is preferable to replace these expensive OHTMs by inorganic and low cost materials. Here, we report colloidal PbS quantum dots synthesized by a facile method and used as the inorganic hole-transporting material in a hybrid perovskite solar cell. By controlling the crystalline morphology of the perovskite capping layer, the recombination process is significantly retarded. Furthermore, a pure inorganic solar cell prepared by a two-step process demonstrated a nearly 8% power conversion efficiency due to efficient charge separation by a cascade of junctions and retarding charge recombination by a void-free capping layer

  18. In-Situ Cleaning of Metal Cathodes using a Hydrogen Ion Beam

    SciTech Connect

    Dowell, D.H.; King, F.K.; Kirby, R.E.; Schmerge, J.F.; /SLAC

    2006-03-29

    Metal photocathodes are commonly used in high-field RF guns because they are robust, straightforward to implement and tolerate relatively poor vacuum compared to semi-conductor cathodes. However these cathodes have low quantum efficiency (QE) even at UV wavelengths, and still require some form of cleaning after installation in the gun. A commonly used process for improving the QE is laser cleaning. In this technique the UV drive laser is focused to a small diameter close to the metal's damage threshold and then moved across the surface to remove contaminants. This method does improve the QE, but can produce non-uniform emission and potentially damage the cathode. Ideally an alternative process which produces an atomically clean, but unaltered surface is needed. In this paper we explore using a hydrogen ion (H-ion) beam to clean a copper cathode. We describe QE measurements over the wavelength range of interest as a function of integrated exposure to an H-ion beam. We also describe the data analysis to obtain the work function and derive a formula of the QE for metal cathodes. Our measured work function for the cleaned sample is in good agreement with published values, and the theoretical QE as a function of photon wavelength is in excellent agreement with the cleaned copper experimental results. Finally, we propose an in-situ installation of an H-ion gun compatible with existing s-band RF guns.

  19. In-Situ Cleaning of Metal Cathodes Using a Hydrogen Ion Beam

    SciTech Connect

    Dowell, D.H.; King, F.K.; Kirby, R.E.; Schmerge, J.F.; /SLAC

    2005-09-01

    Improving and maintaining the quantum efficiency (QE) of a metal photocathode in an s-band RF gun requires a process for cleaning the surface. In this type of gun, the cathode is typically installed and the system is vacuum baked to {approx}200 degrees C. If the QE is too low, the cathode is usually cleaned with the UV-drive laser. While laser cleaning does increase the cathode QE, it requires fluences close to the damage threshold and rastering the small diameter beam, both of which can produce nonuniform electron emission and potentially damage the cathode. This paper investigates the efficacy of a low energy hydrogen ion beam to produce high-QE metal cathodes. Measurements of the QE vs. wavelength, surface contaminants using x-ray photoelectron spectroscopy and surface roughness were performed on a copper sample, and the results showed a significant increase in QE after cleaning with a 1keV hydrogen ion beam. The H-ion beam cleaned an area approximately 1cm in diameter and had no effect on the surface roughness while significantly increasing the QE. These results and a comparison with theory as well as a scheme for installing an H-ion cleaner on an s-band gun are presented.

  20. Two-photon photoemission from a copper cathode in an X -band photoinjector

    NASA Astrophysics Data System (ADS)

    Li, H.; Limborg-Deprey, C.; Adolphsen, C.; McCormick, D.; Dunning, M.; Jobe, K.; Raubenheimer, T.; Vrielink, A.; Vecchione, T.; Wang, F.; Weathersby, S.

    2016-02-01

    This paper presents two-photon photoemission from a copper cathode in an X -band photoinjector. We experimentally verified that the electron bunch charge from photoemission out of a copper cathode scales with laser intensity (I) square for 400 nm wavelength photons. We compare this two-photon photoemission process with the single photon process at 266 nm. Despite the high reflectivity (R ) of the copper surface for 400 nm photons (R =0.48 ) and higher thermal energy of photoelectrons (two-photon at 200 nm) compared to 266 nm photoelectrons, the quantum efficiency of the two-photon photoemission process (400 nm) exceeds the single-photon process (266 nm) when the incident laser intensity is above 300 GW /cm2 . At the same laser pulse energy (E ) and other experimental conditions, emitted charge scales inversely with the laser pulse duration. A thermal emittance of 2.7 mm-mrad per mm root mean square (rms) was measured on our cathode which exceeds by sixty percent larger compared to the theoretical predictions, but this discrepancy is similar to previous experimental thermal emittance on copper cathodes with 266 nm photons. The damage of the cathode surface of our first-generation X -band gun from both rf breakdowns and laser impacts mostly explains this result. Using a 400 nm laser can substantially simplify the photoinjector system, and make it an alternative solution for compact pulsed electron sources.

  1. Implementation of energy efficient single flux quantum digital circuits with sub-aJ/bit operation

    NASA Astrophysics Data System (ADS)

    Volkmann, M. H.; Sahu, A.; Fourie, C. J.; Mukhanov, O. A.

    2013-01-01

    We report the first experimental demonstration of recently proposed energy efficient single flux quantum logic, eSFQ. This logic can represent the next generation of RSFQ logic, eliminating the dominant static power dissipation associated with a dc bias current distribution and providing over two orders of magnitude efficiency improvement over conventional RSFQ logic. We further demonstrate that the introduction of passive phase shifters allows the reduction of dynamic power dissipation by about 20%, reaching ˜0.8 aJ/bit operation. Two types of demonstration eSFQ circuit, shift registers and demultiplexers (deserializers), were implemented using the standard HYPRES 4.5 kA cm-2 fabrication process. In this paper, we present eSFQ circuit design and demonstrate the viability and performance metrics of eSFQ circuits through simulations and experimental testing.

  2. Efficient dipolar double quantum filtering under magic angle spinning without a 1H decoupling field

    NASA Astrophysics Data System (ADS)

    Courtney, Joseph M.; Rienstra, Chad M.

    2016-08-01

    We present a systematic study of dipolar double quantum (DQ) filtering in 13C-labeled organic solids over a range of magic-angle spinning rates, using the SPC-n recoupling sequence element with a range of n symmetry values from 3 to 11. We find that efficient recoupling can be achieved for values n ⩾ 7, provided that the 13C nutation frequency is on the order of 100 kHz or greater. The decoupling-field dependence was investigated and explicit heteronuclear decoupling interference conditions identified. The major determinant of DQ filtering efficiency is the decoupling interference between 13C and 1H fields. For 13C nutation frequencies greater than 75 kHz, optimal performance is observed without an applied 1H field. At spinning rates exceeding 20 kHz, symmetry conditions as low as n = 3 were found to perform adequately.

  3. Highly efficient energy transfer from quantum dot to allophycocyanin in hybrid structures.

    PubMed

    Karpulevich, A A; Maksimov, E G; Sluchanko, N N; Vasiliev, A N; Paschenko, V Z

    2016-07-01

    Excitation energy transfer (EET) is observed in hybrid structures that composed of allophycocyanin and CdSe/ZnS core-shell quantum dot (QD). We demonstrate that the EET efficiency in such systems could be significantly increased under conditions inducing monomerization of allophycocyanin trimers. For these purposes, the EET efficiency was estimated under different experimental conditions (pH, high temperature or the presence of NaSCN) for self-assembled hybrid structures. Additionally, the hybrid structures were stabilized by covalent coupling which resulted in approximately 20-fold enhancement of allophycocyanin fluorescence upon excitation of QDs. The observed effect provides new opportunities for the practical implementation of hybrid systems as fluorescent markers. PMID:27101277

  4. Simple formalism for efficient derivatives and multi-determinant expansions in quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Filippi, Claudia; Assaraf, Roland; Moroni, Saverio

    2016-05-01

    We present a simple and general formalism to compute efficiently the derivatives of a multi-determinant Jastrow-Slater wave function, the local energy, the interatomic forces, and similar quantities needed in quantum Monte Carlo. Through a straightforward manipulation of matrices evaluated on the occupied and virtual orbitals, we obtain an efficiency equivalent to algorithmic differentiation in the computation of the interatomic forces and the optimization of the orbital parameters. Furthermore, for a large multi-determinant expansion, the significant computational gain afforded by a recently introduced table method is here extended to the local value of any one-body operator and to its derivatives, in both all-electron and pseudopotential calculations.

  5. Efficient dipolar double quantum filtering under magic angle spinning without a (1)H decoupling field.

    PubMed

    Courtney, Joseph M; Rienstra, Chad M

    2016-08-01

    We present a systematic study of dipolar double quantum (DQ) filtering in (13)C-labeled organic solids over a range of magic-angle spinning rates, using the SPC-n recoupling sequence element with a range of n symmetry values from 3 to 11. We find that efficient recoupling can be achieved for values n⩾7, provided that the (13)C nutation frequency is on the order of 100kHz or greater. The decoupling-field dependence was investigated and explicit heteronuclear decoupling interference conditions identified. The major determinant of DQ filtering efficiency is the decoupling interference between (13)C and (1)H fields. For (13)C nutation frequencies greater than 75kHz, optimal performance is observed without an applied (1)H field. At spinning rates exceeding 20kHz, symmetry conditions as low as n=3 were found to perform adequately. PMID:27314744

  6. Simple formalism for efficient derivatives and multi-determinant expansions in quantum Monte Carlo.

    PubMed

    Filippi, Claudia; Assaraf, Roland; Moroni, Saverio

    2016-05-21

    We present a simple and general formalism to compute efficiently the derivatives of a multi-determinant Jastrow-Slater wave function, the local energy, the interatomic forces, and similar quantities needed in quantum Monte Carlo. Through a straightforward manipulation of matrices evaluated on the occupied and virtual orbitals, we obtain an efficiency equivalent to algorithmic differentiation in the computation of the interatomic forces and the optimization of the orbital parameters. Furthermore, for a large multi-determinant expansion, the significant computational gain afforded by a recently introduced table method is here extended to the local value of any one-body operator and to its derivatives, in both all-electron and pseudopotential calculations. PMID:27208934

  7. Ultrahigh quantum efficiency of CuO nanoparticle decorated In2Ge2O7 nanobelt deep-ultraviolet photodetectors.

    PubMed

    Tian, Wei; Zhi, Chunyi; Zhai, Tianyou; Wang, Xi; Liao, Meiyong; Li, Songlin; Chen, Shimou; Golberg, Dmitri; Bando, Yoshio

    2012-10-21

    Although there has been significant progress in the fabrication and performance optimization of 1-D nanostructure-based deep-ultraviolet photodetectors, it is still a challenge to develop an effective device with high performance characteristics, such as high photocurrent-dark current ratio and high quantum efficiency. Herein, an efficient and simple method to fabricate high performance CuO nanoparticle decorated In(2)Ge(2)O(7) nanobelt deep-ultraviolet photodetectors is presented. A CuO coated In(2)Ge(2)O(7) nanobelt based photodetector showed very high responsivity (7.34 × 10(5) A W(-1)) and high quantum efficiency (3.5 × 10(6)). The underlying mechanism is proposed to be the formation of p-n heterojunctions between decorated nanoparticles and nanobelts, which enhances the spatial separation of photogenerated electrons and holes. This study opens up a new horizon for creation of novel photodetectors with high quantum efficiency. PMID:22936172

  8. Graphene oxide electrocatalyst on MnO2 air cathode as an efficient electron pump for enhanced oxygen reduction in alkaline solution

    PubMed Central

    Basirun, Wan Jeffrey; Sookhakian, Mehran; Baradaran, Saeid; Endut, Zulkarnain; Mahmoudian, Mohammad Reza; Ebadi, Mehdi; Yousefi, Ramin; Ghadimi, Hanieh; Ahmed, Sohail

    2015-01-01

    Graphene oxide (GO) was deposited on the surface of a MnO2 air cathode by thermal evaporation at 50°C from a GO colloidal suspension. Fourier transformed infrared spectroscopy and field emission scanning electron microscopy confirmed the presence of GO on the MnO2 air cathode (GO-MnO2). Voltammetry and chrono-amperometry showed increased currents for the oxygen reduction reaction (ORR) in 6 M KOH solution for GO-MnO2 compared to the MnO2 cathode. The GO-MnO2 was used as an air cathode in an alkaline tin-air cell and produced a maximum power density of 13 mW cm−2, in contrast to MnO2, which produced a maximum power density of 9.2 mW cm−2. The electrochemical impedance spectroscopy results suggest that the chemical step for the ORR is the rate determining step, as proposed earlier by different researchers. It is suggested that the presence of GO and electrochemically reduced graphene oxide (ERGO) on the MnO2 surface are responsible for the increased rate of this step, whereby GO and ERGO accelerate the process of electron donation to the MnO2 and to adsorbed oxygen atoms. PMID:25765731

  9. High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates

    SciTech Connect

    Bryan, Zachary Bryan, Isaac; Sitar, Zlatko; Collazo, Ramón; Xie, Jinqiao; Mita, Seiji

    2015-04-06

    The internal quantum efficiency (IQE) of Al{sub 0.55}Ga{sub 0.45}N/AlN and Al{sub 0.55}Ga{sub 0.45}N/Al{sub 0.85}Ga{sub 0.15}N UVC MQW structures was analyzed. The use of bulk AlN substrates enabled us to undoubtedly distinguish the effect of growth conditions, such as V/III ratio, on the optical quality of AlGaN based MQWs from the influence of dislocations. At a high V/III ratio, a record high IQE of ∼80% at a carrier density of 10{sup 18 }cm{sup −3} was achieved at ∼258 nm. The high IQE was correlated with the decrease of the non-radiative coefficient A and a reduction of midgap defect luminescence, all suggesting that, in addition to dislocations, point defects are another major factor that strongly influences optical quality of AlGaN MQW structures.

  10. Efficient and bright colloidal quantum dot light-emitting diodes via controlling the shell thickness of quantum dots.

    PubMed

    Shen, Huaibin; Lin, Qinli; Wang, Hongzhe; Qian, Lei; Yang, Yixing; Titov, Alexandre; Hyvonen, Jake; Zheng, Ying; Li, Lin Song

    2013-11-27

    In this paper, we use a simple device architecture based on solution-processed ZnO nanoparticles (NPs) as the electron injection/transport layer and bilayer structure of poly(ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)/poly[9,9-dioctylfluorene-co-N-[4-(3-methylpropyl)]-diphenylamine] (TFB) as the hole injection/transport layer to assess the effect of shell thickness on the properties of quantum-dot-based light emitting diodes (QD-LEDs), comprising CdSe/CdS/ZnS core-shell QDs as the emitting layer. QDs with varying shell thickness were assessed to determine the best option of shell thickness, and the best improvement in device performance was observed when the shell thickness was 2.1 nm. Thereafter, different emissions of QDs, but with optimized same shell thickness (∼2.1 nm), were selected as emitters to be fabricated into same structured QD-LEDs. Highly bright orange-red and green QD-LEDs with peak luminances up to ∼30 000 and ∼52 000 cd m(-2), and power efficiencies of 16 and 19.7 lm W(-1), respectively, were demonstrated successfully. These results may demonstrate a striking basic prototype for the commercialization of QD-based displays and solid-state lightings. PMID:24191742

  11. Quantum efficiency of PAG decomposition in different polymer matrices at advanced lithographic wavelengths

    NASA Astrophysics Data System (ADS)

    Fedynyshyn, Theodore H.; Sinta, Roger F.; Mowers, William A.; Cabral, Alberto

    2003-06-01

    The Dill ABC parameters for optical resists are typically determined by measuring the change in the intensity of transmitted light at the wavelength of interest as a function of incident energy. The effectiveness of the experiment rests with the fact that the resist optical properties change with exposure and that the optical properties are directly related to the concentration of PAG compound. These conditions are not typically satisfied in CA resists and thus C is unobtainable by this method. FT-IR spectroscopy can directly measure changes in the photoactive species by isolating and measuring absorbance peaks unique to the photoactive species. We employed the ProABC software, specially modified to allow FT-IR absorbance input, to extract ABS parameters through a best fit of the lithography model to experimental data. The quantum efficiency of PAG decomposition at 157-, 193-, and 248-nm was determined for four diazomethane type PAGs in four different polymer matrices. It was found that both the Dill C parameter and the quantum efficiency for all PAGs increased as wavelength decreased, but that the magnitude of the increase was strongly dependent on the polymer matrix.

  12. High Efficiency Quantum Well Waveguide Solar Cells and Methods for Constructing the Same

    NASA Technical Reports Server (NTRS)

    Welser, Roger E. (Inventor); Sood, Ashok K. (Inventor)

    2014-01-01

    Photon absorption, and thus current generation, is hindered in conventional thin-film solar cell designs, including quantum well structures, by the limited path length of incident light passing vertically through the device. Optical scattering into lateral waveguide structures provides a physical mechanism to increase photocurrent generation through in-plane light trapping. However, the insertion of wells of high refractive index material with lower energy gap into the device structure often results in lower voltage operation, and hence lower photovoltaic power conversion efficiency. The voltage output of an InGaAs quantum well waveguide photovoltaic device can be increased by employing a III-V material structure with an extended wide band gap emitter heterojunction. Analysis of the light IV characteristics reveals that non-radiative recombination components of the underlying dark diode current have been reduced, exposing the limiting radiative recombination component and providing a pathway for realizing solar-electric conversion efficiency of 30% or more in single junction cells.

  13. Efficient prediction of terahertz quantum cascade laser dynamics from steady-state simulations

    SciTech Connect

    Agnew, G.; Lim, Y. L.; Nikolić, M.; Rakić, A. D.; Grier, A.; Valavanis, A.; Cooper, J.; Dean, P.; Khanna, S. P.; Lachab, M.; Linfield, E. H.; Davies, A. G.; Ikonić, Z.; Indjin, D.; Taimre, T.; Harrison, P.

    2015-04-20

    Terahertz-frequency quantum cascade lasers (THz QCLs) based on bound-to-continuum active regions are difficult to model owing to their large number of quantum states. We present a computationally efficient reduced rate equation (RE) model that reproduces the experimentally observed variation of THz power with respect to drive current and heat-sink temperature. We also present dynamic (time-domain) simulations under a range of drive currents and predict an increase in modulation bandwidth as the current approaches the peak of the light–current curve, as observed experimentally in mid-infrared QCLs. We account for temperature and bias dependence of the carrier lifetimes, gain, and injection efficiency, calculated from a full rate equation model. The temperature dependence of the simulated threshold current, emitted power, and cut-off current are thus all reproduced accurately with only one fitting parameter, the interface roughness, in the full REs. We propose that the model could therefore be used for rapid dynamical simulation of QCL designs.

  14. Measuring the X-ray quantum efficiency of a hybrid CMOS detector with 55Fe

    NASA Astrophysics Data System (ADS)

    Bongiorno, S. D.; Falcone, A. D.; Prieskorn, Z.; Griffith, C.; Burrows, D. N.

    2015-06-01

    Charge coupled devices (CCDs) are currently the workhorse focal plane arrays operating aboard many orbiting astrophysics X-ray telescopes, e.g. Chandra, XMM-Newton, Swift, and Suzaku. In order to meet the count rate, power, and mission duration requirements defined by next-generation X-ray telescopes, future detectors will need to be read out faster, consume less power, and be more resistant to radiation and micrometeoroid damage than current-generation devices. The hybrid CMOS detector (HCD), a type of active pixel sensor, is currently being developed to meet these requirements. With a design architecture that involves bump bonding two semiconductor substrates together at the pixel level, these devices exhibit both the high read speed and low power consumption of CMOS readout circuitry and the high quantum efficiency (QE) of a deeply depleted silicon absorber. These devices are expected to exhibit the same excellent, high-energy quantum efficiency (QE) as deep-depletion CCDs (QE > 0.9 at 6 keV), while at the same time exhibiting superior readout flexibility, power consumption, and radiation hardness than CCDs. In this work we present a QE model for a Teledyne Imaging Sensors HyViSI HCD, which predicts QE=96% at 55Fe source energies (5.89 and 6.49 keV). We then present a QE measurement of the modeled device at the same energies, which shows QE=97±5% and is in good agreement with the model.

  15. Design of quantum efficiency measurement system for variable doping GaAs photocathode

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Yang, Kai; Liu, HongLin; Chang, Benkang

    2008-03-01

    To achieve high quantum efficiency and good stability has been a main direction to develop GaAs photocathode recently. Through early research, we proved that variable doping structure is executable and practical, and has great potential. In order to optimize variable doping GaAs photocathode preparation techniques and study the variable doping theory deeply, a real-time quantum efficiency measurement system for GaAs Photocathode has been designed. The system uses FPGA (Field-programmable gate array) device, and high speed A/D converter to design a high signal noise ratio and high speed data acquisition card. ARM (Advanced RISC Machines) core processor s3c2410 and real-time embedded system are used to obtain and show measurement results. The measurement precision of photocurrent could reach 1nA, and measurement range of spectral response curve is within 400~1000nm. GaAs photocathode preparation process can be real-time monitored by using this system. This system could easily be added other functions to show the physic variation of photocathode during the preparation process more roundly in the future.

  16. Revolutionary Method for Increasing the Efficiency of White Light Quantum Dot LEDs

    SciTech Connect

    Duty, Chad E; Bennett, Charlee J C; Sabau, Adrian S; Jellison Jr, Gerald Earle; Boudreaux, Philip R; Walker, Steven C; Ott, Ronald D

    2011-01-01

    Covering a light-emitting diode (LED) with quantum dots (QDs) can produce a broad spectrum of white light. However, current techniques for applying QDs to LEDs suffer from a high density of defects and a non-uniform distribution of QDs, which respec-tively diminish the efficiency and quality of emitted light. Oak Ridge National Laboratory (ORNL) has the unique capability to thermally anneal QD structures at extremely high power densities for very short durations. This process, called pulse thermal proc-essing (PTP), reduces the number of point defects while main-taining the size and shape of the original QD nanostructure. Therefore, the efficiency of the QD wavelength conversion layer is improved without altering the emission spectrum defined by the size distribution of the quantum dot nanoparticles. The cur-rent research uses a thermal model to predict annealing tempera-tures during PTP and demonstrates up to a 300% increase in pho-toluminescence for QDs on passive substrates

  17. Sensitive fluorescence response of ZnSe(S) quantum dots: an efficient fluorescence probe

    NASA Astrophysics Data System (ADS)

    Saikia, K.; Deb, P.; Kalita, E.

    2013-06-01

    An efficient fluorescence probe based on ZnSe(S) alloyed quantum dots (QDs) has been reported here. The alloyed QDs were prepared through an aqueous route, where 3-mercaptopropionic acid (MPA) was employed as the effective precursor for both the sulfur source and stabilizer in the development of the alloyed system. Five-fold quantum yield (QY) enhancement was obtained for the ZnSe(S) QDs compared to the ZnSe QDs, formed in the initial stage of the refluxing process. The ultimate alloyed systems retained their high biocompatibility characteristics similar to the conventional ZnSe QDs. The photoluminescence of the ZnSe(S) QDs showed pH dependence, which was also evidenced in mammalian lymphocyte cells suspended in biological buffer over a wide pH range of 4.00-12.00. These characteristics make our prepared ZnSe(S) an efficient system for development of cell tracking, monitoring and sensing intracellular nanoprobes and devices.

  18. Characterization of pixel crosstalk and impact of Bayer patterning by quantum efficiency measurement

    NASA Astrophysics Data System (ADS)

    Vaillant, Jérôme; Mornet, Clémence; Decroux, Thomas; Hérault, Didier; Schanen, Isabelle

    2011-01-01

    Development of small pixels for high resolution image sensors implies a lot of challenges. A high level of performance should be guaranteed whereas the overall size must be reduced and so the degree of freedom in design and process. One key parameter of this constant improvement is the knowledge and the control of the crosstalk between pixels. In this paper, we present an advance in crosstalk characterization method based on the design of specific color patterns and the measurement of quantum efficiency. In a first part, we describe the color patterns designed to isolate one pixel or to simulate un-patterned colored pixels. These patterns have been implemented on test-chip and characterized. The second part deals with the characterization setup for quantum efficiency. Indeed, the use of spectral measurements allows us to discriminate pixels based on the color filter placed on top of them and to probe the crosstalk as a function of the depth in silicon, thanks to the photon absorption length variation with the wavelength. In the last part, results are presented showing the impact of color filters patterning, i.e. pixels in a Bayer pattern versus un-patterned pixels. The crosstalk directions and amplitudes are also analyzed in relation to pixel layout.

  19. Efficiency improvement by near infrared quantum dots for luminescent solar concentrators

    NASA Astrophysics Data System (ADS)

    Wang, Chunhua; Shcherbatyuk, Georgiy; Inman, Richard; Pelka, Dave; Zhang, Weiya; Rodriguez, Yvonne; Carter, Sue; Winston, Roland; Ghosh, Sayantani

    2010-08-01

    Quantum dot (QD) luminescent solar concentrator (LSC) uses a sheet of highly transparent materials doped with luminescent QDs materials. Sunlight is absorbed by these quantum dots and emitted through down conversion process. The emitted light is trapped in the sheet and travels to the edges where it can be collected by photovoltaic solar cells. In this study, we investigate the performance of LSCs fabricated with near infrared QDs (lead sulfide) and compared with the performance of LSCs containing normal visible QDs (CdSe/ZnS), and LSCs containing organic dye (Rhodamine B). Effects of materials concentrations (related to re-absorption) on the power conversion efficiency are also analyzed. The results show that near infrared QDs LSCs can generate nearly twice as much as the output current from normal QDs and organic dye LSCs. This is due to their broad absorption spectra. If stability of QDs is further improved, the near infrared QDs will dramatically improve the efficiency of LSCs for solar energy conversion with lower cost per Wp.

  20. Surface-Tuned Co3O4 Nanoparticles Dispersed on Nitrogen-Doped Graphene as an Efficient Cathode Electrocatalyst for Mechanical Rechargeable Zinc-Air Battery Application.

    PubMed

    Singh, Santosh K; Dhavale, Vishal M; Kurungot, Sreekumar

    2015-09-30

    The most vital component of the fuel cells and metal-air batteries is the electrocatalyst, which can facilitate the oxygen reduction reaction (ORR) at a significantly reduced overpotential. The present work deals with the development of surface-tuned cobalt oxide (Co3O4) nanoparticles dispersed on nitrogen-doped graphene as a potential ORR electrocatalyst possessing some unique advantages. The thermally reduced nitrogen-doped graphene (NGr) was decorated with three different morphologies of Co3O4 nanoparticles, viz., cubic, blunt edged cubic, and spherical, by using a simple hydrothermal method. We found that the spherical Co3O4 nanoparticle supported NGr catalyst (Co3O4-SP/NGr-24h) has acquired a significant activity makeover to display the ORR activity closely matching with the state-of-the-art Pt supported carbon (PtC) catalyst in alkaline medium. Subsequently, the Co3O4-SP/NGr-24h catalyst has been utilized as the air electrode in a Zn-air battery, which was found to show comparable performance to the system derived from PtC. Co3O4-SP/NGr-24h catalyst has shown several hours of flat discharge profile at the discharge rates of 10, 20, and 50 mA/cm(2) with a specific capacity and energy density of ~590 mAh/g-Zn and ~840 Wh/kg-Zn, respectively, in the primary Zn-air battery system. In conjunction, Co3O4-SP/NGr-24h has outperformed as an air electrode in mechanical rechargeable Zn-air battery as well, which has shown consistent flat discharge profile with minimal voltage loss at a discharge rate of 50 mA/cm(2). The present results, thus demonstrate that the proper combination of the tuned morphology of Co3O4 with NGr will be a promising and inexpensive material for efficient and ecofriendly cathodes for Zn-air batteries. PMID:26376490

  1. The quantum efficiency of HgCdTe photodiodes in relation to the direction of illumination and to their geometry

    NASA Technical Reports Server (NTRS)

    Rosenfeld, D.; Bahir, G.

    1993-01-01

    A theoretical study of the effect of the direction of the incident light on the quantum efficiency of homogeneous HgCdTe photodiodes suitable for sensing infrared radiation in the 8-12 microns atmospheric window is presented. The probability of an excess minority carrier to reach the junction is derived as a function of its distance from the edge of the depletion region. Accordingly, the quantum efficiency of photodiodes is presented for two geometries. In the first, the light is introduced directly to the area in which it is absorbed (opaque region), while in the second, the light passes through a transparent region before it reaches the opaque region. Finally, the performance of the two types of diodes is analyzed with the objective of finding the optimal width of the absorption area. The quantum efficiency depends strongly on the way in which the light is introduced. The structure in which the radiation is absorbed following its crossing the transparent region is associated with both higher quantum efficiency and homogeneity. In addition, for absorption region widths higher than a certain minimum, the quantum efficiency in this case is insensitive to the width of the absorption region.

  2. Long term operation of high quantum efficiency GaAs(Cs,O) photocathodes using multiple recleaning by atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Orlov, D. A.; Krantz, C.; Wolf, A.; Jaroshevich, A. S.; Kosolobov, S. N.; Scheibler, H. E.; Terekhov, A. S.

    2009-09-01

    Atomic hydrogen, produced by thermal dissociation of H2 molecules inside a hot tungsten capillary, is shown to be an efficient tool for multiple recleaning of degraded surfaces of high quantum efficiency transmission-mode GaAs photocathodes within an ultrahigh vacuum (UHV) multichamber photoelectron gun. Ultraviolet quantum yield photoemission spectroscopy has been used to study the removal of surface pollutants and the degraded (Cs,O)-activation layer during the cleaning procedure. For photocathodes grown by the liquid-phase epitaxy technique, the quantum efficiency is found to be stable at about 20% over a large number of atomic hydrogen cleaning cycles. A slow degradation of the quantum efficiency is observed for photocathodes grown by metal-organic chemical vapor deposition, although they reached a higher initial quantum efficiency of about 30%-35%. Study of the spatial distributions of photoluminescence intensity on these photocathodes proved that this overall degradation is likely due to insertion of a dislocation network into the mechanically strained photocathode heterostructures during multiple heating cycles and is not due to the atomic hydrogen treatment itself.

  3. Modification of hybrid active bilayer for enhanced efficiency and stability in planar heterojunction colloidal quantum dot photovoltaics

    PubMed Central

    2013-01-01

    Solution-processed planar heterojunction colloidal quantum dot photovoltaics with a hybrid active bilayer is demonstrated. A power conversion efficiency of 1.24% under simulated air mass 1.5 illumination conditions is reported. This was achieved through solid-state treatment with cetyltrimethylammonium bromide of PbS colloidal quantum dot solid films. That treatment was used to passivate Br atomic ligands as well as to engineer the interface within the hybrid active bilayer. PMID:24252664

  4. Cauliflower-like SnO2 hollow microspheres as anode and carbon fiber as cathode for high performance quantum dot and dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ganapathy, Veerappan; Kong, Eui-Hyun; Park, Yoon-Cheol; Jang, Hyun Myung; Rhee, Shi-Woo

    2014-02-01

    Cauliflower-like tin oxide (SnO2) hollow microspheres (HMS) sensitized with multilayer quantum dots (QDs) as photoanode and alternative stable, low-cost counter electrode are employed for the first time in QD-sensitized solar cells (QDSCs). Cauliflower-like SnO2 hollow spheres mainly consist of 50 nm-sized agglomerated nanoparticles; they possess a high internal surface area and light scattering in between the microspheres and shell layers. This makes them promising photoanode material for both QDSCs and dye-sensitized solar cells (DSCs). Successive ionic layer adsorption and reaction (SILAR) method and chemical bath deposition (CBD) are used for QD-sensitizing the SnO2 microspheres. Additionally, carbon-nanofiber (CNF) with a unique structure is used as an alternative counter electrode (CE) and compared with the standard platinum (Pt) CE. Their electrocatalytic properties are measured using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and Tafel-polarization. Under 1 sun illumination, solar cells made with hollow SnO2 photoanode sandwiched with the stable CNF CE showed a power conversion efficiency of 2.5% in QDSCs and 3.0% for DSCs, which is quite promising with the standard Pt CE (QDSCs: 2.1%, and DSCs: 3.6%).Cauliflower-like tin oxide (SnO2) hollow microspheres (HMS) sensitized with multilayer quantum dots (QDs) as photoanode and alternative stable, low-cost counter electrode are employed for the first time in QD-sensitized solar cells (QDSCs). Cauliflower-like SnO2 hollow spheres mainly consist of 50 nm-sized agglomerated nanoparticles; they possess a high internal surface area and light scattering in between the microspheres and shell layers. This makes them promising photoanode material for both QDSCs and dye-sensitized solar cells (DSCs). Successive ionic layer adsorption and reaction (SILAR) method and chemical bath deposition (CBD) are used for QD-sensitizing the SnO2 microspheres. Additionally, carbon-nanofiber (CNF) with a

  5. Efficient recycling strategies for preparing large Fock states from single-photon sources: Applications to quantum metrology

    NASA Astrophysics Data System (ADS)

    Motes, Keith R.; Mann, Ryan L.; Olson, Jonathan P.; Studer, Nicholas M.; Bergeron, E. Annelise; Gilchrist, Alexei; Dowling, Jonathan P.; Berry, Dominic W.; Rohde, Peter P.

    2016-07-01

    Fock states are a fundamental resource for many quantum technologies such as quantum metrology. While much progress has been made in single-photon source technologies, preparing Fock states with a large photon number remains challenging. We present and analyze a bootstrapped approach for nondeterministically preparing large photon-number Fock states by iteratively fusing smaller Fock states on a beamsplitter. We show that by employing state recycling we are able to exponentially improve the preparation rate over conventional schemes, allowing the efficient preparation of large Fock states. The scheme requires single-photon sources, beamsplitters, number-resolved photodetectors, fast-feedforward, and an optical quantum memory.

  6. Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations.

    PubMed

    Schwörer, Magnus; Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul

    2015-03-14

    Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 10(3)-10(5) molecules as negative gradients of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM technique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly entails a strictly linear scaling of the computational effort with the system size, and adapting this revised FMM approach to the computation of the interactions between the DFT and PMM fragments of a simulation system, here, we show how one can further enhance the efficiency and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables the efficient use of high-performance computing systems. The associated software is available online. PMID:25770527

  7. Quantum Monte Carlo for large chemical systems: implementing efficient strategies for petascale platforms and beyond.

    PubMed

    Scemama, Anthony; Caffarel, Michel; Oseret, Emmanuel; Jalby, William

    2013-04-30

    Various strategies to implement efficiently quantum Monte Carlo (QMC) simulations for large chemical systems are presented. These include: (i) the introduction of an efficient algorithm to calculate the computationally expensive Slater matrices. This novel scheme is based on the use of the highly localized character of atomic Gaussian basis functions (not the molecular orbitals as usually done), (ii) the possibility of keeping the memory footprint minimal, (iii) the important enhancement of single-core performance when efficient optimization tools are used, and (iv) the definition of a universal, dynamic, fault-tolerant, and load-balanced framework adapted to all kinds of computational platforms (massively parallel machines, clusters, or distributed grids). These strategies have been implemented in the QMC=Chem code developed at Toulouse and illustrated with numerical applications on small peptides of increasing sizes (158, 434, 1056, and 1731 electrons). Using 10-80 k computing cores of the Curie machine (GENCI-TGCC-CEA, France), QMC=Chem has been shown to be capable of running at the petascale level, thus demonstrating that for this machine a large part of the peak performance can be achieved. Implementation of large-scale QMC simulations for future exascale platforms with a comparable level of efficiency is expected to be feasible. PMID:23288704

  8. Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations

    SciTech Connect

    Schwörer, Magnus; Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul

    2015-03-14

    Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 10{sup 3}-10{sup 5} molecules as negative gradients of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM technique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly entails a strictly linear scaling of the computational effort with the system size, and adapting this revised FMM approach to the computation of the interactions between the DFT and PMM fragments of a simulation system, here, we show how one can further enhance the efficiency and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables the efficient use of high-performance computing systems. The associated software is available online.

  9. Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Schwörer, Magnus; Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul

    2015-03-01

    Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 103-105 molecules as negative gradients of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM technique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly entails a strictly linear scaling of the computational effort with the system size, and adapting this revised FMM approach to the computation of the interactions between the DFT and PMM fragments of a simulation system, here, we show how one can further enhance the efficiency and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables the efficient use of high-performance computing systems. The associated software is available online.

  10. Detective quantum efficiency of photon-counting x-ray detectors

    SciTech Connect

    Tanguay, Jesse; Yun, Seungman; Kim, Ho Kyung; Cunningham, Ian A.

    2015-01-15

    Purpose: Single-photon-counting (SPC) x-ray imaging has the potential to improve image quality and enable novel energy-dependent imaging methods. Similar to conventional detectors, optimizing image SPC quality will require systems that produce the highest possible detective quantum efficiency (DQE). This paper builds on the cascaded-systems analysis (CSA) framework to develop a comprehensive description of the DQE of SPC detectors that implement adaptive binning. Methods: The DQE of SPC systems can be described using the CSA approach by propagating the probability density function (PDF) of the number of image-forming quanta through simple quantum processes. New relationships are developed to describe PDF transfer through serial and parallel cascades to accommodate scatter reabsorption. Results are applied to hypothetical silicon and selenium-based flat-panel SPC detectors including the effects of reabsorption of characteristic/scatter photons from photoelectric and Compton interactions, stochastic conversion of x-ray energy to secondary quanta, depth-dependent charge collection, and electronic noise. Results are compared with a Monte Carlo study. Results: Depth-dependent collection efficiency can result in substantial broadening of photopeaks that in turn may result in reduced DQE at lower x-ray energies (20–45 keV). Double-counting interaction events caused by reabsorption of characteristic/scatter photons may result in falsely inflated image signal-to-noise ratio and potential overestimation of the DQE. Conclusions: The CSA approach is extended to describe signal and noise propagation through photoelectric and Compton interactions in SPC detectors, including the effects of escape and reabsorption of emission/scatter photons. High-performance SPC systems can be achieved but only for certain combinations of secondary conversion gain, depth-dependent collection efficiency, electronic noise, and reabsorption characteristics.

  11. A novel 3D detector configuration enabling high quantum efficiency, low crosstalk, and low output capacitance

    NASA Astrophysics Data System (ADS)

    Aurola, A.; Marochkin, V.; Tuuva, T.

    2016-03-01

    The benefits of pixelated planar direct conversion semiconductor radiation detectors comprising a thick fully depleted substrate are that they offer low crosstalk, small output capacitance, and that the planar configuration simplifies manufacturing. In order to provide high quantum efficiency for high energy X-rays and Gamma-rays such a radiation detector should be as thick as possible. The maximum thickness and thus the maximum quantum efficiency has been limited by the substrate doping concentration: the lower the substrate doping the thicker the detector can be before reaching the semiconductor material's electric breakdown field. Thick direct conversion semiconductor detectors comprising vertical three-dimensional electrodes protruding through the substrate have been previously proposed by Sherwood Parker in order to promote rapid detection of radiation. An additional advantage of these detectors is that their thickness is not limited by the substrate doping, i.e., the size of the maximum electric field value in the detector does not depend on detector thickness. However, the thicker the substrate of such three dimensional detectors is the larger the output capacitance is and thus the larger the output noise is. In the novel direct conversion pixelated radiation detector utilizing a novel three dimensional semiconductor architecture, which is proposed in this work, the detector thickness is not limited by the substrate doping and the output capacitance is small and does not depend on the detector thickness. In addition, by incorporating an additional node to the novel three-dimensional semiconductor architecture it can be utilized as a high voltage transistor that can deliver current across high voltages. Furthermore, it is possible to connect a voltage difference of any size to the proposed novel three dimensional semiconductor architecture provided that it is thick enough—this is a novel feature that has not been previously possible for semiconductor

  12. Characterization of external quantum efficiency and absorption efficiency in GaAs/ InGaP double heterostructures for laser cooling applications

    NASA Astrophysics Data System (ADS)

    Wang, Chengao; Hasselbeck, Michael P.; Li, Chia-Yeh; Sheik-Bahae, Mansoor

    2010-02-01

    The state of current research in laser cooling of semiconductors is reviewed. Emphasis is placed on the characterization of external quantum efficiency and absorption efficiency in GaAs/InGaP double heterostuctures. New experimental results will be presented that characterize device operation as a function of laser excitation power and temperature. Optimum carrier density is obtained independently and used as a screening tool for sample quality. The crucial importance of parasitic background absorption is discussed.

  13. Sintered wire cathode

    DOEpatents

    Falce, Louis R.; Ives, R. Lawrence

    2009-06-09

    A porous cathode structure is fabricated from a plurality of wires which are placed in proximity to each other in elevated temperature and pressure for a sintering time. The sintering process produces the porous cathode structure which may be divided into a plurality of individual porous cathodes, one of which may be placed into a dispenser cathode support which includes a cavity for containing a work function reduction material such as BaO, CaO, and Al.sub.2O.sub.3. The work function reduction material migrates through the pores of the porous cathode from a work replenishment surface adjacent to the cavity of the dispenser cathode support to an emitting cathode surface, thereby providing a dispenser cathode which has a uniform work function and therefore a uniform electron emission.

  14. Spectral dependence of the internal quantum efficiency of organic solar cells: effect of charge generation pathways.

    PubMed

    Armin, Ardalan; Kassal, Ivan; Shaw, Paul E; Hambsch, Mike; Stolterfoht, Martin; Lyons, Dani M; Li, Jun; Shi, Zugui; Burn, Paul L; Meredith, Paul

    2014-08-13

    The conventional picture of photocurrent generation in organic solar cells involves photoexcitation of the electron donor, followed by electron transfer to the acceptor via an interfacial charge-transfer state (Channel I). It has been shown that the mirror-image process of acceptor photoexcitation leading to hole transfer to the donor is also an efficient means to generate photocurrent (Channel II). The donor and acceptor components may have overlapping or distinct absorption characteristics. Hence, different excitation wavelengths may preferentially activate one channel or the other, or indeed both. As such, the internal quantum efficiency (IQE) of the solar cell may likewise depend on the excitation wavelength. We show that several model high-efficiency organic solar cell blends, notably PCDTBT:PC70BM and PCPDTBT:PC60/70BM, exhibit flat IQEs across the visible spectrum, suggesting that charge generation is occurring either via a dominant single channel or via both channels but with comparable efficiencies. In contrast, blends of the narrow optical gap copolymer DPP-DTT with PC70BM show two distinct spectrally flat regions in their IQEs, consistent with the two channels operating at different efficiencies. The observed energy dependence of the IQE can be successfully modeled as two parallel photodiodes, each with its own energetics and exciton dynamics but both having the same extraction efficiency. Hence, an excitation-energy dependence of the IQE in this case can be explained as the interplay between two photocurrent-generating channels, without recourse to hot excitons or other exotic processes. PMID:25089640

  15. Higher than 60% internal quantum efficiency of photoluminescence from amorphous silicon oxynitride thin films at wavelength of 470 nm

    SciTech Connect

    Zhang, Pengzhan; Chen, Kunji Zhang, Pei; Fang, Zhonghui; Li, Wei; Xu, Jun; Huang, Xinfan; Dong, Hengping

    2014-07-07

    We reported the study on the photoluminescence internal quantum efficiency (PL IQE) and external quantum efficiency (PL EQE) from the amorphous silicon oxynitride (a-SiNO) films, which were fabricated by plasma-enhanced chemical vapor deposition followed by in situ plasma oxidation. We employed the direct measurement of absolute quantum efficiency within a calibrated integration sphere to obtain the PL EQE. Then, we calculated the PL IQE by combing the measured EQE and optical parameters of light extraction factor, reflectivity, and transmittance of the a-SiNO thin films. We also derived the PL QE through investigating the characteristic of the temperature dependent PL. These results show that the PL IQE as high as 60% has been achieved at peak wavelength of about 470 nm, which is much higher than that of Si nanocrystal embedded thin films.

  16. Internal quantum efficiency in yellow-amber light emitting AlGaN-InGaN-GaN heterostructures

    SciTech Connect

    Ngo, Thi Huong; Gil, Bernard; Valvin, Pierre; Damilano, Benjamin; Lekhal, Kaddour; De Mierry, Philippe

    2015-09-21

    We determine the internal quantum efficiency of strain-balanced AlGaN-InGaN-GaN hetero-structures designed for yellow-amber light emission, by using a recent model based on the kinetics of the photoluminescence decay initiated by Iwata et al. [J. Appl. Phys. 117, 075701 (2015)]. Our results indicate that low temperature internal quantum efficiencies sit in the 50% range and we measure that adding an AlGaN layer increases the internal quantum efficiency from 50% up to 57% with respect to the GaN-InGaN case. More dramatic, it almost doubles from 2.5% up to 4.3% at room temperature.

  17. An experiment to test the viability of a gallium-arsenide cathode in a SRF electron gun

    SciTech Connect

    Kewisch,J.; Ben-Zvi, I.; Rao, T.; Burrill, A.; Pate, D.; Wu, Q.; Todd, R.; Wang, E.; Bluem, H.; Holmes, D.; Schultheiss, T.

    2009-05-04

    Strained gallium arsenide cathodes are used in electron guns for the production of polarized electrons. In order to have a sufficient quantum efficiency lifetime of the cathode the vacuum in the gun must be 10{sup -11} Torr or better, so that the cathode is not destroyed by ion back bombardment or through contamination with residual gases. All successful polarized guns are DC guns, because such vacuum levels can not be obtained in normal conducting RF guns. A superconductive RF gun may provide a sufficient vacuum level due to cryo-pumping of the cavity walls. We report on the progress of our experiment to test such a gun with normal GaAs-Cs crystals.

  18. Efficient Light-driven Long Distance Charge Separation and H2 Generation in Semiconductor Quantum Rods and Nanoplatelets

    NASA Astrophysics Data System (ADS)

    Lian, Tianquan

    Quantum confined semiconductor nanocrystals (0D quantum dots, 1D quantum rods and 2D quantum platlets) have been intensively investigated as light harvesting and charge separation materials for photovoltaic and photocatalytic applications. The efficiency of these semiconductor nanocrystal-based devices depends on many fundamental processes, including light harvesting, carrier relaxation, exciton localization and transport, charge separation and charge recombination. The competition between these processes determines the overall solar energy conversion (solar to electricity or fuel) efficiency. Semiconductor nano-heterostructures, combining two or more material components, offer unique opportunities to control their charge separation properties by tailoring their compositions, dimensions and spatial arrangement. Further integration of catalysts (heterogeneous or homogeneous) to these materials form multifunctional nano-heterostructures. Using 0D, 1D and 2D CdSe/CdS/Pt heterostructures as model systems, we directly probe the above-mentioned fundamental exciton and carrier processes by transient absorption and time-resolved fluorescence spectroscopy. We are examining how to control these fundamental processes through the design of heterostructures to achieve long-lived charge separation and efficient H2 generation. In this talk, we will discuss a new model for exciton dissociation by charge transfer in quantum dots (i.e. Auger assisted electron transfer), mechanism of 1D and 2D exciton transport and dissociation in nanorods, and key factors limiting H2 generation efficiency in CdSe/CdS/Pt nanorod heterostructures.

  19. Facile in Situ Preparation of Graphitic-C₃N₄@carbon Paper As an Efficient Metal-Free Cathode for Nonaqueous Li-O₂ Battery.

    PubMed

    Yi, Jin; Liao, Kaiming; Zhang, Chaofeng; Zhang, Tao; Li, Fujun; Zhou, Haoshen

    2015-05-27

    The rechargeable Li-O2 batteries with high theoretical specific energy are considered to be a promising energy storage system for electric vehicle application. Because of the prohibitive cost, limited supply, and weak durability of precious metals, the developments of novel metal-free catalysts become significant. Herein, the graphitic-carbon nitride@carbon papers have been produced by a facile in situ method and explored as cathodes for Li-O2 batteries, which manifest considerable electrocatalytic activity toward oxygen reduction reaction and oxygen evolution reaction in nonaqueous electrolytes because of their improved electronic conductivity and high nitrogen content. The assembled Li-O2 batteries using graphitic-carbon nitride@carbon papers as cathodes deliver good rate capability and cycling stability with a capacity retention of more than 100 cycles. PMID:25901759

  20. Proposal for efficient mode converter based on cavity quantum electrodynamics dark mode in a semiconductor quantum dot coupled to a bimodal microcavity

    NASA Astrophysics Data System (ADS)

    Li, Jiahua; Yu, Rong; Ma, Jinyong; Wu, Ying

    2014-10-01

    The ability to engineer and convert photons between different modes in a solid-state approach has extensive technological implications not only for classical communication systems but also for future quantum networks. In this paper, we put forward a scheme for coherent mode conversion of optical photons by utilizing the intermediate coupling between a single quantum dot and a bimodal photonic crystal microcavity via a waveguide. Here, one mode of the photonic crystal microcavity is coherently driven by an external single-frequency continuous-wave laser field and the two cavity modes are not coupled to each other due to their orthogonal polarizations. The undriven cavity mode is thus not directly coupled to the input driving laser and the only way it can get light is via the quantum dot. The influences of the system parameters on the photon-conversion efficiency are analyzed in detail in the limit of weak probe field and it is found that high photon-conversion efficiency can be achieved under appropriate conditions. It is shown that the cavity dark mode, which is a superposition of the two optical modes and is decoupled from the quantum dot, can appear in such a hybrid optical system. We discuss the properties of the dark mode and indicate that the formation of the dark mode enables the efficient transfer of optical fields between the two cavity modes.

  1. Proposal for efficient mode converter based on cavity quantum electrodynamics dark mode in a semiconductor quantum dot coupled to a bimodal microcavity

    SciTech Connect

    Li, Jiahua; Yu, Rong; Ma, Jinyong; Wu, Ying

    2014-10-28

    The ability to engineer and convert photons between different modes in a solid-state approach has extensive technological implications not only for classical communication systems but also for future quantum networks. In this paper, we put forward a scheme for coherent mode conversion of optical photons by utilizing the intermediate coupling between a single quantum dot and a bimodal photonic crystal microcavity via a waveguide. Here, one mode of the photonic crystal microcavity is coherently driven by an external single-frequency continuous-wave laser field and the two cavity modes are not coupled to each other due to their orthogonal polarizations. The undriven cavity mode is thus not directly coupled to the input driving laser and the only way it can get light is via the quantum dot. The influences of the system parameters on the photon-conversion efficiency are analyzed in detail in the limit of weak probe field and it is found that high photon-conversion efficiency can be achieved under appropriate conditions. It is shown that the cavity dark mode, which is a superposition of the two optical modes and is decoupled from the quantum dot, can appear in such a hybrid optical system. We discuss the properties of the dark mode and indicate that the formation of the dark mode enables the efficient transfer of optical fields between the two cavity modes.

  2. Pressed boride cathodes

    NASA Technical Reports Server (NTRS)

    Wolski, W.

    1985-01-01

    Results of experimental studies of emission cathodes made from lanthanum, yttrium, and gadolinium hexaborides are presented. Maximum thermal emission was obtained from lanthanum hexaboride electrodes. The hexaboride cathodes operated stably under conditions of large current density power draw, at high voltages and poor vacuum. A microtron electron gun with a lanthanum hexaboride cathode is described.

  3. Roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well light-emitting diodes

    SciTech Connect

    Quan, Zhijue Wang, Li Zheng, Changda; Liu, Junlin; Jiang, Fengyi

    2014-11-14

    The roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well (MQW) light-emitting diodes are investigated by numerical simulation. The simulation results show that V-shaped pits cannot only screen dislocations, but also play an important role on promoting hole injection into the MQWs. It is revealed that the injection of holes into the MQW via the sidewalls of the V-shaped pits is easier than via the flat region, due to the lower polarization charge densities in the sidewall structure with lower In concentration and (10–11)-oriented semi-polar facets.

  4. An easy and innovative method based on spray-pyrolysis deposition to obtain high efficiency cathodes for Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    dos Santos-Gómez, L.; Porras-Vázquez, J. M.; Martín, F.; Ramos-Barrado, J. R.; Losilla, E. R.; Marrero-López, D.

    2016-07-01

    A novel electrode preparation method based on the spray-pyrolysis deposition of metal nitrate solutions onto a porous electrolyte scaffold is proposed. This method has been proved with different cathode materials, usually used in Solid Oxide Fuel Cells, such as La0.8Sr0.2MnO3-δ and La0.6Sr0.4Co1-xFexO3-δ (x = 0, 0.2, 0.8 and 1). The electrode microstructure is composed by two layers; the inner layer is a porous electrolyte scaffold homogeneously coated by cathode nanoparticles, providing an increased number of triple phase boundary sites for oxygen reduction, whereas, the top layer is formed by only cathode nanoparticles and acts mainly as a current collector. Polarization resistance values as low as 0.07 and 1.0 Ω cm2 at 600 and 450 °C, respectively, are obtained at open circuit voltage. This alternative approach has several advantages with respect to the traditional wet infiltration method for large area electrode fabrication, such as higher reproducibility, shorter preparation time in a single thermal deposition step, and easy implementation at industrial scale as a continuous process.

  5. An efficient electrocatalyst as cathode material for solid oxide fuel cells: BaFe0·95Sn0·05O3-δ

    NASA Astrophysics Data System (ADS)

    Dong, Feifei; Ni, Meng; He, Wei; Chen, Yubo; Yang, Guangming; Chen, Dengjie; Shao, Zongping

    2016-09-01

    The B-site substitution with the minor amount of tin in BaFeO3-δ parent oxide is expected to stabilize a single perovskite lattice structure. In this study, a composition of BaFe0·95Sn0·05O3-δ (BFS) as a new cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs) is synthesized and characterized. Special attention is paid to the exploration of some basic properties including phase structure, oxygen non-stoichiometry, electrical conductivity, oxygen bulk diffusion coefficient, and surface exchange coefficient, which are of significant importance to the electrochemical activity of cathode materials. BFS holds a single cubic perovskite structure over temperature range of cell operation, determined by in-situ X-ray diffraction and scanning transmission electron microscope. A high oxygen vacancy concentration at cell operating temperatures is observed by combining thermo-gravimetric data and iodometric titration result. Furthermore, electrical conductivity relaxation measurement illustrates the fast oxygen bulk diffusion and surface exchange kinetics. Accordingly, testing cells based on BFS cathode material demonstrate the low polarization resistance of 0.033 Ω cm2 and high peak power density of 1033 mW cm-2 at 700 °C, as well as a relatively stable long-term operation for ∼300 h. The results obtained suggest that BFS perovskite oxide holds a great promise as an oxygen reduction electrocatalyst for IT-SOFCs.

  6. Highly Efficient Nondoped Organic Light Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitter with Quantum-Well Structure.

    PubMed

    Meng, Lingqiang; Wang, Hui; Wei, Xiaofang; Liu, Jianjun; Chen, Yongzhen; Kong, Xiangbin; Lv, Xiaopeng; Wang, Pengfei; Wang, Ying

    2016-08-17

    Highly efficiency nondoped thermally activated delayed fluorescence (TADF) organic light emitting diodes (OLEDs) with multiquantum wells structure were demonstrated. By using an emitting layer with seven quantum wells, the nondoped TADF OLEDs exhibit high efficiency with EQE of 22.6%, a current efficiency of 69 cd/A, and a power efficiency of 50 lm/W, which are higher than those of the conventional doped OLED and among the best of the TADF OLEDs. The high performance of the devices can be ascribed to effective confinement of the charges and excitons in the emission layer by the quantum well structure. The emission layer with multiquantum well structure is demonstrated to be cost effective for highly efficient nondoped TADF OLEDs and holds great potential for organic electronics. PMID:27452075

  7. PbSe Quantum Dot Solar Cells with More than 6% Efficiency Fabricated in Ambient Atmosphere

    SciTech Connect

    Zhang, Jianbing; Gao, Jianbo; Church, Carena P.; Miller, Elisa M.; Luther, Joseph M.; Klimov, Victor I.; Beard, Matthew C.

    2014-09-09

    Colloidal quantum dots (QDs) are promising candidates for the next generation of photovoltaic (PV) technologies. Much of the progress in QD PVs is based on using PbS QDs, partly because they are stable under ambient conditions. There is considerable interest in extending this work to PbSe QDs, which have shown an enhanced photocurrent due to multiple exciton generation (MEG). One problem complicating such device-based studies is a poor stability of PbSe QDs toward exposure to ambient air. We develop a direct cation exchange synthesis to produce PbSe QDs with a large range of sizes and with in situ chloride and cadmium passivation. The synthesized QDs have excellent air stability, maintaining their photoluminescence quantum yield under ambient conditions for more than 30 days. When we use QDs, we fabricate high-performance solar cells without any protection and demonstrate a power conversion efficiency exceeding 6%, which is a current record for PbSe QD solar cells.

  8. Efficient intranuclear gene delivery by CdSe aqueous quantum dots electrostatically-coated with polyethyleneimine

    NASA Astrophysics Data System (ADS)

    Au, Giang H. T.; Y Shih, Wan; Shih, Wei-Heng

    2015-01-01

    Quantum dots (QDs) are semiconducting nanoparticles with photoluminescence properties that do not photobleach. Due to these advantages, using QDs for non-viral gene delivery has the additional benefit of being able to track the delivery of the genes in real time as it happens. We investigate the efficacy of mercaptopropionic acid (MPA)-capped CdSe aqueous quantum dots (AQDs) electrostatically complexed with branched polyethyleneimine (PEI) both as a non-viral gene delivery vector and as a fluorescent probe for tracking the delivery of genes into nuclei. The MPA-capped CdSe AQDs that were completely synthesized in water were the model AQDs. A nominal MPA:Cd:Se = 4:3:1 was chosen for optimal photoluminescence and zeta potential. The gene delivery study was carried out in vitro using a human colon cancer cell line, HT29 (ATCC). The model gene was a plasmid DNA (pDNA) that can express red fluorescent protein (RFP). Positively charged branched PEI was employed to provide a proton buffer to the AQDs to allow for endosomal escape. It is shown that by using a PEI-AQD complex with a PEI/AQD molar ratio of 300 and a nominal pDNA/PEI-AQD ratio of 6, we can achieve 75 ± 2.6% RFP expression efficiency with cell vitality remaining at 78 ± 4% of the control.

  9. PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere.

    PubMed

    Zhang, Jianbing; Gao, Jianbo; Church, Carena P; Miller, Elisa M; Luther, Joseph M; Klimov, Victor I; Beard, Matthew C

    2014-10-01

    Colloidal quantum dots (QDs) are promising candidates for the next generation of photovoltaic (PV) technologies. Much of the progress in QD PVs is based on using PbS QDs, partly because they are stable under ambient conditions. There is considerable interest in extending this work to PbSe QDs, which have shown an enhanced photocurrent due to multiple exciton generation (MEG). One problem complicating such device-based studies is a poor stability of PbSe QDs toward exposure to ambient air. Here we develop a direct cation exchange synthesis to produce PbSe QDs with a large range of sizes and with in situ chloride and cadmium passivation. The synthesized QDs have excellent air stability, maintaining their photoluminescence quantum yield under ambient conditions for more than 30 days. Using these QDs, we fabricate high-performance solar cells without any protection and demonstrate a power conversion efficiency exceeding 6%, which is a current record for PbSe QD solar cells. PMID:25203870

  10. The efficiency of parallel quantum memory for light in a cavity configuration

    NASA Astrophysics Data System (ADS)

    Vetlugin, A. N.; Sokolov, I. V.

    2013-12-01

    We present a new scheme of quantum memory for optical images (spatially multimode light fields) that allows mapping the quantum state of the signal onto the long-lived coherence of the ground state of an ensemble of stationary atoms or impurity centers. The memory medium is embedded in an optical cavity with degenerate transverse modes, which increases the effective optical thickness of the medium and allows one, in principle, to store information in optically thin atomic layers. Since, in reality, storage and retrieval of limited-duration signals, including signals shorter than the lifetime of the field in the cavity, is of interest, we do not use the low- Q cavity approximation. The influence of losses due to partial reflection of the nonstationary signal field incident on a coupling mirror on the storage efficiency is considered. We used the method of approximate impedance matching, wherein losses due to reflection can be minimized by controlling the coupling parameter of the light field with memory medium in time, thus creating conditions for destructive interference of the signal and local fields on the coupling mirror. The influence of diffraction on the transverse resolution of memory at the writing and readout stages is investigated, and the number of effectively stored transverse spatial modes of the signal is estimated.

  11. High efficiency, single-lobe surface-emitting DFB/DBR quantum cascade lasers.

    PubMed

    Liu, Ying-Hui; Zhang, Jin-Chuan; Yan, Fang-Liang; Jia, Zhi-Wei; Liu, Feng-Qi; Liang, Ping; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Wang, Zhan-Guo

    2016-08-22

    We demonstrate a surface-emitting quantum cascade laser (QCL) based on second-order buried distributed feedback/distributed Bragg reflector (DFB/DBR) gratings for feedback and outcoupling. The grating fabricated beneath the waveguide was found to fundamentally favor lasing in symmetric mode either through analysis or experiment. Single-lobe far-field radiation pattern with full width at half maximum (FWHM) of 0.18° was obtained along the cavity-length direction. Besides, the buried DFB/DBR grating structure successfully provided an efficient vertical outcoupling mechanism with low optical losses, which manages to achieve a high surface outcouping efficiency of 46% in continuous-wave (CW) operation and 60% in pulsed operation at room temperature. Single-mode emission with a side-mode suppression ratio (SMSR) about 25 dB was continuously tunable by heat sink temperature or injection current. Our work contributes to the realization of high efficiency surface-emitting devices with high far-field beam quality that are significantly needed in many application fields. PMID:27557231

  12. External quantum efficiency and photovoltaic performance of silicon cells deposited with aluminum, indium, and silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Ho, Wen-Jeng; Hu, Chia-Hua; Yeh, Chien-Wu; Lee, Yi-Yu

    2016-08-01

    In this study, the plasmonic light scattering of aluminum (Al), indium (In), and sliver (Ag) nanoparticles (NPs) deposited on silicon solar cells was demonstrated. For comparison, the dimensions of all NPs were maintained at 17–25 nm with a coverage of approximately 30–40% through the control of film deposition and thermal annealing conditions. Absorbance and surface plasmon Raman scattering were used to examine the different localized surface plasmon resonances (LSPRs) of the proposed NPs. Optical reflectance, external quantum efficiency (EQE) response, and photovoltaic current density–voltage characteristics under AM 1.5G illumination were used to confirm the contribution of the plasmonic light scattering of the NPs. The conversion efficiencies of the solar cells with Al, In, and Ag NPs increased 1.21-, 1.23-, and 1.17-fold, respectively, compared with that of the reference bare Si solar cell. The EQE response and photovoltaic performance revealed that Al and In NPs produced broadband plasmonic light scattering and increased efficiency, far exceeding the results obtained using Ag NPs.

  13. Highly efficient potentiometric glucose biosensor based on functionalized InN quantum dots

    NASA Astrophysics Data System (ADS)

    Alvi, N. H.; Soto Rodriguez, P. E. D.; Gómez, V. J.; Kumar, Praveen; Amin, G.; Nur, O.; Willander, M.; Nötzel, R.

    2012-10-01

    We present a fast, highly sensitive, and efficient potentiometric glucose biosensor based on functionalized InN quantum-dots (QDs). The InN QDs are grown by molecular beam epitaxy. The InN QDs are bio-chemically functionalized through physical adsorption of glucose oxidase (GOD). GOD enzyme-coated InN QDs based biosensor exhibits excellent linear glucose concentration dependent electrochemical response against an Ag/AgCl reference electrode over a wide logarithmic glucose concentration range (1 × 10-5 M to 1 × 10-2 M) with a high sensitivity of 80 mV/decade. It exhibits a fast response time of less than 2 s with good stability and reusability and shows negligible response to common interferents such as ascorbic acid and uric acid. The fabricated biosensor has full potential to be an attractive candidate for blood sugar concentration detection in clinical diagnoses.

  14. Design of Efficient Full Adder in Quantum-Dot Cellular Automata

    PubMed Central

    Sen, Bibhash; Sikdar, Biplab K.

    2013-01-01

    Further downscaling of CMOS technology becomes challenging as it faces limitation of feature size reduction. Quantum-dot cellular automata (QCA), a potential alternative to CMOS, promises efficient digital design at nanoscale. Investigations on the reduction of QCA primitives (majority gates and inverters) for various adders are limited, and very few designs exist for reference. As a result, design of adders under QCA framework is gaining its importance in recent research. This work targets developing multi-layered full adder architecture in QCA framework based on five-input majority gate proposed here. A minimum clock zone (2 clock) with high compaction (0.01 μm2) for a full adder around QCA is achieved. Further, the usefulness of such design is established with the synthesis of high-level logic. Experimental results illustrate the significant improvements in design level in terms of circuit area, cell count, and clock compared to that of conventional design approaches. PMID:23844385

  15. Giant Up-Conversion Efficiency of InGaAs Quantum Dots in a Planar Microcavity

    PubMed Central

    Xu, Qinfeng; Piermarocchi, Carlo; Pershin, Yuriy V.; Salamo, G. J.; Xiao, Min; Wang, Xiaoyong; Shih, Chih-Kang

    2014-01-01

    Self-assembled InGaAs quantum dots (QDs) were fabricated inside a planar microcavity with two vertical cavity modes. This allowed us to excite the QDs coupled to one of the vertical cavity modes through two propagating cavity modes to study their down- and up-converted photoluminescence (PL). The up-converted PL increased continuously with the increasing temperature, reaching an intensity level comparable to that of the down-converted PL at ~120 K. This giant efficiency in the up-converted PL of InGaAs QDs was enhanced by about 2 orders of magnitude with respect to a similar structure without cavity. We tentatively explain the enhanced up-converted signal as a direct consequence of the modified spontaneous emission properties of the QDs in the microcavity, combined with the phonon absorption and emission effects. PMID:24492329

  16. High-resolution mapping of quantum efficiency of silicon photodiode via optical-feedback laser microthermography

    SciTech Connect

    Cemine, Vernon Julius; Blanca, Carlo Mar; Saloma, Caesar

    2006-09-20

    We map the external quantum efficiency (QE) distribution of a silicon photodiode (PD) sample via a thermographic imaging technique based on optical-feedback laser confocal microscopy. An image pair consisting of the confocal reflectance image and the 2D photocurrent map is simultaneously acquired to delineate the following regions of interest on the sample: the substrate, the n-type region, the pn overlay, and the bonding pad. The 2D QE distribution is derived from the photocurrent map to quantify the optical performance of these sites. The thermal integrity of the sample is then evaluated by deriving the rate of change of QE with temperature T at each point on the silicon PD. These gradient maps function not only as stringent measures of local thermal QE activity but they also expose probable defect locations on the sample at high spatial resolution - a capability that is not feasible with existing bulk measurement techniques.

  17. Efficient Implementation of Many-body Quantum Chemical Methods on the Intel Xeon Phi Coprocessor

    SciTech Connect

    Apra, Edoardo; Klemm, Michael; Kowalski, Karol

    2014-12-01

    This paper presents the implementation and performance of the highly accurate CCSD(T) quantum chemistry method on the Intel Xeon Phi coprocessor within the context of the NWChem computational chemistry package. The widespread use of highly correlated methods in electronic structure calculations is contingent upon the interplay between advances in theory and the possibility of utilizing the ever-growing computer power of emerging heterogeneous architectures. We discuss the design decisions of our implementation as well as the optimizations applied to the compute kernels and data transfers between host and coprocessor. We show the feasibility of adopting the Intel Many Integrated Core Architecture and the Intel Xeon Phi coprocessor for developing efficient computational chemistry modeling tools. Remarkable scalability is demonstrated by benchmarks. Our solution scales up to a total of 62560 cores with the concurrent utilization of Intel Xeon processors and Intel Xeon Phi coprocessors.

  18. Ultraviolet quantum detection efficiency of potassium bromide as an opaque photocathode applied to microchannel plates

    NASA Technical Reports Server (NTRS)

    Siegmund, Oswald H. W.; Everman, E.; Vallerga, J. V.; Sokolowski, J.; Lampton, M.

    1987-01-01

    The quantum detection efficiency (QDE) of potassium bromide as a photocathode applied directly to the surface of a microchannel plate over the 250-1600 A wavelength range has been measured. The contributions of the photocathode material in the channels and on the interchannel web to the QDE have been determined. Two broad peaks in the QDE centered at about 450 and about 1050 A are apparent, the former with about 50 percent peak QDE and the latter with about 40 percent peak QDE. The photoelectric threshold is observed at about 1600 A, and there is a narrow QDE minimum at about 750 A which correlates with 2X the band gap energy for KBr. The angular variation of the QDE from 0 to 40 deg to the channnel axis has also been examined. The stability of Kbr with time is shown to be good with no significant degradation of QDE at wavelengths below 1216 A over a 15-day period in air.

  19. Quantum efficiency and dark current evaluation of a backside illuminated CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Vereecke, Bart; Cavaco, Celso; De Munck, Koen; Haspeslagh, Luc; Minoglou, Kyriaki; Moore, George; Sabuncuoglu, Deniz; Tack, Klaas; Wu, Bob; Osman, Haris

    2015-04-01

    We report on the development and characterization of monolithic backside illuminated (BSI) imagers at imec. Different surface passivation, anti-reflective coatings (ARCs), and anneal conditions were implemented and their effect on dark current (DC) and quantum efficiency (QE) are analyzed. Two different single layer ARC materials were developed for visible light and near UV applications, respectively. QE above 75% over the entire visible spectrum range from 400 to 700 nm is measured. In the spectral range from 260 to 400 nm wavelength, QE values above 50% over the entire range are achieved. A new technique, high pressure hydrogen anneal at 20 atm, was applied on photodiodes and improvement in DC of 30% for the BSI imager with HfO2 as ARC as well as for the front side imager was observed. The entire BSI process was developed 200 mm wafers and evaluated on test diode structures. The knowhow is then transferred to real imager sensors arrays.

  20. Carbon-containing cathodes for enhanced electron emission

    DOEpatents

    Cao, Renyu; Pan, Lawrence; Vergara, German; Fox, Ciaran

    2000-01-01

    A cathode has electropositive atoms directly bonded to a carbon-containing substrate. Preferably, the substrate comprises diamond or diamond-like (sp.sup.3) carbon, and the electropositive atoms are Cs. The cathode displays superior efficiency and durability. In one embodiment, the cathode has a negative electron affinity (NEA). The cathode can be used for field emission, thermionic emission, or photoemission. Upon exposure to air or oxygen, the cathode performance can be restored by annealing or other methods. Applications include detectors, electron multipliers, sensors, imaging systems, and displays, particularly flat panel displays.

  1. Diagnostics of a see-through hollow cathode discharge by emission, absorption, and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Taylor, Nicholas

    Atomic line filters have been suggested to be attractive in areas of Doppler velocimetry, resonance fluorescence detection, and resonance ionization detection. They are based on the resonant absorption of photons by an atomic vapor, and allow all other radiation to pass. This allows the detection of very low levels of light superimposed on a large optical background. Several elements have been studied for use as atomic line filters, such as the alkali metals, alkaline earths, and thallium. As previously recognized, thallium is especially attractive since the 535.046 nm metastable transition overlaps with the second harmonic output of an Nd:La2Be2O 5 (BEL) laser (1070 nm). This makes thallium ideal for certain applications as an atomic line filter. Recently a see-through hollow cathode lamp, or galvatron (Hamamatsu), was made commercially available. The galvatron geometry is unique compared to traditional hollow cathode lamps since the cathode and cell are oriented in a T-shape, with the cathode bored completely through to allow the propagation of a light source through the cathode. This allows multi-step excitation of the atomic vapor, not easily accomplished with a traditional hollow cathode lamp. The advantages that a galvatron offers over conventional atomic reservoirs make it an attractive candidate for the application as an atomic line filter; however, little spectroscopic data have been found in the literature. For this reason, Doppler temperatures, number densities, quantum efficiencies, and lifetimes have been determined in order to characterize this atomic reservoir as a potential atomic line filter. These parameters are determined by use of various spectroscopic techniques which include emission, absorption, time-resolved fluorescence, and time-resolved laser-induced saturated fluorescence spectroscopy. From these measurements, it has been demonstrated that a galvatron is an attractive atomic reservoir for applications as an atomic line filter. The

  2. Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots.

    PubMed

    Meinardi, Francesco; McDaniel, Hunter; Carulli, Francesco; Colombo, Annalisa; Velizhanin, Kirill A; Makarov, Nikolay S; Simonutti, Roberto; Klimov, Victor I; Brovelli, Sergio

    2015-10-01

    Luminescent solar concentrators serving as semitransparent photovoltaic windows could become an important element in net zero energy consumption buildings of the future. Colloidal quantum dots are promising materials for luminescent solar concentrators as they can be engineered to provide the large Stokes shift necessary for suppressing reabsorption losses in large-area devices. Existing Stokes-shift-engineered quantum dots allow for only partial coverage of the solar spectrum, which limits their light-harvesting ability and leads to colouring of the luminescent solar concentrators, complicating their use in architecture. Here, we use quantum dots of ternary I-III-VI2 semiconductors to realize the first large-area quantum dot-luminescent solar concentrators free of toxic elements, with reduced reabsorption and extended coverage of the solar spectrum. By incorporating CuInSexS2-x quantum dots into photo-polymerized poly(lauryl methacrylate), we obtain freestanding, colourless slabs that introduce no distortion to perceived colours and are thus well suited for the realization of photovoltaic windows. Thanks to the suppressed reabsorption and high emission efficiencies of the quantum dots, we achieve an optical power efficiency of 3.2%. Ultrafast spectroscopy studies suggest that the Stokes-shifted emission involves a conduction-band electron and a hole residing in an intragap state associated with a native defect. PMID:26301902

  3. Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Meinardi, Francesco; McDaniel, Hunter; Carulli, Francesco; Colombo, Annalisa; Velizhanin, Kirill A.; Makarov, Nikolay S.; Simonutti, Roberto; Klimov, Victor I.; Brovelli, Sergio

    2015-10-01

    Luminescent solar concentrators serving as semitransparent photovoltaic windows could become an important element in net zero energy consumption buildings of the future. Colloidal quantum dots are promising materials for luminescent solar concentrators as they can be engineered to provide the large Stokes shift necessary for suppressing reabsorption losses in large-area devices. Existing Stokes-shift-engineered quantum dots allow for only partial coverage of the solar spectrum, which limits their light-harvesting ability and leads to colouring of the luminescent solar concentrators, complicating their use in architecture. Here, we use quantum dots of ternary I-III-VI2 semiconductors to realize the first large-area quantum dot-luminescent solar concentrators free of toxic elements, with reduced reabsorption and extended coverage of the solar spectrum. By incorporating CuInSexS2-x quantum dots into photo-polymerized poly(lauryl methacrylate), we obtain freestanding, colourless slabs that introduce no distortion to perceived colours and are thus well suited for the realization of photovoltaic windows. Thanks to the suppressed reabsorption and high emission efficiencies of the quantum dots, we achieve an optical power efficiency of 3.2%. Ultrafast spectroscopy studies suggest that the Stokes-shifted emission involves a conduction-band electron and a hole residing in an intragap state associated with a native defect.

  4. Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes

    NASA Astrophysics Data System (ADS)

    Mehnke, Frank; Kuhn, Christian; Guttmann, Martin; Reich, Christoph; Kolbe, Tim; Kueller, Viola; Knauer, Arne; Lapeyrade, Mickael; Einfeldt, Sven; Rass, Jens; Wernicke, Tim; Weyers, Markus; Kneissl, Michael

    2014-08-01

    The design and Mg-doping profile of AlN/Al0.7Ga0.3N electron blocking heterostructures (EBH) for AlGaN multiple quantum well (MQW) light emitting diodes (LEDs) emitting below 250 nm was investigated. By inserting an AlN electron blocking layer (EBL) into the EBH, we were able to increase the quantum well emission power and significantly reduce long wavelength parasitic luminescence. Furthermore, electron leakage was suppressed by optimizing the thickness of the AlN EBL while still maintaining sufficient hole injection. Ultraviolet (UV)-C LEDs with very low parasitic luminescence (7% of total emission power) and external quantum efficiencies of 0.19% at 246 nm have been realized. This concept was applied to AlGaN MQW LEDs emitting between 235 nm and 263 nm with external quantum efficiencies ranging from 0.002% to 0.93%. After processing, we were able to demonstrate an UV-C LED emitting at 234 nm with 14.5 μW integrated optical output power and an external quantum efficiency of 0.012% at 18.2 A/cm2.

  5. Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes

    SciTech Connect

    Mehnke, Frank Kuhn, Christian; Guttmann, Martin; Reich, Christoph; Kolbe, Tim; Rass, Jens; Wernicke, Tim; Kueller, Viola; Knauer, Arne; Lapeyrade, Mickael; Einfeldt, Sven; Weyers, Markus; Kneissl, Michael

    2014-08-04

    The design and Mg-doping profile of AlN/Al{sub 0.7}Ga{sub 0.3}N electron blocking heterostructures (EBH) for AlGaN multiple quantum well (MQW) light emitting diodes (LEDs) emitting below 250 nm was investigated. By inserting an AlN electron blocking layer (EBL) into the EBH, we were able to increase the quantum well emission power and significantly reduce long wavelength parasitic luminescence. Furthermore, electron leakage was suppressed by optimizing the thickness of the AlN EBL while still maintaining sufficient hole injection. Ultraviolet (UV)-C LEDs with very low parasitic luminescence (7% of total emission power) and external quantum efficiencies of 0.19% at 246 nm have been realized. This concept was applied to AlGaN MQW LEDs emitting between 235 nm and 263 nm with external quantum efficiencies ranging from 0.002% to 0.93%. After processing, we were able to demonstrate an UV-C LED emitting at 234 nm with 14.5 μW integrated optical output power and an external quantum efficiency of 0.012% at 18.2 A/cm{sup 2}.

  6. A hollow cathode hydrogen ion source

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.; Mirtich, M. J.

    1977-01-01

    High current density ion sources have been used to heat plasmas in controlled thermonuclear reaction experiments. High beam currents imply relatively high emission currents from cathodes which have generally taken the form of tungsten filaments. A hydrogen ion source is described which was primarily developed to assess the emission current capability and design requirements for hollow cathodes for application in neutral injection devices. The hydrogen source produced ions by electron bombardment via a single hollow cathode. Source design followed mercury ion thruster technology, using a weak magnetic field to enhance ionization efficiency.

  7. Measurements of copper and cesium telluride cathodes in a radio-frequency photoinjector

    NASA Astrophysics Data System (ADS)

    Prat, Eduard; Bettoni, Simona; Braun, Hans-Heinrich; Ganter, Romain; Schietinger, Thomas

    2015-04-01

    Radio-frequency (rf) photoinjectors are commonly used to generate intense bright electron beams for a wide range of applications, most notably as drivers for X-ray Free-Electron Lasers. The photocathode, mounted inside an rf gun and illuminated by a suitable laser, thereby plays a crucial role as the source of the electrons. The intrinsic emittance and the quantum efficiency of the electron source are determined by the properties of the photocathode's surface material. We present measurements of the intrinsic emittance and the quantum efficiency performed with copper and cesium telluride cathodes in the same rf photoinjector, thus comparing, for the first time, the performance of metal and semiconductor cathodes under the same conditions. Our results are consistent with theoretical expectations and show that the difference in intrinsic emittance for the two types of material is not significant in view of accelerator applications. We conclude that cesium telluride photocathodes provide a much higher quantum efficiency at essentially negligible degradation in beam emittance.

  8. High-voltage virtual-cathode microwave simulations

    SciTech Connect

    Thode, L.; Snell, C.M.

    1991-01-01

    In contrast to a conventional microwave tube, a virtual-cathode device operates above the space-charge limit where the depth of the space-charge potential is sufficiently large to cause electron reflection. The region associated with electron reflection is referred to as a virtual cathode. Microwaves can be generated through oscillations in the position of the virtual cathode and by reflexing electrons trapped in the potential well formed between the real and virtual cathodes. A virtual-cathode device based on the first mechanism is a vircator while one based on latter mechanism is a reflex diode. A large number of low-voltage virtual-cathode microwave configurations have been investigated. Initial simulations of a high-voltage virtual-cathode device using a self-consistent particle-in-cell code indicated reasonable conversion efficiency with no frequency chirping. The nonchirping character of the high-voltage virtual-cathode device lead to the interesting possibility of locking four very-high-power microwave devices together using the four transmission lines available at Aurora. Subsequently, in support of two high-voltage experiments, simulations were used to investigate the effect of field-emission threshold and velvet position on the cathode; anode and cathode shape; anode-cathode gap spacing; output waveguide radius; diode voltage; a cathode-coaxial-cavity resonator; a high-frequency ac-voltage drive; anode foil scattering and energy loss; and ion emission on the microwave frequency and power. Microwave

  9. Measurement of Quantum Yield, Quantum Requirement, and Energetic Efficiency of the O2-Evolving System of Photosynthesis by a Simple Dye Reaction

    NASA Astrophysics Data System (ADS)

    Ros Barcelò, A.; Zapata, J. M.

    1996-11-01

    Photosynthesis is the conversion of absorbed radiant energy from sunlight into various forms of chemical energy by the chloroplasts of higher green plants. The overall process of photosynthesis consists of the oxidation of water (with the release of O2 as a product) and the reduction of CO2 to form carbohydrates. In the test tube electrons produced by the photolytic cleavage of H2) may be deviated from their true acceptor by inserting a suitable dye in the electron chain; i.e.; 2,6-dichlorophenol indophenol (DCPIP) (E'o = + 0.217 V), which is blue in the oxidized quinone form and which becomes colorless when reduced to the phenolic form. This dye-electrom acceptor also has the advantage that it accepts electroms directly from the quinone (Qa) electron-acceptor of the photosystem II< the reaction center associated with the O2-evolving (or water-slplitting) system. Based in the bleaching of DCPIP by illuminated spinach leaf chloroplasts, a classroom laboratory protocol has been developed to determine the quantum yield (QY = micromol O2 s-1 / micromol photons s-1, the quantum requirement (1/QY) and the energetic efficiency (f = chemical energy stored / light energy supplied) of the O2-evolving system of photosynthesis. Although values for the quantum yield, the quantum requirement and the energetic efficiency calculated in the classroom laboratory differ widely from those expected theoretically, these calculations are useful for illustrating the transformation of light energy into chemical energy by the chloroplasts of green plants.

  10. Universally-composable finite-key analysis for efficient four-intensity decoy-state quantum key distribution

    NASA Astrophysics Data System (ADS)

    Jiang, Haodong; Gao, Ming; Yan, Bao; Wang, Weilong; Ma, Zhi

    2016-04-01

    We propose an efficient four-intensity decoy-state BB84 protocol and derive concise security bounds for this protocol with the universally composable finite-key analysis method. Comparing with the efficient three-intensity protocol, we find that our efficient four-intensity protocol can increase the secret key rate by at least 30%. Particularly, this increasing rate of secret key rate will be raised as the transmission distance increases. At a large transmission distance, our efficient four-intensity protocol can improve the performance of quantum key distribution profoundly.

  11. Efficient stray-light suppression for resonance fluorescence in quantum dot micropillars using self-aligned metal apertures

    NASA Astrophysics Data System (ADS)

    Hopfmann, Caspar; Musiał, Anna; Maier, Sebastian; Emmerling, Monika; Schneider, Christian; Höfling, Sven; Kamp, Martin; Reitzenstein, Stephan

    2016-09-01

    Within this work we propose and demonstrate a technological approach to efficiently suppress excitation laser stray-light in resonance fluorescence experiments on quantum dot micropillars. To ensure efficient stray-light suppression, their fabrication process includes a planarization step and subsequent covering with a titanium mask to fabricate self-aligned apertures at the micropillar positions. These apertures aim to limit laser stray-light in the side-excitation vertical-detection configuration, while enabling detection of the optical signal through the top facet of the micropillars. The beneficial effects of these apertures are proven and quantitatively evaluated within a statistical study in which we determine and compare the stray-light suppression of 48 micropillars with and without metal apertures. Actual resonance fluorescence experiments on single quantum dots coupled to the cavity mode prove the relevance of the proposed approach and demonstrate that it will foster further studies on cavity quantum electrodynamics phenomena under coherent optical excitation.

  12. Au-nanocrystals-decorated δ-MnO2 as an efficient catalytic cathode for high-performance Li-O2 batteries

    NASA Astrophysics Data System (ADS)

    Liu, Shuangyu; Wang, Guoqing; Tu, Fangfang; Xie, Jian; Yang, Hui Ying; Zhang, Shichao; Zhu, Tiejun; Cao, Gaoshao; Zhao, Xinbing

    2015-05-01

    A Li-O2 battery works based on the reversible formation and decomposition of Li2O2, which is insulating and highly reactive. Designing a catalytic cathode capable of controlling Li2O2 growth recently became a challenge to overcome this barrier. In this work, we present a new design of catalytic cathode by growing porous Au/δ-MnO2 electrocatalyst directly on a conductive substrate. We found that Au/δ-MnO2 can catalyze the directed growth of Li2O2 into a thin/small form, only inside porous δ-MnO2, and along the surface of δ-MnO2 sheets. We proposed the catalytic mechanism of Au/δ-MnO2, where Au plays a critical role in catalyzing the nucleation, crystallization and conformal growth of Li2O2 on δ-MnO2 sheets. Li-O2 batteries with an Au/δ-MnO2 catalytic cathode showed excellent electrochemical performance due to this favorable Li2O2 growth habit. The battery yielded a high capacity of 10 600 mA h g-1 with a low polarization of 0.91 V at 100 mA g-1. Superior cycling stability could be achieved in both capacity-limited (500 mA h g-1, 165 times at 400 mA g-1) and unlimited (ca. 3000 mA h g-1, 50 cycles at 800 mA g-1) modes.A Li-O2 battery works based on the reversible formation and decomposition of Li2O2, which is insulating and highly reactive. Designing a catalytic cathode capable of controlling Li2O2 growth recently became a challenge to overcome this barrier. In this work, we present a new design of catalytic cathode by growing porous Au/δ-MnO2 electrocatalyst directly on a conductive substrate. We found that Au/δ-MnO2 can catalyze the directed growth of Li2O2 into a thin/small form, only inside porous δ-MnO2, and along the surface of δ-MnO2 sheets. We proposed the catalytic mechanism of Au/δ-MnO2, where Au plays a critical role in catalyzing the nucleation, crystallization and conformal growth of Li2O2 on δ-MnO2 sheets. Li-O2 batteries with an Au/δ-MnO2 catalytic cathode showed excellent electrochemical performance due to this favorable Li2O2 growth

  13. Sky-Blue Phosphorescent OLEDs with 34.1% External Quantum Efficiency Using a Low Refractive Index Electron Transporting Layer.

    PubMed

    Shin, Hyun; Lee, Jeong-Hwan; Moon, Chang-Ki; Huh, Jin-Suk; Sim, Bomi; Kim, Jang-Joo

    2016-06-01

    Blue-phosphorescent organic light-emitting diodes (OLEDs) with 34.1% external quantum efficiency (EQE) and 79.6 lm W(-1) are demonstrated using a hole-transporting layer and electron-transporting layer with low refractive index values. Using optical simulations, it is predicted that outcoupling efficiencies with EQEs > 60% can be achieved if organic layers with a refractive index of 1.5 are used for OLEDs. PMID:27060851

  14. Efficiency at maximum power of a quantum heat engine based on two coupled oscillators

    NASA Astrophysics Data System (ADS)

    Wang, Jianhui; Ye, Zhuolin; Lai, Yiming; Li, Weisheng; He, Jizhou

    2015-06-01

    We propose and theoretically investigate a system of two coupled harmonic oscillators as a heat engine. We show how these two coupled oscillators within undamped regime can be controlled to realize an Otto cycle that consists of two adiabatic and two isochoric processes. During the two isochores the harmonic system is embedded in two heat reservoirs at constant temperatures Th and Tc(quantum heat engine, we adopt the semigroup approach to model the thermal relaxation dynamics along the two isochoric processes, and we find the upper bound of efficiency at maximum power (EMP) η* to be a function of the Carnot efficiency ηC(=1 -Tc/Th) : η*≤η+≡ηC2/[ηC-(1 -ηC) ln(1 -ηC) ] , identical to those previously derived from ideal (noninteracting) microscopic, mesoscopic, and macroscopic systems.

  15. Use of the detective quantum efficiency in a quality assurance program

    NASA Astrophysics Data System (ADS)

    Cunningham, I. A.

    2008-03-01

    Radiology quality assurance programs are designed to ensure certain levels of image quality are maintained with imaging equipment. The detective quantum efficiency (DQE), expressed as a function of spatial frequency, is a direct measure of system performance and "dose efficiency" that is objective, quantitative and widely accepted by the scientific community. We have implemented a QA program in a tertiary care hospital in which both the DQE and modulation transfer function (MTF) are measured as part of a routine QA program. The DQE, MTF and system gain were measured bi-monthly over a 12-month evaluation period. Measurements of DQE were compliant with IEC62220-1 recommendations. In the past year, no significant deterioration in DQE or MTF of any system was observed. However, large differences in DQE and MTF were observed between different detector technologies. It is anticipated that routine monitoring of DQE could provide early warning of system failures or problems requiring service intervention, but no problems were experienced during the evaluation period.

  16. Efficient and robust quantum random number generation by photon number detection

    SciTech Connect

    Applegate, M. J.; Thomas, O.; Dynes, J. F.; Yuan, Z. L.; Shields, A. J.; Ritchie, D. A.

    2015-08-17

    We present an efficient and robust quantum random number generator based upon high-rate room temperature photon number detection. We employ an electric field-modulated silicon avalanche photodiode, a type of device particularly suited to high-rate photon number detection with excellent photon number resolution to detect, without an applied dead-time, up to 4 photons from the optical pulses emitted by a laser. By both measuring and modeling the response of the detector to the incident photons, we are able to determine the illumination conditions that achieve an optimal bit rate that we show is robust against variation in the photon flux. We extract random bits from the detected photon numbers with an efficiency of 99% corresponding to 1.97 bits per detected photon number yielding a bit rate of 143 Mbit/s, and verify that the extracted bits pass stringent statistical tests for randomness. Our scheme is highly scalable and has the potential of multi-Gbit/s bit rates.

  17. Efficient ternary cobalt spinel counter electrodes for quantum-dot sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Luo, Qiang; Gu, Youchen; Li, Jianbao; Wang, Ning; Lin, Hong

    2016-04-01

    Cobalt-based spinel binary and ternary sulfides (Co3S4, CuCo2S4 and NiCo2S4) are prepared via an economical, facile and versatile synthesis strategy and used as counter electrodes for quantum-dot sensitized solar cells (QDSCs) in conjunction with the aqueous polysulfide electrolyte. The spinel sulfides exhibit superior catalytic activities toward the polysulfide electrolyte reduction than that of the Cu2S. Both electrochemical impedance spectroscopic and Tafel polarization measurements imply that the incorporation of Cu or Ni cation into the spinel lattices induces a significantly faster electrocatalytic rate towards the polysulfide reduction than that of the binary Co3S4. Using ternary NiCo2S4 as counter electrode, the QDSC achieves a power conversion efficiency of 3.3%; which is increased by 26% compared with the QDSC fabricated with binary Co3S4 counter electrode (2.61%). The excellent electrochemical performance of the ternary cobalt spinel sulfides suggests their promising application as counter electrodes for efficient QDSCs.

  18. Nano-biophotonic hybrid materials with controlled FRET efficiency engineered from quantum dots and bacteriorhodopsin

    NASA Astrophysics Data System (ADS)

    Bouchonville, Nicolas; Le Cigne, Anthony; Sukhanova, Alyona; Molinari, Michael; Nabiev, Igor

    2013-08-01

    Förster resonance energy transfer (FRET) between CdSe/ZnS core/shell quantum dots (QDs) and the photochromic protein bacteriorhodopsin (bR) in its natural purple membrane (PM) has been modulated by independent tuning of the Förster radius, the overlap integral between the donor emission spectrum and the acceptor absorption spectrum, and the distance between the donor (QD) and acceptor (bR retinal). The results have shown that the observed energy transfer from QDs to bR corresponds to that predicted by a multiple-acceptor geometric model describing the FRET phenomenon for QDs quasi-epitaxied on a crystalline lattice of bR trimers. Linking of QDs and bR via streptavidin-biotin linkers of different lengths improved FRET, with an efficiency as high as 82%, substantially exceeding the values predicted by the classical FRET theory. The data not only demonstrate the possibility of nano-bioengineering of efficient hybrid materials with controlled energy transfer properties, but also emphasize the necessity to develop an advanced theory of nano-bio energy transfer that would explain experimental effects contradicting the existing theoretical models.

  19. Controlled FRET efficiency in nano-bio hybrid materials made from semiconductor quantum dots and bacteriorhodopsin

    NASA Astrophysics Data System (ADS)

    Bouchonville, Nicolas; Le Cigne, Anthony; Sukhanova, Alyona; Saab, Marie-belle; Troyon, Michel; Molinari, Michael; Nabiev, Igor

    2012-10-01

    Förster resonance energy transfer (FRET) between CdSe/ZnS core/shell quantum dots (QDs) and the photochromic protein bacteriorhodopsin (bR) in its natural purple membrane (PM) has been modulated by independent tuning of the Förster radius, overlap integral of the donor emission spectrum and acceptor absorption spectrum, and the distance between the donor (QD) and acceptor (bR retinal). The results have shown that the observed energy transfer from QDs to bR corresponds to that predicted by a multiple-acceptors geometric model describing the FRET phenomenon for QDs quasi-epitaxied on a crystalline lattice of bR trimers. Linking of QDs and bR via streptavidin-biotin linkers of different lengths caused FRET with an efficiency reaching 82%, strongly exceeding the values predicted by the classical FRET theory. The data not only demonstrate the possibility of nano-bioengineering of efficient hybrid materials with controlled energy-transfer properties, but also emphasize the necessity to develop an advanced theory of nano-bio energy transfer that would explain experimental effects contradicting the existing theoretical models.

  20. Ohmic contact effect of Ag-nanodots on quantum efficiency of Si solar cell.

    PubMed

    Choi, Jaeho; Parida, Bhaskar; Ji, Hyung Yong; Park, Seungil; Kim, Keunjoo

    2012-07-01

    The authors investigated Si solar cell with the inclusion of nano-Ag dots using the ink-jet printer. These nano-Ag dots were used for the Ohmic contact layer on phospho-silicate glass layer, which was not removed after the formation of Si emitter layer by phosphorus diffusion process. The SiNx layer deposited on the nano-Ag dots shows the catalyst selective growth and so the layer formed beneath of nano-Ag dots. The photoreflectances show that the long wavelength from 360 nm to 1200 nm tends to be increased as the density of the nano-Ag is increased. In case of short wavelength from 294 nm to 367 nm, it shows the opposite trend, indicating the plasmon effect of the nano-Ag. As embedding the nano-Ag dots on the phospho-silicate glass layer, the blocked Ohmic contact was opened and the quantum efficiency of 14.4% was achieved, which is higher than the reference sample of 12.72% without the glass layer. The nano-Ag dots form the good Ohmic contact and also enhance the light conversion efficiency with the formation of surface plasmon. PMID:22966609

  1. Efficiency at maximum power of a quantum heat engine based on two coupled oscillators.

    PubMed

    Wang, Jianhui; Ye, Zhuolin; Lai, Yiming; Li, Weisheng; He, Jizhou

    2015-06-01

    We propose and theoretically investigate a system of two coupled harmonic oscillators as a heat engine. We show how these two coupled oscillators within undamped regime can be controlled to realize an Otto cycle that consists of two adiabatic and two isochoric processes. During the two isochores the harmonic system is embedded in two heat reservoirs at constant temperatures T(h) and T(c)(quantum heat engine, we adopt the semigroup approach to model the thermal relaxation dynamics along the two isochoric processes, and we find the upper bound of efficiency at maximum power (EMP) η* to be a function of the Carnot efficiency η(C)(=1-T(c)/T(h)): η*≤η(+)≡η(C)(2)/[η(C)-(1-η(C))ln(1-η(C))], identical to those previously derived from ideal (noninteracting) microscopic, mesoscopic, and macroscopic systems. PMID:26172688

  2. Enhance Efficiency of Solar Cell Using Luminescence PbS Quantum Dots Concentrators.

    PubMed

    Reda, S M

    2015-05-01

    Thin film and sheet PbS quantum dots (QDs) concentrators were synthesized by sol-gel method using three different PbS concentrations (0.14, 0.2, and 0.4 mol%). The structure and morphology of the prepared PbS QDs were characterized by X-ray diffraction (XRD), Scan electron microscopy (SEM), and Transmission electron microscopy (TEM). The photostability of the PbS QDs concentrators under outdoor exposure to sunlight for 8 weeks was studied. The results showed that the PbS QDs sheet with PbS concentration (0.14 mol%) has the highest luminescence intensity. The sheet PbS QDs concentrator was used to couple with PV solar cell and the corresponding photoelectric conversion efficiency was measured under sun light illumination. I-V characteristics of the photovoltaic devices, both open circuit voltage and short circuit current were improved as compared to the device without collector. This indicates that the proposed technique is very useful for improving the efficiency of solar cell. PMID:25740343

  3. Carbon Counter-Electrode-Based Quantum-Dot-Sensitized Solar Cells with Certified Efficiency Exceeding 11.

    PubMed

    Du, Zhonglin; Pan, Zhenxiao; Fabregat-Santiago, Francisco; Zhao, Ke; Long, Donghui; Zhang, Hua; Zhao, Yixin; Zhong, Xinhua; Yu, Jong-Sung; Bisquert, Juan

    2016-08-18

    The mean power conversion efficiency (PCE) of quantum-dot-sensitized solar cells (QDSCs) is mainly limited by the low photovoltage and fill factor (FF), which are derived from the high redox potential of polysulfide electrolyte and the poor catalytic activity of the counter electrode (CE), respectively. Herein, we report that this problem is overcome by adopting Ti mesh supported mesoporous carbon (MC/Ti) CE. The confined area in Ti mesh substrate not only offers robust carbon film with submillimeter thickness to ensure high catalytic capacity, but also provides an efficient three-dimension electrical tunnel with better conductivity than state-of-art Cu2S/FTO CE. More importantly, the MC/Ti CE can down shift the redox potential of polysulfide electrolyte to promote high photovoltage. In all, MC/Ti CEs boost PCE of CdSe0.65Te0.35 QDSCs to a certified record of 11.16% (Jsc = 20.68 mA/cm(2), Voc = 0.798 V, FF = 0.677), an improvement of 24% related to previous record. This work thus paves a way for further improvement of performance of QDSCs. PMID:27455143

  4. High efficiency InGaN/GaN light emitting diodes with asymmetric triangular multiple quantum wells

    SciTech Connect

    Chang, Chiao-Yun; Li, Hen; Lu, Tien-Chang

    2014-03-03

    In this study, we demonstrated high efficiency InGaN/GaN light emitting diodes (LEDs) with asymmetric triangular multiple quantum wells (MQWs). Asymmetric triangular MQWs not only contribute to uniform carrier distribution in InGaN/GaN MQWs but also yield a low Auger recombination rate. In addition, asymmetric triangular MQWs with gallium face-oriented inclination band profiles can be immune from the polarization charge originating from typical c-plane InGaN/GaN quantum well structures. In the experiment, LEDs incorporated with asymmetric triangular MQWs with gallium face-oriented inclination band profiles exhibited a 60.0% external quantum efficiency at 20 mA and a 27.0% efficiency droop at 100 mA (corresponding to a current density of 69 A/cm{sup 2}), which accounted for an 11.7% efficiency improvement and a 31.1% droop reduction compared with symmetric square quantum well structure LEDs.

  5. Low-Cost Copper Nanostructures Impart High Efficiencies to Quantum Dot Solar Cells.

    PubMed

    Kumar, P Naresh; Deepa, Melepurath; Ghosal, Partha

    2015-06-24

    Quantum dot solar cells (QDSCs) were fabricated using low-cost Cu nanostructures and a carbon fabric as a counter electrode for the first time. Cu nanoparticles (NPs) and nanoneedles (NNs) with a face-centered cubic structure were synthesized by a hydrothermal method and electrophoretically deposited over a CdS QD sensitized titania (TiO2) electrode. Compared to Cu NPs, which increase the light absorption of a TiO2/CdS photoanode via scattering effects only in the visible region, Cu NNs are more effective for efficient far-field light scattering; they enhance the light absorption of the TiO2/CdS assembly beyond the visible to near-infrared (NIR) regions as well. The highest fluorescence quenching, lowest excited electron lifetime, and a large surface potential (deduced from Kelvin probe force microscopy (KPFM)) observed for the TiO2/CdS/Cu NN electrode compared to TiO2/CdS and TiO2/CdS/Cu NP electrodes confirm that Cu NNs also facilitate charge transport. KPFM studies also revealed a larger shift of the apparent Fermi level to more negative potentials in the TiO2/CdS/Cu NN electrode, compared to the other two electrodes (versus NHE), which results in a higher open-circuit voltage for the Cu NN based electrode. The best performing QDSC based on the TiO2/CdS/Cu NN electrode delivers a stellar power conversion efficiency (PCE) of 4.36%, greater by 56.8% and 32.1% than the PCEs produced by the cells based on TiO2/CdS and TiO2/CdS/Cu NPs, respectively. A maximum external quantum efficiency (EQE) of 58% obtained for the cell with the TiO2/CdS/Cu NN electrode and a finite EQE in the NIR region which the other two cells do not deliver are clear indicators of the enormous promise this cheap, earth-abundant Cu nanostructure holds for amplifying the solar cell response in both the visible and near-infrared regions through scattering enhancements. PMID:26000891

  6. A spatio-temporal detective quantum efficiency and its application to fluoroscopic systems

    SciTech Connect

    Friedman, S. N.; Cunningham, I. A.

    2010-11-15

    Purpose: Fluoroscopic x-ray imaging systems are used extensively in spatio-temporal detection tasks and require a spatio-temporal description of system performance. No accepted metric exists that describes spatio-temporal fluoroscopic performance. The detective quantum efficiency (DQE) is a metric widely used in radiography to quantify system performance and as a surrogate measure of patient ''dose efficiency.'' It has been applied previously to fluoroscopic systems with the introduction of a temporal correction factor. However, the use of a temporally-corrected DQE does not provide system temporal information and it is only valid under specific conditions, many of which are not likely to be satisfied by suboptimal systems. The authors propose a spatio-temporal DQE that describes performance in both space and time and is applicable to all spatio-temporal quantum-based imaging systems. Methods: The authors define a spatio-temporal DQE (two spatial-frequency axes and one temporal-frequency axis) in terms of a small-signal spatio-temporal modulation transfer function (MTF) and spatio-temporal noise power spectrum (NPS). Measurements were made on an x-ray image intensifier-based bench-top system using continuous fluoroscopy with an RQA-5 beam at 3.9 {mu}R/frame and hardened 50 kVp beam (0.8 mm Cu filtration added) at 1.9 {mu}R/frame. Results: A zero-frequency DQE value of 0.64 was measured under both conditions. Nonideal performance was noted at both larger spatial and temporal frequencies; DQE values decreased by {approx}50% at the cutoff temporal frequency of 15 Hz. Conclusions: The spatio-temporal DQE enables measurements of decreased temporal system performance at larger temporal frequencies analogous to previous measurements of decreased (spatial) performance. This marks the first time that system performance and dose efficiency in both space and time have been measured on a fluoroscopic system using DQE and is the first step toward the generalized use of DQE on

  7. Efficient energy transfer in light-harvesting systems: Quantum-classical comparison, flux network, and robustness analysis

    NASA Astrophysics Data System (ADS)

    Wu, Jianlan; Liu, Fan; Ma, Jian; Silbey, Robert J.; Cao, Jianshu

    2012-11-01

    Following the calculation of optimal energy transfer in thermal environment in our first paper [J. L. Wu, F. Liu, Y. Shen, J. S. Cao, and R. J. Silbey, New J. Phys. 12, 105012 (2010), 10.1088/1367-2630/12/10/105012], full quantum dynamics and leading-order "classical" hopping kinetics are compared in the seven-site Fenna-Matthews-Olson (FMO) protein complex. The difference between these two dynamic descriptions is due to higher-order quantum corrections. Two thermal bath models, classical white noise (the Haken-Strobl-Reineker (HSR) model) and quantum Debye model, are considered. In the seven-site FMO model, we observe that higher-order corrections lead to negligible changes in the trapping time or in energy transfer efficiency around the optimal and physiological conditions (2% in the HSR model and 0.1% in the quantum Debye model for the initial site at BChl 1). However, using the concept of integrated flux, we can identify significant differences in branching probabilities of the energy transfer network between hopping kinetics and quantum dynamics (26% in the HSR model and 32% in the quantum Debye model for the initial site at BChl 1). This observation indicates that the quantum coherence can significantly change the distribution of energy transfer pathways in the flux network with the efficiency nearly the same. The quantum-classical comparison of the average trapping time with the removal of the bottleneck site, BChl 4, demonstrates the robustness of the efficient energy transfer by the mechanism of multi-site quantum coherence. To reconcile with the latest eight-site FMO model which is also investigated in the third paper [J. Moix, J. L. Wu, P. F. Huo, D. F. Coker, and J. S. Cao, J. Phys. Chem. Lett. 2, 3045 (2011), 10.1021/jz201259v], the quantum-classical comparison with the flux network analysis is summarized in Appendix C. The eight-site FMO model yields similar trapping time and network structure as the seven-site FMO model but leads to a more disperse

  8. Efficient energy transfer in light-harvesting systems: Quantum-classical comparison, flux network, and robustness analysis

    SciTech Connect

    Wu Jianlan; Liu Fan; Silbey, Robert J.; Cao Jianshu; Ma Jian

    2012-11-07

    Following the calculation of optimal energy transfer in thermal environment in our first paper [J. L. Wu, F. Liu, Y. Shen, J. S. Cao, and R. J. Silbey, New J. Phys. 12, 105012 (2010)], full quantum dynamics and leading-order 'classical' hopping kinetics are compared in the seven-site Fenna-Matthews-Olson (FMO) protein complex. The difference between these two dynamic descriptions is due to higher-order quantum corrections. Two thermal bath models, classical white noise (the Haken-Strobl-Reineker (HSR) model) and quantum Debye model, are considered. In the seven-site FMO model, we observe that higher-order corrections lead to negligible changes in the trapping time or in energy transfer efficiency around the optimal and physiological conditions (2% in the HSR model and 0.1% in the quantum Debye model for the initial site at BChl 1). However, using the concept of integrated flux, we can identify significant differences in branching probabilities of the energy transfer network between hopping kinetics and quantum dynamics (26% in the HSR model and 32% in the quantum Debye model for the initial site at BChl 1). This observation indicates that the quantum coherence can significantly change the distribution of energy transfer pathways in the flux network with the efficiency nearly the same. The quantum-classical comparison of the average trapping time with the removal of the bottleneck site, BChl 4, demonstrates the robustness of the efficient energy transfer by the mechanism of multi-site quantum coherence. To reconcile with the latest eight-site FMO model which is also investigated in the third paper [J. Moix, J. L. Wu, P. F. Huo, D. F. Coker, and J. S. Cao, J. Phys. Chem. Lett. 2, 3045 (2011)], the quantum-classical comparison with the flux network analysis is summarized in Appendix C. The eight-site FMO model yields similar trapping time and network structure as the seven-site FMO model but leads to a more disperse distribution of energy transfer pathways.

  9. An Efficient Scheme of Quantum Wireless Multi-hop Communication using Coefficient Matrix

    NASA Astrophysics Data System (ADS)

    Zhao, Bei; Zha, Xin-Wei; Duan, Ya-Jun; Sun, Xin-Mei

    2015-08-01

    By defining the coefficient matrix, a new quantum teleportation scheme in quantum wireless multi-hop network is proposed. With the help of intermediate nodes, an unknown qubit state can be teleported between two distant nodes which do not share entanglement in advance. Arbitrary Bell pairs and entanglement swapping are utilized for establishing quantum channel among intermediate nodes. Using collapsed matrix, the initial quantum state can be perfectly recovered at the destination.

  10. Theory and mitigation of electron back-bombardment in thermionic cathode radio frequency guns

    NASA Astrophysics Data System (ADS)

    Edelen, Jonathan Paul

    Photocathode RF guns are currently the standard for high- power, low-emittance beam generation in free-electron lasers. These devices require the use of high-power lasers (which are bulky and expensive to operate) and high-quantum-efficiency cathodes (which have limited lifetimes requiring frequent replacement). The use of RF-gated thermionic cathodes enables operation without a large drive laser and with long lifetimes. One major limitation of RF-gated thermionic cathodes is that electrons emitted late in the RF period will not gain enough energy to exit the gun before being accelerated back towards the cathode by the change in sign of the RF field. These electrons deposit their kinetic energy on the cathode surface in the form of heat, limiting the ability to control the output current from the cathode. This dissertation is aimed at understanding the fundamental design factors that drive the back-bombardment process and at exploring novel techniques to reduce its impact on a high-current system. This begins with the development of analytic models that predict the back-bombardment process in single-cell guns. These models are compared with simulation and with a measurement taken at a specific facility. This is followed by the development of analytic models that predict the effects of space-charge on back-bombardment. These models are compared with simulations. This is followed by an analysis of how the addition of multiple cells will impact the back-bombardment process. Finally, a two-frequency gun is studied for its ability to mitigate the back-bombardment process. This dissertation provides new insight on how the back-bombardment process scales as a function of the beam parameters and how space-charge affects this process. Additionally this dissertation shows how a second frequency can be used to mitigate the back-bombardment effect.

  11. Efficient implementation of the continuous-time hybridization expansion quantum impurity solver

    NASA Astrophysics Data System (ADS)

    Hafermann, Hartmut; Werner, Philipp; Gull, Emanuel

    2013-04-01

    Strongly correlated quantum impurity problems appear in a wide variety of contexts ranging from nanoscience and surface physics to material science and the theory of strongly correlated lattice models, where they appear as auxiliary systems within dynamical mean-field theory. Accurate and unbiased solutions must usually be obtained numerically, and continuous-time quantum Monte Carlo algorithms, a family of algorithms based on the stochastic sampling of partition function expansions, perform well for such systems. With the present paper we provide an efficient and generic implementation of the hybridization expansion quantum impurity solver, based on the segment representation. We provide a complete implementation featuring most of the recently developed extensions and optimizations. Our implementation allows one to treat retarded interactions and provides generalized measurement routines based on improved estimators for the self-energy and for vertex functions. The solver is embedded in the ALPS-DMFT application package. Catalogue identifier: AEOL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOL_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Use of the hybridization expansion impurity solvers requires citation of this paper. Use of any ALPS program requires citation of the ALPS [1] paper. No. of lines in distributed program, including test data, etc.: 650044 No. of bytes in distributed program, including test data, etc.: 20553265 Distribution format: tar.gz Programming language: C++/Python. Computer: Desktop PC, high-performance computers. Operating system: Unix, Linux, OSX, Windows. Has the code been vectorized or parallelized?: Yes, MPI parallelized. RAM: 1 GB Classification: 7.3. External routines: ALPS [1, 2, 3], BLAS [4, 5], LAPACK [6], HDF5 [7] Nature of problem: Quantum impurity models were originally introduced to describe a magnetic transition metal ion in a non

  12. Efficient implementation of the continuous-time hybridization expansion quantum impurity solver

    NASA Astrophysics Data System (ADS)

    Hafermann, Hartmut; Werner, Philipp; Gull, Emanuel

    2013-04-01

    Strongly correlated quantum impurity problems appear in a wide variety of contexts ranging from nanoscience and surface physics to material science and the theory of strongly correlated lattice models, where they appear as auxiliary systems within dynamical mean-field theory. Accurate and unbiased solutions must usually be obtained numerically, and continuous-time quantum Monte Carlo algorithms, a family of algorithms based on the stochastic sampling of partition function expansions, perform well for such systems. With the present paper we provide an efficient and generic implementation of the hybridization expansion quantum impurity solver, based on the segment representation. We provide a complete implementation featuring most of the recently developed extensions and optimizations. Our implementation allows one to treat retarded interactions and provides generalized measurement routines based on improved estimators for the self-energy and for vertex functions. The solver is embedded in the ALPS-DMFT application package. Catalogue identifier: AEOL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOL_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Use of the hybridization expansion impurity solvers requires citation of this paper. Use of any ALPS program requires citation of the ALPS [1] paper. No. of lines in distributed program, including test data, etc.: 650044 No. of bytes in distributed program, including test data, etc.: 20553265 Distribution format: tar.gz Programming language: C++/Python. Computer: Desktop PC, high-performance computers. Operating system: Unix, Linux, OSX, Windows. Has the code been vectorized or parallelized?: Yes, MPI parallelized. RAM: 1 GB Classification: 7.3. External routines: ALPS [1, 2, 3], BLAS [4, 5], LAPACK [6], HDF5 [7] Nature of problem: Quantum impurity models were originally introduced to describe a magnetic transition metal ion in a non

  13. Method for determining the radiative efficiency of GaInN quantum wells based on the width of efficiency-versus-carrier-concentration curve

    NASA Astrophysics Data System (ADS)

    Lin, Guan-Bo; Shan, Qifeng; Birkel, Andrew J.; Cho, Jaehee; Fred Schubert, E.; Crawford, Mary H.; Westlake, Karl R.; Koleske, Daniel D.

    2012-12-01

    We report a method to determine the radiative efficiency (RE) of a semiconductor by using room-temperature excitation-dependent photoluminescence measurements. Using the ABC model for describing the recombination of carriers, we show that the theoretical width of the RE-versus-carrier-concentration (n) curve is related to the peak RE. Since the normalized external quantum efficiency, EQEnormalized, is proportional to the RE, and the square root of the light-output power, √LOP , is proportional to n, the experimentally determined width of the EQEnormalized-versus-n curve can be used to determine the RE. We demonstrate a peak RE of 91% for a Ga0.85In0.15N quantum well.

  14. A mulitple cathode gun design for the eRHIC polarized electron source

    SciTech Connect

    Chang, X.; Ben-Zvi, I.; Kewisch, J.; Litvinenko, V.; Pikin, A.; Ptitsyn, V.; Rao, T.; Sheehy, B.; Skaritka, J.; Wang, E.; Wu, Q.; Xin, T.

    2011-03-28

    The future electron-ion collider eRHIC requires a high average current ({approx}50 mA), short bunch ({approx}3 mm), low emittance ({approx}20 {micro}m) polarized electron source. The maximum average current of a polarized electron source so far is more than 1 mA, but much less than 50 mA, from a GaAs:Cs cathode. One possible approach to overcome the average current limit and to achieve the required 50 mA beam for eRHIC, is to combine beamlets from multiple cathodes to one beam. In this paper, we present the feasibility studies of this technique. The future eRHIC project, next upgrade of RHIC, will be the first electron-heavy ion collider in the world. It requires polarized electron source with a high average current ({approx}50 mA), short bunch ({approx}3 mm), emittance of about 20 {micro}m and energy spread of {approx}1% at 10 MeV. The state-of-art polarized electron cathode can generate average current of about more than 1 mA, but much less than 50 mA. The current is limited by the low quantum efficiency, space charge and ultra-high vacuum requirement of the polarized cathode. A possible approach to achieve the 50 mA beam is to employ multiple cathodes, such as 20 cathodes, and funnel the multiple bunched beams from cathodes to the same axis. Fig.1 illustrates schematically the concept of combining the multiple beams. We name it as 'Gatling gun' because it bears functional similarity to a Gatling gun. Laser beams strike the cathodes sequentially with revolution frequency of 700 kHz. Each beam bunch is focused by a solenoid and is bent toward the combiner. The combiner with rotating bending field bends all bunches arriving the combiner with a rotational pattern to the same axis. The energy of each bunch is modified by a bunching cavity (112MHz) and a 3rd harmonic cavity (336MHz). The bunch length is compressed ballistically in the drift space and is frozen after energy has been boosted to 10 MeV by the Booster linac. Each beam bunch contains 3.5 nC charge. The

  15. OP09O-OP404-9 Wide Field Camera 3 CCD Quantum Efficiency Hysteresis

    NASA Technical Reports Server (NTRS)

    Collins, Nick

    2009-01-01

    The HST/Wide Field Camera (WFC) 3 UV/visible channel CCD detectors have exhibited an unanticipated quantum efficiency hysteresis (QEH) behavior. At the nominal operating temperature of -83C, the QEH feature contrast was typically 0.1-0.2% or less. The behavior was replicated using flight spare detectors. A visible light flat-field (540nm) with a several times full-well signal level can pin the detectors at both optical (600nm) and near-UV (230nm) wavelengths, suppressing the QEH behavior. We are characterizing the timescale for the detectors to become unpinned and developing a protocol for flashing the WFC3 CCDs with the instrument's internal calibration system in flight. The HST/Wide Field Camera 3 UV/visible channel CCD detectors have exhibited an unanticipated quantum efficiency hysteresis (QEH) behavior. The first observed manifestation of QEH was the presence in a small percentage of flat-field images of a bowtie-shaped contrast that spanned the width of each chip. At the nominal operating temperature of -83C, the contrast observed for this feature was typically 0.1-0.2% or less, though at warmer temperatures contrasts up to 5% (at -50C) have been observed. The bowtie morphology was replicated using flight spare detectors in tests at the GSFC Detector Characterization Laboratory by power cycling the detector while cold. Continued investigation revealed that a clearly-related global QE suppression at the approximately 5% level can be produced by cooling the detector in the dark; subsequent flat-field exposures at a constant illumination show asymptotically increasing response. This QE "pinning" can be achieved with a single high signal flat-field or a series of lower signal flats; a visible light (500-580nm) flat-field with a signal level of several hundred thousand electrons per pixel is sufficient for QE pinning at both optical (600nm) and near-UV (230nm) wavelengths. We are characterizing the timescale for the detectors to become unpinned and developing a

  16. A comparison of digital radiography systems in terms of effective detective quantum efficiency

    SciTech Connect

    Bertolini, Marco; Nitrosi, Andrea; Rivetti, Stefano; Lanconelli, Nico; Pattacini, Pierpaolo; Ginocchi, Vladimiro; Iori, Mauro

    2012-05-15

    Purpose: The purpose of this study is to compare digital radiography systems using the metric effective detective quantum efficiency (eDQE), which better reflects digital radiography imaging system performance under clinical operating conditions, in comparison with conventional metrics such as modulation transfer function (MTF), normalized noise power spectra (NNPS), and detective quantum efficiency (DQE). Methods: The eDQE was computed by the calculation of the MTF, the NNPS, the phantom attenuation and scatter, and estimation of x-ray flux. The physical characterization of the systems was obtained with the standard beam conditions RQA5 and RQA9, using the PA Chest phantom proposed by AAPM Report no. 31 simulating the attenuation and scatter characteristics of the adult human thorax. The MTF (eMTF) was measured by using an edge test placed at the frontal surface of the phantom, the NNPS (eNNPS) was calculated from images of the phantom acquired at three different exposure levels covering the operating range of the system (E{sub 0}, which is the exposure at which a system is normally operated, 1/3 E{sub 0}, and 3 E0), and scatter measurements were assessed by using a beam-stop technique. The integral of DQE (IDQE) and eDQE (IeDQE) was calculated over the whole spatial frequency range. Results: The eMTF results demonstrate degradation due to magnification and the presence of scattered radiation. The eNNPS was influenced by the grid presence, and in some systems, it contained structured noise. At typical clinical exposure levels, the magnitude of eDQE(0) with respect to DQE(0) at RQA9 beam conditions was 13%, 17%, 16%, 36%, and 24%, respectively, for Carestream DRX-1, Carestream DRX-1C, Carestream Direct View CR975, Philips Digital Diagnost VM, and GE Revolution XR/d. These results were confirmed by the ratio of IeDQE and IDQE in the same conditions. Conclusions: The authors confirm the robustness and reproducibility of the eDQE method. As expected, the DR systems

  17. Segmented phosphors: MEMS-based high quantum efficiency detectors for megavoltage x-ray imaging.

    PubMed

    Sawant, Amit; Antonuk, Larry E; El-Mohri, Youcef; Li, Yixin; Su, Zhong; Wang, Yi; Yamamoto, Jin; Zhao, Qihua; Du, Hong; Daniel, Jurgen; Street, Robert

    2005-02-01

    Current electronic portal imaging devices (EPIDs) based on active matrix flat panel imager (AMFPI) technology use a metal plate+phosphor screen combination for x-ray conversion. As a result, these devices face a severe trade-off between x-ray quantum efficiency (QE) and spatial resolution, thus, significantly limiting their imaging performance. In this work, we present a novel detector design for indirect detection-based AMFPI EPIDs that aims to circumvent this trade-off. The detectors were developed using micro-electro-mechanical system (MEMS)-based fabrication techniques and consist of a grid of up to approximately 2 mm tall, optically isolated cells of a photoresist material, SU-8. The cells are dimensionally matched to the pixels of the AMFPI array, and packed with a scintillating phosphor. In this paper, various design considerations for such detectors are examined. An empirical evaluation of three small-area (approximately 7 x 7 cm2) prototype detectors is performed in order to study the effects of two design parameters--cell height and phosphor packing density, both of which are important determinants of the imaging performance. Measurements of the x-ray sensitivity, modulation transfer function (MTF) and noise power spectrum (NPS) were performed under radiotherapy conditions (6 MV), and the detective quantum efficiency (DQE) was determined for each prototype SU-8 detector. In addition, theoretical calculations using Monte Carlo simulations were performed to determine the QE of each detector, as well as the inherent spatial resolution due to the spread of absorbed energy. The results of the present studies were compared with corresponding measurements published in an earlier study using a Lanex Fast-B phosphor screen coupled to an indirect detection array of the same design. The SU-8 detectors exhibit up to 3 times higher QE, while achieving spatial resolution comparable or superior to Lanex Fast-B. However, the DQE performance of these early prototypes is

  18. Effects of Mg doping in the quantum barriers on the efficiency droop of GaN based light emitting diodes

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Yongchun, Yang

    2016-05-01

    The effects of Mg doping in the quantum barriers (QBs) on the efficiency droop of GaN based light emitting diodes (LEDs) were investigated through a duel wavelength method. Barrier Mg doping would lead to the enhanced hole transportation and reduced polarization field in the quantum wells (QWs), both may reduce the efficiency droop. However, heavy Mg doping in the QBs would strongly deteriorate the crystal quality of the QWs grown after the doped QB. When increasing the injection current, the carriers would escape from the QWs between n-GaN and the doped QB and recombine non-radiatively in the QWs grown after the doped QB, leading to a serious efficiency droop. Project supported by the National Natural Science Foundation of China (Grant No. 41171143).

  19. Color-conversion efficiency enhancement of quantum dots via selective area nano-rods light-emitting diodes.

    PubMed

    Liu, Che-Yu; Chen, Tzu-Pei; Kao, Tsung Sheng; Huang, Jhih-Kai; Kuo, Hao-Chung; Chen, Yang-Fang; Chang, Chun-Yen

    2016-08-22

    A large enhancement of color-conversion efficiency of colloidal quantum dots in light-emitting diodes (LEDs) with novel structures of nanorods embedded in microholes has been demonstrated. Via the integration of nano-imprint and photolithography technologies, nanorods structures can be fabricated at specific locations, generating functional nanostructured LEDs for high-efficiency performance. With the novel structured LED, the color-conversion efficiency of the existing quantum dots can be enhanced by up to 32.4%. The underlying mechanisms can be attributed to the enhanced light extraction and non-radiative energy transfer, characterized by conducting a series of electroluminescence and time-resolved photoluminescence measurements. This hybrid nanostructured device therefore exhibits a great potential for the application of multi-color lighting sources. PMID:27557273

  20. Transparent ITO/Ag-Pd-Cu/ITO multilayer cathode use in inverted organic solar cells

    SciTech Connect

    Kim, Hyo-Joong; Kim, Han-Ki; Lee, Hyun Hwi; Kal, Jinha; Hahn, Jungseok

    2015-10-15

    The characteristics of transparent ITO/Ag-Pd-Cu (APC)/ITO multilayer cathodes were investigated for use in inverted organic solar cells (IOSCs). The insertion of an APC interlayer into the ITO film effectively led to crystallization of the top ITO layer, unlike that in the Ag interlayer, and resulted in a low sheet resistance of 6.55 Ohm/square and a high optical transmittance of 84.14% without post annealing. In addition, the alloying of the Pd and Cu elements into Ag prevented agglomeration and oxidization of the metal interlayer and led to more stable ITO/APC/ITO films under ambient conditions. The microstructure and interfacial structure of the transparent ITO/APC/ITO cathode in the IOSCs were examined in detail by synchrotron X-ray scattering and high resolution transmission electron microscopy. Furthermore, we suggested a possible mechanism to explain the lower PCE of the IOSCs with an ITO/APC/ITO cathode than that of a reference IOSC with a crystalline ITO cathode using the external quantum efficiency of the IOSCs.