Science.gov

Sample records for quantum entanglement based

  1. Entanglement-Based Quantum Cryptography and Quantum Communication

    NASA Astrophysics Data System (ADS)

    Zeilinger, Anton

    2007-03-01

    Quantum entanglement, to Erwin Schroedinger the essential feature of quantum mechanics, has become a central resource in various quantum communication protocols including quantum cryptography and quantum teleportation. From a fundamental point of view what is exploited in these experiments is the very fact which led Schroedinger to his statement namely that in entangled states joint properties of the entangled systems may be well defined while the individual subsystems may carry no information at all. In entanglement-based quantum cryptography it leads to the most elegant possible solution of the classic key distribution problem. It implies that the key comes into existence at spatially distant location at the same time and does not need to be transported. A number recent developments include for example highly efficient, robust and stable sources of entangled photons with a broad bandwidth of desired features. Also, entanglement-based quantum cryptography is successfully joining other methods in the work towards demonstrating quantum key distribution networks. Along that line recently decoy-state quantum cryptography over a distance of 144 km between two Canary Islands was demonstrated successfully. Such experiments also open up the possibility of quantum communication on a really large scale using LEO satellites. Another important possible future branch of quantum communication involves quantum repeaters in order to cover larger distances with entangled states. Recently the connection of two fully independent lasers in an entanglement swapping experiment did demonstrate that the timing control of such systems on a femtosecond time scale is possible. A related development includes recent demonstrations of all-optical one-way quantum computation schemes with the extremely short cycle time of only 100 nanoseconds.

  2. Quantum Authentication Scheme Based on Entanglement Swapping

    NASA Astrophysics Data System (ADS)

    Penghao, Niu; Yuan, Chen; Chong, Li

    2016-01-01

    Based on the entanglement swapping, a quantum authentication scheme with a trusted- party is proposed in this paper. With this scheme, two users can perform mutual identity authentication to confirm each other's validity. In addition, the scheme is proved to be secure under circumstances where a malicious attacker is capable of monitoring the classical and quantum channels and has the power to forge all information on the public channel.

  3. Coherent state quantum key distribution based on entanglement sudden death

    NASA Astrophysics Data System (ADS)

    Jaeger, Gregg; Simon, David; Sergienko, Alexander V.

    2016-03-01

    A method for quantum key distribution (QKD) using entangled coherent states is discussed which is designed to provide key distribution rates and transmission distances surpassing those of traditional entangled photon pair QKD by exploiting entanglement sudden death. The method uses entangled electromagnetic signal states of `macroscopic' average photon numbers rather than single photon or entangled photon pairs, which have inherently limited rate and distance performance as bearers of quantum key data. Accordingly, rather than relying specifically on Bell inequalities as do entangled photon pair-based methods, the security of this method is based on entanglement witnesses and related functions.

  4. Stabilizing entanglement by quantum-jump-based feedback

    SciTech Connect

    Carvalho, A. R. R.; Hope, J. J.

    2007-07-15

    We show that direct feedback based on quantum-jump detection can be used to generate entangled steady states. We present a strategy that is insensitive to detection inefficiencies and robust against errors in the control Hamiltonian. This feedback procedure is also shown to overcome spontaneous emission effects by stabilizing states with a high degree of entanglement.

  5. Optimized entanglement purification schemes for modular based quantum computers

    NASA Astrophysics Data System (ADS)

    Krastanov, Stefan; Jiang, Liang

    The choice of entanglement purification scheme strongly depends on the fidelities of quantum gates and measurements, as well as the imperfection of initial entanglement. For instance, the purification scheme optimal at low gate fidelities may not necessarily be the optimal scheme at higher gate fidelities. We employ an evolutionary algorithm that efficiently optimizes the entanglement purification circuit for given system parameters. Such optimized purification schemes will boost the performance of entanglement purification, and consequently enhance the fidelity of teleportation-based non-local coupling gates, which is an indispensible building block for modular-based quantum computers. In addition, we study how these optimized purification schemes affect the resource overhead caused by error correction in modular based quantum computers.

  6. Quantum Discord and Entanglement of Quasi-Werner States Based on Bipartite Entangled Coherent States

    NASA Astrophysics Data System (ADS)

    Mishra, Manoj K.; Maurya, Ajay K.; Prakash, Hari

    2016-06-01

    Present work is an attempt to compare quantum discord and quantum entanglement of quasi-Werner states formed with the four bipartite entangled coherent states (ECS) used recently for quantum teleportation of a qubit encoded in superposed coherent state. Out of these, the quasi-Werner states based on maximally ECS due to its invariant nature under local operation is independent of measurement basis and mean photon numbers, while for quasi-Werner states based on non-maximally ECS, it depends upon measurement basis as well as on mean photon number. However, for large mean photon numbers since non-maximally ECS becomes almost maximally entangled therefore dependence of quantum discord for non-maximally ECS based quasi-Werner states on the measurement basis disappears.

  7. Revisiting Quantum Authentication Scheme Based on Entanglement Swapping

    NASA Astrophysics Data System (ADS)

    Naseri, Mosayeb

    2016-05-01

    The crucial issue of quantum communication protocol is its security. In this paper, the security of the Quantum Authentication Scheme Based on Entanglement Swapping proposed by Penghao et al. (Int J Theor Phys., doi: 10.1007/s10773-015-2662-7) is reanalyzed. It is shown that the original does not complete the task of quantum authentication and communication securely. Furthermore a simple improvement on the protocol is proposed.

  8. Cavity-based architecture to preserve quantum coherence and entanglement

    PubMed Central

    Man, Zhong-Xiao; Xia, Yun-Jie; Lo Franco, Rosario

    2015-01-01

    Quantum technology relies on the utilization of resources, like quantum coherence and entanglement, which allow quantum information and computation processing. This achievement is however jeopardized by the detrimental effects of the environment surrounding any quantum system, so that finding strategies to protect quantum resources is essential. Non-Markovian and structured environments are useful tools to this aim. Here we show how a simple environmental architecture made of two coupled lossy cavities enables a switch between Markovian and non-Markovian regimes for the dynamics of a qubit embedded in one of the cavity. Furthermore, qubit coherence can be indefinitely preserved if the cavity without qubit is perfect. We then focus on entanglement control of two independent qubits locally subject to such an engineered environment and discuss its feasibility in the framework of circuit quantum electrodynamics. With up-to-date experimental parameters, we show that our architecture allows entanglement lifetimes orders of magnitude longer than the spontaneous lifetime without local cavity couplings. This cavity-based architecture is straightforwardly extendable to many qubits for scalability. PMID:26351004

  9. Cavity-based architecture to preserve quantum coherence and entanglement.

    PubMed

    Man, Zhong-Xiao; Xia, Yun-Jie; Lo Franco, Rosario

    2015-01-01

    Quantum technology relies on the utilization of resources, like quantum coherence and entanglement, which allow quantum information and computation processing. This achievement is however jeopardized by the detrimental effects of the environment surrounding any quantum system, so that finding strategies to protect quantum resources is essential. Non-Markovian and structured environments are useful tools to this aim. Here we show how a simple environmental architecture made of two coupled lossy cavities enables a switch between Markovian and non-Markovian regimes for the dynamics of a qubit embedded in one of the cavity. Furthermore, qubit coherence can be indefinitely preserved if the cavity without qubit is perfect. We then focus on entanglement control of two independent qubits locally subject to such an engineered environment and discuss its feasibility in the framework of circuit quantum electrodynamics. With up-to-date experimental parameters, we show that our architecture allows entanglement lifetimes orders of magnitude longer than the spontaneous lifetime without local cavity couplings. This cavity-based architecture is straightforwardly extendable to many qubits for scalability. PMID:26351004

  10. Measurement-device-independent entanglement-based quantum key distribution

    NASA Astrophysics Data System (ADS)

    Yang, Xiuqing; Wei, Kejin; Ma, Haiqiang; Sun, Shihai; Liu, Hongwei; Yin, Zhenqiang; Li, Zuohan; Lian, Shibin; Du, Yungang; Wu, Lingan

    2016-05-01

    We present a quantum key distribution protocol in a model in which the legitimate users gather statistics as in the measurement-device-independent entanglement witness to certify the sources and the measurement devices. We show that the task of measurement-device-independent quantum communication can be accomplished based on monogamy of entanglement, and it is fairly loss tolerate including source and detector flaws. We derive a tight bound for collective attacks on the Holevo information between the authorized parties and the eavesdropper. Then with this bound, the final secret key rate with the source flaws can be obtained. The results show that long-distance quantum cryptography over 144 km can be made secure using only standard threshold detectors.

  11. One Step Quantum Key Distribution Based on EPR Entanglement.

    PubMed

    Li, Jian; Li, Na; Li, Lei-Lei; Wang, Tao

    2016-01-01

    A novel quantum key distribution protocol is presented, based on entanglement and dense coding and allowing asymptotically secure key distribution. Considering the storage time limit of quantum bits, a grouping quantum key distribution protocol is proposed, which overcomes the vulnerability of first protocol and improves the maneuverability. Moreover, a security analysis is given and a simple type of eavesdropper's attack would introduce at least an error rate of 46.875%. Compared with the "Ping-pong" protocol involving two steps, the proposed protocol does not need to store the qubit and only involves one step. PMID:27357865

  12. One Step Quantum Key Distribution Based on EPR Entanglement

    PubMed Central

    Li, Jian; Li, Na; Li, Lei-Lei; Wang, Tao

    2016-01-01

    A novel quantum key distribution protocol is presented, based on entanglement and dense coding and allowing asymptotically secure key distribution. Considering the storage time limit of quantum bits, a grouping quantum key distribution protocol is proposed, which overcomes the vulnerability of first protocol and improves the maneuverability. Moreover, a security analysis is given and a simple type of eavesdropper’s attack would introduce at least an error rate of 46.875%. Compared with the “Ping-pong” protocol involving two steps, the proposed protocol does not need to store the qubit and only involves one step. PMID:27357865

  13. Entanglement-based quantum communication secured by nonlocal dispersion cancellation

    NASA Astrophysics Data System (ADS)

    Lee, Catherine; Zhang, Zheshen; Steinbrecher, Gregory R.; Zhou, Hongchao; Mower, Jacob; Zhong, Tian; Wang, Ligong; Hu, Xiaolong; Horansky, Robert D.; Verma, Varun B.; Lita, Adriana E.; Mirin, Richard P.; Marsili, Francesco; Shaw, Matthew D.; Nam, Sae Woo; Wornell, Gregory W.; Wong, Franco N. C.; Shapiro, Jeffrey H.; Englund, Dirk

    2014-12-01

    Quantum key distribution (QKD) enables participants to exchange secret information over long distances with unconditional security. However, the performance of today's QKD systems is subject to hardware limitations, such as those of available nonclassical-light sources and single-photon detectors. By encoding photons in high-dimensional states, the rate of generating secure information under these technical constraints can be maximized. Here, we demonstrate a complete time-energy entanglement-based QKD system with proven security against the broad class of arbitrary collective attacks. The security of the system is based on nonlocal dispersion cancellation between two time-energy entangled photons. This resource-efficient QKD system is implemented at telecommunications wavelength, is suitable for optical fiber and free-space links, and is compatible with wavelength-division multiplexing.

  14. Proposed Robust Entanglement-Based Magnetic Field Sensor Beyond the Standard Quantum Limit

    NASA Astrophysics Data System (ADS)

    Tanaka, Tohru; Knott, Paul; Matsuzaki, Yuichiro; Dooley, Shane; Yamaguchi, Hiroshi; Munro, William J.; Saito, Shiro

    2015-10-01

    Recently, there have been significant developments in entanglement-based quantum metrology. However, entanglement is fragile against experimental imperfections, and quantum sensing to beat the standard quantum limit in scaling has not yet been achieved in realistic systems. Here, we show that it is possible to overcome such restrictions so that one can sense a magnetic field with an accuracy beyond the standard quantum limit even under the effect of decoherence, by using a realistic entangled state that can be easily created even with current technology. Our scheme could pave the way for the realizations of practical entanglement-based magnetic field sensors.

  15. Entanglement-Based Machine Learning on a Quantum Computer

    NASA Astrophysics Data System (ADS)

    Cai, X.-D.; Wu, D.; Su, Z.-E.; Chen, M.-C.; Wang, X.-L.; Li, Li; Liu, N.-L.; Lu, C.-Y.; Pan, J.-W.

    2015-03-01

    Machine learning, a branch of artificial intelligence, learns from previous experience to optimize performance, which is ubiquitous in various fields such as computer sciences, financial analysis, robotics, and bioinformatics. A challenge is that machine learning with the rapidly growing "big data" could become intractable for classical computers. Recently, quantum machine learning algorithms [Lloyd, Mohseni, and Rebentrost, arXiv.1307.0411] were proposed which could offer an exponential speedup over classical algorithms. Here, we report the first experimental entanglement-based classification of two-, four-, and eight-dimensional vectors to different clusters using a small-scale photonic quantum computer, which are then used to implement supervised and unsupervised machine learning. The results demonstrate the working principle of using quantum computers to manipulate and classify high-dimensional vectors, the core mathematical routine in machine learning. The method can, in principle, be scaled to larger numbers of qubits, and may provide a new route to accelerate machine learning.

  16. Entanglement-based machine learning on a quantum computer.

    PubMed

    Cai, X-D; Wu, D; Su, Z-E; Chen, M-C; Wang, X-L; Li, Li; Liu, N-L; Lu, C-Y; Pan, J-W

    2015-03-20

    Machine learning, a branch of artificial intelligence, learns from previous experience to optimize performance, which is ubiquitous in various fields such as computer sciences, financial analysis, robotics, and bioinformatics. A challenge is that machine learning with the rapidly growing "big data" could become intractable for classical computers. Recently, quantum machine learning algorithms [Lloyd, Mohseni, and Rebentrost, arXiv.1307.0411] were proposed which could offer an exponential speedup over classical algorithms. Here, we report the first experimental entanglement-based classification of two-, four-, and eight-dimensional vectors to different clusters using a small-scale photonic quantum computer, which are then used to implement supervised and unsupervised machine learning. The results demonstrate the working principle of using quantum computers to manipulate and classify high-dimensional vectors, the core mathematical routine in machine learning. The method can, in principle, be scaled to larger numbers of qubits, and may provide a new route to accelerate machine learning. PMID:25839250

  17. Entanglement purification based on hybrid entangled state using quantum-dot and microcavity coupled system.

    PubMed

    Wang, Chuan; Zhang, Yong; Zhang, Ru

    2011-12-01

    We theoretically investigate an entanglement purification protocol with photon and electron hybrid entangled state resorting to quantum-dot spin and microcavity coupled system. The present system is used to construct the parity check gate which allows a quantum non-demolition measurement on the spin parity. The cavity-spin coupled system provides a novel experimental platform of quantum information processing with photon and solid qubit. PMID:22273961

  18. Quantum steganography with large payload based on entanglement swapping of χ-type entangled states

    NASA Astrophysics Data System (ADS)

    Qu, Zhi-Guo; Chen, Xiu-Bo; Luo, Ming-Xing; Niu, Xin-Xin; Yang, Yi-Xian

    2011-04-01

    In this paper, we firstly propose a new simple method to calculate entanglement swapping of χ-type entangled states, and then present a novel quantum steganography protocol with large payload. The new protocol adopts entanglement swapping to build up the hidden channel within quantum secure direct communication with χ-type entangled states for securely transmitting secret messages. Comparing with the previous quantum steganographies, the capacity of the hidden channel is much higher, which is increased to eight bits. Meanwhile, due to the quantum uncertainty theorem and the no-cloning theorem its imperceptibility is proved to be great in the analysis, and its security is also analyzed in detail, which is proved that intercept-resend attack, measurement-resend attack, ancilla attack, man-in-the-middle attack or even Dos(Denial of Service) attack couldn't threaten it. As a result, the protocol can be applied in various fields of quantum communication.

  19. Quantum frequency doubling based on tripartite entanglement with cavities

    NASA Astrophysics Data System (ADS)

    Juan, Guo; Zhi-Feng, Wei; Su-Ying, Zhang

    2016-02-01

    We analyze the entanglement characteristics of three harmonic modes, which are the output fields from three cavities with an input tripartite entangled state at fundamental frequency. The entanglement properties of the input beams can be maintained after their frequencies have been up-converted by the process of second harmonic generation. We have calculated the parametric dependences of the correlation spectrum on the initial squeezing factor, the pump power, the transmission coefficient, and the normalized analysis frequency of cavity. The numerical results provide references to choose proper experimental parameters for designing the experiment. The frequency conversion of the multipartite entangled state can also be applied to a quantum communication network. Project supported by the National Natural Science Foundation of China (Grant No. 91430109), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111401110004), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2014011005-3).

  20. Decoherence and Entanglement Simulation in a Model of Quantum Neural Network Based on Quantum Dots

    NASA Astrophysics Data System (ADS)

    Altaisky, Mikhail V.; Zolnikova, Nadezhda N.; Kaputkina, Natalia E.; Krylov, Victor A.; Lozovik, Yurii E.; Dattani, Nikesh S.

    2016-02-01

    We present the results of the simulation of a quantum neural network based on quantum dots using numerical method of path integral calculation. In the proposed implementation of the quantum neural network using an array of single-electron quantum dots with dipole-dipole interaction, the coherence is shown to survive up to 0.1 nanosecond in time and up to the liquid nitrogen temperature of 77K.We study the quantum correlations between the quantum dots by means of calculation of the entanglement of formation in a pair of quantum dots on the GaAs based substrate with dot size of 100 ÷ 101 nanometer and interdot distance of 101 ÷ 102 nanometers order.

  1. Entanglement purification for quantum communication

    NASA Astrophysics Data System (ADS)

    Pan, Jian-Wei; Simon, Christoph; Brukner, Časlav; Zeilinger, Anton

    2001-04-01

    The distribution of entangled states between distant locations will be essential for the future large-scale realization of quantum communication schemes such as quantum cryptography and quantum teleportation. Because of unavoidable noise in the quantum communication channel, the entanglement between two particles is more and more degraded the further they propagate. Entanglement purification is thus essential to distil highly entangled states from less entangled ones. Existing general purification protocols are based on the quantum controlled-NOT (CNOT) or similar quantum logic operations, which are very difficult to implement experimentally. Present realizations of CNOT gates are much too imperfect to be useful for long-distance quantum communication. Here we present a scheme for the entanglement purification of general mixed entangled states, which achieves 50 per cent of the success probability of schemes based on the CNOT operation, but requires only simple linear optical elements. Because the perfection of such elements is very high, the local operations necessary for purification can be performed with the required precision. Our procedure is within the reach of current technology, and should significantly simplify the implementation of long-distance quantum communication.

  2. Entanglement purification for quantum communication.

    PubMed

    Pan, J W; Simon, C; Brukner, C; Zeilinger, A

    2001-04-26

    The distribution of entangled states between distant locations will be essential for the future large-scale realization of quantum communication schemes such as quantum cryptography and quantum teleportation. Because of unavoidable noise in the quantum communication channel, the entanglement between two particles is more and more degraded the further they propagate. Entanglement purification is thus essential to distil highly entangled states from less entangled ones. Existing general purification protocols are based on the quantum controlled-NOT (CNOT) or similar quantum logic operations, which are very difficult to implement experimentally. Present realizations of CNOT gates are much too imperfect to be useful for long-distance quantum communication. Here we present a scheme for the entanglement purification of general mixed entangled states, which achieves 50 per cent of the success probability of schemes based on the CNOT operation, but requires only simple linear optical elements. Because the perfection of such elements is very high, the local operations necessary for purification can be performed with the required precision. Our procedure is within the reach of current technology, and should significantly simplify the implementation of long-distance quantum communication. PMID:11323664

  3. Two new Controlled not Gate Based Quantum Secret Sharing Protocols without Entanglement Attenuation

    NASA Astrophysics Data System (ADS)

    Zhu, Zhen-Chao; Hu, Ai-Qun; Fu, An-Min

    2016-05-01

    In this paper, we propose two new controlled not gate based quantum secret sharing protocols. In these two protocols, each photon only travels once, which guarantees the agents located in long distance can be able to derive the dealer's secret without suffering entanglement attenuation problem. The protocols are secure against trojan horse attack, intercept-resend attack, entangle-measure attack and entanglement-swapping attack. The theoretical efficiency for qubits of these two protocols can approach 100 %, except those used for eavesdropping checking, all entangled states can be used for final secret sharing.

  4. Images in quantum entanglement

    NASA Astrophysics Data System (ADS)

    Bowden, G. J.

    2009-08-01

    A system for classifying and quantifying entanglement in spin 1/2 pure states is presented based on simple images. From the image point of view, an entangled state can be described as a linear superposition of separable object wavefunction ΨO plus a portion of its own inverse image. Bell states can be defined in this way: \\Psi = 1/\\sqrt 2 (\\Psi _O \\pm \\Psi _I ). Using the method of images, the three-spin 1/2 system is discussed in some detail. This system can exhibit exclusive three-particle ν123 entanglement, two-particle entanglements ν12, ν13, ν23 and/or mixtures of all four. All four image states are orthogonal both to each other and to the object wavefunction. In general, five entanglement parameters ν12, ν13, ν23, ν123 and phi123 are required to define the general entangled state. In addition, it is shown that there is considerable scope for encoding numbers, at least from the classical point of view but using quantum-mechanical principles. Methods are developed for their extraction. It is shown that concurrence can be used to extract even-partite, but not odd-partite information. Additional relationships are also presented which can be helpful in the decoding process. However, in general, numerical methods are mandatory. A simple roulette method for decoding is presented and discussed. But it is shown that if the encoder chooses to use transcendental numbers for the angles defining the target function (α1, β1), etc, the method rapidly turns into the Devil's roulette, requiring finer and finer angular steps.

  5. Experimental demonstration on the deterministic quantum key distribution based on entangled photons.

    PubMed

    Chen, Hua; Zhou, Zhi-Yuan; Zangana, Alaa Jabbar Jumaah; Yin, Zhen-Qiang; Wu, Juan; Han, Yun-Guang; Wang, Shuang; Li, Hong-Wei; He, De-Yong; Tawfeeq, Shelan Khasro; Shi, Bao-Sen; Guo, Guang-Can; Chen, Wei; Han, Zheng-Fu

    2016-01-01

    As an important resource, entanglement light source has been used in developing quantum information technologies, such as quantum key distribution(QKD). There are few experiments implementing entanglement-based deterministic QKD protocols since the security of existing protocols may be compromised in lossy channels. In this work, we report on a loss-tolerant deterministic QKD experiment which follows a modified "Ping-Pong"(PP) protocol. The experiment results demonstrate for the first time that a secure deterministic QKD session can be fulfilled in a channel with an optical loss of 9 dB, based on a telecom-band entangled photon source. This exhibits a conceivable prospect of ultilizing entanglement light source in real-life fiber-based quantum communications. PMID:26860582

  6. Experimental demonstration on the deterministic quantum key distribution based on entangled photons

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Zhou, Zhi-Yuan; Zangana, Alaa Jabbar Jumaah; Yin, Zhen-Qiang; Wu, Juan; Han, Yun-Guang; Wang, Shuang; Li, Hong-Wei; He, De-Yong; Tawfeeq, Shelan Khasro; Shi, Bao-Sen; Guo, Guang-Can; Chen, Wei; Han, Zheng-Fu

    2016-02-01

    As an important resource, entanglement light source has been used in developing quantum information technologies, such as quantum key distribution(QKD). There are few experiments implementing entanglement-based deterministic QKD protocols since the security of existing protocols may be compromised in lossy channels. In this work, we report on a loss-tolerant deterministic QKD experiment which follows a modified “Ping-Pong”(PP) protocol. The experiment results demonstrate for the first time that a secure deterministic QKD session can be fulfilled in a channel with an optical loss of 9 dB, based on a telecom-band entangled photon source. This exhibits a conceivable prospect of ultilizing entanglement light source in real-life fiber-based quantum communications.

  7. Experimental demonstration on the deterministic quantum key distribution based on entangled photons

    PubMed Central

    Chen, Hua; Zhou, Zhi-Yuan; Zangana, Alaa Jabbar Jumaah; Yin, Zhen-Qiang; Wu, Juan; Han, Yun-Guang; Wang, Shuang; Li, Hong-Wei; He, De-Yong; Tawfeeq, Shelan Khasro; Shi, Bao-Sen; Guo, Guang-Can; Chen, Wei; Han, Zheng-Fu

    2016-01-01

    As an important resource, entanglement light source has been used in developing quantum information technologies, such as quantum key distribution(QKD). There are few experiments implementing entanglement-based deterministic QKD protocols since the security of existing protocols may be compromised in lossy channels. In this work, we report on a loss-tolerant deterministic QKD experiment which follows a modified “Ping-Pong”(PP) protocol. The experiment results demonstrate for the first time that a secure deterministic QKD session can be fulfilled in a channel with an optical loss of 9 dB, based on a telecom-band entangled photon source. This exhibits a conceivable prospect of ultilizing entanglement light source in real-life fiber-based quantum communications. PMID:26860582

  8. Teleportation-based realization of an optical quantum two-qubit entangling gate

    PubMed Central

    Gao, Wei-Bo; Goebel, Alexander M.; Lu, Chao-Yang; Dai, Han-Ning; Wagenknecht, Claudia; Zhang, Qiang; Zhao, Bo; Peng, Cheng-Zhi; Chen, Zeng-Bing; Chen, Yu-Ao; Pan, Jian-Wei

    2010-01-01

    In recent years, there has been heightened interest in quantum teleportation, which allows for the transfer of unknown quantum states over arbitrary distances. Quantum teleportation not only serves as an essential ingredient in long-distance quantum communication, but also provides enabling technologies for practical quantum computation. Of particular interest is the scheme proposed by D. Gottesman and I. L. Chuang [(1999) Nature 402:390–393], showing that quantum gates can be implemented by teleporting qubits with the help of some special entangled states. Therefore, the construction of a quantum computer can be simply based on some multiparticle entangled states, Bell-state measurements, and single-qubit operations. The feasibility of this scheme relaxes experimental constraints on realizing universal quantum computation. Using two different methods, we demonstrate the smallest nontrivial module in such a scheme—a teleportation-based quantum entangling gate for two different photonic qubits. One uses a high-fidelity six-photon interferometer to realize controlled-NOT gates, and the other uses four-photon hyperentanglement to realize controlled-Phase gates. The results clearly demonstrate the working principles and the entangling capability of the gates. Our experiment represents an important step toward the realization of practical quantum computers and could lead to many further applications in linear optics quantum information processing. PMID:21098305

  9. Teleportation-based realization of an optical quantum two-qubit entangling gate.

    PubMed

    Gao, Wei-Bo; Goebel, Alexander M; Lu, Chao-Yang; Dai, Han-Ning; Wagenknecht, Claudia; Zhang, Qiang; Zhao, Bo; Peng, Cheng-Zhi; Chen, Zeng-Bing; Chen, Yu-Ao; Pan, Jian-Wei

    2010-12-01

    In recent years, there has been heightened interest in quantum teleportation, which allows for the transfer of unknown quantum states over arbitrary distances. Quantum teleportation not only serves as an essential ingredient in long-distance quantum communication, but also provides enabling technologies for practical quantum computation. Of particular interest is the scheme proposed by D. Gottesman and I. L. Chuang [(1999) Nature 402:390-393], showing that quantum gates can be implemented by teleporting qubits with the help of some special entangled states. Therefore, the construction of a quantum computer can be simply based on some multiparticle entangled states, Bell-state measurements, and single-qubit operations. The feasibility of this scheme relaxes experimental constraints on realizing universal quantum computation. Using two different methods, we demonstrate the smallest nontrivial module in such a scheme--a teleportation-based quantum entangling gate for two different photonic qubits. One uses a high-fidelity six-photon interferometer to realize controlled-NOT gates, and the other uses four-photon hyperentanglement to realize controlled-Phase gates. The results clearly demonstrate the working principles and the entangling capability of the gates. Our experiment represents an important step toward the realization of practical quantum computers and could lead to many further applications in linear optics quantum information processing. PMID:21098305

  10. An arbitrated quantum signature scheme based on entanglement swapping with signer anonymity

    NASA Astrophysics Data System (ADS)

    Li, Wei; Fan, Ming-Yu; Wang, Guang-Wei

    2012-12-01

    In this paper an arbitrated quantum signature scheme based on entanglement swapping is proposed. In this scheme a message to be signed is coded with unitary operators. Combining quantum measurement with quantum encryption, the signer can generate the signature for a given message. Combining the entangled states generated by the TTP's Bell measurement with the signature information, the verifier can verify the authentication of a signature through a single quantum state measurement. Compared with previous schemes, our scheme is more efficient and less complex, furthermore, our scheme can ensure the anonymity of the signer.

  11. Key rate for calibration robust entanglement based BB84 quantum key distribution protocol

    SciTech Connect

    Gittsovich, O.; Moroder, T.

    2014-12-04

    We apply the approach of verifying entanglement, which is based on the sole knowledge of the dimension of the underlying physical system to the entanglement based version of the BB84 quantum key distribution protocol. We show that the familiar one-way key rate formula holds already if one assumes the assumption that one of the parties is measuring a qubit and no further assumptions about the measurement are needed.

  12. A Quantum Multi-proxy Blind Signature Scheme Based on Genuine Four-Qubit Entangled State

    NASA Astrophysics Data System (ADS)

    Tian, Juan-Hong; Zhang, Jian-Zhong; Li, Yan-Ping

    2016-02-01

    In this paper, we propose a multi-proxy blind signature scheme based on controlled teleportation. Genuine four-qubit entangled state functions as quantum channel. The scheme uses the physical characteristics of quantum mechanics to implement delegation, signature and verification. The security analysis shows the scheme satisfies the security features of multi-proxy signature, unforgeability, undeniability, blindness and unconditional security.

  13. An Improved Quantum Information Hiding Protocol Based on Entanglement Swapping of χ-type Quantum States

    NASA Astrophysics Data System (ADS)

    Xu, Shu-Jiang; Chen, Xiu-Bo; Wang, Lian-Hai; Ding, Qing-Yan; Zhang, Shu-Hui

    2016-06-01

    In 2011, Qu et al. proposed a quantum information hiding protocol based on the entanglement swapping of χ-type quantum states. Because a χ-type state can be described by the 4-particle cat states which have good symmetry, the possible output results of the entanglement swapping between a given χ-type state and all of the 16 χ-type states are divided into 8 groups instead of 16 groups of different results when the global phase is not considered. So it is difficult to read out the secret messages since each result occurs twice in each line (column) of the secret messages encoding rule for the original protocol. In fact, a 3-bit instead of a 4-bit secret message can be encoded by performing two unitary transformations on 2 particles of a χ-type quantum state in the original protocol. To overcome this defect, we propose an improved quantum information hiding protocol based on the general term formulas of the entanglement swapping among χ-type states. Supported by the National Natural Science Foundation of China under Grant Nos. 61572297, 61303199, 61272514, and 61373131, the Shandong Provincial Natural Science Foundation of China under Grant Nos. ZR2013FM025, ZR2013FQ001, ZR2014FM003, and ZY2015YL018, the Shandong Provincial Outstanding Research Award Fund for Young Scientists of China under Grant Nos. BS2015DX006 and BS2014DX007, the National Development Foundation for Cryptological Research, China under Grant No. MMJJ201401012, the Priority Academic Program Development of Jiangsu Higher Education Institutions and Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology Funds, and the Shandong Academy of Sciences Youth Fund Project, China under Grant Nos. 2015QN003 and 2013QN007

  14. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots

    PubMed Central

    Zhang, Jiaxiang; Wildmann, Johannes S.; Ding, Fei; Trotta, Rinaldo; Huo, Yongheng; Zallo, Eugenio; Huber, Daniel; Rastelli, Armando; Schmidt, Oliver G.

    2015-01-01

    Triggered sources of entangled photon pairs are key components in most quantum communication protocols. For practical quantum applications, electrical triggering would allow the realization of compact and deterministic sources of entangled photons. Entangled-light-emitting-diodes based on semiconductor quantum dots are among the most promising sources that can potentially address this task. However, entangled-light-emitting-diodes are plagued by a source of randomness, which results in a very low probability of finding quantum dots with sufficiently small fine structure splitting for entangled-photon generation (∼10−2). Here we introduce strain-tunable entangled-light-emitting-diodes that exploit piezoelectric-induced strains to tune quantum dots for entangled-photon generation. We demonstrate that up to 30% of the quantum dots in strain-tunable entangled-light-emitting-diodes emit polarization-entangled photons. An entanglement fidelity as high as 0.83 is achieved with fast temporal post selection. Driven at high speed, that is 400 MHz, strain-tunable entangled-light-emitting-diodes emerge as promising devices for high data-rate quantum applications. PMID:26621073

  15. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaxiang; Wildmann, Johannes S.; Ding, Fei; Trotta, Rinaldo; Huo, Yongheng; Zallo, Eugenio; Huber, Daniel; Rastelli, Armando; Schmidt, Oliver G.

    2015-12-01

    Triggered sources of entangled photon pairs are key components in most quantum communication protocols. For practical quantum applications, electrical triggering would allow the realization of compact and deterministic sources of entangled photons. Entangled-light-emitting-diodes based on semiconductor quantum dots are among the most promising sources that can potentially address this task. However, entangled-light-emitting-diodes are plagued by a source of randomness, which results in a very low probability of finding quantum dots with sufficiently small fine structure splitting for entangled-photon generation (~10-2). Here we introduce strain-tunable entangled-light-emitting-diodes that exploit piezoelectric-induced strains to tune quantum dots for entangled-photon generation. We demonstrate that up to 30% of the quantum dots in strain-tunable entangled-light-emitting-diodes emit polarization-entangled photons. An entanglement fidelity as high as 0.83 is achieved with fast temporal post selection. Driven at high speed, that is 400 MHz, strain-tunable entangled-light-emitting-diodes emerge as promising devices for high data-rate quantum applications.

  16. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots.

    PubMed

    Zhang, Jiaxiang; Wildmann, Johannes S; Ding, Fei; Trotta, Rinaldo; Huo, Yongheng; Zallo, Eugenio; Huber, Daniel; Rastelli, Armando; Schmidt, Oliver G

    2015-01-01

    Triggered sources of entangled photon pairs are key components in most quantum communication protocols. For practical quantum applications, electrical triggering would allow the realization of compact and deterministic sources of entangled photons. Entangled-light-emitting-diodes based on semiconductor quantum dots are among the most promising sources that can potentially address this task. However, entangled-light-emitting-diodes are plagued by a source of randomness, which results in a very low probability of finding quantum dots with sufficiently small fine structure splitting for entangled-photon generation (∼10(-2)). Here we introduce strain-tunable entangled-light-emitting-diodes that exploit piezoelectric-induced strains to tune quantum dots for entangled-photon generation. We demonstrate that up to 30% of the quantum dots in strain-tunable entangled-light-emitting-diodes emit polarization-entangled photons. An entanglement fidelity as high as 0.83 is achieved with fast temporal post selection. Driven at high speed, that is 400 MHz, strain-tunable entangled-light-emitting-diodes emerge as promising devices for high data-rate quantum applications. PMID:26621073

  17. Quantum Entanglement and Quantum Discord in Gaussian Open Systems

    SciTech Connect

    Isar, Aurelian

    2011-10-03

    In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable quantum entanglement and quantum discord for a system consisting of two noninteracting modes embedded in a thermal environment. Entanglement and discord are used to quantify the quantum correlations of the system. For all values of the temperature of the thermal reservoir, an initial separable Gaussian state remains separable for all times. In the case of an entangled initial Gaussian state, entanglement suppression (entanglement sudden death) takes place for non-zero temperatures of the environment. Only for a zero temperature of the thermal bath the initial entangled state remains entangled for finite times. We analyze the time evolution of the Gaussian quantum discord, which is a measure of all quantum correlations in the bipartite state, including entanglement, and show that quantum discord decays asymptotically in time under the effect of the thermal bath.

  18. Long-distance entanglement-based quantum key distribution over optical fiber.

    PubMed

    Honjo, T; Nam, S W; Takesue, H; Zhang, Q; Kamada, H; Nishida, Y; Tadanaga, O; Asobe, M; Baek, B; Hadfield, R; Miki, S; Fujiwara, M; Sasaki, M; Wang, Z; Inoue, K; Yamamoto, Y

    2008-11-10

    We report the first entanglement-based quantum key distribution (QKD) experiment over a 100-km optical fiber. We used superconducting single photon detectors based on NbN nanowires that provide high-speed single photon detection for the 1.5-mum telecom band, an efficient entangled photon pair source that consists of a fiber coupled periodically poled lithium niobate waveguide and ultra low loss filters, and planar lightwave circuit Mach-Zehnder interferometers (MZIs) with ultra stable operation. These characteristics enabled us to perform an entanglement-based QKD experiment over a 100-km optical fiber. In the experiment, which lasted approximately 8 hours, we successfully generated a 16 kbit sifted key with a quantum bit error rate of 6.9 % at a rate of 0.59 bits per second, from which we were able to distill a 3.9 kbit secure key. PMID:19582004

  19. Probabilistic Quantum Information Splitting Based on the Non-maximally Entangled Four-Qubit State

    NASA Astrophysics Data System (ADS)

    Bai, Chen-ming; Li, Yong-ming

    2016-03-01

    In this paper, we propose a scheme for quantum information splitting based on the non-maximally entangled four-qubit state in order to realize the splitting of the specific two-qubit state | ψ> A B = x|00>+ y|11>. The information splitter will safely share an state to the receiver with help of the controller. Through introducing an auxiliary system and applying several appropriate unitary transformations the information receiver can reconstruct the original state sent by the information splitter. Due to the non-maximally entangled four-qubit state, the total probability that the receiver obtains the original information is P. Furthermore, we discuss the relationship between the successful splitting probability and the concurrence of the entangled state and get a specific expression. In addition, the scheme is tested against external and internal attacks, and we define a function to characterise the security with the concurrence of the entanglement.

  20. Quantum state and quantum entanglement protection using quantum measurements

    NASA Astrophysics Data System (ADS)

    Wang, Shuchao; Li, Ying; Wang, Xiangbin; Kwek, Leong Chuan; Yu, Zongwen; Zou, Wenjie

    2015-03-01

    The time evolution of some quantum states can be slowed down or even stopped under frequent measurements. This is the usual quantum Zeno effect. Here we report an operator quantum Zeno effect, in which the evolution of some physical observables is slowed down through measurements even though thequantum state changes randomly with time. Based on the operator quantum Zeno effect, we show how we can protect quantum information from decoherence with two-qubit measurements, realizable with noisy two-qubit interactions. Besides, we report the quantum entanglement protection using weak measurement and measurement reversal scheme. Exposed in the nonzero temperature environment, a quantum system can both lose and gain excitations by interacting with the environment. In this work, we show how to optimally protect quantum states and quantum entanglement in such a situation based on measurement reversal from weak measurement. In particular, we present explicit formulas of protection. We find that this scheme can circumvent the entanglement sudden death in certain conditions.

  1. Quantum entanglement in circuit QED

    SciTech Connect

    Milburn, G. J.; Meaney, Charles

    2008-11-07

    We show that the ground state of a very strongly coupled two level system based on a superconducting island and a microwave cavity field can undergo a morphological change as the coupling strength is increased. This looks like a quantum phase transition and is characterized by the appearance of entanglement between the cavity field and the two level system.

  2. Multipartite entanglement in quantum algorithms

    SciTech Connect

    Bruss, D.; Macchiavello, C.

    2011-05-15

    We investigate the entanglement features of the quantum states employed in quantum algorithms. In particular, we analyze the multipartite entanglement properties in the Deutsch-Jozsa, Grover, and Simon algorithms. Our results show that for these algorithms most instances involve multipartite entanglement.

  3. Entanglement and Quantum Optics with Quantum Dots

    NASA Astrophysics Data System (ADS)

    Burgers, A. P.; Schaibley, J. R.; Steel, D. G.

    2015-06-01

    Quantum dots (QDs) exhibit many characteristics of simpler two-level (or few level) systems, under optical excitation. This makes atomic coherent optical spectroscopy theory and techniques well suited for understanding the behavior of quantum dots. Furthermore, the combination of the solid state nature of quantum dots and their close approximation to atomic systems makes them an attractive platform for quantum information based technologies. In this chapter, we will discuss recent studies using direct detection of light emitted from a quantum dot to investigate coherence properties and confirm entanglement between the emitted photon and an electron spin qubit confined to the QD.

  4. Demonstration of quantum synchronization based on second-order quantum coherence of entangled photons

    PubMed Central

    Quan, Runai; Zhai, Yiwei; Wang, Mengmeng; Hou, Feiyan; Wang, Shaofeng; Xiang, Xiao; Liu, Tao; Zhang, Shougang; Dong, Ruifang

    2016-01-01

    Based on the second-order quantum interference between frequency entangled photons that are generated by parametric down conversion, a quantum strategic algorithm for synchronizing two spatially separated clocks has been recently presented. In the reference frame of a Hong-Ou-Mandel (HOM) interferometer, photon correlations are used to define simultaneous events. Once the HOM interferometer is balanced by use of an adjustable optical delay in one arm, arrival times of simulta- neously generated photons are recorded by each clock. The clock offset is determined by correlation measurement of the recorded arrival times. Utilizing this algorithm, we demonstrate a proof-of-principle experiment for synchronizing two clocks separated by 4 km fiber link. A minimum timing stability of 0.44 ps at averaging time of 16000 s is achieved with an absolute time accuracy of 73.2 ps. The timing stability is verified to be limited by the correlation measurement device and ideally can be better than 10 fs. Such results shine a light to the application of quantum clock synchronization in the real high-accuracy timing system. PMID:27452276

  5. Demonstration of quantum synchronization based on second-order quantum coherence of entangled photons.

    PubMed

    Quan, Runai; Zhai, Yiwei; Wang, Mengmeng; Hou, Feiyan; Wang, Shaofeng; Xiang, Xiao; Liu, Tao; Zhang, Shougang; Dong, Ruifang

    2016-01-01

    Based on the second-order quantum interference between frequency entangled photons that are generated by parametric down conversion, a quantum strategic algorithm for synchronizing two spatially separated clocks has been recently presented. In the reference frame of a Hong-Ou-Mandel (HOM) interferometer, photon correlations are used to define simultaneous events. Once the HOM interferometer is balanced by use of an adjustable optical delay in one arm, arrival times of simulta- neously generated photons are recorded by each clock. The clock offset is determined by correlation measurement of the recorded arrival times. Utilizing this algorithm, we demonstrate a proof-of-principle experiment for synchronizing two clocks separated by 4 km fiber link. A minimum timing stability of 0.44 ps at averaging time of 16000 s is achieved with an absolute time accuracy of 73.2 ps. The timing stability is verified to be limited by the correlation measurement device and ideally can be better than 10 fs. Such results shine a light to the application of quantum clock synchronization in the real high-accuracy timing system. PMID:27452276

  6. Demonstration of quantum synchronization based on second-order quantum coherence of entangled photons

    NASA Astrophysics Data System (ADS)

    Quan, Runai; Zhai, Yiwei; Wang, Mengmeng; Hou, Feiyan; Wang, Shaofeng; Xiang, Xiao; Liu, Tao; Zhang, Shougang; Dong, Ruifang

    2016-07-01

    Based on the second-order quantum interference between frequency entangled photons that are generated by parametric down conversion, a quantum strategic algorithm for synchronizing two spatially separated clocks has been recently presented. In the reference frame of a Hong-Ou-Mandel (HOM) interferometer, photon correlations are used to define simultaneous events. Once the HOM interferometer is balanced by use of an adjustable optical delay in one arm, arrival times of simulta- neously generated photons are recorded by each clock. The clock offset is determined by correlation measurement of the recorded arrival times. Utilizing this algorithm, we demonstrate a proof-of-principle experiment for synchronizing two clocks separated by 4 km fiber link. A minimum timing stability of 0.44 ps at averaging time of 16000 s is achieved with an absolute time accuracy of 73.2 ps. The timing stability is verified to be limited by the correlation measurement device and ideally can be better than 10 fs. Such results shine a light to the application of quantum clock synchronization in the real high-accuracy timing system.

  7. Measuring Quantum Coherence with Entanglement

    NASA Astrophysics Data System (ADS)

    Streltsov, Alexander; Singh, Uttam; Dhar, Himadri Shekhar; Bera, Manabendra Nath; Adesso, Gerardo

    2015-07-01

    Quantum coherence is an essential ingredient in quantum information processing and plays a central role in emergent fields such as nanoscale thermodynamics and quantum biology. However, our understanding and quantitative characterization of coherence as an operational resource are still very limited. Here we show that any degree of coherence with respect to some reference basis can be converted to entanglement via incoherent operations. This finding allows us to define a novel general class of measures of coherence for a quantum system of arbitrary dimension, in terms of the maximum bipartite entanglement that can be generated via incoherent operations applied to the system and an incoherent ancilla. The resulting measures are proven to be valid coherence monotones satisfying all the requirements dictated by the resource theory of quantum coherence. We demonstrate the usefulness of our approach by proving that the fidelity-based geometric measure of coherence is a full convex coherence monotone, and deriving a closed formula for it on arbitrary single-qubit states. Our work provides a clear quantitative and operational connection between coherence and entanglement, two landmark manifestations of quantum theory and both key enablers for quantum technologies.

  8. Entanglement and adiabatic quantum computation

    NASA Astrophysics Data System (ADS)

    Ahrensmeier, D.

    2006-06-01

    Adiabatic quantum computation provides an alternative approach to quantum computation using a time-dependent Hamiltonian. The time evolution of entanglement during the adiabatic quantum search algorithm is studied, and its relevance as a resource is discussed.

  9. Evolution of Quantum Entanglement in Open Systems

    SciTech Connect

    Isar, A.

    2010-08-04

    In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable entanglement for a system consisting of two uncoupled harmonic oscillators interacting with a thermal environment. Using Peres-Simon necessary sufficient criterion for separability of two-mode Gaussian states, we show that for some values of diffusion coefficient, dissipation constant and temperature of the environment, the state keeps for all times its initial type: separable or entangled. In other cases, entanglement generation, entanglement sudden death or a periodic collapse revival of entanglement take place.

  10. Quantum secret sharing based on modulated high-dimensional time-bin entanglement

    SciTech Connect

    Takesue, Hiroki; Inoue, Kyo

    2006-07-15

    We propose a scheme for quantum secret sharing (QSS) that uses a modulated high-dimensional time-bin entanglement. By modulating the relative phase randomly by {l_brace}0,{pi}{r_brace}, a sender with the entanglement source can randomly change the sign of the correlation of the measurement outcomes obtained by two distant recipients. The two recipients must cooperate if they are to obtain the sign of the correlation, which is used as a secret key. We show that our scheme is secure against intercept-and-resend (IR) and beam splitting attacks by an outside eavesdropper thanks to the nonorthogonality of high-dimensional time-bin entangled states. We also show that a cheating attempt based on an IR attack by one of the recipients can be detected by changing the dimension of the time-bin entanglement randomly and inserting two 'vacant' slots between the packets. Then, cheating attempts can be detected by monitoring the count rate in the vacant slots. The proposed scheme has better experimental feasibility than previously proposed entanglement-based QSS schemes.

  11. Lithography using quantum entangled particles

    NASA Technical Reports Server (NTRS)

    Williams, Colin (Inventor); Dowling, Jonathan (Inventor); della Rossa, Giovanni (Inventor)

    2003-01-01

    A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.

  12. Lithography using quantum entangled particles

    NASA Technical Reports Server (NTRS)

    Williams, Colin (Inventor); Dowling, Jonathan (Inventor)

    2001-01-01

    A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.

  13. Insecurity of position-based quantum-cryptography protocols against entanglement attacks

    NASA Astrophysics Data System (ADS)

    Lau, Hoi-Kwan; Lo, Hoi-Kwong

    2011-01-01

    Recently, position-based quantum cryptography has been claimed to be unconditionally secure. On the contrary, here we show that the existing proposals for position-based quantum cryptography are, in fact, insecure if entanglement is shared among two adversaries. Specifically, we demonstrate how the adversaries can incorporate ideas of quantum teleportation and quantum secret sharing to compromise the security with certainty. The common flaw to all current protocols is that the Pauli operators always map a codeword to a codeword (up to an irrelevant overall phase). We propose a modified scheme lacking this property in which the same cheating strategy used to undermine the previous protocols can succeed with a rate of at most 85%. We prove the modified protocol is secure when the shared quantum resource between the adversaries is a two- or three-level system.

  14. Insecurity of position-based quantum-cryptography protocols against entanglement attacks

    SciTech Connect

    Lau, Hoi-Kwan; Lo, Hoi-Kwong

    2011-01-15

    Recently, position-based quantum cryptography has been claimed to be unconditionally secure. On the contrary, here we show that the existing proposals for position-based quantum cryptography are, in fact, insecure if entanglement is shared among two adversaries. Specifically, we demonstrate how the adversaries can incorporate ideas of quantum teleportation and quantum secret sharing to compromise the security with certainty. The common flaw to all current protocols is that the Pauli operators always map a codeword to a codeword (up to an irrelevant overall phase). We propose a modified scheme lacking this property in which the same cheating strategy used to undermine the previous protocols can succeed with a rate of at most 85%. We prove the modified protocol is secure when the shared quantum resource between the adversaries is a two- or three-level system.

  15. Comment on 'Multiparty quantum secret sharing of classical messages based on entanglement swapping'

    SciTech Connect

    Lin Song; Gao Fei; Guo Fenzhuo; Wen Qiaoyan; Zhu Fuchen

    2007-09-15

    In a recent paper [Z. J. Zhang and Z. X. Man, Phys. Rev. A 72, 022303 (2005)], a multiparty quantum secret sharing protocol based on entanglement swapping was presented. However, as we show, this protocol is insecure in the sense that an unauthorized agent group can recover the secret from the dealer. Hence we propose an improved version of this protocol which can stand against this kind of attack.

  16. Entanglement-assisted codeword stabilized quantum codes

    SciTech Connect

    Shin, Jeonghwan; Heo, Jun; Brun, Todd A.

    2011-12-15

    Entangled qubits can increase the capacity of quantum error-correcting codes based on stabilizer codes. In addition, by using entanglement quantum stabilizer codes can be construct from classical linear codes that do not satisfy the dual-containing constraint. We show that it is possible to construct both additive and nonadditive quantum codes using the codeword stabilized quantum code framework. Nonadditive codes may offer improved performance over the more common stabilizer codes. Like other entanglement-assisted codes, the encoding procedure acts only on the qubits on Alice's side, and only these qubits are assumed to pass through the channel. However, errors in the codeword stabilized quantum code framework give rise to effective Z errors on Bob's side. We use this scheme to construct entanglement-assisted nonadditive quantum codes, in particular, ((5,16,2;1)) and ((7,4,5;4)) codes.

  17. Quantum-beat based dissipation for spin squeezing and light entanglement.

    PubMed

    Huang, Chen; Hu, Xiangming; Zhang, Yang; Li, Lingchao; Rao, Shi

    2016-08-22

    We show an engineered dissipation for the spin squeezing and the light entanglement in a quantum beat system, in which two bright fields interact with an ensemble of three-level atoms in V configuration. The dissipation is based on the atom-field nonlinear interaction that is controlled by the atomic coherence between the excited states off two-photon resonance. Physical analysis and numerical verification are presented for the symmetrical parameters by using the dressed atomic states. It is shown that for particular parameters, the engineered dissipation induces almost perfect two-mode squeezing and entanglement both for the bright fields and for the dressed spins. The excited-state spin has squeezing of near 40% below the standard quantum limit although there remains the spontaneous emission from the involved excited states. PMID:27557189

  18. Quantum cryptography for WDM networks: Encryption with coherent states and key generation with fiber based entanglement

    NASA Astrophysics Data System (ADS)

    Liang, Chuang

    New telecommunication techniques utilizing distinctive quantum properties, e.g., measurement uncertainties and entanglement, extend the capabilities of existing systems. Quantum cryptography, as an example, provides physical layer security enforced by fundamental physical laws, while modern cryptographic techniques rely on assumptions of intractability of certain mathematical problems with limited computational power. Rapid growth of the Internet leading to global telecommunications puts heavy demands on information security. A novel keyed direct data encryption technique based on the fundamental and irreducible quantum noise of laser light is shown to be compatible with the existing high-speed optical communications infrastructure. With this technique, line encryption for OC-12 (622 Mbps) SONET data over 250 km in a wavelength-division-multiplexing network is demonstrated with fully streaming data. Nonlocal correlation is employed in applications including cryptographic key generation whose practical realizations require telecom-band photon counting and entangled photon-pair generation. Existing telecom-band avalanche-photodiode based photon-counting techniques suffer from large detection noise at high operation rates. New techniques such as ultrashort gating and synchronous sampling at the onset of avalanches are introduced for suppressing the detection noise at high operation speeds. Photon counting at record speeds (25 MHz) that employing an avalanche photodiode is developed, demonstrated and deployed in the experimental studies. Telecom-band correlated photons can be directly created inside optical fibers through its chi(3) nonlinearity. This technique brings practical advantages such as the easy compatibility with fiber-optic systems, excellent spatial modal purity, and potential high-speed operation. As a practical development of this technique, a novel Faraday-mirror based ultra-stable scheme for generating polarization entangled photon-pairs is proposed

  19. Arbitrated quantum signature scheme based on χ-type entangled states

    NASA Astrophysics Data System (ADS)

    Zuo, Huijuan; Huang, Wei; Qin, Sujuan

    2013-10-01

    An arbitrated quantum signature scheme, which is mainly applied in electronic-payment systems, is proposed and investigated. The χ-type entangled states are used for quantum key distribution and quantum signature in this protocol. Compared with previous quantum signature schemes which also utilize χ-type entangled states, the proposed scheme provides higher efficiency. Finally, we also analyze its security under various kinds of attacks.

  20. General polygamy inequality of multiparty quantum entanglement

    NASA Astrophysics Data System (ADS)

    Kim, Jeong San

    2012-06-01

    Using entanglement of assistance, we establish a general polygamy inequality of multiparty entanglement in arbitrary-dimensional quantum systems. For multiparty closed quantum systems, we relate our result with the monogamy of entanglement, and clarify that the entropy of entanglement bounds both monogamy and polygamy of multiparty quantum entanglement.

  1. Generation of entangled squeezed states: their entanglement and quantum polarization

    NASA Astrophysics Data System (ADS)

    Karimi, A.; Tavassoly, M. K.

    2015-11-01

    In this paper, based on the well-known one-mode and two-mode squeezed states, we introduce the two-mode and four-mode entangled squeezed states. Next, in order to generate the introduced entangled states, we present two theoretical schemes based on the resonant atom-field interaction. In the proposed schemes, a Λ -type three-level atom interacts with the two-mode and four-mode quantized field in the presence of two strong classical fields in which two-photon atomic transitions are allowed. In the continuation, we study entanglement dynamics of the generated entangled states (using the von Neumann entropy) as well as the quantum polarization (using the Stokes operators). It is demonstrated that entanglement and polarization can be achieved for the produced states by adjusting the evolved parameters.

  2. Long-distance entanglement-based quantum key distribution experiment using practical detectors.

    PubMed

    Takesue, Hiroki; Harada, Ken-Ichi; Tamaki, Kiyoshi; Fukuda, Hiroshi; Tsuchizawa, Tai; Watanabe, Toshifumi; Yamada, Koji; Itabashi, Sei-Ichi

    2010-08-01

    We report an entanglement-based quantum key distribution experiment that we performed over 100 km of optical fiber using a practical source and detectors. We used a silicon-based photon-pair source that generated high-purity time-bin entangled photons, and high-speed single photon detectors based on InGaAs/InP avalanche photodiodes with the sinusoidal gating technique. To calculate the secure key rate, we employed a security proof that validated the use of practical detectors. As a result, we confirmed the successful generation of sifted keys over 100 km of optical fiber with a key rate of 4.8 bit/s and an error rate of 9.1%, with which we can distill secure keys with a key rate of 0.15 bit/s. PMID:20721069

  3. Energy-Tunable Sources of Entangled Photons: A Viable Concept for Solid-State-Based Quantum Relays

    NASA Astrophysics Data System (ADS)

    Trotta, Rinaldo; Martín-Sánchez, Javier; Daruka, Istvan; Ortix, Carmine; Rastelli, Armando

    2015-04-01

    We propose a new method of generating triggered entangled photon pairs with wavelength on demand. The method uses a microstructured semiconductor-piezoelectric device capable of dynamically reshaping the electronic properties of self-assembled quantum dots (QDs) via anisotropic strain engineering. Theoretical models based on k .p theory in combination with finite-element calculations show that the energy of the polarization-entangled photons emitted by QDs can be tuned in a range larger than 100 meV without affecting the degree of entanglement of the quantum source. These results pave the way towards the deterministic implementation of QD entanglement resources in all-electrically-controlled solid-state-based quantum relays.

  4. Quantum discord with weak measurement operators of quasi-Werner states based on bipartite entangled coherent states

    NASA Astrophysics Data System (ADS)

    Castro, E.; Gómez, R.; Ladera, C. L.; Zambrano, A.

    2013-11-01

    Among many applications quantum weak measurements have been shown to be important in exploring fundamental physics issues, such as the experimental violation of the Heisenberg uncertainty relation and the Hardy paradox, and have also technological implications in quantum optics, quantum metrology and quantum communications, where the precision of the measurement is as important as the precision of quantum state preparation. The theory of weak measurement can be formulated using the pre-and post-selected quantum systems, as well as using the weak measurement operator formalism. In this work, we study the quantum discord (QD) of quasi-Werner mixed states based on bipartite entangled coherent states using the weak measurements operator, instead of the projective measurement operators. We then compare the quantum discord for both kinds of measurement operators, in terms of the entanglement quality, the latter being measured using the concept of concurrence. It's found greater quantum correlations using the weak measurement operators.

  5. Higher-order quantum entanglement

    NASA Technical Reports Server (NTRS)

    Zeilinger, Anton; Horne, Michael A.; Greenberger, Daniel M.

    1992-01-01

    In quantum mechanics, the general state describing two or more particles is a linear superposition of product states. Such a superposition is called entangled if it cannot be factored into just one product. When only two particles are entangled, the stage is set for Einstein-Podolsky-Rosen (EPR) discussions and Bell's proof that the EPR viewpoint contradicts quantum mechanics. If more than two particles are involved, new possibilities and phenomena arise. For example, the Greenberger, Horne, and Zeilinger (GHZ) disproof of EPR applies. Furthermore, as we point out, with three or more particles even entanglement itself can be an entangled property.

  6. Entanglement routers via a wireless quantum network based on arbitrary two qubit systems

    NASA Astrophysics Data System (ADS)

    Metwally, N.

    2014-12-01

    A wireless quantum network is generated between multi-hops, where each hop consists of two entangled nodes. These nodes share a finite number of entangled two-qubit systems randomly. Different types of wireless quantum bridges (WQBS) are generated between the non-connected nodes. The efficiency of these WQBS to be used as quantum channels between its terminals to perform quantum teleportation is investigated. We suggest a theoretical wireless quantum communication protocol to teleport unknown quantum signals from one node to another, where the more powerful WQBS are used as quantum channels. It is shown that, by increasing the efficiency of the sources that emit the initial partial entangled states, one can increase the efficiency of the wireless quantum communication protocol.

  7. Entangled states in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Ruža, Jānis

    2010-01-01

    In some circles of quantum physicists, a view is maintained that the nonseparability of quantum systems-i.e., the entanglement-is a characteristic feature of quantum mechanics. According to this view, the entanglement plays a crucial role in the solution of quantum measurement problem, the origin of the “classicality” from the quantum physics, the explanation of the EPR paradox by a nonlocal character of the quantum world. Besides, the entanglement is regarded as a cornerstone of such modern disciplines as quantum computation, quantum cryptography, quantum information, etc. At the same time, entangled states are well known and widely used in various physics areas. In particular, this notion is widely used in nuclear, atomic, molecular, solid state physics, in scattering and decay theories as well as in other disciplines, where one has to deal with many-body quantum systems. One of the methods, how to construct the basis states of a composite many-body quantum system, is the so-called genealogical decomposition method. Genealogical decomposition allows one to construct recurrently by particle number the basis states of a composite quantum system from the basis states of its forming subsystems. These coupled states have a structure typical for entangled states. If a composite system is stable, the internal structure of its forming basis states does not manifest itself in measurements. However, if a composite system is unstable and decays onto its forming subsystems, then the measurables are the quantum numbers, associated with these subsystems. In such a case, the entangled state has a dynamical origin, determined by the Hamiltonian of the corresponding decay process. Possible correlations between the quantum numbers of resulting subsystems are determined by the symmetries-conservation laws of corresponding dynamical variables, and not by the quantum entanglement feature.

  8. Suppressing decoherence and improving entanglement by quantum-jump-based feedback control in two-level systems

    SciTech Connect

    Hou, S. C.; Huang, X. L.; Yi, X. X.

    2010-07-15

    We study the quantum-jump-based feedback control on the entanglement shared between two qubits with one of them subject to decoherence while the other qubit is under the control. This situation is very relevant to a quantum system consisting of nuclear and electron spins in solid states. The possibility of prolonging the coherence time of the dissipative qubit is also explored. Numerical simulations show that the quantum-jump-based feedback control can improve the entanglement between the qubits and prolong the coherence time for the qubit subject directly to decoherence.

  9. Inter-Universal Quantum Entanglement

    NASA Astrophysics Data System (ADS)

    Robles-Pérez, S. J.; González-Díaz, P. F.

    2015-01-01

    The boundary conditions to be imposed on the quantum state of the whole multiverse could be such that the universes would be created in entangled pairs. Then, interuniversal entanglement would provide us with a vacuum energy for each single universe that might be fitted with observational data, making testable not only the multiverse proposal but also the boundary conditions of the multiverse. Furthermore, the second law of the entanglement thermodynamics would enhance the expansion of the single universes.

  10. Entanglement for All Quantum States

    ERIC Educational Resources Information Center

    de la Torre, A. C.; Goyeneche, D.; Leitao, L.

    2010-01-01

    It is shown that a state that is factorizable in the Hilbert space corresponding to some choice of degrees of freedom becomes entangled for a different choice of degrees of freedom. Therefore, entanglement is not a special case but is ubiquitous in quantum systems. Simple examples are calculated and a general proof is provided. The physical…

  11. Entanglement and the shareability of quantum states

    NASA Astrophysics Data System (ADS)

    Doherty, Andrew C.

    2014-10-01

    This brief review discusses the problem of determining whether a given quantum state is separable or entangled. I describe an established approach to this problem that is based on the monogamy of entanglement, which is the observation that a pair of quantum systems that are strongly entangled must be uncorrelated with the rest of the world. Unentangled states on the other hand involve correlations that can be shared with many other parties. Checking whether a given quantum state is shareable involves constructing certain symmetric quantum state extensions and I discuss how to do this using a class of optimizations known as semidefinite programs. An attractive feature of this approach is that it generates explicit entanglement witnesses that can be measured to demonstrate the entanglement experimentally. In recent years analysis of this approach has greatly increased our understanding of the complexity of determining whether a given quantum state is entangled and this review aims to give a unified discussion of these developments. Specifically, I describe how to use finite quantum de Finetti theorems to prove that highly shareable states are nearly separable and use these results to understand the computational complexity of the problem. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘50 years of Bell’s theorem’.

  12. Spin-Photon Entanglement in Semiconductor Quantum Dots: Towards Solid-State-Based Quantum Repeaters

    NASA Astrophysics Data System (ADS)

    De Greve, Kristiaan; Yamamoto, Yoshihisa

    `In this chapter, we introduced and analyze techniques that allow truly secure secret key sharing over long distances, using public, open channels, where the laws of quantum mechanics ensure the security of the long distance key sharing - an idea generally referred to as the essence of a quantum repeater. We describe several proof-of-principle experiments where technology based on self-assembled quantum dots is used as the backbone of a future quantum repeater.'

  13. Entanglement properties of quantum polaritons

    NASA Astrophysics Data System (ADS)

    Suárez-Forero, D. G.; Cipagauta, G.; Vinck-Posada, H.; Fonseca Romero, K. M.; Rodríguez, B. A.; Ballarini, D.

    2016-05-01

    Exciton polaritons are coupled states of matter and light, originated by the strong interaction between an optical mode and semiconductor excitons. This interaction can be obtained also at a single-particle level, in which case it has been shown that a quantum treatment is mandatory. In this work we study the light-matter entanglement of polaritons from a fully quantum formalism including pumping and dissipation. We find that the entanglement is completely destroyed if the exciton and photon are tuned at the resonance condition, even under very low pumping rates. Instead, the best condition for maximizing entanglement and purity of the steady state is when the exciton and photon are out of resonance and when incoherent pumping exactly compensates the dissipation rate. In the presence of multiple quantum dots coupled to the light mode, matter-light entanglement survives only at larger detuning for a higher number of quantum dots considered.

  14. A novel quantum information hiding protocol based on entanglement swapping of high-level Bell states

    NASA Astrophysics Data System (ADS)

    Xu, Shu-Jiang; Chen, Xiu-Bo; Wang, Lian-Hai; Niu, Xin-Xin; Yang, Yi-Xian

    2015-05-01

    Using entanglement swapping of high-level Bell states, we first derive a covert layer between the secret message and the possible output results of the entanglement swapping between any two generalized Bell states, and then propose a novel high-efficiency quantum information hiding protocol based on the covert layer. In the proposed scheme, a covert channel can be built up under the cover of a high-level quantum secure direct communication (QSDC) channel for securely transmitting secret messages without consuming any auxiliary quantum state or any extra communication resource. It is shown that this protocol not only has a high embedding efficiency but also achieves a good imperceptibility as well as a high security. Project supported by the National Natural Science Foundation of China (Grant Nos. 61303199, 61272514, 61170272, 61121061, and 61411146001), the Shandong Provincial Natural Science Foundation of China (Grant Nos. ZR2013FM025, ZR2013FQ001, and ZR2014FM003), the Shandong Provincial Outstanding Research Award Fund for Young Scientists of China (Grant Nos. BS2013DX010 and BS2014DX007), the Program for New Century Excellent Talents in Universities, China (Grant No. NCET-13-0681), the National Development Foundation for Cryptological Research, China (Grant No. MMJJ201401012), the Fok Ying Tong Education Foundation, China (Grant No. 131067), and the Shandong Academy of Sciences Youth Fund Project, China (Grant No. 2013QN007).

  15. Quantum Entanglement on a Hypersphere

    NASA Astrophysics Data System (ADS)

    Peters, James F.; Tozzi, Arturo

    2016-08-01

    A quantum entanglement's composite system does not display separable states and a single constituent cannot be fully described without considering the other states. We introduce quantum entanglement on a hypersphere - which is a 4D space undetectable by observers living in a 3D world -, derived from signals originating on the surface of an ordinary 3D sphere. From the far-flung branch of algebraic topology, the Borsuk-Ulam theorem states that, when a pair of opposite (antipodal) points on a hypersphere are projected onto the surface of 3D sphere, the projections have matching description. In touch with this theorem, we show that a separable state can be achieved for each of the entangled particles, just by embedding them in a higher dimensional space. We view quantum entanglement as the simultaneous activation of signals in a 3D space mapped into a hypersphere. By showing that the particles are entangled at the 3D level and un-entangled at the 4D hypersphere level, we achieved a composite system in which each local constituent is equipped with a pure state. We anticipate this new view of quantum entanglement leading to what are known as qubit information systems.

  16. Quantum Entanglement on a Hypersphere

    NASA Astrophysics Data System (ADS)

    Peters, James F.; Tozzi, Arturo

    2016-04-01

    A quantum entanglement's composite system does not display separable states and a single constituent cannot be fully described without considering the other states. We introduce quantum entanglement on a hypersphere - which is a 4D space undetectable by observers living in a 3D world -, derived from signals originating on the surface of an ordinary 3D sphere. From the far-flung branch of algebraic topology, the Borsuk-Ulam theorem states that, when a pair of opposite (antipodal) points on a hypersphere are projected onto the surface of 3D sphere, the projections have matching description. In touch with this theorem, we show that a separable state can be achieved for each of the entangled particles, just by embedding them in a higher dimensional space. We view quantum entanglement as the simultaneous activation of signals in a 3D space mapped into a hypersphere. By showing that the particles are entangled at the 3D level and un-entangled at the 4D hypersphere level, we achieved a composite system in which each local constituent is equipped with a pure state. We anticipate this new view of quantum entanglement leading to what are known as qubit information systems.

  17. Multiparty quantum protocols for assisted entanglement distillation

    NASA Astrophysics Data System (ADS)

    Dutil, Nicolas

    Quantum information theory is a multidisciplinary field whose objective is to understand what happens when information is stored in the state of a quantum system. Quantum mechanics provides us with a new resource, called quantum entanglement, which can be exploited to achieve novel tasks such as teleportation and superdense coding. Current technologies allow the transmission of entangled photon pairs across distances up to roughly 100 kilometers. For longer distances, noise arising from various sources degrade the transmission of entanglement to the point that it becomes impossible to use the entanglement as a resource for future tasks. One strategy for dealing with this difficulty is to employ quantum repeaters, stations intermediate between the sender and receiver that can participate in the process of entanglement distillation, thereby improving on what the sender and receiver could do on their own. Motivated by the problem of designing quantum repeaters, we study entanglement distillation between two parties, Alice and Bob, starting from a mixed state and with the help of repeater stations. We extend the notion of entanglement of assistance to arbitrary tripartite states and exhibit a protocol, based on a random coding strategy, for extracting pure entanglement. We use these results to find achievable rates for the more general scenario, where many spatially separated repeaters help two recipients distill entanglement. We also study multiparty quantum communication protocols in a more general context. We give a new protocol for the task of multiparty state merging. The previous multiparty state merging protocol required the use of time-sharing, an impossible strategy when a single copy of the input state is available to the parties. Our protocol does not require time-sharing for distributed compression of two senders. In the one-shot regime, we can achieve multiparty state merging with entanglement costs not restricted to corner points of the entanglement cost

  18. Entanglement-assisted quantum convolutional coding

    SciTech Connect

    Wilde, Mark M.; Brun, Todd A.

    2010-04-15

    We show how to protect a stream of quantum information from decoherence induced by a noisy quantum communication channel. We exploit preshared entanglement and a convolutional coding structure to develop a theory of entanglement-assisted quantum convolutional coding. Our construction produces a Calderbank-Shor-Steane (CSS) entanglement-assisted quantum convolutional code from two arbitrary classical binary convolutional codes. The rate and error-correcting properties of the classical convolutional codes directly determine the corresponding properties of the resulting entanglement-assisted quantum convolutional code. We explain how to encode our CSS entanglement-assisted quantum convolutional codes starting from a stream of information qubits, ancilla qubits, and shared entangled bits.

  19. Entanglement distillation in circuit quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Oppliger, Markus; Heinsoo, Johannes; Salathe, Yves; Potocnik, Anton; Mondal, Mintu; Wallraff, Andreas; Paraoanu, Gheorghe Sorin

    Entanglement is an essential resource for quantum information processing, such as quantum error correction, quantum teleportation and quantum communication. Such algorithms perform optimally with maximally entangled states. In practice entangled quantum states are very fragile due to a wide range of decoherence mechanisms. When two parties share degraded entangled states they are still able to generate an entangled state with higher fidelity using local operations and classical communication. This process is commonly referred to as entanglement distillation. Here we demonstrate distillation of highly entangled Bell states from two copies of less entangled states on a four transmon qubit device realized in the circuit-QED architecture. We characterize the output state for different degrees of entanglement at the input with quantum state tomography. A clear improvement of the entanglement measures is observed at the output.

  20. Quantum entanglement between diamond spin qubits separated by 3 meters

    NASA Astrophysics Data System (ADS)

    Hanson, Ronald

    2013-03-01

    Entanglement of spatially separated objects is one of the most intriguing phenomena that can occur in physics. This can lead ``spooky action at a distance'' where measurement of one object instantaneously affects the state of the other object. Besides being of fundamental interest, entanglement is also a valuable resource in quantum information technology enabling secure quantum communication networks and distributed quantum computing. Here we present our most recent results towards the realization of scalable quantum networks with solid-state qubits. We have entangled two spin qubits in diamond, each associated with a nitrogen vacancy center in diamond. The two diamonds reside in separate setups three meters apart from each other. With no direct interaction between the two spins to mediate the entanglement, we make use of a scheme based on quantum measurements: we perform a joint measurement on photons emitted by the NV centers that are entangled with the electron spins. The detection of the photons projects the spins into an entangled state. We verify the generated entanglement by single-shot readout of the spin qubits in different bases and correlating the results. These results open the door to a range of exciting opportunities. For instance, the remote entanglement can be extended to nuclear spins near the NV center. Our recent experiments demonstrate robust methods for initializing, controlling and entangling nuclear spins by using the electron spin as an ancilla. Entanglement of remote quantum registers will enable deterministic quantum teleportation, distributed quantum computing tasks and the implementation of an elementary quantum repeater.

  1. The effect of turbulence on entanglement-based free-space quantum key distribution with photonic orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Goyal, Sandeep K.; Hamadou Ibrahim, Alpha; Roux, Filippus S.; Konrad, Thomas; Forbes, Andrew

    2016-06-01

    Using an experimental setup that simulates a turbulent atmosphere, we study the secret key rate for quantum key distribution (QKD) protocols in orbital angular momentum based free space quantum communication. The QKD protocols under consideration include the Ekert 91 protocol for different choices of mutually unbiased bases and the six-state protocol. We find that the secret key rate of these protocols decay to zero, roughly at the same scale where the entanglement of formation decays to zero.

  2. Characterizing entanglement in quantum information

    NASA Astrophysics Data System (ADS)

    Spedalieri, Federico Maximiliano

    Entanglement is a key resource in the emerging field of Quantum Information. The strong correlations between systems described by an entangled state allow us to perform certain tasks more efficiently than it would be possible by using only classical resources. This is why the characterization of entanglement is one of the most important problems in Quantum Information. In this thesis, we analyze several aspects of entanglement. First, we introduce a new family of criteria to determine if a bipartite mixed state is entangled or not. This family consists of a sequence of tests that can be implemented efficiently, and has the property that all entangled states can be detected by some test in the sequence. Each test in the family can be stated as a semidefinite program, which is a class of convex optimization problems. The duality structure of these programs allows us to explicitly construct an entanglement witness that proves entanglement of a state, whenever the state fails one of the tests in the sequence. The entanglement witnesses constructed in this manner have well-defined algebraic properties that can be used to give a characterization of the interior of the set of all possible entanglement witnesses, as well as the set of strictly positive bihermitian forms and the set of strictly positive maps. We also study deterministic transformations of three-qubit pure state when only local operations and classical communication (LOCC) are allowed. We derive strong constraints that the operations and states involved must satisfy, and we apply these results to characterize the set of real states that can be obtained from the GHZ state by LOCC.

  3. Quantum key distribution with an entangled light emitting diode

    SciTech Connect

    Dzurnak, B.; Stevenson, R. M.; Nilsson, J.; Dynes, J. F.; Yuan, Z. L.; Skiba-Szymanska, J.; Shields, A. J.; Farrer, I.; Ritchie, D. A.

    2015-12-28

    Measurements performed on entangled photon pairs shared between two parties can allow unique quantum cryptographic keys to be formed, creating secure links between users. An advantage of using such entangled photon links is that they can be adapted to propagate entanglement to end users of quantum networks with only untrusted nodes. However, demonstrations of quantum key distribution with entangled photons have so far relied on sources optically excited with lasers. Here, we realize a quantum cryptography system based on an electrically driven entangled-light-emitting diode. Measurement bases are passively chosen and we show formation of an error-free quantum key. Our measurements also simultaneously reveal Bell's parameter for the detected light, which exceeds the threshold for quantum entanglement.

  4. Quantum key distribution with an entangled light emitting diode

    NASA Astrophysics Data System (ADS)

    Dzurnak, B.; Stevenson, R. M.; Nilsson, J.; Dynes, J. F.; Yuan, Z. L.; Skiba-Szymanska, J.; Farrer, I.; Ritchie, D. A.; Shields, A. J.

    2015-12-01

    Measurements performed on entangled photon pairs shared between two parties can allow unique quantum cryptographic keys to be formed, creating secure links between users. An advantage of using such entangled photon links is that they can be adapted to propagate entanglement to end users of quantum networks with only untrusted nodes. However, demonstrations of quantum key distribution with entangled photons have so far relied on sources optically excited with lasers. Here, we realize a quantum cryptography system based on an electrically driven entangled-light-emitting diode. Measurement bases are passively chosen and we show formation of an error-free quantum key. Our measurements also simultaneously reveal Bell's parameter for the detected light, which exceeds the threshold for quantum entanglement.

  5. Entanglement-based continuous-variable quantum key distribution with multimode states and detectors

    NASA Astrophysics Data System (ADS)

    Usenko, Vladyslav C.; Ruppert, Laszlo; Filip, Radim

    2014-12-01

    Secure quantum key distribution with multimode Gaussian entangled states and multimode homodyne detectors is proposed. In general the multimode character of both the sources of entanglement and the homodyne detectors can cause a security break even for a perfect channel when trusted parties are unaware of the detection structure. Taking into account the multimode structure and potential leakage of information from a homodyne detector reduces the loss of security to some extent. We suggest the symmetrization of the multimode sources of entanglement as an efficient method allowing us to fully recover the security irrespectively to multimode structure of the homodyne detectors. Further, we demonstrate that by increasing the number of the fluctuating but similar source modes the multimode protocol stabilizes the security of the quantum key distribution. The result opens the pathway towards quantum key distribution with multimode sources and detectors.

  6. Entanglement for all quantum states

    NASA Astrophysics Data System (ADS)

    de la Torre, A. C.; Goyeneche, D.; Leitao, L.

    2010-03-01

    It is shown that a state that is factorizable in the Hilbert space corresponding to some choice of degrees of freedom becomes entangled for a different choice of degrees of freedom. Therefore, entanglement is not a special case but is ubiquitous in quantum systems. Simple examples are calculated and a general proof is provided. The physical relevance of the change of tensor product structure is mentioned.

  7. Classical dynamics of quantum entanglement.

    PubMed

    Casati, Giulio; Guarneri, Italo; Reslen, Jose

    2012-03-01

    We analyze numerically the dynamical generation of quantum entanglement in a system of two interacting particles, started in a coherent separable state, for decreasing values of ℏ. As ℏ→0 the entanglement entropy, computed at any finite time, converges to a finite nonzero value. The limit law that rules the time dependence of entropy is well reproduced by purely classical computations. Its general features can be explained by simple classical arguments, which expose the different ways entanglement is generated in systems that are classically chaotic or regular. PMID:22587162

  8. Distribution of entanglement in large-scale quantum networks

    NASA Astrophysics Data System (ADS)

    Perseguers, S.; Lapeyre, G. J., Jr.; Cavalcanti, D.; Lewenstein, M.; Acín, A.

    2013-09-01

    The concentration and distribution of quantum entanglement is an essential ingredient in emerging quantum information technologies. Much theoretical and experimental effort has been expended in understanding how to distribute entanglement in one-dimensional networks. However, as experimental techniques in quantum communication develop, protocols for multi-dimensional systems become essential. Here, we focus on recent theoretical developments in protocols for distributing entanglement in regular and complex networks, with particular attention to percolation theory and network-based error correction.

  9. Effects of afterpulse events on performance of entanglement-based quantum key distribution system

    NASA Astrophysics Data System (ADS)

    Arahira, Shin; Murai, Hitoshi

    2016-03-01

    In this paper, we theoretically and experimentally study the performance of an entanglement-based quantum key distribution (QKD) system using single-photon detectors (SPDs) with poor afterpulse characteristics. We reveal that the afterpulse fraction (Pa) in an SPD does not impose a bound on the lowest limit of the error rate in sifted keys of an entanglement-based QKD system. Secure secret key sharing is possible even when Pa is large, for example, exceeding 100%. The system performance in terms of the final key rate is found to be dominated by the parameter η/(1 + Pa) of the SPD, where η is the detection efficiency. The operation conditions of the SPD should be optimized so as to have the maximal η/(1 + Pa), while retaining sufficiently low dark counts. The experimental results were in good agreement with the theoretical predictions. A visibility of 90%, which is sufficiently high for secure secret key sharing in a QKD protocol, was obtained in twofold interference experiments even by using an SPD with Pa exceeding 100%.

  10. Polygamy of entanglement in multipartite quantum systems

    NASA Astrophysics Data System (ADS)

    Kim, Jeong San

    2009-08-01

    We show that bipartite entanglement distribution (or entanglement of assistance) in multipartite quantum systems is by nature polygamous. We first provide an analytical upper bound for the concurrence of assistance in bipartite quantum systems and derive a polygamy inequality of multipartite entanglement in arbitrary-dimensional quantum systems.

  11. Quantum Entanglement in a Generic-Spin Model

    NASA Astrophysics Data System (ADS)

    Wang, Cui-Xia; Ding, Xiong; Huang, Guo-Qiang; Luo, Cui-Lan

    2016-06-01

    We investigate quantum entanglement in a generic-spin model with spin squeezing criterions based on squeezing inequalities. By analytically and numerically calculating the squeezing criterions, we show that the system is always entangled except at some special times and the stronger entanglement may be achieved by decreasing the coupling strength and increasing the number of particles.

  12. Cryptanalysis and Improvement of Quantum Private Comparison Protocol Based on Bell Entangled States

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Jie; Liu, Chao; Chen, Han-Wu; Li, Zhi-Qiang; Liu, Zhi-Hao

    2014-08-01

    Recently, Liu et al. [Commun. Theor. Phys. 57 (2012) 583] proposed a quantum private comparison protocol based on entanglement swapping of Bell states, which aims to securely compare the equality of two participants' information with the help of a semi-honest third party (TP). However, the present study points out there is a fatal loophole in Liu et al.'s protocol, and TP can make Bell-basis measurement to know all the participants' secret inputs without being detected. To fix the problem, a simple solution, which uses one-time eavesdropper checking with decoy photons instead of twice eavesdropper checking with Bell states, is demonstrated. Compared with the original protocol, it not only reduces the Bell states consumption but also simplifies the protocol steps.

  13. Multipartite Entanglement: Transformations, Quantum Secret Sharing, Quantum Error Correction

    NASA Astrophysics Data System (ADS)

    Helwig, Wolfram

    conveniently described within the graph state formalism. Finally, we use the insight gained from entanglement in QSS schemes to derive necessary and sufficient conditions for quantum erasure channel and quantum error correction codes that satisfy the quantum Singleton bound, as these codes are closely related to ramp QSS schemes. This provides us with a very intuitive approach to codes for the quantum erasure channel, purely based on the entanglement required to protect information against losses by use of the parallel teleportation protocol.

  14. Quantum entanglement in the multiverse

    NASA Astrophysics Data System (ADS)

    Robles-Pérez, S.; González-Díaz, P. F.

    2014-01-01

    We show that the quantum state of a multiverse made up of classically disconnected regions of the space-time, whose dynamical evolution is dominated by a homogeneous and isotropic fluid, is given by a squeezed state. These are typical quantum states that have no classical counterpart and therefore allow analyzing the violation of classical inequalities as well as the EPR argument in the context of the quantum multiverse. The thermodynamical properties of entanglement are calculated for a composite quantum state of two universes whose states are quantum-mechanically correlated. The energy of entanglement between the positive and negative modes of a scalar field, which correspond to the expanding and contracting branches of a phantom universe, are also computed.

  15. Multiplexing scheme for simplified entanglement-based large-alphabet quantum key distribution

    NASA Astrophysics Data System (ADS)

    Dada, Adetunmise C.

    2015-05-01

    We propose a practical quantum cryptographic scheme which combines high information capacity, such as provided by high-dimensional quantum entanglement, with the simplicity of a two-dimensional Clauser-Horne-Shimony-Holt (CHSH) Bell test for security verification. By applying a state combining entanglement in a two-dimensional degree of freedom, such as photon polarization, with high-dimensional correlations in another degree of freedom, such as photon orbital angular momentum (OAM) or path, the scheme provides a considerably simplified route towards security verification in quantum key distribution (QKD) aimed at exploiting high-dimensional quantum systems for increased secure key rates. It also benefits from security against collective attacks and is feasible using currently available technologies.

  16. Quantum key distribution with entangled photon sources

    NASA Astrophysics Data System (ADS)

    Ma, Xiongfeng; Fung, Chi-Hang Fred; Lo, Hoi-Kwong

    2007-07-01

    A parametric down-conversion (PDC) source can be used as either a triggered single-photon source or an entangled-photon source in quantum key distribution (QKD). The triggering PDC QKD has already been studied in the literature. On the other hand, a model and a post-processing protocol for the entanglement PDC QKD are still missing. We fill in this important gap by proposing such a model and a post-processing protocol for the entanglement PDC QKD. Although the PDC model is proposed to study the entanglement-based QKD, we emphasize that our generic model may also be useful for other non-QKD experiments involving a PDC source. Since an entangled PDC source is a basis-independent source, we apply Koashi and Preskill’s security analysis to the entanglement PDC QKD. We also investigate the entanglement PDC QKD with two-way classical communications. We find that the recurrence scheme increases the key rate and the Gottesman-Lo protocol helps tolerate higher channel losses. By simulating a recent 144-km open-air PDC experiment, we compare three implementations: entanglement PDC QKD, triggering PDC QKD, and coherent-state QKD. The simulation result suggests that the entanglement PDC QKD can tolerate higher channel losses than the coherent-state QKD. The coherent-state QKD with decoy states is able to achieve highest key rate in the low- and medium-loss regions. By applying the Gottesman-Lo two-way post-processing protocol, the entanglement PDC QKD can tolerate up to 70dB combined channel losses ( 35dB for each channel) provided that the PDC source is placed in between Alice and Bob. After considering statistical fluctuations, the PDC setup can tolerate up to 53dB channel losses.

  17. Partially entangled states bridge in quantum teleportation

    NASA Astrophysics Data System (ADS)

    Cai, Xiao-Fei; Yu, Xu-Tao; Shi, Li-Hui; Zhang, Zai-Chen

    2014-10-01

    The traditional method for information transfer in a quantum communication system using partially entangled state resource is quantum distillation or direct teleportation. In order to reduce the waiting time cost in hop-by-hop transmission and execute independently in each node, we propose a quantum bridging method with partially entangled states to teleport quantum states from source node to destination node. We also prove that the designed specific quantum bridging circuit is feasible for partially entangled states teleportation across multiple intermediate nodes. Compared to two traditional ways, our partially entanglement quantum bridging method uses simpler logic gates, has better security, and can be used in less quantum resource situation.

  18. Five-wave-packet quantum error correction based on continuous-variable cluster entanglement

    NASA Astrophysics Data System (ADS)

    Hao, Shuhong; Su, Xiaolong; Tian, Caixing; Xie, Changde; Peng, Kunchi

    2015-10-01

    Quantum error correction protects the quantum state against noise and decoherence in quantum communication and quantum computation, which enables one to perform fault-torrent quantum information processing. We experimentally demonstrate a quantum error correction scheme with a five-wave-packet code against a single stochastic error, the original theoretical model of which was firstly proposed by S. L. Braunstein and T. A. Walker. Five submodes of a continuous variable cluster entangled state of light are used for five encoding channels. Especially, in our encoding scheme the information of the input state is only distributed on three of the five channels and thus any error appearing in the remained two channels never affects the output state, i.e. the output quantum state is immune from the error in the two channels. The stochastic error on a single channel is corrected for both vacuum and squeezed input states and the achieved fidelities of the output states are beyond the corresponding classical limit.

  19. Splitting a quantum secret without the assistance of entanglements

    NASA Astrophysics Data System (ADS)

    Sun, Ying; Gao, Fei; Yuan, Zheng; Li, Yan-Bing; Wen, Qiao-Yan

    2012-12-01

    The existing secret sharing schemes of sharing quantum information usually require the resource of entanglements no matter they are based on quantum teleportation or remote state preparation. However, in the practical applications, it is difficult to build faithful and stable entangled channels among many users. We show how the quantum information splitting and reconstruction can be implemented without the assistance of entanglements and give a quantum secret sharing protocol based on the theory of quantum interference. We also discuss its security against the individual attacks and generalize its three-party case into a multiparty case.

  20. Quantum Private Comparison of Equal Information Based on Highly Entangled Six-Qubit Genuine State

    NASA Astrophysics Data System (ADS)

    Ji, Zhao-Xu; Ye, Tian-Yu

    2016-06-01

    Using the highly entangled six-qubit genuine state we present a quantum private comparison (QPC) protocol, which enables two users to compare the equality of two bits of their secrets in every round comparison with the assistance of a semi-honest third party (TP). The proposed protocol needs neither unitary operations nor quantum entanglement swapping technology, both of which may consume expensive quantum devices. Single particle measurements and Bell-basis measurements, which are easy to implement with current technologies, are employed by two users and TP in the proposed protocol, respectively. The proposed protocol can withstand all kinds of outside attacks and participant attacks. Moreover, none of information about the two users' private secrets and the comparison result is leaked out to TP. Supported by National Natural Science Foundation of China under Grant No. 61402407

  1. Security of quantum key distribution with entangled qutrits

    SciTech Connect

    Durt, Thomas; Cerf, Nicolas J.; Gisin, Nicolas; Zukowski, Marek

    2003-01-01

    The study of quantum cryptography and quantum entanglement have traditionally been based on two-level quantum systems (qubits). In this paper, we consider a generalization of Ekert's entanglement-based quantum cryptographic protocol where qubits are replaced by three-level systems (qutrits). In order to investigate the security against the optimal individual attack, we derive the information gained by a potential eavesdropper applying a cloning-based attack. We exhibit the explicit form of this cloner, which is distinct from the previously known cloners, and conclude that the protocol is more robust than those based on entangled qubits as well as unentangled qutrits.

  2. Optical Quantum Entanglement in Astrophysics

    NASA Astrophysics Data System (ADS)

    Gómez, J.; Peimbert, A.; Echevarría, J.

    2009-10-01

    The theories of quantum entanglement between two distant particles, which clearly confirm the non-local nature of Quantum Mechanics, are applied to naturally produced particles in astrophysical objects. We study the production and reception of the cases of optical quantum entanglement most feasible to be observed: the two-photon spontaneous transition of the hydrogen 2 ^{2}S_{1/2} metastable level, which is known to be one of the components of the continuous spectra of ionized regions. We obtain the two-photon emission rate for four astrophysical objects: the Orion Nebula, two nearby planetary nebulae IC 2149 and NGC 7293, and the solar corona. The production of entangled pairs per second is 5.80×10^48, 9.39×10^45, 9.77×10^44, and 1.46×10^16 respectively. The distribution of the propagation directions of both emitted photons does not vanish at any angle; therefore it is possible to observe the entangled pair at an angles θ ≈ 0°. Because the number of two-photon coincidences goes as the fourth power of the ratio between the detector size and the distance from the astrophysical object, coincidences are scarce; for its detection we require receivers much larger than those currently available.

  3. Sensing intruders using entanglement: a photonic quantum fence

    SciTech Connect

    Humble, Travis S; Bennink, Ryan S; Grice, Warren P; Owens, Israel J

    2009-01-01

    We describe the use of quantum-mechanically entangled photons for sensing intrusions across a physical perimeter. Our approach to intrusion detection uses the no-cloning principle of quantum information science as protection against an intruder s ability to spoof a sensor receiver using a classical intercept-resend attack. Moreover, we employ the correlated measurement outcomes from polarization-entangled photons to protect against quantum intercept-resend attacks, i.e., attacks using quantum teleportation. We explore the bounds on detection using quantum detection and estimation theory, and we experimentally demonstrate the underlying principle of entanglement-based detection using the visibility derived from polarization-correlation measurements.

  4. Entanglement in quantum catastrophes

    SciTech Connect

    Emary, Clive; Lambert, Neill; Brandes, Tobias

    2005-06-15

    We classify entanglement singularities for various two-mode bosonic systems in terms of catastrophe theory. Employing an abstract phase-space representation, we obtain exact results in limiting cases for the entropy in cusp, butterfly, and two-dimensional catastrophes. We furthermore use numerical results to extract the scaling of the entropy with the nonlinearity parameter, and discuss the role of mixing entropies in more complex systems.

  5. Quantum-entangled photon interferometry

    NASA Astrophysics Data System (ADS)

    Richards, Roger K.

    2004-08-01

    A two-color quantum-entangled photon source is used to produce fourth-order interference. Because the period of the interference is produced by the frequency difference of the entangled photons, problems associated with counting fringes can be avoided. This also permits measurements at a virtual wavelength, which can prevent problems associated with transmission or absorption when such a longer wavelength may be needed. The interference wavelength can be varied with a geometry change in the beam path without any change in the source wavelength. The entangled photons are produced using an argon ion laser at 351 nanometers and a type I BBO crystal. The interference is detected in coincidence using four photomultiplier tubes.

  6. Cloning quantum entanglement in arbitrary dimensions

    SciTech Connect

    Karpov, E.; Navez, P.; Cerf, N.J.

    2005-10-15

    We have found a quantum cloning machine that optimally duplicates the entanglement of a pair of d-dimensional quantum systems prepared in an arbitrary isotropic state. It maximizes the entanglement of formation contained in the two copies of any maximally entangled input state, while preserving the separability of unentangled input states. Moreover, it cannot increase the entanglement of formation of isotropic states. For large d, the entanglement of formation of each clone tends to one-half the entanglement of the input state, which corresponds to a classical behavior. Finally, we investigate a local entanglement cloner, which yields entangled clones with one-fourth the input entanglement in the large-d limit.

  7. Efficient entanglement distillation without quantum memory

    PubMed Central

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J.; Fiurášek, Jaromír; Schnabel, Roman

    2016-01-01

    Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution. PMID:27241946

  8. Efficient entanglement distillation without quantum memory.

    PubMed

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J; Fiurášek, Jaromír; Schnabel, Roman

    2016-01-01

    Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution. PMID:27241946

  9. Efficient entanglement distillation without quantum memory

    NASA Astrophysics Data System (ADS)

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J.; Fiurášek, Jaromír; Schnabel, Roman

    2016-05-01

    Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution.

  10. Quantum dual signature scheme based on coherent states with entanglement swapping

    NASA Astrophysics Data System (ADS)

    Liu, Jia-Li; Shi, Rong-Hua; Shi, Jin-Jing; Lv, Ge-Li; Guo, Ying

    2016-08-01

    A novel quantum dual signature scheme, which combines two signed messages expected to be sent to two diverse receivers Bob and Charlie, is designed by applying entanglement swapping with coherent states. The signatory Alice signs two different messages with unitary operations (corresponding to the secret keys) and applies entanglement swapping to generate a quantum dual signature. The dual signature is firstly sent to the verifier Bob who extracts and verifies the signature of one message and transmits the rest of the dual signature to the verifier Charlie who verifies the signature of the other message. The transmission of the dual signature is realized with quantum teleportation of coherent states. The analysis shows that the security of secret keys and the security criteria of the signature protocol can be greatly guaranteed. An extensional multi-party quantum dual signature scheme which considers the case with more than three participants is also proposed in this paper and this scheme can remain secure. The proposed schemes are completely suited for the quantum communication network including multiple participants and can be applied to the e-commerce system which requires a secure payment among the customer, business and bank. Project supported by the National Natural Science Foundation of China (Grant Nos. 61272495, 61379153, and 61401519) and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130162110012).

  11. Entangled States, Holography and Quantum Surfaces

    SciTech Connect

    Chapline, G F

    2003-08-13

    Starting with an elementary discussion of quantum holography, we show that entangled quantum states of qubits provide a ''local'' representation of the global geometry and topology of quantum Riemann surfaces. This representation may play an important role in both mathematics and physics. Indeed, the simplest way to represent the fundamental objects in a ''theory of everything'' may be as muti-qubit entangled states.

  12. Quantum states prepared by realistic entanglement swapping

    SciTech Connect

    Scherer, Artur; Howard, Regina B.; Sanders, Barry C.; Tittel, Wolfgang

    2009-12-15

    Entanglement swapping between photon pairs is a fundamental building block in schemes using quantum relays or quantum repeaters to overcome the range limits of long-distance quantum key distribution. We develop a closed-form solution for the actual quantum states prepared by realistic entanglement swapping, which takes into account experimental deficiencies due to inefficient detectors, detector dark counts, and multiphoton-pair contributions of parametric down-conversion sources. We investigate how the entanglement present in the final state of the remaining modes is affected by the real-world imperfections. To test the predictions of our theory, comparison with previously published experimental entanglement swapping is provided.

  13. Probing quantum entanglement, quantum discord, classical correlation, and the quantum state without disturbing them

    SciTech Connect

    Li Zhenni; Jin Jiasen; Yu Changshui

    2011-01-15

    We present schemes for a type of one-parameter bipartite quantum state to probe quantum entanglement, quantum discord, the classical correlation, and the quantum state based on cavity QED. It is shown that our detection does not influence all these measured quantities. We also discuss how the spontaneous emission introduced by our probe atom influences our detection.

  14. Lithography system using quantum entangled photons

    NASA Technical Reports Server (NTRS)

    Williams, Colin (Inventor); Dowling, Jonathan (Inventor); della Rossa, Giovanni (Inventor)

    2002-01-01

    A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.

  15. Quantifying asymmetry of quantum states using entanglement

    NASA Astrophysics Data System (ADS)

    Toloui, Borzu

    2013-03-01

    For open systems, symmetric dynamics do not always lead to conservation laws. We show that, for a dynamic symmetry associated with a compact Lie group, one can derive new selection rules from entanglement theory. These selection rules apply to both closed and open systems as well as reversible and irreversible time evolutions. Our approach is based on an embedding of the system's Hilbert space into a tensor product of two Hilbert spaces allowing for the symmetric dynamics to be simulated with local operations. The entanglement of the embedded states determines which transformations are forbidden because of the symmetry. In fact, every bipartite entanglement monotone can be used to quantify the asymmetry of the initial states. Moreover, where the dynamics is reversible, each of these monotones becomes a new conserved quantity. This research has been supported by the Institute for Quantum Information Science (IQIS) at the University of Calgary, Alberta Innovates, NSERC, General Dynamics Canada, and MITACS.

  16. Entanglement and quantum teleportation via decohered tripartite entangled states

    SciTech Connect

    Metwally, N.

    2014-12-15

    The entanglement behavior of two classes of multi-qubit system, GHZ and GHZ like states passing through a generalized amplitude damping channel is discussed. Despite this channel causes degradation of the entangled properties and consequently their abilities to perform quantum teleportation, one can always improve the lower values of the entanglement and the fidelity of the teleported state by controlling on Bell measurements, analyzer angle and channel’s strength. Using GHZ-like state within a generalized amplitude damping channel is much better than using the normal GHZ-state, where the decay rate of entanglement and the fidelity of the teleported states are smaller than those depicted for GHZ state.

  17. Quantum random number generator using photon-number path entanglement.

    PubMed

    Kwon, Osung; Cho, Young-Wook; Kim, Yoon-Ho

    2009-03-20

    We report a quantum random number generator based on the photon-number-path entangled state that is prepared by means of two-photon quantum interference at a beam splitter. The randomness in our scheme is truly quantum mechanical in origin since it results from the projection measurement of the entangled two-photon state. The generated bit sequences satisfy the standard randomness test. PMID:19305476

  18. Multiparty quantum secret sharing of classical messages based on entanglement swapping

    SciTech Connect

    Zhang Zhanjun; Man Zhongxiao

    2005-08-15

    A multiparty quantum secret sharing (QSS) protocol of classical messages (i.e., classical bits) is proposed by using swapping quantum entanglement of Bell states. The secret messages are imposed on Bell states by local unitary operations. The secret messages are split into several parts, and each part is distributed to a separate party so that no action of a subset of all the parties without the cooperation of the entire group is able to read out the secret messages. In addition, dense coding is used in this protocol to achieve a high efficiency. The security of the present multiparty QSS against eavesdropping has been analyzed and confirmed even in a noisy quantum channel.

  19. Five-wave-packet quantum error correction based on continuous-variable cluster entanglement

    PubMed Central

    Hao, Shuhong; Su, Xiaolong; Tian, Caixing; Xie, Changde; Peng, Kunchi

    2015-01-01

    Quantum error correction protects the quantum state against noise and decoherence in quantum communication and quantum computation, which enables one to perform fault-torrent quantum information processing. We experimentally demonstrate a quantum error correction scheme with a five-wave-packet code against a single stochastic error, the original theoretical model of which was firstly proposed by S. L. Braunstein and T. A. Walker. Five submodes of a continuous variable cluster entangled state of light are used for five encoding channels. Especially, in our encoding scheme the information of the input state is only distributed on three of the five channels and thus any error appearing in the remained two channels never affects the output state, i.e. the output quantum state is immune from the error in the two channels. The stochastic error on a single channel is corrected for both vacuum and squeezed input states and the achieved fidelities of the output states are beyond the corresponding classical limit. PMID:26498395

  20. Five-wave-packet quantum error correction based on continuous-variable cluster entanglement.

    PubMed

    Hao, Shuhong; Su, Xiaolong; Tian, Caixing; Xie, Changde; Peng, Kunchi

    2015-01-01

    Quantum error correction protects the quantum state against noise and decoherence in quantum communication and quantum computation, which enables one to perform fault-torrent quantum information processing. We experimentally demonstrate a quantum error correction scheme with a five-wave-packet code against a single stochastic error, the original theoretical model of which was firstly proposed by S. L. Braunstein and T. A. Walker. Five submodes of a continuous variable cluster entangled state of light are used for five encoding channels. Especially, in our encoding scheme the information of the input state is only distributed on three of the five channels and thus any error appearing in the remained two channels never affects the output state, i.e. the output quantum state is immune from the error in the two channels. The stochastic error on a single channel is corrected for both vacuum and squeezed input states and the achieved fidelities of the output states are beyond the corresponding classical limit. PMID:26498395

  1. Bound entanglement in quantum phase transitions

    SciTech Connect

    Baghbanzadeh, S.; Alipour, S.; Rezakhani, A. T.

    2010-04-15

    We investigate quantum phase transitions in which a change in the type of entanglement from bound entanglement to either free entanglement or separability may occur. In particular, we present a theoretical method to construct a class of quantum spin-chain Hamiltonians that exhibit this type of quantum criticality. Given parameter-dependent two-site reduced density matrices (with prescribed entanglement properties), we lay out a reverse construction for a compatible pure state for the whole system, as well as a class of Hamiltonians for which this pure state is a ground state. This construction is illustrated through several examples.

  2. Hacking the Bell test using classical light in energy-time entanglement-based quantum key distribution.

    PubMed

    Jogenfors, Jonathan; Elhassan, Ashraf Mohamed; Ahrens, Johan; Bourennane, Mohamed; Larsson, Jan-Åke

    2015-12-01

    Photonic systems based on energy-time entanglement have been proposed to test local realism using the Bell inequality. A violation of this inequality normally also certifies security of device-independent quantum key distribution (QKD) so that an attacker cannot eavesdrop or control the system. We show how this security test can be circumvented in energy-time entangled systems when using standard avalanche photodetectors, allowing an attacker to compromise the system without leaving a trace. We reach Bell values up to 3.63 at 97.6% faked detector efficiency using tailored pulses of classical light, which exceeds even the quantum prediction. This is the first demonstration of a violation-faking source that gives both tunable violation and high faked detector efficiency. The implications are severe: the standard Clauser-Horne-Shimony-Holt inequality cannot be used to show device-independent security for energy-time entanglement setups based on Franson's configuration. However, device-independent security can be reestablished, and we conclude by listing a number of improved tests and experimental setups that would protect against all current and future attacks of this type. PMID:26824059

  3. Entangled free-space quantum key distribution

    NASA Astrophysics Data System (ADS)

    Weihs, Gregor; Erven, Christopher

    2007-09-01

    We have constructed an entanglement based quantum key distribution system that links three buildings, covering a largest distance of 1575 m. The photons are transmitted via telescopes through free space. In this paper, we give a detailed description of our system and the protocol that we implemented. We analyze system components and design considerations. Some preliminary results of a one-link experiment are presented.

  4. Quantum coherence and entanglement in the avian compass.

    PubMed

    Pauls, James A; Zhang, Yiteng; Berman, Gennady P; Kais, Sabre

    2013-06-01

    The radical-pair mechanism is one of two distinct mechanisms used to explain the navigation of birds in geomagnetic fields, however little research has been done to explore the role of quantum entanglement in this mechanism. In this paper we study the lifetime of radical-pair entanglement corresponding to the magnitude and direction of magnetic fields to show that the entanglement lasts long enough in birds to be used for navigation. We also find that the birds appear to not be able to orient themselves directly based on radical-pair entanglement due to a lack of orientation sensitivity of the entanglement in the geomagnetic field. To explore the entanglement mechanism further, we propose a model in which the hyperfine interactions are replaced by local magnetic fields of similar strength. The entanglement of the radical pair in this model lasts longer and displays an angular sensitivity in weak magnetic fields, both of which are not present in previous models. PMID:23848712

  5. Real-Time Imaging of Quantum Entanglement

    PubMed Central

    Fickler, Robert; Krenn, Mario; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2013-01-01

    Quantum Entanglement is widely regarded as one of the most prominent features of quantum mechanics and quantum information science. Although, photonic entanglement is routinely studied in many experiments nowadays, its signature has been out of the grasp for real-time imaging. Here we show that modern technology, namely triggered intensified charge coupled device (ICCD) cameras are fast and sensitive enough to image in real-time the effect of the measurement of one photon on its entangled partner. To quantitatively verify the non-classicality of the measurements we determine the detected photon number and error margin from the registered intensity image within a certain region. Additionally, the use of the ICCD camera allows us to demonstrate the high flexibility of the setup in creating any desired spatial-mode entanglement, which suggests as well that visual imaging in quantum optics not only provides a better intuitive understanding of entanglement but will improve applications of quantum science. PMID:23715056

  6. Understanding Entanglement as a Resource for Quantum Information Processing

    NASA Astrophysics Data System (ADS)

    Cohen, Scott M.

    2009-03-01

    Ever since Erwin Schrodinger shocked the physics world by killing (and not killing) his cat, entanglement has played a critical role in attempts to understand quantum mechanics. More recently, entanglement has been shown to be a valuable resource, of central importance for quantum computation and the processing of quantum information. In this talk, I will describe a new diagrammatic approach to understanding why entanglement is so valuable, the key idea being that entanglement between two systems ``creates'' multiple images of the state of a third. By way of example, I will show how to ``visualize'' teleportation of unknown quantum states, and how to use entanglement to determine the (unknown) state of a spatially distributed, multipartite quantum system. Illustrative examples of this entanglement-assisted local state discrimination are sets of orthogonal product states exhibiting what is known as ``non-locality without entanglement'', including unextendible product bases. These ideas have also proven useful in using entanglement to implement a unitary interaction between spatially separated (and therefore non-interacting!) systems.

  7. Quantum entanglement and coherence in molecular magnets

    NASA Astrophysics Data System (ADS)

    Shiddiq, Muhandis

    Quantum computers are predicted to outperform classical computers in certain tasks, such as factoring large numbers and searching databases. The construction of a computer whose operation is based on the principles of quantum mechanics appears extremely challenging. Solid state approaches offer the potential to answer this challenge by tailor-making novel nanomaterials for quantum information processing (QIP). Molecular magnets, which are materials whose energy levels and magnetic quantum states are well defined at the molecular level, have been identified as a class of material with properties that make them attractive for quantum computing purpose. In this dissertation, I explore the possibilities and challenges for molecular magnets to be used in quantum computing architecture. The properties of molecular magnets that are critical for applications in quantum computing, i.e., quantum entanglement and coherence, are comprehensively investigated to probe the feasibility of molecular magnets to be used as quantum bits (qubits). Interactions of qubits with photons are at the core of QIP. Photons can be used to detect and manipulate qubits, after which information can then be transferred over long distances. As a potential candidate for qubits, the interactions between Fe8 single-molecule magnets (SMMs) and cavity photons were studied. An earlier report described that a cavity mode splitting was observed in a spectrum of a cavity filled with a single-crystal of Fe8 SMMs. This splitting was interpreted as a vacuum Rabi splitting (VRS), which is a signature of an entanglement between a large number of SMMs and a cavity photon. However, find that large absorption and dispersion of the magnetic susceptibility are the reasons for this splitting. This finding highlights the fact that an observation of a peak splitting in a cavity transmission spectrum neither represents an unambiguous indication of quantum coherence in a large number of spins, nor a signature of

  8. A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols

    NASA Astrophysics Data System (ADS)

    Sharma, Vishal; Thapliyal, Kishore; Pathak, Anirban; Banerjee, Subhashish

    2016-07-01

    The effect of noise on various protocols of secure quantum communication has been studied. Specifically, we have investigated the effect of amplitude damping, phase damping, squeezed generalized amplitude damping, Pauli type as well as various collective noise models on the protocols of quantum key distribution, quantum key agreement, quantum secure direct quantum communication and quantum dialogue. From each type of protocol of secure quantum communication, we have chosen two protocols for our comparative study: one based on single-qubit states and the other one on entangled states. The comparative study reported here has revealed that single-qubit-based schemes are generally found to perform better in the presence of amplitude damping, phase damping, squeezed generalized amplitude damping noises, while entanglement-based protocols turn out to be preferable in the presence of collective noises. It is also observed that the effect of noise depends upon the number of rounds of quantum communication involved in a scheme of quantum communication. Further, it is observed that squeezing, a completely quantum mechanical resource present in the squeezed generalized amplitude channel, can be used in a beneficial way as it may yield higher fidelity compared to the corresponding zero squeezing case.

  9. Quantum information entropy and multi-qubit entanglement

    NASA Astrophysics Data System (ADS)

    Abdel-Aty, Mahmoud

    The exciting new features of entanglement are burgeoning with revolutionary new advances in the areas of quantum communication, quantum information processing and quantum computing. We review recent theoretical studies and applications of pure and mixed states entanglement of trapped ions interacting with a laser field. After an introduction to the basic concepts of traditional entanglement measures and methodology, the main phenomena and observations of two-, three- and four-level systems are summarized. In particular, we explore the influence of the various parameters of these systems on the entanglement. The particular advantages of using atomic Wehrl entropy and Shannon entropy are highlighted. A general expression of the mixed state entanglement is obtained with the physical significance and without the diagonal approximation. Based on this result, we provide a general expression for the entanglement in a multi-level system. We show that the mixed-state and specific eigenstates of the two or three-level system posses remarkable entanglement properties that can reveal new insight into quantum correlations present in the multi-level models. Furthermore, we propose an intuitive picture of the behavior of mixed-state entanglement in the presence of the decoherence. After a short presentation of the entanglement measures of two qubits, each defined as an effective two-level system (negativity, Bures metric and concurrence) we discuss the general behaviors of the concurrence as a measure of entanglement. We identify and numerically demonstrate the region of parameters where significantly large entanglement can be obtained. Most interestingly, it is shown that features of the entanglement are influenced significantly when the multi-photon process is involved.

  10. Distributed wireless quantum communication networks with partially entangled pairs

    NASA Astrophysics Data System (ADS)

    Yu, Xu-Tao; Zhang, Zai-Chen; Xu, Jin

    2014-01-01

    Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks with partially entangled pairs. A quantum routing scheme with multi-hop teleportation is proposed. With the proposed scheme, is not necessary for the quantum path to be consistent with the classical path. The quantum path and its associated classical path are established in a distributed way. Direct multi-hop teleportation is conducted on the selected path to transfer a quantum state from the source to the destination. Based on the feature of multi-hop teleportation using partially entangled pairs, if the node number of the quantum path is even, the destination node will add another teleportation at itself. We simulated the performance of distributed wireless quantum communication networks with a partially entangled state. The probability of transferring the quantum state successfully is statistically analyzed. Our work shows that multi-hop teleportation on distributed wireless quantum networks with partially entangled pairs is feasible.

  11. All entangled quantum states are nonlocal.

    PubMed

    Buscemi, Francesco

    2012-05-18

    Departing from the usual paradigm of local operations and classical communication adopted in entanglement theory, we study here the interconversion of quantum states by means of local operations and shared randomness. A set of necessary and sufficient conditions for the existence of such a transformation between two given quantum states is given in terms of the payoff they yield in a suitable class of nonlocal games. It is shown that, as a consequence of our result, such a class of nonlocal games is able to witness quantum entanglement, however weak, and reveal nonlocality in any entangled quantum state. An example illustrating this fact is provided. PMID:23003127

  12. Understanding quantum entanglement by thermo field dynamics

    NASA Astrophysics Data System (ADS)

    Hashizume, Yoichiro; Suzuki, Masuo

    2013-09-01

    We propose a new method to understand quantum entanglement using the thermo field dynamics (TFD) described by a double Hilbert space. The entanglement states show a quantum-mechanically complicated behavior. Our new method using TFD makes it easy to understand the entanglement states, because the states in the tilde space in TFD play a role of tracer of the initial states. For our new treatment, we define an extended density matrix on the double Hilbert space. From this study, we make a general formulation of this extended density matrix and examine some simple cases using this formulation. Consequently, we have found that we can distinguish intrinsic quantum entanglement from the thermal fluctuations included in the definition of the ordinary quantum entanglement at finite temperatures. Through the above examination, our method using TFD can be applied not only to equilibrium states but also to non-equilibrium states. This is shown using some simple finite systems in the present paper.

  13. Quantum logic as superbraids of entangled qubit world lines

    SciTech Connect

    Yepez, Jeffrey

    2010-02-15

    Presented is a topological representation of quantum logic that views entangled qubit spacetime histories (or qubit world lines) as a generalized braid, referred to as a superbraid. The crossing of world lines can be quantum-mechanical in nature, most conveniently expressed analytically with ladder-operator-based quantum gates. At a crossing, independent world lines can become entangled. Complicated superbraids are systematically reduced by recursively applying quantum skein relations. If the superbraid is closed (e.g., representing quantum circuits with closed-loop feedback, quantum lattice gas algorithms, loop or vacuum diagrams in quantum field theory), then one can decompose the resulting superlink into an entangled superposition of classical links. Thus, one can compute a superlink invariant, for example, the Jones polynomial for the square root of a classical knot.

  14. Entanglement across a transition to quantum chaos

    SciTech Connect

    Mejia-Monasterio, Carlos; Benenti, Guliano; Casati, Giulio; Carlo, Gabriel G.

    2005-06-15

    We study the relation between entanglement and quantum chaos in one- and two-dimensional spin-1/2 lattice models, which exhibit mixing of the noninteracting eigenfunctions and transition from integrability to quantum chaos. Contrary to what occurs in a quantum phase transition, the onset of quantum chaos is not a property of the ground state but takes place for any typical many-spin quantum state. We study bipartite and pairwise entanglement measures--namely, the reduced von Neumann entropy and the concurrence--and discuss quantum entanglement sharing. Our results suggest that the behavior of the entanglement is related to the mixing of the eigenfunctions rather than to the transition to chaos.

  15. Perfect entanglement concentration of an arbitrary four-photon polarization entangled state via quantum nondemolition detectors

    NASA Astrophysics Data System (ADS)

    Wang, Meiyu; Yan, Fengli; Xu, Jingzhou

    2016-08-01

    We show how to concentrate an arbitrary four-photon polarization entangled state into a maximally entangled state based on some quantum nondemolition detectors. The entanglement concentration protocol (ECP) resorts to an ancillary single-photon resource and the conventional projection measurement on photons to assist the concentration, which makes it more economical. Our ECP involves weak cross-Kerr nonlinearities, X homodyne measurement and basic linear-optical elements, which make it feasible in the current experimental technology. Moreover, the ECP considers cyclic utilization to enhance a higher success probability. Thus, our scheme is meaningful in practical applications in quantum communication.

  16. Quantum probabilities from quantum entanglement: experimentally unpacking the Born rule

    DOE PAGESBeta

    Harris, Jérémie; Bouchard, Frédéric; Santamato, Enrico; Zurek, Wojciech H.; Boyd, Robert W.; Karimi, Ebrahim

    2016-05-01

    The Born rule, a foundational axiom was used to deduce probabilities of events from wavefunctions, is indispensable in the everyday practice of quantum physics. It is also key in the quest to reconcile the ostensibly inconsistent laws of the quantum and classical realms, as it confers physical significance to reduced density matrices, the essential tools of decoherence theory. Following Bohr's Copenhagen interpretation, textbooks postulate the Born rule outright. But, recent attempts to derive it from other quantum principles have been successful, holding promise for simplifying and clarifying the quantum foundational bedrock. Moreover, a major family of derivations is based onmore » envariance, a recently discovered symmetry of entangled quantum states. Here, we identify and experimentally test three premises central to these envariance-based derivations, thus demonstrating, in the microworld, the symmetries from which the Born rule is derived. Furthermore, we demonstrate envariance in a purely local quantum system, showing its independence from relativistic causality.« less

  17. Quantum probabilities from quantum entanglement: experimentally unpacking the Born rule

    NASA Astrophysics Data System (ADS)

    Harris, Jérémie; Bouchard, Frédéric; Santamato, Enrico; Zurek, Wojciech H.; Boyd, Robert W.; Karimi, Ebrahim

    2016-05-01

    The Born rule, a foundational axiom used to deduce probabilities of events from wavefunctions, is indispensable in the everyday practice of quantum physics. It is also key in the quest to reconcile the ostensibly inconsistent laws of the quantum and classical realms, as it confers physical significance to reduced density matrices, the essential tools of decoherence theory. Following Bohr’s Copenhagen interpretation, textbooks postulate the Born rule outright. However, recent attempts to derive it from other quantum principles have been successful, holding promise for simplifying and clarifying the quantum foundational bedrock. A major family of derivations is based on envariance, a recently discovered symmetry of entangled quantum states. Here, we identify and experimentally test three premises central to these envariance-based derivations, thus demonstrating, in the microworld, the symmetries from which the Born rule is derived. Further, we demonstrate envariance in a purely local quantum system, showing its independence from relativistic causality.

  18. Quantum entanglement in condensed matter systems

    NASA Astrophysics Data System (ADS)

    Laflorencie, Nicolas

    2016-08-01

    This review focuses on the field of quantum entanglement applied to condensed matter physics systems with strong correlations, a domain which has rapidly grown over the last decade. By tracing out part of the degrees of freedom of correlated quantum systems, useful and non-trivial information can be obtained through the study of the reduced density matrix, whose eigenvalue spectrum (the entanglement spectrum) and the associated Rényi entropies are now well recognized to contain key features. In particular, the celebrated area law for the entanglement entropy of ground-states will be discussed from the perspective of its subleading corrections which encode universal details of various quantum states of matter, e.g. symmetry breaking states or topological order. Going beyond entropies, the study of the low-lying part of the entanglement spectrum also allows to diagnose topological properties or give a direct access to the excitation spectrum of the edges, and may also raise significant questions about the underlying entanglement Hamiltonian. All these powerful tools can be further applied to shed some light on disordered quantum systems where impurity/disorder can conspire with quantum fluctuations to induce non-trivial effects. Disordered quantum spin systems, the Kondo effect, or the many-body localization problem, which have all been successfully (re)visited through the prism of quantum entanglement, will be discussed in detail. Finally, the issue of experimental access to entanglement measurement will be addressed, together with its most recent developments.

  19. Entanglement, EPR correlations, and mesoscopic quantum superposition by the high-gain quantum injected parametric amplification

    SciTech Connect

    Caminati, Marco; De Martini, Francesco; Perris, Riccardo; Secondi, Veronica; Sciarrino, Fabio

    2006-12-15

    We investigate the multiparticle quantum superposition and the persistence of bipartite entanglement of the output field generated by the quantum injected high-gain optical parametric amplification of a single photon. The physical configuration based on the optimal universal quantum cloning has been adopted to investigate how the entanglement and the quantum coherence of the system persists for large values of the nonlinear parametric gain g.

  20. Gravity as a quantum entanglement force

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Weon; Kim, Hyeong-Chan; Lee, Jungjai

    2015-03-01

    We conjecture that total the quantum entanglement of matter and vacuum in the universe tends to increase with time, like entropy, and that an effective force is associated with this tendency. We also suggest that gravity and dark energy are types of quantum entanglement forces, similar to Verlinde's entropic force, and give holographic dark energy with an equation of state comparable to current observational data. This connection between quantum entanglement and gravity could give some new insights into the origins of gravity, dark energy, and the arrow of time.

  1. Superadditivity of distillable entanglement from quantum teleportation

    SciTech Connect

    Bandyopadhyay, Somshubhro; Roychowdhury, Vwani

    2005-12-15

    We show that the phenomenon of superadditivity of distillable entanglement observed in multipartite quantum systems results from the consideration of states created during the execution of the standard end-to-end quantum teleportation protocol [and a few additional local operations and classical communication (LOCC) steps] on a linear chain of singlets. Some of these intermediate states are tensor products of bound entangled (BE) states, and hence, by construction possess distillable entanglement, which can be unlocked by simply completing the rest of the LOCC operations required by the underlying teleportation protocol. We use this systematic approach to construct both new and known examples of superactivation of bound entanglement, and examples of activation of BE states using other BE states. A surprising outcome is the construction of noiseless quantum relay channels with no distillable entanglement between any two parties, except for that between the two end nodes.

  2. Quantum entanglement and entropy in particle creation

    SciTech Connect

    Lin, S.-Y.; Chou, C.-H.; Hu, B. L.

    2010-04-15

    We investigate the basic theoretical issues in the quantum entanglement of particle pairs created from the vacuum in a time-dependent background field or spacetime. Similar to entropy generation from these processes which depends on the choice of physical variables and how certain information is coarse grained, entanglement dynamics hinges on the choice of measurable quantities and how the two parties are selected as well as the background dynamics of the field or spacetime. We discuss the conditions of separability of quantum states in particle creation processes and point out the differences in how the von Neumann entropy is used as a measure of entropy generation versus for entanglement dynamics. We show by an explicit construction that adoption of a different set of physical variables yields a different entanglement entropy. As an application of these theoretical considerations we show how the particle number and the quantum phase enter the entanglement dynamics in cosmological particle production.

  3. Entanglement Measure and Quantum Violation of Bell-Type Inequality

    NASA Astrophysics Data System (ADS)

    Ding, Dong; He, Ying-Qiu; Yan, Feng-Li; Gao, Ting

    2016-05-01

    By calculating entanglement measures and quantum violation of Bell-type inequality, we reveal the relationship between entanglement measure and the amount of quantum violation for a family of four-qubit entangled states. It has been demonstrated that the Bell-type inequality is completely violated by these four-qubit entangled states. The plot of entanglement measure as a function of the expectation value of Bell operator shows that entanglement measure first decreases and then increases smoothly with increasing quantum violation.

  4. Privacy Preserving Quantum Anonymous Transmission via Entanglement Relay

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Huang, Liusheng; Song, Fang

    2016-06-01

    Anonymous transmission is an interesting and crucial issue in computer communication area, which plays a supplementary role to data privacy. In this paper, we put forward a privacy preserving quantum anonymous transmission protocol based on entanglement relay, which constructs anonymous entanglement from EPR pairs instead of multi-particle entangled state, e.g. GHZ state. Our protocol achieves both sender anonymity and receiver anonymity against an active adversary and tolerates any number of corrupt participants. Meanwhile, our protocol obtains an improvement in efficiency compared to quantum schemes in previous literature.

  5. Privacy Preserving Quantum Anonymous Transmission via Entanglement Relay.

    PubMed

    Yang, Wei; Huang, Liusheng; Song, Fang

    2016-01-01

    Anonymous transmission is an interesting and crucial issue in computer communication area, which plays a supplementary role to data privacy. In this paper, we put forward a privacy preserving quantum anonymous transmission protocol based on entanglement relay, which constructs anonymous entanglement from EPR pairs instead of multi-particle entangled state, e.g. GHZ state. Our protocol achieves both sender anonymity and receiver anonymity against an active adversary and tolerates any number of corrupt participants. Meanwhile, our protocol obtains an improvement in efficiency compared to quantum schemes in previous literature. PMID:27247078

  6. Privacy Preserving Quantum Anonymous Transmission via Entanglement Relay

    PubMed Central

    Yang, Wei; Huang, Liusheng; Song, Fang

    2016-01-01

    Anonymous transmission is an interesting and crucial issue in computer communication area, which plays a supplementary role to data privacy. In this paper, we put forward a privacy preserving quantum anonymous transmission protocol based on entanglement relay, which constructs anonymous entanglement from EPR pairs instead of multi-particle entangled state, e.g. GHZ state. Our protocol achieves both sender anonymity and receiver anonymity against an active adversary and tolerates any number of corrupt participants. Meanwhile, our protocol obtains an improvement in efficiency compared to quantum schemes in previous literature. PMID:27247078

  7. Quantum entanglement of baby universes

    SciTech Connect

    Essman, Eric P.; Aganagic, Mina; Okuda, Takuya; Ooguri, Hirosi

    2006-12-07

    We study quantum entanglements of baby universes which appear in non-perturbative corrections to the OSV formula for the entropy of extremal black holes in type IIA string theory compactified on the local Calabi-Yau manifold defined as a rank 2 vector bundle over an arbitrary genus G Riemann surface. This generalizes the result for G=1 in hep-th/0504221. Non-perturbative terms can be organized into a sum over contributions from baby universes, and the total wave-function is their coherent superposition in the third quantized Hilbert space. We find that half of the universes preserve one set of supercharges while the other half preserve a different set, making the total universe stable but non-BPS. The parent universe generates baby universes by brane/anti-brane pair creation, and baby universes are correlated by conservation of non-normalizable D-brane charges under the process. There are no other source of entanglement of baby universes, and all possible states are superposed with the equal weight.

  8. Mutually unbiased bases and bound entanglement

    NASA Astrophysics Data System (ADS)

    Hiesmayr, Beatrix C.; Löffler, Wolfgang

    2014-04-01

    In this contribution we relate two different key concepts: mutually unbiased bases (MUBs) and entanglement. We provide a general toolbox for analyzing and comparing entanglement of quantum states for different dimensions and numbers of particles. In particular we focus on bound entanglement, i.e. highly mixed states which cannot be distilled by local operations and classical communications. For a certain class of states—for which the state-space forms a ‘magic’ simplex—we analyze the set of bound entangled states detected by the MUB criterion for different dimensions d and number of particles n. We find that the geometry is similar for different d and n, consequently the MUB criterion opens possibilities to investigate the typicality of positivity under partial transposition (PPT)-bound and multipartite bound entanglement more deeply and provides a simple experimentally feasible tool to detect bound entanglement.

  9. Entanglement model of homeopathy as an example of generalized entanglement predicted by weak quantum theory.

    PubMed

    Walach, H

    2003-08-01

    Homeopathy is scientifically banned, both for lack of consistent empirical findings, but more so for lack of a sound theoretical model to explain its purported effects. This paper makes an attempt to introduce an explanatory idea based on a generalized version of quantum mechanics (QM), the weak quantum theory (WQT). WQT uses the algebraic formalism of QM proper, but drops some restrictions and definitions typical for QM. This results in a general axiomatic framework similar to QM, but more generalized and applicable to all possible systems. Most notably, WQT predicts entanglement, which in QM is known as Einstein-Podolsky-Rosen (EPR) correlatedness within quantum systems. According to WQT, this entanglement is not only tied to quantum systems, but is to be expected whenever a global and a local variable describing a system are complementary. This idea is used here to reconstruct homeopathy as an exemplification of generalized entanglement as predicted by WQT. It transpires that homeopathy uses two instances of generalized entanglement: one between the remedy and the original substance (potentiation principle) and one between the individual symptoms of a patient and the general symptoms of a remedy picture (similarity principle). By bringing these two elements together, double entanglement ensues, which is reminiscent of cryptographic and teleportation applications of entanglement in QM proper. Homeopathy could be a macroscopic analogue to quantum teleportation. This model is exemplified and some predictions are derived, which make it possible to test the model. PMID:12972724

  10. Building up spacetime with quantum entanglement

    NASA Astrophysics Data System (ADS)

    van Raamsdonk, Mark

    2010-10-01

    In this essay, we argue that the emergence of classically connected spacetimes is intimately related to the quantum entanglement of degrees of freedom in a non-perturbative description of quantum gravity. Disentangling the degrees of freedom associated with two regions of spacetime results in these regions pulling apart and pinching off from each other in a way that can be quantified by standard measures of entanglement.

  11. Measurement-induced quantum entanglement recovery

    SciTech Connect

    Xu Xiaoye; Xu Jinshi; Li Chuanfeng; Guo Guangcan

    2010-08-15

    By using photon pairs created in parametric down-conversion, we report on an experiment, which demonstrates that measurement can recover the quantum entanglement of a two-qubit system in a pure dephasing environment. The concurrence of the final state with and without measurement is compared and is analyzed. Furthermore, we verify that recovered states can still violate the Bell inequality, that is, to say, such recovered states exhibit nonlocality. In the context of quantum entanglement, sudden death and rebirth provide clear evidence, which verifies that entanglement dynamics of the system is sensitive not only to its environment, but also to its initial state.

  12. Entanglement and Coherence in Quantum State Merging.

    PubMed

    Streltsov, A; Chitambar, E; Rana, S; Bera, M N; Winter, A; Lewenstein, M

    2016-06-17

    Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging, where two parties aim to merge their tripartite quantum state parts. In standard quantum state merging, entanglement is considered to be an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process and apply them to several relevant scenarios. While quantum state merging can lead to a gain of entanglement, our results imply that no merging procedure can gain entanglement and coherence at the same time. We also provide a general lower bound on the entanglement-coherence sum and show that the bound is tight for all pure states. Our results also lead to an incoherent version of Schumacher compression: in this case the compression rate is equal to the von Neumann entropy of the diagonal elements of the corresponding quantum state. PMID:27367369

  13. Entanglement and Coherence in Quantum State Merging

    NASA Astrophysics Data System (ADS)

    Streltsov, A.; Chitambar, E.; Rana, S.; Bera, M. N.; Winter, A.; Lewenstein, M.

    2016-06-01

    Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging, where two parties aim to merge their tripartite quantum state parts. In standard quantum state merging, entanglement is considered to be an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process and apply them to several relevant scenarios. While quantum state merging can lead to a gain of entanglement, our results imply that no merging procedure can gain entanglement and coherence at the same time. We also provide a general lower bound on the entanglement-coherence sum and show that the bound is tight for all pure states. Our results also lead to an incoherent version of Schumacher compression: in this case the compression rate is equal to the von Neumann entropy of the diagonal elements of the corresponding quantum state.

  14. Protecting quantum entanglement and nonlocality for tripartite states under decoherence

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Yin, Yu Hao; Ma, Wen Chao; Ye, Liu

    2016-06-01

    Quantum entanglement and nonlocality will suffer inevitable harm from decoherence environment. Based on GHZ state, we study the harm of the generalized amplitude damping (GAD) operation and the protection by the single local filtering (SLF) operation in this paper. We verify that the SLF functions to depress the loss of entanglement and nonlocality from GAD. This conclusion will guide us to select the best method to protect the GHZ state from GAD decoherence.

  15. Quantum information and entanglement transfer for qutrits

    NASA Astrophysics Data System (ADS)

    Delgado, A.; Saavedra, C.; Retamal, J. C.

    2007-10-01

    We propose a scheme for the transfer of quantum information among distant qutrits. We apply this scheme to the distribution of entanglement of qutrits states among distant nodes and to the generation of multipartite antisymmetric states. We also discuss applications to quantum secret sharing.

  16. Thermal entangled four-level quantum Otto heat engine

    NASA Astrophysics Data System (ADS)

    He, Xian; He, JiZhou

    2012-10-01

    Based on a two-qubit isotropic Heisenberg XXX model with a constant external magnetic field, we construct a four-level entangled quantum heat engine (QHE). The expressions for several thermodynamic quantities such as the heat transferred, the work and efficiency are derived. Moreover, the influence of the entanglement on the thermodynamic quantities is investigated analytically and numerically. Several interesting features of the variation of the heat transferred, the work and the efficiency with the concurrences of the thermal entanglement of different thermal equilibrium states are obtained.

  17. Multi-state Quantum Teleportation via One Entanglement State

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Zeng, Gui-Hua; Moon Ho, Lee

    2008-08-01

    A multi-sender-controlled quantum teleportation scheme is proposed to teleport several secret quantum states from different senders to a distance receiver based on only one Einstein Podolsky Rosen (EPR) pair with controlled-NOT (CNOT) gates. In the present scheme, several secret single-qubit quantum states are encoded into a multi-qubit entangled quantum state. Two communication modes, i.e., the detecting mode and the message mode, are employed so that the eavesdropping can be detected easily and the teleported message may be recovered efficiently. It has an advantage over teleporting several different quantum states for one scheme run with more efficiency than the previous quantum teleportation schemes.

  18. Protecting quantum entanglement and correlation by local filtering operations

    NASA Astrophysics Data System (ADS)

    Huang, Chunyu; Ma, Wenchao; Ye, Liu

    2016-08-01

    In this work, the protection of different quantum entanglement and correlation is explored by local filtering operations. The results show that the filtering operations can indeed be useful for combating amplitude-damping decoherence and recovering the quantum entanglement and correlation. In this scheme, although the final states satisfy the quantum entanglement and correlation, the corresponding initial noisy states does not satisfy them, which means that the filtering operations can reveal the hidden genuine quantum entanglement and correlation of these initial noisy states.

  19. Protecting quantum entanglement and correlation by local filtering operations

    NASA Astrophysics Data System (ADS)

    Huang, Chunyu; Ma, Wenchao; Ye, Liu

    2016-05-01

    In this work, the protection of different quantum entanglement and correlation is explored by local filtering operations. The results show that the filtering operations can indeed be useful for combating amplitude-damping decoherence and recovering the quantum entanglement and correlation. In this scheme, although the final states satisfy the quantum entanglement and correlation, the corresponding initial noisy states does not satisfy them, which means that the filtering operations can reveal the hidden genuine quantum entanglement and correlation of these initial noisy states.

  20. The analysis of quantum qutrit entanglements in a qutrit based hyper-sphere in terms of gluing and combining products

    NASA Astrophysics Data System (ADS)

    Duran, Volkan; Gençten, Azmi

    2016-03-01

    In this research the aim is to analyze quantum qutrit entanglements in a new perspective in terms of the reflection of n-dimensional sphere which can be depicted as the set of points equidistant from a fixed central point in three dimensional Euclidian Space which has also real and imaginary dimensions, that can also be depicted similarly as a two unit spheres having same centre in a dome-shaped projection. In order to analyze quantum qutrit entanglements: i- a new type of n dimensional hyper-sphere which is the extend version of Bloch Sphere to hyper-space, is defined ii- new operators and products such as rotation operator, combining and gluing products in this space are defined, iii-the entangled states are analyzed in terms of those products in order to reach a general formula to depict qutrit entanglements and some new patterns between spheres for the analysis of entanglement for different routes in a more simple way in a four dimensional time independent hypersphere.

  1. Partially unbiased entangled bases

    NASA Astrophysics Data System (ADS)

    Kalev, A.; Khanna, F. C.; Revzen, M.

    2009-08-01

    In this contribution we group the operator basis for d2 -dimensional Hilbert space in a way that enables us to relate bases of entangled states with single-particle mutually unbiased state bases (MUB), each in dimensionality d . We utilize these sets of operators to show that an arbitrary density matrix for this d2 -dimensional Hilbert-space system is analyzed via d2+d+1 measurements, d2-d of which involve those entangled states that we associate with MUB of the d -dimensional single-particle constituents. The number d2+d+1 lies in the middle of the number of measurements needed for bipartite state reconstruction with two-particle MUB (d2+1) and those needed by single-particle MUB [(d2+1)2] .

  2. Entanglement enhances security in quantum communication

    SciTech Connect

    Demkowicz-Dobrzanski, Rafal; Sen, Aditi; Sen, Ujjwal; Lewenstein, Maciej

    2009-07-15

    Secret sharing is a protocol in which a 'boss' wants to send a classical message secretly to two 'subordinates', such that none of the subordinates is able to know the message alone, while they can find it if they cooperate. Quantum mechanics is known to allow for such a possibility. We analyze tolerable quantum bit error rates in such secret sharing protocols in the physically relevant case when the eavesdropping is local with respect to the two channels of information transfer from the boss to the two subordinates. We find that using entangled encoding states is advantageous to legitimate users of the protocol. We therefore find that entanglement is useful for secure quantum communication. We also find that bound entangled states with positive partial transpose are not useful as a local eavesdropping resource. Moreover, we provide a criterion for security in secret sharing--a parallel of the Csiszar-Koerner criterion in single-receiver classical cryptography.

  3. Asymptotic role of entanglement in quantum metrology

    NASA Astrophysics Data System (ADS)

    Augusiak, R.; Kołodyński, J.; Streltsov, A.; Bera, M. N.; Acín, A.; Lewenstein, M.

    2016-07-01

    Quantum systems allow one to sense physical parameters beyond the reach of classical statistics—with resolutions greater than 1 /N , where N is the number of constituent particles independently probing a parameter. In the canonical phase-sensing scenario the Heisenberg limit 1 /N2 may be reached, which requires, as we show, both the relative size of the largest entangled block and the geometric measure of entanglement to be nonvanishing as N →∞ . Yet, we also demonstrate that in the asymptotic N limit any precision scaling arbitrarily close to the Heisenberg limit (1 /N2 -ɛ with any ɛ >0 ) may be attained, even though the system gradually becomes noisier and separable, so that both the above entanglement quantifiers asymptotically vanish. Our work shows that sufficiently large quantum systems achieve nearly optimal resolutions despite their relative amount of entanglement being arbitrarily small. In deriving our results, we establish the continuity relation of the quantum Fisher information evaluated for a phaselike parameter, which lets us link it directly to the geometry of quantum states, and hence naturally to the geometric measure of entanglement.

  4. Computing Entanglement Entropy in Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Melko, Roger

    2012-02-01

    The scaling of entanglement entropy in quantum many-body wavefunctions is expected to be a fruitful resource for studying quantum phases and phase transitions in condensed matter. However, until the recent development of estimators for Renyi entropy in quantum Monte Carlo (QMC), we have been in the dark about the behaviour of entanglement in all but the simplest two-dimensional models. In this talk, I will outline the measurement techniques that allow access to the Renyi entropies in several different QMC methodologies. I will then discuss recent simulation results demonstrating the richness of entanglement scaling in 2D, including: the prevalence of the ``area law''; topological entanglement entropy in a gapped spin liquid; anomalous subleading logarithmic terms due to Goldstone modes; universal scaling at critical points; and examples of emergent conformal-like scaling in several gapless wavefunctions. Finally, I will explore the idea that ``long range entanglement'' may complement the notion of ``long range order'' for quantum phases and phase transitions which lack a conventional order parameter description.

  5. Entangled exciton states in quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Bayer, Manfred

    2002-03-01

    Currently there is strong interest in quantum information processing(See, for example, The Physics of Quantum Information, eds. D. Bouwmeester, A. Ekert and A. Zeilinger (Springer, Berlin, 2000).) in a solid state environment. Many approaches mimic atomic physics concepts in which semiconductor quantum dots are implemented as artificial atoms. An essential building block of a quantum processor is a gate which entangles the states of two quantum bits. Recently a pair of vertically aligned quantum dots has been suggested as optically driven quantum gate(P. Hawrylak, S. Fafard, and Z. R. Wasilewski, Cond. Matter News 7, 16 (1999).)(M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z.R. Wasilewski, O. Stern, and A. Forchel, Science 291, 451 (2001).): The quantum bits are individual carriers either on dot zero or dot one. The different dot indices play the same role as a "spin", therefore we call them "isospin". Quantum mechanical tunneling between the dots rotates the isospin and leads to superposition of these states. The quantum gate is built when two different particles, an electron and a hole, are created optically. The two particles form entangled isospin states. Here we present spectrocsopic studies of single self-assembled InAs/GaAs quantum dot molecules that support the feasibility of this proposal. The evolution of the excitonic recombination spectrum with varying separation between the dots allows us to demonstrate coherent tunneling of carriers across the separating barrier and the formation of entangled exciton states: Due to the coupling between the dots the exciton states show a splitting that increases with decreasing barrier width. For barrier widths below 5 nm it exceeds the thermal energy at room temperature. For a given barrier width, we find only small variations of the tunneling induced splitting demonstrating a good homogeneity within a molecule ensemble. The entanglement may be controlled by application of electromagnetic field. For

  6. Entanglement in Quantum-Classical Hybrid

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2011-01-01

    It is noted that the phenomenon of entanglement is not a prerogative of quantum systems, but also occurs in other, non-classical systems such as quantum-classical hybrids, and covers the concept of entanglement as a special type of global constraint imposed upon a broad class of dynamical systems. Application of hybrid systems for physics of life, as well as for quantum-inspired computing, has been outlined. In representing the Schroedinger equation in the Madelung form, there is feedback from the Liouville equation to the Hamilton-Jacobi equation in the form of the quantum potential. Preserving the same topology, the innovators replaced the quantum potential with other types of feedback, and investigated the property of these hybrid systems. A function of probability density has been introduced. Non-locality associated with a global geometrical constraint that leads to an entanglement effect was demonstrated. Despite such a quantum like characteristic, the hybrid can be of classical scale and all the measurements can be performed classically. This new emergence of entanglement sheds light on the concept of non-locality in physics.

  7. Quantum Entanglement Molecular Absorption Spectrum Simulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Kojima, Jun

    2006-01-01

    Quantum Entanglement Molecular Absorption Spectrum Simulator (QE-MASS) is a computer program for simulating two photon molecular-absorption spectroscopy using quantum-entangled photons. More specifically, QE-MASS simulates the molecular absorption of two quantum-entangled photons generated by the spontaneous parametric down-conversion (SPDC) of a fixed-frequency photon from a laser. The two-photon absorption process is modeled via a combination of rovibrational and electronic single-photon transitions, using a wave-function formalism. A two-photon absorption cross section as a function of the entanglement delay time between the two photons is computed, then subjected to a fast Fourier transform to produce an energy spectrum. The program then detects peaks in the Fourier spectrum and displays the energy levels of very short-lived intermediate quantum states (or virtual states) of the molecule. Such virtual states were only previously accessible using ultra-fast (femtosecond) laser systems. However, with the use of a single-frequency continuous wave laser to produce SPDC photons, and QEMASS program, these short-lived molecular states can now be studied using much simpler laser systems. QE-MASS can also show the dependence of the Fourier spectrum on the tuning range of the entanglement time of any externally introduced optical-path delay time. QE-MASS can be extended to any molecule for which an appropriate spectroscopic database is available. It is a means of performing an a priori parametric analysis of entangled photon spectroscopy for development and implementation of emerging quantum-spectroscopic sensing techniques. QE-MASS is currently implemented using the Mathcad software package.

  8. Cloning the entanglement of a pair of quantum bits

    SciTech Connect

    Lamoureux, Louis-Philippe; Navez, Patrick; Cerf, Nicolas J.; Fiurasek, Jaromir

    2004-04-01

    It is shown that any quantum operation that perfectly clones the entanglement of all maximally entangled qubit pairs cannot preserve separability. This 'entanglement no-cloning' principle naturally suggests that some approximate cloning of entanglement is nevertheless allowed by quantum mechanics. We investigate a separability-preserving optimal cloning machine that duplicates all maximally entangled states of two qubits, resulting in 0.285 bits of entanglement per clone, while a local cloning machine only yields 0.060 bits of entanglement per clone.

  9. Investigate the entanglement of a quintuple quantum dot molecule via entropy

    NASA Astrophysics Data System (ADS)

    Arzhang, B.; Mehmannavaz, M. R.; Rezaei, M.

    2015-12-01

    The time evaluation of quantum entropy in the quintuple-coupled quantum dots based on a GaAs/AlGaAs heterostructure is theoretically investigated. The quantum entanglement of quantum dot molecules (QDMs) and their spontaneous emission fields is then discussed via quantum entropy. The effects of the tunneling effect, i.e. T , an incoherent pumping field and voltage controllable detuning on entanglement between QDMs and their spontaneous emission fields is then discussed. We found that in the presence of the tunneling effect and an incoherent pumping field the entanglement between the QDMs and their spontaneous emission fields is increased, while in the presence of voltage controllable detuning the entanglement reduced. Finally, we investigated the switching time from a disentangled state to an entangled state. The results may provide some new possibilities for technological applications in optoelectronics, solid-state quantum information science, quantum computing, teleportation, encryption, and compression codec.

  10. Path entanglement of continuous-variable quantum microwaves.

    PubMed

    Menzel, E P; Di Candia, R; Deppe, F; Eder, P; Zhong, L; Ihmig, M; Haeberlein, M; Baust, A; Hoffmann, E; Ballester, D; Inomata, K; Yamamoto, T; Nakamura, Y; Solano, E; Marx, A; Gross, R

    2012-12-21

    Path entanglement constitutes an essential resource in quantum information and communication protocols. Here, we demonstrate frequency-degenerate entanglement between continuous-variable quantum microwaves propagating along two spatially separated paths. We combine a squeezed and a vacuum state using a microwave beam splitter. Via correlation measurements, we detect and quantify the path entanglement contained in the beam splitter output state. Our experiments open the avenue to quantum teleportation, quantum communication, or quantum radar with continuous variables at microwave frequencies. PMID:23368439

  11. Measuring entanglement entropy in a quantum many-body system

    NASA Astrophysics Data System (ADS)

    Islam, Rajibul; Ma, Ruichao; Preiss, Philipp M.; Eric Tai, M.; Lukin, Alexander; Rispoli, Matthew; Greiner, Markus

    2015-12-01

    Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse fields ranging from condensed matter to quantum gravity. However, measuring entanglement remains a challenge. This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here, we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. Making use of our single-site-resolved control of ultracold bosonic atoms in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. These experiments pave the way for using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems.

  12. Measuring entanglement entropy in a quantum many-body system.

    PubMed

    Islam, Rajibul; Ma, Ruichao; Preiss, Philipp M; Tai, M Eric; Lukin, Alexander; Rispoli, Matthew; Greiner, Markus

    2015-12-01

    Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse fields ranging from condensed matter to quantum gravity. However, measuring entanglement remains a challenge. This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here, we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. Making use of our single-site-resolved control of ultracold bosonic atoms in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. These experiments pave the way for using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems. PMID:26632587

  13. Compact entanglement distillery using realistic quantum memories

    NASA Astrophysics Data System (ADS)

    Chakhmakhchyan, Levon; Guérin, Stéphane; Nunn, Joshua; Datta, Animesh

    2013-10-01

    We adopt the beam-splitter model for losses to analyze the performance of a recent compact continuous-variable entanglement distillation protocol [A. Datta , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.108.060502 108, 060502 (2012)] implemented using realistic quantum memories. We show that the decoherence undergone by a two-mode squeezed state while stored in a quantum memory can strongly modify the results of the preparatory step of the protocol. We find that the well-known method for locally increasing entanglement, phonon subtraction, may not result in entanglement gain when losses are taken into account. Thus, we investigate the critical number mc of phonon subtraction attempts from the matter modes of the quantum memory. If the initial state is not de-Gaussified within mc attempts, the protocol should be restarted to obtain any entanglement increase. Moreover, the condition mc>1 implies an additional constraint on the subtraction beam-splitter interaction transmissivity, viz., it should be about 50% for a wide range of protocol parameters. Additionally, we consider the average entanglement rate, which takes into account both the unavoidable probabilistic nature of the protocol and its possible failure as a result of a large number of unsuccessful subtraction attempts. We find that a higher value of the average entanglement can be achieved by increasing the subtraction beam-splitter interaction transmissivity. We conclude that the compact distillation protocol with the practical constraints coming from realistic quantum memories allows a feasible experimental realization within existing technologies.

  14. Entanglement and dephasing of quantum dissipative systems

    SciTech Connect

    Stauber, T.; Guinea, F.

    2006-04-15

    The von Neumann entropy of various quantum dissipative models is calculated in order to discuss the entanglement properties of these systems. First, integrable quantum dissipative models are discussed, i.e., the quantum Brownian motion and the quantum harmonic oscillator. In the case of the free particle, the related entanglement of formation shows no nonanalyticity. In the case of the dissipative harmonic oscillator, there is a nonanalyticity at the transition of underdamped to overdamped oscillations. We argue that this might be a general property of dissipative systems. We show that similar features arise in the dissipative two-level system and study different regimes using sub-Ohmic, Ohmic, and super-Ohmic baths, within a scaling approach.

  15. Negativity and strong monogamy of multiparty quantum entanglement beyond qubits

    NASA Astrophysics Data System (ADS)

    Choi, Jin Hyuk; Kim, Jeong San

    2015-10-01

    We propose the square of convex-roof extended negativity (SCREN) as a powerful candidate to characterize strong monogamy of multiparty quantum entanglement. We first provide a strong monogamy inequality of multiparty entanglement using SCREN and show that the tangle-based multiqubit strong-monogamy inequality can be rephrased by SCREN. We further show that the SCREN strong-monogamy inequality is still true for the counterexamples that violate tangle-based the strong-monogamy inequality in higher-dimensional quantum systems other than qubits. We also analytically show that SCREN strong-monogamy inequality is true for a large class of multiqudit states, a superposition of multiqudit generalized W -class states and vacuums. Thus SCREN is a good alternative to characterize the strong monogamy of entanglement even in multiqudit systems.

  16. Heralded Quantum Entanglement between Distant Matter Qubits

    PubMed Central

    Yang, Wen-Juan; Wang, Xiang-Bin

    2015-01-01

    We propose a scheme to realize heralded quantum entanglement between two distant matter qubits using two Λ atom systems. Our proposal does not need any photon interference. We also present a general theory of outcome state of non-monochromatic incident light and finite interaction time. PMID:26041259

  17. Entanglement purification of unknown quantum states

    SciTech Connect

    Brun, Todd A.; Caves, Carlton M.; Schack, Ru''diger

    2001-04-01

    A concern has been expressed that ''the Jaynes principle can produce fake entanglement'' [R. Horodecki , Phys. Rev. A 59, 1799 (1999)]. In this paper we discuss the general problem of distilling maximally entangled states from N copies of a bipartite quantum system about which only partial information is known, for instance, in the form of a given expectation value. We point out that there is indeed a problem with applying the Jaynes principle of maximum entropy to more than one copy of a system, but the nature of this problem is classical and was discussed extensively by Jaynes. Under the additional assumption that the state {rho}{sup (N)} of the N copies of the quantum system is exchangeable, one can write down a simple general expression for {rho}{sup (N)}. By measuring one or more of the subsystems, one can gain information and update the state estimate for the remaining subsystems with the quantum version of the Bayes rule. Using this rule, we show how to modify two standard entanglement purification protocols, one-way hashing and recurrence, so that they can be applied to exchangeable states. We thus give an explicit algorithm for distilling entanglement from an unknown or partially known quantum state.

  18. Optimized entanglement-assisted quantum error correction

    SciTech Connect

    Taghavi, Soraya; Brun, Todd A.; Lidar, Daniel A.

    2010-10-15

    Using convex optimization, we propose entanglement-assisted quantum error-correction procedures that are optimized for given noise channels. We demonstrate through numerical examples that such an optimized error-correction method achieves higher channel fidelities than existing methods. This improved performance, which leads to perfect error correction for a larger class of error channels, is interpreted in at least some cases by quantum teleportation, but for general channels this interpretation does not hold.

  19. Entanglement and Quantum Computation: An Overview

    SciTech Connect

    Perez, R.B.

    2000-06-27

    This report presents a selective compilation of basic facts from the fields of particle entanglement and quantum information processing prepared for those non-experts in these fields that may have interest in an area of physics showing counterintuitive, ''spooky'' (Einstein's words) behavior. In fact, quantum information processing could, in the near future, provide a new technology to sustain the benefits to the U.S. economy due to advanced computer technology.

  20. Usefulness of entanglement-assisted quantum metrology

    NASA Astrophysics Data System (ADS)

    Huang, Zixin; Macchiavello, Chiara; Maccone, Lorenzo

    2016-07-01

    Entanglement-assisted quantum communication employs preshared entanglement between sender and receiver as a resource. We apply the same framework to quantum metrology, introducing shared entanglement between the probe and the ancilla in the preparation stage and allowing entangling operations at the measurement stage, i.e., using some entangled ancillary system that does not interact with the system to be sampled. This is known to be useless in the noiseless case, but was recently shown to be useful in the presence of noise [R. Demkowicz-Dobrzanski and L. Maccone, Phys. Rev. Lett. 113, 250801 (2014), 10.1103/PhysRevLett.113.250801; W. Dür, M. Skotiniotis, F. Fröwis, and B. Kraus, Phys. Rev. Lett. 112, 080801 (2014), 10.1103/PhysRevLett.112.080801; E. M. Kessler, I. Lovchinsky, A. O. Sushkov, and M. D. Lukin, Phys. Rev. Lett. 112, 150802 (2014);, 10.1103/PhysRevLett.112.150802 R. Demkowicz-Dobrzański and J. Kolodynski, New J. Phys. 15, 073043 (2013), 10.1088/1367-2630/15/7/073043]. Here we detail how and when it can be of use. For example, surprisingly it is useful when two channels are randomly alternated, for both of which ancillas do not help (depolarizing). We show that it is useful for all levels of noise for many noise models and propose a simple optical experiment to test these results.

  1. Efficient Measurement of Multiparticle Entanglement with Embedding Quantum Simulator.

    PubMed

    Chen, Ming-Cheng; Wu, Dian; Su, Zu-En; Cai, Xin-Dong; Wang, Xi-Lin; Yang, Tao; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2016-02-19

    The quantum measurement of entanglement is a demanding task in the field of quantum information. Here, we report the direct and scalable measurement of multiparticle entanglement with embedding photonic quantum simulators. In this embedding framework [R. Di Candia et al. Phys. Rev. Lett. 111, 240502 (2013)], the N-qubit entanglement, which does not associate with a physical observable directly, can be efficiently measured with only two (for even N) and six (for odd N) local measurement settings. Our experiment uses multiphoton quantum simulators to mimic dynamical concurrence and three-tangle entangled systems and to track their entanglement evolutions. PMID:26943520

  2. Channel capacities versus entanglement measures in multiparty quantum states

    SciTech Connect

    Sen, Aditi; Sen, Ujjwal

    2010-01-15

    For quantum states of two subsystems, highly entangled states have a higher capacity of transmitting classical as well as quantum information, and vice versa. We show that this is no more the case in general: Quantum capacities of multiaccess channels, motivated by communication in quantum networks, do not have any relation with genuine multiparty entanglement measures. Importantly, the statement is demonstrated for arbitrary multipartite entanglement measures. Along with revealing the structural richness of multiaccess channels, this gives us a tool to classify multiparty quantum states from the perspective of its usefulness in quantum networks, which cannot be visualized by any genuine multiparty entanglement measure.

  3. Measuring entanglement entropy in a quantum many-body system

    NASA Astrophysics Data System (ADS)

    Rispoli, Matthew; Preiss, Philipp; Tai, Eric; Lukin, Alex; Schittko, Robert; Kaufman, Adam; Ma, Ruichao; Islam, Rajibul; Greiner, Markus

    2016-05-01

    The presence of large-scale entanglement is a defining characteristic of exotic quantum phases of matter. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. However, measuring entanglement remains a challenge. This is especially true in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. We demonstrate a novel approach to the measurement of entanglement entropy of any bosonic system, using a quantum gas microscope with tailored potential landscapes. This protocol enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. In general, these experiments exemplify a method enabling the measurement and characterization of quantum phase transitions and in particular would be apt for studying systems such as magnetic ordering within the quantum Ising model.

  4. Universal entanglement crossover of coupled quantum wires

    NASA Astrophysics Data System (ADS)

    Vasseur, Romain; Jacobsen, Jesper; Saleur, Hubert

    2014-03-01

    We consider the entanglement between two one-dimensional quantum wires (Luttinger Liquids) coupled by tunneling through a quantum impurity. The physics of the system involves a crossover between weak and strong coupling regimes characterized by an energy scale TB, and methods of conformal field theory therefore cannot be applied. The evolution of the entanglement in this crossover has led to many numerical studies, but has remained little understood, analytically or even qualitatively. This is, in part, due to the fact that the entanglement in this case is non-perturbative in the tunneling amplitude. We argue that the correct universal scaling form of the entanglement entropy S (for an arbitrary interval containing the impurity) is ∂S / ∂lnL = f(LTB) . In the special case where the coupling to the impurity can be refermionized, we show how the universal function f(LTB) can be obtained analytically using recent results on form factors of twist fields and a defect massless-scattering formalism. Our results are carefully checked against numerical simulations. This work was supported by the the French ANR (ANR Projet 2010 Blanc SIMI 4 : DIME), the US DOE (grant number DE-FG03-01ER45908), the Quantum Materials program of LBNL (RV) and the Institut Universitaire de France (JLJ).

  5. Quantum channels with correlated noise and entanglement teleportation

    SciTech Connect

    Yeo Ye

    2003-05-01

    Motivated by the results of Macchiavello and Palma on entanglement-enhanced information transmission over a quantum channel with correlated noise, we demonstrate how the entanglement teleportation scheme of Lee and Kim gives rise to two uncorrelated generalized depolarizing channels. In an attempt to find a teleportation scheme that yields two correlated generalized depolarizing channels, we discover a teleportation scheme that allows one to learn about the entanglement in an entangled pure input state, without decreasing the amount of entanglement associated with it.

  6. Undoing the effect of loss on quantum entanglement

    NASA Astrophysics Data System (ADS)

    Ulanov, Alexander E.; Fedorov, Ilya A.; Pushkina, Anastasia A.; Kurochkin, Yury V.; Ralph, Timothy C.; Lvovsky, A. I.

    2015-11-01

    Entanglement distillation, the purpose of which is to probabilistically increase the strength and purity of quantum entanglement, is a primary element of many quantum communication and computation protocols. It is particularly necessary in quantum repeaters in order to counter the degradation of entanglement that inevitably occurs due to losses in communication lines. Here, we distil the Einstein-Podolsky-Rosen state of light, the workhorse of continuous-variable entanglement, using noiseless amplification. The advantage of our technique is that it permits recovering a macroscopic level of entanglement, however low the initial entanglement or however high the loss may be. Experimentally, we recover the original entanglement level after one of the Einstein-Podolsky-Rosen modes has experienced a loss factor of 20. The level of entanglement in our distilled state is higher than that achievable by direct transmission of any state through a similar loss channel. This is a key step towards realizing practical continuous-variable quantum communication protocols.

  7. Experimental quantum teleportation and multiphoton entanglement via interfering narrowband photon sources

    SciTech Connect

    Yang Jian; Zhang Han; Peng Chengzhi; Chen Zengbing; Bao Xiaohui; Chen Shuai; Pan Jianwei

    2009-10-15

    In this paper, we report a realization of synchronization-free quantum teleportation and narrowband three-photon entanglement through interfering narrowband photon sources. Since both the single-photon and the entangled photon pair utilized are completely autonomous, it removes the requirement of high-demanding synchronization techniques in long-distance quantum communication with pulsed spontaneous parametric down-conversion sources. The frequency linewidth of the three-photon entanglement realized is on the order of several MHz, which matches the requirement of atomic ensemble based quantum memories. Such a narrowband multiphoton source will have applications in some advanced quantum communication protocols and linear optical quantum computation.

  8. Entanglement-secured single-qubit quantum secret sharing

    SciTech Connect

    Scherpelz, P.; Resch, R.; Berryrieser, D.; Lynn, T. W.

    2011-09-15

    In single-qubit quantum secret sharing, a secret is shared between N parties via manipulation and measurement of one qubit at a time. Each qubit is sent to all N parties in sequence; the secret is encoded in the first participant's preparation of the qubit state and the subsequent participants' choices of state rotation or measurement basis. We present a protocol for single-qubit quantum secret sharing using polarization entanglement of photon pairs produced in type-I spontaneous parametric downconversion. We investigate the protocol's security against eavesdropping attack under common experimental conditions: a lossy channel for photon transmission, and imperfect preparation of the initial qubit state. A protocol which exploits entanglement between photons, rather than simply polarization correlation, is more robustly secure. We implement the entanglement-based secret-sharing protocol with 87% secret-sharing fidelity, limited by the purity of the entangled state produced by our present apparatus. We demonstrate a photon-number splitting eavesdropping attack, which achieves no success against the entanglement-based protocol while showing the predicted rate of success against a correlation-based protocol.

  9. Comb entanglement in quantum spin chains

    SciTech Connect

    Keating, J. P.; Mezzadri, F.; Novaes, M.

    2006-07-15

    Bipartite entanglement in the ground state of a chain of N quantum spins can be quantified either by computing pairwise concurrence or by dividing the chain into two complementary subsystems. In the latter case the smaller subsystem is usually a single spin or a block of adjacent spins and the entanglement differentiates between critical and noncritical regimes. Here we extend this approach by considering a more general setting: our smaller subsystem S{sub A} consists of a comb of L spins, spaced p sites apart. Our results are thus not restricted to a simple area law, but contain nonlocal information, parametrized by the spacing p. For the XX model we calculate the von Neumann entropy analytically when N{yields}{infinity} and investigate its dependence on L and p. We find that an external magnetic field induces an unexpected length scale for entanglement in this case.

  10. Direct measurement of nonlocal entanglement of two-qubit spin quantum states.

    PubMed

    Cheng, Liu-Yong; Yang, Guo-Hui; Guo, Qi; Wang, Hong-Fu; Zhang, Shou

    2016-01-01

    We propose efficient schemes of direct concurrence measurement for two-qubit spin and photon-polarization entangled states via the interaction between single-photon pulses and nitrogen-vacancy (NV) centers in diamond embedded in optical microcavities. For different entangled-state types, diversified quantum devices and operations are designed accordingly. The initial unknown entangled states are possessed by two spatially separated participants, and nonlocal spin (polarization) entanglement can be measured with the aid of detection probabilities of photon (NV center) states. This non-demolition entanglement measurement manner makes initial entangled particle-pair avoid complete annihilation but evolve into corresponding maximally entangled states. Moreover, joint inter-qubit operation or global qubit readout is not required for the presented schemes and the final analyses inform favorable performance under the current parameters conditions in laboratory. The unique advantages of spin qubits assure our schemes wide potential applications in spin-based solid quantum information and computation. PMID:26778340

  11. Direct measurement of nonlocal entanglement of two-qubit spin quantum states

    NASA Astrophysics Data System (ADS)

    Cheng, Liu-Yong; Yang, Guo-Hui; Guo, Qi; Wang, Hong-Fu; Zhang, Shou

    2016-01-01

    We propose efficient schemes of direct concurrence measurement for two-qubit spin and photon-polarization entangled states via the interaction between single-photon pulses and nitrogen-vacancy (NV) centers in diamond embedded in optical microcavities. For different entangled-state types, diversified quantum devices and operations are designed accordingly. The initial unknown entangled states are possessed by two spatially separated participants, and nonlocal spin (polarization) entanglement can be measured with the aid of detection probabilities of photon (NV center) states. This non-demolition entanglement measurement manner makes initial entangled particle-pair avoid complete annihilation but evolve into corresponding maximally entangled states. Moreover, joint inter-qubit operation or global qubit readout is not required for the presented schemes and the final analyses inform favorable performance under the current parameters conditions in laboratory. The unique advantages of spin qubits assure our schemes wide potential applications in spin-based solid quantum information and computation.

  12. Direct measurement of nonlocal entanglement of two-qubit spin quantum states

    PubMed Central

    Cheng, Liu-Yong; Yang, Guo-Hui; Guo, Qi; Wang, Hong-Fu; Zhang, Shou

    2016-01-01

    We propose efficient schemes of direct concurrence measurement for two-qubit spin and photon-polarization entangled states via the interaction between single-photon pulses and nitrogen-vacancy (NV) centers in diamond embedded in optical microcavities. For different entangled-state types, diversified quantum devices and operations are designed accordingly. The initial unknown entangled states are possessed by two spatially separated participants, and nonlocal spin (polarization) entanglement can be measured with the aid of detection probabilities of photon (NV center) states. This non-demolition entanglement measurement manner makes initial entangled particle-pair avoid complete annihilation but evolve into corresponding maximally entangled states. Moreover, joint inter-qubit operation or global qubit readout is not required for the presented schemes and the final analyses inform favorable performance under the current parameters conditions in laboratory. The unique advantages of spin qubits assure our schemes wide potential applications in spin-based solid quantum information and computation. PMID:26778340

  13. Energy transmission using recyclable quantum entanglement.

    PubMed

    Ye, Ming-Yong; Lin, Xiu-Min

    2016-01-01

    It is known that faster-than-light (FTL) transmission of energy could be achieved if the transmission were considered in the framework of non-relativistic classical mechanics. Here we show that FTL transmission of energy could also be achieved if the transmission were considered in the framework of non-relativistic quantum mechanics. In our transmission protocol a two-spin Heisenberg model is considered and the energy is transmitted by two successive local unitary operations on the initially entangled spins. Our protocol does not mean that FTL transmission can be achieved in reality when the theory of relativity is considered, but it shows that quantum entanglement can be used in a recyclable way in energy transmission. PMID:27465431

  14. Energy transmission using recyclable quantum entanglement

    NASA Astrophysics Data System (ADS)

    Ye, Ming-Yong; Lin, Xiu-Min

    2016-07-01

    It is known that faster-than-light (FTL) transmission of energy could be achieved if the transmission were considered in the framework of non-relativistic classical mechanics. Here we show that FTL transmission of energy could also be achieved if the transmission were considered in the framework of non-relativistic quantum mechanics. In our transmission protocol a two-spin Heisenberg model is considered and the energy is transmitted by two successive local unitary operations on the initially entangled spins. Our protocol does not mean that FTL transmission can be achieved in reality when the theory of relativity is considered, but it shows that quantum entanglement can be used in a recyclable way in energy transmission.

  15. Quantum entanglement establishment between two strangers

    NASA Astrophysics Data System (ADS)

    Hwang, Tzonelih; Lin, Tzu-Han; Kao, Shih-Hung

    2016-01-01

    This paper presents the first quantum entanglement establishment scheme for strangers who neither pre-share any secret nor have any authenticated classical channel between them. The proposed protocol requires only the help of two almost dishonest third parties (TPs) to achieve the goal. The security analyses indicate that the proposed protocol is secure against not only an external eavesdropper's attack, but also the TP's attack.

  16. Entanglement enhances security in quantum communication

    NASA Astrophysics Data System (ADS)

    Demkowicz-Dobrzański, Rafał; Sen(de), Aditi; Sen, Ujjwal; Lewenstein, Maciej

    2009-07-01

    Secret sharing is a protocol in which a “boss” wants to send a classical message secretly to two “subordinates,” such that none of the subordinates is able to know the message alone, while they can find it if they cooperate. Quantum mechanics is known to allow for such a possibility. We analyze tolerable quantum bit error rates in such secret sharing protocols in the physically relevant case when the eavesdropping is local with respect to the two channels of information transfer from the boss to the two subordinates. We find that using entangled encoding states is advantageous to legitimate users of the protocol. We therefore find that entanglement is useful for secure quantum communication. We also find that bound entangled states with positive partial transpose are not useful as a local eavesdropping resource. Moreover, we provide a criterion for security in secret sharing—a parallel of the Csiszár-Körner criterion in single-receiver classical cryptography.

  17. Locality, entanglement, and thermalization of isolated quantum systems

    NASA Astrophysics Data System (ADS)

    Khlebnikov, S.; Kruczenski, M.

    2014-11-01

    A way to understand thermalization in an isolated system is to interpret it as an increase in entanglement between subsystems. Here we test this idea through a combination of analytical and Krylov-subspace-based numerical methods applied to a quantum gas of bosons. We find that the entanglement entropy of a subsystem is rapidly generated at the initial state of the evolution, to quickly approach the thermal value. Our results also provide an accurate numerical test of the eigenstate thermalization hypothesis (ETH), according to which a single energy eigenstate of an isolated system behaves in certain respects as a thermal state. In the context of quantum black holes, we propose that the ETH is a quantum version of the classical no-hair theorem.

  18. Locality, entanglement, and thermalization of isolated quantum systems.

    PubMed

    Khlebnikov, S; Kruczenski, M

    2014-11-01

    A way to understand thermalization in an isolated system is to interpret it as an increase in entanglement between subsystems. Here we test this idea through a combination of analytical and Krylov-subspace-based numerical methods applied to a quantum gas of bosons. We find that the entanglement entropy of a subsystem is rapidly generated at the initial state of the evolution, to quickly approach the thermal value. Our results also provide an accurate numerical test of the eigenstate thermalization hypothesis (ETH), according to which a single energy eigenstate of an isolated system behaves in certain respects as a thermal state. In the context of quantum black holes, we propose that the ETH is a quantum version of the classical no-hair theorem. PMID:25493719

  19. Scheme for implementing perfect quantum teleportation with four-qubit entangled states in cavity quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Tang, Jing-Wu; Zhao, Guan-Xiang; He, Xiong-Hui

    2011-05-01

    Recently, Peng et al. [2010 Eur. Phys. J. D 58 403] proposed to teleport an arbitrary two-qubit state with a family of four-qubit entangled states, which simultaneously include the tensor product of two Bell states, linear cluster state and Dicke-class state. This paper proposes to implement their scheme in cavity quantum electrodynamics and then presents a new family of four-qubit entangled state |Ω4>1234. It simultaneously includes all the well-known four-qubit entangled states which can be used to teleport an arbitrary two-qubit state. The distinct advantage of the scheme is that it only needs a single setup to prepare the whole family of four-qubit entangled states, which will be very convenient for experimental realization. After discussing the experimental condition in detail, we show the scheme may be feasible based on present technology in cavity quantum electrodynamics.

  20. Entanglement, the quantum formalism and the classical world

    SciTech Connect

    Matzkin, A.

    2011-09-23

    75 years after the term 'entanglement' was coined to a peculiar feature inherent to quantum systems, the connection between quantum and classical mechanics remains an open problem. Drawing on recent results obtained in semiclassical systems, we discuss here the fate of entanglement in a closed system as Planck's constant becomes vanishingly small. In that case the generation of entanglement in a quantum system is perfectly reproduced by properly defined correlations of the corresponding classical system. We speculate on what these results could imply regarding the status of entanglement and of the ensuing quantum correlations.

  1. Superconducting quantum node for entanglement and storage of microwave radiation.

    PubMed

    Flurin, E; Roch, N; Pillet, J D; Mallet, F; Huard, B

    2015-03-01

    Superconducting circuits and microwave signals are good candidates to realize quantum networks, which are the backbone of quantum computers. We have realized a quantum node based on a 3D microwave superconducting cavity parametrically coupled to a transmission line by a Josephson ring modulator. We first demonstrate the time-controlled capture, storage, and retrieval of an optimally shaped propagating microwave field, with an efficiency as high as 80%. We then demonstrate a second essential ability, which is the time-controlled generation of an entangled state distributed between the node and a microwave channel. PMID:25793790

  2. Protecting entanglement from correlated amplitude damping channel using weak measurement and quantum measurement reversal

    NASA Astrophysics Data System (ADS)

    Xiao, Xing; Yao, Yao; Xie, Ying-Mao; Wang, Xing-Hua; Li, Yan-Ling

    2016-06-01

    Based on the quantum technique of weak measurement, we propose a scheme to protect the entanglement from correlated amplitude damping decoherence. In contrast to the results of memoryless amplitude damping channel, we show that the memory effects play a significant role in the suppression of entanglement sudden death and protection of entanglement under severe decoherence. Moreover, we find that the initial entanglement could be drastically amplified by the combination of weak measurement and quantum measurement reversal even under the correlated amplitude damping channel. The underlying mechanism can be attributed to the probabilistic nature of weak measurements.

  3. Quantum discord and entanglement in grover search algorithm

    NASA Astrophysics Data System (ADS)

    Ye, Bin; Zhang, Tingzhong; Qiu, Liang; Wang, Xuesong

    2016-06-01

    Imperfections and noise in realistic quantum computers may seriously affect the accuracy of quantum algorithms. In this article we explore the impact of static imperfections on quantum entanglement as well as non-entangled quantum correlations in Grover's search algorithm. Using the metrics of concurrence and geometric quantum discord, we show that both the evolution of entanglement and quantum discord in Grover algorithm can be restrained with the increasing strength of static imperfections. For very weak imperfections, the quantum entanglement and discord exhibit periodic behavior, while the periodicity will most certainly be destroyed with stronger imperfections. Moreover, entanglement sudden death may occur when the strength of static imperfections is greater than a certain threshold.

  4. Enhancing entanglement trapping by weak measurement and quantum measurement reversal

    SciTech Connect

    Zhang, Ying-Jie; Han, Wei; Fan, Heng; Xia, Yun-Jie

    2015-03-15

    In this paper, we propose a scheme to enhance trapping of entanglement of two qubits in the environment of a photonic band gap material. Our entanglement trapping promotion scheme makes use of combined weak measurements and quantum measurement reversals. The optimal promotion of entanglement trapping can be acquired with a reasonable finite success probability by adjusting measurement strengths. - Highlights: • Propose a scheme to enhance entanglement trapping in photonic band gap material. • Weak measurement and its reversal are performed locally on individual qubits. • Obtain an optimal condition for maximizing the concurrence of entanglement trapping. • Entanglement sudden death can be prevented by weak measurement in photonic band gap.

  5. Quantum control on entangled bipartite qubits

    SciTech Connect

    Delgado, Francisco

    2010-04-15

    Ising interactions between qubits can produce distortion on entangled pairs generated for engineering purposes (e.g., for quantum computation or quantum cryptography). The presence of parasite magnetic fields destroys or alters the expected behavior for which it was intended. In addition, these pairs are generated with some dispersion in their original configuration, so their discrimination is necessary for applications. Nevertheless, discrimination should be made after Ising distortion. Quantum control helps in both problems; making some projective measurements upon the pair to decide the original state to replace it, or just trying to reconstruct it using some procedures which do not alter their quantum nature. Results about the performance of these procedures are reported. First, we will work with pure systems studying restrictions and advantages. Then, we will extend these operations for mixed states generated with uncertainty in the time of distortion, correcting them by assuming the control prescriptions for the most probable one.

  6. Entangling power and operator entanglement of nonunitary quantum evolutions

    NASA Astrophysics Data System (ADS)

    Kong, Fan-Zhen; Zhao, Jun-Long; Yang, Ming; Cao, Zhuo-Liang

    2015-07-01

    We propose a method to calculate the operator entanglement and entangling power of a noisy nonunitary operation in terms of linear entropy. By decomposing the Kraus operators of noisy evolution as the sum of products of Pauli matrices, we derive the analytical expression of the operator entanglement for a general nonunitary operation. The definition of entangling power is extended from the ideal unitary operation case to the nonunitary case via a Kraus operator representation and the analytical expression of the entangling power for a general nonunitary operation is derived. To demonstrate the effectiveness of the above method, we investigate the properties of operator entanglement and entangling power of nonunitary operations caused by phase damping noise. Our findings imply that the pure phase damping noise has its own operator entanglement and entangling power, which increase exponentially with time and asymptotically approach their respective upper bounds. In addition, when the phase damping noise is added to an ideal operation, such as an iswap operation or a controlled-Z operation, it can make the operation's entangling power grow exponentially with the strength of noise, but leave its operator entanglement invariant. In this sense, we can conclude that, for a general operation, operator entanglement is a more intrinsic property than entangling power.

  7. Wigner-Yanase skew information as tests for quantum entanglement

    SciTech Connect

    Chen Zeqian

    2005-05-15

    A Bell-type inequality is proposed in terms of Wigner-Yanase skew information, which is quadratic and involves only one local spin observable at each site. This inequality presents a hierarchic classification of all states of multipartite quantum systems from separable to fully entangled states, which is more powerful than the one presented by quadratic Bell inequalities from two-entangled to fully entangled states. In particular, it is proved that the inequality provides an exact test to distinguish entangled from nonentangled pure states of two qubits. Our inequality sheds considerable light on relationships between quantum entanglement and information theory.

  8. Entanglement-assisted operator codeword stabilized quantum codes

    NASA Astrophysics Data System (ADS)

    Shin, Jeonghwan; Heo, Jun; Brun, Todd A.

    2016-05-01

    In this paper, we introduce a unified framework to construct entanglement-assisted quantum error-correcting codes (QECCs), including additive and nonadditive codes, based on the codeword stabilized (CWS) framework on subsystems. The CWS framework is a scheme to construct QECCs, including both additive and nonadditive codes, and gives a method to construct a QECC from a classical error-correcting code in standard form. Entangled pairs of qubits (ebits) can be used to improve capacity of quantum error correction. In addition, it gives a method to overcome the dual-containing constraint. Operator quantum error correction (OQEC) gives a general framework to construct QECCs. We construct OQEC codes with ebits based on the CWS framework. This new scheme, entanglement-assisted operator codeword stabilized (EAOCWS) quantum codes, is the most general framework we know of to construct both additive and nonadditive codes from classical error-correcting codes. We describe the formalism of our scheme, demonstrate the construction with examples, and give several EAOCWS codes

  9. Origins and optimization of entanglement in plasmonically coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Otten, Matthew; Larson, Jeffrey; Min, Misun; Wild, Stefan M.; Pelton, Matthew; Gray, Stephen K.

    2016-08-01

    A system of two or more quantum dots interacting with a dissipative plasmonic nanostructure is investigated in detail by using a cavity quantum electrodynamics approach with a model Hamiltonian. We focus on determining and understanding system configurations that generate multiple bipartite quantum entanglements between the occupation states of the quantum dots. These configurations include allowing for the quantum dots to be asymmetrically coupled to the plasmonic system. Analytical solution of a simplified limit for an arbitrary number of quantum dots and numerical simulations and optimization for the two- and three-dot cases are used to develop guidelines for maximizing the bipartite entanglements. For any number of quantum dots, we show that through simple starting states and parameter guidelines, one quantum dot can be made to share a strong amount of bipartite entanglement with all other quantum dots in the system, while entangling all other pairs to a lesser degree.

  10. Quantum entanglement and informational activities of biomolecules

    NASA Astrophysics Data System (ADS)

    Al-Shargi, Hanan; Berkovich, Simon

    2009-03-01

    Our model of holographic Universe [1] explains the surprising property of quantum entanglement and reveals its biological implications. The suggested holographic mechanism handles 2D slices of the physical world as a whole. Fitting this simple holistic process in the Procrustean bed of individual particles interactions leads to intricacies of quantum theory with an unintelligible protrusion of distant correlations. Holographic medium imposes dependence of quantum effects on absolute positioning. Testing this prediction for a non-exponential radioactive decay could resolutely point to outside ``memory.'' The essence of Life is in the sophistication of macromolecules. Distinctions in biological information processing of nucleotides in DNA and amino acids in proteins are related to entropies of their structures. Randomness of genetic configurations as exposed by their maximal entropy is characteristic of passive identification rather than active storage functionality. Structural redundancy of proteins shows their operability, of which different foldings of prions is most indicative. Folding of one prion can reshape another prion without a direct contact appearing like ``quantum entanglement,'' or ``teleportation.'' Testing the surmised influence of absolute orientation on the prion reshaping can uncover the latency effects in the ``mad cow'' disease. 1. Simon Berkovich, TR-GWU-CS-07-006, http://www.cs.gwu.edu/research/reports.php

  11. Understanding Entanglement as a Resource for Quantum Information Processing

    NASA Astrophysics Data System (ADS)

    Cohen, Scott M.

    2008-05-01

    Ever since Erwin Schrodinger shocked the physics world by killing (and not killing) his cat, entanglement has played a critical role in attempts to understand quantum mechanics. More recently, entanglement has been shown to be a valuable resource, of central importance for quantum computation and the processing of quantum information. In this talk, I will describe a new diagrammatic approach to understanding why entanglement is so valuable, the key idea being that entanglement between two systems ``creates'' multiple images of the state of a third. By way of example, I will show how to ``visualize'' teleportation of unknown quantum states, and how to use entanglement to implement an interaction between spatially separated (and therefore non-interacting!) systems. These ideas have also proven useful in quantum state discrimination, where the state of a quantum system is unknown and is to be determined.

  12. Manipulation of Entangled States for Quantum Information Processing

    NASA Astrophysics Data System (ADS)

    Bose, S.; Huelga, S. F.; Jonathan, D.; Knight, P. L.; Murao, M.; Plenio, M. B.; Vedral, V.

    Entanglement manipulation, and especially Entanglement Swapping is at the heart of current work on quantum information processing, purification and quantum teleportation. We will discuss how it may be generalized to multiparticle systems and how this enables multi-user quantum cryptographic protocols to be developed. Our scheme allows us to establish multiparticle entanglement between particles which belong to distant users in a communication network through a prior distribution of Bell state singlets followed by local measurements. We compare our method for generating entanglement with existing schemes using simple quantum networks, and highlight the advantages and applications in cryptographic conferencing and in reading messages from more than one source through a single quantum measurement. We also discuss how entanglement leads to the idea of `telecloning', in which a teleportation-like protocol can be found which reproduces the output of an optimal quantum cloning machine.

  13. Entanglement and the process of measuring the position of a quantum particle

    NASA Astrophysics Data System (ADS)

    Apel, V. M.; Curilef, S.; Plastino, A. R.

    2015-03-01

    We explore the entanglement-related features exhibited by the dynamics of a composite quantum system consisting of a particle and an apparatus (here referred to as the "pointer") that measures the position of the particle. We consider measurements of finite duration, and also the limit case of instantaneous measurements. We investigate the time evolution of the quantum entanglement between the particle and the pointer, with special emphasis on the final entanglement associated with the limit case of an impulsive interaction. We consider entanglement indicators based on the expectation values of an appropriate family of observables, and also an entanglement measure computed on particular exact analytical solutions of the particle-pointer Schrödinger equation. The general behavior exhibited by the entanglement indicators is consistent with that shown by the entanglement measure evaluated on particular analytical solutions of the Schrödinger equation. In the limit of instantaneous measurements the system's entanglement dynamics corresponds to that of an ideal quantum measurement process. On the contrary, we show that the entanglement evolution corresponding to measurements of finite duration departs in important ways from the behavior associated with ideal measurements. In particular, highly localized initial states of the particle lead to highly entangled final states of the particle-pointer system. This indicates that the above mentioned initial states, in spite of having an arbitrarily small position uncertainty, are not left unchanged by a finite-duration position measurement process.

  14. Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon.

    PubMed

    Schaibley, J R; Burgers, A P; McCracken, G A; Duan, L-M; Berman, P R; Steel, D G; Bracker, A S; Gammon, D; Sham, L J

    2013-04-19

    The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing architecture lies in demonstrating the ability to scale the system to many qubits. In this Letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to a single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dot's excited state. We obtain a lower bound on the fidelity of entanglement of 0.59±0.04, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement-based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3×10(3) s(-1). This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network. PMID:23679636

  15. Spin-orbit hybrid entanglement quantum key distribution scheme

    NASA Astrophysics Data System (ADS)

    Zhang, ChengXian; Guo, BangHong; Cheng, GuangMing; Guo, JianJun; Fan, RongHua

    2014-11-01

    We propose a novel quantum key distribution scheme by using the SAM-OAM hybrid entangled state as the physical resource. To obtain this state, the polarization entangled photon pairs are created by the spontaneous parametric down conversion process, and then, the q-plate acts as a SAM-to-OAM transverter to transform the polarization entangled pairs into the hybrid entangled pattern, which opens the possibility to exploit the features of the higher-dimensional space of OAM state to encode information. In the manipulation and encoding process, Alice performs the SAM measurement by modulating the polarization state | θ>π on one photon, whereas Bob modulates the OAM sector state | χ> l on the other photon to encode his key elements using the designed holograms which is implemented by the computer-controlled SLM. With coincidence measurement, Alice could extract the key information. It is showed that N-based keys can be encoded with each pair of entangled photon, and this scheme is robust against Eve's individual attack. Also, the MUBs are not used. Alice and Bob do not need the classical communication for the key recovery.

  16. Entanglement and Quantum Information Processing with Trapped Ions*

    NASA Astrophysics Data System (ADS)

    Chiaverini, John

    2004-05-01

    Atomic ions confined in radio frequency traps, cooled and addressed with laser pulses, constitute a scalable system for bringing about and exploring quantum entanglement and information processing. Along with relatively high entangling-gate and single-qubit-rotation fidelities, long coherence times enable the execution of some basic quantum algorithms and communication protocols. At NIST we use a multi-zone trap in which entanglement can be distributed over the zones through the spatial separation and combination of several entangled ion qubits, each of which can be separately measured. Current experiments include superdense coding, quantum teleportation, entanglement-enhanced quantum state detection, and entangled state spectroscopy. These experiments and those from other groups will be summarized. *This work was supported by ARDA/NSA and NIST, and done in collaboration with T. Schaetz, M. Barrett, D. Leibfried, J. Britton, W. Itano, J. Jost, C. Langer, R. Ozeri, T. Rosenband, and D. J. Wineland.

  17. Entanglement in Mutually Unbiased Bases

    NASA Astrophysics Data System (ADS)

    Wiesniak, Marcin; Paterek, Tomasz; Zeilinger, Anton

    2011-03-01

    Higher-dimensional Hilbert spaces are still not fully explored. One issue concerns mutually unbiased bases (MUBs). For primes and their powers (e.g.), full sets of MUBs are known. The question of existence of all MUBs in composite dimensions is still open. We show that for all full sets of MUBs of a given dimension a certain entanglement measure of the bases is constant. This fact could be an argument either for or against the existence of full sets of MUBs in some dimensions and tells us that almost all MUBs are maximally entangled for high-dimensional composite systems, whereas this is not the case for prime dimensions. We present a new construction of MUBs in squared prime dimensions. We use only one entangling operation, which simplifies possible experiments. The construction gives only product states and maximally entangled states. Research supported by ERC Advanced Grant QIT4QAD and FWF SFB-grant F4007 of the Austrian Science Fund.

  18. Quantum Entanglement and the Topological Order of Fractional Hall States

    NASA Astrophysics Data System (ADS)

    Rezayi, Edward

    2015-03-01

    Fractional quantum Hall states or, more generally, topological phases of matter defy Landau classification based on order parameter and broken symmetry. Instead they have been characterized by their topological order. Quantum information concepts, such as quantum entanglement, appear to provide the most efficient method of detecting topological order solely from the knowledge of the ground state wave function. This talk will focus on real-space bi-partitioning of quantum Hall states and will present both exact diagonalization and quantum Monte Carlo studies of topological entanglement entropy in various geometries. Results on the torus for non-contractible cuts are quite rich and, through the use of minimum entropy states, yield the modular S-matrix and hence uniquely determine the topological order, as shown in recent literature. Concrete examples of minimum entropy states from known quantum Hall wave functions and their corresponding quantum numbers, used in exact diagonalizations, will be given. In collaboration with Clare Abreu and Raul Herrera. Supported by DOE Grant DE-SC0002140.

  19. Entanglement, discord, and the power of quantum computation

    SciTech Connect

    Brodutch, Aharon; Terno, Daniel R.

    2011-01-15

    We show that the ability to create entanglement is necessary for execution of bipartite quantum gates even when they are applied to unentangled states and create no entanglement. Starting with a simple example we demonstrate that to execute such a gate bilocally the local operations and classical communications (LOCC) should be supplemented by shared entanglement. Our results point to the changes in quantum discord, which is a measure of quantumness of correlations even in the absence of entanglement, as the indicator of failure of a LOCC implementation of the gates.

  20. Quantum entanglement in multiparticle systems of two-level atoms

    SciTech Connect

    Deb, Ram Narayan

    2011-09-15

    We propose the necessary and sufficient condition for the presence of quantum entanglement in arbitrary symmetric pure states of two-level atomic systems. We introduce a parameter to quantify quantum entanglement in such systems. We express the inherent quantum fluctuations of a composite system of two-level atoms as a sum of the quantum fluctuations of the individual constituent atoms and their correlation terms. This helps to separate out and study solely the quantum correlations among the atoms and obtain the criterion for the presence of entanglement in such multiatomic systems.

  1. Optimal entanglement generation for efficient hybrid quantum repeaters

    SciTech Connect

    Azuma, Koji; Sota, Naoya; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki; Namiki, Ryo; Oezdemir, Sahin Kaya

    2009-12-15

    We propose a realistic protocol to generate entanglement between quantum memories at neighboring nodes in hybrid quantum repeaters. Generated entanglement includes only one type of error, which enables efficient entanglement distillation. In contrast to the known protocols with such a property, our protocol with ideal detectors achieves the theoretical limit of the success probability and the fidelity to a Bell state, promising higher efficiencies in the repeaters. We also show that the advantage of our protocol remains even with realistic threshold detectors.

  2. Demonstrating various quantum effects with two entangled laser beams

    NASA Astrophysics Data System (ADS)

    Hage, B.; Janoušek, J.; Armstrong, S.; Symul, T.; Bernu, J.; Chrzanowski, H. M.; Lam, P. K.; Bachor, H. A.

    2011-08-01

    We report on the preparation of entangled two mode squeezed states of yet unseen quality. Based on a measurement of the covariance matrix we found a violation of the Reid and Drummond EPR-criterion at a value of only 0.36 ± 0.03 compared to the threshold of 1. Furthermore, quantum state tomography was used to extract a single photon Fock state solely based on homodyne detection, demonstrating the strong quantum features of this pair of laser-beams. The probability for a single photon in this ensemble measurement exceeded 2/3.

  3. Molecular wave packet interferometry and quantum entanglement

    NASA Astrophysics Data System (ADS)

    Martínez-Galicia, Ricardo; Romero-Rochín, Víctor

    2005-03-01

    We study wave packet interferometry (WPI) considering the laser pulse fields both classical and quantum mechanically. WPI occurs in a molecule after subjecting it to the interaction with a sequence of phase-locked ultrashort laser pulses. Typically, the measured quantity is the fluorescence of the molecule from an excited electronic state. This signal has imprinted the interference of the vibrational wave packets prepared by the different laser pulses of the sequence. The consideration of the pulses as quantum entities in the analysis allows us to study the entanglement of the laser pulse states with the molecular states. With a simple model for the molecular system, plus several justified approximations, we solve for the fully quantum mechanical molecule-electromagnetic field state. We then study the reduced density matrices of the molecule and the laser pulses separately. We calculate measurable corrections to the case where the fields are treated classically.

  4. Physical realization of quantum teleportation for a nonmaximal entangled state

    SciTech Connect

    Tanaka, Yoshiharu; Asano, Masanari; Ohya, Masanori

    2010-08-15

    Recently, Kossakowski and Ohya (K-O) proposed a new teleportation scheme which enables perfect teleportation even for a nonmaximal entangled state [A. Kossakowski and M. Ohya, Infinite Dimensional Analysis Quantum Probability and Related Topics 10, 411 (2007)]. To discuss a physical realization of the K-O scheme, we propose a model based on quantum optics. In our model, we take a superposition of Schroedinger's cat states as an input state being sent from Alice to Bob, and their entangled state is generated by a photon number state through a beam splitter. When the average photon number for our input states is equal to half the number of photons into the beam splitter, our model has high fidelity.

  5. Femtosecond Laser--Pumped Source of Entangled Photons for Quantum Cryptography Applications

    SciTech Connect

    Pan, D.; Donaldson, W.; Sobolewski, R.

    2007-07-31

    We present an experimental setup for generation of entangled-photon pairs via spontaneous parametric down-conversion, based on the femtosecond-pulsed laser. Our entangled-photon source utilizes a 76-MHz-repetition-rate, 100-fs-pulse-width, mode-locked, ultrafast femtosecond laser, which can produce, on average, more photon pairs than a cw laser of an equal pump power. The resulting entangled pairs are counted by a pair of high-quantum-efficiency, single-photon, silicon avalanche photodiodes. Our apparatus is intended as an efficient source/receiver system for the quantum communications and quantum cryptography applications.

  6. Entanglement Dynamics of Disordered Quantum XY Chains

    NASA Astrophysics Data System (ADS)

    Abdul-Rahman, Houssam; Nachtergaele, Bruno; Sims, Robert; Stolz, Günter

    2016-05-01

    We consider the dynamics of the quantum XY chain with disorder under the general assumption that the expectation of the eigenfunction correlator of the associated one-particle Hamiltonian satisfies a decay estimate typical of Anderson localization. We show that, starting from a broad class of product initial states, entanglement remains bounded for all times. For the XX chain, we also derive bounds on the particle transport which, in particular, show that the density profile of initial states that consist of fully occupied and empty intervals only have significant dynamics near the edges of those intervals, uniformly for all times.

  7. Generation of infrared entangled light in asymmetric semiconductor quantum wells

    NASA Astrophysics Data System (ADS)

    Lü, Xin-You; Wu, Jing; Zheng, Li-Li; Huang, Pei

    2010-12-01

    We proposed a scheme to achieve two-mode CV entanglement with the frequencies of entangled modes in the infrared range in an asymmetric semiconductor double-quantum-wells (DQW), where the required quantum coherence is obtained by inducing the corresponding intersubband transitions (ISBTs) with a classical field. By numerically simulating the dynamics of system, we show that the entanglement period can be prolonged via enhancing the intensity of classical field, and the generation of entanglement doesn't depend intensively on the initial condition of system in our scheme. Moreover, we also show that a bipartite entanglement amplifier can be realized in our scheme. The present research provides an efficient approach to achieve infrared entangled light in the semiconductor nanostructure, which may have significant impact on the progress of solid-state quantum information theory.

  8. Participation spectroscopy and entanglement Hamiltonian of quantum spin models

    NASA Astrophysics Data System (ADS)

    Luitz, David J.; Laflorencie, Nicolas; Alet, Fabien

    2014-08-01

    Shannon-Rényi entropies and associated participation spectra quantify how much a many-body wave-function is localized in a given configuration basis. Using these tools, we present an analysis of the ground-state wave functions of various quantum spin systems in one and two dimensions. General ideas and a review of the current status of this field are first given, with a particular emphasis on universal subleading terms characterizing different quantum phases of matter, and associated transitions. We highlight the connection with the related entanglement entropies and spectra when this is possible. In a second part, new results are presented for the participation spectra of interacting spin models, mostly based on quantum Monte Carlo simulations, but also using perturbation theory in some cases. For full antiferromagnetic one-dimensional systems, participation spectra are analyzed in terms of ferromagnetic domain walls which experience a pairwise attractive interaction. This confinement potential is either linear for long-range Néel order, or logarithmic for quasi-long-range order. The case of subsystems is also analyzed in great detail for a 2d dimerized Heisenberg model undergoing a quantum phase transition between a gapped paramagnet and a Néel phase. Participation spectra of line shaped (1d) sub-systems are quantitatively compared with finite temperature participation spectra of ansatz effective boundary (1d) entanglement Hamiltonians. While short-range models describe almost perfectly the gapped side, the Néel regime is best compared using long-range effective Hamiltonians. Spectral comparisons performed using Kullback-Leibler divergences, a tool potentially useful for entanglement spectra, provide a quantitative way to identify both the best boundary entanglement Hamiltonian and effective temperature.

  9. Distilling quantum entanglement via mode-matched filtering

    SciTech Connect

    Huang Yuping; Kumar, Prem

    2011-09-15

    We propose an avenue toward distillation of quantum entanglement that is implemented by directly passing the entangled qubits through a mode-matched filter. This approach can be applied to a common class of entanglement impurities appearing in photonic systems, where the impurities inherently occupy different spatiotemporal modes than the entangled qubits. As a specific application, we show that our method can be used to significantly purify the telecom-band entanglement generated via the Kerr nonlinearity in single-mode fibers where a substantial amount of Raman-scattering noise is concomitantly produced.

  10. Entanglement and the process of measuring the position of a quantum particle

    SciTech Connect

    Apel, V.M.; Curilef, S.; Plastino, A.R.

    2015-03-15

    We explore the entanglement-related features exhibited by the dynamics of a composite quantum system consisting of a particle and an apparatus (here referred to as the “pointer”) that measures the position of the particle. We consider measurements of finite duration, and also the limit case of instantaneous measurements. We investigate the time evolution of the quantum entanglement between the particle and the pointer, with special emphasis on the final entanglement associated with the limit case of an impulsive interaction. We consider entanglement indicators based on the expectation values of an appropriate family of observables, and also an entanglement measure computed on particular exact analytical solutions of the particle–pointer Schrödinger equation. The general behavior exhibited by the entanglement indicators is consistent with that shown by the entanglement measure evaluated on particular analytical solutions of the Schrödinger equation. In the limit of instantaneous measurements the system’s entanglement dynamics corresponds to that of an ideal quantum measurement process. On the contrary, we show that the entanglement evolution corresponding to measurements of finite duration departs in important ways from the behavior associated with ideal measurements. In particular, highly localized initial states of the particle lead to highly entangled final states of the particle–pointer system. This indicates that the above mentioned initial states, in spite of having an arbitrarily small position uncertainty, are not left unchanged by a finite-duration position measurement process. - Highlights: • We explore entanglement features of a quantum position measurement. • We consider instantaneous and finite-duration measurements. • We evaluate the entanglement of exact time-dependent particle–pointer states.

  11. Spin-orbit hybrid entanglement of photons and quantum contextuality

    SciTech Connect

    Karimi, Ebrahim; Slussarenko, Sergei; Leach, Jonathan; Franke-Arnold, Sonja; Padgett, Miles J.; Piccirillo, Bruno; Santamato, Enrico; Marrucci, Lorenzo; Chen Lixiang; She Weilong

    2010-08-15

    We demonstrate electromagnetic quantum states of single photons and of correlated photon pairs exhibiting ''hybrid'' entanglement between spin and orbital angular momentum. These states are obtained from entangled photon pairs emitted by spontaneous parametric down conversion by employing a q plate for coupling the spin and orbital degrees of freedom of a photon. Entanglement and contextual quantum behavior (that is also nonlocal, in the case of photon pairs) is demonstrated by the reported violation of the Clauser-Horne-Shimony-Holt inequality. In addition, a classical analog of the hybrid spin-orbit photonic entanglement is reported and discussed.

  12. Cosmological implications of quantum entanglement in the multiverse

    NASA Astrophysics Data System (ADS)

    Kanno, Sugumi

    2015-12-01

    We explore the cosmological implications of quantum entanglement between two causally disconnected universes in the multiverse. We first consider two causally separated de Sitter spaces with a state which is initially entangled. We derive the reduced density matrix of our universe and compute the spectrum of vacuum fluctuations. We then consider the same system with an initially non-entangled state. We find that due to quantum interference scale dependent modulations may enter the spectrum for the case of initially non-entangled state. This gives rise to the possibility that the existence of causally disconnected universes may be experimentally tested by analyzing correlators in detail.

  13. Entanglement Entropy of d-DIMENSIONAL Black Hole and Quantum Isolated Horizon

    NASA Astrophysics Data System (ADS)

    Zhao, Hui-Hua; Li, Guang-Liang; Zhao, Ren; Ma, Meng-Sen; Zhang, Li-Chun

    2013-09-01

    Based on the works of Ghosh et al. who view the black hole entropy as the logarithm of the number of quantum states on the Quantum Isolated Horizon (QIH), the entropy of d-dimensional black hole is studied. According to the Unruh-Verlinde temperature deduced from the concept of entropic force, the statistical entropy of quantum fields under the background of d-dimensional spacetime is calculated by means of quantum statistics. The results reveal the relation between the entanglement entropy of black hole and the logarithm of the number of quantum states and display the effects of dimensions on the correction terms of the entanglement entropy.

  14. Efficient quantum dialogue using entangled states and entanglement swapping without information leakage

    NASA Astrophysics Data System (ADS)

    Wang, He; Zhang, Yu Qing; Liu, Xue Feng; Hu, Yu Pu

    2016-06-01

    We propose a novel quantum dialogue protocol by using the generalized Bell states and entanglement swapping. In the protocol, a sequence of ordered two-qutrit entangled states acts as quantum information channel for exchanging secret messages directly and simultaneously. Besides, a secret key string is shared between the communicants to overcome information leakage. Different from those previous information leakage-resistant quantum dialogue protocols, the particles, composed of one of each pair of entangled states, are transmitted only one time in the proposed protocol. Security analysis shows that our protocol can overcome information leakage and resist several well-known attacks. Moreover, the efficiency of our scheme is acceptable.

  15. Efficient quantum dialogue using entangled states and entanglement swapping without information leakage

    NASA Astrophysics Data System (ADS)

    Wang, He; Zhang, Yu Qing; Liu, Xue Feng; Hu, Yu Pu

    2016-03-01

    We propose a novel quantum dialogue protocol by using the generalized Bell states and entanglement swapping. In the protocol, a sequence of ordered two-qutrit entangled states acts as quantum information channel for exchanging secret messages directly and simultaneously. Besides, a secret key string is shared between the communicants to overcome information leakage. Different from those previous information leakage-resistant quantum dialogue protocols, the particles, composed of one of each pair of entangled states, are transmitted only one time in the proposed protocol. Security analysis shows that our protocol can overcome information leakage and resist several well-known attacks. Moreover, the efficiency of our scheme is acceptable.

  16. Entanglement of multipartite quantum states and the generalized quantum search

    NASA Astrophysics Data System (ADS)

    Gingrich, Robert Michael

    2002-09-01

    In chapter 2 various parameterizations for the orbits under local unitary transformations of three-qubit pure states are analyzed. It is shown that the entanglement monotones of any multipartite pure state uniquely determine the orbit of that state. It follows that there must be an entanglement monotone for three-qubit pure states which depends on the Kempe invariant defined in [1]. A form for such an entanglement monotone is proposed. A theorem is proved that significantly reduces the number of entanglement monotones that must be looked at to find the maximal probability of transforming one multipartite state to another. In chapter 3 Grover's unstructured quantum search algorithm is generalized to use an arbitrary starting superposition and an arbitrary unitary matrix. A formula for the probability of the generalized Grover's algorithm succeeding after n iterations is derived. This formula is used to determine the optimal strategy for using the unstructured quantum search algorithm. The speedup obtained illustrates that a hybrid use of quantum computing and classical computing techniques can yield a performance that is better than either alone. The analysis is extended to the case of a society of k quantum searches acting in parallel. In chapter 4 the positive map Gamma : rho → (Trrho) - rho is introduced as a separability criterion. Any separable state is mapped by the tensor product of Gamma and the identity in to a non-negative operator, which provides a necessary condition for separability. If Gamma acts on a two-dimensional subsystem, then it is equivalent to partial transposition and therefore also sufficient for 2 x 2 and 2 x 3 systems. Finally, a connection between this map for two qubits and complex conjugation in the "magic" basis [2] is displayed.

  17. Wavelength-tunable entangled photons from silicon-integrated III–V quantum dots

    PubMed Central

    Chen, Yan; Zhang, Jiaxiang; Zopf, Michael; Jung, Kyubong; Zhang, Yang; Keil, Robert; Ding, Fei; Schmidt, Oliver G.

    2016-01-01

    Many of the quantum information applications rely on indistinguishable sources of polarization-entangled photons. Semiconductor quantum dots are among the leading candidates for a deterministic entangled photon source; however, due to their random growth nature, it is impossible to find different quantum dots emitting entangled photons with identical wavelengths. The wavelength tunability has therefore become a fundamental requirement for a number of envisioned applications, for example, nesting different dots via the entanglement swapping and interfacing dots with cavities/atoms. Here we report the generation of wavelength-tunable entangled photons from on-chip integrated InAs/GaAs quantum dots. With a novel anisotropic strain engineering technique based on PMN-PT/silicon micro-electromechanical system, we can recover the quantum dot electronic symmetry at different exciton emission wavelengths. Together with a footprint of several hundred microns, our device facilitates the scalable integration of indistinguishable entangled photon sources on-chip, and therefore removes a major stumbling block to the quantum-dot-based solid-state quantum information platforms. PMID:26813326

  18. Wavelength-tunable entangled photons from silicon-integrated III-V quantum dots

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Zhang, Jiaxiang; Zopf, Michael; Jung, Kyubong; Zhang, Yang; Keil, Robert; Ding, Fei; Schmidt, Oliver G.

    2016-01-01

    Many of the quantum information applications rely on indistinguishable sources of polarization-entangled photons. Semiconductor quantum dots are among the leading candidates for a deterministic entangled photon source; however, due to their random growth nature, it is impossible to find different quantum dots emitting entangled photons with identical wavelengths. The wavelength tunability has therefore become a fundamental requirement for a number of envisioned applications, for example, nesting different dots via the entanglement swapping and interfacing dots with cavities/atoms. Here we report the generation of wavelength-tunable entangled photons from on-chip integrated InAs/GaAs quantum dots. With a novel anisotropic strain engineering technique based on PMN-PT/silicon micro-electromechanical system, we can recover the quantum dot electronic symmetry at different exciton emission wavelengths. Together with a footprint of several hundred microns, our device facilitates the scalable integration of indistinguishable entangled photon sources on-chip, and therefore removes a major stumbling block to the quantum-dot-based solid-state quantum information platforms.

  19. Wavelength-tunable entangled photons from silicon-integrated III-V quantum dots.

    PubMed

    Chen, Yan; Zhang, Jiaxiang; Zopf, Michael; Jung, Kyubong; Zhang, Yang; Keil, Robert; Ding, Fei; Schmidt, Oliver G

    2016-01-01

    Many of the quantum information applications rely on indistinguishable sources of polarization-entangled photons. Semiconductor quantum dots are among the leading candidates for a deterministic entangled photon source; however, due to their random growth nature, it is impossible to find different quantum dots emitting entangled photons with identical wavelengths. The wavelength tunability has therefore become a fundamental requirement for a number of envisioned applications, for example, nesting different dots via the entanglement swapping and interfacing dots with cavities/atoms. Here we report the generation of wavelength-tunable entangled photons from on-chip integrated InAs/GaAs quantum dots. With a novel anisotropic strain engineering technique based on PMN-PT/silicon micro-electromechanical system, we can recover the quantum dot electronic symmetry at different exciton emission wavelengths. Together with a footprint of several hundred microns, our device facilitates the scalable integration of indistinguishable entangled photon sources on-chip, and therefore removes a major stumbling block to the quantum-dot-based solid-state quantum information platforms. PMID:26813326

  20. Comment on 'Two-way protocols for quantum cryptography with a nonmaximally entangled qubit pair'

    SciTech Connect

    Qin Sujuan; Gao Fei; Wen Qiaoyan; Guo Fenzhuo

    2010-09-15

    Three protocols of quantum cryptography with a nonmaximally entangled qubit pair [Phys. Rev. A 80, 022323 (2009)] were recently proposed by Shimizu, Tamaki, and Fukasaka. The security of these protocols is based on the quantum-mechanical constraint for a state transformation between nonmaximally entangled states. However, we find that the second protocol is vulnerable under the correlation-elicitation attack. An eavesdropper can obtain the encoded bit M although she has no knowledge about the random bit R.

  1. A New Quantum Proxy Multi-signature Scheme Using Maximally Entangled Seven-Qubit States

    NASA Astrophysics Data System (ADS)

    Cao, Hai-Jing; Zhang, Jia-Fu; Liu, Jian; Li, Zeng-You

    2016-02-01

    In this paper, we propose a new secure quantum proxy multi-signature scheme using seven-qubit entangled quantum state as quantum channels, which may have applications in e-payment system, e-government, e-business, etc. This scheme is based on controlled quantum teleportation. The scheme uses the physical characteristics of quantum mechanics to guarantee its anonymity, verifiability, traceability, unforgetability and undeniability.

  2. Relating the Resource Theories of Entanglement and Quantum Coherence.

    PubMed

    Chitambar, Eric; Hsieh, Min-Hsiu

    2016-07-01

    Quantum coherence and quantum entanglement represent two fundamental features of nonclassical systems that can each be characterized within an operational resource theory. In this Letter, we unify the resource theories of entanglement and coherence by studying their combined behavior in the operational setting of local incoherent operations and classical communication (LIOCC). Specifically, we analyze the coherence and entanglement trade-offs in the tasks of state formation and resource distillation. For pure states we identify the minimum coherence-entanglement resources needed to generate a given state, and we introduce a new LIOCC monotone that completely characterizes a state's optimal rate of bipartite coherence distillation. This result allows us to precisely quantify the difference in operational powers between global incoherent operations, LIOCC, and local incoherent operations without classical communication. Finally, a bipartite mixed state is shown to have distillable entanglement if and only if entanglement can be distilled by LIOCC, and we strengthen the well-known Horodecki criterion for distillability. PMID:27447493

  3. Relating the Resource Theories of Entanglement and Quantum Coherence

    NASA Astrophysics Data System (ADS)

    Chitambar, Eric; Hsieh, Min-Hsiu

    2016-07-01

    Quantum coherence and quantum entanglement represent two fundamental features of nonclassical systems that can each be characterized within an operational resource theory. In this Letter, we unify the resource theories of entanglement and coherence by studying their combined behavior in the operational setting of local incoherent operations and classical communication (LIOCC). Specifically, we analyze the coherence and entanglement trade-offs in the tasks of state formation and resource distillation. For pure states we identify the minimum coherence-entanglement resources needed to generate a given state, and we introduce a new LIOCC monotone that completely characterizes a state's optimal rate of bipartite coherence distillation. This result allows us to precisely quantify the difference in operational powers between global incoherent operations, LIOCC, and local incoherent operations without classical communication. Finally, a bipartite mixed state is shown to have distillable entanglement if and only if entanglement can be distilled by LIOCC, and we strengthen the well-known Horodecki criterion for distillability.

  4. Optimal entanglement generation from quantum operations

    SciTech Connect

    Leifer, M.S.; Henderson, L.; Linden, N.

    2003-01-01

    We consider how much entanglement can be produced by a nonlocal two-qubit unitary operation, U{sub AB}--the entangling capacity of U{sub AB}. For a single application of U{sub AB}, with no ancillas, we find the entangling capacity and show that it generally helps to act with U{sub AB} on an entangled state. Allowing ancillas, we present numerical results from which we can conclude, quite generally, that allowing initial entanglement typically increases the optimal capacity in this case as well. Next, we show that allowing collective processing does not increase the entangling capacity if initial entanglement is allowed.

  5. Comparison of the attempts of quantum discord and quantum entanglement to capture quantum correlations

    SciTech Connect

    Qasimi, Asma Al-; James, Daniel F. V.

    2011-03-15

    Measurements of quantum systems disturb their states. To quantify this nonclassical characteristic, Zurek and Ollivier [Phys. Rev. Lett. 88, 017901 (2001)] introduced the quantum discord, a quantum correlation that can be nonzero even when entanglement in the system is zero. Discord has aroused great interest as a resource that is more robust against the effects of decoherence and offers the exponential speed-up of certain computational algorithms. Here, we study general two-level bipartite systems and give general results on the relationship between discord, entanglement, and linear entropy. We also identify the states for which discord takes a maximal value for a given entropy or entanglement, thus placing strong bounds on entanglement-discord and entropy-discord relations. We find out that although discord and entanglement are identical for pure states, they differ when generalized to mixed states as a result of the difference in the method of generalization.

  6. Quantum Conditional Cloning of Continuous Variable Entangled States

    NASA Astrophysics Data System (ADS)

    Liu, K.; Gao, J. R.

    2014-12-01

    We extend the technique of conditional preparation to a quantum cloning machine, and present a protocol of 1 -> 2 conditional cloning of squeezed state and entanglement states. It is shown that the entanglement degree of the cloned entangled states can be well preserved even when the fidelity between the input and output states is beyond the limit of 4/9. This scheme is practicable since only the linear elements of beam splitters, homodyne detections, optical modulations and electrical trigger system, are involved.

  7. Quantum phase gate and controlled entanglement with polar molecules

    SciTech Connect

    Charron, Eric; Keller, Arne; Atabek, Osman; Milman, Perola

    2007-03-15

    We propose an alternative scenario for the generation of entanglement between rotational quantum states of two polar molecules. This entanglement arises from dipole-dipole interaction, and is controlled by a sequence of laser pulses simultaneously exciting both molecules. We study the efficiency of the process, and discuss possible experimental implementations with cold molecules trapped in optical lattices or in solid matrices. Finally, various entanglement detection procedures are presented, and their suitability for these two physical situations is analyzed.

  8. Natural Mode Entanglement as a Resource for Quantum Communication

    SciTech Connect

    Heaney, Libby; Vedral, Vlatko

    2009-11-13

    Natural particle-number entanglement resides between spatial modes in coherent ultracold atomic gases. However, operations on the modes are restricted by a superselection rule that forbids coherent superpositions of different particle numbers. This seemingly prevents mode entanglement being used as a resource for quantum communication. In this Letter, we demonstrate that mode entanglement of a single massive particle can be used for dense coding and quantum teleportation despite the superselection rule. In particular, we provide schemes where the dense coding linear photonic channel capacity is reached without a shared reservoir and where the full quantum channel capacity is achieved if both parties share a coherent particle reservoir.

  9. Exciton absorption of entangled photons in semiconductor quantum wells

    NASA Astrophysics Data System (ADS)

    Rodriguez, Ferney; Guzman, David; Salazar, Luis; Quiroga, Luis; Condensed Matter Physics Group Team

    2013-03-01

    The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers. Research funds from Facultad de Ciencias, Universidad de los Andes

  10. Collision Microscope to Study Many-Body Quantum Entanglement

    NASA Astrophysics Data System (ADS)

    Price, Craig; Liu, Qi; Gemelke, Nathan

    2014-05-01

    Quantum entanglement over long length scales is present in both quantum critical and quantum ordered many-body systems and can often be used as a fingerprint for underlying dynamics or ground-state structure. Limited quantum measurement and thermal back-action via controlled collisions of cold atoms and subsequent optical detection can be used to probe long-range entanglement. Entanglement Entropy has recently arisen as a quantitative vehicle to describe entanglement in thermodynamic systems, and its scaling with area can reveal detailed character of the system. We present progress in constructing an apparatus to experimentally extract Entanglement Entropy through pair-wise entanglement of cold fermionic potassium and bosonic cesium gases. The measurement will be made by translating localized probe atoms through a portion of a strongly entangled sample, then recording the heating effect of back-action after optical detection of probe atoms. To do so, precise independent control over the atoms will be maintained in a bichromatic lattice formed with a monolithic, common-mode optical setup imbedded in a quantum gas microscope. Other applications are discussed, including cooling of a Mott-Insulator and study of non-equilibrium quantum systems.

  11. Hybrid entanglement in a triple-quantum-dot shuttle device

    NASA Astrophysics Data System (ADS)

    Mora, J.; Cota, E.; Rojas, F.

    2014-10-01

    We study the H3×N hybrid entanglement between charge and vibrational modes in a triple-quantum-dot shuttle system. Three quantum dots are linearly connected, with the outer dots fixed and the central dot oscillating, described as a quantum harmonic oscillator with oscillation modes that are entangled with the electronic states of the quantum dots. The entangled states are characterized by the Schmidt number as a function of the parameters of the system: detuning and inverse tunneling length. We show that at steady state, as a function of detuning, the excited states of lower energy present Bell-type entanglement 2×N, with the participation of two quantum dots, while the more energetic excited states present 3×N entanglement, with the participation of three quantum dots. In the stationary regime, we find qualitative relationships between the maxima of the electronic current and the Schmidt number. Also, the time evolution of the degree of entanglement for a particular initial condition is studied in the presence of a time-dependent electric field and we evaluate the effects on entanglement of the condition of coherent destruction of tunneling.

  12. Quantum key distribution using entangled-photon trains with no basis selection

    SciTech Connect

    Inoue, Kyo; Takesue, Hiroki

    2006-03-15

    Conventional quantum key distribution (QKD) protocols include a basis selection process for providing a secure secret key. In contrast, this paper proposes an entanglement-based QKD with no basis selection procedure. Entangled-photon pulse trains with an average photon number less than one per pulse are sent to two legitimate parties, from which a secret key is created utilizing the entanglement nature. Eavesdropping on a transmission line is prevented by a condition of less than one photon per pulse, and sending classically correlated coherent pulses instead of quantum correlated ones is revealed by monitoring coincident count rate000.

  13. Optimal amount of entanglement to distinguish quantum states instantaneously

    NASA Astrophysics Data System (ADS)

    Groisman, Berry; Strelchuk, Sergii

    2015-11-01

    We introduce an aspect of nonlocality which arises when the task of quantum states distinguishability is considered under local operations and shared entanglement in the absence of classical communication. We find the optimal amount of entanglement required to accomplish the task perfectly for sets of orthogonal states and argue that it quantifies information nonlocality.

  14. Quantum entanglement and criticality of the antiferromagnetic Heisenberg model in an external field

    NASA Astrophysics Data System (ADS)

    Liu, Guang-Hua; Li, Ruo-Yan; Tian, Guang-Shan

    2012-06-01

    By Lanczos exact diagonalization and the infinite time-evolving block decimation (iTEBD) technique, the two-site entanglement as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization in the antiferromagnetic Heisenberg (AFH) model under an external field are investigated. With increasing external field, the small size system shows some distinct upward magnetization stairsteps, accompanied synchronously with some downward two-site entanglement stairsteps. In the thermodynamic limit, the two-site entanglement, as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization are calculated, and the critical magnetic field hc = 2.0 is determined exactly. Our numerical results show that the quantum entanglement is sensitive to the subtle changing of the ground state, and can be used to describe the magnetization and quantum phase transition. Based on the discontinuous behavior of the first-order derivative of the entanglement entropy and fidelity per site, we think that the quantum phase transition in this model should belong to the second-order category. Furthermore, in the magnon existence region (h < 2.0), a logarithmically divergent behavior of block entanglement which can be described by a free bosonic field theory is observed, and the central charge c is determined to be 1.

  15. Quantum Entanglement: A Fundamental Concept Finding its Applications

    NASA Astrophysics Data System (ADS)

    Zeilinger, Anton

    Entanglement, according to the Austrian physicist Erwin Schrödinger the Essence of Quantum Mechanics, has been known for a long time now to be the source of a number of paradoxical and counterintuitive phenomena. Of those the most remarkable one is usually called non-locality and it is at the heart of the Einstein-Podolsky-Rosen Paradox and of the fact that Quantum Mechanics violates Bell's inequalities. Recent years saw an emergence of novel ideas in entanglement of three or more particles. Most recently it turned out that entanglement is an important concept in the development of quantum communication, quantum cryptography and quantum computation. First explicit experimental realizations with two or more photons include quantum dense coding and quantum teleportation.

  16. Quantum walk, entanglement and thermodynamic laws

    NASA Astrophysics Data System (ADS)

    Romanelli, Alejandro

    2015-09-01

    We consider a special dynamics of a quantum walk (QW) on a line. The walker, initially localized at the origin of the line with arbitrary chirality, evolves to an asymptotic stationary state. In this stationary state a measurement is performed and the state resulting from this measurement is used to start a second QW evolution to achieve a second asymptotic stationary state. In previous works, we developed the thermodynamics associated with the entanglement between the coin and position degrees of freedom in the QW. Here we study the application of the first and second laws of thermodynamics to the process between the two stationary states mentioned above. We show that: (i) the entropy change has upper and lower bounds that are obtained analytically as functions of the initial conditions. (ii) the energy change is associated to a heat-transfer process.

  17. Security of quantum key distributions with entangled qudits

    SciTech Connect

    Durt, Thomas; Kaszlikowski, Dagomir; Chen, Jing-Ling; Kwek, L.C.

    2004-03-01

    We consider a generalization of Ekert's entanglement-based quantum cryptographic protocol where qubits are replaced by N- or d-dimensional systems (qudits). In order to study its robustness against optimal incoherent attacks, we derive the information gained by a potential eavesdropper during a cloning-based individual attack. In doing so, we generalize Cerf's formalism for cloning machines and establish the form of the most general cloning machine that respects all the symmetries of the problem. We obtain an upper bound on the error rate that guarantees the confidentiality of qudit generalizations of the Ekert's protocol for qubits.

  18. Entanglement dynamics in quantum many-body systems

    NASA Astrophysics Data System (ADS)

    Ho, Wen Wei; Abanin, Dmitry

    The dynamics of quantum entanglement S (t) has proven useful to distinguishing different quantum many-body phases. In particular, the growth of entanglement following a quantum quench can be used to distinguish between many-body localized(S (t) ~ logt) and ergodic(S (t) ~ t) phases. Here, we provide a theoretical description of the growth of entanglement in a quantum many-body system, and propose a method to experimentally measure it. We show that entanglement growth is related to the spreading of local operators. In ergodic systems, the linear spreading of operators results in a universal, linear in time growth of entanglement. Furthermore, we show that entanglement growth is directly related to the decay of the Loschmidt echo in a composite system comprised of many copies of the original system, subject to a perturbation that reconnects different parts of the system. Using this picture, we propose an experimental set-up to measure entanglement growth by using a quantum switch (two-level system) which controls connections in the composite system. Our work provides a way to directly probe dynamical properties of many-body systems, in particular, allowing for a direct observation of many-body localization. This work was partially supported by Sloan Foundation, Ontario Early Researcher Award and NSERC Discovery Grant.

  19. Quantum Discord Bounds the Amount of Distributed Entanglement

    NASA Astrophysics Data System (ADS)

    Piani, Marco; Kok Chuan, Tan; Maillard, Jean; Modi, Kavan; Paterek, Tomasz; Paternostro, Mauro

    2013-03-01

    The ability to distribute quantum entanglement is a prerequisite for many fundamental tests of quantum theory and numerous quantum information protocols. Two distant parties can increase the amount of entanglement between them by means of quantum communication encoded in a carrier that is sent from one party to the other. Intriguingly, entanglement can be increased even when the exchanged carrier is not entangled with the parties. However, in light of the defining property of entanglement stating that it cannot increase under classical communication, the carrier must be quantum. Here we show that, in general, the increase of relative entropy of entanglement between two remote parties is bounded by the amount of nonclassical correlations of the carrier with the parties as quantified by the relative entropy of discord. We study implications of this bound, provide new examples of entanglement distribution via unentangled states, and put further limits on this phenomenon. We thank the National Research Foundation and Ministry of Education in Singapore (T. K. Chuan, K. Modi, and T. Paterek), the John Templeton Foundation (K. Modi), the UK EPSRC (M. Paternostro), NSERC, CIFAR, and the Ontario Centres of Excellence (M. Piani)

  20. The Local Orthogonality Between Quantum States and Entanglement Decomposition

    NASA Astrophysics Data System (ADS)

    Kim, Sunho; Wu, Junde; Zhang, Lin; Cho, Minhyung

    2016-06-01

    In the paper, we show that when a quantum state can be decomposed as a convex combination of locally orthogonal mixed states, its entanglement can be decomposed into the entanglement of these mixed states without losing them. The obtained result generalizes a corresponding one proved by Horodecki (Acta Phys. Slov. 48, 141 1998). But, for the entanglement cost it requires certain conditions for holding the decomposition, and the distillable entanglement only has a week result as inequality. Finally, we presented an example to show that the conditions of our conclusions are existence.

  1. Efficient single-photon entanglement concentration for quantum communications

    NASA Astrophysics Data System (ADS)

    Zhou, Lan; Sheng, Yu-Bo

    2014-02-01

    We present two entanglement concentration protocols for single-photon entanglement. The first protocol is implemented with linear optics. With the help of the 50:50 beam splitter, variable beam splitter and an auxiliary photon, a less-entangled single-photon state can be concentrated into a maximally single-photon entangled state with some probability. The second protocol is implemented with the cross-Kerr nonlinearity. With the help of the cross-Kerr nonlinearity, the sophisticated single photon detector is not required. Moreover, the second protocol can be reused to get higher success probability. All these advantages may make the protocols useful in the long-distance quantum communication.

  2. Quantum Spin Baths Induced Transition of Decoherence and Entanglement

    SciTech Connect

    Chen Pochung; Lai Chengyan; Hung, J.-T.; Mou Chungyu

    2008-11-07

    We investigate the reduced dynamics of single or two qubits coupled to an interacting quantum spin bath modeled by a XXZ spin chain. By using the method of time-dependent density matrix renormalization group (t-DMRG), we evaluate nonperturbatively the induced decoherence and entanglement. We find that the behavior of both decoherence and entanglement strongly depend on the phase of the underlying spin bath. We show that spin baths can induce entanglement for an initially disentangled pair of qubits. We observe that entanglement sudden death only occurs in paramagnetic phase and discuss the effect of the coupling range.

  3. Entanglement entropy in dynamic quantum-coherent conductors

    NASA Astrophysics Data System (ADS)

    Thomas, Konrad H.; Flindt, Christian

    2015-03-01

    We investigate the entanglement and the Rényi entropies of two electronic leads connected by a quantum point contact. For noninteracting electrons, the entropies can be related to the cumulants of the full counting statistics of transferred charge which in principle are measurable. We consider the entanglement entropy generated by operating the quantum point contact as a quantum switch which is opened and closed in a periodic manner. Using a numerically exact approach we analyze the conditions under which a logarithmic growth of the entanglement entropy predicted by conformal field theory should be observable in an electronic conductor. In addition, we consider clean single-particle excitations on top of the Fermi sea (levitons) generated by applying designed pulses to the leads. We identify a Hong-Ou-Mandel-like suppression of the entanglement entropy by interfering two levitons on a quantum point contact tuned to half transmission.

  4. Entangling distant resonant exchange qubits via circuit quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Srinivasa, Vanita; Taylor, Jacob M.; Tahan, Charles

    Enabling modularity within a quantum information processing device relies on robust entanglement of coherent qubits at macroscopic distances. To address this challenge, we investigate theoretically a hybrid quantum system consisting of spatially separated resonant exchange qubits, defined in three-electron semiconductor triple quantum dots, that are coupled via a superconducting transmission line resonator. By analyzing three specific approaches drawn from circuit quantum electrodynamics and Hartmann-Hahn double resonance techniques for implementing resonator-mediated two-qubit entangling gates in both dispersive and resonant regimes, we show that methods for entangling superconducting qubits map directly to resonant exchange qubits. We also calculate the rate of relaxation via phonons for resonant exchange qubits in silicon triple dots and show that such an implementation is particularly well-suited to achieving the strong coupling regime. Our approach combines the robustness of encoded spin qubits in silicon with the rapid and robust long-range entanglement provided by circuit QED systems.

  5. Quantum Atomic Clock Synchronization: An Entangled Concept of Nonlocal Simultaneity

    NASA Technical Reports Server (NTRS)

    Abrams, D.; Dowling, J.; Williams, C.; Jozsa, R.

    2000-01-01

    We demonstrate that two spatially separated parties (Alice and Bob) can utilize shared prior quantum entanglement, as well as a classical information channel, to establish a synchronized pair of atomic clocks.

  6. Entanglement switching via the Kondo effect in triple quantum dots

    NASA Astrophysics Data System (ADS)

    Tooski, S. B.; Bułka, Bogdan R.; Žitko, Rok; Ramšak, Anton

    2014-06-01

    We consider a triple quantum dot system in a triangular geometry with one of the dots connected to metallic leads. Using Wilson's numerical renormalization group method, we investigate quantum entanglement and its relation to the thermodynamic and transport properties in the regime where each of the dots is singly occupied on average, but with non-negligible charge fluctuations. It is shown that even in the regime of significant charge fluctuations the formation of the Kondo singlets induces switching between separable and perfectly entangled states. The quantum phase transition between unentangled and entangled states is analyzed quantitatively and the corresponding phase diagram is explained by exactly solvable spin model. In the framework of an effective model we also explain smearing of the entanglement transition for cases when the symmetry of the triple quantum dot system is relaxed.

  7. A Weak Quantum Blind Signature with Entanglement Permutation

    NASA Astrophysics Data System (ADS)

    Lou, Xiaoping; Chen, Zhigang; Guo, Ying

    2015-09-01

    Motivated by the permutation encryption algorithm, a weak quantum blind signature (QBS) scheme is proposed. It involves three participants, including the sender Alice, the signatory Bob and the trusted entity Charlie, in four phases, i.e., initializing phase, blinding phase, signing phase and verifying phase. In a small-scale quantum computation network, Alice blinds the message based on a quantum entanglement permutation encryption algorithm that embraces the chaotic position string. Bob signs the blinded message with private parameters shared beforehand while Charlie verifies the signature's validity and recovers the original message. Analysis shows that the proposed scheme achieves the secure blindness for the signer and traceability for the message owner with the aid of the authentic arbitrator who plays a crucial role when a dispute arises. In addition, the signature can neither be forged nor disavowed by the malicious attackers. It has a wide application to E-voting and E-payment system, etc.

  8. Optimal universal asymmetric covariant quantum cloning circuits for qubit entanglement manipulation

    SciTech Connect

    Szabo, Levente; Koniorczyk, Matyas; Adam, Peter; Janszky, Jozsef

    2010-03-15

    We consider the entanglement manipulation capabilities of the universal covariant quantum cloner or quantum processor circuit for quantum bits. We investigate its use for cloning a member of a bipartite or a genuine tripartite entangled state of quantum bits. We find that for bipartite pure entangled states a nontrivial behavior of concurrence appears, while for GHZ entangled states a possibility of the partial extraction of bipartite entanglement can be achieved.

  9. Study of a monogamous entanglement measure for three-qubit quantum systems

    NASA Astrophysics Data System (ADS)

    Li, Qiting; Cui, Jianlian; Wang, Shuhao; Long, Gui-Lu

    2016-06-01

    The entanglement quantification and classification of multipartite quantum states is an important research area in quantum information. In this paper, in terms of the reduced density matrices corresponding to all possible partitions of the entire system, a bounded entanglement measure is constructed for arbitrary-dimensional multipartite quantum states. In particular, for three-qubit quantum systems, we prove that our entanglement measure satisfies the relation of monogamy. Furthermore, we present a necessary condition for characterizing maximally entangled states using our entanglement measure.

  10. Quantum entangled supercorrelated states in the Jaynes-Cummings model

    NASA Astrophysics Data System (ADS)

    Rajagopal, A. K.; Jensen, K. L.; Cummings, F. W.

    1999-08-01

    The regions of independent quantum states, maximally classically correlated states, and purely quantum entangled (supercorrelated) states described in a recent formulation of quantum information theory by Cerf and Adami are explored here numerically in the parameter space of the well-known exactly soluble Jaynes-Cummings model for equilibrium and nonequilibrium time-dependent ensembles.

  11. Entanglement, which-way measurements, and a quantum erasure

    NASA Astrophysics Data System (ADS)

    Ferrari, Christian; Braunecker, Bernd

    2010-08-01

    We present a didactical approach to the which-way experiment and the counterintuitive effect of the quantum erasure for one-particle quantum interferences. The fundamental concept of entanglement plays a central role and highlights the complementarity between quantum interference and knowledge of which path is followed by the particle.

  12. Building up Space-Time with Quantum Entanglement

    NASA Astrophysics Data System (ADS)

    van Raamsdonk, Mark

    In this essay, we argue that the emergence of classically connected space-times is intimately related to the quantum entanglement of degrees of freedom in a nonperturbative description of quantum gravity. Disentangling the degrees of freedom associated with two regions of space-time results in these regions pulling apart and pinching off from each other in a way that can be quantified by standard measures of entanglement.

  13. Quantum entanglement and the Bell matrix

    NASA Astrophysics Data System (ADS)

    Lai, Anna Chiara; Pedicini, Marco; Rognone, Silvia

    2016-07-01

    We present a class of maximally entangled states generated by a high-dimensional generalisation of the cnot gate. The advantage of our constructive approach is the simple algebraic structure of both entangling operator and resulting entangled states. In order to show that the method can be applied to any dimension, we introduce new sufficient conditions for global and maximal entanglement with respect to Meyer and Wallach's measure.

  14. Quantum frequency up-conversion of continuous variable entangled states

    SciTech Connect

    Liu, Wenyuan; Wang, Ning; Li, Zongyang; Li, Yongmin

    2015-12-07

    We demonstrate experimentally quantum frequency up-conversion of a continuous variable entangled optical field via sum-frequency-generation process. The two-color entangled state initially entangled at 806 and 1518 nm with an amplitude quadrature difference squeezing of 3.2 dB and phase quadrature sum squeezing of 3.1 dB is converted to a new entangled state at 530 and 1518 nm with the amplitude quadrature difference squeezing of 1.7 dB and phase quadrature sum squeezing of 1.8 dB. Our implementation enables the observation of entanglement between two light fields spanning approximately 1.5 octaves in optical frequency. The presented scheme is robust to the excess amplitude and phase noises of the pump field, making it a practical building block for quantum information processing and communication networks.

  15. Quantum entanglement in topological phases on a torus

    NASA Astrophysics Data System (ADS)

    Luo, Zhu-Xi; Hu, Yu-Ting; Wu, Yong-Shi

    2016-08-01

    In this paper, we study the effect of nontrivial spatial topology on quantum entanglement by examining the degenerate ground states of a topologically ordered system on a torus. Using the string-net (fixed-point) wave function, we propose a general formula of the reduced density matrix when the system is partitioned into two cylinders. The cylindrical topology of the subsystems makes a significant difference in regard to entanglement: a global quantum number for the many-body states comes into play, together with a decomposition matrix M which describes how topological charges of the ground states decompose into boundary degrees of freedom. We obtain a general formula for entanglement entropy and generalize the concept of minimally entangled states to minimally entangled sectors. Concrete examples are demonstrated with data from both finite groups and modular tensor categories (i.e., Fibonacci, Ising, etc.), supported by numerical verification.

  16. Quantum entanglement of local operators in conformal field theories.

    PubMed

    Nozaki, Masahiro; Numasawa, Tokiro; Takayanagi, Tadashi

    2014-03-21

    We introduce a series of quantities which characterize a given local operator in any conformal field theory from the viewpoint of quantum entanglement. It is defined by the increased amount of (Rényi) entanglement entropy at late time for an excited state defined by acting the local operator on the vacuum. We consider a conformal field theory on an infinite space and take the subsystem in the definition of the entanglement entropy to be its half. We calculate these quantities for a free massless scalar field theory in two, four and six dimensions. We find that these results are interpreted in terms of quantum entanglement of a finite number of states, including Einstein-Podolsky-Rosen states. They agree with a heuristic picture of propagations of entangled particles. PMID:24702348

  17. Quantum frequency up-conversion of continuous variable entangled states

    NASA Astrophysics Data System (ADS)

    Liu, Wenyuan; Wang, Ning; Li, Zongyang; Li, Yongmin

    2015-12-01

    We demonstrate experimentally quantum frequency up-conversion of a continuous variable entangled optical field via sum-frequency-generation process. The two-color entangled state initially entangled at 806 and 1518 nm with an amplitude quadrature difference squeezing of 3.2 dB and phase quadrature sum squeezing of 3.1 dB is converted to a new entangled state at 530 and 1518 nm with the amplitude quadrature difference squeezing of 1.7 dB and phase quadrature sum squeezing of 1.8 dB. Our implementation enables the observation of entanglement between two light fields spanning approximately 1.5 octaves in optical frequency. The presented scheme is robust to the excess amplitude and phase noises of the pump field, making it a practical building block for quantum information processing and communication networks.

  18. Dissipative preparation of multibody entanglement via quantum feedback control

    NASA Astrophysics Data System (ADS)

    Song, Jie; Xia, Yan; Sun, Xiu-Dong; Song, He-Shan

    2012-09-01

    We investigate the generation of a multibody Dicke state in a coupled cavity system subject to environmental noise. Based on quantum feedback control, cavity decay may play a constructive role in obtaining the intended state. The required interaction time need not be accurately controlled. In addition, the feedback operations are only applied to a single atom in one cavity during the whole evolution process, and it is not necessary to change the control strategy as the number of atoms increases. Thus, our proposal can exploit the core advantage of coupled cavities to implement a scalable control scheme for preparing multibody entanglement.

  19. Collapse–revival of quantum discord and entanglement

    SciTech Connect

    Yan, Xue-Qun Zhang, Bo-Ying

    2014-10-15

    In this paper the correlations dynamics of two atoms in the case of a micromaser-type system is investigated. Our results predict certain quasi-periodic collapse and revival phenomena for quantum discord and entanglement when the field is in Fock state and the two atoms are initially in maximally mixed state, which is a special separable state. Our calculations also show that the oscillations of the time evolution of both quantum discord and entanglement are almost in phase and they both have similar evolution behavior in some time range. The fact reveals the consistency of quantum discord and entanglement in some dynamical aspects. - Highlights: • The correlations dynamics of two atoms in the case of a micromaser-type system is investigated. • A quasi-periodic collapse and revival phenomenon for quantum discord and entanglement is reported. • A phenomenon of correlations revivals different from that of non-Markovian dynamics is revealed. • The oscillations of time evolution of both quantum discord and entanglement are almost in phase in our system. • Quantum discord and entanglement have similar evolution behavior in some time range.

  20. Use of entanglement in quantum optics

    NASA Technical Reports Server (NTRS)

    Horne, Michael A.; Bernstein, Herbert J.; Greenberger, Daniel M.; Zeilinger, Anton

    1992-01-01

    Several recent demonstrations of two-particle interferometry are reviewed and shown to be examples of either color entanglement or beam entanglement. A device, called a number filter, is described and shown to be of value in preparing beam entanglements. Finally, we note that all three concepts (color and beam entaglement, and number filtering) may be extended to three or more particles.

  1. Quantum correlations in Gaussian states via Gaussian channels: steering, entanglement, and discord

    NASA Astrophysics Data System (ADS)

    Wang, Zhong-Xiao; Wang, Shuhao; Li, Qiting; Wang, Tie-Jun; Wang, Chuan

    2016-06-01

    Here we study the quantum steering, quantum entanglement, and quantum discord for Gaussian Einstein-Podolsky-Rosen states via Gaussian channels. And the sudden death phenomena for Gaussian steering and Gaussian entanglement are theoretically observed. We find that some Gaussian states have only one-way steering, which confirms the asymmetry of quantum steering. Also we investigate that the entangled Gaussian states without Gaussian steering and correlated Gaussian states own no Gaussian entanglement. Meanwhile, our results support the assumption that quantum entanglement is intermediate between quantum discord and quantum steering. Furthermore, we give experimental recipes for preparing quantum states with desired types of quantum correlations.

  2. Autonomous quantum thermal machine for generating steady-state entanglement

    NASA Astrophysics Data System (ADS)

    Bohr Brask, Jonatan; Haack, Géraldine; Brunner, Nicolas; Huber, Marcus

    2015-11-01

    We discuss a simple quantum thermal machine for the generation of steady-state entanglement between two interacting qubits. The machine is autonomous in the sense that it uses only incoherent interactions with thermal baths, but no source of coherence or external control. By weakly coupling the qubits to thermal baths at different temperatures, inducing a heat current through the system, steady-state entanglement is generated far from thermal equilibrium. Finally, we discuss two possible implementations, using superconducting flux qubits or a semiconductor double quantum dot. Experimental prospects for steady-state entanglement are promising in both systems.

  3. Measuring Entanglement in a Photonic Embedding Quantum Simulator.

    PubMed

    Loredo, J C; Almeida, M P; Di Candia, R; Pedernales, J S; Casanova, J; Solano, E; White, A G

    2016-02-19

    Measuring entanglement is a demanding task that usually requires full tomography of a quantum system, involving a number of observables that grows exponentially with the number of parties. Recently, it was suggested that adding a single ancillary qubit would allow for the efficient measurement of concurrence, and indeed any entanglement monotone associated with antilinear operations. Here, we report on the experimental implementation of such a device-an embedding quantum simulator-in photonics, encoding the entangling dynamics of a bipartite system into a tripartite one. We show that bipartite concurrence can be efficiently extracted from the measurement of merely two observables, instead of 15, without full tomographic information. PMID:26943521

  4. Entanglement in the classical limit: Quantum correlations from classical probabilities

    SciTech Connect

    Matzkin, A.

    2011-08-15

    We investigate entanglement for a composite closed system endowed with a scaling property which allows the dynamics to be kept invariant while the effective Planck constant ({Dirac_h}/2{pi}){sub eff} of the system is varied. Entanglement increases as ({Dirac_h}/2{pi}){sub eff}{yields}0. Moreover, for sufficiently low ({Dirac_h}/2{pi}){sub eff} the evolution of the quantum correlations, encapsulated, for example, in the quantum discord, can be obtained from the mutual information of the corresponding classical system. We show this behavior is due to the local suppression of path interferences in the interaction that generates the entanglement.

  5. Deterministic controlled remote state preparation using partially entangled quantum channel

    NASA Astrophysics Data System (ADS)

    Chen, Na; Quan, Dong Xiao; Yang, Hong; Pei, Chang Xing

    2016-04-01

    In this paper, we propose a novel scheme for deterministic controlled remote state preparation (CRSP) of arbitrary two-qubit states. Suitably chosen partially entangled state is used as the quantum channel. With proper projective measurements carried out by the sender and controller, the receiver can reconstruct the target state by means of appropriate unitary operation. Unit success probability can be achieved for arbitrary two-qubit states. Different from some previous CRSP schemes utilizing partially entangled channels, auxiliary qubit is not required in our scheme. We also show that the success probability is independent of the parameters of the partially entangled quantum channel.

  6. Spin-entangled currents created by a triple quantum dot.

    PubMed

    Saraga, Daniel S; Loss, Daniel

    2003-04-25

    We propose a simple setup of three coupled quantum dots in the Coulomb blockade regime as a source for spatially separated currents of spin-entangled electrons. The entanglement originates from the singlet ground state of a quantum dot with an even number of electrons. To preserve the entanglement of the electron pair during its extraction to the drain leads, the electrons are transported through secondary dots. This prevents one-electron transport by energy mismatch, while joint transport is resonantly enhanced by conservation of the total two-electron energy. PMID:12731992

  7. Diagonal unitary entangling gates and contradiagonal quantum states

    NASA Astrophysics Data System (ADS)

    Lakshminarayan, Arul; Puchała, Zbigniew; Życzkowski, Karol

    2014-09-01

    Nonlocal properties of an ensemble of diagonal random unitary matrices of order N2 are investigated. The average Schmidt strength of such a bipartite diagonal quantum gate is shown to scale as lnN, in contrast to the lnN2 behavior characteristic of random unitary gates. Entangling power of a diagonal gate U is related to the von Neumann entropy of an auxiliary quantum state ρ =AA†/N2, where the square matrix A is obtained by reshaping the vector of diagonal elements of U of length N2 into a square matrix of order N. This fact provides a motivation to study the ensemble of non-Hermitian unimodular matrices A, with all entries of the same modulus and random phases and the ensemble of quantum states ρ, such that all their diagonal entries are equal to 1/N. Such a state is contradiagonal with respect to the computational basis, in the sense that among all unitary equivalent states it maximizes the entropy copied to the environment due to the coarse-graining process. The first four moments of the squared singular values of the unimodular ensemble are derived, based on which we conjecture a connection to a recently studied combinatorial object called the "Borel triangle." This allows us to find exactly the mean von Neumann entropy for random phase density matrices and the average entanglement for the corresponding ensemble of bipartite pure states.

  8. Quasideterministic generation of maximally entangled states of two mesoscopic atomic ensembles by adiabatic quantum feedback

    SciTech Connect

    Di Lisi, Antonio; De Siena, Silvio; Illuminati, Fabrizio; Vitali, David

    2005-09-15

    We introduce an efficient, quasideterministic scheme to generate maximally entangled states of two atomic ensembles. The scheme is based on quantum nondemolition measurements of total atomic populations and on adiabatic quantum feedback conditioned by the measurements outputs. The high efficiency of the scheme is tested and confirmed numerically for ideal photodetection as well as in the presence of losses.

  9. Practical Entanglement Estimation for Spin-System Quantum Simulators

    NASA Astrophysics Data System (ADS)

    Marty, O.; Cramer, M.; Plenio, M. B.

    2016-03-01

    We present practical methods to measure entanglement for quantum simulators that can be realized with trapped ions, cold atoms, and superconducting qubits. Focusing on long- and short-range Ising-type Hamiltonians, we introduce schemes that are applicable under realistic experimental conditions including mixedness due to, e.g., noise or temperature. In particular, we identify a single observable whose expectation value serves as a lower bound to entanglement and that may be obtained by a simple quantum circuit. As such circuits are not (yet) available for every platform, we investigate the performance of routinely measured observables as quantitative entanglement witnesses. Possible applications include experimental studies of entanglement scaling in critical systems and the reliable benchmarking of quantum simulators.

  10. Practical Entanglement Estimation for Spin-System Quantum Simulators.

    PubMed

    Marty, O; Cramer, M; Plenio, M B

    2016-03-11

    We present practical methods to measure entanglement for quantum simulators that can be realized with trapped ions, cold atoms, and superconducting qubits. Focusing on long- and short-range Ising-type Hamiltonians, we introduce schemes that are applicable under realistic experimental conditions including mixedness due to, e.g., noise or temperature. In particular, we identify a single observable whose expectation value serves as a lower bound to entanglement and that may be obtained by a simple quantum circuit. As such circuits are not (yet) available for every platform, we investigate the performance of routinely measured observables as quantitative entanglement witnesses. Possible applications include experimental studies of entanglement scaling in critical systems and the reliable benchmarking of quantum simulators. PMID:27015489

  11. Path Entanglement of Continuous-Variable Quantum Microwaves

    NASA Astrophysics Data System (ADS)

    Menzel, E. P.; Deppe, F.; Eder, P.; Zhong, L.; Haeberlein, M.; Baust, A.; Hoffmann, E.; Marx, A.; Gross, R.; di Candia, R.; Solano, E.; Ballester, D.; Ihmig, M.; Inomata, K.; Yamamoto, T.; Nakamura, Y.

    2013-03-01

    Entanglement is a quantum mechanical phenomenon playing a key role in quantum communication and information processing protocols. Here, we report on frequency-degenerate entanglement between continuous-variable quantum microwaves propagating along two separated paths. In our experiment, we combine a squeezed and a vacuum state via a beam splitter. Overcoming the challenges imposed by the low photon energies in the microwave regime, we reconstruct the squeezed state and, independently from this, detect and quantify the produced entanglement via correlation measurements (E. P. Menzel et al., arXiv:1210.4413). Our work paves the way towards quantum communication and teleportation with continuous variables in the microwave regime. This work is supported by SFB 631, German Excellence Initiative via NIM, EU projects SOLID, CCQED and PROMISCE, MEXT Kakenhi ``Quantum Cybernetics'', JSPS FIRST Program, the NICT Commissioned Research, EPSRC EP/H050434/1, Basque Government IT472-10, and Spanish MICINN FIS2009-12773-C02-01.

  12. Universal Entanglement Entropy in 2D Conformal Quantum Critical Points

    SciTech Connect

    Hsu, Benjamin; Mulligan, Michael; Fradkin, Eduardo; Kim, Eun-Ah

    2008-12-05

    We study the scaling behavior of the entanglement entropy of two dimensional conformal quantum critical systems, i.e. systems with scale invariant wave functions. They include two-dimensional generalized quantum dimer models on bipartite lattices and quantum loop models, as well as the quantum Lifshitz model and related gauge theories. We show that, under quite general conditions, the entanglement entropy of a large and simply connected sub-system of an infinite system with a smooth boundary has a universal finite contribution, as well as scale-invariant terms for special geometries. The universal finite contribution to the entanglement entropy is computable in terms of the properties of the conformal structure of the wave function of these quantum critical systems. The calculation of the universal term reduces to a problem in boundary conformal field theory.

  13. Practical long-distance quantum communication using concatenated entanglement swapping

    NASA Astrophysics Data System (ADS)

    Khalique, Aeysha; Tittel, Wolfgang; Sanders, Barry C.

    2013-08-01

    We construct a theory for long-distance quantum communication based on sharing entanglement through a linear chain of N elementary swapping segments of length L=Nl where l is the length of each elementary swap setup. Entanglement swapping is achieved by linear optics, photon counting, and postselection, and we include effects due to multiphoton sources, transmission loss, and detector inefficiencies and dark counts. Specifically we calculate the resultant four-mode state shared by the two parties at the two ends of the chain, and we derive the two-photon coincidence rate expected for this state and thereby the visibility of this long-range-entangled state. The expression is a nested sum with each sum extending from zero to infinite photons, and we solve the case N=2 exactly for the ideal case (zero dark counts, unit-efficiency detectors, and no transmission loss) and numerically for N=2 in the nonideal case with truncation at nmax=3 photons in each mode. For the general case, we show that the computational complexity for the numerical solution is nmax12N.

  14. Entanglement entropy of disordered quantum chains following a global quench

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Andraschko, F.; Sirker, J.

    2016-05-01

    We numerically investigate the growth of the entanglement entropy Sent(t ) in time t , after a global quench from a product state, in quantum chains with various kinds of disorder. The main focus is, in particular, on fermionic chains with bond disorder. In the noninteracting case at criticality we numerically test recent predictions by the real-space renormalization group for the entanglement growth in time, the maximal entanglement as a function of block size, and the decay of a density-wave order parameter. We show that multiprecision calculations are required to reach the scaling regime and perform such calculations for specific cases. For interacting models with binary bond disorder we present data based on infinite-size density matrix renormalization group calculations and exact diagonalizations. We obtain numerical evidence of a many-body localized phase in bond-disordered systems where Sent(t ) ˜lnt seems to hold. Our results for bond disorder are contrasted with the well-studied case of potential disorder.

  15. Bound entanglement maximally violating Bell inequalities: Quantum entanglement is not fully equivalent to cryptographic security

    SciTech Connect

    Augusiak, Remigiusz; Horodecki, Pawel

    2006-07-15

    It is shown that Smolin four-qubit bound entangled states [J. A. Smolin, Phys. Rev. A 63, 032306 (2001)] can maximally violate the simple two-setting Bell inequality similar to the standard Clauser-Horne-Shimony-Holt (CHSH) inequality. The simplicity of the setting and the robustness of the entanglement make it promising for current experimental technology. On the other hand, the entanglement does not allow for secure key distillation, so neither entanglement nor maximal violation of Bell inequalities implies directly the presence of a quantum secure key. As a result, one concludes that two tasks--reducing of communication complexity and cryptography--are not (even qualitatively) equivalent in a quantum multipartite scenario.

  16. Optical state engineering, quantum communication, and robustness of entanglement promiscuity in three-mode Gaussian states

    NASA Astrophysics Data System (ADS)

    Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio

    2007-03-01

    We present a novel, detailed study on the usefulness of three-mode Gaussian states for realistic processing of continuous variable (CV) quantum information, with a particular emphasis on the possibilities opened up by their genuine tripartite entanglement. We describe practical schemes to engineer several classes of pure and mixed three-mode states that stand out for their informational and/or entanglement properties. In particular, we introduce a simple procedure—based on passive optical elements—to produce pure three-mode Gaussian states with arbitrary entanglement structure (upon availability of an initial two-mode squeezed state). We analyse in depth the properties of distributed entanglement and the origin of its sharing structure, showing that the promiscuity of entanglement sharing is a feature peculiar to symmetric Gaussian states that survives even in the presence of significant degrees of mixedness and decoherence. Next, we discuss the suitability of the considered tripartite entangled states to the implementation of quantum information and communication protocols with CVs. This will lead to a feasible experimental proposal to test the promiscuous sharing of CV tripartite entanglement, in terms of the optimal fidelity of teleportation networks with Gaussian resources. We finally focus on the application of three-mode states to symmetric and asymmetric telecloning, and single out the structural properties of the optimal Gaussian resources for the latter protocol in different settings. Our analysis aims to lay the basis for a practical quantum communication with CVs beyond the bipartite scenario.

  17. Generation of entanglement in quantum parametric oscillators using phase control

    PubMed Central

    Gonzalez-Henao, J. C.; Pugliese, E.; Euzzor, S.; Abdalah, S.F.; Meucci, R.; Roversi, J. A.

    2015-01-01

    The control of quantum entanglement in systems in contact with environment plays an important role in information processing, cryptography and quantum computing. However, interactions with the environment, even when very weak, entail decoherence in the system with consequent loss of entanglement. Here we consider a system of two coupled oscillators in contact with a common heat bath and with a time dependent oscillation frequency. The possibility to control the entanglement of the oscillators by means of an external sinusoidal perturbation applied to the oscillation frequency has been theoretically explored. We demonstrate that the oscillators become entangled exactly in the region where the classical counterpart is unstable, otherwise when the classical system is stable, entanglement is not possible. Therefore, we can control the entanglement swapping from stable to unstable regions by adjusting amplitude and phase of our external controller. We also show that the entanglement rate is approximately proportional to the real part of the Floquet coefficient of the classical counterpart of the oscillators. Our results have the intriguing peculiarity of manipulating quantum information operating on a classical system. PMID:26286485

  18. Generation of entanglement in quantum parametric oscillators using phase control.

    PubMed

    Gonzalez-Henao, J C; Pugliese, E; Euzzor, S; Abdalah, S F; Meucci, R; Roversi, J A

    2015-01-01

    The control of quantum entanglement in systems in contact with environment plays an important role in information processing, cryptography and quantum computing. However, interactions with the environment, even when very weak, entail decoherence in the system with consequent loss of entanglement. Here we consider a system of two coupled oscillators in contact with a common heat bath and with a time dependent oscillation frequency. The possibility to control the entanglement of the oscillators by means of an external sinusoidal perturbation applied to the oscillation frequency has been theoretically explored. We demonstrate that the oscillators become entangled exactly in the region where the classical counterpart is unstable, otherwise when the classical system is stable, entanglement is not possible. Therefore, we can control the entanglement swapping from stable to unstable regions by adjusting amplitude and phase of our external controller. We also show that the entanglement rate is approximately proportional to the real part of the Floquet coefficient of the classical counterpart of the oscillators. Our results have the intriguing peculiarity of manipulating quantum information operating on a classical system. PMID:26286485

  19. Transfer of entangled state, entanglement swapping and quantum information processing via the Rydberg blockade

    NASA Astrophysics Data System (ADS)

    Deng, Li; Chen, Ai-Xi; Zhang, Jian-Song

    2011-11-01

    We provide a scheme with which the transfer of the entangled state and the entanglement swapping can be realized in a system of neutral atoms via the Rydberg blockade. Our idea can be extended to teleport an unknown atomic state. According to the latest theoretical research of the Rydberg excitation and experimental reports of the Rydberg blockade effect in quantum information processing, we discuss the experimental feasibility of our scheme.

  20. Electrical and optical control of entanglement entropy in a coupled triple quantum dot system

    NASA Astrophysics Data System (ADS)

    Mehmannavaz, Mohammad Reza

    2015-10-01

    We investigated theoretically the entanglement creation through tunneling rate and fields in a four-level triple quantum dot molecule based on InAs/GaAs/AlGaAs heterostructure in both steady state and transient state. We demonstrate that the entanglement entropy among the QDM and its spontaneous emission fields can be controlled by coherent and incoherent pumping field and tunnel-coupled electronics levels. The results may provide some new possibilities for technological applications in solid-state quantum information science, quantum computing, teleportation, encryption, compression codec, and optoelectronics.

  1. Protecting bipartite entanglement by quantum interferences

    SciTech Connect

    Das, Sumanta; Agarwal, G. S.

    2010-05-15

    We show that vacuum-induced coherence in three-level atomic systems can lead to preservation of bipartite entanglement when two such atoms are prepared as two initially entangled qubits, each independently interacting with their respective vacuum reservoirs. We explicitly calculate the time evolution of concurrence for two different Bell states and show that a large amount of entanglement can survive in the long time limit. The amount of entanglement left between the two qubits depends strongly on the ratio of the nonorthogonal transitions in each qubit and can be more than 50%. Moreover, we find that as a consequence of vacuum-induced coherence, sudden death of entanglement is prevented for an initial mixed entangled state of the qubits.

  2. Entanglement negativity after a local quantum quench in conformal field theories

    NASA Astrophysics Data System (ADS)

    Wen, Xueda; Chang, Po-Yao; Ryu, Shinsei

    2015-08-01

    We study the time evolution of the entanglement negativity after a local quantum quench in (1 + 1)-dimensional conformal field theories (CFTs), which we introduce by suddenly joining two initially decoupled CFTs at their end points. We calculate the negativity evolution for both adjacent intervals and disjoint intervals explicitly. For two adjacent intervals, the entanglement negativity grows logarithmically in time right after the quench. After developing a plateau-like feature, the entanglement negativity drops to the ground-state value. For the case of two spatially separated intervals, a light-cone behavior is observed in the negativity evolution; in addition, a long-range entanglement, which is independent of the distance between two intervals, can be created. Our results agree with the heuristic picture that quasiparticles, which carry entanglement, are emitted from the joining point and propagate freely through the system. Our analytical results are confirmed by numerical calculations based on a critical harmonic chain.

  3. Measurement-based quantum communication

    NASA Astrophysics Data System (ADS)

    Zwerger, M.; Briegel, H. J.; Dür, W.

    2016-03-01

    We review and discuss the potential of using measurement-based elements in quantum communication schemes, where certain tasks are realized with the help of entangled resource states that are processed by measurements. We consider long-range quantum communication based on the transmission of encoded quantum states, where encoding, decoding and syndrome readout are implemented using small-scale resource states. We also discuss entanglement-based schemes and consider measurement-based quantum repeaters. An important element in these schemes is entanglement purification, which can also be implemented in a measurement-based way. We analyze the influence of noise and imperfections in these schemes and show that measurement-based implementation allows for very large error thresholds of the order of 10 % noise per qubit and more. We show how to obtain optimal resource states for different tasks and discuss first experimental realizations of measurement-based quantum error correction using trapped ions and photons.

  4. Quantum communication using a multiqubit entangled channel

    NASA Astrophysics Data System (ADS)

    Ghose, Shohini; Hamel, Angele

    2015-12-01

    We describe a protocol in which two senders each teleport a qubit to a receiver using a multiqubit entangled state. The multiqubit channel used for teleportation is genuinely 4-qubit entangled and is not equivalent to a product of maximally entangled Bell pairs under local unitary operations. We discuss a scenario in which both senders must participate for the qubits to be successfully teleported. Such an all-or-nothing scheme cannot be implemented with standard two-qubit entangled Bell pairs and can be useful for different communication and computing tasks.

  5. Quantum communication using a multiqubit entangled channel

    SciTech Connect

    Ghose, Shohini; Hamel, Angele

    2015-12-31

    We describe a protocol in which two senders each teleport a qubit to a receiver using a multiqubit entangled state. The multiqubit channel used for teleportation is genuinely 4-qubit entangled and is not equivalent to a product of maximally entangled Bell pairs under local unitary operations. We discuss a scenario in which both senders must participate for the qubits to be successfully teleported. Such an all-or-nothing scheme cannot be implemented with standard two-qubit entangled Bell pairs and can be useful for different communication and computing tasks.

  6. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels.

    PubMed

    Yin, Juan; Ren, Ji-Gang; Lu, He; Cao, Yuan; Yong, Hai-Lin; Wu, Yu-Ping; Liu, Chang; Liao, Sheng-Kai; Zhou, Fei; Jiang, Yan; Cai, Xin-Dong; Xu, Ping; Pan, Ge-Sheng; Jia, Jian-Jun; Huang, Yong-Mei; Yin, Hao; Wang, Jian-Yu; Chen, Yu-Ao; Peng, Cheng-Zhi; Pan, Jian-Wei

    2012-08-01

    Transferring an unknown quantum state over arbitrary distances is essential for large-scale quantum communication and distributed quantum networks. It can be achieved with the help of long-distance quantum teleportation and entanglement distribution. The latter is also important for fundamental tests of the laws of quantum mechanics. Although quantum teleportation and entanglement distribution over moderate distances have been realized using optical fibre links, the huge photon loss and decoherence in fibres necessitate the use of quantum repeaters for larger distances. However, the practical realization of quantum repeaters remains experimentally challenging. Free-space channels, first used for quantum key distribution, offer a more promising approach because photon loss and decoherence are almost negligible in the atmosphere. Furthermore, by using satellites, ultra-long-distance quantum communication and tests of quantum foundations could be achieved on a global scale. Previous experiments have achieved free-space distribution of entangled photon pairs over distances of 600 metres (ref. 14) and 13 kilometres (ref. 15), and transfer of triggered single photons over a 144-kilometre one-link free-space channel. Most recently, following a modified scheme, free-space quantum teleportation over 16 kilometres was demonstrated with a single pair of entangled photons. Here we report quantum teleportation of independent qubits over a 97-kilometre one-link free-space channel with multi-photon entanglement. An average fidelity of 80.4 ± 0.9 per cent is achieved for six distinct states. Furthermore, we demonstrate entanglement distribution over a two-link channel, in which the entangled photons are separated by 101.8 kilometres. Violation of the Clauser-Horne-Shimony-Holt inequality is observed without the locality loophole. Besides being of fundamental interest, our results represent an important step towards a global quantum network. Moreover, the high

  7. Novel Quantum Proxy Signature without Entanglement

    NASA Astrophysics Data System (ADS)

    Xu, Guang-bao

    2015-08-01

    Proxy signature is an important research topic in classic cryptography since it has many application occasions in our real life. But only a few quantum proxy signature schemes have been proposed up to now. In this paper, we propose a quantum proxy signature scheme, which is designed based on quantum one-time pad. Our scheme can be realized easily since it only uses single-particle states. Security analysis shows that it is secure and meets all the properties of a proxy signature, such as verifiability, distinguishability, unforgeability and undeniability.

  8. Entanglement Dynamics in a Model Tripartite Quantum System

    NASA Astrophysics Data System (ADS)

    Laha, Pradip; Sudarsan, B.; Lakshmibala, S.; Balakrishnan, V.

    2016-09-01

    A Λ-type atom interacting with two radiation fields exhibits electromagnetically induced transparency and other nonclassical effects that appear in the entanglement dynamics of the atomic subsystem and in appropriate field observables. Both EIT and field-atom entanglement are important for quantum information processing. We investigate the roles played by specific initial field states, detuning parameters, field nonlinearities and intensity-dependent field-atom couplings on EIT and the entanglement between subsystems. Departure from coherence of the initial field states produces significant effects. We investigate these aspects in a model that exhibits the salient features of entangled tripartite systems. For initial photon-added coherent states, collapses and revivals of the atomic subsystem von Neumann entropy appear as the intensity parameter varies over a narrow range of values. These features could be useful in enabling entanglement.

  9. Entanglement Dynamics in a Model Tripartite Quantum System

    NASA Astrophysics Data System (ADS)

    Laha, Pradip; Sudarsan, B.; Lakshmibala, S.; Balakrishnan, V.

    2016-05-01

    A Λ-type atom interacting with two radiation fields exhibits electromagnetically induced transparency and other nonclassical effects that appear in the entanglement dynamics of the atomic subsystem and in appropriate field observables. Both EIT and field-atom entanglement are important for quantum information processing. We investigate the roles played by specific initial field states, detuning parameters, field nonlinearities and intensity-dependent field-atom couplings on EIT and the entanglement between subsystems. Departure from coherence of the initial field states produces significant effects. We investigate these aspects in a model that exhibits the salient features of entangled tripartite systems. For initial photon-added coherent states, collapses and revivals of the atomic subsystem von Neumann entropy appear as the intensity parameter varies over a narrow range of values. These features could be useful in enabling entanglement.

  10. Quantum entanglement in three accelerating qubits coupled to scalar fields

    NASA Astrophysics Data System (ADS)

    Dai, Yue; Shen, Zhejun; Shi, Yu

    2016-07-01

    We consider quantum entanglement of three accelerating qubits, each of which is locally coupled with a real scalar field, without causal influence among the qubits or among the fields. The initial states are assumed to be the GHZ and W states, which are the two representative three-partite entangled states. For each initial state, we study how various kinds of entanglement depend on the accelerations of the three qubits. All kinds of entanglement eventually suddenly die if at least two of three qubits have large enough accelerations. This result implies the eventual sudden death of all kinds of entanglement among three particles coupled with scalar fields when they are sufficiently close to the horizon of a black hole.

  11. Quantum teleportation of composite systems via mixed entangled states

    SciTech Connect

    Bandyopadhyay, Somshubhro; Sanders, Barry C.

    2006-09-15

    We analyze quantum teleportation for composite systems, specifically for concatenated teleporation (decomposing a large composite state into smaller states of dimension commensurate with the channel) and partial teleportation (teleporting one component of a larger quantum state). We obtain an exact expression for teleportation fidelity that depends solely on the dimension and singlet fraction for the entanglement channel and entanglement (measures by I concurrence) for the state; in fact quantum teleportation for composite systems provides an operational interpretation for I concurrence. In addition we obtain tight bounds on teleportation fidelity and prove that the average fidelity approaches the lower bound of teleportation fidelity in the high-dimension limit.

  12. Theory of entanglement and entanglement-assisted communication

    NASA Astrophysics Data System (ADS)

    Bennett, Charles H.

    2011-03-01

    Protocols such as quantum teleportation and measurement-based quantum computation highlight the importance of entanglement as a resource to be quantified and husbanded. Unlike classical shared randomness, entanglement has a profound effect on the capacity of quantum channels: a channel's entanglement-assisted capacity can be much greater than its unassisted capacity, and in any case is given by much a simpler formula, paralleling Shannon's original formula for the capacity of a classical channel. We review the differences between entanglement and weaker forms of correlation, and the theory of entanglement distillation and entanglement-assisted communication, including the role of strong forms of entanglement such as entanglement-embezzling states.

  13. Gravity from entanglement close to a quantum critical point

    NASA Astrophysics Data System (ADS)

    Faulkner, Thomas

    2015-04-01

    Entanglement entropy (EE) in quantum many-body systems reveal interesting non-local aspects of the state or phase of the system. For example, topological order in gapped phases may be characterized in this way. We present calculations of entanglement close to a quantum critical point with relativistic invariance that reveal the existence of an emergent gravitational theory in one higher dimension. The gravitational theory encodes the entanglement of the quantum system in an efficient way. In this way calculations of EE, a usually notoriously difficult quantity to calculate, are reduced to a simple computation in classical gravity. The answer we find is in the spirit of the AdS/CFT duality but goes beyond it since our results apply to any relativistic quantum critical point and not just the known theories with classical gravity duals.

  14. Efficient scheme for hybrid teleportation via entangled coherent states in circuit quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Joo, Jaewoo; Ginossar, Eran

    2016-06-01

    We propose a deterministic scheme for teleporting an unknown qubit state through continuous-variable entangled states in superconducting circuits. The qubit is a superconducting two-level system and the bipartite quantum channel is a microwave photonic entangled coherent state between two cavities. A Bell-type measurement performed on the hybrid state of solid and photonic states transfers a discrete-variable unknown electronic state to a continuous-variable photonic cat state in a cavity mode. In order to facilitate the implementation of such complex protocols we propose a design for reducing the self-Kerr nonlinearity in the cavity. The teleporation scheme enables quantum information processing operations with circuit-QED based on entangled coherent states. These include state verification and single-qubit operations with entangled coherent states. These are shown to be experimentally feasible with the state of the art superconducting circuits.

  15. Efficient scheme for hybrid teleportation via entangled coherent states in circuit quantum electrodynamics

    PubMed Central

    Joo, Jaewoo; Ginossar, Eran

    2016-01-01

    We propose a deterministic scheme for teleporting an unknown qubit state through continuous-variable entangled states in superconducting circuits. The qubit is a superconducting two-level system and the bipartite quantum channel is a microwave photonic entangled coherent state between two cavities. A Bell-type measurement performed on the hybrid state of solid and photonic states transfers a discrete-variable unknown electronic state to a continuous-variable photonic cat state in a cavity mode. In order to facilitate the implementation of such complex protocols we propose a design for reducing the self-Kerr nonlinearity in the cavity. The teleporation scheme enables quantum information processing operations with circuit-QED based on entangled coherent states. These include state verification and single-qubit operations with entangled coherent states. These are shown to be experimentally feasible with the state of the art superconducting circuits. PMID:27245775

  16. Efficient scheme for hybrid teleportation via entangled coherent states in circuit quantum electrodynamics.

    PubMed

    Joo, Jaewoo; Ginossar, Eran

    2016-01-01

    We propose a deterministic scheme for teleporting an unknown qubit state through continuous-variable entangled states in superconducting circuits. The qubit is a superconducting two-level system and the bipartite quantum channel is a microwave photonic entangled coherent state between two cavities. A Bell-type measurement performed on the hybrid state of solid and photonic states transfers a discrete-variable unknown electronic state to a continuous-variable photonic cat state in a cavity mode. In order to facilitate the implementation of such complex protocols we propose a design for reducing the self-Kerr nonlinearity in the cavity. The teleporation scheme enables quantum information processing operations with circuit-QED based on entangled coherent states. These include state verification and single-qubit operations with entangled coherent states. These are shown to be experimentally feasible with the state of the art superconducting circuits. PMID:27245775

  17. Environment-assisted entanglement restoration and improvement of the fidelity for quantum teleportation

    NASA Astrophysics Data System (ADS)

    Xu, Xian-Mei; Cheng, Liu-Yong; Liu, A.-Peng; Su, Shi-Lei; Wang, Hong-Fu; Zhang, Shou

    2015-11-01

    Three environment-assisted schemes are proposed to suppress the amplitude damping decoherence for entanglement distribution via weak measurement reversal. Based on the measurement of environment and appropriate weak measurement reversal operations, the initial entangled state can be recovered between two separated participants with high success probability and fidelity. In some specific cases, the restored optimal concurrence could reach up to 1 without requirement of the reversing measurement. Moreover, we concretely show that the proposed environment-assisted entanglement restoration can be applied to quantum teleportation to significantly improve the fidelity of the teleported state.

  18. Entangling polaritons via dynamical Casimir effect in circuit quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Rossatto, D. Z.; Felicetti, S.; Eneriz, H.; Rico, E.; Sanz, M.; Solano, E.

    2016-03-01

    We investigate theoretically how the dynamical Casimir effect can entangle quantum systems in different coupling regimes of circuit quantum electrodynamics, and show the robustness of such entanglement generation against dissipative effects, considering experimental parameters of current technology. We consider two qubit-resonator systems, which are coupled by a SQUID driven with an external magnetic field, and explore the entire range of coupling regimes between each qubit and its resonator. In this scheme, we derive a semianalytic explanation for the entanglement generation between both superconducting qubits when they are coupled to their resonators in the strong coupling regime. For the ultrastrong and deep strong coupling regimes, we design experimentally feasible theoretical protocols to generate maximally entangled polaritonic states.

  19. Maximal atom-photon entanglement in a double- quantum system

    NASA Astrophysics Data System (ADS)

    Kordi, Zeinab; Ghanbari, Saeed; Mahmoudi, Mohammad

    2015-06-01

    The atom-photon entanglement of a dressed atom and its spontaneous emission in a double- closed-loop atomic system is studied under multi-photon resonance condition. It is shown that even in the absence of quantum interference due to the spontaneous emission, the von Neumann entropy is phase-sensitive and it can be controlled by either intensity or relative phase of the applied fields. It is demonstrated that for the special case of Rabi frequency of the applied fields, the system is maximally entangled. Moreover, an open-loop configuration is considered, and it is shown that the degree of entanglement can be controlled by intensity of the applied fields. Furthermore, in electromagnetically induced transparency condition, the system is disentangled. Such a system can be used for quantum information processing via entanglement using optical switching.

  20. Entanglement of two, three, or four plasmonically coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Otten, Matthew; Shah, Raman A.; Scherer, Norbert F.; Min, Misun; Pelton, Matthew; Gray, Stephen K.

    2015-09-01

    We model the quantum dynamics of two, three, or four quantum dots (QDs) in proximity to a plasmonic system such as a metal nanoparticle or an array of metal nanoparticles. For all systems, an initial state with only one QD in its excited state evolves spontaneously into a state with entanglement between all pairs of QDs. The entanglement arises from the couplings of the QDs to the dissipative, plasmonic environment. Moreover, we predict that similarly entangled states can be generated in systems with appropriate geometries, starting in their ground states, by exciting the entire system with a single, ultrafast laser pulse. By using a series of repeated pulses, the system can also be prepared in an entangled state at an arbitrary time.

  1. Locality and entanglement in bandlimited quantum field theory

    NASA Astrophysics Data System (ADS)

    Pye, Jason; Donnelly, William; Kempf, Achim

    2015-11-01

    We consider a model for a Planck-scale ultraviolet cutoff which is based on Shannon sampling. Shannon sampling originated in information theory, where it expresses the equivalence of continuous and discrete representations of information. When applied to quantum field theory, Shannon sampling expresses a hard ultraviolet cutoff in the form of a bandlimitation. This introduces nonlocality at the cutoff scale in a way that is more subtle than a simple discretization of space: quantum fields can then be represented as either living on continuous space or, entirely equivalently, as living on any one lattice whose average spacing is sufficiently small. We explicitly calculate vacuum entanglement entropies in 1 +1 dimensions and we find a transition between logarithmic and linear scaling of the entropy, which is the expected 1 +1 dimensional analog of the transition from an area to a volume law. We also use entanglement entropy and mutual information as measures to probe in detail the localizability of the field degrees of freedom. We find that, even though neither translation nor rotation invariance are broken, each field degree of freedom occupies an incompressible volume of space, indicating a finite information density.

  2. Locality and entanglement in bandlimited quantum field theory

    NASA Astrophysics Data System (ADS)

    Pye, Jason; Donnelly, William; Kempf, Achim

    We consider a model for a Planck scale ultraviolet cutoff which is based on Shannon sampling. Shannon sampling originated in information theory, where it expresses the equivalence of continuous and discrete representations of information. When applied to quantum field theory, Shannon sampling expresses a hard ultraviolet cutoff in the form of a bandlimitation. This introduces nonlocality at the cutoff scale in a way that is more subtle than a simple discretization of space: quantum fields can then be represented as either living on continuous space or, entirely equivalently, as living on any one lattice whose average spacing is sufficiently small. We explicitly calculate vacuum entanglement entropies in 1+1 dimensions and we find a transition between logarithmic and linear scaling of the entropy, which is the expected 1+1 dimensional analog of the transition from an area to a volume law. We also use entanglement entropy and mutual information as measures to probe in detail the localizability of the field degrees of freedom. We find that, even though neither translation nor rotation invariance are broken, each field degree of freedom occupies an incompressible volume of space, indicating a finite information density.

  3. Generation of heralded entanglement between distant quantum dot hole spins

    NASA Astrophysics Data System (ADS)

    Delteil, Aymeric

    Entanglement plays a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, some of the major challenges are the efficient generation of entanglement between stationary (spin) and propagating (photon) qubits, the transfer of information from flying to stationary qubits, and the efficient generation of entanglement between distant stationary (spin) qubits. In this talk, I will present such experimental implementations achieved in our team with semiconductor self-assembled quantum dots.Not only are self-assembled quantum dots good single-photon emitters, but they can host an electron or a hole whose spin serves as a quantum memory, and then present spin-dependent optical selection rules leading to an efficient spin-photon quantum interface. Moreover InGaAs quantum dots grown on GaAs substrate can profit from the maturity of III-V semiconductor technology and can be embedded in semiconductor structures like photonic cavities and Schottky diodes.I will report on the realization of heralded quantum entanglement between two semiconductor quantum dot hole spins separated by more than five meters. The entanglement generation scheme relies on single photon interference of Raman scattered light from both dots. A single photon detection projects the system into a maximally entangled state. We developed a delayed two-photon interference scheme that allows for efficient verification of quantum correlations. Moreover the efficient spin-photon interface provided by self-assembled quantum dots allows us to reach an unprecedented rate of 2300 entangled spin pairs per second, which represents an improvement of four orders of magnitude as compared to prior experiments carried out in other systems.Our results extend previous demonstrations in single trapped ions or neutral atoms, in atom ensembles and nitrogen vacancy centers to the domain of

  4. Groverian entanglement measure of pure quantum states with arbitrary partitions

    SciTech Connect

    Shimoni, Yishai; Biham, Ofer

    2007-02-15

    The Groverian entanglement measure of pure quantum states of n qubits is generalized to the case in which the qubits are divided into any p{<=}n parties. The entanglement between these parties is evaluated numerically using an efficient parametrization. To demonstrate this measure we apply it to symmetric states such as the Greenberg-Horne-Zeiliner state and the W state. Interestingly, this measure is equivalent to an entanglement measure introduced earlier [H. Barnum and N. Linden, J. Phys. A 34, 6787 (2001)], using different considerations.

  5. Photonic Quantum Metrologies Using Photons: Phase Super-sensitivity and Entanglement-Enhanced Imaging

    NASA Astrophysics Data System (ADS)

    Takeuchi, Shigeki

    Quantum information science has been attracting significant attention recently. It harnesses the intrinsic nature of quantum mechanics such as quantum superposition, the uncertainty principle, and quantum entanglement to realize novel functions. Recently, quantum metrology has been emerging as an application of quantum information science. Among the many physical quanta, photons are an indispensable tool for metrology, as light-based measurements are applicable to fields ranging from astronomy to life science. In quantum metrology, quantum entanglement between photons is the phenomenon utilized.In this chapter, we will try to give a brief overview of this emerging field mainly focusing on two topics: Optical phase measurements beyond the standard quantum limit (SQL) and quantum optical coherence tomography (QOCT). The sensitivity of an optical phase measurement for a given photon number N is usually limited by N sqrt{N} , which is called the SQL or shot noise limit. However, the SQL can be overcome when non-classical light is used. We explain the basic concepts and the recent experimental results that exceed the SQL, and an application of this technology for microscopy. QOCT harnesses the quantum entanglement of photons in frequency to cancel out the dispersion effect, which degrades the resolution of conventional OCT. The mechanism of the dispersion cancellation and the latest experimental results will be given.

  6. Multiparty Controlled Deterministic Secure Quantum Communication Through Entanglement Swapping

    NASA Astrophysics Data System (ADS)

    Dong, Li; Xiu, Xiao-Ming; Gao, Ya-Jun; Chi, Feng

    A three-party controlled deterministic secure quantum communication scheme through entanglement swapping is proposed firstly. In the scheme, the sender needs to prepare a class of Greenberger-Horne-Zeilinger (GHZ) states which are used as quantum channel. The two communicators may securely communicate under the control of the controller if the quantum channel is safe. The roles of the sender, the receiver, and the controller can be exchanged owing to the symmetry of the quantum channel. Different from other controlled quantum secure communication schemes, the scheme needs lesser additional classical information for transferring secret information. Finally, it is generalized to a multiparty controlled deterministic secure quantum communication scheme.

  7. Quantum coherence and entanglement control for atom-cavity systems

    NASA Astrophysics Data System (ADS)

    Shu, Wenchong

    Coherence and entanglement play a significant role in the quantum theory. Ideal quantum systems, "closed" to the outside world, remain quantum forever and thus manage to retain coherence and entanglement. Real quantum systems, however, are open to the environment and are therefore susceptible to the phenomenon of decoherence and disentanglement which are major hindrances to the effectiveness of quantum information processing tasks. In this thesis we have theoretically studied the evolution of coherence and entanglement in quantum systems coupled to various environments. We have also studied ways and means of controlling the decay of coherence and entanglement. We have studied the exact qubit entanglement dynamics of some interesting initial states coupled to a high-Q cavity containing zero photon, one photon, two photons and many photons respectively. We have found that an initially correlated environmental state can serve as an enhancer for entanglement decay or generation processes. More precisely, we have demonstrated that the degree of entanglement, including its collapse as well as its revival times, can be significantly modified by the correlated structure of the environmental modes. We have also studied dynamical decoupling (DD) technique --- a prominent strategy of controlling decoherence and preserving entanglement in open quantum systems. We have analyzed several DD control methods applied to qubit systems that can eliminate the system-environment coupling and prolong the quantum coherence time. Particularly, we have proposed a new DD sequence consisting a set of designed control operators that can universally protected an unknown qutrit state against colored phase and amplitude environment noises. In addition, in a non-Markovian regime, we have reformulated the quantum state diffusion (QSD) equation to incorporate the effect of the external control fields. Without any assumptions on the system-environment coupling and the size of environment, we have

  8. Measuring entanglement entropy of a generic many-body system with a quantum switch.

    PubMed

    Abanin, Dmitry A; Demler, Eugene

    2012-07-13

    Entanglement entropy has become an important theoretical concept in condensed matter physics because it provides a unique tool for characterizing quantum mechanical many-body phases and new kinds of quantum order. However, the experimental measurement of entanglement entropy in a many-body system is widely believed to be unfeasible, owing to the nonlocal character of this quantity. Here, we propose a general method to measure the entanglement entropy. The method is based on a quantum switch (a two-level system) coupled to a composite system consisting of several copies of the original many-body system. The state of the switch controls how different parts of the composite system connect to each other. We show that, by studying the dynamics of the quantum switch only, the Rényi entanglement entropy of the many-body system can be extracted. We propose a possible design of the quantum switch, which can be realized in cold atomic systems. Our work provides a route towards testing the scaling of entanglement in critical systems as well as a method for a direct experimental detection of topological order. PMID:23030142

  9. Reexamination of entanglement and the quantum phase transition

    SciTech Connect

    Yang, M.-F.

    2005-03-01

    We show that, for an exactly solvable quantum spin model, a discontinuity in the first derivative of the ground-state concurrence appears in the absence of a quantum phase transition. It is opposed to the popular belief that the nonanalyticity property of ground-state concurrence can be used to determine quantum phase transitions. We further point out that the analyticity property of the ground-state concurrence in general can be more intricate than that of the ground-state energy. Thus there is no one-to-one correspondence between quantum phase transitions and the nonanalyticity property of the concurrence. Moreover, we show that the von Neumann entropy, as another measure of entanglement, cannot reveal quantum phase transitions in the present model. Therefore, in order to link with quantum phase transitions, some other measures of entanglement are needed.

  10. Generalised squeezing and information theory approach to quantum entanglement

    NASA Technical Reports Server (NTRS)

    Vourdas, A.

    1993-01-01

    It is shown that the usual one- and two-mode squeezing are based on reducible representations of the SU(1,1) group. Generalized squeezing is introduced with the use of different SU(1,1) rotations on each irreducible sector. Two-mode squeezing entangles the modes and information theory methods are used to study this entanglement. The entanglement of three modes is also studied with the use of the strong subadditivity property of the entropy.

  11. Geometric entanglement and quantum phase transitions in two-dimensional quantum lattice models

    NASA Astrophysics Data System (ADS)

    Shi, Qian-Qian; Wang, Hong-Lei; Li, Sheng-Hao; Cho, Sam Young; Batchelor, Murray T.; Zhou, Huan-Qiang

    2016-06-01

    Geometric entanglement (GE), as a measure of multipartite entanglement, has been investigated as a universal tool to detect phase transitions in quantum many-body lattice models. In this paper we outline a systematic method to compute GE for two-dimensional (2D) quantum many-body lattice models based on the translational invariant structure of infinite projected entangled pair state (iPEPS) representations. By employing this method, the q -state quantum Potts model on the square lattice with q ∈{2 ,3 ,4 ,5 } is investigated as a prototypical example. Further, we have explored three 2D Heisenberg models: the antiferromagnetic spin-1/2 X X X and anisotropic X Y X models in an external magnetic field, and the antiferromagnetic spin-1 X X Z model. We find that continuous GE does not guarantee a continuous phase transition across a phase transition point. We observe and thus classify three different types of continuous GE across a phase transition point: (i) GE is continuous with maximum value at the transition point and the phase transition is continuous, (ii) GE is continuous with maximum value at the transition point but the phase transition is discontinuous, and (iii) GE is continuous with nonmaximum value at the transition point and the phase transition is continuous. For the models under consideration, we find that the second and the third types are related to a point of dual symmetry and a fully polarized phase, respectively.

  12. Three-party remote state preparation schemes based on entanglement

    NASA Astrophysics Data System (ADS)

    Zhou, Nan-Run; Cheng, Hu-Lai; Tao, Xiang-Yang; Gong, Li-Hua

    2013-11-01

    By exploiting the entanglement correlation in quantum mechanics, two three-party remote state preparation (RSP) schemes are proposed. One is three-party remote preparation of a single-particle quantum state, and the other is three-party remote preparation of a two-particle entangled state. In the proposed schemes, the sender Alice knows the quantum states to be prepared, while the receivers Bob and Charlie do not know the quantum states; Alice performs measurement and unitary operations on her own particles with two three-particle GHZ states as the quantum channel. According to Alice's measurement results, Bob and Charlie measure their own particles on the corresponding quantum measurement bases and perform unitary operations on the corresponding particles to reconstruct the quantum states, respectively. Compared with multiparty joint remote preparation and two-party RSP of a quantum state, the proposed schemes realize quantum multicast communication successfully, which enables Bob and Charlie to obtain the prepared quantum states simultaneously in the case of just knowing Alice's measurement results, while Bob and Charlie do not know each other's prepared quantum states. It is shown that only three classical bits are required for the two proposed RSP schemes when Bob and Alice introduce an auxiliary particle, respectively, and the proposed schemes are secure after the quantum channel authentication.

  13. Finiteness of entanglement entropy in a quantum black hole

    NASA Astrophysics Data System (ADS)

    Wen, Wen-Yu

    2016-03-01

    A logarithmic but divergent term usually appears in the computation of entanglement entropy circumferencing a black hole, while the leading quantum correction to the Bekenstein-Hawking entropy also takes the logarithmic form. A quench model of CFT within finite Euclidean time was proposed by Kuwakino and Wen (JHEP, 05 (2015) 099) to regard this logarithmic term as entanglement between radiation and the black hole, and this proposal was justified by the alternative sign for n-partite quantum information. However, this preliminary form suffers from the notorious divergence at its low-temperature limit. In this letter, we propose a modified form for black-hole entanglement entropy such that the divergence sickness can be cured. We discuss the final stage of a black hole due to this modification and its relation to the Rényi entropy, higher-loop quantum correction and higher-spin black holes.

  14. Bell states and entanglement dynamics on two coupled quantum molecules

    SciTech Connect

    Oliveira, P.A.; Sanz, L.

    2015-05-15

    This work provides a complete description of entanglement properties between electrons inside coupled quantum molecules, nanoestructures which consist of two quantum dots. Each electron can tunnel between the two quantum dots inside the molecule, being also coupled by Coulomb interaction. First, it is shown that Bell states act as a natural basis for the description of this physical system, defining the characteristics of the energy spectrum and the eigenstates. Then, the entanglement properties of the eigenstates are discussed, shedding light on the roles of each physical parameters on experimental setup. Finally, a detailed analysis of the dynamics shows the path to generate states with a high degree of entanglement, as well as physical conditions associated with coherent oscillations between separable and Bell states.

  15. Entanglement of quantum circular states of light

    NASA Astrophysics Data System (ADS)

    Horoshko, D. B.; De Bièvre, S.; Kolobov, M. I.; Patera, G.

    2016-06-01

    We present a general approach to calculating the entanglement of formation for superpositions of two-mode coherent states, placed equidistantly on a circle in phase space. We show that in the particular case of rotationally invariant circular states the Schmidt decomposition of two modes, and therefore the value of their entanglement, are given by analytical expressions. We analyze the dependence of the entanglement on the radius of the circle and number of components in the superposition. We also show that the set of rotationally invariant circular states creates an orthonormal basis in the state space of the harmonic oscillator, and this basis is advantageous for representation of other circular states of light.

  16. Entanglement witness operator for quantum teleportation.

    PubMed

    Ganguly, Nirman; Adhikari, Satyabrata; Majumdar, A S; Chatterjee, Jyotishman

    2011-12-30

    The ability of entangled states to act as a resource for teleportation is linked to a property of the fully entangled fraction. We show that the set of states with their fully entangled fraction bounded by a threshold value required for performing teleportation is both convex and compact. This feature enables the existence of Hermitian witness operators, the measurement of which could distinguish unknown states useful for performing teleportation. We present an example of such a witness operator illustrating it for different classes of states. PMID:22243295

  17. Entanglement replication via quantum repeated interactions

    NASA Astrophysics Data System (ADS)

    Wendenbaum, Pierre; Platini, Thierry; Karevski, Dragi

    2015-04-01

    We study entanglement creation between two independent XX chains, which are repeatedly coupled locally to spin-1/2 Bell pairs. We show analytically that in the steady state the entanglement of the Bell pairs is perfectly transferred to the chains, generating large-scale interchain pair correlations. However, before the steady state is reached, within a growing causal region around the interacting locus the chains are found in a current driven nonequilibrium steady state (NESS). In the NESS, the chains cross entanglement decays exponentially with respect to the distance to the boundary sites with a typical length scale which is inversely proportional to the driving current.

  18. Robust quantum dialogue based on the entanglement swapping between any two logical Bell states and the shared auxiliary logical Bell state

    NASA Astrophysics Data System (ADS)

    Ye, Tian-Yu

    2015-04-01

    In this paper, using the quantum entanglement swapping technologies under the collective-dephasing noise and the collective-rotation noise, two robust quantum dialogue protocols are proposed, respectively. The logical Bell states are used as the traveling states to combat the collective noise. The auxiliary logical Bell state is shared privately between two participants through the manner of direct transmission first. After encoded with the receiver's secret messages, it swaps entanglement with its adjacent logical Bell state. In this way, the information leakage problem is avoided. Moreover, Eve's active attacks can be detected with the help of decoy photon technology. For decoding, the Bell state measurements rather than the four-qubit joint measurements are needed.

  19. Entangled coherent states versus entangled photon pairs for practical quantum-information processing

    SciTech Connect

    Park, Kimin; Jeong, Hyunseok

    2010-12-15

    We compare effects of decoherence and detection inefficiency on entangled coherent states (ECSs) and entangled photon pairs (EPPs), both of which are known to be particularly useful for quantum-information processing (QIP). When decoherence effects caused by photon losses are heavy, the ECSs outperform the EPPs as quantum channels for teleportation both in fidelities and in success probabilities. On the other hand, when inefficient detectors are used, the teleportation scheme using the ECSs suffers undetected errors that result in the degradation of fidelity, while this is not the case for the teleportation scheme using the EPPs. Our study reveals the merits and demerits of the two types of entangled states in realizing practical QIP under realistic conditions.

  20. Generation and entanglement concentration for electron-spin entangled cluster states using charged quantum dots in optical microcavities

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Zheng, Chun-Hong; Shi, Peng; Ren, Chun-Nian; Gu, Yong-Jian

    2014-07-01

    We present schemes for deterministically generating multi-qubit electron-spin entangled cluster states by the giant circular birefringence, induced by the interface between the spin of a photon and the spin of an electron confined in a quantum dot embedded in a double-sided microcavity. Based on this interface, we construct the controlled phase flip (CPF) gate deterministically which is performed on electron-spin qubits and is the essential component of the cluster-state generation. As one of the universal gates, the CPF gate constructed can also be utilized in achieving scalable quantum computing. Besides, we propose the entanglement concentration protocol to reconstruct a partially entangled cluster state into a maximally entangled one, resorting to the projection measurement on an ancillary photon. By iterating the concentration scheme several times, the maximum success probability can be achieved. The fidelities and experimental feasibilities are analyzed with respect to currently available techniques, indicating that our schemes can work well in both the strong and weak (Purcell) coupling regimes.

  1. Controllable high-fidelity quantum state transfer and entanglement generation in circuit QED

    PubMed Central

    Xu, Peng; Yang, Xu-Chen; Mei, Feng; Xue, Zheng-Yuan

    2016-01-01

    We propose a scheme to realize controllable quantum state transfer and entanglement generation among transmon qubits in the typical circuit QED setup based on adiabatic passage. Through designing the time-dependent driven pulses applied on the transmon qubits, we find that fast quantum sate transfer can be achieved between arbitrary two qubits and quantum entanglement among the qubits also can also be engineered. Furthermore, we numerically analyzed the influence of the decoherence on our scheme with the current experimental accessible systematical parameters. The result shows that our scheme is very robust against both the cavity decay and qubit relaxation, the fidelities of the state transfer and entanglement preparation process could be very high. In addition, our scheme is also shown to be insensitive to the inhomogeneous of qubit-resonator coupling strengths. PMID:26804326

  2. Entangling power and operator entanglement in qudit systems

    SciTech Connect

    Wang Xiaoguang; Sanders, Barry C.; Berry, Dominic W.

    2003-04-01

    We establish the entangling power of a unitary operator on a general finite-dimensional bipartite quantum system with and without ancillas, and give relations between the entangling power based on the von Neumann entropy and the entangling power based on the linear entropy. Significantly, we demonstrate that the entangling power of a general controlled unitary operator acting on two equal-dimensional qudits is proportional to the corresponding operator entanglement if linear entropy is adopted as the quantity representing the degree of entanglement. We discuss the entangling power and operator entanglement of three representative quantum gates on qudits: the SUM, double SUM, and SWAP gates.

  3. Gravity-matter entanglement in Regge quantum gravity

    NASA Astrophysics Data System (ADS)

    Paunković, Nikola; Vojinović, Marko

    2016-03-01

    We argue that Hartle-Hawking states in the Regge quantum gravity model generically contain non-trivial entanglement between gravity and matter fields. Generic impossibility to talk about “matter in a point of space” is in line with the idea of an emergent spacetime, and as such could be taken as a possible candidate for a criterion for a plausible theory of quantum gravity. Finally, this new entanglement could be seen as an additional “effective interaction”, which could possibly bring corrections to the weak equivalence principle.

  4. Entanglement in algebraic quantum mechanics: Majorana fermion systems

    NASA Astrophysics Data System (ADS)

    Benatti, F.; Floreanini, R.

    2016-07-01

    Many-body entanglement is studied within the algebraic approach to quantum physics in systems made of Majorana fermions. In this framework, the notion of separability stems from partitions of the algebra of observables and properties of the associated correlation functions, rather than on particle tensor products. This allows a complete characterization of non-separable Majorana fermion states to be obtained. These results may have direct application in quantum metrology: using Majorana systems, sub-shot-noise accuracy in parameter estimations can be achieved without preliminary resource-consuming, state entanglement operations.

  5. Minimum-error discrimination of entangled quantum states

    SciTech Connect

    Lu, Y.; Coish, N.; Kaltenbaek, R.; Hamel, D. R.; Resch, K. J.; Croke, S.

    2010-10-15

    Strategies to optimally discriminate between quantum states are critical in quantum technologies. We present an experimental demonstration of minimum-error discrimination between entangled states, encoded in the polarization of pairs of photons. Although the optimal measurement involves projection onto entangled states, we use a result of J. Walgate et al. [Phys. Rev. Lett. 85, 4972 (2000)] to design an optical implementation employing only local polarization measurements and feed-forward, which performs at the Helstrom bound. Our scheme can achieve perfect discrimination of orthogonal states and minimum-error discrimination of nonorthogonal states. Our experimental results show a definite advantage over schemes not using feed-forward.

  6. Entanglement dynamics of photon pairs emitted from quantum dots

    SciTech Connect

    Zou, Yang; Gong, Ming; Li, Chuan-Feng; Chen, Geng; Tang, Jian-Shun; Guo, Guang-Can

    2010-06-15

    We present a model that describes states of photon pairs, which have been generated by biexciton cascade decays of self-assembled quantum dots, the use of which yields a finding that agrees well with the experimental result. Furthermore, we calculate the concurrence and determine the temperature behavior associated with the so-called entanglement sudden death that prevents quantum dots emitting entangled photon pairs at raised temperatures. The relationship between the fine-structure splitting and the sudden death temperature is also provided.

  7. Controlled mutual quantum entity authentication using entanglement swapping

    NASA Astrophysics Data System (ADS)

    Min-Sung, Kang; Chang-Ho, Hong; Jino, Heo; Jong-In, Lim; Hyung-Jin, Yang

    2015-09-01

    In this paper, we suggest a controlled mutual quantum entity authentication protocol by which two users mutually certify each other on a quantum network using a sequence of Greenberger-Horne-Zeilinger (GHZ)-like states. Unlike existing unidirectional quantum entity authentication, our protocol enables mutual quantum entity authentication utilizing entanglement swapping; moreover, it allows the managing trusted center (TC) or trusted third party (TTP) to effectively control the certification of two users using the nature of the GHZ-like state. We will also analyze the security of the protocol and quantum channel. Project supported by the Research Foundation of Korea University.

  8. Quantum entanglement distribution with 810 nm photons through active telecommunication fibers.

    PubMed

    Holloway, Catherine; Meyer-Scott, Evan; Erven, Chris; Jennewein, Thomas

    2011-10-10

    We demonstrate the distribution of polarization-entangled photons for the purpose of quantum key distribution (QKD) along active telecom fibers. Entangled photon pairs of 810 nm wavelength generated by a Sagnac interferometer source were coupled into standard telecom single mode fibers. The fibers were either dark or carrying a standardized 1550 nm ethernet signals (1000BASE-ZX) with a nominal speed of 1 GBps from regular media converter devices, without any requirements on the optical power or spectrum transmitted. Our system demonstrates a QKD network covering 6 km in distance with a central service provider for classical and quantum data. PMID:21997067

  9. Coherence and degree of time-bin entanglement from quantum dots

    NASA Astrophysics Data System (ADS)

    Huber, Tobias; Ostermann, Laurin; Prilmüller, Maximilian; Solomon, Glenn S.; Ritsch, Helmut; Weihs, Gregor; Predojević, Ana

    2016-05-01

    We report a study on coherence of excitation of single quantum dots. We address the coherent excitation of biexcitons, the process that is indispensable for deterministic photon pair generation in quantum dots. Based on theoretical modeling we optimized the duration of the excitation pulse in our experiment to minimize the laser-induced dephasing and increase the biexciton-to-background single-exciton occupation probability. An additional effect of this approach is a high degree of time-bin entanglement with a concurrence of up to 0.78(6) and a 0.88(3) overlap with a maximally entangled state.

  10. Quantum Coherent Feedback Control for Generation System of Optical Entangled State

    PubMed Central

    Zhou, Yaoyao; Jia, Xiaojun; Li, Fang; Yu, Juan; Xie, Changde; Peng, Kunchi

    2015-01-01

    The non-measurement based coherent feedback control (CFC) is a control method without introducing any backaction noise into the controlled system, thus is specially suitable to manipulate various quantum optical systems for preparing nonclassical states of light. By simply tuning the transmissivity of an optical controller in a CFC loop attached to a non-degenerate optical parametric amplifier (NOPA), the quantum entanglement degree of the output optical entangled state of the system is improved. At the same time, the threshold pump power of the NOPA is reduced also. The experimental results are in reasonable agreement with the theoretical expectation. PMID:26047357

  11. Quantum transitions and quantum entanglement from Dirac-like dynamics simulated by trapped ions

    NASA Astrophysics Data System (ADS)

    Bittencourt, Victor A. S. V.; Bernardini, Alex E.; Blasone, Massimo

    2016-05-01

    Quantum transition probabilities and quantum entanglement for two-qubit states of a four-level trapped ion quantum system are computed for time-evolving ionic states driven by Jaynes-Cummings Hamiltonians with interactions mapped onto a SU(2 )⊗SU(2 ) group structure. Using the correspondence of the method of simulating a 3 +1 dimensional Dirac-like Hamiltonian for bispinor particles into a single trapped ion, one preliminarily obtains the analytical tools for describing ionic state transition probabilities as a typical quantum oscillation feature. For Dirac-like structures driven by generalized Poincaré classes of coupling potentials, one also identifies the SU(2 )⊗SU(2 ) internal degrees of freedom corresponding to intrinsic parity and spin polarization as an adaptive platform for computing the quantum entanglement between the internal quantum subsystems which define two-qubit ionic states. The obtained quantum correlational content is then translated into the quantum entanglement of two-qubit ionic states with quantum numbers related to the total angular momentum and to its projection onto the direction of the trapping magnetic field. Experimentally, the controllable parameters simulated by ion traps can be mapped into a Dirac-like system in the presence of an electrostatic field which, in this case, is associated to ionic carrier interactions. Besides exhibiting a complete analytical profile for ionic quantum transitions and quantum entanglement, our results indicate that carrier interactions actively drive an overall suppression of the quantum entanglement.

  12. Measuring quantum effects in photosynthetic light-harvesting complexes with multipartite entanglement

    NASA Astrophysics Data System (ADS)

    Smyth, Cathal

    This thesis is a compilation of studies on delocalization measures, entanglement, and the role of quantum coherence in electronic energy transfer (EET) in light-harvesting complexes. The first two chapters after the introduction provide foundational knowledge of quantum information and light-harvesting, respectively. Chapter 2 introduces concepts from quantum information such as purity, bipartite entanglement and criteria for its measurement. The peripheral light-harvesting complex LH2, isolated from the anoxygenic purple bacterium Rhodopseudomonas acidophila, is employed as model system of interest. This light-harvesting complex, along with a description of the process of light-harvesting, the presence of quantum coherence, and the different models used to simulate EET, are described in chapter 3. In combination these two chapters lay the foundation for chapter 4, a critical assessment of the current measures of delocalization employed in EET studies, their relationship, and overall effectiveness. The conclusion is that entanglement based measures are most effective at measuring quantum effects, and that they can be related to more conventional delocalization measures such as the inverse participation ratio (IPR) by taking into account the entropy of the system under study. All the measures within this chapter are known as bipartite measures, and only measure the strength of correlation between two sites. The fifth chapter presents the core of this thesis. Following a brief introduction to the concept of multipartite entanglement, the development of multipartite delocalization measures that give high-resolution information on quantum coherence in light-harvesting complexes is detailed. In contrast to other measures, these analytical measures can detect many body correlations in large systems undergoing decoherence. We determine that, much like the bipartite entanglement based measures of chapter 4, these measures are also a function of system entropy, and have a

  13. Entanglement and Quantum Error Correction with Superconducting Qubits

    NASA Astrophysics Data System (ADS)

    Reed, Matthew

    2015-03-01

    Quantum information science seeks to take advantage of the properties of quantum mechanics to manipulate information in ways that are not otherwise possible. Quantum computation, for example, promises to solve certain problems in days that would take a conventional supercomputer the age of the universe to decipher. This power does not come without a cost however, as quantum bits are inherently more susceptible to errors than their classical counterparts. Fortunately, it is possible to redundantly encode information in several entangled qubits, making it robust to decoherence and control imprecision with quantum error correction. I studied one possible physical implementation for quantum computing, employing the ground and first excited quantum states of a superconducting electrical circuit as a quantum bit. These ``transmon'' qubits are dispersively coupled to a superconducting resonator used for readout, control, and qubit-qubit coupling in the cavity quantum electrodynamics (cQED) architecture. In this talk I will give an general introduction to quantum computation and the superconducting technology that seeks to achieve it before explaining some of the specific results reported in my thesis. One major component is that of the first realization of three-qubit quantum error correction in a solid state device, where we encode one logical quantum bit in three entangled physical qubits and detect and correct phase- or bit-flip errors using a three-qubit Toffoli gate. My thesis is available at arXiv:1311.6759.

  14. Nanoshell-mediated robust entanglement between coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Hakami, Jabir; Zubairy, M. Suhail

    2016-02-01

    The exact entanglement dynamics in a hybrid structure consisting of two quantum dots (QDs) in the proximity of a metal nanoshell is investigated. Nanoshells can enhance the local density of states, leading to a strong-coupling regime where the excitation energy can coherently be transferred between the QDs and the nanoshell in the form of Rabi oscillations. The long-lived entangled states can be created deterministically by optimizing the shell thickness as well as the ratio of the distances between the QDs and the surface of the shell. The loss of the system is greatly reduced even when the QDs are ultraclose to the shell, which signifies a slow decay rate of the coherence information and longtime entanglement preservation. Our protocol allows for an on-demand, fast, and almost perfect entanglement even at strong carrier-phonon interaction where other systems fail.

  15. Entanglement and the sign structure of quantum states

    NASA Astrophysics Data System (ADS)

    Grover, Tarun; Fisher, Matthew P. A.

    2015-10-01

    Many-body quantum eigenstates of generic Hamiltonians at finite-energy density typically satisfy the "volume law" of entanglement entropy: the von Neumann entanglement entropy and the Renyi entropies for a subregion scale in proportion to its volume. Here we provide a connection between the volume law and the sign structure of eigenstates. In particular, we ask the following question: Can a positive wave function support a volume law entanglement? Remarkably, we find that a typical random positive wave function exhibits a constant law for Renyi entanglement entropies Sn for n >1 , despite arbitrary large-amplitude fluctuations. We also provide evidence that the modulus of the finite-energy density eigenstates of generic local Hamiltonians shows similar behavior.

  16. Fundamental Entangling Operators in Quantum Mechanics and Their Properties

    NASA Astrophysics Data System (ADS)

    Dao-Ming, Lu

    2016-07-01

    For the first time, we introduce so-called fundamental entangling operators e^{iQ1 P2} and e^{iP1 Q2 } for composing bipartite entangled states of continuum variables, where Q i and P i ( i = 1, 2) are coordinate and momentum operator, respectively. We then analyze how these entangling operators naturally appear in the quantum image of classical quadratic coordinate transformation ( q 1, q 2) → ( A q 1 + B q 2, C q 1 + D q 2), where A D- B C = 1, which means even the basic coordinate transformation ( Q 1, Q 2) → ( A Q 1 + B Q 2, C Q 1 + D Q 2) involves entangling mechanism. We also analyse their Lie algebraic properties and use the integration technique within an ordered product of operators to show they are also one- and two- mode combinatorial squeezing operators.

  17. Fundamental Entangling Operators in Quantum Mechanics and Their Properties

    NASA Astrophysics Data System (ADS)

    Dao-Ming, Lu

    2016-02-01

    For the first time, we introduce so-called fundamental entangling operators e^{iQ1 P2} and e^{iP1 Q2 } for composing bipartite entangled states of continuum variables, where Q i and P i (i = 1, 2) are coordinate and momentum operator, respectively. We then analyze how these entangling operators naturally appear in the quantum image of classical quadratic coordinate transformation (q 1, q 2) → (A q 1 + B q 2, C q 1 + D q 2), where A D-B C = 1, which means even the basic coordinate transformation (Q 1, Q 2) → (A Q 1 + B Q 2, C Q 1 + D Q 2) involves entangling mechanism. We also analyse their Lie algebraic properties and use the integration technique within an ordered product of operators to show they are also one- and two- mode combinatorial squeezing operators.

  18. Deterministic generation of remote entanglement with active quantum feedback

    DOE PAGESBeta

    Martin, Leigh; Motzoi, Felix; Li, Hanhan; Sarovar, Mohan; Whaley, K. Birgitta

    2015-12-10

    We develop and study protocols for deterministic remote entanglement generation using quantum feedback, without relying on an entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can bemore » modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Lastly, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.« less

  19. Realizing quantum advantage without entanglement in single-photon states

    NASA Astrophysics Data System (ADS)

    Maldonado Trapp, Alejandra; Solano, Pablo; Hu, Anzi; Clark, Charles W.

    2016-05-01

    Quantum discord expresses quantum correlations beyond those associated with entanglement. Although it has been extensively studied theoretically, quantum discord has yet to become a standard tool in experimental studies of correlation. We propose a class of experiments in which quantum correlations are present in the absence of entanglement, and are best understood in terms of quantum discord.. These utilize X-states of two qubits, which correspond to the polarization and the optical path of a single photon within a Mach-Zehnder interferometer. We show how to produce states with diverse measures of discord and entanglement, including the case of discord without entanglement. With these states we show how a classical random variable K can be encoded by Alice and decoded by Bob. Using our previous results we analytically study the correlations between the spin and path qubits and its relation with the information about K that can be decoded by Bob using local measurements with or without two-qubit gate operations.

  20. Deterministic generation of remote entanglement with active quantum feedback

    SciTech Connect

    Martin, Leigh; Motzoi, Felix; Li, Hanhan; Sarovar, Mohan; Whaley, K. Birgitta

    2015-12-10

    We develop and study protocols for deterministic remote entanglement generation using quantum feedback, without relying on an entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can be modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Lastly, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.

  1. Detection of entanglement in asymmetric quantum networks and multipartite quantum steering

    NASA Astrophysics Data System (ADS)

    Cavalcanti, D.; Skrzypczyk, P.; Aguilar, G. H.; Nery, R. V.; Ribeiro, P. H. Souto; Walborn, S. P.

    2015-08-01

    The future of quantum communication relies on quantum networks composed by observers sharing multipartite quantum states. The certification of multipartite entanglement will be crucial to the usefulness of these networks. In many real situations it is natural to assume that some observers are more trusted than others in the sense that they have more knowledge of their measurement apparatuses. Here we propose a general method to certify all kinds of multipartite entanglement in this asymmetric scenario and experimentally demonstrate it in an optical experiment. Our results, which can be seen as a definition of genuine multipartite quantum steering, give a method to detect entanglement in a scenario in between the standard entanglement and fully device-independent scenarios, and provide a basis for semi-device-independent cryptographic applications in quantum networks.

  2. Detection of entanglement in asymmetric quantum networks and multipartite quantum steering

    PubMed Central

    Cavalcanti, D.; Skrzypczyk, P.; Aguilar, G. H.; Nery, R. V.; Ribeiro, P.H. Souto; Walborn, S. P.

    2015-01-01

    The future of quantum communication relies on quantum networks composed by observers sharing multipartite quantum states. The certification of multipartite entanglement will be crucial to the usefulness of these networks. In many real situations it is natural to assume that some observers are more trusted than others in the sense that they have more knowledge of their measurement apparatuses. Here we propose a general method to certify all kinds of multipartite entanglement in this asymmetric scenario and experimentally demonstrate it in an optical experiment. Our results, which can be seen as a definition of genuine multipartite quantum steering, give a method to detect entanglement in a scenario in between the standard entanglement and fully device-independent scenarios, and provide a basis for semi-device-independent cryptographic applications in quantum networks. PMID:26235944

  3. Detection of entanglement in asymmetric quantum networks and multipartite quantum steering.

    PubMed

    Cavalcanti, D; Skrzypczyk, P; Aguilar, G H; Nery, R V; Ribeiro, P H Souto; Walborn, S P

    2015-01-01

    The future of quantum communication relies on quantum networks composed by observers sharing multipartite quantum states. The certification of multipartite entanglement will be crucial to the usefulness of these networks. In many real situations it is natural to assume that some observers are more trusted than others in the sense that they have more knowledge of their measurement apparatuses. Here we propose a general method to certify all kinds of multipartite entanglement in this asymmetric scenario and experimentally demonstrate it in an optical experiment. Our results, which can be seen as a definition of genuine multipartite quantum steering, give a method to detect entanglement in a scenario in between the standard entanglement and fully device-independent scenarios, and provide a basis for semi-device-independent cryptographic applications in quantum networks. PMID:26235944

  4. Quantum entanglement for helium atom in the Debye plasmas

    SciTech Connect

    Lin, Yen-Chang; Fang, Te-Kuei; Ho, Yew Kam

    2015-03-15

    In the present work, we present an investigation on quantum entanglement of the two-electron helium atom immersed in weakly coupled Debye plasmas, modeled by the Debye-Hückel, or screened Coulomb, potential to mimic the interaction between two charged particles inside the plasma. Quantum entanglement is related to correlation effects in a multi-particle system. In a bipartite system, a measurement made on one of the two entangled particles affects the outcome of the other particle, even if such two particles are far apart. Employing wave functions constructed with configuration interaction B-spline basis, we have quantified von Neumann entropy and linear entropy for a series of He {sup 1,3}S{sup e} and {sup 1,3}P{sup o} states in plasma-embedded helium atom.

  5. Characterization of quantum phase transition using holographic entanglement entropy

    NASA Astrophysics Data System (ADS)

    Ling, Yi; Liu, Peng; Wu, Jian-Pin

    2016-06-01

    The entanglement exhibits extremal or singular behavior near quantum critical points (QCPs) in many condensed matter models. These intriguing phenomena, however, still call for a widely accepted understanding. In this paper we study this issue in holographic framework. We investigate the connection between the holographic entanglement entropy (HEE) and the quantum phase transition (QPT) in a lattice-deformed Einstein-Maxwell-Dilaton theory. Novel backgrounds exhibiting metal-insulator transitions (MIT) have been constructed in which both metallic phase and insulating phase have vanishing entropy density in zero temperature limit. We find that the first order derivative of HEE with respect to lattice parameters exhibits extremal behavior near QCPs. We propose that it would be a universal feature that HEE or its derivatives with respect to system parameters can characterize QPT in a generic holographic system. Our work opens a window for understanding the relation between entanglement and the QPT from a holographic perspective.

  6. Bulk Entanglement Spectrum Reveals Quantum Criticality within a Topological State

    NASA Astrophysics Data System (ADS)

    Hsieh, Timothy; Fu, Liang

    2014-03-01

    A quantum phase transition is usually achieved by tuning physical parameters in a Hamiltonian at zero temperature. Here, we demonstrate that the ground state of a topological phase itself encodes critical properties of its transition to a trivial phase. To extract this information, we introduce a partition of the system into two subsystems both of which extend throughout the bulk in all directions. The resulting bulk entanglement spectrum has a low-lying part that resembles the excitation spectrum of a bulk Hamiltonian, which allows us to access a topological phase transition from a single wavefunction by tuning either the geometry of the partition or the entanglement temperature. As an example, this remarkable correspondence between topological phase transition and entanglement criticality is rigorously established for integer quantum Hall states. TH is supported by NSF Graduate Research Fellowship No. 0645960. LF is partly supported by the DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under award DE-SC0010526.

  7. Single-copy entanglement in critical quantum spin chains

    NASA Astrophysics Data System (ADS)

    Eisert, J.; Cramer, M.

    2005-10-01

    We consider the single-copy entanglement as a quantity to assess quantum correlations in the ground state in quantum many-body systems. We show for a large class of models that already on the level of single specimens of spin chains, criticality is accompanied with the possibility of distilling a maximally entangled state of arbitrary dimension from a sufficiently large block deterministically, with local operations and classical communication. These analytical results—which refine previous results on the divergence of block entropy as the rate at which maximally entangled pairs can be distilled from many identically prepared chains—are made quantitative for general isotropic translationally invariant spin chains that can be mapped onto a quasifree fermionic system, and for the anisotropic XY model. For the XX model, we provide the asymptotic scaling of ˜(1/6)log2(L) , and contrast it with the block entropy.

  8. Multiparty quantum-key-distribution protocol without use of entanglement

    SciTech Connect

    Matsumoto, Ryutaroh

    2007-12-15

    We propose a quantum-key-distribution protocol that enables three parties to agree at once on a shared common random bit string in the presence of an eavesdropper without use of entanglement. We prove its unconditional security and analyze the key rate.

  9. Deterministic generation of remote entanglement with active quantum feedback

    NASA Astrophysics Data System (ADS)

    Martin, Leigh; Motzoi, Felix; Li, Hanhan; Sarovar, Mohan; Whaley, K. Birgitta

    2015-12-01

    We consider the task of deterministically entangling two remote qubits using joint measurement and feedback, but no directly entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can be modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Finally, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.

  10. Quantum entanglement between electronic and vibrational degrees of freedom in molecules.

    PubMed

    McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S; Reimers, Jeffrey R

    2011-12-28

    We consider the quantum entanglement of the electronic and vibrational degrees of freedom in molecules with tendencies towards double welled potentials. In these bipartite systems, the von Neumann entropy of the reduced density matrix is used to quantify the electron-vibration entanglement for the lowest two vibronic wavefunctions obtained from a model Hamiltonian based on coupled harmonic diabatic potential-energy surfaces. Significant entanglement is found only in the region in which the ground vibronic state contains a density profile that is bimodal (i.e., contains two separate local maxima). However, in this region two distinct types of density and entanglement profiles are found: one type arises purely from the degeneracy of energy levels in the two potential wells and is destroyed by slight asymmetry, while the other arises through strong interactions between the diabatic levels of each well and is relatively insensitive to asymmetry. These two distinct types are termed fragile degeneracy-induced entanglement and persistent entanglement, respectively. Six classic molecular systems describable by two diabatic states are considered: ammonia, benzene, BNB, pyridine excited triplet states, the Creutz-Taube ion, and the radical cation of the "special pair" of chlorophylls involved in photosynthesis. These chemically diverse systems are all treated using the same general formalism and the nature of the entanglement that they embody is elucidated. PMID:22225147

  11. Impurity entanglement in the J-J2-δ quantum spin chain

    NASA Astrophysics Data System (ADS)

    Deschner, Andreas; Sørensen, Erik S.

    2011-10-01

    The contribution to the entanglement of an impurity attached to one end of a J-J2-δ quantum spin chain (S = 1/2) is studied. Two different measures of the impurity contribution to the entanglement have been proposed: the impurity entanglement entropy Simp and the negativity {N} . The first, Simp, is based on a subtractive procedure where the entanglement entropy in the absence of the impurity is subtracted from results with the impurity present. The other, {N} , is the negativity of a part of the system separated from the impurity and the impurity itself. In this paper we compare the two measures and discuss their similarities and the differences between them. In the J-J2-δ model it is possible to perform very precise variational calculations close to the Majumdar-Ghosh point (J2 = J/2 and δ = 0) where the system is gapped with a dimerized ground state. We describe in detail how such calculations are done and how they can be used to calculate {N} as well as Simp for any impurity coupling JK. We then study the complete crossover in the impurity entanglement as JK is varied between 0 and 1 close to the Majumdar-Ghosh point. In particular, we study the impurity entanglement when a staggered nearest neighbour interaction proportional to δ is introduced. In this case we observe a very rapid reduction in the impurity entanglement as δ is increased.

  12. Entanglement, Holography, and the Quantum Phases of Matter

    SciTech Connect

    Sachdev, Subir

    2012-11-07

    Electrons in many interesting materials, such as the high temperature superconductors, exhibit low energy states with complex varieties of quantum entanglement. I will describe how the methods of holography, drawn from string theory, have given us a new tool to describe such states, by relating them to theories of gravitation in curved spacetimes with an extra dimension. I will discuss the impact of such ideas on studies of quantum phase transitions, and of novel metals.

  13. Multipartite entanglement for entanglement teleportation

    SciTech Connect

    Lee, Jinhyoung; Min, Hyegeun; Oh, Sung Dahm

    2002-11-01

    A scheme for entanglement teleportation is proposed to incorporate multipartite entanglement of four qubits as a quantum channel. Based on the invariance of entanglement teleportation under an arbitrary two-qubit unitary transformation, we derive relations for the separabilities of joint measurements at a sending station and of unitary operations at a receiving station. From the relations of the separabilities it is found that an inseparable quantum channel always leads to total teleportation of entanglement with an inseparable joint measurement and/or a nonlocal unitary operation.

  14. Excitonic entanglement of protected states in quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Borges, H. S.; Sanz, L.; Alcalde, A. M.

    2016-09-01

    The entanglement of an optically generated electron-hole pair in artificial quantum dot molecules is calculated considering the effects of decoherence by interaction with environment. Since the system evolves into mixed states and due to the complexity of energy level structure, we use the negativity as entanglement quantifier, which is well defined in D ⊗D‧ composite vector spaces. By a numerical analysis of the non-unitary dynamics of the exciton states, we establish the feasibility of producing protected entangled superposition by an appropriate tuning of bias electric field, F. A stationary state with a high value of negativity (high degree of entanglement) is obtained by fine tuning of F close to a resonant condition between indirect excitons. We also found that when the optical excitation is approximately equal to the electron tunneling coupling, Ω /Te ∼ 1, the entanglement reaches a maximum value. In front of the experimental feasibility of the specific condition mentioned before, our proposal becomes an useful strategy to find robust entangled states in condensed matter systems.

  15. Spin operator and entanglement in quantum field theory

    NASA Astrophysics Data System (ADS)

    Fujikawa, Kazuo; Oh, C. H.; Zhang, Chengjie

    2014-07-01

    Entanglement is studied in the framework of Dyson's S-matrix theory in relativistic quantum field theory, which leads to a natural definition of entangled states of a particle-antiparticle pair and the spin operator from a Noether current. As an explicit example, the decay of a massive pseudo-scalar particle into a pair of electron and positron is analyzed. Two spin operators are extracted from the Noether current. The Wigner spin operator characterizes spin states at the rest frame of each fermion and, although not measurable in the laboratory, gives rise to a straightforward generalization of low-energy analysis of entanglement to the ultrarelativistic domain. In contrast, if one adopts a (modified) Dirac spin operator, the entanglement measured by spin correlation becomes maximal near the threshold of the decay, while the entanglement is replaced by the classical correlation for the ultrarelativistic electron-positron pair by analogy to the case of neutrinos, for which a hidden-variables type of description is possible. Chiral symmetry differentiates the spin angular momentum and the magnetic moment. The use of weak interaction that can measure helicity is suggested in the analysis of entanglement at high energies instead of a Stern-Gerlach apparatus, which is useless for the electron. A difference between the electron spin at high energies and the photon linear polarization is also noted. The Standard Model can describe all of the observable properties of leptons.

  16. Quantum entanglement in the two-impurity Kondo model

    SciTech Connect

    Cho, Sam Young; McKenzie, Ross H.

    2006-01-15

    In order to quantify quantum entanglement in two-impurity Kondo systems, we calculate the concurrence, negativity, and von Neumann entropy. The entanglement of the two Kondo impurities is shown to be determined by two competing many-body effects, namely the Kondo effect and the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, I. Due to the spin-rotational invariance of the ground state, the concurrence and negativity are uniquely determined by the spin-spin correlation between the impurities. It is found that there exists a critical minimum value of the antiferromagnetic correlation between the impurity spins which is necessary for entanglement of the two impurity spins. The critical value is discussed in relation with the unstable fixed point in the two-impurity Kondo problem. Specifically, at the fixed point there is no entanglement between the impurity spins. Entanglement will only be created [and quantum information processing (QIP) will only be possible] if the RKKY interaction exchange energy, I, is at least several times larger than the Kondo temperature, T{sub K}. Quantitative criteria for QIP are given in terms of the impurity spin-spin correlation.

  17. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre

    NASA Astrophysics Data System (ADS)

    Saglamyurek, Erhan; Jin, Jeongwan; Verma, Varun B.; Shaw, Matthew D.; Marsili, Francesco; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang

    2015-02-01

    The realization of a future quantum Internet requires the processing and storage of quantum information at local nodes and interconnecting distant nodes using free-space and fibre-optic links. Quantum memories for light are key elements of such quantum networks. However, to date, neither an atomic quantum memory for non-classical states of light operating at a wavelength compatible with standard telecom fibre infrastructure, nor a fibre-based implementation of a quantum memory, has been reported. Here, we demonstrate the storage and faithful recall of the state of a 1,532 nm wavelength photon entangled with a 795 nm photon, in an ensemble of cryogenically cooled erbium ions doped into a 20-m-long silica fibre, using a photon-echo quantum memory protocol. Despite its currently limited efficiency and storage time, our broadband light-matter interface brings fibre-based quantum networks one step closer to reality.

  18. Quantum correlations through event horizons: Fermionic versus bosonic entanglement

    SciTech Connect

    Martin-Martinez, Eduardo; Leon, Juan

    2010-03-15

    We disclose the behavior of quantum and classical correlations among all the different spatial-temporal regions of a space-time with an event horizon, comparing fermionic with bosonic fields. We show the emergence of conservation laws for entanglement and classical correlations, pointing out the crucial role that statistics plays in the information exchange (and more specifically, the entanglement tradeoff) across horizons. The results obtained here could shed new light on the problem of information behavior in noninertial frames and in the presence of horizons, giving better insight into the black-hole information paradox.

  19. Entangling power of permutation-invariant quantum states

    SciTech Connect

    Popkov, Vladislav; Salerno, Mario; Schuetz, Gunter

    2005-09-15

    We investigate the von Neumann entanglement entropy as function of the size of a subsystem for permutation invariant ground states in models with finite number of states per site, e.g., in quantum spin models. We demonstrate that the entanglement entropy of n sites in a system of length L generically grows as {sigma} log{sub 2}[2{pi}en(L-n)/L]+C, where {sigma} is the on-site spin and C is a function depending only on magnetization.

  20. Quantum correlations through event horizons: Fermionic versus bosonic entanglement

    NASA Astrophysics Data System (ADS)

    Martín-Martínez, Eduardo; León, Juan

    2010-03-01

    We disclose the behavior of quantum and classical correlations among all the different spatial-temporal regions of a space-time with an event horizon, comparing fermionic with bosonic fields. We show the emergence of conservation laws for entanglement and classical correlations, pointing out the crucial role that statistics plays in the information exchange (and more specifically, the entanglement tradeoff) across horizons. The results obtained here could shed new light on the problem of information behavior in noninertial frames and in the presence of horizons, giving better insight into the black-hole information paradox.

  1. Packet narrowing and quantum entanglement in photoionization and photodissociation

    SciTech Connect

    Fedorov, M.V.; Efremov, M.A.; Kazakov, A.E.; Chan, K.W.; Eberly, J.H.; Law, C.K.

    2004-05-01

    The narrowing of electron and ion wave packets in the process of photoionization is investigated, with the electron-ion recoil taken fully into account. Packet localization of this type is directly related to entanglement in the joint quantum state of the electron and ion, and to Einstein-Podolsky-Rosen localization. Experimental observation of such packet-narrowing effects is suggested via coincidence registration by two detectors, with a fixed position of one and varying position of the other. A similar effect, typically with an enhanced degree of entanglement, is shown to occur in the case of photodissociation of molecules.

  2. Impact of quantum entanglement on spectrum of cosmological fluctuations

    NASA Astrophysics Data System (ADS)

    Kanno, Sugumi

    2014-07-01

    We investigate the effect of entanglement between two causally separated open charts in de Sitter space on the spectrum of vacuum fluctuations. We consider a free massive scalar field, and construct the reduced density matrix by tracing out the vacuum state for one of the open charts, as recently derived by Maldacena and Pimentel. We formulate the mean-square vacuum fluctuations by using the reduced density matrix and show that the scale invariant spectrum of massless scalar field is realized on small scales. On the other hand, we find that the quantum entanglement affects the shape of the spectrum on large scales comparable to or greater than the curvature radius.

  3. High-dimensional mode analyzers for spatial quantum entanglement

    SciTech Connect

    Oemrawsingh, S. S. R.; Jong, J. A. de; Ma, X.; Aiello, A.; Eliel, E. R.; Hooft, G. W. 't; Woerdman, J. P.

    2006-03-15

    By analyzing entangled photon states in terms of high-dimensional spatial mode superpositions, it becomes feasible to expose high-dimensional entanglement, and even the nonlocality of twin photons. To this end, a proper analyzer should be designed that is capable of handling a large number of spatial modes, while still being convenient to use in an experiment. We compare two variants of a high-dimensional spatial mode analyzer on the basis of classical and quantum considerations. These analyzers have been tested in classical optical experiments.

  4. Entanglement of Two-Qubit Quantum Heisenberg XYZ Chain

    NASA Astrophysics Data System (ADS)

    Xi, Xiao-Qiang; Hao, San-Ru; Chen, Wen-Xue; Yue, Rui-Hong

    2002-08-01

    We derive the analytic expression of the concurrence in the quantum Heisenberg XYZ model and discuss the influence of parameters J, Δ and Γ on the concurrence. By choosing different values of Γ and Δ, we obtain the XX, XY, XXX and XXZ chains. The concurrence decreases with increasing temperature. When T→0, the concurrence reaches its maximum value 1, i.e. the entangled state, |Ψ> = (((2)1/2)/2)(|01>-|10>), is maximum entanglement. For the XXZ chain, when Γ→∞, the concurrence will meet its maximum value Cmax = (sinh (1/T))/(cosh (1/T)).

  5. Optimal dynamics for quantum-state and entanglement transfer through homogeneous quantum systems

    SciTech Connect

    Banchi, L.; Apollaro, T. J. G.; Cuccoli, A.; Vaia, R.; Verrucchi, P.

    2010-11-15

    The capability of faithfully transmit quantum states and entanglement through quantum channels is one of the key requirements for the development of quantum devices. Different solutions have been proposed to accomplish such a challenging task, which, however, require either an ad hoc engineering of the internal interactions of the physical system acting as the channel or specific initialization procedures. Here we show that optimal dynamics for efficient quantum-state and entanglement transfer can be attained in generic quantum systems with homogeneous interactions by tuning the coupling between the system and the two attached qubits. We devise a general procedure to determine the optimal coupling, and we explicitly implement it in the case of a channel consisting of a spin-(1/2)XY chain. The quality of quantum-state and entanglement transfer is found to be very good and, remarkably, almost independent of the channel length.

  6. Improved algorithm for quantum separability and entanglement detection

    SciTech Connect

    Ioannou, L.M.; Ekert, A.K.; Travaglione, B.C.; Cheung, D.

    2004-12-01

    Determining whether a quantum state is separable or entangled is a problem of fundamental importance in quantum information science. It has recently been shown that this problem is NP-hard, suggesting that an efficient, general solution does not exist. There is a highly inefficient 'basic algorithm' for solving the quantum separability problem which follows from the definition of a separable state. By exploiting specific properties of the set of separable states, we introduce a classical algorithm that solves the problem significantly faster than the 'basic algorithm', allowing a feasible separability test where none previously existed, e.g., in 3x3-dimensional systems. Our algorithm also provides a unique tool in the experimental detection of entanglement.

  7. Quantum extremal surfaces: holographic entanglement entropy beyond the classical regime

    NASA Astrophysics Data System (ADS)

    Engelhardt, Netta; Wall, Aron C.

    2015-01-01

    We propose that holographic entanglement entropy can be calculated at arbitrary orders in the bulk Planck constant using the concept of a "quantum extremal surface": a surface which extremizes the generalized entropy, i.e. the sum of area and bulk entanglement entropy. At leading order in bulk quantum corrections, our proposal agrees with the formula of Faulkner, Lewkowycz, and Maldacena, which was derived only at this order; beyond leading order corrections, the two conjectures diverge. Quantum extremal surfaces lie outside the causal domain of influence of the boundary region as well as its complement, and in some spacetimes there are barriers preventing them from entering certain regions. We comment on the implications for bulk reconstruction.

  8. Synchronization, quantum correlations and entanglement in oscillator networks

    PubMed Central

    Manzano, Gonzalo; Galve, Fernando; Giorgi, Gian Luca; Hernández-García, Emilio; Zambrini, Roberta

    2013-01-01

    Synchronization is one of the paradigmatic phenomena in the study of complex systems. It has been explored theoretically and experimentally mostly to understand natural phenomena, but also in view of technological applications. Although several mechanisms and conditions for synchronous behavior in spatially extended systems and networks have been identified, the emergence of this phenomenon has been largely unexplored in quantum systems until very recently. Here we discuss synchronization in quantum networks of different harmonic oscillators relaxing towards a stationary state, being essential the form of dissipation. By local tuning of one of the oscillators, we establish the conditions for synchronous dynamics, in the whole network or in a motif. Beyond the classical regime we show that synchronization between (even unlinked) nodes witnesses the presence of quantum correlations and entanglement. Furthermore, synchronization and entanglement can be induced between two different oscillators if properly linked to a random network. PMID:23486526

  9. Witnessing random unitary and projective quantum channels: Complementarity between separable and maximally entangled states

    NASA Astrophysics Data System (ADS)

    Bruns, D.; Sperling, J.; Scheel, S.

    2016-03-01

    Modern applications in quantum computation and quantum communication require the precise characterization of quantum states and quantum channels. In practice, this means that one has to determine the quantum capacity of a physical system in terms of measurable quantities. Witnesses, if properly constructed, succeed in performing this task. We derive a method that is capable to compute witnesses for identifying deterministic evolutions and measurement-induced collapse processes. At the same time, applying the Choi-Jamiołkowski isomorphism, it uncovers the entanglement characteristics of bipartite quantum states. Remarkably, a statistical mixture of unitary evolutions is mapped onto mixtures of maximally entangled states, and classical separable states originate from genuine quantum-state reduction maps. Based on our treatment, we are able to witness these opposing attributes at once and, furthermore, obtain an insight into their different geometric structures. The complementarity is further underpinned by formulating a complementary Schmidt decomposition of a state in terms of maximally entangled states and discrete Fourier-transformed Schmidt coefficients.

  10. Quantum and concept combination, entangled measurements, and prototype theory.

    PubMed

    Aerts, Diederik

    2014-01-01

    We analyze the meaning of the violation of the marginal probability law for situations of correlation measurements where entanglement is identified. We show that for quantum theory applied to the cognitive realm such a violation does not lead to the type of problems commonly believed to occur in situations of quantum theory applied to the physical realm. We briefly situate our quantum approach for modeling concepts and their combinations with respect to the notions of "extension" and "intension" in theories of meaning, and in existing concept theories. PMID:24482332

  11. Holographic entanglement entropy close to quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Ling, Yi; Liu, Peng; Niu, Chao; Wu, Jian-Pin; Xian, Zhuo-Yu

    2016-04-01

    We investigate the holographic entanglement entropy (HEE) of a strip geometry in four dimensional Q-lattice backgrounds, which exhibit metal-insulator transitions in the dual field theory. Remarkably, we find that the HEE always displays a peak in the vicinity of the quantum critical points. Our model provides the first direct evidence that the HEE can be used to characterize the quantum phase transition (QPT). We also conjecture that the maximization behavior of HEE at quantum critical points would be universal in general holographic models.

  12. Quantifying quantum discord and entanglement of formation via unified purifications

    SciTech Connect

    Cen Lixiang; Li Xinqi; Shao Jiushu; Yan Yijing

    2011-05-15

    We propose a scheme to evaluate the amount of quantum discord and entanglement of formation for mixed states and reveal their ordering relation via an intrinsic relationship between the two quantities distributed in the purification of different states. This approach enables us to achieve analytical expressions of the two measures for some quantum states, such as an arbitrary two-qubit density matrix reduced from pure three-qubit states and a class of rank-2 mixed states of 4x2 systems. Moreover, we apply the scheme to characterize fully the dynamic behavior of quantum correlations for the specified physical systems under decoherence.

  13. Entanglement oscillations in non-Markovian quantum channels

    SciTech Connect

    Maniscalco, Sabrina; Olivares, Stefano; Paris, Matteo G. A.

    2007-06-15

    We study the non-Markovian dynamics of a two-mode bosonic system interacting with two uncorrelated thermal bosonic reservoirs. We present the solution to the exact microscopic Master equation in terms of the quantum characteristic function and study in detail the dynamics of entanglement for bipartite Gaussian states. In particular, we analyze the effects of short-time system-reservoir correlations on the separability thresholds and show that the relevant parameter is the reservoir spectral density. If the frequencies of the involved modes are within the reservoir spectral density, entanglement persists for a longer time than in a Markovian channel. On the other hand, when the reservoir spectrum is out of resonance, short-time correlations lead to a faster decoherence and to the appearance of entanglement oscillations.

  14. Linear Plotkin bound for entanglement-assisted quantum codes

    NASA Astrophysics Data System (ADS)

    Guo, Luobin; Li, Ruihu

    2013-03-01

    The entanglement-assisted (EA) formalism is a generalization of the standard stabilizer formalism, and it can transform arbitrary quaternary classical linear codes into entanglement-assisted quantum error correcting codes (EAQECCs) by using of shared entanglement between the sender and the receiver. Using the special structure of linear EAQECCs, we derive an EA-Plotkin bound for linear EAQECCs, which strengthens the previous known EA-Plotkin bound. This linear EA-Plotkin bound is tighter then the EA-Singleton bound, and matches the EA-Hamming bound and the EA-linear programming bound in some cases. We also construct three families of EAQECCs with good parameters. Some of these EAQECCs saturate this linear EA-Plotkin bound and the others are near optimal according to this bound; almost all of these linear EAQECCs are degenerate codes.

  15. Quantum nonlocality via local contextuality with qubit-qubit entanglement

    NASA Astrophysics Data System (ADS)

    Saha, Debashis; Cabello, Adán; Choudhary, Sujit K.; Pawłowski, Marcin

    2016-04-01

    Quantum nonlocality can be revealed "via local contextuality" in qudit-qudit entangled systems with d >2 , that is, through the violation of inequalities containing Alice-Bob correlations that admit a local description, and Alice-Alice correlations (between the results of sequences of measurements on Alice's subsystem) that admit a local (but contextual) description. A fundamental question to understand the respective roles of entanglement and local contextuality is whether nonlocality via local contextuality exists when the parties have only qubit-qubit entanglement. Here we respond affirmatively to this question. This result further clarifies the connection between contextuality and nonlocality and opens the door for observing nonlocality via local contextuality in actual experiments.

  16. Quantum Fisher information as efficient entanglement witness in many-body systems

    NASA Astrophysics Data System (ADS)

    Hauke, Philipp

    2016-05-01

    Large-scale entanglement in quantum many-body systems is typically difficult to quantify experimentally. Here, we discuss scenarios where many-body entanglement becomes accessible via the quantum Fisher information (QFI), a known witness for genuinely multipartite entanglement as a resource for quantum-enhanced metrology. First, we introduce a direct relation of the QFI in thermal states with linear response functions, which makes the QFI measurable with standard methods in optical-lattice and solid-state experiments. Using this relationship, we show that close to continuous quantum phase transitions the QFI, and thus multipartite entanglement, is strongly divergent. Second, we demonstrate that the QFI can witness many-body localized phases, showing a characteristic growth of entanglement at long times after a quantum quench. These results demonstrate that the quantum Fisher information represents a useful and efficiently measurable witness for entanglement in quantum many-body settings.

  17. Error filtration and entanglement purification for quantum communication

    SciTech Connect

    Gisin, N.; Linden, N.; Massar, S.; Popescu, S.

    2005-07-15

    The key realization that led to the emergence of the new field of quantum information processing is that quantum mechanics, the theory that describes microscopic particles, allows the processing of information in fundamentally new ways. But just as in classical information processing, errors occur in quantum information processing, and these have to be corrected. A fundamental breakthrough was the realization that quantum error correction is in fact possible. However, most work so far has not been concerned with technological feasibility, but rather with proving that quantum error correction is possible in principle. Here we describe a method for filtering out errors and entanglement purification which is particularly suitable for quantum communication. Our method is conceptually new, and, crucially, it is easy to implement in a wide variety of physical systems with present-day technology and should therefore be of wide applicability.

  18. Thwarting the Photon Number Splitting Attack with Entanglement Enhanced BB84 Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Richardson, Chris; Sabottke, Carl; Yurtsever, Ulvi; Lamas, Antia; Dowling, Jonathan; Anisimov, Petr

    2012-02-01

    We develop an improvement to the weak laser pulse BB84 scheme for quantum key distribution, which utilizes entanglement to improve the security of the scheme and enhance its resilience to the photon number splitting attack. This protocol relies on the non-commutation of photon phase and number to detect an eavesdropper performing quantum non-demolition measurement on number. The potential advantages and disadvantages of this scheme are compared to the coherent decoy state solution. Most entanglement based quantum key distribution schemes rely on violations of Bell's inequalities to ensure security. However, this is not the strategy that our entanglement enhanced (EE) BB84 employs here. Instead, we detect Eve by introducing an entangled quantum state into the system that is sensitive to Eve's QND measurements. This allows for a recovery of an approximately linear dependence on transmittivity for the key rate. EE BB84 shares this advantage with coherent decoy state protocols as well as schemes that utilize strong phase reference pulses to eliminate Eve's ability to send Bob vacuum signals.

  19. Single-copy entanglement in a gapped quantum spin chain.

    PubMed

    Hadley, Christopher

    2008-05-01

    The single-copy entanglement of a given many-body quantum system is defined [J. Eisert and M. Cramer, Phys. Rev. A 72, 042112 (2005)10.1103/PhysRevA.72.042112] as the maximal entanglement deterministically distillable from a bipartition of a single specimen of that system. For critical (gapless) spin chains, it was recently shown that this is exactly half the von Neumann entropy [R. Orús, J. I. Latorre, J. Eisert, and M. Cramer, Phys. Rev. A 73, 060303(R) (2006)], itself defined as the entanglement distillable in the asymptotic limit-i.e., given an infinite number of copies of the system. It is an open question as to what the equivalent behavior for gapped systems is. In this Letter, I show that for the paradigmatic spin-S Affleck-Kennedy-Lieb-Tasaki chain (the archetypal gapped chain), the single-copy entanglement is equal to the von Neumann entropy; i.e., all the entanglement present may be distilled from a single specimen. PMID:18518329

  20. Quantum Versus Classical Advantages in Secret Key Distillation (and Their Links to Quantum Entanglement

    NASA Astrophysics Data System (ADS)

    Chitambar, Eric; Fortescue, Benjamin; Hsieh, Min-Hsiu

    We consider the extraction of shared secret key from correlations that are generated by either a classical or quantum source. In the classical setting, two honest parties (Alice and Bob) use public discussion and local operations to distill secret key from some distribution pXYZ that is shared with an unwanted eavesdropper (Eve). In the quantum settings, the correlations pXYZ are delivered to the parties as either an incoherent mixture of orthogonal quantum states or as coherent superposition of such states. Here we demonstrate that the classical and quantum key rates are equivalent when the correlations are generated incoherently in the quantum setting. For coherent sources, we next show that the rates are incomparable, and in fact, their difference can be arbitrarily large in either direction. However, we identify a large class of non-trivial distributions that possess the following properties: (i) Eve's advantage is always greater in the quantum source than classically, and (ii) for the entanglement shared in the coherent source, the so-called entanglement cost/squashed entanglement/relative entropy of entanglement can all be computed. We thus present a rare instance in which various entropic entanglement measures of a quantum state can be explicitly computed.

  1. Quantum phase estimation using path-symmetric entangled states

    PubMed Central

    Lee, Su-Yong; Lee, Chang-Woo; Lee, Jaehak; Nha, Hyunchul

    2016-01-01

    We study the sensitivity of phase estimation using a generic class of path-symmetric entangled states |φ〉|0〉 + |0〉|φ〉, where an arbitrary state |φ〉 occupies one of two modes in quantum superposition. With this generalization, we identify the fundamental limit of phase estimation under energy constraint that is characterized by the photon statistics of the component state |φ〉. We show that quantum Cramer-Rao bound (QCRB) can be indefinitely lowered with super-Poissonianity of the state |φ〉. For possible measurement schemes, we demonstrate that a full photon-counting employing the path-symmetric entangled states achieves the QCRB over the entire range [0, 2π] of unknown phase shift ϕ whereas a parity measurement does so in a certain confined range of ϕ. By introducing a component state of the form , we particularly show that an arbitrarily small QCRB can be achieved even with a finite energy in an ideal situation. This component state also provides the most robust resource against photon loss among considered entangled states over the range of the average input energy Nav > 1. Finally we propose experimental schemes to generate these path-symmetric entangled states for phase estimation. PMID:27457267

  2. Quantum phase estimation using path-symmetric entangled states

    NASA Astrophysics Data System (ADS)

    Lee, Su-Yong; Lee, Chang-Woo; Lee, Jaehak; Nha, Hyunchul

    2016-07-01

    We study the sensitivity of phase estimation using a generic class of path-symmetric entangled states |φ>|0> + |0>|φ>, where an arbitrary state |φ> occupies one of two modes in quantum superposition. With this generalization, we identify the fundamental limit of phase estimation under energy constraint that is characterized by the photon statistics of the component state |φ>. We show that quantum Cramer-Rao bound (QCRB) can be indefinitely lowered with super-Poissonianity of the state |φ>. For possible measurement schemes, we demonstrate that a full photon-counting employing the path-symmetric entangled states achieves the QCRB over the entire range [0, 2π] of unknown phase shift ϕ whereas a parity measurement does so in a certain confined range of ϕ. By introducing a component state of the form , we particularly show that an arbitrarily small QCRB can be achieved even with a finite energy in an ideal situation. This component state also provides the most robust resource against photon loss among considered entangled states over the range of the average input energy Nav > 1. Finally we propose experimental schemes to generate these path-symmetric entangled states for phase estimation.

  3. Quantum phase estimation using path-symmetric entangled states.

    PubMed

    Lee, Su-Yong; Lee, Chang-Woo; Lee, Jaehak; Nha, Hyunchul

    2016-01-01

    We study the sensitivity of phase estimation using a generic class of path-symmetric entangled states |φ〉|0〉 + |0〉|φ〉, where an arbitrary state |φ〉 occupies one of two modes in quantum superposition. With this generalization, we identify the fundamental limit of phase estimation under energy constraint that is characterized by the photon statistics of the component state |φ〉. We show that quantum Cramer-Rao bound (QCRB) can be indefinitely lowered with super-Poissonianity of the state |φ〉. For possible measurement schemes, we demonstrate that a full photon-counting employing the path-symmetric entangled states achieves the QCRB over the entire range [0, 2π] of unknown phase shift ϕ whereas a parity measurement does so in a certain confined range of ϕ. By introducing a component state of the form , we particularly show that an arbitrarily small QCRB can be achieved even with a finite energy in an ideal situation. This component state also provides the most robust resource against photon loss among considered entangled states over the range of the average input energy Nav > 1. Finally we propose experimental schemes to generate these path-symmetric entangled states for phase estimation. PMID:27457267

  4. Secure Quantum Private Comparison Protocol Based on the Entanglement Swapping Between Three-Particle W-Class State and Bell State

    NASA Astrophysics Data System (ADS)

    Li, Jian; Jia, Lu; Zhou, Hong-Fu; Zhang, Ting-Ting

    2016-03-01

    We propose a new quantum private comparison protocol with the help of a semi-honest third party (TP), enabling two participants to compare the equality of their private inputs without exposing any information about their respective private inputs. Different from previous protocols, our protocol utilizes the properties of entanglement swapping between three-particle W-Class state and Bell state. The presented protocol can ensure correctness, fairness and security. Meanwhile, all the quantum particles undergo a one-way transmission, and all the participants including TP are just required having the ability to perform Bell-state measurement and exclusive-or operation which make our protocol more feasible and efficient. At last, the security of this protocol with respect to various kinds of attacks is analyzed in detail.

  5. Transmission of photonic quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide.

    PubMed

    Li, Ming; Zou, Chang-Ling; Ren, Xi-Feng; Xiong, Xiao; Cai, Yong-Jing; Guo, Guo-Ping; Tong, Li-Min; Guo, Guang-Can

    2015-04-01

    Photonic quantum technologies have been extensively studied in quantum information science, owing to the high-speed transmission and outstanding low-noise properties of photons. However, applications based on photonic entanglement are restricted due to the diffraction limit. In this work, we demonstrate for the first time the maintaining of quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide composed of a fiber taper and a silver nanowire. The transmitted state throughout the waveguide has a fidelity of 0.932 with the maximally polarization entangled state Φ(+). Furthermore, the Clauser, Horne, Shimony, and Holt (CHSH) inequality test performed, resulting in value of 2.495 ± 0.147 > 2, demonstrates the violation of the hidden variable model. Because the plasmonic waveguide confines the effective mode area to subwavelength scale, it can bridge nanophotonics and quantum optics and may be used as near-field quantum probe in a quantum near-field micro/nanoscope, which can realize high spatial resolution, ultrasensitive, fiber-integrated, and plasmon-enhanced detection. PMID:25775140

  6. Missing data outside the detector range: Continuous-variable entanglement verification and quantum cryptography

    NASA Astrophysics Data System (ADS)

    Ray, Megan R.; van Enk, S. J.

    2013-10-01

    In continuous-variable quantum information processing, detectors are necessarily coarse grained and of finite range. We discuss how, especially, the latter feature is a bug and may easily lead to overoptimistic estimates of entanglement and of security when missed data outside the detector range are ignored. We demonstrate that a straightforward worst-case analysis is sufficient to avoid false positive statements about entanglement. We show that, for our worst-case analysis, entropic separability or security criteria are much superior to variance-based criteria.

  7. Investigation of Quantum Phase Transition and Entanglement in Spin Models

    NASA Astrophysics Data System (ADS)

    Shik, Hoi Yin

    In this thesis, the critical behaviour of concurrence in spin models and its relationship to quantum phase transitions (QPT) are explored. The relation between the ground state entanglement and excited states, in connection with quantum phase transitions, is studied. Besides, a generalization of the Majumdar-Ghosh model [1, 2], studied in my M.Phil research, to finite temperatures is also studied. Firstly, the relationship between quantum entanglement and QPT is studied. In this thesis, concurrence is chosen as the measure of pairwise entanglement. The quantum phase transitions in the XXZ and J1- J2 models are investigated by examining contributions of excited states to the ground state concurrence. The critical behaviour of the concurrence at the quantum critical points is explained by the excited states' contributions. Also, the dependence of the concurrence at the quantum critical points with lattice size is investigated. Secondly, under open boundary conditions, the different quantum phases in the XXZ and J1-J2 models are distinguished by investigating the responses of the end spins to a small perturbation. Meanwhile, the properties of the concurrence of the spin models under different boundary conditions are compared. Finally, the thermodynamic properties of a spin-half ladder system are studied. We find that a completely dimerized state exists in one kind of twoleg spin-half ladder, which has local anti-ferromagnetic ordering and frustration effect at the same time. The system's low-lying excitations can be obtained exactly and this enables us to calculate thermodynamic quantities at low temperatures. Our results also show that a subset of the energy spectrum is a good approximation to the whole spectrum when used in the calculation of specific heat capacities and magnetic susceptibilities, even for the two-leg spin-half ladder without frustration.

  8. Scheme for realizing the entanglement concentration of unknown partially entangled three-photon W states assisted by a quantum dot-microcavity coupled system

    NASA Astrophysics Data System (ADS)

    Liang, Bian-Bian; Hu, Shi; Cui, Wen-Xue; An, Cheng-Shou; Xing, Yan; Hu, Jing-Si; Sun, Guo-Qing; Jiang, Xin-Xin; Wang, Hong-Fu

    2014-11-01

    Assisted by a quantum dot-microcavity coupled system, we propose an entanglement concentration scheme for concentrating two unknown partially entangled three-photon W states into a maximally entangled three-photon W state based on spin selective photon reflection from the cavity and the interference of polarized photons. In the scheme, three parties, say Alice, Bob, and Charlie in different distant locations can successfully share the maximally entangled three-photon W state with a high probability of success by local operations performed by Alice and classical communication. We calculate the probability of success of the scheme and the fidelity of the obtained three-photon W state under practical conditions, whose results show that the scheme can work in both weak coupling and strong coupling regimes.

  9. Generation of quantum entangled states in nonlinear plasmonic structures and metamaterials (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Poddubny, Alexander N.; Sukhorukov, Andrey A.

    2015-09-01

    The practical development of quantum plasmonic circuits incorporating non-classical interference [1] and sources of entangled states calls for a versatile quantum theoretical framework which can fully describe the generation and detection of entangled photons and plasmons. However, majority of the presently used theoretical approaches are typically limited to the toy models assuming loss-less and nondispersive elements or including just a few resonant modes. Here, we present a rigorous Green function approach describing entangled photon-plasmon state generation through spontaneous wave mixing in realistic metal-dielectric nanostructures. Our approach is based on the local Huttner-Barnett quantization scheme [2], which enables problem formulation in terms of a Hermitian Hamiltonian where the losses and dispersion are fully encoded in the electromagnetic Green functions. Hence, the problem can be addressed by the standard quantum mechanical perturbation theory, overcoming mathematical difficulties associated with other quantization schemes. We derive explicit expressions with clear physical meaning for the spatially dependent two-photon detection probability, single-photon detection probability and single-photon density matrix. In the limiting case of low-loss nondispersive waveguides our approach reproduces the previous results [3,4]. Importantly, our technique is far more general and can quantitatively describe generation and detection of spatially-entangled photons in arbitrary metal-dielectric structures taking into account actual losses and dispersion. This is essential to perform the design and optimization of plasmonic structures for generation and control of quantum entangled states. [1] J.S. Fakonas, H. Lee, Y.A. Kelaita and H.A. Atwater, Nature Photonics 8, 317(2014) [2] W. Vogel and D.-G. Welsch, Quantum Optics, Wiley (2006). [3] D.A. Antonosyan, A.S. Solntsev and A.A. Sukhorukov, Phys. Rev. A 90 043845 (2014) [4] L.-G. Helt, J.E. Sipe and M.J. Steel, ar

  10. Localization and Entanglement in Relativistic Quantum Physics

    NASA Astrophysics Data System (ADS)

    Yngvason, Jakob

    These notes are a slightly expanded version of a lecture presented in February 2012 at the workshop "The Message of Quantum Science—Attempts Towards a Synthesis" held at the ZIF in Bielefeld. The participants were physicists with a wide range of different expertise and interests. The lecture was intended as a survey of a small selection of the insights into the structure of relativistic quantum physics that have accumulated through the efforts of many people over more than 50 years. (Including, among many others, R. Haag, H. Araki, D. Kastler, H.-J. Borchers, A. Wightman, R. Streater, B. Schroer, H. Reeh, S. Schlieder, S. Doplicher, J. Roberts, R. Jost, K. Hepp, J. Fröhlich, J. Glimm, A. Jaffe, J. Bisognano, E. Wichmann, D. Buchholz, K. Fredenhagen, R. Longo, D. Guido, R. Brunetti, J. Mund, S. Summers, R. Werner, H. Narnhofer, R. Verch, G. Lechner, ….) This contribution discusses some facts about relativistic quantum physics, most of which are quite familiar to practitioners of Algebraic Quantum Field Theory (AQFT) [Also known as Local Quantum Physics (Haag, Local quantum physics. Springer, Berlin, 1992).] but less well known outside this community. No claim of originality is made; the goal of this contribution is merely to present these facts in a simple and concise manner, focusing on the following issues: Explaining how quantum mechanics (QM) combined with (special) relativity, in particular an upper bound on the propagation velocity of effects, leads naturally to systems with an infinite number of degrees of freedom (relativistic quantum fields).

  11. Entanglement and Weak Values: A Quantum Miracle Cookbook

    NASA Astrophysics Data System (ADS)

    Botero, Alonso

    The concept of the weak value has proved to be a powerful and operationally grounded framework for the assignment of physical properties to a quantum system at any given time. More importantly, this framework has allowed us to identify a whole range of surprising quantum effects, or "miracles", which are readily testable but which lie buried "under the noise" when the results of measurements are not post-selected. In all cases, these miracles have to do with the fact that weak values can take values lying outside the conventional ranges of quantum expectation values. We explore the extent to which such miracles are possible within the weak value framework. As we show, given appropriate initial and final states, it is generally possible to produce any set of weak values that is consistent with the linearity of weak values, provided that the states are entangled states of the system with some external ancillary system. Through a simple constructive proof, we obtain a recipe for arbitrary quantum miracles, and give examples of some interesting applications. In particular, we show how the classical description of an infinitely-localized point in phase-space is contained in the weak-value framework augmented by quantum entanglement. [Editor's note: for a video of the talk given by Prof. Botero at the Aharonov-80 conference in 2012 at Chapman University, see http://quantum.chapman.edu/talk-27.

  12. Quantum Beats from Entangled Localized Surface Plasmons

    NASA Astrophysics Data System (ADS)

    Masiello, David

    Recent experiments report observations of quantum interference between plasmon resonances, inviting descriptions of plasmon-photon interaction using methods from quantum optics. Here we demonstrate, using a Heisenberg-Langevin approach, that the radiation emitted from the localized surface plasmon resonances of a mixed-metal heterodimer may exhibit observable, beat frequency interferences at a far-field detector, known as quantum beats. This prediction represents a correspondence between V-type atoms of quantum optics and the familiar heterodimer system of plasmonics. We explore this analogy in depth and find that although both systems support quantum beats, the heterodimer emits photons in bunches due to the bosonic nature of the plasmon. This highlights a significant difference between the properties of atomic and plasmonic systems. This work was supported by the National Science Foundation's CAREER program under Award Number CHE-1253775 and NSF XSEDE resources under Award Number PHY-130045.

  13. Quantum entanglement of identical particles by standard information-theoretic notions.

    PubMed

    Lo Franco, Rosario; Compagno, Giuseppe

    2016-01-01

    Quantum entanglement of identical particles is essential in quantum information theory. Yet, its correct determination remains an open issue hindering the general understanding and exploitation of many-particle systems. Operator-based methods have been developed that attempt to overcome the issue. Here we introduce a state-based method which, as second quantization, does not label identical particles and presents conceptual and technical advances compared to the previous ones. It establishes the quantitative role played by arbitrary wave function overlaps, local measurements and particle nature (bosons or fermions) in assessing entanglement by notions commonly used in quantum information theory for distinguishable particles, like partial trace. Our approach furthermore shows that bringing identical particles into the same spatial location functions as an entangling gate, providing fundamental theoretical support to recent experimental observations with ultracold atoms. These results pave the way to set and interpret experiments for utilizing quantum correlations in realistic scenarios where overlap of particles can count, as in Bose-Einstein condensates, quantum dots and biological molecular aggregates. PMID:26857475

  14. Quantum entanglement of identical particles by standard information-theoretic notions

    NASA Astrophysics Data System (ADS)

    Lo Franco, Rosario; Compagno, Giuseppe

    2016-02-01

    Quantum entanglement of identical particles is essential in quantum information theory. Yet, its correct determination remains an open issue hindering the general understanding and exploitation of many-particle systems. Operator-based methods have been developed that attempt to overcome the issue. Here we introduce a state-based method which, as second quantization, does not label identical particles and presents conceptual and technical advances compared to the previous ones. It establishes the quantitative role played by arbitrary wave function overlaps, local measurements and particle nature (bosons or fermions) in assessing entanglement by notions commonly used in quantum information theory for distinguishable particles, like partial trace. Our approach furthermore shows that bringing identical particles into the same spatial location functions as an entangling gate, providing fundamental theoretical support to recent experimental observations with ultracold atoms. These results pave the way to set and interpret experiments for utilizing quantum correlations in realistic scenarios where overlap of particles can count, as in Bose-Einstein condensates, quantum dots and biological molecular aggregates.

  15. Quantum entanglement of identical particles by standard information-theoretic notions

    PubMed Central

    Lo Franco, Rosario; Compagno, Giuseppe

    2016-01-01

    Quantum entanglement of identical particles is essential in quantum information theory. Yet, its correct determination remains an open issue hindering the general understanding and exploitation of many-particle systems. Operator-based methods have been developed that attempt to overcome the issue. Here we introduce a state-based method which, as second quantization, does not label identical particles and presents conceptual and technical advances compared to the previous ones. It establishes the quantitative role played by arbitrary wave function overlaps, local measurements and particle nature (bosons or fermions) in assessing entanglement by notions commonly used in quantum information theory for distinguishable particles, like partial trace. Our approach furthermore shows that bringing identical particles into the same spatial location functions as an entangling gate, providing fundamental theoretical support to recent experimental observations with ultracold atoms. These results pave the way to set and interpret experiments for utilizing quantum correlations in realistic scenarios where overlap of particles can count, as in Bose-Einstein condensates, quantum dots and biological molecular aggregates. PMID:26857475

  16. Entangled states of two quantum dots mediated by Majorana fermions

    NASA Astrophysics Data System (ADS)

    Shi, Z. C.; Wang, W.; Yi, X. X.

    2016-02-01

    With the assistance of a pair of Majorana fermions, we propose schemes to entangle two quantum dots by Lyapunov control in the charge and spin degrees of freedom. Four different schemes are considered, i.e., the teleportation scheme, the crossed Andreev reflection scheme, the intradot spin flip scheme, and the scheme beyond the intradot spin flip. We demonstrate that the entanglement can be generated by modulating the chemical potential of quantum dots with square pulses, which is easily realized in practice. In contrast to Lyapunov control, the preparation of entangled states by adiabatic passage is also discussed. There are two advantages in the scheme by Lyapunov control, i.e., it is flexible to choose a control Hamiltonian, and the control time is much shorter with respect to the scheme by adiabatic passage. Furthermore, we find that the results are quite different by different adiabatic passages in the scheme beyond the intradot spin flip, which can be understood as an effect of quantum destructive interference.

  17. Speedup of quantum evolution of multiqubit entanglement states

    NASA Astrophysics Data System (ADS)

    Zhang, Ying-Jie; Han, Wei; Xia, Yun-Jie; Tian, Jian-Xiang; Fan, Heng

    2016-06-01

    As is well known, quantum speed limit time (QSLT) can be used to characterize the maximal speed of evolution of quantum systems. We mainly investigate the QSLT of generalized N-qubit GHZ-type states and W-type states in the amplitude-damping channels. It is shown that, in the case N qubits coupled with independent noise channels, the QSLT of the entangled GHZ-type state is closely related to the number of qubits in the small-scale system. And the larger entanglement of GHZ-type states can lead to the shorter QSLT of the evolution process. However, the QSLT of the W-type states are independent of the number of qubits and the initial entanglement. Furthermore, by considering only M qubits among the N-qubit system respectively interacting with their own noise channels, QSLTs for these two types states are shorter than in the case N qubits coupled with independent noise channels. We therefore reach the interesting result that the potential speedup of quantum evolution of a given N-qubit GHZ-type state or W-type state can be realized in the case the number of the applied noise channels satisfying M < N.

  18. Speedup of quantum evolution of multiqubit entanglement states.

    PubMed

    Zhang, Ying-Jie; Han, Wei; Xia, Yun-Jie; Tian, Jian-Xiang; Fan, Heng

    2016-01-01

    As is well known, quantum speed limit time (QSLT) can be used to characterize the maximal speed of evolution of quantum systems. We mainly investigate the QSLT of generalized N-qubit GHZ-type states and W-type states in the amplitude-damping channels. It is shown that, in the case N qubits coupled with independent noise channels, the QSLT of the entangled GHZ-type state is closely related to the number of qubits in the small-scale system. And the larger entanglement of GHZ-type states can lead to the shorter QSLT of the evolution process. However, the QSLT of the W-type states are independent of the number of qubits and the initial entanglement. Furthermore, by considering only M qubits among the N-qubit system respectively interacting with their own noise channels, QSLTs for these two types states are shorter than in the case N qubits coupled with independent noise channels. We therefore reach the interesting result that the potential speedup of quantum evolution of a given N-qubit GHZ-type state or W-type state can be realized in the case the number of the applied noise channels satisfying M < N. PMID:27283757

  19. Speedup of quantum evolution of multiqubit entanglement states

    PubMed Central

    Zhang, Ying-Jie; Han, Wei; Xia, Yun-Jie; Tian, Jian-Xiang; Fan, Heng

    2016-01-01

    As is well known, quantum speed limit time (QSLT) can be used to characterize the maximal speed of evolution of quantum systems. We mainly investigate the QSLT of generalized N-qubit GHZ-type states and W-type states in the amplitude-damping channels. It is shown that, in the case N qubits coupled with independent noise channels, the QSLT of the entangled GHZ-type state is closely related to the number of qubits in the small-scale system. And the larger entanglement of GHZ-type states can lead to the shorter QSLT of the evolution process. However, the QSLT of the W-type states are independent of the number of qubits and the initial entanglement. Furthermore, by considering only M qubits among the N-qubit system respectively interacting with their own noise channels, QSLTs for these two types states are shorter than in the case N qubits coupled with independent noise channels. We therefore reach the interesting result that the potential speedup of quantum evolution of a given N-qubit GHZ-type state or W-type state can be realized in the case the number of the applied noise channels satisfying M < N. PMID:27283757

  20. Realization of an entanglement-assisted quantum delayed-choice experiment

    NASA Astrophysics Data System (ADS)

    Xin, Tao; Li, Hang; Wang, Bi-Xue; Long, Gui-Lu

    2015-08-01

    The puzzling properties of quantum mechanics, i.e., wave-particle duality, entanglement, and superposition, have been dissected experimentally over the past decades. However, hidden-variable (HV) models based on three classical assumptions of wave-particle objectivity, determinism, and independence strive to explain the same experiments or even defeat quantum mechanics. Meanwhile, the steady development of quantum technologies continues to enable us to test experimentally the predictions of quantum mechanics and HV theories. We report an experimental demonstration of an entanglement-assisted quantum delayed-choice scheme using a liquid nuclear magnetic resonance quantum-information processor. This experiment is based on the recently proposed scheme [R. Ionicioiu et al., Nat. Commun. 5. 3997 (2014), 10.1038/ncomms5997], which predicted different results for quantum mechanics and HV theories. In our experiments, the intensities and the visibilities of the interference are consistent with the theoretical predictions of quantum mechanics. The results show that a contradiction with the experiments is indeed appearing when all three assumptions of the HV models are combined, though any two of those assumptions are compatible with the experiments.

  1. Limited-path-length entanglement percolation in quantum complex networks

    NASA Astrophysics Data System (ADS)

    Cuquet, Martí; Calsamiglia, John

    2011-03-01

    We study entanglement distribution in quantum complex networks where nodes are connected by bipartite entangled states. These networks are characterized by a complex structure, which dramatically affects how information is transmitted through them. For pure quantum state links, quantum networks exhibit a remarkable feature absent in classical networks: it is possible to effectively rewire the network by performing local operations on the nodes. We propose a family of such quantum operations that decrease the entanglement percolation threshold of the network and increase the size of the giant connected component. We provide analytic results for complex networks with an arbitrary (uncorrelated) degree distribution. These results are in good agreement with numerical simulations, which also show enhancement in correlated and real-world networks. The proposed quantum preprocessing strategies are not robust in the presence of noise. However, even when the links consist of (noisy) mixed-state links, one can send quantum information through a connecting path with a fidelity that decreases with the path length. In this noisy scenario, complex networks offer a clear advantage over regular lattices, namely, the fact that two arbitrary nodes can be connected through a relatively small number of steps, known as the small-world effect. We calculate the probability that two arbitrary nodes in the network can successfully communicate with a fidelity above a given threshold. This amounts to working out the classical problem of percolation with a limited path length. We find that this probability can be significant even for paths limited to few connections and that the results for standard (unlimited) percolation are soon recovered if the path length exceeds by a finite amount the average path length, which in complex networks generally scales logarithmically with the size of the network.

  2. Quantum spin dynamics and entanglement in systems with long-range interactions

    NASA Astrophysics Data System (ADS)

    Rey, Ana M.

    One of the fundamental goals of modern quantum sciences is to learn how to control and manipulate non-equilibrium many-body systems and use them to make powerful and improved quantum devices, materials and technologies. However, out-of-equilibrium systems are complex, typically strongly correlated and entangled, and thus to model them we are in an urgent need of new methodologies. In this talk I will discuss new theoretical methods that we have developed to investigate emergent non-equilibrium phenomena in driven-dissipative spin systems interacting via long-range interactions. I will show we can capture the dynamics of correlations and entanglement in close systems and the interplay between dissipation and entanglement in open quantum systems including spin-boson models. As a specific application I will discuss the use of our methods to model the spin dynamics exhibited by arrays of trapped ions with controllable long-range interactions. I will show that our predictions are consistent with recent experimental measurements. I will also discuss new protocols to diagnostic and characterize entanglement based on well-established NMR protocols This work is supported by NSF, ARO, AFOSR-MURI, and NIST.

  3. Entanglement under the renormalization-group transformations on quantum states and in quantum phase transitions

    SciTech Connect

    Wei, T.-C.

    2010-06-15

    We consider quantum states under the renormalization-group (RG) transformations introduced by Verstraete et al. [Phys. Rev. Lett. 94, 140601 (2005)] and propose a quantification of entanglement under such RGs (via the geometric measure of entanglement). We examine the resulting entanglement under RG transformations for the ground states of ''matrix-product-state'' Hamiltonians constructed by Wolf et al. [Phys. Rev. Lett. 97, 110403 (2006)] that possess quantum phase transitions. We find that near critical points, the ground-state entanglement exhibits singular behavior. The singular behavior within finite steps of the RG obeys a scaling hypothesis and reveals the correlation length exponent. However, under the infinite steps of RG transformation, the singular behavior is rendered different and is universal only when there is an underlying conformal-field-theory description of the critical point.

  4. Entanglement under the renormalization-group transformations on quantum states and in quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Wei, Tzu-Chieh

    2010-06-01

    We consider quantum states under the renormalization-group (RG) transformations introduced by Verstraete [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.94.140601 94, 140601 (2005)] and propose a quantification of entanglement under such RGs (via the geometric measure of entanglement). We examine the resulting entanglement under RG transformations for the ground states of “matrix-product-state” Hamiltonians constructed by Wolf [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.97.110403 97, 110403 (2006)] that possess quantum phase transitions. We find that near critical points, the ground-state entanglement exhibits singular behavior. The singular behavior within finite steps of the RG obeys a scaling hypothesis and reveals the correlation length exponent. However, under the infinite steps of RG transformation, the singular behavior is rendered different and is universal only when there is an underlying conformal-field-theory description of the critical point.

  5. A probabilistic quantum communication protocol using mixed entangled channel

    NASA Astrophysics Data System (ADS)

    Choudhury, Binayak S.; Dhara, Arpan

    2016-05-01

    Qubits are realized as polarization state of photons or as superpositions of the spin states of electrons. In this paper we propose a scheme to probabilistically teleport an unknown arbitrary two-qubit state using a non-maximally entangled GHZ- like state and a non-maximally Bell state simultaneously as quantum channels. We also discuss the success probability of our scheme. We perform POVM in the protocol which is operationally advantageous. In our scheme we show that the non-maximal quantum resources perform better than maximal resources.

  6. Quantum correlations of helicity entangled states in non-inertial frames beyond single mode approximation

    SciTech Connect

    Harsij, Zeynab Mirza, Behrouz

    2014-12-15

    A helicity entangled tripartite state is considered in which the degree of entanglement is preserved in non-inertial frames. It is shown that Quantum Entanglement remains observer independent. As another measure of quantum correlation, Quantum Discord has been investigated. It is explicitly shown that acceleration has no effect on the degree of quantum correlation for the bipartite and tripartite helicity entangled states. Geometric Quantum Discord as a Hilbert–Schmidt distance is computed for helicity entangled states. It is shown that living in non-inertial frames does not make any influence on this distance, either. In addition, the analysis has been extended beyond single mode approximation to show that acceleration does not have any impact on the quantum features in the limit beyond the single mode. As an interesting result, while the density matrix depends on the right and left Unruh modes, the Negativity as a measure of Quantum Entanglement remains constant. Also, Quantum Discord does not change beyond single mode approximation. - Highlights: • The helicity entangled states here are observer independent in non-inertial frames. • It is explicitly shown that Quantum Discord for these states is observer independent. • Geometric Quantum Discord is also not affected by acceleration increase. • Extending to beyond single mode does not change the degree of entanglement. • Beyond single mode approximation the degree of Quantum Discord is also preserved.

  7. Optimal analysis of ultra broadband energy-time entanglement for high bit-rate dense wavelength division multiplexed quantum networks

    NASA Astrophysics Data System (ADS)

    Kaiser, F.; Aktas, D.; Fedrici, B.; Lunghi, T.; Labonté, L.; Tanzilli, S.

    2016-06-01

    We demonstrate an experimental method for measuring energy-time entanglement over almost 80 nm spectral bandwidth in a single shot with a quantum bit error rate below 0.5%. Our scheme is extremely cost-effective and efficient in terms of resources as it employs only one source of entangled photons and one fixed unbalanced interferometer per phase-coded analysis basis. We show that the maximum analysis spectral bandwidth is obtained when the analysis interferometers are properly unbalanced, a strategy which can be straightforwardly applied to most of today's experiments based on energy-time and time-bin entanglement. Our scheme has therefore a great potential for boosting bit rates and reducing the resource overhead of future entanglement-based quantum key distribution systems.

  8. Improved data analysis for verifying quantum nonlocality and entanglement

    NASA Astrophysics Data System (ADS)

    Zhang, Yanbao; Glancy, Scott; Knill, Emanuel

    2012-06-01

    Given a finite number of experimental results originating from local measurements on two separated quantum systems in an unknown state, are these systems nonlocally correlated or entangled with each other? These properties can be verified by violating a Bell inequality or satisfying an entanglement witness. However, violation or satisfaction could be due to statistical fluctuations in finite measurements. Rigorous upper bounds, on the maximum probability (i.e., the p-value) according to local realistic or separable states of a violation or satisfaction as high as the observed, are required. Here, we propose a rigorous upper bound that improves the known bound from large deviation theory [R. Gill, arXiv:quant-ph/0110137]. The proposed bound is robust against experimental instability and the memory loophole [J. Barrett et al., Phys. Rev. A 66, 042111 (2002)]. Compared with our previous method [Phys. Rev. A 84, 062118 (2011)], the proposed method takes advantage of the particular Bell inequality or entanglement witness tested in an experiment, so the computation complexity is reduced. Also, this method can be easily extended to test a set of independent Bell inequalities or entanglement witnesses simultaneously.

  9. Bipartite quantum channels using multipartite cluster-type entangled coherent states

    SciTech Connect

    Munhoz, P. P.; Semiao, F. L.; Roversi, J. A.; Vidiella-Barranco, A.

    2010-04-15

    We propose a particular encoding for bipartite entangled states derived from multipartite cluster-type entangled coherent states (CTECSs). We investigate the effects of amplitude damping on the entanglement content of this bipartite state, as well as its usefulness as a quantum channel for teleportation. We find interesting relationships among the amplitude of the coherent states constituting the CTECSs, the number of subsystems forming the logical qubits (redundancy), and the extent to which amplitude damping affects the entanglement of the channel. For instance, in the sense of sudden death of entanglement, given a fixed value of the initial coherent state amplitude, the entanglement life span is shortened if redundancy is increased.

  10. Resource cost results for one-way entanglement distillation and state merging of compound and arbitrarily varying quantum sources

    SciTech Connect

    Boche, H. Janßen, G.

    2014-08-01

    We consider one-way quantum state merging and entanglement distillation under compound and arbitrarily varying source models. Regarding quantum compound sources, where the source is memoryless, but the source state an unknown member of a certain set of density matrices, we continue investigations begun in the work of Bjelaković et al. [“Universal quantum state merging,” J. Math. Phys. 54, 032204 (2013)] and determine the classical as well as entanglement cost of state merging. We further investigate quantum state merging and entanglement distillation protocols for arbitrarily varying quantum sources (AVQS). In the AVQS model, the source state is assumed to vary in an arbitrary manner for each source output due to environmental fluctuations or adversarial manipulation. We determine the one-way entanglement distillation capacity for AVQS, where we invoke the famous robustification and elimination techniques introduced by Ahlswede. Regarding quantum state merging for AVQS we show by example that the robustification and elimination based approach generally leads to suboptimal entanglement as well as classical communication rates.

  11. Entanglement distillation for quantum communication network with atomic-ensemble memories.

    PubMed

    Li, Tao; Yang, Guo-Jian; Deng, Fu-Guo

    2014-10-01

    Atomic ensembles are effective memory nodes for quantum communication network due to the long coherence time and the collective enhancement effect for the nonlinear interaction between an ensemble and a photon. Here we investigate the possibility of achieving the entanglement distillation for nonlocal atomic ensembles by the input-output process of a single photon as a result of cavity quantum electrodynamics. We give an optimal entanglement concentration protocol (ECP) for two-atomic-ensemble systems in a partially entangled pure state with known parameters and an efficient ECP for the systems in an unknown partially entangled pure state with a nondestructive parity-check detector (PCD). For the systems in a mixed entangled state, we introduce an entanglement purification protocol with PCDs. These entanglement distillation protocols have high fidelity and efficiency with current experimental techniques, and they are useful for quantum communication network with atomic-ensemble memories. PMID:25321967

  12. Entanglement via tunable Fano-type interference in asymmetric semiconductor quantum wells

    NASA Astrophysics Data System (ADS)

    Hao, Xiangying; Li, Jiahua; Lv, Xin-You; Si, Liu-Gang; Yang, Xiaoxue

    2009-10-01

    Entanglement is realized in asymmetric coupled double quantum wells (DQWs) trapped in a doubly resonant cavity by means of Fano-type interference through a tunneling barrier, which is different from the previous studies on entanglement induced by strong external driven fields in atomic media. We investigate the generation and evolution of entanglement and show that the strength of Fano interference can influence effectively the degree of the entanglement between two cavity modes and the enhanced entanglement can be generated in this DQW system. The present investigation may provide research opportunities in quantum entangled experiments in the DQW solid-state nanostructures and may result in a substantial impact on the technology for entanglement engineering in quantum information processing.

  13. Towards quantum-dot arrays of entangled photon emitters

    NASA Astrophysics Data System (ADS)

    Juska, Gediminas; Dimastrodonato, Valeria; Mereni, Lorenzo O.; Gocalinska, Agnieszka; Pelucchi, Emanuele

    2013-07-01

    To make photonic quantum information a reality, a number of extraordinary challenges need to be overcome. One challenge is to achieve large arrays of reproducible `entangled' photon generators, while maintaining compatibility for integration with optical devices and detectors. Semiconductor quantum dots are potentially ideal for this as they allow photons to be generated on demand without relying on probabilistic processes. Nevertheless, most quantum-dot systems are limited by their intrinsic lack of symmetry, which allows only a small number (typically 1 out of 100, or worse) of good dots to be achieved per chip. The recent retraction of Mohan et al. seemed to question the very possibility of simultaneously achieving site control and high symmetry. Here, we show that with a new family of (111)-grown pyramidal site-controlled InGaAs1-δNδ quantum dots it is possible to overcome previous hurdles and obtain areas with up to 15% of polarization-entangled photon emitters, with fidelities as high as 0.721 +/- 0.043.

  14. Multi-Party Quantum Key Agreement by an Entangled Six-Qubit State

    NASA Astrophysics Data System (ADS)

    Sun, Zhiwei; Zhang, Cai; Wang, Ping; Yu, Jianping; Zhang, Yong; Long, Dongyang

    2016-03-01

    Since the first quantum key agreement protocol based on Bell state was presented by Zhou et al., much attention has focused on it, which is based on entangled states and product states. In this paper, we propose a multi-party quantum key agreement protocol, in which the genuinely maximally entangled six-qubit states are used. The presented protocol allows participants to share a secret key and preserves the following advantages. First, the outcome of the protocol is influenced by all parties; Second, the presented protocol is fairness, i.e., no one can determine the shared key alone; Third, outside eavesdroppers cannot gain the generated key without introducing any error. The security analysis shows that our protocol can resist both outside attacks and inside attacks.

  15. Nonlocal entanglement of coherent states, complementarity, and quantum erasure

    SciTech Connect

    Gerry, Christopher C.; Grobe, R.

    2007-03-15

    We describe a nonlocal method for generating entangled coherent states of a two-mode field wherein the field modes never meet. The proposed method is an extension of an earlier proposal [C. C. Gerry, Phys. Rev. A 59, 4095 (1999)] for the generation of superpositions of coherent states. A single photon injected into a Mach-Zehnder interferometer with cross-Kerr media in both arms coupling with two external fields in coherent states produces entangled coherent states upon detection at one of the output ports. We point out that our proposal can be alternatively viewed as a 'which path' experiment, and in the case of only one external field, we describe the implementation of a quantum eraser.

  16. Quantum hyper-entanglement and angular spectrum decomposition applied to sensors

    NASA Astrophysics Data System (ADS)

    Smith, James F.

    2016-05-01

    Hyper-entanglement with an emphasis on mode type is used to extend a previously developed atmospheric imaging system. Angular spectrum expansions combined with second quantization formalism permits many different mode types to be considered using a common formalism. Fundamental Gaussian, standard Hermite-Gaussian, standard Laguerre- Gaussian, and Bessel modes are developed. Hyper-entanglement refers to entanglement in more than one degree of freedom, e.g. polarization, energy-time and orbital angular momentum. The system functions at optical or infrared frequencies. Only the signal photon propagates in the atmosphere, the ancilla photon is retained within the detector. This results in loss being essentially classical, giving rise to stronger forms of entanglement. A simple atomic physics based model of the scattering target is developed. This model permits the derivation in closed form of the loss coefficient for photons with a given mode type scattering from the target. Signal loss models for propagation, transmission, detection, and scattering are developed and applied. The probability of detection of photonic orbital angular momentum is considered in terms of random media theory. A model of generation and detection efficiencies for the different degrees of freedom is also considered. The implications of loss mechanisms for signal to noise ratio (SNR), and other quantum information theoretic quantities are discussed. Techniques for further enhancing the system's SNR and resolution through adaptive optics are examined. The formalism permits random noise and entangled or nonentangled sources of interference to be modeled.

  17. Quantum dialogue protocols over collective noise using entanglement of GHZ state

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Hung; Yang, Chun-Wei; Hzu, Geng-Rong; Hwang, Tzonelih; Kao, Shih-Hung

    2016-04-01

    In this paper, two quantum dialogue (QD) protocols based on the entanglement of GHZ states are proposed to resist the collective noise. Besides, two new coding functions are designed for each of the proposed protocols, which can resist two types of collective noise: collective-dephasing noise and collective-rotation noise, respectively. Furthermore, it is also argued that these QD protocols are also free from the Trojan horse attacks and the information leakage problem.

  18. Quantum dialogue protocols over collective noise using entanglement of GHZ state

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Hung; Yang, Chun-Wei; Hzu, Geng-Rong; Hwang, Tzonelih; Kao, Shih-Hung

    2016-07-01

    In this paper, two quantum dialogue (QD) protocols based on the entanglement of GHZ states are proposed to resist the collective noise. Besides, two new coding functions are designed for each of the proposed protocols, which can resist two types of collective noise: collective-dephasing noise and collective-rotation noise, respectively. Furthermore, it is also argued that these QD protocols are also free from the Trojan horse attacks and the information leakage problem.

  19. Quantum entanglement and quantum phase transitions in frustrated Majumdar-Ghosh model

    NASA Astrophysics Data System (ADS)

    Liu, Guang-Hua; Wang, Chun-Hai; Deng, Xiao-Yan

    2011-01-01

    By using the density matrix renormalization group technique, the quantum phase transitions in the frustrated Majumdar-Ghosh model are investigated. The behaviors of the conventional order parameter and the quantum entanglement entropy are analyzed in detail. The order parameter is found to peak at J2∼0.58, but not at the Majumdar-Ghosh point ( J2=0.5). Although, the quantum entanglements calculated with different subsystems display dissimilarly, the extremes of their first derivatives approach to the same critical point. By finite size scaling, this quantum critical point JC2 converges to around 0.301 in the thermodynamic limit, which is consistent with those predicted previously by some authors (Tonegawa and Harada, 1987 [6]; Kuboki and Fukuyama, 1987 [7]; Chitra et al., 1995 [9]). Across the JC2, the system undergoes a quantum phase transition from a gapless spin-fluid phase to a gapped dimerized phase.

  20. Quantum teleportation through an entangled state composed of displaced vacuum and single-photon states

    SciTech Connect

    Podoshvedov, S. A.

    2008-03-15

    We study a teleportation protocol of an unknown macroscopic qubit by means of a quantum channel composed of the displaced vacuum and single-photon states. The scheme is based on linear optical devices such as a beam splitter and photon number resolving detectors. A method based on conditional measurement is used to generate both the macroscopic qubit and entangled state composed from displaced vacuum and single-photon states. We show that such a qubit has both macroscopic and microscopic properties. In particular, we investigate a quantum teleportation protocol from a macroscopic object to a microscopic state.

  1. Entanglement transfer from electrons to photons in quantum dots: an open quantum system approach.

    PubMed

    Budich, Jan C; Trauzettel, Björn

    2010-07-01

    We investigate entanglement transfer from a system of two spin-entangled electron-hole pairs, each placed in a separate single mode cavity, to the photons emitted due to cavity leakage. Dipole selection rules and a splitting between the light hole and the heavy hole subbands are the crucial ingredients establishing a one-to-one correspondence between electron spins and circular photon polarizations. To account for the measurement of the photons as well as dephasing effects, we choose a stochastic Schrödinger equation and a conditional master equation approach, respectively. The influence of interactions with the environment as well as asymmetries in the coherent couplings on the photon entanglement is analysed for two concrete measurement schemes. The first one is designed to violate the Clauser-Horne-Shimony-Holt (CHSH) inequality, while the second one employs the visibility of interference fringes to prove the entanglement of the photons. Because of the spatial separation of the entangled electronic system over two quantum dots, a successful verification of entangled photons emitted by this system would imply the detection of nonlocal spin entanglement of massive particles in a solid state structure. PMID:20571188

  2. Studying the thermally entangled state of a three-qubit Heisenberg XX ring via quantum teleportation

    SciTech Connect

    Yeo, Ye

    2003-08-01

    We consider quantum teleportation as a tool to investigate the thermally entangled state of a three-qubit Heisenberg XX ring. Our investigation reveals interesting aspects of quantum entanglement not reflected by the pairwise thermal concurrence of the state. In particular, two mixtures of different pairs of W states, which result in the same concurrence, could yield very different average teleportation fidelities.

  3. Control of the entanglement between triple quantum dot molecule and its spontaneous emission fields via quantum entropy

    NASA Astrophysics Data System (ADS)

    Sahrai, M.; Arzhang, B.; Taherkhani, D.; Boroojerdi, V. Tahmoorian Askari

    2015-03-01

    The time evolution of the quantum entropy in a coherently driven triple quantum dot molecule is investigated. The entanglement of the quantum dot molecule and its spontaneous emission field is coherently controlled by the gate voltage and the rate of an incoherent pump field. The degree of entanglement between a triple quantum dot molecule and its spontaneous emission fields is decreased by increasing the tunneling parameter.

  4. Bounds on corner entanglement in quantum critical states

    NASA Astrophysics Data System (ADS)

    Bueno, Pablo; Witczak-Krempa, William

    2016-01-01

    The entanglement entropy in many gapless quantum systems receives a contribution from the corners in the entangling surface in 2+1d, which is characterized by a universal function a (θ ) depending on the opening angle θ , and contains pertinent low energy information. For conformal field theories (CFTs), the leading expansion coefficient in the smooth limit θ →π yields the stress tensor two-point function coefficient CT. Little is known about a (θ ) beyond that limit. Here, we show that the next term in the smooth limit expansion contains information beyond the two- and three-point correlators of the stress tensor. We conjecture that it encodes four-point data, making it much richer. Further, we establish strong constraints on this and higher-order smooth-limit coefficients. We also show that a (θ ) is lower-bounded by a nontrivial function multiplied by the central charge CT, e.g., a (π /2 ) ≥(π2ln2 ) CT/6 . This bound for 90-degree corners is nearly saturated by all known results, including recent numerics for the interacting Wilson-Fisher quantum critical points (QCPs). A bound is also given for the Rényi entropies. We illustrate our findings using O(N ) QCPs, free boson and Dirac fermion CFTs, strongly coupled holographic ones, and other models. Exact results are also given for Lifshitz quantum critical points, and for conical singularities in 3+1d.

  5. A Quantum Electrodynamics Kondo Circuit with Orbital and Spin Entanglement

    NASA Astrophysics Data System (ADS)

    Schiro, Marco; Deng, Guang-Wei; Henriet, Loic; Wei, Da; Li, Shu-Xiao; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Guo, Guang-Can; Le Hur, Karyn; Guo, Guo-Ping

    Recent progress in nanotechnology allows to engineer hybrid mesoscopic devices comprising on chip an artificial atom or quantum dot, capacitively coupled to a microwave (superconducting) resonator and to biased metallic leads. Here, we build such a prototype system where the artificial atom is a graphene double quantum dot (DQD) to probe non-equilibrium aspects of strongly-entangled many body states between light and matter at the nanoscale. Controlling the coupling of the photon field and the charge states of the DQD, we measure the microwave reflection spectrum of the resonator. When the DQD is at the charge degeneracy points, experimental results are consistent with a Kondo impurity model entangling charge, spin and orbital degrees of freedom with the quantum fluctuations of the cavity photon. The light coming out from the resonator reveals the formation of the Kondo or Abrikosov-Suhl resonance at low temperatures. We also explore other routes to investigate nonlinear transport by increasing the microwave power, the bias and gate voltages.

  6. Realizing quantum advantage without entanglement in single-photon states

    NASA Astrophysics Data System (ADS)

    Maldonado-Trapp, Alejandra; Solano, Pablo; Hu, Anzi; Clark, Charles W.

    Correlations allow us to measure, and quantitatively study, the properties of physical systems, their evolution and their interactions. Quantum discord expresses quantum correlations beyond those associated with entanglement. However, discord has not yet been adopted as a standard subject of study by the experimental community. Here we propose a feasible optical setup to generate symmetric two-qubit X-states with controllable coherences, where the two qubits correspond to the spin and path of a photon. With these states we show how a classical random variable K can be encoded by Alice and decoded by Bob. Using our previous results we study the correlations between the spin and path qubits and its relation with the information about K that can be decoded by Bob using local measurements with or without two-qubit gate operations. Discord is the mutual information contained in the coherences of the system, and it is possible to exploit it for quantum advantage even in the absence of entanglement.

  7. On entanglement-assisted quantum codes achieving the entanglement-assisted Griesmer bound

    NASA Astrophysics Data System (ADS)

    Li, Ruihu; Li, Xueliang; Guo, Luobin

    2015-12-01

    The theory of entanglement-assisted quantum error-correcting codes (EAQECCs) is a generalization of the standard stabilizer formalism. Any quaternary (or binary) linear code can be used to construct EAQECCs under the entanglement-assisted (EA) formalism. We derive an EA-Griesmer bound for linear EAQECCs, which is a quantum analog of the Griesmer bound for classical codes. This EA-Griesmer bound is tighter than known bounds for EAQECCs in the literature. For a given quaternary linear code {C}, we show that the parameters of the EAQECC that EA-stabilized by the dual of {C} can be determined by a zero radical quaternary code induced from {C}, and a necessary condition under which a linear EAQECC may achieve the EA-Griesmer bound is also presented. We construct four families of optimal EAQECCs and then show the necessary condition for existence of EAQECCs is also sufficient for some low-dimensional linear EAQECCs. The four families of optimal EAQECCs are degenerate codes and go beyond earlier constructions. What is more, except four codes, our [[n,k,d_{ea};c

  8. Quantum-enhanced spectroscopy with entangled multiphoton states

    NASA Astrophysics Data System (ADS)

    Dinani, Hossein T.; Gupta, Manish K.; Dowling, Jonathan P.; Berry, Dominic W.

    2016-06-01

    Traditionally, spectroscopy is performed by examining the position of absorption lines. However, at frequencies near the transition frequency, additional information can be obtained from the phase shift. In this work we consider the information about the transition frequency obtained from both the absorption and the phase shift, as quantified by the Fisher information in an interferometric measurement. We examine the use of multiple single-photon states, NOON states, and numerically optimized states that are entangled and have multiple photons. We find the optimized states that improve over the standard quantum limit set by independent single photons for some atom number densities.

  9. DeSitter entropy, quantum entanglement and ADS/CFT

    NASA Astrophysics Data System (ADS)

    Hawking, Stephen; Maldacena, Juan; Strominger, Andrew

    2001-05-01

    A de Sitter brane-world bounding regions of anti-de Sitter space has a macroscopic entropy given by one-quarter the area of the observer horizon. A proposed variant of the AdS/CFT correspondence gives a dual description of this cosmology as conformal field theory coupled to gravity in de Sitter space. In the case of two-dimensional de Sitter space this provides a microscopic derivation of the entropy, including the one-quarter, as quantum entanglement of the conformal field theory across the horizon.

  10. Bright bichromatic entanglement and quantum dynamics of sum frequency generation

    SciTech Connect

    Olsen, M. K.; Bradley, A. S.

    2008-02-15

    We investigate the quantum properties of the well-known process of sum frequency generation, showing that it is potentially a very useful source of nonclassical states of the electromagnetic field, some of which are not possible with the more common techniques. We show that it can produce quadrature squeezed light, bright bichromatic entangled states, and symmetric and asymmetric demonstrations of the Einstein-Podolsky-Rosen paradox. We also show that the semiclassical equations totally fail to describe the mean-field dynamics when the cavity is strongly pumped.

  11. Entanglement in a second-order quantum phase transition

    SciTech Connect

    Vidal, Julien; Palacios, Guillaume; Mosseri, Remy

    2004-02-01

    We consider a system of mutually interacting spins 1/2 embedded in a transverse magnetic field which undergoes a second-order quantum phase transition. We analyze the entanglement properties and the spin squeezing of the ground state and show that, contrarily to the one-dimensional case, a cusplike singularity appears at the critical point {lambda}{sub c} in the thermodynamical limit. We also show that there exists a value {lambda}{sub 0}{>=}{lambda}{sub c} above which the ground state is not spin squeezed despite a nonvanishing concurrence.

  12. Entanglement entropy of 2D conformal quantum critical points: hearing the shape of a quantum drum.

    PubMed

    Fradkin, Eduardo; Moore, Joel E

    2006-08-01

    The entanglement entropy of a pure quantum state of a bipartite system A union or logical sumB is defined as the von Neumann entropy of the reduced density matrix obtained by tracing over one of the two parts. In one dimension, the entanglement of critical ground states diverges logarithmically in the subsystem size, with a universal coefficient that for conformally invariant critical points is related to the central charge of the conformal field theory. We find that the entanglement entropy of a standard class of z=2 conformal quantum critical points in two spatial dimensions, in addition to a nonuniversal "area law" contribution linear in the size of the AB boundary, generically has a universal logarithmically divergent correction, which is completely determined by the geometry of the partition and by the central charge of the field theory that describes the critical wave function. PMID:17026083

  13. Unusual entanglement transformation properties of the quantum radiation through one-dimensional random system containing left-handed-materials.

    PubMed

    Dong, Yunxia; Zhang, Xiangdong

    2008-10-13

    The quantum radiation through the multilayer structures containing the left-handed materials is investigated based on the Green-function approach to the quantization of the phenomenological Maxwell theory. Emphasis is placed on the effect of randomness on the generation and transmission of entangled-states. It is shown that some unusual properties appear for the present systems in comparison with those of the conventional dielectric structures. The quantum relative entropy is always enhanced with the increase of random degree due to the existence of nonlocalized mode in the present systems, while the maximal entanglement can be observed only at some certain randomness for the conventional dielectric structures. In contrast to exponential decrease in the conventional systems, the entanglement degrades slowly with the increase of disorder and thickness of the sample near the nonlocalized mode after transmission through the present systems. This will benefit the quantum communication for long distances. PMID:18852803

  14. Distance and coupling dependence of entanglement in the presence of a quantum field

    NASA Astrophysics Data System (ADS)

    Hsiang, J.-T.; Hu, B. L.

    2015-12-01

    We study the entanglement between two coupled detectors, the internal degrees of freedom of which are modeled by harmonic oscillators, interacting with a common quantum field, paying special attention to two less studied yet important features: finite separation and direct coupling. Distance dependence is essential in quantum teleportation and relativistic quantum information considerations. The presence of a quantum field as the environment accords an indirect interaction between the two oscillators at finite separation of a non-Markovian nature which competes with the direct coupling between them. The interplay between these two factors results in a rich variety of interesting entanglement behaviors at late times. We show that the entanglement behavior reported in prior work assuming no separation between the detectors can at best be a transient effect at very short times and claims that such behaviors represent late-time entanglement are misplaced. Entanglement between the detectors with direct coupling enters in the consideration of macroscopic quantum phenomena and other frontline issues. We find that with direct coupling entanglement between the two detectors can sustain over a finite distance, in contrast to the no direct coupling case reported before, where entanglement cannot survive at a separation more than a few inverse high-frequency cutoff scales. This work provides a functional platform for systematic investigations into the entanglement behavior of continuous variable quantum systems, such as used in quantum electro- and optomechanics.

  15. Entanglement of periodic states, the quantum Fourier transform, and Shor's factoring algorithm

    SciTech Connect

    Most, Yonatan; Biham, Ofer; Shimoni, Yishai

    2010-05-15

    The preprocessing stage of Shor's algorithm generates a class of quantum states referred to as periodic states, on which the quantum Fourier transform is applied. Such states also play an important role in other quantum algorithms that rely on the quantum Fourier transform. Since entanglement is believed to be a necessary resource for quantum computational speedup, we analyze the entanglement of periodic states and the way it is affected by the quantum Fourier transform. To this end, we derive a formula that evaluates the Groverian entanglement measure for periodic states. Using this formula, we explain the surprising result that the Groverian entanglement of the periodic states built up during the preprocessing stage is only slightly affected by the quantum Fourier transform.

  16. Complete Distributed Hyper-Entangled-Bell-State Analysis and Quantum Super Dense Coding

    NASA Astrophysics Data System (ADS)

    Zheng, Chunhong; Gu, Yongjian; Li, Wendong; Wang, Zhaoming; Zhang, Jiying

    2016-02-01

    We propose a protocol to implement the distributed hyper-entangled-Bell-state analysis (HBSA) for photonic qubits with weak cross-Kerr nonlinearities, QND photon-number-resolving detection, and some linear optical elements. The distinct feature of our scheme is that the BSA for two different degrees of freedom can be implemented deterministically and nondestructively. Based on the present HBSA, we achieve quantum super dense coding with double information capacity, which makes our scheme more significant for long-distance quantum communication.

  17. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms.

    PubMed

    Hosten, Onur; Engelsen, Nils J; Krishnakumar, Rajiv; Kasevich, Mark A

    2016-01-28

    Quantum metrology uses quantum entanglement--correlations in the properties of microscopic systems--to improve the statistical precision of physical measurements. When measuring a signal, such as the phase shift of a light beam or an atomic state, a prominent limitation to achievable precision arises from the noise associated with the counting of uncorrelated probe particles. This noise, commonly referred to as shot noise or projection noise, gives rise to the standard quantum limit (SQL) to phase resolution. However, it can be mitigated down to the fundamental Heisenberg limit by entangling the probe particles. Despite considerable experimental progress in a variety of physical systems, a question that persists is whether these methods can achieve performance levels that compare favourably with optimized conventional (non-entangled) systems. Here we demonstrate an approach that achieves unprecedented levels of metrological improvement using half a million (87)Rb atoms in their 'clock' states. The ensemble is 20.1 ± 0.3 decibels (100-fold) spin-squeezed via an optical-cavity-based measurement. We directly resolve small microwave-induced rotations 18.5 ± 0.3 decibels (70-fold) beyond the SQL. The single-shot phase resolution of 147 microradians achieved by the apparatus is better than that achieved by the best engineered cold atom sensors despite lower atom numbers. We infer entanglement of more than 680 ± 35 particles in the atomic ensemble. Applications include atomic clocks, inertial sensors, and fundamental physics experiments such as tests of general relativity or searches for electron electric dipole moment. To this end, we demonstrate an atomic clock measurement with a quantum enhancement of 10.5 ± 0.3 decibels (11-fold), limited by the phase noise of our microwave source. PMID:26751056

  18. Quantum entanglement and spin control in silicon nanocrystal.

    PubMed

    Berec, Vesna

    2012-01-01

    Selective coherence control and electrically mediated exchange coupling of single electron spin between triplet and singlet states using numerically derived optimal control of proton pulses is demonstrated. We obtained spatial confinement below size of the Bohr radius for proton spin chain FWHM. Precise manipulation of individual spins and polarization of electron spin states are analyzed via proton induced emission and controlled population of energy shells in pure (29)Si nanocrystal. Entangled quantum states of channeled proton trajectories are mapped in transverse and angular phase space of (29)Si <100> axial channel alignment in order to avoid transversal excitations. Proton density and proton energy as impact parameter functions are characterized in single particle density matrix via discretization of diagonal and nearest off-diagonal elements. We combined high field and low densities (1 MeV/92 nm) to create inseparable quantum state by superimposing the hyperpolarizationed proton spin chain with electron spin of (29)Si. Quantum discretization of density of states (DOS) was performed by the Monte Carlo simulation method using numerical solutions of proton equations of motion. Distribution of gaussian coherent states is obtained by continuous modulation of individual spin phase and amplitude. Obtained results allow precise engineering and faithful mapping of spin states. This would provide the effective quantum key distribution (QKD) and transmission of quantum information over remote distances between quantum memory centers for scalable quantum communication network. Furthermore, obtained results give insights in application of channeled protons subatomic microscopy as a complete versatile scanning-probe system capable of both quantum engineering of charged particle states and characterization of quantum states below diffraction limit linear and in-depth resolution.PACS NUMBERS: 03.65.Ud, 03.67.Bg, 61.85.+p, 67.30.hj. PMID:23028884

  19. Quantum Entanglement and Spin Control in Silicon Nanocrystal

    PubMed Central

    Berec, Vesna

    2012-01-01

    Selective coherence control and electrically mediated exchange coupling of single electron spin between triplet and singlet states using numerically derived optimal control of proton pulses is demonstrated. We obtained spatial confinement below size of the Bohr radius for proton spin chain FWHM. Precise manipulation of individual spins and polarization of electron spin states are analyzed via proton induced emission and controlled population of energy shells in pure 29Si nanocrystal. Entangled quantum states of channeled proton trajectories are mapped in transverse and angular phase space of 29Si axial channel alignment in order to avoid transversal excitations. Proton density and proton energy as impact parameter functions are characterized in single particle density matrix via discretization of diagonal and nearest off-diagonal elements. We combined high field and low densities (1 MeV/92 nm) to create inseparable quantum state by superimposing the hyperpolarizationed proton spin chain with electron spin of 29Si. Quantum discretization of density of states (DOS) was performed by the Monte Carlo simulation method using numerical solutions of proton equations of motion. Distribution of gaussian coherent states is obtained by continuous modulation of individual spin phase and amplitude. Obtained results allow precise engineering and faithful mapping of spin states. This would provide the effective quantum key distribution (QKD) and transmission of quantum information over remote distances between quantum memory centers for scalable quantum communication network. Furthermore, obtained results give insights in application of channeled protons subatomic microscopy as a complete versatile scanning-probe system capable of both quantum engineering of charged particle states and characterization of quantum states below diffraction limit linear and in-depth resolution. PACS numbers: 03.65.Ud, 03.67.Bg, 61.85.+p, 67.30.hj PMID:23028884

  20. Enhancing Robustness of Entanglement in Finite Temperature Environment Using Quantum Measurement Reversal

    NASA Astrophysics Data System (ADS)

    Hu, Yao-Hua; Tong, Lei; Tan, Yong-Gang; Fang, Mao-Fa

    2016-03-01

    We demonstrate methods of enhancing robustness of entanglement of two-qubit systems undergoing generalized amplitude damping decoherence using weak measurement and measurement reversal. The results show that the local action of generalized amplitude damping noise can cause sudden death of entanglement, and the weak measurement and measurement reversal is useful for combating generalized amplitude damping decoherence and recovering the entanglement of two entangled qubits. In addition, the results indicate that it would be much more easily implemented by applying quantum measurement reversal on a single-qubit to enhance robustness of entanglement in finite temperature environment, than on both qubits.

  1. Fault-tolerant Remote Quantum Entanglement Establishment for Secure Quantum Communications

    NASA Astrophysics Data System (ADS)

    Tsai, Chia-Wei; Lin, Jason

    2016-02-01

    This work presents a strategy for constructing long-distance quantum communications among a number of remote users through collective-noise channel. With the assistance of semi-honest quantum certificate authorities (QCAs), the remote users can share a secret key through fault-tolerant entanglement swapping. The proposed protocol is feasible for large-scale distributed quantum networks with numerous users. Each pair of communicating parties only needs to establish the quantum channels and the classical authenticated channels with his/her local QCA. Thus, it enables any user to communicate freely without point-to-point pre-establishing any communication channels, which is efficient and feasible for practical environments.

  2. Fault-tolerant Remote Quantum Entanglement Establishment for Secure Quantum Communications

    NASA Astrophysics Data System (ADS)

    Tsai, Chia-Wei; Lin, Jason

    2016-07-01

    This work presents a strategy for constructing long-distance quantum communications among a number of remote users through collective-noise channel. With the assistance of semi-honest quantum certificate authorities (QCAs), the remote users can share a secret key through fault-tolerant entanglement swapping. The proposed protocol is feasible for large-scale distributed quantum networks with numerous users. Each pair of communicating parties only needs to establish the quantum channels and the classical authenticated channels with his/her local QCA. Thus, it enables any user to communicate freely without point-to-point pre-establishing any communication channels, which is efficient and feasible for practical environments.

  3. Decoherence Effect on Quantum Correlation and Entanglement in a Two-qubit Spin Chain

    NASA Astrophysics Data System (ADS)

    Pourkarimi, Mohammad Reza; Rahnama, Majid; Rooholamini, Hossein

    2015-04-01

    Assuming a two-qubit system in Werner state which evolves in Heisenberg XY model with Dzyaloshinskii-Moriya (DM) interaction under the effect of different environments. We evaluate and compare quantum entanglement, quantum and classical correlation measures. It is shown that in the absence of decoherence effects, there is a critical value of DM interaction for which entanglement may vanish while quantum and classical correlations do not. In the presence of environment the behavior of correlations depends on the kind of system-environment interaction. Correlations can be sustained by manipulating Hamiltonian anisotropic-parameter in a dissipative environment. Quantum and classical correlations are more stable than entanglement generally.

  4. Long-distance entanglement of spin qubits via quantum Hall edge states

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Hsu, Chen-Hsuan; Stano, Peter; Klinovaja, Jelena; Loss, Daniel

    2016-02-01

    The implementation of a functional quantum computer involves entangling and coherent manipulation of a large number of qubits. For qubits based on electron spins confined in quantum dots, which are among the most investigated solid-state qubits at present, architectural challenges are often encountered in the design of quantum circuits attempting to assemble the qubits within the very limited space available. Here, we provide a solution to such challenges based on an approach to realizing entanglement of spin qubits over long distances. We show that long-range Ruderman-Kittel-Kasuya-Yosida interaction of confined electron spins can be established by quantum Hall edge states, leading to an exchange coupling of spin qubits. The coupling is anisotropic and can be either Ising type or XY type, depending on the spin polarization of the edge state. Such a property, combined with the dependence of the electron spin susceptibility on the chirality of the edge state, can be utilized to gain valuable insights into the topological nature of various quantum Hall states.

  5. Long-distance entanglement of spin qubits via quantum Hall edge states

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Hsu, Chen-Hsuan; Stano, Peter; Klinovaja, Jelena; Loss, Daniel

    The implementation of a functional quantum computer involves entangling and coherent manipulation of a large number of qubits. For qubits based on electron spins confined in quantum dots, which are among the most investigated solid-state qubits at present, architectural challenges are often encountered in the design of quantum circuits attempting to assemble the qubits within the very limited space available. Here, we provide a solution to such challenges based on an approach to realizing entanglement of spin qubits over long distances. We show that long-range Ruderman-Kittel-Kasuya-Yosida interaction of confined electron spins can be established by quantum Hall edge states, leading to an exchange coupling of spin qubits. The coupling is anisotropic and can be either Ising-type or XY-type, depending on the spin polarization of the edge state. Such a property, combined with the dependence of the electron-spin susceptibility on the chirality of the edge state, can be utilized to gain valuable insights into the topological nature of various quantum Hall states.

  6. Quantum entanglement in states generated by bilocal group algebras

    SciTech Connect

    Hamma, Alioscia; Ionicioiu, Radu; Zanardi, Paolo

    2005-07-15

    Given a finite group G with a bilocal representation, we investigate the bipartite entanglement in the state constructed from the group algebra of G acting on a separable reference state. We find an upper bound for the von Neumann entropy for a bipartition (A,B) of a quantum system and conditions to saturate it. We show that these states can be interpreted as ground states of generic Hamiltonians or as the physical states in a quantum gauge theory and that under specific conditions their geometric entropy satisfies the entropic area law. If G is a group of spin flips acting on a set of qubits, these states are locally equivalent to 2-colorable (i.e., bipartite) graph states and they include Greenberger-Horne-Zeilinger, cluster states, etc. Examples include an application to qudits and a calculation of the n-tangle for 2-colorable graph states.

  7. Entanglement and majorization in (1+1) -dimensional quantum systems

    NASA Astrophysics Data System (ADS)

    Orús, Román

    2005-05-01

    Motivated by the idea of entanglement loss along renormalization group flows, analytical majorization relations are proven for the ground state of (1+1) -dimensional conformal field theories. For any of these theories, majorization is proven to hold in the spectrum of the reduced density matrices in a bipartite system when changing the size L of one of the subsystems. Continuous majorization along uniparametric flows is also proven as long as part of the conformal structure is preserved under the deformation and some monotonicity conditions hold as well. As particular examples of our derivations, we study the cases of the XX , Heisenberg, and XY quantum spin chains. Our results provide in a rigorous way explicit proofs for all the majorization conjectures raised by Latorre, Lütken, Rico, Vidal, and Kitaev in previous papers on quantum spin chains.

  8. Quantum metrology. Fisher information and entanglement of non-Gaussian spin states.

    PubMed

    Strobel, Helmut; Muessel, Wolfgang; Linnemann, Daniel; Zibold, Tilman; Hume, David B; Pezzè, Luca; Smerzi, Augusto; Oberthaler, Markus K

    2014-07-25

    Entanglement is the key quantum resource for improving measurement sensitivity beyond classical limits. However, the production of entanglement in mesoscopic atomic systems has been limited to squeezed states, described by Gaussian statistics. Here, we report on the creation and characterization of non-Gaussian many-body entangled states. We develop a general method to extract the Fisher information, which reveals that the quantum dynamics of a classically unstable system creates quantum states that are not spin squeezed but nevertheless entangled. The extracted Fisher information quantifies metrologically useful entanglement, which we confirm by Bayesian phase estimation with sub-shot-noise sensitivity. These methods are scalable to large particle numbers and applicable directly to other quantum systems. PMID:25061206

  9. Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit

    PubMed Central

    Appel, J.; Windpassinger, P. J.; Oblak, D.; Hoff, U. B.; Kjærgaard, N.; Polzik, E. S.

    2009-01-01

    Squeezing of quantum fluctuations by means of entanglement is a well-recognized goal in the field of quantum information science and precision measurements. In particular, squeezing the fluctuations via entanglement between 2-level atoms can improve the precision of sensing, clocks, metrology, and spectroscopy. Here, we demonstrate 3.4 dB of metrologically relevant squeezing and entanglement for ≳ 105 cold caesium atoms via a quantum nondemolition (QND) measurement on the atom clock levels. We show that there is an optimal degree of decoherence induced by the quantum measurement which maximizes the generated entanglement. A 2-color QND scheme used in this paper is shown to have a number of advantages for entanglement generation as compared with a single-color QND measurement. PMID:19541646

  10. Generation and confirmation of a (100 x 100)-dimensional entangled quantum system.

    PubMed

    Krenn, Mario; Huber, Marcus; Fickler, Robert; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2014-04-29

    Entangled quantum systems have properties that have fundamentally overthrown the classical worldview. Increasing the complexity of entangled states by expanding their dimensionality allows the implementation of novel fundamental tests of nature, and moreover also enables genuinely new protocols for quantum information processing. Here we present the creation of a (100 × 100)-dimensional entangled quantum system, using spatial modes of photons. For its verification we develop a novel nonlinear criterion which infers entanglement dimensionality of a global state by using only information about its subspace correlations. This allows very practical experimental implementation as well as highly efficient extraction of entanglement dimensionality information. Applications in quantum cryptography and other protocols are very promising. PMID:24706902

  11. The relation between majorization theory and quantum information from entanglement monotones perspective

    NASA Astrophysics Data System (ADS)

    Erol, V.

    2016-04-01

    Entanglement has been studied extensively for understanding the mysteries of non-classical correlations between quantum systems. In the bipartite case, there are well known monotones for quantifying entanglement such as concurrence, relative entropy of entanglement (REE) and negativity, which cannot be increased via local operations. The study on these monotones has been a hot topic in quantum information [1-7] in order to understand the role of entanglement in this discipline. It can be observed that from any arbitrary quantum pure state a mixed state can obtained. A natural generalization of this observation would be to consider local operations classical communication (LOCC) transformations between general pure states of two parties. Although this question is a little more difficult, a complete solution has been developed using the mathematical framework of the majorization theory [8]. In this work, we analyze the relation between entanglement monotones concurrence and negativity with respect to majorization for general two-level quantum systems of two particles.

  12. Quantum discord and entanglement of two atoms in a micromaser-type system

    NASA Astrophysics Data System (ADS)

    Yan, Xue-Qun; Wang, Fu-Zhong

    2016-06-01

    The correlations dynamics of two atoms in the case of a micromaser-type system is investigated. We show that the entangled state can be created by initially maximally mixed state and there exist collapse and revival phenomena for the time evolutions of both entanglement and quantum discord under the system considered as the field is initially in the Fock state. Our results confirm that entanglement and quantum discord have similar behaviors in certain time ranges, such as their oscillations during the time evolution being almost in phase, but they also present significant differences, such as quantum discord being maintained even after the complete loss of entanglement. Furthermore, we exhibit clearly that the dynamics of quantum discord under the action of environment are intimately related to the generation and evolution of entanglement.

  13. Generation and confirmation of a (100 × 100)-dimensional entangled quantum system

    PubMed Central

    Krenn, Mario; Huber, Marcus; Fickler, Robert; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2014-01-01

    Entangled quantum systems have properties that have fundamentally overthrown the classical worldview. Increasing the complexity of entangled states by expanding their dimensionality allows the implementation of novel fundamental tests of nature, and moreover also enables genuinely new protocols for quantum information processing. Here we present the creation of a (100 × 100)-dimensional entangled quantum system, using spatial modes of photons. For its verification we develop a novel nonlinear criterion which infers entanglement dimensionality of a global state by using only information about its subspace correlations. This allows very practical experimental implementation as well as highly efficient extraction of entanglement dimensionality information. Applications in quantum cryptography and other protocols are very promising. PMID:24706902

  14. Entanglement bound for multipartite pure states based on local measurements

    SciTech Connect

    Jiang Lizhen; Chen Xiaoyu; Ye Tianyu

    2011-10-15

    An entanglement bound based on local measurements is introduced for multipartite pure states. It is the upper bound of the geometric measure and the relative entropy of entanglement. It is the lower bound of the minimal-measurement entropy. For pure bipartite states, the bound is equal to the entanglement entropy. The bound is applied to pure tripartite qubit states and the exact tripartite relative entropy of entanglement is obtained for a wide class of states.

  15. Tight bound on coherent-state-based entanglement generation over lossy channels

    SciTech Connect

    Azuma, Koji; Sota, Naoya; Koashi, Masato; Imoto, Nobuyuki

    2010-02-15

    The first stage of the hybrid quantum repeaters is entanglement generation based on transmission of pulses in coherent states over a lossy channel. Protocols to make entanglement with only one type of error are favorable for rendering subsequent entanglement distillation efficient. Here we provide the tight upper bound on performances of these protocols that is determined only by the channel loss. In addition, we show that this bound is achievable by utilizing a proposed protocol [K. Azuma, N. Sota, R. Namiki, S. K. Oezdemir, T. Yamamoto, M. Koashi, and N. Imoto, Phys. Rev. A 80, 060303(R) (2009)] composed of a simple combination of linear optical elements and photon-number-resolving detectors.

  16. Bidirectional Quantum Controlled Teleportation by Using a Genuine Six-qubit Entangled State

    NASA Astrophysics Data System (ADS)

    Chen, Yan

    2015-01-01

    A bidirectional quantum controlled teleportation scheme by using a genuine six-qubit entangled state is proposed. In our scheme, such a six-qubit entangled state is employed as the quantum channel linking three legitimate participants. And Alice may transmit an arbitrary single qubit state of qubit A to Bob and Bob may transmit an arbitrary single qubit state of qubit B to Alice via the control of the supervisor Charlie. This bidirectional quantum controlled teleportation is deterministic.

  17. Continuous-variable quantum identity authentication based on quantum teleportation

    NASA Astrophysics Data System (ADS)

    Ma, Hongxin; Huang, Peng; Bao, Wansu; Zeng, Guihua

    2016-03-01

    A continuous-variable quantum identity authentication protocol, which is based on quantum teleportation, is presented by employing two-mode squeezed vacuum state and coherent state. The proposed protocol can verify user's identity efficiently with a new defined fidelity parameter. Update of authentication key can also be implemented in our protocol. Moreover, the analysis shows its feasibility and security under the general Gaussian-cloner attack on authentication key, which is guaranteed by quantum entanglement, insertion of decoy state and random displacement.

  18. Continuous-variable quantum identity authentication based on quantum teleportation

    NASA Astrophysics Data System (ADS)

    Ma, Hongxin; Huang, Peng; Bao, Wansu; Zeng, Guihua

    2016-06-01

    A continuous-variable quantum identity authentication protocol, which is based on quantum teleportation, is presented by employing two-mode squeezed vacuum state and coherent state. The proposed protocol can verify user's identity efficiently with a new defined fidelity parameter. Update of authentication key can also be implemented in our protocol. Moreover, the analysis shows its feasibility and security under the general Gaussian-cloner attack on authentication key, which is guaranteed by quantum entanglement, insertion of decoy state and random displacement.

  19. Quantum Storage of Orbital Angular Momentum Entanglement in an Atomic Ensemble

    NASA Astrophysics Data System (ADS)

    Ding, Dong-Sheng; Zhang, Wei; Zhou, Zhi-Yuan; Shi, Shuai; Xiang, Guo-Yong; Wang, Xi-Shi; Jiang, Yun-Kun; Shi, Bao-Sen; Guo, Guang-Can

    2015-02-01

    Constructing a quantum memory for a photonic entanglement is vital for realizing quantum communication and network. Because of the inherent infinite dimension of orbital angular momentum (OAM), the photon's OAM has the potential for encoding a photon in a high-dimensional space, enabling the realization of high channel capacity communication. Photons entangled in orthogonal polarizations or optical paths had been stored in a different system, but there have been no reports on the storage of a photon pair entangled in OAM space. Here, we report the first experimental realization of storing an entangled OAM state through the Raman protocol in a cold atomic ensemble. We reconstruct the density matrix of an OAM entangled state with a fidelity of 90.3 % ±0.8 % and obtain the Clauser-Horne-Shimony-Holt inequality parameter S of 2.41 ±0.06 after a programed storage time. All results clearly show the preservation of entanglement during the storage.

  20. 3D entangled fractional squeezing transformation and its quantum mechanical correspondence

    NASA Astrophysics Data System (ADS)

    Jia, Fang; Xu, Shuang; Deng, Cheng-Zhi; Liu, Cun-Jin; Hu, Li-Yun

    2016-06-01

    A new type of entangled fractional squeezing transformation (EFrST) has been theoretically proposed for 2D entanglement [ Front. Phys. 10, 100302 (2015)]. In this paper, we shall extend this case to that of 3D entanglement by introducing a type of three-mode entangled state representation, which is not the product of three 1D cases. Using the technique of integration within an ordered product of operators, we derive a compact unitary operator corresponding to the 3D fractional entangling transformation, which is an entangling operator that presents a clear transformation relation. We also verified that the additivity property of the novel 3D EFrST is of a Fourier character by using its quantum mechanical description. As an application of this representation, the EFrST of the three-mode number state is calculated using the quantum description of the EFrST.

  1. Quantum storage of orbital angular momentum entanglement in an atomic ensemble.

    PubMed

    Ding, Dong-Sheng; Zhang, Wei; Zhou, Zhi-Yuan; Shi, Shuai; Xiang, Guo-Yong; Wang, Xi-Shi; Jiang, Yun-Kun; Shi, Bao-Sen; Guo, Guang-Can

    2015-02-01

    Constructing a quantum memory for a photonic entanglement is vital for realizing quantum communication and network. Because of the inherent infinite dimension of orbital angular momentum (OAM), the photon's OAM has the potential for encoding a photon in a high-dimensional space, enabling the realization of high channel capacity communication. Photons entangled in orthogonal polarizations or optical paths had been stored in a different system, but there have been no reports on the storage of a photon pair entangled in OAM space. Here, we report the first experimental realization of storing an entangled OAM state through the Raman protocol in a cold atomic ensemble. We reconstruct the density matrix of an OAM entangled state with a fidelity of 90.3%±0.8% and obtain the Clauser-Horne-Shimony-Holt inequality parameter S of 2.41±0.06 after a programed storage time. All results clearly show the preservation of entanglement during the storage. PMID:25699427

  2. Experimental entanglement of 60 modes of the quantum optical frequency comb and application to generating hypercubic-lattice cluster states

    NASA Astrophysics Data System (ADS)

    Pfister, Olivier; Chen, Moran; Wang, Pei; Fan, Wenjiang; Menicucci, Nicolas

    2014-05-01

    In the race to build a practical quantum computer in the laboratory, the ability to create very large quantum registers and entangle them is paramount, along with the ability to address the issue of decoherence. With particular regard to scalability, the field-based, continuous-variable (CV) flavor of quantum optics offers notable promise, in particular by enabling ``top down,'' rather than ``bottom up,'' entangling approaches of quantum field modes. It is also important to note the relevance of continuous variables to universal quantum computing, with the recent discovery of a fault tolerance threshold for quantum computing with CV cluster states and nonGaussian error correction. In 2011, some of us generated simultaneously 15 independent 4-mode cluster states over 60 modes of the quantum optical frequency comb (QOFC) of a single optical parametric oscillator (OPO). In this work, we used a single OPO to generate a 60-mode dual-rail cluster state, which is the largest entangled system to date whose subsystems are all simultaneously available. Using the exact same setup, we also generated two copies of a 30-mode dual-rail cluster state. We will then present a new proposal to ``weave'' such massively scalable continuous-variable cluster states into hypercubic-lattice quantum graphs Work supported by NSF grants PHY-0855632 and PHY-1206029.

  3. Demonstration of Einstein-Podolsky-Rosen Steering Using Single-Photon Path Entanglement and Displacement-Based Detection

    NASA Astrophysics Data System (ADS)

    Guerreiro, T.; Monteiro, F.; Martin, A.; Brask, J. B.; Vértesi, T.; Korzh, B.; Caloz, M.; Bussières, F.; Verma, V. B.; Lita, A. E.; Mirin, R. P.; Nam, S. W.; Marsilli, F.; Shaw, M. D.; Gisin, N.; Brunner, N.; Zbinden, H.; Thew, R. T.

    2016-08-01

    We demonstrate the violation of an Einstein-Podolsky-Rosen steering inequality developed for single-photon path entanglement with displacement-based detection. We use a high-rate source of heralded single-photon path-entangled states, combined with high-efficiency superconducting-based detectors, in a scheme that is free of any postselection and thus immune to the detection loophole. This result conclusively demonstrates single-photon entanglement in a one-sided device-independent scenario, and opens the way towards implementations of device-independent quantum technologies within the paradigm of path entanglement.

  4. Demonstration of Einstein-Podolsky-Rosen Steering Using Single-Photon Path Entanglement and Displacement-Based Detection.

    PubMed

    Guerreiro, T; Monteiro, F; Martin, A; Brask, J B; Vértesi, T; Korzh, B; Caloz, M; Bussières, F; Verma, V B; Lita, A E; Mirin, R P; Nam, S W; Marsilli, F; Shaw, M D; Gisin, N; Brunner, N; Zbinden, H; Thew, R T

    2016-08-12

    We demonstrate the violation of an Einstein-Podolsky-Rosen steering inequality developed for single-photon path entanglement with displacement-based detection. We use a high-rate source of heralded single-photon path-entangled states, combined with high-efficiency superconducting-based detectors, in a scheme that is free of any postselection and thus immune to the detection loophole. This result conclusively demonstrates single-photon entanglement in a one-sided device-independent scenario, and opens the way towards implementations of device-independent quantum technologies within the paradigm of path entanglement. PMID:27563941

  5. Entanglement thresholds for displaying the quantum nature of teleportation

    NASA Astrophysics Data System (ADS)

    Roa, Luis; Gómez, Robinson; Muñoz, Ariana; Rai, Gautam; Hecker, Matthias

    2016-08-01

    A protocol for transferring an unknown single qubit state evidences quantum features when the average fidelity of the outcomes is, in principle, greater than 2 / 3. We propose to use the probabilistic and unambiguous state extraction scheme as a mechanism to redistribute the fidelity in the outcome of the standard teleportation when the process is performed with an X-state as a noisy quantum channel. We show that the entanglement of the channel is necessary but not sufficient in order for the average fidelity fX to display quantum features, i.e., we find a threshold CX for the concurrence of the channel. On the other hand, if the mechanism for redistributing fidelity is successful then we find a filterable outcome with average fidelity fX,0 that can be greater than fX. In addition, we find the threshold concurrence of the channel CX,0 in order for the average fidelity fX,0 to display quantum features and surprisingly, the threshold concurrence CX,0 can be less than CX. Even more, we find some special cases for which the threshold values become zero.

  6. Maximal entanglement versus entropy for mixed quantum states

    SciTech Connect

    Wei, T.-C.; Goldbart, Paul M.; Kwiat, Paul G.; Nemoto, Kae; Munro, William J.; Verstraete, Frank

    2003-02-01

    Maximally entangled mixed states are those states that, for a given mixedness, achieve the greatest possible entanglement. For two-qubit systems and for various combinations of entanglement and mixedness measures, the form of the corresponding maximally entangled mixed states is determined primarily analytically. As measures of entanglement, we consider entanglement of formation, relative entropy of entanglement, and negativity; as measures of mixedness, we consider linear and von Neumann entropies. We show that the forms of the maximally entangled mixed states can vary with the combination of (entanglement and mixedness) measures chosen. Moreover, for certain combinations, the forms of the maximally entangled mixed states can change discontinuously at a specific value of the entropy. Along the way, we determine the states that, for a given value of entropy, achieve maximal violation of Bell's inequality.

  7. Motion-Enhanced Quantum Entanglement in the Dynamics of Excitation Transfer

    NASA Astrophysics Data System (ADS)

    Song, Wei; Huang, Yi-Sheng; Yang, Ming; Cao, Zhuo-Liang

    2015-08-01

    We investigate the dynamics of entanglement in the excitation transfer through a chain of interacting molecules. In the case of two-molecule coupled to noisy environments we show that entanglement can be further enhanced if the distance between the molecules is oscillating. Our results demonstrate that motional effect plays a constructive role on quantum entanglement in the dynamics of excitation transfer. This mechanism might provide useful guideline for designing artificial systems to battle against decoherence.

  8. Quantum-field coherent control: Preparation of broken-symmetry entangled states

    SciTech Connect

    Kral, Petr; Thanopulos, Ioannis; Shapiro, Moshe

    2005-08-15

    We show that entangled radiation-matter states with broken symmetries can be prepared by using nonclassical light in the coherent control techniques. We demonstrate the method by realizing the entanglement in degenerate continuum electronic momentum states of opposite directionality and discrete states of opposite handedness in chiral molecules. When the material system is excited simultaneously by classical light and quantum light in a state with several semiclassical phases, the interference conditions guide the system to such entangled radiation-matter states.

  9. Strong subadditivity inequality for quantum entropies and four-particle entanglement

    NASA Astrophysics Data System (ADS)

    Biswas, Asoka; Agarwal, G. S.

    2003-11-01

    The strong subadditivity inequality for a three-particle composite system is an important inequality in quantum information theory which can be studied via a four-particle entangled state. We use two three-level atoms in Λ configuration interacting with a two-mode cavity and the Raman adiabatic passage technique for the production of the four-particle entangled state. Using this four-particle entanglement, we study various aspects of the strong subadditivity inequality.

  10. Disentangling theorem and monogamy for entanglement negativity

    NASA Astrophysics Data System (ADS)

    He, Huan; Vidal, Guifre

    2015-01-01

    Entanglement negativity is a measure of mixed-state entanglement increasingly used to investigate and characterize emerging quantum many-body phenomena, including quantum criticality and topological order. We present two results for the entanglement negativity: a disentangling theorem, which allows the use of this entanglement measure as a means to detect whether a wave function of three subsystems A ,B , and C factorizes into a product state for parts A B1 and B2C ; and a monogamy relation conjecture based on entanglement negativity, which states that if A is very entangled with B , then A cannot be simultaneously very entangled also with C .

  11. Observation of measurement-induced entanglement and quantum trajectories of remote superconducting qubits.

    PubMed

    Roch, N; Schwartz, M E; Motzoi, F; Macklin, C; Vijay, R; Eddins, A W; Korotkov, A N; Whaley, K B; Sarovar, M; Siddiqi, I

    2014-05-01

    The creation of a quantum network requires the distribution of coherent information across macroscopic distances. We demonstrate the entanglement of two superconducting qubits, separated by more than a meter of coaxial cable, by designing a joint measurement that probabilistically projects onto an entangled state. By using a continuous measurement scheme, we are further able to observe single quantum trajectories of the joint two-qubit state, confirming the validity of the quantum Bayesian formalism for a cascaded system. Our results allow us to resolve the dynamics of continuous projection onto the entangled manifold, in quantitative agreement with theory. PMID:24836225

  12. Convexity of momentum map, Morse index, and quantum entanglement

    NASA Astrophysics Data System (ADS)

    Sawicki, Adam; Oszmaniec, Michał; Kuś, Marek

    2014-03-01

    We analyze from the topological perspective the space of all SLOCC (Stochastic Local Operations with Classical Communication) classes of pure states for composite quantum systems. We do it for both distinguishable and indistinguishable particles. In general, the topology of this space is rather complicated as it is a non-Hausdorff space. Using geometric invariant theory (GIT) and momentum map geometry, we propose a way to divide the space of all SLOCC classes into mathematically and physically meaningful families. Each family consists of possibly many "asymptotically" equivalent SLOCC classes. Moreover, each contains exactly one distinguished SLOCC class on which the total variance (a well-defined measure of entanglement) of the state Var[v] attains maximum. We provide an algorithm for finding critical sets of Var[v], which makes use of the convexity of the momentum map and allows classification of such defined families of SLOCC classes. The number of families is in general infinite. We introduce an additional refinement into finitely many groups of families using some developments in the momentum map geometry known as the Kirwan-Ness stratification. We also discuss how to define it equivalently using the convexity of the momentum map applied to SLOCC classes. Moreover, we note that the Morse index at the critical set of the total variance of state has an interpretation of number of non-SLOCC directions in which entanglement increases and calculate it for several exemplary systems. Finally, we introduce the SLOCC-invariant measure of entanglement as a square root of the total variance of state at the critical point and explain its geometric meaning.

  13. Momentum-Space Entanglement and Loschmidt Echo in Luttinger Liquids after a Quantum Quench

    NASA Astrophysics Data System (ADS)

    Dóra, Balázs; Lundgren, Rex; Selover, Mark; Pollmann, Frank

    2016-07-01

    Luttinger liquids (LLs) arise by coupling left- and right-moving particles through interactions in one dimension. This most natural partitioning of LLs is investigated by the momentum-space entanglement after a quantum quench using analytical and numerical methods. We show that the momentum-space entanglement spectrum of a LL possesses many universal features both in equilibrium and after a quantum quench. The largest entanglement eigenvalue is identical to the Loschmidt echo, i.e., the overlap of the disentangled and final wave functions of the system. The second largest eigenvalue is the overlap of the first excited state of the disentangled system with zero total momentum and the final wave function. The entanglement gap is universal both in equilibrium and after a quantum quench. The momentum-space entanglement entropy is always extensive and saturates fast to a time independent value after the quench, in sharp contrast to a spatial bipartitioning.

  14. Plasmon effects on the entanglement fidelity for elastic collisions in hot quantum plasmas

    SciTech Connect

    Jung, Young-Dae

    2011-11-15

    The plasmon and screening effects on the entanglement fidelity for the elastic electron-ion collision are investigated in hot quantum plasmas. The partial wave analysis and effective interaction including the plasmon couplings are employed to obtain the entanglement fidelity function in hot quantum plasmas. It is shown that the plasmon effect enhances the entanglement fidelity in quantum plasmas for 0<{beta}({identical_to}({Dirac_h}/2{pi}){omega}{sub p}/k{sub B}T)<0.8 and, however, suppresses the entanglement fidelity for 0.8<{beta}<1, where {omega}{sub p} is the plasmon frequency, k{sub B} is the Boltzmann constant, and T is the plasma temperature. It is also found that the entanglement fidelity decreases with increasing Debye length and collision energy.

  15. Momentum-Space Entanglement and Loschmidt Echo in Luttinger Liquids after a Quantum Quench.

    PubMed

    Dóra, Balázs; Lundgren, Rex; Selover, Mark; Pollmann, Frank

    2016-07-01

    Luttinger liquids (LLs) arise by coupling left- and right-moving particles through interactions in one dimension. This most natural partitioning of LLs is investigated by the momentum-space entanglement after a quantum quench using analytical and numerical methods. We show that the momentum-space entanglement spectrum of a LL possesses many universal features both in equilibrium and after a quantum quench. The largest entanglement eigenvalue is identical to the Loschmidt echo, i.e., the overlap of the disentangled and final wave functions of the system. The second largest eigenvalue is the overlap of the first excited state of the disentangled system with zero total momentum and the final wave function. The entanglement gap is universal both in equilibrium and after a quantum quench. The momentum-space entanglement entropy is always extensive and saturates fast to a time independent value after the quench, in sharp contrast to a spatial bipartitioning. PMID:27419554

  16. Role of spin-motion entanglement in quantum trapped ion simulators

    NASA Astrophysics Data System (ADS)

    Safavi-Naini, Arghavan; Wall, Michael; Piñeiro-Orioli, Asier; Rey, Ana Maria

    2016-05-01

    Arrays of trapped ions realize quantum simulators of long-range spin models by coupling the ion spin to the phonon modes of the Coulomb crystal. In addition to spin-spin interactions, the spin-motion coupling may also lead to significant spin-motion entanglement, which degrades the fidelity of the quantum simulator. Here, we present results from two numerical approaches which allow us to simulate the full spin-phonon dynamics for tens to hundreds of ions. The first approach is numerically exact and uses a recently developed variant of the t-DMRG method, while the second approach is is based on the Truncated Wigner Approximation. We first benchmark the two methods by studying the dynamics of the spin-phonon model in the absence of a transverse field, where as previously shown, spin-motion entanglement introduces oscillations to various observables, such as spin-spin correlations and spin squeezing. We then present results for the analytically intractable case of a large transverse magnetic field, where we find a more drastic effect of spin-motion entanglement is more drastic. NSF-PHY-1521080, JILA-NSF-PFC-1125844, ARO, MURI-AFOSR.

  17. Achieving three-dimensional entanglement between two spatially separated atoms by using the quantum Zeno effect

    NASA Astrophysics Data System (ADS)

    Liu, Siping; Li, Jiahua; Yu, Rong; Wu, Ying

    2013-06-01

    Based on the quantum Zeno effect [B. Misra and E. C. G. Sudarshan, J. Math. Phys.JMAPAQ0022-248810.1063/1.523304 18, 756 (1977)], we propose a scheme to achieve three-dimensional (3D) entanglement between two distant five-level atoms. In our scheme, the two atoms are trapped individually in two spatially-separated double-mode cavities connected by an optical fiber. It is found that the effective quantum Zeno dynamics of the composite cavity-fiber-cavity coupled system gives rise to the deterministic creation of the 3D entangled state with high fidelity. Moreover, only one step operation is required to complete the generation of the 3D entangled state. The numerical simulations clearly show that the proposed scheme is robust against the deviation of the system parameters and insensitive to various decoherence factors, including atomic spontaneous emissions, cavity decays and fiber photon leakages. We justify our scheme by considering the experimental feasibility within the currently available technology.

  18. Dissipative production of a maximally entangled steady state of two quantum bits

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Gaebler, J. P.; Reiter, F.; Tan, T. R.; Bowler, R.; Sørensen, A. S.; Leibfried, D.; Wineland, D. J.

    2013-12-01

    Entangled states are a key resource in fundamental quantum physics, quantum cryptography and quantum computation. Introduction of controlled unitary processes--quantum gates--to a quantum system has so far been the most widely used method to create entanglement deterministically. These processes require high-fidelity state preparation and minimization of the decoherence that inevitably arises from coupling between the system and the environment, and imperfect control of the system parameters. Here we combine unitary processes with engineered dissipation to deterministically produce and stabilize an approximate Bell state of two trapped-ion quantum bits (qubits), independent of their initial states. Compared with previous studies that involved dissipative entanglement of atomic ensembles or the application of sequences of multiple time-dependent gates to trapped ions, we implement our combined process using trapped-ion qubits in a continuous time-independent fashion (analogous to optical pumping of atomic states). By continuously driving the system towards the steady state, entanglement is stabilized even in the presence of experimental noise and decoherence. Our demonstration of an entangled steady state of two qubits represents a step towards dissipative state engineering, dissipative quantum computation and dissipative phase transitions. Following this approach, engineered coupling to the environment may be applied to a broad range of experimental systems to achieve desired quantum dynamics or steady states. Indeed, concurrently with this work, an entangled steady state of two superconducting qubits was demonstrated using dissipation.

  19. Entanglement Entropy in Quantum Spin Chains with Finite Range Interaction

    NASA Astrophysics Data System (ADS)

    Its, A. R.; Mezzadri, F.; Mo, M. Y.

    2008-11-01

    We study the entropy of entanglement of the ground state in a wide family of one-dimensional quantum spin chains whose interaction is of finite range and translation invariant. Such systems can be thought of as generalizations of the XY model. The chain is divided in two parts: one containing the first consecutive L spins; the second the remaining ones. In this setting the entropy of entanglement is the von Neumann entropy of either part. At the core of our computation is the explicit evaluation of the leading order term as L → ∞ of the determinant of a block-Toeplitz matrix with symbol Φ(z) = left(begin{array}{cc} iλ & g(z) \\ g^{-1}(z) & i λ right), where g( z) is the square root of a rational function and g(1/ z) = g -1( z). The asymptotics of such determinant is computed in terms of multi-dimensional theta-functions associated to a hyperelliptic curve {mathcal{L}} of genus g ≥ 1, which enter into the solution of a Riemann-Hilbert problem. Phase transitions for these systems are characterized by the branch points of {mathcal{L}} approaching the unit circle. In these circumstances the entropy diverges logarithmically. We also recover, as particular cases, the formulae for the entropy discovered by Jin and Korepin [14] for the XX model and Its, Jin and Korepin [12, 13] for the XY model.

  20. Quantum Entanglement and Spin Squeezing of Two Species Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Li, Song-Song

    2016-09-01

    We investigate quantum entanglement and spin squeezing of two species Bose-Einstein condensates. By the rotating-wave approximation, we obtain the effective Hamiltonian and the wave function of the system. It's shown that more entanglement and squeezing may be achieved by increasing the population difference of particles.