Sample records for quantum efficiency measurements

  1. High-efficiency tomographic reconstruction of quantum states by quantum nondemolition measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, J. S.; Centre for Quantum Technologies and Department of Physics, National University of Singapore, 3 Science Drive 2, Singapore 117542; Wei, L. F.

    We propose a high-efficiency scheme to tomographically reconstruct an unknown quantum state by using a series of quantum nondemolition (QND) measurements. The proposed QND measurements of the qubits are implemented by probing the stationary transmissions through a driven dispersively coupled resonator. It is shown that only one kind of QND measurement is sufficient to determine all the diagonal elements of the density matrix of the detected quantum state. The remaining nondiagonal elements can be similarly determined by transferring them to the diagonal locations after a series of unitary operations. Compared with the tomographic reconstructions based on the usual destructive projectivemore » measurements (wherein one such measurement can determine only one diagonal element of the density matrix), the present reconstructive approach exhibits significantly high efficiency. Specifically, our generic proposal is demonstrated by the experimental circuit quantum electrodynamics systems with a few Josephson charge qubits.« less

  2. Quantum efficiency measurements of eROSITA pnCCDs

    NASA Astrophysics Data System (ADS)

    Ebermayer, Stefanie; Andritschke, Robert; Elbs, Johannes; Meidinger, Norbert; Strüder, Lothar; Hartmann, Robert; Gottwald, Alexander; Krumrey, Michael; Scholze, Frank

    2010-07-01

    For the eROSITA X-ray telescope, which is planned to be launched in 2012, detectors were developed and fabricated at the MPI Semiconductor Laboratory. The fully depleted, back-illuminated pnCCDs have an ultrathin pn-junction to improve the low-energy X-ray response function and quantum efficiency. The device thickness of 450 μm is fully sensitive to X-ray photons yielding high quantum efficiency of more than 90% at photon energies of 10 keV. An on-chip filter is deposited on top of the entrance window to suppress visible and UV light which would interfere with the X-ray observations. The pnCCD type developed for the eROSITA telescope was characterized in terms of quantum efficiency and spectral response function. The described measurements were performed in 2009 at the synchrotron radiation sources BESSY II and MLS as cooperation between the MPI Semiconductor Laboratory and the Physikalisch-Technische Bundesanstalt (PTB). Quantum efficiency measurements over a wide range of photon energies from 3 eV to 11 keV as well as spectral response measurements are presented. For X-ray energies from 3 keV to 10 keV the quantum efficiency of the CCD including on-chip filter is shown to be above 90% with an attenuation of visible light of more than five orders of magnitude. A detector response model is described and compared to the measurements.

  3. Nd/sup 3 +/ fluorescence quantum-efficiency measurements with photoacoustics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosencwaig, A.; Hildum, E.A.

    1981-04-01

    We have investigated the use of photoacoustic techniques for obtaining absolute values of fluorescence quantum efficiencies in lightly doped Nd/sup 3 +/ laser materials. We have found that surface absorptions play an important role in gas-microphone measurements, and that thermal profiles are important in piezoelectric measurements. We have obtained fluorescence quantum efficiencies for Nd/sup 3 +/ in yttrium aluminum garnet, and in silicate and borate glasses that are in good agreement with lifetime measurements and Judd-Ofelt calculations.

  4. Efficient Measurement of Multiparticle Entanglement with Embedding Quantum Simulator.

    PubMed

    Chen, Ming-Cheng; Wu, Dian; Su, Zu-En; Cai, Xin-Dong; Wang, Xi-Lin; Yang, Tao; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2016-02-19

    The quantum measurement of entanglement is a demanding task in the field of quantum information. Here, we report the direct and scalable measurement of multiparticle entanglement with embedding photonic quantum simulators. In this embedding framework [R. Di Candia et al. Phys. Rev. Lett. 111, 240502 (2013)], the N-qubit entanglement, which does not associate with a physical observable directly, can be efficiently measured with only two (for even N) and six (for odd N) local measurement settings. Our experiment uses multiphoton quantum simulators to mimic dynamical concurrence and three-tangle entangled systems and to track their entanglement evolutions.

  5. An automated system to measure the quantum efficiency of CCDs for astronomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coles, R.; Chiang, J.; Cinabro, D.

    We describe a system to measure the Quantum Efficiency in the wavelength range of 300 nm to 1100 nm of 40 × 40 mm n-channel CCD sensors for the construction of the 3.2 gigapixel LSST focal plane. The technique uses a series of instrument to create a very uniform flux of photons of controllable intensity in the wavelength range of interest across the face the sensor. This allows the absolute Quantum Efficiency to be measured with an accuracy in the 1% range. Finally, this system will be part of a production facility at Brookhaven National Lab for the basic componentmore » of the LSST camera.« less

  6. An automated system to measure the quantum efficiency of CCDs for astronomy

    DOE PAGES

    Coles, R.; Chiang, J.; Cinabro, D.; ...

    2017-04-18

    We describe a system to measure the Quantum Efficiency in the wavelength range of 300 nm to 1100 nm of 40 × 40 mm n-channel CCD sensors for the construction of the 3.2 gigapixel LSST focal plane. The technique uses a series of instrument to create a very uniform flux of photons of controllable intensity in the wavelength range of interest across the face the sensor. This allows the absolute Quantum Efficiency to be measured with an accuracy in the 1% range. Finally, this system will be part of a production facility at Brookhaven National Lab for the basic componentmore » of the LSST camera.« less

  7. Efficient multiparty quantum-secret-sharing schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao Li; Deng Fuguo; Key Laboratory for Quantum Information and Measurements, MOE, Beijing 100084

    In this work, we generalize the quantum-secret-sharing scheme of Hillery, Buzek, and Berthiaume [Phys. Rev. A 59, 1829 (1999)] into arbitrary multiparties. Explicit expressions for the shared secret bit is given. It is shown that in the Hillery-Buzek-Berthiaume quantum-secret-sharing scheme the secret information is shared in the parity of binary strings formed by the measured outcomes of the participants. In addition, we have increased the efficiency of the quantum-secret-sharing scheme by generalizing two techniques from quantum key distribution. The favored-measuring-basis quantum-secret-sharing scheme is developed from the Lo-Chau-Ardehali technique [H. K. Lo, H. F. Chau, and M. Ardehali, e-print quant-ph/0011056] wheremore » all the participants choose their measuring-basis asymmetrically, and the measuring-basis-encrypted quantum-secret-sharing scheme is developed from the Hwang-Koh-Han technique [W. Y. Hwang, I. G. Koh, and Y. D. Han, Phys. Lett. A 244, 489 (1998)] where all participants choose their measuring basis according to a control key. Both schemes are asymptotically 100% in efficiency, hence nearly all the Greenberger-Horne-Zeilinger states in a quantum-secret-sharing process are used to generate shared secret information.« less

  8. Work Measurement as a Generalized Quantum Measurement

    NASA Astrophysics Data System (ADS)

    Roncaglia, Augusto J.; Cerisola, Federico; Paz, Juan Pablo

    2014-12-01

    We present a new method to measure the work w performed on a driven quantum system and to sample its probability distribution P (w ). The method is based on a simple fact that remained unnoticed until now: Work on a quantum system can be measured by performing a generalized quantum measurement at a single time. Such measurement, which technically speaking is denoted as a positive operator valued measure reduces to an ordinary projective measurement on an enlarged system. This observation not only demystifies work measurement but also suggests a new quantum algorithm to efficiently sample the distribution P (w ). This can be used, in combination with fluctuation theorems, to estimate free energies of quantum states on a quantum computer.

  9. Design of quantum efficiency measurement system for variable doping GaAs photocathode

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Yang, Kai; Liu, HongLin; Chang, Benkang

    2008-03-01

    To achieve high quantum efficiency and good stability has been a main direction to develop GaAs photocathode recently. Through early research, we proved that variable doping structure is executable and practical, and has great potential. In order to optimize variable doping GaAs photocathode preparation techniques and study the variable doping theory deeply, a real-time quantum efficiency measurement system for GaAs Photocathode has been designed. The system uses FPGA (Field-programmable gate array) device, and high speed A/D converter to design a high signal noise ratio and high speed data acquisition card. ARM (Advanced RISC Machines) core processor s3c2410 and real-time embedded system are used to obtain and show measurement results. The measurement precision of photocurrent could reach 1nA, and measurement range of spectral response curve is within 400~1000nm. GaAs photocathode preparation process can be real-time monitored by using this system. This system could easily be added other functions to show the physic variation of photocathode during the preparation process more roundly in the future.

  10. The Experimental Demonstration of High Efficiency Interaction-free Measurement for Quantum Counterfactual-like Communication.

    PubMed

    Liu, Chao; Liu, Jinhong; Zhang, Junxiang; Zhu, Shiyao

    2017-09-07

    We present an interaction-free measurement with quantum Zeno effect and a high efficiency η = 74.6% ± 0.15%. As a proof-of-principle demonstration, this measurement can be used to implement a quantum counterfactual-like communication protocol. Instead of a single photon state, we use a coherent light as the input source and show that the output agrees with the proposed quantum counterfactual communication protocol according to Salih et al. Although the counterfactuality is not achieved due to the presence of a few photons in the public channel, we show that the signal light is nearly absent in the public channel, which exhibits a proof-of-principle quantum counterfactual-like property of communication.

  11. Accurate reconstruction of the jV-characteristic of organic solar cells from measurements of the external quantum efficiency

    NASA Astrophysics Data System (ADS)

    Meyer, Toni; Körner, Christian; Vandewal, Koen; Leo, Karl

    2018-04-01

    In two terminal tandem solar cells, the current density - voltage (jV) characteristic of the individual subcells is typically not directly measurable, but often required for a rigorous device characterization. In this work, we reconstruct the jV-characteristic of organic solar cells from measurements of the external quantum efficiency under applied bias voltages and illumination. We show that it is necessary to perform a bias irradiance variation at each voltage and subsequently conduct a mathematical correction of the differential to the absolute external quantum efficiency to obtain an accurate jV-characteristic. Furthermore, we show that measuring the external quantum efficiency as a function of voltage for a single bias irradiance of 0.36 AM1.5g equivalent sun provides a good approximation of the photocurrent density over voltage curve. The method is tested on a selection of efficient, common single-junctions. The obtained conclusions can easily be transferred to multi-junction devices with serially connected subcells.

  12. Quantum efficiency measurement of the Transiting Exoplanet Survey Satellite (TESS) CCD detectors

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, A.; Villasenor, J.; Thayer, C.; Kissel, S.; Ricker, G.; Seager, S.; Lyle, R.; Deline, A.; Morgan, E.; Sauerwein, T.; Vanderspek, R.

    2016-07-01

    Very precise on-ground characterization and calibration of TESS CCD detectors will significantly assist in the analysis of the science data from the mission. An accurate optical test bench with very high photometric stability has been developed to perform precise measurements of the absolute quantum efficiency. The setup consists of a vacuum dewar with a single MIT Lincoln Lab CCID-80 device mounted on a cold plate with the calibrated reference photodiode mounted next to the CCD. A very stable laser-driven light source is integrated with a closed-loop intensity stabilization unit to control variations of the light source down to a few parts-per-million when averaged over 60 s. Light from the stabilization unit enters a 20 inch integrating sphere. The output light from the sphere produces near-uniform illumination on the cold CCD and on the calibrated reference photodiode inside the dewar. The ratio of the CCD and photodiode signals provides the absolute quantum efficiency measurement. The design, key features, error analysis, and results from the test campaign are presented.

  13. Efficient entanglement distillation without quantum memory.

    PubMed

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J; Fiurášek, Jaromír; Schnabel, Roman

    2016-05-31

    Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution.

  14. Efficient entanglement distillation without quantum memory

    PubMed Central

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J.; Fiurášek, Jaromír; Schnabel, Roman

    2016-01-01

    Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution. PMID:27241946

  15. Efficient universal blind quantum computation.

    PubMed

    Giovannetti, Vittorio; Maccone, Lorenzo; Morimae, Tomoyuki; Rudolph, Terry G

    2013-12-06

    We give a cheat sensitive protocol for blind universal quantum computation that is efficient in terms of computational and communication resources: it allows one party to perform an arbitrary computation on a second party's quantum computer without revealing either which computation is performed, or its input and output. The first party's computational capabilities can be extremely limited: she must only be able to create and measure single-qubit superposition states. The second party is not required to use measurement-based quantum computation. The protocol requires the (optimal) exchange of O(Jlog2(N)) single-qubit states, where J is the computational depth and N is the number of qubits needed for the computation.

  16. Measurement-only verifiable blind quantum computing with quantum input verification

    NASA Astrophysics Data System (ADS)

    Morimae, Tomoyuki

    2016-10-01

    Verifiable blind quantum computing is a secure delegated quantum computing where a client with a limited quantum technology delegates her quantum computing to a server who has a universal quantum computer. The client's privacy is protected (blindness), and the correctness of the computation is verifiable by the client despite her limited quantum technology (verifiability). There are mainly two types of protocols for verifiable blind quantum computing: the protocol where the client has only to generate single-qubit states and the protocol where the client needs only the ability of single-qubit measurements. The latter is called the measurement-only verifiable blind quantum computing. If the input of the client's quantum computing is a quantum state, whose classical efficient description is not known to the client, there was no way for the measurement-only client to verify the correctness of the input. Here we introduce a protocol of measurement-only verifiable blind quantum computing where the correctness of the quantum input is also verifiable.

  17. Efficient quantum walk on a quantum processor

    PubMed Central

    Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.

    2016-01-01

    The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor. PMID:27146471

  18. Efficient quantum pseudorandomness with simple graph states

    NASA Astrophysics Data System (ADS)

    Mezher, Rawad; Ghalbouni, Joe; Dgheim, Joseph; Markham, Damian

    2018-02-01

    Measurement based (MB) quantum computation allows for universal quantum computing by measuring individual qubits prepared in entangled multipartite states, known as graph states. Unless corrected for, the randomness of the measurements leads to the generation of ensembles of random unitaries, where each random unitary is identified with a string of possible measurement results. We show that repeating an MB scheme an efficient number of times, on a simple graph state, with measurements at fixed angles and no feedforward corrections, produces a random unitary ensemble that is an ɛ -approximate t design on n qubits. Unlike previous constructions, the graph is regular and is also a universal resource for measurement based quantum computing, closely related to the brickwork state.

  19. Internal quantum efficiency enhancement of GaInN/GaN quantum-well structures using Ag nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iida, Daisuke; Department of Photonics Engineering, Technical University of Denmark, 2800 Lyngby; Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi Tempaku, 468-8502 Nagoya

    2015-09-15

    We report internal quantum efficiency enhancement of thin p-GaN green quantum-well structure using self-assembled Ag nanoparticles. Temperature dependent photoluminescence measurements are conducted to determine the internal quantum efficiency. The impact of excitation power density on the enhancement factor is investigated. We obtain an internal quantum efficiency enhancement by a factor of 2.3 at 756 W/cm{sup 2}, and a factor of 8.1 at 1 W/cm{sup 2}. A Purcell enhancement up to a factor of 26 is estimated by fitting the experimental results to a theoretical model for the efficiency enhancement factor.

  20. Direct determination of quantum efficiency of semiconducting films

    DOEpatents

    Faughnan, Brian W.; Hanak, Joseph J.

    1986-01-01

    Photovoltaic quantum efficiency of semiconductor samples is determined directly, without requiring that a built-in photovoltage be generated by the sample. Electrodes are attached to the sample so as to form at least one Schottky barrier therewith. When illuminated, the generated photocurrent carriers are collected by an external bias voltage impressed across the electrodes. The generated photocurrent is measured, and photovoltaic quantum efficiency is calculated therefrom.

  1. Direct determination of quantum efficiency of semiconducting films

    DOEpatents

    Faughnan, B.W.; Hanak, J.J.

    Photovoltaic quantum efficiency of semiconductor samples is determined directly, without requiring that a built-in photovoltage be generated by the sample. Electrodes are attached to the sample so as to form at least one Schottky barrier therewith. When illuminated, the generated photocurrent carriers are collected by an external bias voltage impressed across the electrodes. The generated photocurrent is measured, and photovoltaic quantum efficiency is calculated therefrom.

  2. Verifiable fault tolerance in measurement-based quantum computation

    NASA Astrophysics Data System (ADS)

    Fujii, Keisuke; Hayashi, Masahito

    2017-09-01

    Quantum systems, in general, cannot be simulated efficiently by a classical computer, and hence are useful for solving certain mathematical problems and simulating quantum many-body systems. This also implies, unfortunately, that verification of the output of the quantum systems is not so trivial, since predicting the output is exponentially hard. As another problem, the quantum system is very delicate for noise and thus needs an error correction. Here, we propose a framework for verification of the output of fault-tolerant quantum computation in a measurement-based model. In contrast to existing analyses on fault tolerance, we do not assume any noise model on the resource state, but an arbitrary resource state is tested by using only single-qubit measurements to verify whether or not the output of measurement-based quantum computation on it is correct. Verifiability is equipped by a constant time repetition of the original measurement-based quantum computation in appropriate measurement bases. Since full characterization of quantum noise is exponentially hard for large-scale quantum computing systems, our framework provides an efficient way to practically verify the experimental quantum error correction.

  3. Efficient quantum dialogue without information leakage

    NASA Astrophysics Data System (ADS)

    Yin, Ai-Han; Tang, Zhi-Hui; Chen, Dong

    2015-02-01

    A two-step quantum dialogue scheme is put forward with a class of three-qubit W state and quantum dense coding. Each W state can carry three bits of secret information and the measurement result is encrypted without information leakage. Furthermore, we utilize the entangle properties of W state and decoy photon checking technique to realize three-time channel detection, which can improve the efficiency and security of the scheme.

  4. Algorithm for measuring the internal quantum efficiency of individual injection lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sommers, H.S. Jr.

    1978-05-01

    A new algorithm permits determination of the internal quantum efficiency eta/sub i/ of individual lasers. Above threshold, the current is partitioned into a ''coherent'' component driving the lasing modes and the ''noncoherent'' remainder. Below threshold the current is known to grow as exp(qV/n/sub 0/KT); the algorithm proposes that extrapolation of this equation into the lasing region measures the noncoherent remainder, enabling deduction of the coherent component and of its current derivative eta/sub i/. Measurements on five (AlGa)As double-heterojunction lasers cut from one wafer demonstrate the power of the new method. Comparison with band calculations of Stern shows that n/sub 0/more » originates in carrier degeneracy.« less

  5. Deterministic realization of collective measurements via photonic quantum walks.

    PubMed

    Hou, Zhibo; Tang, Jun-Feng; Shang, Jiangwei; Zhu, Huangjun; Li, Jian; Yuan, Yuan; Wu, Kang-Da; Xiang, Guo-Yong; Li, Chuan-Feng; Guo, Guang-Can

    2018-04-12

    Collective measurements on identically prepared quantum systems can extract more information than local measurements, thereby enhancing information-processing efficiency. Although this nonclassical phenomenon has been known for two decades, it has remained a challenging task to demonstrate the advantage of collective measurements in experiments. Here, we introduce a general recipe for performing deterministic collective measurements on two identically prepared qubits based on quantum walks. Using photonic quantum walks, we realize experimentally an optimized collective measurement with fidelity 0.9946 without post selection. As an application, we achieve the highest tomographic efficiency in qubit state tomography to date. Our work offers an effective recipe for beating the precision limit of local measurements in quantum state tomography and metrology. In addition, our study opens an avenue for harvesting the power of collective measurements in quantum information-processing and for exploring the intriguing physics behind this power.

  6. Photo-acoustic spectroscopy and quantum efficiency of Yb{sup 3+} doped alumino silicate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhn, Stefan, E-mail: stefan.kuhn84@googlemail.com; Tiegel, Mirko; Herrmann, Andreas

    2015-09-14

    In this contribution, we analyze the effect of several preparation methods of Yb{sup 3+} doped alumino silicate glasses on their quantum efficiency by using photo-acoustic measurements in comparison to standard measurement methods including the determination via the fluorescence lifetime and an integrating sphere setup. The preparation methods focused on decreasing the OH concentration by means of fluorine-substitution and/or applying dry melting atmospheres, which led to an increase in the measured fluorescence lifetime. However, it was found that the influence of these methods on radiative properties such as the measured fluorescence lifetime alone does not per se give exact information aboutmore » the actual quantum efficiency of the sample. The determination of the quantum efficiency by means of fluorescence lifetime shows inaccuracies when refractive index changing elements such as fluorine are incorporated into the glass. Since fluorine not only eliminates OH from the glass but also increases the “intrinsic” radiative fluorescence lifetime, which is needed to calculate the quantum efficiency, it is difficult to separate lifetime quenching from purely radiative effects. The approach used in this contribution offers a possibility to disentangle radiative from non-radiative properties which is not possible by using fluorescence lifetime measurements alone and allows an accurate determination of the quantum efficiency of a given sample. The comparative determination by an integrating sphere setup leads to the well-known problem of reabsorption which embodies itself in the measurement of too low quantum efficiencies, especially for samples with small quantum efficiencies.« less

  7. Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120%

    PubMed Central

    2015-01-01

    Multiple exciton generation (MEG) in semiconducting quantum dots is a process that produces multiple charge-carrier pairs from a single excitation. MEG is a possible route to bypass the Shockley-Queisser limit in single-junction solar cells but it remains challenging to harvest charge-carrier pairs generated by MEG in working photovoltaic devices. Initial yields of additional carrier pairs may be reduced due to ultrafast intraband relaxation processes that compete with MEG at early times. Quantum dots of materials that display reduced carrier cooling rates (e.g., PbTe) are therefore promising candidates to increase the impact of MEG in photovoltaic devices. Here we demonstrate PbTe quantum dot-based solar cells, which produce extractable charge carrier pairs with an external quantum efficiency above 120%, and we estimate an internal quantum efficiency exceeding 150%. Resolving the charge carrier kinetics on the ultrafast time scale with pump–probe transient absorption and pump–push–photocurrent measurements, we identify a delayed cooling effect above the threshold energy for MEG. PMID:26488847

  8. Quantum autoencoders for efficient compression of quantum data

    NASA Astrophysics Data System (ADS)

    Romero, Jonathan; Olson, Jonathan P.; Aspuru-Guzik, Alan

    2017-12-01

    Classical autoencoders are neural networks that can learn efficient low-dimensional representations of data in higher-dimensional space. The task of an autoencoder is, given an input x, to map x to a lower dimensional point y such that x can likely be recovered from y. The structure of the underlying autoencoder network can be chosen to represent the data on a smaller dimension, effectively compressing the input. Inspired by this idea, we introduce the model of a quantum autoencoder to perform similar tasks on quantum data. The quantum autoencoder is trained to compress a particular data set of quantum states, where a classical compression algorithm cannot be employed. The parameters of the quantum autoencoder are trained using classical optimization algorithms. We show an example of a simple programmable circuit that can be trained as an efficient autoencoder. We apply our model in the context of quantum simulation to compress ground states of the Hubbard model and molecular Hamiltonians.

  9. Efficient multiparty quantum key agreement with collective detection.

    PubMed

    Huang, Wei; Su, Qi; Liu, Bin; He, Yuan-Hang; Fan, Fan; Xu, Bing-Jie

    2017-11-10

    As a burgeoning branch of quantum cryptography, quantum key agreement is a kind of key establishing processes where the security and fairness of the established common key should be guaranteed simultaneously. However, the difficulty on designing a qualified quantum key agreement protocol increases significantly with the increase of the number of the involved participants. Thus far, only few of the existing multiparty quantum key agreement (MQKA) protocols can really achieve security and fairness. Nevertheless, these qualified MQKA protocols are either too inefficient or too impractical. In this paper, an MQKA protocol is proposed with single photons in travelling mode. Since only one eavesdropping detection is needed in the proposed protocol, the qubit efficiency and measurement efficiency of it are higher than those of the existing ones in theory. Compared with the protocols which make use of the entangled states or multi-particle measurements, the proposed protocol is more feasible with the current technologies. Security and fairness analysis shows that the proposed protocol is not only immune to the attacks from external eavesdroppers, but also free from the attacks from internal betrayers.

  10. Measurement-device-independent quantum key distribution.

    PubMed

    Lo, Hoi-Kwong; Curty, Marcos; Qi, Bing

    2012-03-30

    How to remove detector side channel attacks has been a notoriously hard problem in quantum cryptography. Here, we propose a simple solution to this problem--measurement-device-independent quantum key distribution (QKD). It not only removes all detector side channels, but also doubles the secure distance with conventional lasers. Our proposal can be implemented with standard optical components with low detection efficiency and highly lossy channels. In contrast to the previous solution of full device independent QKD, the realization of our idea does not require detectors of near unity detection efficiency in combination with a qubit amplifier (based on teleportation) or a quantum nondemolition measurement of the number of photons in a pulse. Furthermore, its key generation rate is many orders of magnitude higher than that based on full device independent QKD. The results show that long-distance quantum cryptography over say 200 km will remain secure even with seriously flawed detectors.

  11. Efficiency and formalism of quantum games

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C.F.; Johnson, Neil F.

    We show that quantum games are more efficient than classical games and provide a saturated upper bound for this efficiency. We also demonstrate that the set of finite classical games is a strict subset of the set of finite quantum games. Our analysis is based on a rigorous formulation of quantum games, from which quantum versions of the minimax theorem and the Nash equilibrium theorem can be deduced.

  12. Apparent bandgap shift in the internal quantum efficiency for solar cells with back reflectors

    NASA Astrophysics Data System (ADS)

    Steiner, M. A.; Perl, E. E.; Geisz, J. F.; Friedman, D. J.; Jain, N.; Levi, D.; Horner, G.

    2017-04-01

    We demonstrate that in solar cells with highly reflective back mirrors, the measured internal quantum efficiency exhibits a shift in bandgap relative to the measured external quantum efficiency. The shift arises from the fact that the measured reflectance at the front surface includes a superposition of waves reflecting from the front and back surfaces. We quantify the magnitude of the apparent shift and discuss the errors that can result in determination of quantities such as the photocurrent. Because of this apparent shift, it is important the bandgap be determined from the external quantum efficiency.

  13. Investigation of the quantum efficiency of optical heterodyne detectors

    NASA Technical Reports Server (NTRS)

    Batchman, T. E.

    1984-01-01

    The frequency response and quantum efficiency of optical photodetectors for heterodyne receivers is investigated. The measurements utilized two spectral lines from the output of two lasers as input to the photodetectors. These lines are easily measurable in power and frequency and hence serve as known inputs. By measuring the output current of the photodetector the quantum efficiency is determined as a function of frequency separation between the two input signals. An investigation of the theoretical basis and accuracy of this type of measurement relative to similar measurements utilizing risetime is undertaken. A theoretical study of the heterodyne process in photodetectors based on semiconductor physics is included so that higher bandwidth detectors may be designed. All measurements are made on commercially available detectors and manufacturers' specifications for normal photodetector operation are compared to the measured heterodyne characteristics.

  14. Efficient method for computing the maximum-likelihood quantum state from measurements with additive Gaussian noise.

    PubMed

    Smolin, John A; Gambetta, Jay M; Smith, Graeme

    2012-02-17

    We provide an efficient method for computing the maximum-likelihood mixed quantum state (with density matrix ρ) given a set of measurement outcomes in a complete orthonormal operator basis subject to Gaussian noise. Our method works by first changing basis yielding a candidate density matrix μ which may have nonphysical (negative) eigenvalues, and then finding the nearest physical state under the 2-norm. Our algorithm takes at worst O(d(4)) for the basis change plus O(d(3)) for finding ρ where d is the dimension of the quantum state. In the special case where the measurement basis is strings of Pauli operators, the basis change takes only O(d(3)) as well. The workhorse of the algorithm is a new linear-time method for finding the closest probability distribution (in Euclidean distance) to a set of real numbers summing to one.

  15. Experimental measurement-device-independent verification of quantum steering

    NASA Astrophysics Data System (ADS)

    Kocsis, Sacha; Hall, Michael J. W.; Bennet, Adam J.; Saunders, Dylan J.; Pryde, Geoff J.

    2015-01-01

    Bell non-locality between distant quantum systems—that is, joint correlations which violate a Bell inequality—can be verified without trusting the measurement devices used, nor those performing the measurements. This leads to unconditionally secure protocols for quantum information tasks such as cryptographic key distribution. However, complete verification of Bell non-locality requires high detection efficiencies, and is not robust to typical transmission losses over long distances. In contrast, quantum or Einstein-Podolsky-Rosen steering, a weaker form of quantum correlation, can be verified for arbitrarily low detection efficiencies and high losses. The cost is that current steering-verification protocols require complete trust in one of the measurement devices and its operator, allowing only one-sided secure key distribution. Here we present measurement-device-independent steering protocols that remove this need for trust, even when Bell non-locality is not present. We experimentally demonstrate this principle for singlet states and states that do not violate a Bell inequality.

  16. Experimental measurement-device-independent verification of quantum steering.

    PubMed

    Kocsis, Sacha; Hall, Michael J W; Bennet, Adam J; Saunders, Dylan J; Pryde, Geoff J

    2015-01-07

    Bell non-locality between distant quantum systems--that is, joint correlations which violate a Bell inequality--can be verified without trusting the measurement devices used, nor those performing the measurements. This leads to unconditionally secure protocols for quantum information tasks such as cryptographic key distribution. However, complete verification of Bell non-locality requires high detection efficiencies, and is not robust to typical transmission losses over long distances. In contrast, quantum or Einstein-Podolsky-Rosen steering, a weaker form of quantum correlation, can be verified for arbitrarily low detection efficiencies and high losses. The cost is that current steering-verification protocols require complete trust in one of the measurement devices and its operator, allowing only one-sided secure key distribution. Here we present measurement-device-independent steering protocols that remove this need for trust, even when Bell non-locality is not present. We experimentally demonstrate this principle for singlet states and states that do not violate a Bell inequality.

  17. Apparent bandgap shift in the internal quantum efficiency for solar cells with back reflectors

    DOE PAGES

    Steiner, Myles A.; Perl, E. E.; Geisz, J. F.; ...

    2017-04-28

    Here, we demonstrate that in solar cells with highly reflective back mirrors, the measured internal quantum efficiency exhibits a shift in bandgap relative to the measured external quantum efficiency. The shift arises from the fact that the measured reflectance at the front surface includes a superposition of waves reflecting from the front and back surfaces. We quantify the magnitude of the apparent shift and discuss the errors that can result in determination of quantities such as the photocurrent. Because of this apparent shift, it is important that the bandgap be determined from the external quantum efficiency.

  18. Radio-frequency measurement in semiconductor quantum computation

    NASA Astrophysics Data System (ADS)

    Han, TianYi; Chen, MingBo; Cao, Gang; Li, HaiOu; Xiao, Ming; Guo, GuoPing

    2017-05-01

    Semiconductor quantum dots have attracted wide interest for the potential realization of quantum computation. To realize efficient quantum computation, fast manipulation and the corresponding readout are necessary. In the past few decades, considerable progress of quantum manipulation has been achieved experimentally. To meet the requirements of high-speed readout, radio-frequency (RF) measurement has been developed in recent years, such as RF-QPC (radio-frequency quantum point contact) and RF-DGS (radio-frequency dispersive gate sensor). Here we specifically demonstrate the principle of the radio-frequency reflectometry, then review the development and applications of RF measurement, which provides a feasible way to achieve high-bandwidth readout in quantum coherent control and also enriches the methods to study these artificial mesoscopic quantum systems. Finally, we prospect the future usage of radio-frequency reflectometry in scaling-up of the quantum computing models.

  19. Wide-Band, High-Quantum-Efficiency Photodetector

    NASA Technical Reports Server (NTRS)

    Jackson, Deborah; Wilson, Daniel; Stern, Jeffrey

    2007-01-01

    A design has been proposed for a photodetector that would exhibit a high quantum efficiency (as much as 90 percent) over a wide wavelength band, which would typically be centered at a wavelength of 1.55 m. This and similar photodetectors would afford a capability for detecting single photons - a capability that is needed for research in quantum optics as well as for the practical development of secure optical communication systems for distribution of quantum cryptographic keys. The proposed photodetector would be of the hot-electron, phonon-cooled, thin-film superconductor type. The superconducting film in this device would be a meandering strip of niobium nitride. In the proposed photodetector, the quantum efficiency would be increased through incorporation of optiA design has been proposed for a photodetector that would exhibit a high quantum efficiency (as much as 90 percent) over a wide wavelength band, which would typically be centered at a wavelength of 1.55 m. This and similar photodetectors would afford a capability for detecting single photons - a capability that is needed for research in quantum optics as well as for the practical development of secure optical communication systems for distribution of quantum cryptographic keys. The proposed photodetector would be of the hot-electron, phonon-cooled, thin-film superconductor type. The superconducting film in this device would be a meandering strip of niobium nitride. In the proposed photodetector, the quantum efficiency would be increased through incorporation of opti-

  20. Energy efficient quantum machines

    NASA Astrophysics Data System (ADS)

    Abah, Obinna; Lutz, Eric

    2017-05-01

    We investigate the performance of a quantum thermal machine operating in finite time based on shortcut-to-adiabaticity techniques. We compute efficiency and power for a paradigmatic harmonic quantum Otto engine by taking the energetic cost of the shortcut driving explicitly into account. We demonstrate that shortcut-to-adiabaticity machines outperform conventional ones for fast cycles. We further derive generic upper bounds on both quantities, valid for any heat engine cycle, using the notion of quantum speed limit for driven systems. We establish that these quantum bounds are tighter than those stemming from the second law of thermodynamics.

  1. Observable measure of quantum coherence in finite dimensional systems.

    PubMed

    Girolami, Davide

    2014-10-24

    Quantum coherence is the key resource for quantum technology, with applications in quantum optics, information processing, metrology, and cryptography. Yet, there is no universally efficient method for quantifying coherence either in theoretical or in experimental practice. I introduce a framework for measuring quantum coherence in finite dimensional systems. I define a theoretical measure which satisfies the reliability criteria established in the context of quantum resource theories. Then, I present an experimental scheme implementable with current technology which evaluates the quantum coherence of an unknown state of a d-dimensional system by performing two programmable measurements on an ancillary qubit, in place of the O(d2) direct measurements required by full state reconstruction. The result yields a benchmark for monitoring quantum effects in complex systems, e.g., certifying nonclassicality in quantum protocols and probing the quantum behavior of biological complexes.

  2. Preparation of reflective CsI photocathodes with reproducible high quantum efficiency

    NASA Astrophysics Data System (ADS)

    Maier-Komor, P.; Bauer, B. B.; Friese, J.; Gernhäuser, R.; Kienle, P.; Körner, H. J.; Montermann, G.; Zeitelhack, K.

    1995-02-01

    CsI as a solid UV-photocathode material has many promising applications in fast gaseous photon detectors. They are proposed in large area Ring Imaging CHerenkov (RICH) devices in forthcoming experiments at various high-energy particle accelerators. A high photon-to-electron conversion efficiency is a basic requirement for the successful operation of these devices. High reproducible quantum efficiencies could be achieved with CsI layers prepared by electron beam evaporation from a water-cooled copper crucible. CsI films were deposited in the thickness range of 30 to 500 μg/cm 2. Absorption coefficients and quantum efficiencies were measured in the wavelength region of 150 nm to 250 nm. The influence of various evaporation parameters on the quantum efficiency were investigated.

  3. Simulation of n-qubit quantum systems. V. Quantum measurements

    NASA Astrophysics Data System (ADS)

    Radtke, T.; Fritzsche, S.

    2010-02-01

    . 179 (2008) 647 Does the new version supersede the previous version?: Yes Nature of problem: During the last decade, the field of quantum information science has largely contributed to our understanding of quantum mechanics, and has provided also new and efficient protocols that are used on quantum entanglement. To further analyze the amount and transfer of entanglement in n-qubit quantum protocols, symbolic and numerical simulations need to be handled efficiently. Solution method: Using the computer algebra system Maple, we developed a set of procedures in order to support the definition, manipulation and analysis of n-qubit quantum registers. These procedures also help to deal with (unitary) logic gates and (nonunitary) quantum operations and measurements that act upon the quantum registers. All commands are organized in a hierarchical order and can be used interactively in order to simulate and analyze the evolution of n-qubit quantum systems, both in ideal and noisy quantum circuits. Reasons for new version: Until the present, the FEYNMAN program supported the basic data structures and operations of n-qubit quantum registers [1], a good number of separability and entanglement measures [2], quantum operations (noisy channels) [3] as well as the parametrizations of various frequently applied objects, such as (pure and mixed) quantum states, hermitian and unitary matrices or classical probability distributions [4]. With the current extension, we here add all necessary features to simulate quantum measurements, including the projective measurements in various single-qubit and the two-qubit Bell basis, and POVM measurements. Together with the previously implemented functionality, this greatly enhances the possibilities of analyzing quantum information protocols in which measurements play a central role, e.g., one-way computation. Running time: Most commands require ⩽10 seconds of processor time on a Pentium 4 processor with ⩾2 GHz RAM or newer, if they work with

  4. An efficient quantum algorithm for spectral estimation

    NASA Astrophysics Data System (ADS)

    Steffens, Adrian; Rebentrost, Patrick; Marvian, Iman; Eisert, Jens; Lloyd, Seth

    2017-03-01

    We develop an efficient quantum implementation of an important signal processing algorithm for line spectral estimation: the matrix pencil method, which determines the frequencies and damping factors of signals consisting of finite sums of exponentially damped sinusoids. Our algorithm provides a quantum speedup in a natural regime where the sampling rate is much higher than the number of sinusoid components. Along the way, we develop techniques that are expected to be useful for other quantum algorithms as well—consecutive phase estimations to efficiently make products of asymmetric low rank matrices classically accessible and an alternative method to efficiently exponentiate non-Hermitian matrices. Our algorithm features an efficient quantum-classical division of labor: the time-critical steps are implemented in quantum superposition, while an interjacent step, requiring much fewer parameters, can operate classically. We show that frequencies and damping factors can be obtained in time logarithmic in the number of sampling points, exponentially faster than known classical algorithms.

  5. Origins of low energy-transfer efficiency between patterned GaN quantum well and CdSe quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xingsheng, E-mail: xsxu@semi.ac.cn

    For hybrid light emitting devices (LEDs) consisting of GaN quantum wells and colloidal quantum dots, it is necessary to explore the physical mechanisms causing decreases in the quantum efficiencies and the energy transfer efficiency between a GaN quantum well and CdSe quantum dots. This study investigated the electro-luminescence for a hybrid LED consisting of colloidal quantum dots and a GaN quantum well patterned with photonic crystals. It was found that both the quantum efficiency of colloidal quantum dots on a GaN quantum well and the energy transfer efficiency between the patterned GaN quantum well and the colloidal quantum dots decreasedmore » with increases in the driving voltage or the driving time. Under high driving voltages, the decreases in the quantum efficiency of the colloidal quantum dots and the energy transfer efficiency can be attributed to Auger recombination, while those decreases under long driving time are due to photo-bleaching and Auger recombination.« less

  6. Photoconductive gain and quantum efficiency of remotely doped Ge/Si quantum dot photodetectors

    NASA Astrophysics Data System (ADS)

    Yakimov, A. I.; Kirienko, V. V.; Armbrister, V. A.; Bloshkin, A. A.; Dvurechenskii, A. V.; Shklyaev, A. A.

    2016-10-01

    We study the effect of quantum dot charging on the mid-infrared photocurrent, optical gain, hole capture probability, and absorption quantum efficiency in remotely delta-doped Ge/Si quantum dot photodetectors. The dot occupation with holes is controlled by varying dot and doping densities. From our investigations of samples doped to contain from about one to nine holes per dot we observe an over 10 times gain enhancement and similar suppression of the hole capture probability with increased carrier population. The data are explained by quenching the capture process and increasing the photoexcited hole lifetime due to formation of the repulsive Coulomb potential of the extra holes inside the quantum dots. The normal incidence quantum efficiency is found to be strongly asymmetric with respect to applied bias polarity. Based on the polarization-dependent absorption measurements it is concluded that, at a positive voltage, when holes move toward the nearest δ-doping plane, photocurrent is originated from the bound-to-continuum transitions of holes between the ground state confined in Ge dots and the extended states of the Si matrix. At a negative bias polarity, the photoresponse is caused by optical excitation to a quasibound state confined near the valence band edge with subsequent tunneling to the Si valence band. In a latter case, the possibility of hole transfer into continuum states arises from the electric field generated by charge distributed between quantum dots and delta-doping planes.

  7. Universality of measurements on quantum markets

    NASA Astrophysics Data System (ADS)

    Pakuła, Ireneusz; Piotrowski, Edward W.; Sładkowski, Jan

    2007-11-01

    Two of the authors have recently discussed financial markets operated by quantum computers-quantum market games. These “new markets” cannot by themselves create opportunity of making extraordinary profits or multiplying goods, but they may cause the dynamism of transaction which would result in more effective markets and capital flow into hands of the most efficient traders. Here we focus upon the problem of universality of measurement in quantum market games offering a possible method of implementation if the necessary technologies would be available. It can be also used to analyse material commitments that elude description in orthodox game-theoretic terms.

  8. Efficient quantum transmission in multiple-source networks.

    PubMed

    Luo, Ming-Xing; Xu, Gang; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun

    2014-04-02

    A difficult problem in quantum network communications is how to efficiently transmit quantum information over large-scale networks with common channels. We propose a solution by developing a quantum encoding approach. Different quantum states are encoded into a coherent superposition state using quantum linear optics. The transmission congestion in the common channel may be avoided by transmitting the superposition state. For further decoding and continued transmission, special phase transformations are applied to incoming quantum states using phase shifters such that decoders can distinguish outgoing quantum states. These phase shifters may be precisely controlled using classical chaos synchronization via additional classical channels. Based on this design and the reduction of multiple-source network under the assumption of restricted maximum-flow, the optimal scheme is proposed for specially quantized multiple-source network. In comparison with previous schemes, our scheme can greatly increase the transmission efficiency.

  9. Pure sources and efficient detectors for optical quantum information processing

    NASA Astrophysics Data System (ADS)

    Zielnicki, Kevin

    Over the last sixty years, classical information theory has revolutionized the understanding of the nature of information, and how it can be quantified and manipulated. Quantum information processing extends these lessons to quantum systems, where the properties of intrinsic uncertainty and entanglement fundamentally defy classical explanation. This growing field has many potential applications, including computing, cryptography, communication, and metrology. As inherently mobile quantum particles, photons are likely to play an important role in any mature large-scale quantum information processing system. However, the available methods for producing and detecting complex multi-photon states place practical limits on the feasibility of sophisticated optical quantum information processing experiments. In a typical quantum information protocol, a source first produces an interesting or useful quantum state (or set of states), perhaps involving superposition or entanglement. Then, some manipulations are performed on this state, perhaps involving quantum logic gates which further manipulate or entangle the intial state. Finally, the state must be detected, obtaining some desired measurement result, e.g., for secure communication or computationally efficient factoring. The work presented here concerns the first and last stages of this process as they relate to photons: sources and detectors. Our work on sources is based on the need for optimized non-classical states of light delivered at high rates, particularly of single photons in a pure quantum state. We seek to better understand the properties of spontaneous parameteric downconversion (SPDC) sources of photon pairs, and in doing so, produce such an optimized source. We report an SPDC source which produces pure heralded single photons with little or no spectral filtering, allowing a significant rate enhancement. Our work on detectors is based on the need to reliably measure single-photon states. We have focused on

  10. Efficient Quantum Transmission in Multiple-Source Networks

    PubMed Central

    Luo, Ming-Xing; Xu, Gang; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun

    2014-01-01

    A difficult problem in quantum network communications is how to efficiently transmit quantum information over large-scale networks with common channels. We propose a solution by developing a quantum encoding approach. Different quantum states are encoded into a coherent superposition state using quantum linear optics. The transmission congestion in the common channel may be avoided by transmitting the superposition state. For further decoding and continued transmission, special phase transformations are applied to incoming quantum states using phase shifters such that decoders can distinguish outgoing quantum states. These phase shifters may be precisely controlled using classical chaos synchronization via additional classical channels. Based on this design and the reduction of multiple-source network under the assumption of restricted maximum-flow, the optimal scheme is proposed for specially quantized multiple-source network. In comparison with previous schemes, our scheme can greatly increase the transmission efficiency. PMID:24691590

  11. Positive Wigner functions render classical simulation of quantum computation efficient.

    PubMed

    Mari, A; Eisert, J

    2012-12-07

    We show that quantum circuits where the initial state and all the following quantum operations can be represented by positive Wigner functions can be classically efficiently simulated. This is true both for continuous-variable as well as discrete variable systems in odd prime dimensions, two cases which will be treated on entirely the same footing. Noting the fact that Clifford and Gaussian operations preserve the positivity of the Wigner function, our result generalizes the Gottesman-Knill theorem. Our algorithm provides a way of sampling from the output distribution of a computation or a simulation, including the efficient sampling from an approximate output distribution in the case of sampling imperfections for initial states, gates, or measurements. In this sense, this work highlights the role of the positive Wigner function as separating classically efficiently simulable systems from those that are potentially universal for quantum computing and simulation, and it emphasizes the role of negativity of the Wigner function as a computational resource.

  12. Efficient quantum computing using coherent photon conversion.

    PubMed

    Langford, N K; Ramelow, S; Prevedel, R; Munro, W J; Milburn, G J; Zeilinger, A

    2011-10-12

    Single photons are excellent quantum information carriers: they were used in the earliest demonstrations of entanglement and in the production of the highest-quality entanglement reported so far. However, current schemes for preparing, processing and measuring them are inefficient. For example, down-conversion provides heralded, but randomly timed, single photons, and linear optics gates are inherently probabilistic. Here we introduce a deterministic process--coherent photon conversion (CPC)--that provides a new way to generate and process complex, multiquanta states for photonic quantum information applications. The technique uses classically pumped nonlinearities to induce coherent oscillations between orthogonal states of multiple quantum excitations. One example of CPC, based on a pumped four-wave-mixing interaction, is shown to yield a single, versatile process that provides a full set of photonic quantum processing tools. This set satisfies the DiVincenzo criteria for a scalable quantum computing architecture, including deterministic multiqubit entanglement gates (based on a novel form of photon-photon interaction), high-quality heralded single- and multiphoton states free from higher-order imperfections, and robust, high-efficiency detection. It can also be used to produce heralded multiphoton entanglement, create optically switchable quantum circuits and implement an improved form of down-conversion with reduced higher-order effects. Such tools are valuable building blocks for many quantum-enabled technologies. Finally, using photonic crystal fibres we experimentally demonstrate quantum correlations arising from a four-colour nonlinear process suitable for CPC and use these measurements to study the feasibility of reaching the deterministic regime with current technology. Our scheme, which is based on interacting bosonic fields, is not restricted to optical systems but could also be implemented in optomechanical, electromechanical and superconducting

  13. Counterfactual quantum key distribution with high efficiency

    NASA Astrophysics Data System (ADS)

    Sun, Ying; Wen, Qiao-Yan

    2010-11-01

    In a counterfactual quantum key distribution scheme, a secret key can be generated merely by transmitting the split vacuum pulses of single particles. We improve the efficiency of the first quantum key distribution scheme based on the counterfactual phenomenon. This scheme not only achieves the same security level as the original one but also has higher efficiency. We also analyze how to achieve the optimal efficiency under various conditions.

  14. Counterfactual quantum key distribution with high efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Ying; Beijing Electronic Science and Technology Institute, Beijing 100070; Wen Qiaoyan

    2010-11-15

    In a counterfactual quantum key distribution scheme, a secret key can be generated merely by transmitting the split vacuum pulses of single particles. We improve the efficiency of the first quantum key distribution scheme based on the counterfactual phenomenon. This scheme not only achieves the same security level as the original one but also has higher efficiency. We also analyze how to achieve the optimal efficiency under various conditions.

  15. High efficiency quantum cascade laser frequency comb.

    PubMed

    Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh

    2017-03-06

    An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm -1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy.

  16. High efficiency quantum cascade laser frequency comb

    PubMed Central

    Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh

    2017-01-01

    An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm−1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy. PMID:28262834

  17. Necessary detection efficiencies for secure quantum key distribution and bound randomness

    NASA Astrophysics Data System (ADS)

    Acín, Antonio; Cavalcanti, Daniel; Passaro, Elsa; Pironio, Stefano; Skrzypczyk, Paul

    2016-01-01

    In recent years, several hacking attacks have broken the security of quantum cryptography implementations by exploiting the presence of losses and the ability of the eavesdropper to tune detection efficiencies. We present a simple attack of this form that applies to any protocol in which the key is constructed from the results of untrusted measurements performed on particles coming from an insecure source or channel. Because of its generality, the attack applies to a large class of protocols, from standard prepare-and-measure to device-independent schemes. Our attack gives bounds on the critical detection efficiencies necessary for secure quantum key distribution, which show that the implementation of most partly device-independent solutions is, from the point of view of detection efficiency, almost as demanding as fully device-independent ones. We also show how our attack implies the existence of a form of bound randomness, namely nonlocal correlations in which a nonsignalling eavesdropper can find out a posteriori the result of any implemented measurement.

  18. [Definition of quantum efficiency of X-ray detectors].

    PubMed

    Zelikman, M I

    2001-01-01

    Different definitions available in the literature on the quantum efficiency of X-ray detectors are presented and compared. The relationship of this parameter to spatial frequencies for quantum accounting receivers and energy accumulating ones is analyzed. A procedure is proposed for evaluating the quantum efficiency of the detectors in the area of zero spatial frequencies, which is rather simple and requires no special testing equipment.

  19. Efficient quantum algorithm for computing n-time correlation functions.

    PubMed

    Pedernales, J S; Di Candia, R; Egusquiza, I L; Casanova, J; Solano, E

    2014-07-11

    We propose a method for computing n-time correlation functions of arbitrary spinorial, fermionic, and bosonic operators, consisting of an efficient quantum algorithm that encodes these correlations in an initially added ancillary qubit for probe and control tasks. For spinorial and fermionic systems, the reconstruction of arbitrary n-time correlation functions requires the measurement of two ancilla observables, while for bosonic variables time derivatives of the same observables are needed. Finally, we provide examples applicable to different quantum platforms in the frame of the linear response theory.

  20. Efficient quantum circuits for one-way quantum computing.

    PubMed

    Tanamoto, Tetsufumi; Liu, Yu-Xi; Hu, Xuedong; Nori, Franco

    2009-03-13

    While Ising-type interactions are ideal for implementing controlled phase flip gates in one-way quantum computing, natural interactions between solid-state qubits are most often described by either the XY or the Heisenberg models. We show an efficient way of generating cluster states directly using either the imaginary SWAP (iSWAP) gate for the XY model, or the sqrt[SWAP] gate for the Heisenberg model. Our approach thus makes one-way quantum computing more feasible for solid-state devices.

  1. Free-Space Quantum Signatures Using Heterodyne Measurements

    NASA Astrophysics Data System (ADS)

    Croal, Callum; Peuntinger, Christian; Heim, Bettina; Khan, Imran; Marquardt, Christoph; Leuchs, Gerd; Wallden, Petros; Andersson, Erika; Korolkova, Natalia

    2016-09-01

    Digital signatures guarantee the authorship of electronic communications. Currently used "classical" signature schemes rely on unproven computational assumptions for security, while quantum signatures rely only on the laws of quantum mechanics to sign a classical message. Previous quantum signature schemes have used unambiguous quantum measurements. Such measurements, however, sometimes give no result, reducing the efficiency of the protocol. Here, we instead use heterodyne detection, which always gives a result, although there is always some uncertainty. We experimentally demonstrate feasibility in a real environment by distributing signature states through a noisy 1.6 km free-space channel. Our results show that continuous-variable heterodyne detection improves the signature rate for this type of scheme and therefore represents an interesting direction in the search for practical quantum signature schemes. For transmission values ranging from 100% to 10%, but otherwise assuming an ideal implementation with no other imperfections, the signature length is shorter by a factor of 2 to 10. As compared with previous relevant experimental realizations, the signature length in this implementation is several orders of magnitude shorter.

  2. Free-Space Quantum Signatures Using Heterodyne Measurements.

    PubMed

    Croal, Callum; Peuntinger, Christian; Heim, Bettina; Khan, Imran; Marquardt, Christoph; Leuchs, Gerd; Wallden, Petros; Andersson, Erika; Korolkova, Natalia

    2016-09-02

    Digital signatures guarantee the authorship of electronic communications. Currently used "classical" signature schemes rely on unproven computational assumptions for security, while quantum signatures rely only on the laws of quantum mechanics to sign a classical message. Previous quantum signature schemes have used unambiguous quantum measurements. Such measurements, however, sometimes give no result, reducing the efficiency of the protocol. Here, we instead use heterodyne detection, which always gives a result, although there is always some uncertainty. We experimentally demonstrate feasibility in a real environment by distributing signature states through a noisy 1.6 km free-space channel. Our results show that continuous-variable heterodyne detection improves the signature rate for this type of scheme and therefore represents an interesting direction in the search for practical quantum signature schemes. For transmission values ranging from 100% to 10%, but otherwise assuming an ideal implementation with no other imperfections, the signature length is shorter by a factor of 2 to 10. As compared with previous relevant experimental realizations, the signature length in this implementation is several orders of magnitude shorter.

  3. An Efficient and Secure Arbitrary N-Party Quantum Key Agreement Protocol Using Bell States

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Jie; Xu, Yong; Yang, Ching-Nung; Gao, Pei-Pei; Yu, Wen-Bin

    2018-01-01

    Two quantum key agreement protocols using Bell states and Bell measurement were recently proposed by Shukla et al. (Quantum Inf. Process. 13(11), 2391-2405, 2014). However, Zhu et al. pointed out that there are some security flaws and proposed an improved version (Quantum Inf. Process. 14(11), 4245-4254, 2015). In this study, we will show Zhu et al.'s improvement still exists some security problems, and its efficiency is not high enough. For solving these problems, we utilize four Pauli operations { I, Z, X, Y} to encode two bits instead of the original two operations { I, X} to encode one bit, and then propose an efficient and secure arbitrary N-party quantum key agreement protocol. In the protocol, the channel checking with decoy single photons is introduced to avoid the eavesdropper's flip attack, and a post-measurement mechanism is used to prevent against the collusion attack. The security analysis shows the present protocol can guarantee the correctness, security, privacy and fairness of quantum key agreement.

  4. An efficient quantum circuit analyser on qubits and qudits

    NASA Astrophysics Data System (ADS)

    Loke, T.; Wang, J. B.

    2011-10-01

    This paper presents a highly efficient decomposition scheme and its associated Mathematica notebook for the analysis of complicated quantum circuits comprised of single/multiple qubit and qudit quantum gates. In particular, this scheme reduces the evaluation of multiple unitary gate operations with many conditionals to just two matrix additions, regardless of the number of conditionals or gate dimensions. This improves significantly the capability of a quantum circuit analyser implemented in a classical computer. This is also the first efficient quantum circuit analyser to include qudit quantum logic gates.

  5. Absolute quantum yield measurement of powder samples.

    PubMed

    Moreno, Luis A

    2012-05-12

    Measurement of fluorescence quantum yield has become an important tool in the search for new solutions in the development, evaluation, quality control and research of illumination, AV equipment, organic EL material, films, filters and fluorescent probes for bio-industry. Quantum yield is calculated as the ratio of the number of photons absorbed, to the number of photons emitted by a material. The higher the quantum yield, the better the efficiency of the fluorescent material. For the measurements featured in this video, we will use the Hitachi F-7000 fluorescence spectrophotometer equipped with the Quantum Yield measuring accessory and Report Generator program. All the information provided applies to this system. Measurement of quantum yield in powder samples is performed following these steps: 1. Generation of instrument correction factors for the excitation and emission monochromators. This is an important requirement for the correct measurement of quantum yield. It has been performed in advance for the full measurement range of the instrument and will not be shown in this video due to time limitations. 2. Measurement of integrating sphere correction factors. The purpose of this step is to take into consideration reflectivity characteristics of the integrating sphere used for the measurements. 3. Reference and Sample measurement using direct excitation and indirect excitation. 4. Quantum Yield calculation using Direct and Indirect excitation. Direct excitation is when the sample is facing directly the excitation beam, which would be the normal measurement setup. However, because we use an integrating sphere, a portion of the emitted photons resulting from the sample fluorescence are reflected by the integrating sphere and will re-excite the sample, so we need to take into consideration indirect excitation. This is accomplished by measuring the sample placed in the port facing the emission monochromator, calculating indirect quantum yield and correcting the direct

  6. Hierarchy of Efficiently Computable and Faithful Lower Bounds to Quantum Discord

    NASA Astrophysics Data System (ADS)

    Piani, Marco

    2016-08-01

    Quantum discord expresses a fundamental nonclassicality of correlations that is more general than entanglement, but that, in its standard definition, is not easily evaluated. We derive a hierarchy of computationally efficient lower bounds to the standard quantum discord. Every nontrivial element of the hierarchy constitutes by itself a valid discordlike measure, based on a fundamental feature of quantum correlations: their lack of shareability. Our approach emphasizes how the difference between entanglement and discord depends on whether shareability is intended as a static property or as a dynamical process.

  7. Efficient Measurement of Quantum Gate Error by Interleaved Randomized Benchmarking

    NASA Astrophysics Data System (ADS)

    Magesan, Easwar; Gambetta, Jay M.; Johnson, B. R.; Ryan, Colm A.; Chow, Jerry M.; Merkel, Seth T.; da Silva, Marcus P.; Keefe, George A.; Rothwell, Mary B.; Ohki, Thomas A.; Ketchen, Mark B.; Steffen, M.

    2012-08-01

    We describe a scalable experimental protocol for estimating the average error of individual quantum computational gates. This protocol consists of interleaving random Clifford gates between the gate of interest and provides an estimate as well as theoretical bounds for the average error of the gate under test, so long as the average noise variation over all Clifford gates is small. This technique takes into account both state preparation and measurement errors and is scalable in the number of qubits. We apply this protocol to a superconducting qubit system and find a bounded average error of 0.003 [0,0.016] for the single-qubit gates Xπ/2 and Yπ/2. These bounded values provide better estimates of the average error than those extracted via quantum process tomography.

  8. Quantum Information Theory of Measurement

    NASA Astrophysics Data System (ADS)

    Glick, Jennifer Ranae

    Quantum measurement lies at the heart of quantum information processing and is one of the criteria for quantum computation. Despite its central role, there remains a need for a robust quantum information-theoretical description of measurement. In this work, I will quantify how information is processed in a quantum measurement by framing it in quantum information-theoretic terms. I will consider a diverse set of measurement scenarios, including weak and strong measurements, and parallel and consecutive measurements. In each case, I will perform a comprehensive analysis of the role of entanglement and entropy in the measurement process and track the flow of information through all subsystems. In particular, I will discuss how weak and strong measurements are fundamentally of the same nature and show that weak values can be computed exactly for certain measurements with an arbitrary interaction strength. In the context of the Bell-state quantum eraser, I will derive a trade-off between the coherence and "which-path" information of an entangled pair of photons and show that a quantum information-theoretic approach yields additional insights into the origins of complementarity. I will consider two types of quantum measurements: those that are made within a closed system where every part of the measurement device, the ancilla, remains under control (what I will call unamplified measurements), and those performed within an open system where some degrees of freedom are traced over (amplified measurements). For sequences of measurements of the same quantum system, I will show that information about the quantum state is encoded in the measurement chain and that some of this information is "lost" when the measurements are amplified-the ancillae become equivalent to a quantum Markov chain. Finally, using the coherent structure of unamplified measurements, I will outline a protocol for generating remote entanglement, an essential resource for quantum teleportation and quantum

  9. 6.5% efficient perovskite quantum-dot-sensitized solar cell.

    PubMed

    Im, Jeong-Hyeok; Lee, Chang-Ryul; Lee, Jin-Wook; Park, Sang-Won; Park, Nam-Gyu

    2011-10-05

    Highly efficient quantum-dot-sensitized solar cell is fabricated using ca. 2-3 nm sized perovskite (CH(3)NH(3))PbI(3) nanocrystal. Spin-coating of the equimolar mixture of CH(3)NH(3)I and PbI(2) in γ-butyrolactone solution (perovskite precursor solution) leads to (CH(3)NH(3))PbI(3) quantum dots (QDs) on nanocrystalline TiO(2) surface. By electrochemical junction with iodide/iodine based redox electrolyte, perovskite QD-sensitized 3.6 μm-thick TiO(2) film shows maximum external quantum efficiency (EQE) of 78.6% at 530 nm and solar-to-electrical conversion efficiency of 6.54% at AM 1.5G 1 sun intensity (100 mW cm(-2)), which is by far the highest efficiency among the reported inorganic quantum dot sensitizers.

  10. Quantum efficiency harmonic analysis of exciton annihilation in organic light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, J. S.; Giebink, N. C., E-mail: ncg2@psu.edu

    2015-06-29

    Various exciton annihilation processes are known to impact the efficiency roll-off of organic light emitting diodes (OLEDs); however, isolating and quantifying their contribution in the presence of other factors such as changing charge balance continue to be a challenge for routine device characterization. Here, we analyze OLED electroluminescence resulting from a sinusoidal dither superimposed on the device bias and show that nonlinearity between recombination current and light output arising from annihilation mixes the quantum efficiency measured at different dither harmonics in a manner that depends uniquely on the type and magnitude of the annihilation process. We derive a series ofmore » analytical relations involving the DC and first harmonic external quantum efficiency that enable annihilation rates to be quantified through linear regression independent of changing charge balance and evaluate them for prototypical fluorescent and phosphorescent OLEDs based on the emitters 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran and platinum octaethylporphyrin, respectively. We go on to show that, in most cases, it is sufficient to calculate the needed quantum efficiency harmonics directly from derivatives of the DC light versus current curve, thus enabling this analysis to be conducted solely from standard light-current-voltage measurement data.« less

  11. Making sense of quantum operators, eigenstates and quantum measurements

    NASA Astrophysics Data System (ADS)

    Gire, Elizabeth; Manogue, Corinne

    2012-02-01

    Operators play a central role in the formalism of quantum mechanics. In particular, operators corresponding to observables encode important information about the results of quantum measurements. We interviewed upper-level undergraduate physics majors about their understanding of the role of operators in quantum measurements. Previous studies have shown that many students think of measurements on quantum systems as being deterministic and that measurements mathematically correspond to operators acting on the initial quantum state. This study is consistent with and expands on those results. We report on how two students make sense of a quantum measurement problem involving sequential measurements and the role that the eigenvalue equation plays in this sense-making.

  12. Quantum entanglement helps in improving economic efficiency

    NASA Astrophysics Data System (ADS)

    Du, Jiangfeng; Ju, Chenyong; Li, Hui

    2005-02-01

    We propose an economic regulation approach based on quantum game theory for the government to reduce the abuses of oligopolistic competition. Theoretical analysis shows that this approach can help government improve the economic efficiency of the oligopolistic market, and help prevent monopoly due to incorrect information. These advantages are completely attributed to the quantum entanglement, a unique quantum mechanical character.

  13. An efficient (t,n) threshold quantum secret sharing without entanglement

    NASA Astrophysics Data System (ADS)

    Qin, Huawang; Dai, Yuewei

    2016-04-01

    An efficient (t,n) threshold quantum secret sharing (QSS) scheme is proposed. In our scheme, the Hash function is used to check the eavesdropping, and no particles need to be published. So the utilization efficiency of the particles is real 100%. No entanglement is used in our scheme. The dealer uses the single particles to encode the secret information, and the participants get the secret through measuring the single particles. Compared to the existing schemes, our scheme is simpler and more efficient.

  14. Measurements of the intrinsic quantum efficiency and absorption length of tetraphenyl butadiene thin films in the vacuum ultraviolet regime

    NASA Astrophysics Data System (ADS)

    Benson, Christopher; Gann, Gabriel Orebi; Gehman, Victor

    2018-04-01

    A key enabling technology for many liquid noble gas (LNG) detectors is the use of the common wavelength shifting medium tetraphenyl butadiene (TPB). TPB thin films are used to shift ultraviolet scintillation light into the visible spectrum for detection and event reconstruction. Understanding the wavelength shifting efficiency and optical properties of these films are critical aspects in detector performance and modeling and hence in the ultimate physics sensitivity of such experiments. This article presents the first measurements of the room-temperature microphysical quantum efficiency for vacuum-deposited TPB thin films - a result that is independent of the optics of the TPB or substrate. Also presented are measurements of the absorption length in the vacuum ultraviolet regime, the secondary re-emission efficiency, and more precise results for the "black-box" efficiency across a broader spectrum of wavelengths than previous results. The low-wavelength sensitivity, in particular, would allow construction of LNG scintillator detectors with lighter elements (Ne, He) to target light mass WIMPs.

  15. Quantum proofs can be verified using only single-qubit measurements

    NASA Astrophysics Data System (ADS)

    Morimae, Tomoyuki; Nagaj, Daniel; Schuch, Norbert

    2016-02-01

    Quantum Merlin Arthur (QMA) is the class of problems which, though potentially hard to solve, have a quantum solution that can be verified efficiently using a quantum computer. It thus forms a natural quantum version of the classical complexity class NP (and its probabilistic variant MA, Merlin-Arthur games), where the verifier has only classical computational resources. In this paper, we study what happens when we restrict the quantum resources of the verifier to the bare minimum: individual measurements on single qubits received as they come, one by one. We find that despite this grave restriction, it is still possible to soundly verify any problem in QMA for the verifier with the minimum quantum resources possible, without using any quantum memory or multiqubit operations. We provide two independent proofs of this fact, based on measurement-based quantum computation and the local Hamiltonian problem. The former construction also applies to QMA1, i.e., QMA with one-sided error.

  16. General method for extracting the quantum efficiency of dispersive qubit readout in circuit QED

    NASA Astrophysics Data System (ADS)

    Bultink, C. C.; Tarasinski, B.; Haandbæk, N.; Poletto, S.; Haider, N.; Michalak, D. J.; Bruno, A.; DiCarlo, L.

    2018-02-01

    We present and demonstrate a general three-step method for extracting the quantum efficiency of dispersive qubit readout in circuit QED. We use active depletion of post-measurement photons and optimal integration weight functions on two quadratures to maximize the signal-to-noise ratio of the non-steady-state homodyne measurement. We derive analytically and demonstrate experimentally that the method robustly extracts the quantum efficiency for arbitrary readout conditions in the linear regime. We use the proven method to optimally bias a Josephson traveling-wave parametric amplifier and to quantify different noise contributions in the readout amplification chain.

  17. Quantum dissipation theory and applications to quantum transport and quantum measurement in mesoscopic systems

    NASA Astrophysics Data System (ADS)

    Cui, Ping

    -electrode coupling is further proposed to recover all existing nonlinear current-voltage behaviors including the nonequilibrium Kondo effect. Transport theory based on the exact QDT formalism will be developed in future. In Chapter 8, we study the quantum measurement of a qubit with a quantum-point-contact detector. On the basis of a unified quantum master equation (a form of QDT), we study the measurement-induced relaxation and dephasing of the qubit. Our treatment pays particular attention on the detailed-balance relation, which is a consequence of properly accounting for the energy exchange between the qubit and detector during the measurement process. We also derive a conditional quantum master equation for quantum measurement in general, and study the readout characteristics of the qubit measurement. Our theory is applicable to the quantum measurement at arbitrary voltage and temperature. A number of remarkable new features are found and highlighted in concern with their possible relevance to future experiments. In Chapter 9, we discuss the further development of QDT, aiming at an efficient evaluation of many-electron systems. This will be carried out by reducing the many-particle (Fermion or Boson) QDT to a single-particle one by exploring, e.g. the Wick's contraction theorem. It also results in a time-dependent density functional theory (TDDFT) for transport through complex large-scale (e.g. molecules) systems. Primary results of the TDDFT-QDT are reported. In Chapter 10, we summary the thesis, and comment and remark on the future work on both the theoretical and application aspects of QDT.

  18. The thermoelectric efficiency of quantum dots in indium arsenide/indium phosphide nanowires

    NASA Astrophysics Data System (ADS)

    Hoffmann, Eric A.

    State of the art semiconductor materials engineering provides the possibility to fabricate devices on the lower end of the mesoscopic scale and confine only a handful of electrons to a region of space. When the thermal energy is reduced below the energetic quantum level spacing, the confined electrons assume energy levels akin to the core-shell structure of natural atoms. Such "artificial atoms", also known as quantum dots, can be loaded with electrons, one-by-one, and subsequently unloaded using source and drain electrical contacts. As such, quantum dots are uniquely tunable platforms for performing quantum transport and quantum control experiments. Voltage-biased electron transport through quantum dots has been studied extensively. Far less attention has been given to thermoelectric effects in quantum dots, that is, electron transport induced by a temperature gradient. This dissertation focuses on the efficiency of direct thermal-to-electric energy conversion in InAs/InP quantum dots embedded in nanowires. The efficiency of thermoelectric heat engines is bounded by the same maximum efficiency as cyclic heat engines; namely, by Carnot efficiency. The efficiency of bulk thermoelectric materials suffers from their inability to transport charge carriers selectively based on energy. Owing to their three-dimensional momentum quantization, quantum dots operate as electron energy filters---a property which can be harnessed to minimize entropy production and therefore maximize efficiency. This research was motivated by the possibility to realize experimentally a thermodynamic heat engine operating with near-Carnot efficiency using the unique behavior of quantum dots. To this end, a microscopic heating scheme for the application of a temperature difference across a quantum dot was developed in conjunction with a novel quantum-dot thermometry technique used for quantifying the magnitude of the applied temperature difference. While pursuing high-efficiency thermoelectric

  19. Applications of quantum measurement techniques: Counterfactual quantum computation, spin hall effect of light, and atomic-vapor-based photon detectors

    NASA Astrophysics Data System (ADS)

    Hosten, Onur

    This dissertation investigates several physical phenomena in atomic and optical physics, and quantum information science, by utilizing various types and techniques of quantum measurements. It is the deeper concepts of these measurements, and the way they are integrated into the seemingly unrelated topics investigated, which binds together the research presented here. The research comprises three different topics: Counterfactual quantum computation, the spin Hall effect of light, and ultra-high-efficiency photon detectors based on atomic vapors. Counterfactual computation entails obtaining answers from a quantum computer without actually running it, and is accomplished by preparing the computer as a whole into a superposition of being activated and not activated. The first experimental demonstration is presented, including the best performing implementation of Grover's quantum search algorithm to date. In addition, we develop new counterfactual computation protocols that enable unconditional and completely deterministic operation. These methods stimulated a debate in the literature, on the meaning of counterfactuality in quantum processes, which we also discuss. The spin Hall effect of light entails tiny spin-dependent displacements, unsuspected until 2004, of a beam of light when it changes propagation direction. The first experimental demonstration of the effect during refraction at an air-glass interface is presented, together with a novel enabling metrological tool relying on the concepts of quantum weak measurements. Extensions of the effect to smoothly varying media are also presented, along with utilization of a time-varying version of the weak measurement techniques. Our approach to ultra-high-efficiency photon detection develops and extends a recent novel non-solid-state scheme for photo-detection based on atomic vapors. This approach is in principle capable of resolving the number of photons in a pulse, can be extended to non-destructive detection of

  20. Analysis of the external and internal quantum efficiency of multi-emitter, white organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Furno, Mauro; Rosenow, Thomas C.; Gather, Malte C.; Lüssem, Björn; Leo, Karl

    2012-10-01

    We report on a theoretical framework for the efficiency analysis of complex, multi-emitter organic light emitting diodes (OLEDs). The calculation approach makes use of electromagnetic modeling to quantify the overall OLED photon outcoupling efficiency and a phenomenological description for electrical and excitonic processes. From the comparison of optical modeling results and measurements of the total external quantum efficiency, we obtain reliable estimates of internal quantum yield. As application of the model, we analyze high-efficiency stacked white OLEDs and comment on the various efficiency loss channels present in the devices.

  1. Evaluation of the Timing Properties of a High Quantum Efficiency Photomultiplier Tube

    NASA Astrophysics Data System (ADS)

    Peng, Qiyu; Choong, Woon-Seng; Moses, W. William

    2013-10-01

    We measured the timing resolution of 189 R9800-100 photomultiplier tubes (PMTs), which are a SBA (Super Bialkali, high quantum efficiency) variant of the R9800 high-performance PMT manufactured by Hamamatsu Photonics, and correlated their timing resolutions with various measures of PMT performance, namely Cathode Luminous Sensitivity (CLS), Anode Luminous Sensitivity (ALS), Gain times Collection Efficiency (GCE), Cathode Blue Sensitivity Index (CBSI), Anode Blue Sensitivity Index (ABSI) and dark current. The correlation results show: (1) strong correlations between timing resolution and ALS, ABSI, and GCE; (2) moderate correlations between timing resolution and CBSI; and (3) weak or no correlations between timing resolution and dark current and CLS. The results disclosed that all three measures that include data collected from the anode (ALS, ABSI, and GCE) affect the timing resolution more than either of the two measures that only include photocathode data (CBSI and CLS). We conclude that: (1) the photocathode Quantum Efficiency (QE) and the product of the Gain and the Collection Efficiency (GCE) are the two dominant factors that affect the timing resolution, (2) the GCE variation affects the timing resolution more than the QE variation in the R9800 PMT, and (3) the performance depends on photocathode position.

  2. Objectivity in Quantum Measurement

    NASA Astrophysics Data System (ADS)

    Li, Sheng-Wen; Cai, C. Y.; Liu, X. F.; Sun, C. P.

    2018-06-01

    The objectivity is a basic requirement for the measurements in the classical world, namely, different observers must reach a consensus on their measurement results, so that they believe that the object exists "objectively" since whoever measures it obtains the same result. We find that this simple requirement of objectivity indeed imposes an important constraint upon quantum measurements, i.e., if two or more observers could reach a consensus on their quantum measurement results, their measurement basis must be orthogonal vector sets. This naturally explains why quantum measurements are based on orthogonal vector basis, which is proposed as one of the axioms in textbooks of quantum mechanics. The role of the macroscopicality of the observers in an objective measurement is discussed, which supports the belief that macroscopicality is a characteristic of classicality.

  3. Objectivity in Quantum Measurement

    NASA Astrophysics Data System (ADS)

    Li, Sheng-Wen; Cai, C. Y.; Liu, X. F.; Sun, C. P.

    2018-05-01

    The objectivity is a basic requirement for the measurements in the classical world, namely, different observers must reach a consensus on their measurement results, so that they believe that the object exists "objectively" since whoever measures it obtains the same result. We find that this simple requirement of objectivity indeed imposes an important constraint upon quantum measurements, i.e., if two or more observers could reach a consensus on their quantum measurement results, their measurement basis must be orthogonal vector sets. This naturally explains why quantum measurements are based on orthogonal vector basis, which is proposed as one of the axioms in textbooks of quantum mechanics. The role of the macroscopicality of the observers in an objective measurement is discussed, which supports the belief that macroscopicality is a characteristic of classicality.

  4. Rate-loss analysis of an efficient quantum repeater architecture

    NASA Astrophysics Data System (ADS)

    Guha, Saikat; Krovi, Hari; Fuchs, Christopher A.; Dutton, Zachary; Slater, Joshua A.; Simon, Christoph; Tittel, Wolfgang

    2015-08-01

    We analyze an entanglement-based quantum key distribution (QKD) architecture that uses a linear chain of quantum repeaters employing photon-pair sources, spectral-multiplexing, linear-optic Bell-state measurements, multimode quantum memories, and classical-only error correction. Assuming perfect sources, we find an exact expression for the secret-key rate, and an analytical description of how errors propagate through the repeater chain, as a function of various loss-and-noise parameters of the devices. We show via an explicit analytical calculation, which separately addresses the effects of the principle nonidealities, that this scheme achieves a secret-key rate that surpasses the Takeoka-Guha-Wilde bound—a recently found fundamental limit to the rate-vs-loss scaling achievable by any QKD protocol over a direct optical link—thereby providing one of the first rigorous proofs of the efficacy of a repeater protocol. We explicitly calculate the end-to-end shared noisy quantum state generated by the repeater chain, which could be useful for analyzing the performance of other non-QKD quantum protocols that require establishing long-distance entanglement. We evaluate that shared state's fidelity and the achievable entanglement-distillation rate, as a function of the number of repeater nodes, total range, and various loss-and-noise parameters of the system. We extend our theoretical analysis to encompass sources with nonzero two-pair-emission probability, using an efficient exact numerical evaluation of the quantum state propagation and measurements. We expect our results to spur formal rate-loss analysis of other repeater protocols and also to provide useful abstractions to seed analyses of quantum networks of complex topologies.

  5. Thorough subcells diagnosis in a multi-junction solar cell via absolute electroluminescence-efficiency measurements

    PubMed Central

    Chen, Shaoqiang; Zhu, Lin; Yoshita, Masahiro; Mochizuki, Toshimitsu; Kim, Changsu; Akiyama, Hidefumi; Imaizumi, Mitsuru; Kanemitsu, Yoshihiko

    2015-01-01

    World-wide studies on multi-junction (tandem) solar cells have led to record-breaking improvements in conversion efficiencies year after year. To obtain detailed and proper feedback for solar-cell design and fabrication, it is necessary to establish standard methods for diagnosing subcells in fabricated tandem devices. Here, we propose a potential standard method to quantify the detailed subcell properties of multi-junction solar cells based on absolute measurements of electroluminescence (EL) external quantum efficiency in addition to the conventional solar-cell external-quantum-efficiency measurements. We demonstrate that the absolute-EL-quantum-efficiency measurements provide I–V relations of individual subcells without the need for referencing measured I–V data, which is in stark contrast to previous works. Moreover, our measurements quantify the absolute rates of junction loss, non-radiative loss, radiative loss, and luminescence coupling in the subcells, which constitute the “balance sheets” of tandem solar cells. PMID:25592484

  6. Efficient multiuser quantum cryptography network based on entanglement.

    PubMed

    Xue, Peng; Wang, Kunkun; Wang, Xiaoping

    2017-04-04

    We present an efficient quantum key distribution protocol with a certain entangled state to solve a special cryptographic task. Also, we provide a proof of security of this protocol by generalizing the proof of modified of Lo-Chau scheme. Based on this two-user scheme, a quantum cryptography network protocol is proposed without any quantum memory.

  7. Efficient multiuser quantum cryptography network based on entanglement

    PubMed Central

    Xue, Peng; Wang, Kunkun; Wang, Xiaoping

    2017-01-01

    We present an efficient quantum key distribution protocol with a certain entangled state to solve a special cryptographic task. Also, we provide a proof of security of this protocol by generalizing the proof of modified of Lo-Chau scheme. Based on this two-user scheme, a quantum cryptography network protocol is proposed without any quantum memory. PMID:28374854

  8. Efficient multiuser quantum cryptography network based on entanglement

    NASA Astrophysics Data System (ADS)

    Xue, Peng; Wang, Kunkun; Wang, Xiaoping

    2017-04-01

    We present an efficient quantum key distribution protocol with a certain entangled state to solve a special cryptographic task. Also, we provide a proof of security of this protocol by generalizing the proof of modified of Lo-Chau scheme. Based on this two-user scheme, a quantum cryptography network protocol is proposed without any quantum memory.

  9. Fast, efficient error reconciliation for quantum cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttler, W.T.; Lamoreaux, S.K.; Torgerson, J.R.

    2003-05-01

    We describe an error-reconciliation protocol, which we call Winnow, based on the exchange of parity and Hamming's 'syndrome' for N-bit subunits of a large dataset. The Winnow protocol was developed in the context of quantum-key distribution and offers significant advantages and net higher efficiency compared to other widely used protocols within the quantum cryptography community. A detailed mathematical analysis of the Winnow protocol is presented in the context of practical implementations of quantum-key distribution; in particular, the information overhead required for secure implementation is one of the most important criteria in the evaluation of a particular error-reconciliation protocol. The increasemore » in efficiency for the Winnow protocol is largely due to the reduction in authenticated public communication required for its implementation.« less

  10. An Efficient Quantum Somewhat Homomorphic Symmetric Searchable Encryption

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoqiang; Wang, Ting; Sun, Zhiwei; Wang, Ping; Yu, Jianping; Xie, Weixin

    2017-04-01

    In 2009, Gentry first introduced an ideal lattices fully homomorphic encryption (FHE) scheme. Later, based on the approximate greatest common divisor problem, learning with errors problem or learning with errors over rings problem, FHE has developed rapidly, along with the low efficiency and computational security. Combined with quantum mechanics, Liang proposed a symmetric quantum somewhat homomorphic encryption (QSHE) scheme based on quantum one-time pad, which is unconditional security. And it was converted to a quantum fully homomorphic encryption scheme, whose evaluation algorithm is based on the secret key. Compared with Liang's QSHE scheme, we propose a more efficient QSHE scheme for classical input states with perfect security, which is used to encrypt the classical message, and the secret key is not required in the evaluation algorithm. Furthermore, an efficient symmetric searchable encryption (SSE) scheme is constructed based on our QSHE scheme. SSE is important in the cloud storage, which allows users to offload search queries to the untrusted cloud. Then the cloud is responsible for returning encrypted files that match search queries (also encrypted), which protects users' privacy.

  11. What quantum measurements measure

    NASA Astrophysics Data System (ADS)

    Griffiths, Robert B.

    2017-09-01

    A solution to the second measurement problem, determining what prior microscopic properties can be inferred from measurement outcomes ("pointer positions"), is worked out for projective and generalized (POVM) measurements, using consistent histories. The result supports the idea that equipment properly designed and calibrated reveals the properties it was designed to measure. Applications include Einstein's hemisphere and Wheeler's delayed choice paradoxes, and a method for analyzing weak measurements without recourse to weak values. Quantum measurements are noncontextual in the original sense employed by Bell and Mermin: if [A ,B ]=[A ,C ]=0 ,[B ,C ]≠0 , the outcome of an A measurement does not depend on whether it is measured with B or with C . An application to Bohm's model of the Einstein-Podolsky-Rosen situation suggests that a faulty understanding of quantum measurements is at the root of this paradox.

  12. Highly efficient frequency conversion with bandwidth compression of quantum light

    PubMed Central

    Allgaier, Markus; Ansari, Vahid; Sansoni, Linda; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Harder, Georg; Brecht, Benjamin; Silberhorn, Christine

    2017-01-01

    Hybrid quantum networks rely on efficient interfacing of dissimilar quantum nodes, as elements based on parametric downconversion sources, quantum dots, colour centres or atoms are fundamentally different in their frequencies and bandwidths. Although pulse manipulation has been demonstrated in very different systems, to date no interface exists that provides both an efficient bandwidth compression and a substantial frequency translation at the same time. Here we demonstrate an engineered sum-frequency-conversion process in lithium niobate that achieves both goals. We convert pure photons at telecom wavelengths to the visible range while compressing the bandwidth by a factor of 7.47 under preservation of non-classical photon-number statistics. We achieve internal conversion efficiencies of 61.5%, significantly outperforming spectral filtering for bandwidth compression. Our system thus makes the connection between previously incompatible quantum systems as a step towards usable quantum networks. PMID:28134242

  13. External quantum efficiency enhancement by photon recycling with backscatter evasion.

    PubMed

    Nagano, Koji; Perreca, Antonio; Arai, Koji; Adhikari, Rana X

    2018-05-01

    The nonunity quantum efficiency (QE) in photodiodes (PD) causes deterioration of signal quality in quantum optical experiments due to photocurrent loss as well as the introduction of vacuum fluctuations into the measurement. In this paper, we report that the external QE enhancement of a PD was demonstrated by recycling the reflected photons. The external QE for an InGaAs PD was increased by 0.01-0.06 from 0.86-0.92 over a wide range of incident angles. Moreover, we confirmed that this technique does not increase backscattered light when the recycled beam is properly misaligned.

  14. Emerging interpretations of quantum mechanics and recent progress in quantum measurement

    NASA Astrophysics Data System (ADS)

    Clarke, M. L.

    2014-01-01

    The focus of this paper is to provide a brief discussion on the quantum measurement process, by reviewing select examples highlighting recent progress towards its understanding. The areas explored include an outline of the measurement problem, the standard interpretation of quantum mechanics, quantum to classical transition, types of measurement (including weak and projective measurements) and newly emerging interpretations of quantum mechanics (decoherence theory, objective reality, quantum Darwinism and quantum Bayesianism).

  15. Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency

    NASA Astrophysics Data System (ADS)

    Braly, Ian L.; deQuilettes, Dane W.; Pazos-Outón, Luis M.; Burke, Sven; Ziffer, Mark E.; Ginger, David S.; Hillhouse, Hugh W.

    2018-06-01

    Reducing non-radiative recombination in semiconducting materials is a prerequisite for achieving the highest performance in light-emitting and photovoltaic applications. Here, we characterize both external and internal photoluminescence quantum efficiency and quasi-Fermi-level splitting of surface-treated hybrid perovskite (CH3NH3PbI3) thin films. With respect to the material bandgap, these passivated films exhibit the highest quasi-Fermi-level splitting measured to date, reaching 97.1 ± 0.7% of the radiative limit, approaching that of the highest performing GaAs solar cells. We confirm these values with independent measurements of internal photoluminescence quantum efficiency of 91.9 ± 2.7% under 1 Sun illumination intensity, setting a new benchmark for these materials. These results suggest hybrid perovskite solar cells are inherently capable of further increases in power conversion efficiency if surface passivation can be combined with optimized charge carrier selective interfaces.

  16. Efficient teleportation between remote single-atom quantum memories.

    PubMed

    Nölleke, Christian; Neuzner, Andreas; Reiserer, Andreas; Hahn, Carolin; Rempe, Gerhard; Ritter, Stephan

    2013-04-05

    We demonstrate teleportation of quantum bits between two single atoms in distant laboratories. Using a time-resolved photonic Bell-state measurement, we achieve a teleportation fidelity of (88.0 ± 1.5)%, largely determined by our entanglement fidelity. The low photon collection efficiency in free space is overcome by trapping each atom in an optical cavity. The resulting success probability of 0.1% is almost 5 orders of magnitude larger than in previous experiments with remote material qubits. It is mainly limited by photon propagation and detection losses and can be enhanced with a cavity-based deterministic Bell-state measurement.

  17. Experimental measurement-device-independent quantum digital signatures.

    PubMed

    Roberts, G L; Lucamarini, M; Yuan, Z L; Dynes, J F; Comandar, L C; Sharpe, A W; Shields, A J; Curty, M; Puthoor, I V; Andersson, E

    2017-10-23

    The development of quantum networks will be paramount towards practical and secure telecommunications. These networks will need to sign and distribute information between many parties with information-theoretic security, requiring both quantum digital signatures (QDS) and quantum key distribution (QKD). Here, we introduce and experimentally realise a quantum network architecture, where the nodes are fully connected using a minimum amount of physical links. The central node of the network can act either as a totally untrusted relay, connecting the end users via the recently introduced measurement-device-independent (MDI)-QKD, or as a trusted recipient directly communicating with the end users via QKD. Using this network, we perform a proof-of-principle demonstration of QDS mediated by MDI-QKD. For that, we devised an efficient protocol to distil multiple signatures from the same block of data, thus reducing the statistical fluctuations in the sample and greatly enhancing the final QDS rate in the finite-size scenario.

  18. Conservation of quantum efficiency in quantum well intermixing by stress engineering with dielectric bilayers

    NASA Astrophysics Data System (ADS)

    Arslan, Seval; Demir, Abdullah; Şahin, Seval; Aydınlı, Atilla

    2018-02-01

    In semiconductor lasers, quantum well intermixing (QWI) with high selectivity using dielectrics often results in lower quantum efficiency. In this paper, we report on an investigation regarding the effect of thermally induced dielectric stress on the quantum efficiency of quantum well structures in impurity-free vacancy disordering (IFVD) process using photoluminescence and device characterization in conjunction with microscopy. SiO2 and Si x O2/SrF2 (versus SrF2) films were employed for the enhancement and suppression of QWI, respectively. Large intermixing selectivity of 75 nm (125 meV), consistent with the theoretical modeling results, with negligible effect on the suppression region characteristics, was obtained. Si x O2 layer compensates for the large thermal expansion coefficient mismatch of SrF2 with the semiconductor and mitigates the detrimental effects of SrF2 without sacrificing its QWI benefits. The bilayer dielectric approach dramatically improved the dielectric-semiconductor interface quality. Fabricated high power semiconductor lasers demonstrated high quantum efficiency in the lasing region using the bilayer dielectric film during the intermixing process. Our results reveal that stress engineering in IFVD is essential and the thermal stress can be controlled by engineering the dielectric strain opening new perspectives for QWI of photonic devices.

  19. Acausal measurement-based quantum computing

    NASA Astrophysics Data System (ADS)

    Morimae, Tomoyuki

    2014-07-01

    In measurement-based quantum computing, there is a natural "causal cone" among qubits of the resource state, since the measurement angle on a qubit has to depend on previous measurement results in order to correct the effect of by-product operators. If we respect the no-signaling principle, by-product operators cannot be avoided. Here we study the possibility of acausal measurement-based quantum computing by using the process matrix framework [Oreshkov, Costa, and Brukner, Nat. Commun. 3, 1092 (2012), 10.1038/ncomms2076]. We construct a resource process matrix for acausal measurement-based quantum computing restricting local operations to projective measurements. The resource process matrix is an analog of the resource state of the standard causal measurement-based quantum computing. We find that if we restrict local operations to projective measurements the resource process matrix is (up to a normalization factor and trivial ancilla qubits) equivalent to the decorated graph state created from the graph state of the corresponding causal measurement-based quantum computing. We also show that it is possible to consider a causal game whose causal inequality is violated by acausal measurement-based quantum computing.

  20. Internal quantum efficiency in yellow-amber light emitting AlGaN-InGaN-GaN heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngo, Thi Huong; Gil, Bernard; Valvin, Pierre

    2015-09-21

    We determine the internal quantum efficiency of strain-balanced AlGaN-InGaN-GaN hetero-structures designed for yellow-amber light emission, by using a recent model based on the kinetics of the photoluminescence decay initiated by Iwata et al. [J. Appl. Phys. 117, 075701 (2015)]. Our results indicate that low temperature internal quantum efficiencies sit in the 50% range and we measure that adding an AlGaN layer increases the internal quantum efficiency from 50% up to 57% with respect to the GaN-InGaN case. More dramatic, it almost doubles from 2.5% up to 4.3% at room temperature.

  1. Efficient Multi-Dimensional Simulation of Quantum Confinement Effects in Advanced MOS Devices

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Rafferty, Conor S.; Ancona, Mario G.; Yu, Zhi-Ping

    2000-01-01

    We investigate the density-gradient (DG) transport model for efficient multi-dimensional simulation of quantum confinement effects in advanced MOS devices. The formulation of the DG model is described as a quantum correction to the classical drift-diffusion model. Quantum confinement effects are shown to be significant in sub-100nm MOSFETs. In thin-oxide MOS capacitors, quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion or quantum effects in simulations dramatically improves the match between C-V simulations and measurements for oxide thickness down to 2 nm. Significant quantum corrections also occur in the I-V characteristics of short-channel (30 to 100 nm) n-MOSFETs, with current drive reduced by up to 70%. This effect is shown to result from reduced inversion charge due to quantum confinement of electrons in the channel. Also, subthreshold slope is degraded by 15 to 20 mV/decade with the inclusion of quantum effects via the density-gradient model, and short channel effects (in particular, drain-induced barrier lowering) are noticeably increased.

  2. A space-efficient quantum computer simulator suitable for high-speed FPGA implementation

    NASA Astrophysics Data System (ADS)

    Frank, Michael P.; Oniciuc, Liviu; Meyer-Baese, Uwe H.; Chiorescu, Irinel

    2009-05-01

    Conventional vector-based simulators for quantum computers are quite limited in the size of the quantum circuits they can handle, due to the worst-case exponential growth of even sparse representations of the full quantum state vector as a function of the number of quantum operations applied. However, this exponential-space requirement can be avoided by using general space-time tradeoffs long known to complexity theorists, which can be appropriately optimized for this particular problem in a way that also illustrates some interesting reformulations of quantum mechanics. In this paper, we describe the design and empirical space/time complexity measurements of a working software prototype of a quantum computer simulator that avoids excessive space requirements. Due to its space-efficiency, this design is well-suited to embedding in single-chip environments, permitting especially fast execution that avoids access latencies to main memory. We plan to prototype our design on a standard FPGA development board.

  3. Spectral gain measurements of quantum confined emitters, and design and fabrication of intersubband quantum box laser structures

    NASA Astrophysics Data System (ADS)

    Tsvid, Gene

    Semiconductor laser active regions are commonly characterized by photo- and electro-luminescence (PL, EL) and cavity length analysis. However quantitative spectral information is not readily extracted from PL and EL data and comparison of different active region materials can be difficult. More quantifiable spectral information is contained in the optical gain spectra. This work reports on spectral gain studies, using multi-segmented interband devices, of InGaAs quantum well and quantum dot active regions grown by metalorganic chemical vapor deposition (MOCVD). Using the fundamental connection between gain and spontaneous emission spectra, the spontaneous radiative current and spontaneous radiative efficiency is evaluated for these active regions. The spectral gain and spontaneous radiative efficiency measurements of 980 nm emitting InGaAs quantum well (QW) material provides a benchmark comparison to previous results obtained on highly-strained, 1200 nm emitting InGaAs QW material. These studies provide insight into carrier recombination and the role of the current injection efficiency in InGaAs QW lasers. The spectral gain of self-assembled MOCVD grown InGaAs quantum dots (QD) active regions are also investigated, allowing for comparison to InGaAs QW material. The second part of my talk will cover intersubband-transition QW and quantum-box (QB) lasers. Quantum cascade (QC) lasers have emerged as compact and technologically important light sources in the mid-infrared (IR) and far-IR wavelength ranges infringing on the near-IR and terahertz spectral regions respectively. However, the overall power conversion efficiency, so-called wallplug efficiency, of the best QC lasers, emitting around 5 microns, is ˜9% in CW operation and very unlikely to exceed 15%. In order to dramatically improve the wallplug efficiency of mid-IR lasers (i.e., to about 50%), intersubband QB (IQB) lasers have been proposed. The basic idea, the optimal design and the progress towards the

  4. Quantum work and the thermodynamic cost of quantum measurements

    DOE PAGES

    Deffner, Sebastian; Paz, Juan Pablo; Zurek, Wojciech H.

    2016-07-07

    Quantum work is usually determined from two projective measurements of the energy at the beginning and at the end of a thermodynamic process. However, this paradigm cannot be considered thermodynamically consistent as it does not account for the thermodynamic cost of these measurements. To remedy this conceptual inconsistency we introduce a paradigm that relies only on the expected change of the average energy given the initial energy eigenbasis. In particular, we completely omit quantum measurements in the definition of quantum work, and hence quantum work is identified as a thermodynamic quantity of only the system. As main results we derivemore » a modified quantum Jarzynski equality and a sharpened maximum work theorem in terms of the information free energy. Lastly, a comparison of our results with the standard approach allows one to quantify the informational cost of projective measurements.« less

  5. Efficient Multiphoton Generation in Waveguide Quantum Electrodynamics.

    PubMed

    González-Tudela, A; Paulisch, V; Kimble, H J; Cirac, J I

    2017-05-26

    Engineering quantum states of light is at the basis of many quantum technologies such as quantum cryptography, teleportation, or metrology among others. Though, single photons can be generated in many scenarios, the efficient and reliable generation of complex single-mode multiphoton states is still a long-standing goal in the field, as current methods either suffer from low fidelities or small probabilities. Here we discuss several protocols which harness the strong and long-range atomic interactions induced by waveguide QED to efficiently load excitations in a collection of atoms, which can then be triggered to produce the desired multiphoton state. In order to boost the success probability and fidelity of each excitation process, atoms are used to both generate the excitations in the rest, as well as to herald the successful generation. Furthermore, to overcome the exponential scaling of the probability of success with the number of excitations, we design a protocol to merge excitations that are present in different internal atomic levels with a polynomial scaling.

  6. Efficient Multi-Dimensional Simulation of Quantum Confinement Effects in Advanced MOS Devices

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Ancona, Mario G.; Rafferty, Conor S.; Yu, Zhiping

    2000-01-01

    We investigate the density-gradient (DG) transport model for efficient multi-dimensional simulation of quantum confinement effects in advanced MOS devices. The formulation of the DG model is described as a quantum correction ot the classical drift-diffusion model. Quantum confinement effects are shown to be significant in sub-100nm MOSFETs. In thin-oxide MOS capacitors, quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion of quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion of quantum effects in simulations dramatically improves the match between C-V simulations and measurements for oxide thickness down to 2 nm. Significant quantum corrections also occur in the I-V characteristics of short-channel (30 to 100 nm) n-MOSFETs, with current drive reduced by up to 70%. This effect is shown to result from reduced inversion charge due to quantum confinement of electrons in the channel. Also, subthreshold slope is degraded by 15 to 20 mV/decade with the inclusion of quantum effects via the density-gradient model, and short channel effects (in particular, drain-induced barrier lowering) are noticeably increased.

  7. Measurement of Quantum Yield, Quantum Requirement, and Energetic Efficiency of the O2-Evolving System of Photosynthesis by a Simple Dye Reaction

    NASA Astrophysics Data System (ADS)

    Ros Barcelò, A.; Zapata, J. M.

    1996-11-01

    Photosynthesis is the conversion of absorbed radiant energy from sunlight into various forms of chemical energy by the chloroplasts of higher green plants. The overall process of photosynthesis consists of the oxidation of water (with the release of O2 as a product) and the reduction of CO2 to form carbohydrates. In the test tube electrons produced by the photolytic cleavage of H2) may be deviated from their true acceptor by inserting a suitable dye in the electron chain; i.e.; 2,6-dichlorophenol indophenol (DCPIP) (E'o = + 0.217 V), which is blue in the oxidized quinone form and which becomes colorless when reduced to the phenolic form. This dye-electrom acceptor also has the advantage that it accepts electroms directly from the quinone (Qa) electron-acceptor of the photosystem II< the reaction center associated with the O2-evolving (or water-slplitting) system. Based in the bleaching of DCPIP by illuminated spinach leaf chloroplasts, a classroom laboratory protocol has been developed to determine the quantum yield (QY = micromol O2 s-1 / micromol photons s-1, the quantum requirement (1/QY) and the energetic efficiency (f = chemical energy stored / light energy supplied) of the O2-evolving system of photosynthesis. Although values for the quantum yield, the quantum requirement and the energetic efficiency calculated in the classroom laboratory differ widely from those expected theoretically, these calculations are useful for illustrating the transformation of light energy into chemical energy by the chloroplasts of green plants.

  8. Quantum dialogue by nonselective measurements

    NASA Astrophysics Data System (ADS)

    Nguyen, Ba An

    2018-06-01

    Unlike classical measurements, quantum measurements may be useful even without reading the outcome. Such so called nonselective measurements are exploited in this paper to design a quantum dialogue protocol that allows exchanging secret data without prior key distributions. The relevant data to be exchanged are in terms of the high-dimensional mutually unbiased bases of quantum measurements. Appropriate modes of bidirectional controlling are devised to ensure the protocol security which is asymptotic.

  9. Efficiently characterizing the total error in quantum circuits

    NASA Astrophysics Data System (ADS)

    Carignan-Dugas, Arnaud; Wallman, Joel J.; Emerson, Joseph

    A promising technological advancement meant to enlarge our computational means is the quantum computer. Such a device would harvest the quantum complexity of the physical world in order to unfold concrete mathematical problems more efficiently. However, the errors emerging from the implementation of quantum operations are likewise quantum, and hence share a similar level of intricacy. Fortunately, randomized benchmarking protocols provide an efficient way to characterize the operational noise within quantum devices. The resulting figures of merit, like the fidelity and the unitarity, are typically attached to a set of circuit components. While important, this doesn't fulfill the main goal: determining if the error rate of the total circuit is small enough in order to trust its outcome. In this work, we fill the gap by providing an optimal bound on the total fidelity of a circuit in terms of component-wise figures of merit. Our bound smoothly interpolates between the classical regime, in which the error rate grows linearly in the circuit's length, and the quantum regime, which can naturally allow quadratic growth. Conversely, our analysis substantially improves the bounds on single circuit element fidelities obtained through techniques such as interleaved randomized benchmarking. This research was supported by the U.S. Army Research Office through Grant W911NF- 14-1-0103, CIFAR, the Government of Ontario, and the Government of Canada through NSERC and Industry Canada.

  10. Characterizing the digital radiography system in terms of effective detective quantum efficiency and CDRAD measurement

    NASA Astrophysics Data System (ADS)

    Yalcin, A.; Olgar, T.

    2018-07-01

    The aim of this study was to assess the performance of a digital radiography system in terms of effective detective quantum efficiency (eDQE) for different tube voltages, polymethyl methacrylate (PMMA) phantom thicknesses and different grid types. The image performance of the digital radiography system was also evaluated by using CDRAD measurements at the same conditions and the correlation of CDRAD results with eDQE was compared. The eDQE was calculated via measurement of effective modulation transfer function (eMTF), effective normalized noise power spectra (eNNPS), scatter fraction (SF) and transmission factors (TF). SFs and TFs were also calculated for different beam qualities by using MCNP4C Monte Carlo simulation code. The integrated eDQE (IeDQE) over the frequency range was used to find the correlation with the inverse image quality figure (IQFinv) obtained from CDRAD measurements. The highest eDQE was obtained with 60 lp/cm grid frequency and 10:1 grid ratio. No remarkable effect was observed on eDQE with different grid frequency, but eDQE decreased with increasing grid ratio. A significant correlation was found between IeDQE and IQFinv.

  11. Quantum efficiency test set up performances for NIR detector characterization at ESTEC

    NASA Astrophysics Data System (ADS)

    Crouzet, P.-E.; Duvet, L.; De Wit, F.; Beaufort, T.; Blommaert, S.; Butler, B.; Van Duinkerken, G.; ter Haar, J.; Heijnen, J.; van der Luijt, K.; Smit, H.; Viale, T.

    2014-07-01

    The Payload Technology Validation Section (Future mission preparation Office) at ESTEC is in charge of specific mission oriented validation activities, for science and robotic exploration missions, aiming at reducing development risks in the implementation phase. These activities take place during the early mission phases or during the implementation itself. In this framework, a test set up to characterize the quantum efficiency of near infrared detectors has been developed. The first detector to be tested will an HAWAII-2RG detector with a 2.5μm cut off, it will be used as commissioning device in preparation to the tests of prototypes European detectors developed under ESA funding. The capability to compare on the same setup detectors from different manufacturers will be a unique asset for the future mission preparation office. This publication presents the performances of the quantum efficiency test bench to prepare measurements on the HAWAII-2RG detector. A SOFRADIR Saturn detector has been used as a preliminary test vehicle for the bench. A test set up with a lamp, chopper, monochromator, pinhole and off axis mirrors allows to create a spot of 1mm diameter between 700nm and 2.5μm.The shape of the beam has been measured to match the rms voltage read by the Merlin Lock -in amplifier and the amplitude of the incoming signal. The reference detectors have been inter-calibrated with an uncertainty up to 3 %. For the measurement with HAWAII-2RG detector, the existing cryostat [1] has been modified to adapt cold black baffling, a cold filter wheel and a sapphire window. An statistic uncertainty of +/-2.6% on the quantum efficiency on the detector under test measurement is expected.

  12. Quantum engine efficiency bound beyond the second law of thermodynamics.

    PubMed

    Niedenzu, Wolfgang; Mukherjee, Victor; Ghosh, Arnab; Kofman, Abraham G; Kurizki, Gershon

    2018-01-11

    According to the second law, the efficiency of cyclic heat engines is limited by the Carnot bound that is attained by engines that operate between two thermal baths under the reversibility condition whereby the total entropy does not increase. Quantum engines operating between a thermal and a squeezed-thermal bath have been shown to surpass this bound. Yet, their maximum efficiency cannot be determined by the reversibility condition, which may yield an unachievable efficiency bound above unity. Here we identify the fraction of the exchanged energy between a quantum system and a bath that necessarily causes an entropy change and derive an inequality for this change. This inequality reveals an efficiency bound for quantum engines energised by a non-thermal bath. This bound does not imply reversibility, unless the two baths are thermal. It cannot be solely deduced from the laws of thermodynamics.

  13. Effects of quantum well growth temperature on the recombination efficiency of InGaN/GaN multiple quantum wells that emit in the green and blue spectral regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammersley, S.; Dawson, P.; Kappers, M. J.

    2015-09-28

    InGaN-based light emitting diodes and multiple quantum wells designed to emit in the green spectral region exhibit, in general, lower internal quantum efficiencies than their blue-emitting counter parts, a phenomenon referred to as the “green gap.” One of the main differences between green-emitting and blue-emitting samples is that the quantum well growth temperature is lower for structures designed to emit at longer wavelengths, in order to reduce the effects of In desorption. In this paper, we report on the impact of the quantum well growth temperature on the optical properties of InGaN/GaN multiple quantum wells designed to emit at 460 nmmore » and 530 nm. It was found that for both sets of samples increasing the temperature at which the InGaN quantum well was grown, while maintaining the same indium composition, led to an increase in the internal quantum efficiency measured at 300 K. These increases in internal quantum efficiency are shown to be due reductions in the non-radiative recombination rate which we attribute to reductions in point defect incorporation.« less

  14. Efficient Variational Quantum Simulator Incorporating Active Error Minimization

    NASA Astrophysics Data System (ADS)

    Li, Ying; Benjamin, Simon C.

    2017-04-01

    One of the key applications for quantum computers will be the simulation of other quantum systems that arise in chemistry, materials science, etc., in order to accelerate the process of discovery. It is important to ask the following question: Can this simulation be achieved using near-future quantum processors, of modest size and under imperfect control, or must it await the more distant era of large-scale fault-tolerant quantum computing? Here, we propose a variational method involving closely integrated classical and quantum coprocessors. We presume that all operations in the quantum coprocessor are prone to error. The impact of such errors is minimized by boosting them artificially and then extrapolating to the zero-error case. In comparison to a more conventional optimized Trotterization technique, we find that our protocol is efficient and appears to be fundamentally more robust against error accumulation.

  15. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination

    NASA Astrophysics Data System (ADS)

    Li, Xiyan; Zhao, Yong-Biao; Fan, Fengjia; Levina, Larissa; Liu, Min; Quintero-Bermudez, Rafael; Gong, Xiwen; Quan, Li Na; Fan, James; Yang, Zhenyu; Hoogland, Sjoerd; Voznyy, Oleksandr; Lu, Zheng-Hong; Sargent, Edward H.

    2018-03-01

    The external quantum efficiencies of state-of-the-art colloidal quantum dot light-emitting diodes (QLEDs) are now approaching the limit set by the out-coupling efficiency. However, the brightness of these devices is constrained by the use of poorly conducting emitting layers, a consequence of the present-day reliance on long-chain organic capping ligands. Here, we report how conductive and passivating halides can be implemented in Zn chalcogenide-shelled colloidal quantum dots to enable high-brightness green QLEDs. We use a surface management reagent, thionyl chloride (SOCl2), to chlorinate the carboxylic group of oleic acid and graft the surfaces of the colloidal quantum dots with passivating chloride anions. This results in devices with an improved mobility that retain high external quantum efficiencies in the high-injection-current region and also feature a reduced turn-on voltage of 2.5 V. The treated QLEDs operate with a brightness of 460,000 cd m-2, significantly exceeding that of all previously reported solution-processed LEDs.

  16. A Biomimetic-Computational Approach to Optimizing the Quantum Efficiency of Photovoltaics

    NASA Astrophysics Data System (ADS)

    Perez, Lisa M.; Holzenburg, Andreas

    The most advanced low-cost organic photovoltaic cells have a quantum efficiency of 10%. This is in stark contrast to plant/bacterial light-harvesting systems which offer quantum efficiencies close to unity. Of particular interest is the highly effective quantum coherence-enabled energy transfer (Fig. 1). Noting that quantum coherence is promoted by charged residues and local dielectrics, classical atomistic simulations and time-dependent density functional theory (DFT) are used to identify charge/dielectric patterns and electronic coupling at exactly defined energy transfer interfaces. The calculations make use of structural information obtained on photosynthetic protein-pigment complexes while still in the native membrane making it possible to establish a link between supramolecular organization and quantum coherence in terms of what length scales enable fast energy transport and prevent quenching. Calculating energy transfer efficiencies between components based on different proximities will permit the search for patterns that enable defining material properties suitable for advanced photovoltaics.

  17. Efficiency of quantum vs. classical annealing in nonconvex learning problems

    PubMed Central

    Zecchina, Riccardo

    2018-01-01

    Quantum annealers aim at solving nonconvex optimization problems by exploiting cooperative tunneling effects to escape local minima. The underlying idea consists of designing a classical energy function whose ground states are the sought optimal solutions of the original optimization problem and add a controllable quantum transverse field to generate tunneling processes. A key challenge is to identify classes of nonconvex optimization problems for which quantum annealing remains efficient while thermal annealing fails. We show that this happens for a wide class of problems which are central to machine learning. Their energy landscapes are dominated by local minima that cause exponential slowdown of classical thermal annealers while simulated quantum annealing converges efficiently to rare dense regions of optimal solutions. PMID:29382764

  18. Efficient tomography of a quantum many-body system

    NASA Astrophysics Data System (ADS)

    Lanyon, B. P.; Maier, C.; Holzäpfel, M.; Baumgratz, T.; Hempel, C.; Jurcevic, P.; Dhand, I.; Buyskikh, A. S.; Daley, A. J.; Cramer, M.; Plenio, M. B.; Blatt, R.; Roos, C. F.

    2017-12-01

    Quantum state tomography is the standard technique for estimating the quantum state of small systems. But its application to larger systems soon becomes impractical as the required resources scale exponentially with the size. Therefore, considerable effort is dedicated to the development of new characterization tools for quantum many-body states. Here we demonstrate matrix product state tomography, which is theoretically proven to allow for the efficient and accurate estimation of a broad class of quantum states. We use this technique to reconstruct the dynamical state of a trapped-ion quantum simulator comprising up to 14 entangled and individually controlled spins: a size far beyond the practical limits of quantum state tomography. Our results reveal the dynamical growth of entanglement and describe its complexity as correlations spread out during a quench: a necessary condition for future demonstrations of better-than-classical performance. Matrix product state tomography should therefore find widespread use in the study of large quantum many-body systems and the benchmarking and verification of quantum simulators and computers.

  19. Improving the efficiency of quantum hash function by dense coding of coin operators in discrete-time quantum walk

    NASA Astrophysics Data System (ADS)

    Yang, YuGuang; Zhang, YuChen; Xu, Gang; Chen, XiuBo; Zhou, Yi-Hua; Shi, WeiMin

    2018-03-01

    Li et al. first proposed a quantum hash function (QHF) in a quantum-walk architecture. In their scheme, two two-particle interactions, i.e., I interaction and π-phase interaction are introduced and the choice of I or π-phase interactions at each iteration depends on a message bit. In this paper, we propose an efficient QHF by dense coding of coin operators in discrete-time quantum walk. Compared with existing QHFs, our protocol has the following advantages: the efficiency of the QHF can be doubled and even more; only one particle is enough and two-particle interactions are unnecessary so that quantum resources are saved. It is a clue to apply the dense coding technique to quantum cryptographic protocols, especially to the applications with restricted quantum resources.

  20. Efficient quantum circuits for dense circulant and circulant like operators

    PubMed Central

    Zhou, S. S.

    2017-01-01

    Circulant matrices are an important family of operators, which have a wide range of applications in science and engineering-related fields. They are, in general, non-sparse and non-unitary. In this paper, we present efficient quantum circuits to implement circulant operators using fewer resources and with lower complexity than existing methods. Moreover, our quantum circuits can be readily extended to the implementation of Toeplitz, Hankel and block circulant matrices. Efficient quantum algorithms to implement the inverses and products of circulant operators are also provided, and an example application in solving the equation of motion for cyclic systems is discussed. PMID:28572988

  1. Experimental Measurement-Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Chen, Teng-Yun; Wang, Liu-Jun; Liang, Hao; Shentu, Guo-Liang; Wang, Jian; Cui, Ke; Yin, Hua-Lei; Liu, Nai-Le; Li, Li; Ma, Xiongfeng; Pelc, Jason S.; Fejer, M. M.; Peng, Cheng-Zhi; Zhang, Qiang; Pan, Jian-Wei

    2013-09-01

    Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices.

  2. Experimental measurement-device-independent quantum key distribution.

    PubMed

    Liu, Yang; Chen, Teng-Yun; Wang, Liu-Jun; Liang, Hao; Shentu, Guo-Liang; Wang, Jian; Cui, Ke; Yin, Hua-Lei; Liu, Nai-Le; Li, Li; Ma, Xiongfeng; Pelc, Jason S; Fejer, M M; Peng, Cheng-Zhi; Zhang, Qiang; Pan, Jian-Wei

    2013-09-27

    Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices.

  3. Enhanced Conversion Efficiency of III–V Triple-junction Solar Cells with Graphene Quantum Dots

    PubMed Central

    Lin, Tzu-Neng; Santiago, Svette Reina Merden S.; Zheng, Jie-An; Chao, Yu-Chiang; Yuan, Chi-Tsu; Shen, Ji-Lin; Wu, Chih-Hung; Lin, Cheng- An J.; Liu, Wei-Ren; Cheng, Ming-Chiang; Chou, Wu-Ching

    2016-01-01

    Graphene has been used to synthesize graphene quantum dots (GQDs) via pulsed laser ablation. By depositing the synthesized GQDs on the surface of InGaP/InGaAs/Ge triple-junction solar cells, the short-circuit current, fill factor, and conversion efficiency were enhanced remarkably. As the GQD concentration is increased, the conversion efficiency in the solar cell increases accordingly. A conversion efficiency of 33.2% for InGaP/InGaAs/Ge triple-junction solar cells has been achieved at the GQD concentration of 1.2 mg/ml, corresponding to a 35% enhancement compared to the cell without GQDs. On the basis of time-resolved photoluminescence, external quantum efficiency, and work-function measurements, we suggest that the efficiency enhancement in the InGaP/InGaAs/Ge triple-junction solar cells is primarily caused by the carrier injection from GQDs to the InGaP top subcell. PMID:27982073

  4. III-nitride quantum dots for ultra-efficient solid-state lighting

    DOE PAGES

    Wierer, Jr., Jonathan J.; Tansu, Nelson; Fischer, Arthur J.; ...

    2016-05-23

    III-nitride light-emitting diodes (LEDs) and laser diodes (LDs) are ultimately limited in performance due to parasitic Auger recombination. For LEDs, the consequences are poor efficiencies at high current densities; for LDs, the consequences are high thresholds and limited efficiencies. Here, we present arguments for III-nitride quantum dots (QDs) as active regions for both LEDs and LDs, to circumvent Auger recombination and achieve efficiencies at higher current densities that are not possible with quantum wells. QD-based LDs achieve gain and thresholds at lower carrier densities before Auger recombination becomes appreciable. QD-based LEDs achieve higher efficiencies at higher currents because of highermore » spontaneous emission rates and reduced Auger recombination. The technical challenge is to control the size distribution and volume of the QDs to realize these benefits. In conclusion, if constructed properly, III-nitride light-emitting devices with QD active regions have the potential to outperform quantum well light-emitting devices, and enable an era of ultra-efficient solidstate lighting.« less

  5. Internal quantum efficiency and tunable colour temperature in monolithic white InGaN/GaN LED

    NASA Astrophysics Data System (ADS)

    Titkov, Ilya E.; Yadav, Amit; Zerova, Vera L.; Zulonas, Modestas; Tsatsulnikov, Andrey F.; Lundin, Wsevolod V.; Sakharov, Alexey V.; Rafailov, Edik U.

    2014-03-01

    Internal Quantum Efficiency (IQE) of two-colour monolithic white light emitting diode (LED) was measured by temperature dependant electro-luminescence (TDEL) and analysed with modified rate equation based on ABC model. External, internal and injection efficiencies of blue and green quantum wells were analysed separately. Monolithic white LED contained one green InGaN QW and two blue QWs being separated by GaN barrier. This paper reports also the tunable behaviour of correlated colour temperature (CCT) in pulsed operation mode and effect of self-heating on device performance.

  6. Measuring Quantum Coherence with Entanglement.

    PubMed

    Streltsov, Alexander; Singh, Uttam; Dhar, Himadri Shekhar; Bera, Manabendra Nath; Adesso, Gerardo

    2015-07-10

    Quantum coherence is an essential ingredient in quantum information processing and plays a central role in emergent fields such as nanoscale thermodynamics and quantum biology. However, our understanding and quantitative characterization of coherence as an operational resource are still very limited. Here we show that any degree of coherence with respect to some reference basis can be converted to entanglement via incoherent operations. This finding allows us to define a novel general class of measures of coherence for a quantum system of arbitrary dimension, in terms of the maximum bipartite entanglement that can be generated via incoherent operations applied to the system and an incoherent ancilla. The resulting measures are proven to be valid coherence monotones satisfying all the requirements dictated by the resource theory of quantum coherence. We demonstrate the usefulness of our approach by proving that the fidelity-based geometric measure of coherence is a full convex coherence monotone, and deriving a closed formula for it on arbitrary single-qubit states. Our work provides a clear quantitative and operational connection between coherence and entanglement, two landmark manifestations of quantum theory and both key enablers for quantum technologies.

  7. How much a quantum measurement is informative?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Arno, Michele; ICFO-Institut de Ciencies Fotoniques, E-08860 Castelldefels, Barcelona; Quit Group, Dipartimento di Fisica, via Bassi 6, I-27100 Pavia

    2014-12-04

    The informational power of a quantum measurement is the maximum amount of classical information that the measurement can extract from any ensemble of quantum states. We discuss its main properties. Informational power is an additive quantity, being equivalent to the classical capacity of a quantum-classical channel. The informational power of a quantum measurement is the maximum of the accessible information of a quantum ensemble that depends on the measurement. We present some examples where the symmetry of the measurement allows to analytically derive its informational power.

  8. Quantum Measurement and the Real World

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinberg, Aephraim M.

    2012-04-18

    While quantum measurement remains the central philosophical conundrum of quantum mechanics, it has recently grown into a respectable (read: experimental!) discipline as well. New perspectives on measurement have grown out of new technological possibilities, but also out of attempts to design systems for quantum information processing. I will present several examples of how our current ideas on quantum measurement go far beyond the usual textbook treatments, using examples from our entangled-photon and ultracold-atoms laboratories in Toronto. Topics will be drawn from weak measurement, 'interaction-free' measurement, Hardy's Paradox, measurement-induced quantum logic, and techniques for controlling and characterizing the coherence of quantummore » systems. The moral of the story will be that there are many different kinds of measurement strategies, with their own advantages and disadvantages; and that some things we have been taught not to even think about can actually be measured in a certain sense.« less

  9. Autonomous Quantum Clocks: Does Thermodynamics Limit Our Ability to Measure Time?

    NASA Astrophysics Data System (ADS)

    Erker, Paul; Mitchison, Mark T.; Silva, Ralph; Woods, Mischa P.; Brunner, Nicolas; Huber, Marcus

    2017-07-01

    Time remains one of the least well-understood concepts in physics, most notably in quantum mechanics. A central goal is to find the fundamental limits of measuring time. One of the main obstacles is the fact that time is not an observable and thus has to be measured indirectly. Here, we explore these questions by introducing a model of time measurements that is complete and autonomous. Specifically, our autonomous quantum clock consists of a system out of thermal equilibrium—a prerequisite for any system to function as a clock—powered by minimal resources, namely, two thermal baths at different temperatures. Through a detailed analysis of this specific clock model, we find that the laws of thermodynamics dictate a trade-off between the amount of dissipated heat and the clock's performance in terms of its accuracy and resolution. Our results furthermore imply that a fundamental entropy production is associated with the operation of any autonomous quantum clock, assuming that quantum machines cannot achieve perfect efficiency at finite power. More generally, autonomous clocks provide a natural framework for the exploration of fundamental questions about time in quantum theory and beyond.

  10. Measurement-Device-Independent Quantum Key Distribution over 200 km

    NASA Astrophysics Data System (ADS)

    Tang, Yan-Lin; Yin, Hua-Lei; Chen, Si-Jing; Liu, Yang; Zhang, Wei-Jun; Jiang, Xiao; Zhang, Lu; Wang, Jian; You, Li-Xing; Guan, Jian-Yu; Yang, Dong-Xu; Wang, Zhen; Liang, Hao; Zhang, Zhen; Zhou, Nan; Ma, Xiongfeng; Chen, Teng-Yun; Zhang, Qiang; Pan, Jian-Wei

    2014-11-01

    Measurement-device-independent quantum key distribution (MDIQKD) protocol is immune to all attacks on detection and guarantees the information-theoretical security even with imperfect single-photon detectors. Recently, several proof-of-principle demonstrations of MDIQKD have been achieved. Those experiments, although novel, are implemented through limited distance with a key rate less than 0.1 bit /s . Here, by developing a 75 MHz clock rate fully automatic and highly stable system and superconducting nanowire single-photon detectors with detection efficiencies of more than 40%, we extend the secure transmission distance of MDIQKD to 200 km and achieve a secure key rate 3 orders of magnitude higher. These results pave the way towards a quantum network with measurement-device-independent security.

  11. Ultimate limits for quantum magnetometry via time-continuous measurements

    NASA Astrophysics Data System (ADS)

    Albarelli, Francesco; Rossi, Matteo A. C.; Paris, Matteo G. A.; Genoni, Marco G.

    2017-12-01

    We address the estimation of the magnetic field B acting on an ensemble of atoms with total spin J subjected to collective transverse noise. By preparing an initial spin coherent state, for any measurement performed after the evolution, the mean-square error of the estimate is known to scale as 1/J, i.e. no quantum enhancement is obtained. Here, we consider the possibility of continuously monitoring the atomic environment, and conclusively show that strategies based on time-continuous non-demolition measurements followed by a final strong measurement may achieve Heisenberg-limited scaling 1/{J}2 and also a monitoring-enhanced scaling in terms of the interrogation time. We also find that time-continuous schemes are robust against detection losses, as we prove that the quantum enhancement can be recovered also for finite measurement efficiency. Finally, we analytically prove the optimality of our strategy.

  12. High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lang, J. R.; Neufeld, C. J.; Hurni, C. A.; Cruz, S. C.; Matioli, E.; Mishra, U. K.; Speck, J. S.

    2011-03-01

    High external quantum efficiency (EQE) p-i-n heterojunction solar cells grown by NH3-based molecular beam epitaxy are presented. EQE values including optical losses are greater than 50% with fill-factors over 72% when illuminated with a 1 sun AM0 spectrum. Optical absorption measurements in conjunction with EQE measurements indicate an internal quantum efficiency greater than 90% for the InGaN absorbing layer. By adjusting the thickness of the top p-type GaN window contact layer, it is shown that the short-wavelength (<365 nm) quantum efficiency is limited by the minority carrier diffusion length in highly Mg-doped p-GaN.

  13. Efficient Quantum Pseudorandomness.

    PubMed

    Brandão, Fernando G S L; Harrow, Aram W; Horodecki, Michał

    2016-04-29

    Randomness is both a useful way to model natural systems and a useful tool for engineered systems, e.g., in computation, communication, and control. Fully random transformations require exponential time for either classical or quantum systems, but in many cases pseudorandom operations can emulate certain properties of truly random ones. Indeed, in the classical realm there is by now a well-developed theory regarding such pseudorandom operations. However, the construction of such objects turns out to be much harder in the quantum case. Here, we show that random quantum unitary time evolutions ("circuits") are a powerful source of quantum pseudorandomness. This gives for the first time a polynomial-time construction of quantum unitary designs, which can replace fully random operations in most applications, and shows that generic quantum dynamics cannot be distinguished from truly random processes. We discuss applications of our result to quantum information science, cryptography, and understanding the self-equilibration of closed quantum dynamics.

  14. Determination of the Quantum Efficiency of a Light Detector

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2008-01-01

    The "quantum efficiency" (QE) is an important property of a light detector. This quantity can be determined in the undergraduate physics laboratory. The experimentally determined QE of a silicon photodiode appeared to be in reasonable agreement with expected values. The experiment confirms the quantum properties of light and seems to be a useful…

  15. Efficiency at Maximum Power Output of a Quantum-Mechanical Brayton Cycle

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan; He, Ji-Zhou; Gao, Yong; Wang, Jian-Hui

    2014-03-01

    The performance in finite time of a quantum-mechanical Brayton engine cycle is discussed, without introduction of temperature. The engine model consists of two quantum isoenergetic and two quantum isobaric processes, and works with a single particle in a harmonic trap. Directly employing the finite-time thermodynamics, the efficiency at maximum power output is determined. Extending the harmonic trap to a power-law trap, we find that the efficiency at maximum power is independent of any parameter involved in the model, but depends on the confinement of the trapping potential.

  16. Efficient Blue Electroluminescence Using Quantum-Confined Two-Dimensional Perovskites.

    PubMed

    Kumar, Sudhir; Jagielski, Jakub; Yakunin, Sergii; Rice, Peter; Chiu, Yu-Cheng; Wang, Mingchao; Nedelcu, Georgian; Kim, Yeongin; Lin, Shangchao; Santos, Elton J G; Kovalenko, Maksym V; Shih, Chih-Jen

    2016-10-03

    Solution-processed hybrid organic-inorganic lead halide perovskites are emerging as one of the most promising candidates for low-cost light-emitting diodes (LEDs). However, due to a small exciton binding energy, it is not yet possible to achieve an efficient electroluminescence within the blue wavelength region at room temperature, as is necessary for full-spectrum light sources. Here, we demonstrate efficient blue LEDs based on the colloidal, quantum-confined 2D perovskites, with precisely controlled stacking down to one-unit-cell thickness (n = 1). A variety of low-k organic host compounds are used to disperse the 2D perovskites, effectively creating a matrix of the dielectric quantum wells, which significantly boosts the exciton binding energy by the dielectric confinement effect. Through the Förster resonance energy transfer, the excitons down-convert and recombine radiatively in the 2D perovskites. We report room-temperature pure green (n = 7-10), sky blue (n = 5), pure blue (n = 3), and deep blue (n = 1) electroluminescence, with record-high external quantum efficiencies in the green-to-blue wavelength region.

  17. Experimental demonstration of selective quantum process tomography on an NMR quantum information processor

    NASA Astrophysics Data System (ADS)

    Gaikwad, Akshay; Rehal, Diksha; Singh, Amandeep; Arvind, Dorai, Kavita

    2018-02-01

    We present the NMR implementation of a scheme for selective and efficient quantum process tomography without ancilla. We generalize this scheme such that it can be implemented efficiently using only a set of measurements involving product operators. The method allows us to estimate any element of the quantum process matrix to a desired precision, provided a set of quantum states can be prepared efficiently. Our modified technique requires fewer experimental resources as compared to the standard implementation of selective and efficient quantum process tomography, as it exploits the special nature of NMR measurements to allow us to compute specific elements of the process matrix by a restrictive set of subsystem measurements. To demonstrate the efficacy of our scheme, we experimentally tomograph the processes corresponding to "no operation," a controlled-NOT (CNOT), and a controlled-Hadamard gate on a two-qubit NMR quantum information processor, with high fidelities.

  18. A robust approach to measuring the detective quantum efficiency of radiographic detectors in a clinical setting

    NASA Astrophysics Data System (ADS)

    McDonald, Michael C.; Kim, H. K.; Henry, J. R.; Cunningham, I. A.

    2012-03-01

    The detective quantum efficiency (DQE) is widely accepted as a primary measure of x-ray detector performance in the scientific community. A standard method for measuring the DQE, based on IEC 62220-1, requires the system to have a linear response meaning that the detector output signals are proportional to the incident x-ray exposure. However, many systems have a non-linear response due to characteristics of the detector, or post processing of the detector signals, that cannot be disabled and may involve unknown algorithms considered proprietary by the manufacturer. For these reasons, the DQE has not been considered as a practical candidate for routine quality assurance testing in a clinical setting. In this article we described a method that can be used to measure the DQE of both linear and non-linear systems that employ only linear image processing algorithms. The method was validated on a Cesium Iodide based flat panel system that simultaneously stores a raw (linear) and processed (non-linear) image for each exposure. It was found that the resulting DQE was equivalent to a conventional standards-compliant DQE with measurement precision, and the gray-scale inversion and linear edge enhancement did not affect the DQE result. While not IEC 62220-1 compliant, it may be adequate for QA programs.

  19. The Logic of Quantum Measurements

    NASA Astrophysics Data System (ADS)

    Vanni, Leonardo; Laura, Roberto

    2013-07-01

    We apply our previously developed formalism of contexts of histories, suitable to deal with quantum properties at different times, to the measurement process. We explore the logical implications which are allowed by the quantum theory, about the realization of properties of the microscopic measured system, before and after the measurement process with a given pointer value.

  20. Enhancing the quantum efficiency of InGaN yellow-green light-emitting diodes by growth interruption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Chunhua; Ma, Ziguang; Zhou, Junming

    2014-08-18

    We studied the effect of multiple interruptions during the quantum well growth on emission-efficiency enhancement of InGaN-based yellow-green light emitting diodes on c-plane sapphire substrate. The output power and dominant wavelength at 20 mA are 0.24 mW and 556.3 nm. High resolution x-ray diffraction, photoluminescence, and electroluminescence measurements demonstrate that efficiency enhancement could be partially attributed to crystal quality improvement of the active region resulted from reduced In clusters and relevant defects on the surface of InGaN layer by introducing interruptions. The less tilted energy band in the quantum well is also caused by the decrease of In-content gradient along c-axis resultedmore » from In segregation during the interruptions, which increases spatial overlap of electron-hole wavefunction and thus the internal quantum efficiency. The latter also leads to smaller blueshift of dominant wavelength with current increasing.« less

  1. Nano-patterned superconducting surface for high quantum efficiency cathode

    DOEpatents

    Hannon, Fay; Musumeci, Pietro

    2017-03-07

    A method for providing a superconducting surface on a laser-driven niobium cathode in order to increase the effective quantum efficiency. The enhanced surface increases the effective quantum efficiency by improving the laser absorption of the surface and enhancing the local electric field. The surface preparation method makes feasible the construction of superconducting radio frequency injectors with niobium as the photocathode. An array of nano-structures are provided on a flat surface of niobium. The nano-structures are dimensionally tailored to interact with a laser of specific wavelength to thereby increase the electron yield of the surface.

  2. Quantum reversibility is relative, or does a quantum measurement reset initial conditions?

    PubMed

    Zurek, Wojciech H

    2018-07-13

    I compare the role of the information in classical and quantum dynamics by examining the relation between information flows in measurements and the ability of observers to reverse evolutions. I show that in the Newtonian dynamics reversibility is unaffected by the observer's retention of the information about the measurement outcome. By contrast-even though quantum dynamics is unitary, hence, reversible-reversing quantum evolution that led to a measurement becomes, in principle, impossible for an observer who keeps the record of its outcome. Thus, quantum irreversibility can result from the information gain rather than just its loss-rather than just an increase of the (von Neumann) entropy. Recording of the outcome of the measurement resets, in effect, initial conditions within the observer's (branch of) the Universe. Nevertheless, I also show that the observer's friend-an agent who knows what measurement was successfully carried out and can confirm that the observer knows the outcome but resists his curiosity and does not find out the result-can, in principle, undo the measurement. This relativity of quantum reversibility sheds new light on the origin of the arrow of time and elucidates the role of information in classical and quantum physics. Quantum discord appears as a natural measure of the extent to which dissemination of information about the outcome affects the ability to reverse the measurement.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  3. Inconclusive quantum measurements and decisions under uncertainty

    NASA Astrophysics Data System (ADS)

    Yukalov, Vyacheslav; Sornette, Didier

    2016-04-01

    We give a mathematical definition for the notion of inconclusive quantum measurements. In physics, such measurements occur at intermediate stages of a complex measurement procedure, with the final measurement result being operationally testable. Since the mathematical structure of Quantum Decision Theory has been developed in analogy with the theory of quantum measurements, the inconclusive quantum measurements correspond, in Quantum Decision Theory, to intermediate stages of decision making in the process of taking decisions under uncertainty. The general form of the quantum probability for a composite event is the sum of a utility factor, describing a rational evaluation of the considered prospect, and of an attraction factor, characterizing irrational, subconscious attitudes of the decision maker. Despite the involved irrationality, the probability of prospects can be evaluated. This is equivalent to the possibility of calculating quantum probabilities without specifying hidden variables. We formulate a general way of evaluation, based on the use of non-informative priors. As an example, we suggest the explanation of the decoy effect. Our quantitative predictions are in very good agreement with experimental data.

  4. Biological measurement beyond the quantum limit

    NASA Astrophysics Data System (ADS)

    Taylor, Michael; Janousek, Jiri; Daria, Vincent; Knittel, Joachim; Hage, Boris; Bachor, Hans; Bowen, Warwick

    2013-05-01

    Biology is an important frontier for quantum metrology, with quantum enhanced sensitivity allowing optical intensities to be lowered, and a consequent reduction in specimen damage and photochemical intrusion upon biological processes. Here we demonstrate the first biological measurement with precision surpassing the quantum noise limit. Naturally occurring lipid granules within living yeast cells were tracked in real time with sensitivity surpassing the quantum noise limit by 42% as they diffuse through the cytoplasm and interact with embedded polymer networks. This allowed dynamic mechanical properties of the cytoplasm to be determined with a 64% higher measurement rate than possible classically. To enable this, a new microscopy system was developed which is compatible with squeezed light, and which utilized a novel optical lock-in technique to allow quantum enhancement down to 10 Hz. This method is widely applicable, extending the reach of quantum enhanced measurement to many dynamic biological processes.

  5. Structural Investigation of Cesium Lead Halide Perovskites for High-Efficiency Quantum Dot Light-Emitting Diodes.

    PubMed

    Le, Quyet Van; Kim, Jong Beom; Kim, Soo Young; Lee, Byeongdu; Lee, Dong Ryeol

    2017-09-07

    We have investigated the effect of reaction temperature of hot-injection method on the structural properties of CsPbX 3 (X: Br, I, Cl) perovskite nanocrystals (NCs) using small- and wide-angle X-ray scattering. It is confirmed that the size of the NCs decreased as the reaction temperature decreased, resulting in stronger quantum confinement. The cubic-phase perovskite NCs formed despite the fact that the reaction temperatures increased from 140 to 180 °C; however, monodispersive NC cubes that are required for densely packing self-assembly film were formed only at lower temperatures. From the X-ray scattering measurements, the spin-coated film from more monodispersive perovskite nanocubes synthesized at lower temperatures resulted in more preferred orientation. This dense-packing perovskite film with preferred orientation yielded efficient light-emitting diode (LED) performance. Thus the dense-packing structure of NC assemblies formed after spin-coating should be considered for high-efficient LEDs based on perovskite quantum dots in addition to quantum confinement effect of the quantum dots.

  6. Quantum Confined Semiconductors for High Efficiency Photovoltaics

    NASA Astrophysics Data System (ADS)

    Beard, Matthew

    2014-03-01

    Semiconductor nanostructures, where at least one dimension is small enough to produce quantum confinement effects, provide new pathways for controlling energy flow and therefore have the potential to increase the efficiency of the primary photon-to-free energy conversion step. In this discussion, I will present the current status of research efforts towards utilizing the unique properties of colloidal quantum dots (NCs confined in three dimensions) in prototype solar cells and demonstrate that these unique systems have the potential to bypass the Shockley-Queisser single-junction limit for solar photon conversion. The solar cells are constructed using a low temperature solution based deposition of PbS or PbSe QDs as the absorber layer. Different chemical treatments of the QD layer are employed in order to obtain good electrical communication while maintaining the quantum-confined properties of the QDs. We have characterized the transport and carrier dynamics using a transient absorption, time-resolved THz, and temperature-dependent photoluminescence. I will discuss the interplay between carrier generation, recombination, and mobility within the QD layers. A unique aspect of our devices is that the QDs exhibit multiple exciton generation with an efficiency that is ~ 2 to 3 times greater than the parental bulk semiconductor.

  7. Local quantum measurement and no-signaling imply quantum correlations.

    PubMed

    Barnum, H; Beigi, S; Boixo, S; Elliott, M B; Wehner, S

    2010-04-09

    We show that, assuming that quantum mechanics holds locally, the finite speed of information is the principle that limits all possible correlations between distant parties to be quantum mechanical as well. Local quantum mechanics means that a Hilbert space is assigned to each party, and then all local positive-operator-valued measurements are (in principle) available; however, the joint system is not necessarily described by a Hilbert space. In particular, we do not assume the tensor product formalism between the joint systems. Our result shows that if any experiment would give nonlocal correlations beyond quantum mechanics, quantum theory would be invalidated even locally.

  8. Nanocrystal Size-Dependent Efficiency of Quantum Dot Sensitized Solar Cells in the Strongly Coupled CdSe Nanocrystals/TiO2 System.

    PubMed

    Yun, Hyeong Jin; Paik, Taejong; Diroll, Benjamin; Edley, Michael E; Baxter, Jason B; Murray, Christopher B

    2016-06-15

    Light absorption and electron injection are important criteria determining solar energy conversion efficiency. In this research, monodisperse CdSe quantum dots (QDs) are synthesized with five different diameters, and the size-dependent solar energy conversion efficiency of CdSe quantum dot sensitized solar cell (QDSSCs) is investigated by employing the atomic inorganic ligand, S(2-). Absorbance measurements and transmission electron microscopy show that the diameters of the uniform CdSe QDs are 2.5, 3.2, 4.2, 6.4, and 7.8 nm. Larger CdSe QDs generate a larger amount of charge under the irradiation of long wavelength photons, as verified by the absorbance results and the measurements of the external quantum efficiencies. However, the smaller QDs exhibit faster electron injection kinetics from CdSe QDs to TiO2 because of the high energy level of CBCdSe, as verified by time-resolved photoluminescence and internal quantum efficiency results. Importantly, the S(2-) ligand significantly enhances the electronic coupling between the CdSe QDs and TiO2, yielding an enhancement of the charge transfer rate at the interfacial region. As a result, the S(2-) ligand helps improve the new size-dependent solar energy conversion efficiency, showing best performance with 4.2-nm CdSe QDs, whereas conventional ligand, mercaptopropionic acid, does not show any differences in efficiency according to the size of the CdSe QDs. The findings reported herein suggest that the atomic inorganic ligand reinforces the influence of quantum confinement on the solar energy conversion efficiency of QDSSCs.

  9. Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths

    PubMed Central

    Kahl, Oliver; Ferrari, Simone; Kovalyuk, Vadim; Goltsman, Gregory N.; Korneev, Alexander; Pernice, Wolfram H. P.

    2015-01-01

    Superconducting nanowire single-photon detectors (SNSPDs) provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, compatibility with an integrated optical platform is a crucial requirement for applications in emerging quantum photonic technologies. Here we present SNSPDs embedded in nanophotonic integrated circuits which achieve internal quantum efficiencies close to unity at 1550 nm wavelength. This allows for the SNSPDs to be operated at bias currents far below the critical current where unwanted dark count events reach milli-Hz levels while on-chip detection efficiencies above 70% are maintained. The measured dark count rates correspond to noise-equivalent powers in the 10−19 W/Hz−1/2 range and the timing jitter is as low as 35 ps. Our detectors are fully scalable and interface directly with waveguide-based optical platforms. PMID:26061283

  10. Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths.

    PubMed

    Kahl, Oliver; Ferrari, Simone; Kovalyuk, Vadim; Goltsman, Gregory N; Korneev, Alexander; Pernice, Wolfram H P

    2015-06-10

    Superconducting nanowire single-photon detectors (SNSPDs) provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, compatibility with an integrated optical platform is a crucial requirement for applications in emerging quantum photonic technologies. Here we present SNSPDs embedded in nanophotonic integrated circuits which achieve internal quantum efficiencies close to unity at 1550 nm wavelength. This allows for the SNSPDs to be operated at bias currents far below the critical current where unwanted dark count events reach milli-Hz levels while on-chip detection efficiencies above 70% are maintained. The measured dark count rates correspond to noise-equivalent powers in the 10(-19) W/Hz(-1/2) range and the timing jitter is as low as 35 ps. Our detectors are fully scalable and interface directly with waveguide-based optical platforms.

  11. Efficiency and its bounds for a quantum Einstein engine at maximum power.

    PubMed

    Yan, H; Guo, Hao

    2012-11-01

    We study a quantum thermal engine model for which the heat transfer law is determined by Einstein's theory of radiation. The working substance of the quantum engine is assumed to be a two-level quantum system of which the constituent particles obey Maxwell-Boltzmann (MB), Fermi-Dirac (FD), or Bose-Einstein (BE) distributions, respectively, at equilibrium. The thermal efficiency and its bounds at maximum power of these models are derived and discussed in the long and short thermal contact time limits. The similarity and difference between these models are discussed. We also compare the efficiency bounds of this quantum thermal engine to those of its classical counterpart.

  12. From quantum measurement to biology via retrocausality.

    PubMed

    Matsuno, Koichiro

    2017-12-01

    A reaction cycle in general or a metabolic cycle in particular owes its evolutionary emergence to the covering reaction environment acting as a measurement apparatus of a natural origin. The quantum measurement of the environmental origin underlying the molecular processes observed in the biological realm is operative cohesively between the measuring and the measured. The measuring part comes to pull in a quantum as an indivisible lump available from an arbitrary material body to be measured. The inevitable difference between the impinging quantum upon the receiving end on the part of the environment and the actual quantum pulled into the receiving end comes to effectively be nullified through the retrocausative propagation of the corresponding wave function proceeding backwards in time. The retrocausal regulation applied to the interface between the measuring and the measured is to function as the organizational agency supporting biology, and is sought in the act for the present in the immediate future within the realm of quantum phenomena. Molecular dynamics in biology owes both the evolutionary buildup and maintenance of its organization to the retrocausal operation of the unitary transformation applied to quantum phenomena proceeding backwards in time. Quantum measurement provides the cohesive agency that is pivotal for implementing the retrocausal regulation. In particular, the physical origin of Darwinian natural selection can be seen in the retrocausal regulation applied to the unitary transformation of a quantum origin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Coherence and measurement in quantum thermodynamics

    PubMed Central

    Kammerlander, P.; Anders, J.

    2016-01-01

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed. PMID:26916503

  14. Coherence and measurement in quantum thermodynamics.

    PubMed

    Kammerlander, P; Anders, J

    2016-02-26

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.

  15. Coherence and measurement in quantum thermodynamics

    NASA Astrophysics Data System (ADS)

    Kammerlander, P.; Anders, J.

    2016-02-01

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.

  16. High-efficiency reconciliation for continuous variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Bai, Zengliang; Yang, Shenshen; Li, Yongmin

    2017-04-01

    Quantum key distribution (QKD) is the most mature application of quantum information technology. Information reconciliation is a crucial step in QKD and significantly affects the final secret key rates shared between two legitimate parties. We analyze and compare various construction methods of low-density parity-check (LDPC) codes and design high-performance irregular LDPC codes with a block length of 106. Starting from these good codes and exploiting the slice reconciliation technique based on multilevel coding and multistage decoding, we realize high-efficiency Gaussian key reconciliation with efficiency higher than 95% for signal-to-noise ratios above 1. Our demonstrated method can be readily applied in continuous variable QKD.

  17. Self-guaranteed measurement-based quantum computation

    NASA Astrophysics Data System (ADS)

    Hayashi, Masahito; Hajdušek, Michal

    2018-05-01

    In order to guarantee the output of a quantum computation, we usually assume that the component devices are trusted. However, when the total computation process is large, it is not easy to guarantee the whole system when we have scaling effects, unexpected noise, or unaccounted for correlations between several subsystems. If we do not trust the measurement basis or the prepared entangled state, we do need to be worried about such uncertainties. To this end, we propose a self-guaranteed protocol for verification of quantum computation under the scheme of measurement-based quantum computation where no prior-trusted devices (measurement basis or entangled state) are needed. The approach we present enables the implementation of verifiable quantum computation using the measurement-based model in the context of a particular instance of delegated quantum computation where the server prepares the initial computational resource and sends it to the client, who drives the computation by single-qubit measurements. Applying self-testing procedures, we are able to verify the initial resource as well as the operation of the quantum devices and hence the computation itself. The overhead of our protocol scales with the size of the initial resource state to the power of 4 times the natural logarithm of the initial state's size.

  18. Estimation of the quantum efficiency of the photodissociation of HbO2 and HbCO

    NASA Astrophysics Data System (ADS)

    Gisbrecht, A. I.; Mamilov, S. A.; Esman, S. S.; Asimov, M. M.

    2016-01-01

    The paper presents our results on the study of the efficiency of inter-fractional changes in hemoglobin molecules depending on the laser radiation parameters. The evaluation of the quantum efficiency of light interaction in vivo with oxyhemoglobin (HbO2) and carboxyhemoglobin (HbCO) in the blood at wavelengths for 525 and 605 nm is presented. The photodissociation yield of 11% for HbO2 and 79% for HbCO are measured at the wavelength of 525 nm and 10 % for HbO2 and 76 % for HbCO at a wavelength of 605 nm. Thus, the quantum yield of photodissociation of the HbCO is considerably higher, which ensures high efficiency of photodecomposition of the HbCO in the blood. The obtained results can be used in the clinical phototherapy practice for effective treatment of CO poisoning.

  19. Deterministic and efficient quantum cryptography based on Bell's theorem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Zengbing; Pan Jianwei; Physikalisches Institut, Universitaet Heidelberg, Philosophenweg 12, 69120 Heidelberg

    2006-05-15

    We propose a double-entanglement-based quantum cryptography protocol that is both efficient and deterministic. The proposal uses photon pairs with entanglement both in polarization and in time degrees of freedom; each measurement in which both of the two communicating parties register a photon can establish one and only one perfect correlation, and thus deterministically create a key bit. Eavesdropping can be detected by violation of local realism. A variation of the protocol shows a higher security, similar to the six-state protocol, under individual attacks. Our scheme allows a robust implementation under the current technology.

  20. Resonant infrared detector with substantially unit quantum efficiency

    NASA Technical Reports Server (NTRS)

    Farhoomand, Jam (Inventor); Mcmurray, Robert E., Jr. (Inventor)

    1994-01-01

    A resonant infrared detector includes an infrared-active layer which has first and second parallel faces and which absorbs radiation of a given wavelength. The detector also includes a first tuned reflective layer, disposed opposite the first face of the infrared-active layer, which reflects a specific portion of the radiation incident thereon and allows a specific portion of the incident radiation at the given wavelength to reach the infrared-active layer. A second reflective layer, disposed opposite the second face of the infrared-active layer, reflects back into the infrared-active layer substantially all of the radiation at the given wavelength which passes through the infrared-active layer. The reflective layers have the effect of increasing the quantum efficiency of the infrared detector relative to the quantum efficiency of the infrared-active layer alone.

  1. Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble.

    PubMed

    Vernaz-Gris, Pierre; Huang, Kun; Cao, Mingtao; Sheremet, Alexandra S; Laurat, Julien

    2018-01-25

    Quantum memory for flying optical qubits is a key enabler for a wide range of applications in quantum information. A critical figure of merit is the overall storage and retrieval efficiency. So far, despite the recent achievements of efficient memories for light pulses, the storage of qubits has suffered from limited efficiency. Here we report on a quantum memory for polarization qubits that combines an average conditional fidelity above 99% and efficiency around 68%, thereby demonstrating a reversible qubit mapping where more information is retrieved than lost. The qubits are encoded with weak coherent states at the single-photon level and the memory is based on electromagnetically-induced transparency in an elongated laser-cooled ensemble of cesium atoms, spatially multiplexed for dual-rail storage. This implementation preserves high optical depth on both rails, without compromise between multiplexing and storage efficiency. Our work provides an efficient node for future tests of quantum network functionalities and advanced photonic circuits.

  2. Computationally Efficient Nonlinear Bell Inequalities for Quantum Networks

    NASA Astrophysics Data System (ADS)

    Luo, Ming-Xing

    2018-04-01

    The correlations in quantum networks have attracted strong interest with new types of violations of the locality. The standard Bell inequalities cannot characterize the multipartite correlations that are generated by multiple sources. The main problem is that no computationally efficient method is available for constructing useful Bell inequalities for general quantum networks. In this work, we show a significant improvement by presenting new, explicit Bell-type inequalities for general networks including cyclic networks. These nonlinear inequalities are related to the matching problem of an equivalent unweighted bipartite graph that allows constructing a polynomial-time algorithm. For the quantum resources consisting of bipartite entangled pure states and generalized Greenberger-Horne-Zeilinger (GHZ) states, we prove the generic nonmultilocality of quantum networks with multiple independent observers using new Bell inequalities. The violations are maximal with respect to the presented Tsirelson's bound for Einstein-Podolsky-Rosen states and GHZ states. Moreover, these violations hold for Werner states or some general noisy states. Our results suggest that the presented Bell inequalities can be used to characterize experimental quantum networks.

  3. Multiparty Quantum Direct Secret Sharing of Classical Information with Bell States and Bell Measurements

    NASA Astrophysics Data System (ADS)

    Song, Yun; Li, Yongming; Wang, Wenhua

    2018-02-01

    This paper proposed a new and efficient multiparty quantum direct secret sharing (QDSS) by using swapping quantum entanglement of Bell states. In the proposed scheme, the quantum correlation between the possible measurement results of the members (except dealer) and the original local unitary operation encoded by the dealer was presented. All agents only need to perform Bell measurements to share dealer's secret by recovering dealer's operation without performing any unitary operation. Our scheme has several advantages. The dealer is not required to retain any photons, and can further share a predetermined key instead of a random key to the agents. It has high capacity as two bits of secret messages can be transmitted by an EPR pair and the intrinsic efficiency approaches 100%, because no classical bit needs to be transmitted except those for detection. Without inserting any checking sets for detecting the eavesdropping, the scheme can resist not only the existing attacks, but also the cheating attack from the dishonest agent.

  4. Simple and Efficient Single Photon Filter for a Rb-based Quantum Memory

    NASA Astrophysics Data System (ADS)

    Stack, Daniel; Li, Xiao; Quraishi, Qudsia

    2015-05-01

    Distribution of entangled quantum states over significant distances is important to the development of future quantum technologies such as long-distance cryptography, networks of atomic clocks, distributed quantum computing, etc. Long-lived quantum memories and single photons are building blocks for systems capable of realizing such applications. The ability to store and retrieve quantum information while filtering unwanted light signals is critical to the operation of quantum memories based on neutral-atom ensembles. We report on an efficient frequency filter which uses a glass cell filled with 85Rb vapor to attenuate noise photons by an order of magnitude with little loss to the single photons associated with the operation of our cold 87Rb quantum memory. An Ar buffer gas is required to differentiate between signal and noise photons or similar statement. Our simple, passive filter requires no optical pumping or external frequency references and provides an additional 18 dB attenuation of our pump laser for every 1 dB loss of the single photon signal. We observe improved non-classical correlations and our data shows that the addition of a frequency filter increases the non-classical correlations and readout efficiency of our quantum memory by ~ 35%.

  5. Quantum efficiency performances of the NIR European Large Format Array detectors tested at ESTEC

    NASA Astrophysics Data System (ADS)

    Crouzet, P.-E.; Duvet, L.; de Wit, F.; Beaufort, T.; Blommaert, S.; Butler, B.; Van Duinkerken, G.; ter Haar, J.; Heijnen, J.; van der Luijt, K.; Smit, H.

    2015-10-01

    Publisher's Note: This paper, originally published on 10/12/2015, was replaced with a corrected/revised version on 10/23/2015. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. The Payload Technology Validation Section (SRE-FV) at ESTEC has the goal to validate new technology for future or on-going mission. In this framework, a test set up to characterize the quantum efficiency of near-infrared (NIR) detectors has been created. In the context of the NIR European Large Format Array ("LFA"), 3 deliverables detectors coming from SELEX-UK/ATC (UK) on one side, and CEA/LETI- CEA/IRFU-SOFRADIR (FR) on the other side were characterized. The quantum efficiency of an HAWAII-2RG detector from Teledyne was as well measured. The capability to compare on the same setup detectors from different manufacturers is a unique asset for the future mission preparation office. This publication will present the quantum efficiency results of a HAWAII-2RG detector from Teledyne with a 2.5um cut off compared to the LFA European detectors prototypes developed independently by SELEX-UK/ATC (UK) on one side, and CEA/LETI- CEA/IRFU-SOFRADIR (FR) on the other side.

  6. Quantum private query with perfect user privacy against a joint-measurement attack

    NASA Astrophysics Data System (ADS)

    Yang, Yu-Guang; Liu, Zhi-Chao; Li, Jian; Chen, Xiu-Bo; Zuo, Hui-Juan; Zhou, Yi-Hua; Shi, Wei-Min

    2016-12-01

    The joint-measurement (JM) attack is the most powerful threat to the database security for existing quantum-key-distribution (QKD)-based quantum private query (QPQ) protocols. Wei et al. (2016) [28] proposed a novel QPQ protocol against the JM attack. However, their protocol relies on two-way quantum communication thereby affecting its real implementation and communication efficiency. Moreover, it cannot ensure perfect user privacy. In this paper, we present a new one-way QPQ protocol in which the special way of classical post-processing of oblivious key ensures the security against the JM attack. Furthermore, it realizes perfect user privacy and lower complexity of communication.

  7. Extreme ultraviolet quantum efficiency of opaque alkali halide photocathodes on microchannel plates

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Everman, E.; Vallerga, J. V.; Lampton, M.

    1988-01-01

    Comprehensive measurements are presented for the quantum detection efficiency (QDE) of the microchannel plate materials CsI, KBr, KCl, and MgF2, over the 44-1800 A wavelength range. QDEs in excess of 40 percent are achieved by several materials in specific wavelength regions of the EUV. Structure is noted in the wavelength dependence of the QDE that is directly related to the valence-band/conduction-band gap energy and the onset of atomic-like resonant transitions. A simple photocathode model allows interpretation of these features, together with the QDE efficiency variation, as a function of illumination angle.

  8. High Quantum Efficiency Nanopillar Photodiodes Overcoming the Diffraction Limit of Light.

    PubMed

    Lee, Wook-Jae; Senanayake, Pradeep; Farrell, Alan C; Lin, Andrew; Hung, Chung-Hong; Huffaker, Diana L

    2016-01-13

    InAs1-xSbx nanowires have recently attracted interest for infrared sensing applications due to the small bandgap and high thermal conductivity. However, previous reports on nanowire-based infrared sensors required low operating temperatures in order to mitigate the high dark current and have shown poor sensitivities resulting from reduced light coupling efficiency beyond the diffraction limit. Here, InAsSb nanopillar photodiodes with high quantum efficiency are achieved by partially coating the nanopillar with metal that excites localized surface plasmon resonances, leading to quantum efficiencies of ∼29% at 2390 nm. These high quantum efficiency nanopillar photodiodes, with 180 nm diameters and 1000 nm heights, allow operation at temperatures as high as 220 K and exhibit a detection wavelength up to 3000 nm, well beyond the diffraction limit. The InAsSb nanopillars are grown on low cost GaAs (111)B substrates using an InAs buffer layer, making our device architecture a promising path toward low-cost infrared focal plane arrays with high operating temperature.

  9. Quantum optical measurement with tripartite entangled photons generated by triple parametric down-conversion

    NASA Astrophysics Data System (ADS)

    Cho, Minhaeng

    2018-05-01

    Parametric down-conversion is a second-order nonlinear optical process annihilating a pump photon and creating a pair of photons in the signal and idler modes. Then, by using two parametric down-converters and introducing a path indistinguishability for the two generated idler modes, a quantum coherence between two conjugate signal beams can be induced. Such a double spontaneous or stimulated parametric down-conversion scheme has been used to demonstrate quantum spectroscopy and imaging with undetected idler photons via measuring one-photon interference between their correlated signal beams. Recently, we considered another quantum optical measurement scheme utilizing W-type tripartite entangled signal photons that can be generated by employing three spontaneous parametric down-conversion crystals and by inducing coherences or path-indistinguishabilities between their correlated idler beams and between quantum vacuum fields. Here, we consider an extended triple stimulated parametric down-conversion scheme for quantum optical measurement of sample properties with undetected idler and photons. Noting the real effect of vacuum field indistinguishability on the fringe visibility as well as the role of zero-point field energy in the interferometry, we show that this scheme is an ideal and efficient way to create a coherent state of W-type entangled signal photons. We anticipate that this scheme would be of critical use in further developing quantum optical measurements in spectroscopy and microscopy with undetected photons.

  10. Quantum optical measurement with tripartite entangled photons generated by triple parametric down-conversion.

    PubMed

    Cho, Minhaeng

    2018-05-14

    Parametric down-conversion is a second-order nonlinear optical process annihilating a pump photon and creating a pair of photons in the signal and idler modes. Then, by using two parametric down-converters and introducing a path indistinguishability for the two generated idler modes, a quantum coherence between two conjugate signal beams can be induced. Such a double spontaneous or stimulated parametric down-conversion scheme has been used to demonstrate quantum spectroscopy and imaging with undetected idler photons via measuring one-photon interference between their correlated signal beams. Recently, we considered another quantum optical measurement scheme utilizing W-type tripartite entangled signal photons that can be generated by employing three spontaneous parametric down-conversion crystals and by inducing coherences or path-indistinguishabilities between their correlated idler beams and between quantum vacuum fields. Here, we consider an extended triple stimulated parametric down-conversion scheme for quantum optical measurement of sample properties with undetected idler and photons. Noting the real effect of vacuum field indistinguishability on the fringe visibility as well as the role of zero-point field energy in the interferometry, we show that this scheme is an ideal and efficient way to create a coherent state of W-type entangled signal photons. We anticipate that this scheme would be of critical use in further developing quantum optical measurements in spectroscopy and microscopy with undetected photons.

  11. Measurement device-independent quantum dialogue

    NASA Astrophysics Data System (ADS)

    Maitra, Arpita

    2017-12-01

    Very recently, the experimental demonstration of quantum secure direct communication (QSDC) with state-of-the-art atomic quantum memory has been reported (Zhang et al. in Phys Rev Lett 118:220501, 2017). Quantum dialogue (QD) falls under QSDC where the secrete messages are communicated simultaneously between two legitimate parties. The successful experimental demonstration of QSDC opens up the possibilities for practical implementation of QD protocols. Thus, it is necessary to analyze the practical security issues of QD protocols for future implementation. Since the very first proposal for QD by Nguyen (Phys Lett A 328:6-10, 2004), a large number of variants and extensions have been presented till date. However, all of those leak half of the secret bits to the adversary through classical communications of the measurement results. In this direction, motivated by the idea of Lo et al. (Phys Rev Lett 108:130503, 2012), we propose a measurement device-independent quantum dialogue scheme which is resistant to such information leakage as well as side-channel attacks. In the proposed protocol, Alice and Bob, two legitimate parties, are allowed to prepare the states only. The states are measured by an untrusted third party who may himself behave as an adversary. We show that our protocol is secure under this adversarial model. The current protocol does not require any quantum memory, and thus, it is inherently robust against memory attacks. Such robustness might not be guaranteed in the QSDC protocol with quantum memory (Zhang et al. 2017).

  12. Duality quantum algorithm efficiently simulates open quantum systems

    PubMed Central

    Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu

    2016-01-01

    Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm. PMID:27464855

  13. Measures and applications of quantum correlations

    NASA Astrophysics Data System (ADS)

    Adesso, Gerardo; Bromley, Thomas R.; Cianciaruso, Marco

    2016-11-01

    Quantum information theory is built upon the realisation that quantum resources like coherence and entanglement can be exploited for novel or enhanced ways of transmitting and manipulating information, such as quantum cryptography, teleportation, and quantum computing. We now know that there is potentially much more than entanglement behind the power of quantum information processing. There exist more general forms of non-classical correlations, stemming from fundamental principles such as the necessary disturbance induced by a local measurement, or the persistence of quantum coherence in all possible local bases. These signatures can be identified and are resilient in almost all quantum states, and have been linked to the enhanced performance of certain quantum protocols over classical ones in noisy conditions. Their presence represents, among other things, one of the most essential manifestations of quantumness in cooperative systems, from the subatomic to the macroscopic domain. In this work we give an overview of the current quest for a proper understanding and characterisation of the frontier between classical and quantum correlations (QCs) in composite states. We focus on various approaches to define and quantify general QCs, based on different yet interlinked physical perspectives, and comment on the operational significance of the ensuing measures for quantum technology tasks such as information encoding, distribution, discrimination and metrology. We then provide a broader outlook of a few applications in which quantumness beyond entanglement looks fit to play a key role.

  14. Report of high quantum efficiency photocathode at Milano

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michelato, P.

    R D activity on high quantum efficiency alkali antimonide photocathode is in progress at Milano, in the context of the ARES program. Inside a preliminary preparation chamber, Cs[sub 3]Sb layers with qunatum efficiency up to 9% (at [lambda]=543.5 nm) and lifetime of some days has been recently produced on copper, stainless steel and niobium, using a reproducible deposition procedure adapted to the material of the different substrata.

  15. Quantum filtering for multiple diffusive and Poissonian measurements

    NASA Astrophysics Data System (ADS)

    Emzir, Muhammad F.; Woolley, Matthew J.; Petersen, Ian R.

    2015-09-01

    We provide a rigorous derivation of a quantum filter for the case of multiple measurements being made on a quantum system. We consider a class of measurement processes which are functions of bosonic field operators, including combinations of diffusive and Poissonian processes. This covers the standard cases from quantum optics, where homodyne detection may be described as a diffusive process and photon counting may be described as a Poissonian process. We obtain a necessary and sufficient condition for any pair of such measurements taken at different output channels to satisfy a commutation relationship. Then, we derive a general, multiple-measurement quantum filter as an extension of a single-measurement quantum filter. As an application we explicitly obtain the quantum filter corresponding to homodyne detection and photon counting at the output ports of a beam splitter.

  16. Efficient optimization of the quantum relative entropy

    NASA Astrophysics Data System (ADS)

    Fawzi, Hamza; Fawzi, Omar

    2018-04-01

    Many quantum information measures can be written as an optimization of the quantum relative entropy between sets of states. For example, the relative entropy of entanglement of a state is the minimum relative entropy to the set of separable states. The various capacities of quantum channels can also be written in this way. We propose a unified framework to numerically compute these quantities using off-the-shelf semidefinite programming solvers, exploiting the approximation method proposed in Fawzi, Saunderson and Parrilo (2017 arXiv: 1705.00812). As a notable application, this method allows us to provide numerical counterexamples for a proposed lower bound on the quantum conditional mutual information in terms of the relative entropy of recovery.

  17. Quantum discord and Maxwell's demons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zurek, Wojciech Hubert

    2003-01-01

    Quantum discord was proposed as an information-theoretic measure of the 'quantumness' of correlations. I show that discord determines the difference between the efficiency of quantum and classical Maxwell's demons - that is, entities that can or cannot measure nonlocal observables or carry out conditional quantum operations - in extracting work from collections of correlated quantum systems.

  18. Expected number of quantum channels in quantum networks.

    PubMed

    Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng

    2015-07-15

    Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks.

  19. Expected number of quantum channels in quantum networks

    PubMed Central

    Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng

    2015-01-01

    Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks. PMID:26173556

  20. Efficient state initialization by a quantum spectral filtering algorithm

    NASA Astrophysics Data System (ADS)

    Fillion-Gourdeau, François; MacLean, Steve; Laflamme, Raymond

    2017-04-01

    An algorithm that initializes a quantum register to a state with a specified energy range is given, corresponding to a quantum implementation of the celebrated Feit-Fleck method. This is performed by introducing a nondeterministic quantum implementation of a standard spectral filtering procedure combined with an apodization technique, allowing for accurate state initialization. It is shown that the implementation requires only two ancilla qubits. A lower bound for the total probability of success of this algorithm is derived, showing that this scheme can be realized using a finite, relatively low number of trials. Assuming the time evolution can be performed efficiently and using a trial state polynomially close to the desired states, it is demonstrated that the number of operations required scales polynomially with the number of qubits. Tradeoffs between accuracy and performance are demonstrated in a simple example: the harmonic oscillator. This algorithm would be useful for the initialization phase of the simulation of quantum systems on digital quantum computers.

  1. Highly efficient non-degenerate four-wave mixing under dual-mode injection in InP/InAs quantum-dash and quantum-dot lasers at 1.55 μm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadeev, T., E-mail: tagir@mailbox.tu-berlin.de; Arsenijević, D.; Huang, H.

    2015-11-09

    This work reports on non-degenerate four-wave mixing under dual-mode injection in metalorganic vapor phase epitaxy grown InP/InAs quantum-dash and quantum dot Fabry-Perot laser operating at 1550 nm. High values of normalized conversion efficiency of −18.6 dB, optical signal-to-noise ratio of 37 dB, and third order optical susceptibility normalized to material gain χ{sup (3)}/g{sub 0} of ∼4 × 10{sup −19} m{sup 3}/V{sup 3} are measured for 1490 μm long quantum-dash lasers. These values are similar to those obtained with distributed-feedback lasers and semiconductor optical amplifiers, which are much more complicated to fabricate. On the other hand, due to the faster gain saturation and enhanced modulation of carriermore » populations, quantum-dot lasers demonstrate 12 dB lower conversion efficiency and 4 times lower χ{sup (3)}/g{sub 0} compared to quantum dash lasers.« less

  2. On the theory of quantum measurement

    NASA Technical Reports Server (NTRS)

    Haus, Hermann A.; Kaertner, Franz X.

    1994-01-01

    Many so called paradoxes of quantum mechanics are clarified when the measurement equipment is treated as a quantized system. Every measurement involves nonlinear processes. Self consistent formulations of nonlinear quantum optics are relatively simple. Hence optical measurements, such as the quantum nondemolition (QND) measurement of photon number, are particularly well suited for such a treatment. It shows that the so called 'collapse of the wave function' is not needed for the interpretation of the measurement process. Coherence of the density matrix of the signal is progressively reduced with increasing accuracy of the photon number determination. If the QND measurement is incorporated into the double slit experiment, the contrast ratio of the fringes is found to decrease with increasing information on the photon number in one of the two paths.

  3. Second law of thermodynamics and quantum feedback control: Maxwell's demon with weak measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, Kurt

    2009-07-15

    Recently Sagawa and Ueda [Phys. Rev. Lett. 100, 080403 (2008)] derived a bound on the work that can be extracted from a quantum system with the use of feedback control. For many quantum measurements their bound was not tight. We show that a tight version of this bound follows straightforwardly from recent work on Maxwell's demon by Alicki et al. [Open Syst. Inf. Dyn. 11, 205 (2004)], for both discrete and continuous feedback control. Our analysis also shows that bare, efficient measurements always do non-negative work on a system in equilibrium, but do not add heat.

  4. A New Ontological View of the Quantum Measurement Problem

    DTIC Science & Technology

    2005-06-13

    broader issues in the foundations of quantum mechanics as well. In this scenario, a quantum measurement is a nonequilibrium phase transition in a...the foundations of quantum mechan - ics as well. In this scenario a quantum measurement is a non-equilibrium phase transition in a “resonant cavity...ontology, and the probabilistic element is removed from the foundations of quantum mechanics , its apparent presence in the quantum measurement being solely

  5. The Influences of Quantum Coherence on the Positive Work and the Efficiency of Quantum Heat Engine with Working Substance of Two-Qubit Heisenberg XXX Model

    NASA Astrophysics Data System (ADS)

    Peng, Hu-Ping; Fang, Mao-Fa; Yu, Min; Zou, Hong-Mei

    2018-03-01

    We study the influences of quantum coherence on the positive work and the efficiency of quantum heat engine (QHE) based on working substance of two-qubit Heisenberg model under a constant external magnetic field. By using analytical and numerical solution, we give the relation expressions for both the positive work and the efficiency with quantum coherence, and in detail discuss the effects of the quantum coherence on the positive work and the efficiency of QHE in the absence or presence of external magnetic field, respectively.

  6. The Influences of Quantum Coherence on the Positive Work and the Efficiency of Quantum Heat Engine with Working Substance of Two-Qubit Heisenberg XXX Model

    NASA Astrophysics Data System (ADS)

    Peng, Hu-Ping; Fang, Mao-Fa; Yu, Min; Zou, Hong-Mei

    2018-06-01

    We study the influences of quantum coherence on the positive work and the efficiency of quantum heat engine (QHE) based on working substance of two-qubit Heisenberg model under a constant external magnetic field. By using analytical and numerical solution, we give the relation expressions for both the positive work and the efficiency with quantum coherence, and in detail discuss the effects of the quantum coherence on the positive work and the efficiency of QHE in the absence or presence of external magnetic field, respectively.

  7. High-quantum efficiency, long-lived luminescing refractory oxides

    DOEpatents

    Chen, Y.; Gonzalez, R.; Summers, G.P.

    A crystal having a high-quantum efficiency and a long period of luminescence is formed of MgO or CaO and possessing a concentration ratio of H/sup -/ ions to F centers in the range of about 0.05 to about 10.

  8. Verification for measurement-only blind quantum computing

    NASA Astrophysics Data System (ADS)

    Morimae, Tomoyuki

    2014-06-01

    Blind quantum computing is a new secure quantum computing protocol where a client who does not have any sophisticated quantum technology can delegate her quantum computing to a server without leaking any privacy. It is known that a client who has only a measurement device can perform blind quantum computing [T. Morimae and K. Fujii, Phys. Rev. A 87, 050301(R) (2013), 10.1103/PhysRevA.87.050301]. It has been an open problem whether the protocol can enjoy the verification, i.e., the ability of the client to check the correctness of the computing. In this paper, we propose a protocol of verification for the measurement-only blind quantum computing.

  9. Quantum market games: implementing tactics via measurements

    NASA Astrophysics Data System (ADS)

    Pakula, I.; Piotrowski, E. W.; Sladkowski, J.

    2006-02-01

    A major development in applying quantum mechanical formalism to various fields has been made during the last few years. Quantum counterparts of Game Theory, Economy, as well as diverse approaches to Quantum Information Theory have been found and currently are being explored. Using connections between Quantum Game Theory and Quantum Computations, an application of the universality of a measurement based computation in Quantum Market Theory is presented.

  10. Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering.

    PubMed

    Pan, Jun; Quan, Li Na; Zhao, Yongbiao; Peng, Wei; Murali, Banavoth; Sarmah, Smritakshi P; Yuan, Mingjian; Sinatra, Lutfan; Alyami, Noktan M; Liu, Jiakai; Yassitepe, Emre; Yang, Zhenyu; Voznyy, Oleksandr; Comin, Riccardo; Hedhili, Mohamed N; Mohammed, Omar F; Lu, Zheng Hong; Kim, Dong Ha; Sargent, Edward H; Bakr, Osman M

    2016-10-01

    A two-step ligand-exchange strategy is developed, in which the long-carbon- chain ligands on all-inorganic perovskite (CsPbX 3 , X = Br, Cl) quantum dots (QDs) are replaced with halide-ion-pair ligands. Green and blue light-emitting diodes made from the halide-ion-pair-capped quantum dots exhibit high external quantum efficiencies compared with the untreated QDs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Quantum demultiplexer of quantum parameter-estimation information in quantum networks

    NASA Astrophysics Data System (ADS)

    Xie, Yanqing; Huang, Yumeng; Wu, Yinzhong; Hao, Xiang

    2018-05-01

    The quantum demultiplexer is constructed by a series of unitary operators and multipartite entangled states. It is used to realize information broadcasting from an input node to multiple output nodes in quantum networks. The scheme of quantum network communication with respect to phase estimation is put forward through the demultiplexer subjected to amplitude damping noises. The generalized partial measurements can be applied to protect the transferring efficiency from environmental noises in the protocol. It is found out that there are some optimal coherent states which can be prepared to enhance the transmission of phase estimation. The dynamics of state fidelity and quantum Fisher information are investigated to evaluate the feasibility of the network communication. While the state fidelity deteriorates rapidly, the quantum Fisher information can be enhanced to a maximum value and then decreases slowly. The memory effect of the environment induces the oscillations of fidelity and quantum Fisher information. The adjustment of the strength of partial measurements is helpful to increase quantum Fisher information.

  12. Thermodynamics of Weakly Measured Quantum Systems.

    PubMed

    Alonso, Jose Joaquin; Lutz, Eric; Romito, Alessandro

    2016-02-26

    We consider continuously monitored quantum systems and introduce definitions of work and heat along individual quantum trajectories that are valid for coherent superposition of energy eigenstates. We use these quantities to extend the first and second laws of stochastic thermodynamics to the quantum domain. We illustrate our results with the case of a weakly measured driven two-level system and show how to distinguish between quantum work and heat contributions. We finally employ quantum feedback control to suppress detector backaction and determine the work statistics.

  13. Demonstration of measurement-only blind quantum computing

    NASA Astrophysics Data System (ADS)

    Greganti, Chiara; Roehsner, Marie-Christine; Barz, Stefanie; Morimae, Tomoyuki; Walther, Philip

    2016-01-01

    Blind quantum computing allows for secure cloud networks of quasi-classical clients and a fully fledged quantum server. Recently, a new protocol has been proposed, which requires a client to perform only measurements. We demonstrate a proof-of-principle implementation of this measurement-only blind quantum computing, exploiting a photonic setup to generate four-qubit cluster states for computation and verification. Feasible technological requirements for the client and the device-independent blindness make this scheme very applicable for future secure quantum networks.

  14. Hardware-efficient bosonic quantum error-correcting codes based on symmetry operators

    NASA Astrophysics Data System (ADS)

    Niu, Murphy Yuezhen; Chuang, Isaac L.; Shapiro, Jeffrey H.

    2018-03-01

    We establish a symmetry-operator framework for designing quantum error-correcting (QEC) codes based on fundamental properties of the underlying system dynamics. Based on this framework, we propose three hardware-efficient bosonic QEC codes that are suitable for χ(2 )-interaction based quantum computation in multimode Fock bases: the χ(2 ) parity-check code, the χ(2 ) embedded error-correcting code, and the χ(2 ) binomial code. All of these QEC codes detect photon-loss or photon-gain errors by means of photon-number parity measurements, and then correct them via χ(2 ) Hamiltonian evolutions and linear-optics transformations. Our symmetry-operator framework provides a systematic procedure for finding QEC codes that are not stabilizer codes, and it enables convenient extension of a given encoding to higher-dimensional qudit bases. The χ(2 ) binomial code is of special interest because, with m ≤N identified from channel monitoring, it can correct m -photon-loss errors, or m -photon-gain errors, or (m -1 )th -order dephasing errors using logical qudits that are encoded in O (N ) photons. In comparison, other bosonic QEC codes require O (N2) photons to correct the same degree of bosonic errors. Such improved photon efficiency underscores the additional error-correction power that can be provided by channel monitoring. We develop quantum Hamming bounds for photon-loss errors in the code subspaces associated with the χ(2 ) parity-check code and the χ(2 ) embedded error-correcting code, and we prove that these codes saturate their respective bounds. Our χ(2 ) QEC codes exhibit hardware efficiency in that they address the principal error mechanisms and exploit the available physical interactions of the underlying hardware, thus reducing the physical resources required for implementing their encoding, decoding, and error-correction operations, and their universal encoded-basis gate sets.

  15. A quantum measure of the multiverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilenkin, Alexander, E-mail: vilenkin@cosmos.phy.tufts.edu

    2014-05-01

    It has been recently suggested that probabilities of different events in the multiverse are given by the frequencies at which these events are encountered along the worldline of a geodesic observer (the ''watcher''). Here I discuss an extension of this probability measure to quantum theory. The proposed extension is gauge-invariant, as is the classical version of this measure. Observations of the watcher are described by a reduced density matrix, and the frequencies of events can be found using the decoherent histories formalism of Quantum Mechanics (adapted to open systems). The quantum watcher measure makes predictions in agreement with the standardmore » Born rule of QM.« less

  16. Invariant measures on multimode quantum Gaussian states

    NASA Astrophysics Data System (ADS)

    Lupo, C.; Mancini, S.; De Pasquale, A.; Facchi, P.; Florio, G.; Pascazio, S.

    2012-12-01

    We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom—the symplectic eigenvalues—which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest for applications in quantum optics and quantum information.

  17. The entropic cost of quantum generalized measurements

    NASA Astrophysics Data System (ADS)

    Mancino, Luca; Sbroscia, Marco; Roccia, Emanuele; Gianani, Ilaria; Somma, Fabrizia; Mataloni, Paolo; Paternostro, Mauro; Barbieri, Marco

    2018-03-01

    Landauer's principle introduces a symmetry between computational and physical processes: erasure of information, a logically irreversible operation, must be underlain by an irreversible transformation dissipating energy. Monitoring micro- and nano-systems needs to enter into the energetic balance of their control; hence, finding the ultimate limits is instrumental to the development of future thermal machines operating at the quantum level. We report on the experimental investigation of a lower bound to the irreversible entropy associated to generalized quantum measurements on a quantum bit. We adopted a quantum photonics gate to implement a device interpolating from the weakly disturbing to the fully invasive and maximally informative regime. Our experiment prompted us to introduce a bound taking into account both the classical result of the measurement and the outcoming quantum state; unlike previous investigation, our entropic bound is based uniquely on measurable quantities. Our results highlight what insights the information-theoretic approach provides on building blocks of quantum information processors.

  18. Measuring complete quantum states with a single observable

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng Xinhua; Suter, Dieter; Du Jiangfeng

    2007-10-15

    Experimental determination of an unknown quantum state usually requires several incompatible measurements. However, it is also possible to determine the full quantum state from a single, repeated measurement. For this purpose, the quantum system whose state is to be determined is first coupled to a second quantum system (the 'assistant') in such a way that part of the information in the quantum state is transferred to the assistant. The actual measurement is then performed on the enlarged system including the original system and the assistant. We discuss in detail the requirements of this procedure and experimentally implement it on amore » simple quantum system consisting of nuclear spins.« less

  19. Reversibility and measurement in quantum computing

    NASA Astrophysics Data System (ADS)

    Leãao, J. P.

    1998-03-01

    The relation between computation and measurement at a fundamental physical level is yet to be understood. Rolf Landauer was perhaps the first to stress the strong analogy between these two concepts. His early queries have regained pertinence with the recent efforts to developed realizable models of quantum computers. In this context the irreversibility of quantum measurement appears in conflict with the requirement of reversibility of the overall computation associated with the unitary dynamics of quantum evolution. The latter in turn is responsible for the features of superposition and entanglement which make some quantum algorithms superior to classical ones for the same task in speed and resource demand. In this article we advocate an approach to this question which relies on a model of computation designed to enforce the analogy between the two concepts instead of demarcating them as it has been the case so far. The model is introduced as a symmetrization of the classical Turing machine model and is then carried on to quantum mechanics, first as a an abstract local interaction scheme (symbolic measurement) and finally in a nonlocal noninteractive implementation based on Aharonov-Bohm potentials and modular variables. It is suggested that this implementation leads to the most ubiquitous of quantum algorithms: the Discrete Fourier Transform.

  20. The Quantum Measurement Problem and Physical reality: A Computation Theoretic Perspective

    NASA Astrophysics Data System (ADS)

    Srikanth, R.

    2006-11-01

    Is the universe computable? If yes, is it computationally a polynomial place? In standard quantum mechanics, which permits infinite parallelism and the infinitely precise specification of states, a negative answer to both questions is not ruled out. On the other hand, empirical evidence suggests that NP-complete problems are intractable in the physical world. Likewise, computational problems known to be algorithmically uncomputable do not seem to be computable by any physical means. We suggest that this close correspondence between the efficiency and power of abstract algorithms on the one hand, and physical computers on the other, finds a natural explanation if the universe is assumed to be algorithmic; that is, that physical reality is the product of discrete sub-physical information processing equivalent to the actions of a probabilistic Turing machine. This assumption can be reconciled with the observed exponentiality of quantum systems at microscopic scales, and the consequent possibility of implementing Shor's quantum polynomial time algorithm at that scale, provided the degree of superposition is intrinsically, finitely upper-bounded. If this bound is associated with the quantum-classical divide (the Heisenberg cut), a natural resolution to the quantum measurement problem arises. From this viewpoint, macroscopic classicality is an evidence that the universe is in BPP, and both questions raised above receive affirmative answers. A recently proposed computational model of quantum measurement, which relates the Heisenberg cut to the discreteness of Hilbert space, is briefly discussed. A connection to quantum gravity is noted. Our results are compatible with the philosophy that mathematical truths are independent of the laws of physics.

  1. Strained-layer InGaAs/GaAs/AlGaAs single quantum well lasers with high internal quantum efficiency

    NASA Technical Reports Server (NTRS)

    Larsson, Anders; Cody, Jeffrey; Lang, Robert J.

    1989-01-01

    Low threshold current density strained-layer In(0.2)Ga(0.8)As/GaAs/AlGaAs single quantum well lasers, emitting at 980 nm, have been grown by molecular beam epitaxy. Contrary to what has been reported for broad-area lasers with pseudomorphic InGaAs active layers grown by metalorganic chemical vapor deposition, these layers exhibit a high internal quantum efficiency (about 90 percent). The maximum external differential quantum efficiency is 70 percent, limited by an anomalously high internal loss possibly caused by a large lateral spreading of the optical mode. In addition, experimental results supporting the theoretically predicted strain-induced reduction of the valence-band nonparabolicity and density of states are presented.

  2. Improving quantum state transfer efficiency and entanglement distribution in binary tree spin network through incomplete collapsing measurements

    NASA Astrophysics Data System (ADS)

    Behzadi, Naghi; Ahansaz, Bahram

    2018-04-01

    We propose a mechanism for quantum state transfer (QST) over a binary tree spin network on the basis of incomplete collapsing measurements. To this aim, we perform initially a weak measurement (WM) on the central qubit of the binary tree network where the state of our concern has been prepared on that qubit. After the time evolution of the whole system, a quantum measurement reversal (QMR) is performed on a chosen target qubit. By taking optimal value for the strength of QMR, it is shown that the QST quality from the sending qubit to any typical target qubit on the binary tree is considerably improved in terms of the WM strength. Also, we show that how high-quality entanglement distribution over the binary tree network is achievable by using this approach.

  3. Relating quantum coherence and correlations with entropy-based measures.

    PubMed

    Wang, Xiao-Li; Yue, Qiu-Ling; Yu, Chao-Hua; Gao, Fei; Qin, Su-Juan

    2017-09-21

    Quantum coherence and quantum correlations are important quantum resources for quantum computation and quantum information. In this paper, using entropy-based measures, we investigate the relationships between quantum correlated coherence, which is the coherence between subsystems, and two main kinds of quantum correlations as defined by quantum discord as well as quantum entanglement. In particular, we show that quantum discord and quantum entanglement can be well characterized by quantum correlated coherence. Moreover, we prove that the entanglement measure formulated by quantum correlated coherence is lower and upper bounded by the relative entropy of entanglement and the entanglement of formation, respectively, and equal to the relative entropy of entanglement for all the maximally correlated states.

  4. Continuous quantum measurement with independent detector cross correlations.

    PubMed

    Jordan, Andrew N; Büttiker, Markus

    2005-11-25

    We investigate the advantages of using two independent, linear detectors for continuous quantum measurement. For single-shot measurement, the detection process may be quantum limited if the detectors are twins. For weak continuous measurement, cross correlations allow a violation of the Korotkov-Averin bound for the detector's signal-to-noise ratio. The joint weak measurement of noncommuting observables is also investigated, and we find the cross correlation changes sign as a function of frequency, reflecting a crossover from incoherent relaxation to coherent, out of phase oscillations. Our results are applied to a double quantum-dot charge qubit, simultaneously measured by two quantum point contacts.

  5. Quantum Measurement Theory in Gravitational-Wave Detectors.

    PubMed

    Danilishin, Stefan L; Khalili, Farid Ya

    2012-01-01

    The fast progress in improving the sensitivity of the gravitational-wave detectors, we all have witnessed in the recent years, has propelled the scientific community to the point at which quantum behavior of such immense measurement devices as kilometer-long interferometers starts to matter. The time when their sensitivity will be mainly limited by the quantum noise of light is around the corner, and finding ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of the Standard Quantum Limit and the methods of its surmounting.

  6. Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation.

    PubMed

    D'Ariano, G M; Lo Presti, P

    2001-05-07

    Quantum operations describe any state change allowed in quantum mechanics, including the evolution of an open system or the state change due to a measurement. We present a general method based on quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation. As input the method needs only a single entangled state. The feasibility of the technique for the electromagnetic field is shown, and the experimental setup is illustrated based on homodyne tomography of a twin beam.

  7. A Quantum Non-Demolition Parity measurement in a mixed-species trapped-ion quantum processor

    NASA Astrophysics Data System (ADS)

    Marinelli, Matteo; Negnevitsky, Vlad; Lo, Hsiang-Yu; Flühmann, Christa; Mehta, Karan; Home, Jonathan

    2017-04-01

    Quantum non-demolition measurements of multi-qubit systems are an important tool in quantum information processing, in particular for syndrome extraction in quantum error correction. We have recently demonstrated a protocol for quantum non-demolition measurement of the parity of two beryllium ions by detection of a co-trapped calcium ion. The measurement requires a sequence of quantum gates between the three ions, using mixed-species gates between beryllium hyperfine qubits and a calcium optical qubit. Our work takes place in a multi-zone segmented trap setup in which we have demonstrated high fidelity control of both species and multi-well ion shuttling. The advantage of using two species of ion is that we can individually manipulate and read out the state of each ion species without disturbing the internal state of the other. The methods demonstrated here can be used for quantum error correcting codes as well as quantum metrology and are key ingredients for realizing a hybrid universal quantum computer based on trapped ions. Mixed-species control may also enable the investigation of new avenues in quantum simulation and quantum state control. left the group and working in a company now.

  8. Macroscopic quantum states: Measures, fragility, and implementations

    NASA Astrophysics Data System (ADS)

    Fröwis, Florian; Sekatski, Pavel; Dür, Wolfgang; Gisin, Nicolas; Sangouard, Nicolas

    2018-04-01

    Large-scale quantum effects have always played an important role in the foundations of quantum theory. With recent experimental progress and the aspiration for quantum enhanced applications, the interest in macroscopic quantum effects has been reinforced. In this review, measures aiming to quantify various aspects of macroscopic quantumness are critically analyzed and discussed. Recent results on the difficulties and prospects to create, maintain, and detect macroscopic quantum states are surveyed. The role of macroscopic quantum states in foundational questions as well as practical applications is outlined. Finally, past and ongoing experimental advances aiming to generate and observe macroscopic quantum states are presented.

  9. Properties and relative measure for quantifying quantum synchronization

    NASA Astrophysics Data System (ADS)

    Li, Wenlin; Zhang, Wenzhao; Li, Chong; Song, Heshan

    2017-07-01

    Although quantum synchronization phenomena and corresponding measures have been widely discussed recently, it is still an open question how to characterize directly the influence of nonlocal correlation, which is the key distinction for identifying classical and quantum synchronizations. In this paper, we present basic postulates for quantifying quantum synchronization based on the related theory in Mari's work [Phys. Rev. Lett. 111, 103605 (2013), 10.1103/PhysRevLett.111.103605], and we give a general formula of a quantum synchronization measure with clear physical interpretations. By introducing Pearson's parameter, we show that the obvious characteristics of our measure are the relativity and monotonicity. As an example, the measure is applied to describe synchronization among quantum optomechanical systems under a Markovian bath. We also show the potential by quantifying generalized synchronization and discrete variable synchronization with this measure.

  10. Entanglement measures in embedding quantum simulators with nuclear spins

    NASA Astrophysics Data System (ADS)

    Xin, Tao; Pedernales, Julen S.; Solano, Enrique; Long, Gui-Lu

    2018-02-01

    We implement an embedding quantum simulator (EQS) in nuclear spin systems. The experiment consists of a simulator of up to three qubits, plus a single ancillary qubit, where we are able to efficiently measure the concurrence and the three-tangle of two-qubit and three-qubit systems as they undergo entangling dynamics. The EQS framework allows us to drastically reduce the number of measurements needed for this task, which otherwise would require full-state reconstruction of the qubit system. Our simulator is built of the nuclear spins of four 13C atoms in a molecule of trans-crotonic acid manipulated with NMR techniques.

  11. Efficient Polar Coding of Quantum Information

    NASA Astrophysics Data System (ADS)

    Renes, Joseph M.; Dupuis, Frédéric; Renner, Renato

    2012-08-01

    Polar coding, introduced 2008 by Arıkan, is the first (very) efficiently encodable and decodable coding scheme whose information transmission rate provably achieves the Shannon bound for classical discrete memoryless channels in the asymptotic limit of large block sizes. Here, we study the use of polar codes for the transmission of quantum information. Focusing on the case of qubit Pauli channels and qubit erasure channels, we use classical polar codes to construct a coding scheme that asymptotically achieves a net transmission rate equal to the coherent information using efficient encoding and decoding operations and code construction. Our codes generally require preshared entanglement between sender and receiver, but for channels with a sufficiently low noise level we demonstrate that the rate of preshared entanglement required is zero.

  12. GaN-based light emitting diodes using p-type trench structure for improving internal quantum efficiency

    NASA Astrophysics Data System (ADS)

    Kim, Garam; Sun, Min-Chul; Kim, Jang Hyun; Park, Euyhwan; Park, Byung-Gook

    2017-01-01

    In order to improve the internal quantum efficiency of GaN-based LEDs, a LED structure featuring a p-type trench in the multi-quantum well (MQW) is proposed. This structure has effects on spreading holes into the MQW and reducing the quantum-confined stark effect (QCSE). In addition, two simple fabrication methods using electron-beam (e-beam) lithography or selective wet etching for manufacturing the p-type structure are also proposed. From the measurement results of the manufactured GaN-based LEDs, it is confirmed that the proposed structure using e-beam lithography or selective wet etching shows improved light output power compared to the conventional structure because of more uniform hole distribution. It is also confirmed that the proposed structure formed by e-beam lithography has a significant effect on strain relaxation and reduction in the QCSE from the electro-luminescence measurement.

  13. Efficient quantum repeater with respect to both entanglement-concentration rate and complexity of local operations and classical communication

    NASA Astrophysics Data System (ADS)

    Su, Zhaofeng; Guan, Ji; Li, Lvzhou

    2018-01-01

    Quantum entanglement is an indispensable resource for many significant quantum information processing tasks. However, in practice, it is difficult to distribute quantum entanglement over a long distance, due to the absorption and noise in quantum channels. A solution to this challenge is a quantum repeater, which can extend the distance of entanglement distribution. In this scheme, the time consumption of classical communication and local operations takes an important place with respect to time efficiency. Motivated by this observation, we consider a basic quantum repeater scheme that focuses on not only the optimal rate of entanglement concentration but also the complexity of local operations and classical communication. First, we consider the case where two different two-qubit pure states are initially distributed in the scenario. We construct a protocol with the optimal entanglement-concentration rate and less consumption of local operations and classical communication. We also find a criterion for the projective measurements to achieve the optimal probability of creating a maximally entangled state between the two ends. Second, we consider the case in which two general pure states are prepared and general measurements are allowed. We get an upper bound on the probability for a successful measurement operation to produce a maximally entangled state without any further local operations.

  14. Numerical simulation of quantum efficiency and surface recombination in HgCdTe IR photon-trapping structures

    NASA Astrophysics Data System (ADS)

    Schuster, Jonathan; Bellotti, Enrico

    2013-06-01

    We have investigated the quantum effiency in HgCdTe photovoltaic pixel arrays employing a photon-trapping structure realized with a periodic array of pillars intended to provide broadband operation. We have found that the quantum efficiency depends heavily on the passivation of the pillar surface. Pillars passivated with anodicoxide have a large fixed positive charge on the pillar surface. We use our three-dimensional numerical simulation model to study the effect of surface charge and surface recombination velocity on the exterior of the pillars. We then evaluate the quantum efficiency of this structure subject to different surface conditions. We have found that by themselves, the surface charge and surface recombination are detrimental to the quantum efficiency but the quantum efficiency is recovered when both phenomena are present. We will discuss the effects of these phenomena and the trade offs that exist between the two.

  15. Direct measurement of nonlocal entanglement of two-qubit spin quantum states.

    PubMed

    Cheng, Liu-Yong; Yang, Guo-Hui; Guo, Qi; Wang, Hong-Fu; Zhang, Shou

    2016-01-18

    We propose efficient schemes of direct concurrence measurement for two-qubit spin and photon-polarization entangled states via the interaction between single-photon pulses and nitrogen-vacancy (NV) centers in diamond embedded in optical microcavities. For different entangled-state types, diversified quantum devices and operations are designed accordingly. The initial unknown entangled states are possessed by two spatially separated participants, and nonlocal spin (polarization) entanglement can be measured with the aid of detection probabilities of photon (NV center) states. This non-demolition entanglement measurement manner makes initial entangled particle-pair avoid complete annihilation but evolve into corresponding maximally entangled states. Moreover, joint inter-qubit operation or global qubit readout is not required for the presented schemes and the final analyses inform favorable performance under the current parameters conditions in laboratory. The unique advantages of spin qubits assure our schemes wide potential applications in spin-based solid quantum information and computation.

  16. High-quantum efficiency, long-lived luminescing refractory oxides

    DOEpatents

    Chen, Yok; Gonzalez, Roberto; Summers, Geoffrey P.

    1984-01-01

    A crystal having a high-quantum efficiency and a long period of luminescence is formed of an oxide selected from the group consisting of magnesium oxide and calcium oxide and possessing a concentration ratio of H.sup.- ions to F centers in the range of about 0.05 to about 10.

  17. Counterfactual Measurements and the Quantum Zeno Effect

    NASA Astrophysics Data System (ADS)

    Russo, Onofrio; Jiang, Liang

    2014-03-01

    The apparent paradoxical paradigm of an interaction free measurement (counterfactual measurement) of the presence of a classical or quantum object without any scattering or absorption of photons is considered in light of the quantum Zeno effect. From one perspective, the counterfactual measurement in principle is consistent with minimizing the interaction between the object and the photon. However, the quantum Zeno effect mandates that repeated interactions with photons (although weakly coupled) are required and necessary to inhibit the coherent evolution of the state of the system. We consider and appraise these seemingly conflicting concepts.

  18. Measures of Quantum Synchronization in Continuous Variable Systems

    NASA Astrophysics Data System (ADS)

    Mari, A.; Farace, A.; Didier, N.; Giovannetti, V.; Fazio, R.

    2013-09-01

    We introduce and characterize two different measures which quantify the level of synchronization of coupled continuous variable quantum systems. The two measures allow us to extend to the quantum domain the notions of complete and phase synchronization. The Heisenberg principle sets a universal bound to complete synchronization. The measure of phase synchronization is, in principle, unbounded; however, in the absence of quantum resources (e.g., squeezing) the synchronization level is bounded below a certain threshold. We elucidate some interesting connections between entanglement and synchronization and, finally, discuss an application based on quantum optomechanical systems.

  19. Measures of quantum synchronization in continuous variable systems.

    PubMed

    Mari, A; Farace, A; Didier, N; Giovannetti, V; Fazio, R

    2013-09-06

    We introduce and characterize two different measures which quantify the level of synchronization of coupled continuous variable quantum systems. The two measures allow us to extend to the quantum domain the notions of complete and phase synchronization. The Heisenberg principle sets a universal bound to complete synchronization. The measure of phase synchronization is, in principle, unbounded; however, in the absence of quantum resources (e.g., squeezing) the synchronization level is bounded below a certain threshold. We elucidate some interesting connections between entanglement and synchronization and, finally, discuss an application based on quantum optomechanical systems.

  20. Enhancing robustness of multiparty quantum correlations using weak measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Uttam, E-mail: uttamsingh@hri.res.in; Mishra, Utkarsh, E-mail: utkarsh@hri.res.in; Dhar, Himadri Shekhar, E-mail: dhar.himadri@gmail.com

    Multipartite quantum correlations are important resources for the development of quantum information and computation protocols. However, the resourcefulness of multipartite quantum correlations in practical settings is limited by its fragility under decoherence due to environmental interactions. Though there exist protocols to protect bipartite entanglement under decoherence, the implementation of such protocols for multipartite quantum correlations has not been sufficiently explored. Here, we study the effect of local amplitude damping channel on the generalized Greenberger–Horne–Zeilinger state, and use a protocol of optimal reversal quantum weak measurement to protect the multipartite quantum correlations. We observe that the weak measurement reversal protocol enhancesmore » the robustness of multipartite quantum correlations. Further it increases the critical damping value that corresponds to entanglement sudden death. To emphasize the efficacy of the technique in protection of multipartite quantum correlation, we investigate two proximately related quantum communication tasks, namely, quantum teleportation in a one sender, many receivers setting and multiparty quantum information splitting, through a local amplitude damping channel. We observe an increase in the average fidelity of both the quantum communication tasks under the weak measurement reversal protocol. The method may prove beneficial, for combating external interactions, in other quantum information tasks using multipartite resources. - Highlights: • Extension of weak measurement reversal scheme to protect multiparty quantum correlations. • Protection of multiparty quantum correlation under local amplitude damping noise. • Enhanced fidelity of quantum teleportation in one sender and many receivers setting. • Enhanced fidelity of quantum information splitting protocol.« less

  1. Quantum Foundations of Quantum Information

    NASA Astrophysics Data System (ADS)

    Griffiths, Robert

    2009-03-01

    The main foundational issue for quantum information is: What is quantum information about? What does it refer to? Classical information typically refers to physical properties, and since classical is a subset of quantum information (assuming the world is quantum mechanical), quantum information should--and, it will be argued, does--refer to quantum physical properties represented by projectors on appropriate subspaces of a quantum Hilbert space. All sorts of microscopic and macroscopic properties, not just measurement outcomes, can be represented in this way, and are thus a proper subject of quantum information. The Stern-Gerlach experiment illustrates this. When properties are compatible, which is to say their projectors commute, Shannon's classical information theory based on statistical correlations extends without difficulty or change to the quantum case. When projectors do not commute, giving rise to characteristic quantum effects, a foundation for the subject can still be constructed by replacing the ``measurement and wave-function collapse'' found in textbooks--an efficient calculational tool, but one giving rise to numerous conceptual difficulties--with a fully consistent and paradox free stochastic formulation of standard quantum mechanics. This formulation is particularly helpful in that it contains no nonlocal superluminal influences; the reason the latter carry no information is that they do not exist.

  2. Non-Markovian quantum processes: Complete framework and efficient characterization

    NASA Astrophysics Data System (ADS)

    Pollock, Felix A.; Rodríguez-Rosario, César; Frauenheim, Thomas; Paternostro, Mauro; Modi, Kavan

    2018-01-01

    Currently, there is no systematic way to describe a quantum process with memory solely in terms of experimentally accessible quantities. However, recent technological advances mean we have control over systems at scales where memory effects are non-negligible. The lack of such an operational description has hindered advances in understanding physical, chemical, and biological processes, where often unjustified theoretical assumptions are made to render a dynamical description tractable. This has led to theories plagued with unphysical results and no consensus on what a quantum Markov (memoryless) process is. Here, we develop a universal framework to characterize arbitrary non-Markovian quantum processes. We show how a multitime non-Markovian process can be reconstructed experimentally, and that it has a natural representation as a many-body quantum state, where temporal correlations are mapped to spatial ones. Moreover, this state is expected to have an efficient matrix-product-operator form in many cases. Our framework constitutes a systematic tool for the effective description of memory-bearing open-system evolutions.

  3. Fast reconstruction of high-qubit-number quantum states via low-rate measurements

    NASA Astrophysics Data System (ADS)

    Li, K.; Zhang, J.; Cong, S.

    2017-07-01

    Due to the exponential complexity of the resources required by quantum state tomography (QST), people are interested in approaches towards identifying quantum states which require less effort and time. In this paper, we provide a tailored and efficient method for reconstructing mixed quantum states up to 12 (or even more) qubits from an incomplete set of observables subject to noises. Our method is applicable to any pure or nearly pure state ρ and can be extended to many states of interest in quantum information processing, such as a multiparticle entangled W state, Greenberger-Horne-Zeilinger states, and cluster states that are matrix product operators of low dimensions. The method applies the quantum density matrix constraints to a quantum compressive sensing optimization problem and exploits a modified quantum alternating direction multiplier method (quantum-ADMM) to accelerate the convergence. Our algorithm takes 8 ,35 , and 226 seconds, respectively, to reconstruct superposition state density matrices of 10 ,11 ,and12 qubits with acceptable fidelity using less than 1 % of measurements of expectation. To our knowledge it is the fastest realization that people can achieve using a normal desktop. We further discuss applications of this method using experimental data of mixed states obtained in an ion trap experiment of up to 8 qubits.

  4. Quantum-enhanced Sensing and Efficient Quantum Computation

    DTIC Science & Technology

    2015-07-27

    accuracy. The system was used to improve quantum boson sampling tests. 15. SUBJECT TERMS EOARD, Quantum Information Processing, Transition Edge Sensors...quantum  boson  sampling (QBS) problem are reported in Ref. [7]. To substantially  increase the scale of feasible tests, we developed a new variation

  5. Efficiency versus speed in quantum heat engines: Rigorous constraint from Lieb-Robinson bound

    NASA Astrophysics Data System (ADS)

    Shiraishi, Naoto; Tajima, Hiroyasu

    2017-08-01

    A long-standing open problem whether a heat engine with finite power achieves the Carnot efficiency is investgated. We rigorously prove a general trade-off inequality on thermodynamic efficiency and time interval of a cyclic process with quantum heat engines. In a first step, employing the Lieb-Robinson bound we establish an inequality on the change in a local observable caused by an operation far from support of the local observable. This inequality provides a rigorous characterization of the following intuitive picture that most of the energy emitted from the engine to the cold bath remains near the engine when the cyclic process is finished. Using this description, we prove an upper bound on efficiency with the aid of quantum information geometry. Our result generally excludes the possibility of a process with finite speed at the Carnot efficiency in quantum heat engines. In particular, the obtained constraint covers engines evolving with non-Markovian dynamics, which almost all previous studies on this topic fail to address.

  6. Efficiency versus speed in quantum heat engines: Rigorous constraint from Lieb-Robinson bound.

    PubMed

    Shiraishi, Naoto; Tajima, Hiroyasu

    2017-08-01

    A long-standing open problem whether a heat engine with finite power achieves the Carnot efficiency is investgated. We rigorously prove a general trade-off inequality on thermodynamic efficiency and time interval of a cyclic process with quantum heat engines. In a first step, employing the Lieb-Robinson bound we establish an inequality on the change in a local observable caused by an operation far from support of the local observable. This inequality provides a rigorous characterization of the following intuitive picture that most of the energy emitted from the engine to the cold bath remains near the engine when the cyclic process is finished. Using this description, we prove an upper bound on efficiency with the aid of quantum information geometry. Our result generally excludes the possibility of a process with finite speed at the Carnot efficiency in quantum heat engines. In particular, the obtained constraint covers engines evolving with non-Markovian dynamics, which almost all previous studies on this topic fail to address.

  7. Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide

    NASA Astrophysics Data System (ADS)

    KiršanskÄ--, Gabija; Thyrrestrup, Henri; Daveau, Raphaël S.; Dreeßen, Chris L.; Pregnolato, Tommaso; Midolo, Leonardo; Tighineanu, Petru; Javadi, Alisa; Stobbe, Søren; Schott, Rüdiger; Ludwig, Arne; Wieck, Andreas D.; Park, Suk In; Song, Jin D.; Kuhlmann, Andreas V.; Söllner, Immo; Löbl, Matthias C.; Warburton, Richard J.; Lodahl, Peter

    2017-10-01

    We demonstrate a high-purity source of indistinguishable single photons using a quantum dot embedded in a nanophotonic waveguide. The source features a near-unity internal coupling efficiency and the collected photons are efficiently coupled off chip by implementing a taper that adiabatically couples the photons to an optical fiber. By quasiresonant excitation of the quantum dot, we measure a single-photon purity larger than 99.4 % and a photon indistinguishability of up to 94 ±1 % by using p -shell excitation combined with spectral filtering to reduce photon jitter. A temperature-dependent study allows pinpointing the residual decoherence processes, notably the effect of phonon broadening. Strict resonant excitation is implemented as well as another means of suppressing photon jitter, and the additional complexity of suppressing the excitation laser source is addressed. The paper opens a clear pathway towards the long-standing goal of a fully deterministic source of indistinguishable photons, which is integrated on a planar photonic chip.

  8. Spectral difference Lanczos method for efficient time propagation in quantum control theory

    NASA Astrophysics Data System (ADS)

    Farnum, John D.; Mazziotti, David A.

    2004-04-01

    Spectral difference methods represent the real-space Hamiltonian of a quantum system as a banded matrix which possesses the accuracy of the discrete variable representation (DVR) and the efficiency of finite differences. When applied to time-dependent quantum mechanics, spectral differences enhance the efficiency of propagation methods for evolving the Schrödinger equation. We develop a spectral difference Lanczos method which is computationally more economical than the sinc-DVR Lanczos method, the split-operator technique, and even the fast-Fourier-Transform Lanczos method. Application of fast propagation is made to quantum control theory where chirped laser pulses are designed to dissociate both diatomic and polyatomic molecules. The specificity of the chirped laser fields is also tested as a possible method for molecular identification and discrimination.

  9. Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide

    PubMed Central

    DAVEAU, RAPHAËL S.; BALRAM, KRISHNA C.; PREGNOLATO, TOMMASO; LIU, JIN; LEE, EUN H.; SONG, JIN D.; VERMA, VARUN; MIRIN, RICHARD; NAM, SAE WOO; MIDOLO, LEONARDO; STOBBE, SØREN; SRINIVASAN, KARTIK; LODAHL, PETER

    2017-01-01

    Many photonic quantum information processing applications would benefit from a high brightness, fiber-coupled source of triggered single photons. Here, we present a fiber-coupled photonic-crystal waveguide single-photon source relying on evanescent coupling of the light field from a tapered out-coupler to an optical fiber. A two-step approach is taken where the performance of the tapered out-coupler is recorded first on an independent device containing an on-chip reflector. Reflection measurements establish that the chip-to-fiber coupling efficiency exceeds 80 %. The detailed characterization of a high-efficiency photonic-crystal waveguide extended with a tapered out-coupling section is then performed. The corresponding overall single-photon source efficiency is 10.9 % ± 2.3 %, which quantifies the success probability to prepare an exciton in the quantum dot, couple it out as a photon in the waveguide, and subsequently transfer it to the fiber. The applied out-coupling method is robust, stable over time, and broadband over several tens of nanometers, which makes it a highly promising pathway to increase the efficiency and reliability of planar chip-based single-photon sources. PMID:28584859

  10. Efficient tools for quantum metrology with uncorrelated noise

    NASA Astrophysics Data System (ADS)

    Kołodyński, Jan; Demkowicz-Dobrzański, Rafał

    2013-07-01

    Quantum metrology offers enhanced performance in experiments on topics such as gravitational wave-detection, magnetometry or atomic clock frequency calibration. The enhancement, however, requires a delicate tuning of relevant quantum features, such as entanglement or squeezing. For any practical application, the inevitable impact of decoherence needs to be taken into account in order to correctly quantify the ultimate attainable gain in precision. We compare the applicability and the effectiveness of various methods of calculating the ultimate precision bounds resulting from the presence of decoherence. This allows us to place a number of seemingly unrelated concepts into a common framework and arrive at an explicit hierarchy of quantum metrological methods in terms of the tightness of the bounds they provide. In particular, we show a way to extend the techniques originally proposed in Demkowicz-Dobrzański et al (2012 Nature Commun. 3 1063), so that they can be efficiently applied not only in the asymptotic but also in the finite number of particles regime. As a result, we obtain a simple and direct method, yielding bounds that interpolate between the quantum enhanced scaling characteristic for a small number of particles and the asymptotic regime, where quantum enhancement amounts to a constant factor improvement. Methods are applied to numerous models, including noisy phase and frequency estimation, as well as the estimation of the decoherence strength itself.

  11. Function Package for Computing Quantum Resource Measures

    NASA Astrophysics Data System (ADS)

    Huang, Zhiming

    2018-05-01

    In this paper, we present a function package for to calculate quantum resource measures and dynamics of open systems. Our package includes common operators and operator lists, frequently-used functions for computing quantum entanglement, quantum correlation, quantum coherence, quantum Fisher information and dynamics in noisy environments. We briefly explain the functions of the package and illustrate how to use the package with several typical examples. We expect that this package is a useful tool for future research and education.

  12. Fluorescent porous silicon biological probes with high quantum efficiency and stability.

    PubMed

    Tu, Chang-Ching; Chou, Ying-Nien; Hung, Hsiang-Chieh; Wu, Jingda; Jiang, Shaoyi; Lin, Lih Y

    2014-12-01

    We demonstrate porous silicon biological probes as a stable and non-toxic alternative to organic dyes or cadmium-containing quantum dots for imaging and sensing applications. The fluorescent silicon quantum dots which are embedded on the porous silicon surface are passivated with carboxyl-terminated ligands through stable Si-C covalent bonds. The porous silicon bio-probes have shown photoluminescence quantum yield around 50% under near-UV excitation, with high photochemical and thermal stability. The bio-probes can be efficiently conjugated with antibodies, which is confirmed by a standard enzyme-linked immunosorbent assay (ELISA) method.

  13. Measurement back-action: Listening with quantum dots

    NASA Astrophysics Data System (ADS)

    Ladd, Thaddeus D.

    2012-07-01

    Single electrons in quantum dots can be disturbed by the apparatus used to measure them. The disturbance can be mediated by incoherent phonons -- literally, noise. Engineering acoustic interference could negate these deleterious effects and bring quantum dots closer to becoming a robust quantum technology.

  14. Interpreting quantum coherence through a quantum measurement process

    NASA Astrophysics Data System (ADS)

    Yao, Yao; Dong, G. H.; Xiao, Xing; Li, Mo; Sun, C. P.

    2017-11-01

    Recently, there has been a renewed interest in the quantification of coherence or other coherencelike concepts within the framework of quantum resource theory. However, rigorously defined or not, the notion of coherence or decoherence has already been used by the community for decades since the advent of quantum theory. Intuitively, the definitions of coherence and decoherence should be two sides of the same coin. Therefore, a natural question is raised: How can the conventional decoherence processes, such as the von Neumann-Lüders (projective) measurement postulation or partially dephasing channels, fit into the bigger picture of the recently established theoretical framework? Here we show that the state collapse rules of the von Neumann or Lüders-type measurements, as special cases of genuinely incoherent operations (GIOs), are consistent with the resource theories of quantum coherence. New hierarchical measures of coherence are proposed for the Lüders-type measurement and their relationship with measurement-dependent discord is addressed. Moreover, utilizing the fixed-point theory for C* algebra, we prove that GIOs indeed represent a particular type of partially dephasing (phase-damping) channels which have a matrix representation based on the Schur product. By virtue of the Stinespring dilation theorem, the physical realizations of incoherent operations are investigated in detail and we find that GIOs in fact constitute the core of strictly incoherent operations and generally incoherent operations and the unspeakable notion of coherence induced by GIOs can be transferred to the theories of speakable coherence by the corresponding permutation or relabeling operators.

  15. Weak Measurement and Quantum Smoothing of a Superconducting Qubit

    NASA Astrophysics Data System (ADS)

    Tan, Dian

    In quantum mechanics, the measurement outcome of an observable in a quantum system is intrinsically random, yielding a probability distribution. The state of the quantum system can be described by a density matrix rho(t), which depends on the information accumulated until time t, and represents our knowledge about the system. The density matrix rho(t) gives probabilities for the outcomes of measurements at time t. Further probing of the quantum system allows us to refine our prediction in hindsight. In this thesis, we experimentally examine a quantum smoothing theory in a superconducting qubit by introducing an auxiliary matrix E(t) which is conditioned on information obtained from time t to a final time T. With the complete information before and after time t, the pair of matrices [rho(t), E(t)] can be used to make smoothed predictions for the measurement outcome at time t. We apply the quantum smoothing theory in the case of continuous weak measurement unveiling the retrodicted quantum trajectories and weak values. In the case of strong projective measurement, while the density matrix rho(t) with only diagonal elements in a given basis |n〉 may be treated as a classical mixture, we demonstrate a failure of this classical mixture description in determining the smoothed probabilities for the measurement outcome at time t with both diagonal rho(t) and diagonal E(t). We study the correlations between quantum states and weak measurement signals and examine aspects of the time symmetry of continuous quantum measurement. We also extend our study of quantum smoothing theory to the case of resonance fluorescence of a superconducting qubit with homodyne measurement and observe some interesting effects such as the modification of the excited state probabilities, weak values, and evolution of the predicted and retrodicted trajectories.

  16. Exceeding Conventional Photovoltaic Efficiency Limits Using Colloidal Quantum Dots

    NASA Astrophysics Data System (ADS)

    Pach, Gregory F.

    Colloidal quantum dots (QDs) are a widely investigated field of research due to their highly tunable nature in which the optical and electronic properties of the nanocrystal can be manipulated by merely changing the nanocrystal's size. Specifically, colloidal quantum dot solar cells (QDSCs) have become a promising candidate for future generation photovoltaic technology. Quantum dots exhibit multiple exciton generation (MEG) in which multiple electron-hole pairs are generated from a single high-energy photon. This process is not observed in bulk-like semiconductors and allows for QDSCs to achieve theoretical efficiency limits above the standard single-junction Shockley-Queisser limit. However, the fast expanding field of QDSC research has lacked standardization of synthetic techniques and device design. Therefore, we sought to detail methodology for synthesizing PbS and PbSe QDs as well as photovoltaic device fabrication techniques as a fast track toward constructing high-performance solar cells. We show that these protocols lead toward consistently achieving efficiencies above 8% for PbS QDSCs. Using the same methodology for building single-junction photovoltaic devices, we incorporated PbS QDs as a bottom cell into a monolithic tandem architecture along with solution-processed CdTe nanocrystals. Modeling shows that near-peak tandem device efficiencies can be achieved across a wide range of bottom cell band gaps, and therefore the highly tunable band gap of lead-chalcogenide QDs lends well towards a bottom cell in a tandem architecture. A fully functioning monolithic tandem device is realized through the development of a ZnTe/ZnO recombination layer that appropriately combines the two subcells in series. Multiple recent reports have shown nanocrystalline heterostructures to undergo the MEG process more efficiency than several other nanostrucutres, namely lead-chalcogenide QDs. The final section of my thesis expands upon a recent publication by Zhang et. al., which

  17. The quantum measurement of time

    NASA Technical Reports Server (NTRS)

    Shepard, Scott R.

    1994-01-01

    Traditionally, in non-relativistic Quantum Mechanics, time is considered to be a parameter, rather than an observable quantity like space. In relativistic Quantum Field Theory, space and time are treated equally by reducing space to also be a parameter. Herein, after a brief review of other measurements, we describe a third possibility, which is to treat time as a directly observable quantity.

  18. Quantum Measurement, Correlation, and Contextuality

    NASA Astrophysics Data System (ADS)

    Ozawa, Masanao

    2011-03-01

    The problem has long been discussed as to whether non-commuting observables are simultaneously measurable, since Heisenberg introduced the uncertainty principle in 1927. The problem was settled state-independently: Two observables are simultaneously measurable in every state if and only if the corresponding operators commute. However, the problem has been open for state-dependent formulation. Saying that two observables are nowhere commuting if there exist no common eigenstates, the problem at stake is whether nowhere commuting observable can be simultaneously measurable in a certain state. There have been two historical arguments claiming the case: (i) In an eigenstate of an observable A one can determine both the values of A and any other observable B . (ii) In an EPR state one can determine both the values of Q ⊗ 1 and P ⊗ 1 . In this talk, we give a necessary and sufficient condition for two observables to be simultaneously measurable in a given state, show that the above two cases actually satisfy the required mathematical conditions, and give a classification of all the possible simultaneous measurements of nowhere commuting observables for the Hilbert space with dimension 2. Related problems on quantum contextuality will also be discussed using a linguistic method based on quantum logic and quantum set theory.

  19. Efficient single photon detection by quantum dot resonant tunneling diodes.

    PubMed

    Blakesley, J C; See, P; Shields, A J; Kardynał, B E; Atkinson, P; Farrer, I; Ritchie, D A

    2005-02-18

    We demonstrate that the resonant tunnel current through a double-barrier structure is sensitive to the capture of single photoexcited holes by an adjacent layer of quantum dots. This phenomenon could allow the detection of single photons with low dark count rates and high quantum efficiencies. The magnitude of the sensing current may be controlled via the thickness of the tunnel barriers. Larger currents give improved signal to noise and allow sub-mus photon time resolution.

  20. Frobenius-norm-based measures of quantum coherence and asymmetry

    PubMed Central

    Yao, Yao; Dong, G. H.; Xiao, Xing; Sun, C. P.

    2016-01-01

    We formulate the Frobenius-norm-based measures for quantum coherence and asymmetry respectively. In contrast to the resource theory of coherence and asymmetry, we construct a natural measure of quantum coherence inspired from optical coherence theory while the group theoretical approach is employed to quantify the asymmetry of quantum states. Besides their simple structures and explicit physical meanings, we observe that these quantities are intimately related to the purity (or linear entropy) of the corresponding quantum states. Remarkably, we demonstrate that the proposed coherence quantifier is not only a measure of mixedness, but also an intrinsic (basis-independent) quantification of quantum coherence contained in quantum states, which can also be viewed as a normalized version of Brukner-Zeilinger invariant information. In our context, the asymmetry of N-qubit quantum systems is considered under local independent and collective transformations. In- triguingly, it is illustrated that the collective effect has a significant impact on the asymmetry measure, and quantum correlation between subsystems plays a non-negligible role in this circumstance. PMID:27558009

  1. Experimental joint quantum measurements with minimum uncertainty.

    PubMed

    Ringbauer, Martin; Biggerstaff, Devon N; Broome, Matthew A; Fedrizzi, Alessandro; Branciard, Cyril; White, Andrew G

    2014-01-17

    Quantum physics constrains the accuracy of joint measurements of incompatible observables. Here we test tight measurement-uncertainty relations using single photons. We implement two independent, idealized uncertainty-estimation methods, the three-state method and the weak-measurement method, and adapt them to realistic experimental conditions. Exceptional quantum state fidelities of up to 0.999 98(6) allow us to verge upon the fundamental limits of measurement uncertainty.

  2. Measuring entanglement entropy in a quantum many-body system.

    PubMed

    Islam, Rajibul; Ma, Ruichao; Preiss, Philipp M; Tai, M Eric; Lukin, Alexander; Rispoli, Matthew; Greiner, Markus

    2015-12-03

    Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse fields ranging from condensed matter to quantum gravity. However, measuring entanglement remains a challenge. This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here, we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. Making use of our single-site-resolved control of ultracold bosonic atoms in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. These experiments pave the way for using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems.

  3. High heralding-efficiency of near-IR fiber coupled photon pairs for quantum technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, P. Ben; Murphy, Ryan; Rosenberg, Danna

    We report on the development and use of a high heralding-efficiency, single-mode-fiber coupled telecom-band source of entangled photons for quantum technology applications. The source development efforts consisted of theoretical and experimental efforts and we demonstrated a correlated-mode coupling efficiency of 97% 2%, the highest efficiency yet achieved for this type of system. We then incorporated these beneficial source development techniques in a Sagnac configured telecom-band entangled photon source that generates photon pairs entangled in both time/energy and polarization degrees of freedom. We made use of these highly desirable entangled states to investigate several promising quantum technologies.

  4. Shot noise, LER, and quantum efficiency of EUV photoresists

    NASA Astrophysics Data System (ADS)

    Brainard, Robert L.; Trefonas, Peter; Lammers, Jeroen H.; Cutler, Charlotte A.; Mackevich, Joseph F.; Trefonas, Alexander; Robertson, Stewart A.

    2004-05-01

    The shot noise, line edge roughness (LER) and quantum efficiency of EUV interaction with seven resists related to EUV-2D (SP98248B) are studied. These resists were identical to EUV-2D except were prepared with seven levels of added base while keeping all other resist variables constant. These seven resists were patterned with EUV lithography, and LER was measured on 100-200 nm dense lines. Similarly, the resists were also imaged using DUV lithography and LER was determined for 300-500 nm dense lines. LER results for both wavelengths were plotted against Esize. Both curves show very similar LER behavior-the resists requiring low doses have poor LER, whereas the resists requiring high doses have good LER. One possible explanation for the observed LER response is that the added base improves LER by reacting with the photogenerated acid to control the lateral spread of acid, leading to better chemical contrast at the line edge. An alternative explanation to the observed relationship between LER and Esize is that shot-noise generated LER decreases as the number of photons absorbed at the line edge increases. We present an analytical model for the influence of shot noise based on Poisson statistics that preidicts that the LER is proportional to (Esize)-1/2. Indeed, both sets of data give straight lines when plotted this way (DUV r2 = 0.94; EUV r2 = 0.97). We decided to further evaluate this interpretation by constructing a simulation model for shot noise resulting from exposure and acid diffusion at the mask edge. In order to acquire the data for this model, we used the base titration method developed by Szmanda et al. to determine C-parameters and hence the quantum efficiency for producing photogenerated acid. This information, together with film absorptivity, allows the calculation of number and location of acid molecules generated at the mask edgte by assuming a stochastic distribution of individual photons corresponding to the aerial image function. The edge

  5. The quantum measurement problem.

    PubMed

    Leggett, A J

    2005-02-11

    Despite the spectacular success of quantum mechanics (QM) over the last 80 years in explaining phenomena observed at the atomic and subatomic level, the conceptual status of the theory is still a topic of lively controversy. Most of the discussion centers around two famous paradoxes (or, as some would have it, pseudoparadoxes) associated, respectively, with the names of Einstein, Podolsky, and Rosen (EPR) and with Schrodinger's cat. In this Viewpoint, I will concentrate on the paradox of Schrodinger's cat or, as it is often known (to my mind somewhat misleadingly), the quantum measurement paradox.

  6. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers.

    PubMed

    Arbabi, Amir; Briggs, Ryan M; Horie, Yu; Bagheri, Mahmood; Faraon, Andrei

    2015-12-28

    Light emitted from single-mode semiconductor lasers generally has large divergence angles, and high numerical aperture lenses are required for beam collimation. Visible and near infrared lasers are collimated using aspheric glass or plastic lenses, yet collimation of mid-infrared quantum cascade lasers typically requires more costly aspheric lenses made of germanium, chalcogenide compounds, or other infrared-transparent materials. Here we report mid-infrared dielectric metasurface flat lenses that efficiently collimate the output beam of single-mode quantum cascade lasers. The metasurface lenses are composed of amorphous silicon posts on a flat sapphire substrate and can be fabricated at low cost using a single step conventional UV binary lithography. Mid-infrared radiation from a 4.8 μm distributed-feedback quantum cascade laser is collimated using a polarization insensitive metasurface lens with 0.86 numerical aperture and 79% transmission efficiency. The collimated beam has a half divergence angle of 0.36° and beam quality factor of M2=1.02.

  7. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers

    DOE PAGES

    Arbabi, Amir; Briggs, Ryan M.; Horie, Yu; ...

    2015-01-01

    Light emitted from single-mode semiconductor lasers generally has large divergence angles, and high numerical aperture lenses are required for beam collimation. Visible and near infrared lasers are collimated using aspheric glass or plastic lenses, yet collimation of mid-infrared quantum cascade lasers typically requires more costly aspheric lenses made of germanium, chalcogenide compounds, or other infrared-transparent materials. We report mid-infrared dielectric metasurface flat lenses that efficiently collimate the output beam of single-mode quantum cascade lasers. The metasurface lenses are composed of amorphous silicon posts on a flat sapphire substrate and can be fabricated at low cost using a single step conventionalmore » UV binary lithography. Mid-infrared radiation from a 4.8 μm distributed-feedback quantum cascade laser is collimated using a polarization insensitive metasurface lens with 0.86 numerical aperture and 79% transmission efficiency. The collimated beam has a half divergence angle of 0.36° and beam quality factor of M² =1.02.« less

  8. Pseudohalide-Exchanged Quantum Dot Solids Achieve Record Quantum Efficiency in Infrared Photovoltaics.

    PubMed

    Sun, Bin; Voznyy, Oleksandr; Tan, Hairen; Stadler, Philipp; Liu, Mengxia; Walters, Grant; Proppe, Andrew H; Liu, Min; Fan, James; Zhuang, Taotao; Li, Jie; Wei, Mingyang; Xu, Jixian; Kim, Younghoon; Hoogland, Sjoerd; Sargent, Edward H

    2017-07-01

    Application of pseudohalogens in colloidal quantum dot (CQD) solar-cell active layers increases the solar-cell performance by reducing the trap densities and implementing thick CQD films. Pseudohalogens are polyatomic analogs of halogens, whose chemistry allows them to substitute halogen atoms by strong chemical interactions with the CQD surfaces. The pseudohalide thiocyanate anion is used to achieve a hybrid surface passivation. A fourfold reduced trap state density than in a control is observed by using a suite of field-effect transistor studies. This translates directly into the thickest CQD active layer ever reported, enabled by enhanced transport lengths in this new class of materials, and leads to the highest external quantum efficiency, 80% at the excitonic peak, compared with previous reports of CQD solar cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Highly efficient multiple-layer CdS quantum dot sensitized III-V solar cells.

    PubMed

    Lin, Chien-Chung; Han, Hau-Vei; Chen, Hsin-Chu; Chen, Kuo-Ju; Tsai, Yu-Lin; Lin, Wein-Yi; Kuo, Hao-Chung; Yu, Peichen

    2014-02-01

    In this review, the concept of utilization of solar spectrum in order to increase the solar cell efficiency is discussed. Among the three mechanisms, down-shifting effect is investigated in detail. Organic dye, rare-earth minerals and quantum dots are three most popular down-shift materials. While the enhancement of solar cell efficiency was not clearly observed in the past, the advances in quantum dot fabrication have brought strong response out of the hybrid platform of a quantum dot solar cell. A multiple layer structure, including PDMS as the isolation layer, is proposed and demonstrated. With the help of pulse spray system, precise control can be achieved and the optimized concentration can be found.

  10. Distribution of Bell-inequality violation versus multiparty-quantum-correlation measures

    NASA Astrophysics Data System (ADS)

    Sharma, Kunal; Das, Tamoghna; Sen (de), Aditi; Sen, Ujjwal

    Violation of a Bell inequality guarantees the existence of quantum correlations in a shared quantum state. A pure bipartite quantum state, having nonvanishing quantum correlation, always violates a Bell inequality. Such correspondence is absent for multipartite pure quantum states in the case of multipartite correlation function Bell inequalities with two settings at each site. We establish a connection between the monogamy of Bell-inequality violation and multiparty quantum correlations for shared multisite quantum states. We believe that the relation is generic, as it is true for a number of different multisite measures that are defined from radically different perspectives. Precisely, we quantify the multisite-quantum-correlation content in the states by generalized geometric measure, a genuine multisite entanglement measure, as well as three monogamybased multiparty-quantum-correlation measures, viz., 3-tangle, quantum-discord score, and quantum-work-deficit score. We find that generalized Greenberger-Horne-Zeilinger states and another single-parameter family of states, which we refer to as the special Greenberger-Horne-Zeilinger states, have the status of extremal states in such relations.

  11. Distribution of Bell-inequality violation versus multiparty-quantum-correlation measures

    NASA Astrophysics Data System (ADS)

    Sharma, Kunal; Das, Tamoghna; SenDe, Aditi; Sen, Ujjwal

    2016-06-01

    Violation of a Bell inequality guarantees the existence of quantum correlations in a shared quantum state. A pure bipartite quantum state, having nonvanishing quantum correlation, always violates a Bell inequality. Such correspondence is absent for multipartite pure quantum states in the case of multipartite correlation function Bell inequalities with two settings at each site. We establish a connection between the monogamy of Bell-inequality violation and multiparty quantum correlations for shared multisite quantum states. We believe that the relation is generic, as it is true for a number of different multisite measures that are defined from radically different perspectives. Precisely, we quantify the multisite-quantum-correlation content in the states by generalized geometric measure, a genuine multisite entanglement measure, as well as three monogamy-based multiparty-quantum-correlation measures, viz., 3-tangle, quantum-discord score, and quantum-work-deficit score. We find that generalized Greenberger-Horne-Zeilinger states and another single-parameter family of states, which we refer to as the special Greenberger-Horne-Zeilinger states, have the status of extremal states in such relations.

  12. Finding the quantum thermoelectric with maximal efficiency and minimal entropy production at given power output

    NASA Astrophysics Data System (ADS)

    Whitney, Robert S.

    2015-03-01

    We investigate the nonlinear scattering theory for quantum systems with strong Seebeck and Peltier effects, and consider their use as heat engines and refrigerators with finite power outputs. This paper gives detailed derivations of the results summarized in a previous paper [R. S. Whitney, Phys. Rev. Lett. 112, 130601 (2014), 10.1103/PhysRevLett.112.130601]. It shows how to use the scattering theory to find (i) the quantum thermoelectric with maximum possible power output, and (ii) the quantum thermoelectric with maximum efficiency at given power output. The latter corresponds to a minimal entropy production at that power output. These quantities are of quantum origin since they depend on system size over electronic wavelength, and so have no analog in classical thermodynamics. The maximal efficiency coincides with Carnot efficiency at zero power output, but decreases with increasing power output. This gives a fundamental lower bound on entropy production, which means that reversibility (in the thermodynamic sense) is impossible for finite power output. The suppression of efficiency by (nonlinear) phonon and photon effects is addressed in detail; when these effects are strong, maximum efficiency coincides with maximum power. Finally, we show in particular limits (typically without magnetic fields) that relaxation within the quantum system does not allow the system to exceed the bounds derived for relaxation-free systems, however, a general proof of this remains elusive.

  13. "Evaluations" of Observables Versus Measurements in Quantum Theory

    NASA Astrophysics Data System (ADS)

    Nisticò, Giuseppe; Sestito, Angela

    2016-03-01

    In Quantum Physics there are circumstances where the direct measurement of a given observable encounters difficulties; in some of these cases, however, its value can be "evaluated", i.e. it can be inferred by measuring another observable characterized by perfect correlation with the observable of interest. Though an evaluation is often interpreted as a measurement of the evaluated observable, we prove that the two concepts cannot be identified in Quantum Physics, because the identification yields contradictions. Then, we establish the conceptual status of evaluations in Quantum Theory and how they are related to measurements.

  14. Hybrid architecture for encoded measurement-based quantum computation

    PubMed Central

    Zwerger, M.; Briegel, H. J.; Dür, W.

    2014-01-01

    We present a hybrid scheme for quantum computation that combines the modular structure of elementary building blocks used in the circuit model with the advantages of a measurement-based approach to quantum computation. We show how to construct optimal resource states of minimal size to implement elementary building blocks for encoded quantum computation in a measurement-based way, including states for error correction and encoded gates. The performance of the scheme is determined by the quality of the resource states, where within the considered error model a threshold of the order of 10% local noise per particle for fault-tolerant quantum computation and quantum communication. PMID:24946906

  15. The challenge of detecting gravitational radiation is creating a new chapter in quantum electronics: Quantum nondemolition measurements

    NASA Technical Reports Server (NTRS)

    Braginsky, V. B.; Vorontsov, Y. I.; Thorne, K. S.

    1979-01-01

    Future gravitational wave antennas will be approximately 100 kilogram cylinders, whose end-to-end vibrations must be measured so accurately (10 to the -19th power centimeters) that they behave quantum mechanically. Moreover, the vibration amplitude must be measured over and over again without perturbing it (quantum nondemolition measurement). This contrasts with quantum chemistry, quantum optics, or atomic, nuclear, and elementary particle physics where measurements are usually made on an ensemble of identical objects, and care is not given to whether any single object is perturbed or destroyed by the measurement. Electronic techniques required for quantum nondemolition measurements are described as well as the theory underlying them.

  16. GaN ultraviolet p-i-n photodetectors with enhanced deep ultraviolet quantum efficiency

    NASA Astrophysics Data System (ADS)

    Wang, Guosheng; Xie, Feng; Wang, Jun; Guo, Jin

    2017-10-01

    GaN ultraviolet (UV) p-i-n photodetectors (PDs) with a thin p-AlGaN/GaN contact layer are designed and fabricated. The PD exhibits a low dark current density of˜7 nA/cm2 under -5 V, and a zero-bias peak responsivity of ˜0.16 A/W at 360 nm, which corresponds to a maximum quantum efficiency of 55%. It is found that, in the wavelength range between 250 and 365 nm, the PD with thin p-AlGaN/GaN contact layer exhibits enhanced quantum efficiency especially in a deep-UV wavelength range, than that of the control PD with conventional thin p-GaN contact layer. The improved quantum efficiency of the PD with thin p-AlGaN/GaN contact layer in the deep-UV wavelength range is mainly attributed to minority carrier reflecting properties of thin p-AlGaN/GaN heterojunction which could reduce the surface recombination loss of photon-generated carriers and improve light current collection efficiency.

  17. Computing quantum hashing in the model of quantum branching programs

    NASA Astrophysics Data System (ADS)

    Ablayev, Farid; Ablayev, Marat; Vasiliev, Alexander

    2018-02-01

    We investigate the branching program complexity of quantum hashing. We consider a quantum hash function that maps elements of a finite field into quantum states. We require that this function is preimage-resistant and collision-resistant. We consider two complexity measures for Quantum Branching Programs (QBP): a number of qubits and a number of compu-tational steps. We show that the quantum hash function can be computed efficiently. Moreover, we prove that such QBP construction is optimal. That is, we prove lower bounds that match the constructed quantum hash function computation.

  18. Work required for selective quantum measurement

    NASA Astrophysics Data System (ADS)

    Konishi, Eiji

    2018-06-01

    In quantum mechanics, we define the measuring system M in a selective measurement by two conditions. Firstly, when we define the measured system S as the system in which the non-selective measurement part acts, M is independent from the measured system S as a quantum system in the sense that any time-dependent process in the total system S  +  M is divisible into parts for S and M. Secondly, when we can separate S and M from each other without changing the unitary equivalence class of the state of S from that obtained by the partial trace of M, the eigenstate selection in the selective measurement cannot be realized. In order for such a system M to exist, we show that in one selective measurement of an observable of a quantum system S 0 of particles in S, there exists a negative entropy transfer from M to S that can be directly transformed into an amount of Helmholtz free energy of where T is the thermodynamic temperature of the system S. Equivalently, an extra amount of work, , is required to be done by the system M.

  19. Measuring charge carrier diffusion in coupled colloidal quantum dot solids.

    PubMed

    Zhitomirsky, David; Voznyy, Oleksandr; Hoogland, Sjoerd; Sargent, Edward H

    2013-06-25

    Colloidal quantum dots (CQDs) are attractive materials for inexpensive, room-temperature-, and solution-processed optoelectronic devices. A high carrier diffusion length is desirable for many CQD device applications. In this work we develop two new experimental methods to investigate charge carrier diffusion in coupled CQD solids under charge-neutral, i.e., undepleted, conditions. The methods take advantage of the quantum-size-effect tunability of our materials, utilizing a smaller-bandgap population of quantum dots as a reporter system. We develop analytical models of diffusion in 1D and 3D structures that allow direct extraction of diffusion length from convenient parametric plots and purely optical measurements. We measure several CQD solids fabricated using a number of distinct methods and having significantly different doping and surface ligand treatments. We find that CQD materials recently reported to achieve a certified power conversion efficiency of 7% with hybrid organic-inorganic passivation have a diffusion length of 80 ± 10 nm. The model further allows us to extract the lifetime, trap density, mobility, and diffusion coefficient independently in each material system. This work will facilitate further progress in extending the diffusion length, ultimately leading to high-quality CQD solid semiconducting materials and improved CQD optoelectronic devices, including CQD solar cells.

  20. Near-Unity Internal Quantum Efficiency of Luminescent Silicon Nanocrystals with Ligand Passivation.

    PubMed

    Sangghaleh, Fatemeh; Sychugov, Ilya; Yang, Zhenyu; Veinot, Jonathan G C; Linnros, Jan

    2015-07-28

    Spectrally resolved photoluminescence (PL) decays were measured for samples of colloidal, ligand-passivated silicon nanocrystals. These samples have PL emission energies with peak positions in the range ∼1.4-1.8 eV and quantum yields of ∼30-70%. Their ensemble PL decays are characterized by a stretched-exponential decay with a dispersion factor of ∼0.8, which changes to an almost monoexponential character at fixed detection energies. The dispersion factors and decay rates for various detection energies were extracted from spectrally resolved curves using a mathematical approach that excluded the effect of homogeneous line width broadening. Since nonradiative recombination would introduce a random lifetime variation, leading to a stretched-exponential decay for an ensemble, we conclude that the observed monoexponential decay in size-selected ensembles signifies negligible nonradiative transitions of a similar strength to the radiative one. This conjecture is further supported as extracted decay rates agree with radiative rates reported in the literature, suggesting 100% internal quantum efficiency over a broad range of emission wavelengths. The apparent differences in the quantum yields can then be explained by a varying fraction of "dark" or blinking nanocrystals.

  1. Calorimetric Measurement for Internal Conversion Efficiency of Photovoltaic Cells/Modules Based on Electrical Substitution Method

    NASA Astrophysics Data System (ADS)

    Saito, Terubumi; Tatsuta, Muneaki; Abe, Yamato; Takesawa, Minato

    2018-02-01

    We have succeeded in the direct measurement for solar cell/module internal conversion efficiency based on a calorimetric method or electrical substitution method by which the absorbed radiant power is determined by replacing the heat absorbed in the cell/module with the electrical power. The technique is advantageous in that the reflectance and transmittance measurements, which are required in the conventional methods, are not necessary. Also, the internal quantum efficiency can be derived from conversion efficiencies by using the average photon energy. Agreements of the measured data with the values estimated from the nominal values support the validity of this technique.

  2. Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing

    NASA Astrophysics Data System (ADS)

    Yu, Kun-Fei; Gu, Jun; Hwang, Tzonelih; Gope, Prosanta

    2017-08-01

    This paper proposes a multi-party semi-quantum secret sharing (MSQSS) protocol which allows a quantum party (manager) to share a secret among several classical parties (agents) based on GHZ-like states. By utilizing the special properties of GHZ-like states, the proposed scheme can easily detect outside eavesdropping attacks and has the highest qubit efficiency among the existing MSQSS protocols. Then, we illustrate an efficient way to convert the proposed MSQSS protocol into a multi-party semi-quantum key distribution (MSQKD) protocol. The proposed approach is even useful to convert all the existing measure-resend type of semi-quantum secret sharing protocols into semi-quantum key distribution protocols.

  3. Erbium-implanted silica colloids with 80% luminescence quantum efficiency

    NASA Astrophysics Data System (ADS)

    Slooff, L. H.; de Dood, M. J. A.; van Blaaderen, A.; Polman, A.

    2000-06-01

    Silica colloids with a diameter of 240-360 nm, grown by wet chemical synthesis using ethanol, ammonia, water, and tetraethoxysilane, were implanted with 350 keV Er ions, to peak concentrations of 0.2-1.1 at. % and put onto a silicon or glass substrate. After annealing at 700-900 °C the colloids show clear room-temperature photoluminescence at 1.53 μm, with lifetimes as high as 17 ms. By comparing data of different Er concentrations, the purely radiative lifetime is estimated to be 20-22 ms, indicating a high quantum efficiency of about 80%. This high quantum efficiency indicates that, after annealing, the silica colloids are almost free of OH impurities. Spinning a layer of polymethylmethacrylate over the silica spheres results in an optically transparent nanocomposite layer, that can be used as a planar optical waveguide amplifier at 1.5 μm that is fully compatible with polymer technology.

  4. Robust state transfer in the quantum spin channel via weak measurement and quantum measurement reversal

    NASA Astrophysics Data System (ADS)

    He, Zhi; Yao, Chunmei; Zou, Jian

    2013-10-01

    Using the weak measurement (WM) and quantum measurement reversal (QMR) approach, robust state transfer and entanglement distribution can be realized in the spin-(1)/(2) Heisenberg chain. We find that the ultrahigh fidelity and long distance of quantum state transfer with certain success probability can be obtained using proper WM and QMR, i.e., the average fidelity of a general pure state from 80% to almost 100%, which is almost size independent. We also find that the distance and quality of entanglement distribution for the Bell state and the general Werner mixed state can be obviously improved by the WM and QMR approach.

  5. Intrinsic retrieval efficiency for quantum memories: A three-dimensional theory of light interaction with an atomic ensemble

    NASA Astrophysics Data System (ADS)

    Gujarati, Tanvi P.; Wu, Yukai; Duan, Luming

    2018-03-01

    Duan-Lukin-Cirac-Zoller quantum repeater protocol, which was proposed to realize long distance quantum communication, requires usage of quantum memories. Atomic ensembles interacting with optical beams based on off-resonant Raman scattering serve as convenient on-demand quantum memories. Here, a complete free space, three-dimensional theory of the associated read and write process for this quantum memory is worked out with the aim of understanding intrinsic retrieval efficiency. We develop a formalism to calculate the transverse mode structure for the signal and the idler photons and use the formalism to study the intrinsic retrieval efficiency under various configurations. The effects of atomic density fluctuations and atomic motion are incorporated by numerically simulating this system for a range of realistic experimental parameters. We obtain results that describe the variation in the intrinsic retrieval efficiency as a function of the memory storage time for skewed beam configuration at a finite temperature, which provides valuable information for optimization of the retrieval efficiency in experiments.

  6. Fully Solution-Processed Tandem White Quantum-Dot Light-Emitting Diode with an External Quantum Efficiency Exceeding 25.

    PubMed

    Jiang, Congbiao; Zou, Jianhua; Liu, Yu; Song, Chen; He, Zhiwei; Zhong, Zhenji; Wang, Jian; Yip, Hin-Lap; Peng, Junbiao; Cao, Yong

    2018-06-15

    Solution-processed electroluminescent tandem white quantum-dot light-emitting diodes (TWQLEDs) have the advantages of being low-cost and high-efficiency and having a wide color gamut combined with color filters, making this a promising backlight technology for high-resolution displays. However, TWQLEDs are rarely reported due to the challenge of designing device structures and the deterioration of film morphology with component layers that can be deposited from solutions. Here, we report an interconnecting layer with the optical, electrical, and mechanical properties required for fully solution-processed TWQLED. The optimized TWQLEDs exhibit a state-of-the-art current efficiency as high as 60.4 cd/A and an extremely high external quantum efficiency of 27.3% at a luminance of 100 000 cd/m 2 . A high color gamut of 124% NTSC 1931 standard can be achieved when combined with commercial color filters. These results represent the highest performance for solution-processed WQLEDs, unlocking the great application potential of TWQLEDs as backlights for new-generation displays.

  7. Continuous quantum measurement and the quantum to classical transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, Tanmoy; Habib, Salman; Jacobs, Kurt

    2003-04-01

    While ultimately they are described by quantum mechanics, macroscopic mechanical systems are nevertheless observed to follow the trajectories predicted by classical mechanics. Hence, in the regime defining macroscopic physics, the trajectories of the correct classical motion must emerge from quantum mechanics, a process referred to as the quantum to classical transition. Extending previous work [Bhattacharya, Habib, and Jacobs, Phys. Rev. Lett. 85, 4852 (2000)], here we elucidate this transition in some detail, showing that once the measurement processes that affect all macroscopic systems are taken into account, quantum mechanics indeed predicts the emergence of classical motion. We derive inequalities thatmore » describe the parameter regime in which classical motion is obtained, and provide numerical examples. We also demonstrate two further important properties of the classical limit: first, that multiple observers all agree on the motion of an object, and second, that classical statistical inference may be used to correctly track the classical motion.« less

  8. All-photonic quantum repeaters

    PubMed Central

    Azuma, Koji; Tamaki, Kiyoshi; Lo, Hoi-Kwong

    2015-01-01

    Quantum communication holds promise for unconditionally secure transmission of secret messages and faithful transfer of unknown quantum states. Photons appear to be the medium of choice for quantum communication. Owing to photon losses, robust quantum communication over long lossy channels requires quantum repeaters. It is widely believed that a necessary and highly demanding requirement for quantum repeaters is the existence of matter quantum memories. Here we show that such a requirement is, in fact, unnecessary by introducing the concept of all-photonic quantum repeaters based on flying qubits. In particular, we present a protocol based on photonic cluster-state machine guns and a loss-tolerant measurement equipped with local high-speed active feedforwards. We show that, with such all-photonic quantum repeaters, the communication efficiency scales polynomially with the channel distance. Our result paves a new route towards quantum repeaters with efficient single-photon sources rather than matter quantum memories. PMID:25873153

  9. Double-quantum homonuclear rotary resonance: Efficient dipolar recovery in magic-angle spinning nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Nielsen, N. C.; Bildsøe, H.; Jakobsen, H. J.; Levitt, M. H.

    1994-08-01

    We describe an efficient method for the recovery of homonuclear dipole-dipole interactions in magic-angle spinning NMR. Double-quantum homonuclear rotary resonance (2Q-HORROR) is established by fulfilling the condition ωr=2ω1, where ωr is the sample rotation frequency and ω1 is the nutation frequency around an applied resonant radio frequency (rf) field. This resonance can be used for double-quantum filtering and measurement of homonuclear dipolar interactions in the presence of magic-angle spinning. The spin dynamics depend only weakly on crystallite orientation allowing good performance for powder samples. Chemical shift effects are suppressed to zeroth order. The method is demonstrated for singly and doubly 13C labeled L-alanine.

  10. Optimal Measurements for Simultaneous Quantum Estimation of Multiple Phases

    NASA Astrophysics Data System (ADS)

    Pezzè, Luca; Ciampini, Mario A.; Spagnolo, Nicolò; Humphreys, Peter C.; Datta, Animesh; Walmsley, Ian A.; Barbieri, Marco; Sciarrino, Fabio; Smerzi, Augusto

    2017-09-01

    A quantum theory of multiphase estimation is crucial for quantum-enhanced sensing and imaging and may link quantum metrology to more complex quantum computation and communication protocols. In this Letter, we tackle one of the key difficulties of multiphase estimation: obtaining a measurement which saturates the fundamental sensitivity bounds. We derive necessary and sufficient conditions for projective measurements acting on pure states to saturate the ultimate theoretical bound on precision given by the quantum Fisher information matrix. We apply our theory to the specific example of interferometric phase estimation using photon number measurements, a convenient choice in the laboratory. Our results thus introduce concepts and methods relevant to the future theoretical and experimental development of multiparameter estimation.

  11. Encapsulation efficiency of CdSe/ZnS quantum dots by liposomes determined by thermal lens microscopy

    PubMed Central

    Batalla, Jessica; Cabrera, Humberto; San Martín-Martínez, Eduardo; Korte, Dorota; Calderón, Antonio; Marín, Ernesto

    2015-01-01

    In this study the encapsulation of core shell carboxyl CdSe/ZnS quantum dots (QDs) by phospholipids liposome complexes is presented. It makes the quantum dots water soluble and photo-stable. Fluorescence self-quenching of the QDs inside the liposomes was observed. Therefore, the thermal lens microscopy (TLM) was found to be an useful tool for measuring the encapsulation efficiency of the QDs by the liposomes, for which an optimum value of 36% was determined. The obtained limit of detection (LOD) for determining QDs concentration by TLM was 0.13 nM. Moreover, the encapsulated QDs showed no prominent cytotoxicity toward Breast cancer cells line MDA-MB-231. This study was supported by UV-visible spectroscopy, high resolution transmission electron microscopy (HRTEM) and dynamic light scattering measurements (DLS). PMID:26504640

  12. Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120%

    PubMed Central

    Davis, Nathaniel J. L. K.; Böhm, Marcus L.; Tabachnyk, Maxim; Wisnivesky-Rocca-Rivarola, Florencia; Jellicoe, Tom C.; Ducati, Caterina; Ehrler, Bruno; Greenham, Neil C.

    2015-01-01

    Multiple-exciton generation—a process in which multiple charge-carrier pairs are generated from a single optical excitation—is a promising way to improve the photocurrent in photovoltaic devices and offers the potential to break the Shockley–Queisser limit. One-dimensional nanostructures, for example nanorods, have been shown spectroscopically to display increased multiple exciton generation efficiencies compared with their zero-dimensional analogues. Here we present solar cells fabricated from PbSe nanorods of three different bandgaps. All three devices showed external quantum efficiencies exceeding 100% and we report a maximum external quantum efficiency of 122% for cells consisting of the smallest bandgap nanorods. We estimate internal quantum efficiencies to exceed 150% at relatively low energies compared with other multiple exciton generation systems, and this demonstrates the potential for substantial improvements in device performance due to multiple exciton generation. PMID:26411283

  13. Quantum computing with incoherent resources and quantum jumps.

    PubMed

    Santos, M F; Cunha, M Terra; Chaves, R; Carvalho, A R R

    2012-04-27

    Spontaneous emission and the inelastic scattering of photons are two natural processes usually associated with decoherence and the reduction in the capacity to process quantum information. Here we show that, when suitably detected, these photons are sufficient to build all the fundamental blocks needed to perform quantum computation in the emitting qubits while protecting them from deleterious dissipative effects. We exemplify this by showing how to efficiently prepare graph states for the implementation of measurement-based quantum computation.

  14. Multipulse addressing of a Raman quantum memory: configurable beam splitting and efficient readout.

    PubMed

    Reim, K F; Nunn, J; Jin, X-M; Michelberger, P S; Champion, T F M; England, D G; Lee, K C; Kolthammer, W S; Langford, N K; Walmsley, I A

    2012-06-29

    Quantum memories are vital to the scalability of photonic quantum information processing (PQIP), since the storage of photons enables repeat-until-success strategies. On the other hand, the key element of all PQIP architectures is the beam splitter, which allows us to coherently couple optical modes. Here, we show how to combine these crucial functionalities by addressing a Raman quantum memory with multiple control pulses. The result is a coherent optical storage device with an extremely large time bandwidth product, that functions as an array of dynamically configurable beam splitters, and that can be read out with arbitrarily high efficiency. Networks of such devices would allow fully scalable PQIP, with applications in quantum computation, long distance quantum communications and quantum metrology.

  15. How to squeeze high quantum efficiency and high time resolution out of a SPAD

    NASA Technical Reports Server (NTRS)

    Lacaita, A.; Zappa, F.; Cova, Sergio; Ripamonti, Giancarlo; Spinelli, A.

    1993-01-01

    We address the issue whether Single-Photon Avalanche Diodes (SPADs) can be suitably designed to achieve a trade-off between quantum efficiency and time resolution performance. We briefly recall the physical mechanisms setting the time resolution of avalanche photodiodes operated in single-photon counting, and we give some criteria for the design of SPADs with a quantum efficiency better than l0 percent at 1064 nm together with a time resolution below 50 ps rms.

  16. Alleviation of efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes with trapezoidal quantum barriers

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Jo; Lee, Kwang Jae; Park, Seong-Ju

    2018-06-01

    We numerically investigated the effects of trapezoidal quantum barriers (QBs) on efficiency droop in InGaN/GaN multiple quantum well (MQW) light-emitting diodes (LEDs). Simulations showed that the electrostatic field in QWs of LEDs with trapezoidal barriers is reduced because of the reduced sheet charge density at the QW-QB interface caused by the thin GaN layer in trapezoidal QBs. Additionally, the InGaN grading region in trapezoidal QBs suppresses hot carrier transport and this enhances efficient carrier injection into the QWs. The electroluminescence intensity of an LED with trapezoidal QBs is increased by 10.2% and 6.7% at 245 A cm‑2 when compared with the intensities of LEDs with square-type GaN barriers and multilayer barriers, respectively. The internal quantum efficiency (IQE) droop of an LED with trapezoidal QBs is 16% at 300 A cm‑2, while LEDs with square-type GaN barriers and multilayer barriers have IQE droop of 31% and 24%, respectively. This IQE droop alleviation in LEDs with trapezoidal QBs is attributed to the reduced energy band bending, efficient hole injection, and more uniform hole distribution in the MQWs that results from reduction of the piezoelectric field by the trapezoidal QBs. These results indicate that the trapezoidal QB in MQWs is promising for enhanced efficiency in high-power GaN-based LEDs.

  17. Quantum Zeno Effect in the Measurement Problem

    NASA Technical Reports Server (NTRS)

    Namiki, Mikio; Pasaczio, Saverio

    1996-01-01

    Critically analyzing the so-called quantum Zeno effect in the measurement problem, we show that observation of this effect does not necessarily mean experimental evidence for the naive notion of wave-function collapse by measurement (the simple projection rule). We also examine what kind of limitation the uncertainty relation and others impose on the observation of the quantum Zeno effect.

  18. Measurement-device-independent quantum digital signatures

    NASA Astrophysics Data System (ADS)

    Puthoor, Ittoop Vergheese; Amiri, Ryan; Wallden, Petros; Curty, Marcos; Andersson, Erika

    2016-08-01

    Digital signatures play an important role in software distribution, modern communication, and financial transactions, where it is important to detect forgery and tampering. Signatures are a cryptographic technique for validating the authenticity and integrity of messages, software, or digital documents. The security of currently used classical schemes relies on computational assumptions. Quantum digital signatures (QDS), on the other hand, provide information-theoretic security based on the laws of quantum physics. Recent work on QDS Amiri et al., Phys. Rev. A 93, 032325 (2016);, 10.1103/PhysRevA.93.032325 Yin, Fu, and Zeng-Bing, Phys. Rev. A 93, 032316 (2016), 10.1103/PhysRevA.93.032316 shows that such schemes do not require trusted quantum channels and are unconditionally secure against general coherent attacks. However, in practical QDS, just as in quantum key distribution (QKD), the detectors can be subjected to side-channel attacks, which can make the actual implementations insecure. Motivated by the idea of measurement-device-independent quantum key distribution (MDI-QKD), we present a measurement-device-independent QDS (MDI-QDS) scheme, which is secure against all detector side-channel attacks. Based on the rapid development of practical MDI-QKD, our MDI-QDS protocol could also be experimentally implemented, since it requires a similar experimental setup.

  19. Resource-Efficient Measurement-Device-Independent Entanglement Witness

    DOE PAGES

    Verbanis, E.; Martin, A.; Rosset, D.; ...

    2016-05-09

    Imperfections in experimental measurement schemes can lead to falsely identifying, or over estimating, entanglement in a quantum system. A recent solution to this is to define schemes that are robust to measurement imperfections—measurement-device-independent entanglement witness (MDI-EW). This approach can be adapted to witness all entangled qubit states for a wide range of physical systems and does not depend on detection efficiencies or classical communication between devices. In this paper, we extend the theory to remove the necessity of prior knowledge about the two-qubit states to be witnessed. Moreover, we tested this model via a novel experimental implementation for MDI-EW thatmore » significantly reduces the experimental complexity. Finally, by applying it to a bipartite Werner state, we demonstrate the robustness of this approach against noise by witnessing entanglement down to an entangled state fraction close to 0.4.« less

  20. Role of Weak Measurements on States Ordering and Monogamy of Quantum Correlation

    NASA Astrophysics Data System (ADS)

    Hu, Ming-Liang; Fan, Heng; Tian, Dong-Ping

    2015-01-01

    The information-theoretic definition of quantum correlation, e.g., quantum discord, is measurement dependent. By considering the more general quantum measurements, weak measurements, which include the projective measurement as a limiting case, we show that while weak measurements can enable one to capture more quantumness of correlation in a state, it can also induce other counterintuitive quantum effects. Specifically, we show that the general measurements with different strengths can impose different orderings for quantum correlations of some states. It can also modify the monogamous character for certain classes of states as well which may diminish the usefulness of quantum correlation as a resource in some protocols. In this sense, we say that the weak measurements play a dual role in defining quantum correlation.

  1. Quantum Correlations in Nonlocal Boson Sampling.

    PubMed

    Shahandeh, Farid; Lund, Austin P; Ralph, Timothy C

    2017-09-22

    Determination of the quantum nature of correlations between two spatially separated systems plays a crucial role in quantum information science. Of particular interest is the questions of if and how these correlations enable quantum information protocols to be more powerful. Here, we report on a distributed quantum computation protocol in which the input and output quantum states are considered to be classically correlated in quantum informatics. Nevertheless, we show that the correlations between the outcomes of the measurements on the output state cannot be efficiently simulated using classical algorithms. Crucially, at the same time, local measurement outcomes can be efficiently simulated on classical computers. We show that the only known classicality criterion violated by the input and output states in our protocol is the one used in quantum optics, namely, phase-space nonclassicality. As a result, we argue that the global phase-space nonclassicality inherent within the output state of our protocol represents true quantum correlations.

  2. Ligand-Asymmetric Janus Quantum Dots for Efficient Blue-Quantum Dot Light-Emitting Diodes.

    PubMed

    Cho, Ikjun; Jung, Heeyoung; Jeong, Byeong Guk; Hahm, Donghyo; Chang, Jun Hyuk; Lee, Taesoo; Char, Kookheon; Lee, Doh C; Lim, Jaehoon; Lee, Changhee; Cho, Jinhan; Bae, Wan Ki

    2018-06-19

    We present ligand-asymmetric Janus quantum dots (QDs) to improve the device performance of quantum dot light-emitting diodes (QLEDs). Specifically, we devise blue QLEDs incorporating blue QDs with asymmetrically modified ligands, in which the bottom ligand of QDs in contact with ZnO electron-transport layer serves as a robust adhesive layer and an effective electron-blocking layer and the top ligand ensures uniform deposition of organic hole transport layers with enhanced hole injection properties. Suppressed electron overflow by the bottom ligand and stimulated hole injection enabled by the top ligand contribute synergistically to boost the balance of charge injection in blue QDs and therefore the device performance of blue QLEDs. As an ultimate achievement, the blue QLED adopting ligand-asymmetric QDs displays 2-fold enhancement in peak external quantum efficiency (EQE = 3.23%) compared to the case of QDs with native ligands (oleic acid) (peak EQE = 1.49%). The present study demonstrates an integrated strategy to control over the charge injection properties into QDs via ligand engineering that enables enhancement of the device performance of blue QLEDs and thus promises successful realization of white light-emitting devices using QDs.

  3. Broadband Epsilon-near-Zero Reflectors Enhance the Quantum Efficiency of Thin Solar Cells at Visible and Infrared Wavelengths.

    PubMed

    Labelle, A J; Bonifazi, M; Tian, Y; Wong, C; Hoogland, S; Favraud, G; Walters, G; Sutherland, B; Liu, M; Li, Jun; Zhang, Xixiang; Kelley, S O; Sargent, E H; Fratalocchi, A

    2017-02-15

    The engineering of broadband absorbers to harvest white light in thin-film semiconductors is a major challenge in developing renewable materials for energy harvesting. Many solution-processed materials with high manufacturability and low cost, such as semiconductor quantum dots, require the use of film structures with thicknesses on the order of 1 μm to absorb incoming photons completely. The electron transport lengths in these media, however, are 1 order of magnitude smaller than this length, hampering further progress with this platform. Herein, we show that, by engineering suitably disordered nanoplasmonic structures, we have created a new class of dispersionless epsilon-near-zero composite materials that efficiently harness white light. Our nanostructures localize light in the dielectric region outside the epsilon-near-zero material with characteristic lengths of 10-100 nm, resulting in an efficient system for harvesting broadband light when a thin absorptive film is deposited on top of the structure. By using a combination of theory and experiments, we demonstrate that ultrathin layers down to 50 nm of colloidal quantum dots deposited atop the epsilon-near-zero material show an increase in broadband absorption ranging from 200% to 500% compared to a planar structure of the same colloidal quantum-dot-absorber average thickness. When the epsilon-near-zero nanostructures were used in an energy-harvesting module, we observed a spectrally averaged 170% broadband increase in the external quantum efficiency of the device, measured at wavelengths between 400 and 1200 nm. Atomic force microscopy and photoluminescence excitation measurements demonstrate that the properties of these epsilon-near-zero structures apply to general metals and could be used to enhance the near-field absorption of semiconductor structures more widely. We have developed an inexpensive electrochemical deposition process that enables scaled-up production of this nanomaterial for large

  4. Efficient free energy calculations of quantum systems through computer simulations

    NASA Astrophysics Data System (ADS)

    Antonelli, Alex; Ramirez, Rafael; Herrero, Carlos; Hernandez, Eduardo

    2009-03-01

    In general, the classical limit is assumed in computer simulation calculations of free energy. This approximation, however, is not justifiable for a class of systems in which quantum contributions for the free energy cannot be neglected. The inclusion of quantum effects is important for the determination of reliable phase diagrams of these systems. In this work, we present a new methodology to compute the free energy of many-body quantum systems [1]. This methodology results from the combination of the path integral formulation of statistical mechanics and efficient non-equilibrium methods to estimate free energy, namely, the adiabatic switching and reversible scaling methods. A quantum Einstein crystal is used as a model to show the accuracy and reliability the methodology. This new method is applied to the calculation of solid-liquid coexistence properties of neon. Our findings indicate that quantum contributions to properties such as, melting point, latent heat of fusion, entropy of fusion, and slope of melting line can be up to 10% of the calculated values using the classical approximation. [1] R. M. Ramirez, C. P. Herrero, A. Antonelli, and E. R. Hernández, Journal of Chemical Physics 129, 064110 (2008)

  5. Heralded high-efficiency quantum repeater with atomic ensembles assisted by faithful single-photon transmission

    NASA Astrophysics Data System (ADS)

    Li, Tao; Deng, Fu-Guo

    2015-10-01

    Quantum repeater is one of the important building blocks for long distance quantum communication network. The previous quantum repeaters based on atomic ensembles and linear optical elements can only be performed with a maximal success probability of 1/2 during the entanglement creation and entanglement swapping procedures. Meanwhile, the polarization noise during the entanglement distribution process is harmful to the entangled channel created. Here we introduce a general interface between a polarized photon and an atomic ensemble trapped in a single-sided optical cavity, and with which we propose a high-efficiency quantum repeater protocol in which the robust entanglement distribution is accomplished by the stable spatial-temporal entanglement and it can in principle create the deterministic entanglement between neighboring atomic ensembles in a heralded way as a result of cavity quantum electrodynamics. Meanwhile, the simplified parity-check gate makes the entanglement swapping be completed with unity efficiency, other than 1/2 with linear optics. We detail the performance of our protocol with current experimental parameters and show its robustness to the imperfections, i.e., detuning and coupling variation, involved in the reflection process. These good features make it a useful building block in long distance quantum communication.

  6. Heralded high-efficiency quantum repeater with atomic ensembles assisted by faithful single-photon transmission.

    PubMed

    Li, Tao; Deng, Fu-Guo

    2015-10-27

    Quantum repeater is one of the important building blocks for long distance quantum communication network. The previous quantum repeaters based on atomic ensembles and linear optical elements can only be performed with a maximal success probability of 1/2 during the entanglement creation and entanglement swapping procedures. Meanwhile, the polarization noise during the entanglement distribution process is harmful to the entangled channel created. Here we introduce a general interface between a polarized photon and an atomic ensemble trapped in a single-sided optical cavity, and with which we propose a high-efficiency quantum repeater protocol in which the robust entanglement distribution is accomplished by the stable spatial-temporal entanglement and it can in principle create the deterministic entanglement between neighboring atomic ensembles in a heralded way as a result of cavity quantum electrodynamics. Meanwhile, the simplified parity-check gate makes the entanglement swapping be completed with unity efficiency, other than 1/2 with linear optics. We detail the performance of our protocol with current experimental parameters and show its robustness to the imperfections, i.e., detuning and coupling variation, involved in the reflection process. These good features make it a useful building block in long distance quantum communication.

  7. Measurements in Quantum Mechanics and von NEUMANN's Model

    NASA Astrophysics Data System (ADS)

    Mello, Pier A.; Johansen, Lars M.

    2010-12-01

    Many textbooks on Quantum Mechanics are not very precise as to the meaning of making a measurement: as a consequence, they frequently make assertions which are not based on a dynamical description of the measurement process. A model proposed by von Neumann allows a dynamical description of measurement in Quantum Mechanics, including the measuring instrument in the formalism. In this article we apply von Neumann's model to illustrate the measurement of an observable by means of a measuring instrument and show how various results, which are sometimens postulated without a dynamical basis, actually emerge. We also investigate the more complex, intriguing and fundamental problem of two successive measurements in Quantum Mechanics, extending von Neumann's model to two measuring instruments. We present a description which allows obtaining, in a unified way, various results that have been given in the literature.

  8. Cosensitized Quantum Dot Solar Cells with Conversion Efficiency over 12.

    PubMed

    Wang, Wei; Feng, Wenliang; Du, Jun; Xue, Weinan; Zhang, Linlin; Zhao, Leilei; Li, Yan; Zhong, Xinhua

    2018-03-01

    The improvement of sunlight utilization is a fundamental approach for the construction of high-efficiency quantum-dot-based solar cells (QDSCs). To boost light harvesting, cosensitized photoanodes are fabricated in this work by a sequential deposition of presynthesized Zn-Cu-In-Se (ZCISe) and CdSe quantum dots (QDs) on mesoporous TiO 2 films via the control of the interactions between QDs and TiO 2 films using 3-mercaptopropionic acid bifunctional linkers. By the synergistic effect of ZCISe-alloyed QDs with a wide light absorption range and CdSe QDs with a high extinction coefficient, the incident photon-to-electron conversion efficiency is significantly improved over single QD-based QDSCs. It is found that the performance of cosensitized photoanodes can be optimized by adjusting the size of CdSe QDs introduced. In combination with titanium mesh supported mesoporous carbon as a counterelectrode and a modified polysulfide solution as an electrolyte, a champion power conversion efficiency up to 12.75% (V oc = 0.752 V, J sc = 27.39 mA cm -2 , FF = 0.619) is achieved, which is, as far as it is known, the highest efficiency for liquid-junction QD-based solar cells reported. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Quantum measurement-induced dynamics of many-body ultracold bosonic and fermionic systems in optical lattices

    NASA Astrophysics Data System (ADS)

    Mazzucchi, Gabriel; Kozlowski, Wojciech; Caballero-Benitez, Santiago F.; Elliott, Thomas J.; Mekhov, Igor B.

    2016-02-01

    Trapping ultracold atoms in optical lattices enabled numerous breakthroughs uniting several disciplines. Coupling these systems to quantized light leads to a plethora of new phenomena and has opened up a new field of study. Here we introduce an unusual additional source of competition in a many-body strongly correlated system: We prove that quantum backaction of global measurement is able to efficiently compete with intrinsic short-range dynamics of an atomic system. The competition becomes possible due to the ability to change the spatial profile of a global measurement at a microscopic scale comparable to the lattice period without the need of single site addressing. In coherence with a general physical concept, where new competitions typically lead to new phenomena, we demonstrate nontrivial dynamical effects such as large-scale multimode oscillations, long-range entanglement, and correlated tunneling, as well as selective suppression and enhancement of dynamical processes beyond the projective limit of the quantum Zeno effect. We demonstrate both the breakup and protection of strongly interacting fermion pairs by measurement. Such a quantum optical approach introduces into many-body physics novel processes, objects, and methods of quantum engineering, including the design of many-body entangled environments for open systems.

  10. Measurements and mathematical formalism of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Slavnov, D. A.

    2007-03-01

    A scheme for constructing quantum mechanics is given that does not have Hilbert space and linear operators as its basic elements. Instead, a version of algebraic approach is considered. Elements of a noncommutative algebra (observables) and functionals on this algebra (elementary states) associated with results of single measurements are used as primary components of the scheme. On the one hand, it is possible to use within the scheme the formalism of the standard (Kolmogorov) probability theory, and, on the other hand, it is possible to reproduce the mathematical formalism of standard quantum mechanics, and to study the limits of its applicability. A short outline is given of the necessary material from the theory of algebras and probability theory. It is described how the mathematical scheme of the paper agrees with the theory of quantum measurements, and avoids quantum paradoxes.

  11. On the effect of ballistic overflow on the temperature dependence of the quantum efficiency of InGaN/GaN multiple quantum well light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prudaev, I. A., E-mail: funcelab@gmail.com; Kopyev, V. V.; Romanov, I. S.

    The dependences of the quantum efficiency of InGaN/GaN multiple quantum well light-emitting diodes on the temperature and excitation level are studied. The experiment is performed for two luminescence excitation modes. A comparison of the results obtained during photo- and electroluminescence shows an additional (to the loss associated with Auger recombination) low-temperature loss in the high-density current region. This causes inversion of the temperature dependence of the quantum efficiency at temperatures lower than 220–300 K. Analysis shows that the loss is associated with electron leakage from the light-emitting-diode active region. The experimental data are explained using the ballistic-overflow model. The simulationmore » results are in qualitative agreement with the experimental dependences of the quantum efficiency on temperature and current density.« less

  12. Efficient universal quantum channel simulation in IBM's cloud quantum computer

    NASA Astrophysics Data System (ADS)

    Wei, Shi-Jie; Xin, Tao; Long, Gui-Lu

    2018-07-01

    The study of quantum channels is an important field and promises a wide range of applications, because any physical process can be represented as a quantum channel that transforms an initial state into a final state. Inspired by the method of performing non-unitary operators by the linear combination of unitary operations, we proposed a quantum algorithm for the simulation of the universal single-qubit channel, described by a convex combination of "quasi-extreme" channels corresponding to four Kraus operators, and is scalable to arbitrary higher dimension. We demonstrated the whole algorithm experimentally using the universal IBM cloud-based quantum computer and studied the properties of different qubit quantum channels. We illustrated the quantum capacity of the general qubit quantum channels, which quantifies the amount of quantum information that can be protected. The behavior of quantum capacity in different channels revealed which types of noise processes can support information transmission, and which types are too destructive to protect information. There was a general agreement between the theoretical predictions and the experiments, which strongly supports our method. By realizing the arbitrary qubit channel, this work provides a universally- accepted way to explore various properties of quantum channels and novel prospect for quantum communication.

  13. Step-by-step magic state encoding for efficient fault-tolerant quantum computation.

    PubMed

    Goto, Hayato

    2014-12-16

    Quantum error correction allows one to make quantum computers fault-tolerant against unavoidable errors due to decoherence and imperfect physical gate operations. However, the fault-tolerant quantum computation requires impractically large computational resources for useful applications. This is a current major obstacle to the realization of a quantum computer. In particular, magic state distillation, which is a standard approach to universality, consumes the most resources in fault-tolerant quantum computation. For the resource problem, here we propose step-by-step magic state encoding for concatenated quantum codes, where magic states are encoded step by step from the physical level to the logical one. To manage errors during the encoding, we carefully use error detection. Since the sizes of intermediate codes are small, it is expected that the resource overheads will become lower than previous approaches based on the distillation at the logical level. Our simulation results suggest that the resource requirements for a logical magic state will become comparable to those for a single logical controlled-NOT gate. Thus, the present method opens a new possibility for efficient fault-tolerant quantum computation.

  14. Extracting Work from Quantum Measurement in Maxwell's Demon Engines

    NASA Astrophysics Data System (ADS)

    Elouard, Cyril; Herrera-Martí, David; Huard, Benjamin; Auffèves, Alexia

    2017-06-01

    The essence of both classical and quantum engines is to extract useful energy (work) from stochastic energy sources, e.g., thermal baths. In Maxwell's demon engines, work extraction is assisted by a feedback control based on measurements performed by a demon, whose memory is erased at some nonzero energy cost. Here we propose a new type of quantum Maxwell's demon engine where work is directly extracted from the measurement channel, such that no heat bath is required. We show that in the Zeno regime of frequent measurements, memory erasure costs eventually vanish. Our findings provide a new paradigm to analyze quantum heat engines and work extraction in the quantum world.

  15. Design of Efficient Mirror Adder in Quantum- Dot Cellular Automata

    NASA Astrophysics Data System (ADS)

    Mishra, Prashant Kumar; Chattopadhyay, Manju K.

    2018-03-01

    Lower power consumption is an essential demand for portable multimedia system using digital signal processing algorithms and architectures. Quantum dot cellular automata (QCA) is a rising nano technology for the development of high performance ultra-dense low power digital circuits. QCA based several efficient binary and decimal arithmetic circuits are implemented, however important improvements are still possible. This paper demonstrate Mirror Adder circuit design in QCA. We present comparative study of mirror adder cells designed using conventional CMOS technique and mirror adder cells designed using quantum-dot cellular automata. QCA based mirror adders are better in terms of area by order of three.

  16. One-Pot Large-Scale Synthesis of Carbon Quantum Dots: Efficient Cathode Interlayers for Polymer Solar Cells.

    PubMed

    Yang, Yuzhao; Lin, Xiaofeng; Li, Wenlang; Ou, Jiemei; Yuan, Zhongke; Xie, Fangyan; Hong, Wei; Yu, Dingshan; Ma, Yuguang; Chi, Zhenguo; Chen, Xudong

    2017-05-03

    Cathode interlayers (CILs) with low-cost, low-toxicity, and excellent cathode modification ability are necessary for the large-scale industrialization of polymer solar cells (PSCs). In this contribution, we demonstrated one-pot synthesized carbon quantum dots (C-dots) with high production to serve as efficient CIL for inverted PSCs. The C-dots were synthesized by a facile, economical microwave pyrolysis in a household microwave oven within 7 min. Ultraviolet photoelectron spectroscopy (UPS) studies showed that the C-dots possessed the ability to form a dipole at the interface, resulting in the decrease of the work function (WF) of cathode. External quantum efficiency (EQE) measurements and 2D excitation-emission topographical maps revealed that the C-dots down-shifted the high energy near-ultraviolet light to low energy visible light to generate more photocurrent. Remarkably improvement of power conversion efficiency (PCE) was attained by incorporation of C-dots as CIL. The PCE was boosted up from 4.14% to 8.13% with C-dots as CIL, which is one of the best efficiency for i-PSCs used carbon based materials as interlayers. These results demonstrated that C-dots can be a potential candidate for future low cost and large area PSCs producing.

  17. Quantum computation and analysis of Wigner and Husimi functions: toward a quantum image treatment.

    PubMed

    Terraneo, M; Georgeot, B; Shepelyansky, D L

    2005-06-01

    We study the efficiency of quantum algorithms which aim at obtaining phase-space distribution functions of quantum systems. Wigner and Husimi functions are considered. Different quantum algorithms are envisioned to build these functions, and compared with the classical computation. Different procedures to extract more efficiently information from the final wave function of these algorithms are studied, including coarse-grained measurements, amplitude amplification, and measure of wavelet-transformed wave function. The algorithms are analyzed and numerically tested on a complex quantum system showing different behavior depending on parameters: namely, the kicked rotator. The results for the Wigner function show in particular that the use of the quantum wavelet transform gives a polynomial gain over classical computation. For the Husimi distribution, the gain is much larger than for the Wigner function and is larger with the help of amplitude amplification and wavelet transforms. We discuss the generalization of these results to the simulation of other quantum systems. We also apply the same set of techniques to the analysis of real images. The results show that the use of the quantum wavelet transform allows one to lower dramatically the number of measurements needed, but at the cost of a large loss of information.

  18. Increasing the quantum efficiency of GaAs solar cells by embedding InAs quantum dots

    NASA Astrophysics Data System (ADS)

    Salii, R. A.; Mintairov, S. A.; Nadtochiy, A. M.; Payusov, A. S.; Brunkov, P. N.; Shvarts, M. Z.; Kalyuzhnyy, N. A.

    2016-11-01

    Development of Metalorganic Vapor Phase Epitaxy (MOVPE) technology of InAs quantum dots (QDs) in GaAs for photovoltaic applications is presented. The growth peculiarities in InAs-GaAs lattice-mismatched system were considered. The photoluminescence (PL) intensity dependences on different growth parameters were obtained. The multimodal distribution of QDs by sizes was found using AFM and PL methods. GaAs solar cell nanoheterostructures with imbedded QD arrays were designed and obtained. Ones have been demonstrated a significant increase of quantum efficiency and photogenerated current of QD solar cells due to photo effect in InAs QD array (0.59 mA/cm2 for AM1.5D and 82 mA/cm2 for AM0).

  19. The Measurement Process in the Generalized Contexts Formalism for Quantum Histories

    NASA Astrophysics Data System (ADS)

    Losada, Marcelo; Vanni, Leonardo; Laura, Roberto

    2016-02-01

    In the interpretations of quantum mechanics involving quantum histories there is no collapse postulate and the measurement is considered as a quantum interaction between the measured system and the measured instrument. For two consecutive non ideal measurements on the same system, we prove that both pointer indications at the end of each measurement are compatible properties in our generalized context formalism for quantum histories. Inmediately after the first measurement an effective state for the measured system is deduced from the formalism, generalizing the state that would be obtained by applying the state collapse postulate.

  20. Measurement-device-independent quantum cryptography

    DOE PAGES

    Xu, Feihu; Curty, Marcos; Qi, Bing; ...

    2014-12-18

    In theory, quantum key distribution (QKD) provides information-theoretic security based on the laws of physics. Owing to the imperfections of real-life implementations, however, there is a big gap between the theory and practice of QKD, which has been recently exploited by several quantum hacking activities. To fill this gap, a novel approach, called measurement-device-independent QKD (mdiQKD), has been proposed. In addition, it can remove all side-channels from the measurement unit, arguably the most vulnerable part in QKD systems, thus offering a clear avenue toward secure QKD realisations. In this study, we review the latest developments in the framework of mdiQKD,more » together with its assumptions, strengths, and weaknesses.« less

  1. Effect of broad recombination zone in multiple quantum well structures on lifetime and efficiency of blue organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lee, Seok Jae; Lee, Song Eun; Lee, Dong Hyung; Koo, Ja Ryong; Lee, Ho Won; Yoon, Seung Soo; Park, Jaehoon; Kim, Young Kwan

    2014-10-01

    Blue phosphorescent organic light-emitting diodes with multiple quantum well (MQW) structures (from one to four quantum wells) within an emitting layer (EML) are fabricated with charge control layers (CCLs) to control carrier movement. The distributed recombination zone and balanced charge carrier injection within EML are achieved through the MQW structure with CCLs. Remarkably, the half-decay lifetime of a blue device with three quantum wells, measured at an initial luminance of 500 cd/m2, is 3.5 times longer than that using a conventional structure. Additionally, the device’s efficiency improved. These results are explained with the effects of triplet exciton confinement and triplet-triplet annihilation within each EML.

  2. Tuning quantum measurements to control chaos.

    PubMed

    Eastman, Jessica K; Hope, Joseph J; Carvalho, André R R

    2017-03-20

    Environment-induced decoherence has long been recognised as being of crucial importance in the study of chaos in quantum systems. In particular, the exact form and strength of the system-environment interaction play a major role in the quantum-to-classical transition of chaotic systems. In this work we focus on the effect of varying monitoring strategies, i.e. for a given decoherence model and a fixed environmental coupling, there is still freedom on how to monitor a quantum system. We show here that there is a region between the deep quantum regime and the classical limit where the choice of the monitoring parameter allows one to control the complex behaviour of the system, leading to either the emergence or suppression of chaos. Our work shows that this is a result from the interplay between quantum interference effects induced by the nonlinear dynamics and the effectiveness of the decoherence for different measurement schemes.

  3. Highly Efficient Light-Emitting Diodes of Colloidal Metal-Halide Perovskite Nanocrystals beyond Quantum Size.

    PubMed

    Kim, Young-Hoon; Wolf, Christoph; Kim, Young-Tae; Cho, Himchan; Kwon, Woosung; Do, Sungan; Sadhanala, Aditya; Park, Chan Gyung; Rhee, Shi-Woo; Im, Sang Hyuk; Friend, Richard H; Lee, Tae-Woo

    2017-07-25

    Colloidal metal-halide perovskite quantum dots (QDs) with a dimension less than the exciton Bohr diameter D B (quantum size regime) emerged as promising light emitters due to their spectrally narrow light, facile color tuning, and high photoluminescence quantum efficiency (PLQE). However, their size-sensitive emission wavelength and color purity and low electroluminescence efficiency are still challenging aspects. Here, we demonstrate highly efficient light-emitting diodes (LEDs) based on the colloidal perovskite nanocrystals (NCs) in a dimension > D B (regime beyond quantum size) by using a multifunctional buffer hole injection layer (Buf-HIL). The perovskite NCs with a dimension greater than D B show a size-irrespective high color purity and PLQE by managing the recombination of excitons occurring at surface traps and inside the NCs. The Buf-HIL composed of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) and perfluorinated ionomer induces uniform perovskite particle films with complete film coverage and prevents exciton quenching at the PEDOT:PSS/perovskite particle film interface. With these strategies, we achieved a very high PLQE (∼60.5%) in compact perovskite particle films without any complex post-treatments and multilayers and a high current efficiency of 15.5 cd/A in the LEDs of colloidal perovskite NCs, even in a simplified structure, which is the highest efficiency to date in green LEDs that use colloidal organic-inorganic metal-halide perovskite nanoparticles including perovskite QDs and NCs. These results can help to guide development of various light-emitting optoelectronic applications based on perovskite NCs.

  4. Efficiency droop suppression of distance-engineered surface plasmon-coupled photoluminescence in GaN-based quantum well LEDs

    NASA Astrophysics Data System (ADS)

    Li, Yufeng; Wang, Shuai; Su, Xilin; Tang, Weihan; Li, Qiang; Guo, Maofeng; Zhang, Ye; Zhang, Minyan; Yun, Feng; Hou, Xun

    2017-11-01

    Ag coated microgroove with extreme large aspect-ratio of 500:1 was fabricated on p-GaN capping layer to investigate the coupling behavior between quantum wells and surface plasmon in highly spatial resolution. Significant photoluminescence enhancement was observed when the distance between Ag film and QWs was reduced from 220 nm to about 20 nm. A maximum enhancement ratio of 18-fold was achieved at the groove bottom where the surface plasmonic coupling was considered the strongest. Such enhancement ratio was found highly affected by the excitation power density. It also shows high correlation to the internal quantum efficiency as a function of coupling effect and a maximum Purcell Factor of 1.75 was estimated at maximum coupling effect, which matches number calculated independently from the time-resolved photoluminescence measurement. With such Purcell Factor, the efficiency was greatly enhanced and the droop was significantly suppressed.

  5. Efficient and robust quantum random number generation by photon number detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Applegate, M. J.; Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE; Thomas, O.

    2015-08-17

    We present an efficient and robust quantum random number generator based upon high-rate room temperature photon number detection. We employ an electric field-modulated silicon avalanche photodiode, a type of device particularly suited to high-rate photon number detection with excellent photon number resolution to detect, without an applied dead-time, up to 4 photons from the optical pulses emitted by a laser. By both measuring and modeling the response of the detector to the incident photons, we are able to determine the illumination conditions that achieve an optimal bit rate that we show is robust against variation in the photon flux. Wemore » extract random bits from the detected photon numbers with an efficiency of 99% corresponding to 1.97 bits per detected photon number yielding a bit rate of 143 Mbit/s, and verify that the extracted bits pass stringent statistical tests for randomness. Our scheme is highly scalable and has the potential of multi-Gbit/s bit rates.« less

  6. Heralded high-efficiency quantum repeater with atomic ensembles assisted by faithful single-photon transmission

    PubMed Central

    Li, Tao; Deng, Fu-Guo

    2015-01-01

    Quantum repeater is one of the important building blocks for long distance quantum communication network. The previous quantum repeaters based on atomic ensembles and linear optical elements can only be performed with a maximal success probability of 1/2 during the entanglement creation and entanglement swapping procedures. Meanwhile, the polarization noise during the entanglement distribution process is harmful to the entangled channel created. Here we introduce a general interface between a polarized photon and an atomic ensemble trapped in a single-sided optical cavity, and with which we propose a high-efficiency quantum repeater protocol in which the robust entanglement distribution is accomplished by the stable spatial-temporal entanglement and it can in principle create the deterministic entanglement between neighboring atomic ensembles in a heralded way as a result of cavity quantum electrodynamics. Meanwhile, the simplified parity-check gate makes the entanglement swapping be completed with unity efficiency, other than 1/2 with linear optics. We detail the performance of our protocol with current experimental parameters and show its robustness to the imperfections, i.e., detuning and coupling variation, involved in the reflection process. These good features make it a useful building block in long distance quantum communication. PMID:26502993

  7. `Counterfactual' interpretation of the quantum measurement process

    NASA Astrophysics Data System (ADS)

    Nisticò, Giuseppe

    1997-08-01

    The question of the determination of the state of the system during a measurement experiment is discussed within quantum theory, as a part of the more general measurement’s problem. I propose a counterfactual interpretation of the measurement process which answers the question from a conceptual point of view. This interpretation turns out to be consistent with the predictions of quantum theory, but it presents difficulties from an operational point of view.

  8. Architectures for Quantum Simulation Showing a Quantum Speedup

    NASA Astrophysics Data System (ADS)

    Bermejo-Vega, Juan; Hangleiter, Dominik; Schwarz, Martin; Raussendorf, Robert; Eisert, Jens

    2018-04-01

    One of the main aims in the field of quantum simulation is to achieve a quantum speedup, often referred to as "quantum computational supremacy," referring to the experimental realization of a quantum device that computationally outperforms classical computers. In this work, we show that one can devise versatile and feasible schemes of two-dimensional, dynamical, quantum simulators showing such a quantum speedup, building on intermediate problems involving nonadaptive, measurement-based, quantum computation. In each of the schemes, an initial product state is prepared, potentially involving an element of randomness as in disordered models, followed by a short-time evolution under a basic translationally invariant Hamiltonian with simple nearest-neighbor interactions and a mere sampling measurement in a fixed basis. The correctness of the final-state preparation in each scheme is fully efficiently certifiable. We discuss experimental necessities and possible physical architectures, inspired by platforms of cold atoms in optical lattices and a number of others, as well as specific assumptions that enter the complexity-theoretic arguments. This work shows that benchmark settings exhibiting a quantum speedup may require little control, in contrast to universal quantum computing. Thus, our proposal puts a convincing experimental demonstration of a quantum speedup within reach in the near term.

  9. Finite Correlation Length Implies Efficient Preparation of Quantum Thermal States

    NASA Astrophysics Data System (ADS)

    Brandão, Fernando G. S. L.; Kastoryano, Michael J.

    2018-05-01

    Preparing quantum thermal states on a quantum computer is in general a difficult task. We provide a procedure to prepare a thermal state on a quantum computer with a logarithmic depth circuit of local quantum channels assuming that the thermal state correlations satisfy the following two properties: (i) the correlations between two regions are exponentially decaying in the distance between the regions, and (ii) the thermal state is an approximate Markov state for shielded regions. We require both properties to hold for the thermal state of the Hamiltonian on any induced subgraph of the original lattice. Assumption (ii) is satisfied for all commuting Gibbs states, while assumption (i) is satisfied for every model above a critical temperature. Both assumptions are satisfied in one spatial dimension. Moreover, both assumptions are expected to hold above the thermal phase transition for models without any topological order at finite temperature. As a building block, we show that exponential decay of correlation (for thermal states of Hamiltonians on all induced subgraphs) is sufficient to efficiently estimate the expectation value of a local observable. Our proof uses quantum belief propagation, a recent strengthening of strong sub-additivity, and naturally breaks down for states with topological order.

  10. Efficient energy transfer in light-harvesting systems: Quantum-classical comparison, flux network, and robustness analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Jianlan; Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139; Liu Fan

    2012-11-07

    Following the calculation of optimal energy transfer in thermal environment in our first paper [J. L. Wu, F. Liu, Y. Shen, J. S. Cao, and R. J. Silbey, New J. Phys. 12, 105012 (2010)], full quantum dynamics and leading-order 'classical' hopping kinetics are compared in the seven-site Fenna-Matthews-Olson (FMO) protein complex. The difference between these two dynamic descriptions is due to higher-order quantum corrections. Two thermal bath models, classical white noise (the Haken-Strobl-Reineker (HSR) model) and quantum Debye model, are considered. In the seven-site FMO model, we observe that higher-order corrections lead to negligible changes in the trapping time ormore » in energy transfer efficiency around the optimal and physiological conditions (2% in the HSR model and 0.1% in the quantum Debye model for the initial site at BChl 1). However, using the concept of integrated flux, we can identify significant differences in branching probabilities of the energy transfer network between hopping kinetics and quantum dynamics (26% in the HSR model and 32% in the quantum Debye model for the initial site at BChl 1). This observation indicates that the quantum coherence can significantly change the distribution of energy transfer pathways in the flux network with the efficiency nearly the same. The quantum-classical comparison of the average trapping time with the removal of the bottleneck site, BChl 4, demonstrates the robustness of the efficient energy transfer by the mechanism of multi-site quantum coherence. To reconcile with the latest eight-site FMO model which is also investigated in the third paper [J. Moix, J. L. Wu, P. F. Huo, D. F. Coker, and J. S. Cao, J. Phys. Chem. Lett. 2, 3045 (2011)], the quantum-classical comparison with the flux network analysis is summarized in Appendix C. The eight-site FMO model yields similar trapping time and network structure as the seven-site FMO model but leads to a more disperse distribution of energy transfer pathways.« less

  11. Comparative studies of efficiency droop in polar and non-polar InGaN quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, M. J.; Dawson, P.; Hammersley, S.

    We report on a comparative study of efficiency droop in polar and non-polar InGaN quantum well structures at T = 10 K. To ensure that the experiments were carried out with identical carrier densities for any particular excitation power density, we used laser pulses of duration ∼100 fs at a repetition rate of 400 kHz. For both types of structures, efficiency droop was observed to occur for carrier densities of above 7 × 10{sup 11 }cm{sup −2 }pulse{sup −1} per quantum well; also both structures exhibited similar spectral broadening in the droop regime. These results show that efficiency droop is intrinsic in InGaN quantum wells, whether polar or non-polar,more » and is a function, specifically, of carrier density.« less

  12. Quantum to Classical Transitions via Weak Measurements and Post-Selection

    NASA Astrophysics Data System (ADS)

    Cohen, Eliahu; Aharonov, Yakir

    Alongside its immense empirical success, the quantum mechanical account of physical systems imposes a myriad of divergences from our thoroughly ingrained classical ways of thinking. These divergences, while striking, would have been acceptable if only a continuous transition to the classical domain was at hand. Strangely, this is not quite the case. The difficulties involved in reconciling the quantum with the classical have given rise to different interpretations, each with its own shortcomings. Traditionally, the two domains are sewed together by invoking an ad hoc theory of measurement, which has been incorporated in the axiomatic foundations of quantum theory. This work will incorporate a few related tools for addressing the above conceptual difficulties: deterministic operators, weak measurements, and post-selection. Weak Measurement, based on a very weak von Neumann coupling, is a unique kind of quantum measurement with numerous theoretical and practical applications. In contrast to other measurement techniques, it allows to gather a small amount of information regarding the quantum system, with only a negligible probability of collapsing it onto an eigenstate of the measured observable. A single weak measurement yieldsan almost random outcome, but when performed repeatedly over a large ensemble, the averaged outcome becomes increasingly robust and accurate. Importantly, a long sequence of weak measurements can be thought of as a single projective measurement. We claim in this work that classical variables appearing in the o-world, such as center of mass, moment of inertia, pressure, and average forces, result from a multitude of quantum weak measurements performed in the micro-world. Here again, the quantum outcomes are highly uncertain, but the law of large numbers obliges their convergence to the definite quantities we know from our everyday lives. By augmenting this description with a final boundary condition and employing the notion of "classical

  13. High-rate measurement-device-independent quantum cryptography

    NASA Astrophysics Data System (ADS)

    Pirandola, Stefano; Ottaviani, Carlo; Spedalieri, Gaetana; Weedbrook, Christian; Braunstein, Samuel L.; Lloyd, Seth; Gehring, Tobias; Jacobsen, Christian S.; Andersen, Ulrik L.

    2015-06-01

    Quantum cryptography achieves a formidable task—the remote distribution of secret keys by exploiting the fundamental laws of physics. Quantum cryptography is now headed towards solving the practical problem of constructing scalable and secure quantum networks. A significant step in this direction has been the introduction of measurement-device independence, where the secret key between two parties is established by the measurement of an untrusted relay. Unfortunately, although qubit-implemented protocols can reach long distances, their key rates are typically very low, unsuitable for the demands of a metropolitan network. Here we show, theoretically and experimentally, that a solution can come from the use of continuous-variable systems. We design a coherent-state network protocol able to achieve remarkably high key rates at metropolitan distances, in fact three orders of magnitude higher than those currently achieved. Our protocol could be employed to build high-rate quantum networks where devices securely connect to nearby access points or proxy servers.

  14. Optimal power and efficiency of quantum Stirling heat engines

    NASA Astrophysics Data System (ADS)

    Yin, Yong; Chen, Lingen; Wu, Feng

    2017-01-01

    A quantum Stirling heat engine model is established in this paper in which imperfect regeneration and heat leakage are considered. A single particle which contained in a one-dimensional infinite potential well is studied, and the system consists of countless replicas. Each particle is confined in its own potential well, whose occupation probabilities can be expressed by the thermal equilibrium Gibbs distributions. Based on the Schrödinger equation, the expressions of power output and efficiency for the engine are obtained. Effects of imperfect regeneration and heat leakage on the optimal performance are discussed. The optimal performance region and the optimal values of important parameters of the engine cycle are obtained. The results obtained can provide some guidelines for the design of a quantum Stirling heat engine.

  15. Measurement-based quantum teleportation on finite AKLT chains

    NASA Astrophysics Data System (ADS)

    Fujii, Akihiko; Feder, David

    In the measurement-based model of quantum computation, universal quantum operations are effected by making repeated local measurements on resource states which contain suitable entanglement. Resource states include two-dimensional cluster states and the ground state of the Affleck-Kennedy-Lieb-Tasaki (AKLT) state on the honeycomb lattice. Recent studies suggest that measurements on one-dimensional systems in the Haldane phase teleport perfect single-qubit gates in the correlation space, protected by the underlying symmetry. As laboratory realizations of symmetry-protected states will necessarily be finite, we investigate the potential for quantum gate teleportation in finite chains of a bilinear-biquadratic Hamiltonian which is a generalization of the AKLT model representing the full Haldane phase.

  16. Measurement-device-independent entanglement-based quantum key distribution

    NASA Astrophysics Data System (ADS)

    Yang, Xiuqing; Wei, Kejin; Ma, Haiqiang; Sun, Shihai; Liu, Hongwei; Yin, Zhenqiang; Li, Zuohan; Lian, Shibin; Du, Yungang; Wu, Lingan

    2016-05-01

    We present a quantum key distribution protocol in a model in which the legitimate users gather statistics as in the measurement-device-independent entanglement witness to certify the sources and the measurement devices. We show that the task of measurement-device-independent quantum communication can be accomplished based on monogamy of entanglement, and it is fairly loss tolerate including source and detector flaws. We derive a tight bound for collective attacks on the Holevo information between the authorized parties and the eavesdropper. Then with this bound, the final secret key rate with the source flaws can be obtained. The results show that long-distance quantum cryptography over 144 km can be made secure using only standard threshold detectors.

  17. Step-by-step magic state encoding for efficient fault-tolerant quantum computation

    PubMed Central

    Goto, Hayato

    2014-01-01

    Quantum error correction allows one to make quantum computers fault-tolerant against unavoidable errors due to decoherence and imperfect physical gate operations. However, the fault-tolerant quantum computation requires impractically large computational resources for useful applications. This is a current major obstacle to the realization of a quantum computer. In particular, magic state distillation, which is a standard approach to universality, consumes the most resources in fault-tolerant quantum computation. For the resource problem, here we propose step-by-step magic state encoding for concatenated quantum codes, where magic states are encoded step by step from the physical level to the logical one. To manage errors during the encoding, we carefully use error detection. Since the sizes of intermediate codes are small, it is expected that the resource overheads will become lower than previous approaches based on the distillation at the logical level. Our simulation results suggest that the resource requirements for a logical magic state will become comparable to those for a single logical controlled-NOT gate. Thus, the present method opens a new possibility for efficient fault-tolerant quantum computation. PMID:25511387

  18. Weak measurements and quantum weak values for NOON states

    NASA Astrophysics Data System (ADS)

    Rosales-Zárate, L.; Opanchuk, B.; Reid, M. D.

    2018-03-01

    Quantum weak values arise when the mean outcome of a weak measurement made on certain preselected and postselected quantum systems goes beyond the eigenvalue range for a quantum observable. Here, we propose how to determine quantum weak values for superpositions of states with a macroscopically or mesoscopically distinct mode number, that might be realized as two-mode Bose-Einstein condensate or photonic NOON states. Specifically, we give a model for a weak measurement of the Schwinger spin of a two-mode NOON state, for arbitrary N . The weak measurement arises from a nondestructive measurement of the two-mode occupation number difference, which for atomic NOON states might be realized via phase contrast imaging and the ac Stark effect using an optical meter prepared in a coherent state. The meter-system coupling results in an entangled cat-state. By subsequently evolving the system under the action of a nonlinear Josephson Hamiltonian, we show how postselection leads to quantum weak values, for arbitrary N . Since the weak measurement can be shown to be minimally invasive, the weak values provide a useful strategy for a Leggett-Garg test of N -scopic realism.

  19. Measurements satisfying the quantum Cramer-Rao equality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luczak, Andrzej

    The situation where the quantum Cramer-Rao inequality for a general measurement becomes equality is analyzed in some detail in the case of a family of pure states. In particular, it turns out that under some natural assumptions, the measurement in question is simple, and the states must have a special form. This fact in turn allows us to obtain in the two-dimensional case a characterization of the pure states for which the quantum Cramer-Rao equality holds.

  20. Deterministic generation of remote entanglement with active quantum feedback

    DOE PAGES

    Martin, Leigh; Motzoi, Felix; Li, Hanhan; ...

    2015-12-10

    We develop and study protocols for deterministic remote entanglement generation using quantum feedback, without relying on an entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can bemore » modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Lastly, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.« less

  1. Functional Basis for Efficient Physical Layer Classical Control in Quantum Processors

    NASA Astrophysics Data System (ADS)

    Ball, Harrison; Nguyen, Trung; Leong, Philip H. W.; Biercuk, Michael J.

    2016-12-01

    The rapid progress seen in the development of quantum-coherent devices for information processing has motivated serious consideration of quantum computer architecture and organization. One topic which remains open for investigation and optimization relates to the design of the classical-quantum interface, where control operations on individual qubits are applied according to higher-level algorithms; accommodating competing demands on performance and scalability remains a major outstanding challenge. In this work, we present a resource-efficient, scalable framework for the implementation of embedded physical layer classical controllers for quantum-information systems. Design drivers and key functionalities are introduced, leading to the selection of Walsh functions as an effective functional basis for both programing and controller hardware implementation. This approach leverages the simplicity of real-time Walsh-function generation in classical digital hardware, and the fact that a wide variety of physical layer controls, such as dynamic error suppression, are known to fall within the Walsh family. We experimentally implement a real-time field-programmable-gate-array-based Walsh controller producing Walsh timing signals and Walsh-synthesized analog waveforms appropriate for critical tasks in error-resistant quantum control and noise characterization. These demonstrations represent the first step towards a unified framework for the realization of physical layer controls compatible with large-scale quantum-information processing.

  2. Enhancing the photon-extraction efficiency of site-controlled quantum dots by deterministically fabricated microlenses

    NASA Astrophysics Data System (ADS)

    Kaganskiy, Arsenty; Fischbach, Sarah; Strittmatter, André; Rodt, Sven; Heindel, Tobias; Reitzenstein, Stephan

    2018-04-01

    We report on the realization of scalable single-photon sources (SPSs) based on single site-controlled quantum dots (SCQDs) and deterministically fabricated microlenses. The fabrication process comprises the buried-stressor growth technique complemented with low-temperature in-situ electron-beam lithography for the integration of SCQDs into microlens structures with high yield and high alignment accuracy. The microlens-approach leads to a broadband enhancement of the photon-extraction efficiency of up to (21 ± 2)% and a high suppression of multi-photon events with g (2)(τ = 0) < 0.06 without background subtraction. The demonstrated combination of site-controlled growth of QDs and in-situ electron-beam lithography is relevant for arrays of efficient SPSs which, can be applied in photonic quantum circuits and advanced quantum computation schemes.

  3. Thermodynamic limits to the efficiency of solar energy conversion by quantum devices

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Byvik, C. E.; Smith, B. T.

    1981-01-01

    The second law of thermodynamics imposes a strict limitation to the energy converted from direct solar radiation to useful work by a quantum device. This limitation requires that the amount of energy converted to useful work (energy in any form other than heat) can be no greater than the change in free energy of the radiation fields. Futhermore, in any real energy conversion device, not all of this available free energy in the radiation field can be converted to work because of basic limitations inherent in the device itself. A thermodynamic analysis of solar energy conversion by a completely general prototypical quantum device is presented. This device is completely described by two parameters, its operating temperature T sub R and the energy threshold of its absorption spectrum. An expression for the maximum thermodynamic efficiency of a quantum solar converter was derived in terms of these two parameters and the incident radiation spectrum. Efficiency curves for assumed solar spectral irradiance corresponding to air mass zero and air mass 1.5 are presented.

  4. Dynamics of quantum measurements employing two Curie-Weiss apparatuses

    NASA Astrophysics Data System (ADS)

    Perarnau-Llobet, Martí; Nieuwenhuizen, Theodorus Maria

    2017-10-01

    Two types of quantum measurements, measuring the spins of an entangled pair and attempting to measure a spin at either of two positions, are analysed dynamically by apparatuses of the Curie-Weiss type. The outcomes comply with the standard postulates. This article is part of the themed issue `Second quantum revolution: foundational questions'.

  5. Tuning the Quantum Efficiency of Random Lasers - Intrinsic Stokes-Shift and Gain

    PubMed Central

    Lubatsch, Andreas; Frank, Regine

    2015-01-01

    We report the theoretical analysis for tuning the quantum efficiency of solid state random lasers. Vollhardt-Wölfle theory of photonic transport in disordered non-conserving and open random media, is coupled to lasing dynamics and solved positionally dependent. The interplay of non-linearity and homogeneous non-radiative frequency conversion by means of a Stokes-shift leads to a reduction of the quantum efficiency of the random laser. At the threshold a strong decrease of the spot-size in the stationary state is found due to the increase of non-radiative losses. The coherently emitted photon number per unit of modal surface is also strongly reduced. This result allows for the conclusion that Stokes-shifts are not sufficient to explain confined and extended mode regimes. PMID:26593237

  6. Tuning the Quantum Efficiency of Random Lasers - Intrinsic Stokes-Shift and Gain.

    PubMed

    Lubatsch, Andreas; Frank, Regine

    2015-11-23

    We report the theoretical analysis for tuning the quantum efficiency of solid state random lasers. Vollhardt-Wölfle theory of photonic transport in disordered non-conserving and open random media, is coupled to lasing dynamics and solved positionally dependent. The interplay of non-linearity and homogeneous non-radiative frequency conversion by means of a Stokes-shift leads to a reduction of the quantum efficiency of the random laser. At the threshold a strong decrease of the spot-size in the stationary state is found due to the increase of non-radiative losses. The coherently emitted photon number per unit of modal surface is also strongly reduced. This result allows for the conclusion that Stokes-shifts are not sufficient to explain confined and extended mode regimes.

  7. Efficiency at maximum power of a laser quantum heat engine enhanced by noise-induced coherence

    NASA Astrophysics Data System (ADS)

    Dorfman, Konstantin E.; Xu, Dazhi; Cao, Jianshu

    2018-04-01

    Quantum coherence has been demonstrated in various systems including organic solar cells and solid state devices. In this article, we report the lower and upper bounds for the performance of quantum heat engines determined by the efficiency at maximum power. Our prediction based on the canonical three-level Scovil and Schulz-Dubois maser model strongly depends on the ratio of system-bath couplings for the hot and cold baths and recovers the theoretical bounds established previously for the Carnot engine. Further, introducing a fourth level to the maser model can enhance the maximal power and its efficiency, thus demonstrating the importance of quantum coherence in the thermodynamics and operation of the heat engines beyond the classical limit.

  8. Predictable quantum efficient detector based on n-type silicon photodiodes

    NASA Astrophysics Data System (ADS)

    Dönsberg, Timo; Manoocheri, Farshid; Sildoja, Meelis; Juntunen, Mikko; Savin, Hele; Tuovinen, Esa; Ronkainen, Hannu; Prunnila, Mika; Merimaa, Mikko; Tang, Chi Kwong; Gran, Jarle; Müller, Ingmar; Werner, Lutz; Rougié, Bernard; Pons, Alicia; Smîd, Marek; Gál, Péter; Lolli, Lapo; Brida, Giorgio; Rastello, Maria Luisa; Ikonen, Erkki

    2017-12-01

    The predictable quantum efficient detector (PQED) consists of two custom-made induced junction photodiodes that are mounted in a wedged trap configuration for the reduction of reflectance losses. Until now, all manufactured PQED photodiodes have been based on a structure where a SiO2 layer is thermally grown on top of p-type silicon substrate. In this paper, we present the design, manufacturing, modelling and characterization of a new type of PQED, where the photodiodes have an Al2O3 layer on top of n-type silicon substrate. Atomic layer deposition is used to deposit the layer to the desired thickness. Two sets of photodiodes with varying oxide thicknesses and substrate doping concentrations were fabricated. In order to predict recombination losses of charge carriers, a 3D model of the photodiode was built into Cogenda Genius semiconductor simulation software. It is important to note that a novel experimental method was developed to obtain values for the 3D model parameters. This makes the prediction of the PQED responsivity a completely autonomous process. Detectors were characterized for temperature dependence of dark current, spatial uniformity of responsivity, reflectance, linearity and absolute responsivity at the wavelengths of 488 nm and 532 nm. For both sets of photodiodes, the modelled and measured responsivities were generally in agreement within the measurement and modelling uncertainties of around 100 parts per million (ppm). There is, however, an indication that the modelled internal quantum deficiency may be underestimated by a similar amount. Moreover, the responsivities of the detectors were spatially uniform within 30 ppm peak-to-peak variation. The results obtained in this research indicate that the n-type induced junction photodiode is a very promising alternative to the existing p-type detectors, and thus give additional credibility to the concept of modelled quantum detector serving as a primary standard. Furthermore, the manufacturing of

  9. Out-of-time-ordered measurements as a probe of quantum dynamics

    NASA Astrophysics Data System (ADS)

    Bordia, Pranjal; Alet, Fabien; Hosur, Pavan

    2018-03-01

    Probing the out-of-equilibrium dynamics of quantum matter has gained renewed interest owing to immense experimental progress in artificial quantum systems. Dynamical quantum measures such as the growth of entanglement entropy and out-of-time-ordered correlators (OTOCs) have been shown to provide great insight by exposing subtle quantum features invisible to traditional measures such as mass transport. However, measuring them in experiments requires either identical copies of the system, an ancilla qubit coupled to the whole system, or many measurements on a single copy, thereby making scalability extremely complex and hence, severely limiting their potential. Here, we introduce an alternative quantity, the out-of-time-ordered measurement (OTOM), which involves measuring a single observable on a single copy of the system, while retaining the distinctive features of the OTOCs. We show, theoretically, that OTOMs are closely related to OTOCs in a doubled system with the same quantum statistical properties as the original system. Using exact diagonalization, we numerically simulate classical mass transport, as well as quantum dynamics through computations of the OTOC, the OTOM, and the entanglement entropy in quantum spin chain models in various interesting regimes (including chaotic and many-body localized systems). Our results demonstrate that an OTOM can successfully reveal subtle aspects of quantum dynamics hidden to classical measures and, crucially, provide experimental access to them.

  10. Towards the Fundamental Quantum Limit of Linear Measurements of Classical Signals

    NASA Astrophysics Data System (ADS)

    Miao, Haixing; Adhikari, Rana X.; Ma, Yiqiu; Pang, Belinda; Chen, Yanbei

    2017-08-01

    The quantum Cramér-Rao bound (QCRB) sets a fundamental limit for the measurement of classical signals with detectors operating in the quantum regime. Using linear-response theory and the Heisenberg uncertainty relation, we derive a general condition for achieving such a fundamental limit. When applied to classical displacement measurements with a test mass, this condition leads to an explicit connection between the QCRB and the standard quantum limit that arises from a tradeoff between the measurement imprecision and quantum backaction; the QCRB can be viewed as an outcome of a quantum nondemolition measurement with the backaction evaded. Additionally, we show that the test mass is more a resource for improving measurement sensitivity than a victim of the quantum backaction, which suggests a new approach to enhancing the sensitivity of a broad class of sensors. We illustrate these points with laser interferometric gravitational-wave detectors.

  11. Noninvasive Quantum Measurement of Arbitrary Operator Order by Engineered Non-Markovian Detectors

    NASA Astrophysics Data System (ADS)

    Bülte, Johannes; Bednorz, Adam; Bruder, Christoph; Belzig, Wolfgang

    2018-04-01

    The development of solid-state quantum technologies requires the understanding of quantum measurements in interacting, nonisolated quantum systems. In general, a permanent coupling of detectors to a quantum system leads to memory effects that have to be taken into account in interpreting the measurement results. We analyze a generic setup of two detectors coupled to a quantum system and derive a compact formula in the weak-measurement limit that interpolates between an instantaneous (text-book type) and almost continuous—detector dynamics-dependent—measurement. A quantum memory effect that we term "system-mediated detector-detector interaction" is crucial to observe noncommuting observables simultaneously. Finally, we propose a mesoscopic double-dot detector setup in which the memory effect is tunable and that can be used to explore the transition to non-Markovian quantum measurements experimentally.

  12. Large efficiency at telecom wavelength for optical quantum memories.

    PubMed

    Dajczgewand, Julián; Le Gouët, Jean-Louis; Louchet-Chauvet, Anne; Chanelière, Thierry

    2014-05-01

    We implement the ROSE protocol in an erbium-doped solid, compatible with the telecom range. The ROSE scheme is an adaptation of the standard two-pulse photon echo to make it suitable for a quantum memory. We observe a retrieval efficiency of 40% for a weak laser pulse in the forward direction by using specific orientations of the light polarizations, magnetic field, and crystal axes.

  13. Deterministic Placement of Quantum-Size Controlled Quantum Dots for Seamless Top-Down Integration

    DOE PAGES

    Fischer, Arthur J.; Anderson, P. Duke; Koleske, Daniel D.; ...

    2017-08-18

    We demonstrate a new route toward the integration and deterministic placement of quantum dots (QDs) within prepatterned nanostructures. Using standard electron-beam lithography (EBL) and inductively coupled plasma reactive-ion etching (ICP-RIE), we fabricate arrays of nanowires on a III-nitride platform. Next, we integrate QDs of controlled size within the prepatterned nanowires using a bandgap-selective, wet-etching technique: quantum-size-controlled photoelectrochemical (QSC-PEC) etching. Low-temperature microphotoluminescence (μ-PL) measurements of individual nanowires reveal sharp spectral signatures, indicative of QD formation. Further, internal quantum efficiency (IQE) measurements reveal a near order of magnitude improvement in emitter efficiency following QSC-PEC etching. Finally, second-order cross-correlation (g(2)(0)) measurements of individualmore » QDs directly confirm nonclassical, antibunching behavior. Lastly, our results illustrate an exciting approach toward the top-down integration of nonclassical light sources within nanophotonic platforms.« less

  14. Deterministic Placement of Quantum-Size Controlled Quantum Dots for Seamless Top-Down Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Arthur J.; Anderson, P. Duke; Koleske, Daniel D.

    We demonstrate a new route toward the integration and deterministic placement of quantum dots (QDs) within prepatterned nanostructures. Using standard electron-beam lithography (EBL) and inductively coupled plasma reactive-ion etching (ICP-RIE), we fabricate arrays of nanowires on a III-nitride platform. Next, we integrate QDs of controlled size within the prepatterned nanowires using a bandgap-selective, wet-etching technique: quantum-size-controlled photoelectrochemical (QSC-PEC) etching. Low-temperature microphotoluminescence (μ-PL) measurements of individual nanowires reveal sharp spectral signatures, indicative of QD formation. Further, internal quantum efficiency (IQE) measurements reveal a near order of magnitude improvement in emitter efficiency following QSC-PEC etching. Finally, second-order cross-correlation (g(2)(0)) measurements of individualmore » QDs directly confirm nonclassical, antibunching behavior. Lastly, our results illustrate an exciting approach toward the top-down integration of nonclassical light sources within nanophotonic platforms.« less

  15. Improved efficiency of InGaN/GaN-based multiple quantum well solar cells by reducing contact resistance

    NASA Astrophysics Data System (ADS)

    Song, Jun-Hyuk; Oh, Joon-Ho; Shim, Jae-Phil; Min, Jung-Hong; Lee, Dong-Seon; Seong, Tae-Yeon

    2012-08-01

    We report on the improvement in the performance of InGaN/GaN multi-quantum well-based solar cells by the introduction of a Cu-doped indium oxide (CIO) layer at the interface between indium tin oxide (ITO) p-electrode and p-GaN. The solar cell fabricated with the 3 nm-sample exhibits an external quantum efficiency of 29.8% (at a peak wavelength of 376 nm) higher than those (25.2%) of the cell with the ITO-only sample. The use of the 3-nm-thick CIO layer gives higher short circuit current density (0.72 mA/cm2) and fill factor (78.85%) as compared to those (0.65 mA/cm2 and 74.08%) of the ITO only sample. Measurements show that the conversion efficiency of the solar cells with the ITO-only sample and the 3 nm-sample is 1.12% and 1.30%, respectively. Based on their electrical and optical properties, the dependence of the CIO interlayer thickness on the efficiency of solar cells is discussed.

  16. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation

    NASA Astrophysics Data System (ADS)

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-01

    Light isotopes separation, such as 3He/4He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as 3He/4He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high 3He/4He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application.

  17. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction

    NASA Astrophysics Data System (ADS)

    Lei, Fengcai; Liu, Wei; Sun, Yongfu; Xu, Jiaqi; Liu, Katong; Liang, Liang; Yao, Tao; Pan, Bicai; Wei, Shiqiang; Xie, Yi

    2016-09-01

    Ultrathin metal layers can be highly active carbon dioxide electroreduction catalysts, but may also be prone to oxidation. Here we construct a model of graphene confined ultrathin layers of highly reactive metals, taking the synthetic highly reactive tin quantum sheets confined in graphene as an example. The higher electrochemical active area ensures 9 times larger carbon dioxide adsorption capacity relative to bulk tin, while the highly-conductive graphene favours rate-determining electron transfer from carbon dioxide to its radical anion. The lowered tin-tin coordination numbers, revealed by X-ray absorption fine structure spectroscopy, enable tin quantum sheets confined in graphene to efficiently stabilize the carbon dioxide radical anion, verified by 0.13 volts lowered potential of hydroxyl ion adsorption compared with bulk tin. Hence, the tin quantum sheets confined in graphene show enhanced electrocatalytic activity and stability. This work may provide a promising lead for designing efficient and robust catalysts for electrolytic fuel synthesis.

  18. The quantum efficiency of HgCdTe photodiodes in relation to the direction of illumination and to their geometry

    NASA Technical Reports Server (NTRS)

    Rosenfeld, D.; Bahir, G.

    1993-01-01

    A theoretical study of the effect of the direction of the incident light on the quantum efficiency of homogeneous HgCdTe photodiodes suitable for sensing infrared radiation in the 8-12 microns atmospheric window is presented. The probability of an excess minority carrier to reach the junction is derived as a function of its distance from the edge of the depletion region. Accordingly, the quantum efficiency of photodiodes is presented for two geometries. In the first, the light is introduced directly to the area in which it is absorbed (opaque region), while in the second, the light passes through a transparent region before it reaches the opaque region. Finally, the performance of the two types of diodes is analyzed with the objective of finding the optimal width of the absorption area. The quantum efficiency depends strongly on the way in which the light is introduced. The structure in which the radiation is absorbed following its crossing the transparent region is associated with both higher quantum efficiency and homogeneity. In addition, for absorption region widths higher than a certain minimum, the quantum efficiency in this case is insensitive to the width of the absorption region.

  19. PsiQuaSP-A library for efficient computation of symmetric open quantum systems.

    PubMed

    Gegg, Michael; Richter, Marten

    2017-11-24

    In a recent publication we showed that permutation symmetry reduces the numerical complexity of Lindblad quantum master equations for identical multi-level systems from exponential to polynomial scaling. This is important for open system dynamics including realistic system bath interactions and dephasing in, for instance, the Dicke model, multi-Λ system setups etc. Here we present an object-oriented C++ library that allows to setup and solve arbitrary quantum optical Lindblad master equations, especially those that are permutationally symmetric in the multi-level systems. PsiQuaSP (Permutation symmetry for identical Quantum Systems Package) uses the PETSc package for sparse linear algebra methods and differential equations as basis. The aim of PsiQuaSP is to provide flexible, storage efficient and scalable code while being as user friendly as possible. It is easily applied to many quantum optical or quantum information systems with more than one multi-level system. We first review the basics of the permutation symmetry for multi-level systems in quantum master equations. The application of PsiQuaSP to quantum dynamical problems is illustrated with several typical, simple examples of open quantum optical systems.

  20. External quantum efficiency exceeding 100% in a singlet-exciton-fission-based solar cell

    NASA Astrophysics Data System (ADS)

    Baldo, Marc

    2013-03-01

    Singlet exciton fission can be used to split a molecular excited state in two. In solar cells, it promises to double the photocurrent from high energy photons, thereby breaking the single junction efficiency limit. We demonstrate organic solar cells that exploit singlet exciton fission in pentacene to generate more than one electron per incident photon in the visible spectrum. Using a fullerene acceptor, a poly(3-hexylthiophene) exciton confinement layer, and a conventional optical trapping scheme, the peak external quantum efficiency is (109 +/-1)% at λ = 670 nm for a 15-nm-thick pentacene film. The corresponding internal quantum efficiency is (160 +/-10)%. Independent confirmation of the high internal efficiency is obtained by analysis of the magnetic field effect on photocurrent, which determines that the triplet yield approaches 200% for pentacene films thicker than 5 nm. To our knowledge, this is the first solar cell to generate quantum efficiencies above 100% in the visible spectrum. Alternative multiple exciton generation approaches have been demonstrated previously in the ultraviolet, where there is relatively little sunlight. Singlet exciton fission differs from these other mechanisms because spin conservation disallows the usual dominant loss process: a thermal relaxation of the high-energy exciton into a single low-energy exciton. Consequently, pentacene is efficient in the visible spectrum at λ = 670 nm because only the collapse of the singlet exciton into twotriplets is spin-allowed. Supported as part of the Center for Excitonics, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001088.

  1. High-efficiency Gaussian key reconciliation in continuous variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Bai, ZengLiang; Wang, XuYang; Yang, ShenShen; Li, YongMin

    2016-01-01

    Efficient reconciliation is a crucial step in continuous variable quantum key distribution. The progressive-edge-growth (PEG) algorithm is an efficient method to construct relatively short block length low-density parity-check (LDPC) codes. The qua-sicyclic construction method can extend short block length codes and further eliminate the shortest cycle. In this paper, by combining the PEG algorithm and qua-si-cyclic construction method, we design long block length irregular LDPC codes with high error-correcting capacity. Based on these LDPC codes, we achieve high-efficiency Gaussian key reconciliation with slice recon-ciliation based on multilevel coding/multistage decoding with an efficiency of 93.7%.

  2. Quantum measurement incompatibility does not imply Bell nonlocality

    NASA Astrophysics Data System (ADS)

    Hirsch, Flavien; Quintino, Marco Túlio; Brunner, Nicolas

    2018-01-01

    We discuss the connection between the incompatibility of quantum measurements, as captured by the notion of joint measurability, and the violation of Bell inequalities. Specifically, we explicitly present a given set of non-jointly-measurable positive-operator-value measures (POVMs) MA with the following property. Considering a bipartite Bell test where Alice uses MA, then for any possible shared entangled state ρ and any set of (possibly infinitely many) POVMs NB performed by Bob, the resulting statistics admits a local model and can thus never violate any Bell inequality. This shows that quantum measurement incompatibility does not imply Bell nonlocality in general.

  3. Study of a monogamous entanglement measure for three-qubit quantum systems

    NASA Astrophysics Data System (ADS)

    Li, Qiting; Cui, Jianlian; Wang, Shuhao; Long, Gui-Lu

    2016-06-01

    The entanglement quantification and classification of multipartite quantum states is an important research area in quantum information. In this paper, in terms of the reduced density matrices corresponding to all possible partitions of the entire system, a bounded entanglement measure is constructed for arbitrary-dimensional multipartite quantum states. In particular, for three-qubit quantum systems, we prove that our entanglement measure satisfies the relation of monogamy. Furthermore, we present a necessary condition for characterizing maximally entangled states using our entanglement measure.

  4. Enhancement of Radiative Efficiency with Staggered InGaN Quantum Well Light Emitting Diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tansu, Nelson; Dierolf, Volkmar; Huang, Gensheng

    2011-07-14

    The technology on the large overlap InGaN QWs developed in this program is currently implemented in commercial technology in enhancing the internal quantum efficiency in major LED industry in US and Asia. The scientific finding from this work supported by the DOE enabled the implementation of this step-like staggered quantum well in the commercial LEDs.

  5. Implementation of generalized quantum measurements: Superadditive quantum coding, accessible information extraction, and classical capacity limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeoka, Masahiro; Fujiwara, Mikio; Mizuno, Jun

    2004-05-01

    Quantum-information theory predicts that when the transmission resource is doubled in quantum channels, the amount of information transmitted can be increased more than twice by quantum-channel coding technique, whereas the increase is at most twice in classical information theory. This remarkable feature, the superadditive quantum-coding gain, can be implemented by appropriate choices of code words and corresponding quantum decoding which requires a collective quantum measurement. Recently, an experimental demonstration was reported [M. Fujiwara et al., Phys. Rev. Lett. 90, 167906 (2003)]. The purpose of this paper is to describe our experiment in detail. Particularly, a design strategy of quantum-collective decodingmore » in physical quantum circuits is emphasized. We also address the practical implication of the gain on communication performance by introducing the quantum-classical hybrid coding scheme. We show how the superadditive quantum-coding gain, even in a small code length, can boost the communication performance of conventional coding techniques.« less

  6. Intermediate band solar cell with extreme broadband spectrum quantum efficiency.

    PubMed

    Datas, A; López, E; Ramiro, I; Antolín, E; Martí, A; Luque, A; Tamaki, R; Shoji, Y; Sogabe, T; Okada, Y

    2015-04-17

    We report, for the first time, about an intermediate band solar cell implemented with InAs/AlGaAs quantum dots whose photoresponse expands from 250 to ∼6000  nm. To our knowledge, this is the broadest quantum efficiency reported to date for a solar cell and demonstrates that the intermediate band solar cell is capable of producing photocurrent when illuminated with photons whose energy equals the energy of the lowest band gap. We show experimental evidence indicating that this result is in agreement with the theory of the intermediate band solar cell, according to which the generation recombination between the intermediate band and the valence band makes this photocurrent detectable.

  7. Limits to solar power conversion efficiency with applications to quantum and thermal systems

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Buoncristiani, A. M.; Smith, B. T.

    1983-01-01

    An analytical framework is presented that permits examination of the limit to the efficiency of various solar power conversion devices. Thermodynamic limits to solar power efficiency are determined for both quantum and thermal systems, and the results are applied to a variety of devices currently considered for use in space systems. The power conversion efficiency for single-threshold energy quantum systems receiving unconcentrated air mass zero solar radiation is limited to 31 percent. This limit applies to photovoltaic cells directly converting solar radiation, or indirectly, as in the case of a thermophotovoltaic system. Photoelectrochemical cells rely on an additional chemical reaction at the semiconductor-electrolyte interface, which introduces additional second-law demands and a reduction of the solar conversion efficiency. Photochemical systems exhibit even lower possible efficiencies because of their relatively narrow absorption bands. Solar-powered thermal engines in contact with an ambient reservoir at 300 K and operating at maximum power have a peak conversion efficiency of 64 percent, and this occurs for a thermal reservoir at a temperature of 2900 K. The power conversion efficiency of a solar-powered liquid metal magnetohydrodydnamic generator, a solar-powered steam turbine electric generator, and an alkali metal thermoelectric converter is discussed.

  8. Characterization of Quantum Efficiency and Robustness of Cesium-Based Photocathodes

    DTIC Science & Technology

    2010-01-01

    photocathodes produce picosecond-pulsed, high- current electron beams for photoinjection applications like free electron lasers . In photoinjectors, a...pulsed drive laser incident on the photocathode causes photoemission of short, dense bunches of electrons, which are then accelerated into a...relativistic, high quality beam. Future free electron lasers demand reliable photocathodes with long-lived quantum efficiency at suitable drive laser

  9. Onset of the Efficiency Droop in GaInN Quantum Well Light-Emitting Diodes under Photoluminescence and Electroluminescence Excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Guan-Bo; Schubert, E. Fred; Cho, Jaehee

    2015-08-19

    The efficiency of Ga0.87In0.13N/GaN single and multiple quantum well (QW) light-emitting diodes is investigated under photoluminescence (PL) and electroluminescence (EL) excitation. By measuring the laser spot area (knife-edge method) and the absorbance of the GaInN QW (transmittance/reflectance measurements), the PL excitation density can be converted to an equivalent EL excitation density. The EL efficiency droop-onset occurs at an excitation density of 2.08 × 1026 cm–3 s–1 (J = 10 A/cm2), whereas no PL efficiency droop is found for excitation densities as high as 3.11 × 1027 cm–3 s–1 (J = 149 A/cm2). Considering Shockley–Read–Hall, radiative, and Auger recombination and includingmore » carrier leakage shows that the EL efficiency droop is consistent with a reduction of injection efficiency.« less

  10. Exploring Quantum Dynamics of Continuous Measurement with a Superconducting Qubit

    NASA Astrophysics Data System (ADS)

    Jadbabaie, Arian; Forouzani, Neda; Tan, Dian; Murch, Kater

    Weak measurements obtain partial information about a quantum state with minimal backaction. This enables state tracking without immediate collapse to eigenstates, of interest to both experimental and theoretical physics. State tomography and continuous weak measurements may be used to reconstruct the evolution of a single system, known as a quantum trajectory. We examine experimental trajectories of a two-level system at varied measurement strengths with constant unitary drive. Our analysis is applied to a transmon qubit dispersively coupled to a 3D microwave cavity in the circuit QED architecture. The weakly coupled cavity acts as pointer system for QND measurements in the qubit's energy basis. Our results indicate a marked difference in state purity between two approaches for trajectory reconstruction: the Bayesian and Stochastic Master Equation (SME) formalisms. Further, we observe the transition from diffusive to jump-like trajectories, state purity evolution, and a novel, tilted form of the Quantum Zeno effect. This work provides new insight into quantum behavior and prompts further comparison of SME and Bayesian formalisms to understand the nature of quantum systems. Our results are applicable to a variety of fields, from stochastic thermodynamics to quantum control.

  11. Interaction-free measurement as quantum channel discrimination

    NASA Astrophysics Data System (ADS)

    Zhou, You; Yung, Man-Hong

    2017-12-01

    Interaction-free measurement is a quantum process where, in the ideal situation, an object can be detected as if no interaction took place with the probing photon. Here we show that the problem of interaction-free measurement can be regarded as a problem of quantum-channel discrimination. In particular, we look for the optimal photonic states that can minimize the detection error and the photon loss in detecting the presence or absence of the object, which is taken to be semitransparent, and the number of the interrogation cycle is assumed to be finite. Furthermore, we also investigated the possibility of minimizing the detection error through the use of entangled photons, which is essentially a setting of quantum illumination. However, our results indicate that entanglement does not exhibit a clear advantage; the same performance can be achieved with unentangled photonic states.

  12. Conversion efficiency of an energy harvester based on resonant tunneling through quantum dots with heat leakage.

    PubMed

    Kano, Shinya; Fujii, Minoru

    2017-03-03

    We study the conversion efficiency of an energy harvester based on resonant tunneling through quantum dots with heat leakage. Heat leakage current from a hot electrode to a cold electrode is taken into account in the analysis of the harvester operation. Modeling of electrical output indicates that a maximum heat leakage current is not negligible because it is larger than that of the heat current harvested into electrical power. A reduction of heat leakage is required in this energy harvester in order to obtain efficient heat-to-electrical conversion. Multiple energy levels of a quantum dot can increase the output power of the harvester. Heavily doped colloidal semiconductor quantum dots are a possible candidate for a quantum-dot monolayer in the energy harvester to reduce heat leakage, scaling down device size, and increasing electrical output via multiple discrete energy levels.

  13. Exploring quantum thermodynamics in continuous measurement of superconducting qubits

    NASA Astrophysics Data System (ADS)

    Murch, Kater

    The extension of thermodynamics into the realm of quantum mechanics, where quantum fluctuations dominate and systems need not occupy definite states, poses unique challenges. Superconducting quantum circuits offer exquisite control over the environment of simple quantum systems allowing the exploration of thermodynamics at the quantum level through measurement and feedback control. We use a superconducting transmon qubit that is resonantly coupled to a waveguide cavity as an effectively one-dimensional quantum emitter. By driving the emitter and detecting the fluorescence with a near-quantum-limited Josephson parametric amplifier, we track the evolution of the quantum state and characterize the work and heat along single quantum trajectories. By using quantum feedback control to compensate for heat exchanged with the emitter's environment we are able to extract the work statistics associated with the quantum evolution and examine fundamental fluctuation theorems in non-equilibrium thermodynamics. This work was supported by the Alfred P. Sloan Foundation, the National Science Foundation, and the Office of Naval Research.

  14. Partial Measurements and the Realization of Quantum-Mechanical Counterfactuals

    NASA Astrophysics Data System (ADS)

    Paraoanu, G. S.

    2011-07-01

    We propose partial measurements as a conceptual tool to understand how to operate with counterfactual claims in quantum physics. Indeed, unlike standard von Neumann measurements, partial measurements can be reversed probabilistically. We first analyze the consequences of this rather unusual feature for the principle of superposition, for the complementarity principle, and for the issue of hidden variables. Then we move on to exploring non-local contexts, by reformulating the EPR paradox, the quantum teleportation experiment, and the entanglement-swapping protocol for the situation in which one uses partial measurements followed by their stochastic reversal. This leads to a number of counter-intuitive results, which are shown to be resolved if we give up the idea of attributing reality to the wavefunction of a single quantum system.

  15. The effect of nonadiabaticity on the efficiency of quantum memory based on an optical cavity

    NASA Astrophysics Data System (ADS)

    Veselkova, N. G.; Sokolov, I. V.

    2017-07-01

    Quantum efficiency is an important characteristic of quantum memory devices that are aimed at recording the quantum state of light signals and its storing and reading. In the case of memory based on an ensemble of cold atoms placed in an optical cavity, the efficiency is restricted, in particular, by relaxation processes in the system of active atomic levels. We show how the effect of the relaxation on the quantum efficiency can be determined in a regime of the memory usage in which the evolution of signals in time is not arbitrarily slow on the scale of the field lifetime in the cavity and when the frequently used approximation of the adiabatic elimination of the quantized cavity mode field cannot be applied. Taking into account the effect of the nonadiabaticity on the memory quality is of interest in view of the fact that, in order to increase the field-medium coupling parameter, a higher cavity quality factor is required, whereas storing and processing of sequences of many signals in the memory implies that their duration is reduced. We consider the applicability of the well-known efficiency estimates via the system cooperativity parameter and estimate a more general form. In connection with the theoretical description of the memory of the given type, we also discuss qualitative differences in the behavior of a random source introduced into the Heisenberg-Langevin equations for atomic variables in the cases of a large and a small number of atoms.

  16. Direct quantum process tomography via measuring sequential weak values of incompatible observables.

    PubMed

    Kim, Yosep; Kim, Yong-Su; Lee, Sang-Yun; Han, Sang-Wook; Moon, Sung; Kim, Yoon-Ho; Cho, Young-Wook

    2018-01-15

    The weak value concept has enabled fundamental studies of quantum measurement and, recently, found potential applications in quantum and classical metrology. However, most weak value experiments reported to date do not require quantum mechanical descriptions, as they only exploit the classical wave nature of the physical systems. In this work, we demonstrate measurement of the sequential weak value of two incompatible observables by making use of two-photon quantum interference so that the results can only be explained quantum physically. We then demonstrate that the sequential weak value measurement can be used to perform direct quantum process tomography of a qubit channel. Our work not only demonstrates the quantum nature of weak values but also presents potential new applications of weak values in analyzing quantum channels and operations.

  17. Optimal Power and Efficiency of Quantum Thermoacoustic Micro-cycle Working in 1D Harmonic Trap

    NASA Astrophysics Data System (ADS)

    E, Qing; Wu, Feng; Yin, Yong; Liu, XiaoWei

    2017-10-01

    Thermoacoustic engines (including heat engines and refrigerators) are energy conversion devices without moving part. They have great potential in aviation, new energy utilization, power technology, refrigerating and cryogenics. The thermoacoustic parcels, which compose the working fluid of a thermoacoustic engine, oscillate within the sound channel with a temperature gradient. The thermodynamic foundation of a thermoacoustic engine is the thermoacoustic micro-cycle (TAMC). In this paper, the theory of quantum mechanics is applied to the study of the actual thermoacoustic micro-cycle for the first time. A quantum mechanics model of the TAMC working in a 1D harmonic trap, which is named as a quantum thermoacoustic micro-cycle (QTAMC), is established. The QTAMC is composed of two constant force processes connected by two straight line processes. Analytic expressions of the power output and the efficiency for QTAMC have been derived. The effects of the trap width and the temperature amplitude on the power output and the thermal efficiency have been discussed. Some optimal characteristic curves of power output versus efficiency are plotted, and then the optimization region of QTAMC is given in this paper. The results obtained here not only enrich the thermoacoustic theory but also expand the application of quantum thermodynamics.

  18. Quantum efficiencies exceeding unity in amorphous silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanmaekelbergh, D.; Lagemaat, J. van de; Schropp, R.E.I.

    1994-12-31

    The experimental observation of internal quantum efficiencies above unity in crystalline silicon solar cells has brought up the question whether the generation of multiple electron/hole pairs has to be taken into consideration also in solar cells based on direct gap amorphous semiconductors. To study photogenerated carrier dynamics, the authors have applied Intensity Modulated Photocurrent Spectroscopy (IMPS) to hydrogenated amorphous silicon p-i-n solar cells. In the reverse voltage bias region at low illumination intensities it has been observed that the low frequency limit of the AC quantum yield Y increases significantly above unit with decreasing light intensity, indicating that more thanmore » one electron per photon is detected in the external circuit. This phenomenon can be explained by considering trapping and thermal emission of photogenerated carriers at intragap atmospheric dangling bond defect centers.« less

  19. Efficient steady-state solver for hierarchical quantum master equations

    NASA Astrophysics Data System (ADS)

    Zhang, Hou-Dao; Qiao, Qin; Xu, Rui-Xue; Zheng, Xiao; Yan, YiJing

    2017-07-01

    Steady states play pivotal roles in many equilibrium and non-equilibrium open system studies. Their accurate evaluations call for exact theories with rigorous treatment of system-bath interactions. Therein, the hierarchical equations-of-motion (HEOM) formalism is a nonperturbative and non-Markovian quantum dissipation theory, which can faithfully describe the dissipative dynamics and nonlinear response of open systems. Nevertheless, solving the steady states of open quantum systems via HEOM is often a challenging task, due to the vast number of dynamical quantities involved. In this work, we propose a self-consistent iteration approach that quickly solves the HEOM steady states. We demonstrate its high efficiency with accurate and fast evaluations of low-temperature thermal equilibrium of a model Fenna-Matthews-Olson pigment-protein complex. Numerically exact evaluation of thermal equilibrium Rényi entropies and stationary emission line shapes is presented with detailed discussion.

  20. On the front and back side quantum efficiency differences in semi-transparent organic solar cells and photodiodes

    NASA Astrophysics Data System (ADS)

    Bouthinon, B.; Clerc, R.; Verilhac, J. M.; Racine, B.; De Girolamo, J.; Jacob, S.; Lienhard, P.; Joimel, J.; Dhez, O.; Revaux, A.

    2018-03-01

    The External Quantum Efficiency (EQE) of semi-transparent Bulk Hetero-Junction (BHJ) organic photodiodes processed in air shows significant differences when measured from the front or back side contacts. This difference was found significantly reduced when decreasing the active layer thickness or by applying a negative bias. This work brings new elements to help understanding this effect, providing a large set of experiments featuring different applied voltages, active layers, process conditions, and electron and hole layers. By means of detailed electrical simulations, all these measurements have been found consistent with the mechanisms of irreversible photo-oxidation, modeled as deep trap states (and not as p-type doping). The EQE measurement from front and back sides is thus a simple and efficient way of monitoring the presence and amplitude of oxygen contamination in BHJ organic solar cells and photodiodes.

  1. Flexible deep-ultraviolet light-emitting diodes for significant improvement of quantum efficiencies by external bending

    NASA Astrophysics Data System (ADS)

    Shervin, Shahab; Oh, Seung Kyu; Park, Hyun Jung; Lee, Keon-Hwa; Asadirad, Mojtaba; Kim, Seung-Hwan; Kim, Jeomoh; Pouladi, Sara; Lee, Sung-Nam; Li, Xiaohang; Kwak, Joon Seop; Ryou, Jae-Hyun

    2018-03-01

    We report a new route to improve quantum efficiencies of AlGaN-based deep-ultraviolet light-emitting diodes (DUV LEDs) using mechanical flexibility of recently developed bendable thin-film structures. Numerical studies show that electronic band structures of AlGaN heterostructures and resulting optical and electrical characteristics of the devices can be significantly modified by external bending through active control of piezoelectric polarization. Internal quantum efficiency is enhanced higher than three times, when the DUV LEDs are moderately bent with concave curvatures. Furthermore, an efficiency droop at high injection currents is mitigated and turn-on voltage of diodes decreases with the same bending condition. The concept of bendable DUV LEDs with a controlled external strain can provide a new path for high-output-power and high-efficiency devices.

  2. Efficient linear criterion for witnessing Einstein-Podolsky-Rosen nonlocality under many-setting local measurements

    NASA Astrophysics Data System (ADS)

    Zheng, Yu-Lin; Zhen, Yi-Zheng; Chen, Zeng-Bing; Liu, Nai-Le; Chen, Kai; Pan, Jian-Wei

    2017-01-01

    The striking and distinctive nonlocal features of quantum mechanics were discovered by Einstein, Podolsky, and Rosen (EPR) beyond classical physics. At the core of the EPR argument, it was "steering" that Schrödinger proposed in 1935. Besides its fundamental significance, quantum steering opens up a novel application for quantum communication. Recent work has precisely characterized its properties; however, witnessing the EPR nonlocality remains a big challenge under arbitrary local measurements. Here we present an alternative linear criterion and complement existing results to efficiently testify steering for high-dimensional system in practice. By developing a novel and analytical method to tackle the maximization problem in deriving the bound of a steering criterion, we show how observed correlations can reveal powerfully the EPR nonlocality in an easily accessed manner. Although the criteria is not necessary and sufficient, it can recover some of the known results under a few settings of local measurements and is applicable even if the size of the system or the number of measurement settings are high. Remarkably, a deep connection is explicitly established between the steering and amount of entanglement. The results promise viable paths for secure communication with an untrusted source, providing optional loophole-free tests of the EPR nonlocality for high-dimensional states, as well as motivating solutions for other related problems in quantum information theory.

  3. Stability of continuous-time quantum filters with measurement imperfections

    NASA Astrophysics Data System (ADS)

    Amini, H.; Pellegrini, C.; Rouchon, P.

    2014-07-01

    The fidelity between the state of a continuously observed quantum system and the state of its associated quantum filter, is shown to be always a submartingale. The observed system is assumed to be governed by a continuous-time Stochastic Master Equation (SME), driven simultaneously by Wiener and Poisson processes and that takes into account incompleteness and errors in measurements. This stability result is the continuous-time counterpart of a similar stability result already established for discrete-time quantum systems and where the measurement imperfections are modelled by a left stochastic matrix.

  4. Measurement and quantum indeterminateness

    NASA Astrophysics Data System (ADS)

    Healey, Richard

    1993-08-01

    Albert and Loewer[1] have recently clarified their earlier objection to the interactive interpretation presented in Healey[2]. They now charge that this interpretation fails to solve a problem of which the measurement problem is but a special case. The general problem is to reconcile quantum mechanics with the prima facie determinateness of such dynamical properties as the positions of macroscopic objects. In response I defend both the preeminent significance of determinate measurement outcomes and the claim that the models of Healey[3] go a long way toward securing their determinateness.

  5. Laser diode arrays based on AlGaAs/GaAs quantum-well heterostructures with an efficiency up to 62%

    NASA Astrophysics Data System (ADS)

    Ladugin, M. A.; Marmalyuk, A. A.; Padalitsa, A. A.; Telegin, K. Yu; Lobintsov, A. V.; Sapozhnikov, S. M.; Danilov, A. I.; Podkopaev, A. V.; Simakov, V. A.

    2017-08-01

    The results of development of quasi-cw laser diode arrays operating at a wavelength of 808 nm with a high efficiency are demonstrated. The laser diodes are based on semiconductor AlGaAs/GaAs quantum-well heterostructures grown by MOCVD. The measured spectral, spatial, electric and power characteristics are presented. The output optical power of the array with an emitting area of 5 × 10 mm is 2.7 kW at a pump current of 100 A, and the maximum efficiency reaches 62%.

  6. Error regions in quantum state tomography: computational complexity caused by geometry of quantum states

    NASA Astrophysics Data System (ADS)

    Suess, Daniel; Rudnicki, Łukasz; maciel, Thiago O.; Gross, David

    2017-09-01

    The outcomes of quantum mechanical measurements are inherently random. It is therefore necessary to develop stringent methods for quantifying the degree of statistical uncertainty about the results of quantum experiments. For the particularly relevant task of quantum state tomography, it has been shown that a significant reduction in uncertainty can be achieved by taking the positivity of quantum states into account. However—the large number of partial results and heuristics notwithstanding—no efficient general algorithm is known that produces an optimal uncertainty region from experimental data, while making use of the prior constraint of positivity. Here, we provide a precise formulation of this problem and show that the general case is NP-hard. Our result leaves room for the existence of efficient approximate solutions, and therefore does not in itself imply that the practical task of quantum uncertainty quantification is intractable. However, it does show that there exists a non-trivial trade-off between optimality and computational efficiency for error regions. We prove two versions of the result: one for frequentist and one for Bayesian statistics.

  7. Energy-efficient quantum computing

    NASA Astrophysics Data System (ADS)

    Ikonen, Joni; Salmilehto, Juha; Möttönen, Mikko

    2017-04-01

    In the near future, one of the major challenges in the realization of large-scale quantum computers operating at low temperatures is the management of harmful heat loads owing to thermal conduction of cabling and dissipation at cryogenic components. This naturally raises the question that what are the fundamental limitations of energy consumption in scalable quantum computing. In this work, we derive the greatest lower bound for the gate error induced by a single application of a bosonic drive mode of given energy. Previously, such an error type has been considered to be inversely proportional to the total driving power, but we show that this limitation can be circumvented by introducing a qubit driving scheme which reuses and corrects drive pulses. Specifically, our method serves to reduce the average energy consumption per gate operation without increasing the average gate error. Thus our work shows that precise, scalable control of quantum systems can, in principle, be implemented without the introduction of excessive heat or decoherence.

  8. Measurements of observables replaced by “evaluations” in Quantum Theory

    NASA Astrophysics Data System (ADS)

    Nisticò, Giuseppe; Sestito, Angela

    2015-07-01

    In quantum physics there are circumstances where the direct measurement of particular observables encounters difficulties; in some of these cases, however, its value can be evaluated, i.e. it can be inferred by measuring another observable characterized by perfect correlation with the observable of interest. Though an evaluation is often interpreted as a measurement of the evaluated observable, we prove that the two concepts cannot be identified in quantum physics, because the identification yields contradictions. Then, we establish the conceptual status of evaluations in Quantum Theory and the role can be ascribed to them.

  9. Characterization of measurements in quantum communication. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chan, V. W. S.

    1975-01-01

    A characterization of quantum measurements by operator valued measures is presented. The generalized measurements include simultaneous approximate measurement of noncommuting observables. This characterization is suitable for solving problems in quantum communication. Two realizations of such measurements are discussed. The first is by adjoining an apparatus to the system under observation and performing a measurement corresponding to a self-adjoint operator in the tensor-product Hilbert space of the system and apparatus spaces. The second realization is by performing, on the system alone, sequential measurements that correspond to self-adjoint operators, basing the choice of each measurement on the outcomes of previous measurements. Simultaneous generalized measurements are found to be equivalent to a single finer grain generalized measurement, and hence it is sufficient to consider the set of single measurements. An alternative characterization of generalized measurement is proposed. It is shown to be equivalent to the characterization by operator-values measures, but it is potentially more suitable for the treatment of estimation problems. Finally, a study of the interaction between the information-carrying system and a measurement apparatus provides clues for the physical realizations of abstractly characterized quantum measurements.

  10. Measurement-induced operation of two-ion quantum heat machines

    NASA Astrophysics Data System (ADS)

    Chand, Suman; Biswas, Asoka

    2017-03-01

    We show how one can implement a quantum heat machine by using two interacting trapped ions, in presence of a thermal bath. The electronic states of the ions act like a working substance, while the vibrational mode is modelled as the cold bath. The heat exchange with the cold bath is mimicked by the projective measurement of the electronic states. We show how such measurement in a suitable basis can lead to either a quantum heat engine or a refrigerator, which undergoes a quantum Otto cycle. The local magnetic field is adiabatically changed during the heat cycle. The performance of the heat machine depends upon the interaction strength between the ions, the magnetic fields, and the measurement cost. In our model, the coupling to the hot and the cold baths is never switched off in an alternative fashion during the heat cycle, unlike other existing proposals of quantum heat engines. This makes our proposal experimentally realizable using current tapped-ion technology.

  11. Measurement-induced operation of two-ion quantum heat machines.

    PubMed

    Chand, Suman; Biswas, Asoka

    2017-03-01

    We show how one can implement a quantum heat machine by using two interacting trapped ions, in presence of a thermal bath. The electronic states of the ions act like a working substance, while the vibrational mode is modelled as the cold bath. The heat exchange with the cold bath is mimicked by the projective measurement of the electronic states. We show how such measurement in a suitable basis can lead to either a quantum heat engine or a refrigerator, which undergoes a quantum Otto cycle. The local magnetic field is adiabatically changed during the heat cycle. The performance of the heat machine depends upon the interaction strength between the ions, the magnetic fields, and the measurement cost. In our model, the coupling to the hot and the cold baths is never switched off in an alternative fashion during the heat cycle, unlike other existing proposals of quantum heat engines. This makes our proposal experimentally realizable using current tapped-ion technology.

  12. NbN single-photon detectors with saturated dependence of quantum efficiency

    NASA Astrophysics Data System (ADS)

    Smirnov, Konstantin; Divochiy, Alexander; Vakhtomin, Yury; Morozov, Pavel; Zolotov, Philipp; Antipov, Andrey; Seleznev, Vitaliy

    2018-07-01

    The possibility of creating NbN superconducting single-photon detectors with saturated dependence of quantum efficiency (QE) versus normalized bias current was investigated. It was shown that the saturation increases for the detectors based on finer films with a lower value of R s300/R s20. The decreasing of R s300/R s20 was related to the increasing influence of quantum corrections to conductivity of superconductors and, in turn, to the decrease of the electron diffusion coefficient. The best samples have a constant value of system QE 94% at I b /I c ∼ 0.8 and wavelength 1310 nm.

  13. Strong Measurements Give a Better Direct Measurement of the Quantum Wave Function.

    PubMed

    Vallone, Giuseppe; Dequal, Daniele

    2016-01-29

    Weak measurements have thus far been considered instrumental in the so-called direct measurement of the quantum wave function [4J. S. Lundeen, Nature (London) 474, 188 (2011).]. Here we show that a direct measurement of the wave function can be obtained by using measurements of arbitrary strength. In particular, in the case of strong measurements, i.e., those in which the coupling between the system and the measuring apparatus is maximum, we compared the precision and the accuracy of the two methods, by showing that strong measurements outperform weak measurements in both for arbitrary quantum states in most cases. We also give the exact expression of the difference between the original and reconstructed wave function obtained by the weak measurement approach; this will allow one to define the range of applicability of such a method.

  14. Long-distance measurement-device-independent multiparty quantum communication.

    PubMed

    Fu, Yao; Yin, Hua-Lei; Chen, Teng-Yun; Chen, Zeng-Bing

    2015-03-06

    The Greenberger-Horne-Zeilinger (GHZ) entanglement, originally introduced to uncover the extreme violation of local realism against quantum mechanics, is an important resource for multiparty quantum communication tasks. But the low intensity and fragility of the GHZ entanglement source in current conditions have made the practical applications of these multiparty tasks an experimental challenge. Here we propose a feasible scheme for practically distributing the postselected GHZ entanglement over a distance of more than 100 km for experimentally accessible parameter regimes. Combining the decoy-state and measurement-device-independent protocols for quantum key distribution, we anticipate that our proposal suggests an important avenue for practical multiparty quantum communication.

  15. Note: Measuring instrument of singlet oxygen quantum yield in photodynamic effects

    NASA Astrophysics Data System (ADS)

    Li, Zhongwei; Zhang, Pengwei; Zang, Lixin; Qin, Feng; Zhang, Zhiguo; Zhang, Hongli

    2017-06-01

    Using diphenylisobenzofuran (C20H14O) as a singlet oxygen (1O2) reporter, a comparison method, which can be used to measure the singlet oxygen quantum yield (ΦΔ) of the photosensitizer quantitatively, is presented in this paper. Based on this method, an automatic measuring instrument of singlet oxygen quantum yield is developed. The singlet oxygen quantum yield of the photosensitizer hermimether and aloe-emodin is measured. It is found that the measuring results are identical to the existing ones, which verifies the validity of the measuring instrument.

  16. Optimal single-shot strategies for discrimination of quantum measurements

    NASA Astrophysics Data System (ADS)

    Sedlák, Michal; Ziman, Mário

    2014-11-01

    We study discrimination of m quantum measurements in the scenario when the unknown measurement with n outcomes can be used only once. We show that ancilla-assisted discrimination procedures provide a nontrivial advantage over simple (ancilla-free) schemes for perfect distinguishability and we prove that inevitably m ≤n . We derive necessary and sufficient conditions of perfect distinguishability of general binary measurements. We show that the optimization of the discrimination of projective qubit measurements and their mixtures with white noise is equivalent to the discrimination of specific quantum states. In particular, the optimal protocol for discrimination of projective qubit measurements with fixed failure rate (exploiting maximally entangled test state) is described. While minimum-error discrimination of two projective qubit measurements can be realized without any need of entanglement, we show that discrimination of three projective qubit measurements requires a bipartite probe state. Moreover, when the measurements are not projective, the non-maximally entangled test states can outperform the maximally entangled ones. Finally, we rephrase the unambiguous discrimination of measurements as quantum key distribution protocol.

  17. Optoelectronic engineering of colloidal quantum-dot solar cells beyond the efficiency black hole: a modeling approach

    NASA Astrophysics Data System (ADS)

    Mahpeykar, Seyed Milad; Wang, Xihua

    2017-02-01

    Colloidal quantum dot (CQD) solar cells have been under the spotlight in recent years mainly due to their potential for low-cost solution-processed fabrication and efficient light harvesting through multiple exciton generation (MEG) and tunable absorption spectrum via the quantum size effect. Despite the impressive advances achieved in charge carrier mobility of quantum dot solids and the cells' light trapping capabilities, the recent progress in CQD solar cell efficiencies has been slow, leaving them behind other competing solar cell technologies. In this work, using comprehensive optoelectronic modeling and simulation, we demonstrate the presence of a strong efficiency loss mechanism, here called the "efficiency black hole", that can significantly hold back the improvements achieved by any efficiency enhancement strategy. We prove that this efficiency black hole is the result of sole focus on enhancement of either light absorption or charge extraction capabilities of CQD solar cells. This means that for a given thickness of CQD layer, improvements accomplished exclusively in optic or electronic aspect of CQD solar cells do not necessarily translate into tangible enhancement in their efficiency. The results suggest that in order for CQD solar cells to come out of the mentioned black hole, incorporation of an effective light trapping strategy and a high quality CQD film at the same time is an essential necessity. Using the developed optoelectronic model, the requirements for this incorporation approach and the expected efficiencies after its implementation are predicted as a roadmap for CQD solar cell research community.

  18. Efficient Online Optimized Quantum Control for Adiabatic Quantum Computation

    NASA Astrophysics Data System (ADS)

    Quiroz, Gregory

    Adiabatic quantum computation (AQC) relies on controlled adiabatic evolution to implement a quantum algorithm. While control evolution can take many forms, properly designed time-optimal control has been shown to be particularly advantageous for AQC. Grover's search algorithm is one such example where analytically-derived time-optimal control leads to improved scaling of the minimum energy gap between the ground state and first excited state and thus, the well-known quadratic quantum speedup. Analytical extensions beyond Grover's search algorithm present a daunting task that requires potentially intractable calculations of energy gaps and a significant degree of model certainty. Here, an in situ quantum control protocol is developed for AQC. The approach is shown to yield controls that approach the analytically-derived time-optimal controls for Grover's search algorithm. In addition, the protocol's convergence rate as a function of iteration number is shown to be essentially independent of system size. Thus, the approach is potentially scalable to many-qubit systems.

  19. Efficient nanosecond photoluminescence from infrared PbS quantum dots coupled to plasmonic nanoantennas

    DOE PAGES

    Akselrod, Gleb M.; Weidman, Mark C.; Li, Ying; ...

    2016-09-13

    Infrared (IR) light sources with high modulation rates are critical components for on-chip optical communications. Lead-based colloidal quantum dots are promising nonepitaxial materials for use in IR light-emitting diodes, but their slow photoluminescence lifetime is a serious limitation. Here we demonstrate coupling of PbS quantum dots to colloidal plasmonic nanoantennas based on film-coupled metal nanocubes, resulting in a dramatic 1300-fold reduction in the emission lifetime from the microsecond to the nanosecond regime. This lifetime reduction is primarily due to a 1100-fold increase in the radiative decay rate owing to the high quantum yield (65%) of the antenna. The short emissionmore » lifetime is accompanied by high antenna quantum efficiency and directionality. Lastly, this nonepitaxial platform points toward GHz frequency, electrically modulated, telecommunication wavelength light-emitting diodes and single-photon sources.« less

  20. Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet

    NASA Astrophysics Data System (ADS)

    Gärttner, Martin; Bohnet, Justin G.; Safavi-Naini, Arghavan; Wall, Michael L.; Bollinger, John J.; Rey, Ana Maria

    2017-08-01

    Controllable arrays of ions and ultracold atoms can simulate complex many-body phenomena and may provide insights into unsolved problems in modern science. To this end, experimentally feasible protocols for quantifying the buildup of quantum correlations and coherence are needed, as performing full state tomography does not scale favourably with the number of particles. Here we develop and experimentally demonstrate such a protocol, which uses time reversal of the many-body dynamics to measure out-of-time-order correlation functions (OTOCs) in a long-range Ising spin quantum simulator with more than 100 ions in a Penning trap. By measuring a family of OTOCs as a function of a tunable parameter we obtain fine-grained information about the state of the system encoded in the multiple quantum coherence spectrum, extract the quantum state purity, and demonstrate the buildup of up to 8-body correlations. Future applications of this protocol could enable studies of many-body localization, quantum phase transitions, and tests of the holographic duality between quantum and gravitational systems.

  1. Growth of a delta-doped silicon layer by molecular beam epitaxy on a charge-coupled device for reflection-limited ultraviolet quantum efficiency

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E.; Grunthaner, Paula J.; Grunthaner, Frank J.; Terhune, R. W.; Fattahi, Masoud; Tseng, Hsin-Fu

    1992-01-01

    Low-temperature silicon molecular beam epitaxy is used to grow a delta-doped silicon layer on a fully processed charge-coupled device (CCD). The measured quantum efficiency of the delta-doped backside-thinned CCD is in agreement with the reflection limit for light incident on the back surface in the spectral range of 260-600 nm. The 2.5 nm silicon layer, grown at 450 C, contained a boron delta-layer with surface density of about 2 x 10 exp 14/sq cm. Passivation of the surface was done by steam oxidation of a nominally undoped 1.5 nm Si cap layer. The UV quantum efficiency was found to be uniform and stable with respect to thermal cycling and illumination conditions.

  2. A sub-ensemble theory of ideal quantum measurement processes

    NASA Astrophysics Data System (ADS)

    Allahverdyan, Armen E.; Balian, Roger; Nieuwenhuizen, Theo M.

    2017-01-01

    In order to elucidate the properties currently attributed to ideal measurements, one must explain how the concept of an individual event with a well-defined outcome may emerge from quantum theory which deals with statistical ensembles, and how different runs issued from the same initial state may end up with different final states. This so-called "measurement problem" is tackled with two guidelines. On the one hand, the dynamics of the macroscopic apparatus A coupled to the tested system S is described mathematically within a standard quantum formalism, where " q-probabilities" remain devoid of interpretation. On the other hand, interpretative principles, aimed to be minimal, are introduced to account for the expected features of ideal measurements. Most of the five principles stated here, which relate the quantum formalism to physical reality, are straightforward and refer to macroscopic variables. The process can be identified with a relaxation of S + A to thermodynamic equilibrium, not only for a large ensemble E of runs but even for its sub-ensembles. The different mechanisms of quantum statistical dynamics that ensure these types of relaxation are exhibited, and the required properties of the Hamiltonian of S + A are indicated. The additional theoretical information provided by the study of sub-ensembles remove Schrödinger's quantum ambiguity of the final density operator for E which hinders its direct interpretation, and bring out a commutative behaviour of the pointer observable at the final time. The latter property supports the introduction of a last interpretative principle, needed to switch from the statistical ensembles and sub-ensembles described by quantum theory to individual experimental events. It amounts to identify some formal " q-probabilities" with ordinary frequencies, but only those which refer to the final indications of the pointer. The desired properties of ideal measurements, in particular the uniqueness of the result for each individual

  3. Robust nonfullerene solar cells approaching unity external quantum efficiency enabled by suppression of geminate recombination.

    PubMed

    Baran, Derya; Gasparini, Nicola; Wadsworth, Andrew; Tan, Ching Hong; Wehbe, Nimer; Song, Xin; Hamid, Zeinab; Zhang, Weimin; Neophytou, Marios; Kirchartz, Thomas; Brabec, Christoph J; Durrant, James R; McCulloch, Iain

    2018-05-25

    Nonfullerene solar cells have increased their efficiencies up to 13%, yet quantum efficiencies are still limited to 80%. Here we report efficient nonfullerene solar cells with quantum efficiencies approaching unity. This is achieved with overlapping absorption bands of donor and acceptor that increases the photon absorption strength in the range from about 570 to 700 nm, thus, almost all incident photons are absorbed in the active layer. The charges generated are found to dissociate with negligible geminate recombination losses resulting in a short-circuit current density of 20 mA cm -2 along with open-circuit voltages >1 V, which is remarkable for a 1.6 eV bandgap system. Most importantly, the unique nano-morphology of the donor:acceptor blend results in a substantially improved stability under illumination. Understanding the efficient charge separation in nonfullerene acceptors can pave the way to robust and recombination-free organic solar cells.

  4. Internal quantum efficiency mapping analysis for a >20%-efficiency n-type bifacial solar cell with front-side emitter formed by BBr3 thermal diffusion

    NASA Astrophysics Data System (ADS)

    Simayi, Shalamujiang; Mochizuki, Toshimitsu; Kida, Yasuhiro; Shirasawa, Katsuhiko; Takato, Hidetaka

    2017-10-01

    This paper presents a large-area (239-cm2) high-efficiency n-type bifacial solar cell that is processed using tube-furnace thermal diffusion employing liquid sources BBr3 for the front-side boron emitter and POCl3 for the rear-side phosphorus back surface field (BSF). The SiN x /Al2O3 stack was applied to the front-side boron emitter as a passivation layer. Both the front and rear-side electrodes are obtained using screen-printed contacts with H-patterns. The resulting highest-efficiency solar cell has front- and rear-side efficiencies of 20.3 and 18.7%, respectively, while the corresponding bifaciality is up to 92%. Finally, the passivation quality of the SiN x /Al2O3 stack on the front-side boron emitter and rear-side phosphorus BSF is investigated and visualized by measuring the internal quantum efficiency mapping of the bifacial solar cell.

  5. Measurement theory in local quantum physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamura, Kazuya, E-mail: okamura@math.cm.is.nagoya-u.ac.jp; Ozawa, Masanao, E-mail: ozawa@is.nagoya-u.ac.jp

    In this paper, we aim to establish foundations of measurement theory in local quantum physics. For this purpose, we discuss a representation theory of completely positive (CP) instruments on arbitrary von Neumann algebras. We introduce a condition called the normal extension property (NEP) and establish a one-to-one correspondence between CP instruments with the NEP and statistical equivalence classes of measuring processes. We show that every CP instrument on an atomic von Neumann algebra has the NEP, extending the well-known result for type I factors. Moreover, we show that every CP instrument on an injective von Neumann algebra is approximated bymore » CP instruments with the NEP. The concept of posterior states is also discussed to show that the NEP is equivalent to the existence of a strongly measurable family of posterior states for every normal state. Two examples of CP instruments without the NEP are obtained from this result. It is thus concluded that in local quantum physics not every CP instrument represents a measuring process, but in most of physically relevant cases every CP instrument can be realized by a measuring process within arbitrary error limits, as every approximately finite dimensional von Neumann algebra on a separable Hilbert space is injective. To conclude the paper, the concept of local measurement in algebraic quantum field theory is examined in our framework. In the setting of the Doplicher-Haag-Roberts and Doplicher-Roberts theory describing local excitations, we show that an instrument on a local algebra can be extended to a local instrument on the global algebra if and only if it is a CP instrument with the NEP, provided that the split property holds for the net of local algebras.« less

  6. Betting on the outcomes of measurements: a Bayesian theory of quantum probability

    NASA Astrophysics Data System (ADS)

    Pitowsky, Itamar

    We develop a systematic approach to quantum probability as a theory of rational betting in quantum gambles. In these games of chance, the agent is betting in advance on the outcomes of several (finitely many) incompatible measurements. One of the measurements is subsequently chosen and performed and the money placed on the other measurements is returned to the agent. We show how the rules of rational betting imply all the interesting features of quantum probability, even in such finite gambles. These include the uncertainty principle and the violation of Bell's inequality among others. Quantum gambles are closely related to quantum logic and provide a new semantics for it. We conclude with a philosophical discussion on the interpretation of quantum mechanics.

  7. Quantum control and quantum tomography on neutral atom qudits

    NASA Astrophysics Data System (ADS)

    Sosa Martinez, Hector

    Neutral atom systems are an appealing platform for the development and testing of quantum control and measurement techniques. This dissertation presents experimental investigations of control and measurement tools using as a testbed the 16-dimensional hyperfine manifold associated with the electronic ground state of cesium atoms. On the control side, we present an experimental realization of a protocol to implement robust unitary transformations in the presence of static and dynamic perturbations. We also present an experimental realization of inhomogeneous quantum control. Specifically, we demonstrate our ability to perform two different unitary transformations on atoms that see different light shifts from an optical addressing field. On the measurement side, we present experimental realizations of quantum state and process tomography. The state tomography project encompasses a comprehensive evaluation of several measurement strategies and state estimation algorithms. Our experimental results show that in the presence of experimental imperfections, there is a clear tradeoff between accuracy, efficiency and robustness in the reconstruction. The process tomography project involves an experimental demonstration of efficient reconstruction by using a set of intelligent probe states. Experimental results show that we are able to reconstruct unitary maps in Hilbert spaces with dimension ranging from d=4 to d=16. To the best of our knowledge, this is the first time that a unitary process in d=16 is successfully reconstructed in the laboratory.

  8. An efficient matrix product operator representation of the quantum chemical Hamiltonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Sebastian, E-mail: sebastian.keller@phys.chem.ethz.ch; Reiher, Markus, E-mail: markus.reiher@phys.chem.ethz.ch; Dolfi, Michele, E-mail: dolfim@phys.ethz.ch

    We describe how to efficiently construct the quantum chemical Hamiltonian operator in matrix product form. We present its implementation as a density matrix renormalization group (DMRG) algorithm for quantum chemical applications. Existing implementations of DMRG for quantum chemistry are based on the traditional formulation of the method, which was developed from the point of view of Hilbert space decimation and attained higher performance compared to straightforward implementations of matrix product based DMRG. The latter variationally optimizes a class of ansatz states known as matrix product states, where operators are correspondingly represented as matrix product operators (MPOs). The MPO construction schememore » presented here eliminates the previous performance disadvantages while retaining the additional flexibility provided by a matrix product approach, for example, the specification of expectation values becomes an input parameter. In this way, MPOs for different symmetries — abelian and non-abelian — and different relativistic and non-relativistic models may be solved by an otherwise unmodified program.« less

  9. Recovery of Active and Efficient Photocatalytic H 2 Production for CdSe Quantum Dots

    DOE PAGES

    Burke, Rebeckah; Cogan, Nicole M. Briglio; Oi, Aidan; ...

    2018-05-07

    Recently, colloidal semiconductor quantum dots (QDs) have shown great promise as photocatalysts for the production of chemical fuels by sunlight. Here, the efficiency of photocatalytic hydrogen (H 2) production for integrated systems of large diameter (4.4 nm) CdSe QDs as light harvesting nanoparticles with varying concentrations of nickel-dihydrolipoic acid (Ni-DHLA) small molecule catalysts was measured. While exhibiting excellent robustness and longevity, the efficiency of H 2 production for equimolar catalyst and QDs was relatively poor. However, the efficiency was found to increase substantially with increasing Ni-DHLA:QD molar ratios Surprisingly, this high activity was only observed with the use of 3-mercaptopropionicmore » acid (MPA) ligands, while CdSe QDs capped with dihydrolipoic acid (DHLA) exhibited poor performance in comparison, indicating that the QD capping ligand has a substantial impact on the catalytic performance. Finally, ultrafast transient absorption spectroscopic measurements of the electron transfer (ET) dynamics show fast ET to the catalyst. Importantly, an increase in ET efficiency is observed as the catalyst concentration is increased. Together, these results suggest that for these large QDs, tailoring the QD surface environment for facile ET and increasing catalyst concentrations increases the probability of ET from QDs to Ni-DHLA, overcoming the relatively small driving force for ET and decreased surface electron density for large diameter QDs.« less

  10. Recovery of Active and Efficient Photocatalytic H 2 Production for CdSe Quantum Dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Rebeckah; Cogan, Nicole M. Briglio; Oi, Aidan

    Recently, colloidal semiconductor quantum dots (QDs) have shown great promise as photocatalysts for the production of chemical fuels by sunlight. Here, the efficiency of photocatalytic hydrogen (H 2) production for integrated systems of large diameter (4.4 nm) CdSe QDs as light harvesting nanoparticles with varying concentrations of nickel-dihydrolipoic acid (Ni-DHLA) small molecule catalysts was measured. While exhibiting excellent robustness and longevity, the efficiency of H 2 production for equimolar catalyst and QDs was relatively poor. However, the efficiency was found to increase substantially with increasing Ni-DHLA:QD molar ratios Surprisingly, this high activity was only observed with the use of 3-mercaptopropionicmore » acid (MPA) ligands, while CdSe QDs capped with dihydrolipoic acid (DHLA) exhibited poor performance in comparison, indicating that the QD capping ligand has a substantial impact on the catalytic performance. Finally, ultrafast transient absorption spectroscopic measurements of the electron transfer (ET) dynamics show fast ET to the catalyst. Importantly, an increase in ET efficiency is observed as the catalyst concentration is increased. Together, these results suggest that for these large QDs, tailoring the QD surface environment for facile ET and increasing catalyst concentrations increases the probability of ET from QDs to Ni-DHLA, overcoming the relatively small driving force for ET and decreased surface electron density for large diameter QDs.« less

  11. Photoreceiver efficiency measurements

    NASA Technical Reports Server (NTRS)

    Lehr, C. G.

    1975-01-01

    The efficiency and other related parameters of Smithsonian Astrophysical Observatory's four laser receivers were measured at the observing stations by oscilloscope photography. If the efficiency is defined as the number of photoelectrons generated by the photomultiplier tube divided by the number of photons entering the aperture of the receiver, its measured value is about 1% for the laser wavelength of 694 nm. This value is consistent with the efficiency computed from the specified characteristics of the photoreceiver's optical components.

  12. Detective quantum efficiency of photon-counting x-ray detectors.

    PubMed

    Tanguay, Jesse; Yun, Seungman; Kim, Ho Kyung; Cunningham, Ian A

    2015-01-01

    Single-photon-counting (SPC) x-ray imaging has the potential to improve image quality and enable novel energy-dependent imaging methods. Similar to conventional detectors, optimizing image SPC quality will require systems that produce the highest possible detective quantum efficiency (DQE). This paper builds on the cascaded-systems analysis (CSA) framework to develop a comprehensive description of the DQE of SPC detectors that implement adaptive binning. The DQE of SPC systems can be described using the CSA approach by propagating the probability density function (PDF) of the number of image-forming quanta through simple quantum processes. New relationships are developed to describe PDF transfer through serial and parallel cascades to accommodate scatter reabsorption. Results are applied to hypothetical silicon and selenium-based flat-panel SPC detectors including the effects of reabsorption of characteristic/scatter photons from photoelectric and Compton interactions, stochastic conversion of x-ray energy to secondary quanta, depth-dependent charge collection, and electronic noise. Results are compared with a Monte Carlo study. Depth-dependent collection efficiency can result in substantial broadening of photopeaks that in turn may result in reduced DQE at lower x-ray energies (20-45 keV). Double-counting interaction events caused by reabsorption of characteristic/scatter photons may result in falsely inflated image signal-to-noise ratio and potential overestimation of the DQE. The CSA approach is extended to describe signal and noise propagation through photoelectric and Compton interactions in SPC detectors, including the effects of escape and reabsorption of emission/scatter photons. High-performance SPC systems can be achieved but only for certain combinations of secondary conversion gain, depth-dependent collection efficiency, electronic noise, and reabsorption characteristics.

  13. Emulsion Synthesis of Size-Tunable CH3NH3PbBr3 Quantum Dots: An Alternative Route toward Efficient Light-Emitting Diodes.

    PubMed

    Huang, Hailong; Zhao, Fangchao; Liu, Lige; Zhang, Feng; Wu, Xian-gang; Shi, Lijie; Zou, Bingsuo; Pei, Qibing; Zhong, Haizheng

    2015-12-30

    We report a facile nonaqueous emulsion synthesis of colloidal halide perovskite quantum dots by controlled addition of a demulsifier into an emulsion of precursors. The size of resulting CH3NH3PbBr3 quantum dots can be tuned from 2 to 8 nm by varying the amount of demulsifier. Moreover, this emulsion synthesis also allows the purification of these quantum dots by precipitation from the colloidal solution and obtains solid-state powder which can be redissolved for thin film coating and device fabrication. The photoluminescence quantum yields of the quantum dots is generally in the range of 80-92%, and can be well-preserved after purification (∼80%). Green light-emitting diodes fabricated comprising a spin-cast layer of the colloidal CH3NH3PbBr3 quantum dots exhibited maximum current efficiency of 4.5 cd/A, power efficiency of 3.5 lm/W, and external quantum efficiency of 1.1%. This provides an alternative route toward high efficient solution-processed perovskite-based light-emitting diodes. In addition, the emulsion synthesis is versatile and can be extended for the fabrication of inorganic halide perovskite colloidal CsPbBr3 nanocrystals.

  14. Primary quantum yields of NO2 photodissociation

    NASA Technical Reports Server (NTRS)

    Gardner, Edward P.; Sperry, Paul D.; Calvert, Jack G.

    1987-01-01

    The quantum yields of formation of NO, O2, and NO2 loss are measured for NO2 vapor at low pressures (0.13-0.30 torr) irradiated at 334-405 nm wavelengths and temperature in the range 273-370 K in order to study the primary quantum efficiencies of NO2 photodecomposition. The temperature and wavelength dependences of the primary quantum efficiencies are examined. It is observed that the primary quantum efficiencies increase rapidly from near zero at 424 nm to near unity for excitation at wavelengths less than 394 nm. The theory of Pitts et al. (1964) that the energy deficiency for photodissociation of NO2 excited at wavelengths greater than 397.9 nm is due to the rotational and vibrational energy of the NO2 molecules is confirmed by the data. Values for the primary quantum yields of NO2 photodecomposition as a function of wavelength are presented.

  15. Role of measurement in feedback-controlled quantum engines

    NASA Astrophysics Data System (ADS)

    Yi, Juyeon; Kim, Yong Woon

    2018-01-01

    In feedback controls, measurement is an essential step in designing protocols according to outcomes. For quantum mechanical systems, measurement has another effect; to supply energy to the measured system. We verify that in feedback-controlled quantum engines, measurement plays a dual role; not only as an auxiliary to perform feedback control but also as an energy supply to drive the engines. We consider a specific engine cycle exploiting feedback control followed by projective measurement and show that the maximum bound of the extractable work is set by both the efficacy of the feedback control and the energy change caused by projective measurement. We take a concrete example of an engine using an immobile spin-1/2 particle as a working substance and suggest two possible scenarios for work extraction.

  16. Internal quantum efficiency and carrier dynamics in semipolar (2021) InGaN/GaN light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okur, Serdal; Nami, Mohsen; Rishinaramangalam, Ashwin K.

    Here, the internal quantum efficiencies (IQE) and carrier lifetimes of semipolar (more » $$20\\bar{2}$$$\\bar{1}$$) InGaN/GaN LEDs with different active regions are measured using temperature-dependent, carrier-density-dependent, and time-resolved photoluminescence. Three active regions are investigated: one 12-nm-thick single quantum well (SQW), two 6-nm-thick QWs, and three 4-nm-thick QWs. The IQE is highest for the 12-nm-thick SQW and decreases as the well width decreases. The radiative lifetimes are similar for all structures, while the nonradiative lifetimes decrease as the well width decreases. The superior IQE and longer nonradiative lifetime of the SQW structure suggests using thick SQW active regions for high brightness semipolar ($$20\\bar{2}$$$\\bar{1}$$) LEDs.« less

  17. Internal quantum efficiency and carrier dynamics in semipolar (2021) InGaN/GaN light-emitting diodes

    DOE PAGES

    Okur, Serdal; Nami, Mohsen; Rishinaramangalam, Ashwin K.; ...

    2017-01-26

    Here, the internal quantum efficiencies (IQE) and carrier lifetimes of semipolar (more » $$20\\bar{2}$$$\\bar{1}$$) InGaN/GaN LEDs with different active regions are measured using temperature-dependent, carrier-density-dependent, and time-resolved photoluminescence. Three active regions are investigated: one 12-nm-thick single quantum well (SQW), two 6-nm-thick QWs, and three 4-nm-thick QWs. The IQE is highest for the 12-nm-thick SQW and decreases as the well width decreases. The radiative lifetimes are similar for all structures, while the nonradiative lifetimes decrease as the well width decreases. The superior IQE and longer nonradiative lifetime of the SQW structure suggests using thick SQW active regions for high brightness semipolar ($$20\\bar{2}$$$\\bar{1}$$) LEDs.« less

  18. Photodetectors for scintillator proportionality measurement

    NASA Astrophysics Data System (ADS)

    Moses, William W.; Choong, Woon-Seng; Hull, Giulia; Payne, Steve; Cherepy, Nerine; Valentine, John D.

    2009-10-01

    We evaluate photodetectors for use in a Compton Coincidence apparatus designed for measuring scintillator proportionality. There are many requirements placed on the photodetector in these systems, including active area, linearity, and the ability to accurately measure low light levels (which implies high quantum efficiency and high signal-to-noise ratio). Through a combination of measurement and Monte Carlo simulation, we evaluate a number of potential photodetectors, especially photomultiplier tubes and hybrid photodetectors. Of these, we find that the most promising devices available are photomultiplier tubes with high (˜50%) quantum efficiency, although hybrid photodetectors with high quantum efficiency would be preferable.

  19. A quantum inspired model of radar range and range-rate measurements with applications to weak value measurements

    NASA Astrophysics Data System (ADS)

    Escalante, George

    2017-05-01

    Weak Value Measurements (WVMs) with pre- and post-selected quantum mechanical ensembles were proposed by Aharonov, Albert, and Vaidman in 1988 and have found numerous applications in both theoretical and applied physics. In the field of precision metrology, WVM techniques have been demonstrated and proven valuable as a means to shift, amplify, and detect signals and to make precise measurements of small effects in both quantum and classical systems, including: particle spin, the Spin-Hall effect of light, optical beam deflections, frequency shifts, field gradients, and many others. In principal, WVM amplification techniques are also possible in radar and could be a valuable tool for precision measurements. However, relatively limited research has been done in this area. This article presents a quantum-inspired model of radar range and range-rate measurements of arbitrary strength, including standard and pre- and post-selected measurements. The model is used to extend WVM amplification theory to radar, with the receive filter performing the post-selection role. It is shown that the description of range and range-rate measurements based on the quantum-mechanical measurement model and formalism produces the same results as the conventional approach used in radar based on signal processing and filtering of the reflected signal at the radar receiver. Numerical simulation results using simple point scatterrer configurations are presented, applying the quantum-inspired model of radar range and range-rate measurements that occur in the weak measurement regime. Potential applications and benefits of the quantum inspired approach to radar measurements are presented, including improved range and Doppler measurement resolution.

  20. High-efficiency red electroluminescent device based on multishelled InP quantum dots.

    PubMed

    Jo, Jung-Ho; Kim, Jong-Hoon; Lee, Ki-Heon; Han, Chang-Yeol; Jang, Eun-Pyo; Do, Young Rag; Yang, Heesun

    2016-09-01

    We report on the synthesis of highly fluorescent red-emitting InP quantum dots (QDs) and their application to the fabrication of a high-efficiency QD-light-emitting diode (QLED). The core/shell heterostructure of the QDs is elaborately tailored toward a multishelled structure with a composition-gradient ZnSeS intermediate shell and an outer ZnS shell. Using the resulting InP/ZnSeS/ZnS QDs as an emitting layer, all-solution-processible red InP QLEDs are fabricated with a hybrid multilayered device structure having an organic hole transport layer (HTL) and an inorganic ZnO nanoparticle electron transport layer. Two HTLs of poly(9-vinlycarbazole) or poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl))diphenyl-amine), whose hole mobilities are different by at least three orders of magnitude, are individually applied for QLED fabrication and such HTL-dependent device performances are compared. Our best red device displays exceptional figures of merit such as a maximum luminance of 2849  cd/m2, a current efficiency of 4.2  cd/A, and an external quantum efficiency of 2.5%.

  1. Optimal and secure measurement protocols for quantum sensor networks

    NASA Astrophysics Data System (ADS)

    Eldredge, Zachary; Foss-Feig, Michael; Gross, Jonathan A.; Rolston, S. L.; Gorshkov, Alexey V.

    2018-04-01

    Studies of quantum metrology have shown that the use of many-body entangled states can lead to an enhancement in sensitivity when compared with unentangled states. In this paper, we quantify the metrological advantage of entanglement in a setting where the measured quantity is a linear function of parameters individually coupled to each qubit. We first generalize the Heisenberg limit to the measurement of nonlocal observables in a quantum network, deriving a bound based on the multiparameter quantum Fisher information. We then propose measurement protocols that can make use of Greenberger-Horne-Zeilinger (GHZ) states or spin-squeezed states and show that in the case of GHZ states the protocol is optimal, i.e., it saturates our bound. We also identify nanoscale magnetic resonance imaging as a promising setting for this technology.

  2. Type II GaSb quantum ring solar cells under concentrated sunlight.

    PubMed

    Tsai, Che-Pin; Hsu, Shun-Chieh; Lin, Shih-Yen; Chang, Ching-Wen; Tu, Li-Wei; Chen, Kun-Cheng; Lay, Tsong-Sheng; Lin, Chien-chung

    2014-03-10

    A type II GaSb quantum ring solar cell is fabricated and measured under the concentrated sunlight. The external quantum efficiency confirms the extended absorption from the quantum rings at long wavelength coinciding with the photoluminescence results. The short-circuit current of the quantum ring devices is 5.1% to 9.9% more than the GaAs reference's under various concentrations. While the quantum ring solar cell does not exceed its GaAs counterpart in efficiency under one-sun, the recovery of the open-circuit voltages at higher concentration helps to reverse the situation. A slightly higher efficiency (10.31% vs. 10.29%) is reported for the quantum ring device against the GaAs one.

  3. Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine

    NASA Astrophysics Data System (ADS)

    Xu, Y. Y.; Chen, B.; Liu, J.

    2018-02-01

    Generally, the efficiency of a heat engine strongly coupled with a heat bath is less than the classical Carnot efficiency. Through a model-independent method, we show that the classical Carnot efficiency is achieved in a strongly coupled quantum heat engine. First, we present the first law of quantum thermodynamics in strong coupling. Then, we show how to achieve the Carnot cycle and the classical Carnot efficiency at strong coupling. We find that this classical Carnot efficiency stems from the fact that the heat released in a nonequilibrium process is balanced by the absorbed heat. We also analyze the restrictions in the achievement of the Carnot cycle. The first restriction is that there must be two corresponding intervals of the controllable parameter in which the corresponding entropies of the work substance at the hot and cold temperatures are equal, and the second is that the entropy of the initial and final states in a nonequilibrium process must be equal. Through these restrictions, we obtain the positive work conditions, including the usual one in which the hot temperature should be higher than the cold, and a new one in which there must be an entropy interval at the hot temperature overlapping that at the cold. We demonstrate our result through a paradigmatic model—a two-level system in which a work substance strongly interacts with a heat bath. In this model, we find that the efficiency may abruptly decrease to zero due to the first restriction, and that the second restriction results in the control scheme becoming complex.

  4. Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine.

    PubMed

    Xu, Y Y; Chen, B; Liu, J

    2018-02-01

    Generally, the efficiency of a heat engine strongly coupled with a heat bath is less than the classical Carnot efficiency. Through a model-independent method, we show that the classical Carnot efficiency is achieved in a strongly coupled quantum heat engine. First, we present the first law of quantum thermodynamics in strong coupling. Then, we show how to achieve the Carnot cycle and the classical Carnot efficiency at strong coupling. We find that this classical Carnot efficiency stems from the fact that the heat released in a nonequilibrium process is balanced by the absorbed heat. We also analyze the restrictions in the achievement of the Carnot cycle. The first restriction is that there must be two corresponding intervals of the controllable parameter in which the corresponding entropies of the work substance at the hot and cold temperatures are equal, and the second is that the entropy of the initial and final states in a nonequilibrium process must be equal. Through these restrictions, we obtain the positive work conditions, including the usual one in which the hot temperature should be higher than the cold, and a new one in which there must be an entropy interval at the hot temperature overlapping that at the cold. We demonstrate our result through a paradigmatic model-a two-level system in which a work substance strongly interacts with a heat bath. In this model, we find that the efficiency may abruptly decrease to zero due to the first restriction, and that the second restriction results in the control scheme becoming complex.

  5. Effects of Frequency Dependence of the External Quantum Efficiency of Perovskite Solar Cells.

    PubMed

    Ravishankar, Sandheep; Aranda, Clara; Boix, Pablo P; Anta, Juan A; Bisquert, Juan; Garcia-Belmonte, Germà

    2018-06-07

    Perovskite solar cells are known to show very long response time scales, on the order of milliseconds to seconds. This generates considerable doubt over the validity of the measured external quantum efficiency (EQE) and consequently the estimation of the short-circuit current density. We observe a variation as high as 10% in the values of the EQE of perovskite solar cells for different optical chopper frequencies between 10 and 500 Hz, indicating a need to establish well-defined protocols of EQE measurement. We also corroborate these values and obtain new insights regarding the working mechanisms of perovskite solar cells from intensity-modulated photocurrent spectroscopy measurements, identifying the evolution of the EQE over a range of frequencies, displaying a singular reduction at very low frequencies. This reduction in EQE is ascribed to additional resistive contributions hindering charge extraction in the perovskite solar cell at short-circuit conditions, which are delayed because of the concomitant large low-frequency capacitance.

  6. How noise affects quantum detector tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Q., E-mail: wang@physics.leidenuniv.nl; Renema, J. J.; Exter, M. P.van

    2015-10-07

    We determine the full photon number response of a NbN superconducting nanowire single photon detector via quantum detector tomography, and the results show the separation of linear, effective absorption efficiency from the internal detection efficiencies. In addition, we demonstrate an error budget for the complete quantum characterization of the detector. We find that for short times, the dominant noise source is shot noise, while laser power fluctuations limit the accuracy for longer timescales. The combined standard uncertainty of the internal detection efficiency derived from our measurements is about 2%.

  7. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Determination of the quantum efficiency of InGaAsP/InP double heterostructures from spontaneous emission measurements

    NASA Astrophysics Data System (ADS)

    Rheinländer, B.; Anton, A.; Heilmann, R.; Oelgart, G.; Gottschalch, V.

    1988-11-01

    A method was developed for determination of the suitability of epitaxial InGaAsP/InP double heterostructures in fabrication of ridge-waveguide lasers. The method is based on determination of the quantum efficiency of electroluminescence.

  8. Experimental demonstration of a measurement-based realisation of a quantum channel

    NASA Astrophysics Data System (ADS)

    McCutcheon, W.; McMillan, A.; Rarity, J. G.; Tame, M. S.

    2018-03-01

    We introduce and experimentally demonstrate a method for realising a quantum channel using the measurement-based model. Using a photonic setup and modifying the basis of single-qubit measurements on a four-qubit entangled cluster state, representative channels are realised for the case of a single qubit in the form of amplitude and phase damping channels. The experimental results match the theoretical model well, demonstrating the successful performance of the channels. We also show how other types of quantum channels can be realised using our approach. This work highlights the potential of the measurement-based model for realising quantum channels which may serve as building blocks for simulations of realistic open quantum systems.

  9. Minimized state complexity of quantum-encoded cryptic processes

    NASA Astrophysics Data System (ADS)

    Riechers, Paul M.; Mahoney, John R.; Aghamohammadi, Cina; Crutchfield, James P.

    2016-05-01

    The predictive information required for proper trajectory sampling of a stochastic process can be more efficiently transmitted via a quantum channel than a classical one. This recent discovery allows quantum information processing to drastically reduce the memory necessary to simulate complex classical stochastic processes. It also points to a new perspective on the intrinsic complexity that nature must employ in generating the processes we observe. The quantum advantage increases with codeword length: the length of process sequences used in constructing the quantum communication scheme. In analogy with the classical complexity measure, statistical complexity, we use this reduced communication cost as an entropic measure of state complexity in the quantum representation. Previously difficult to compute, the quantum advantage is expressed here in closed form using spectral decomposition. This allows for efficient numerical computation of the quantum-reduced state complexity at all encoding lengths, including infinite. Additionally, it makes clear how finite-codeword reduction in state complexity is controlled by the classical process's cryptic order, and it allows asymptotic analysis of infinite-cryptic-order processes.

  10. Continuous measurement of two spatially separated superconducting qubits: quantum trajectories and statistics

    NASA Astrophysics Data System (ADS)

    Roch, Nicolas

    2015-03-01

    Measurement can be harnessed to probabilistically generate entanglement in the absence of local interactions, for example between spatially separated quantum objects. Continuous weak measurement allows us to observe the dynamics associated with this process. In particular, we perform joint dispersive readout of two superconducting transmon qubits separated by one meter of coaxial cable. We track the evolution of a joint quantum state under the influence of measurement, both as an ensemble and as a set of individual quantum trajectories. Analyzing the statistics of such quantum trajectories can shed new light on the underlying entangling mechanism.

  11. HiFi-MBQC High Fidelitiy Measurement-Based Quantum Computing using Superconducting Detectors

    DTIC Science & Technology

    2016-04-04

    superconducting nanowire single photon detectors (SNSPDs) which allowed support of quantum photonics experiments leading to 14 peer-reviewed...sampling, and several other areas. 15. SUBJECT TERMS EOARD, photonics, cryostat, superconducting nanowire , SNSPD 16. SECURITY CLASSIFICATION OF: 17...quantum simulations. The main budget contribution was dedicated to develop superconducting nanowire detectors with efficiencies above 93% at telecom

  12. Toward efficient fiber-based quantum interface (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Soshenko, Vladimir; Vorobyov, Vadim V.; Bolshedvorsky, Stepan; Lebedev, Nikolay; Akimov, Alexey V.; Sorokin, Vadim; Smolyaninov, Andrey

    2016-04-01

    NV center in diamond is attracting a lot of attention in quantum information processing community [1]. Been spin system in clean and well-controlled environment of diamond it shows outstanding performance as quantum memory even at room temperature, spin control with single shot optical readout and possibility to build up quantum registers even on single NV center. Moreover, NV centers could be used as high-resolution sensitive elements of detectors of magnetic or electric field, temperature, tension, force or rotation. For all of these applications collection of the light emitted by NV center is crucial point. There were number of approaches suggested to address this issue, proposing use of surface plasmoms [2], manufacturing structures in diamond [3] etc. One of the key feature of any practically important interface is compatibility with the fiber technology. Several groups attacking this problem using various approaches. One of them is placing of nanodiamonds in the holes of photonic crystal fiber [4], another is utilization of AFM to pick and place nanodiamond on the tapered fiber[5]. We have developed a novel technique of placing a nanodiamond with single NV center on the tapered fiber by controlled transfer of a nanodiamond from one "donor" tapered fiber to the "target" clean tapered fiber. We verify our ability to transfer only single color centers by means of measurement of second order correlation function. With this technique, we were able to double collection efficiency of confocal microscope. The majority of the factors limiting the collection of photons via optical fiber are technical and may be removed allowing order of magnitude improved in collection. We also discuss number of extensions of this technique to all fiber excitation and integration with nanostructures. References: [1] Marcus W. Doherty, Neil B. Manson, Paul Delaney, Fedor Jelezko, Jörg Wrachtrup, Lloyd C.L. Hollenberg , " The nitrogen-vacancy colour centre in diamond," Physics Reports

  13. Photosensor with enhanced quantum efficiency

    NASA Technical Reports Server (NTRS)

    Janesick, James R. (Inventor); Elliott, Stythe T. (Inventor)

    1989-01-01

    A method to significantly increase the quantum efficiency (QE) of a CCD (or similar photosensor) applied in the UV, far UV and low energy x-ray regions of the spectrum. The increase in QE is accomplished by overthinning the backside of a CCD substrate beyond the epitaxial interface and UV flooding the sensor prior to use. The UV light photoemits electrons to the thinned surface and charges the backside negatively. This in turn forms an accumulation layer of holes near the Si-SiO.sub.2 interface creating an electric field gradient in the silicon which directs the photogenerated signal to the frontside where they are collected in pixel locations and later transferred. An oxide film, in which the backside charge resides, must have quality equivalent to a well aged native oxide which typically takes several years to form under ambient conditions. To reduce the amount of time in growing an oxide of sufficient quality, a process has been developed to grow an oxide by using deionized steam at 95.degree. C. which takes less than one hour to grow.

  14. Efficient prediction of terahertz quantum cascade laser dynamics from steady-state simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnew, G.; Lim, Y. L.; Nikolić, M.

    2015-04-20

    Terahertz-frequency quantum cascade lasers (THz QCLs) based on bound-to-continuum active regions are difficult to model owing to their large number of quantum states. We present a computationally efficient reduced rate equation (RE) model that reproduces the experimentally observed variation of THz power with respect to drive current and heat-sink temperature. We also present dynamic (time-domain) simulations under a range of drive currents and predict an increase in modulation bandwidth as the current approaches the peak of the light–current curve, as observed experimentally in mid-infrared QCLs. We account for temperature and bias dependence of the carrier lifetimes, gain, and injection efficiency,more » calculated from a full rate equation model. The temperature dependence of the simulated threshold current, emitted power, and cut-off current are thus all reproduced accurately with only one fitting parameter, the interface roughness, in the full REs. We propose that the model could therefore be used for rapid dynamical simulation of QCL designs.« less

  15. Continuous quantum measurements and the action uncertainty principle

    NASA Astrophysics Data System (ADS)

    Mensky, Michael B.

    1992-09-01

    The path-integral approach to quantum theory of continuous measurements has been developed in preceding works of the author. According to this approach the measurement amplitude determining probabilities of different outputs of the measurement can be evaluated in the form of a restricted path integral (a path integral “in finite limits”). With the help of the measurement amplitude, maximum deviation of measurement outputs from the classical one can be easily determined. The aim of the present paper is to express this variance in a simpler and transparent form of a specific uncertainty principle (called the action uncertainty principle, AUP). The most simple (but weak) form of AUP is δ S≳ℏ, where S is the action functional. It can be applied for simple derivation of the Bohr-Rosenfeld inequality for measurability of gravitational field. A stronger (and having wider application) form of AUP (for ideal measurements performed in the quantum regime) is |∫{/' t″ }(δ S[ q]/δ q( t))Δ q( t) dt|≃ℏ, where the paths [ q] and [Δ q] stand correspondingly for the measurement output and for the measurement error. It can also be presented in symbolic form as Δ(Equation) Δ(Path) ≃ ℏ. This means that deviation of the observed (measured) motion from that obeying the classical equation of motion is reciprocally proportional to the uncertainty in a path (the latter uncertainty resulting from the measurement error). The consequence of AUP is that improving the measurement precision beyond the threshold of the quantum regime leads to decreasing information resulting from the measurement.

  16. Quantum optical tests of complementarity: Quantum eraser and the decoherence time of a local measurement process

    NASA Astrophysics Data System (ADS)

    Abranyos, Yonatan

    1999-10-01

    Quantum optical tests of the fundamental principles of quantum mechanics, in particular, complementarity, entanglement and non-locality, are the central themes of this dissertation. A which-path experiment is implemented based on a recent experiment by Eichmann et al. [1] involving two four-level atoms. In the version considered here a continuous Broad Band Excitation field drives the two trapped atoms and, depending on the type of scattering, information about which atom scattered the light is stored in the internal degrees of the atoms. Entanglement of the atoms-photon system is intimately connected to the availability of ``which way'' information. The quantum eraser disentangles the atoms-photon system and consequently ``which way'' information is lost leading to interference. Two different experimental schemes based on the Eichmann et al. experiment are proposed for the implementation of the quantum eraser. The quantum eraser schemes erase the ``which way'' information and interference is observed in the second order correlation function. With a slight modification of the experiment, a scheme that allows to verify recently derived inequalities by Englert [2] in connection with distinguishability and visibility in a two-way interferometer is proposed. These inequalities, in some sense, can be regarded as quantifying the notion of wave-particle duality. The visibility of interference depends on the detected polarization direction of the scattered light, and a reading out of the internal atomic states of one of the two atoms provides for partial ``which way'' information or distinguishability of the two different paths. Finally, the quantum eraser is used to measure the decoherence time of a local measurement process. The experiment proposed is similar to the quantum eraser setup and contains the complete measurement process of system-meter-environment interaction. The decoherence time is quantitatively expressed in the amount of reduction of the visibility in the

  17. Experimental measurement-device-independent quantum key distribution with uncharacterized encoding.

    PubMed

    Wang, Chao; Wang, Shuang; Yin, Zhen-Qiang; Chen, Wei; Li, Hong-Wei; Zhang, Chun-Mei; Ding, Yu-Yang; Guo, Guang-Can; Han, Zheng-Fu

    2016-12-01

    Measurement-device-independent quantum key distribution (MDI QKD) is an efficient way to share secrets using untrusted measurement devices. However, the assumption on the characterizations of encoding states is still necessary in this promising protocol, which may lead to unnecessary complexity and potential loopholes in realistic implementations. Here, by using the mismatched-basis statistics, we present the first proof-of-principle experiment of MDI QKD with uncharacterized encoding sources. In this demonstration, the encoded states are only required to be constrained in a two-dimensional Hilbert space, and two distant parties (Alice and Bob) are resistant to state preparation flaws even if they have no idea about the detailed information of their encoding states. The positive final secure key rates of our system exhibit the feasibility of this novel protocol, and demonstrate its value for the application of secure communication with uncharacterized devices.

  18. The solvability of quantum k-pair network in a measurement-based way.

    PubMed

    Li, Jing; Xu, Gang; Chen, Xiu-Bo; Qu, Zhiguo; Niu, Xin-Xin; Yang, Yi-Xian

    2017-12-01

    Network coding is an effective means to enhance the communication efficiency. The characterization of network solvability is one of the most important topic in this field. However, for general network, the solvability conditions are still a challenge. In this paper, we consider the solvability of general quantum k-pair network in measurement-based framework. For the first time, a detailed account of measurement-based quantum network coding(MB-QNC) is specified systematically. Differing from existing coding schemes, single qubit measurements on a pre-shared graph state are the only allowed coding operations. Since no control operations are concluded, it makes MB-QNC schemes more feasible. Further, the sufficient conditions formulating by eigenvalue equations and stabilizer matrix are presented, which build an unambiguous relation among the solvability and the general network. And this result can also analyze the feasibility of sharing k EPR pairs task in large-scale networks. Finally, in the presence of noise, we analyze the advantage of MB-QNC in contrast to gate-based way. By an instance network [Formula: see text], we show that MB-QNC allows higher error thresholds. Specially, for X error, the error threshold is about 30% higher than 10% in gate-based way. In addition, the specific expressions of fidelity subject to some constraint conditions are given.

  19. Investigating the origin of efficiency droop by profiling the voltage across the multi-quantum well of an operating light-emitting diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Taewoong; Seong, Tae-Yeon; School of Materials Science and Engineering, Korea University, Seoul 136-713

    Efficiency droop is a phenomenon in which the efficiency of a light-emitting diode (LED) decreases with the increase in current density. To analyze efficiency droop, direct experimental observations on the energy conversion occurring inside the LED is required. Here, we present the measured voltage profiles on the cross section of an operating LED and analyze them with the cross-sectional temperature profiles obtained in a previous study under the same operation conditions. The measured voltage profiles suggest that with increases in the injection current density, electron depletion shifts from the multi-quantum well through an electron blocking layer to the p-GaN region.more » This is because electron leakage increases with increases in current density.« less

  20. Applications of fidelity measures to complex quantum systems

    PubMed Central

    2016-01-01

    We revisit fidelity as a measure for the stability and the complexity of the quantum motion of single-and many-body systems. Within the context of cold atoms, we present an overview of applications of two fidelities, which we call static and dynamical fidelity, respectively. The static fidelity applies to quantum problems which can be diagonalized since it is defined via the eigenfunctions. In particular, we show that the static fidelity is a highly effective practical detector of avoided crossings characterizing the complexity of the systems and their evolutions. The dynamical fidelity is defined via the time-dependent wave functions. Focusing on the quantum kicked rotor system, we highlight a few practical applications of fidelity measurements in order to better understand the large variety of dynamical regimes of this paradigm of a low-dimensional system with mixed regular–chaotic phase space. PMID:27140967

  1. Quantum control and measurement of atomic spins in polarization spectroscopy

    NASA Astrophysics Data System (ADS)

    Deutsch, Ivan H.; Jessen, Poul S.

    2010-03-01

    Quantum control and measurement are two sides of the same coin. To affect a dynamical map, well-designed time-dependent control fields must be applied to the system of interest. To read out the quantum state, information about the system must be transferred to a probe field. We study a particular example of this dual action in the context of quantum control and measurement of atomic spins through the light-shift interaction with an off-resonant optical probe. By introducing an irreducible tensor decomposition, we identify the coupling of the Stokes vector of the light field with moments of the atomic spin state. This shows how polarization spectroscopy can be used for continuous weak measurement of atomic observables that evolve as a function of time. Simultaneously, the state-dependent light shift induced by the probe field can drive nonlinear dynamics of the spin, and can be used to generate arbitrary unitary transformations on the atoms. We revisit the derivation of the master equation in order to give a unified description of spin dynamics in the presence of both nonlinear dynamics and photon scattering. Based on this formalism, we review applications to quantum control, including the design of state-to-state mappings, and quantum-state reconstruction via continuous weak measurement on a dynamically controlled ensemble.

  2. On measures of quantum entanglement — A brief review

    NASA Astrophysics Data System (ADS)

    Sarkar, Debasis

    2016-08-01

    Entanglement is one of the most useful resources in quantum information processing. It is effectively the quantum correlation between different subsystems of a composite system. Mathematically, one of the most hard tasks in quantum mechanics is to quantify entanglement. However, progress in this field is remarkable but not complete yet. There are many things to do with quantification of entanglement. In this review, we will discuss some of the important measures of bipartite entanglement.

  3. Entanglement measures for intermediate separability of quantum states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ichikawa, Tsubasa; Sasaki, Toshihiko; Tsutsui, Izumi

    We present a family of entanglement measures R{sub m} which act as indicators of separability of n-qubit quantum states into m subsystems for arbitrary 2{<=}m{<=}n. The measure R{sub m} vanishes if the state is separable into m subsystems, and for m=n it gives the Meyer-Wallach measure, while for m=2 it reduces, in effect, to the one introduced recently by Love et al. [Quantum Inf. Process. 6, 187 (2007)]. The measures R{sub m} are evaluated explicitly for the Greenberger-Horne-Zeilinger state and the W state (and its modifications, the W{sub k} or Dicke states) to show that these globally entangled states exhibitmore » rather distinct behaviors under the measures, indicating the utility of the measures R{sub m} for characterizing globally entangled states as well.« less

  4. Highly Efficient Red and White Organic Light-Emitting Diodes with External Quantum Efficiency beyond 20% by Employing Pyridylimidazole-Based Metallophosphors.

    PubMed

    Miao, Yanqin; Tao, Peng; Wang, Kexiang; Li, Hongxin; Zhao, Bo; Gao, Long; Wang, Hua; Xu, Bingshe; Zhao, Qiang

    2017-11-01

    Two highly efficient red neutral iridium(III) complexes, Ir1 and Ir2, were rationally designed and synthesized by selecting two pyridylimidazole derivatives as the ancillary ligands. Both Ir1 and Ir2 show nearly the same photoluminescence emission with the maximum peak at 595 nm (shoulder band at about 638 nm) and achieve high solution quantum yields of up to 0.47 for Ir1 and 0.57 for Ir2. Employing Ir1 and Ir2 as emitters, the fabricated red organic light-emitting diodes (OLEDs) show outstanding performance with the maximum external quantum efficiency (EQE), current efficiency (CE), and power efficiency (PE) of 20.98%, 33.04 cd/A, and 33.08 lm/W for the Ir1-based device and 22.15%, 36.89 cd/A, and 35.85 lm/W for the Ir2-based device, respectively. Furthermore, using Ir2 as red emitter, a trichromatic hybrid white OLED, showing good warm white emission with low correlated color temperature of <2200 K under the voltage of 4-6 V, was fabricated successfully. The white device also realizes excellent device efficiencies with the maximum EQE, CE, and PE reaching 22.74%, 44.77 cd/A, and 46.89 lm/W, respectively. Such high electroluminescence performance for red and white OLEDs indicates that Ir1 and Ir2 as efficient red phosphors have great potential for future OLED displays and lightings applications.

  5. Measuring quantum effects in photosynthetic light-harvesting complexes with multipartite entanglement

    NASA Astrophysics Data System (ADS)

    Smyth, Cathal

    This thesis is a compilation of studies on delocalization measures, entanglement, and the role of quantum coherence in electronic energy transfer (EET) in light-harvesting complexes. The first two chapters after the introduction provide foundational knowledge of quantum information and light-harvesting, respectively. Chapter 2 introduces concepts from quantum information such as purity, bipartite entanglement and criteria for its measurement. The peripheral light-harvesting complex LH2, isolated from the anoxygenic purple bacterium Rhodopseudomonas acidophila, is employed as model system of interest. This light-harvesting complex, along with a description of the process of light-harvesting, the presence of quantum coherence, and the different models used to simulate EET, are described in chapter 3. In combination these two chapters lay the foundation for chapter 4, a critical assessment of the current measures of delocalization employed in EET studies, their relationship, and overall effectiveness. The conclusion is that entanglement based measures are most effective at measuring quantum effects, and that they can be related to more conventional delocalization measures such as the inverse participation ratio (IPR) by taking into account the entropy of the system under study. All the measures within this chapter are known as bipartite measures, and only measure the strength of correlation between two sites. The fifth chapter presents the core of this thesis. Following a brief introduction to the concept of multipartite entanglement, the development of multipartite delocalization measures that give high-resolution information on quantum coherence in light-harvesting complexes is detailed. In contrast to other measures, these analytical measures can detect many body correlations in large systems undergoing decoherence. We determine that, much like the bipartite entanglement based measures of chapter 4, these measures are also a function of system entropy, and have a

  6. Relativistic quantum metrology: exploiting relativity to improve quantum measurement technologies.

    PubMed

    Ahmadi, Mehdi; Bruschi, David Edward; Sabín, Carlos; Adesso, Gerardo; Fuentes, Ivette

    2014-05-22

    We present a framework for relativistic quantum metrology that is useful for both Earth-based and space-based technologies. Quantum metrology has been so far successfully applied to design precision instruments such as clocks and sensors which outperform classical devices by exploiting quantum properties. There are advanced plans to implement these and other quantum technologies in space, for instance Space-QUEST and Space Optical Clock projects intend to implement quantum communications and quantum clocks at regimes where relativity starts to kick in. However, typical setups do not take into account the effects of relativity on quantum properties. To include and exploit these effects, we introduce techniques for the application of metrology to quantum field theory. Quantum field theory properly incorporates quantum theory and relativity, in particular, at regimes where space-based experiments take place. This framework allows for high precision estimation of parameters that appear in quantum field theory including proper times and accelerations. Indeed, the techniques can be applied to develop a novel generation of relativistic quantum technologies for gravimeters, clocks and sensors. As an example, we present a high precision device which in principle improves the state-of-the-art in quantum accelerometers by exploiting relativistic effects.

  7. A universal quantum information processor for scalable quantum communication and networks

    PubMed Central

    Yang, Xihua; Xue, Bolin; Zhang, Junxiang; Zhu, Shiyao

    2014-01-01

    Entanglement provides an essential resource for quantum computation, quantum communication, and quantum networks. How to conveniently and efficiently realize the generation, distribution, storage, retrieval, and control of multipartite entanglement is the basic requirement for realistic quantum information processing. Here, we present a theoretical proposal to efficiently and conveniently achieve a universal quantum information processor (QIP) via atomic coherence in an atomic ensemble. The atomic coherence, produced through electromagnetically induced transparency (EIT) in the Λ-type configuration, acts as the QIP and has full functions of quantum beam splitter, quantum frequency converter, quantum entangler, and quantum repeater. By employing EIT-based nondegenerate four-wave mixing processes, the generation, exchange, distribution, and manipulation of light-light, atom-light, and atom-atom multipartite entanglement can be efficiently and flexibly achieved in a deterministic way with only coherent light fields. This method greatly facilitates the operations in quantum information processing, and holds promising applications in realistic scalable quantum communication and quantum networks. PMID:25316514

  8. Effects of image processing on the detective quantum efficiency

    NASA Astrophysics Data System (ADS)

    Park, Hye-Suk; Kim, Hee-Joung; Cho, Hyo-Min; Lee, Chang-Lae; Lee, Seung-Wan; Choi, Yu-Na

    2010-04-01

    Digital radiography has gained popularity in many areas of clinical practice. This transition brings interest in advancing the methodologies for image quality characterization. However, as the methodologies for such characterizations have not been standardized, the results of these studies cannot be directly compared. The primary objective of this study was to standardize methodologies for image quality characterization. The secondary objective was to evaluate affected factors to Modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) according to image processing algorithm. Image performance parameters such as MTF, NPS, and DQE were evaluated using the international electro-technical commission (IEC 62220-1)-defined RQA5 radiographic techniques. Computed radiography (CR) images of hand posterior-anterior (PA) for measuring signal to noise ratio (SNR), slit image for measuring MTF, white image for measuring NPS were obtained and various Multi-Scale Image Contrast Amplification (MUSICA) parameters were applied to each of acquired images. In results, all of modified images were considerably influence on evaluating SNR, MTF, NPS, and DQE. Modified images by the post-processing had higher DQE than the MUSICA=0 image. This suggests that MUSICA values, as a post-processing, have an affect on the image when it is evaluating for image quality. In conclusion, the control parameters of image processing could be accounted for evaluating characterization of image quality in same way. The results of this study could be guided as a baseline to evaluate imaging systems and their imaging characteristics by measuring MTF, NPS, and DQE.

  9. Quantum nondemolition measurement of the Werner state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Jiasen; Yu Changshui; Pei Pei

    2010-10-15

    We propose a theoretical scheme of quantum nondemolition measurement of two-qubit Werner state. We discuss our scheme with the two qubits restricted in a local place and then extend the scheme to the case in which two qubits are separated. We also consider the experimental realization of our scheme based on cavity quantum electrodynamics. It is very interesting that our scheme is robust against the dissipative effects introduced by the probe process. We also give a brief interpretation of our scheme finally.

  10. 0D-2D Quantum Dot: Metal Dichalcogenide Nanocomposite Photocatalyst Achieves Efficient Hydrogen Generation.

    PubMed

    Liu, Xiao-Yuan; Chen, Hao; Wang, Ruili; Shang, Yuequn; Zhang, Qiong; Li, Wei; Zhang, Guozhen; Su, Juan; Dinh, Cao Thang; de Arquer, F Pelayo García; Li, Jie; Jiang, Jun; Mi, Qixi; Si, Rui; Li, Xiaopeng; Sun, Yuhan; Long, Yi-Tao; Tian, He; Sargent, Edward H; Ning, Zhijun

    2017-06-01

    Hydrogen generation via photocatalysis-driven water splitting provides a convenient approach to turn solar energy into chemical fuel. The development of photocatalysis system that can effectively harvest visible light for hydrogen generation is an essential task in order to utilize this technology. Herein, a kind of cadmium free Zn-Ag-In-S (ZAIS) colloidal quantum dots (CQDs) that shows remarkably photocatalytic efficiency in the visible region is developed. More importantly, a nanocomposite based on the combination of 0D ZAIS CQDs and 2D MoS 2 nanosheet is developed. This can leverage the strong light harvesting capability of CQDs and catalytic performance of MoS 2 simultaneously. As a result, an excellent external quantum efficiency of 40.8% at 400 nm is achieved for CQD-based hydrogen generation catalyst. This work presents a new platform for the development of high-efficiency photocatalyst based on 0D-2D nanocomposite. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Detective quantum efficiency of photon-counting x-ray detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanguay, Jesse, E-mail: jessetan@mail.ubc.ca; Yun, Seungman; Kim, Ho Kyung

    Purpose: Single-photon-counting (SPC) x-ray imaging has the potential to improve image quality and enable novel energy-dependent imaging methods. Similar to conventional detectors, optimizing image SPC quality will require systems that produce the highest possible detective quantum efficiency (DQE). This paper builds on the cascaded-systems analysis (CSA) framework to develop a comprehensive description of the DQE of SPC detectors that implement adaptive binning. Methods: The DQE of SPC systems can be described using the CSA approach by propagating the probability density function (PDF) of the number of image-forming quanta through simple quantum processes. New relationships are developed to describe PDF transfermore » through serial and parallel cascades to accommodate scatter reabsorption. Results are applied to hypothetical silicon and selenium-based flat-panel SPC detectors including the effects of reabsorption of characteristic/scatter photons from photoelectric and Compton interactions, stochastic conversion of x-ray energy to secondary quanta, depth-dependent charge collection, and electronic noise. Results are compared with a Monte Carlo study. Results: Depth-dependent collection efficiency can result in substantial broadening of photopeaks that in turn may result in reduced DQE at lower x-ray energies (20–45 keV). Double-counting interaction events caused by reabsorption of characteristic/scatter photons may result in falsely inflated image signal-to-noise ratio and potential overestimation of the DQE. Conclusions: The CSA approach is extended to describe signal and noise propagation through photoelectric and Compton interactions in SPC detectors, including the effects of escape and reabsorption of emission/scatter photons. High-performance SPC systems can be achieved but only for certain combinations of secondary conversion gain, depth-dependent collection efficiency, electronic noise, and reabsorption characteristics.« less

  12. Quantum State Tomography via Reduced Density Matrices.

    PubMed

    Xin, Tao; Lu, Dawei; Klassen, Joel; Yu, Nengkun; Ji, Zhengfeng; Chen, Jianxin; Ma, Xian; Long, Guilu; Zeng, Bei; Laflamme, Raymond

    2017-01-13

    Quantum state tomography via local measurements is an efficient tool for characterizing quantum states. However, it requires that the original global state be uniquely determined (UD) by its local reduced density matrices (RDMs). In this work, we demonstrate for the first time a class of states that are UD by their RDMs under the assumption that the global state is pure, but fail to be UD in the absence of that assumption. This discovery allows us to classify quantum states according to their UD properties, with the requirement that each class be treated distinctly in the practice of simplifying quantum state tomography. Additionally, we experimentally test the feasibility and stability of performing quantum state tomography via the measurement of local RDMs for each class. These theoretical and experimental results demonstrate the advantages and possible pitfalls of quantum state tomography with local measurements.

  13. Measurement-device-independent quantum coin tossing

    NASA Astrophysics Data System (ADS)

    Zhao, Liangyuan; Yin, Zhenqiang; Wang, Shuang; Chen, Wei; Chen, Hua; Guo, Guangcan; Han, Zhengfu

    2015-12-01

    Quantum coin tossing (QCT) is an important primitive of quantum cryptography and has received continuous interest. However, in practical QCT, Bob's detectors can be subjected to detector-side channel attacks launched by dishonest Alice, which will possibly make the protocol completely insecure. Here, we report a simple strategy of a detector-blinding attack based on a recent experiment. To remove all the detector side channels, we present a solution of measurement-device-independent QCT (MDI-QCT). This method is similar to the idea of MDI quantum key distribution (QKD). MDI-QCT is loss tolerant with single-photon sources and has the same bias as the original loss-tolerant QCT under a coherent attack. Moreover, it provides the potential advantage of doubling the secure distance for some special cases. Finally, MDI-QCT can also be modified to fit the weak coherent-state sources. Thus, based on the rapid development of practical MDI-QKD, our proposal can be implemented easily.

  14. Reliable quantum communication over a quantum relay channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyongyosi, Laszlo, E-mail: gyongyosi@hit.bme.hu; Imre, Sandor

    2014-12-04

    We show that reliable quantum communication over an unreliable quantum relay channels is possible. The coding scheme combines the results on the superadditivity of quantum channels and the efficient quantum coding approaches.

  15. Carbon exchange and quantum efficiency of ecosystem carbon storage in mature deciduous and old-growth coniferous forest in central New England in 2001

    NASA Astrophysics Data System (ADS)

    Hadley, J. L.; Urbanski, S. P.

    2002-12-01

    Carbon storage in forests of the northeastern U.S. and adjacent Canada may be a significant carbon sink, as forests and soils in this region have recovered after agricultural abandonment in the 19th century. Data collected during the 1990's showed that an area of 70 to 100 year old deciduous forest on abandoned farmland in central Massachusetts stored an average of 2.0 Mg C/ha/yr in trees and soil. During 2001 we measured carbon exchange and environmental parameters (above-canopy air temperature, atmospheric humidity, photosynthetically active radiation (PAR) and soil temperature) in both the 70-100 year old deciduous forest and in a nearby eastern hemlock (Tsuga canadensis L.)-dominated forest with trees up to 220 years old that was never cleared for agricultural use. The deciduous forest stored more than 4 Mg C/ ha in 2001, far higher than in any previous year since measurements started in 1991. Highest monthly deciduous forest carbon storage (1.8 - 1.9 Mg ha-1 month-1) occurred in July and August. The hemlock forest stored about 3 Mg C/ha, with peak storage in April and May (0.8 - 0.9Mg C ha-1 month-1), and little or no C storage during August. The differences in carbon storage between the two forests were related to differences in quantum use efficiency. Quantum efficiency of ecosystem carbon storage in the foliated deciduous forest averaged about 0.16 g C /mol PAR and was insensitive to temperature after leaf maturation. In contrast, the average hemlock forest quantum efficiency declined from about 0.10 g C /mol PAR at daily average above-canopy air temperature (T{a}{v}{g}) = 5 oC to zero quantum efficiency (no net carbon storage) at T{a}{v}{g} = 23 oC. Optimum temperatures for carbon storage in the hemlock forest occurred in April. Differences between the two forests are likely due primarily to a higher maximum photosynthetic rate and a more positive temperature response of leaf-level photosynthesis in red oak (the dominant deciduous species) as compared with

  16. Al{sub x}Ga{sub 1-x}N-based back-illuminated solar-blind photodetectors with external quantum efficiency of 89%

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cicek, E.; McClintock, R.; Cho, C. Y.

    2013-11-04

    We report on high performance Al{sub x}Ga{sub 1−x}N-based solar-blind ultraviolet photodetector (PD) array grown on sapphire substrate. First, high quality, crack-free AlN template layer is grown via metalorganic chemical vapor deposition. Then, we systematically optimized the device design and material doping through the growth and processing of multiple devices. After optimization, uniform and solar-blind operation is observed throughout the array; at the peak detection wavelength of 275 nm, 729 μm{sup 2} area PD showed unbiased peak external quantum efficiency and responsivity of ∼80% and ∼176 mA/W, respectively, increasing to 89% under 5 V of reverse bias. Taking the reflection loses into consideration,more » the internal quantum efficiency of these optimized PD can be estimated to be as high as ∼98%. The visible rejection ratio measured to be more than six orders of magnitude. Electrical measurements yielded a low-dark current density: <2 × 10{sup −9} A/cm{sup 2}, at 10 V of reverse bias.« less

  17. Understanding quantum measurement from the solution of dynamical models

    NASA Astrophysics Data System (ADS)

    Allahverdyan, Armen E.; Balian, Roger; Nieuwenhuizen, Theo M.

    2013-04-01

    The quantum measurement problem, to wit, understanding why a unique outcome is obtained in each individual experiment, is currently tackled by solving models. After an introduction we review the many dynamical models proposed over the years for elucidating quantum measurements. The approaches range from standard quantum theory, relying for instance on quantum statistical mechanics or on decoherence, to quantum-classical methods, to consistent histories and to modifications of the theory. Next, a flexible and rather realistic quantum model is introduced, describing the measurement of the z-component of a spin through interaction with a magnetic memory simulated by a Curie-Weiss magnet, including N≫1 spins weakly coupled to a phonon bath. Initially prepared in a metastable paramagnetic state, it may transit to its up or down ferromagnetic state, triggered by its coupling with the tested spin, so that its magnetization acts as a pointer. A detailed solution of the dynamical equations is worked out, exhibiting several time scales. Conditions on the parameters of the model are found, which ensure that the process satisfies all the features of ideal measurements. Various imperfections of the measurement are discussed, as well as attempts of incompatible measurements. The first steps consist in the solution of the Hamiltonian dynamics for the spin-apparatus density matrix Dˆ(t). Its off-diagonal blocks in a basis selected by the spin-pointer coupling, rapidly decay owing to the many degrees of freedom of the pointer. Recurrences are ruled out either by some randomness of that coupling, or by the interaction with the bath. On a longer time scale, the trend towards equilibrium of the magnet produces a final state Dˆ(t) that involves correlations between the system and the indications of the pointer, thus ensuring registration. Although Dˆ(t) has the form expected for ideal measurements, it only describes a large set of runs. Individual runs are approached by analyzing

  18. Relativistic Quantum Metrology: Exploiting relativity to improve quantum measurement technologies

    PubMed Central

    Ahmadi, Mehdi; Bruschi, David Edward; Sabín, Carlos; Adesso, Gerardo; Fuentes, Ivette

    2014-01-01

    We present a framework for relativistic quantum metrology that is useful for both Earth-based and space-based technologies. Quantum metrology has been so far successfully applied to design precision instruments such as clocks and sensors which outperform classical devices by exploiting quantum properties. There are advanced plans to implement these and other quantum technologies in space, for instance Space-QUEST and Space Optical Clock projects intend to implement quantum communications and quantum clocks at regimes where relativity starts to kick in. However, typical setups do not take into account the effects of relativity on quantum properties. To include and exploit these effects, we introduce techniques for the application of metrology to quantum field theory. Quantum field theory properly incorporates quantum theory and relativity, in particular, at regimes where space-based experiments take place. This framework allows for high precision estimation of parameters that appear in quantum field theory including proper times and accelerations. Indeed, the techniques can be applied to develop a novel generation of relativistic quantum technologies for gravimeters, clocks and sensors. As an example, we present a high precision device which in principle improves the state-of-the-art in quantum accelerometers by exploiting relativistic effects. PMID:24851858

  19. Quantum efficiencies of several VUV-sensitive photomultiplier tubes

    NASA Astrophysics Data System (ADS)

    Dorenbos, P.; de Haas, J. T. M.; Visser, R.; van Eijk, C. W. E.; Hollander, R. W.

    1993-02-01

    The quantum efficiencies (QEs) of several VUV sensitive photon detectors were determined and compared with each other. We tested the following photomultiplier tubes (PMTs): five Philips XP2020Qs, one Hamamatsu R2059, and one Thorn EMI 9426. We also tested a Na-salicylate coated glass window combined with a Philips XP2020 PMT. At wavelengths smaller than 230 nm, the QEs of both the Thorn EMI and Philips PMTs appear significantly better than the QE of the Hamamatsu PMT. Furthermore, at these wavelengths, the QE of the XP2020Q PMTs was found to be much higher than advertised in the manufacturers catalogues.

  20. Efficient experimental design of high-fidelity three-qubit quantum gates via genetic programming

    NASA Astrophysics Data System (ADS)

    Devra, Amit; Prabhu, Prithviraj; Singh, Harpreet; Arvind; Dorai, Kavita

    2018-03-01

    We have designed efficient quantum circuits for the three-qubit Toffoli (controlled-controlled-NOT) and the Fredkin (controlled-SWAP) gate, optimized via genetic programming methods. The gates thus obtained were experimentally implemented on a three-qubit NMR quantum information processor, with a high fidelity. Toffoli and Fredkin gates in conjunction with the single-qubit Hadamard gates form a universal gate set for quantum computing and are an essential component of several quantum algorithms. Genetic algorithms are stochastic search algorithms based on the logic of natural selection and biological genetics and have been widely used for quantum information processing applications. We devised a new selection mechanism within the genetic algorithm framework to select individuals from a population. We call this mechanism the "Luck-Choose" mechanism and were able to achieve faster convergence to a solution using this mechanism, as compared to existing selection mechanisms. The optimization was performed under the constraint that the experimentally implemented pulses are of short duration and can be implemented with high fidelity. We demonstrate the advantage of our pulse sequences by comparing our results with existing experimental schemes and other numerical optimization methods.

  1. Deep Blue Phosphorescent Organic Light-Emitting Diodes with CIEy Value of 0.11 and External Quantum Efficiency up to 22.5.

    PubMed

    Li, Xiaoyue; Zhang, Juanye; Zhao, Zifeng; Wang, Liding; Yang, Hannan; Chang, Qiaowen; Jiang, Nan; Liu, Zhiwei; Bian, Zuqiang; Liu, Weiping; Lu, Zhenghong; Huang, Chunhui

    2018-03-01

    Organic light-emitting diodes (OLEDs) based on red and green phosphorescent iridium complexes are successfully commercialized in displays and solid-state lighting. However, blue ones still remain a challenge on account of their relatively dissatisfactory Commission International de L'Eclairage (CIE) coordinates and low efficiency. After analyzing the reported blue iridium complexes in the literature, a new deep-blue-emitting iridium complex with improved photoluminescence quantum yield is designed and synthesized. By rational screening host materials showing high triplet energy level in neat film as well as the OLED architecture to balance electron and hole recombination, highly efficient deep-blue-emission OLEDs with a CIE at (0.15, 0.11) and maximum external quantum efficiency (EQE) up to 22.5% are demonstrated. Based on the transition dipole moment vector measurement with a variable-angle spectroscopic ellipsometry method, the ultrahigh EQE is assigned to a preferred horizontal dipole orientation of the iridium complex in doped film, which is beneficial for light extraction from the OLEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Error-tradeoff and error-disturbance relations for incompatible quantum measurements.

    PubMed

    Branciard, Cyril

    2013-04-23

    Heisenberg's uncertainty principle is one of the main tenets of quantum theory. Nevertheless, and despite its fundamental importance for our understanding of quantum foundations, there has been some confusion in its interpretation: Although Heisenberg's first argument was that the measurement of one observable on a quantum state necessarily disturbs another incompatible observable, standard uncertainty relations typically bound the indeterminacy of the outcomes when either one or the other observable is measured. In this paper, we quantify precisely Heisenberg's intuition. Even if two incompatible observables cannot be measured together, one can still approximate their joint measurement, at the price of introducing some errors with respect to the ideal measurement of each of them. We present a tight relation characterizing the optimal tradeoff between the error on one observable vs. the error on the other. As a particular case, our approach allows us to characterize the disturbance of an observable induced by the approximate measurement of another one; we also derive a stronger error-disturbance relation for this scenario.

  3. Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nolde, Jill A., E-mail: jill.nolde@nrl.navy.mil; Kim, Chul Soo; Jackson, Eric M.

    2015-06-29

    We demonstrate up to 39% resonant enhancement of the quantum efficiency (QE) of a low dark current nBn midwave infrared photodetector with a 0.5 μm InAsSb absorber layer. The enhancement was achieved by using a 1D plasmonic grating to couple incident light into plasmon modes propagating in the plane of the device. The plasmonic grating is composed of stripes of deposited amorphous germanium overlaid with gold. Devices with and without gratings were processed side-by-side for comparison of their QEs and dark currents. The peak external QE for a grating device was 29% compared to 22% for a mirror device when themore » illumination was polarized perpendicularly to the grating lines. Additional experiments determined the grating coupling efficiency by measuring the reflectance of analogous gratings deposited on bare GaSb substrates.« less

  4. Limitations on post-processing assisted quantum programming

    NASA Astrophysics Data System (ADS)

    Heinosaari, Teiko; Miyadera, Takayuki; Tukiainen, Mikko

    2017-03-01

    A quantum multimeter is a programmable device that can implement measurements of different observables depending on the programming quantum state inserted into it. The advantage of this arrangement over a single-purpose device is in its versatility: one can realize various measurements simply by changing the programming state. The classical manipulation of measurement output data is known as post-processing. In this work we study the post-processing assisted quantum programming, which is a protocol where quantum programming and classical post-processing are combined. We provide examples showing that these two processes combined can be more efficient than either of them used separately. Furthermore, we derive an inequality relating the programming resources to their corresponding programmed observables, thereby enabling us to study the limitations on post-processing assisted quantum programming.

  5. Rapid Optimization of External Quantum Efficiency of Thin Film Solar Cells Using Surrogate Modeling of Absorptivity.

    PubMed

    Kaya, Mine; Hajimirza, Shima

    2018-05-25

    This paper uses surrogate modeling for very fast design of thin film solar cells with improved solar-to-electricity conversion efficiency. We demonstrate that the wavelength-specific optical absorptivity of a thin film multi-layered amorphous-silicon-based solar cell can be modeled accurately with Neural Networks and can be efficiently approximated as a function of cell geometry and wavelength. Consequently, the external quantum efficiency can be computed by averaging surrogate absorption and carrier recombination contributions over the entire irradiance spectrum in an efficient way. Using this framework, we optimize a multi-layer structure consisting of ITO front coating, metallic back-reflector and oxide layers for achieving maximum efficiency. Our required computation time for an entire model fitting and optimization is 5 to 20 times less than the best previous optimization results based on direct Finite Difference Time Domain (FDTD) simulations, therefore proving the value of surrogate modeling. The resulting optimization solution suggests at least 50% improvement in the external quantum efficiency compared to bare silicon, and 25% improvement compared to a random design.

  6. Quantum discord with weak measurement operators of quasi-Werner states based on bipartite entangled coherent states

    NASA Astrophysics Data System (ADS)

    Castro, E.; Gómez, R.; Ladera, C. L.; Zambrano, A.

    2013-11-01

    Among many applications quantum weak measurements have been shown to be important in exploring fundamental physics issues, such as the experimental violation of the Heisenberg uncertainty relation and the Hardy paradox, and have also technological implications in quantum optics, quantum metrology and quantum communications, where the precision of the measurement is as important as the precision of quantum state preparation. The theory of weak measurement can be formulated using the pre-and post-selected quantum systems, as well as using the weak measurement operator formalism. In this work, we study the quantum discord (QD) of quasi-Werner mixed states based on bipartite entangled coherent states using the weak measurements operator, instead of the projective measurement operators. We then compare the quantum discord for both kinds of measurement operators, in terms of the entanglement quality, the latter being measured using the concept of concurrence. It's found greater quantum correlations using the weak measurement operators.

  7. Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons

    PubMed Central

    Yao, Yung-Chi; Hwang, Jung-Min; Yang, Zu-Po; Haung, Jing-Yu; Lin, Chia-Ching; Shen, Wei-Chen; Chou, Chun-Yang; Wang, Mei-Tan; Huang, Chun-Ying; Chen, Ching-Yu; Tsai, Meng-Tsan; Lin, Tzu-Neng; Shen, Ji-Lin; Lee, Ya-Ju

    2016-01-01

    Enhancement of the external quantum efficiency of a GaN-based vertical-type light emitting diode (VLED) through the coupling of localized surface plasmon (LSP) resonance with the wave-guided mode light is studied. To achieve this experimentally, Ag nanoparticles (NPs), as the LSP resonant source, are drop-casted on the most top layer of waveguide channel, which is composed of hydrothermally synthesized ZnO nanorods capped on the top of GaN-based VLED. Enhanced light-output power and external quantum efficiency are observed, and the amount of enhancement remains steady with the increase of the injected currents. To understand the observations theoretically, the absorption spectra and the electric field distributions of the VLED with and without Ag NPs decorated on ZnO NRs are determined using the finite-difference time-domain (FDTD) method. The results prove that the observation of enhancement of the external quantum efficiency can be attributed to the creation of an extra escape channel for trapped light due to the coupling of the LSP with wave-guided mode light, by which the energy of wave-guided mode light can be transferred to the efficient light scattering center of the LSP. PMID:26935648

  8. Determination of the absolute internal quantum efficiency of photoluminescence in GaN co-doped with Si and Zn

    NASA Astrophysics Data System (ADS)

    Reshchikov, M. A.; Foussekis, M.; McNamara, J. D.; Behrends, A.; Bakin, A.; Waag, A.

    2012-04-01

    The optical properties of high-quality GaN co-doped with silicon and zinc are investigated by using temperature-dependent continuous-wave and time-resolved photoluminescence measurements. The blue luminescence band is related to the ZnGa acceptor in GaN:Si,Zn, which exhibits an exceptionally high absolute internal quantum efficiency (IQE). An IQE above 90% was calculated for several samples having different concentrations of Zn. Accurate and reliable values of the IQE were obtained by using several approaches based on rate equations. The concentrations of the ZnGa acceptors and free electrons were also estimated from the photoluminescence measurements.

  9. Experimental measurement-device-independent quantum digital signatures over a metropolitan network

    NASA Astrophysics Data System (ADS)

    Yin, Hua-Lei; Wang, Wei-Long; Tang, Yan-Lin; Zhao, Qi; Liu, Hui; Sun, Xiang-Xiang; Zhang, Wei-Jun; Li, Hao; Puthoor, Ittoop Vergheese; You, Li-Xing; Andersson, Erika; Wang, Zhen; Liu, Yang; Jiang, Xiao; Ma, Xiongfeng; Zhang, Qiang; Curty, Marcos; Chen, Teng-Yun; Pan, Jian-Wei

    2017-04-01

    Quantum digital signatures (QDSs) provide a means for signing electronic communications with information-theoretic security. However, all previous demonstrations of quantum digital signatures assume trusted measurement devices. This renders them vulnerable against detector side-channel attacks, just like quantum key distribution. Here we exploit a measurement-device-independent (MDI) quantum network, over a metropolitan area, to perform a field test of a three-party MDI QDS scheme that is secure against any detector side-channel attack. In so doing, we are able to successfully sign a binary message with a security level of about 10-7. Remarkably, our work demonstrates the feasibility of MDI QDSs for practical applications.

  10. Lower bounds on the violation of the monogamy inequality for quantum correlation measures

    NASA Astrophysics Data System (ADS)

    Kumar, Asutosh; Dhar, Himadri Shekhar

    2016-06-01

    In multiparty quantum systems, the monogamy inequality proposes an upper bound on the distribution of bipartite quantum correlation between a single party and each of the remaining parties in the system, in terms of the amount of quantum correlation shared by that party with the rest of the system taken as a whole. However, it is well known that not all quantum correlation measures universally satisfy the monogamy inequality. In this work, we aim at determining the nontrivial value by which the monogamy inequality can be violated by a quantum correlation measure. Using an information-theoretic complementarity relation between the normalized purity and quantum correlation in any given multiparty state, we obtain a nontrivial lower bound on the negative monogamy score for the quantum correlation measure. In particular, for the three-qubit states the lower bound is equal to the negative von Neumann entropy of the single qubit reduced density matrix. We analytically examine the tightness of the derived lower bound for certain n -qubit quantum states. Further, we report numerical results of the same for monogamy violating correlation measures using Haar uniformly generated three-qubit states.

  11. Trap-assisted hole injection and quantum efficiency enhancement in poly(9,9' dioctylfluorene-alt-benzothiadiazole) polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Seeley, Alexander J. A. B.; Friend, Richard H.; Kim, Ji-Seon; Burroughes, Jeremy H.

    2004-12-01

    We report a reversible many-fold quantum efficiency enhancement during electrical driving of polymer light-emitting diodes (LEDs) containing poly(9,9' dioctylfluorene-alt-benzothiadiazole) (F8BT), developing over several minutes or hours at low applied bias and recovering on similar time scales after driving. This phenomenon is observed only in devices containing F8BT as an emissive layer in pure or blended form, regardless of anode and cathode choices and even in the absence of a poly(styrene-sulphonate)-doped poly(3,4-ethylene-dioxythiophene) (PEDOT:PSS) layer. We report detailed investigations using a standardized device structure containing PEDOT:PSS and a calcium cathode. Direct measurements of trapped charge recovered from the device after driving significantly exceed the unipolar limit, and thermally activated relaxation suggests a maximum trap depth around 0.6eV. Neither photoluminescence nor electroluminescence spectra reveal any change in the bulk optoelectronic properties of the emissive polymer nor any new emissive species. During the quantum efficiency (QE) enhancement process, the bulk conduction of the device increases. Reverse bias treatment of the device significantly reinforces the QE enhancement. Based on these observations, we propose a simple model in which interfacial dipoles are generated by trapped holes near the anode combining with injected electrons, to produce a narrow tunneling barrier for easy hole injection. The new injection pathway leads to a higher hole current density and thus a better charge injection balance. This produces the relatively high quantum efficiency observed in all F8BT LEDs.

  12. Bell nonlocality and fully entangled fraction measured in an entanglement-swapping device without quantum state tomography

    NASA Astrophysics Data System (ADS)

    Bartkiewicz, Karol; Lemr, Karel; Černoch, Antonín; Miranowicz, Adam

    2017-03-01

    We propose and experimentally implement an efficient procedure based on entanglement swapping to determine the Bell nonlocality measure of Horodecki et al. [Phys. Lett. A 200, 340 (1995), 10.1016/0375-9601(95)00214-N] and the fully entangled fraction of Bennett et al. [Phys. Rev. A 54, 3824 (1996), 10.1103/PhysRevA.54.3824] of an arbitrary two-qubit polarization-encoded state. The nonlocality measure corresponds to the amount of the violation of the Clauser-Horne-Shimony-Holt (CHSH) optimized over all measurement settings. By using simultaneously two copies of a given state, we measure directly only six parameters. This is an experimental determination of these quantities without quantum state tomography or continuous monitoring of all measurement bases in the usual CHSH inequality tests. We analyze how well the measured degrees of Bell nonlocality and other entanglement witnesses (including the fully entangled fraction and a nonlinear entropic witness) of an arbitrary two-qubit state can estimate its entanglement. In particular, we measure these witnesses and estimate the negativity of various two-qubit Werner states. Our approach could especially be useful for quantum communication protocols based on entanglement swapping.

  13. From quantum coherence to quantum correlations

    NASA Astrophysics Data System (ADS)

    Sun, Yuan; Mao, Yuanyuan; Luo, Shunlong

    2017-06-01

    In quantum mechanics, quantum coherence of a state relative to a quantum measurement can be identified with the quantumness that has to be destroyed by the measurement. In particular, quantum coherence of a bipartite state relative to a local quantum measurement encodes quantum correlations in the state. If one takes minimization with respect to the local measurements, then one is led to quantifiers which capture quantum correlations from the perspective of coherence. In this vein, quantum discord, which quantifies the minimal correlations that have to be destroyed by quantum measurements, can be identified as the minimal coherence, with the coherence measured by the relative entropy of coherence. To advocate and formulate this idea in a general context, we first review coherence relative to Lüders measurements which extends the notion of coherence relative to von Neumann measurements (or equivalently, orthonomal bases), and highlight the observation that quantum discord arises as minimal coherence through two prototypical examples. Then, we introduce some novel measures of quantum correlations in terms of coherence, illustrate them through examples, investigate their fundamental properties and implications, and indicate their applications to quantum metrology.

  14. Quantum dynamics intervened by repeated nonselective measurements

    NASA Astrophysics Data System (ADS)

    Filippov, Sergey N.

    We derive the theory of open quantum system dynamics intervened by a series of nonselective measurements. We analyze the cases of time-independent and time-dependent Hamiltonian dynamics between the measurements and find the approximate master equation in the stroboscopic limit. We also consider a situation, in which the measurement basis changes in time, and illustrate it by nonselective measurements in the basis of diabatic states of the Landau-Zener model.

  15. Quantum Markov chains, sufficiency of quantum channels, and Rényi information measures

    NASA Astrophysics Data System (ADS)

    Datta, Nilanjana; Wilde, Mark M.

    2015-12-01

    A short quantum Markov chain is a tripartite state {ρ }{ABC} such that system A can be recovered perfectly by acting on system C of the reduced state {ρ }{BC}. Such states have conditional mutual information I(A;B| C) equal to zero and are the only states with this property. A quantum channel {N} is sufficient for two states ρ and σ if there exists a recovery channel using which one can perfectly recover ρ from {N}(ρ ) and σ from {N}(σ ). The relative entropy difference D(ρ \\parallel σ )-D({N}(ρ )\\parallel {N}(σ )) is equal to zero if and only if {N} is sufficient for ρ and σ. In this paper, we show that these properties extend to Rényi generalizations of these information measures which were proposed in (Berta et al 2015 J. Math. Phys. 56 022205; Seshadreesan et al 2015 J. Phys. A: Math. Theor. 48 395303), thus providing an alternate characterization of short quantum Markov chains and sufficient quantum channels. These results give further support to these quantities as being legitimate Rényi generalizations of the conditional mutual information and the relative entropy difference. Along the way, we solve some open questions of Ruskai and Zhang, regarding the trace of particular matrices that arise in the study of monotonicity of relative entropy under quantum operations and strong subadditivity of the von Neumann entropy.

  16. Measuring graph similarity through continuous-time quantum walks and the quantum Jensen-Shannon divergence.

    PubMed

    Rossi, Luca; Torsello, Andrea; Hancock, Edwin R

    2015-02-01

    In this paper we propose a quantum algorithm to measure the similarity between a pair of unattributed graphs. We design an experiment where the two graphs are merged by establishing a complete set of connections between their nodes and the resulting structure is probed through the evolution of continuous-time quantum walks. In order to analyze the behavior of the walks without causing wave function collapse, we base our analysis on the recently introduced quantum Jensen-Shannon divergence. In particular, we show that the divergence between the evolution of two suitably initialized quantum walks over this structure is maximum when the original pair of graphs is isomorphic. We also prove that under special conditions the divergence is minimum when the sets of eigenvalues of the Hamiltonians associated with the two original graphs have an empty intersection.

  17. Reconstructing quantum entropy production to probe irreversibility and correlations

    NASA Astrophysics Data System (ADS)

    Gherardini, Stefano; Müller, Matthias M.; Trombettoni, Andrea; Ruffo, Stefano; Caruso, Filippo

    2018-07-01

    One of the major goals of quantum thermodynamics is the characterization of irreversibility and its consequences in quantum processes. Here, we discuss how entropy production provides a quantification of the irreversibility in open quantum systems through the quantum fluctuation theorem. We start by introducing a two-time quantum measurement scheme, in which the dynamical evolution between the measurements is described by a completely positive, trace-preserving (CPTP) quantum map (forward process). By inverting the measurement scheme and applying the time-reversed version of the quantum map, we can study how this backward process differs from the forward one. When the CPTP map is unital, we show that the stochastic quantum entropy production is a function only of the probabilities to get the initial measurement outcomes in correspondence of the forward and backward processes. For bipartite open quantum systems we also prove that the mean value of the stochastic quantum entropy production is sub-additive with respect to the bipartition (except for product states). Hence, we find a method to detect correlations between the subsystems. Our main result is the proposal of an efficient protocol to determine and reconstruct the characteristic functions of the stochastic entropy production for each subsystem. This procedure enables to reconstruct even others thermodynamical quantities, such as the work distribution of the composite system and the corresponding internal energy. Efficiency and possible extensions of the protocol are also discussed. Finally, we show how our findings might be experimentally tested by exploiting the state of-the-art trapped-ion platforms.

  18. High-efficiency interaction-free measurement with an unbalanced Mach–Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Chao, Liu; Jinhong, Liu; Junxiang, Zhang; Shiyao, Zhu

    2018-06-01

    The presence of an object can be detected without the absorption of photons in an interaction-free measurement (IFM) system based on the Zeno effect in chained Mach–Zehnder interferometers (MZIs). In this paper, we propose a scheme with an unbalanced MZI to perform the transmission of two frequency components of input light simultaneously. The two components are separated at two output ports of the MZI, achieving a high probability of asserting the absence of the object. The two final outputs of the MZI can also be extended to perform special information processing via IFM. As a result, this proposal contributes to the improvement of efficiency in interaction-free measurements with a very small number of interferometers for potential practical implementations of quantum information technology.

  19. Laser diode bars based on AlGaAs/GaAs quantum-well heterostructures with an efficiency up to 70%

    NASA Astrophysics Data System (ADS)

    Ladugin, M. A.; Marmalyuk, A. A.; Padalitsa, A. A.; Bagaev, T. A.; Andreev, A. Yu.; Telegin, K. Yu.; Lobintsov, A. V.; Davydova, E. I.; Sapozhnikov, S. M.; Danilov, A. I.; Podkopaev, A. V.; Ivanova, E. B.; Simakov, V. A.

    2017-05-01

    The results of the development and fabrication of laser diode bars (λ = 800 - 810 nm) based on AlGaAs/GaAs quantum-well heterostructures with a high efficiency are presented. An increase in the internal quantum and external differential efficiencies together with a decrease in the working voltage and the series resistance allowed us to improve the output parameters of the semiconductor laser under quasi-cw pumping. The output power of the laser diode bars with a 5-mm transverse length reached 210 W, and the efficiency was ~70%.

  20. On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar.

    PubMed

    Ding, Xing; He, Yu; Duan, Z-C; Gregersen, Niels; Chen, M-C; Unsleber, S; Maier, S; Schneider, Christian; Kamp, Martin; Höfling, Sven; Lu, Chao-Yang; Pan, Jian-Wei

    2016-01-15

    Scalable photonic quantum technologies require on-demand single-photon sources with simultaneously high levels of purity, indistinguishability, and efficiency. These key features, however, have only been demonstrated separately in previous experiments. Here, by s-shell pulsed resonant excitation of a Purcell-enhanced quantum dot-micropillar system, we deterministically generate resonance fluorescence single photons which, at π pulse excitation, have an extraction efficiency of 66%, single-photon purity of 99.1%, and photon indistinguishability of 98.5%. Such a single-photon source for the first time combines the features of high efficiency and near-perfect levels of purity and indistinguishabilty, and thus opens the way to multiphoton experiments with semiconductor quantum dots.

  1. Quantum fluctuation theorems and power measurements

    NASA Astrophysics Data System (ADS)

    Prasanna Venkatesh, B.; Watanabe, Gentaro; Talkner, Peter

    2015-07-01

    Work in the paradigm of the quantum fluctuation theorems of Crooks and Jarzynski is determined by projective measurements of energy at the beginning and end of the force protocol. In analogy to classical systems, we consider an alternative definition of work given by the integral of the supplied power determined by integrating up the results of repeated measurements of the instantaneous power during the force protocol. We observe that such a definition of work, in spite of taking account of the process dependence, has different possible values and statistics from the work determined by the conventional two energy measurement approach (TEMA). In the limit of many projective measurements of power, the system’s dynamics is frozen in the power measurement basis due to the quantum Zeno effect leading to statistics only trivially dependent on the force protocol. In general the Jarzynski relation is not satisfied except for the case when the instantaneous power operator commutes with the total Hamiltonian at all times. We also consider properties of the joint statistics of power-based definition of work and TEMA work in protocols where both values are determined. This allows us to quantify their correlations. Relaxing the projective measurement condition, weak continuous measurements of power are considered within the stochastic master equation formalism. Even in this scenario the power-based work statistics is in general not able to reproduce qualitative features of the TEMA work statistics.

  2. Directly Measuring the Degree of Quantum Coherence using Interference Fringes

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Tao; Tang, Jian-Shun; Wei, Zhi-Yuan; Yu, Shang; Ke, Zhi-Jin; Xu, Xiao-Ye; Li, Chuan-Feng; Guo, Guang-Can

    2017-01-01

    Quantum coherence is the most distinguished feature of quantum mechanics. It lies at the heart of the quantum-information technologies as the fundamental resource and is also related to other quantum resources, including entanglement. It plays a critical role in various fields, even in biology. Nevertheless, the rigorous and systematic resource-theoretic framework of coherence has just been developed recently, and several coherence measures are proposed. Experimentally, the usual method to measure coherence is to perform state tomography and use mathematical expressions. Here, we alternatively develop a method to measure coherence directly using its most essential behavior—the interference fringes. The ancilla states are mixed into the target state with various ratios, and the minimal ratio that makes the interference fringes of the "mixed state" vanish is taken as the quantity of coherence. We also use the witness observable to witness coherence, and the optimal witness constitutes another direct method to measure coherence. For comparison, we perform tomography and calculate l1 norm of coherence, which coincides with the results of the other two methods in our situation. Our methods are explicit and robust, providing a nice alternative to the tomographic technique.

  3. Directly Measuring the Degree of Quantum Coherence using Interference Fringes.

    PubMed

    Wang, Yi-Tao; Tang, Jian-Shun; Wei, Zhi-Yuan; Yu, Shang; Ke, Zhi-Jin; Xu, Xiao-Ye; Li, Chuan-Feng; Guo, Guang-Can

    2017-01-13

    Quantum coherence is the most distinguished feature of quantum mechanics. It lies at the heart of the quantum-information technologies as the fundamental resource and is also related to other quantum resources, including entanglement. It plays a critical role in various fields, even in biology. Nevertheless, the rigorous and systematic resource-theoretic framework of coherence has just been developed recently, and several coherence measures are proposed. Experimentally, the usual method to measure coherence is to perform state tomography and use mathematical expressions. Here, we alternatively develop a method to measure coherence directly using its most essential behavior-the interference fringes. The ancilla states are mixed into the target state with various ratios, and the minimal ratio that makes the interference fringes of the "mixed state" vanish is taken as the quantity of coherence. We also use the witness observable to witness coherence, and the optimal witness constitutes another direct method to measure coherence. For comparison, we perform tomography and calculate l_{1} norm of coherence, which coincides with the results of the other two methods in our situation. Our methods are explicit and robust, providing a nice alternative to the tomographic technique.

  4. Occam's Quantum Strop: Synchronizing and Compressing Classical Cryptic Processes via a Quantum Channel.

    PubMed

    Mahoney, John R; Aghamohammadi, Cina; Crutchfield, James P

    2016-02-15

    A stochastic process' statistical complexity stands out as a fundamental property: the minimum information required to synchronize one process generator to another. How much information is required, though, when synchronizing over a quantum channel? Recent work demonstrated that representing causal similarity as quantum state-indistinguishability provides a quantum advantage. We generalize this to synchronization and offer a sequence of constructions that exploit extended causal structures, finding substantial increase of the quantum advantage. We demonstrate that maximum compression is determined by the process' cryptic order--a classical, topological property closely allied to Markov order, itself a measure of historical dependence. We introduce an efficient algorithm that computes the quantum advantage and close noting that the advantage comes at a cost-one trades off prediction for generation complexity.

  5. Fidelity Witnesses for Fermionic Quantum Simulations

    NASA Astrophysics Data System (ADS)

    Gluza, M.; Kliesch, M.; Eisert, J.; Aolita, L.

    2018-05-01

    The experimental interest and developments in quantum spin-1 /2 chains has increased uninterruptedly over the past decade. In many instances, the target quantum simulation belongs to the broader class of noninteracting fermionic models, constituting an important benchmark. In spite of this class being analytically efficiently tractable, no direct certification tool has yet been reported for it. In fact, in experiments, certification has almost exclusively relied on notions of quantum state tomography scaling very unfavorably with the system size. Here, we develop experimentally friendly fidelity witnesses for all pure fermionic Gaussian target states. Their expectation value yields a tight lower bound to the fidelity and can be measured efficiently. We derive witnesses in full generality in the Majorana-fermion representation and apply them to experimentally relevant spin-1 /2 chains. Among others, we show how to efficiently certify strongly out-of-equilibrium dynamics in critical Ising chains. At the heart of the measurement scheme is a variant of importance sampling specially tailored to overlaps between covariance matrices. The method is shown to be robust against finite experimental-state infidelities.

  6. InP/ZnSe/ZnS core-multishell quantum dots for improved luminescence efficiency

    NASA Astrophysics Data System (ADS)

    Greco, Tonino; Ippen, Christian; Wedel, Armin

    2012-04-01

    Semiconductor quantum dots (QDs) exhibit unique optical properties like size-tunable emission color, narrow emission peak, and high luminescence efficiency. QDs are therefore investigated towards their application in light-emitting devices (QLEDs), solar cells, and for bio-imaging purposes. In most cases QDs made from cadmium compounds like CdS, CdSe or CdTe are studied because of their facile and reliable synthesis. However, due to the toxicity of Cd compounds and the corresponding regulation (e.g. RoHS directive in Europe) these materials are not feasible for customer applications. Indium phosphide is considered to be the most promising alternative because of the similar band gap (InP 1.35 eV, CdSe 1.73 eV). InP QDs do not yet reach the quality of CdSe QDs, especially in terms of photoluminescence quantum yield and peak width. Typically, QDs are coated with another semiconductor material of wider band gap, often ZnS, to passivate surface defects and thus improve luminescence efficiency. Concerning CdSe QDs, multishell coatings like CdSe/CdS/ZnS or CdSe/ZnSe/ZnS have been shown to be advantageous due to the improved compatibility of lattice constants. Here we present a method to improve the luminescence efficiency of InP QDs by coating a ZnSe/ZnS multishell instead of a ZnS single shell. ZnSe exhibits an intermediate lattice constant of 5.67 Å between those of InP (5.87 Å) and ZnS (5.41 Å) and thus acts as a wetting layer. As a result, InP/ZnSe/ZnS is introduced as a new core-shell quantum dot material which shows improved photoluminescence quantum yield (up to 75 %) compared to the conventional InP/ZnS system.

  7. Estimating the Error of an Analog Quantum Simulator by Additional Measurements

    NASA Astrophysics Data System (ADS)

    Schwenk, Iris; Zanker, Sebastian; Reiner, Jan-Michael; Leppäkangas, Juha; Marthaler, Michael

    2017-12-01

    We study an analog quantum simulator coupled to a reservoir with a known spectral density. The reservoir perturbs the quantum simulation by causing decoherence. The simulator is used to measure an operator average, which cannot be calculated using any classical means. Since we cannot predict the result, it is difficult to estimate the effect of the environment. Especially, it is difficult to resolve whether the perturbation is small or if the actual result of the simulation is in fact very different from the ideal system we intend to study. Here, we show that in specific systems a measurement of additional correlators can be used to verify the reliability of the quantum simulation. The procedure only requires additional measurements on the quantum simulator itself. We demonstrate the method theoretically in the case of a single spin connected to a bosonic environment.

  8. Quantum steering of Gaussian states via non-Gaussian measurements

    NASA Astrophysics Data System (ADS)

    Ji, Se-Wan; Lee, Jaehak; Park, Jiyong; Nha, Hyunchul

    2016-07-01

    Quantum steering—a strong correlation to be verified even when one party or its measuring device is fully untrusted—not only provides a profound insight into quantum physics but also offers a crucial basis for practical applications. For continuous-variable (CV) systems, Gaussian states among others have been extensively studied, however, mostly confined to Gaussian measurements. While the fulfilment of Gaussian criterion is sufficient to detect CV steering, whether it is also necessary for Gaussian states is a question of fundamental importance in many contexts. This critically questions the validity of characterizations established only under Gaussian measurements like the quantification of steering and the monogamy relations. Here, we introduce a formalism based on local uncertainty relations of non-Gaussian measurements, which is shown to manifest quantum steering of some Gaussian states that Gaussian criterion fails to detect. To this aim, we look into Gaussian states of practical relevance, i.e. two-mode squeezed states under a lossy and an amplifying Gaussian channel. Our finding significantly modifies the characteristics of Gaussian-state steering so far established such as monogamy relations and one-way steering under Gaussian measurements, thus opening a new direction for critical studies beyond Gaussian regime.

  9. Highly efficient organic light-emitting diodes with a quantum dot interfacial layer.

    PubMed

    Ryu, Seung Yoon; Hwang, Byoung Har; Park, Ki Wan; Hwang, Hyeon Seok; Sung, Jin Woo; Baik, Hong Koo; Lee, Chang Ho; Song, Seung Yong; Lee, Jun Yeob

    2009-02-11

    Advanced organic light-emitting diodes (OLEDs), based on a multiple structure, were achieved in combination with a quantum dot (QD) interfacial layer. The authors used core/shell CdSe/ZnS QDs passivated with trioctylphosphine oxide (TOPO) and TOPO-free QDs as interlayers. Multiple-structure OLEDs (MOLEDs) with TOPO-free QDs showed higher device efficiency because of a well-defined interfacial monolayer formation. Additionally, the three-unit MOLED showed high performance for device efficiency with double-structured QD interfacial layers due to the enhanced charge balance and recombination probability.

  10. Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Schwörer, Magnus; Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul

    2015-03-01

    Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 103-105 molecules as negative gradients of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM technique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly entails a strictly linear scaling of the computational effort with the system size, and adapting this revised FMM approach to the computation of the interactions between the DFT and PMM fragments of a simulation system, here, we show how one can further enhance the efficiency and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables the efficient use of high-performance computing systems. The associated software is available online.

  11. Go Pink! The Effect of Secondary Quanta on Detective Quantum Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Scott

    2017-09-05

    Photons are never directly observable. Consequently, we often use photoelectric detectors (eg CCDs) to record associated photoelectrons statistically. Nonetheless, it is an implicit goal of radiographic detector designers to achieve the maximum possible detector efficiency1. In part the desire for ever higher efficiency has been due to the fact that detectors are far less expensive than associated accelerator facilities (e.g. DARHT and PHERMEX2). In addition, higher efficiency detectors often have better spatial resolution. Consequently, the optimization of the detector, not the accelerator, is the system component with the highest leverage per dollar. In recent years, imaging scientists have adopted themore » so-called Detective Quantum Efficiency, or DQE as a summary measure of detector performance. Unfortunately, owing to the complex nature of the trade-space associated with detector components, and the natural desire for simplicity and low(er) cost, there has been a recent trend in Los Alamos to focus only on the zerofrequency efficiency, or DQE(0), when designing such systems. This narrow focus leads to system designs that neglect or even ignore the importance of high-spatial-frequency image components. In this paper we demonstrate the significant negative impact of these design choices on the Noise Power Spectrum1 (NPS) and recommend a more holistic approach to detector design. Here we present a statistical argument which indicates that a very large number (>20) of secondary quanta (typically visible light and/or recorded photo-electrons) are needed to take maximum advantage of the primary quanta (typically x-rays or protons) which are available to form an image. Since secondary particles come in bursts, they are not independent. In short, we want to maximize the pink nature of detector noise at DARHT.« less

  12. Experimental evaluation of nonclassical correlations between measurement outcomes and target observable in a quantum measurement

    NASA Astrophysics Data System (ADS)

    Iinuma, Masataka; Suzuki, Yutaro; Nii, Taiki; Kinoshita, Ryuji; Hofmann, Holger F.

    2016-03-01

    In general, it is difficult to evaluate measurement errors when the initial and final conditions of the measurement make it impossible to identify the correct value of the target observable. Ozawa proposed a solution based on the operator algebra of observables which has recently been used in experiments investigating the error-disturbance trade-off of quantum measurements. Importantly, this solution makes surprisingly detailed statements about the relations between measurement outcomes and the unknown target observable. In the present paper, we investigate this relation by performing a sequence of two measurements on the polarization of a photon, so that the first measurement commutes with the target observable and the second measurement is sensitive to a complementary observable. While the initial measurement can be evaluated using classical statistics, the second measurement introduces the effects of quantum correlations between the noncommuting physical properties. By varying the resolution of the initial measurement, we can change the relative contribution of the nonclassical correlations and identify their role in the evaluation of the quantum measurement. It is shown that the most striking deviation from classical expectations is obtained at the transition between weak and strong measurements, where the competition between different statistical effects results in measurement values well outside the range of possible eigenvalues.

  13. Implementation of generalized quantum measurements for unambiguous discrimination of multiple non-orthogonal coherent states.

    PubMed

    Becerra, F E; Fan, J; Migdall, A

    2013-01-01

    Generalized quantum measurements implemented to allow for measurement outcomes termed inconclusive can perform perfect discrimination of non-orthogonal states, a task which is impossible using only measurements with definitive outcomes. Here we demonstrate such generalized quantum measurements for unambiguous discrimination of four non-orthogonal coherent states and obtain their quantum mechanical description, the positive-operator valued measure. For practical realizations of this positive-operator valued measure, where noise and realistic imperfections prevent perfect unambiguous discrimination, we show that our experimental implementation outperforms any ideal standard-quantum-limited measurement performing the same non-ideal unambiguous state discrimination task for coherent states with low mean photon numbers.

  14. Quantum Standard Teleportation Based on the Generic Measurement Bases

    NASA Astrophysics Data System (ADS)

    Hao, San-Ru; Hou, Bo-Yu; Xi, Xiao-Qiang; Yue, Rui-Hong

    2003-10-01

    We study the quantum standard teleportation based on the generic measurement bases. It is shown that the quantum standard teleportation does not depend on the explicit expression of the measurement bases. We have given the correspondence relation between the measurement performed by Alice and the unitary transformation performed by Bob. We also prove that the single particle unknown states and the two-particle unknown cat-like states can be exactly transmitted by means of the generic measurement bases and the correspondence unitary transformations. The project supported in part by National Natural Science Foundation of China, the Hunan Provincial Natural Science Foundation of China, and the Scientific Research Fund of Hunan Provincial Education Department

  15. Repeatability of measurements: Non-Hermitian observables and quantum Coriolis force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh

    A noncommuting measurement transfers, via the apparatus, information encoded in a system's state to the external “observer.” Classical measurements determine properties of physical objects. In the quantum realm, the very same notion restricts the recording process to orthogonal states as only those are distinguishable by measurements. Thus, even a possibility to describe physical reality by means of non-Hermitian operators should volens nolens be excluded as their eigenstates are not orthogonal. We show that non-Hermitian operators with real spectra can be treated within the standard framework of quantum mechanics. Further, we propose a quantum canonical transformation that maps Hermitian systems ontomore » non-Hermitian ones. Similar to classical inertial forces this map is accompanied by an energetic cost, pinning the system on the unitary path.« less

  16. Repeatability of measurements: Non-Hermitian observables and quantum Coriolis force

    DOE PAGES

    Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh

    2016-08-26

    A noncommuting measurement transfers, via the apparatus, information encoded in a system's state to the external “observer.” Classical measurements determine properties of physical objects. In the quantum realm, the very same notion restricts the recording process to orthogonal states as only those are distinguishable by measurements. Thus, even a possibility to describe physical reality by means of non-Hermitian operators should volens nolens be excluded as their eigenstates are not orthogonal. We show that non-Hermitian operators with real spectra can be treated within the standard framework of quantum mechanics. Further, we propose a quantum canonical transformation that maps Hermitian systems ontomore » non-Hermitian ones. Similar to classical inertial forces this map is accompanied by an energetic cost, pinning the system on the unitary path.« less

  17. Very high quantum efficiency in InAs/GaSb superlattice for very long wavelength detection with cutoff of 21 μm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Dongwei; Guo, Fengyun, E-mail: guowen@hit.edu.cn; Li, Xiaochao

    2016-03-21

    The authors report the dependence of the quantum efficiency on beryllium concentration in the active region of type-II InAs/GaSb superlattice infrared detector with a cutoff wavelength around 21 μm. It is found that the quantum efficiency and responsivity show a clear delineation in comparison to the doping concentration. The quantum efficiency is further improved by gradually doping in the absorbing region. At 77 K, the 50% cutoff wavelength of the VLWIR detector is 18 μm, and the R{sub 0}A is kept at a stable value of 6 Ω cm{sup 2}. Different beryllium concentration leads to an increase of an average quantum efficiency in the 8–15 μmmore » window from 35% to 55% with a π-region thickness of 3.0 μm, for U{sub bias} = −0.3 V, and no anti-reflection coating. As for a further result, the quantum efficiency reaches at a maximum value of 66% by gradually doping in the absorbing region with the peak detectivity of 3.33 × 10{sup 10 }cm Hz{sup 1/2}/W at 15 μm.« less

  18. Tunnel-injected sub 290 nm ultra-violet light emitting diodes with 2.8% external quantum efficiency

    NASA Astrophysics Data System (ADS)

    Zhang, Yuewei; Jamal-Eddine, Zane; Akyol, Fatih; Bajaj, Sanyam; Johnson, Jared M.; Calderon, Gabriel; Allerman, Andrew A.; Moseley, Michael W.; Armstrong, Andrew M.; Hwang, Jinwoo; Rajan, Siddharth

    2018-02-01

    We report on the high efficiency tunnel-injected ultraviolet light emitting diodes (UV LEDs) emitting at 287 nm. Deep UV LED performance has been limited by the severe internal light absorption in the p-type contact layers and low electrical injection efficiency due to poor p-type conduction. In this work, a polarization engineered Al0.65Ga0.35N/In0.2Ga0.8N tunnel junction layer is adopted for non-equilibrium hole injection to replace the conventionally used direct p-type contact. A reverse-graded AlGaN contact layer is further introduced to realize a low resistance contact to the top n-AlGaN layer. This led to the demonstration of a low tunnel junction resistance of 1.9 × 10-3 Ω cm2 obtained at 1 kA/cm2. Light emission at 287 nm with an on-wafer peak external quantum efficiency of 2.8% and a wall-plug efficiency of 1.1% was achieved. The measured power density at 1 kA/cm2 was 54.4 W/cm2, confirming the efficient hole injection through interband tunneling. With the benefits of the minimized internal absorption and efficient hole injection, a tunnel-injected UV LED structure could enable future high efficiency UV emitters.

  19. Highly efficient multifunctional MnSe/ZnSeS quantum dots for biomedical applications

    NASA Astrophysics Data System (ADS)

    Armijo, Leisha M.; Akins, Brian A.; Plumley, John B.; Rivera, Antonio C.; Withers, Nathan J.; Cook, Nathaniel C.; Smolyakov, Gennady A.; Huber, Dale L.; Smyth, Hugh D. C.; Osińki, Marek

    2013-03-01

    Colloidal quantum dots (QDs) are of interest for a variety of biomedical applications, including bioimaging, drug targeting, and photodynamic therapy. However, a significant limitation is that highly efficient photoluminescent QDs available commercially contain cadmium. Recent research has focused on cadmium-free QDs, which are anticipated to exhibit significantly lower cytotoxicity. Previous work has focused on InP and ZnO as alternative semiconductor materials for QDs. However, these nanoparticles have been shown to be cytotoxic. Recently, we have synthesized high quantum efficiency (exceeding 90%), color tunable MnSe/ZnSeS nanoparticles, as potentially attractive QDs for biomedical applications. Additionally, the manganese imparts magnetic properties on the QDs, which are important for magnetic field-guided transport, hyperthermia, and potentially magnetic resonance imaging (MRI). The QDs can be further biofunctionalized via conjugation to a ligand or a biomarker of disease, allowing combination of drug delivery with visual verification and colocalization due to the color tunability of the QDs.

  20. High Efficiency Quantum Well Waveguide Solar Cells and Methods for Constructing the Same

    NASA Technical Reports Server (NTRS)

    Sood, Ashok K. (Inventor); Welser, Roger E. (Inventor)

    2014-01-01

    Photon absorption, and thus current generation, is hindered in conventional thin-film solar cell designs, including quantum well structures, by the limited path length of incident light passing vertically through the device. Optical scattering into lateral waveguide structures provides a physical mechanism to increase photocurrent generation through in-plane light trapping. However, the insertion of wells of high refractive index material with lower energy gap into the device structure often results in lower voltage operation, and hence lower photovoltaic power conversion efficiency. The voltage output of an InGaAs quantum well waveguide photovoltaic device can be increased by employing a III-V material structure with an extended wide band gap emitter heterojunction. Analysis of the light IV characteristics reveals that non-radiative recombination components of the underlying dark diode current have been reduced, exposing the limiting radiative recombination component and providing a pathway for realizing solar-electric conversion efficiency of 30% or more in single junction cells.

  1. Utilizing photon number parity measurements to demonstrate quantum computation with cat-states in a cavity

    NASA Astrophysics Data System (ADS)

    Petrenko, A.; Ofek, N.; Vlastakis, B.; Sun, L.; Leghtas, Z.; Heeres, R.; Sliwa, K. M.; Mirrahimi, M.; Jiang, L.; Devoret, M. H.; Schoelkopf, R. J.

    2015-03-01

    Realizing a working quantum computer requires overcoming the many challenges that come with coupling large numbers of qubits to perform logical operations. These include improving coherence times, achieving high gate fidelities, and correcting for the inevitable errors that will occur throughout the duration of an algorithm. While impressive progress has been made in all of these areas, the difficulty of combining these ingredients to demonstrate an error-protected logical qubit, comprised of many physical qubits, still remains formidable. With its large Hilbert space, superior coherence properties, and single dominant error channel (single photon loss), a superconducting 3D resonator acting as a resource for a quantum memory offers a hardware-efficient alternative to multi-qubit codes [Leghtas et.al. PRL 2013]. Here we build upon recent work on cat-state encoding [Vlastakis et.al. Science 2013] and photon-parity jumps [Sun et.al. 2014] by exploring the effects of sequential measurements on a cavity state. Employing a transmon qubit dispersively coupled to two superconducting resonators in a cQED architecture, we explore further the application of parity measurements to characterizing such a hybrid qubit/cat state architecture. In so doing, we demonstrate the promise of integrating cat states as central constituents of future quantum codes.

  2. Maximizing the quantum efficiency of microchannel plate detectors - The collection of photoelectrons from the interchannel web using an electric field

    NASA Technical Reports Server (NTRS)

    Taylor, R. C.; Hettrick, M. C.; Malina, R. F.

    1983-01-01

    High quantum efficiency and two-dimensional imaging capabilities make the microchannel plate (MCP) a suitable detector for a sky survey instrument. The Extreme Ultraviolet Explorer satellite, to be launched in 1987, will use MCP detectors. A feature which limits MCP efficiency is related to the walls of individual channels. The walls are of finite thickness and thus form an interchannel web. Under normal circumstances, this web does not contribute to the detector's quantum efficiency. Panitz and Foesch (1976) have found that in the case of a bombardment with ions, electrons were ejected from the electrode material coating the web. By applying a small electric field, the electrons were returned to the MCP surface where they were detected. The present investigation is concerned with the enhancement of quantum efficiencies in the case of extreme UV wavelengths. Attention is given to a model and a computer simulation which quantitatively reproduce the experimental results.

  3. Simple Atomic Quantum Memory Suitable for Semiconductor Quantum Dot Single Photons.

    PubMed

    Wolters, Janik; Buser, Gianni; Horsley, Andrew; Béguin, Lucas; Jöckel, Andreas; Jahn, Jan-Philipp; Warburton, Richard J; Treutlein, Philipp

    2017-08-11

    Quantum memories matched to single photon sources will form an important cornerstone of future quantum network technology. We demonstrate such a memory in warm Rb vapor with on-demand storage and retrieval, based on electromagnetically induced transparency. With an acceptance bandwidth of δf=0.66  GHz, the memory is suitable for single photons emitted by semiconductor quantum dots. In this regime, vapor cell memories offer an excellent compromise between storage efficiency, storage time, noise level, and experimental complexity, and atomic collisions have negligible influence on the optical coherences. Operation of the memory is demonstrated using attenuated laser pulses on the single photon level. For a 50 ns storage time, we measure η_{e2e}^{50  ns}=3.4(3)% end-to-end efficiency of the fiber-coupled memory, with a total intrinsic efficiency η_{int}=17(3)%. Straightforward technological improvements can boost the end-to-end-efficiency to η_{e2e}≈35%; beyond that, increasing the optical depth and exploiting the Zeeman substructure of the atoms will allow such a memory to approach near unity efficiency. In the present memory, the unconditional read-out noise level of 9×10^{-3} photons is dominated by atomic fluorescence, and for input pulses containing on average μ_{1}=0.27(4) photons, the signal to noise level would be unity.

  4. Simple Atomic Quantum Memory Suitable for Semiconductor Quantum Dot Single Photons

    NASA Astrophysics Data System (ADS)

    Wolters, Janik; Buser, Gianni; Horsley, Andrew; Béguin, Lucas; Jöckel, Andreas; Jahn, Jan-Philipp; Warburton, Richard J.; Treutlein, Philipp

    2017-08-01

    Quantum memories matched to single photon sources will form an important cornerstone of future quantum network technology. We demonstrate such a memory in warm Rb vapor with on-demand storage and retrieval, based on electromagnetically induced transparency. With an acceptance bandwidth of δ f =0.66 GHz , the memory is suitable for single photons emitted by semiconductor quantum dots. In this regime, vapor cell memories offer an excellent compromise between storage efficiency, storage time, noise level, and experimental complexity, and atomic collisions have negligible influence on the optical coherences. Operation of the memory is demonstrated using attenuated laser pulses on the single photon level. For a 50 ns storage time, we measure ηe2 e 50 ns=3.4 (3 )% end-to-end efficiency of the fiber-coupled memory, with a total intrinsic efficiency ηint=17 (3 )%. Straightforward technological improvements can boost the end-to-end-efficiency to ηe 2 e≈35 %; beyond that, increasing the optical depth and exploiting the Zeeman substructure of the atoms will allow such a memory to approach near unity efficiency. In the present memory, the unconditional read-out noise level of 9 ×10-3 photons is dominated by atomic fluorescence, and for input pulses containing on average μ1=0.27 (4 ) photons, the signal to noise level would be unity.

  5. Molecular-Barrier-Enhanced Aromatic Fluorophores in Cocrystals with Unity Quantum Efficiency.

    PubMed

    Ye, Huanqing; Liu, Guangfeng; Liu, Sheng; Casanova, David; Ye, Xin; Tao, Xutang; Zhang, Qichun; Xiong, Qihua

    2018-02-12

    Singlet-triplet conversion in organic light-emitting materials introduces non-emissive (dark) and long-lived triplet states, which represents a significant challenge in constraining the optical properties. There have been considerable attempts at separating singlets and triplets in long-chain polymers, scavenging triplets, and quenching triplets with heavy metals; nonetheless, such triplet-induced loss cannot be fully eliminated. Herein, a new strategy of crafting a periodic molecular barrier into the π-conjugated matrices of organic aromatic fluorophores is reported. The molecular barriers effectively block the singlet-to-triplet pathway, resulting in near-unity photoluminescence quantum efficiency (PLQE) of the organic fluorophores. The transient optical spectroscopy measurements confirm the absence of the triplet absorption. These studies provide a general approach to preventing the formation of dark triplet states in organic semiconductors and bring new opportunities for the development of advanced organic optics and photonics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Design parameters of a resonant infrared photoconductor with unity quantum efficiency

    NASA Technical Reports Server (NTRS)

    Farhoomand, Jam; Mcmurray, Robert E., Jr.

    1991-01-01

    This paper proposes a concept of a resonant infrared photoconductor that has characteristics of 100 percent quantum efficiency, high photoconductive gain, and very low noise equivalent power. Central to this concept is an establishment of a high-finesse absorption cavity internal to the detector element. A theoretical analysis is carried out, demonstrating this concept and providing some design guidelines. A Ge:Ga FIR detector is presently being fabricated using this approach.

  7. Efficient and Adaptive Methods for Computing Accurate Potential Surfaces for Quantum Nuclear Effects: Applications to Hydrogen-Transfer Reactions.

    PubMed

    DeGregorio, Nicole; Iyengar, Srinivasan S

    2018-01-09

    We present two sampling measures to gauge critical regions of potential energy surfaces. These sampling measures employ (a) the instantaneous quantum wavepacket density, an approximation to the (b) potential surface, its (c) gradients, and (d) a Shannon information theory based expression that estimates the local entropy associated with the quantum wavepacket. These four criteria together enable a directed sampling of potential surfaces that appears to correctly describe the local oscillation frequencies, or the local Nyquist frequency, of a potential surface. The sampling functions are then utilized to derive a tessellation scheme that discretizes the multidimensional space to enable efficient sampling of potential surfaces. The sampled potential surface is then combined with four different interpolation procedures, namely, (a) local Hermite curve interpolation, (b) low-pass filtered Lagrange interpolation, (c) the monomial symmetrization approximation (MSA) developed by Bowman and co-workers, and (d) a modified Shepard algorithm. The sampling procedure and the fitting schemes are used to compute (a) potential surfaces in highly anharmonic hydrogen-bonded systems and (b) study hydrogen-transfer reactions in biogenic volatile organic compounds (isoprene) where the transferring hydrogen atom is found to demonstrate critical quantum nuclear effects. In the case of isoprene, the algorithm discussed here is used to derive multidimensional potential surfaces along a hydrogen-transfer reaction path to gauge the effect of quantum-nuclear degrees of freedom on the hydrogen-transfer process. Based on the decreased computational effort, facilitated by the optimal sampling of the potential surfaces through the use of sampling functions discussed here, and the accuracy of the associated potential surfaces, we believe the method will find great utility in the study of quantum nuclear dynamics problems, of which application to hydrogen-transfer reactions and hydrogen

  8. High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si

    NASA Astrophysics Data System (ADS)

    Jung, Daehwan; Norman, Justin; Kennedy, M. J.; Shang, Chen; Shin, Bongki; Wan, Yating; Gossard, Arthur C.; Bowers, John E.

    2017-09-01

    We demonstrate highly efficient, low threshold InAs quantum dot lasers epitaxially grown on on-axis (001) GaP/Si substrates using molecular beam epitaxy. Electron channeling contrast imaging measurements show a threading dislocation density of 7.3 × 106 cm-2 from an optimized GaAs template grown on GaP/Si. The high-quality GaAs templates enable as-cleaved quantum dot lasers to achieve a room-temperature continuous-wave (CW) threshold current of 9.5 mA, a threshold current density as low as 132 A/cm2, a single-side output power of 175 mW, and a wall-plug-efficiency of 38.4% at room temperature. As-cleaved QD lasers show ground-state CW lasing up to 80 °C. The application of a 95% high-reflectivity coating on one laser facet results in a CW threshold current of 6.7 mA, which is a record-low value for any kind of Fabry-Perot laser grown on Si.

  9. High efficiency coherent optical memory with warm rubidium vapour

    PubMed Central

    Hosseini, M.; Sparkes, B.M.; Campbell, G.; Lam, P.K.; Buchler, B.C.

    2011-01-01

    By harnessing aspects of quantum mechanics, communication and information processing could be radically transformed. Promising forms of quantum information technology include optical quantum cryptographic systems and computing using photons for quantum logic operations. As with current information processing systems, some form of memory will be required. Quantum repeaters, which are required for long distance quantum key distribution, require quantum optical memory as do deterministic logic gates for optical quantum computing. Here, we present results from a coherent optical memory based on warm rubidium vapour and show 87% efficient recall of light pulses, the highest efficiency measured to date for any coherent optical memory suitable for quantum information applications. We also show storage and recall of up to 20 pulses from our system. These results show that simple warm atomic vapour systems have clear potential as a platform for quantum memory. PMID:21285952

  10. High efficiency coherent optical memory with warm rubidium vapour.

    PubMed

    Hosseini, M; Sparkes, B M; Campbell, G; Lam, P K; Buchler, B C

    2011-02-01

    By harnessing aspects of quantum mechanics, communication and information processing could be radically transformed. Promising forms of quantum information technology include optical quantum cryptographic systems and computing using photons for quantum logic operations. As with current information processing systems, some form of memory will be required. Quantum repeaters, which are required for long distance quantum key distribution, require quantum optical memory as do deterministic logic gates for optical quantum computing. Here, we present results from a coherent optical memory based on warm rubidium vapour and show 87% efficient recall of light pulses, the highest efficiency measured to date for any coherent optical memory suitable for quantum information applications. We also show storage and recall of up to 20 pulses from our system. These results show that simple warm atomic vapour systems have clear potential as a platform for quantum memory.

  11. Quantum criticality at the superconductor-insulator transition revealed by specific heat measurements

    PubMed Central

    Poran, S.; Nguyen-Duc, T.; Auerbach, A.; Dupuis, N.; Frydman, A.; Bourgeois, Olivier

    2017-01-01

    The superconductor–insulator transition (SIT) is considered an excellent example of a quantum phase transition that is driven by quantum fluctuations at zero temperature. The quantum critical point is characterized by a diverging correlation length and a vanishing energy scale. Low-energy fluctuations near quantum criticality may be experimentally detected by specific heat, cp, measurements. Here we use a unique highly sensitive experiment to measure cp of two-dimensional granular Pb films through the SIT. The specific heat shows the usual jump at the mean field superconducting transition temperature marking the onset of Cooper pairs formation. As the film thickness is tuned towards the SIT, is relatively unchanged, while the magnitude of the jump and low-temperature specific heat increase significantly. This behaviour is taken as the thermodynamic fingerprint of quantum criticality in the vicinity of a quantum phase transition. PMID:28224994

  12. Quantum criticality at the superconductor-insulator transition revealed by specific heat measurements.

    PubMed

    Poran, S; Nguyen-Duc, T; Auerbach, A; Dupuis, N; Frydman, A; Bourgeois, Olivier

    2017-02-22

    The superconductor-insulator transition (SIT) is considered an excellent example of a quantum phase transition that is driven by quantum fluctuations at zero temperature. The quantum critical point is characterized by a diverging correlation length and a vanishing energy scale. Low-energy fluctuations near quantum criticality may be experimentally detected by specific heat, c p , measurements. Here we use a unique highly sensitive experiment to measure c p of two-dimensional granular Pb films through the SIT. The specific heat shows the usual jump at the mean field superconducting transition temperature marking the onset of Cooper pairs formation. As the film thickness is tuned towards the SIT, is relatively unchanged, while the magnitude of the jump and low-temperature specific heat increase significantly. This behaviour is taken as the thermodynamic fingerprint of quantum criticality in the vicinity of a quantum phase transition.

  13. The measurement problem in quantum mechanics: A phenomenological investigation

    NASA Astrophysics Data System (ADS)

    Hunter, Joel Brooks

    2008-10-01

    This dissertation is a phenomenological investigation of the measurement problem in quantum mechanics. The primary subject matter for description and analysis is scientific instruments and their use in experiments which elicit the measurement problem. A methodological critique is mounted against the ontological commitments taken for granted in the canonical interpretations of quantum theory and the scientific activity of measurement as the necessary interface between theoretical interest and perceptual results. I argue that an aesthetic dimension of reality functions as aproto-scientific establishment of sense-making that constantly operates to set integratively all other cognitively neat determinations, including scientifically rendered objects that are intrinsically non-visualizable. The way in which data "key in" to the original and originative register of the sensible in observation is clarified by examining prostheses, measuring apparatuses and instruments that are sense-conveying and -integrative with the human sensorium. Experiments, technology and instrumentation are examined in order to understand how knowing and that which is known is bonded by praxis-aisthesis. Quantum measurement is a praxic-dynamie activity and homologically structured and structur ing functional engagement in terms of instantiation, quantifiability, and spatiotemporal differentiation. The distinctions between a beauty-aesthetic and praxis-aisthesis are delineated. It is argued that a beauty-aesthetic is a construal of the economic dimension of scientific objects and work, and is not the primary manner in which the aesthetic dimension is disclosed. The economic dimension of abstractions reduces to an austere aesthetic of calculative economy. Nature itself, however, is not stingy; it is intrinsically capacious, extravagant, full of surprise, nuance, ambiguity and allusiveness. The capaciousness of Nature and the way in which we are integratively set within Nature in a materiality

  14. Proliferation of Observables and Measurement in Quantum-Classical Hybrids

    NASA Astrophysics Data System (ADS)

    Elze, Hans-Thomas

    2012-01-01

    Following a review of quantum-classical hybrid dynamics, we discuss the ensuing proliferation of observables and relate it to measurements of (would-be) quantum mechanical degrees of freedom performed by (would-be) classical ones (if they were separable). Hybrids consist in coupled classical (CL) and quantum mechanical (QM) objects. Numerous consistency requirements for their description have been discussed and are fulfilled here. We summarize a representation of quantum mechanics in terms of classical analytical mechanics which is naturally extended to QM-CL hybrids. This framework allows for superposition, separable, and entangled states originating in the QM sector, admits experimenter's "Free Will", and is local and nonsignaling. Presently, we study the set of hybrid observables, which is larger than the Cartesian product of QM and CL observables of its components; yet it is smaller than a corresponding product of all-classical observables. Thus, quantumness and classicality infect each other.

  15. Manipulation of nanoscale V-pits to optimize internal quantum efficiency of InGaN multiple quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chiao-Yun; Li, Heng; Shih, Yang-Ta

    2015-03-02

    We systematically investigated the influence of nanoscale V-pits on the internal quantum efficiency (IQE) of InGaN multiple quantum wells (MQWs) by adjusting the underlying superlattices (SLS). The analysis indicated that high barrier energy of sidewall MQWs on V-pits and long diffusion distance between the threading dislocation (TD) center and V-pit boundary were crucial to effectively passivate the non-radiative centers of TDs. For a larger V-pit, the thicker sidewall MQW on V-pit would decrease the barrier energy. On the contrary, a shorter distance between the TD center and V-pit boundary would be observed in a smaller V-pit, which could increase themore » carrier capturing capability of TDs. An optimized V-pit size of approximately 200–250 nm in our experiment could be concluded for MQWs with 15 pairs SLS, which exhibited an IQE value of 70%.« less

  16. Cavity Exciton-Polariton mediated, Single-Shot Quantum Non-Demolition measurement of a Quantum Dot Electron Spin

    NASA Astrophysics Data System (ADS)

    Puri, Shruti; McMahon, Peter; Yamamoto, Yoshihisa

    2014-03-01

    The quantum non-demolition (QND) measurement of a single electron spin is of great importance in measurement-based quantum computing schemes. The current single-shot readout demonstrations exhibit substantial spin-flip backaction. We propose a QND readout scheme for quantum dot (QD) electron spins in Faraday geometry, which differs from previous proposals and implementations in that it relies on a novel physical mechanism: the spin-dependent Coulomb exchange interaction between a QD spin and optically-excited quantum well (QW) microcavity exciton-polaritons. The Coulomb exchange interaction causes a spin-dependent shift in the resonance energy of the polarized polaritons, thus causing the phase and intensity response of left circularly polarized light to be different to that of the right circularly polarized light. As a result the QD electron's spin can be inferred from the response to a linearly polarized probe. We show that by a careful design of the system, any spin-flip backaction can be eliminated and a QND measurement of the QD electron spin can be performed within a few 10's of nanoseconds with fidelity 99:95%. This improves upon current optical QD spin readout techniques across multiple metrics, including fidelity, speed and scalability. National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan.

  17. Occam’s Quantum Strop: Synchronizing and Compressing Classical Cryptic Processes via a Quantum Channel

    NASA Astrophysics Data System (ADS)

    Mahoney, John R.; Aghamohammadi, Cina; Crutchfield, James P.

    2016-02-01

    A stochastic process’ statistical complexity stands out as a fundamental property: the minimum information required to synchronize one process generator to another. How much information is required, though, when synchronizing over a quantum channel? Recent work demonstrated that representing causal similarity as quantum state-indistinguishability provides a quantum advantage. We generalize this to synchronization and offer a sequence of constructions that exploit extended causal structures, finding substantial increase of the quantum advantage. We demonstrate that maximum compression is determined by the process’ cryptic order-a classical, topological property closely allied to Markov order, itself a measure of historical dependence. We introduce an efficient algorithm that computes the quantum advantage and close noting that the advantage comes at a cost-one trades off prediction for generation complexity.

  18. Impedance measurement of Cobalt doped ZnO Quantum dots

    NASA Astrophysics Data System (ADS)

    Tiwari, Ram; Kaphle, Amrit; Hari, Parameswar

    We investigated structural, thermal and electrical properties of ZnO Quantum dots grown by precipitation method. QDs were spin coated on ITO and annealed at various temperatures ranging from 1000C to 300 0C. ZnO QDs were doped with cobalt for concentration ranging from 0-15%. XRD measurement showed increase in bond length, strain, dislocation density and Cell volume as the doping level varied from 0% to 15%. Impedance Spectroscopy measurements represented by Cole-Cole plot showed reduction in resistance as the cobalt doping concentration increased from 0-15%. Thermal activation energy was obtained by plotting resistivity Vs temperature for doped samples at temperatures from 1000C to 3000C. The thermal activation energy decreased from 85.13meV to 58.21meV as doping increased from 0-15%. Relaxation time was extracted by fitting data to RC model. Relaxation time varied from 61.57 ns to 3.76 ns as the cobalt concentration increased from 0% to 15%. We will also discuss applications of cobalt doped ZnO QDs on improving conversion efficiency of solar cells.

  19. Internal Quantum Efficiency of Led Structures at Various Charge Carrier Distributions Over InGaN/GaN Quantum Wells

    NASA Astrophysics Data System (ADS)

    Romanov, I. S.; Prudaev, I. A.; Kopyev, V. V.

    2018-06-01

    The results of studying the effect of the thickness of GaN barrier layers in the active region of LED structures with InGaN/GaN quantum wells on the internal quantum efficiency (IQE) of photoluminescence are presented. It is shown that a decrease in the thickness of the GaN barrier layers from 15 to 3 nm leads to an increase in the maximum value of IQE and to a shift of the maximum to the region of high excitation powers. The result obtained is explained with consideration for the decrease in the Auger recombination rate due to a more uniform distribution of charge carriers over the active region in structures with a barrier thickness of 3 nm.

  20. Quantum chi-squared and goodness of fit testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temme, Kristan; Verstraete, Frank

    2015-01-15

    A quantum mechanical hypothesis test is presented for the hypothesis that a certain setup produces a given quantum state. Although the classical and the quantum problems are very much related to each other, the quantum problem is much richer due to the additional optimization over the measurement basis. A goodness of fit test for i.i.d quantum states is developed and a max-min characterization for the optimal measurement is introduced. We find the quantum measurement which leads both to the maximal Pitman and Bahadur efficiencies, and determine the associated divergence rates. We discuss the relationship of the quantum goodness of fitmore » test to the problem of estimating multiple parameters from a density matrix. These problems are found to be closely related and we show that the largest error of an optimal strategy, determined by the smallest eigenvalue of the Fisher information matrix, is given by the divergence rate of the goodness of fit test.« less