Science.gov

Sample records for quantum leaps multiple

  1. Sudden synchrony leaps accompanied by frequency multiplications in neuronal activity

    PubMed Central

    Vardi, Roni; Goldental, Amir; Guberman, Shoshana; Kalmanovich, Alexander; Marmari, Hagar; Kanter, Ido

    2013-01-01

    A classical view of neural coding relies on temporal firing synchrony among functional groups of neurons, however, the underlying mechanism remains an enigma. Here we experimentally demonstrate a mechanism where time-lags among neuronal spiking leap from several tens of milliseconds to nearly zero-lag synchrony. It also allows sudden leaps out of synchrony, hence forming short epochs of synchrony. Our results are based on an experimental procedure where conditioned stimulations were enforced on circuits of neurons embedded within a large-scale network of cortical cells in vitro and are corroborated by simulations of neuronal populations. The underlying biological mechanisms are the unavoidable increase of the neuronal response latency to ongoing stimulations and temporal or spatial summation required to generate evoked spikes. These sudden leaps in and out of synchrony may be accompanied by multiplications of the neuronal firing frequency, hence offering reliable information-bearing indicators which may bridge between the two principal neuronal coding paradigms. PMID:24198764

  2. Multiple quantum coherence spectroscopy.

    PubMed

    Mathew, Nathan A; Yurs, Lena A; Block, Stephen B; Pakoulev, Andrei V; Kornau, Kathryn M; Wright, John C

    2009-08-20

    Multiple quantum coherences provide a powerful approach for studies of complex systems because increasing the number of quantum states in a quantum mechanical superposition state increases the selectivity of a spectroscopic measurement. We show that frequency domain multiple quantum coherence multidimensional spectroscopy can create these superposition states using different frequency excitation pulses. The superposition state is created using two excitation frequencies to excite the symmetric and asymmetric stretch modes in a rhodium dicarbonyl chelate and the dynamic Stark effect to climb the vibrational ladders involving different overtone and combination band states. A monochromator resolves the free induction decay of different coherences comprising the superposition state. The three spectral dimensions provide the selectivity required to observe 19 different spectral features associated with fully coherent nonlinear processes involving up to 11 interactions with the excitation fields. The different features act as spectroscopic probes of the diagonal and off-diagonal parts of the molecular potential energy hypersurface. This approach can be considered as a coherent pump-probe spectroscopy where the pump is a series of excitation pulses that prepares a multiple quantum coherence and the probe is another series of pulses that creates the output coherence. PMID:19507812

  3. A chaotic view of behavior change: a quantum leap for health promotion

    PubMed Central

    Resnicow, Ken; Vaughan, Roger

    2006-01-01

    Background The study of health behavior change, including nutrition and physical activity behaviors, has been rooted in a cognitive-rational paradigm. Change is conceptualized as a linear, deterministic process where individuals weigh pros and cons, and at the point at which the benefits outweigh the cost change occurs. Consistent with this paradigm, the associated statistical models have almost exclusively assumed a linear relationship between psychosocial predictors and behavior. Such a perspective however, fails to account for non-linear, quantum influences on human thought and action. Consider why after years of false starts and failed attempts, a person succeeds at increasing their physical activity, eating healthier or losing weight. Or, why after years of success a person relapses. This paper discusses a competing view of health behavior change that was presented at the 2006 annual ISBNPA meeting in Boston. Discussion Rather than viewing behavior change from a linear perspective it can be viewed as a quantum event that can be understood through the lens of Chaos Theory and Complex Dynamic Systems. Key principles of Chaos Theory and Complex Dynamic Systems relevant to understanding health behavior change include: 1) Chaotic systems can be mathematically modeled but are nearly impossible to predict; 2) Chaotic systems are sensitive to initial conditions; 3) Complex Systems involve multiple component parts that interact in a nonlinear fashion; and 4) The results of Complex Systems are often greater than the sum of their parts. Accordingly, small changes in knowledge, attitude, efficacy, etc may dramatically alter motivation and behavioral outcomes. And the interaction of such variables can yield almost infinite potential patterns of motivation and behavior change. In the linear paradigm unaccounted for variance is generally relegated to the catch all "error" term, when in fact such "error" may represent the chaotic component of the process. The linear and

  4. Quantum internet using code division multiple access.

    PubMed

    Zhang, Jing; Liu, Yu-xi; Ozdemir, Sahin Kaya; Wu, Re-Bing; Gao, Feifei; Wang, Xiang-Bin; Yang, Lan; Nori, Franco

    2013-01-01

    A crucial open problem inS large-scale quantum networks is how to efficiently transmit quantum data among many pairs of users via a common data-transmission medium. We propose a solution by developing a quantum code division multiple access (q-CDMA) approach in which quantum information is chaotically encoded to spread its spectral content, and then decoded via chaos synchronization to separate different sender-receiver pairs. In comparison to other existing approaches, such as frequency division multiple access (FDMA), the proposed q-CDMA can greatly increase the information rates per channel used, especially for very noisy quantum channels. PMID:23860488

  5. Quantum internet using code division multiple access

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Liu, Yu-Xi; Özdemir, Şahin Kaya; Wu, Re-Bing; Gao, Feifei; Wang, Xiang-Bin; Yang, Lan; Nori, Franco

    2013-07-01

    A crucial open problem inS large-scale quantum networks is how to efficiently transmit quantum data among many pairs of users via a common data-transmission medium. We propose a solution by developing a quantum code division multiple access (q-CDMA) approach in which quantum information is chaotically encoded to spread its spectral content, and then decoded via chaos synchronization to separate different sender-receiver pairs. In comparison to other existing approaches, such as frequency division multiple access (FDMA), the proposed q-CDMA can greatly increase the information rates per channel used, especially for very noisy quantum channels.

  6. Multiple Multi-Qubit Quantum States Sharing

    NASA Astrophysics Data System (ADS)

    Qin, Hua-Wang; Dai, Yue-Wei

    2016-04-01

    A multiple multi-qubit quantum states sharing scheme is proposed, in which the dealer can share multiple multi-qubit quantum states among the participants through only one distribution and one recovery. The dealer encodes the secret quantum states into a special entangled state, and then distributes the particles of the entangled state to the participants. The participants perform the single-particle measurements on their particles, and can cooperate to recover the multiple multi-qubit quantum states. Compared to the existing schemes, our scheme is more efficient and more flexible in practice.

  7. Multiple-Access Quantum-Classical Networks

    NASA Astrophysics Data System (ADS)

    Razavi, Mohsen

    2011-10-01

    A multi-user network that supports both classical and quantum communication is proposed. By relying on optical code-division multiple access techniques, this system offers simultaneous key exchange between multiple pairs of network users. A lower bound on the secure key generation rate will be derived for decoy-state quantum key distribution protocols.

  8. Multiple-quantum NMR in solids

    NASA Astrophysics Data System (ADS)

    Yen, Yu-Sze; Pines, A.

    1983-03-01

    Multiple-quantum NMR has typically been observed in small groups of spins in isolated molecules. Due to the profusion of spin transitions in a solid, individual lines are unresolved. Excitation of high quantum transitions by normal schemes is thus difficult. To ensure that overlapping lines add constructively and to enhance sensitivity, time-reversal pulse sequences are used to generate all lines in phase. Up to 22-quantum 1H absorption in solid adamantane is observed.

  9. Multiple-quantum NMR in solids

    SciTech Connect

    Yen, Y.; Pines, A.

    1983-03-15

    Multiple-quantum NMR has typically been observed in small groups of spins in isolated molecules. Due to the profusion of spin transitions in a solid, individual lines are unresolved. Excitation of high quantum transitions by normal schemes is thus difficult. To ensure that overlapping lines add constructively and to enhance sensitivity, time-reversal pulse sequences are used to generate all lines in phase. Up to 22-quantum /sup 1/H absorption in solid adamantane is observed.

  10. Time-domain multiple-quantum NMR

    SciTech Connect

    Weitekamp, D.P.

    1982-11-01

    The development of time-domain multiple-quantum nuclear magnetic resonance is reviewed through mid 1982 and some prospects for future development are indicated. Particular attention is given to the problem of obtaining resolved, interpretable, many-quantum spectra for anisotropic magnetically isolated systems of coupled spins. New results are presented on a number of topics including the optimization of multiple-quantum-line intensities, analysis of noise in two-dimensional spectroscopy, and the use of order-selective excitation for cross polarization between nuclear-spin species.

  11. Quantum hyperparallel algorithm for matrix multiplication

    NASA Astrophysics Data System (ADS)

    Zhang, Xin-Ding; Zhang, Xiao-Ming; Xue, Zheng-Yuan

    2016-04-01

    Hyperentangled states, entangled states with more than one degree of freedom, are considered as promising resource in quantum computation. Here we present a hyperparallel quantum algorithm for matrix multiplication with time complexity O(N2), which is better than the best known classical algorithm. In our scheme, an N dimensional vector is mapped to the state of a single source, which is separated to N paths. With the assistance of hyperentangled states, the inner product of two vectors can be calculated with a time complexity independent of dimension N. Our algorithm shows that hyperparallel quantum computation may provide a useful tool in quantum machine learning and “big data” analysis.

  12. Quantum hyperparallel algorithm for matrix multiplication.

    PubMed

    Zhang, Xin-Ding; Zhang, Xiao-Ming; Xue, Zheng-Yuan

    2016-01-01

    Hyperentangled states, entangled states with more than one degree of freedom, are considered as promising resource in quantum computation. Here we present a hyperparallel quantum algorithm for matrix multiplication with time complexity O(N(2)), which is better than the best known classical algorithm. In our scheme, an N dimensional vector is mapped to the state of a single source, which is separated to N paths. With the assistance of hyperentangled states, the inner product of two vectors can be calculated with a time complexity independent of dimension N. Our algorithm shows that hyperparallel quantum computation may provide a useful tool in quantum machine learning and "big data" analysis. PMID:27125586

  13. Asynchronous τ-leaping

    NASA Astrophysics Data System (ADS)

    JÈ©drzejewski-Szmek, Zbigniew; Blackwell, Kim T.

    2016-03-01

    Stochastic simulation of cell signaling pathways and genetic regulatory networks has contributed to the understanding of cell function; however, investigation of larger, more complicated systems requires computationally efficient algorithms. τ-leaping methods, which improve efficiency when some molecules have high copy numbers, either use a fixed leap size, which does not adapt to changing state, or recalculate leap size at a heavy computational cost. We present a hybrid simulation method for reaction-diffusion systems which combines exact stochastic simulation and τ-leaping in a dynamic way. Putative times of events are stored in a priority queue, which reduces the cost of each step of the simulation. For every reaction and diffusion channel at each step of the simulation the more efficient of an exact stochastic event or a τ-leap is chosen. This new approach removes the inherent trade-off between speed and accuracy in stiff systems which was present in all τ-leaping methods by allowing each reaction channel to proceed at its own pace. Both directions of reversible reactions and diffusion are combined in a single event, allowing bigger leaps to be taken. This improves efficiency for systems near equilibrium where forward and backward events are approximately equally frequent. Comparison with existing algorithms and behaviour for five test cases of varying complexity shows that the new method is almost as accurate as exact stochastic simulation, scales well for large systems, and for various problems can be significantly faster than τ-leaping.

  14. Quantum hyperparallel algorithm for matrix multiplication

    PubMed Central

    Zhang, Xin-Ding; Zhang, Xiao-Ming; Xue, Zheng-Yuan

    2016-01-01

    Hyperentangled states, entangled states with more than one degree of freedom, are considered as promising resource in quantum computation. Here we present a hyperparallel quantum algorithm for matrix multiplication with time complexity O(N2), which is better than the best known classical algorithm. In our scheme, an N dimensional vector is mapped to the state of a single source, which is separated to N paths. With the assistance of hyperentangled states, the inner product of two vectors can be calculated with a time complexity independent of dimension N. Our algorithm shows that hyperparallel quantum computation may provide a useful tool in quantum machine learning and “big data” analysis. PMID:27125586

  15. Selectivity in multiple quantum nuclear magnetic resonance

    SciTech Connect

    Warren, W.S.

    1980-11-01

    The observation of multiple-quantum nuclear magnetic resonance transitions in isotropic or anisotropic liquids is shown to give readily interpretable information on molecular configurations, rates of motional processes, and intramolecular interactions. However, the observed intensity of high multiple-quantum transitions falls off dramatically as the number of coupled spins increases. The theory of multiple-quantum NMR is developed through the density matrix formalism, and exact intensities are derived for several cases (isotropic first-order systems and anisotropic systems with high symmetry) to shown that this intensity decrease is expected if standard multiple-quantum pulse sequences are used. New pulse sequences are developed which excite coherences and produce population inversions only between selected states, even though other transitions are simultaneously resonant. One type of selective excitation presented only allows molecules to absorb and emit photons in groups of n. Coherent averaging theory is extended to describe these selective sequences, and to design sequences which are selective to arbitrarily high order in the Magnus expansion. This theory and computer calculations both show that extremely good selectivity and large signal enhancements are possible.

  16. Spin-orbit interaction in multiple quantum wells

    SciTech Connect

    Hao, Ya-Fei

    2015-01-07

    In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices.

  17. EDITORIAL: Quanta and leaps

    NASA Astrophysics Data System (ADS)

    Dobson, Ken

    2000-11-01

    oscillating light `waves' had to be quantized as well. Several articles in this issue of Physics Education celebrate the first year of the quantum, 1900. I am grateful and beholden to Board Member and co-editor Gren Ireson for his contacts and nomination of the various contributors. It does seem strange, however, a full century after its discovery full of its amazing success that the essential quantum nature of practically everything is still kept hidden from school students, in the UK at least. Let's see what happens in the coming century. Now for another quantum leap. This is the last issue of Physics Education that I shall have the honour of editing. In fact, I shall leap into historical obscurity as the very last honorary editor. Great efforts by your Editorial Board - over a fair number of years! - have resulted in a radical reorganizing of both the journal and the way it is produced. It's been an interesting five years, a time of falling numbers but quite radical innovations in post-16 physics education. IoPP and the IoP are working together to revitalize what may have been seen by many as a staid if respectable and authoritative publication. We shall keep the authority and even respectability but hope to liven things up a bit. The new editor is Kerry Parker of Sheffield College. She will take on a stronger role than I and my predecessors have had, and will be working at IoPP in Bristol two days a week. There are many obvious advantages in this, and I look forward to seeing the new design and approach that will start with the January 2000 issue. So, it's goodbye from me - and also from the unsung heroine of Physics Education for even longer. Managing Editor Dr Jill Membrey has been doing the really hard work at Bristol for many years, but is now moving on to other things at IoPP. I am extremely grateful for the highly professional care and support she has provided for myself and the Editorial Board over the years. The new Managing Editor is Andrea Pomroy, who arrives at

  18. MULTIPLE-QUANTUM NMR IN SOLIDS

    SciTech Connect

    Yen, Y-S.

    1982-11-01

    Time domain multiple-quantum (MQ) nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for spectral simplification and for providing new information on molecular dynamics. In this thesis, applications of MQ NMR are presented and show distinctly the advantages of this method over the conventional single-quantum NMR. Chapter 1 introduces the spin Hamiltonians, the density matrix formalism and some basic concepts of MQ NMR spectroscopy. In chapter 2, {sup 14}N double-quantum coherence is observed with high sensitivity in isotropic solution, using only the magnetization of bound protons. Spin echoes are used to obtain the homogeneous double-quantum spectrum and to suppress a large H{sub 2}O solvent signal. Chapter 3 resolves the main difficulty in observing high MQ transitions in solids. Due to the profusion of spin transitions in a solid, individual lines are unresolved. Excitation and detection of high quantum transitions by normal schemes are thus difficult. To ensure that overlapping lines add constructively and thereby to enhance sensitivity, time-reversal pulse sequences are used to generate all lines in phase. Up to 22-quantum {sup 1}H absorption in solid adamantane is observed. A time dependence study shows an increase in spin correlations as the excitation time increased. In chapter 4, a statistical theory of MQ second moments is developed for coupled spins of spin I = 1/2. The model reveals that the ratio of the average dipolar coupling to the rms value largely determines the dependence of second moments on the number of quanta. The results of this model are checked against computer-calculated and experimental second moments, and show good agreement. A simple scheme is proposed in chapter 5 for sensitivity improvement in a MQ experiment. The scheme involves acquiring all of the signal energy available in the detection period by applying pulsed spinlocking and sampling between pulses. Using this technique on polycrystalline adamantane, a large

  19. Multiple network alignment on quantum computers

    NASA Astrophysics Data System (ADS)

    Daskin, Anmer; Grama, Ananth; Kais, Sabre

    2014-12-01

    Comparative analyses of graph-structured datasets underly diverse problems. Examples of these problems include identification of conserved functional components (biochemical interactions) across species, structural similarity of large biomolecules, and recurring patterns of interactions in social networks. A large class of such analyses methods quantify the topological similarity of nodes across networks. The resulting correspondence of nodes across networks, also called node alignment, can be used to identify invariant subgraphs across the input graphs. Given graphs as input, alignment algorithms use topological information to assign a similarity score to each -tuple of nodes, with elements (nodes) drawn from each of the input graphs. Nodes are considered similar if their neighbors are also similar. An alternate, equivalent view of these network alignment algorithms is to consider the Kronecker product of the input graphs and to identify high-ranked nodes in the Kronecker product graph. Conventional methods such as PageRank and HITS (Hypertext-Induced Topic Selection) can be used for this purpose. These methods typically require computation of the principal eigenvector of a suitably modified Kronecker product matrix of the input graphs. We adopt this alternate view of the problem to address the problem of multiple network alignment. Using the phase estimation algorithm, we show that the multiple network alignment problem can be efficiently solved on quantum computers. We characterize the accuracy and performance of our method and show that it can deliver exponential speedups over conventional (non-quantum) methods.

  20. Multiple network alignment on quantum computers

    NASA Astrophysics Data System (ADS)

    Daskin, Anmer; Grama, Ananth; Kais, Sabre

    2014-09-01

    Comparative analyses of graph structured datasets underly diverse problems. Examples of these problems include identification of conserved functional components (biochemical interactions) across species, structural similarity of large biomolecules, and recurring patterns of interactions in social networks. A large class of such analyses methods quantify the topological similarity of nodes across networks. The resulting correspondence of nodes across networks, also called node alignment, can be used to identify invariant subgraphs across the input graphs. Given $k$ graphs as input, alignment algorithms use topological information to assign a similarity score to each $k$-tuple of nodes, with elements (nodes) drawn from each of the input graphs. Nodes are considered similar if their neighbors are also similar. An alternate, equivalent view of these network alignment algorithms is to consider the Kronecker product of the input graphs, and to identify high-ranked nodes in the Kronecker product graph. Conventional methods such as PageRank and HITS (Hypertext Induced Topic Selection) can be used for this purpose. These methods typically require computation of the principal eigenvector of a suitably modified Kronecker product matrix of the input graphs. We adopt this alternate view of the problem to address the problem of multiple network alignment. Using the phase estimation algorithm, we show that the multiple network alignment problem can be efficiently solved on quantum computers. We characterize the accuracy and performance of our method, and show that it can deliver exponential speedups over conventional (non-quantum) methods.

  1. Multiple-state quantum Otto engine, 1D box system

    SciTech Connect

    Latifah, E.; Purwanto, A.

    2014-03-24

    Quantum heat engines produce work using quantum matter as their working substance. We studied adiabatic and isochoric processes and defined the general force according to quantum system. The processes and general force are used to evaluate a quantum Otto engine based on multiple-state of one dimensional box system and calculate the efficiency. As a result, the efficiency depends on the ratio of initial and final width of system under adiabatic processes.

  2. LEAP 1992: Conference summary

    SciTech Connect

    Dover, C.B.

    1992-12-01

    We present a summary of the many new results in antiproton ({bar p}) physics presented at the LEAP `92 conference, in the areas of meson spectroscopy, {bar N}N scattering, annihilation and spin observables, strangeness and charm production, {bar N} annihilation in nuclei, atomic physics with very low energy {bar p}`s, the exploration of fundamental symmetries and interactions with {bar p} (CP, T, CPT, gravitation), and the prospects for new {bar p} facilities at ultralow energies or energies above the LEAR regime ({ge} 2 GeV/c).

  3. LEAP 1992: Conference summary

    SciTech Connect

    Dover, C.B.

    1992-12-01

    We present a summary of the many new results in antiproton ([bar p]) physics presented at the LEAP '92 conference, in the areas of meson spectroscopy, [bar N]N scattering, annihilation and spin observables, strangeness and charm production, [bar N] annihilation in nuclei, atomic physics with very low energy [bar p]'s, the exploration of fundamental symmetries and interactions with [bar p] (CP, T, CPT, gravitation), and the prospects for new [bar p] facilities at ultralow energies or energies above the LEAR regime ([ge] 2 GeV/c).

  4. Quantum cosmological perturbations of multiple fluids

    NASA Astrophysics Data System (ADS)

    Peter, Patrick; Pinto-Neto, N.; Vitenti, Sandro D. P.

    2016-01-01

    The formalism to treat quantization and evolution of cosmological perturbations of multiple fluids is described. We first construct the Lagrangian for both the gravitational and matter parts, providing the necessary relevant variables and momenta leading to the quadratic Hamiltonian describing linear perturbations. The final Hamiltonian is obtained without assuming any equations of motions for the background variables. This general formalism is applied to the special case of two fluids, having in mind the usual radiation and matter mix which made most of our current Universe history. Quantization is achieved using an adiabatic expansion of the basis functions. This allows for an unambiguous definition of a vacuum state up to the given adiabatic order. Using this basis, we show that particle creation is well defined for a suitable choice of vacuum and canonical variables, so that the time evolution of the corresponding quantum fields is unitary. This provides constraints for setting initial conditions for an arbitrary number of fluids and background time evolution. We also show that the common choice of variables for quantization can lead to an ill-defined vacuum definition. Our formalism is not restricted to the case where the coupling between fields is small, but is only required to vary adiabatically with respect to the ultraviolet modes, thus paving the way to consistent descriptions of general models not restricted to single-field (or fluid).

  5. cuTauLeaping: A GPU-Powered Tau-Leaping Stochastic Simulator for Massive Parallel Analyses of Biological Systems

    PubMed Central

    Besozzi, Daniela; Pescini, Dario; Mauri, Giancarlo

    2014-01-01

    Tau-leaping is a stochastic simulation algorithm that efficiently reconstructs the temporal evolution of biological systems, modeled according to the stochastic formulation of chemical kinetics. The analysis of dynamical properties of these systems in physiological and perturbed conditions usually requires the execution of a large number of simulations, leading to high computational costs. Since each simulation can be executed independently from the others, a massive parallelization of tau-leaping can bring to relevant reductions of the overall running time. The emerging field of General Purpose Graphic Processing Units (GPGPU) provides power-efficient high-performance computing at a relatively low cost. In this work we introduce cuTauLeaping, a stochastic simulator of biological systems that makes use of GPGPU computing to execute multiple parallel tau-leaping simulations, by fully exploiting the Nvidia's Fermi GPU architecture. We show how a considerable computational speedup is achieved on GPU by partitioning the execution of tau-leaping into multiple separated phases, and we describe how to avoid some implementation pitfalls related to the scarcity of memory resources on the GPU streaming multiprocessors. Our results show that cuTauLeaping largely outperforms the CPU-based tau-leaping implementation when the number of parallel simulations increases, with a break-even directly depending on the size of the biological system and on the complexity of its emergent dynamics. In particular, cuTauLeaping is exploited to investigate the probability distribution of bistable states in the Schlögl model, and to carry out a bidimensional parameter sweep analysis to study the oscillatory regimes in the Ras/cAMP/PKA pathway in S. cerevisiae. PMID:24663957

  6. Quantum broadcasting multiple blind signature with constant size

    NASA Astrophysics Data System (ADS)

    Xiao, Min; Li, Zhenli

    2016-06-01

    Using quantum homomorphic signature in quantum network, we propose a quantum broadcasting multiple blind signature scheme. Different from classical signature and current quantum signature schemes, the multi-signature proposed in our scheme is not generated by simply putting the individual signatures together, but by aggregating the individual signatures based on homomorphic property. Therefore, the size of the multi-signature is constant. Furthermore, based on a wide range of investigation for the security of existing quantum signature protocols, our protocol is designed to resist possible forgery attacks against signature and message from the various attack sources and disavowal attacks from participants.

  7. Secure Multiparty Quantum Computation for Summation and Multiplication

    NASA Astrophysics Data System (ADS)

    Shi, Run-Hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun

    2016-01-01

    As a fundamental primitive, Secure Multiparty Summation and Multiplication can be used to build complex secure protocols for other multiparty computations, specially, numerical computations. However, there is still lack of systematical and efficient quantum methods to compute Secure Multiparty Summation and Multiplication. In this paper, we present a novel and efficient quantum approach to securely compute the summation and multiplication of multiparty private inputs, respectively. Compared to classical solutions, our proposed approach can ensure the unconditional security and the perfect privacy protection based on the physical principle of quantum mechanics.

  8. Secure Multiparty Quantum Computation for Summation and Multiplication

    PubMed Central

    Shi, Run-hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun

    2016-01-01

    As a fundamental primitive, Secure Multiparty Summation and Multiplication can be used to build complex secure protocols for other multiparty computations, specially, numerical computations. However, there is still lack of systematical and efficient quantum methods to compute Secure Multiparty Summation and Multiplication. In this paper, we present a novel and efficient quantum approach to securely compute the summation and multiplication of multiparty private inputs, respectively. Compared to classical solutions, our proposed approach can ensure the unconditional security and the perfect privacy protection based on the physical principle of quantum mechanics. PMID:26792197

  9. Secure Multiparty Quantum Computation for Summation and Multiplication.

    PubMed

    Shi, Run-hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun

    2016-01-01

    As a fundamental primitive, Secure Multiparty Summation and Multiplication can be used to build complex secure protocols for other multiparty computations, specially, numerical computations. However, there is still lack of systematical and efficient quantum methods to compute Secure Multiparty Summation and Multiplication. In this paper, we present a novel and efficient quantum approach to securely compute the summation and multiplication of multiparty private inputs, respectively. Compared to classical solutions, our proposed approach can ensure the unconditional security and the perfect privacy protection based on the physical principle of quantum mechanics. PMID:26792197

  10. LEAP 96 Conference summary

    NASA Astrophysics Data System (ADS)

    Montanet, Lucien

    1997-06-01

    The following pages represent a short summary of the many new results in low energy antiproton (p¯) physics presented and discussed at the LEAP 96 Conference. They cover a broad field of physics, from atomic physics to nuclear physics, from hadronic physics to parton physics. The impact of these results on "soft QCD", the part of strong interactions which we do not yet understand, and on the limits that we can establish to the "fundamental symmetries" which govern Nature are original and important. Within these twelve pages, I cannot do justice to all contributions. I present my apologizes for the omissions, hoping however that the serious reader will find the missing information in these proceedings.

  11. Multiplicity-free Quantum 6 j-Symbols for

    NASA Astrophysics Data System (ADS)

    Nawata, Satoshi; Pichai, Ramadevi; Zodinmawia

    2013-12-01

    We conjecture a closed form expression for the simplest class of multiplicity-free quantum 6 j-symbols for . The expression is a natural generalization of the quantum 6 j-symbols for obtained by Kirillov and Reshetikhin. Our conjectured form enables computation of colored HOMFLY polynomials for various knots and links carrying arbitrary symmetric representations.

  12. Multiple-server Flexible Blind Quantum Computation in Networks

    NASA Astrophysics Data System (ADS)

    Kong, Xiaoqin; Li, Qin; Wu, Chunhui; Yu, Fang; He, Jinjun; Sun, Zhiyuan

    2016-06-01

    Blind quantum computation (BQC) can allow a client with limited quantum power to delegate his quantum computation to a powerful server and still keep his own data private. In this paper, we present a multiple-server flexible BQC protocol, where a client who only needs the ability of accessing qua ntum channels can delegate the computational task to a number of servers. Especially, the client's quantum computation also can be achieved even when one or more delegated quantum servers break down in networks. In other words, when connections to certain quantum servers are lost, clients can adjust flexibly and delegate their quantum computation to other servers. Obviously it is trivial that the computation will be unsuccessful if all servers are interrupted.

  13. Multiple-server Flexible Blind Quantum Computation in Networks

    NASA Astrophysics Data System (ADS)

    Kong, Xiaoqin; Li, Qin; Wu, Chunhui; Yu, Fang; He, Jinjun; Sun, Zhiyuan

    2016-02-01

    Blind quantum computation (BQC) can allow a client with limited quantum power to delegate his quantum computation to a powerful server and still keep his own data private. In this paper, we present a multiple-server flexible BQC protocol, where a client who only needs the ability of accessing qua ntum channels can delegate the computational task to a number of servers. Especially, the client's quantum computation also can be achieved even when one or more delegated quantum servers break down in networks. In other words, when connections to certain quantum servers are lost, clients can adjust flexibly and delegate their quantum computation to other servers. Obviously it is trivial that the computation will be unsuccessful if all servers are interrupted.

  14. Study of correlations in molecular motion by multiple quantum NMR

    SciTech Connect

    Tang, J.H.

    1981-11-01

    Nuclear magnetic resonance is a very useful tool for characterizing molecular configurations through the measurement of transition frequencies and dipolar couplings. The measurement of spectral lineshapes, spin-lattice relaxation times, and transverse relaxation times also provide us with valuable information about correlations in molecular motion. The new technique of multiple quantum nuclear magnetic resonance has numerous advantages over the conventional single quantum NMR techniques in obtaining information about static and dynamic interactions of coupled spin systems. In the first two chapters, the theoretical background of spin Hamiltonians and the density matrix formalism of multiple quantum NMR is discussed. The creation and detection of multiple quantum coherence by multiple pulse sequence are discussed. Prototype multiple quantum spectra of oriented benzene are presented. Redfield relaxation theory and the application of multiple quantum NMR to the study of correlations in fluctuations are presented. A specific example of an oriented methyl group relaxed by paramagnetic impurities is studied in detail. The study of possible correlated motion between two coupled methyl groups by multiple quantum NMR is presented. For a six spin system it is shown that the four-quantum spectrum is sensitive to two-body correlations, and serves a ready test of correlated motion. The study of the spin-lattice dynamics of orienting or tunneling methyl groups (CH/sub 3/ and CD/sub 3/) at low temperatures is presented. The anisotropic spin-lattice relaxation of deuterated hexamethylbenzene, caused by the sixfold reorientation of the molecules, is investigated, and the NMR spectrometers and other experimental details are discussed.

  15. Computer studies of multiple-quantum spin dynamics

    SciTech Connect

    Murdoch, J.B.

    1982-11-01

    The excitation and detection of multiple-quantum (MQ) transitions in Fourier transform NMR spectroscopy is an interesting problem in the quantum mechanical dynamics of spin systems as well as an important new technique for investigation of molecular structure. In particular, multiple-quantum spectroscopy can be used to simplify overly complex spectra or to separate the various interactions between a nucleus and its environment. The emphasis of this work is on computer simulation of spin-system evolution to better relate theory and experiment.

  16. On Quantum Algorithm for Multiple Alignment of Amino Acid Sequences

    NASA Astrophysics Data System (ADS)

    Iriyama, Satoshi; Ohya, Masanori

    2009-02-01

    The alignment of genome sequences or amino acid sequences is one of fundamental operations for the study of life. Usual computational complexity for the multiple alignment of N sequences with common length L by dynamic programming is O(LN). This alignment is considered as one of the NP problems, so that it is desirable to find a nice algorithm of the multiple alignment. Thus in this paper we propose the quantum algorithm for the multiple alignment based on the works12,1,2 in which the NP complete problem was shown to be the P problem by means of quantum algorithm and chaos information dynamics.

  17. Multinomial tau-leaping method for stochastic kinetic simulations.

    PubMed

    Pettigrew, Michel F; Resat, Haluk

    2007-02-28

    We introduce the multinomial tau-leaping (MtauL) method for general reaction networks with multichannel reactant dependencies. The MtauL method is an extension of the binomial tau-leaping method where efficiency is improved in several ways. First, tau-leaping steps are determined simply and efficiently using a priori information and Poisson distribution-based estimates of expectation values for reaction numbers over a tentative tau-leaping step. Second, networks are partitioned into closed groups of reactions and corresponding reactants in which no group reactant set is found in any other group. Third, product formation is factored into upper-bound estimation of the number of times a particular reaction occurs. Together, these features allow larger time steps where the numbers of reactions occurring simultaneously in a multichannel manner are estimated accurately using a multinomial distribution. Furthermore, we develop a simple procedure that places a specific upper bound on the total reaction number to ensure non-negativity of species populations over a single multiple-reaction step. Using two disparate test case problems involving cellular processes--epidermal growth factor receptor signaling and a lactose operon model--we show that the tau-leaping based methods such as the MtauL algorithm can significantly reduce the number of simulation steps thus increasing the numerical efficiency over the exact stochastic simulation algorithm by orders of magnitude. PMID:17343434

  18. Multinomial tau-leaping method for stochastic kinetic simulations

    NASA Astrophysics Data System (ADS)

    Pettigrew, Michel F.; Resat, Haluk

    2007-02-01

    We introduce the multinomial tau-leaping (MτL) method for general reaction networks with multichannel reactant dependencies. The MτL method is an extension of the binomial tau-leaping method where efficiency is improved in several ways. First, τ-leaping steps are determined simply and efficiently using a priori information and Poisson distribution-based estimates of expectation values for reaction numbers over a tentative τ-leaping step. Second, networks are partitioned into closed groups of reactions and corresponding reactants in which no group reactant set is found in any other group. Third, product formation is factored into upper-bound estimation of the number of times a particular reaction occurs. Together, these features allow larger time steps where the numbers of reactions occurring simultaneously in a multichannel manner are estimated accurately using a multinomial distribution. Furthermore, we develop a simple procedure that places a specific upper bound on the total reaction number to ensure non-negativity of species populations over a single multiple-reaction step. Using two disparate test case problems involving cellular processes—epidermal growth factor receptor signaling and a lactose operon model—we show that the τ-leaping based methods such as the MτL algorithm can significantly reduce the number of simulation steps thus increasing the numerical efficiency over the exact stochastic simulation algorithm by orders of magnitude.

  19. Multiple Exciton Generation in Quantum Dot Solar Cells

    NASA Astrophysics Data System (ADS)

    Semonin, O. E.

    Photovoltaics are limited in their power conversion efficiency (PCE) by very rapid relaxation of energetic carriers to the band edge. Therefore, photons from the visible and ultraviolet parts of the spectrum typically are not efficiently converted into electrical energy. One approach that can address this is multiple exciton generation (MEG), where a single photon of sufficient energy can generate multiple excited electron-hole pairs. This process has been shown to be more efficient in quantum dots than bulk semiconductors, but it has never been demonstrated in the photocurrent of a solar cell. In order to demonstrate that multiple exciton generation can address fundamental limits for conventional photovoltaics, I have developed prototype devices from colloidal PbS and PbSe quantum dot inks. I have characterized both the colloidal suspensions and films of quantum dots with the goal of understanding what properties determine the efficiency of the solar cell and of the MEG process. I have found surface chemistry effects on solar cells, photoluminescence, and MEG, and I have found some chemical treatments that lead to solar cells showing MEG. These devices show external quantum efficiency (EQE) greater than 100% for certain parts of the solar spectrum, and I extract internal quantum efficiency (IQE) consistent with previous measurements of colloidal suspensions of quantum dots. These findings are a small first step toward breaking the single junction Shockley-Queisser limit of present-day first and second generation solar cells, thus moving photovoltaic cells toward a new regime of efficiency.

  20. Capacity of multiple-input multiple-output quantum depolarizing channels

    NASA Astrophysics Data System (ADS)

    Xiao, Hailin; Ouyang, Shan

    2012-08-01

    Decoherence-free subspaces (DFS) are to utilize the symmetric properties of the interaction between the system and environment so that they can be tolerant against the effect of decoherence. In this paper, we propose multiple-input multiple-output (MIMO) scheme to drive a finite-dimensional quantum system into DFS. For quantum system, the scheme is not only immune to dephasing but also feasible with currently available technology. Motivated by Shannon mutual information, we derive the capacity of MIMO quantum depolarizing channels.

  1. Solid-state proton multiple-quantum NMR spectroscopy with fast magic angle spinning

    NASA Astrophysics Data System (ADS)

    Geen, Helen; Titman, Jeremy J.; Gottwald, Johannes; Spiess, Hans W.

    1994-09-01

    The feasibility of multiple-quantum NMR spectroscopy with high resolution for protons in solids is explored. A new multiple-quantum excitation sequence suitable for use with fast magic angle spinning is described, and its performance is compared to that of both static and slow-spinning multiple-quantum methods. Modified sequences with scale the rate of development of the multiple-quantum coherences are also demonstrated, and two-dimensional double-quantum spectra of adamantane and polycarbonate are presented.

  2. A Big LEAP for Texas

    ERIC Educational Resources Information Center

    Phillips, Loraine; Roach, David; Williamson, Celia

    2014-01-01

    In Texas, educators working to coordinate the efforts of fifty community colleges, thirty-eight universities, and six university systems are bringing the resources of the Association of American Colleges and Universities (AAC&U) Liberal Education and America's Promise (LEAP) initiative to bear in order to ensure that the state's nearly 1.5…

  3. Quantum Dot Solar Cells with Multiple Exciton Generation

    SciTech Connect

    Hanna, M. C.; Beard, M. C.; Johnson, J. C.; Murphy, J.; Ellingson, R. J.; Nozik, A. J.

    2005-11-01

    We have measured the quantum yield of the multiple exciton generation (MEG) process in quantum dots (QDs) of the lead-salt semiconductor family (PbSe, PbTe, and PbS) using fs pump-probe transient absorption measurements. Very high quantum yields (up to 300%) for charge carrier generation from MEG have been measured in all of the Pb-VI QDs. We have calculated the potential maximum performance of various MEG QD solar cells in the detailed balance limit. We examined a two-cell tandem PV device with singlet fission (SF), QD, and normal dye (N) absorbers in the nine possible series-connected combinations to compare the tandem combinations and identify the combinations with the highest theoretical efficiency. We also calculated the maximum efficiency of an idealized single-gap MEG QD solar cell with M multiplications and its performance under solar concentration.

  4. Optimum testing of multiple hypotheses in quantum detection theory

    NASA Technical Reports Server (NTRS)

    Yuen, H. P.; Kennedy, R. S.; Lax, M.

    1975-01-01

    The problem of specifying the optimum quantum detector in multiple hypotheses testing is considered for application to optical communications. The quantum digital detection problem is formulated as a linear programming problem on an infinite-dimensional space. A necessary and sufficient condition is derived by the application of a general duality theorem specifying the optimum detector in terms of a set of linear operator equations and inequalities. Existence of the optimum quantum detector is also established. The optimality of commuting detection operators is discussed in some examples. The structure and performance of the optimal receiver are derived for the quantum detection of narrow-band coherent orthogonal and simplex signals. It is shown that modal photon counting is asymptotically optimum in the limit of a large signaling alphabet and that the capacity goes to infinity in the absence of a bandwidth limitation.

  5. Teleportation: The Impossible Leap

    NASA Astrophysics Data System (ADS)

    Darling, David

    2005-05-01

    An authoritative, entertaining examination of the ultimate thrill ride Until recently the stuff of sci-fi fiction and Star Trek reruns, teleportation has become a reality-for subatomic particles at least. In this eye-opening book, science author David Darling follows the remarkable evolution of teleportation, visiting the key labs that have cradled this cutting-edge science and relating the all-too-human stories behind its birth. He ties in the fast emerging fields of cryptography and quantum computing, tackles some thorny philosophical questions (for instance, can a soul be teleported?), and asks when and how humans may be able to "beam up."

  6. Detection of electromagnetic radiation using micromechanical multiple quantum wells structures

    DOEpatents

    Datskos, Panagiotis G [Knoxville, TN; Rajic, Slobodan [Knoxville, TN; Datskou, Irene [Knoxville, TN

    2007-07-17

    An apparatus and method for detecting electromagnetic radiation employs a deflectable micromechanical apparatus incorporating multiple quantum wells structures. When photons strike the quantum-well structure, physical stresses are created within the sensor, similar to a "bimetallic effect." The stresses cause the sensor to bend. The extent of deflection of the sensor can be measured through any of a variety of conventional means to provide a measurement of the photons striking the sensor. A large number of such sensors can be arranged in a two-dimensional array to provide imaging capability.

  7. Coherent coupling of multiple transverse modes in quantum cascade lasers.

    PubMed

    Yu, Nanfang; Diehl, Laurent; Cubukcu, Ertugrul; Bour, David; Corzine, Scott; Höfler, Gloria; Wojcik, Aleksander K; Crozier, Kenneth B; Belyanin, Alexey; Capasso, Federico

    2009-01-01

    Quantum cascade lasers are a unique laboratory for studying nonlinear laser dynamics because of their high intracavity intensity, strong intersubband optical nonlinearity, and an unusual combination of relaxation time scales. Here we investigate the nonlinear coupling between the transverse modes of quantum cascade lasers. We present evidence for stable phase coherence of multiple transverse modes over a large range of injection currents. We explain the phase coherence by a four-wave mixing interaction originating from the strong optical nonlinearity of the gain transition. The phase-locking conditions predicted by theory are supported by spectral data and both near- and far-field mode measurements. PMID:19257192

  8. Taking the Leap

    ERIC Educational Resources Information Center

    Tretter, Thomas

    2012-01-01

    Teachers strive to engage students in rich and varied experiences involving exploration. These experiences should be accessible to all types of learners (e.g., visual, kinesthetic, mathematically inclined), offering multiple pathways for engagement at different levels of sophistication and accommodating both conceptual and computational…

  9. Multiple-quantum dynamics in solid state NMR

    NASA Astrophysics Data System (ADS)

    Baum, J.; Munowitz, M.; Garroway, A. N.; Pines, A.

    1985-09-01

    Recently developed solid state multiple-quantum NMR methods are applied to extended coupling networks, where direct dipole-dipole interactions can be used to create coherences of very high order (˜100). The progressive development of multiple-quantum coherence over time depends upon the formation of multiple-spin correlations, a phenomenon which also accompanies the normal decay to equilibrium of the free induction signal in a solid. Both the time development and the observed distributions of coherence can be approached statistically, with the spin system described by a time-dependent density operator whose elements are completely uncorrelated at sufficiently long times. With this point of view, we treat the distribution of coherence in a multiple-quantum spectrum as Gaussian, and characterize a spectrum obtained for a given preparation time by its variance. The variance of the distribution is associated roughly with the number of coupled spins effectively interacting, and its steady growth with time reflects the continual expansion of the system under the action of the dipolar interactions. The increase in effective system ``size'' is accounted for by a random walk model for the time development of the density operator. Experimental results are presented for hexamethylbenzene, adamantane, and squaric acid. The formation of coherence in systems containing physically isolated clusters is also investigated, and a simple method for estimating the number of spins involved is demonstrated.

  10. Multiple-quantum dynamics in solid state NMR

    SciTech Connect

    Baum, J.; Munowitz, M.; Garroway, A.N.; Pines, A.

    1985-09-01

    Recently developed solid state multiple-quantum NMR methods are applied to extended coupling networks, where direct dipole--dipole interactions can be used to create coherences of very high order (approx. 100). The progressive development of multiple-quantum coherence over time depends upon the formation of multiple-spin correlations, a phenomenon which also accompanies the normal decay to equilibrium of the free induction signal in a solid. Both the time development and the observed distributions of coherence can be approached statistically, with the spin system described by a time-dependent density operator whose elements are completely uncorrelated at sufficiently long times. With this point of view, we treat the distribution of coherence in a multiple-quantum spectrum as Gaussian, and characterize a spectrum obtained for a given preparation time by its variance. The variance of the distribution is associated roughly with the number of coupled spins effectively interacting, and its steady growth with time reflects the continual expansion of the system under the action of the dipolar interactions. The increase in effective system ''size'' is accounted for by a random walk model for the time development of the density operator. Experimental results are presented for hexamethylbenzene, adamantane, and squaric acid. The formation of coherence in systems containing physically isolated clusters is also investigated, and a simple method for estimating the number of spins involved is demonstrated.

  11. The biomechanics of leaping in gibbons.

    PubMed

    Channon, A J; Crompton, R H; Günther, M M; D'Août, K; Vereecke, E E

    2010-11-01

    Gibbons are skilled brachiators but they are also highly capable leapers, crossing distances in excess of 10 m in the wild. Despite this impressive performance capability, no detailed biomechanical studies of leaping in gibbons have been undertaken to date. We measured ground reaction forces and derived kinematic parameters from high-speed videos during gibbon leaps in a captive zoo environment. We identified four distinct leap types defined by the number of feet used during take-off and the orientation of the trunk, orthograde single-footed, orthograde two-footed, orthograde squat, and pronograde single-footed leaps. The center of mass trajectories of three of the four leap types were broadly similar, with the pronograde single-footed leaps exhibiting less vertical displacement of the center of mass than the other three types. Mechanical energy at take-off was similar in all four leap types. The ratio of kinetic energy to mechanical energy was highest in pronograde single-footed leaps and similar in the other three leap types. The highest mechanical work and power were generated during orthograde squat leaps. Take-off angle decreased with take-off velocity and the hind limbs showed a proximal to distal extension sequence during take-off. In the forelimbs, the shoulder joints were always flexed at take-off, while the kinematics of the distal joints (elbow and wrist joints) were variable between leaps. It is possible that gibbons may utilize more metabolically expensive orthograde squat leaps when a safe landing is uncertain, while more rapid (less expensive) pronograde single-footed leaps might be used during bouts of rapid locomotion when a safe landing is more certain. PMID:20949611

  12. Multiple-junction quantum cascade photodetectors for thermophotovoltaic energy conversion.

    PubMed

    Yin, Jian; Paiella, Roberto

    2010-01-18

    The use of intersubband transitions in quantum cascade structures for thermophotovoltaic energy conversion is investigated numerically. The intrinsic cascading scheme, spectral agility, and design flexibility of these structures make them ideally suited to the development of high efficiency multiple-junction thermophotovoltaic detectors. A specific implementation of this device concept is designed, based on bound-to-continuum intersubband transitions in large-conduction-band-offset In(0.7)Ga(0.3)As/AlAs(0.8)Sb(0.2) quantum wells. The device electrical characteristics in the presence of thermal radiation from a blackbody source at 1300 K are calculated, from which a maximum extracted power density of 1.4 W/cm(2) is determined. This value compares favorably with the present state-of-the-art in interband thermophotovoltaic energy conversion, indicating that quantum cascade photodetectors may provide a promising approach to improve energy extraction from thermal sources. PMID:20173989

  13. Controllable multiple-quantum transitions in a T-shaped small quantum dot-ring system

    NASA Astrophysics Data System (ADS)

    Chen, Xiongwen; Chen, Baoju; Song, Kehui; Zhou, Guanghui

    2016-05-01

    Based on the tight-binding model and the slave boson mean field approximation, we investigate the electron transport properties in a small quantum dot (QD)-ring system. Namely, a strongly correlated QD not only attaches directly to two normal metallic electrodes, but also forms a magnetic control Aharonov-Bohm quantum ring with a few noninteracting QDs. We show that the parity effect, the Kondo effect, and the multiple Fano effects coexist in our system. Moreover, the parities, defined by the odd- and even-numbered energy levels in this system, can be switched by adjusting magnetic flux phase ϕ located at the center of the quantum ring, which induces multiple controllable Fano-interference energy pathways. Therefore, the constructive and destructive multi-Fano interference transition, the Kondo and Fano resonance transition at the Fermi level, the Fano resonance and ani-resonance transition are realized in the even parity system. They can also be observed in the odd parity system when one adjusts the phase ϕ and the gate voltage Vg applied to the noninteracting QDs. The multi-quantum transitions determine some interesting transport properties such as the current switch and its multi-flatsteps, the differential conductance switch at zero bias voltage and its oscillation or quantization at the low bias voltage. These results may be useful for the observation of multiple quantum effect interplays experimentally and the design of controllable QD-based device.

  14. Improvement of a quantum broadcasting multiple blind signature scheme based on quantum teleportation

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Qiu, Daowen; Zou, Xiangfu

    2016-06-01

    Recently, a broadcasting multiple blind signature scheme based on quantum teleportation has been proposed for the first time. It is claimed to have unconditional security and properties of quantum multiple signature and quantum blind signature. In this paper, we analyze the security of the protocol and show that each signatory can learn the signed message by a single-particle measurement and the signed message can be modified at random by any attacker according to the scheme. Furthermore, there are some participant attacks and external attacks existing in the scheme. Finally, we present an improved scheme and show that it can resist all of the mentioned attacks. Additionally, the secret keys can be used again and again, making it more efficient and practical.

  15. Improvement of a quantum broadcasting multiple blind signature scheme based on quantum teleportation

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Qiu, Daowen; Zou, Xiangfu

    2016-03-01

    Recently, a broadcasting multiple blind signature scheme based on quantum teleportation has been proposed for the first time. It is claimed to have unconditional security and properties of quantum multiple signature and quantum blind signature. In this paper, we analyze the security of the protocol and show that each signatory can learn the signed message by a single-particle measurement and the signed message can be modified at random by any attacker according to the scheme. Furthermore, there are some participant attacks and external attacks existing in the scheme. Finally, we present an improved scheme and show that it can resist all of the mentioned attacks. Additionally, the secret keys can be used again and again, making it more efficient and practical.

  16. Multiple Exciton Generation in PbSe Quantum Dots and Quantum Dot Solar Cells

    SciTech Connect

    Beard, M. C.; Semonin, O. E.; Nozik, A. J.; Midgett, A. G.; Luther, J. M.

    2012-01-01

    Multiple exciton generation in quantum dots (QDs) has been intensively studied as a way to enhance solar energy conversion by channeling the excess photon energy (energy greater than the bandgap) to produce multiple electron-hole pairs. Among other useful properties, quantum confinement can both increase Coulomb interactions that drive the MEG process and decrease the electron-phonon coupling that cools hot-excitons in bulk semiconductors. We have demonstrated that MEG in PbSe QDs is about two times as efficient at producing multiple electron-hole pairs than bulk PbSe. I will discuss our recent results investigating MEG in PbSe, PbS and PbSxSe1-x, which exhibits an interesting size-dependence of the MEG efficiency. Thin films of electronically coupled PbSe QDs have shown promise in simple photon-to-electron conversion architectures with power conversion efficiencies above 5%. We recently reported an enhancement in the photocurrent resulting from MEG in PbSe QD-based solar cells. We find that the external quantum efficiency (spectrally resolved ratio of collected charge carriers to incident photons) peaked at 114% in the best devices measured, with an internal quantum efficiency of 130%. These results demonstrate that MEG charge carriers can be collected in suitably designed QD solar cells. We compare our results to transient absorption measurements and find reasonable agreement.

  17. Robust Multiple-Range Coherent Quantum State Transfer

    NASA Astrophysics Data System (ADS)

    Chen, Bing; Peng, Yan-Dong; Li, Yong; Qian, Xiao-Feng

    2016-07-01

    We propose a multiple-range quantum communication channel to realize coherent two-way quantum state transport with high fidelity. In our scheme, an information carrier (a qubit) and its remote partner are both adiabatically coupled to the same data bus, i.e., an N-site tight-binding chain that has a single defect at the center. At the weak interaction regime, our system is effectively equivalent to a three level system of which a coherent superposition of the two carrier states constitutes a dark state. The adiabatic coupling allows a well controllable information exchange timing via the dark state between the two carriers. Numerical results show that our scheme is robust and efficient under practically inevitable perturbative defects of the data bus as well as environmental dephasing noise.

  18. Thermodynamics of quantum systems with multiple conserved quantities

    PubMed Central

    Guryanova, Yelena; Popescu, Sandu; Short, Anthony J.; Silva, Ralph; Skrzypczyk, Paul

    2016-01-01

    Recently, there has been much progress in understanding the thermodynamics of quantum systems, even for small individual systems. Most of this work has focused on the standard case where energy is the only conserved quantity. Here we consider a generalization of this work to deal with multiple conserved quantities. Each conserved quantity, which, importantly, need not commute with the rest, can be extracted and stored in its own battery. Unlike the standard case, in which the amount of extractable energy is constrained, here there is no limit on how much of any individual conserved quantity can be extracted. However, other conserved quantities must be supplied, and the second law constrains the combination of extractable quantities and the trade-offs between them. We present explicit protocols that allow us to perform arbitrarily good trade-offs and extract arbitrarily good combinations of conserved quantities from individual quantum systems. PMID:27384384

  19. Robust Multiple-Range Coherent Quantum State Transfer.

    PubMed

    Chen, Bing; Peng, Yan-Dong; Li, Yong; Qian, Xiao-Feng

    2016-01-01

    We propose a multiple-range quantum communication channel to realize coherent two-way quantum state transport with high fidelity. In our scheme, an information carrier (a qubit) and its remote partner are both adiabatically coupled to the same data bus, i.e., an N-site tight-binding chain that has a single defect at the center. At the weak interaction regime, our system is effectively equivalent to a three level system of which a coherent superposition of the two carrier states constitutes a dark state. The adiabatic coupling allows a well controllable information exchange timing via the dark state between the two carriers. Numerical results show that our scheme is robust and efficient under practically inevitable perturbative defects of the data bus as well as environmental dephasing noise. PMID:27364891

  20. Thermodynamics of quantum systems with multiple conserved quantities

    NASA Astrophysics Data System (ADS)

    Guryanova, Yelena; Popescu, Sandu; Short, Anthony J.; Silva, Ralph; Skrzypczyk, Paul

    2016-07-01

    Recently, there has been much progress in understanding the thermodynamics of quantum systems, even for small individual systems. Most of this work has focused on the standard case where energy is the only conserved quantity. Here we consider a generalization of this work to deal with multiple conserved quantities. Each conserved quantity, which, importantly, need not commute with the rest, can be extracted and stored in its own battery. Unlike the standard case, in which the amount of extractable energy is constrained, here there is no limit on how much of any individual conserved quantity can be extracted. However, other conserved quantities must be supplied, and the second law constrains the combination of extractable quantities and the trade-offs between them. We present explicit protocols that allow us to perform arbitrarily good trade-offs and extract arbitrarily good combinations of conserved quantities from individual quantum systems.

  1. Robust Multiple-Range Coherent Quantum State Transfer

    PubMed Central

    Chen, Bing; Peng, Yan-Dong; Li, Yong; Qian, Xiao-Feng

    2016-01-01

    We propose a multiple-range quantum communication channel to realize coherent two-way quantum state transport with high fidelity. In our scheme, an information carrier (a qubit) and its remote partner are both adiabatically coupled to the same data bus, i.e., an N-site tight-binding chain that has a single defect at the center. At the weak interaction regime, our system is effectively equivalent to a three level system of which a coherent superposition of the two carrier states constitutes a dark state. The adiabatic coupling allows a well controllable information exchange timing via the dark state between the two carriers. Numerical results show that our scheme is robust and efficient under practically inevitable perturbative defects of the data bus as well as environmental dephasing noise. PMID:27364891

  2. Thermodynamics of quantum systems with multiple conserved quantities.

    PubMed

    Guryanova, Yelena; Popescu, Sandu; Short, Anthony J; Silva, Ralph; Skrzypczyk, Paul

    2016-01-01

    Recently, there has been much progress in understanding the thermodynamics of quantum systems, even for small individual systems. Most of this work has focused on the standard case where energy is the only conserved quantity. Here we consider a generalization of this work to deal with multiple conserved quantities. Each conserved quantity, which, importantly, need not commute with the rest, can be extracted and stored in its own battery. Unlike the standard case, in which the amount of extractable energy is constrained, here there is no limit on how much of any individual conserved quantity can be extracted. However, other conserved quantities must be supplied, and the second law constrains the combination of extractable quantities and the trade-offs between them. We present explicit protocols that allow us to perform arbitrarily good trade-offs and extract arbitrarily good combinations of conserved quantities from individual quantum systems. PMID:27384384

  3. Multiple Energy Exciton Shelves in Quantum-Dot-DNA Nanobioelectronics.

    PubMed

    Goodman, Samuel M; Singh, Vivek; Ribot, Josep Casamada; Chatterjee, Anushree; Nagpal, Prashant

    2014-11-01

    Quantum dots (QDs) are semiconductor nanocrystallites with multiple size-dependent quantum-confined states that are being explored for utilizing broadband radiation. While DNA has been used for the self-assembly of nanocrystals, it has not been investigated for the formation of simultaneous conduction pathways for transporting multiple energy charges or excitons. These exciton shelves can be formed by coupling the conduction band, valence band, and hot-carrier states in QDs with different HOMO-LUMO levels of DNA nucleobases, resulting from varying degrees of conjugation in the nucleobases. Here we present studies on the electronic density of states in four naturally occurring nucleobases (guanine, thymine, cytosine, and adenine), which energetically couple to quantized states in semiconductor QDs. Using scanning tunneling spectroscopy of single nanoparticle-DNA constructs, we demonstrate composite DOS of chemically coupled DNA oligonucleotides and cadmium chalcogenide QDs (CdS, CdSe, CdTe). While perfectly aligned CdTe QD-DNA states lead to exciton shelves for multiple energy charge transport, mismatched energy levels in CdSe QD-DNA introduce intrabandgap states that can lead to charge trapping and recombination. Although further investigations are required to study the rates of charge transfer, recombination, and back-electron transfer, these results can have important implications for the development of a new class of nanobioelectronics and biological transducers. PMID:26278768

  4. Establishing High Expectations through the LEAP Clinic.

    ERIC Educational Resources Information Center

    Conderman, Greg; Snider, Vicki E.; Crawford, Donald

    1997-01-01

    The Learning Enhancement and Progression (LEAP) clinic is an eight-week summer extension to the University of Wisconsin (Eau Claire) teacher education program. The LEAP clinic has provided remedial instruction to more than 600 school-age children over the last 15 years. Five components involved are advanced preparation; teacher training;…

  5. Science. Grade 11. LEAP: Instructional Strategies Guide.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge.

    The Louisiana Educational Assessment Program (LEAP) Grade 11 Test is designed to measure proficiency in four subject areas including English, mathematics, social studies, and science. This guide for science is intended to provide a description of the way in which specific skill areas are assessed on the LEAP test and instructional considerations…

  6. Multiple quantum well AlGaAs nanowires.

    PubMed

    Chen, Chen; Braidy, Nadi; Couteau, Christophe; Fradin, Cécile; Weihs, Gregor; LaPierre, Ray

    2008-02-01

    This letter reports on the growth, structure, and luminescent properties of individual multiple quantum well (MQW) AlGaAs nanowires (NWs). The composition modulations (MQWs) are obtained by alternating the elemental flux of Al and Ga during the molecular beam epitaxy growth of the AlGaAs wire on GaAs (111)B substrates. Transmission electron microscopy and energy dispersive X-ray spectroscopy performed on individual NWs are consistent with a configuration composed of conical segments stacked along the NW axis. Microphotoluminescence measurements and confocal microscopy showed enhanced light emission from the MQW NWs as compared to nonsegmented NWs due to carrier confinement and sidewall passivation. PMID:18184023

  7. The LEAPS GK-12 Program

    NASA Astrophysics Data System (ADS)

    Gwinn, Elisabeth; Goodchild, Fiona; Garza, Marilyn

    2005-03-01

    The NSF-funded GK-12 program at UCSB, ``Let's Explore Applied Physical Science'' (LEAPS), awards full fellowships to competitively selected graduate students in the physical sciences and engineering, to support their engagement in local 8th and 9th grade science classrooms. The Fellows' responsibilities to LEAPS total 15 hours per week during the school year. They join consistently in the same classes to collaborate with teachers on delivery of discovery-oriented science instruction. Fellows work in 3-member, interdisciplinary teams. They benefit from this team approach through interaction with colleagues in other disciplines, validation from peers who share enthusiasm for science and mentoring, increased leadership and teaching skills, and a research safety net provided by teammates who can pick up the slack when one Fellow's research requires undivided attention. For teachers, the disciplinary breadth of the Fellow teams is an enormous asset in covering the broad physical science curriculum in CA. Students benefit from hands-on labs and small-group problem-solving exercises enabled by the Fellows' presence and from mentoring by these young scientists.

  8. Copernicus: a quantum leap in Earth Observation

    NASA Astrophysics Data System (ADS)

    Aschbacher, Josef

    2015-04-01

    Copernicus is the most ambitious, most comprehensive Earth observation system world-wide. It aims at giving decision-makers better information to act upon, at global, continental, national and regional level. The European Union (EU) leads the overall programme, while the European Space Agency (ESA) coordinates the space component. Similar to meteorology, satellite data is combined with data from airborne and ground sensors to provide a holistic view of the state of the planet. All these data are fed into a range of thematic information services designed to benefit the environment and to support policy-makers and other stakeholders to make decisions, coordinate policy areas, and formulate strategies relating to the environment. Moreover, the data will also be used for predicting future climate trends. Never has such a comprehensive Earth-observation based system been in place before. It will be fully integrated into an informed decision making process, thus enabling economic and social benefits through better access to information globally. A key feature of Copernicus is the free and open data policy of the Sentinel satellite data. This will enable that Earth observation based information enters completely new domains of daily life. High quality, regularly updated satellite observations become available for basically everyone. To ensure universal access new ground segment and data access concepts need to be developed. As more data are made available, better decisions can made, more business will be created and science and research can be achieved through the upcoming Sentinel data.

  9. Quantum canonical ensemble and correlation femtoscopy at fixed multiplicities

    NASA Astrophysics Data System (ADS)

    Akkelin, S. V.; Sinyukov, Yu. M.

    2016-07-01

    Identical particle correlations at fixed multiplicity are considered by means of quantum canonical ensemble of finite systems. We calculate one-particle momentum spectra and two-particle Bose-Einstein correlation functions in the ideal gas by using a recurrence relation for the partition function. Within such a model we investigate the validity of the thermal Wick's theorem and its applicability for decomposition of the two-particle distribution function. The dependence of the Bose-Einstein correlation parameters on the average momentum of the particle pair is also investigated. Specifically, we present the analytical formulas that allow one to estimate the effect of suppressing the correlation functions in a finite canonical system. The results can be used for the femtoscopy analysis of the A +A and p +p collisions with selected (fixed) multiplicity.

  10. Quantum Dot Solar Cells: High Efficiency through Multiple Exciton Generation

    SciTech Connect

    Hanna, M. C.; Ellingson, R. J.; Beard, M.; Yu, P.; Micic, O. I.; Nozik, A. J.; c.

    2005-01-01

    Impact ionization is a process in which absorbed photons in semiconductors that are at least twice the bandgap can produce multiple electron-hole pairs. For single-bandgap photovoltaic devices, this effect produces greatly enhanced theoretical thermodynamic conversion efficiencies that range from 45-85%, depending upon solar concentration, the cell temperature, and the number of electron-hole pairs produced per photon. For quantum dots (QDs), electron-hole pairs exist as excitons. We have observed astoundingly efficient multiple exciton generation (MEG) in QDs of PbSe (bulk Eg = 0.28 eV), ranging in diameter from 3.9 to 5.7nm (Eg = 0.73, 0.82, and 0.91 eV, respectively). The effective masses of electron and holes are about equal in PbSe, and the onset for efficient MEG occurs at about three times the QD HOMO-LUMO transition (its ''bandgap''). The quantum yield rises quickly after the onset and reaches 300% at 4 x Eg (3.64 eV) for the smallest QD; this means that every QD in the sample produces three electron-hole pairs/photon.

  11. Time evolution of multiple quantum coherences in NMR

    NASA Astrophysics Data System (ADS)

    Sánchez, Claudia M.; Pastawski, Horacio M.; Levstein, Patricia R.

    2007-09-01

    In multiple quantum NMR, individual spins become correlated with one another over time through their dipolar couplings. In this way, the usual Zeeman selection rule can be overcome and forbidden transitions can be excited. Experimentally, these multiple quantum coherences (MQC) are formed by the application of appropriate sequences of radio frequency pulses that force the spins to act collectively. 1H spin coherences of even order up to 16 were excited in a polycrystalline sample of ferrocene (C 5H 5) 2Fe and up to 32 in adamantane (C 10H 16) and their evolutions studied in different conditions: (a) under the natural dipolar Hamiltonian, H ZZ (free evolution) and with H ZZ canceled out by (b) time reversion or (c) with the MREV8 sequence. The results show that when canceling H ZZ the coherences decay with characteristic times ( τc≈200 μs), which are more than one order of magnitude longer than those under free evolution ( τc≈10 μs). In addition, it is observed that with both MREV8 and time reversion sequences, the higher the order of the coherence (larger number of correlated spins) the faster the speed of degradation, as it happens during the evolution with H ZZ. In both systems, it is observed that the sequence of time reversion of the dipolar Hamiltonian preserves coherences for longer times than MREV8.

  12. Scalable generation of multiple quantum correlated beams from hot rubidium vapors

    NASA Astrophysics Data System (ADS)

    Jing, Jietai; Qin, Zhongzhong; Wang, Hailong; Kong, Jia; Cao, Leiming; Zhang, Weiping

    2013-05-01

    Quantum correlation and quantum entanglement shared among multiple quantum nodes are the fundamental ingredients for the future quantum internet. In order to make an efficient quantum interface between multi-mode quantum light sources and the atomic ensemble which has been proven to be a good candidate for quantum memory and quantum repeater, it is necessary to generate the multimode quantum light sources which match the atomic transition lines of the atomic ensemble. Here we present a scalable method for generating the multiple quantum correlated beams by using multiple four wave mixing processes in hot Rubidium vapor and we experimentally showed that the strong quantum correlation among the three bright beams. Their relative intensity difference is -5.6dB below the correspondent shot noise limit and the squeezing from only one vapor cell in such system is -3.5dB. This result agrees with our theoretical prediction that the quantum correlation in our scheme increases as the number of quantum modes increases. Our method also has the advantages of scalability and potential applications in producing multipartite quantum entangled images.

  13. Coherent nanocavity structures for enhancement in internal quantum efficiency of III-nitride multiple quantum wells

    SciTech Connect

    Kim, T.; Liu, B.; Smith, R.; Athanasiou, M.; Gong, Y.; Wang, T.

    2014-04-21

    A “coherent” nanocavity structure has been designed on two-dimensional well-ordered InGaN/GaN nanodisk arrays with an emission wavelength in the green spectral region, leading to a massive enhancement in resonance mode in the green spectra region. By means of a cost-effective nanosphere lithography technique, we have fabricated such a structure on an InGaN/GaN multiple quantum well epiwafer and have observed the “coherent” nanocavity effect, which leads to an enhanced spontaneous emission (SE) rate. The enhanced SE rate has been confirmed by time resolved photoluminescence measurements. Due to the coherent nanocavity effect, we have achieved a massive improvement in internal quantum efficiency with a factor of 88, compared with the as-grown sample, which could be significant to bridge the “green gap” in solid-state lighting.

  14. Novel multiple quantum well modulators for optical interconnects

    NASA Astrophysics Data System (ADS)

    Krol, Mark F.; Boncek, Raymond K.; Hayduk, Michael J.; Ten, Sergey Y.; Ohtsuki, Tomoko; McGinnis, Brian P.; Khitrova, Galina; Gibbs, Hyatt M.; Peyghambarian, Nasser

    1995-02-01

    Novel multiple quantum well (MQW) optical modulators for use in time-division optical fiber interconnects are presented. A bit-error-rate analysis of a time-division receiver indicates high contrast ratio optical gates are required for high-speed interconnect applications. A high contrast MQW gate, consisting of a nonlinear asymmetric reflection modulator, suitable for use in optical time-division systems is presented which utilizes the GaAlInAs alloy lattice- matched to InP. This system is ideal for optical interconnect applications since MQW materials and devices are easily designed for operation in the optical fiber transmission windows of 1.3 and 1.5 micrometers . Utilizing asymmetric double quantum wells (ADQWs) as the nonlinear spacer for the asymmetric reflection modulator also is discussed. The recovery time of ADQWs can be tailored for interconnect applications by choosing the optimum width of the tunnel barrier. Electro-optic modulators which utilize real space transfer of electrons in ADQWs also are presented.

  15. Quantum teleportation scheme by selecting one of multiple output ports

    NASA Astrophysics Data System (ADS)

    Ishizaka, Satoshi; Hiroshima, Tohya

    2009-04-01

    The scheme of quantum teleportation, where Bob has multiple (N) output ports and obtains the teleported state by simply selecting one of the N ports, is thoroughly studied. We consider both the deterministic version and probabilistic version of the teleportation scheme aiming to teleport an unknown state of a qubit. Moreover, we consider two cases for each version: (i) the state employed for the teleportation is fixed to a maximally entangled state and (ii) the state is also optimized as well as Alice’s measurement. We analytically determine the optimal protocols for all the four cases and show the corresponding optimal fidelity or optimal success probability. All these protocols can achieve the perfect teleportation in the asymptotic limit of N→∞ . The entanglement properties of the teleportation scheme are also discussed.

  16. Multiple particle production processes in the light'' of quantum optics

    SciTech Connect

    Friedlander, E.M.

    1990-09-01

    Ever since the observation that high-energy nuclear active'' cosmic-ray particles create bunches of penetrating particles upon hitting targets, a controversy has raged about whether these secondaries are created in a single act'' or whether many hadrons are just the result of an intra-nuclear cascade, yielding one meson in every step. I cannot escape the impression that: the latter kind of model appeals naturally as a consequence of an innate bio-morphism in our way of thinking and that in one guise or another it has tenaciously survived to this day, also for hadron-hadron collisions, via multi-peripheral models to the modern parton shower approach. Indeed, from the very beginning of theoretical consideration of multiparticle production, the possibility of many particles arising from a single hot'' system has been explored, with many fruitful results, not the least of which are the s{sup 1/4} dependence of the mean produced particle multiplicity and the thermal'' shape of the P{sub T} spectra. An important consequence of the thermodynamical-hydrodynamical models is that particle emission is treated in analogy to black-body radiation, implying for the secondaries a set of specific Quantum-Statistical properties, very similar to those observed in quantum optics. From here on I shall try to review a number of implications and applications of this QS analogy in the study of multiplicity distributions of the produced secondaries. I will touch only in passing another very important topic of this class, the Bose-Einstein two-particle correlations.

  17. Project LEAP: The Labor Education Achievement Program. A Program To Improve the Literacy Level and Productivity of the Workforce. Final Project Report. April 1, 1991-September 30, 1992.

    ERIC Educational Resources Information Center

    Metropolitan Baltimore Council of AFL-CIO Unions, MD.

    Maryland's Labor Education Achievement Program (LEAP) worked with a wide diversity of union workers in multiple industries and within numerous private companies and public agencies over a dispersed geographic area. Staff development included a workshop for local coordinators and a teacher inservice training session. LEAP provided…

  18. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics

    SciTech Connect

    Makhov, Dmitry V.; Shalashilin, Dmitrii V.; Glover, William J.; Martinez, Todd J.

    2014-08-07

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  19. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics

    NASA Astrophysics Data System (ADS)

    Makhov, Dmitry V.; Glover, William J.; Martinez, Todd J.; Shalashilin, Dmitrii V.

    2014-08-01

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  20. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics.

    PubMed

    Makhov, Dmitry V; Glover, William J; Martinez, Todd J; Shalashilin, Dmitrii V

    2014-08-01

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions. PMID:25106573

  1. Experimental Generation of Multiple Quantum Correlated Beams from Hot Rubidium Vapor

    NASA Astrophysics Data System (ADS)

    Qin, Zhongzhong; Cao, Leiming; Wang, Hailong; Marino, A. M.; Zhang, Weiping; Jing, Jietai

    2014-07-01

    Quantum correlations and entanglement shared among multiple quantum modes are important for both fundamental science and the future development of quantum technologies. This development will also require an efficient quantum interface between multimode quantum light sources and atomic ensembles, which makes it necessary to implement multimode quantum light sources that match the atomic transitions. Here, we report on such a source that provides a method for generating quantum correlated beams that can be extended to a large number of modes by using multiple four-wave mixing (FWM) processes in hot rubidium vapor. Experimentally, we show that two cascaded FWM processes produce strong quantum correlations between three bright beams but not between any two of them. In addition, the intensity-difference squeezing is enhanced with the cascaded system to -7.0±0.1 dB from the -5.5±0.1/-4.5±0.1 dB squeezing obtained with only one FWM process. One of the main advantages of our system is that as the number of quantum modes increases, so does the total degree of quantum correlations. The proposed method is also immune to phase instabilities due to its phase insensitive nature, can easily be extended to multiple modes, and has potential applications in the production of multiple quantum correlated images.

  2. Endo LEAP flight test planning

    NASA Astrophysics Data System (ADS)

    Hill, E. T.; Huhlein, Mike

    1993-06-01

    The Atmospheric Interceptor Technology (AIT) program (formerly Endo LEAP) is focused on demonstrating strapdown seekers and strapdown guidance for very small miss distance intercepts at very high velocities against ballistic missiles within the atmosphere. This is being accomplished by advancing state-of-the-art technologies for small, lightweight, highly integrated kinetic energy kill vehicles (KV). Ground testing cannot fully duplicate the simultaneous interaction of the severe aerodynamic, aerothermal, and aero-optical conditions of hypervelocity flight within the atmosphere. Therefore, flight testing is required to fully validate the integrated technologies. The electro-optical (EO) flight testing is the impetus of this paper and can be broken down into two major elements: component flights and intercept flights. The component flights are utilized to resolve critical issues which will enable intercept flights, gather phenomenology data, and validate (EO) window concepts. In the intercept flights, prime contractor KV's will be flown against representative targets to demonstrate hit-to-kill (HTK) with aimpoint selection on the target lethal package. Initial studies indicate that both types of flights can be implemented utilizing boosters, launchers, and the, organizational framework of existing interceptor systems.

  3. LEAP: the Large European Array for Pulsars

    NASA Astrophysics Data System (ADS)

    Bassa, C. G.; Janssen, G. H.; Karuppusamy, R.; Kramer, M.; Lee, K. J.; Liu, K.; McKee, J.; Perrodin, D.; Purver, M.; Sanidas, S.; Smits, R.; Stappers, B. W.

    2016-02-01

    The Large European Array for Pulsars (LEAP) is an experiment that harvests the collective power of Europe's largest radio telescopes in order to increase the sensitivity of high-precision pulsar timing. As part of the ongoing effort of the European Pulsar Timing Array, LEAP aims to go beyond the sensitivity threshold needed to deliver the first direct detection of gravitational waves. The five telescopes presently included in LEAP are the Effelsberg Telescope, the Lovell Telescope at Jodrell Bank, the Nançay Radio Telescope, the Sardinia Radio Telescope and the Westerbork Synthesis Radio Telescope. Dual polarization, Nyquist-sampled time series of the incoming radio waves are recorded and processed offline to form the coherent sum, resulting in a tied-array telescope with an effective aperture equivalent to a 195-m diameter circular dish. All observations are performed using a bandwidth of 128 MHz centred at a frequency of 1396 MHz. In this paper, we present the design of the LEAP experiment, the instrumentation, the storage and transfer of data and the processing hardware and software. In particular, we present the software pipeline that was designed to process the Nyquist-sampled time series, measure the phase and time delays between each individual telescope and a reference telescope and apply these delays to form the tied-array coherent addition. The pipeline includes polarization calibration and interference mitigation. We also present the first results from LEAP and demonstrate the resulting increase in sensitivity, which leads to an improvement in the pulse arrival times.

  4. Comment on "Quantum Superimposing Multiple Anti-Cloning Machine"

    NASA Astrophysics Data System (ADS)

    Chang, Da-Wei

    2015-03-01

    Recently, Li et al. (Int. J. Theor. Phys. 46, 2599, 2007) has constructed the quantum superimposing multiple anti-cloning machine, moreover established the sufficient and necessary condition of this machine exists. In the proofs given by Li et al. (Int. J. Theor. Phys. 46, 2599, 2007), claimed that the following key fact to hold : Fact For an arbitrary unknown state | ψ> belongs to n-dimensional Hilbert space, there exists an antiunitary operator K such that K| ψ>=| ψ ⊥> here the state | ψ ⊥> is an orthogonal complement state of | ψ>, that is, it satisfies the following two conditions < ψ| K| ψ>=< ψ| ψ ⊥>=0 and < ψ| ψ>=< ψ ⊥| ψ ⊥>=1 In this Comment, we would like to point out that (a). In 1-dimensional Hilbert space, for an arbitrary unknown state | ψ>, the antiunitary operator K and the orthogonal complement state both do not exist in general. (b). In 3-dimensional Hilbert space, for an arbitrary unknown state | ψ>, the antiunitary operator K do not exist in general, there are uncountably many orthogonal complement states that can be constructed through the skew-symmetric operator, but is not unitary one. Which shows that above Fact given by Li et al. [1] is incorrect in general for both 1 and 3-dimensional Hilbert space

  5. Single-photon quantum router with multiple output ports.

    PubMed

    Yan, Wei-Bin; Fan, Heng

    2014-01-01

    The routing capability is a requisite in quantum network. Although the quantum routing of signals has been investigated in various systems both in theory and experiment, the general form of quantum routing with many output terminals still needs to be explored. Here we propose a scheme to achieve the multi-channel quantum routing of the single photons in a waveguide-emitter system. The channels are composed by the waveguides and are connected by intermediate two-level emitters. By adjusting the intermediate emitters, the output channels of the input single photons can be controlled. This is demonstrated in the cases of one output channel, two output channels and the generic N output channels. The results show that the multi-channel quantum routing of single photons can be well achieved in the proposed system. This offers a scheme for the experimental realization of general quantum routing of single photons. PMID:24769619

  6. Building Math Fluency for Students with Developmental Disabilities and Attentional Difficulties Using "Great Leaps Math"

    ERIC Educational Resources Information Center

    Jolivette, Kristine; Lingo, Amy S.; Houchins, David E.; Barton-Arwood, Sally M.; Shippen, Margaret E.

    2006-01-01

    The effects of a fluency building math program on addition and subtraction computational skills were evaluated using a multiple probe across subjects design. Two students with developmental disabilities and one student with attentional difficulties participated in a supplemental intervention using the Great Leaps Math program. Analyses indicated…

  7. Optimized multiple quantum MAS lineshape simulations in solid state NMR

    NASA Astrophysics Data System (ADS)

    Brouwer, William J.; Davis, Michael C.; Mueller, Karl T.

    2009-10-01

    The majority of nuclei available for study in solid state Nuclear Magnetic Resonance have half-integer spin I>1/2, with corresponding electric quadrupole moment. As such, they may couple with a surrounding electric field gradient. This effect introduces anisotropic line broadening to spectra, arising from distinct chemical species within polycrystalline solids. In Multiple Quantum Magic Angle Spinning (MQMAS) experiments, a second frequency dimension is created, devoid of quadrupolar anisotropy. As a result, the center of gravity of peaks in the high resolution dimension is a function of isotropic second order quadrupole and chemical shift alone. However, for complex materials, these parameters take on a stochastic nature due in turn to structural and chemical disorder. Lineshapes may still overlap in the isotropic dimension, complicating the task of assignment and interpretation. A distributed computational approach is presented here which permits simulation of the two-dimensional MQMAS spectrum, generated by random variates from model distributions of isotropic chemical and quadrupole shifts. Owing to the non-convex nature of the residual sum of squares (RSS) function between experimental and simulated spectra, simulated annealing is used to optimize the simulation parameters. In this manner, local chemical environments for disordered materials may be characterized, and via a re-sampling approach, error estimates for parameters produced. Program summaryProgram title: mqmasOPT Catalogue identifier: AEEC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3650 No. of bytes in distributed program, including test data, etc.: 73 853 Distribution format: tar.gz Programming language: C, OCTAVE Computer: UNIX

  8. The LEAP Challenge: Education for a World of Unscripted Problems

    ERIC Educational Resources Information Center

    Liberal Education, 2015

    2015-01-01

    This article was adapted from "The LEAP Challenge: Education for a World of Unscripted Problems," a folio distributed at the opening plenary session of the 2015 annual meeting of the Association of American Colleges and Universities at which the LEAP Challenge was formally launched. Liberal Education and America's Promise (LEAP) prepares…

  9. Multiple-event probability in general-relativistic quantum mechanics

    SciTech Connect

    Hellmann, Frank; Mondragon, Mauricio; Perez, Alejandro; Rovelli, Carlo

    2007-04-15

    We discuss the definition of quantum probability in the context of 'timeless' general-relativistic quantum mechanics. In particular, we study the probability of sequences of events, or multievent probability. In conventional quantum mechanics this can be obtained by means of the 'wave function collapse' algorithm. We first point out certain difficulties of some natural definitions of multievent probability, including the conditional probability widely considered in the literature. We then observe that multievent probability can be reduced to single-event probability, by taking into account the quantum nature of the measuring apparatus. In fact, by exploiting the von-Neumann freedom of moving the quantum/classical boundary, one can always trade a sequence of noncommuting quantum measurements at different times, with an ensemble of simultaneous commuting measurements on the joint system+apparatus system. This observation permits a formulation of quantum theory based only on single-event probability, where the results of the wave function collapse algorithm can nevertheless be recovered. The discussion also bears on the nature of the quantum collapse.

  10. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory

    PubMed Central

    Tang, Jian-Shun; Zhou, Zong-Quan; Wang, Yi-Tao; Li, Yu-Long; Liu, Xiao; Hua, Yi-Lin; Zou, Yang; Wang, Shuang; He, De-Yong; Chen, Geng; Sun, Yong-Nan; Yu, Ying; Li, Mi-Feng; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Li, Chuan-Feng; Guo, Guang-Can

    2015-01-01

    Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by the Duan–Lukin–Cirac–Zoller protocol, many improved quantum repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multiple photons (or multiple photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 1, 20 and 100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devices. PMID:26468996

  11. Excitation of multiple quantum transitions under magic angle spinning conditions: Adamantane

    NASA Astrophysics Data System (ADS)

    Meier, B. H.; Earl, William L.

    1986-11-01

    A pulse sequence designed for the excitation of multiple quantum transitions in magic angle spinning solid state NMR spectroscopy is presented. It is shown that under the action of the standard time-reversal pulse sequence, the change in the sign of the dipole coupling (which is used to generate the multiple quantum coherences) upon rotation causes the multiple quantum intensity to vanish after each rotor period. This effect is demonstrated both in calculations and in experimental 1H spectra of adamantane. A modification of the time-reversal pulse sequence, which involves switching the phase of the rf pulses every half-rotor period causes the spin part of the Hamiltonian to switch sign in synchrony with the modulation of the spacial part. This allows the creation of multiple quantum coherences in solids with magic angle spinning. The effectiveness of this pulse sequence is demonstrated through calculations and experiments.

  12. Excitation of multiple quantum transitions under magic angle spinning conditions: Adamantane

    SciTech Connect

    Meier, B.H.; Earl, W.L.

    1986-11-01

    A pulse sequence designed for the excitation of multiple quantum transitions in magic angle spinning solid state NMR spectroscopy is presented. It is shown that under the action of the standard time-reversal pulse sequence, the change in the sign of the dipole coupling (which is used to generate the multiple quantum coherences) upon rotation causes the multiple quantum intensity to vanish after each rotor period. This effect is demonstrated both in calculations and in experimental /sup 1/H spectra of adamantane. A modification of the time-reversal pulse sequence, which involves switching the phase of the rf pulses every half-rotor period causes the spin part of the Hamiltonian to switch sign in synchrony with the modulation of the spacial part. This allows the creation of multiple quantum coherences in solids with magic angle spinning. The effectiveness of this pulse sequence is demonstrated through calculations and experiments.

  13. The Leap from Patterns to Formulas

    ERIC Educational Resources Information Center

    Beigie, Darin

    2011-01-01

    Initial exposure to algebraic thinking involves the critical leap from working with numbers to thinking with variables. The transition to thinking mathematically using variables has many layers, and for all students an abstraction that is clear in one setting may be opaque in another. Geometric counting and the resulting algebraic patterns provide…

  14. Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120%

    PubMed Central

    Davis, Nathaniel J. L. K.; Böhm, Marcus L.; Tabachnyk, Maxim; Wisnivesky-Rocca-Rivarola, Florencia; Jellicoe, Tom C.; Ducati, Caterina; Ehrler, Bruno; Greenham, Neil C.

    2015-01-01

    Multiple-exciton generation—a process in which multiple charge-carrier pairs are generated from a single optical excitation—is a promising way to improve the photocurrent in photovoltaic devices and offers the potential to break the Shockley–Queisser limit. One-dimensional nanostructures, for example nanorods, have been shown spectroscopically to display increased multiple exciton generation efficiencies compared with their zero-dimensional analogues. Here we present solar cells fabricated from PbSe nanorods of three different bandgaps. All three devices showed external quantum efficiencies exceeding 100% and we report a maximum external quantum efficiency of 122% for cells consisting of the smallest bandgap nanorods. We estimate internal quantum efficiencies to exceed 150% at relatively low energies compared with other multiple exciton generation systems, and this demonstrates the potential for substantial improvements in device performance due to multiple exciton generation. PMID:26411283

  15. Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120.

    PubMed

    Davis, Nathaniel J L K; Böhm, Marcus L; Tabachnyk, Maxim; Wisnivesky-Rocca-Rivarola, Florencia; Jellicoe, Tom C; Ducati, Caterina; Ehrler, Bruno; Greenham, Neil C

    2015-01-01

    Multiple-exciton generation-a process in which multiple charge-carrier pairs are generated from a single optical excitation-is a promising way to improve the photocurrent in photovoltaic devices and offers the potential to break the Shockley-Queisser limit. One-dimensional nanostructures, for example nanorods, have been shown spectroscopically to display increased multiple exciton generation efficiencies compared with their zero-dimensional analogues. Here we present solar cells fabricated from PbSe nanorods of three different bandgaps. All three devices showed external quantum efficiencies exceeding 100% and we report a maximum external quantum efficiency of 122% for cells consisting of the smallest bandgap nanorods. We estimate internal quantum efficiencies to exceed 150% at relatively low energies compared with other multiple exciton generation systems, and this demonstrates the potential for substantial improvements in device performance due to multiple exciton generation. PMID:26411283

  16. Multiple surface plasmons in an unbounded quantum plasma half-space

    NASA Astrophysics Data System (ADS)

    Palade, D. I.

    2016-07-01

    The propagation of surface plasmons on a quantum plasma half-space in the absence of any external confinement is investigated. By means of the Quantum Hydrodynamic Model in the electrostatic limit, it is found that the equilibrium density profile is a smooth continuous function which, in the linear regime, supports multiple non-normal surface modes. Defining a spectrum function and using a cutting condition, the dispersion relations of these modes and their relevance for realistic dynamics are computed. It is found that the multiple surface plasmons present a significant red-shift with respect to the case of fully bounded quantum plasmas.

  17. Lightweight Exoatmospheric Projectile (LEAP) test program. Supplemental environmental assessment

    NASA Astrophysics Data System (ADS)

    1992-06-01

    The proposed action is to modify previously planned Lightweight Exoatmospheric Projectile (LEAP) Test Program activities (LEAP EA, July 1991, Ref 32) at White Sands Missile Range (WSMR), New Mexico; Kwajalein Missile Range (KMR), U.S. Army Kwajalein Atoll (USAKA); and Wake Island. The proposed action includes modifications of flight trajectories for LEAP flights 3, 5, and 6. Two additional flights, LEAP-X and LEAP-7 have been added to the program. LEAP-X is a single rocket test flight from KMR and LEAP-7 is a two-rocket test flight from KMR and Wake Island. Component/assembly ground tests will take place at Orbital Sciences Corporation (OSC), Space Data Division (SDD), Chandler, Arizona; Phillips Laboratory, Edwards Air Force Base, California; Rocketdyne Division of Rockwell International; Boeing Aerospace and Electronics, Kent, Washington; Hughes Aircraft Corporation, Missile Systems Group, Canoga Park California; Aerojet, Sacramento, California; and Thiokol Corporation, Elkton, Maryland.

  18. Time Dependent Study of Multiple Exciton Generation in Nanocrystal Quantum Dots

    NASA Astrophysics Data System (ADS)

    Damtie, Fikeraddis A.; Wacker, Andreas

    2016-03-01

    We study the exciton dynamics in an optically excited nanocrystal quantum dot. Multiple exciton formation is more efficient in nanocrystal quantum dots compared to bulk semiconductors due to enhanced Coulomb interactions and the absence of conservation of momentum. The formation of multiple excitons is dependent on different excitation parameters and the dissipation. We study this process within a Lindblad quantum rate equation using the full many-particle states. We optically excite the system by creating a single high energy exciton ESX in resonance to a double exciton EDX. With Coulomb electron-electron interaction, the population can be transferred from the single exciton to the double exciton state by impact ionisation (inverse Auger process). The ratio between the recombination processes and the absorbed photons provide the yield of the structure. We observe a quantum yield of comparable value to experiment assuming typical experimental conditions for a 4 nm PbS quantum dot.

  19. Learning in Leaps and Bounds

    ERIC Educational Resources Information Center

    Pica, Rae

    2006-01-01

    Gardner's theory of multiple intelligences (1993) identifies several ways of "learning and knowing." Among these are the logical/mathematical and linguistic intelligence--the two most validated by society and on which all standardized tests are based. Therefore, physical education specialist are facing more pressure than ever to advocate for their…

  20. Carrier multiplication detected through transient photocurrent in device-grade films of lead selenide quantum dots

    PubMed Central

    Gao, Jianbo; Fidler, Andrew F.; Klimov, Victor I.

    2015-01-01

    In carrier multiplication, the absorption of a single photon results in two or more electron–hole pairs. Quantum dots are promising materials for implementing carrier multiplication principles in real-life technologies. So far, however, most of research in this area has focused on optical studies of solution samples with yet to be proven relevance to practical devices. Here we report ultrafast electro-optical studies of device-grade films of electronically coupled quantum dots that allow us to observe multiplication directly in the photocurrent. Our studies help rationalize previous results from both optical spectroscopy and steady-state photocurrent measurements and also provide new insights into effects of electric field and ligand treatments on multiexciton yields. Importantly, we demonstrate that using appropriate chemical treatments of the films, extra charges produced by carrier multiplication can be extracted from the quantum dots before they are lost to Auger recombination and hence can contribute to photocurrent of practical devices. PMID:26345390

  1. Carrier multiplication detected through transient photocurrent in device-grade films of lead selenide quantum dots

    SciTech Connect

    Gao, Jianbo; Fidler, Andrew F.; Klimov, Victor I.

    2015-09-08

    In carrier multiplication, the absorption of a single photon results in two or more electron–hole pairs. Quantum dots are promising materials for implementing carrier multiplication principles in real-life technologies. So far, however, most of research in this area has focused on optical studies of solution samples with yet to be proven relevance to practical devices. We report ultra-fast electro-optical studies of device-grade films of electronically coupled quantum dots that allow us to observe multiplication directly in the photocurrent. Our studies help rationalize previous results from both optical spectroscopy and steady-state photocurrent measurements and also provide new insights into effects of electric field and ligand treatments on multiexciton yields. Importantly, we demonstrate that using appropriate chemical treatments of the films, extra charges produced by carrier multiplication can be extracted from the quantum dots before they are lost to Auger recombination and hence can contribute to photocurrent of practical devices.

  2. Exact non-Markovian master equations for multiple qubit systems: Quantum-trajectory approach

    NASA Astrophysics Data System (ADS)

    Chen, Yusui; You, J. Q.; Yu, Ting

    2014-11-01

    A wide class of exact master equations for a multiple qubit system can be explicitly constructed by using the corresponding exact non-Markovian quantum-state diffusion equations. These exact master equations arise naturally from the quantum decoherence dynamics of qubit system as a quantum memory coupled to a collective colored noisy source. The exact master equations are also important in optimal quantum control, quantum dissipation, and quantum thermodynamics. In this paper, we show that the exact non-Markovian master equation for a dissipative N -qubit system can be derived explicitly from the statistical average of the corresponding non-Markovian quantum trajectories. We illustrated our general formulation by an explicit construction of a three-qubit system coupled to a non-Markovian bosonic environment. This multiple qubit master equation offers an accurate time evolution of quantum systems in various domains, and paves the way to investigate the memory effect of an open system in a non-Markovian regime without any approximation.

  3. Quantum teleportation of multiple degrees of freedom of a single photon.

    PubMed

    Wang, Xi-Lin; Cai, Xin-Dong; Su, Zu-En; Chen, Ming-Cheng; Wu, Dian; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2015-02-26

    Quantum teleportation provides a 'disembodied' way to transfer quantum states from one object to another at a distant location, assisted by previously shared entangled states and a classical communication channel. As well as being of fundamental interest, teleportation has been recognized as an important element in long-distance quantum communication, distributed quantum networks and measurement-based quantum computation. There have been numerous demonstrations of teleportation in different physical systems such as photons, atoms, ions, electrons and superconducting circuits. All the previous experiments were limited to the teleportation of one degree of freedom only. However, a single quantum particle can naturally possess various degrees of freedom--internal and external--and with coherent coupling among them. A fundamental open challenge is to teleport multiple degrees of freedom simultaneously, which is necessary to describe a quantum particle fully and, therefore, to teleport it intact. Here we demonstrate quantum teleportation of the composite quantum states of a single photon encoded in both spin and orbital angular momentum. We use photon pairs entangled in both degrees of freedom (that is, hyper-entangled) as the quantum channel for teleportation, and develop a method to project and discriminate hyper-entangled Bell states by exploiting probabilistic quantum non-demolition measurement, which can be extended to more degrees of freedom. We verify the teleportation for both spin-orbit product states and hybrid entangled states, and achieve a teleportation fidelity ranging from 0.57 to 0.68, above the classical limit. Our work is a step towards the teleportation of more complex quantum systems, and demonstrates an increase in our technical control of scalable quantum technologies. PMID:25719668

  4. Quantum teleportation of multiple degrees of freedom of a single photon

    NASA Astrophysics Data System (ADS)

    Wang, Xi-Lin; Cai, Xin-Dong; Su, Zu-En; Chen, Ming-Cheng; Wu, Dian; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2015-02-01

    Quantum teleportation provides a `disembodied' way to transfer quantum states from one object to another at a distant location, assisted by previously shared entangled states and a classical communication channel. As well as being of fundamental interest, teleportation has been recognized as an important element in long-distance quantum communication, distributed quantum networks and measurement-based quantum computation. There have been numerous demonstrations of teleportation in different physical systems such as photons, atoms, ions, electrons and superconducting circuits. All the previous experiments were limited to the teleportation of one degree of freedom only. However, a single quantum particle can naturally possess various degrees of freedom--internal and external--and with coherent coupling among them. A fundamental open challenge is to teleport multiple degrees of freedom simultaneously, which is necessary to describe a quantum particle fully and, therefore, to teleport it intact. Here we demonstrate quantum teleportation of the composite quantum states of a single photon encoded in both spin and orbital angular momentum. We use photon pairs entangled in both degrees of freedom (that is, hyper-entangled) as the quantum channel for teleportation, and develop a method to project and discriminate hyper-entangled Bell states by exploiting probabilistic quantum non-demolition measurement, which can be extended to more degrees of freedom. We verify the teleportation for both spin-orbit product states and hybrid entangled states, and achieve a teleportation fidelity ranging from 0.57 to 0.68, above the classical limit. Our work is a step towards the teleportation of more complex quantum systems, and demonstrates an increase in our technical control of scalable quantum technologies.

  5. Leap Seconds or Not? Status Report

    NASA Astrophysics Data System (ADS)

    Seidelmann, P. Kenneth

    2009-05-01

    The question of redefining the UTC Time Scale has been under consideration by the ITU-R Study Group 7A since 1999. The current definition requires that UTC -UT1 agree within 0.9 second and that this be accomplished by the introduction of leap seconds. The proposed change would eliminate the leap seconds. The DDA gave a report to the AAS Council on 3 January 2006 urging that "no action be taken” to allow time to evaluate the technical merit and potential impact of the change. An IAU Report of August 2006 said there is no strong consensus at the IAU for, or against, the change. The AAS leap second committee report of 12 December 2007 indicated that the concerns of the astronomical community are sociological rather that technical. There was virtually no response to an item in the AAS Newsletter in 2008 asking for comments on the proposed change. Hence, the conclusion is drawn that the astronomical community does not have an opinion concerning the change. The US has no official position concerning the recommendation. NASA favors the change, if given 5 years advanced notice. DoD is developing a position. NSF has no position. The State Department has not taken an official position on the issue. At the ITU-R Study Group 7A meeting in October 2008 the recommendation for the change to eliminate leap seconds was considered. A report on the considerations gives a history of the process without a discussion of the pros or cons for the recommendation. The United Kingdom and China objected to the recommended change. Two objections are sufficient to stop the recommended change at that meeting, but the recommendation can be brought up again at the next meeting. The BIPM is pressing for the change, and now they may seek to avoid the ITU-R somehow.

  6. Optimized In composition and quantum well thickness for yellow-emitting (Ga,In)N/GaN multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Lekhal, Kaddour; Hussain, Sakhawat; De Mierry, Philippe; Vennéguès, Philippe; Nemoz, Maud; Chauveau, Jean-Michel; Damilano, Benjamin

    2016-01-01

    Yellow-emitting InxGa1-xN/GaN multiple quantum wells (MQWs) with different pairs of In composition and QW thickness have been grown by metal-organic chemical vapor deposition on sapphire substrates. We show that a trade-off between the MQW crystalline quality and the quantum confined Stark effect has to be found to maximize the room temperature photoluminescence efficiency. With our growth conditions, an optimum design of the MQW is obtained for x=0.21 and a QW thickness of 3.6 nm.

  7. Nonadditivity of quantum and classical capacities for entanglement breaking multiple-access channels and the butterfly network

    SciTech Connect

    Grudka, Andrzej; Horodecki, Pawel

    2010-06-15

    We analyze quantum network primitives which are entanglement breaking. We show superadditivity of quantum and classical capacity regions for quantum multiple-access channels and the quantum butterfly network. Since the effects are especially visible at high noise they suggest that quantum information effects may be particularly helpful in the case of the networks with occasional high noise rates. The present effects provide a qualitative borderline between superadditivities of bipartite and multipartite systems.

  8. Physically feasible three-level transitionless quantum driving with multiple Schrödinger dynamics

    NASA Astrophysics Data System (ADS)

    Song, Xue-Ke; Ai, Qing; Qiu, Jing; Deng, Fu-Guo

    2016-05-01

    Three-level quantum systems, which possess some unique characteristics beyond two-level ones, such as electromagnetically induced transparency, coherent trapping, and Raman scatting, play important roles in solid-state quantum information processing. Here, we introduce an approach to implement the physically feasible three-level transitionless quantum driving with multiple Schrödinger dynamics (MSDs). It can be used to control accurately population transfer and entanglement generation for three-level quantum systems in a nonadiabatic way. Moreover, we propose an experimentally realizable hybrid architecture, based on two nitrogen-vacancy-center ensembles coupled to a transmission line resonator, to realize our transitionless scheme which requires fewer physical resources and simple procedures, and it is more robust against environmental noises and control parameter variations than conventional adiabatic passage techniques. All these features inspire the further application of MSDs on robust quantum information processing in experiment.

  9. High charge-carrier mobility enables exploitation of carrier multiplication in quantum-dot films

    PubMed Central

    Sandeep, C. S. Suchand; Cate, Sybren ten; Schins, Juleon M.; Savenije, Tom J.; Liu, Yao; Law, Matt; Kinge, Sachin; Houtepen, Arjan J.; Siebbeles, Laurens D. A.

    2013-01-01

    Carrier multiplication, the generation of multiple electron–hole pairs by a single photon, is of great interest for solar cells as it may enhance their photocurrent. This process has been shown to occur efficiently in colloidal quantum dots, however, harvesting of the generated multiple charges has proved difficult. Here we show that by tuning the charge-carrier mobility in quantum-dot films, carrier multiplication can be optimized and may show an efficiency as high as in colloidal dispersion. Our results are explained quantitatively by the competition between dissociation of multiple electron–hole pairs and Auger recombination. Above a mobility of ~1 cm2 V−1 s−1, all charges escape Auger recombination and are quantitatively converted to free charges, offering the prospect of cheap quantum-dot solar cells with efficiencies in excess of the Shockley–Queisser limit. In addition, we show that the threshold energy for carrier multiplication is reduced to twice the band gap of the quantum dots. PMID:23974282

  10. MBE grown GaAsBi/GaAs multiple quantum well structures: Structural and optical characterization

    NASA Astrophysics Data System (ADS)

    Richards, Robert D.; Bastiman, Faebian; Roberts, John S.; Beanland, Richard; Walker, David; David, John P. R.

    2015-09-01

    A series of GaAsBi/GaAs multiple quantum well p-i-n diodes were grown by molecular beam epitaxy. Nomarski images showed evidence of sub-surface damage in each diode, with an increase in the cross-hatching associated with strain relaxation for the diodes containing more than 40 quantum wells. X-ray diffraction ω-2θ scans of the (004) reflections showed that multiple quantum well regions with clearly defined well periodicities were grown. The superlattice peaks of the diodes containing more than 40 wells were much broader than those of the other diodes. The photoluminescence spectra showed a redshift of 56 meV and an attenuation of nearly two orders of magnitude for the 54 and 63 well diodes. Calculations of the quantum confinement and strain induced band gap modifications suggest that the wells in all diodes are thinner than their intended widths and that both loss of quantum confinement and strain probably contributed to the observed redshift and attenuation in the 54 and 63 well diodes. Comparison of this data with that gathered for InGaAs/GaAs multiple quantum wells, suggests that the onset of relaxation occurs at a similar average strain-thickness product for both systems. Given the rapid band gap reduction of GaAsBi with Bi incorporation, this data suggests that GaAsBi is a promising photovoltaic material candidate.

  11. A one-dimensional quantum walk with multiple-rotation on the coin

    PubMed Central

    Xue, Peng; Zhang, Rong; Qin, Hao; Zhan, Xiang; Bian, Zhihao; Li, Jian

    2016-01-01

    We introduce and analyze a one-dimensional quantum walk with two time-independent rotations on the coin. We study the influence on the property of quantum walk due to the second rotation on the coin. Based on the asymptotic solution in the long time limit, a ballistic behaviour of this walk is observed. This quantum walk retains the quadratic growth of the variance if the combined operator of the coin rotations is unitary. That confirms no localization exhibits in this walk. This result can be extended to the walk with multiple time-independent rotations on the coin. PMID:26822563

  12. Quantum superadditivity in linear optics networks: Sending bits via multiple-access Gaussian channels

    SciTech Connect

    Czekaj, L.; Horodecki, P.; Korbicz, J. K.; Chhajlany, R. W.

    2010-08-15

    Superadditivity effects of communication capacities are known in the case of discrete variable quantum channels. We describe the continuous variable analog of one of these effects in the framework of Gaussian multiple access channels (MACs). Classically, superadditivity-type effects are strongly restricted: For example, adding resources to one sender is never advantageous to other senders in sending their respective information to the receiver. We show that this rule can be surpassed using quantum resources, giving rise to a type of truly quantum superadditivity. This is illustrated here for two examples of experimentally feasible Gaussian MACs.

  13. Multiple quantum filtering and spin exchange in solid state nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Ba, Yong; Ripmeester, John A.

    1998-05-01

    Multiple quantum NMR of coupled spin-1/2 nuclei in a solid has been exploited as a filter to separate different magnetization components in a spatially heterogeneous system. After filtering, the spins labeled according to coherence orders were used to follow the track of spin exchange between different domains. In order to avoid time-consuming two-dimensional experiments, this exchange was detected in a one-dimensional experiment via selective detection of multiple quantum coherences. The technique was demonstrated for samples of solid adamantane in contact with its saturated solution in benzene-d6 and for a high-density polyoxymethylene.

  14. Controlled quantum perfect teleportation of multiple arbitrary multi-qubit states

    NASA Astrophysics Data System (ADS)

    Shi, Runhua; Huang, Liusheng; Yang, Wei; Zhong, Hong

    2011-12-01

    We present an efficient controlled quantum perfect teleportation scheme. In our scheme, multiple senders can teleport multiple arbitrary unknown multi-qubit states to a single receiver via a previously shared entanglement state with the help of one or more controllers. Furthermore, our scheme has a very good performance in the measurement and operation complexity, since it only needs to perform Bell state and single-particle measurements and to apply Controlled-Not gate and other single-particle unitary operations. In addition, compared with traditional schemes, our scheme needs less qubits as the quantum resources and exchanges less classical information, and thus obtains higher communication efficiency.

  15. Optimization schemes for efficient multiple exciton generation and extraction in colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Damtie, Fikeraddis A.; Karki, Khadga J.; Pullerits, Tõnu; Wacker, Andreas

    2016-08-01

    Multiple exciton generation (MEG) is a process in which more than one electron hole pair is generated per absorbed photon. It allows us to increase the efficiency of solar energy harvesting. Experimental studies have shown the multiple exciton generation yield of 1.2 in isolated colloidal quantum dots. However real photoelectric devices require the extraction of electron hole pairs to electric contacts. We provide a systematic study of the corresponding quantum coherent processes including extraction and injection and show that a proper design of extraction and injection rates enhances the yield significantly up to values around 1.6.

  16. Surface Passivation by Quantum Exclusion Using Multiple Layers

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E. (Inventor)

    2013-01-01

    A semiconductor device has a multilayer doping to provide improved passivation by quantum exclusion. The multilayer doping includes a plurality M of doped layers, where M is an integer greater than 1. The dopant sheet densities in the M doped layers need not be the same, but in principle can be selected to be the same sheet densities or to be different sheet densities. M-1 interleaved layers provided between the M doped layers are not deliberately doped (also referred to as "undoped layers"). Structures with M=2, M=3 and M=4 have been demonstrated and exhibit improved passivation.

  17. Reliability assessment of multiple quantum well avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Yun, Ilgu; Menkara, Hicham M.; Wang, Yang; Oguzman, Isamil H.; Kolnik, Jan; Brennan, Kevin F.; May, Gray S.; Wagner, Brent K.; Summers, Christopher J.

    1995-01-01

    The reliability of doped-barrier AlGaAs/GsAs multi-quantum well avalanche photodiodes fabricated by molecular beam epitaxy is investigated via accelerated life tests. Dark current and breakdown voltage were the parameters monitored. The activation energy of the degradation mechanism and median device lifetime were determined. Device failure probability as a function of time was computed using the lognormal model. Analysis using the electron beam induced current method revealed the degradation to be caused by ionic impurities or contamination in the passivation layer.

  18. Entanglement distribution over quantum code-division multiple-access networks

    NASA Astrophysics Data System (ADS)

    Zhu, Chang-long; Yang, Nan; Liu, Yu-xi; Nori, Franco; Zhang, Jing

    2015-10-01

    We present a method for quantum entanglement distribution over a so-called code-division multiple-access network, in which two pairs of users share the same quantum channel to transmit information. The main idea of this method is to use different broadband chaotic phase shifts, generated by electro-optic modulators and chaotic Colpitts circuits, to encode the information-bearing quantum signals coming from different users and then recover the masked quantum signals at the receiver side by imposing opposite chaotic phase shifts. The chaotic phase shifts given to different pairs of users are almost uncorrelated due to the randomness of chaos and thus the quantum signals from different pair of users can be distinguished even when they are sent via the same quantum channel. It is shown that two maximally entangled states can be generated between two pairs of users by our method mediated by bright coherent lights, which can be more easily implemented in experiments compared with single-photon lights. Our method is robust under the channel noises if only the decay rates of the information-bearing fields induced by the channel noises are not quite high. Our study opens up new perspectives for addressing and transmitting quantum information in future quantum networks.

  19. Simultaneous nano-tracking of multiple motor proteins via spectral discrimination of quantum dots

    PubMed Central

    Kakizuka, Taishi; Ikezaki, Keigo; Kaneshiro, Junichi; Fujita, Hideaki; Watanabe, Tomonobu M.; Ichimura, Taro

    2016-01-01

    Simultaneous nanometric tracking of multiple motor proteins was achieved by combining multicolor fluorescent labeling of target proteins and imaging spectroscopy, revealing dynamic behaviors of multiple motor proteins at the sub-diffraction-limit scale. Using quantum dot probes of distinct colors, we experimentally verified the localization precision to be a few nanometers at temporal resolution of 30 ms or faster. One-dimensional processive movement of two heads of a single myosin molecule and multiple myosin molecules was successfully traced. Furthermore, the system was modified for two-dimensional measurement and applied to tracking of multiple myosin molecules. Our approach is useful for investigating cooperative movement of proteins in supramolecular nanomachinery. PMID:27446684

  20. Simultaneous nano-tracking of multiple motor proteins via spectral discrimination of quantum dots.

    PubMed

    Kakizuka, Taishi; Ikezaki, Keigo; Kaneshiro, Junichi; Fujita, Hideaki; Watanabe, Tomonobu M; Ichimura, Taro

    2016-07-01

    Simultaneous nanometric tracking of multiple motor proteins was achieved by combining multicolor fluorescent labeling of target proteins and imaging spectroscopy, revealing dynamic behaviors of multiple motor proteins at the sub-diffraction-limit scale. Using quantum dot probes of distinct colors, we experimentally verified the localization precision to be a few nanometers at temporal resolution of 30 ms or faster. One-dimensional processive movement of two heads of a single myosin molecule and multiple myosin molecules was successfully traced. Furthermore, the system was modified for two-dimensional measurement and applied to tracking of multiple myosin molecules. Our approach is useful for investigating cooperative movement of proteins in supramolecular nanomachinery. PMID:27446684

  1. Surface Passivation by Quantum Exclusion Using Multiple Layers

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E. (Inventor)

    2015-01-01

    A semiconductor device has a multilayer doping to provide improved passivation by quantum exclusion. The multilayer doping includes at least two doped layers fabricated using MBE methods. The dopant sheet densities in the doped layers need not be the same, but in principle can be selected to be the same sheet densities or to be different sheet densities. The electrically active dopant sheet densities are quite high, reaching more than 1.times.10.sup.14 cm.sup.-2, and locally exceeding 10.sup.22 per cubic centimeter. It has been found that silicon detector devices that have two or more such dopant layers exhibit improved resistance to degradation by UV radiation, at least at wavelengths of 193 nm, as compared to conventional silicon p-on-n devices.

  2. Ballistic effects and intersubband excitations in multiple quantum well structures

    NASA Astrophysics Data System (ADS)

    Schneider, H.; Schönbein, C.; Schwarz, K.; Walther, M.

    1998-07-01

    We have studied the transport properties of electrons in asymmetric quantum well structures upon far-infrared optical excitation of carriers from the lowest subband into the continuum. Here the photocurrent consists of a coherent component originating from ballistic transport upon excitation, and of an incoherent part associated with asymmetric diffusion and relaxation processes, which occur after the coherence has been lost. The signature of the coherent contribution is provided by a sign reversal of the photocurrent upon changing the excitation energy. This sign reversal arises from the energy-dependent interference between continuum states, which have a twofold degeneracy characterized by positive and negative momenta. The interference effect also allows us to estimate the coherent mean free path ( >20 nm at 77K). In specifically designed device structures, we use both the coherent and incoherent components in order to achieve a pronounced photovoltaic infrared response for detector applications.

  3. Equivalent Circuit of a Heterostructure with Multiple Quantum Wells

    NASA Astrophysics Data System (ADS)

    Davydov, V. N.; Novikov, D. A.

    2015-11-01

    Based on the consideration of physical processes in a heterostructure with quantum wells (QW), its equivalent circuit is constructed including a barrier capacitance and a differential resistance of the p-n junction, capacitance and resistance of charge relaxation in QW, and resistance of free charge carrier delivery to QW. Analytical expressions for the equivalent capacity and equivalent resistance of the heterostructure for a serial substitution circuit are derived, and behavior of the equivalent parameters attendant to changes of the test signal frequency is analyzed. Results of experimental investigation of the capacitive and resistive properties of the heterostructures with QW based on the InGaN/GaN barriers confirm the calculated dependences of their equivalent parameters and demonstrate their dependence on the special features of the kinetic properties of the heterostructures.

  4. Precision control of multiple quantum cascade lasers for calibration systems

    NASA Astrophysics Data System (ADS)

    Taubman, Matthew S.; Myers, Tanya L.; Pratt, Richard M.; Stahl, Robert D.; Cannon, Bret D.

    2014-01-01

    We present a precision, 1-A, digitally interfaced current controller for quantum cascade lasers, with demonstrated temperature coefficients for continuous and 40-kHz full-depth square-wave modulated operation, of 1-2 ppm/ °C and 15 ppm/ °C, respectively. High precision digital to analog converters (DACs) together with an ultra-precision voltage reference produce highly stable, precision voltages, which are selected by a multiplexer (MUX) chip to set output currents via a linear current regulator. The controller is operated in conjunction with a power multiplexing unit, allowing one of three lasers to be driven by the controller, while ensuring protection of controller and all lasers during operation, standby, and switching. Simple ASCII commands sent over a USB connection to a microprocessor located in the current controller operate both the controller (via the DACs and MUX chip) and the power multiplexer.

  5. Precision control of multiple quantum cascade lasers for calibration systems

    SciTech Connect

    Taubman, Matthew S. Myers, Tanya L.; Pratt, Richard M.; Stahl, Robert D.; Cannon, Bret D.

    2014-01-15

    We present a precision, 1-A, digitally interfaced current controller for quantum cascade lasers, with demonstrated temperature coefficients for continuous and 40-kHz full-depth square-wave modulated operation, of 1–2 ppm/ °C and 15 ppm/ °C, respectively. High precision digital to analog converters (DACs) together with an ultra-precision voltage reference produce highly stable, precision voltages, which are selected by a multiplexer (MUX) chip to set output currents via a linear current regulator. The controller is operated in conjunction with a power multiplexing unit, allowing one of three lasers to be driven by the controller, while ensuring protection of controller and all lasers during operation, standby, and switching. Simple ASCII commands sent over a USB connection to a microprocessor located in the current controller operate both the controller (via the DACs and MUX chip) and the power multiplexer.

  6. Precision Control of Multiple Quantum Cascade Lasers for Calibration Systems

    SciTech Connect

    Taubman, Matthew S.; Myers, Tanya L.; Pratt, Richard M.; Stahl, Robert D.; Cannon, Bret D.

    2014-01-15

    We present a precision, digitally interfaced current controller for quantum cascade lasers, with demonstrated DC and modulated temperature coefficients of 1- 2 ppm/ºC and 15 ppm/ºC respectively. High linearity digital to analog converters (DACs) together with an ultra-precision voltage reference, produce highly stable, precision voltages. These are in turn selected by a low charge-injection multiplexer (MUX) chip, which are then used to set output currents via a linear current regulator. The controller is operated in conjunction with a power multiplexing unit, allowing one of three lasers to be driven by the controller while ensuring protection of controller and all lasers during operation, standby and switching. Simple ASCII commands sent over a USB connection to a microprocessor located in the current controller operate both the controller (via the DACs and MUX chip) and the power multiplexer.

  7. Multi-bands photoconductive response in AlGaN/GaN multiple quantum wells

    SciTech Connect

    Chen, G.; Rong, X.; Xu, F. J.; Tang, N.; Wang, X. Q. Shen, B.; Fu, K.; Zhang, B. S.; Hashimoto, H.; Yoshikawa, A.; Ge, W. K.

    2014-04-28

    Based on the optical transitions among the quantum-confined electronic states in the conduction band, we have fabricated multi-bands AlGaN/GaN quantum well infrared photodetectors. Crack-free AlGaN/GaN multiple quantum wells (MQWs) with atomically sharp interfaces have been achieved by inserting an AlN interlayer, which releases most of the tensile strain in the MQWs grown on the GaN underlayer. With significant reduction of dark current by using thick AlGaN barriers, photoconductive responses are demonstrated due to intersubband transition in multiple regions with center wavelengths of 1.3, 2.3, and 4 μm, which shows potential applications on near infrared detection.

  8. The set of triple-resonance sequences with a multiple quantum coherence evolution period

    NASA Astrophysics Data System (ADS)

    Koźmiński, Wiktor; Zhukov, Igor

    2004-12-01

    The new pulse sequence building block that relies on evolution of heteronuclear multiple quantum coherences is proposed. The particular chemical shifts are obtained in multiple quadrature, using linear combinations of frequencies taken from spectra measured at different quantum levels. The pulse sequences designed in this way consist of small number of RF-pulses, are as short as possible, and could be applied for determination of coupling constants. The examples presented involve 2D correlations H NCO, H NCA, H N(CO) CA, and H(N) COCA via heteronuclear zero and double coherences, as well as 2D H NCOCA technique with simultaneous evolution of triple and three distinct single quantum coherences. Applications of the new sequences are presented for 13C, 15N-labeled ubiquitin.

  9. Intersubband Transition in GaN/InGaN Multiple Quantum Wells

    PubMed Central

    Chen, G.; Wang, X. Q.; Rong, X.; Wang, P.; Xu, F. J.; Tang, N.; Qin, Z. X.; Chen, Y. H.; Shen, B.

    2015-01-01

    Utilizing the growth temperature controlled epitaxy, high quality GaN/In0.15Ga0.85N multiple quantum wells designed for intersubband transition (ISBT) as novel candidates in III-nitride infrared device applications have been experimentally realized for the first time. Photo-absorption originated from the ISBT has been successfully observed at infrared regime covering the 3–5 μm atmosphere window, where the central absorption wavelength is modulated by adjusting the quantum well width. With increasing the quantum well thickness, the ISBT center wave length blue shifts at thickness less than 2.8 nm and then redshifts with further increase of the well thickness. The non-monotonic trend is most likely due to the polarization induced asymmetric shape of the quantum wells. PMID:26089133

  10. Quantum correlations of magnetic impurities by a multiple electron scattering in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Gamboa Angulo, Didier; Cordourier Maruri, Guillermo; de Coss Gómez, Romeo

    In this work we analyze the quantum correlations and polarizations states of magnetic impurities spins, when a multiple electron scattering was taken place. A sequence of non-correlated electrons interacts through scattering producing quantum correlation which will have an impact on the electronic transmission. We consider a short range Heisenberg interaction between ballistic electron and static impurities. We analyze the cases when the electron scattering is produce by one and two impurities, obtaining the electronic transmission rates. Concurrence and fidelity calculations are performed to obtain the level of quantum entanglement and polarization correlations. We also discuss the possible application of this model to metallic and semiconductor carbon nanotubes, which could have important implications on spintronics and quantum information devices.

  11. Ultrafast switching characteristics of a bistable surface-emitting multiple quantum well distributed Bragg reflector laser

    SciTech Connect

    Kojima, K.; Kyuma, K.; Noda, S.; Ohta, J.; Hamanaka, K.

    1988-03-21

    We describe an ultrafast switching operation of a bistable surface-emitting distributed Bragg reflector laser. The rise time was as small as 12 ps and the fall time was 90 ps. Both are much smaller than those of conventional bistable laser diodes. Ths was realized by the effect of the multiple quantum well structure and a strong detuning.

  12. Low-dimensional CdS/CdTe multiple-quantum well heterostructure for optical refrigeration

    NASA Astrophysics Data System (ADS)

    Tarín-Cordero, Julio C.; Villa-Angulo, Rafael; Villa-Angulo, José R.; Villa-Angulo, Carlos

    2015-01-01

    The major challenge for semiconductors to achieve temperatures below 10 K by luminescence upconversion, is that at these lattice temperatures the acoustic phonon component dominates and the scattering rate becomes comparable to the band-to-band radiative transition rate. This problem can be significantly alleviated by employing quantum-confined systems, where relaxation of wave-vector conservation in the confined direction reduces material conductivity by nearly three orders of magnitude. Although previous studies have reported theoretical and experimental analyses of cooling characteristics for bulk semiconductors, the electron band-to-band transition due to photon absorption or photon emission under cooling conditions in quantum-confined semiconductor systems which exhibit quantum effects at the dimensions of several nanometers have not been completely analyzed in conventional theoretical studies. We realized a numerical investigation of optical cooling conditions for a low-dimensional CdS/CdTe multiple-quantum well heterostructure where injected carriers in the active region are quantum mechanically confined in one dimension. Effects of such quantum mechanically confined carriers on photon absorption and photoluminescence (PL) were analyzed under cooling conditions. Most importantly, the CdS/CdTe heterostructure absorption and PL spectra for cooling conditions were defined in terms of the active layer width and number of quantum wells in the complete heterostructure.

  13. The Leap Challenge: Transforming for Students, Essential for Liberal Education

    ERIC Educational Resources Information Center

    Schneider, Carol Geary

    2015-01-01

    At the centennial annual meeting of the "Association of American Colleges & Universities" (AAC&U) in January 2015, there was an announcement to participants of the release of the "LEAP Challenge." The key concept at the center of the LEAP Challenge is that all college students need to prepare to contribute in a world…

  14. The Great Leap Forward: Anatomy of a Central Planning Disaster

    ERIC Educational Resources Information Center

    Li, Wei; Yang, Dennis Tao

    2005-01-01

    The Great Leap Forward disaster, characterized by a collapse in grain production and a widespread famine in China between 1959 and 1961, is found attributable to a systemic failure in central planning. Wishfully expecting a great leap in agricultural productivity from collectivization, the Chinese government accelerated its aggressive…

  15. Assessing Sustainability of Lifestyle Education for Activity Program (LEAP)

    ERIC Educational Resources Information Center

    Saunders, R. P.; Pate, R. R.; Dowda, M.; Ward, D. S.; Epping, J. N.; Dishman, R. K.

    2012-01-01

    Sustained intervention effects are needed for positive health impacts in populations; however, few published examples illustrate methods for assessing sustainability in health promotion programs. This paper describes the methods for assessing sustainability of the Lifestyle Education for Activity Program (LEAP). LEAP was a comprehensive…

  16. Examining the Link between Program Implementation and Behavior Outcomes in the Lifestyle Education for Activity Program (LEAP)

    ERIC Educational Resources Information Center

    Saunders, Ruth P.; Ward, Dianne; Felton, Gwen M.; Dowda, Marsha; Pate, Russell R.

    2006-01-01

    Lifestyle Education for Activity Program (LEAP) was a comprehensive, school-based intervention designed to promote physical activity in high school girls. The intervention focused on changes in instructional practices and the school environment to affect personal, social, and environmental factors related to physical activity. Multiple process…

  17. Collective cavity quantum electrodynamics with multiple atomic levels

    SciTech Connect

    Arnold, Kyle J.; Baden, Markus P.; Barrett, Murray D.

    2011-09-15

    We study the transmission spectra of ultracold rubidium atoms coupled to a high-finesse optical cavity. Under weak probing with {pi}-polarized light, the linear response of the system is that of a collective spin with multiple levels coupled to a single mode of the cavity. By varying the atom number, we change the collective coupling of the system. We observe the change in transmission spectra when going from a regime where the collective coupling is much smaller than the separation of the atomic levels to a regime where both are of comparable size. The observations are in good agreement with a reduced model we developed for our system.

  18. Project LEAP (lunar ecosystem and architectural prototype)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    University of Houston's The Sasakawa International Center for Space Architecture is pursuing research and design studies for permanent lunar settlements. One such study, Project LEAP, has produced staged growth concepts for a habitat to support lunar mining operations. The principal purpose assumed for the development is to produce liquid oxygen and hydrogen propellant for Advanced Space Transportation System and future orbital infrastructure consumption use. The base has been designed to grow over a ten year period from an initial six-person crew occupancy to an advanced facility capable of accommodating as many as one hundred and fifty people. Evolutionary growth stages would rely increasingly upon acquisition, processing and utilization of lunar materials to optimize self-sufficiency. Project LEAP's study objectives have sought to identify incremental site development and facility requirements; to identify candidate site development and construction options; to propose site layout and habitat design/growth concepts; and to survey requirements to achieve a high level of self-sufficiency. As an ongoing research and development program, the project has evolved from research and data collection for concept and design through three dimensional solids computer modeling. The University of Houston project is funded through the advanced Missions Office of the Johnson Space Center. Project representatives are guests of the Johnson Space Center at this conference.

  19. Measurements of 13C multiple-quantum coherences in amyloid fibrils under magic-angle spinning.

    PubMed

    Chou, Fang-Chieh; Tsai, Tim W T; Cheng, Hsin-Mei; Chan, Jerry C C

    2012-06-21

    The excitation and detection of high-order multiple quantum coherences among (13)C nuclear spins are demonstrated in the samples of [1-(13)C]-L-alanine and (13)C labeled amyloid fibrils at a spinning frequency of 20 kHz. The technique is based on the double-quantum average Hamiltonian prepared by the DRAMA-XY4 pulse sequence. Empirically, we find that multiple supercycles are required to suppress the higher-order effects for real applications. Measurements for the fibril samples formed by the polypeptides of PrP(113-127) provide the first solid-state NMR evidence for the stacking of multiple β-sheet layers at the structural core of amyloid fibrils. PMID:22632418

  20. Manipulation of nanoscale V-pits to optimize internal quantum efficiency of InGaN multiple quantum wells

    SciTech Connect

    Chang, Chiao-Yun; Li, Heng; Shih, Yang-Ta; Lu, Tien-Chang

    2015-03-02

    We systematically investigated the influence of nanoscale V-pits on the internal quantum efficiency (IQE) of InGaN multiple quantum wells (MQWs) by adjusting the underlying superlattices (SLS). The analysis indicated that high barrier energy of sidewall MQWs on V-pits and long diffusion distance between the threading dislocation (TD) center and V-pit boundary were crucial to effectively passivate the non-radiative centers of TDs. For a larger V-pit, the thicker sidewall MQW on V-pit would decrease the barrier energy. On the contrary, a shorter distance between the TD center and V-pit boundary would be observed in a smaller V-pit, which could increase the carrier capturing capability of TDs. An optimized V-pit size of approximately 200–250 nm in our experiment could be concluded for MQWs with 15 pairs SLS, which exhibited an IQE value of 70%.

  1. Comparisons of Modified Backward Chaining: Backward Chaining with Leap-Aheads and Reverse Chaining with Leap-Aheads.

    ERIC Educational Resources Information Center

    Spooner, Fred; And Others

    1986-01-01

    Variations of backward chaining--backward chaining with leap-aheads (BCLA) and reverse chaining with leap-aheads (RCLA)-- were compared with four severely retarded learners (17-32 years) who were trained on two complex vocational tasks. Learning rate for the BCLA procedure was superior to the RCLA procedure. Time to criterion differences were…

  2. Excitonic transitions in Be-doped GaAs/AlAs multiple quantum well

    NASA Astrophysics Data System (ADS)

    Wei-Min, Zheng; Su-Mei, Li; Wei-Yan, Cong; Ai-Fang, Wang; Bin, Li; Hai-Bei, Huang

    2016-04-01

    A series of GaAs/AlAs multiple-quantum wells doped with Be is grown by molecular beam epitaxy. The photoluminescence spectra are measured at 4, 20, 40, 80, 120, and 200 K, respectively. The recombination transition emission of heavy-hole and light-hole free excitons is clearly observed and the transition energies are measured with different quantum well widths. In addition, a theoretical model of excitonic states in the quantum wells is used, in which the symmetry of the component of the exciton wave function representing the relative motion is allowed to vary between the two- and three-dimensional limits. Then, within the effective mass and envelope function approximation, the recombination transition energies of the heavy- and light-hole excitons in GaAs/AlAs multiple-quantum wells are calculated each as a function of quantum well width by the shooting method and variational principle with two variational parameters. The results show that the excitons are neither 2D nor 3D like, but are in between in character and that the theoretical calculation is in good agreement with the experimental results. Project supported by the National Natural Science Foundation of China (Grant No. 61178039) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012FM028).

  3. Ab Initio study of multiple exciton generation in layered structure quantum dots

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyong; Zimmerman, Paul; Cui, Yi; Musgrave, Charles

    2011-03-01

    Multiple Exciton Generation (MEG) can potentially increase the photovoltaic conversion efficiency significantly and has been reported in a large number of systems and has been extensively studies theoretically and experimentally. Here we report our study of the MEG process in inorganic layered structure quantum dots using high level Ab Initio methods that are capable of electronic states of multi-exciton in character. Our results show that multiple states that are of multi-exciton character exist in quantum dots and different mechanisms govern the MEG process in quantum dots: (1) MEG through an internal crossing mechanism from a optically active state to an optically dark multi-exciton state, as in the singlet fission process of pentacene; and (2) direct multi-exciton generation through an optically active excited state. We also discuss detailed structure evolution of quantum dots, from stable molecular like structures of various shapes and sizes, to larger quantum dots of bulk like bonding motifs with distinctive surface structures and illustrate the correlation between structure and the multi-exciton states.

  4. Size dependence of the multiple exciton generation rate in CdSe quantum dots.

    PubMed

    Lin, Zhibin; Franceschetti, Alberto; Lusk, Mark T

    2011-04-26

    The multiplication rates of hot carriers in CdSe quantum dots are quantified using an atomistic pseudopotential approach and first-order perturbation theory. We consider both the case of an individual carrier (electron or hole) decaying into a trion and the case of an electron-hole pair decaying into a biexciton. The dependence on quantum dot volume of multiplication rate, density of final states, and effective Coulomb interaction are determined. We show that the multiplication rate of a photogenerated electron-hole pair decreases with dot size for a given absolute photon energy. However, if the photon energy is rescaled by the volume-dependent optical gap, then smaller dots exhibit an enhancement in carrier multiplication rate for a given relative photon energy. We find that holes have much higher multiplication rates than electrons of the same excess energy due to the larger density of final states (positive trions). When electron-hole pairs are generated by photon absorption, however, the net carrier multiplication rate is dominated by electrons because they have much higher excess energy on average. We also find, contrary to earlier studies, that the effective Coulomb coupling governing carrier multiplication is energy-dependent. PMID:21355556

  5. Multiplicative logarithmic corrections to quantum criticality in three-dimensional dimerized antiferromagnets

    NASA Astrophysics Data System (ADS)

    Qin, Yanqi; Normand, Bruce; Sandvik, Anders; Meng, Zi Yang

    We investigate the quantum phase transition in an S=1/2 dimerized Heisenberg antiferromagnet in three spatial dimensions. By means of quantum Monte Carlo simulations and finite-size scaling analyses, we get high-precision results for the quantum critical properties at the transition from the magnetically disordered dimer-singlet phase to the ordered Neel phase. This transition breaks O(N) symmetry with N=3 in D=3+1 dimensions. This is the upper critical dimension, where multiplicative logarithmic corrections to the leading mean-field critical properties are expected; we extract these corrections, establishing their precise forms for both the zero-temperature staggered magnetization, ms, and the Neel temperature, TN. We present a scaling ansatz for TN, including logarithmic corrections, which agrees with our data and indicates exact linearity with ms, implying a complete decoupling of quantum and thermal fluctuation effects close to the quantum critical point. These logarithmic scaling forms have not previously identified or verified by unbiased numerical methods and we discuss their relevance to experimental studies of dimerized quantum antiferromagnets such as TlCuCl3. Ref.: arXiv:1506.06073

  6. High performance red-emitting multiple layer InGaN/GaN quantum dot lasers

    NASA Astrophysics Data System (ADS)

    Frost, Thomas; Hazari, Arnab; Aiello, Anthony; Zunaid Baten, Md; Yan, Lifan; Mirecki-Millunchick, Joanna; Bhattacharya, Pallab

    2016-03-01

    InGaN/GaN self-organized quantum dots can provide useful advantages over quantum wells for the realization of long-wavelength visible light sources because the dots are formed by strain relaxation. A III-nitride based laser emitting in the red (λ ˜ 630 nm), which has not been demonstrated with quantum wells, would be useful for a host of applications. We have investigated the epitaxy and characteristics of self-organized InGaN/GaN multiple layer quantum dots grown by plasma-assisted molecular beam epitaxy and have optimized their properties by tuning the growth parameters. Red-emitting (λ ˜ 630 nm) quantum dots have radiative lifetime ˜2.5 ns and internal quantum efficiency greater than 50%. Edge-emitting red-lasers with multi-dot layers in the active region exhibit an extremely low threshold current density of 1.6 kA/cm2, a high temperature coefficient T0 = 240 K, and a large differential gain dg/dn = 9 × 10-17 cm2.

  7. Singlet fission in pentacene through multiple exciton quantum states

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyong; Zimmerman, Paul; Musgrave, Charles

    2010-03-01

    Multi-exciton generation (MEG) has been reported for several materials and may dramatically increase solar cell efficiency. Singlet fission is the molecular analogue of MEG and has been observed in various systems, including tetracene and pentacene, however, no fundamental mechanism for singlet fission has yet been described, although it may govern MEG processes in a variety of materials. Because photoexcited states have single-exciton character, singlet fission to produce a pair of triplet excitons must involve an intermediate state that: (1) exhibits multi-exciton (ME) character, (2) is accessible from S1 and satisfies the fission energy requirement, and (3) efficiently dissociates into multiple electron-hole pairs. Here, we use sophisticated ab initio calculations to show that singlet fission in pentacene proceeds through a dark state (D) of ME character that lies just below S1, satisfies the fission energy requirement (ED>2ET0), and splits into two triplets (2xT0). In tetracene, D lies just above S1, consistent with the observation that singlet fission is thermally activated in tetracene. Rational design of photovoltaic systems that exploit singlet fission will require ab initio analysis of ME states such as D.

  8. Carrier multiplication detected through transient photocurrent in device-grade films of lead selenide quantum dots

    DOE PAGESBeta

    Gao, Jianbo; Fidler, Andrew F.; Klimov, Victor I.

    2015-09-08

    In carrier multiplication, the absorption of a single photon results in two or more electron–hole pairs. Quantum dots are promising materials for implementing carrier multiplication principles in real-life technologies. So far, however, most of research in this area has focused on optical studies of solution samples with yet to be proven relevance to practical devices. We report ultra-fast electro-optical studies of device-grade films of electronically coupled quantum dots that allow us to observe multiplication directly in the photocurrent. Our studies help rationalize previous results from both optical spectroscopy and steady-state photocurrent measurements and also provide new insights into effects ofmore » electric field and ligand treatments on multiexciton yields. Importantly, we demonstrate that using appropriate chemical treatments of the films, extra charges produced by carrier multiplication can be extracted from the quantum dots before they are lost to Auger recombination and hence can contribute to photocurrent of practical devices.« less

  9. R-leaping: Accelerating the stochastic simulation algorithm by reaction leaps

    NASA Astrophysics Data System (ADS)

    Auger, Anne; Chatelain, Philippe; Koumoutsakos, Petros

    2006-08-01

    A novel algorithm is proposed for the acceleration of the exact stochastic simulation algorithm by a predefined number of reaction firings (R-leaping) that may occur across several reaction channels. In the present approach, the numbers of reaction firings are correlated binomial distributions and the sampling procedure is independent of any permutation of the reaction channels. This enables the algorithm to efficiently handle large systems with disparate rates, providing substantial computational savings in certain cases. Several mechanisms for controlling the accuracy and the appearance of negative species are described. The advantages and drawbacks of R-leaping are assessed by simulations on a number of benchmark problems and the results are discussed in comparison with established methods.

  10. Effective one-body dynamics in multiple-quantum NMR experiments

    NASA Astrophysics Data System (ADS)

    Rufeil-Fiori, E.; Sánchez, C. M.; Oliva, F. Y.; Pastawski, H. M.; Levstein, P. R.

    2009-03-01

    A suitable NMR experiment in a one-dimensional dipolar coupled spin system allows one to reduce the natural many-body dynamics into effective one-body dynamics. We verify this in a polycrystalline sample of hydroxyapatite (HAp) by monitoring the excitation of NMR many-body superposition states: the multiple-quantum coherences. The observed effective one-dimensionality of HAp relies on the quasi-one-dimensional structure of the dipolar coupled network that, as we show here, is dynamically enhanced by the quantum Zeno effect. Decoherence is also probed through a Loschmidt echo experiment, where the time reversal is implemented on the double-quantum Hamiltonian, HDQ∝Ii+Ij++Ii-Ij- . We contrast the decoherence of adamantane, a standard three-dimensional system, with that of HAp. While the first shows an abrupt Fermi-type decay, HAp presents a smooth exponential law.

  11. Highly efficient multiple-layer CdS quantum dot sensitized III-V solar cells.

    PubMed

    Lin, Chien-Chung; Han, Hau-Vei; Chen, Hsin-Chu; Chen, Kuo-Ju; Tsai, Yu-Lin; Lin, Wein-Yi; Kuo, Hao-Chung; Yu, Peichen

    2014-02-01

    In this review, the concept of utilization of solar spectrum in order to increase the solar cell efficiency is discussed. Among the three mechanisms, down-shifting effect is investigated in detail. Organic dye, rare-earth minerals and quantum dots are three most popular down-shift materials. While the enhancement of solar cell efficiency was not clearly observed in the past, the advances in quantum dot fabrication have brought strong response out of the hybrid platform of a quantum dot solar cell. A multiple layer structure, including PDMS as the isolation layer, is proposed and demonstrated. With the help of pulse spray system, precise control can be achieved and the optimized concentration can be found. PMID:24749412

  12. Code-division multiple-access multiuser demodulator by using quantum fluctuations

    NASA Astrophysics Data System (ADS)

    Otsubo, Yosuke; Inoue, Jun-ichi; Nagata, Kenji; Okada, Masato

    2014-07-01

    We examine the average-case performance of a code-division multiple-access (CDMA) multiuser demodulator in which quantum fluctuations are utilized to demodulate the original message within the context of Bayesian inference. The quantum fluctuations are built into the system as a transverse field in the infinite-range Ising spin glass model. We evaluate the performance measurements by using statistical mechanics. We confirm that the CDMA multiuser modulator using quantum fluctuations achieve roughly the same performance as the conventional CDMA multiuser modulator through thermal fluctuations on average. We also find that the relationship between the quality of the original information retrieval and the amplitude of the transverse field is somehow a "universal feature" in typical probabilistic information processing, viz., in image restoration, error-correcting codes, and CDMA multiuser demodulation.

  13. Code-division multiple-access multiuser demodulator by using quantum fluctuations.

    PubMed

    Otsubo, Yosuke; Inoue, Jun-Ichi; Nagata, Kenji; Okada, Masato

    2014-07-01

    We examine the average-case performance of a code-division multiple-access (CDMA) multiuser demodulator in which quantum fluctuations are utilized to demodulate the original message within the context of Bayesian inference. The quantum fluctuations are built into the system as a transverse field in the infinite-range Ising spin glass model. We evaluate the performance measurements by using statistical mechanics. We confirm that the CDMA multiuser modulator using quantum fluctuations achieve roughly the same performance as the conventional CDMA multiuser modulator through thermal fluctuations on average. We also find that the relationship between the quality of the original information retrieval and the amplitude of the transverse field is somehow a "universal feature" in typical probabilistic information processing, viz., in image restoration, error-correcting codes, and CDMA multiuser demodulation. PMID:25122270

  14. Green light emission by InGaN/GaN multiple-quantum-well microdisks

    SciTech Connect

    Hsu, Yu-Chi; Lo, Ikai Shih, Cheng-Hung; Pang, Wen-Yuan; Hu, Chia-Hsuan; Wang, Ying-Chieh; Tsai, Cheng-Da; Chou, Mitch M. C.; Hsu, Gary Z. L.

    2014-03-10

    The high-quality In{sub x}Ga{sub 1−x}N/GaN multiple quantum wells were grown on GaN microdisks with γ-LiAlO{sub 2} substrate by using low-temperature two-step technique of plasma-assisted molecular beam epitaxy. We demonstrated that the hexagonal GaN microdisk can be used as a strain-free substrate to grow the advanced In{sub x}Ga{sub 1−x}N/GaN quantum wells for the optoelectronic applications. We showed that the green light of 566-nm wavelength (2.192 eV) emitted from the In{sub x}Ga{sub 1−x}N/GaN quantum wells was tremendously enhanced in an order of amplitude higher than the UV light of 367-nm wavelength (3.383 eV) from GaN.

  15. Theoretical study of polarization insensitivity of carrier-induced refractive index change of multiple quantum well.

    PubMed

    Miao, Qingyuan; Zhou, Qunjie; Cui, Jun; He, Ping-An; Huang, Dexiu

    2014-12-29

    Characteristics of polarization insensitivity of carrier-induced refractive index change of 1.55 μm tensile-strained multiple quantum well (MQW) are theoretically investigated. A comprehensive MQW model is proposed to effectively extend the application range of previous models. The model considers the temperature variation as well as the nonuniform distribution of injected carrier in MQW. Tensile-strained MQW is expected to achieve polarization insensitivity of carrier-induced refractive index change over a wide wavelength range as temperature varies from 0°C to 40°C, while the magnitude of refractive index change keeps a large value (more than 3 × 10-3). And that the polarization insensitivity of refractive index change can maintain for a wide range of carrier concentration. Multiple quantum well with different material and structure parameters is anticipated to have the similar polarization insensitivity of refractive index change, which shows the design flexibility. PMID:25607157

  16. High-resolution multiple quantum MAS NMR spectroscopy of half-integer quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Wu, Gang; Rovnyank, David; Sun, Boqin; Griffin, Robert G.

    1996-02-01

    We demonstrate the utility of a two-pulse sequence in obtaining high-resolution solid state NMR spectra of half-integer quadrupolar nuclei with magic-angle-spinning (MAS). The experiment, which utilizes multiple/single-quantum correlation, was first described in a different form by Frydman and Harwood [J. Am. Chem. Soc. 117 (1995) 5367] and yields high-resolution isotropic NMR spectra where shifts are determined by the sum of resonance offset (chemical shift) and second-order quadrupolar effects. The two-pulse sequence described here is shown to provide a higher and more uniform excitation of multiple-quantum coherence than the three-pulse sequence used previously.

  17. Entropic Uncertainty Relation and Information Exclusion Relation for multiple measurements in the presence of quantum memory

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Zhang, Yang; Yu, Chang-Shui

    2015-06-01

    The Heisenberg uncertainty principle shows that no one can specify the values of the non-commuting canonically conjugated variables simultaneously. However, the uncertainty relation is usually applied to two incompatible measurements. We present tighter bounds on both entropic uncertainty relation and information exclusion relation for multiple measurements in the presence of quantum memory. As applications, three incompatible measurements on Werner state and Horodecki’s bound entangled state are investigated in details.

  18. Quantum Simulation of Multiple-Exciton Generation in a Nanocrystal by a Single Photon

    SciTech Connect

    Witzel, Wayne M.; Shabaev, Andrew; Hellberg, C. Stephen; Jacobs, Verne L.; Efros, Alexander L.

    2010-09-22

    We have shown theoretically that efficient multiple-exciton generation (MEG) by a single photon can be observed in small nanocrystals. Our quantum simulations that include hundreds of thousands of exciton and multiexciton states demonstrate that the complex time-dependent dynamics of these states in a closed electronic system yields a saturated MEG effect on a picosecond time scale. Including phonon relaxation confirms that efficient MEG requires the exciton-biexciton coupling time to be faster than exciton relaxation time.

  19. Entropic Uncertainty Relation and Information Exclusion Relation for multiple measurements in the presence of quantum memory.

    PubMed

    Zhang, Jun; Zhang, Yang; Yu, Chang-shui

    2015-01-01

    The Heisenberg uncertainty principle shows that no one can specify the values of the non-commuting canonically conjugated variables simultaneously. However, the uncertainty relation is usually applied to two incompatible measurements. We present tighter bounds on both entropic uncertainty relation and information exclusion relation for multiple measurements in the presence of quantum memory. As applications, three incompatible measurements on Werner state and Horodecki's bound entangled state are investigated in details. PMID:26118488

  20. Entropic Uncertainty Relation and Information Exclusion Relation for multiple measurements in the presence of quantum memory

    PubMed Central

    Zhang, Jun; Zhang, Yang; Yu, Chang-shui

    2015-01-01

    The Heisenberg uncertainty principle shows that no one can specify the values of the non-commuting canonically conjugated variables simultaneously. However, the uncertainty relation is usually applied to two incompatible measurements. We present tighter bounds on both entropic uncertainty relation and information exclusion relation for multiple measurements in the presence of quantum memory. As applications, three incompatible measurements on Werner state and Horodecki’s bound entangled state are investigated in details. PMID:26118488

  1. Tailoring the spin polarization in Ge/SiGe multiple quantum wells

    SciTech Connect

    Giorgioni, Anna; Pezzoli, Fabio; Gatti, Eleonora; Grilli, Emanuele; Guzzi, Mario; Bottegoni, Federico; Cecchi, Stefano; Ciccacci, Franco; Isella, Giovanni; Trivedi, Dhara; Song, Yang; Li, Pengki; Dery, Hanan

    2013-12-04

    We performed spin-resolved photoluminescence measurements on Ge/SiGe multiple quantum wells with different well thickness and using different exciting power densities. The polarization of the direct emission strongly depends on the relative weight of electrons photoexcited from the light and the heavy hole subbands. The study of the polarization as a function of the exciting power highlights the role of the carrier-carrier interactions in determining spin depolarization.

  2. Multiple-quantum NMR studies of spin clusters in liquid crystals and zeolites

    SciTech Connect

    Pearson, J. . Dept. of Chemistry Lawrence Berkeley Lab., CA )

    1991-07-01

    This work will describe the use of MQ NMR to study spin clusters in anisotropic materials. A technique known as multiple-quantum spin counting was used to determine average spin cluster sizes liquid crystalline materials and in faujacitic zeolites containing aromatic hydrocarbons. The first half of the thesis will describe MQ NMR and the MQ spin counting technique, and the second half of the thesis will describe the actual experiments and their results.

  3. Polyad quantum numbers and multiple resonances in anharmonic vibrational studies of polyatomic molecules

    SciTech Connect

    Krasnoshchekov, Sergey V.; Stepanov, Nikolay F.

    2013-11-14

    In the theory of anharmonic vibrations of a polyatomic molecule, mixing the zero-order vibrational states due to cubic, quartic and higher-order terms in the potential energy expansion leads to the appearance of more-or-less isolated blocks of states (also called polyads), connected through multiple resonances. Such polyads of states can be characterized by a common secondary integer quantum number. This polyad quantum number is defined as a linear combination of the zero-order vibrational quantum numbers, attributed to normal modes, multiplied by non-negative integer polyad coefficients, which are subject to definition for any particular molecule. According to Kellman's method [J. Chem. Phys. 93, 6630 (1990)], the corresponding formalism can be conveniently described using vector algebra. In the present work, a systematic consideration of polyad quantum numbers is given in the framework of the canonical Van Vleck perturbation theory (CVPT) and its numerical-analytic operator implementation for reducing the Hamiltonian to the quasi-diagonal form, earlier developed by the authors. It is shown that CVPT provides a convenient method for the systematic identification of essential resonances and the definition of a polyad quantum number. The method presented is generally suitable for molecules of significant size and complexity, as illustrated by several examples of molecules up to six atoms. The polyad quantum number technique is very useful for assembling comprehensive basis sets for the matrix representation of the Hamiltonian after removal of all non-resonance terms by CVPT. In addition, the classification of anharmonic energy levels according to their polyad quantum numbers provides an additional means for the interpretation of observed vibrational spectra.

  4. Polyad quantum numbers and multiple resonances in anharmonic vibrational studies of polyatomic molecules

    NASA Astrophysics Data System (ADS)

    Krasnoshchekov, Sergey V.; Stepanov, Nikolay F.

    2013-11-01

    In the theory of anharmonic vibrations of a polyatomic molecule, mixing the zero-order vibrational states due to cubic, quartic and higher-order terms in the potential energy expansion leads to the appearance of more-or-less isolated blocks of states (also called polyads), connected through multiple resonances. Such polyads of states can be characterized by a common secondary integer quantum number. This polyad quantum number is defined as a linear combination of the zero-order vibrational quantum numbers, attributed to normal modes, multiplied by non-negative integer polyad coefficients, which are subject to definition for any particular molecule. According to Kellman's method [J. Chem. Phys. 93, 6630 (1990)], the corresponding formalism can be conveniently described using vector algebra. In the present work, a systematic consideration of polyad quantum numbers is given in the framework of the canonical Van Vleck perturbation theory (CVPT) and its numerical-analytic operator implementation for reducing the Hamiltonian to the quasi-diagonal form, earlier developed by the authors. It is shown that CVPT provides a convenient method for the systematic identification of essential resonances and the definition of a polyad quantum number. The method presented is generally suitable for molecules of significant size and complexity, as illustrated by several examples of molecules up to six atoms. The polyad quantum number technique is very useful for assembling comprehensive basis sets for the matrix representation of the Hamiltonian after removal of all non-resonance terms by CVPT. In addition, the classification of anharmonic energy levels according to their polyad quantum numbers provides an additional means for the interpretation of observed vibrational spectra.

  5. Polyad quantum numbers and multiple resonances in anharmonic vibrational studies of polyatomic molecules.

    PubMed

    Krasnoshchekov, Sergey V; Stepanov, Nikolay F

    2013-11-14

    In the theory of anharmonic vibrations of a polyatomic molecule, mixing the zero-order vibrational states due to cubic, quartic and higher-order terms in the potential energy expansion leads to the appearance of more-or-less isolated blocks of states (also called polyads), connected through multiple resonances. Such polyads of states can be characterized by a common secondary integer quantum number. This polyad quantum number is defined as a linear combination of the zero-order vibrational quantum numbers, attributed to normal modes, multiplied by non-negative integer polyad coefficients, which are subject to definition for any particular molecule. According to Kellman's method [J. Chem. Phys. 93, 6630 (1990)], the corresponding formalism can be conveniently described using vector algebra. In the present work, a systematic consideration of polyad quantum numbers is given in the framework of the canonical Van Vleck perturbation theory (CVPT) and its numerical-analytic operator implementation for reducing the Hamiltonian to the quasi-diagonal form, earlier developed by the authors. It is shown that CVPT provides a convenient method for the systematic identification of essential resonances and the definition of a polyad quantum number. The method presented is generally suitable for molecules of significant size and complexity, as illustrated by several examples of molecules up to six atoms. The polyad quantum number technique is very useful for assembling comprehensive basis sets for the matrix representation of the Hamiltonian after removal of all non-resonance terms by CVPT. In addition, the classification of anharmonic energy levels according to their polyad quantum numbers provides an additional means for the interpretation of observed vibrational spectra. PMID:24320248

  6. Heteronuclear correlations by multiple-quantum evolution. II. Proton-proton "decoupling" and multiplicity labeling in a constant-time experiment using carbon detection

    NASA Astrophysics Data System (ADS)

    Batta, Gyula; Kövér, Katalin E.

    Modified Müller-Bolton type heteronuclear multiple-quantum correlation experiments are analyzed theoretically and experimentally. It is shown that the constant-time version offers homonuclear decoupling, multiplicity labeling, and a very efficient suppression of strong coupling artifacts. Such sequences may have advantages for studying macromolecules.

  7. First data from a commercial local electrode atom probe (LEAP).

    PubMed

    Kelly, Thomas F; Gribb, Tye T; Olson, Jesse D; Martens, Richard L; Shepard, Jeffrey D; Wiener, Scott A; Kunicki, Thomas C; Ulfig, Robert M; Lenz, Daniel R; Strennen, Eric M; Oltman, Edward; Bunton, Joseph H; Strait, David R

    2004-06-01

    The first dedicated local electrode atom probes (LEAP [a trademark of Imago Scientific Instruments Corporation]) have been built and tested as commercial prototypes. Several key performance parameters have been markedly improved relative to conventional three-dimensional atom probe (3DAP) designs. The Imago LEAP can operate at a sustained data collection rate of 1 million atoms/minute. This is some 600 times faster than the next fastest atom probe and large images can be collected in less than 1 h that otherwise would take many days. The field of view of the Imago LEAP is about 40 times larger than conventional 3DAPs. This makes it possible to analyze regions that are about 100 nm diameter by 100 nm deep containing on the order of 50 to 100 million atoms with this instrument. Several example applications that illustrate the advantages of the LEAP for materials analysis are presented. PMID:15233856

  8. Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells

    SciTech Connect

    Nozik, Arthur J.; Beard, Matthew C.; Luther, Joseph M.; Law, Matt; Ellingson, Randy J.; Johnson, Justin C.

    2010-10-14

    Here, we will first briefly summarize the general principles of QD synthesis using our previous work on InP as an example. Then we will focus on QDs of the IV-VI Pb chalcogenides (PbSe, PbS, and PbTe) and Si QDs because these were among the first QDs that were reported to produce multiple excitons upon absorbing single photons of appropriate energy (a process we call multiple exciton generation (MEG)). We note that in addition to Si and the Pb-VI QDs, two other semiconductor systems (III-V InP QDs(56) and II-VI core-shell CdTe/CdSe QDs(57)) were very recently reported to also produce MEG. Then we will discuss photogenerated carrier dynamics in QDs, including the issues and controversies related to the cooling of hot carriers and the magnitude and significance of MEG in QDs. Finally, we will discuss applications of QDs and QD arrays in novel quantum dot PV cells, where multiple exciton generation from single photons could yield significantly higher PV conversion efficiencies.

  9. Transmission coefficients for chemical reactions with multiple states: role of quantum decoherence.

    PubMed

    de la Lande, Aurélien; Řezáč, Jan; Lévy, Bernard; Sanders, Barry C; Salahub, Dennis R

    2011-03-23

    Transition-state theory (TST) is a widely accepted paradigm for rationalizing the kinetics of chemical reactions involving one potential energy surface (PES). Multiple PES reaction rate constants can also be estimated within semiclassical approaches provided the hopping probability between the quantum states is taken into account when determining the transmission coefficient. In the Marcus theory of electron transfer, this hopping probability was historically calculated with models such as Landau-Zener theory. Although the hopping probability is intimately related to the question of the transition from the fully quantum to the semiclassical description, this issue is not adequately handled in physicochemical models commonly in use. In particular, quantum nuclear effects such as decoherence or dephasing are not present in the rate constant expressions. Retaining the convenient semiclassical picture, we include these effects through the introduction of a phenomenological quantum decoherence function. A simple modification to the usual TST rate constant expression is proposed: in addition to the electronic coupling, a characteristic decoherence time τ(dec) now also appears as a key parameter of the rate constant. This new parameter captures the idea that molecular systems, although intrinsically obeying quantum mechanical laws, behave semiclassically after a finite but nonzero amount of time (τ(dec)). This new degree of freedom allows a fresh look at the underlying physics of chemical reactions involving more than one quantum state. The ability of the proposed formula to describe the main physical lines of the phenomenon is confirmed by comparison with results obtained from density functional theory molecular dynamics simulations for a triplet to singlet transition within a copper dioxygen adduct relevant to the question of dioxygen activation by copper monooxygenases. PMID:21344903

  10. Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors.

    PubMed

    Beard, Matthew C; Luther, Joseph M; Semonin, Octavi E; Nozik, Arthur J

    2013-06-18

    Improving the primary photoconversion process in a photovoltaiccell by utilizing the excess energy that is otherwise lost as heat can lead to an increase in the overall power conversion efficiency (PCE). Semiconductor nanocrystals (NCs) with at least one dimension small enough to produce quantum confinement effects provide new ways of controlling energy flow not achievable in thin film or bulk semiconductors. Researchers have developed various strategies to incorporate these novel structures into suitable solar conversion systems. Some of these methods could increase the PCE past the Shockley-Queisser (SQ) limit of ∼33%, making them viable "third generation photovoltaic" (TGPV) cell architectures. Surpassing the SQ limit for single junction solar cells presents both a scientific and a technological challenge, and the use of semiconductor NCs to enhance the primary photoconversion process offers a promising potential solution. The NCs are synthesized via solution phase chemical reactions producing stable colloidal solutions, where the reaction conditions can be modified to produce a variety of shapes, compositions, and structures. The confinement of the semiconductor NC in one dimension produces quantum films, wells, or discs. Two-dimensional confinement leads to quantum wires or rods (QRs), and quantum dots (QDs) are three-dimensionally confined NCs. The process of multiple exciton generation (MEG) converts a high-energy photon into multiple electron-hole pairs. Although many studies have demonstrated that MEG is enhanced in QDs compared with bulk semiconductors, these studies have either used ultrafast spectroscopy to measure the photon-to-exciton quantum yields (QYs) or theoretical calculations. Implementing MEG in a working solar cell has been an ongoing challenge. In this Account, we discuss the status of MEG research and strategies towards implementing MEG in working solar cells. Recently we showed an external quantum efficiency for photocurrent of greater

  11. Electric field dependent Electroreflectance of GaAs/AlGaAs multiple quantum well Bragg structure at second quantum state

    NASA Astrophysics Data System (ADS)

    Nakarmi, Mim; Shakya, Naresh; Chaldyshev, Vladimir

    Electroreflectance Spectroscopy was employed to study the effect of electric field on the excitonic transitions in a GaAs/AlGaAs multiple quantum well (MQW) Bragg structure. The sample used in this experiment consists of 60 periods of quantum well structures with GaAs well layer (~13 nm) and AlGaAs barrier layer (~94 nm), grown by molecular beam expitaxy on a semi-insulating GaAs substrate. The sample structure was designed to coincide the Bragg resonance peak with the x(e2-hh2) exciton transitions. We observed a significant enhancement of excitonic feature around the x(e2-hh2) exciton transition due to the double resonance along with the sharp features of x(e1-hh1) and x(e1-lh1) ground state exciton transitions by tuning the angle of incidence of the light. We will present the results on electric field dependent electroreflectance measurements of this structure and discuss the effect of electric field on the first and second energy states.

  12. Internal quantum efficiency improvement of InGaN/GaN multiple quantum well green light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Znajdek, K.; SibińSki, M.; StrąKowska, A.; Lisik, Z.

    2016-01-01

    In recent years, GaN-based light-emitting diode (LED) has been widely used in various applications, such as RGB lighting system, full-colour display and visible-light communication. However, the internal quantum efficiency (IQE) of green LEDs is significantly lower than that of other visible spectrum LED. This phenomenon is called "green gap". This paper briefly describes the physical mechanism of the low IQE for InGaN/GaN multiple quantum well (MQW) green LED at first. The IQE of green LED is limited by the defects and the internal electric field in MQW. Subsequently, we discuss the recent progress in improving the IQE of green LED in detail. These strategies can be divided into two categories. Some of these methods were proposed to enhance crystal quality of InGaN/GaN MQW with high In composition and low density of defects by modifying the growth conditions. Other methods focused on increasing electron-hole wave function overlap by eliminating the polarization effect.

  13. Enhancement of spectral editing efficacy of multiple quantum filters in in vivo proton magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Hyeonjin; Thompson, Richard B.; Allen, Peter S.

    2012-10-01

    The performance of multiple quantum filters (MQFs) can be disappointing when the background signal also arises from coupled spins. Moreover, at 3.0 T and even higher fields the majority of the spin systems of key brain metabolites fall into the strong-coupling regime. In this manuscript we address comprehensively, the importance of the phase of the multiple quantum coherence-generating pulse (MQ-pulse) in the design of MQFs, using both product operator and numerical analysis, in both zero and double quantum filter designs. The theoretical analyses were experimentally validated with the examples of myo-inositol editing and the separation of glutamate from glutamine. The results demonstrate that the phase of the MQ-pulse per se provides an additional spectral discrimination mechanism based on the degree of coupling beyond the conventional level-of-coherence approach of MQFs. To obtain the best spectral discrimination of strongly-coupled spin systems, therefore, the phase of the MQ-pulse must be included in the portfolio of the sequence parameters to be optimized.

  14. Polarizabilities of Impurity Doped Quantum Dots Under Pulsed Field: Role of Multiplicative White Noise

    NASA Astrophysics Data System (ADS)

    Saha, Surajit; Ghosh, Manas

    2016-02-01

    We perform a rigorous analysis of the profiles of a few diagonal and off-diagonal components of linear ( α xx , α yy , α xy , and α yx ), first nonlinear ( β xxx , β yyy , β xyy , and β yxx ), and second nonlinear ( γ xxxx , γ yyyy , γ xxyy , and γ yyxx ) polarizabilities of quantum dots exposed to an external pulsed field. Simultaneous presence of multiplicative white noise has also been taken into account. The quantum dot contains a dopant represented by a Gaussian potential. The number of pulse and the dopant location have been found to fabricate the said profiles through their interplay. Moreover, a variation in the noise strength also contributes evidently in designing the profiles of above polarizability components. In general, the off-diagonal components have been found to be somewhat more responsive to a variation of noise strength. However, we have found some exception to the above fact for the off-diagonal β yxx component. The study projects some pathways of achieving stable, enhanced, and often maximized output of linear and nonlinear polarizabilities of doped quantum dots driven by multiplicative noise.

  15. Multiple quantum phase transitions and superconductivity in Ce-based heavy fermions.

    PubMed

    Weng, Z F; Smidman, M; Jiao, L; Lu, Xin; Yuan, H Q

    2016-09-01

    Heavy fermions have served as prototype examples of strongly-correlated electron systems. The occurrence of unconventional superconductivity in close proximity to the electronic instabilities associated with various degrees of freedom points to an intricate relationship between superconductivity and other electronic states, which is unique but also shares some common features with high temperature superconductivity. The magnetic order in heavy fermion compounds can be continuously suppressed by tuning external parameters to a quantum critical point, and the role of quantum criticality in determining the properties of heavy fermion systems is an important unresolved issue. Here we review the recent progress of studies on Ce based heavy fermion superconductors, with an emphasis on the superconductivity emerging on the edge of magnetic and charge instabilities as well as the quantum phase transitions which occur by tuning different parameters, such as pressure, magnetic field and doping. We discuss systems where multiple quantum critical points occur and whether they can be classified in a unified manner, in particular in terms of the evolution of the Fermi surface topology. PMID:27533524

  16. Multiple quantum phase transitions and superconductivity in Ce-based heavy fermions

    NASA Astrophysics Data System (ADS)

    Weng, Z. F.; Smidman, M.; Jiao, L.; Lu, Xin; Yuan, H. Q.

    2016-09-01

    Heavy fermions have served as prototype examples of strongly-correlated electron systems. The occurrence of unconventional superconductivity in close proximity to the electronic instabilities associated with various degrees of freedom points to an intricate relationship between superconductivity and other electronic states, which is unique but also shares some common features with high temperature superconductivity. The magnetic order in heavy fermion compounds can be continuously suppressed by tuning external parameters to a quantum critical point, and the role of quantum criticality in determining the properties of heavy fermion systems is an important unresolved issue. Here we review the recent progress of studies on Ce based heavy fermion superconductors, with an emphasis on the superconductivity emerging on the edge of magnetic and charge instabilities as well as the quantum phase transitions which occur by tuning different parameters, such as pressure, magnetic field and doping. We discuss systems where multiple quantum critical points occur and whether they can be classified in a unified manner, in particular in terms of the evolution of the Fermi surface topology.

  17. Fermionic approach to junctions of multiple quantum wires attached to Tomonaga-Luttinger liquid leads

    NASA Astrophysics Data System (ADS)

    Shi, Zheng; Affleck, Ian

    2016-07-01

    Junctions of multiple one-dimensional quantum wires of interacting electrons have received considerable theoretical attention as a basic constituent of quantum circuits. While results have been obtained on these models using bosonization and density-matrix renormalization-group (DMRG) methods, another powerful technique is based on direct perturbation theory in the bulk interactions combined with the renormalization group. This technique has so far only been applied to the case in which finite-length interacting wires are attached to noninteracting Fermi liquid leads. We extend this method to cover the case of infinite-length interacting leads, obtaining results on two- and three-lead junctions in good agreement with previous bosonization and DMRG results.

  18. Tunable Symmetries of Integer and Fractional Quantum Hall Phases in Heterostructures with Multiple Dirac Bands

    NASA Astrophysics Data System (ADS)

    Stepanov, Petr; Barlas, Yafis; Espiritu, Tim; Che, Shi; Watanabe, Kenji; Taniguchi, Takashi; Smirnov, Dmitry; Lau, Chun Ning

    2016-08-01

    The copresence of multiple Dirac bands in few-layer graphene leads to a rich phase diagram in the quantum Hall regime. Using transport measurements, we map the phase diagram of BN-encapsulated A B A -stacked trilayer graphene as a function charge density n , magnetic field B , and interlayer displacement field D , and observe transitions among states with different spin, valley, orbital, and parity polarizations. Such a rich pattern arises from crossings between Landau levels from different subbands, which reflect the evolving symmetries that are tunable in situ. At D =0 , we observe fractional quantum Hall (FQH) states at filling factors 2 /3 and -11 /3 . Unlike those in bilayer graphene, these FQH states are destabilized by a small interlayer potential that hybridizes the different Dirac bands.

  19. Multiple exciton generation in films of electronically coupled PbSe quantum dots.

    PubMed

    Luther, Joseph M; Beard, Matthew C; Song, Qing; Law, Matt; Ellingson, Randy J; Nozik, Arthur J

    2007-06-01

    We study multiple exciton generation (MEG) in electronically coupled films of PbSe quantum dots (QDs) employing ultrafast time-resolved transient absorption spectroscopy. We demonstrate that the MEG efficiency in PbSe does not decrease when the QDs are treated with hydrazine, which has been shown to greatly enhance carrier transport in PbSe QD films by decreasing the interdot distance. The quantum yield is measured and compared to previously reported values for electronically isolated QDs suspended in organic solvents at approximately 4 and 4.5 times the effective band gap. A slightly modified analysis is applied to extract the MEG efficiency and the absorption cross section of each sample at the pump wavelength. We compare the absorption cross sections of our samples to that of bulk PbSe. We find that both the biexciton lifetime and the absorption cross section increase in films relative to isolated QDs in solution. PMID:17530913

  20. The role of the fano resonance in multiple exciton generation in quantum dots

    NASA Astrophysics Data System (ADS)

    Oksengendler, B. L.; Marasulov, M. B.; Nikiforov, V. N.

    2016-02-01

    The phenomenon of interference between two pathways of electron transfer from the valence to the conduction band at a quantum dot is considered. The first way is the conventional "valence band-conduction band" transition, while the second is the transition via a virtual two-electron state on the Tamm level in a quantum dot (QD) followed by the Auger effect, which ejects one electron from the Tamm level to the conduction band. In the case of a coherent addition of these ionization pathways, the Fano resonance can take place, this leading to an increase in the coefficient of photon absorption. This results in increasing internal efficiency of light conversion and can provide a basis for increasing the efficiency of solar cells due to the phenomenon of multiple exciton generation.

  1. Tunable Symmetries of Integer and Fractional Quantum Hall Phases in Heterostructures with Multiple Dirac Bands.

    PubMed

    Stepanov, Petr; Barlas, Yafis; Espiritu, Tim; Che, Shi; Watanabe, Kenji; Taniguchi, Takashi; Smirnov, Dmitry; Lau, Chun Ning

    2016-08-12

    The copresence of multiple Dirac bands in few-layer graphene leads to a rich phase diagram in the quantum Hall regime. Using transport measurements, we map the phase diagram of BN-encapsulated ABA-stacked trilayer graphene as a function charge density n, magnetic field B, and interlayer displacement field D, and observe transitions among states with different spin, valley, orbital, and parity polarizations. Such a rich pattern arises from crossings between Landau levels from different subbands, which reflect the evolving symmetries that are tunable in situ. At D=0, we observe fractional quantum Hall (FQH) states at filling factors 2/3 and -11/3. Unlike those in bilayer graphene, these FQH states are destabilized by a small interlayer potential that hybridizes the different Dirac bands. PMID:27563989

  2. The effect of substrate compliance on the biomechanics of gibbon leaps.

    PubMed

    Channon, Anthony J; Günther, Michael M; Crompton, Robin H; D'Août, Kristiaan; Preuschoft, Holger; Vereecke, Evie E

    2011-02-15

    The storage and recovery of elastic strain energy in the musculoskeletal systems of locomoting animals has been extensively studied, yet the external environment represents a second potentially useful energy store that has often been neglected. Recent studies have highlighted the ability of orangutans to usefully recover energy from swaying trees to minimise the cost of gap crossing. Although mechanically similar mechanisms have been hypothesised for wild leaping primates, to date no such energy recovery mechanisms have been demonstrated biomechanically in leapers. We used a setup consisting of a forceplate and two high-speed video cameras to conduct a biomechanical analysis of captive gibbons leaping from stiff and compliant poles. We found that the gibbons minimised pole deflection by using different leaping strategies. Two leap types were used: slower orthograde leaps and more rapid pronograde leaps. The slower leaps used a wider hip joint excursion to negate the downward movement of the pole, using more impulse to power the leap, but with no increase in work done on the centre of mass. Greater hip excursion also minimised the effective leap distance during orthograde leaps. The more rapid leaps conversely applied peak force earlier in stance where the pole was effectively stiffer, minimising deflection and potential energy loss. Neither leap type appeared to usefully recover energy from the pole to increase leap performance, but the gibbons demonstrated an ability to best adapt their leap biomechanics to counter the negative effects of the compliant pole. PMID:21270319

  3. Order-selective multiple-quantum excitation in magic-angle spinning NMR: creating triple-quantum coherences with a trilinear Hamiltonian

    NASA Astrophysics Data System (ADS)

    Edén, Mattias

    2002-12-01

    Order-selective multiple-quantum excitation in magic-angle spinning nuclear magnetic resonance is explored using a class of symmetry-based pulse sequences, denoted S Mχ. Simple rules are presented that aid the design of S Mχ schemes with certain desirable effective Hamiltonians. They are applied to construct sequences generating trilinear effective dipolar Hamiltonians, suitable for efficient excitation of triple-quantum coherences in rotating solids. The new sequences are investigated numerically and demonstrated by 1H experiments on adamantane.

  4. Scale-estimation of quantum coherent energy transport in multiple-minima systems

    PubMed Central

    Farrow, Tristan; Vedral, Vlatko

    2014-01-01

    A generic and intuitive model for coherent energy transport in multiple minima systems coupled to a quantum mechanical bath is shown. Using a simple spin-boson system, we illustrate how a generic donor-acceptor system can be brought into resonance using a narrow band of vibrational modes, such that the transfer efficiency of an electron-hole pair (exciton) is made arbitrarily high. Coherent transport phenomena in nature are of renewed interest since the discovery that a photon captured by the light-harvesting complex (LHC) in photosynthetic organisms can be conveyed to a chemical reaction centre with near-perfect efficiency. Classical explanations of the transfer use stochastic diffusion to model the hopping motion of a photo-excited exciton. This accounts inadequately for the speed and efficiency of the energy transfer measured in a series of recent landmark experiments. Taking a quantum mechanical perspective can help capture the salient features of the efficient part of that transfer. To show the versatility of the model, we extend it to a multiple minima system comprising seven-sites, reminiscent of the widely studied Fenna-Matthews-Olson (FMO) light-harvesting complex. We show that an idealised transport model for multiple minima coupled to a narrow-band phonon can transport energy with arbitrarily high efficiency. PMID:24980547

  5. Artificial Intelligence in Business: Technocrat Jargon or Quantum Leap?

    ERIC Educational Resources Information Center

    Burford, Anna M.; Wilson, Harold O.

    This paper addresses the characteristics and applications of artificial intelligence (AI) as a subsection of computer science, and briefly describes the most common types of AI programs: expert systems, natural language, and neural networks. Following a brief presentation of the historical background, the discussion turns to an explanation of how…

  6. A Quantum Leap : Innovation in the Evolving Digital Library

    SciTech Connect

    Luce, R. E.

    2002-01-01

    It is an honor to give the Lazerow lecture tonight and to discuss digital library developments from the perspective of working at a national laboratory. Tonight I would like to consider what lies ahead given the evolution in scientific research, how that impacts the development of digital libraries, and finally, look at some of the challenges ahead of us. I'm particularly interested in giving this talk tonight because it provides an opportunity to talk to those of you who are students. You represent the next generation of professionals who will to confront some of the challenges I will outline tonight, as well as those of you who are the mentors and teachers of the next generation. The two roles are pivotal in terms of the challenges on the horizon. Most of you are familiar with the information literacy challenges we face as a nation. As the library director of a national laboratory's science library, I am also acutely aware that we also have a real problem with the lack of scientific literacy within the general population in this country and it has a corresponding impact on decision-making in a technological society. Those of us engaged in supporting scientific research, or just generally interested, should be concerned about this fact because science and technology are at the foundation of our success as a nation in the 20th Century. For our nation to continue to be successful in the 21st Century, we will need to improve on the state of scientific literacy.

  7. Carbon nanotube enables quantum leap in oil recovery

    SciTech Connect

    Ito, Masaei; Noguchi, Toru; Ueki, Hiroyuki; Takeuchi, Kenji; Endo, Morinobu

    2011-09-15

    Highlights: {yields} A novel sealing material based on a CNT-rubber composite was developed for use in oilfield. {yields} Solved the critical issues of dispersion and bonding on CNT-rubber composites. {yields} Clarified the mechanism of nano network reinforcement using test data. -- Abstract: A novel sealing material based on a CNT-rubber composite was developed for use in producing oil from deep, hot reservoirs. Fully dispersed and better bondings are two critical advances that enhance its mechanical properties. Authors solved the critical issues and clarified the mechanism of nano network reinforcement using test data. The resulting sealing solution underwent field tests around the world, and it marks a rare success story for the use of nanotechnology in the oilfield.

  8. Polariton Resonances for Ultrastrong Coupling Cavity Optomechanics in GaAs/AlAs Multiple Quantum Wells.

    PubMed

    Jusserand, B; Poddubny, A N; Poshakinskiy, A V; Fainstein, A; Lemaitre, A

    2015-12-31

    Polariton-mediated light-sound interaction is investigated through resonant Brillouin scattering experiments in GaAs/AlAs multiple-quantum wells. Photoelastic coupling enhancement at exciton-polariton resonance reaches 10(5) at 30 K as compared to a typical bulk solid room temperature transparency value. When applied to GaAs based cavity optomechanical nanodevices, this result opens the path to huge displacement sensitivities and to ultrastrong coupling regimes in cavity optomechanics with couplings g(0) in the range of 100 GHz. PMID:26765028

  9. Vertical transportation systems embedded on shuffled frog leaping algorithm for manufacturing optimisation problems in industries.

    PubMed

    Aungkulanon, Pasura; Luangpaiboon, Pongchanun

    2016-01-01

    Response surface methods via the first or second order models are important in manufacturing processes. This study, however, proposes different structured mechanisms of the vertical transportation systems or VTS embedded on a shuffled frog leaping-based approach. There are three VTS scenarios, a motion reaching a normal operating velocity, and both reaching and not reaching transitional motion. These variants were performed to simultaneously inspect multiple responses affected by machining parameters in multi-pass turning processes. The numerical results of two machining optimisation problems demonstrated the high performance measures of the proposed methods, when compared to other optimisation algorithms for an actual deep cut design. PMID:27386280

  10. Approaches to Future Generation Photovoltaics and Solar Fuels: Multiple Exciton Generation in Quantum Dots, Quantum Dot Arrays, Molecular Singlet Fission, and Quantum Dot Solar Cells

    SciTech Connect

    Nozik, A. J.; Beard, M. C.; Johnson, J. C.; Hanna, M. C.; Luther, J. M.; Midgett, A.; Semonin, O.; Michel, J.

    2012-01-01

    One potential, long-term approach to more efficient future generation solar cells is to utilize the unique properties of quantum dots (QDs) and unique molecular chromophores to control the relaxation pathways of excited states to produce enhanced conversion efficiency through efficient multiple electron-hole pair generation from single photons . We have observed efficient multiple exciton generation (MEG) in PbSe, PbS, PbTe, and Si QDs and efficient singlet fission (SF) in molecules that satisfy specific requirements for their excited state energy level structure to achieve carrier multiplication. We have studied MEG in close-packed QD arrays where the QDs are electronically coupled in the films and thus exhibit good transport while still maintaining quantization and MEG. We have developed simple, all-inorganic QD solar cells that produce large short-circuit photocurrents and power conversion efficiencies in the 3-5% range via both nanocrystalline Schottky junctions and nanocrystalline p-n junctions. These solar cells also show QYs for photocurrent that exceed 100% in the photon energy regions where MEG is possible; the photocurrent MEG QYs as a function of photon energy match those determined via time-resolved spectroscopy. We have also observed very efficient SF in thin films of molecular crystals of 1,3 diphenylisobenzofuran with quantum yields of 200% at the optimum SF threshold of 2Eg (HOMO-LUMO for S{sub 0}-S{sub 1}), reflecting the creation of two excited triplet states from the first excited singlet state. Various possible configurations for novel solar cells based on MEG in QDs and SF in molecules that could produce high conversion efficiencies will be presented, along with progress in developing such new types of solar cells. Recent analyses of the effect of MEG or SF combined with solar concentration on the conversion efficiency of solar cells will be discussed.

  11. Gain properties of doped GaAs/AlGaAs multiple quantum well avalanche photodiode structures

    NASA Technical Reports Server (NTRS)

    Menkara, H. M.; Wagner, B. K.; Summers, C. J.

    1995-01-01

    A comprehensive characterization has been made of the static and dynamical response of conventional and multiple quantum well (MQW) avalanche photodiodes (APDs). Comparison of the gain characteristics at low voltages between the MQW and conventional APDs show a direct experimental confirmation of a structure-induced carrier multiplication due to interband impact ionization. Similar studies of the bias dependence of the excess noise characteristics show that the low-voltage gain is primarily due to electron ionization in the MQW-APDS, and to both electron and hole ionization in the conventional APDS. For the doped MQW APDS, the average gain per stage was calculated by comparing gain data with carrier profile measurements, and was found to vary from 1.03 at low bias to 1.09 near avalanche breakdown.

  12. Multiple Quantum NMR Investigations of Structure- Property Relationships in Synthetic and Aged Silicone Elastomers

    SciTech Connect

    Maxwell, R; Gjersing, E; Chinn, S; Herberg, J; Eastwood, E; Bowen, D; Stephens, T

    2006-09-27

    Complex engineering elastomeric materials are often characterized by a complex network structure obtained by crosslinking network chains with multiple chain lengths. Further, these networks are commonly filled with thixotropic reinforcing agents such as SiO{sub 2} or carbon black. Degradation of such materials often occurs via mechanisms that alter the fundamental network structure. In order to understand the effects of modifications of network structure and filler-polymer interaction on component performance, a series of model compounds have been studied by {sup 1}H multiple quantum NMR analysis and traditional mechanical property assessments. The {sup 1}H NMR data provides insight into the distribution of segmental dynamics that reveals insight into the changes in mechanical properties.

  13. Dynamic light-matter coupling across multiple spatial dimensions in a quantum dots-in-a-well heterostructure

    SciTech Connect

    Prasankumar, Rohit P; Taylor, Antoinette J; Chow, W W; Attaluri, R S; Shenoi, R

    2009-01-01

    Semiconductor heterostructures incorporating multiple degrees of spatial confinement have recently attracted substantial interest for photonic applications. One example is the quantum dots-in-a-well (DWELL) heterostructure, consisting of zero-dimensional quantum dots embedded in a two-dimensional quantum well and surrounded by three-dimensional bulk material. This structure offers several advantages over conventional photonic devices while providing a model system for the study of light-matter interactions across multiple spatial dimensions. Here, we use ultrafast differential transmission spectroscopy2 to temporally and spectrally resolve density-dependent carrier dynamics in a DWELL heterostructure. We observe excitation-dependent shifts of the quantum dot energy levels at low densities, while at high densities we observe an anomalous induced absorption at the quantum dot excited state that is correlated to quantum well population dynamics. These studies of density-dependent light-matter interactions across multiple coupled spatial dimensions provide clues to the underlying physics governing quantum dot properties, with important implications for DWELL-based photonic devices.

  14. Quantum confinement in semiconductor nanofilms: Optical spectra and multiple exciton generation

    NASA Astrophysics Data System (ADS)

    Khmelinskii, Igor; Makarov, Vladimir I.

    2016-04-01

    We report optical absorption and photoluminescence (PL) spectra of Si and SnO2 nanocrystalline films in the UV-vis-NIR range, featuring discrete bands resulting from transverse quantum confinement, observed in the optical spectra of nanofilms for the first time ever. The film thickness ranged from 3.9 to 12.2 nm, depending on the material. The results are interpreted within the particle-in-a-box model, with infinite walls. The calculated values of the effective electron mass are independent on the film thickness and equal to 0.17mo (Si) and 0.21mo (SnO2), with mo the mass of the free electron. The second calculated model parameter, the quantum number n of the HOMO (valence band), was also thickness-independent: 8.00 (Si) and 7.00 (SnO2). The transitions observed in absorption all start at the level n and correspond to Δn = 1, 2, 3, …. The photoluminescence bands exhibit large Stokes shifts, shifting to higher energies with increased excitation energy. In effect, nanolayers of Si, an indirect-gap semiconductor, behave as a direct-gap semiconductor, as regards the transverse-quantized level system. A prototype Si-SnO2 nanofilm photovoltaic cell demonstrated photoelectron quantum yields achieving 2.5, showing clear evidence of multiple exciton generation, for the first time ever in a working nanofilm device.

  15. Optical Study of Exciton Localization Phenomena in Semimagnetic Semiconductors and Their Multiple Quantum Wells.

    NASA Astrophysics Data System (ADS)

    Zhang, Xi-Cheng

    1986-12-01

    The results of picosecond photomodulation and photoluminescence spectroscopies in novel II-VI semimagnetic semiconductors Cd(,1-x)Mn(,x)Te (x < 0.50) bulk and multiple quantum well (MQW) samples are presented. By studying excitonic emission near the bandgap of semiconductors, it is found that excitons can be confined or localized by alloy potential fluctuations, quantum well confinements, local strain of heterointerfaces and energy self-trapping. Steady-state photoluminescence in undoped CdTe/Cd(,1 -x)Mn(,x)Te MQW samples at low temperature shows intense excitonic emission where their radiative quantum efficiencies are two or three orders of magnitude larger than that of the high quality CdTe bulk samples. Time-resolved photoluminescence shows that the excitons have relatively short lifetime (500 picosecond). High quantum efficiency and short exciton lifetime suggest that the radiative recombination is a dominating factor in the excitonic-decay processes in the MQW samples. In general, excitonic emission energies in CdMnTe MQW samples are lower than the free exciton energies (typically 20-40 meV lower as noted from the reflectance spectra). The behavior of these emissions under an external magnetic field (up to 36 tesla) shows that excitons prefer to be localized at the heterointerfaces rather than at the center of the wells in MQW samples. The kinetics of the free and the heterointerface localized excitons in the Cd(,1-x)Mn(,x)Te/Cd(,1-y)Mn(,y)Te MQW samples have been studied by using a transient photoluminescence technique. Exciton lifetimes have been measured in several samples with various quantum well widths. The trapping time of the free exciton localized at the interface has been observed in the wide quantum well samples. The average energy loss rate of localized excitons has been calculated. The resonance excitation spectra of steady-state and transient luminescence show that the exciton spectra are spatially inhomogeneously broadened. An external magnetic

  16. Upper bounds on the error probabilities and asymptotic error exponents in quantum multiple state discrimination

    SciTech Connect

    Audenaert, Koenraad M. R.; Mosonyi, Milán

    2014-10-01

    We consider the multiple hypothesis testing problem for symmetric quantum state discrimination between r given states σ₁, …, σ{sub r}. By splitting up the overall test into multiple binary tests in various ways we obtain a number of upper bounds on the optimal error probability in terms of the binary error probabilities. These upper bounds allow us to deduce various bounds on the asymptotic error rate, for which it has been hypothesized that it is given by the multi-hypothesis quantum Chernoff bound (or Chernoff divergence) C(σ₁, …, σ{sub r}), as recently introduced by Nussbaum and Szkoła in analogy with Salikhov's classical multi-hypothesis Chernoff bound. This quantity is defined as the minimum of the pairwise binary Chernoff divergences min{sub jquantum Chernoff bound is always achieved.

  17. Addressable single-spin control in multiple quantum dots coupled in series

    NASA Astrophysics Data System (ADS)

    Nakajima, Takashi

    2015-03-01

    Electron spin in semiconductor quantum dots (QDs) is promising building block of quantum computers for its controllability and potential scalability. Recent experiments on GaAs QDs have demonstrated necessary ingredients of universal quantum gate operations: single-spin rotations by electron spin resonance (ESR) which is virtually free from the effect of nuclear spin fluctuation, and pulsed control of two-spin entanglement. The scalability of this architecture, however, has remained to be demonstrated in the real world. In this talk, we will present our recent results on implementing single-spin-based qubits in triple, quadruple, and quintuple QDs based on a series coupled architecture defined by gate electrodes. Deterministic initialization of individual spin states and spin-state readout were performed by the pulse operation of detuning between two neighboring QDs. The spin state was coherently manipulated by ESR, where each spin in different QDs is addressed by the shift of the resonance frequency due to the inhomogeneous magnetic field induced by the micro magnet deposited on top of the QDs. Control of two-spin entanglement was also demonstrated. We will discuss key issues for implementing quantum algorithms based on three or more qubits, including the effect of a nuclear spin bath, single-shot readout fidelity, and tuning of multiple qubit devices. Our approaches to these issues will be also presented. This research is supported by Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST) from JSPS, IARPA project ``Multi-Qubit Coherent Operations'' through Copenhagen University, and Grant-in-Aid for Scientific Research from JSPS.

  18. Theory of multiple quantum dot formation in strained-layer heteroepitaxy

    NASA Astrophysics Data System (ADS)

    Du, Lin; Maroudas, Dimitrios

    2016-07-01

    We develop a theory for the experimentally observed formation of multiple quantum dots (QDs) in strained-layer heteroepitaxy based on surface morphological stability analysis of a coherently strained epitaxial thin film on a crystalline substrate. Using a fully nonlinear model of surface morphological evolution that accounts for a wetting potential contribution to the epitaxial film's free energy as well as surface diffusional anisotropy, we demonstrate the formation of multiple QD patterns in self-consistent dynamical simulations of the evolution of the epitaxial film surface perturbed from its planar state. The simulation predictions are supported by weakly nonlinear analysis of the epitaxial film surface morphological stability. We find that, in addition to the Stranski-Krastanow instability, long-wavelength perturbations from the planar film surface morphology can trigger a nonlinear instability, resulting in the splitting of a single QD into multiple QDs of smaller sizes, and predict the critical wavelength of the film surface perturbation for the onset of the nonlinear tip-splitting instability. The theory provides a fundamental interpretation for the observations of "QD pairs" or "double QDs" and other multiple QDs reported in experimental studies of epitaxial growth of semiconductor strained layers and sets the stage for precise engineering of tunable-size nanoscale surface features in strained-layer heteroepitaxy by exploiting film surface nonlinear, pattern forming phenomena.

  19. Binomial distribution based τ-leap accelerated stochastic simulation

    NASA Astrophysics Data System (ADS)

    Chatterjee, Abhijit; Vlachos, Dionisios G.; Katsoulakis, Markos A.

    2005-01-01

    Recently, Gillespie introduced the τ-leap approximate, accelerated stochastic Monte Carlo method for well-mixed reacting systems [J. Chem. Phys. 115, 1716 (2001)]. In each time increment of that method, one executes a number of reaction events, selected randomly from a Poisson distribution, to enable simulation of long times. Here we introduce a binomial distribution τ-leap algorithm (abbreviated as BD-τ method). This method combines the bounded nature of the binomial distribution variable with the limiting reactant and constrained firing concepts to avoid negative populations encountered in the original τ-leap method of Gillespie for large time increments, and thus conserve mass. Simulations using prototype reaction networks show that the BD-τ method is more accurate than the original method for comparable coarse-graining in time.

  20. Taking Immersive VR Leap in Training of Landing Signal Officers.

    PubMed

    Greunke, Larry; Sadagic, Amela

    2016-04-01

    A major training device used to train all Landing Signal Officers (LSOs) for several decades has been the Landing Signal Officer Trainer, Device 2H111. This simulator, located in Oceana, VA, is contained within a two story tall room; it consists of several large screens and a physical rendition of the actual instruments used by LSOs in their operational environment. The young officers who serve in this specialty will typically encounter this system for only a short period of formal instruction (six one-hour long sessions), leaving multiple gaps in training. While experience with 2H111 is extremely valuable for all LSO officers, the amount of time they can spend using this training device is undeniably too short. The need to provide LSOs with an unlimited number of training opportunities unrestricted by location and time, married with recent advancements in commercial off the shelf (COTS) immersive technologies, provided an ideal platform to create a lightweight training solution that would fill those gaps and extend beyond the capabilities currently offered in the 2H111 simulator. This paper details our efforts on task analysis, surveying of user domain, mapping of 2H111 training capabilities to new prototype system to ensure its support of major training objectives of 2H111, design and development of prototype training system, and a feasibility study that included tests of technical system performance and informal testing with trainees at the LSO Schoolhouse. The results achieved in this effort indicate that the time for LSO training to make the leap to immersive VR has decidedly come. PMID:26780800

  1. Investigation of Photoluminescence and Photocurrent in InGaAsP/InP Strained Multiple Quantum Well Heterostructures

    NASA Technical Reports Server (NTRS)

    Raisky, O. Y.; Wang, W. B.; Alfano, R. R.; Reynolds, C. L., Jr.; Swaminathan, V.

    1997-01-01

    Multiple quantum well InGaAsP/InP p-i-n laser heterostructures with different barrier thicknesses have been investigated using photoluminescence (PL) and photocurrent (PC) measurements. The observed PL spectrum and peak positions are in good agreement with those obtained from transfer matrix calculations. Comparing the measured quantum well PC with calculated carrier escape rates, the photocurrent changes are found to be governed by the temperature dependence of the electron escape time.

  2. Multiple functional UV devices based on III-Nitride quantum wells for biological warfare agent detection

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Savage, Susan; Persson, Sirpa; Noharet, Bertrand; Junique, Stéphane; Andersson, Jan Y.; Liuolia, Vytautas; Marcinkevicius, Saulius

    2009-02-01

    We have demonstrated surface normal detecting/filtering/emitting multiple functional ultraviolet (UV) optoelectronic devices based on InGaN/GaN, InGaN/AlGaN and AlxGa1-xN/AlyGa1-yN multiple quantum well (MQW) structures with operation wavelengths ranging from 270 nm to 450 nm. Utilizing MQW structure as device active layer offers a flexibility to tune its long cut-off wavelength in a wide UV range from solar-blind to visible by adjusting the well width, well composition and barrier height. Similarly, its short cut-off wavelength can be adjusted by using a GaN or AlGaN block layer on a sapphire substrate when the device is illuminated from its backside, which further provides an optical filtering effect. When a current injects into the device under forward bias the device acts as an UV light emitter, whereas the device performs as a typical photodetector under reverse biases. With applying an alternating external bias the device might be used as electroabsorption modulator due to quantum confined Stark effect. In present work fabricated devices have been characterized by transmission/absorption spectra, photoresponsivity, electroluminescence, and photoluminescence measurements under various forward and reverse biases. The piezoelectric effect, alloy broadening and Stokes shift between the emission and absorption spectra in different InGaN- and AlGaN-based QW structures have been investigated and compared. Possibilities of monolithic or hybrid integration using such multiple functional devices for biological warfare agents sensing application have also be discussed.

  3. Optically induced excitonic electroabsorption in a periodically delta-doped InGaAs/GaAs multiple quantum well structure

    NASA Technical Reports Server (NTRS)

    Larsson, A.; Maserjian, J.

    1991-01-01

    Large optically induced Stark shifts have been observed in a periodically delta-doped InGaAs/GaAs multiple quantum well structure. With an excitation intensity of 10 mW/sq cm, an absolute quantum well absorption change of 7000/cm was measured with a corresponding differential absorption change as high as 80 percent. The associated maximum change in the quantum well refractive index is 0.04. This material is promising for device development for all-optical computing and signal processing.

  4. The rigorous stochastic matrix multiplication scheme for the calculations of reduced equilibrium density matrices of open multilevel quantum systems

    NASA Astrophysics Data System (ADS)

    Chen, Xin

    2014-04-01

    Understanding the roles of the temporary and spatial structures of quantum functional noise in open multilevel quantum molecular systems attracts a lot of theoretical interests. I want to establish a rigorous and general framework for functional quantum noises from the constructive and computational perspectives, i.e., how to generate the random trajectories to reproduce the kernel and path ordering of the influence functional with effective Monte Carlo methods for arbitrary spectral densities. This construction approach aims to unify the existing stochastic models to rigorously describe the temporary and spatial structure of Gaussian quantum noises. In this paper, I review the Euclidean imaginary time influence functional and propose the stochastic matrix multiplication scheme to calculate reduced equilibrium density matrices (REDM). In addition, I review and discuss the Feynman-Vernon influence functional according to the Gaussian quadratic integral, particularly its imaginary part which is critical to the rigorous description of the quantum detailed balance. As a result, I establish the conditions under which the influence functional can be interpreted as the average of exponential functional operator over real-valued Gaussian processes for open multilevel quantum systems. I also show the difference between the local and nonlocal phonons within this framework. With the stochastic matrix multiplication scheme, I compare the normalized REDM with the Boltzmann equilibrium distribution for open multilevel quantum systems.

  5. The rigorous stochastic matrix multiplication scheme for the calculations of reduced equilibrium density matrices of open multilevel quantum systems

    SciTech Connect

    Chen, Xin

    2014-04-21

    Understanding the roles of the temporary and spatial structures of quantum functional noise in open multilevel quantum molecular systems attracts a lot of theoretical interests. I want to establish a rigorous and general framework for functional quantum noises from the constructive and computational perspectives, i.e., how to generate the random trajectories to reproduce the kernel and path ordering of the influence functional with effective Monte Carlo methods for arbitrary spectral densities. This construction approach aims to unify the existing stochastic models to rigorously describe the temporary and spatial structure of Gaussian quantum noises. In this paper, I review the Euclidean imaginary time influence functional and propose the stochastic matrix multiplication scheme to calculate reduced equilibrium density matrices (REDM). In addition, I review and discuss the Feynman-Vernon influence functional according to the Gaussian quadratic integral, particularly its imaginary part which is critical to the rigorous description of the quantum detailed balance. As a result, I establish the conditions under which the influence functional can be interpreted as the average of exponential functional operator over real-valued Gaussian processes for open multilevel quantum systems. I also show the difference between the local and nonlocal phonons within this framework. With the stochastic matrix multiplication scheme, I compare the normalized REDM with the Boltzmann equilibrium distribution for open multilevel quantum systems.

  6. Encouraging School Enrollment and Attendance among Teenage Parents on Welfare: Early Impacts of Ohio's LEAP Program.

    ERIC Educational Resources Information Center

    Wood, Robert G.; And Others

    1995-01-01

    Presents interim findings from an impact analysis of Ohio's Learning, Earning, and Parenting (LEAP) Program. LEAP is a statewide program designed to encourage school attendance among pregnant and parenting teens on welfare. Suggests that LEAP has succeeded in its primary short-term goal of increasing the school enrollment and attendance of teen…

  7. Multiple quantum nuclear magnetic resonance of solids: A cautionary note for data analysis and interpretation

    NASA Astrophysics Data System (ADS)

    Lacelle, Serge; Hwang, Son-Jong; Gerstein, Bernard C.

    1993-12-01

    The conventional method of data analysis and interpretation of time-resolved multiple quantum (MQ) nuclear magnetic resonance (NMR) spectra of solids is closely examined. Intensity profiles of experimental 1H MQ NMR spectra of polycrystalline adamantane and hexamethylbenzene serve to test the Gaussian statistical model approach. Consequences of this model are explored with a least-squares fitting procedure, transformation of data to yield linear plots, and a scaling analysis. Non-Gaussian behavior of the MQ NMR spectral intensity profiles, as a function of order of coherences, is demonstrated with all these methods of analysis. A heuristic argument, based on the multiplicative properties of dipolar coupling constants in the equation of motion of the density operator, leads to the prediction of exponentially decaying MQ NMR spectral intensity profiles. Scaling analysis and semilog plots of experimental time-resolved MQ NMR spectra of adamantane and hexamethylbenzene support this deduction. Dynamical scale invariance in the growth process of multiple spin coherences is revealed with this new approach. The validity of spin counting in solids with MQ NMR is discussed in light of the present results.

  8. Multiple quantum nuclear magnetic resonance of solids: A cautionary note for data analysis and interpretation

    SciTech Connect

    Lacelle, S. ); Hwang, S. ); Gerstein, B.C. )

    1993-12-01

    The conventional method of data analysis and interpretation of time-resolved multiple quantum (MQ) nuclear magnetic resonance (NMR) spectra of solids is closely examined. Intensity profiles of experimental [sup 1]H MQ NMR spectra of polycrystalline adamantane and hexamethylbenzene serve to test the Gaussian statistical model approach. Consequences of this model are explored with a least-squares fitting procedure, transformation of data to yield linear plots, and a scaling analysis. Non-Gaussian behavior of the MQ NMR spectral intensity profiles, as a function of order of coherences, is demonstrated with all these methods of analysis. A heuristic argument, based on the multiplicative properties of dipolar coupling constants in the equation of motion of the density operator, leads to the prediction of exponentially decaying MQ NMR spectral intensity profiles. Scaling analysis and semilog plots of experimental time-resolved MQ NMR spectra of adamantane and hexamethylbenzene support this deduction. Dynamical scale invariance in the growth process of multiple spin coherences is revealed with this new approach. The validity of spin counting in solids with MQ NMR is discussed in light of the present results.

  9. Multi-objective dynamic population shuffled frog-leaping biclustering of microarray data

    PubMed Central

    2012-01-01

    Background Multi-objective optimization (MOO) involves optimization problems with multiple objectives. Generally, theose objectives is used to estimate very different aspects of the solutions, and these aspects are often in conflict with each other. MOO first gets a Pareto set, and then looks for both commonality and systematic variations across the set. For the large-scale data sets, heuristic search algorithms such as EA combined with MOO techniques are ideal. Newly DNA microarray technology may study the transcriptional response of a complete genome to different experimental conditions and yield a lot of large-scale datasets. Biclustering technique can simultaneously cluster rows and columns of a dataset, and hlep to extract more accurate information from those datasets. Biclustering need optimize several conflicting objectives, and can be solved with MOO methods. As a heuristics-based optimization approach, the particle swarm optimization (PSO) simulate the movements of a bird flock finding food. The shuffled frog-leaping algorithm (SFL) is a population-based cooperative search metaphor combining the benefits of the local search of PSO and the global shuffled of information of the complex evolution technique. SFL is used to solve the optimization problems of the large-scale datasets. Results This paper integrates dynamic population strategy and shuffled frog-leaping algorithm into biclustering of microarray data, and proposes a novel multi-objective dynamic population shuffled frog-leaping biclustering (MODPSFLB) algorithm to mine maximum bicluesters from microarray data. Experimental results show that the proposed MODPSFLB algorithm can effectively find significant biological structures in terms of related biological processes, components and molecular functions. Conclusions The proposed MODPSFLB algorithm has good diversity and fast convergence of Pareto solutions and will become a powerful systematic functional analysis in genome research. PMID:22759615

  10. Enhanced carrier multiplication in engineered quasi-type-II quantum dots.

    PubMed

    Cirloganu, Claudiu M; Padilha, Lazaro A; Lin, Qianglu; Makarov, Nikolay S; Velizhanin, Kirill A; Luo, Hongmei; Robel, Istvan; Pietryga, Jeffrey M; Klimov, Victor I

    2014-01-01

    One process limiting the performance of solar cells is rapid cooling (thermalization) of hot carriers generated by higher-energy solar photons. In principle, the thermalization losses can be reduced by converting the kinetic energy of energetic carriers into additional electron-hole pairs via carrier multiplication (CM). While being inefficient in bulk semiconductors this process is enhanced in quantum dots, although not sufficiently high to considerably boost the power output of practical devices. Here we demonstrate that thick-shell PbSe/CdSe nanostructures can show almost a fourfold increase in the CM yield over conventional PbSe quantum dots, accompanied by a considerable reduction of the CM threshold. These structures enhance a valence-band CM channel due to effective capture of energetic holes into long-lived shell-localized states. The attainment of the regime of slowed cooling responsible for CM enhancement is indicated by the development of shell-related emission in the visible observed simultaneously with infrared emission from the core. PMID:24938462

  11. Quantization of Relativistic action in multiples of Planck's (constant) Quantum of action

    NASA Astrophysics Data System (ADS)

    Estakhr, Ahmad Reza

    2013-04-01

    Quantization of Relativistic action in multiples of Planck's (constant) Quantum of action. a new Postulate for special relativity theory. The third Postulate of special relativity: Relativistic action is limited to Planck's Quantum of action. S=^tftiLdt=n.h n Z. where the L=-moc^2^amp;-1, is the Lagrangian. action for a point particle in a curved spacetime. S =-Mc ds = -Mc ξ0^ξ1√gμν(x)dx^μ(ξ)dξ dx^ν(ξ)dξ dξ=nh Quantization of Nambu-Goto action: S = -12πα' d^2 σ√X ^2 - X'^2 = nh n Z. point: The action S= - E0 δτ of a relativistic particle is minus the rest energy E0=m0c^2 times the change δτ=τf-τi in proper time. Single relativistic particle When relativistic effects are significant, the action of a point particle of mass ``m'' travelling a world line ``C'' parametrized by the proper time τ is :S = - moc^2 C,τ. If instead, the particle is parametrized by the coordinate time ''t'' of the particle and the coordinate time ranges from t1 to t2, then the action becomes :t1^t2L ,t where the Lagrangian is :L = - moc^2 √1 - v^2c^2.

  12. Enhanced carrier multiplication in engineered quasi-type-II quantum dots

    PubMed Central

    Cirloganu, Claudiu M.; Padilha, Lazaro A.; Lin, Qianglu; Makarov, Nikolay S.; Velizhanin, Kirill A.; Luo, Hongmei; Robel, Istvan; Pietryga, Jeffrey M.; Klimov, Victor I.

    2014-01-01

    One process limiting the performance of solar cells is rapid cooling (thermalization) of hot carriers generated by higher-energy solar photons. In principle, the thermalization losses can be reduced by converting the kinetic energy of energetic carriers into additional electron-hole pairs via carrier multiplication (CM). While being inefficient in bulk semiconductors this process is enhanced in quantum dots, although not sufficiently high to considerably boost the power output of practical devices. Here we demonstrate that thick-shell PbSe/CdSe nanostructures can show almost a fourfold increase in the CM yield over conventional PbSe quantum dots, accompanied by a considerable reduction of the CM threshold. These structures enhance a valence-band CM channel due to effective capture of energetic holes into long-lived shell-localized states. The attainment of the regime of slowed cooling responsible for CM enhancement is indicated by the development of shell-related emission in the visible observed simultaneously with infrared emission from the core. PMID:24938462

  13. Multiple exciton generation and ultrafast exciton dynamics in HgTe colloidal quantum dots.

    PubMed

    Al-Otaify, Ali; Kershaw, Stephen V; Gupta, Shuchi; Rogach, Andrey L; Allan, Guy; Delerue, Christophe; Binks, David J

    2013-10-21

    The investigation of sub-nanosecond exciton dynamics in HgTe colloidal quantum dots using ultrafast transient absorption spectroscopy is reported. The transmittance change spectrum acquired immediately after pumping is dominated by a bleach blue-shifted by ~200-300 nm from the photoluminescent emission band. Comparison with a tight-binding model of the electronic structure allows this feature to be attributed to the filling of band edge states. The form of the pump-induced transmittance transients is dependent on the excitation rate and the rate of sample stirring. For moderate pumping of stirred samples, the transmittance transients are well-described by a mono-exponential decay associated with biexciton recombination, with a lifetime of 49 ± 2 ps. For samples that are strongly-pumped or unstirred, the decay becomes bi-exponential in form, indicating that trap-related recombination has become significant. We also present a new analysis that enables fractional transmittance changes to be related to band edge occupation for samples with arbitrary optical density at the pump wavelength. This allows us to identify the occurrence of multiple exciton generation, which results in a quantum yield of 1.36 ± 0.04 for a photon energy equivalent to 3.1 times the band gap, in good agreement with the results of the model. PMID:23999734

  14. Deep-Etched Photonic Crystal Laser Structure of InP-Based Asymmetric Multiple Quantum Wells

    NASA Astrophysics Data System (ADS)

    Bai, Jiun-Cheng; Chen, Chun-Yang; Chiu, Chien-Liang; Hsin, Jin-Yuan; Lin, Eu-Ying; Lay, Tsong-Sheng

    2009-06-01

    A photonic crystal (PhC) laser structure was fabricated on an InP substrate. The wafer consists of a p-i-n laser epitaxial structure using asymmetric InGaAs/InGaAlAs multiple quantum wells as the active layer. The epistructure has a broadband electroluminescence spectrum centered at an optical wavelength (λ) = 1538 nm with a 3 dB bandwidth = 115 nm. The deep-etched PhC laser structure was achieved by inductively coupled plasma dry etching using a Cl2 + SiCl4 + CH4 mixture. The room-temperature optical spectrum of the PhC laser structure shows three sharp emission peaks at λ= 1505, 1535, and 1551 nm, which correspond to the resonant modes of the PhC.

  15. Phase separation in InGaN/GaN multiple quantum wells

    SciTech Connect

    McCluskey, M.D.; Romano, L.T.; Krusor, B.S.; Bour, D.P.; Johnson, N.M.; Brennan, S.

    1998-04-01

    Evidence is presented for phase separation in In{sub 0.27}Ga{sub 0.73}N/GaN multiple quantum wells. After annealing for 40 h at a temperature of 950{degree}C, the absorption threshold at 2.95 eV is replaced by a broad peak at 2.65 eV. This peak is attributed to the formation of In-rich InGaN phases in the active region. X-ray diffraction measurements show a shift in the diffraction peaks toward GaN, consistent with the formation of an In-poor phase. A diffraction peak corresponding to an In-rich phase is also present in the annealed material. Nanoscale In-rich InGaN precipitates are observed by transmission electron microscopy and energy dispersive x-ray chemical analysis. {copyright} {ital 1998 American Institute of Physics.}

  16. Exciton effects in the index of refraction of multiple quantum wells and superlattices

    NASA Technical Reports Server (NTRS)

    Kahen, K. B.; Leburton, J. P.

    1986-01-01

    Theoretical calculations of the index of refraction of multiple quantum wells and superlattices are presented. The model incorporates both the bound and continuum exciton contributions for the gamma region transitions. In addition, the electronic band structure model has both superlattice and bulk alloy properties. The results indicate that large light-hole masses, i.e., of about 0.23, produced by band mixing effects, are required to account for the experimental data. Furthermore, it is shown that superlattice effects rapidly decrease for energies greater than the confining potential barriers. Overall, the theoretical results are in very good agreement with the experimental data and show the importance of including exciton effects in the index of refraction.

  17. Probing degradation in complex engineering silicones by 1H multiple quantum NMR

    SciTech Connect

    Maxwell, R S; Chinn, S C; Giuliani, J; Herberg, J L

    2007-09-05

    Static {sup 1}H Multiple Quantum Nuclear Magnetic Resonance (MQ NMR) has recently been shown to provide detailed insight into the network structure of pristine silicon based polymer systems. The MQ NMR method characterizes the residual dipolar couplings of the silicon chains that depend on the average molecular weight between physical or chemical constraints. Recently, we have employed MQ NMR methods to characterize the changes in network structure in a series of complex silicone materials subject to numerous degradation mechanisms, including thermal, radiative, and desiccative. For thermal degradation, MQ NMR shows that a combination of crosslinking due to post-curing reactions as well as random chain scissioning reactions occurs. For radiative degradation, the primary mechanisms are via crosslinking both in the network and at the interface between the polymer and the inorganic filler. For samples stored in highly desiccating environments, MQ NMR shows that the average segmental dynamics are slowed due to increased interactions between the filler and the network polymer chains.

  18. Bound states for multiple Dirac-δ wells in space-fractional quantum mechanics

    SciTech Connect

    Tare, Jeffrey D. Esguerra, Jose Perico H.

    2014-01-15

    Using the momentum-space approach, we obtain bound states for multiple Dirac-δ wells in the framework of space-fractional quantum mechanics. Introducing first an attractive Dirac-comb potential, i.e., Dirac comb with strength −g (g > 0), in the space-fractional Schrödinger equation we show that the problem of obtaining eigenenergies of a system with N Dirac-δ wells can be reduced to a problem of obtaining the eigenvalues of an N × N matrix. As an illustration we use the present matrix formulation to derive expressions satisfied by the bound-state energies of N = 1, 2, 3 delta wells. We also obtain the corresponding wave functions and express them in terms of Fox's H-function.

  19. Interface properties of Ga(As,P)/(In,Ga)As strained multiple quantum well structures

    NASA Astrophysics Data System (ADS)

    Samberg, Joshua P.; Alipour, Hamideh M.; Bradshaw, Geoffrey K.; Zachary Carlin, C.; Colter, Peter C.; LeBeau, James M.; El-Masry, N. A.; Bedair, Salah M.

    2013-08-01

    (In,Ga)As/Ga(As,P) multiple quantum wells (MQWs) with GaAs interface layers have been characterized with photoluminescence (PL) and high resolution scanning transmission electron microscopy (STEM). By growing (In,Ga)As/Ga(As,P) MQWs with asymmetric GaAs interfacial layers, we found that phosphorus carry-over had a profound effect on the absorption edge of the (In,Ga)As wells. Evidence for this phosphorus was initially determined via PL and then definitively proven through STEM and energy dispersive x-ray spectroscopy. We show that the phosphorus carry-over can be prevented with sufficiently thick GaAs transition layers. Preliminary results for GaAs p-i-n solar cells utilizing the improved MQWs are presented.

  20. Order dependence of the profile of the intensities of multiple-quantum coherences

    SciTech Connect

    Lundin, A. A.; Zobov, V. E.

    2015-05-15

    A modification of the widespread phenomenological model theory of multiple-quantum (MQ) nuclear magnetic resonance spectra of a single cluster of correlated spins has been developed. In contrast to the mentioned theory, the size distribution of such clusters has been consistently taken into account. To obtain the distribution, solutions for the amplitudes of the expansion in the complete set of orthogonal operators are used. Expressions specifying the dependence of the profile of the intensities of MQ coherences on their number n (order) have been obtained. The total form of the dependence has been evaluated by means of the numerical implementation of the resulting expressions. The asymptotic expressions for large n values (wings of the spectrum) have been obtained analytically by the saddle-point method. It has been shown that the dependence under study has a Gaussian central part and exponential wings. The results obtained are in agreement with the previous calculations for some model systems and existing experimental data.

  1. Passively mode-locked picosecond erbium-doped fiber lasers using multiple quantum well saturable absorbers

    NASA Astrophysics Data System (ADS)

    Hayduk, Michael J.; Krol, Mark F.; Pollock, Clifford R.; Teegarden, Kenneth J.; Wicks, Gary W.; Kaechele, Walter

    1998-07-01

    An experimental study of the mode-locking process in erbium- doped fiber lasers (EDFLs) operating at 1.55 micrometer using multiple quantum well saturable absorbers is described. The self-starting passively mode-locked laser was constructed in a Fabry-Perot configuration using the saturable absorber as the back reflector of the cavity. Picosecond pulses that ranged from 3.1 to 38.8 ps were generated using a series of saturable absorbers. The pulse widths were dependent upon the optical properties of the saturable absorber used as the mode- locking element as well as the dispersive elements contained within the cavity. The output power of the EDFL varied from 0.2 to 6.7 mW and was also dependent upon the saturable absorber used in the cavity.

  2. Characterization of strained-layer and asymmetrically coupled multiple-quantum-well electro-optic modulators

    NASA Astrophysics Data System (ADS)

    Hayduk, Michael J.; Boncek, Raymond K.; Johns, Steven T.; Norton, Douglas A.; Krol, Mark F.; McGinnis, Brian P.; Ten, Sergey Y.; Gibbs, Hyatt M.; Khitrova, Galina; Peyghambarian, Nasser; Sun, Docai C.; Towe, Elias; Leavitt, Richard P.; Pham, John T.

    1994-06-01

    Multiple quantum well (MQW) electro-optic modulators grown on both GaAs and InP substrates have been designed and characterized. Strained-layer (In,Ga)As/GaAs p-i-n diodes grown on (100) GaAs substrates were found to have a differential absorption coefficient of 3.7 X 103 cm-1 for an applied electric field of 6.6 X 104 V/cm. These devices were also grown on (110) GaAs substrates and exhibited polarization sensitive electroabsorption. In addition, InGaAs/InAlAs asymmetric coupled MQWs were designed and fabricated. Real charge transfer kinetics between the coupled MQWs were exhibited by these devices.

  3. Development and use of a quantum dot probe to track multiple yeast strains in mixed culture

    PubMed Central

    Gustafsson, Frida S.; Whiteside, Matthew D.; Jiranek, Vladimir; Durall, Daniel M.

    2014-01-01

    Saccharomyces cerevisiae strains vary in their ability to develop and enhance sensory attributes of alcoholic beverages and are often found growing in mixed strain fermentations; however, quantifying individual strains is challenging due to quantification inaccuracies, low marker longevity, and compromised kinetics. We developed a fluorescent probe, consisting of glutathione molecules conjugated to a quantum dot (QD). Two S. cerevisiae strains were incubated with different coloured probes (QD attached to glutathione molecules, QD-GSH), fermented at multiple ratios, and quantified using confocal microscopy. The QD method was compared with a culture method using microsatellite DNA analysis (MS method). Probes were taken up by an ADP1 encoded transporter, transferred from mother cell to daughter cell, detectable in strains throughout fermentation, and were non-toxic. This resulted in a new quantification method that was more accurate and efficient than the MS method. PMID:25382600

  4. Germanium-tin multiple quantum well on silicon avalanche photodiode for photodetection at two micron wavelength

    NASA Astrophysics Data System (ADS)

    Dong, Yuan; Wang, Wei; Lee, Shuh Ying; Lei, Dian; Gong, Xiao; Khai Loke, Wan; Yoon, Soon-Fatt; Liang, Gengchiau; Yeo, Yee-Chia

    2016-09-01

    We report the demonstration of a germanium-tin multiple quantum well (Ge0.9Sn0.1 MQW)-on-Si avalanche photodiode (APD) for light detection near the 2 μm wavelength range. The measured spectral response covers wavelengths from 1510 to 2003 nm. An optical responsivity of 0.33 A W‑1 is achieved at 2003 nm due to the internal avalanche gain. In addition, a thermal coefficient of breakdown voltage is extracted to be 0.053% K‑1 based on the temperature-dependent dark current measurement. As compared to the traditional 2 μm wavelength APDs, the Si-based APD is promising for its small excess noise factor, less stringent demand on temperature stability, and its compatibility with silicon technology.

  5. Analytical modeling of the resolution of photorefractive multiple quantum well spatial light modulators

    NASA Astrophysics Data System (ADS)

    Abeeluck, A. K.; Garmire, E.; Canoglu, E.

    2000-11-01

    An analytical model that includes lateral drift of photocarriers is developed to explain the experimental resolution of photorefractive multiple quantum well (MQW) devices. The model is in excellent agreement with a phenomenological fit proposed earlier and it follows a small intensity modulation model closely. Charge distributions with and without lateral drift of carriers at the MQW interfaces are assumed in order to calculate the peak diffraction efficiency as a function of grating period. An effective mobility-lifetime product is used to account for the effect of lateral drift in the MQW region. It is shown that good agreement with experiment is obtained when lateral drift is taken into account. Moreover, the model is applied to the study of design tradeoff between resolution, sensitivity, and diffraction efficiency which are all of crucial importance in the performance of practical devices.

  6. Dynamics of quantum Fisher information in a two-level system coupled to multiple bosonic reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, Guo-You; Guo, You-Neng; Zeng, Ke

    2015-11-01

    We consider the optimal parameter estimation for a two-level system coupled to multiple bosonic reservoirs. By using quantum Fisher information (QFI), we investigate the effect of the Markovian reservoirs’ number N on QFI in both weak and strong coupling regimes for a two-level system surrounded by N zero-temperature reservoirs of field modes initially in the vacua. The results show that the dynamics of QFI non-monotonically decays to zero with revival oscillations at some time in the weak coupling regime depending on the reservoirs’ parameters. Furthermore, we also present the relations between the QFI flow, the flows of energy and information, and the sign of the decay rate to gain insight into the physical processes characterizing the dynamics. Project supported by the Hunan Provincial Innovation Foundation for Postgraduate, China (Grant No. CX2014B194) and the Scientific Research Foundation of Hunan Provincial Education Department, China (Grant No. 13C039).

  7. Strain-balanced InGaN/GaN multiple quantum wells

    SciTech Connect

    Van Den Broeck, D. M.; Hosalli, A. M.; Bedair, S. M.; Bharrat, D.; El-Masry, N. A.

    2014-07-21

    InGaN/GaN multiple quantum well (MQW) structures suffer from a high amount of compressive strain in the InGaN wells and the accompanied piezoelectric field resulting in both a blue shift in emission and a reduction of emission intensity. We report the growth of In{sub x}Ga{sub 1−x}N/GaN “strain-balanced” multiple quantum wells (SBMQWs) grown on thick In{sub y}Ga{sub 1−y}N templates for x > y by metal organic chemical vapor deposition. SBMQWs consist of alternating layers of In{sub x}Ga{sub 1−x}N wells and GaN barriers under compressive and tensile stress, respectively, which have been lattice matched to a thick In{sub y}Ga{sub 1−y}N template. Growth of the In{sub y}Ga{sub 1−y}N template is also detailed in order to achieve thick, relaxed In{sub y}Ga{sub 1−y}N grown on GaN without the presence of V-grooves. When compared to conventional In{sub x}Ga{sub 1−x}N/GaN MQWs grown on GaN, the SBMQW structures exhibit longer wavelength emission and higher emission intensity for the same InN mole fraction due to a reduction in the well strain and piezoelectric field. By matching the average lattice constant of the MQW active region to the lattice constant of the In{sub y}Ga{sub 1−y}N template, essentially an infinite number of periods can be grown using the SBMQW growth method without relaxation-related effects. SBMQWs can be utilized to achieve longer wavelength emission in light emitting diodes without the use of excess indium and can be advantageous in addressing the “green gap.”.

  8. Improving the resolution in proton-detected through-space heteronuclear multiple quantum correlation NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Shen, Ming; Trébosc, J.; Lafon, O.; Pourpoint, F.; Hu, Bingwen; Chen, Qun; Amoureux, J.-P.

    2014-08-01

    Connectivities and proximities between protons and low-gamma nuclei can be probed in solid-state NMR spectroscopy using two-dimensional (2D) proton-detected heteronuclear correlation, through Heteronuclear Multiple Quantum Correlation (HMQC) pulse sequence. The indirect detection via protons dramatically enhances the sensitivity. However, the spectra are often broadened along the indirect F1 dimension by the decay of heteronuclear multiple-quantum coherences under the strong 1H-1H dipolar couplings. This work presents a systematic comparison of the performances of various decoupling schemes during the indirect t1 evolution period of dipolar-mediated HMQC (D-HMQC) experiment. We demonstrate that 1H-1H dipolar decoupling sequences during t1, such as symmetry-based schemes, phase-modulated Lee-Goldburg (PMLG) and Decoupling Using Mind-Boggling Optimization (DUMBO), provide better resolution than continuous wave 1H irradiation. We also report that high resolution requires the preservation of 1H isotropic chemical shifts during the decoupling sequences. When observing indirectly broad spectra presenting numerous spinning sidebands, the D-HMQC sequence must be fully rotor-synchronized owing to the rotor-synchronized indirect sampling and dipolar recoupling sequence employed. In this case, we propose a solution to reduce artefact sidebands caused by the modulation of window delays before and after the decoupling application during the t1 period. Moreover, we show that 1H-1H dipolar decoupling sequence using Smooth Amplitude Modulation (SAM) minimizes the t1-noise. The performances of the various decoupling schemes are assessed via numerical simulations and compared to 2D 1H-{13C} D-HMQC experiments on [U-13C]-L-histidineṡHClṡH2O at various magnetic fields and Magic Angle spinning (MAS) frequencies. Great resolution and sensitivity enhancements resulting from decoupling during t1 period enable the detection of heteronuclear correlation between aliphatic protons and

  9. Project LEAP: The Library's Educational Alternative for Preschoolers.

    ERIC Educational Resources Information Center

    Cuyahoga County Public Library, Cleveland, OH.

    This collection of materials is part of the Project LEAP (Library's Educational Alternative for Preschoolers) program which, in response to the need for quality literature in child care settings, has created 100 storytime kits, 80 puppet shows, and a model 300-title child care center library. The collection of materials is in 3 parts: (1) a…

  10. MicroRNA polymorphisms: a giant leap towards personalized medicine

    PubMed Central

    Mishra, Prasun J

    2010-01-01

    “An individual’s genetic inheritance of microRNA polymorphisms associated with disease progression, prognosis and treatment holds the key to create safer and more personalized drugs and can be a giant leap towards personalized medicine.” PMID:20428464

  11. Ready, Set, Leap![R]. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2008

    2008-01-01

    "Ready, Set, Leap!"[R] is a preschool curriculum that focuses on early reading skills, such as phonemic awareness, letter knowledge, and letter-sound correspondence, using multisensory technology that incorporates touch, sight, and sound. Teachers may adopt either a theme-based or a literature-based teaching approach, and for each approach, the…

  12. Roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well light-emitting diodes

    SciTech Connect

    Quan, Zhijue Wang, Li Zheng, Changda; Liu, Junlin; Jiang, Fengyi

    2014-11-14

    The roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well (MQW) light-emitting diodes are investigated by numerical simulation. The simulation results show that V-shaped pits cannot only screen dislocations, but also play an important role on promoting hole injection into the MQWs. It is revealed that the injection of holes into the MQW via the sidewalls of the V-shaped pits is easier than via the flat region, due to the lower polarization charge densities in the sidewall structure with lower In concentration and (10–11)-oriented semi-polar facets.

  13. Improved characteristics of ultraviolet AlGaN multiple-quantum-well laser diodes with step-graded quantum barriers close to waveguide layers

    NASA Astrophysics Data System (ADS)

    Cai, Xuefen; Li, Shuping; Kang, Junyong

    2016-09-01

    Ultraviolet AlGaN multiple-quantum-well laser diodes (LDs) with step-graded quantum barriers (QBs) instead of conventional first and last QBs close to waveguide layers are proposed. The characteristics of this type of laser diodes are numerically investigated by using the software PICS3D and it is found that the performances of these LDs are greatly improved. The results indicates that the structure with step-graded QBs exhibits higher output light power, slope efficiency and emission intensity, as well as lower series resistance and threshold current density under the identical condition, compared with conventional LD structure.

  14. Niels Bohr and the Third Quantum Revolution

    NASA Astrophysics Data System (ADS)

    Goldhaber, Alfred

    2013-04-01

    In the history of science few developments can rival the discovery of quantum mechanics, with its series of abrupt leaps in unexpected directions stretching over a quarter century. The result was a new world, even more strange than any previously imagined subterranean (or in this case submicroscopic) kingdom. Niels Bohr made the third of these leaps (following Planck and Einstein) when he realized that still-new quantum ideas were essential to account for atomic structure: Rutherford had deduced, using entirely classical-physics principles, that the positive charge in an atom is contained in a very small kernel or nucleus. This made the atom an analogue to the solar system. Classical physics implied that negatively charged electrons losing energy to electromagnetic radiation would ``dive in'' to the nucleus in a very short time. The chemistry of such tiny atoms would be trivial, and the sizes of solids made from these atoms would be much too small. Bohr initially got out of this dilemma by postulating that the angular momentum of an electron orbiting about the nucleus is quantized in integer multiples of the reduced quantum constant ℏ = h/2 π. Solving for the energy of such an orbit in equilibrium immediately produces the famous Balmer formula for the frequencies of visible light radiated from hydrogen as an electron jumps from any particular orbit to another of lower energy. There remained mysteries requiring explanation or at least exploration, including two to be discussed here: 1. Rutherford used classical mechanics to compute the trajectory and hence the scattering angle of an α particle impinging on a small positively charged target. How could this be consistent with Bohr's quantization of particle orbits about the nucleus? 2. Bohr excluded for his integer multiples of ℏ the value 0. How can one justify this exclusion, necessary to bar tiny atoms of the type mentioned earlier?

  15. Niels Bohr and the Third Quantum Revolution

    NASA Astrophysics Data System (ADS)

    Scharff Goldhaber, Alfred

    2013-04-01

    In the history of science few developments can rival the discovery of quantum mechanics, with its series of abrupt leaps in unexpected directions stretching over a quarter century. The result was a new world, even more strange than any previously imagined subterranean (or in this case submicroscopic) kingdom. Niels Bohr made the third of these leaps (following Planck and Einstein) when he realized that still-new quantum ideas were essential to account for atomic structure: Rutherford had deduced, using entirely classical-physics principles, that the positive charge in an atom is contained in a very small kernel or nucleus. This made the atom an analogue to the solar system. Classical physics implied that negatively charged electrons losing energy to electromagnetic radiation would ``dive in'' to the nucleus in a very short time. The chemistry of such tiny atoms would be trivial, and the sizes of solids made from these atoms would be much too small. Bohr initially got out of this dilemma by postulating that the angular momentum of an electron orbiting about the nucleus is quantized in integer multiples of the reduced quantum constant = h/2π. Solving for the energy of such an orbit in equilibrium immediately produces the famous Balmer formula for the frequencies of visible light radiated from hydrogen as an electron jumps from any particular orbit to another of lower energy. There remained mysteries requiring explanation or at least exploration, including two to be discussed here: 1. Rutherford used classical mechanics to compute the trajectory and hence the scattering angle of an α particle impinging on a small positively charged target. How could this be consistent with Bohr's quantization of particle orbits about the nucleus? 2. Bohr excluded for his integer multiples of the value 0. How can one justify this exclusion, necessary to bar tiny atoms of the type mentioned earlier?

  16. Iii-V Compound Multiple Quantum Well Based Modulator and Switching Devices.

    NASA Astrophysics Data System (ADS)

    Hong, Songcheol

    A general formalism to study the absorption and photocurrent in multiple quantum well is provided with detailed consideration of quantum confined Stark shift, exciton binding energy, line broadening, tunneling, polarization, and strain effects. Results on variation of exciton size, binding energies and transition energies as a function electric field and well size have been presented. Inhomogeneous line broadening of exciton lines due to interface roughness, alloy disorder and well to well size fluctuation is calculated. The potential of material tailoring by introducing strain for specific optical response is discussed. Theoretical and experimental results on excitonic and band-to-band absorption spectra in strained multi-quantum well structures are shown. I also report on polarization dependent optical absorption for excitonic and interband transitions in lattice matched and strained multiquantum well structures in presence of transverse electric field. Photocurrent in a p-i(MQW)-n diode with monochromatic light is examined with respect to different temperatures and intensities. The negative resistance of I-V characteristic of the p-i-n diode is based on the quantum confined Stark effect of the heavy hole excitonic transition in a multiquantum well. This exciton based photocurrent characteristic allows efficient switching. A general purpose low power optical logic device using the controller-modulator concept bas been proposed and realized. The controller is a heterojunction phototransistor with multiquantum wells in the base-collector depletion region. This allows an amplified photocurrent controlled voltage feedback with low light intensity levels. Detailed analysis of the sensitivity of this device in various modes of operation is studied. Studies are also presented on the cascadability of the device as well as its integrating -thresholding properties. A multiquantum well heterojunction bipolar transistor (MHBT), which has N^+ -p^+-i(MQW)-N structure has been

  17. Optical Properties of GaN Nanorods Containing a Single or Multiple InGaN Quantum Wells

    NASA Astrophysics Data System (ADS)

    Zhuang, Yi D.; Lis, Szymon; Bruckbauer, Jochen; O'Kane, Simon E. J.; Shields, Philip A.; Edwards, Paul R.; Sarma, Jayanta; Martin, Robert W.; Allsopp, Duncan W. E.

    2013-08-01

    Measurements of light emission from GaN nanorods of diameter between 80 and 350 nm, containing either a three-well multiple InGaN quantum well or a single quantum well, have been performed by photoluminescence (PL) and cathodoluminescence (CL) hyperspectral imaging. The PL underwent a Stark shift to the blue as the nanorod diameter was reduced, indicating substantial relaxation of the compressive strain in the quantum wells. The intensity of the nanorod emission per unit area can exceed that of the planar starting material. The CL measurements revealed that the wavelength of the quantum well emission varied with radial position in the nanorod. Simulations by a modal expansion method revealed that the light extraction efficiency varies with radial position and the variation is dependent on nanorod diameter. Finite difference time domain simulations showed that Bloch mode formation in the buffer layer below the nanorods impacts on the light extraction.

  18. Use of external cavity quantum cascade laser compliance voltage in real-time trace gas sensing of multiple chemicals

    SciTech Connect

    Phillips, Mark C.; Taubman, Matthew S.; Kriesel, Jason M.

    2015-02-08

    We describe a prototype trace gas sensor designed for real-time detection of multiple chemicals. The sensor uses an external cavity quantum cascade laser (ECQCL) swept over its tuning range of 940-1075 cm-1 (9.30-10.7 µm) at a 10 Hz repetition rate.

  19. Phase control of Goos-Hänchen shift via biexciton coherence in a multiple quantum well

    NASA Astrophysics Data System (ADS)

    Asadpour, Seyyed Hossein; Nasehi, Rajab; Soleimani, H. Rahimpour; Mahmoudi, M.

    2015-09-01

    The behavior of the Goos-Hänchen (GH) shifts of the reflected and transmitted probe and signal pulses through a cavity containing four-level GaAs/AlGaAs multiple quantum wells with 15 periods of 17.5 nm GaAs wells and 15-nm Al0.3Ga0.7As barriers is theoretically discussed. The biexciton coherence set up by two coupling fields can induce the destructive interference to control the absorption and gain properties of probe field under appropriate conditions. It is realized that for the specific values of the intensities and the relative phase of applied fields, the simultaneous negative or positive GH shift in the transmitted and reflected light beam can be obtained via amplification in a probe light. It is found that by adjusting the controllable parameters, the GH shifts can be switched between the large positive and negative values in the medium. Moreover, the effect of exciton spin relaxation on the GH shift has also been discussed. We find that the exciton spin relaxation can manipulate the behavior of GH shift in the reflected and transmitted probe beam through the cavity. We show that by controlling the incident angles of probe beam and under certain conditions, the GH shifts in the reflected and transmitted probe beams can become either negative or positive corresponding to the superluminal or subluminal light propagation. Our proposed model may supply a new prospect in technological applications for the light amplification in optical sensors working on quantum coherence impacts in solid-state systems.

  20. A broadband LED on the hybrid silicon platform using multiple die bonding and quantum well intermixing

    NASA Astrophysics Data System (ADS)

    De Groote, Andreas

    Bandwidth has been one of the drivers in photonic sources and will very likely remain one of them. Higher bandwidth sources would not only be useful in data and telecommunication but also in other fields such as gas sensing and optical coherence tomography, a microscopic technique. As silicon photonics offers a great prospect with the supreme CMOS technology, we focused on a broadband source on silicon. To circumvent the indirect silicon band gap, InP epitaxial stacks were bonded. More precisely, two stack were bonded, each of which were subjected to quantum well intermixing (QWI). This way, four different band gaps were created. The fabrication process consists of three stages: QWI, multiple die bonding and the post bond process. Problems were identified and addressed in each of them. Most prominent were phosphorus evaporation during the thermal anneal in QWI, for which a dielectric cap layer should be used and the size and protection of the gap region in between the two bonded dies, for which a protective oxide was introduced. The laser structures on the die at 1540nm were comparable to other devices from our group. The intermixed devices had a higher threshold, indicating a limited but noticeable damage to the quantum wells. The other die did not produce lasers because of a bad P contact. By combining the different band gaps - 1540nm, 1460nm, 1380nm and 1300nm - in a series manner approximately 300nm of 3dB bandwidth was achieved. When organizing the band gaps in the order given, a one directional devices is formed which output at the right. Note that the light at 1540nm will travel through all the other transparent regions. We noticed that the longest wavelengths were not measured, probably because of highly asymmetric below band gap gain from the following section. Nonetheless, 300nm of 3dB bandwidth is a result most other broadbanding techniques are only able to achieve after thorough optimizing of all parameters.

  1. Long term operation of high quantum efficiency GaAs(Cs,O) photocathodes using multiple recleaning by atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Orlov, D. A.; Krantz, C.; Wolf, A.; Jaroshevich, A. S.; Kosolobov, S. N.; Scheibler, H. E.; Terekhov, A. S.

    2009-09-01

    Atomic hydrogen, produced by thermal dissociation of H2 molecules inside a hot tungsten capillary, is shown to be an efficient tool for multiple recleaning of degraded surfaces of high quantum efficiency transmission-mode GaAs photocathodes within an ultrahigh vacuum (UHV) multichamber photoelectron gun. Ultraviolet quantum yield photoemission spectroscopy has been used to study the removal of surface pollutants and the degraded (Cs,O)-activation layer during the cleaning procedure. For photocathodes grown by the liquid-phase epitaxy technique, the quantum efficiency is found to be stable at about 20% over a large number of atomic hydrogen cleaning cycles. A slow degradation of the quantum efficiency is observed for photocathodes grown by metal-organic chemical vapor deposition, although they reached a higher initial quantum efficiency of about 30%-35%. Study of the spatial distributions of photoluminescence intensity on these photocathodes proved that this overall degradation is likely due to insertion of a dislocation network into the mechanically strained photocathode heterostructures during multiple heating cycles and is not due to the atomic hydrogen treatment itself.

  2. Study of multiple InAs/GaAs quantum-well structures by electroreflectance spectroscopy

    SciTech Connect

    Bolshakov, A. S. Chaldyshev, V. V. Babichev, A. V.; Kudryashov, D. A.; Gudovskikh, A. S.; Morozov, I. A.; Sobolev, M. S.; Nikitina, E. V.

    2015-11-15

    A periodic Bragg heterostructure with three ultrathin InAs/GaAs quantum wells in a period is fabricated and studied. The splitting energy of exciton transitions in quantum wells is determined by the electroreflectance- spectroscopy method and numerical quantum-mechanical calculation. The significant influence of interference effects on individual peak areas in the electroreflectance spectrum is detected.

  3. Sorting photon wave packets using temporal-mode interferometry based on multiple-stage quantum frequency conversion

    NASA Astrophysics Data System (ADS)

    Reddy, D. V.; Raymer, M. G.; McKinstrie, C. J.

    2015-01-01

    All classical and quantum technologies that encode in and retrieve information from optical fields rely on the ability to selectively manipulate orthogonal field modes of light. Such manipulation can be achieved with high selectivity for polarization modes and transverse-spatial modes. For the time-frequency degree of freedom, this could efficiently be achieved for a limited choice of approximately orthogonal modes, i.e., nonoverlapping bins in time or frequency. We recently proposed a method that surmounts the selectivity barrier for sorting arbitrary orthogonal temporal modes [Opt. Lett. 39, 2924 (2014)., 10.1364/OL.39.002924] using cascaded interferometric quantum frequency conversion in nonlinear optical media. We call this method temporal-mode interferometry, as it has a close resemblance to the well-known separated-fields atomic interferometry method introduced by Ramsey. The method has important implications for quantum memories, quantum dense coding, quantum teleportation, and quantum key distribution. Here we explore the inner workings of the method in detail, and extend it to multiple stages with a concurrent asymptotic convergence of temporal-mode selectivity to unity. We also complete our analysis of pump-chirp compensation to counter pump-induced nonlinear phase modulation in four-wave mixing implementations.

  4. Leap Before You Look: Information Gathering In the PUCCINI Planner

    NASA Technical Reports Server (NTRS)

    Golden, Keith; Lau, Sonie (Technical Monitor)

    1998-01-01

    Most of the work in planning with incomplete information takes a "look before you leap" perspective: Actions must be guaranteed to have their intended effects before they can be executed. We argue that this approach is impossible to follow in many real-world domains. The agent may not have enough information to ensure that an action will have a given effect in advance of executing it. This paper describes PUCCINI, a partial order planner used to control the Internet Softbot (Etzioni & Weld 1994). PUCCINI takes a different approach to coping with incomplete information: "Leap before you look!" PUCCINI doesn't require actions to be known to have the desired effects before execution. However, it still maintains soundness, by requiring the effects to be verified eventually. We discuss how this is achieved using a simple generalization of causal links.

  5. Nesting in perception of affordances for stepping and leaping.

    PubMed

    Wagman, Jeffrey B; Bai, Jiuyang; Smith, Peter J K

    2016-08-01

    Perception of affordances for a given behavior typically reflects the task-specific action capabilities of the perceiver. However, many experiments have shown a discrepancy between the perceptual and behavioral boundaries for a given behavior. One possibility for such a discrepancy is that the context of many experimental tasks transformed what is typically a dynamic perception-action task into an analytical or reflective judgment. We investigated this hypothesis with respect to perception of maximum stepping and leaping distance. For both behaviors, perception of these affordances more closely reflected action capabilities when the perceptual task was nested within a superordinate task than when it was not (regardless of whether the behavior itself was performed). Additionally, verbal reports of perception of maximum leaping distance more closely reflected action capabilities when there was an explicit time limit on such reports. The results are discussed in the context of the ecological principle of nesting and in attentional focus during motor control tasks. PMID:27220935

  6. Thermal degradation in a trimodal PDMS network by 1H Multiple Quantum NMR

    SciTech Connect

    Giuliani, J R; Gjersing, E L; Chinn, S C; Jones, T V; Wilson, T S; Alviso, C T; Herberg, J L; Pearson, M A; Maxwell, R S

    2007-06-06

    Thermal degradation of a filled, crosslinked siloxane material synthesized from PDMS chains of three different average molecular weights and with two different crosslinking species has been studied by {sup 1}H Multiple Quantum (MQ) NMR methods. Multiple domains of polymer chains were detected by MQ NMR exhibiting Residual Dipolar Coupling (<{Omega}{sub d}>) values of 200 Hz and 600 Hz, corresponding to chains with high average molecular weight between crosslinks and chains with low average molecular weight between crosslinks or near the multifunctional crosslinking sites. Characterization of the <{Omega}{sub d}> values and changes in <{Omega}{sub d}> distributions present in the material were studied as a function of time at 250 C and indicates significant time dependent degradation. For the domains with low <{Omega}{sub d}>, a broadening in the distribution was observed with aging time. For the domain with high <{Omega}{sub d}>, increases in both the mean <{Omega}{sub d}> and the width in <{Omega}{sub d}> were observed with increasing aging time. Isothermal Thermal Gravimetric Analysis (TGA) reveals a 3% decrease in weight over 20 hours of aging at 250 C. Degraded samples also were analyzed by traditional solid state {sup 1}H NMR techniques and offgassing products were identified by Solid Phase MicroExtraction followed by Gas Chromatography-Mass Spectrometry (SPME GC-MS). The results, which will be discussed here, suggest that thermal degradation proceeds by complex competition between oxidative chain scissioning and post-curing crosslinking that both contribute to embrittlement.

  7. A leap forward with UTK s Cray XC30

    SciTech Connect

    Fahey, Mark R

    2014-01-01

    This paper shows a significant productivity leap for several science groups and the accomplishments they have made to date on Darter - a Cray XC30 at the University of Tennessee Knoxville. The increased productivity is due to faster processors and interconnect combined in a new generation from Cray, and yet it still has a very similar programming environment as compared to previous generations of Cray machines that makes porting easy.

  8. Quasiequilibrium states in thermotropic liquid crystals studied by multiple-quantum NMR

    NASA Astrophysics Data System (ADS)

    Buljubasich, L.; Monti, G. A.; Acosta, R. H.; Bonin, C. J.; González, C. E.; Zamar, R. C.

    2009-01-01

    Previous work showed that by means of the Jeener-Broekaert (JB) experiment, two quasiequilibrium states can be selectively prepared in the proton spin system of thermotropic nematic liquid crystals (LCs) in a strong magnetic field. The similarity of the experimental results obtained in a variety of LC in a broad Larmor frequency range, with crystal hydrates, supports the assumption that also in LC the two spin reservoirs, into which the Zeeman order is transferred, originate in the dipolar energy and that they are associated with a separation in energy scales: A constant of motion related to the stronger dipolar interactions (S), and a second one (W) corresponding to the secular part of the weaker dipolar interactions with regard to the Zeeman and the strong dipolar part. We study the nature of these quasi-invariants in nematic 5CB (4'-pentyl-4-biphenyl-carbonitrile) and measure their relaxation times by encoding the multiple-quantum coherences of the states following the JB pulse pair on two orthogonal bases, Z and X. The experiments were also performed in powder adamantane at 301K which is used as a reference compound having only one dipolar quasi-invariant. We show that the evolution of the quantum states during the buildup of the quasiequilibrium state in 5CB prepared under the S condition is similar to the case of powder adamantane and that their quasiequilibrium density operators have the same tensor structure. In contrast, the second constant of motion, whose explicit operator form is not known, involves a richer composition of multiple-quantum coherences of even order on the X basis, in consistency with the truncation inherent in its definition. We exploited the exclusive presence of coherences of ±4,±6,±8, besides 0 and ±2 under the W condition to measure the spin-lattice relaxation time TW accurately, so avoiding experimental difficulties that usually impair dipolar order relaxation measurement such as Zeeman contamination at high fields and also

  9. Investigation of enzymatic C-P bond formation using multiple quantum HCP nuclear magnetic resonance spectroscopy.

    PubMed

    Hu, Kaifeng; Werner, Williard J; Allen, Kylie D; Wang, Susan C

    2015-04-01

    The biochemical mechanism for the formation of the C-P-C bond sequence found in l-phosphinothricin, a natural product with antibiotic and herbicidal activity, remains unclear. To obtain further insight into the catalytic mechanism of PhpK, the P-methyltransferase responsible for the formation of the second C-P bond in l-phosphinothricin, we utilized a combination of stable isotopes and two-dimensional nuclear magnetic resonance spectroscopy. Exploiting the newly emerged Bruker QCI probe (Bruker Corp.), we specifically designed and ran a (13) C-(31) P multiple quantum (1) H-(13) C-(31) P (HCP) experiment in (1) H-(31) P two-dimensional mode directly on a PhpK-catalyzed reaction mixture using (13) CH3 -labeled methylcobalamin as the methyl group donor. This method is particularly advantageous because minimal sample purification is needed to maximize product visualization. The observed 3:1:1:3 multiplet specifically and unequivocally illustrates direct bond formation between (13) CH3 and (31) P. Related nuclear magnetic resonance experiments based upon these principles may be designed for the study of enzymatic and/or synthetic chemical reaction mechanisms. PMID:25594737

  10. On multiple component detection in molecular plasmas using cw external-cavity quantum cascade infrared lasers

    NASA Astrophysics Data System (ADS)

    Lopatik, Dmitry; Lang, Norbert; Macherius, Uwe; Zimmermann, Henrik; Roepcke, Juergen

    2012-10-01

    Several cw external cavity quantum cascade lasers (EC-QCLs) have been tested as radiation sources for an absorption spectrometer focused on the analysis of molecular plasmas. Based on the wide spectral tunability of EC-QCLs multiple species detection is demonstrated in low pressure Ar/N2 MW plasmas containing CH4 as hydrocarbon precursor. Using the direct absorption technique the evolution of the concentrations of CH4, C2H2, HCN and H2O has been monitored depending on the discharge conditions (p= 0.5 mbar, f= 2.45 GHz) in a planar MW plasma reactor. The concentrations were found to be in the range of 10 ^11 -- 10 ^14 molecules cm-3. Based on the profiles of absorption lines the gas temperature Tg has been calculated in dependence on the discharge power. Changing the discharge power from 0.2 kW to 1 kW leads to an increase of Tg from 400 to 700 K. The typical spectral line width of the EC-QCLs under the study was about 30 MHz. Varying the power values of an EC-QCL for direct absorption measurements at low pressure conditions no saturation effects in determining the concentrations of CH4 and C2H2 could be found under the used conditions.

  11. Barrier potential design criteria in multiple-quantum-well-based solar-cell structures

    NASA Technical Reports Server (NTRS)

    Mohaidat, Jihad M.; Shum, Kai; Wang, W. B.; Alfano, R. R.

    1994-01-01

    The barrier potential design criteria in multiple-quantum-well (MQW)-based solar-cell structures is reported for the purpose of achieving maximum efficiency. The time-dependent short-circuit current density at the collector side of various MQW solar-cell structures under resonant condition was numerically calculated using the time-dependent Schroedinger equation. The energy efficiency of solar cells based on the InAs/Ga(y)In(1-y)As and GaAs/Al(x)Ga(1-x)As MQW structues were compared when carriers are excited at a particular solar-energy band. Using InAs/Ga(y)In(1-y)As MQW structures it is found that a maximum energy efficiency can be achieved if the structure is designed with barrier potential of about 450 meV. The efficiency is found to decline linearly as the barrier potential increases for GaAs/Al(x)Ga(1-x)As MQW-structure-based solar cells.

  12. A statistical approach for analyzing the development of 1H multiple-quantum coherence in solids.

    PubMed

    Mogami, Yuuki; Noda, Yasuto; Ishikawa, Hiroto; Takegoshi, K

    2013-05-21

    A novel statistical approach for analyzing (1)H multiple-quantum (MQ) spin dynamics in so-called spin-counting solid-state NMR experiments is presented. The statistical approach is based on the percolation theory with Monte Carlo methods and is examined by applying it to the experimental results of three solid samples having unique hydrogen arrangement for 1-3 dimensions: the n-alkane/d-urea inclusion complex as a one-dimensional (1D) system, whose (1)H nuclei align approximately in 1D, and magnesium hydroxide and adamantane as a two-dimensional (2D) and a three-dimensional (3D) system, respectively. Four lattice models, linear, honeycomb, square and cubic, are used to represent the (1)H arrangement of the three samples. It is shown that the MQ dynamics in adamantane is consistent with that calculated using the cubic lattice and that in Mg(OH)2 with that calculated using the honeycomb and the square lattices. For n-C20H42/d-urea, these 4 lattice models fail to express its result. It is shown that a more realistic model representing the (1)H arrangement of n-C20H42/d-urea can describe the result. The present approach can thus be used to determine (1)H arrangement in solids. PMID:23580152

  13. Investigation of enzymatic C–P bond formation using multiple quantum HCP nuclear magnetic resonance spectroscopy

    PubMed Central

    Hu, Kaifeng; Werner, Williard J.; Allen, Kylie D.; Wang, Susan C.

    2015-01-01

    The biochemical mechanism for the formation of the C–P–C bond sequence found in L-phosphinothricin, a natural product with antibiotic and herbicidal activity, remains unclear. To obtain further insight into the catalytic mechanism of PhpK, the P-methyltransferase responsible for the formation of the second C–P bond in L-phosphinothricin, we utilized a combination of stable isotopes and two-dimensional nuclear magnetic resonance spectroscopy. Exploiting the newly emerged Bruker QCI probe (Bruker Corp.), we specifically designed and ran a 13C-31P multiple quantum 1H-13C-31P (HCP) experiment in 1H-31P two-dimensional mode directly on a PhpK-catalyzed reaction mixture using 13CH3-labeled methylcobalamin as the methyl group donor. This method is particularly advantageous because minimal sample purification is needed to maximize product visualization. The observed 3:1:1:3 multiplet specifically and unequivocally illustrates direct bond formation between 13CH3 and 31P. Related nuclear magnetic resonance experiments based upon these principles may be designed for the study of enzymatic and/or synthetic chemical reaction mechanisms. PMID:25594737

  14. Transition in AlGalnP heterostructures with multiple quantum wells during fast neutron radiation

    NASA Astrophysics Data System (ADS)

    Gradoboev, A. V.; Orlova, K. N.

    2015-04-01

    Radiation exposure causes degradation of semiconductors' structures as well as different semiconductors based on these structures. The purpose of the research work is to study transitions in AlGaInP heterostructures with multiple quantum wells during fast neutron radiation. Objects of the research are 590 nm and 630 nm LEDs based on AlGaInP heterostructures. It is proved that LEDs' radiant power decrease occurs within three periods: during the first period radiant power decrease is caused by radiation stimulated structural adjustment of a primary defect structure; during the second period the decrease is results from radiative defects introduction; with further enhancement of radiation exposure the second period develops into the third period, where LEDs evolves into the mode of electrons low injection into an active region. Empirical relations explain radiant power changes within each period are presented. Region of transitions between the first and the second periods that cause radiant power partial recovery are specified. Transitions occur both directly and indirectly for heterostructures. Potential causes of transitions occurrence are being discussed.

  15. Low temperature photoluminescence as a tool to measure strain and relaxation effects in multiple quantum wells.

    NASA Astrophysics Data System (ADS)

    Ait-Ouali, Abderrahmane; Yip, Raymond Y.-F.; Brebner, John; Masut, Remo A.

    1997-03-01

    Low temperature photoluminescence studies have been performed on a series of InAs(x)P(1-x)/InP strained-layer multiple quantum wells grown by low pressure metal -organic vapor phase epitaxy. The As content, x, in these samples ranges from 4.426.4at low concentrations and partially-relaxed at the higher end of the range. The temperature and excitation intensity evolution of the spectra and the shape of the transition at low temperature are consistent with the model for the recombination of excitons localized by potential fluctuations [as proposed by Ouadjaout and Marfaing, Phys. Rev. B46, 7908 (1992)]. This has been used to fit precisely the photoluminescence spectra. The evolution of the model parameters allows us to detect the onset of strain relaxation. The results are consistent with detailed structural analyses of these samples performed using X-ray diffraction and transmission electron microscopy [R. Y.-F. Yip et al., J. Appl. Phys. (in press)].

  16. Germanium–tin interdiffusion in strained Ge/GeSn multiple-quantum-well structure

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Dong, Yuan; Zhou, Qian; Tok, Eng Soon; Yeo, Yee-Chia

    2016-06-01

    The thermal stability and germanium–tin (Ge–Sn) interdiffusion properties were studied in epitaxial Ge/GeSn multiple-quantum-well (MQW) structure. No obvious interdiffusion was observed for annealing temperatures of 300 °C or below, while observable interdiffusion occurred for annealing temperatures of 380 °C and above. High-resolution x-ray diffraction was used to obtain the interdiffusion coefficient by analyzing the decrease rate of Ge/GeSn periodic satellite peaks. The interdiffusion coefficient is much higher, and the activation enthalpy of 1.21 eV is substantially lower in Ge/GeSn MQW structure than that previously reported in silicon–germanium (Si–Ge) systems. When the annealing temperature is increased to above 500 °C, Ge–Sn interdiffusion becomes severe. Some small pits appear on the surface, which should be related to Sn out-diffusion to the Ge cap layer, followed by Sn desorption from the top surface. This work provides insights into the Ge–Sn interdiffusion and Sn segregation behaviors in Ge/GeSn MQW structure, and the thermal budget that may be used for fabrication of devices comprising Ge/GeSn heterostructures.

  17. Ultrafast biexciton spectroscopy in semiconductor quantum dots: evidence for early emergence of multiple-exciton generation

    PubMed Central

    Choi, Younghwan; Sim, Sangwan; Lim, Seong Chu; Lee, Young Hee; Choi, Hyunyong

    2013-01-01

    Understanding multiple-exciton generation (MEG) in quantum dots (QDs) requires in-depth measurements of transient exciton dynamics. Because MEG typically faces competing ultrafast energy-loss intra-band relaxation, it is of central importance to investigate the emerging time-scale of the MEG kinetics. Here, we present ultrafast spectroscopic measurements of the MEG in PbS QDs via probing the ground-state biexciton transients. Specifically, we directly compare the biexciton spectra with the single-exciton ones before and after the intra-band relaxation. Early emergence of MEG is evidenced by observing transient Stark shift and quasi-instantaneous linewidth broadening, both of which take place before the intra-band relaxation. Photon-density-dependent study shows that the broadened biexciton linewidth strongly depends on the MEG-induced extra-exciton generation. Long after the intra-band relaxation, the biexciton broadening is small and the single-exciton state filling is dominant. PMID:24220495

  18. Evaluation of lactate detection using selective multiple quantum coherence in phantoms and brain tumours

    PubMed Central

    Harris, L M; Tunariu, N; Messiou, C; Hughes, J; Wallace, T; DeSouza, N M; Leach, M O; Payne, G S

    2015-01-01

    Lactate is a product of glucose metabolism. In tumour tissues, which exhibit enhanced glycolytic metabolism, lactate signals may be elevated, making lactate a potential useful tumour biomarker. Methods of lactate quantitation are complicated because of overlap between the lactate methyl doublet CH3 resonance and a lipid resonance at 1.3 ppm. This study presents the use of a selective homonuclear multiple quantum coherence transfer sequence (SelMQC-CSI), at 1.5 T, to better quantify lactate in the presence of lipids. Work performed on phantoms showed good lactate detection (49%) and lipid suppression (98%) efficiencies. To evaluate the method in the brain, the sequence was tested on a group of 23 patients with treated brain tumours, either glioma (N = 20) or secondary metastases in the brain (N = 3). Here it was proved to be of use in determining lactate concentrations in vivo. Lactate was clearly seen in SelMQC spectra of glioma, even in the presence of lipids, with high grade glioma (7.3 ± 1.9 mM, mean ± standard deviation) having higher concentrations than low grade glioma (1.9 ± 1.5 mM, p = 0.048). Lactate was not seen in secondary metastases in the brain. SelMQC-CSI is shown to be a useful technique for measuring lactate in tumours whose signals are otherwise contaminated by lipid. © 2015 The Authors NMR in Biomedicine Published by John Wiley & Sons Ltd. PMID:25586623

  19. The Kaye effect revisited: High speed imaging of leaping shampoo

    NASA Astrophysics Data System (ADS)

    Versluis, Michel; Blom, Cock; van der Meer, Devaraj; van der Weele, Ko; Lohse, Detlef

    2003-11-01

    When a visco-elastic fluid such as shampoo or shower gel is poured onto a flat surface the fluid piles up forming a heap on which rather irregular combinations of fluid buckling, coiling and folding are observed. Under specific conditions a string of fluid leaps from the heap and forms a steady jet fed by the incoming stream. Momentum transfer of the incoming jet, combined with the shear-thinning properties of the fluid, lead to a spoon-like dimple in the highly viscous fluid pool in which the jet recoils. The jet can be stable for several seconds. This effect is known as the Kaye effect. In order to reveal its mechanism we analyzed leaping shampoo through high-speed imaging. We studied the jet formation, jet stability and jet disruption mechanisms. We measured the velocity of both the incoming and recoiled jet, which was found to be thicker and slower. By inclining the surface on which the fluid was poured we observed jets leaping at upto five times.

  20. Creativity and the Quantum Theory.

    ERIC Educational Resources Information Center

    Goswami, Amit

    1988-01-01

    The idea that creative acts are quantum jumps in the brain's mechanism is explored. Descriptions of the creative process that support the central role of sudden and discontinuous leaps of thought are cited from various philosophers and scientists. Distinctions between the functions of the brain and of computers are drawn. (VW)

  1. Development of green, yellow, and amber light emitting diodes using InGaN multiple quantum well structures

    NASA Astrophysics Data System (ADS)

    Barletta, Philip T.; Acar Berkman, E.; Moody, Baxter F.; El-Masry, Nadia A.; Emara, Ahmed M.; Reed, Mason J.; Bedair, S. M.

    2007-04-01

    The authors present optical and electrical data for long wavelength (573-601nm) InGaN /GaN multiple quantum well light emitting diodes (LEDs) grown by metal organic chemical vapor deposition. These results are achieved by optimizing the active layer growth temperature and the quantum well width. Also, the p-GaN is grown at low temperature to avoid the disintegration of the InGaN quantum wells with high InN content. A redshift is observed for both the green and yellow LEDs upon decreasing the injection current at low current regime. In the case of the yellow LED, this shift is enough to push emission into the amber (601nm ).

  2. Flowing versus Static Conditions for Measuring Multiple Exciton Generation in PbSe Quantum Dots

    SciTech Connect

    Midgett, Aaron G.; Hillhouse, Hugh W.; Hughes, Barbara K.; Nozik, Arthur J.; Beard, Matthew C.

    2010-09-22

    Recent reports question the validity of pulsed fs-laser experiments for measuring the photon-to-exciton quantum yields (QYs) that result from multiple exciton generation (MEG). The repetitive nature of these experiments opens up an alternative relaxation pathway that may produce artificially high results. We present transient-absorption (TA) data for 4.6 and 6.6 nm diameter PbSe quantum dots (QDs) at a variety of pump photon energies. The data are collected under laminar flow conditions with volumetric flow rates ranging from 0 to 150 mL/min (resulting in Reynolds numbers up to 460). The results are modeled with a spatially resolved population balance of generation, recombination, convective replacement, and accumulation of long-lived excited QDs. By comparing the simulations and experiments, the steady-state population of the long-lived QD-excited states and their kinetics are determined for different experimental conditions. We also improve upon reported photon-to-exciton QYs for PbSe QDs. We find differences in the observed TA dynamics between flowing and static conditions that depend upon photon fluence, pump photon energy, and quality of the QD surfaces. For excitation energies below 2 Eg, independent of QD size or photon fluence, we observe no flow rate dependence in the TA dynamics. At excitation energies of hν > 3 Eg, we observe differences between static and flowing conditions that are most pronounced for high photon fluences. At 3.7 Eg and for 4.6 nm PbSe QDs we find a QY of 1.2 ± 0.1 and at 4.5 Eg the QY is 1.55 ± 0.05. With 6.6 nm QDs excited at 4.7 Eg we observe no difference between static and flowing conditions and find a QY of 1.61 ± 0.05. We also find that by treating the surface of QDs, we can decrease the charging probability (Pg ≈ 5 × 10-5) by a factor of 3-4. The observed variations suggest that different QD samples vary regarding their susceptibility to the

  3. Passively mode-locked erbium-doped fiber lasers using multiple quantum well saturable absorbers

    NASA Astrophysics Data System (ADS)

    Hayduk, Michael Joseph

    1997-09-01

    An experimental study of the mode-locking process in erbium-doped fiber lasers (EDFL's) operating at 1.55 μm using multiple quantum well saturable absorbers is presented. The self-starting passively mode-locked laser was constructed in a Fabry-Perot configuration using the saturable absorber as the back reflector of the cavity. Picosecond pulses that ranged from 14.2 to 38.8 ps were generated using a series of saturable absorbers. The pulse widths were dependent upon the optical properties of the saturable absorber used as the mode-locking element. The output power of the EDFL varied from 0.2 to 6.7 mW and was also dependent upon the saturable absorber used in the cavity. Soliton mode-locking using saturable absorbers was the mechanism responsible for the generation of the picosecond pulses by the EDFL. The long-lived carrier lifetime in the quantum wells was the primary optical property of the saturable absorber that determined the final pulse width. The carrier lifetimes of the eight individual saturable absorbers were investigated using time-resolved pump/probe experimental techniques. The lifetimes ranged from 40 to 1757 ps. The soliton mode- locking process allowed pulse widths of up to 45 times shorter than these carrier lifetimes to be produced. A self-starting passively mode-locked solid-state Cr4+:YAG laser was also developed using a novel saturable absorber mirror structure. The laser produced femtosecond pulses that were tunable from 1.488 to 1.535 μm. The average output power of the laser ranged from 40 to 80 mW at a repetition rate of 95 MHz. A minimum pulse width of 120 fs was generated at 1.488 μm. The high peak power of these pulses combined with its tunability in the 1.5 μm region made this laser an ideal spectroscopic source for use in the time-resolved pump/probe experiments.

  4. Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes

    NASA Astrophysics Data System (ADS)

    Mehnke, Frank; Kuhn, Christian; Guttmann, Martin; Reich, Christoph; Kolbe, Tim; Kueller, Viola; Knauer, Arne; Lapeyrade, Mickael; Einfeldt, Sven; Rass, Jens; Wernicke, Tim; Weyers, Markus; Kneissl, Michael

    2014-08-01

    The design and Mg-doping profile of AlN/Al0.7Ga0.3N electron blocking heterostructures (EBH) for AlGaN multiple quantum well (MQW) light emitting diodes (LEDs) emitting below 250 nm was investigated. By inserting an AlN electron blocking layer (EBL) into the EBH, we were able to increase the quantum well emission power and significantly reduce long wavelength parasitic luminescence. Furthermore, electron leakage was suppressed by optimizing the thickness of the AlN EBL while still maintaining sufficient hole injection. Ultraviolet (UV)-C LEDs with very low parasitic luminescence (7% of total emission power) and external quantum efficiencies of 0.19% at 246 nm have been realized. This concept was applied to AlGaN MQW LEDs emitting between 235 nm and 263 nm with external quantum efficiencies ranging from 0.002% to 0.93%. After processing, we were able to demonstrate an UV-C LED emitting at 234 nm with 14.5 μW integrated optical output power and an external quantum efficiency of 0.012% at 18.2 A/cm2.

  5. Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes

    SciTech Connect

    Mehnke, Frank Kuhn, Christian; Guttmann, Martin; Reich, Christoph; Kolbe, Tim; Rass, Jens; Wernicke, Tim; Kueller, Viola; Knauer, Arne; Lapeyrade, Mickael; Einfeldt, Sven; Weyers, Markus; Kneissl, Michael

    2014-08-04

    The design and Mg-doping profile of AlN/Al{sub 0.7}Ga{sub 0.3}N electron blocking heterostructures (EBH) for AlGaN multiple quantum well (MQW) light emitting diodes (LEDs) emitting below 250 nm was investigated. By inserting an AlN electron blocking layer (EBL) into the EBH, we were able to increase the quantum well emission power and significantly reduce long wavelength parasitic luminescence. Furthermore, electron leakage was suppressed by optimizing the thickness of the AlN EBL while still maintaining sufficient hole injection. Ultraviolet (UV)-C LEDs with very low parasitic luminescence (7% of total emission power) and external quantum efficiencies of 0.19% at 246 nm have been realized. This concept was applied to AlGaN MQW LEDs emitting between 235 nm and 263 nm with external quantum efficiencies ranging from 0.002% to 0.93%. After processing, we were able to demonstrate an UV-C LED emitting at 234 nm with 14.5 μW integrated optical output power and an external quantum efficiency of 0.012% at 18.2 A/cm{sup 2}.

  6. Implementation of generalized quantum measurements for unambiguous discrimination of multiple non-orthogonal coherent states.

    PubMed

    Becerra, F E; Fan, J; Migdall, A

    2013-01-01

    Generalized quantum measurements implemented to allow for measurement outcomes termed inconclusive can perform perfect discrimination of non-orthogonal states, a task which is impossible using only measurements with definitive outcomes. Here we demonstrate such generalized quantum measurements for unambiguous discrimination of four non-orthogonal coherent states and obtain their quantum mechanical description, the positive-operator valued measure. For practical realizations of this positive-operator valued measure, where noise and realistic imperfections prevent perfect unambiguous discrimination, we show that our experimental implementation outperforms any ideal standard-quantum-limited measurement performing the same non-ideal unambiguous state discrimination task for coherent states with low mean photon numbers. PMID:23774177

  7. Plasma Heating in Highly Excited GaN/AlGaN Multiple Quantum Wells

    SciTech Connect

    Botchkarev, A; Chow, W W; Jiang, H X; Lin, J Y; Mair, R; Morkoc, H; Zeng, K C

    1998-10-09

    Plasma Heating in Highly Excited GaN/AIGaN Multiple Quantum @@lvEu Wells w f + 1998 %p, K. C. Zeng, R. Mair, J. Y. Liz and H. X. Jiang a) ` fabrication and understanding of MQW lasers [2-5]. For the design of these lasers, one on RT optical studies. Our results revealed that in the GaN/AIGaN MQWS, plasma heating strongly effects the carrier distribution between the confined and unconfined band-to-band and fke excitonic transitions [7]. In the MQW sample under low the unconfined states as determined from the band structure. sample under high Lxc, we varied the excitation intensity by one order of magnitude from 0.110 to IO. The carrier density is estimated to be about N=1012/cm2 (at UC= 0.1 Io) to 1013/cm2 (at 1=== l.). We plotted the PL spectra for four representative excitation fimction of injected carrier density N (open squares). The ratio starts at a value of about 18% for N=1012/cm2 (& = O. lb), and reaches a value over 64 `XO for N=1013/cm2 (& = regions is a loss to optical gain. The carrier density is ve~ high in our experiment and an electron-hole plasma (EHP) state is expected. Because the carrier transfer process plasma temperature. The laser pump energy is about 4.3 eV, which is far above the energy band gap of the sample studied here. This may result in a hot carrier population carrier densities and plasma temperatures. Using a phenomenological expression based The calculated ratio of carriers in the unconfked to the confined states (Ima~ kf) as a finction of carrier density at different temperatures are plotted in Fig. 3 (solid lines). The figure shows that the experiment results can only be explained by plasma heating of the injected carriers at high & ( TP > TJ. The transparency carrier densities for GaN/AIXGal.XN MQW structures with well thickness from 2 to 4 nm were calculated to be around 1x 1012/cm2 [10]. It is thus obvious from Fig. 3 that under high carrier injection density above the transparency density, the plasma temperature, TP, is no

  8. Optical Control of Intersubband Absorption in a Multiple Quantum Well-Embedded Semiconductor Microcravity

    NASA Technical Reports Server (NTRS)

    Liu, Ansheng; Ning, Cun-Zheng

    2000-01-01

    Optical intersubband response of a multiple quantum well (MQW)-embedded microcavity driven by a coherent pump field is studied theoretically. The n-type doped MQW structure with three subbands in the conduction band is sandwiched between a semi-infinite medium and a distributed Bragg reflector (DBR). A strong pump field couples the two upper subbands and a weak field probes the two lower subbands. To describe the optical response of the MQW-embedded microcavity, we adopt a semi-classical nonlocal response theory. Taking into account the pump-probe interaction, we derive the probe-induced current density associated with intersubband transitions from the single-particle density-matrix formalism. By incorporating the current density into the Maxwell equation, we solve the probe local field exactly by means of Green's function technique and the transfer-matrix method. We obtain an exact expression for the probe absorption coefficient of the microcavity. For a GaAs/Al(sub x)Ga(sub 1-x)As MQW structure sandwiched between a GaAs/AlAs DBR and vacuum, we performed numerical calculations of the probe absorption spectra for different parameters such as pump intensity, pump detuning, and cavity length. We find that the probe spectrum is strongly dependent on these parameters. In particular, we find that the combination of the cavity effect and the Autler-Townes effect results in a triplet in the optical spectrum of the MQW system. The optical absorption peak value and its location can be feasibly controlled by varying the pump intensity and detuning.

  9. Spinning-sideband patterns in multiple-quantum magic-angle spinning NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Friedrich, Ulli

    1998-12-01

    Recent interest has focused on solid-state NMR experiments which excite multiple-quantum (MQ) coherences in the presence of magic-angle spinning (MAS). Such experiments have been applied to both dipolar-coupled spin Ι = 1/2 and half-integer quadrupolar systems. A feature common to both cases is the observation of interesting spinning sideband patterns in the indirect (MQ) dimension. In this paper, the origin of these patterns is reviewed in terms of two distinct mechanisms: first, rotor encoding of the dipolar or quadrupolar interaction caused by the change in the Hamiltonian active during the MQ reconversion period relative to the excitation period (reconversion rotor encoding, RRE); and, second, rotor modulation of the interaction during the evolution of the MQ coherences in the t1 dimension (evolution rotor modulation, ERM). Only the first mechanism is present for total spin coherences, while for lower-order MQ coherences both mechanisms contribute to the pattern. For dipolar and quadrupolar model systems, i.e., the three protons of a methyl group and quadrupolar nuclei with spin Ι = 3/2 and Ι = 5/2 and axially symmetric first-order quadrupolar interactions, analytical expressions are derived for all orders of MQ MAS signals. Simulations based on these analytical expressions and numerical density matrix simulations are compared with experimental spectra. Additional perturbing influences, such as the heteronuclear dipolar coupling between a quadrupolar and a spin Ι = 1/2 nucleus, are taken into account. The effect of dipolar couplings on a quadrupolar MQ spectrum is found to be enhanced by the order of the observed MQ coherence.

  10. Mechanical characterization of densely welded Apache Leap tuff

    SciTech Connect

    Fuenkajorn, K.; Daemen, J.J.K.

    1991-06-01

    An empirical criterion is formulated to describe the compressive strength of the densely welded Apache Leap tuff. The criterion incorporates the effects of size, L/D ratio, loading rate and density variations. The criterion improves the correlation between the test results and the failure envelope. Uniaxial and triaxial compressive strengths, Brazilian tensile strength and elastic properties of the densely welded brown unit of the Apache Leap tuff have been determined using the ASTM standard test methods. All tuff samples are tested dry at room temperature (22 {plus_minus} 2{degrees}C), and have the core axis normal to the flow layers. The uniaxial compressive strength is 73.2 {plus_minus} 16.5 MPa. The Brazilian tensile strength is 5.12 {plus_minus} 1.2 MPa. The Young`s modulus and Poisson`s ratio are 22.6 {plus_minus} 5.7 GPa and 0.20 {plus_minus} 0.03. Smoothness and perpendicularity do not fully meet the ASTM requirements for all samples, due to the presence of voids and inclusions on the sample surfaces and the sample preparation methods. The investigations of loading rate, L/D radio and cyclic loading effects on the compressive strength and of the size effect on the tensile strength are not conclusive. The Coulomb strength criterion adequately represents the failure envelope of the tuff under confining pressures from 0 to 62 MPa. Cohesion and internal friction angle are 16 MPa and 43 degrees. The brown unit of the Apache Leap tuff is highly heterogeneous as suggested by large variations of the test results. The high intrinsic variability of the tuff is probably caused by the presence of flow layers and by nonuniform distributions of inclusions, voids and degree of welding. Similar variability of the properties has been found in publications on the Topopah Spring tuff at Yucca Mountain. 57 refs., 32 figs., 29 tabs.

  11. Correlation between the structural and cathodoluminescence properties in InGaN/GaN multiple quantum wells with large number of quantum wells

    SciTech Connect

    Yang, Jing; Zhao, Degang Jiang, Desheng; Chen, Ping; Zhu, Jianjun; Liu, Zongshun; Le, Lingcong; He, Xiaoguang; Li, Xiaojing; Wang, Hui; Yang, Hui; Jahn, Uwe

    2014-09-01

    Cathodoluminescence (CL) characteristics on 30-period InGaN/GaN multiple quantum well (MQW) solar cell structures are investigated, revealing the relationship between optical and structural properties of the MQW structures with a large number of quantum wells. In the bottom MQW layers, a blueshift of CL peak along the growth direction is found and attributed to the decrease of indium content due to the compositional pulling effect. An obvious split of emission peak and a redshift of the main emission energy are found in the top MQW layers when the MQW grows above the critical layer thickness. They are attributed to the segregation of In-rich InGaN clusters rather than the increase of indium content in quantum well layer. The MQW structure is identified to consist of two regions: a strained one in the bottom, where the indium content is gradually decreased, and a partly relaxed one in the top with segregated In-rich InGaN clusters.

  12. Multiple quantum filtered 23Na NMR in the Langendorff perfused mouse heart: Ratio of triple/double quantum filtered signals correlates with [Na]i

    PubMed Central

    Eykyn, Thomas R.; Aksentijević, Dunja; Aughton, Karen L.; Southworth, Richard; Fuller, William; Shattock, Michael J.

    2015-01-01

    We investigate the potential of multiple quantum filtered (MQF) 23Na NMR to probe intracellular [Na]i in the Langendorff perfused mouse heart. In the presence of Tm(DOTP) shift reagent the triple quantum filtered (TQF) signal originated largely from the intracellular sodium pool with a 32 ± 6% contribution of the total TQF signal arising from extracellular sodium, whilst the rank 2 double-quantum filtered signal (DQF), acquired with a 54.7° flip-angle pulse, originated exclusively from the extracellular sodium pool. Given the different cellular origins of the 23Na MQF signals we propose that the TQF/DQF ratio can be used as a semi-quantitative measure of [Na]i in the mouse heart. We demonstrate a good correlation of this ratio with [Na]i measured with shift reagent at baseline and under conditions of elevated [Na]i. We compare the measurements of [Na]i using both shift reagent and TQF/DQF ratio in a cohort of wild type mouse hearts and in a transgenic PLM3SA mouse expressing a non-phosphorylatable form of phospholemman, showing a modest but measurable elevation of baseline [Na]i. MQF filtered 23Na NMR is a potentially useful tool for studying normal and pathophysiological changes in [Na]i, particularly in transgenic mouse models with altered Na regulation. PMID:26196304

  13. Small steps and giant leaps in the landscape

    SciTech Connect

    Brown, Adam R.; Dahlen, Alex

    2010-10-15

    For landscapes of field-theory vacua, we identify an effect that can greatly enhance the decay rates to wildly distant minima - so much so that such transitions may dominate over transitions to near neighbors. We exhibit these 'giant leaps' in both a toy two-field model and, in the thin-wall limit, amongst the four-dimensional vacua of six-dimensional Einstein-Maxwell theory, and it is argued that they are generic to landscapes arising from flux compactifications. We discuss the implications for the cosmological constant and the stability of stringy de Sitter.

  14. Astronaut John Young leaps from lunar surface to salute flag

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, leaps from the lunar surface as he salutes the U.S. Flag at the Descartes landing site during the first Apollo 16 extravehicular activity (EVA-1). Astronaut Charles M. Duke Jr., lunar module pilot, took this picture. The Lunar Module (LM) 'Orion' is on the left. The Lunar Roving Vehicle is parked beside the LM. The object behind Young in the shade of the LM is the Far Ultraviolet Camera/Spectrograph. Stone Mountain dominates the background in this lunar scene.

  15. Kinetics of leaping primates: influence of substrate orientation and compliance.

    PubMed

    Demes, B; Jungers, W L; Gross, T S; Fleagle, J G

    1995-04-01

    Our current knowledge about the forces leapers generate and absorb is very limited and based exclusively on rigid force platform measurements. In their natural environments, however, leapers take off and land on branches and tree trunks, and these may be compliant. We evaluated the influence of substrate properties on leaping kinetics in prosimian leapers by using a combined field and laboratory approach. Tree sway and the timing of takeoffs relative to the movements of trees were documented for animals under natural conditions in Madagascar. Field data collected on three species (Indri indri, Propithecus diadema, Propithecus verreauxi) indicate that in the majority of takeoffs, the substrate sways and the animals takeoff before the elastic rebound of the substrate. This implies that force is "wasted" to deform supports. Takeoff and landing forces were measured in an experimental setting with a compliant force pole at the Duke University Primate Center. Forces were recorded for 2 Propithecus verreauxi and 3 Hapalemur griseus. Peak takeoff forces were 9.6 (P. verreauxi) and 10.3 (H. griseus) times body weight, whereas peak landing forces were 6.7 (P. verreauxi) and 8.4 (H. griseus) times body weight. As part of the impulse generated does not translate into leaping distance but is used to deform the pole, greater effort is required to reach a given target substrate, and, consequently, takeoff forces are high. The landing forces, on the other hand, are damped by the pole/substrate yield that increases the time available for deceleration. Our results contrast with previous studies of leaping forces recorded with rigid platform measuring systems that usually report higher landing than takeoff forces. We conclude that 1) Leapers generate and are exposed to exceptionally high locomotory forces. The takeoff forces are higher than the landing forces when using compliant supports, indicating that the takeoff rather than the landing may be critical in interpreting leaping

  16. High efficiency InGaN/GaN light emitting diodes with asymmetric triangular multiple quantum wells

    SciTech Connect

    Chang, Chiao-Yun; Li, Hen; Lu, Tien-Chang

    2014-03-03

    In this study, we demonstrated high efficiency InGaN/GaN light emitting diodes (LEDs) with asymmetric triangular multiple quantum wells (MQWs). Asymmetric triangular MQWs not only contribute to uniform carrier distribution in InGaN/GaN MQWs but also yield a low Auger recombination rate. In addition, asymmetric triangular MQWs with gallium face-oriented inclination band profiles can be immune from the polarization charge originating from typical c-plane InGaN/GaN quantum well structures. In the experiment, LEDs incorporated with asymmetric triangular MQWs with gallium face-oriented inclination band profiles exhibited a 60.0% external quantum efficiency at 20 mA and a 27.0% efficiency droop at 100 mA (corresponding to a current density of 69 A/cm{sup 2}), which accounted for an 11.7% efficiency improvement and a 31.1% droop reduction compared with symmetric square quantum well structure LEDs.

  17. Simultaneous SU(2) rotations on multiple quantum dot exciton qubits using a single shaped pulse

    NASA Astrophysics Data System (ADS)

    Mathew, Reuble; Yang, Hong Yi Shi; Hall, Kimberley C.

    2015-10-01

    Recent experimental demonstration of a parallel (π ,2 π ) single qubit rotation on excitons in two distant quantum dots [Nano Lett. 13, 4666 (2013), 10.1021/nl4018176] is extended in numerical simulations to the design of pulses for more general quantum state control, demonstrating the feasibility of full SU(2) rotations of each exciton qubit. Our results show that simultaneous high-fidelity quantum control is achievable within the experimentally accessible parameter space for commercial Fourier-domain pulse shaping systems. The identification of a threshold of distinguishability for the two quantum dots (QDs) for achieving high-fidelity parallel rotations, corresponding to a difference in transition energies of ˜0.25 meV , points to the possibility of controlling more than 10 QDs with a single shaped optical pulse.

  18. Multiple Metamagnetic Quantum Criticality in Sr3 Ru2 O7

    NASA Astrophysics Data System (ADS)

    Tokiwa, Y.; Mchalwat, M.; Perry, R. S.; Gegenwart, P.

    2016-06-01

    Bilayer strontium ruthenate Sr3 Ru2 O7 displays pronounced non-Fermi liquid behavior at magnetic fields around 8 T, applied perpendicular to the ruthenate planes, which previously has been associated with an itinerant metamagnetic quantum critical end point (QCEP). We focus on the magnetic Grüneisen parameter ΓH, which is the most direct probe to characterize field-induced quantum criticality. We confirm quantum critical scaling due to a putative two-dimensional QCEP near 7.845(5) T, which is masked by two ordered phases A and B , identified previously by neutron scattering. In addition, we find evidence for a QCEP at 7.53(2) T and determine the quantum critical regimes of both instabilities and the effect of their superposition.

  19. Multiple Metamagnetic Quantum Criticality in Sr_{3}Ru_{2}O_{7}.

    PubMed

    Tokiwa, Y; Mchalwat, M; Perry, R S; Gegenwart, P

    2016-06-01

    Bilayer strontium ruthenate Sr_{3}Ru_{2}O_{7} displays pronounced non-Fermi liquid behavior at magnetic fields around 8 T, applied perpendicular to the ruthenate planes, which previously has been associated with an itinerant metamagnetic quantum critical end point (QCEP). We focus on the magnetic Grüneisen parameter Γ_{H}, which is the most direct probe to characterize field-induced quantum criticality. We confirm quantum critical scaling due to a putative two-dimensional QCEP near 7.845(5) T, which is masked by two ordered phases A and B, identified previously by neutron scattering. In addition, we find evidence for a QCEP at 7.53(2) T and determine the quantum critical regimes of both instabilities and the effect of their superposition. PMID:27314732

  20. The Uses of Literacy Theory: The Great Leap and the Rhetoric of Retreat.

    ERIC Educational Resources Information Center

    Daniell, Beth

    During the late 1970s, English studies journals began to include various versions of, and proposals built upon, the Great Leap theory of literacy. Advocates of this theory claimed that literacy itself actually caused a "great leap" in human cognition and that the language of literate persons was essentially different from the language of oral…

  1. Listing of Education in Archaeological Programs: The LEAP Clearinghouse 1990-1991 Summary Report.

    ERIC Educational Resources Information Center

    Knoll, Patricia C., Ed.

    This is the second catalog of the National Park Service's Listing of Education in Archaeological Programs (LEAP). It consists of the information incorporated into the LEAP computerized database between 1990 and 1991. The database is a listing of federal, state, local, and private projects promoting public awareness of U.S. archaeology including…

  2. Photoluminescence and bowing parameters of InAsSb/InAs multiple quantum wells grown by molecular beam epitaxy

    SciTech Connect

    Liu, P.-W.; Tsai, G.; Lin, H. H.; Krier, A.; Zhuang, Q. D.; Stone, M.

    2006-11-13

    Detailed studies are reported on the photoluminescence of InAsSb/InAs multiple quantum wells grown by molecular beam epitaxy on InAs substrates with the Sb mole fraction ranging from 0.06 to 0.13. From 4 K photoluminescence the band alignment was determined to be staggered type II. By comparing the emission peak energies with a transition energy calculation it was found that both the conduction and valence bands of InAsSb alloy exhibit some bowing. The bowing parameters were determined to be in the ratio of 4:6. For a sample with Sb composition {approx}0.12 in the quantum well the photoluminescence emission band covers the CO{sub 2} absorption peak making it suitable for use in sources for CO{sub 2} detection.

  3. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory.

    PubMed

    Parigi, Valentina; D'Ambrosio, Vincenzo; Arnold, Christophe; Marrucci, Lorenzo; Sciarrino, Fabio; Laurat, Julien

    2015-01-01

    The full structuration of light in the transverse plane, including intensity, phase and polarization, holds the promise of unprecedented capabilities for applications in classical optics as well as in quantum optics and information sciences. Harnessing special topologies can lead to enhanced focusing, data multiplexing or advanced sensing and metrology. Here we experimentally demonstrate the storage of such spatio-polarization-patterned beams into an optical memory. A set of vectorial vortex modes is generated via liquid crystal cell with topological charge in the optic axis distribution, and preservation of the phase and polarization singularities is demonstrated after retrieval, at the single-photon level. The realized multiple-degree-of-freedom memory can find applications in classical data processing but also in quantum network scenarios where structured states have been shown to provide promising attributes, such as rotational invariance. PMID:26166257

  4. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory

    PubMed Central

    Parigi, Valentina; D'Ambrosio, Vincenzo; Arnold, Christophe; Marrucci, Lorenzo; Sciarrino, Fabio; Laurat, Julien

    2015-01-01

    The full structuration of light in the transverse plane, including intensity, phase and polarization, holds the promise of unprecedented capabilities for applications in classical optics as well as in quantum optics and information sciences. Harnessing special topologies can lead to enhanced focusing, data multiplexing or advanced sensing and metrology. Here we experimentally demonstrate the storage of such spatio-polarization-patterned beams into an optical memory. A set of vectorial vortex modes is generated via liquid crystal cell with topological charge in the optic axis distribution, and preservation of the phase and polarization singularities is demonstrated after retrieval, at the single-photon level. The realized multiple-degree-of-freedom memory can find applications in classical data processing but also in quantum network scenarios where structured states have been shown to provide promising attributes, such as rotational invariance. PMID:26166257

  5. Optically controlled reflection modulator using GaAs-AlGaAs n-i-p-i/multiple-quantum-well structures

    NASA Technical Reports Server (NTRS)

    Law, K.-K.; Simes, R. J.; Coldren, L. A.; Gossard, A. C.; Maserjian, J.

    1989-01-01

    An optically controlled reflection modulator has been demonstrated that consists of a combination of a GaAs-AlGaAs n-i-p-i doping structure with a multiple-quantum-well structures on top of a distributed Bragg reflector, all grown by MBE. A modulation of approximately 60 percent is obtained on the test structure, corresponding to a differential change of absorption coefficient in the quantum wells of approximately 7500/cm. Changes in reflectance can be observed with a control beam power as low as 1.5 microW. This device structure has the potential of being developed as an optically addressed spatial light modulator for optical information processing.

  6. Red colobus as prey: the leaping habits of five sympatric Old World monkeys.

    PubMed

    Stern, Michael; Goldstone, Rebecca

    2005-01-01

    This study explored the leaping habits of five sympatric Old World monkeys (Colobus badius, Colobus guereza, Cercopithecus ascanius, Cercopithecus mitis and Cercocebus albigena) in an attempt to determine why chimpanzees prefer to hunt red colobus. We videotaped the leaps of the monkeys for 3 months in Uganda's Kibale National Park. Data were collected on leap preparation time as well as several other variables of the leaps. The leap preparation time of red colobus was found to be about double that of the other species studied. This difference is a likely reason why red colobus represent the preferred prey of chimpanzees. The hypothesis that red colobus spend more time in isolated trees than do other species was not supported. PMID:15775681

  7. Time dependent solution for acceleration of tau-leaping

    SciTech Connect

    Fu, Jin; Wu, Sheng; Petzold, Linda R.

    2013-02-15

    The tau-leaping method is often effective for speeding up discrete stochastic simulation of chemically reacting systems. However, when fast reactions are involved, the speed-up for this method can be quite limited. One way to address this is to apply a stochastic quasi-steady state assumption. However we must be careful when using this assumption. If the fast subsystem cannot reach a steady distribution fast enough, the quasi-steady-state assumption will propagate error into the simulation. To avoid these errors, we propose to use the time dependent solution rather than the quasi-steady-state. Generally speaking, the time dependent solution is not easy to derive for an arbitrary network. However, for some common motifs we do have time dependent solutions. We derive the time dependent solutions for these motifs, and then show how they can be used with tau-leaping to achieve substantial speed-ups, including for a realistic model of blood coagulation. Although the method is complicated, we have automated it.

  8. Efficient space-leaping method for volume rendering

    NASA Astrophysics Data System (ADS)

    Cho, Sungup; Kim, Hyeongdo; Kim, Myeongsun; Jeong, Changsung

    1999-03-01

    Volume rendering is a technique that visualize 2D image of object from 3D volume data on image screen. Ray casting algorithm, one of popular volume rendering techniques, generate image with detail and high quality compared with other volume rendering algorithms but since this is a highly time consuming process given large number of voxels, many acceleration techniques have been developed. Here we introduce new acceleration technique, efficient space leaping method. Our new space leaping method traverse volume data and projects 3D location of voxel onto image screen to find pixels that have non-zero value in final volume image and locations of non-empty voxels that are closest to ray. During this process, adaptive run-length encoding and line drawing algorithm are used to traverse volume data and find pixels with non-zero value efficiently. Then we cast rays not through entire screen pixel but only through projected screen pixels and start rendering process from non-empty voxel location directly. This new method shows significant time savings applied to surface extraction without loss of image quality.

  9. Polariton Resonances for Ultrastrong Coupling Cavity Optomechanics in GaAs /AlAs Multiple Quantum Wells

    NASA Astrophysics Data System (ADS)

    Jusserand, B.; Poddubny, A. N.; Poshakinskiy, A. V.; Fainstein, A.; Lemaitre, A.

    2015-12-01

    Polariton-mediated light-sound interaction is investigated through resonant Brillouin scattering experiments in GaAs /AlAs multiple-quantum wells. Photoelastic coupling enhancement at exciton-polariton resonance reaches 105 at 30 K as compared to a typical bulk solid room temperature transparency value. When applied to GaAs based cavity optomechanical nanodevices, this result opens the path to huge displacement sensitivities and to ultrastrong coupling regimes in cavity optomechanics with couplings g0 in the range of 100 GHz.

  10. Hydrogen cluster/network in tobermorite as studied by multiple-quantum spin counting {sup 1}H NMR

    SciTech Connect

    Mogami, Yuuki; Yamazaki, Satoru; Matsuno, Shinya; Matsui, Kunio; Noda, Yasuto; Takegoshi, K.

    2014-12-15

    Proton multiple-quantum (MQ) spin-counting experiment has been employed to study arrangement of hydrogen atoms in 9 Å/11 Å natural/synthetic tobermorites. Even though all tobermorite samples give similar characterless, broad static-powder {sup 1}H NMR spectra, their MQ spin-counting spectra are markedly different; higher quanta in 11 Å tobermorite do not grow with the MQ excitation time, while those in 9 Å one do. A statistical analysis of the MQ results recently proposed [26] is applied to show that hydrogens align in 9 Å tobermorite one dimensionally, while in 11 Å tobermorite they exist as a cluster of 5–8 hydrogen atoms.

  11. High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates

    SciTech Connect

    Bryan, Zachary Bryan, Isaac; Sitar, Zlatko; Collazo, Ramón; Xie, Jinqiao; Mita, Seiji

    2015-04-06

    The internal quantum efficiency (IQE) of Al{sub 0.55}Ga{sub 0.45}N/AlN and Al{sub 0.55}Ga{sub 0.45}N/Al{sub 0.85}Ga{sub 0.15}N UVC MQW structures was analyzed. The use of bulk AlN substrates enabled us to undoubtedly distinguish the effect of growth conditions, such as V/III ratio, on the optical quality of AlGaN based MQWs from the influence of dislocations. At a high V/III ratio, a record high IQE of ∼80% at a carrier density of 10{sup 18 }cm{sup −3} was achieved at ∼258 nm. The high IQE was correlated with the decrease of the non-radiative coefficient A and a reduction of midgap defect luminescence, all suggesting that, in addition to dislocations, point defects are another major factor that strongly influences optical quality of AlGaN MQW structures.

  12. Spatial search by continuous-time quantum walk with multiple marked vertices

    NASA Astrophysics Data System (ADS)

    Wong, Thomas G.

    2016-04-01

    In the typical spatial search problems solved by continuous-time quantum walk, changing the location of the marked vertices does not alter the search problem. In this paper, we consider search when this is no longer true. In particular, we analytically solve search on the "simplex of K_M complete graphs" with all configurations of two marked vertices, two configurations of M+1 marked vertices, and two configurations of 2(M+1) marked vertices, showing that the location of the marked vertices can dramatically influence the required jumping rate of the quantum walk, such that using the wrong configuration's value can cause the search to fail. This sensitivity to the jumping rate is an issue unique to continuous-time quantum walks that does not affect discrete-time ones.

  13. Classical-quantum correspondence in atomic ionization by midinfrared pulses: Multiple peak and interference structures

    NASA Astrophysics Data System (ADS)

    Lemell, Christoph; Burgdörfer, Joachim; Gräfe, Stefanie; Dimitriou, Konstantinos I.; Arbó, Diego G.; Tong, Xiao-Min

    2013-01-01

    Atomic ionization by strong and ultrashort laser pulses with frequencies in the midinfrared spectral region have revealed novel features such as the low-energy structures. We have performed fully three-dimensional quantum dynamical as well as classical trajectory Monte Carlo simulations for pulses with wavelengths from λ=2000 to 6000 nm. Furthermore, we apply distorted-wave quantum approximations. This allows to explore the quantum-classical correspondence as well as the (non) perturbative character of the ionization dynamics driven by long-wavelength pulses. We observe surprisingly rich structures in the differential energy and angular momentum distribution which sensitively depend on λ, the pulse duration τp, and the carrier-envelope phase ϕCEP.

  14. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.

    PubMed

    Ten Cate, Sybren; Sandeep, C S Suchand; Liu, Yao; Law, Matt; Kinge, Sachin; Houtepen, Arjan J; Schins, Juleon M; Siebbeles, Laurens D A

    2015-02-17

    CONSPECTUS: In a conventional photovoltaic device (solar cell or photodiode) photons are absorbed in a bulk semiconductor layer, leading to excitation of an electron from a valence band to a conduction band. Directly after photoexcitation, the hole in the valence band and the electron in the conduction band have excess energy given by the difference between the photon energy and the semiconductor band gap. In a bulk semiconductor, the initially hot charges rapidly lose their excess energy as heat. This heat loss is the main reason that the theoretical efficiency of a conventional solar cell is limited to the Shockley-Queisser limit of ∼33%. The efficiency of a photovoltaic device can be increased if the excess energy is utilized to excite additional electrons across the band gap. A sufficiently hot charge can produce an electron-hole pair by Coulomb scattering on a valence electron. This process of carrier multiplication (CM) leads to formation of two or more electron-hole pairs for the absorption of one photon. In bulk semiconductors such as silicon, the energetic threshold for CM is too high to be of practical use. However, CM in nanometer sized semiconductor quantum dots (QDs) offers prospects for exploitation in photovoltaics. CM leads to formation of two or more electron-hole pairs that are initially in close proximity. For photovoltaic applications, these charges must escape from recombination. This Account outlines our recent progress in the generation of free mobile charges that result from CM in QDs. Studies of charge carrier photogeneration and mobility were carried out using (ultrafast) time-resolved laser techniques with optical or ac conductivity detection. We found that charges can be extracted from photoexcited PbS QDs by bringing them into contact with organic electron and hole accepting materials. However, charge localization on the QD produces a strong Coulomb attraction to its counter charge in the organic material. This limits the production

  15. Use of external cavity quantum cascade laser compliance voltage in real-time trace gas sensing of multiple chemicals

    NASA Astrophysics Data System (ADS)

    Phillips, Mark C.; Taubman, Matthew S.; Kriesel, Jason

    2015-01-01

    We describe a prototype trace gas sensor designed for real-time detection of multiple chemicals. The sensor uses an external cavity quantum cascade laser (ECQCL) swept over its tuning range of 940-1075 cm-1 (9.30-10.7 μm) at a 10 Hz repetition rate. The sensor was designed for operation in multiple modes, including gas sensing within a multi-pass Heriott cell and intracavity absorption sensing using the ECQCL compliance voltage. In addition, the ECQCL compliance voltage was used to reduce effects of long-term drifts in the ECQCL output power. The sensor was characterized for noise, drift, and detection of chemicals including ammonia, methanol, ethanol, isopropanol, Freon- 134a, Freon-152a, and diisopropyl methylphosphonate (DIMP). We also present use of the sensor for mobile detection of ammonia downwind of cattle facilities, in which concentrations were recorded at 1-s intervals.

  16. Effects of quantum well growth temperature on the recombination efficiency of InGaN/GaN multiple quantum wells that emit in the green and blue spectral regions

    SciTech Connect

    Hammersley, S.; Dawson, P.; Kappers, M. J.; Massabuau, F. C.-P.; Sahonta, S.-L.; Oliver, R. A.; Humphreys, C. J.

    2015-09-28

    InGaN-based light emitting diodes and multiple quantum wells designed to emit in the green spectral region exhibit, in general, lower internal quantum efficiencies than their blue-emitting counter parts, a phenomenon referred to as the “green gap.” One of the main differences between green-emitting and blue-emitting samples is that the quantum well growth temperature is lower for structures designed to emit at longer wavelengths, in order to reduce the effects of In desorption. In this paper, we report on the impact of the quantum well growth temperature on the optical properties of InGaN/GaN multiple quantum wells designed to emit at 460 nm and 530 nm. It was found that for both sets of samples increasing the temperature at which the InGaN quantum well was grown, while maintaining the same indium composition, led to an increase in the internal quantum efficiency measured at 300 K. These increases in internal quantum efficiency are shown to be due reductions in the non-radiative recombination rate which we attribute to reductions in point defect incorporation.

  17. Efficiency enhancement of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Tsai, Yu-Lin; Lin, Chien-Chung; Han, Hau-Vei; Chen, Hsin-Chu; Chen, Kuo-Ju; Lai, Wei-Chi; Sheu, Jin-Kong; Lai, Fang-I.; Yu, Peichen; Kuo, Hao-Chung

    2013-03-01

    In recent year, InGaN-based alloy was also considered for photovoltaic devices owing to the distinctive material properties which are benefit photovoltaic performance. However, the Indium tin oxide (ITO) layer on top, which plays a role of transparent conductive oxide (TCO), can absorb UV photons without generating photocurrent. Also, the thin absorber layer in the device, which is consequent result after compromising with limited crystal quality, has caused insufficient light absorption. In this report, we propose an approach for solving these problems. A hybrid design of InGaN/GaN multiple quantum wells (MQWs) solar cells combined with colloidal CdS quantum dots (QDs) and back side distributed Bragg reflectors (DBRs) has been demonstrated. CdS QDs provide down-conversion effect at UV regime to avoid absorption of ITO. Moreover, CdS QDs also exhibit anti-reflective feature. DBRs at the back side have effectively reflected the light back into the absorber layer. CdS QDs enhance the external quantum efficiency (EQE) for light with wavelength shorter than 400 nm, while DBRs provide a broad band enhancement in EQE, especially within the region of 400 nm ~ 430 nm in wavelength. CdS QDs effectively achieved a power conversion efficiency enhancement as high as 7.2% compared to the device without assistance of CdS QDs. With the participation of DBRs, the power conversion efficiency enhancement has been further boosted to 14%. We believe that the hybrid design of InGaN/GaN MQWs solar cells with QDs and DBRs can be a method for high efficiency InGaN/GaN MQWs solar cells.

  18. Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Gilbreath, G. Charmaine; Rabinovich, William S.; Meehan, Timothy J.; Vilcheck, Michael J.; Mahon, Rita; Burris, Ray; Ferraro, Mina; Sokolsky, Ilene; Vasquez, John A.; Bovais, Chris S.; Cochrell, Kerry; Goins, Kim C.; Barbehenn, Robin; Katzer, D. Scott; Ikossi-Anastasiou, Kiki; Montes, Marcos J.

    2001-07-01

    We describe progress in the development of a multiple quantum well modulating retroreflector, including a description of recent demonstrations of an infrared data link between a small rotary-wing unmanned airborne vehicle and a ground-based laser interrogator using the device designed and fabricated at the Naval Research Laboratory (NRL). Modulating retroreflector systems couple an optical retroreflector, such as a corner cube, and an electro-optic shutter to allow two-way optical communications using a laser, telescope, and pointer-tracker on only one platform. The NRL modulating retroreflector uses a semiconductor-based multiple quantum well shutter capable of modulation rates greater than 10 Mbps, depending on link characteristics. The technology enables the use of near-infrared frequencies, which is well known to provide covert communications immune to frequency allocation problems. This specific device has the added advantage of being compact, lightweight, covert, and requires very low paper. Up to an order of magnitude in onboard power can be saved using a small array of these devices instead of the radio frequency equivalent. In the described demonstration, a Mbps optical link to an unmanned aerial vehicle in flight at a range of 100 to 200 feet is shown. Near real-time compressed video was also demonstrated at the Mbps level and is described.

  19. Quantum Darwinism

    SciTech Connect

    Zurek, Wojciech H

    2008-01-01

    Quantum Darwinism - proliferation, in the environment, of multiple records of selected states of the system (its information-theoretic progeny) - explains how quantum fragility of individual state can lead to classical robustness of their multitude.

  20. Look before you leap: a new approach to mapping QTL.

    PubMed

    Huang, B Emma; George, Andrew W

    2009-09-01

    In this paper, we present an innovative and powerful approach for mapping quantitative trait loci (QTL) in experimental populations. This deviates from the traditional approach of (composite) interval mapping which uses a QTL profile to simultaneously determine the number and location of QTL. Instead, we look before we leap by employing separate detection and localization stages. In the detection stage, we use an iterative variable selection process coupled with permutation to identify the number and synteny of QTL. In the localization stage, we position the detected QTL through a series of one-dimensional interval mapping scans. Results from a detailed simulation study and real analysis of wheat data are presented. We achieve impressive increases in the power of QTL detection compared to composite interval mapping. We also accurately estimate the size and position of QTL. An R library, DLMap, implements the methods described here and is freely available from CRAN ( http://cran.r-project.org/ ). PMID:19585099

  1. Leaping shampoo glides on a lubricating air layer

    NASA Astrophysics Data System (ADS)

    Lee, S.; Li, E. Q.; Marston, J. O.; Bonito, A.; Thoroddsen, S. T.

    2013-06-01

    When a stream of shampoo is fed onto a pool in one's hand, a jet can leap sideways or rebound from the liquid surface in an intriguing phenomenon known as the Kaye effect. Earlier studies have debated whether non-Newtonian effects are the underlying cause of this phenomenon, making the jet glide on top of a shear-thinning liquid layer, or whether an entrained air layer is responsible. Herein we show unambiguously that the jet slides on a lubricating air layer. We identify this layer by looking through the pool liquid and observing its rupture into fine bubbles. The resulting microbubble sizes suggest this air layer is of submicron thickness. This thickness estimate is also supported by the tangential deceleration of the jet during the rebounding.

  2. Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: implications for enhancement of solar energy conversion.

    PubMed

    Beard, Matthew C; Midgett, Aaron G; Hanna, Mark C; Luther, Joseph M; Hughes, Barbara K; Nozik, Arthur J

    2010-08-11

    Multiple exciton generation (MEG) in quantum dots (QDs) and impact ionization (II) in bulk semiconductors are processes that describe producing more than one electron-hole pair per absorbed photon. We derive expressions for the proper way to compare MEG in QDs with II in bulk semiconductors and argue that there are important differences in the photophysics between bulk semiconductors and QDs. Our analysis demonstrates that the fundamental unit of energy required to produce each electron-hole pair in a given QD is the band gap energy. We find that the efficiency of the multiplication process increases by at least 2 in PbSe QDs compared to bulk PbSe, while the competition between cooling and multiplication favors multiplication by a factor of 3 in QDs. We also demonstrate that power conversion efficiencies in QD solar cells exhibiting MEG can greatly exceed conversion efficiencies of their bulk counterparts, especially if the MEG threshold energy can be reduced toward twice the QD band gap energy, which requires a further increase in the MEG efficiency. Finally, we discuss the research challenges associated with achieving the maximum benefit of MEG in solar energy conversion since we show the threshold and efficiency are mathematically related. PMID:20698615

  3. Comparing Multiple Exciton Generation in Quantum Dots To Impact Ionization in Bulk Semiconductors: Implications for Enhancement of Solar Energy Conversion

    SciTech Connect

    Beard, Matthew C.; Midgett, Aaron G.; Hanna, Mark C.; Luther, Joseph M.; Hughes, Barbara K.; Nozik, Arthur J.

    2010-07-26

    Multiple exciton generation (MEG) in quantum dots (QDs) and impact ionization (II) in bulk semiconductors are processes that describe producing more than one electron-hole pair per absorbed photon. We derive expressions for the proper way to compare MEG in QDs with II in bulk semiconductors and argue that there are important differences in the photophysics between bulk semiconductors and QDs. Our analysis demonstrates that the fundamental unit of energy required to produce each electron-hole pair in a given QD is the band gap energy. We find that the efficiency of the multiplication process increases by at least 2 in PbSe QDs compared to bulk PbSe, while the competition between cooling and multiplication favors multiplication by a factor of 3 in QDs. We also demonstrate that power conversion efficiencies in QD solar cells exhibiting MEG can greatly exceed conversion efficiencies of their bulk counterparts, especially if the MEG threshold energy can be reduced toward twice the QD band gap energy, which requires a further increase in the MEG efficiency. Finally, we discuss the research challenges associated with achieving the maximum benefit of MEG in solar energy conversion since we show the threshold and efficiency are mathematically related.

  4. On-chip photonic system using suspended p-n junction InGaN/GaN multiple quantum wells device and multiple waveguides

    NASA Astrophysics Data System (ADS)

    Wang, Yongjin; Zhu, Guixia; Cai, Wei; Gao, Xumin; Yang, Yongchao; Yuan, Jialei; Shi, Zheng; Zhu, Hongbo

    2016-04-01

    We propose, fabricate, and characterize the on-chip integration of suspended p-n junction InGaN/GaN multiple quantum wells (MQWs) device and multiple waveguides on the same GaN-on-silicon platform. The integrated devices are fabricated via a wafer-level process and exhibit selectable functionalities for diverse applications. As the suspended p-n junction InGaN/GaN MQWs device operates under a light emitting diode (LED) mode, part of the light emission is confined and guided by the suspended waveguides. The in-plane propagation along the suspended waveguides is measured by a micro-transmittance setup. The on-chip data transmission is demonstrated for the proof-of-concept photonic integration. As the suspended p-n junction InGaN/GaN MQWs device operates under photodiode mode, the light is illuminated on the suspended waveguides with the aid of the micro-transmittance setup and, thus, coupled into the suspended waveguides. The guided light is finally sensed by the photodiode, and the induced photocurrent trace shows a distinct on/off switching performance. These experimental results indicate that the on-chip photonic integration is promising for the development of sophisticated integrated photonic circuits in the visible wavelength region.

  5. Very high efficiency photovoltaic cells based on fully organic multiple quantum wells. Quarterly technical progress report, 15 February 1995--15 May 1995

    SciTech Connect

    Forrest, S R

    1997-03-01

    The principal project objective is to demonstrate relatively high solar conversion efficiency using extremely low-cost, thin-film technology based on crystalline organic multiple quantum well (MQW) photovoltaic cells. The authors base their work on recent observations both in the laboratory and elsewhere that have indicated the quantum efficiency of organic photoconductors based on vacuum-deposited thin films can be increased by at least two orders of magnitude (to at least 10%) if the organic films are grown in a highly ordered manner, and if organic multiple quantum wells are used in the absorption region. The authors are investigating the physical origin of this phenomenon, and they are growing thin-film MQW cells that demonstrate relatively high quantum efficiencies to determine the practicality of crystalline organic thin-film cells for solar power applications. The investigations are based on a unique, ultrahigh-vacuum organic molecular beam deposition system in the laboratory.

  6. A ``partitioned leaping'' approach for multiscale modeling of chemical reaction dynamics

    NASA Astrophysics Data System (ADS)

    Harris, Leonard A.; Clancy, Paulette

    2006-10-01

    We present a novel multiscale simulation approach for modeling stochasticity in chemical reaction networks. The approach seamlessly integrates exact-stochastic and "leaping" methodologies into a single partitioned leaping algorithmic framework. The technique correctly accounts for stochastic noise at significantly reduced computational cost, requires the definition of only three model-independent parameters, and is particularly well suited for simulating systems containing widely disparate species populations. We present the theoretical foundations of partitioned leaping, discuss various options for its practical implementation, and demonstrate the utility of the method via illustrative examples.

  7. Guided Self-Propelled Leaping of Droplets on a Micro-Anisotropic Superhydrophobic Surface.

    PubMed

    Liu, Jie; Guo, Haoyuan; Zhang, Bo; Qiao, Shasha; Shao, Mingzhe; Zhang, Xianren; Feng, Xi-Qiao; Li, Qunyang; Song, Yanlin; Jiang, Lei; Wang, Jianjun

    2016-03-18

    By introducing anisotropic micropatterns on a superhydrophobic surface, we demonstrate that water microdroplets can coalesce and leap over the surface spontaneously along a prescribed direction. This controlled behavior is attributed to anisotropic liquid-solid adhesion. An analysis relating the preferential leaping probability to the geometrical parameters of the system is presented with consistent experimental results. Surfaces with this rare quality demonstrate many unique characteristics, such as self-powered, and relatively long-distance transport of microdroplets by "relay" coalescence-induced leaping. PMID:26929097

  8. Picture this: The value of multiple visual representations for student learning of quantum concepts in general chemistry

    NASA Astrophysics Data System (ADS)

    Allen, Emily Christine

    Mental models for scientific learning are often defined as, "cognitive tools situated between experiments and theories" (Duschl & Grandy, 2012). In learning, these cognitive tools are used to not only take in new information, but to help problem solve in new contexts. Nancy Nersessian (2008) describes a mental model as being "[loosely] characterized as a representation of a system with interactive parts with representations of those interactions. Models can be qualitative, quantitative, and/or simulative (mental, physical, computational)" (p. 63). If conceptual parts used by the students in science education are inaccurate, then the resulting model will not be useful. Students in college general chemistry courses are presented with multiple abstract topics and often struggle to fit these parts into complete models. This is especially true for topics that are founded on quantum concepts, such as atomic structure and molecular bonding taught in college general chemistry. The objectives of this study were focused on how students use visual tools introduced during instruction to reason with atomic and molecular structure, what misconceptions may be associated with these visual tools, and how visual modeling skills may be taught to support students' use of visual tools for reasoning. The research questions for this study follow from Gilbert's (2008) theory that experts use multiple representations when reasoning and modeling a system, and Kozma and Russell's (2005) theory of representational competence levels. This study finds that as students developed greater command of their understanding of abstract quantum concepts, they spontaneously provided additional representations to describe their more sophisticated models of atomic and molecular structure during interviews. This suggests that when visual modeling with multiple representations is taught, along with the limitations of the representations, it can assist students in the development of models for reasoning about

  9. Dynamic light-matter coupling across multiple spatial dimensions in a quantum dots-in-a-well heterostructure

    SciTech Connect

    Prasankumar, Rohit P; Taylor, Antoinette J

    2009-01-01

    Ultrafast density-dependent optical spectroscopic measurements on a quantum dots-in-a-well heterostructure reveal several distinctive phenomena, most notably a strong coupling between the quantum well population and light absorption at the quantum dot excited state.

  10. Leap and strike kinetics of an acoustically 'hunting' barn owl (Tyto alba).

    PubMed

    Usherwood, James R; Sparkes, Emily L; Weller, Renate

    2014-09-01

    Barn owls are effective hunters of small rodents. One hunting technique is a leap from the ground followed by a brief flight and a plummeting 'strike' onto an acoustically targeted - and potentially entirely hidden - prey. We used forceplate measurements to derive kinetics of the leap and strike. Leaping performance was similar to reported values for guinea fowl. This is likely achieved despite the owl's considerably smaller size because of its relatively long legs and use of wing upstroke. Strikes appear deliberately forceful: impulses could have been spread over larger periods during greater deflections of the centre of mass, as observed in leaping and an alighting landing measurement. The strike, despite forces around 150 times that of a mouse body weight, is not thought to be crucial to the kill; rather, forceful strikes may function primarily to enable rapid penetration of leaf litter or snow cover, allowing grasping of hidden prey. PMID:24948629

  11. Initial Experiments with the Leap Motion as a User Interface in Robotic Endonasal Surgery

    PubMed Central

    Travaglini, T. A.; Swaney, P. J.; Weaver, Kyle D.; Webster, R. J.

    2016-01-01

    The Leap Motion controller is a low-cost, optically-based hand tracking system that has recently been introduced on the consumer market. Prior studies have investigated its precision and accuracy, toward evaluating its usefulness as a surgical robot master interface. Yet due to the diversity of potential slave robots and surgical procedures, as well as the dynamic nature of surgery, it is challenging to make general conclusions from published accuracy and precision data. Thus, our goal in this paper is to explore the use of the Leap in the specific scenario of endonasal pituitary surgery. We use it to control a concentric tube continuum robot in a phantom study, and compare user performance using the Leap to previously published results using the Phantom Omni. We find that the users were able to achieve nearly identical average resection percentage and overall surgical duration with the Leap. PMID:26752501

  12. Temperature dependent photoluminescence and micromapping of multiple stacks InAs quantum dots

    SciTech Connect

    Xu, Ming Jaffré, Alexandre Alvarez, José Kleider, Jean-Paul Boutchich, Mohamed; Jittrong, Apichat; Chokamnuai, Thitipong; Panyakeow, Somsak; Kanjanachuchai, Songphol

    2015-02-27

    We utilized temperature dependent photoluminescence (PL) techniques to investigate 1, 3 and 5 stack InGaAs quantum dots (QDs) grown on cross-hatch patterns. PL mapping can well reproduce the QDs distribution as AFM and position dependency of QD growth. It is possible to observe crystallographic dependent PL. The temperature dependent spectra exhibit the QDs energy distribution which reflects the size and shape. The inter-dot carrier coupling effect is observed and translated as a red shift of 120mV on the [1–10] direction peak is observed at 30K on 1 stack with regards to 3 stacks samples, which is assigned to lateral coupling.

  13. Temperature dependent photoluminescence and micromapping of multiple stacks InAs quantum dots

    NASA Astrophysics Data System (ADS)

    Xu, Ming; Jaffré, Alexandre; Alvarez, José; Kleider, Jean-Paul; Jittrong, Apichat; Chokamnuai, Thitipong; Panyakeow, Somsak; Boutchich, Mohamed; Kanjanachuchai, Songphol

    2015-02-01

    We utilized temperature dependent photoluminescence (PL) techniques to investigate 1, 3 and 5 stack InGaAs quantum dots (QDs) grown on cross-hatch patterns. PL mapping can well reproduce the QDs distribution as AFM and position dependency of QD growth. It is possible to observe crystallographic dependent PL. The temperature dependent spectra exhibit the QDs energy distribution which reflects the size and shape. The inter-dot carrier coupling effect is observed and translated as a red shift of 120mV on the [1-10] direction peak is observed at 30K on 1 stack with regards to 3 stacks samples, which is assigned to lateral coupling.

  14. Multiphoton resonances for all-optical quantum logic with multiple cavities

    NASA Astrophysics Data System (ADS)

    Everitt, Mark S.; Garraway, Barry M.

    2014-07-01

    We develop a theory for the interaction of multilevel atoms with multimode cavities yielding cavity-enhanced multiphoton resonances. The locations of the resonances are predicted from the use of effective two- and three-level Hamiltonians. As an application we show that quantum gates can be realized when photonic qubits are encoded on the cavity modes in arrangements where ancilla atoms transit the cavity. The fidelity of operations is increased by conditional measurements on the atom and by the use of a selected, dual-rail, Hilbert space. A universal set of gates is proposed, including the Fredkin gate and iswap operation; the system seems promising for scalability.

  15. Fermi surface reconstruction and multiple quantum phase transitions in the antiferromagnet CeRhIn5

    PubMed Central

    Jiao, Lin; Chen, Ye; Kohama, Yoshimitsu; Graf, David; Bauer, E. D.; Singleton, John; Zhu, Jian-Xin; Weng, Zongfa; Pang, Guiming; Shang, Tian; Zhang, Jinglei; Lee, Han-Oh; Park, Tuson; Jaime, Marcelo; Thompson, J. D.; Steglich, Frank; Si, Qimiao; Yuan, H. Q.

    2015-01-01

    Conventional, thermally driven continuous phase transitions are described by universal critical behavior that is independent of the specific microscopic details of a material. However, many current studies focus on materials that exhibit quantum-driven continuous phase transitions (quantum critical points, or QCPs) at absolute zero temperature. The classification of such QCPs and the question of whether they show universal behavior remain open issues. Here we report measurements of heat capacity and de Haas–van Alphen (dHvA) oscillations at low temperatures across a field-induced antiferromagnetic QCP (Bc0 ≈ 50 T) in the heavy-fermion metal CeRhIn5. A sharp, magnetic-field-induced change in Fermi surface is detected both in the dHvA effect and Hall resistivity at B0* ≈ 30 T, well inside the antiferromagnetic phase. Comparisons with band-structure calculations and properties of isostructural CeCoIn5 suggest that the Fermi-surface change at B0* is associated with a localized-to-itinerant transition of the Ce-4f electrons in CeRhIn5. Taken in conjunction with pressure experiments, our results demonstrate that at least two distinct classes of QCP are observable in CeRhIn5, a significant step toward the derivation of a universal phase diagram for QCPs. PMID:25561536

  16. Three Temperature Regimes in Superconducting Photon Detectors: Quantum, Thermal and Multiple Phase-Slips as Generators of Dark Counts

    PubMed Central

    Murphy, Andrew; Semenov, Alexander; Korneev, Alexander; Korneeva, Yulia; Gol’tsman, Gregory; Bezryadin, Alexey

    2015-01-01

    We perform measurements of the switching current distributions of three w ≈ 120 nm wide, 4 nm thick NbN superconducting strips which are used for single-photon detectors. These strips are much wider than the diameter of the vortex cores, so they are classified as quasi-two-dimensional (quasi-2D). We discover evidence of macroscopic quantum tunneling by observing the saturation of the standard deviation of the switching distributions at temperatures around 2 K. We analyze our results using the Kurkijärvi-Garg model and find that the escape temperature also saturates at low temperatures, confirming that at sufficiently low temperatures, macroscopic quantum tunneling is possible in quasi-2D strips and can contribute to dark counts observed in single photon detectors. At the highest temperatures the system enters a multiple phase-slip regime. In this range single phase-slips are unable to produce dark counts and the fluctuations in the switching current are reduced. PMID:25988591

  17. Nonlinear absorption properties of AlGaAs/GaAs multiple quantum wells grown by metalorganic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Lee, Hsing-Chung; Kost, A.; Kawase, M.; Hariz, A.; Dapkus, P. Daniel

    1988-01-01

    The nonlinear absorption properties of the excitonic resonances associated with multiple quantum wells (MQWs) in AlGaAs/GaAs grown by metalorganic chemical vapor deposition are reported. The dependence of the saturation properties on growth parameters, especially growth temperature, and the well width are described. The minimum measured saturation intensity for these materials is 250 W/sq cm, the lowest reported value to date. The low saturation intensities are the result of excellent minority carrier properties. A systematic study of minority carrier lifetimes in quantum wells are reported. Lifetimes range from 50-350 ns depending on growth temperature and well width. When corrected for lateral diffusion effects and the measured minority carrier lifetime, the saturation data suggest that saturation intensities as low as 2.3 W/sq cm can be achieved in this system. The first measurements of the dependence of the exciton area and the magnitude of the excitonic absorption on well width are prsented. The growth of MQW structures on transparent GaP substrates is demonstrated and the electroabsorption properties of these structures are reviewed.

  18. Three temperature regimes in superconducting photon detectors: quantum, thermal and multiple phase-slips as generators of dark counts.

    PubMed

    Murphy, Andrew; Semenov, Alexander; Korneev, Alexander; Korneeva, Yulia; Gol'tsman, Gregory; Bezryadin, Alexey

    2015-01-01

    We perform measurements of the switching current distributions of three w ≈ 120 nm wide, 4 nm thick NbN superconducting strips which are used for single-photon detectors. These strips are much wider than the diameter of the vortex cores, so they are classified as quasi-two-dimensional (quasi-2D). We discover evidence of macroscopic quantum tunneling by observing the saturation of the standard deviation of the switching distributions at temperatures around 2 K. We analyze our results using the Kurkijärvi-Garg model and find that the escape temperature also saturates at low temperatures, confirming that at sufficiently low temperatures, macroscopic quantum tunneling is possible in quasi-2D strips and can contribute to dark counts observed in single photon detectors. At the highest temperatures the system enters a multiple phase-slip regime. In this range single phase-slips are unable to produce dark counts and the fluctuations in the switching current are reduced. PMID:25988591

  19. Supercurrent and multiple singlet-doublet phase transitions of a quantum dot Josephson junction inside an Aharonov-Bohm ring

    NASA Astrophysics Data System (ADS)

    Karrasch, C.; Meden, V.

    2009-01-01

    We study a quantum dot Josephson junction inside an Aharonov-Bohm environment. The geometry is modeled by an Anderson impurity coupled to two directly linked BCS leads. We illustrate that the well-established picture of the low-energy physics being governed by an interplay of two distinct (singlet and doublet) phases is still valid for this interferometric setup. The phase boundary depends, however, nonmonotonically on the coupling strength between the superconductors, causing the system to exhibit re-entrance behavior and multiple phase transitions. We compute the zero-temperature Josephson current and demonstrate that it can become negative in the singlet phase by virtue of the Coulomb interaction U . As a starting point, the limit of large superconducting energy gaps Δ=∞ is solved analytically. In order to tackle arbitrary Δ<∞ and U>0 , we employ a truncated functional renormalization-group scheme which was previously demonstrated to give quantitatively reliable results for the quantum dot Josephson problem.

  20. Enhanced power conversion efficiency in InGaN-based solar cells via graded composition multiple quantum wells.

    PubMed

    Tsai, Yu-Lin; Wang, Sheng-Wen; Huang, Jhih-Kai; Hsu, Lung-Hsing; Chiu, Ching-Hsueh; Lee, Po-Tsung; Yu, Peichen; Lin, Chien-Chung; Kuo, Hao-Chung

    2015-11-30

    This work demonstrates the enhanced power conversion efficiency (PCE) in InGaN/GaN multiple quantum well (MQWs) solar cells with gradually decreasing indium composition in quantum wells (GQWs) toward p-GaN as absorber. The GQW can improve the fill factor from 42% to 62% and enhance the short current density from 0.8 mA/cm2 to 0.92 mA/cm2, as compares to the typical MQW solar cells. As a result, the PCE is boosted from 0.63% to 1.11% under AM1.5G illumination. Based on simulation and experimental results, the enhanced PCE can be attributed to the improved carrier collection in GQW caused by the reduction of potential barriers and piezoelectric polarization induced fields near the p-GaN layer. The presented concept paves a way toward highly efficient InGaN-based solar cells and other GaN-related MQW devices. PMID:26698792

  1. Photoreflectance and surface photovoltage spectroscopy of beryllium-doped GaAs /AlAs multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Čechavičius, B.; Kavaliauskas, J.; Krivaitė, G.; Seliuta, D.; Valušis, G.; Halsall, M. P.; Steer, M. J.; Harrison, P.

    2005-07-01

    We present an optical study of beryllium δ-doped GaAs /AlAs multiple quantum well (QW) structures designed for sensing terahertz (THz) radiation. Photoreflectance (PR), surface photovoltage (SPV), and wavelength-modulated differential surface photovoltage (DSPV) spectra were measured in the structures with QW widths ranging from 3to20nm and doping densities from 2×1010to5×1012cm-2 at room temperature. The PR spectra displayed Franz-Keldysh oscillations which enabled an estimation of the electric-field strength of ˜20kV/cm at the sample surface. By analyzing the SPV spectra we have determined that a buried interface rather than the sample surface mainly governs the SPV effect. The DSPV spectra revealed sharp features associated with excitonic interband transitions which energies were found to be in a good agreement with those calculated including the nonparabolicity of the energy bands. The dependence of the exciton linewidth broadening on the well width and the quantum index has shown that an average half monolayer well width fluctuations is mostly predominant broadening mechanism for QWs thinner than 10nm. The line broadening in lightly doped QWs, thicker than 10nm, was found to arise from thermal broadening with the contribution from Stark broadening due to random electric fields of the ionized impurities in the structures. We finally consider the possible influence of strong internal electric fields, QW imperfections, and doping level on the operation of THz sensors fabricated using the studied structures.

  2. Collapse of the superradiant phase and multiple quantum phase transitions for Bose-Einstein condensates in an optomechanical cavity

    NASA Astrophysics Data System (ADS)

    Wang, Zhimei; Lian, Jinling; Liang, J.-Q.; Yu, Yanmei; Liu, Wu-Ming

    2016-03-01

    We investigate the multiple stable macroscopic quantum states of a Bose-Einstein condensate in an optomechanical cavity with pump-cavity field detuning and atom-photon interaction following the experimental realization of the quantum phase transition [Nature (London) 464, 1301 (2010), 10.1038/nature09009]. The spin-coherent-state variational method is useful in exploring the multistability since it has the advantage of including both normal and inverted pseudospin states. In the blue detuning regime the usual transition from normal to superradiant phases still exists, however, when the atom-field coupling increases to a certain value, called the turning point, the superradiant phase collapses due to the resonant damping of the mechanical oscillator. As a consequence, the system undergoes at this point an additional phase transition to the normal phase of the atomic population inversion state. In particular, the superradiant phase disappears completely at strong photon-phonon interaction, resulting in the direct atomic population transfer between two atomic levels. Moreover, the coupling-induced collapse and revival of the superradiant state are also found in the red detuning region.

  3. Multiple Environment Single System Quantum Mechanical/Molecular Mechanical (MESS-QM/MM) Calculations. 1. Estimation of Polarization Energies

    PubMed Central

    2015-01-01

    In combined quantum mechanical/molecular mechanical (QM/MM) free energy calculations, it is often advantageous to have a frozen geometry for the quantum mechanical (QM) region. For such multiple-environment single-system (MESS) cases, two schemes are proposed here for estimating the polarization energy: the first scheme, termed MESS-E, involves a Roothaan step extrapolation of the self-consistent field (SCF) energy; whereas the other scheme, termed MESS-H, employs a Newton–Raphson correction using an approximate inverse electronic Hessian of the QM region (which is constructed only once). Both schemes are extremely efficient, because the expensive Fock updates and SCF iterations in standard QM/MM calculations are completely avoided at each configuration. They produce reasonably accurate QM/MM polarization energies: MESS-E can predict the polarization energy within 0.25 kcal/mol in terms of the mean signed error for two of our test cases, solvated methanol and solvated β-alanine, using the M06-2X or ωB97X-D functionals; MESS-H can reproduce the polarization energy within 0.2 kcal/mol for these two cases and for the oxyluciferin–luciferase complex, if the approximate inverse electronic Hessians are constructed with sufficient accuracy. PMID:25321186

  4. Continuous-wave operation of ultraviolet InGaN/InAlGaN multiple-quantum-well laser diodes

    NASA Astrophysics Data System (ADS)

    Kneissl, Michael; Treat, David W.; Teepe, Mark; Miyashita, Naoko; Johnson, Noble M.

    2003-04-01

    We demonstrate ultraviolet InGaN/InAlGaN multiple-quantum-well laser diodes operating under continuous-wave (cw) conditions. The laser diodes were grown on sapphire substrates by metalorganic chemical vapor deposition. Under pulsed bias conditions, we have achieved threshold current densities as low as 5 kA/cm2 for laser diodes with emission wavelengths between 368 nm and 378 nm and have demonstrated lasing at 363.2 nm at room temperature, the shortest wavelength yet reported for a semiconductor laser diode. The cw operation up to a heat sink temperature of 40 °C was demonstrated on a series of narrow ridge-waveguide devices processed with chemically assisted ion beam etched mirrors and high reflective coating on both facets. The shortest wavelength emission under cw operation conditions was 373.5 nm with output powers of more than 1 mW.

  5. Imaging of multiple mRNA targets using quantum dot based in situ hybridization and spectral deconvolution in clinical biopsies

    SciTech Connect

    Tholouli, Eleni; Hoyland, Judith A.; Di Vizio, Dolores; O'Connell, Fionnuala; MacDermott, Sarah A.; Twomey, David; Levenson, Richard; Yin, John A. Liu; Golub, Todd R.; Loda, Massimo; Byers, Richard . E-mail: r.byers@manchester.ac.uk

    2006-09-22

    Gene expression mapping using microarray analysis has identified useful gene signatures for predicting outcome. However, little of this has been translated into clinically effective diagnostic tools as microarrays require high quality fresh-frozen tissue samples. We describe a methodology of multiplexed in situ hybridization (ISH) using a novel combination of quantum dot (QD)-labeled oligonucleotide probes and spectral imaging analysis in routinely processed, formalin-fixed paraffin embedded human biopsies. The conditions for QD-ISH were optimized using a poly d(T) oligonucleotide in decalcified bone marrow samples. Single and multiplex QD-ISH was performed in samples with acute leukemia and follicular lymphoma using oligonucleotide probes for myeloperoxidase, bcl-2, survivin, and XIAP. Spectral imaging was used for post hybridization tissue analysis, enabling separation of spatially colocalized signals. The method allows quantitative characterization of multiple gene expression using non-bleaching fluorochromes. This is expected to facilitate multiplex in situ transcript detection in routinely processed human clinical tissue.

  6. Integrated p–n junction InGaN/GaN multiple-quantum-well devices with diverse functionalities

    NASA Astrophysics Data System (ADS)

    Cai, Wei; Gao, Xumin; Yuan, Wei; Yang, Yongchao; Yuan, Jialei; Zhu, Hongbo; Wang, Yongjin

    2016-05-01

    We propose, fabricate, and demonstrate integrated p–n junction InGaN/GaN multiple-quantum-well devices with diverse functionalities on a GaN-on-silicon platform. Suspended devices with a common n-contact are realized using a wafer-level process. For the integrated devices, part of the light emitted by a light-emitting diode (LED) is guided in-plane through a suspended waveguide and is sensed by another photodiode. The induced photocurrent is tuned by the LED. The integrated devices can act as two independent LEDs to deliver different signals simultaneously for free-space visible light communication. Furthermore, the suspended devices can be used as two separate photodiodes to detect incident light with a distinct on/off switching performance.

  7. CdTe-Cd1 - xMnxTe multiple quantum well structures grown by pulsed laser evaporation and epitaxy

    NASA Astrophysics Data System (ADS)

    Dubowski, J. J.; Roth, A. P.; Wasilewski, Z. R.; Rolfe, S. J.

    1991-09-01

    Structural and optical properties of (001) CdTe-Cd1-xMnxTe (x=0.10) multiple quantum well structures grown by pulsed laser evaporation and epitaxy (PLEE) are investigated. The layers are grown on (001) CdZnTe wafers held at a temperature in the range of 210-230 °C. Secondary-ion mass spectroscopy in-depth profiles reveal that highly uniform structures are grown. Numerical analysis of double crystal x-ray diffraction results demonstrates high structural quality of the layers and indicates partial relaxation of the strain in these structures. Low-temperature photoluminescence exhibits excitonic recombinations in the CdTe wells whereas photoluminescence from the Cd1-xMnxTe barriers is not observed. The chemical composition of the barriers deduced from photoluminescence is in excellent agreement with the intended chemical composition set during growth.

  8. Optical bistability and multistability in a defect slab doped by GaAs/AlGaAs multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Seyyed, Hossein Asadpour; G, Solookinejad; M, Panahi; E Ahmadi, Sangachin

    2016-05-01

    We proposed a new model for controlling the optical bistability (OB) and optical multistability (OM) in a defect slab doped with four-level GaAs/AlGaAs multiple quantum wells with 15 periods of 17.5 nm GaAs wells and 15-nm Al0.3 Ga0.7As barriers. The effects of biexciton energy renormalization, exciton spin relaxation, and thickness of the slab on the OB and OM properties of the defect slab were theoretically investigated. We found that the transition from OB to OM or vice versa is possible by adjusting the controllable parameters in a lab. Moreover, the transmission, reflection, and absorption properties of the weak probe light through the slab were also discussed in detail.

  9. 650-nm AlGaInP multiple-quantum-well lasers grown by metalorganic chemical vapor deposition using tertiarybutylphosphine

    NASA Astrophysics Data System (ADS)

    Dong, Jian-Rong; Teng, Jing-Hua; Chua, Soo-Jin; Foo, Boon-Chin; Wang, Yan-Jun; Yuan, Hai-Rong; Yuan, Shu

    2003-07-01

    Using tertiarybutylphosphine (TBP) as phosphorus precursor, high-quality AlGaInP epilayers and AlGaInP/GaInP multiple-quantum-well (MQW) structures have been grown by metalorganic chemical vapor deposition. The photoluminescence results indicate that the AlGaInP materials are as good as those grown using PH3 in terms of optical quality. Finally, AlGaInP MQW red laser structures have been grown, and the electrically pumped AlGaInP red lasers grown by TBP have been demonstrated with the emission wavelength of 647 nm, indicating that TBP can be used to grow high-quality AlGaInP epilayers and AlGaInP-based red lasers, which presently is dominated by the highly toxic gas source PH3.

  10. Optical anisotropy in GaAs/AlxGa1-xAs multiple quantum wells under thermally induced uniaxial strain

    NASA Astrophysics Data System (ADS)

    Shen, H.; Wraback, M.; Pamulapati, J.; Newman, P. G.; Dutta, M.; Lu, Y.; Kuo, H. C.

    1993-05-01

    The effect of thermally induced in-plane uniaxial strain on the optical properties of a GaAs/AlxGa1-xAs multiple quantum well (MQW) has been studied in detail. The strain was produced by bonding the MQW thin films to LiTaO3, a transparent substrate which possesses a direction-dependent thermal expansion coefficient. At temperatures different from the bonding temperature we have observed an anisotropy in the optical properties of the MQW due to the strain-induced lowering of its in-plane fourfold rotation symmetry. The anisotropic absorption and birefringence for light incident normal to such a MQW structure have been determined and compared to a theory involving the mixing of the valence subbands.

  11. 27-dB gain unidirectional 1300-nm polarization-insensitive multiple quantum well laser amplifier module

    NASA Astrophysics Data System (ADS)

    Tiemeijer, L. F.; Thijs, P. J. A.; Dongen, T. V.; Binsma, J. J. M.; Jansen, E. J.; Verboven, A. J. M.

    1994-12-01

    An unidirectional polarization-insensitive multiple quantum well laser amplifier module for the 1300 nm window with a record high gain of 27-dB and a 3-dB saturation output power of 13-dB is demonstrated. The module gain has a 3-dB width exceeding 60 nm and shows a typical polarization sensitivity and gain ripple as low as 0.3-dB. To provide immunity for backscattered or reflected light, polarization independent optical isolaters were inserted in the input and output coupling optics of the package. A practical optical amplifier module for the 1300 nm window is very desirable, because most of the presently installed fiber has its zero dispersion wavelength around 1310 nm, while much of the older fiber often only can be operated around this wavelength.

  12. Overexpression of Leap2 impairs Xenopus embryonic development and modulates FGF and activin signals.

    PubMed

    Thiébaud, Pierre; Garbay, Bertrand; Auguste, Patrick; Sénéchal, Caroline Le; Maciejewska, Zuzanna; Fédou, Sandrine; Gauthereau, Xavier; Costaglioli, Patricia; Thézé, Nadine

    2016-09-01

    Besides its widely described function in the innate immune response, no other clear physiological function has been attributed so far to the Liver-Expressed-Antimicrobial-Peptide 2 (LEAP2). We used the Xenopus embryo model to investigate potentially new functions for this peptide. We identified the amphibian leap2 gene which is highly related to its mammalian orthologues at both structural and sequence levels. The gene is expressed in the embryo mostly in the endoderm-derived tissues. Accordingly it is induced in pluripotent animal cap cells by FGF, activin or a combination of vegT/β-catenin. Modulating leap2 expression level by gain-of-function strategy impaired normal embryonic development. When overexpressed in pluripotent embryonic cells derived from blastula animal cap explant, leap2 stimulated FGF while it reduced the activin response. Finally, we demonstrate that LEAP2 blocks FGF-induced migration of HUman Vascular Endothelial Cells (HUVEC). Altogether these findings suggest a model in which LEAP2 could act at the extracellular level as a modulator of FGF and activin signals, thus opening new avenues to explore it in relation with cellular processes such as cell differentiation and migration. PMID:27335344

  13. Exploring Direct 3D Interaction for Full Horizontal Parallax Light Field Displays Using Leap Motion Controller

    PubMed Central

    Adhikarla, Vamsi Kiran; Sodnik, Jaka; Szolgay, Peter; Jakus, Grega

    2015-01-01

    This paper reports on the design and evaluation of direct 3D gesture interaction with a full horizontal parallax light field display. A light field display defines a visual scene using directional light beams emitted from multiple light sources as if they are emitted from scene points. Each scene point is rendered individually resulting in more realistic and accurate 3D visualization compared to other 3D displaying technologies. We propose an interaction setup combining the visualization of objects within the Field Of View (FOV) of a light field display and their selection through freehand gesture tracked by the Leap Motion Controller. The accuracy and usefulness of the proposed interaction setup was also evaluated in a user study with test subjects. The results of the study revealed high user preference for free hand interaction with light field display as well as relatively low cognitive demand of this technique. Further, our results also revealed some limitations and adjustments of the proposed setup to be addressed in future work. PMID:25875189

  14. Exploring direct 3D interaction for full horizontal parallax light field displays using leap motion controller.

    PubMed

    Adhikarla, Vamsi Kiran; Sodnik, Jaka; Szolgay, Peter; Jakus, Grega

    2015-01-01

    This paper reports on the design and evaluation of direct 3D gesture interaction with a full horizontal parallax light field display. A light field display defines a visual scene using directional light beams emitted from multiple light sources as if they are emitted from scene points. Each scene point is rendered individually resulting in more realistic and accurate 3D visualization compared to other 3D displaying technologies. We propose an interaction setup combining the visualization of objects within the Field Of View (FOV) of a light field display and their selection through freehand gesture tracked by the Leap Motion Controller. The accuracy and usefulness of the proposed interaction setup was also evaluated in a user study with test subjects. The results of the study revealed high user preference for free hand interaction with light field display as well as relatively low cognitive demand of this technique. Further, our results also revealed some limitations and adjustments of the proposed setup to be addressed in future work. PMID:25875189

  15. Optimized selective lactate excitation with a refocused multiple-quantum filter

    NASA Astrophysics Data System (ADS)

    Holbach, Mirjam; Lambert, Jörg; Johst, Sören; Ladd, Mark E.; Suter, Dieter

    2015-06-01

    Selective detection of lactate signals in in vivo MR spectroscopy with spectral editing techniques is necessary in situations where strong lipid or signals from other molecules overlap the desired lactate resonance in the spectrum. Several pulse sequences have been proposed for this task. The double-quantum filter SSel-MQC provides very good lipid and water signal suppression in a single scan. As a major drawback, it suffers from significant signal loss due to incomplete refocussing in situations where long evolution periods are required. Here we present a refocused version of the SSel-MQC technique that uses only one additional refocussing pulse and regains the full refocused lactate signal at the end of the sequence.

  16. A learner's multiple views of the connection between mathematics and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Dini, Vesal; Hammer, David

    Students' physical intuitions and prior knowledge are critical to making sense of and solving problems in classical mechanics. In quantum mechanics (qm), coordinating concepts connected to such everyday thinking becomes more difficult. How then can students develop coherence in their knowledge of qm? Consider how experts do it: they build meaning in, around, and through the mathematics of the theory. This view on the role of mathematics, which is one of among many possible to take, seems most productive for qm. In our work to characterize student views of knowledge that emerge in the context of qm coursework, we came to analyze one student who mostly adopted such a view until a shift in context moved him to express an alternative. We present his case and discuss important implications for instruction.

  17. High-temperature HgTe/CdTe multiple-quantum-well lasers.

    PubMed

    Vurgaftman, I; Meyer, J

    1998-02-16

    While most previous studies of Hg-based mid-IR lasers have focused on either bulk Hg(1-x)Cd(x)Te alloys or thick (> 100 A) Hg(1-x)Cd(x)Te quantum wells with relatively large x, we show that much thinner (20-30 A) HgTe binary wells may be engineered to suppress both Auger recombination and intervalence free carrier absorption. On the basis of detailed numerical simulations, we predict 4.3 m cw emission at temperatures up to 220 K for optical pumping and 105 K for diode operation. In pulsed mode, we expect maximum lasing temperatures more than 100 K higher than any prior Hg-based mid-IR result. PMID:19377592

  18. Beyond GaAs: Room-Temperature Intersubband Absorption in SrTiO3/LaAlO3 Multiple Quantum Wells

    NASA Astrophysics Data System (ADS)

    Ortmann, John; Nookala, Nish; He, Qian; Posadas, Agham; Borisevich, Albina; Belkin, Mikhail; Demkov, Alex

    With the recent advancements in oxide thin film fabrication, it is possible to design and grow oxide quantum well heterostructures whose well depths far exceed those of traditional GaAs-based quantum wells. Here, we discuss the design, fabrication, structural quality, and optical properties of MBE-grown SrTiO3/LaAlO3 multiple quantum wells. These oxide quantum wells have a conduction band offset of greater than 2eV, as measured by X-ray photoelectron spectroscopy. We present simulations of the confined states within the wells and demonstrate the feasibility of driving intersubband transitions whose energies exceed 1eV. Furthermore, we demonstrate the excellent crystalline quality of these heterostructures via X-ray diffraction spectra and STEM-HAADF imaging and present evidence of atomic-scale control of the structures. Finally, we present room-temperature FTIR spectra demonstrating the first-reported evidence of intersubband absorption in SrTiO3/LaAlO3 multiple quantum wells and discuss the possibility of oxide quantum well-based devices.

  19. Exciton Kinetics in Strained II-Vi Semiconductor Multiple Quantum Wells.

    NASA Astrophysics Data System (ADS)

    Hefetz, Yaron

    1987-09-01

    Two groups of wide gap II-VI semiconductor superlattices based on ZnSe/Zn(,1-x)Mn(,x)Se and CdTe/ZnTe were investigated using CW and time-resolved photoluminescence, excitation, reflectance, and photomodulated reflectance spectroscopy at various temperatures and under an external magnetic field. All these lattice mismatch strained layer structures were grown by MBE technique and exhibit strong excitonic photoluminescence at low temperatures. By studying the dynamics of the exciton recombination processes, the role of strain, quantum confinement and localization effects were revealed. In the CdTe/ZnTc system where the lattice mismatch is (DELTA)a/a (TURNEQ) 6% the inhomogeneously broadened ((TURN)40 mev) luminescence line is governed by excitonic localization in well width fluctuations. Exchange interactions of the carriers with the Mn('++) ions in the dilute magnetic semiconductor Zn(,1-x)Mn(,x)Se in thin film and the barrier of the MQW structures influence their optical behavior in an exernal magnetic field. "Giant" Zeeman splittings of up to (TURN)10 mev/Tesla were measured in samples with moderate Mn concentration (x = .23). Antiferromagnetic interaction reduces these splittings in samples with higher Mn concentrations. In observing the time evolution of the carrier in Zn(,1-x)Mn(,x)Se MQW we found that the capture time of these carriers into the well is on the order of 1 psec but the last stages of thermalization, exciton formations and localization is (TURN)70 ps. The fast capture of electrons and holes into the quantum wells bypass the energy transfer into the Mn internal transition that is responsible to the efficient "yellow" luminescence in ZnMnSe mixed crystals.

  20. Quantum Bio-Informatics II From Quantum Information to Bio-Informatics

    NASA Astrophysics Data System (ADS)

    Accardi, L.; Freudenberg, Wolfgang; Ohya, Masanori

    2009-02-01

    The problem of quantum-like representation in economy cognitive science, and genetics / L. Accardi, A. Khrennikov and M. Ohya -- Chaotic behavior observed in linea dynamics / M. Asano, T. Yamamoto and Y. Togawa -- Complete m-level quantum teleportation based on Kossakowski-Ohya scheme / M. Asano, M. Ohya and Y. Tanaka -- Towards quantum cybernetics: optimal feedback control in quantum bio informatics / V. P. Belavkin -- Quantum entanglement and circulant states / D. Chruściński -- The compound Fock space and its application in brain models / K. -H. Fichtner and W. Freudenberg -- Characterisation of beam splitters / L. Fichtner and M. Gäbler -- Application of entropic chaos degree to a combined quantum baker's map / K. Inoue, M. Ohya and I. V. Volovich -- On quantum algorithm for multiple alignment of amino acid sequences / S. Iriyama and M. Ohya --Quantum-like models for decision making in psychology and cognitive science / A. Khrennikov -- On completely positive non-Markovian evolution of a d-level system / A. Kossakowski and R. Rebolledo -- Measures of entanglement - a Hilbert space approach / W. A. Majewski -- Some characterizations of PPT states and their relation / T. Matsuoka -- On the dynamics of entanglement and characterization ofentangling properties of quantum evolutions / M. Michalski -- Perspective from micro-macro duality - towards non-perturbative renormalization scheme / I. Ojima -- A simple symmetric algorithm using a likeness with Introns behavior in RNA sequences / M. Regoli -- Some aspects of quadratic generalized white noise functionals / Si Si and T. Hida -- Analysis of several social mobility data using measure of departure from symmetry / K. Tahata ... [et al.] -- Time in physics and life science / I. V. Volovich -- Note on entropies in quantum processes / N. Watanabe -- Basics of molecular simulation and its application to biomolecules / T. Ando and I. Yamato -- Theory of proton-induced superionic conduction in hydrogen-bonded systems

  1. Multiple exciton generation in quantum dots versus singlet fission in molecular chromophores for solar photon conversion.

    PubMed

    Beard, Matthew C; Johnson, Justin C; Luther, Joseph M; Nozik, Arthur J

    2015-06-28

    Both multiple exciton generation (MEG) in semiconductor nanocrystals and singlet fission (SF) in molecular chromophores have the potential to greatly increase the power conversion efficiency of solar cells for the production of solar electricity (photovoltaics) and solar fuels (artificial photosynthesis) when used in solar photoconverters. MEG creates two or more excitons per absorbed photon, and SF produces two triplet states from a single singlet state. In both cases, multiple charge carriers from a single absorbed photon can be extracted from the cell and used to create higher power conversion efficiencies for a photovoltaic cell or a cell that produces solar fuels, like hydrogen from water splitting or reduced carbon fuels from carbon dioxide and water (analogous to biological photosynthesis). The similarities and differences in the mechanisms and photoconversion cell architectures between MEG and SF are discussed. PMID:25987579

  2. PHYSICAL FOUNDATIONS OF QUANTUM ELECTRONICS: Multiple reflection method for electromagnetic waves in layered dielectric structures

    NASA Astrophysics Data System (ADS)

    Morozov, G. V.; Maev, R. G.; Drake, G. W. F.

    2001-09-01

    Reflection and transmission of a plane electromagnetic wave propagating in a layered dielectric structure with an arbitrary number of layers of various thicknesses are investigated. For the general case of oblique incidence of the wave on this structure, the reflection and transmission coefficients are calculated for both TE and TM waves using a multiple reflection method. An algorithm to apply the obtained formulas for numerical and analytical calculations is suggested.

  3. Observation of mid-infrared intersubband absorption in non-polar m-plane AlGaN/GaN multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Kotani, Teruhisa; Arita, Munetaka; Arakawa, Yasuhiko

    2014-12-01

    Mid-infrared (4.20-4.84 μm) intersubband absorption in non-polar m-plane Al0.5Ga0.5N/GaN multiple-quantum wells is observed at room temperature. 10 period Al0.5Ga0.5N/GaN multiple-quantum wells were grown on free-standing m-plane GaN substrates by metalorganic chemical vapor deposition (MOCVD), and the high-quality structural and optical properties are revealed by x-ray diffraction and photoluminescence studies. Through this we have demonstrated that MOCVD grown non-polar m-plane AlGaN/GaN quantum wells are a promising material for mid-infrared intersubband devices.

  4. Observation of mid-infrared intersubband absorption in non-polar m-plane AlGaN/GaN multiple quantum wells

    SciTech Connect

    Kotani, Teruhisa; Arita, Munetaka; Arakawa, Yasuhiko

    2014-12-29

    Mid-infrared (4.20–4.84 μm) intersubband absorption in non-polar m-plane Al{sub 0.5}Ga{sub 0.5}N/GaN multiple-quantum wells is observed at room temperature. 10 period Al{sub 0.5}Ga{sub 0.5}N/GaN multiple-quantum wells were grown on free-standing m-plane GaN substrates by metalorganic chemical vapor deposition (MOCVD), and the high-quality structural and optical properties are revealed by x-ray diffraction and photoluminescence studies. Through this we have demonstrated that MOCVD grown non-polar m-plane AlGaN/GaN quantum wells are a promising material for mid-infrared intersubband devices.

  5. Frequency up-conversion in nonpolar a-plane GaN/AlGaN based multiple quantum wells optimized for applications with silicon solar cells

    NASA Astrophysics Data System (ADS)

    Radosavljević, S.; Radovanović, J.; Milanović, V.; Tomić, S.

    2014-07-01

    We have described a method for structural parameters optimization of GaN/AlGaN multiple quantum well based up-converter for silicon solar cells. It involves a systematic tuning of individual step quantum wells by use of the genetic algorithm for global optimization. In quantum well structures, the up-conversion process can be achieved by utilizing nonlinear optical effects based on intersubband transitions. Both single and double step quantum wells have been tested in order to maximize the second order susceptibility derived from the density matrix formalism. The results obtained for single step wells proved slightly better and have been further pursued to obtain a more complex design, optimized for conversion of an entire range of incident photon energies.

  6. Frequency up-conversion in nonpolar a-plane GaN/AlGaN based multiple quantum wells optimized for applications with silicon solar cells

    SciTech Connect

    Radosavljević, S.; Radovanović, J. Milanović, V.; Tomić, S.

    2014-07-21

    We have described a method for structural parameters optimization of GaN/AlGaN multiple quantum well based up-converter for silicon solar cells. It involves a systematic tuning of individual step quantum wells by use of the genetic algorithm for global optimization. In quantum well structures, the up-conversion process can be achieved by utilizing nonlinear optical effects based on intersubband transitions. Both single and double step quantum wells have been tested in order to maximize the second order susceptibility derived from the density matrix formalism. The results obtained for single step wells proved slightly better and have been further pursued to obtain a more complex design, optimized for conversion of an entire range of incident photon energies.

  7. A different approach to multiplicity-edited heteronuclear single quantum correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Sakhaii, Peyman; Bermel, Wolfgang

    2015-10-01

    A new experiment for recording multiplicity-edited HSQC spectra is presented. In standard multiplicity-edited HSQC experiments, the amplitude of CH2 signals is negative compared to those of CH and CH3 groups. We propose to reverse the sign of 13C frequencies of CH2 groups in t1 as criteria for editing. Basically, a modified [BIRD]r,x element (Bilinear Rotation Pulses and Delays) is inserted in a standard HSQC pulse sequence with States-TPPI frequency detection in t1 for this purpose. The modified BIRD element was designed in such a way as to pass or stop the evolution of the heteronuclear 1JHC coupling. This is achieved by adding a 180° proton RF pulse in each of the 1/2J periods. Depending on their position the evolution is switched on or off. Usually, the BIRD- element is applied on real and imaginary increments of a HSQC experiment to achieve the editing between multiplicities. Here, we restrict the application of the modified BIRD element to either real or imaginary increments of the HSQC. With this new scheme for editing, changing the frequency and/or amplitude of the CH2 signals becomes available. Reversing the chemical shift axis for CH2 signals simplifies overcrowded frequency regions and thus avoids accidental signal cancellation in conventional edited HSQC experiments. The practical implementation is demonstrated on the protein Lysozyme. Advantages and limitations of the idea are discussed.

  8. A different approach to multiplicity-edited heteronuclear single quantum correlation spectroscopy.

    PubMed

    Sakhaii, Peyman; Bermel, Wolfgang

    2015-10-01

    A new experiment for recording multiplicity-edited HSQC spectra is presented. In standard multiplicity-edited HSQC experiments, the amplitude of CH2 signals is negative compared to those of CH and CH3 groups. We propose to reverse the sign of (13)C frequencies of CH2 groups in t1 as criteria for editing. Basically, a modified [BIRD](r,x) element (Bilinear Rotation Pulses and Delays) is inserted in a standard HSQC pulse sequence with States-TPPI frequency detection in t1 for this purpose. The modified BIRD element was designed in such a way as to pass or stop the evolution of the heteronuclear (1)JHC coupling. This is achieved by adding a 180° proton RF pulse in each of the 1/2J periods. Depending on their position the evolution is switched on or off. Usually, the BIRD- element is applied on real and imaginary increments of a HSQC experiment to achieve the editing between multiplicities. Here, we restrict the application of the modified BIRD element to either real or imaginary increments of the HSQC. With this new scheme for editing, changing the frequency and/or amplitude of the CH2 signals becomes available. Reversing the chemical shift axis for CH2 signals simplifies overcrowded frequency regions and thus avoids accidental signal cancellation in conventional edited HSQC experiments. The practical implementation is demonstrated on the protein Lysozyme. Advantages and limitations of the idea are discussed. PMID:26298081

  9. An effective shuffled frog-leaping algorithm for solving the hybrid flow-shop scheduling problem with identical parallel machines

    NASA Astrophysics Data System (ADS)

    Xu, Ye; Wang, Ling; Wang, Shengyao; Liu, Min

    2013-12-01

    In this article, an effective shuffled frog-leaping algorithm (SFLA) is proposed to solve the hybrid flow-shop scheduling problem with identical parallel machines (HFSP-IPM). First, some novel heuristic decoding rules for both job order decision and machine assignment are proposed. Then, three hybrid decoding schemes are designed to decode job order sequences to schedules. A special bi-level crossover and multiple local search operators are incorporated in the searching framework of the SFLA to enrich the memetic searching behaviour and to balance the exploration and exploitation capabilities. Meanwhile, some theoretical analysis for the local search operators is provided for guiding the local search. The parameter setting of the algorithm is also investigated based on the Taguchi method of design of experiments. Finally, numerical testing based on well-known benchmarks and comparisons with some existing algorithms are carried out to demonstrate the effectiveness of the proposed algorithm.

  10. Compact lightweight payload for covert datalink using a multiple quantum well modulating retroreflector on a small rotary-wing unmanned airborne vehicle

    NASA Astrophysics Data System (ADS)

    Gilbreath, G. Charmaine; Rabinovich, William S.; Meehan, Timothy J.; Vilcheck, Michael J.; Mahon, Rita; Burris, Ray; Ferraro, Mina; Sokolsky, Ilene; Vasquez, John A.; Bovais, Chris S.; Cochrell, Kerry; Goins, Kim C.; Barbehenn, Robin; Katzer, D. Scott; Ikossi-Anastasiou, Kiki; Montes, Marcos J.

    2000-11-01

    In this paper, we describe progress in the development of the NRL Multiple Quantum Well modulating retro-reflector including a description of recent demonstrations of an infrared data link between a small rotary-wing unmanned airborne vehicle and a ground based laser interrogator using the NRL multiple quantum well modulating retro-reflector. Modulating retro-reflector systems couple an optical retro- reflector, such as a corner-cube, and an electro-optic shutter to allow two-way optical communications using a laser, telescope and pointer-tracker on only one platform. The NRL modulating retro-reflector uses a semiconductor based multiple quantum well shutter capable of modulation rates up to 10 Mbps, depending on link characteristics. The technology enable the use of near-infrared frequencies, which is well known to provide covert communications immune to frequency allocation problems. The multiple quantum well modulating retro-reflector has the added advantage of being compact, lightweight, covert, and requires very low power. Up to an order of magnitude in onboard power can be saved using a small array of these devices instead of the Radio Frequency equivalent. In the described demonstration, a Mbps optical link to an unmanned aerial vehicle in flight at a range of 100-200 feet is shown. Near real-time compressed video is also demonstrated at the Mbps level.

  11. On-chip integration of suspended InGaN/GaN multiple-quantum-well devices with versatile functionalities.

    PubMed

    Cai, Wei; Yang, Yongchao; Gao, Xumin; Yuan, Jialei; Yuan, Wei; Zhu, Hongbo; Wang, Yongjin

    2016-03-21

    We propose, fabricate and demonstrate on-chip photonic integration of suspended InGaN/GaN multiple quantum wells (MQWs) devices on the GaN-on-silicon platform. Both silicon removal and back wafer etching are conducted to obtain membrane-type devices, and suspended waveguides are used for the connection between p-n junction InGaN/GaN MQWs devices. As an in-plane data transmission system, the middle p-n junction InGaN/GaN MQWs device is used as a light emitting diode (LED) to deliver signals by modulating the intensity of the emitted light, and the other two devices act as photodetectors (PDs) to sense the light guided by the suspended waveguide and convert the photons into electrons, achieving 1 × 2 in-plane information transmission via visible light. Correspondingly, the three devices can function as independent PDs to realize multiple receivers for free space visible light communication. Further, the on-chip photonic platform can be used as an active electro-optical sensing system when the middle device acts as a PD and the other two devices serve as LEDs. The experimental results show that the auxiliary LED sources can enhance the amplitude of the induced photocurrent. PMID:27136794

  12. Multicolor Quantum Dot-Based Chemical Nose for Rapid and Array-Free Differentiation of Multiple Proteins.

    PubMed

    Xu, Qinfeng; Zhang, Yihong; Tang, Bo; Zhang, Chun-yang

    2016-02-16

    Nanomaterial-based differential sensors (e.g., chemical nose) have shown great potential for identification of multiple proteins because of their modulatable recognition and transduction capability but with the limitation of array separation, single-channel read-out, and long incubation time. Here, we develop a multicolor quantum dot (QD)-based multichannel sensing platform for rapid identification of multiple proteins in an array-free format within 1 min. A protein-binding dye of bromophenol blue (BPB) is explored as an efficient reversible quencher of QDs, and the mixture of BPB with multicolor QDs may generate the quenched QD-BPB complexes. The addition of proteins will disrupt the QD-BPB complexes as a result of the competitive protein-BPB binding, inducing the separation of BPB from the QDs and the generation of distinct fluorescence patterns. The multicolor patterns may be collected at a single-wavelength excitation and differentiated by a linear discriminant analysis (LDA). This multichannel sensing platform allows for the discrimination of ten proteins and seven cell lines with the fastest response rate reported to date, holding great promise for rapid and high-throughput medical diagnostics. PMID:26759896

  13. Multiple timescale analysis of dynamical evolution near two coalescing eigenvalues in open quantum systems

    NASA Astrophysics Data System (ADS)

    Garmon, Savannah; Ordonez, Gonzalo

    Recently the physics of coalescing eigenvalues at an exceptional point (EP) has been studied in a wide range of physical contexts, including open quantum systems. At an EP N at which N eigenvalues coalesce the Hamiltonian can no longer be diagonalized but instead only reduced to a Jordan block of dimension N. In order to describe the survival probability P (t) for an initially prepared state in the vicinity of two coalescing levels, we further subdivide the EP2 case into the EP2A and EP2B, where the EP2A involves the coalesce of two virtual bound states to form a resonance/anti-resonance pair and the EP2B occurs when two resonances collide to form two new resonances. We show that in the vicinity of the EP2B the usual exponential decay appearing for resonances on intermediate timescales is modified as P (t) ~ te-Γt . However, the long-time evolution near the EP2B follows a 1 /t3 power law decay. Meanwhile the evolution for the EP2A is non-exponential on all timescales, and may be strongly influenced by continuum threshold effects.

  14. Improving the performance of tensor matrix vector multiplication in quantum chemistry codes.

    SciTech Connect

    Gropp, W. D.; Kaushik, D. K.; Minkoff, M.; Smith, B. F.

    2008-05-08

    Cumulative reaction probability (CRP) calculations provide a viable computational approach to estimate reaction rate coefficients. However, in order to give meaningful results these calculations should be done in many dimensions (ten to fifteen). This makes CRP codes memory intensive. For this reason, these codes use iterative methods to solve the linear systems, where a good fraction of the execution time is spent on matrix-vector multiplication. In this paper, we discuss the tensor product form of applying the system operator on a vector. This approach shows much better performance and provides huge savings in memory as compared to the explicit sparse representation of the system matrix.

  15. Injection current dependences of electroluminescence transition energy in InGaN/GaN multiple quantum wells light emitting diodes under pulsed current conditions

    SciTech Connect

    Zhang, Feng; Ikeda, Masao Liu, Jianping; Zhang, Shuming; Zhou, Kun; Yang, Hui; Liu, Zongshun

    2015-07-21

    Injection current dependences of electroluminescence transition energy in blue InGaN/GaN multiple quantum wells light emitting diodes (LEDs) with different quantum barrier thicknesses under pulsed current conditions have been analyzed taking into account the related effects including deformation caused by lattice strain, quantum confined Stark effects due to polarization field partly screened by carriers, band gap renormalization, Stokes-like shift due to compositional fluctuations which are supposed to be random alloy fluctuations in the sub-nanometer scale, band filling effect (Burstein-Moss shift), and quantum levels in finite triangular wells. The bandgap renormalization and band filling effect occurring at high concentrations oppose one another, however, the renormalization effect dominates in the concentration range studied, since the band filling effect arising from the filling in the tail states in the valence band of quantum wells is much smaller than the case in the bulk materials. In order to correlate the carrier densities with current densities, the nonradiative recombination rates were deduced experimentally by curve-fitting to the external quantum efficiencies. The transition energies in LEDs both with 15 nm quantum barriers and 5 nm quantum barriers, calculated using full strengths of theoretical macroscopic polarization given by Barnardini and Fiorentini [Phys. Status Solidi B 216, 391 (1999)] are in excellent accordance with experimental results. The LED with 5 nm barriers has been shown to exhibit a higher transition energy and a smaller blue shift than those of LED with 15 nm barriers, which is mainly caused by the smaller internal polarization field in the quantum wells.

  16. Sensitive targeted multiple protein quantification based on elemental detection of quantum dots.

    PubMed

    Montoro Bustos, Antonio R; Garcia-Cortes, Marta; González-Iglesias, Hector; Ruiz Encinar, Jorge; Costa-Fernández, José M; Coca-Prados, Miguel; Sanz-Medel, Alfredo

    2015-06-16

    A generic strategy based on the use of CdSe/ZnS Quantum Dots (QDs) as elemental labels for protein quantification, using immunoassays with elemental mass spectrometry (ICP-MS), detection is presented. In this strategy, streptavidin modified QDs (QDs-SA) are bioconjugated to a biotinylated secondary antibody (b-Ab2). After a multi-technique characterization of the synthesized generic platform (QDs-SA-b-Ab2) it was applied to the sequential quantification of five proteins (transferrin, complement C3, apolipoprotein A1, transthyretin and apolipoprotein A4) at different concentration levels in human serum samples. It is shown how this generic strategy does only require the appropriate unlabeled primary antibody for each protein to be detected. Therefore, it introduces a way out to the need for the cumbersome and specific bioconjugation of the QDs to the corresponding specific recognition antibody for every target analyte (protein). Results obtained were validated with those obtained using UV-vis spectrophotometry and commercial ELISA Kits. As expected, ICP-MS offered one order of magnitude lower DL (0.23 fmol absolute for transferrin) than the classical spectrophotometric detection (3.2 fmol absolute). ICP-MS precision and detection limits, however turned out to be compromised by procedural blanks. The full analytical performance of the ICP-MS-based immunoassay proposed was assessed for detection of transferrin (Tf), present at the low ng mL(-1) range in a complex "model" synthetic matrix, where the total protein concentration was 100 μg mL(-1). Finally, ICP-MS detection allowed the quantitative control of all the steps of the proposed immunoassay, by computing mass balances obtained, and the development of a faster indirect immunoassay format where the plate wells were directly coated with the whole protein mixture sample. PMID:26002480

  17. An ultrafast spectroscopic and quantum mechanical investigation of multiple emissions in push-pull pyridinium derivatives bearing different electron donors.

    PubMed

    Carlotti, B; Benassi, E; Cesaretti, A; Fortuna, C G; Spalletti, A; Barone, V; Elisei, F

    2015-08-28

    A joint experimental and theoretical approach, involving state-of-the-art femtosecond fluorescence up-conversion measurements and quantum mechanical computations including vibronic effects, was employed to get a deep insight into the excited state dynamics of two cationic dipolar chromophores (Donor-π-Acceptor(+)) where the electron deficient portion is a N-methyl pyridinium and the electron donor a trimethoxyphenyl or a pyrene, respectively. The ultrafast spectroscopic investigation, and the time resolved area normalised emission spectra in particular, revealed a peculiar multiple emissive behaviour and allowed the distinct emitting states to be remarkably distinguished from solvation dynamics, occurring in water in a similar timescale. The two and three emissions experimentally detected for the trimethoxyphenyl and pyrene derivatives, respectively, were associated with specific local emissive minima in the potential energy surface of S1 on the ground of quantum-mechanical calculations. A low polar and planar Locally Excited (LE) state together with a highly polar and Twisted Intramolecular Charge Transfer (TICT) state is identified to be responsible for the dual emission of the trimethoxyphenyl compound. Interestingly, the more complex photobehaviour of the pyrenyl derivative was explained considering the contribution to the fluorescence coming not only from the LE and TICT states but also from a nearly Planar Intramolecular Charge Transfer (PICT) state, with both the TICT and the PICT generated from LE by progressive torsion around the quasi-single bond between the methylpyridinium and the ethene bridge. These findings point to an interconversion between rotamers for the pyrene compound taking place in its excited state against the Non-equilibrated Excited Rotamers (NEER) principle. PMID:26213993

  18. Multiple logic functions from extended blockade region in a silicon quantum-dot transistor

    SciTech Connect

    Lee, Youngmin; Lee, Sejoon Im, Hyunsik; Hiramoto, Toshiro

    2015-02-14

    We demonstrate multiple logic-functions at room temperature on a unit device of the Si single electron transistor (SET). Owing to the formation of the multi-dot system, the device exhibits the enhanced Coulomb blockade characteristics (e.g., large peak-to-valley current ratio ∼200) that can improve the reliability of the SET-based logic circuits. The SET displays a unique feature useful for the logic applications; namely, the Coulomb oscillation peaks are systematically shifted by changing either of only the gate or the drain voltage. This enables the SET to act as a multi-functional one-transistor logic gate with AND, OR, NAND, and XOR functions.

  19. The Next Giant Leap: NASA's Ares Launch Vehicles Overview

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.; Vanhooser, Teresa

    2008-01-01

    The next chapter in NASA's history also promises to write the next chapter in America's history, as the Agency makes measurable strides toward developing new space transportation capabilities that wi!! put astronauts on course to explore the Moon as the next giant leap toward the first human footprint on Mars. This paper will present top-level plans and progress being made toward fielding the Ares I crew launch vehicle in the 2013 timeframe and the Ares V cargo launch vehicle in the 2018 timeframe. It also gives insight into the objectives for the first test flight, known as the Ares I-X, which is scheduled for April 2009. The U.S. strategy to scientifically explore space will fuel innovations such as solar power and water recycling, as well as yield new knowledge that directly benefits life on Earth. For the Ares launch vehicles, NASA is building on heritage hardware and unique capabilities; as well as almost 50 years of lessons learned from the Apollo Saturn, Space Shuttle, and commercial launch vehicle programs. In the Ares I Project's inaugural year, extensive trade studies and evaluations were conducted to improve upon the designs initially recommended by the Exploration Systems Architecture Study, resulting in significant reduction of near-term and long-range technical and programmatic risks; conceptual designs were analyzed for fitness against requirements; and the contractual framework was assembled to enable a development effort unparalleled in American space flight since the Space Shuttle. The Exploration Launch Projects team completed the Ares I System Requirements Review (SRR) at the end of 2006--the first such engineering milestone for a human-rated space transportation system in over 30 years.

  20. Single-shot single-voxel lactate measurements using FOCI-LASER and a multiple-quantum filter.

    PubMed

    Payne, Geoffrey S; deSouza, Nandita M; Messiou, Christina; Leach, Martin O

    2015-04-01

    Measurement of tissue lactate using (1) H MRS is often confounded by overlap with intense lipid signals at 1.3 ppm. Single-voxel localization using PRESS is also compromised by the large chemical shift displacement between voxels for the 4.1 ppm (-CH) resonance and the 1.3 ppm -CH3 resonance, leading to subvoxels with signals of opposite phase and hence partial signal cancellation. To reduce the chemical shift displacement to negligible proportions, a modified semi-LASER sequence was written ("FOCI-LASER", abbreviated as fLASER) using FOCI pulses to permit high RF bandwidth even with the limited RF amplitude characteristic of clinical MRI scanners. A further modification, MQF-fLASER, includes a selective multiple-quantum filter to detect lactate and reject lipid signals. The sequences were implemented on a Philips 3 T Achieva TX system. In a solution of brain metabolites fLASER lactate signals were 2.7 times those of PRESS. MQF-fLASER lactate was 47% of fLASER (the theoretical maximum is 50%) but still larger than PRESS lactate. In oil, the main 1.3 ppm lipid peak was suppressed to less than 1%. Enhanced suppression was possible using increased gradient durations. The minimum detectable lactate concentration was approximately 0.5 mM. Coherence selection gradients needed to be at the magic angle to avoid large water signals derived from intermolecular multiple-quantum coherences. In pilot patient measurements, lactate peaks were often observed in brain tumours, but not in cervix tumours; lipids were effectively suppressed. In summary, compared with PRESS, the fLASER sequence yields greatly superior sensitivity for direct detection of lactate (and equivalent sensitivity for other metabolites), while the single-voxel single-shot MQF-fLASER sequence surpasses PRESS for lactate detection while eliminating substantial signals from lipids. This sequence will increase the potential for in vivo lactate measurement as a biomarker in targeted anti-cancer treatments as well as

  1. Effect of low-energy electron irradiation on the optical properties of structures containing multiple InGaN/GaN quantum well

    SciTech Connect

    Vergeles, P. S.; Yakimov, E. B.

    2015-02-15

    Data on the temperature dependence of the cathodoluminescence intensity in multiple InGaN/GaN quantum-well structures in the temperature range 80–300 K are reported. Unirradiated structures and structures irradiated with electrons with subthreshold energy are studied. It is shown that, upon irradiation, the temperature dependence becomes weaker. From analysis of the results obtained in this study and previously, it can be suggested that electron irradiation initiates the relaxation of strains produced in quantum wells due to the InGaN-GaN lattice mismatch.

  2. Improved characteristics of InGaN multiple-quantum-well laser diodes grown on laterally epitaxially overgrown GaN on sapphire

    NASA Astrophysics Data System (ADS)

    Hansen, M.; Fini, P.; Zhao, L.; Abare, A. C.; Coldren, L. A.; Speck, J. S.; DenBaars, S. P.

    2000-01-01

    InGaN multiple-quantum-well laser diodes have been fabricated on fully coalesced laterally epitaxially overgrown (LEO) GaN on sapphire. The laterally overgrown "wing" regions as well as the coalescence fronts contained few or no threading dislocations. Laser diodes fabricated on these low-dislocation-density regions showed a reduction in threshold current density from 10 to 4.8 kA/cm2 compared to those on conventional planar GaN on sapphire. The internal quantum efficiency also improved from 3% for laser diodes on conventional GaN on sapphire to 22% for laser diodes on LEO GaN on sapphire.

  3. Magneto-Circular Dichroism Spectra of Cd1-xMnxTe-MnTe Multiple Quantum Well Prepared by Ionized-Cluster Beam Technique

    NASA Astrophysics Data System (ADS)

    Anno, Hiroaki; Koyanagi, Tsuyoshi; Matsubara, Kakuei

    1993-01-01

    Cd1-xMnxTe-MnTe multiple quantum wells were successfully grown on a sapphire (0001) substrate by the ionized-cluster beam deposition technique. In the magneto-circular dichroism spectra, peaks are observed at the energies where shoulders appear in the optical absorption spectra. The peaks shift toward higher energies as the Cd1-xMnxTe well width decreases. The magneto-optical effect is attributed to the Zeeman splitting of mini-band levels due to the spin exchange interaction between Mn2+ magnetic ions and electrons strongly confined in quantum wells.

  4. Absorption enhancement through Fabry-Pérot resonant modes in a 430 nm thick InGaAs/GaAsP multiple quantum wells solar cell

    SciTech Connect

    Behaghel, B.; Tamaki, R.; Watanabe, K.; Sodabanlu, H.; Vandamme, N.; Dupuis, C.; Bardou, N.; Cattoni, A.; Okada, Y.; Sugiyama, M.; Collin, S.; Guillemoles, J.-F.

    2015-02-23

    We study light management in a 430 nm-thick GaAs p-i-n single junction solar cell with 10 pairs of InGaAs/GaAsP multiple quantum wells (MQWs). The epitaxial layer transfer on a gold mirror improves light absorption and increases the external quantum efficiency below GaAs bandgap by a factor of four through the excitation of Fabry-Perot resonances. We show a good agreement with optical simulation and achieve around 10% conversion efficiency. We demonstrate numerically that this promising result can be further improved by anti-reflection layers. This study paves the way to very thin MQWs solar cells.

  5. Simultaneous quantitative detection of multiple tumor markers with a rapid and sensitive multicolor quantum dots based immunochromatographic test strip.

    PubMed

    Wang, Chunying; Hou, Fei; Ma, Yicai

    2015-06-15

    A novel multicolor quantum dots (QDs) based immunochromatographic test strip (ICTS) was developed for simultaneous quantitative detection of multiple tumor markers, by utilizing alpha fetoprotein (AFP) and carcinoembryonic antigen (CEA) as models. The immunosensor could realize simultaneous quantitative detection of tumor markers with only one test line and one control line on the nitrocellulose membrane (NC membrane) due to the introduction of multicolor QDs. In this method, a mixture of mouse anti-AFP McAb and mouse anti-CEA McAb was coated on NC membrane as test line and goat anti-mouse IgG antibody was coated as control line. Anti-AFP McAb-QDs546 conjugates and anti-CEA McAb-QDs620 conjugates were mixed and applied to the conjugate pad. Simultaneous quantitative detection of multiple tumor markers was achieved by detecting the fluorescence intensity of captured QDs labels on test line and control line using a test strip reader. Under the optimum conditions, AFP and CEA could be detected as low as 3 ng/mL and 2 ng/mL in 15 min with a sample volume of 80 μL, and no obvious cross-reactivity was observed. The immunosensor was validated with 130 clinical samples and in which it exhibited high sensitivity (93% for AFP and 87% for CEA) and specificity (94% for AFP and 97% for CEA). The immunosensor also demonstrated high recoveries (87.5-113% for AFP and 90-97.3% for CEA) and low relative standard deviations (RSDs) (2.8-6.2% for AFP and 4.9-9.6% for CEA) when testing spiked human serum. This novel multicolor QDs based ICTS provides an easy and rapid, simultaneous quantitative detecting strategy for point-of-care testing of tumor markers. PMID:25562743

  6. Multi-color quantum dot-based fluorescence immunoassay array for simultaneous visual detection of multiple antibiotic residues in milk.

    PubMed

    Song, Erqun; Yu, Mengqun; Wang, Yunyun; Hu, Weihua; Cheng, Dan; Swihart, Mark T; Song, Yang

    2015-10-15

    Antibiotic residues, which are among the most common contaminants in animal-based food products such as milk, have become a significant public health concern. Here, we combine a multicolor quantum dot (QD)-based immunofluorescence assay and an array analysis method to achieve simultaneous, sensitive and visual detection of streptomycin (SM), tetracycline (TC), and penicillin G (PC-G) in milk. Antibodies (Abs) for SM, TC and PC-G were conjugated to QDs with different emission wavelengths (QD 520 nm, QD 565 nm and QD 610 nm) to serve as detection probes (QD-Ab). Then a direct competitive fluorescent immunoassay was performed in antigen-coated microtiter plate wells for simultaneous qualitative and quantitative detection of SM, TC, and PC-G residues, based on fluorescence of the QD-Ab probes. The linear ranges for SM, TC and PC-G were 0.01-25 ng/mL, 0.01-25 ng/mL and 0.01-10 ng/mL, respectively, with detection limit of 5 pg/mL for each of them. Based on fluorescence of the QD-Ab probes, residues of the three antibiotics were determined visually and simultaneously. Compared with a commercial enzyme-linked immunosorbent assay kit, our method could achieve simultaneous analysis of multiple target antibiotics in multiple samples in a single run (high-throughput analysis) and improved accuracy and sensitivity for analysis of residues of the three antibiotics in authentic milk samples. This new analytical tool can play an important role in ameliorating the negative impact of the residual antibiotics on human health and the ecosystem. PMID:26002016

  7. Temperature dependent photoluminescence from ZnO/MgZnO multiple quantum wells grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Misra, P.; Sharma, T. K.; Kukreja, L. M.

    2007-07-01

    We have studied temperature dependent photoluminescence (PL) from ZnO Multiple Quantum Wells (MQWs) of different well layer thicknesses in the range ˜1-4 nm grown on (0001) sapphire by a novel in-house developed buffer assisted pulsed laser deposition. At 10 K the PL peak shifted toward blue with decreasing well layer thickness and at constant well layer thickness the PL peak shifted towards red with increasing temperature. To the best of our knowledge we have observed for the first time an efficient room temperature (RT) PL emanating from such MQWs. The red shift of the PL peak with increasing temperature has been found to be due to the band gap shrinkage in accordance with the Varshni's empirical relation. The spectral linewidth was found to increase with increasing temperature due to the scattering of excitons with acoustic and optical phonons in different temperature regimes. Both at RT and at 10 K the PL peak shifted with respect to the well layer thickness in the range of ˜3.35-˜3.68 eV with decreasing thickness in agreement with the calculated values.

  8. Design and performance of a sensor system for detection of multiple chemicals using an external cavity quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Phillips, Mark C.; Taubman, Matthew S.; Bernacki, Bruce E.; Cannon, Bret D.; Schiffern, John T.; Myers, Tanya L.

    2010-01-01

    We describe the performance of a sensor system designed for simultaneous detection of multiple chemicals with both broad and narrow absorption features. The sensor system consists of a broadly tunable external cavity quantum cascade laser (ECQCL), multi-pass Herriott cell, and custom low-noise electronics. The ECQCL features a fast wavelength tuning rate of 2265 cm-1/s (15660 nm/s) over the range of 1150-1270 cm-1 (7.87-8.70 μm), which permits detection of molecules with broad absorption features and dynamic concentrations, while the 0.2 cm-1 spectral resolution of the ECQCL system allows measurement of small molecules with atmospherically broadened absorption lines. High-speed amplitude modulation and low-noise electronics are used to improve the ECQCL performance for direct absorption measurements. We demonstrate simultaneous detection of Freon-134a (1,1,1,2-tetrafluoroethane), ammonia (NH3), and nitrous oxide (N2O) at low-ppb concentrations in field measurements of atmospheric chemical releases from a point source.

  9. Design and Performance of a Sensor System for Detection of Multiple Chemicals Using an External Cavity Quantum Cascade Laser

    SciTech Connect

    Phillips, Mark C.; Taubman, Matthew S.; Bernacki, Bruce E.; Cannon, Bret D.; Schiffern, John T.; Myers, Tanya L.

    2010-01-23

    We describe the performance of a sensor system designed for simultaneous detection of multiple chemicals with both broad and narrow absorption features. The sensor system consists of a broadly tunable external cavity quantum cascade laser (ECQCL), multi-pass Herriott cell, and custom low-noise electronics. The ECQCL features a rapid wavelength tuning rate of 2265 cm 1/s (15660 nm/s) over its tuning range of 1150-1270 cm 1 (7.87-8.70 μm), which permits detection of molecules with broad absorption features and dynamic concentrations, while the 0.2 cm-1 spectral resolution of the ECQCL system allows measurement of small molecules with atmospherically broadened absorption lines. High-speed amplitude modulation and low-noise electronics are used to improve the ECQCL performance for direct absorption measurements. We demonstrate simultaneous detection of Freon-134a (1,1,1,2-tetrafluoroethane), ammonia (NH3), and nitrous oxide (N2O) at low-ppb concentrations in field measurements of atmospheric chemical releases from a point source.

  10. Design and Room-Temperature Operation of GaAs/AlGaAs Multiple Quantum Well Nanowire Lasers.

    PubMed

    Saxena, Dhruv; Jiang, Nian; Yuan, Xiaoming; Mokkapati, Sudha; Guo, Yanan; Tan, Hark Hoe; Jagadish, Chennupati

    2016-08-10

    We present the design and room-temperature lasing characteristics of single nanowires containing coaxial GaAs/AlGaAs multiple quantum well (MQW) active regions. The TE01 mode, which has a doughnut-shaped intensity profile and is polarized predominantly in-plane to the MQWs, is predicted to lase in these nanowire heterostructures and is thus chosen for the cavity design. Through gain and loss calculations, we determine the nanowire dimensions required to minimize loss for the TE01 mode and determine the optimal thickness and number of QWs for minimizing the threshold sheet carrier density. In particular, we show that there is a limit to the minimum and maximum number of QWs that are required for room-temperature lasing. Based on our design, we grew nanowires of a suitable diameter containing eight uniform coaxial GaAs/AlGaAs MQWs. Lasing was observed at room temperature from optically pumped single nanowires and was verified to be from TE01 mode by polarization measurements. The GaAs MQW nanowire lasers have a threshold fluence that is a factor of 2 lower than that previously demonstrated for room-temperature GaAs nanowire lasers. PMID:27459233

  11. X-ray characterization of GaN/AlGaN multiple quantum wells for ultraviolet laser diodes

    NASA Astrophysics Data System (ADS)

    Korakakis, D.; Ludwig, K. F.; Moustakas, T. D.

    1998-03-01

    GaN/Al0.20Ga0.80N (50 Å/50 Å) multiple quantum wells (MQW) with 15 periods were grown on (0001) sapphire substrates by molecular beam epitaxy and evaluated by x-ray diffraction. To simulate an ultraviolet laser diode structure, the substrate was coated first with n-GaN as the bottom contact layer and n-Al0.25Ga0.75N as the corresponding cladding layer. The crystal structure of this system was investigated by studying the reciprocal lattice map of off-axis diffraction peaks as well as the θ-2θ pattern around the (0002) reflection. The MQW was found to be coherent and has the a-lattice parameter of the underlying Al0.25Ga0.75N. The good agreement between experimental and theoretical data in the relative intensity of up to third-order satellite peaks supports that the interfaces of the MQW are abrupt, and thus, interdiffusion of Ga and Al atoms at the growth temperature was negligible.

  12. Non-protein coding RNA-based genosensor with quantum dots as electrochemical labels for attomolar detection of multiple pathogens.

    PubMed

    Vijian, Dinesh; Chinni, Suresh V; Yin, Lee Su; Lertanantawong, Benchaporn; Surareungchai, Werasak

    2016-03-15

    The ability of a diagnostic test to detect multiple pathogens simultaneously is useful to obtain meaningful information for clinical treatment and preventive measures. We report a highly sensitive and specific electrochemical biosensor assay for simultaneous detection of three gene targets using quantum dots (QDs). The targets are novel non-protein coding RNA (npcRNA) sequences of Vibrio cholerae, Salmonella sp. and Shigella sp., which cause diarrheal diseases. QDs (PbS, CdS, ZnS) were synthesized and functionalized with DNA probes that were specific to each pathogen. Electrochemical detection of QDs was performed using square wave anodic stripping voltammetry (SWASV). The QDs gave distinct peaks at 0.5 V (PbS), 0.75 V (CdS) and 1.1 V (ZnS). There was no interference in signal response when all three QDs were mixed and detected simultaneously. The detection limits of single and multiplex assays with linear targets and PCR products were in the attomolar ranges. The high assay sensitivity, in combination with specific npcRNA sequences as novel diagnostic targets, makes it a viable tool for detecting pathogens from food, environment and clinical samples. PMID:26513287

  13. Onset of surface stimulated emission at 260 nm from AlGaN multiple quantum wells

    SciTech Connect

    Li, Xiaohang E-mail: dupuis@gatech.edu; Xie, Hongen; Ponce, Fernando A.; Ryou, Jae-Hyun; Detchprohm, Theeradetch; Dupuis, Russell D. E-mail: dupuis@gatech.edu

    2015-12-14

    We demonstrated onset of deep-ultraviolet (DUV) surface stimulated emission (SE) from c-plane AlGaN multiple-quantum well (MQW) heterostructures grown on a sapphire substrate by optical pumping at room temperature. The onset of SE became observable at a pumping power density of 630 kW/cm{sup 2}. Spectral deconvolution revealed superposition of a linearly amplified spontaneous emission peak at λ ∼ 257.0 nm with a full width at half maximum (FWHM) of ∼12 nm and a superlinearly amplified SE peak at λ ∼ 260 nm with a narrow FWHM of less than 2 nm. In particular, the wavelength of ∼260 nm is the shortest wavelength of surface SE from III-nitride MQW heterostructures to date. Atomic force microscopy and scanning transmission electron microscopy measurements were employed to investigate the material and structural quality of the AlGaN heterostructures, showing smooth surface and sharp layer interfaces. This study offers promising results for AlGaN heterostructures grown on sapphire substrates for the development of DUV vertical cavity surface emitting lasers (VCSELs)

  14. Photoreflectance and differential surface photovoltage studies of δ-doped GaAs/AlAs multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Cechavičius, Bronislovas; Kavaliauskas, Julius; Krivaite, Gene; Seliuta, Dalius; Valusis, Gintaras; Halsall, Matthew P.; Steer, Matthew J.; Harrison, Paul

    2005-08-01

    We measured the photoreflectance (PR) and wavelength-modulated differential surface photovoltage (DSPV) spectra of δ-doped GaAs/AlAs multiple quantum wells (MQW) with different well widths and doping levels. We demonstrated that PR and DSPV are powerful contactless tools for the characterization of MQW structures. We observed Franz-Keldysh oscillations in the PR spectra, which enabled us to determine the built-in electric fields in the GaAs/AlAs MQW structures. As it turned out, in the GaAs buffedcap layers the field strength is in the range of 18-20 kV/cm. It was found that a buried interface rather than the structure surface very probably governs the SPV effect. Sharp features associated with excitonic optical transitions were revealed in both, PR and DSPV spectra. From the line shape analysis of the modulation spectra, we estimated optical transition energies and broadening parameters. The energy levels and interband transition energies calculated by the transfer matrix method are in good agreement with the experimental values. The influence of the doping on the broadening of exciton resonances was observed and investigated.

  15. Flashlamp pumped oscillator-amplifier Nd:YAG system mode-locked using multiple quantum well saturable absorber

    NASA Astrophysics Data System (ADS)

    Kubecek, Vaclav; Jelinkova, Helena; Dombrovsky, Andrej; Diels, Jean-Claude; Stintz, Andreas

    2004-09-01

    We report on flashlamp pumped oscillator - three amplifiers Nd:YAG picosecond laser system in which the liquid saturable dye used for passive mode locking is replaced by semiconductor saturable absorber with multiple quantum well (MQW) structure. This element placed at Brewster angle inside a laser resonator had 100 layers of absorber and therefore it has high nonlinearity and is suitable for high power Q-switched and mode locked operation. The short pulse train from oscillator contained only 5-6 pulses with total energy of 3 mJ in single transversal mode, the pulse duration was 80 ps. After amplification, the maximum energy of the pulse train was 180 mJ. In the regime of the amplification of a single selected pulse the energy on the output of the third amplifier was 50 mJ. Operation of the oscillator in active-passive regime of mode locking using an additional acousto-optic mode-locker leads to improvement of reproducibility and stability of output parameters.

  16. Controlling optical polarization of {11-22} semipolar multiple quantum wells using relaxed underlying InGaN buffer layers

    NASA Astrophysics Data System (ADS)

    Okada, Narihito; Okamura, Yasuhiro; Uchida, Katsumi; Tadatomo, Kazuyuki

    2016-08-01

    We successfully fabricated {11-22} multiple quantum wells (MQWs) having different emission peak wavelengths on partially or completely relaxed thick InGaN buffer layers with different In contents formed on a semipolar {11-22} GaN layer, which was grown on a patterned r-plane sapphire substrate. The polarization properties changed significantly with changing in In content and thickness for InGaN buffer layer. For the same In content of the InGaN buffer layer, the optical polarization changed with an increase in the thickness of the underlying InGaN buffer layer, indicating a change in the relaxation ratio of the InGaN buffer layer. Similarly, for the same thickness of the InGaN buffer layer, the optical polarization changed by changing In content of the InGaN buffer layer. Thus, the degree of optical polarization could be controlled by varying the In content of the underlying InGaN buffer layer.

  17. Evaluation of the Leap Motion Controller as a New Contact-Free Pointing Device

    PubMed Central

    Bachmann, Daniel; Weichert, Frank; Rinkenauer, Gerhard

    2015-01-01

    This paper presents a Fitts' law-based analysis of the user's performance in selection tasks with the Leap Motion Controller compared with a standard mouse device. The Leap Motion Controller (LMC) is a new contact-free input system for gesture-based human-computer interaction with declared sub-millimeter accuracy. Up to this point, there has hardly been any systematic evaluation of this new system available. With an error rate of 7.8 % for the LMC and 2.8% for the mouse device, movement times twice as large as for a mouse device and high overall effort ratings, the Leap Motion Controller's performance as an input device for everyday generic computer pointing tasks is rather limited, at least with regard to the selection recognition provided by the LMC. PMID:25609043

  18. Analysis of the Accuracy and Robustness of the Leap Motion Controller

    PubMed Central

    Weichert, Frank; Bachmann, Daniel; Rudak, Bartholomäus; Fisseler, Denis

    2013-01-01

    The Leap Motion Controller is a new device for hand gesture controlled user interfaces with declared sub-millimeter accuracy. However, up to this point its capabilities in real environments have not been analyzed. Therefore, this paper presents a first study of a Leap Motion Controller. The main focus of attention is on the evaluation of the accuracy and repeatability. For an appropriate evaluation, a novel experimental setup was developed making use of an industrial robot with a reference pen allowing a position accuracy of 0.2 mm. Thereby, a deviation between a desired 3D position and the average measured positions below 0.2 mm has been obtained for static setups and of 1.2 mm for dynamic setups. Using the conclusion of this analysis can improve the development of applications for the Leap Motion controller in the field of Human-Computer Interaction. PMID:23673678

  19. Observation of Room Temperature Photoluminescence from Asymmetric CuGaO2/ZnO/ZnMgO Multiple Quantum Well Structures.

    PubMed

    Aneesh, P M; Jayaraj, M K; Reshmi, R; Ajimsha, R S; Kukreja, L M; Aldrin, A; Rojas, F; Bertomeu, J; López-Vidrier, J; Hernández, S

    2015-05-01

    Asymmetric (CuGaO2/ZnO/ZnMgO) and symmetric (ZnMgO/ZnO/ZnMgO) multiple quantum well (MQW) structures were successfully fabricated using pulsed laser deposition (PLD) and their comparison were made. Efficient room temperature photoluminescent (PL) emission was observed from these MQWs and temperature dependent luminescence of asymmetric and symmetric MQWs can be explained using the existing theories. A systematic blue shift was observed in both MQWs with decrease in the confinement layer thickness which could be attributed to the quantum confinement effects. The PL emission from asymmetric and symmetric MQW structures were blue shifted compared to 150 nm thick ZnO thin film grown by PLD due to quantum confinement effects. PMID:26505029

  20. M-plane core-shell InGaN/GaN multiple-quantum-wells on GaN wires for electroluminescent devices.

    PubMed

    Koester, Robert; Hwang, Jun-Seok; Salomon, Damien; Chen, Xiaojun; Bougerol, Catherine; Barnes, Jean-Paul; Dang, Daniel Le Si; Rigutti, Lorenzo; de Luna Bugallo, Andres; Jacopin, Gwénolé; Tchernycheva, Maria; Durand, Christophe; Eymery, Joël

    2011-11-01

    Nonpolar InGaN/GaN multiple quantum wells (MQWs) grown on the {11-00} sidewalls of c-axis GaN wires have been grown by organometallic vapor phase epitaxy on c-sapphire substrates. The structural properties of single wires are studied in detail by scanning transmission electron microscopy and in a more original way by secondary ion mass spectroscopy to quantify defects, thickness (1-8 nm) and In-composition in the wells (∼16%). The core-shell MQW light emission characteristics (390-420 nm at 5 K) were investigated by cathodo- and photoluminescence demonstrating the absence of the quantum Stark effect as expected due to the nonpolar orientation. Finally, these radial nonpolar quantum wells were used in room-temperature single-wire electroluminescent devices emitting at 392 nm by exploiting sidewall emission. PMID:21967509

  1. Leap Frog Digital Sensors and Definition, Integration & Testing FY 2003 Annual Report

    SciTech Connect

    Meitzler, Wayne D.; Ouderkirk, Steven J.; Shoemaker, Steven V.; Tzemos, Spyridon; Griswold, Richard L.

    2003-12-31

    The objective of Leap Frog is to develop a comprehensive security tool that is transparent to the user community and more effective than current methods for preventing and detecting security compromises of critical physical and digital assets. Current security tools intrude on the people that interact with these critical assets by requiring them to perform additional functions or having additional visible sensors. Leap Frog takes security to the next level by being more effective and reducing the adverse impact on the people interacting with protected assets.

  2. Structure of CdTe-Cd1 - xMnxTe multiple quantum wells grown on (001) InSb substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Williams, G. M.; Cullis, A. G.; Whitehouse, C. R.; Ashenford, D. E.; Lunn, B.

    1989-09-01

    Molecular beam epitaxy has been used to prepare multiple quantum well structures of CdTe/Cd1-xMnxTe on (001) InSb substrates. The growth of such a system on InSb allows the use of particularly low growth temperatures, hence minimizing interdiffusion effects. This study presents the first transmission electron microscope investigation of this multilayer system grown on InSb. The work clearly demonstrates that multiple quantum wells of high structural quality can be grown reproducibly over a wide range of layer thicknesses. The importance of efficient substrate surface cleaning prior to growth is demonstrated. In order to grow high structural quality multilayers, the choice of buffer layer is also important and a possible explanation for this observation is given.

  3. In vivo single-shot three-dimensionally localized multiple quantum spectroscopy of GABA in the human brain with improved spectral selectivity

    NASA Astrophysics Data System (ADS)

    Choi, In-Young; Lee, Sang-Pil; Shen, Jun

    2005-01-01

    A single-shot multiple quantum filtering method is developed that uses two double-band frequency selective pulses for enhanced spectral selectivity in combination with a slice-selective 90°, a slice-selective universal rotator 90°, and a spectral-spatial pulse composed of two slice-selective universal rotator 45° pulses for single-shot three-dimensional localization. The use of this selective multiple quantum filtering method for C3 and C4 methylene protons of GABA resulted in improved spectral selectivity for GABA and effective suppression of overlapping signals such as creatine and glutathione in each single scan, providing reliable measurements of the GABA doublet in all subjects. The concentration of GABA was measured to be 0.7 ± 0.2 μmol/g (means ± SD, n = 15) in the fronto-parietal region of the human brain in vivo.

  4. Accurate molecular dynamics and nuclear quantum effects at low cost by multiple steps in real and imaginary time: Using density functional theory to accelerate wavefunction methods

    NASA Astrophysics Data System (ADS)

    Kapil, V.; VandeVondele, J.; Ceriotti, M.

    2016-02-01

    The development and implementation of increasingly accurate methods for electronic structure calculations mean that, for many atomistic simulation problems, treating light nuclei as classical particles is now one of the most serious approximations. Even though recent developments have significantly reduced the overhead for modeling the quantum nature of the nuclei, the cost is still prohibitive when combined with advanced electronic structure methods. Here we present how multiple time step integrators can be combined with ring-polymer contraction techniques (effectively, multiple time stepping in imaginary time) to reduce virtually to zero the overhead of modelling nuclear quantum effects, while describing inter-atomic forces at high levels of electronic structure theory. This is demonstrated for a combination of MP2 and semi-local DFT applied to the Zundel cation. The approach can be seamlessly combined with other methods to reduce the computational cost of path integral calculations, such as high-order factorizations of the Boltzmann operator or generalized Langevin equation thermostats.

  5. Radiation induced crosslinking in a silica-filled silicone elastomer as investigated by multiple quantum H NMR

    SciTech Connect

    Maxwell, R S; Chinn, S C; Solyom, D; Cohenour, R

    2005-05-24

    DC745 is a commercially available silicone elastomer consisting of dimethyl, methylphenyl, and vinyl-methyl siloxane monomers crosslinked with a peroxide vinyl specific curing agent. It is generally considered to age gracefully and to be resistant to chemical and thermally harsh environments. However, little data exists on the radiation resistance of this commonly used silicone elastomer. We report static {sup 1}H NMR studies of residual dipolar couplings in DC745 solid elastomers subject to exposure to ionizing gamma radiation. {sup 1}H spin-echo NMR data shows that with increasing dose, the segmental dynamics decrease is consistent with radiatively induced crosslinking. {sup 1}H multiple quantum NMR was used to assess changes in the network structure and observed the presence of a bimodal distribution of residual dipolar couplings, <{Omega}{sub d}>, that were dose dependent. The domain with the lower <{Omega}{sub d}> has been assigned to the polymer network while the domain with the higher <{Omega}{sub d}> has been assigned to polymer chains interacting with the inorganic filler surfaces. In samples exposed to radiation, the residual dipolar couplings in both reservoirs were observed to increase and the populations were observed to be dose dependent. The NMR results are compared to Differential Scanning Calorimetry (DSC) and a two-step solvent swelling technique. The solvent swelling data lend support to the interpretation of the NMR results and the DSC data show both a decrease in the melt temperature and the heat of fusion with cumulative dose, consistent with radiative crosslinking. In addition, DSC thermograms obtained following a 3 hr isothermal soak at -40 C showed the presence of a second melt feature at T{sub m} {approx} -70 C consistent with a network domain with significantly reduced segmental motion.

  6. Highly efficient blue organic light-emitting diodes using quantum well-like multiple emissive layer structure

    NASA Astrophysics Data System (ADS)

    Yoon, Ju-An; Kim, You-Hyun; Kim, Nam Ho; Yoo, Seung Il; Lee, Sang Youn; Zhu, Fu Rong; Kim, Woo Young

    2014-04-01

    In this study, the properties of blue organic light-emitting diodes (OLEDs), employing quantum well-like structure (QWS) that includes four different blue emissive materials of 4,4'-bis(2,2'-diphenylyinyl)-1,1'-biphenyl (DPVBi), 9,10-di(naphth-2-yl)anthracene (ADN), 2-( N, N-diphenyl-amino)-6-[4-( N, N-diphenyl amine)styryl]naphthalene (DPASN), and bis(2-methyl-8-quinolinolate)-4-(phenyl phenolato) aluminum (BAlq), were investigated. Conventional QWS blue OLEDs composed of multiple emissive layers and charge blocking layer with lower highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy level, and devices with triple emissive layers for more significant hole-electron recombination and a wider region for exciton generation were designed. The properties of triple emissive layered blue OLEDs with the structure of indium tin oxide (ITO) / N, N'-diphenyl- N, N'-bis(1-naphthyl-phenyl)-(1,1'-biphenyl)-4,4'-diamine (NPB) (700 Ǻ)/X (100 Ǻ)/BAlq (100 Ǻ)/X (100 Ǻ)/4,7-diphenyl-1,10-phenanthroline (Bphen) (300 Ǻ)/lithium quinolate (Liq) (20 Ǻ)/aluminum (Al) (1,200 Ǻ) (X = DPVBi, ADN, DPASN) were examined. HOMO-LUMO energy levels of DPVBi, ADN, DPASN, and BAlq are 2.8 to 5.9, 2.6 to 5.6, 2.3 to 5.2, and 2.9 to 5.9 eV, respectively. The OLEDs with DPASN/BAlq/DPASN QWS with maximum luminous efficiency of 5.32 cd/A was achieved at 3.5 V.

  7. Investigation of network heterogeneities in filled, trimodal, highly functional PDMS networks by 1H Multiple Quantum NMR

    SciTech Connect

    Gjersing, E; Chinn, S; Maxwell, R S; Herberg, J; Eastwood, E; Bowen, D; Stephens, T

    2006-09-06

    The segmental order and dynamics of polymer network chains in a filled, tri-modal silicone network have been studied by static 1H Multiple Quantum (MQ) NMR methods to gain insight into the structure property relationships. The materials were synthesized with two different types of crosslinks, with functionalities of 4 and near 60. The network chains were composed of distributions of high, low, and medium molecular weight chains. Crosslinking was accomplished by standard acid catalyzed reactions. MQ NMR methods have detected domains with residual dipolar couplings (<{Omega}{sub d}>) of near 4 kRad/s and 1 kRad/s assigned to (a) the shorter polymer chains and chains near the multifunctional ({phi}=60) crosslinking sites and to (b) the longer polymer chains far from these sites. Three structural variables were systematically varied and the mechanical properties and distributions of residual dipolar couplings measured in order to gain insight in to the network structural motifs that contribute significantly to the composite properties. The partitioning of and the average values of the residual dipolar couplings for the two domains were observed to be dependent on formulation variable and provided increased insight into the mechanical properties of these materials which are unavailable from swelling and spin-echo methods. The results of this study suggest that the domains with high crosslink density contribute significantly to the high strain modulus, while the low crosslink density domains do not. This is in agreement with theories and experimental studies on silicone bimodal networks over the last 20 years. In-situ MQ-NMR of swollen sample suggests that the networks deform non-affinely, in agreement with theory. The NMR experiments shown here provide increased ability to characterize multimodal networks of typical engineering silicone materials and to gain significant insight into structure-property relationships.

  8. Investigation of network heterogeneities in filled, trimodal, highly functional PDMS networks by 1H Multiple Quantum NMR

    SciTech Connect

    Maxwell, R; Gjersing, E; Chinn, S; Giuliani, J; Herberg, J; Eastwood, E; Bowen, D; Stephens, T

    2007-03-20

    The segmental order and dynamics of polymer network chains in a filled, tri-modal silicone foam network have been studied by static 1H Multiple Quantum (MQ) NMR methods to gain insight into the structure property relationships. The foam materials were synthesized with two different types of crosslinks, with functionalities, {phi}, of 4 and near 60. The network chains were composed of distributions of high, low, and medium molecular weight chains. Crosslinking was accomplished by standard acid catalyzed reactions. MQ NMR methods have detected domains with residual dipolar couplings (<{Omega}{sub d}>) of near 4 kRad/s and 1 kRad/s assigned to (a) the shorter polymer chains and chains near the multifunctional (f=60) crosslinking sites and to (b) the longer polymer chains far from these sites. Three structural variables were systematically varied and the mechanical properties via compression and distributions of residual dipolar couplings measured in order to gain insight in to the network structural motifs that contribute significantly to the composite properties. The partitioning of and the average values of the residual dipolar couplings for the two domains were observed to be dependent on formulation variable and provided increased insight into the network structure of these materials which are unavailable from swelling and spin-echo methods. The results of this study suggest that the domains with high crosslink density contribute significantly to the high strain modulus, while the low crosslink density domains do not. This is in agreement with theories and experimental studies on silicone bimodal networks over the last 20 years. In-situ MQ-NMR of swollen sample suggests that the networks deform heterogeneously and non-affinely. The heterogeneity of the deformation process was observed to depend on the amount of the high functionality crosslinking site PMHS. The NMR experiments shown here provide increased ability to characterize multimodal networks of typical

  9. Formation and characteristics of AlGaN-based three-dimensional hexagonal nanopyramid semi-polar multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Tian, Yingdong; Yan, Jianchang; Zhang, Yun; Zhang, Yonghui; Chen, Xiang; Guo, Yanan; Wang, Junxi; Li, Jinmin

    2016-05-01

    We demonstrated for the first time the formation and study of semi-polar AlGaN multiple-quantum-wells (MQWs) grown on highly regular hexagonal AlN nanopyramids. The AlN nanopyramids were obtained by a metal-organic chemical vapor phase deposition regrowth method on a well-ordered AlN nanorod array prepared by a top-down etching process. The growth mechanism of the AlN nanopyramids was ascribed to the slow growth of the (101&cmb.macr;1) semi-polar plane, which resulted from hydrogen passivation. Beneath the semi-polar facets, air voids were formed. This was attributed to the insufficient delivery of gas reactants to the bottom of the nanorods during the growth process. The polarization effect in semi-polar AlGaN MQWs was numerically calculated. The results showed that the internal electric field (IEF) in the semi-polar MQWs was remarkably reduced by 80% in comparison with c-plane MQWs. Power dependent photoluminescence indicated that the semi-polar AlGaN MQWs had negligible wavelength shifts that resulted from the reduced IEF, which was in accordance with theoretical predictions. In addition, epitaxial strain was greatly relieved in the AlN regrowth layer, which was revealed from the peak shift of the E2(high) phonon using micro-Raman spectroscopy. The advantages of AlGaN-based hexagonal nanopyramid semi-polar three dimensional nanostructures would lead to a large improvement of output power in UV-LEDs.

  10. Formation and characteristics of AlGaN-based three-dimensional hexagonal nanopyramid semi-polar multiple quantum wells.

    PubMed

    Tian, Yingdong; Yan, Jianchang; Zhang, Yun; Zhang, Yonghui; Chen, Xiang; Guo, Yanan; Wang, Junxi; Li, Jinmin

    2016-06-01

    We demonstrated for the first time the formation and study of semi-polar AlGaN multiple-quantum-wells (MQWs) grown on highly regular hexagonal AlN nanopyramids. The AlN nanopyramids were obtained by a metal-organic chemical vapor phase deposition regrowth method on a well-ordered AlN nanorod array prepared by a top-down etching process. The growth mechanism of the AlN nanopyramids was ascribed to the slow growth of the (101[combining macron]1) semi-polar plane, which resulted from hydrogen passivation. Beneath the semi-polar facets, air voids were formed. This was attributed to the insufficient delivery of gas reactants to the bottom of the nanorods during the growth process. The polarization effect in semi-polar AlGaN MQWs was numerically calculated. The results showed that the internal electric field (IEF) in the semi-polar MQWs was remarkably reduced by 80% in comparison with c-plane MQWs. Power dependent photoluminescence indicated that the semi-polar AlGaN MQWs had negligible wavelength shifts that resulted from the reduced IEF, which was in accordance with theoretical predictions. In addition, epitaxial strain was greatly relieved in the AlN regrowth layer, which was revealed from the peak shift of the E2(high) phonon using micro-Raman spectroscopy. The advantages of AlGaN-based hexagonal nanopyramid semi-polar three dimensional nanostructures would lead to a large improvement of output power in UV-LEDs. PMID:27174102

  11. Highly efficient blue organic light-emitting diodes using quantum well-like multiple emissive layer structure

    PubMed Central

    2014-01-01

    In this study, the properties of blue organic light-emitting diodes (OLEDs), employing quantum well-like structure (QWS) that includes four different blue emissive materials of 4,4′-bis(2,2′-diphenylyinyl)-1,1′-biphenyl (DPVBi), 9,10-di(naphth-2-yl)anthracene (ADN), 2-(N,N-diphenyl-amino)-6-[4-(N,N-diphenyl amine)styryl]naphthalene (DPASN), and bis(2-methyl-8-quinolinolate)-4-(phenyl phenolato) aluminum (BAlq), were investigated. Conventional QWS blue OLEDs composed of multiple emissive layers and charge blocking layer with lower highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy level, and devices with triple emissive layers for more significant hole-electron recombination and a wider region for exciton generation were designed. The properties of triple emissive layered blue OLEDs with the structure of indium tin oxide (ITO) /N,N′-diphenyl-N,N′-bis(1-naphthyl-phenyl)-(1,1′-biphenyl)-4,4′-diamine (NPB) (700 Ǻ)/X (100 Ǻ)/BAlq (100 Ǻ)/X (100 Ǻ)/4,7-diphenyl-1,10-phenanthroline (Bphen) (300 Ǻ)/lithium quinolate (Liq) (20 Ǻ)/aluminum (Al) (1,200 Ǻ) (X = DPVBi, ADN, DPASN) were examined. HOMO-LUMO energy levels of DPVBi, ADN, DPASN, and BAlq are 2.8 to 5.9, 2.6 to 5.6, 2.3 to 5.2, and 2.9 to 5.9 eV, respectively. The OLEDs with DPASN/BAlq/DPASN QWS with maximum luminous efficiency of 5.32 cd/A was achieved at 3.5 V. PMID:24940170

  12. Growth control and design principles of self-assembled quantum dot multiple layer structures for photodetector applications

    NASA Astrophysics Data System (ADS)

    Asano, Tetsuya

    Self-assembled quantum dots (SAQDs) formed by lattice-mismatch strain-driven epitaxy are currently the most advanced nanostructure-based platform for high performance optoelectronic applications such as lasers and photodetectors. While the QD lasers have realized the best performance in terms of threshold current and temperature stability, the performance of QD photodetectors (QDIPs) has not surpassed that of quantum well (QW) photodetectors. This is because the requirement of maximal photon absorption for photodetectors poses the challenge of forming an appropriately-doped large number of uniform multiple SAQD (MQD) layers with acceptable structural defect (dislocation etc.) density. This dissertation addresses this challenge and, through a combination of innovative approach to control of defects in MQD growth and judicious placement of SAQDs in a resonant cavity, shows that SAQD based quantum dot infrared photodetectors (QDIPs) can be made competitive with their quantum well counterparts. Specifically, the following major elements were accomplished: (i) the molecular beam epitaxy (MBE) growth of dislocation-free and uniform InAs/InAlGaAs/GaAs MQD strained structures up to 20-period, (ii) temperature-dependent photo- and dark-current based analysis of the electron density distribution inside the MQD structures for various doping schemes, (iii) deep level transient spectroscopy based identification of growth procedure dependent deleterious deep traps in SAQD structures and their reduction, and (iv) the use of an appropriately designed resonant cavity (RC) and judicious placement of the SAQD layers for maximal enhancement of photon absorption to realize over an order of magnitude enhancement in QDIP detectivity. The lattermost demonstration indicates that implementation of the growth approach and resonant cavity strategy developed here while utilizing the currently demonstrated MIR and LWIR QDIPs with detectivities > 10 10 cmHz1/2/W at ˜ 77 K will enable RC

  13. Draft genome sequence of Xylella fastidiosa subsp. fastidiosa strain Stag’s Leap

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Xylella fastidiosa subsp. fastidiosa causes Pierce’s disease of grapevine. Presented here is the draft genome sequence of the Stag’s Leap strain, previously used in pathogenicity/virulence assays to evaluate grapevine germplasm bearing Pierce’s disease....

  14. Listing of Education in Archaeological Programs: The LEAP Clearinghouse, 1989-1989 Summary Report.

    ERIC Educational Resources Information Center

    Knoll, Patricia C., Ed.

    This catalog incorporates information gathered between 1987 and 1989 for inclusion into the National Park Service's Listing of Education in Archaeological Programs (LEAP) computerized database. This database is a listing of federal, state, local and private projects promoting positive public awareness of U.S. archaeology--prehistoric and historic,…

  15. The LEAP Employer­-Educator Compact: Making Quality a Priority as Americans Go to College

    ERIC Educational Resources Information Center

    Liberal Education, 2013

    2013-01-01

    Through the Liberal Education and America's Promise (LEAP) initiative, the Association of American Colleges and Universities seeks to engage employers with the value, goals, and best practices of a twenty-first-century liberal education; to publicize employers' support for liberal education; and to encourage employer-educator partnerships that…

  16. Leap to produce heavy nuclei at the limits of nuclear stability

    SciTech Connect

    Hoffman, D.C.

    1985-09-01

    The Large Einsteinium Activation Program (LEAP) has been proposed by a consortium of four national laboratories. Central to the proposal is the preparation, for the first time, of a large target of Es-254 in order to accomplish a unique scientific program. Progress and activities to date and plans for the future are discussed. 14 refs., 5 figs., 3 tabs.

  17. Envisioning Imaginary Spaces for Musicking: Equipping Students for Leaping into the Unexplored

    ERIC Educational Resources Information Center

    Juntunen, Marja-Leena; Karlsen, Sidsel; Kuoppamäki, Anna; Laes, Tuulikki; Muhonen, Sari

    2014-01-01

    In this article, we argue that music teachers working in a fast-changing society could focus on envisioning their students' imaginary spaces for engaging with music and equipping them for leaping into what for the students would be the musically hitherto unexplored. Taking Christopher Small's writings as a point of departure, we contest…

  18. Draft Genome Sequence of Xylella fastidiosa subsp. fastidiosa Strain Stag’s Leap

    PubMed Central

    Wu, F.; Zheng, Z.; Deng, X.; Burbank, L. P.; Stenger, D. C.

    2016-01-01

    Xylella fastidiosa subsp. fastidiosa causes Pierce’s disease of grapevine. Presented here is the draft genome sequence of the Stag’s Leap strain, previously used in pathogenicity/virulence assays to evaluate grapevine germplasm bearing Pierce’s disease resistance and a phenotypic assessment of knockout mutants to determine gene function. PMID:27103713

  19. Draft Genome Sequence of Xylella fastidiosa subsp. fastidiosa Strain Stag's Leap.

    PubMed

    Chen, J; Wu, F; Zheng, Z; Deng, X; Burbank, L P; Stenger, D C

    2016-01-01

    ITALIC! Xylella fastidiosasubsp. ITALIC! fastidiosacauses Pierce's disease of grapevine. Presented here is the draft genome sequence of the Stag's Leap strain, previously used in pathogenicity/virulence assays to evaluate grapevine germplasm bearing Pierce's disease resistance and a phenotypic assessment of knockout mutants to determine gene function. PMID:27103713

  20. Tau leaping of stiff stochastic chemical systems via local central limit approximation

    SciTech Connect

    Yang, Yushu; Rathinam, Muruhan

    2013-06-01

    Stiffness manifests in stochastic dynamic systems in a more complex manner than in deterministic systems; it is not only important for a time-stepping method to remain stable but it is also important for the method to capture the asymptotic variances accurately. In the context of stochastic chemical systems, time stepping methods are known as tau leaping. Well known existing tau leaping methods have shortcomings in this regard. The implicit tau method is far more stable than the trapezoidal tau method but underestimates the asymptotic variance. On the other hand, the trapezoidal tau method which estimates the asymptotic variance exactly for linear systems suffers from the fact that the transients of the method do not decay fast enough in the context of very stiff systems. We propose a tau leaping method that possesses the same stability properties as the implicit method while it also captures the asymptotic variance with reasonable accuracy at least for the test system S{sub 1}↔S{sub 2}. The proposed method uses a central limit approximation (CLA) locally over the tau leaping interval and is referred to as the LCLA-τ. The CLA predicts the mean and covariance as solutions of certain differential equations (ODEs) and for efficiency we solve these using a single time step of a suitable low order method. We perform a mean/covariance stability analysis of various possible low order schemes to determine the best scheme. Numerical experiments presented show that LCLA-τ performs favorably for stiff systems and that the LCLA-τ is also able to capture bimodal distributions unlike the CLA itself. The proposed LCLA-τ method uses a split implicit step to compute the mean update. We also prove that any tau leaping method employing a split implicit step converges in the fluid limit to the implicit Euler method as applied to the fluid limit differential equation.

  1. Tau leaping of stiff stochastic chemical systems via local central limit approximation

    NASA Astrophysics Data System (ADS)

    Yang, Yushu; Rathinam, Muruhan

    2013-06-01

    Stiffness manifests in stochastic dynamic systems in a more complex manner than in deterministic systems; it is not only important for a time-stepping method to remain stable but it is also important for the method to capture the asymptotic variances accurately. In the context of stochastic chemical systems, time stepping methods are known as tau leaping. Well known existing tau leaping methods have shortcomings in this regard. The implicit tau method is far more stable than the trapezoidal tau method but underestimates the asymptotic variance. On the other hand, the trapezoidal tau method which estimates the asymptotic variance exactly for linear systems suffers from the fact that the transients of the method do not decay fast enough in the context of very stiff systems. We propose a tau leaping method that possesses the same stability properties as the implicit method while it also captures the asymptotic variance with reasonable accuracy at least for the test system S1↔S2. The proposed method uses a central limit approximation (CLA) locally over the tau leaping interval and is referred to as the LCLA-τ. The CLA predicts the mean and covariance as solutions of certain differential equations (ODEs) and for efficiency we solve these using a single time step of a suitable low order method. We perform a mean/covariance stability analysis of various possible low order schemes to determine the best scheme. Numerical experiments presented show that LCLA-τ performs favorably for stiff systems and that the LCLA-τ is also able to capture bimodal distributions unlike the CLA itself. The proposed LCLA-τ method uses a split implicit step to compute the mean update. We also prove that any tau leaping method employing a split implicit step converges in the fluid limit to the implicit Euler method as applied to the fluid limit differential equation.

  2. Dislocation Reduction and Stress Relaxation of GaN and InGaN Multiple Quantum Wells with Improved Performance via Serpentine Channel Patterned Mask.

    PubMed

    Ji, Qingbin; Li, Lei; Zhang, Wei; Wang, Jia; Liu, Peichi; Xie, Yahong; Yan, Tongxing; Yang, Wei; Chen, Weihua; Hu, Xiaodong

    2016-08-24

    The existence of high threading dislocation density (TDD) in GaN-based epilayers is a long unsolved problem, which hinders further applications of defect-sensitive GaN-based devices. Multiple-modulation of epitaxial lateral overgrowth (ELOG) is used to achieve high-quality GaN template on a novel serpentine channel patterned sapphire substrate (SCPSS). The dislocation blocking brought by the serpentine channel patterned mask, coupled with repeated dislocation bending, can reduce the dislocation density to a yet-to-be-optimized level of ∼2 × 10(5) to 2 × 10(6) cm(-2). About 80% area utilization rate of GaN with low TDD and stress relaxation is obtained. The periodical variations of dislocation density, optical properties and residual stress in GaN-based epilayers on SCPSS are analyzed. The quantum efficiency of InGaN/GaN multiple quantum wells (MQWs) on it can be increased by 52% compared with the conventional sapphire substrate. The reduced nonradiative recombination centers, the enhanced carrier localization, and the suppressed quantum confined Stark effect, are the main determinants of improved luminous performance in MQWs on SCPSS. This developed ELOG on serpentine shaped mask needs no interruption and regrowth, which can be a promising candidate for the heteroepitaxy of semipolar/nonpolar GaN and GaAs with high quality. PMID:27484167

  3. Influence of substrate misorientation on the photoluminescence and structural properties of InGaAs/GaAsP multiple quantum wells.

    PubMed

    Dong, Hailiang; Sun, Jing; Ma, Shufang; Liang, Jian; Lu, Taiping; Liu, Xuguang; Xu, Bingshe

    2016-03-21

    InGaAs/GaAsP multiple quantum wells (MQWs) were grown by metal-organic chemical vapor deposition on vicinal GaAs (001) substrates with different miscut angles of 0°, 2° and 15° towards [110]. The crystal structures of InGaAs/GaAsP were characterized by high-resolution X-ray diffraction and Raman spectroscopy. The surface morphologies of InGaAs/GaAsP MQWs were observed by atomic force microscopy. The mechanisms for step flow, step bunching and pyramid growth on 0°, 2° and 15° misoriented substrates were discussed. The results provide a comprehensive phenomenological understanding of the self-ordering mechanism of vicinal GaAs substrates, which could be harnessed for designing the quantum optical properties of low-dimensional systems. From low-temperature photoluminescence, it was observed that the luminescence from the MQWs grown on a vicinal surface exhibits a red-shift with respect to the 0° case. An extra emission was observed from the 2° and 15° off samples, indicating the characteristics of quantum wire and pyramidal self-controlled quantum-dot systems, respectively. Its absence from the PL spectrum on 0° surfaces indicates that indium segregation is modified on the surfaces. The relationship between InGaAs/GaAsP MQWs grown on vicinal substrates and their optical and structural properties was explained, which provides a technological basis for obtaining different self-controlled nanostructures. PMID:26926840

  4. Influence of substrate misorientation on the photoluminescence and structural properties of InGaAs/GaAsP multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Dong, Hailiang; Sun, Jing; Ma, Shufang; Liang, Jian; Lu, Taiping; Liu, Xuguang; Xu, Bingshe

    2016-03-01

    InGaAs/GaAsP multiple quantum wells (MQWs) were grown by metal-organic chemical vapor deposition on vicinal GaAs (001) substrates with different miscut angles of 0°, 2° and 15° towards [110]. The crystal structures of InGaAs/GaAsP were characterized by high-resolution X-ray diffraction and Raman spectroscopy. The surface morphologies of InGaAs/GaAsP MQWs were observed by atomic force microscopy. The mechanisms for step flow, step bunching and pyramid growth on 0°, 2° and 15° misoriented substrates were discussed. The results provide a comprehensive phenomenological understanding of the self-ordering mechanism of vicinal GaAs substrates, which could be harnessed for designing the quantum optical properties of low-dimensional systems. From low-temperature photoluminescence, it was observed that the luminescence from the MQWs grown on a vicinal surface exhibits a red-shift with respect to the 0° case. An extra emission was observed from the 2° and 15° off samples, indicating the characteristics of quantum wire and pyramidal self-controlled quantum-dot systems, respectively. Its absence from the PL spectrum on 0° surfaces indicates that indium segregation is modified on the surfaces. The relationship between InGaAs/GaAsP MQWs grown on vicinal substrates and their optical and structural properties was explained, which provides a technological basis for obtaining different self-controlled nanostructures.

  5. Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Wu, X. H.; Elsass, C. R.; Abare, A.; Mack, M.; Keller, S.; Petroff, P. M.; DenBaars, S. P.; Speck, J. S.; Rosner, S. J.

    1998-02-01

    In the growth of InGaN/GaN multiple quantum well (MQW) structures, a novel defect (called the "V-defect") initiates at threading dislocations in one of the first quantum wells in a MQW stack. This defect is common to almost all InGaN MQW heterostructures. The nature of the V-defect was evaluated using transmission electron microscopy (TEM), scanning TEM (STEM), and low-temperature cathodoluminescence (CL) on a series of In0.20Ga0.80N/GaN MQW samples. The structure of the V-defect includes buried side-wall quantum wells (on the {101¯1} planes) and an open hexagonal inverted pyramid which is defined by the six {101¯1} planes. Thus, in cross section this defect appears as an open "V". The formation of the V-defect is kinetically controlled by reduced Ga incorporation on the pyramid walls ({101¯1} planes). The V-defect is correlated with the localized excitonic recombination centers that give rise to a long-wavelength shoulder in photoluminescence (PL) and CL spectra. This long-wavelength shoulder has the following characteristics: (i) its intensity is correlated with the side-wall quantum wells; (ii) the temperature independence of the full width at half maximum strongly supports a localized exciton recombination process.

  6. Two-component model in quantum statistical framework compared with multiplicity distributions in proton-proton collisions at energies up to √{ s} = 7 TeV

    NASA Astrophysics Data System (ADS)

    Ghosh, Premomoy

    2011-11-01

    Proton-proton collisions at new high energies (√{ s} = 2.36 and 7 TeV) at LHC resulted into greater mean multiplicities (< n >) of charged particles in the mid-rapidity region than estimated ones by different models and event generators. Another significant observation in multiplicity data is the change in slope in the distribution of primary charged hadrons in symmetric pseudorapidity interval | η | < 2.4. The change is most prominent with data at √{ s} = 7 TeV. These new observations merit further studies. We consider a two-component model of particle production to analyze multiplicity distributions of charged hadrons from proton-proton collisions at centre-of-mass energies √{ s} = 0.9, 2.36 and 7 TeV in symmetric pseudorapidity intervals | η | of increasing width around the centre-of-mass pseudorapidity ηcm = 0. The model, based on Quantum Statistical (QS) formalism, describes multiplicity distribution by convolution of a Negative Binomial Distribution (NBD), representing a chaotic component, and a Poisson Distribution (PD), representing a coherent component of particle productions. The behaviour of characteristic parameters of the model is followed by the LHC data, while a scaling law, involving information entropy in quantum statistical viewpoint and derived as a function of chaotic multiplicity obtained from the two-component model, is not obeyed by the data, satisfactorily. An attempt to match the measured multiplicity distributions and suggested convolutions with values of characteristic parameters extracted from the data confirms disagreement between the data and the model.

  7. Effect of variations in the doping profiles on the properties of doped multiple quantum well avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Menkara, H. M.; Wagner, B. K.; Summers, C. J.

    1996-01-01

    The purpose of this study is to use both theoretical and experimental evidence to determine the impact of doping imbalance and symmetry on the physical and electrical characteristics of doped multiple quantum well avalanche photodiodes (APD). Theoretical models have been developed to calculate the electric field valence and conduction bands, capacitance-voltage (CV), and carrier concentration versus depletion depth profiles. The models showed a strong correlation between the p- and n-doping balance inside the GaAs wells and the number of depleted stages and breakdown voltage of the APD. A periodic doping imbalance in the wells has been shown to result in a gradual increase (or decrease) in the electric field profile throughout the device which gave rise to partially depleted devices at low bias. The MQW APD structures that we modeled consisted of a 1 micron top p(+)-doped (3 x 10(exp 18) cm(exp -3)) GaAs layer followed by a 1 micron region of alternating layers of GaAs (500 A) and Al(0.42)Ga(0.58)As (500 A), and a 1 micron n(+) back layer (3 x 10(exp 18) cm(exp -3)). The GaAs wells were doped with p-i-n layers placed at the center of each well. The simulation results showed that in an APD with nine doped wells, and where the 50 A p-doped layer is off by 10% (p = 1.65 x 10(exp 18) cm(exp -3), n = 1.5 x 10(exp 18) cm(exp -3)), almost half of the MQW stages were shown to be undepleted at low bias which was a result of a reduction in the electric field near the p(+) cap layer by over 50% from its value in the balanced structure. Experimental CV and IV data on similar MBE grown MQW structures have shown very similar depletion and breakdown characteristics. The models have enabled us to better interpret our experimental data and to determine both the extent of the doping imbalances in the devices as well as the overall p- or n-type doping characteristics of the structures.

  8. Effects of multiple organic ligands on size uniformity and optical properties of ZnSe quantum dots

    SciTech Connect

    Archana, J.; Navaneethan, M.; Hayakawa, Y.; Ponnusamy, S.; Muthamizhchelvan, C.

    2012-08-15

    Highlights: ► Highly monodispersed ZnSe quantum dots have been synthesized by wet chemical route. ► Strong quantum confinement effect have been observed in ∼ 4 nm ZnSe quantum dots. ► Enhanced ultraviolet near band emission have been obtained using long chain polymer. -- Abstract: The effects of multi-ligands on the formation and optical transitions of ZnSe quantum dots have been investigated. The dots are synthesized using 3-mercapto-1,2-propanediol and polyvinylpyrrolidone ligands, and have been characterized by X-ray diffraction, transmission electron microscopy (TEM), UV–visible absorption spectroscopy, photoluminescence spectroscopy, and Fourier transform infrared spectroscopy. TEM reveals high monodispersion with an average size of 4 nm. Polymer-stabilized, organic ligand-passivated ZnSe quantum dots exhibit strong UV emission at 326 nm and strong quantum confinement in the UV–visible absorption spectrum. Uniform size and suppressed surface trap emission are observed when the polymer ligand is used. The possible growth mechanism is discussed.

  9. Theoretical analysis of multiple quantum-well, slow-light devices under applied external fields using a fully analytical model in fractional dimension

    SciTech Connect

    Kohandani, R; Kaatuzian, H

    2015-01-31

    We report a theoretical study of optical properties of AlGaAs/GaAs multiple quantum-well (MQW), slow-light devices based on excitonic population oscillations under applied external magnetic and electric fields using an analytical model for complex dielectric constant of Wannier excitons in fractional dimension. The results are shown for quantum wells (QWs) of different width. The significant characteristics of the exciton in QWs such as exciton energy and exciton oscillator strength (EOS) can be varied by application of external magnetic and electric fields. It is found that a higher bandwidth and an appropriate slow-down factor (SDF) can be achieved by changing the QW width during the fabrication process and by applying magnetic and electric fields during device functioning, respectively. It is shown that a SDF of 10{sup 5} is obtained at best. (slowing of light)

  10. Temporally and spatially resolved photoluminescence investigation of (112{sup ¯}2) semi-polar InGaN/GaN multiple quantum wells grown on nanorod templates

    SciTech Connect

    Liu, B.; Smith, R.; Athanasiou, M.; Yu, X.; Bai, J.; Wang, T.

    2014-12-29

    By means of time-resolved photoluminescence (PL) and confocal PL measurements, temporally and spatially resolved optical properties have been investigated on a number of In{sub x}Ga{sub 1−x}N/GaN multiple-quantum-well (MQW) structures with a wide range of indium content alloys from 13% to 35% on (112{sup ¯}2) semi-polar GaN with high crystal quality, obtained through overgrowth on nanorod templates. With increasing indium content, the radiative recombination lifetime initially increases as expected, but decreases if the indium content further increases to 35%, corresponding to emission in the green spectral region. The reduced radiative recombination lifetime leads to enhanced optical performance for the high indium content MQWs as a result of strong exciton localization, which is different from the behaviour of c-plane InGaN/GaN MQWs, where quantum confined Stark effect plays a dominating role in emission process.

  11. Understanding droop effect by analysis on carrier density dependence in InGaN/GaN multiple-quantum-well light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Zhao, Degang; Jiang, Desheng; Chen, Ping; Liu, Zongshun; Zhu, Jianjun; Yang, Jing; He, Xiaoguang; Li, Xiaojing; Li, Xiang; Liang, Feng; Liu, Jianping; Zhang, Liqun; Yang, Hui; Zhang, Yuantao; Du, Guotong

    2016-08-01

    The droop behaviors of two InGaN/GaN multiple-quantum-well blue-green light-emitting diodes grown on c-plane sapphires with different In content are investigated. The higher-In-content sample exhibits a lower efficiency, followed by a more significant droop as current increases in comparison with the lower-In-content diode. However, it is found that for both samples their efficiency reduction trend with increasing carrier density is nearly the same. Combining with the recombination rate equations, an analysis reveals that at the same injection current level, the carrier density in the higher-In-content quantum wells which have stronger polarization effect is larger due to the smaller bimolecular recombination coefficient, resulting in a more significant droop with current. Therefore, a study on the dependence of efficiency on carrier density can provide a clear elucidation to the physical mechanism of the efficiency droop behavior.

  12. Optical properties of one- and two-dimensional excitons in m-plane ZnO/MgZnO multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Chen, H. R.; Tsai, C. Y.; Huang, Y. C.; Kuo, C. C.; Hsu, H. C.; Hsieh, W. F.

    2016-03-01

    Five pairs of ZnO/Zn0.9Mg0.1O multiple quantum wells (MQWs) with fixed barrier thickness of 55 nm and three well widths of 4, 8 and 16 nm have been grown on m-plane sapphires by pulsed laser deposition. Due to 2D quantum confinement with decreasing well width, the emission of excitons bound to the basal-plane stacking faults, which are one-dimensionally confined in MQWs, encounters larger blue shift than that of the near-band edge excitons. Furthermore, remarkably reducing coupling of free excitons with A 1 longitudinal optical phonons is closely correlated with increasing exciton binding energy but enhanced coupling of E 2-low phonons is a result of increasing interaction with the interface phonons with decreasing well width.

  13. Quantum leaps in philosophy of mind: Reply to Bourget'scritique

    SciTech Connect

    Stapp, Henry P.

    2004-07-26

    David Bourget has raised some conceptual and technical objections to my development of von Neumann's treatment of the Copenhagen idea that the purely physical process described by the Schroedinger equation must be supplemented by a psychophysical process called the choice of the experiment by Bohr and Process 1 by von Neumann. I answer here each of Bourget's objections.

  14. Enhanced performances of vertical-structured green-band InGaN/GaN multiple-quantum-well solar cells with aluminum reflectors

    NASA Astrophysics Data System (ADS)

    Lai, Meng-Hua; Zheng, Zhi-Wei; Yu, Jian; Ying, Lei-Ying; Zhang, Bao-Ping

    2016-06-01

    We demonstrated vertical-structured InGaN/GaN multiple-quantum-well (MQW) solar cells with enhanced performances at a wavelength of 510 nm. The enhancement was achieved by using a ptype ohmic mirror with a combined indium-tin-oxide film and an aluminum (Al) reflector inserted beneath the MQW absorption region. In addition, both good ohmic contact and high reflection were observed. The vertical-structured MQW solar cell with an Al reflector exhibited significant improvements in device performances as compared to that without the Al reflector, including a 49% increase in the short-circuit current density and a 56% increase in the power conversion efficiency.

  15. Dependence of the photovoltaic performance of pseudomorphic InGaN/GaN multiple-quantum-well solar cells on the active region thickness

    NASA Astrophysics Data System (ADS)

    Mukhtarova, Anna; Valdueza-Felip, Sirona; Redaelli, Luca; Durand, Christophe; Bougerol, Catherine; Monroy, Eva; Eymery, Joël

    2016-04-01

    We investigate the photovoltaic performance of pseudomorphic In0.1Ga0.9N/GaN multiple-quantum well (MQW) solar cells as a function of the total active region thickness. An increase in the number of wells from 5 to 40 improves the short-circuit current and the open-circuit voltage, resulting in a 10-fold enhancement of the overall conversion efficiency. Further increasing the number of wells leads to carrier collection losses due to an incomplete depletion of the active region. Capacitance-voltage measurements point to a hole diffusion length of 48 nm in the MQW region.

  16. Optical and spin properties of localized and free excitons in GaBi x As1‑x /GaAs multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Balanta, M. A. G.; Kopaczek, J.; Orsi Gordo, V.; Santos, B. H. B.; Rodrigues, A. D.; Galeti, H. V. A.; Richards, R. D.; Bastiman, F.; David, J. P. R.; Kudrawiec, R.; Galvão Gobato, Y.

    2016-09-01

    Raman spectroscopy and magneto-photoluminescence measurements under high magnetic fields were used to investigate the optical and spin properties of GaBiAs/GaAs multiple quantum wells (MQWs). An anomalous negative diamagnetic energy shift was observed at higher temperatures and higher laser intensities, which was associated to a sign inversion of hole effective mass in these structures. In addition, an enhancement of the polarization degree with decreasing of laser intensity was observed (experimental condition where the emission is dominated by localized excitons). This effect was explained by changes of spin relaxation and exciton recombination times due to exciton localization by disorder.

  17. Quantum memory Quantum memory

    NASA Astrophysics Data System (ADS)

    Le Gouët, Jean-Louis; Moiseev, Sergey

    2012-06-01

    Interaction of quantum radiation with multi-particle ensembles has sparked off intense research efforts during the past decade. Emblematic of this field is the quantum memory scheme, where a quantum state of light is mapped onto an ensemble of atoms and then recovered in its original shape. While opening new access to the basics of light-atom interaction, quantum memory also appears as a key element for information processing applications, such as linear optics quantum computation and long-distance quantum communication via quantum repeaters. Not surprisingly, it is far from trivial to practically recover a stored quantum state of light and, although impressive progress has already been accomplished, researchers are still struggling to reach this ambitious objective. This special issue provides an account of the state-of-the-art in a fast-moving research area that makes physicists, engineers and chemists work together at the forefront of their discipline, involving quantum fields and atoms in different media, magnetic resonance techniques and material science. Various strategies have been considered to store and retrieve quantum light. The explored designs belong to three main—while still overlapping—classes. In architectures derived from photon echo, information is mapped over the spectral components of inhomogeneously broadened absorption bands, such as those encountered in rare earth ion doped crystals and atomic gases in external gradient magnetic field. Protocols based on electromagnetic induced transparency also rely on resonant excitation and are ideally suited to the homogeneous absorption lines offered by laser cooled atomic clouds or ion Coulomb crystals. Finally off-resonance approaches are illustrated by Faraday and Raman processes. Coupling with an optical cavity may enhance the storage process, even for negligibly small atom number. Multiple scattering is also proposed as a way to enlarge the quantum interaction distance of light with matter. The

  18. A comparison of the optical properties of InGaN/GaN multiple quantum well structures grown with and without Si-doped InGaN prelayers

    NASA Astrophysics Data System (ADS)

    Davies, M. J.; Hammersley, S.; Massabuau, F. C.-P.; Dawson, P.; Oliver, R. A.; Kappers, M. J.; Humphreys, C. J.

    2016-02-01

    In this paper, we report on a detailed spectroscopic study of the optical properties of InGaN/GaN multiple quantum well structures, both with and without a Si-doped InGaN prelayer. In photoluminescence and photoluminescence excitation spectroscopy, a 2nd emission band, occurring at a higher energy, was identified in the spectrum of the multiple quantum well structure containing the InGaN prelayer, originating from the first quantum well in the stack. Band structure calculations revealed that a reduction in the resultant electric field occurred in the quantum well immediately adjacent to the InGaN prelayer, therefore leading to a reduction in the strength of the quantum confined Stark effect in this quantum well. The partial suppression of the quantum confined Stark effect in this quantum well led to a modified (higher) emission energy and increased radiative recombination rate. Therefore, we ascribed the origin of the high energy emission band to recombination from the 1st quantum well in the structure. Study of the temperature dependent recombination dynamics of both samples showed that the decay time measured across the spectrum was strongly influenced by the 1st quantum well in the stack (in the sample containing the prelayer) leading to a shorter average room temperature lifetime in this sample. The room temperature internal quantum efficiency of the prelayer containing sample was found to be higher than the reference sample (36% compared to 25%) which was thus attributed to the faster radiative recombination rate of the 1st quantum well providing a recombination pathway that is more competitive with non-radiative recombination processes.

  19. Leap frog integrator modifications in highly collisional particle-in-cell codes

    NASA Astrophysics Data System (ADS)

    Hanzlikova, N.; Turner, M. M.

    2014-07-01

    Leap frog integration method is a standard, simple, fast, and accurate way to implement velocity and position integration in particle-in-cell codes. Due to the direct solution of kinetics of particles in phase space central to the particle-in-cell procedure, important information can be obtained on particle velocity distributions, and consequently on transport and heating processes. This approach is commonly associated with physical situations where collisional effects are weak, but can also be profitably applied in some highly collisional cases, such as occur in semiconductor devices and gaseous discharges at atmospheric pressure. In this paper, we show that the implementation of the leap frog integration method in these circumstances can violate some of the assumptions central to the accuracy of this scheme. Indeed, without adaptation, the method gives incorrect results. We show here how the method must be modified to deal correctly with highly collisional cases.

  20. Evaluation of the mathematical and economic basis for conversion processes in the LEAP energy-economy model

    NASA Astrophysics Data System (ADS)

    Oblow, E. M.

    1982-10-01

    An evaluation was made of the mathematical and economic basis for conversion processes in the Long-term Energy Analysis Program (LEAP) energy economy model. Conversion processes are the main modeling subunit in LEAP used to represent energy conversion industries and are supposedly based on the classical economic theory of the firm. Questions about uniqueness and existence of LEAP solutions and their relation to classical equilibrium economic theory prompted the study. An analysis of classical theory and LEAP model equations was made to determine their exact relationship. The conclusions drawn from this analysis were that LEAP theory is not consistent with the classical theory of the firm. Specifically, the capacity factor formalism used by LEAP does not support a classical interpretation in terms of a technological production function for energy conversion processes. The economic implications of this inconsistency are suboptimal process operation and short term negative profits in years where plant operation should be terminated. A new capacity factor formalism, which retains the behavioral features of the original model, is proposed to resolve these discrepancies.

  1. A Leap-Frog Discontinuous Galerkin Method for the Time-Domain Maxwell's Equations in Metamaterials

    SciTech Connect

    Li, J., Waters, J. W., Machorro, E. A.

    2012-06-01

    Numerical simulation of metamaterials play a very important role in the design of invisibility cloak, and sub-wavelength imaging. In this paper, we propose a leap-frog discontinuous Galerkin method to solve the time-dependent Maxwell’s equations in metamaterials. Conditional stability and error estimates are proved for the scheme. The proposed algorithm is implemented and numerical results supporting the analysis are provided.

  2. Astronaut John Young leaps from lunar surface as he salutes U.S. flag

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, leaps from the lunar surface as he salutes the U.S. flag during the first Apollo 16 extravehicular activity (EVA-1) on the Moon, as seen in this reproduction taken from a color transmission made by the color TV camera mounted on the Lunar Roving Vehicle. Astronaut Charles M. Duke Jr., lunar module pilot, is standing in the background.

  3. A novel usage of hydrogen treatment to improve the indium incorporation and internal quantum efficiency of green InGaN/GaN multiple quantum wells simultaneously

    NASA Astrophysics Data System (ADS)

    Ren, Peng; Zhang, Ning; Xue, Bin; Liu, Zhe; Wang, Junxi; Li, Jinmin

    2016-05-01

    The challenge for improving the internal quantum efficiency (IQE) of InGaN-based light emitting diodes (LED) in the green light range is referred to as the ‘green gap’. However the IQE of InGaN-based LEDs often drops when the emission peak wavelength is adjusted through reducing the growth temperature. Although hydrogen (H2) can improve surface morphology, it reduces the indium incorporation significantly. Here, a novel usage of H2 treatment on the GaN barrier before the InGaN quantum well is demonstrated to enhance indium incorporation efficiency and improve the IQE simultaneously for the first time. The mechanism behind it is systematically investigated and explained in detail. The possible reason for this phenomenon is the strain relieving function by the undulant GaN barrier surface after H2 treatment. Test measurements show that applying 0.2 min H2 treatment on the barrier would reduce defects and enhance indium incorporation, which would improve the localization effect and finally lead to a higher IQE. Although further increasing the treatment time to 0.4 min incorporates more indium atoms, the IQE decreases at the expense of more defects and a larger polarization field than the 0.2 min sample.

  4. GaAs/(In,Ga)As, p-channel, multiple strained quantum well field- effect transistors with high transconductance and high peak saturated drain current

    SciTech Connect

    Zipperian, T.E.; Dawson, L.R.; Drummond, T.J.; Schirber, J.E.; Fritz, I.J.

    1988-03-21

    GaAs/In/sub 0.2/ Ga/sub 0.8/ As structures with two paralleled 10 nm quantum wells, modulation doped from the top, bottom, and middle with Be, have been fabricated into multiple strained quantum well field-effect transistors (MQWFET's) with 1 x 150 ..mu..m/sup 2/ Ti/Au gates and examined both illuminated and in the dark at 300 and 77 K. Measurements on van der Pauw structures fabricated simultaneously with the transistors showed hole mobilities and sheet carrier densities to be 200, 3100, and 8040 cm/sup 2//V s, and 5.7 x 10/sup 12/, 1.8 x 10/sup 12/, and 1.5 x 10/sup 12/ cm/sup -2/ , at 300, 77, and 4 K, respectively. Shubnikov--de Haas measurements made below 4 K verified the existence of a double-channel two-dimensional hole gas with a strain-shifted light-hole ground state in the quantum wells with an effective hole mass of 0.15 m/sub e/ . A representative p-channel MQWFET showed well-saturated common-source output characteristics, both illuminated and unilluminated, at all measurement temperatures. Measured peak extrinsic transconductances and peak saturated drain currents for the unilluminated 1 ..mu..m device were 31 and 60 mS/mm and 27 and 67 mA/mm, at 300 and 77 K, respectively.

  5. The calendar of the future. A world calendar with leap week

    NASA Astrophysics Data System (ADS)

    Urá, Josef

    There exists a unique perpetual (solar) calendar with leap week that could become the basis for an eventual world calendar reform. Unlike the Universal Calendar considered for such a reform by the UN in 1956, rejected in a vote, it does not interrupt the continuity of weeks, which was the chief objection against this calendar. Except for the mentioned serious chronological defect, the Universal Calendar would otherwise have had many advantages. The leap week concept had been suggested earlier, but was never elaborated properly. Relevant theoretical questions and a suitable form of the calendar based on this concept are discussed. There is also a glimpse of the possible form of our calendar in a very distant future and of a calendar in cosmic space. The new calendar proposed is an optimum compromise for a solar calendar. While preserving advantages of the Universal Calendar, it fulfills all modern requirements: constancy, uniformity, continuity, simplicity and accuracy. With the leap rule derived (with regard to uniform time) an error of one day would occur in the new calendar in an interval longer than 10000 years. It could obtain a global acceptance, because there would be no discordance in the day of the week with respect to other existing calendars having a weekly cycle (such as, e.g., Jewish, Muslim, etc.).

  6. Time to follow guidelines, protocols, and structured procedures in medical care and time to leap out

    PubMed Central

    Kobo-Greenhut, Ayala; Notea, Amos; Ruach, Meir; Onn, Erez; Hasin, Yehunatan

    2014-01-01

    Present medical practice encourages management according to written guidelines, protocols, and structured procedures (GPPs). Daily medical practice includes instances in which “leaping” from one patient management routine to another is a must. We define “frozen patient management”, when patient management leaping was required but was not performed. Frozen patient management may cause significant damage to patient safety and health and the treatment quality. This paper discusses the advantages and disadvantages of GPP-guided medical practice and gives an explanation of the problem of frozen patient management in light of quality engineering, control engineering, and learning processes. Our analysis of frozen patient management is based on consideration of medical care as a process. By considering medical care processes as a closed-loop control process, it is possible to explain why, when an indication for deviation from the expected occurs, it does not necessarily attract the medical teams’ attention, thereby preventing the realization that leaping to an alternative patient management is needed. We suggest that working according to GPPs intensifies the frozen patient management problem since working according to GPPs relates to “exploitation learning behavior”, while leaping to new patient management relates to “exploration learning behavior”. We indicate practice routines to be incorporated into GPP-guided medical care, to reduce frozen patient management. PMID:25473321

  7. Accurate molecular dynamics and nuclear quantum effects at low cost by multiple steps in real and imaginary time: Using density functional theory to accelerate wavefunction methods.

    PubMed

    Kapil, V; VandeVondele, J; Ceriotti, M

    2016-02-01

    The development and implementation of increasingly accurate methods for electronic structure calculations mean that, for many atomistic simulation problems, treating light nuclei as classical particles is now one of the most serious approximations. Even though recent developments have significantly reduced the overhead for modeling the quantum nature of the nuclei, the cost is still prohibitive when combined with advanced electronic structure methods. Here we present how multiple time step integrators can be combined with ring-polymer contraction techniques (effectively, multiple time stepping in imaginary time) to reduce virtually to zero the overhead of modelling nuclear quantum effects, while describing inter-atomic forces at high levels of electronic structure theory. This is demonstrated for a combination of MP2 and semi-local DFT applied to the Zundel cation. The approach can be seamlessly combined with other methods to reduce the computational cost of path integral calculations, such as high-order factorizations of the Boltzmann operator or generalized Langevin equation thermostats. PMID:26851912

  8. Second moment of multiple-quantum NMR and a time-dependent growth of the number of multispin correlations in solids

    SciTech Connect

    Zobov, V. E. Lundin, A. A.

    2006-12-15

    The time evolution of multispin correlations (the growth of the number of correlated spins as a function of time) can be observed directly using the multiple-quantum nuclear magnetic resonance spectroscopy of solids. A quantity related to this number, namely, the second moment of the intensity distribution of coherences of different orders in the multiple-quantum spectrum can be calculated using the theory proposed in this work. An approach to the calculation of the four-spin time correlation function through which this moment is expressed is developed. The main sequences of contributions in the expansion of this function into a time power series are summed using the approximation of a large number of neighbors both for systems with a secular dipole-dipole interaction and for systems with a nonsecular effective interaction. An exponential dependence of is obtained. The value of is additionally calculated using an expansion in terms of orthogonal operators for three model examples corresponding to different limiting realizations of spin systems. It is shown that the results of the microscopic theory at least qualitatively agree with both the results obtained for model examples and experimental results obtained recently for adamantane.

  9. Application of the Floquet theory to multiple quantum NMR of dipolar-coupled multi-spin systems under magic angle spinning

    NASA Astrophysics Data System (ADS)

    Filip, Claudiu; Bertmer, Marko; Demco, Dan E.; Blümich, Bernhard

    A new analytical Liouville-space representation of the time-propagator under magic angle spinning (MAS) is introduced using the formalized quantum Floquet theory. This approach has the advantage that it is applicable to the analysis of any type of NMR experiment where MAS is combined with multiple-pulse excitation. General relationships describing the spectral parameters in multiple-quantum (MQ) MAS spectra are derived in this representation. Their use is illustrated with an application to double-quantum (DQ) NMR spectra of dipolarcoupled multi-spin systems. Corresponding to the separation of the MAS time-propagator into a rotor modulated and a dephasing component, two distinct mechanisms for DQ excitation are identified. One of them exploits the rotor-modulated component to excite DQ coherences through dipolar-recoupling techniques, which are familiar for spin pairs. Analytical expressions of the integral intensities and linewidths in the resulting DQ sideband pattern are derived in the form of power series expansions of the inverse rotor frequency, of which coefficients depend on structural parameters. In a multi-spin system they can most reliably be extracted in the fast spinning regime. The other mechanism exploits the dephasing component, which is characteristic to multi-spin systems only. This is shown to give rise to DQ coherences by free evolution at full rotor periods. The possibility to exploit it for selective excitation of higher order MQ coherences is discussed. In either case, the dephasing component also leads to residual broadening. The main results of the theoretical developments are demonstrated experimentally on adamantane.

  10. Nanometer-scale monitoring of quantum-confined Stark effect and emission efficiency droop in multiple GaN/AlN quantum disks in nanowires

    NASA Astrophysics Data System (ADS)

    Zagonel, L. F.; Tizei, L. H. G.; Vitiello, G. Z.; Jacopin, G.; Rigutti, L.; Tchernycheva, M.; Julien, F. H.; Songmuang, R.; Ostasevicius, T.; de la Peña, F.; Ducati, C.; Midgley, P. A.; Kociak, M.

    2016-05-01

    We report on a detailed study of the intensity dependent optical properties of individual GaN/AlN quantum disks (QDisks) embedded into GaN nanowires (NW). The structural and optical properties of the QDisks were probed by high spatial resolution cathodoluminescence (CL) in a scanning transmission electron microscope (STEM). By exciting the QDisks with a nanometric electron beam at currents spanning over three orders of magnitude, strong nonlinearities (energy shifts) in the light emission are observed. In particular, we find that the amount of energy shift depends on the emission rate and on the QDisk morphology (size, position along the NW and shell thickness). For thick QDisks (>4 nm), the QDisk emission energy is observed to blueshift with the increase of the emission intensity. This is interpreted as a consequence of the increase of carriers density excited by the incident electron beam inside the QDisks, which screens the internal electric field and thus reduces the quantum confined Stark effect (QCSE) present in these QDisks. For thinner QDisks (<3 nm ), the blueshift is almost absent in agreement with the negligible QCSE at such sizes. For QDisks of intermediate sizes there exists a current threshold above which the energy shifts, marking the transition from unscreened to partially screened QCSE. From the threshold value we estimate the lifetime in the unscreened regime. These observations suggest that, counterintuitively, electrons of high energy can behave ultimately as single electron-hole pair generators. In addition, when we increase the current from 1 to 10 pA the light emission efficiency drops by more than one order of magnitude. This reduction of the emission efficiency is a manifestation of the "efficiency droop" as observed in nitride-based 2D light emitting diodes, a phenomenon tentatively attributed to the Auger effect.

  11. Charge transfer in (In,Ga)As/(In,Al)As asymmetric double-multiple-quantum-well structures

    NASA Astrophysics Data System (ADS)

    Hayduk, Michael J.; Krol, Mark F.; Pollock, Clifford R.

    1996-06-01

    We present the results of an experimental investigation of field-dependent space-charge build-up in (Ga,In)As/(Al,In)As asymmetric double quantum well structures. By using low- temperature photoluminescence spectroscopy, we have found that charge separation dramatically increases the magnitude of the applied field required to achieve resonance (and beyond) of the lowest allowed electron levels in the narrow and wide wells.

  12. Magneto-Excitons in (411)A and (100)-Oriented GaAs/AlGaAs Multiple Quantum Well Structures

    SciTech Connect

    Bajaj, K.K.; Hiyamizu, S.; Jones, E.D.; Krivorotov, I.; Shimomura, S.; Shinohara, K.

    1999-01-20

    We report magneto-exciton spectroscopy studies of (411)A and (100)-oriented GaAs/Al{sub 0.3}Ga{sub 0.7}As multiquantum well structures. The samples consisted of seven GaAs quantum wells with widths varying between 0.6 and 12nm, were grown on (411)A and (100)-oriented GaAs substrates. The exciton diamagnetic energy shifts and linewidths were measured between 0 and 14T at 1.4K The dependence of the exciton diamagnetic shifts with magnetic field were calculated using a variational approach and good agreement with experiment for both substrate orientations was found.

  13. Mixed Quantum-Classical Dynamics Methods for Strong-Field Processes: Multiple-trajectory Ehrenfest dynamics + decoherence terms

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasumitsu; Watanabe, Kazuyuki; Abedi, Ali; Agostini, Federica; Min, Seung Kyu; Maitra, Neepa; Gross, E. K. U.

    The exact factorization of the electron-nuclear wave function allows to define the time-dependent potential energy surfaces (TDPESs) responsible for the nuclear dynamics and electron dynamics. Recently a novel coupled-trajectory mixed quantum-classical (CT-MQC) approach based on this TDPES has been developed, which accurately reproduces both nuclear and electron dynamics. Here we study the TDPES for laser-induced electron localization with a view to developing a MQC method for strong-field processes. We show our recent progress in applying the CT-MQC approach to the systems with many degrees of freedom.

  14. Radiative and Non-Radiative Lifetime Engineering of Quantum Dots in Multiple Solvents by Surface Atom Stoichiometry and Ligands

    PubMed Central

    Omogo, Benard; Aldana, Jose F.; Heyes, Colin D.

    2013-01-01

    CdTe quantum dots have unique characteristics that are promising for applications in photoluminescence, photovoltaics or optoelectronics. However, wide variations of the reported quantum yields exist and the influence of ligand-surface interactions that are expected to control the excited state relaxation processes remains unknown. It is important to thoroughly understand the fundamental principles underlying these relaxation processes to tailor the QDs properties to their application. Here, we systematically investigate the roles of the surface atoms, ligand functional groups and solvent on the radiative and non-radiative relaxation rates. Combining a systematic synthetic approach with X-ray photoelectron, quantitative FT-IR and time-resolved visible spectroscopies, we find that CdTe QDs can be engineered with average radiative lifetimes ranging from nanoseconds up to microseconds. The non-radiative lifetimes are anticorrelated to the radiative lifetimes, although they show much less variation. The density, nature and orientation of the ligand functional groups and the dielectric constant of the solvent play major roles in determining charge carrier trapping and excitonic relaxation pathways. These results are used to propose a coupled dependence between hole-trapping on Te atoms and strong ligand coupling, primarily via Cd atoms, that can be used to engineer both the radiative and non-radiative lifetimes. PMID:23543893

  15. Multiple exciton generation induced enhancement of the photoresponse of pulsed-laser-ablation synthesized single-wall-carbon-nanotube/PbS-quantum-dots nanohybrids.

    PubMed

    Ka, Ibrahima; Le Borgne, Vincent; Fujisawa, Kazunori; Hayashi, Takuya; Kim, Yoong Ahm; Endo, Morinobu; Ma, Dongling; El Khakani, My Ali

    2016-01-01

    The pulsed laser deposition method was used to decorate appropriately single wall carbon nanotubes (SWCNTs) with PbS quantum dots (QDs), leading to the formation of a novel class of SWCNTs/PbS-QDs nanohybrids (NHs), without resorting to any ligand engineering and/or surface functionalization. The number of laser ablation pulses (NLp) was used to control the average size of the PbS-QDs and their coverage on the SWCNTs' surface. Photoconductive (PC) devices fabricated from these SWCNTs/PbS-QDs NHs have shown a significantly enhanced photoresponse, which is found to be PbS-QD size dependent. Wavelength-resolved photocurrent measurements revealed a strong photoconductivity of the NHs in the UV-visible region, which is shown to be due to multiple exciton generation (MEG) in the PbS-QDs. For the 6.5 nm-diameter PbS-QDs (with a bandgap (Eg) = 0.86 eV), the MEG contribution of the NHs based PC devices was shown to lead to a normalized internal quantum efficiency in excess of 300% for photon energies ≥4.5Eg. While the lowest MEG threshold in our NHs based PC devices is found to be of ~2.5Eg, the MEG efficiency reaches values as high as 0.9 ± 0.1. PMID:26830452

  16. Low driving voltage in an organic light-emitting diode using MoO3/NPB multiple quantum well structure in a hole transport layer

    NASA Astrophysics Data System (ADS)

    Mu, Xue; Wu, Xiao-Ming; Hua, Yu-Lin; Jiao, Zhi-Qiang; Shen, Li-Ying; Su, Yue-Ju; Bai, Juan-Juan; Bi, Wen-Tao; Yin, Shou-Gen; Zheng, Jia-Jin

    2013-02-01

    The driving voltage of an organic light-emitting diode (OLED) is lowered by employing molybdenum trioxide (MoO3)/N, N'-bis(naphthalene-1-yl)-N,N'-bis(phe-nyl)-benzidine (NPB) multiple quantum well (MQW) structure in the hole transport layer. For the device with double quantum well (DQW) structure of ITO/ [MoO3 (2.5 nm)/NPB (20 nm)]2/Alq3(50 nm)/LiF (0.8 nm)/Al (120 nm)], the turn-on voltage is reduced to 2.8 V, which is lowered by 0.4 V compared with that of the control device (without MQW structures), and the driving voltage is 5.6 V, which is reduced by 1 V compared with that of the control device at the 1000 cd/m2. In this work, the enhancement of the injection and transport ability for holes could reduce the driving voltage for the device with MQW structure, which is attributed not only to the reduced energy barrier between ITO and NPB, but also to the forming charge transfer complex between MoO3 and NPB induced by the interfacial doping effect of MoO3.

  17. Multiple exciton generation induced enhancement of the photoresponse of pulsed-laser-ablation synthesized single-wall-carbon-nanotube/PbS-quantum-dots nanohybrids

    NASA Astrophysics Data System (ADS)

    Ka, Ibrahima; Le Borgne, Vincent; Fujisawa, Kazunori; Hayashi, Takuya; Kim, Yoong Ahm; Endo, Morinobu; Ma, Dongling; El Khakani, My Ali

    2016-02-01

    The pulsed laser deposition method was used to decorate appropriately single wall carbon nanotubes (SWCNTs) with PbS quantum dots (QDs), leading to the formation of a novel class of SWCNTs/PbS-QDs nanohybrids (NHs), without resorting to any ligand engineering and/or surface functionalization. The number of laser ablation pulses (NLp) was used to control the average size of the PbS-QDs and their coverage on the SWCNTs’ surface. Photoconductive (PC) devices fabricated from these SWCNTs/PbS-QDs NHs have shown a significantly enhanced photoresponse, which is found to be PbS-QD size dependent. Wavelength-resolved photocurrent measurements revealed a strong photoconductivity of the NHs in the UV-visible region, which is shown to be due to multiple exciton generation (MEG) in the PbS-QDs. For the 6.5 nm-diameter PbS-QDs (with a bandgap (Eg) = 0.86 eV), the MEG contribution of the NHs based PC devices was shown to lead to a normalized internal quantum efficiency in excess of 300% for photon energies ≥4.5Eg. While the lowest MEG threshold in our NHs based PC devices is found to be of ~2.5Eg, the MEG efficiency reaches values as high as 0.9 ± 0.1.

  18. InN/InGaN multiple quantum wells emitting at 1.5 {mu}m grown by molecular beam epitaxy

    SciTech Connect

    Grandal, J.; Pereiro, J.; Bengoechea-Encabo, A.; Fernandez-Garrido, S.; Sanchez-Garcia, M. A.; Munoz, E.; Calleja, E.

    2011-02-07

    This work reports on the growth by molecular beam epitaxy and characterization of InN/InGaN multiple quantum wells (MQWs) emitting at 1.5 {mu}m. X-ray diffraction (XRD) spectra show satellite peaks up to the second order. Estimated values of well (3 nm) and barrier (9 nm) thicknesses were derived from transmission electron microscopy and the fit between experimental data and simulated XRD spectra. Transmission electron microscopy and XRD simulations also confirmed that the InGaN barriers are relaxed with respect to the GaN template, while the InN MQWs grew under biaxial compression on the InGaN barriers. Low temperature (14 K) photoluminescence measurements reveal an emission from the InN MQWs at 1.5 {mu}m. Measurements as a function of temperature indicate the existence of localized states, probably due to InN quantum wells' thickness fluctuations as observed by transmission electron microscopy.

  19. Electric-field dependence of electroreflectance and photocurrent spectra at visible wavelengths in MOVPE-grown InAlGaP multiple strained quantum-well structures

    SciTech Connect

    Fritz, I.J.; Blum, O.; Schneider, R.P. Jr.; Howard, A.J.; Follstaedt, D.M.

    1993-12-31

    The authors present electric-field dependent electroreflectance and photocurrent spectra of visible-bandgap In{sub x}(Al{sub y}Ga{sub 1{minus}y}){sub 1{minus}x}P/In{sub x{prime}}(Al{sub y{prime}}Ga{sub 1{minus}y{prime}}){sub 1{minus}x{prime}}P multiple-quantum-well (MQW) structures. These structures, grown by metal-organic vapor phase epitaxy on 6{degrees}-misoriented (100) GaAs substrates, have undoped MQWs sandwiched between doped In{sub 0.5}Al{sub 0.5}P layers, forming p-i-n diodes. Quantum-well compositions in the range 0.46{le}x{le}0.52 and 0{le}y{le}0.4, corresponding to bandgaps in the red to yellow-green range, were used. The Stark shifts in these various samples were measured and found to depend on the details of the Mg p-type doping profile, confirming important diffusion effects, in agreement with secondary ion mass spectrometry and capacitance-voltage data. The results show that these new materials are promising for visible-wavelength optical modulator applications.

  20. Thin-film solar cells with InGaAs/GaAsP multiple quantum wells and a rear surface etched with light trapping micro-hole array

    NASA Astrophysics Data System (ADS)

    Watanabe, Kentaroh; Inoue, Tomoyuki; Sodabanlu, Hassanet; Sugiyama, Masakazu; Nakano, Yoshiaki

    2015-08-01

    A light trapping effect in GaAs p-i-n solar cells with InGaAs/GaAsP multiple quantum wells (MQWs) in the i-layer was demonstrated by applying a light scattering texture to the rear surface of the cell. A thin-film MQW solar cell was successfully fabricated by metal organic vapor phase epitaxy (MOVPE) to grow an inverted n-i-p photovoltaic (PV) structure; this structure was then transferred to a Si support substrate to prevent optical loss due to free carrier absorption. For the light scattering texture, the use of both the wet-etched micro-hole arrayed SiO2 dielectric layer on the rear surface of the cell and the secondarily etched micro hole array on the GaAs layer was attempted. On the SiO2 layer, the micro hole array pattern was obtained by the radio frequency sputtering of the layer followed by wet etching with photolithographic patterning. On the GaAs layer, the micro-hole array pattern was obtained by direct etching through a SiO2 template. Compared with the light scattering effects of the micro-hole-arrayed SiO2 layer, the secondarily etched GaAs rear contact layer showed a significant improvement in external quantum efficiency (EQE) in the wavelength range from 855 to 1000 nm that corresponds to the photon absorption wavelength in MQWs.

  1. Multiple exciton generation induced enhancement of the photoresponse of pulsed-laser-ablation synthesized single-wall-carbon-nanotube/PbS-quantum-dots nanohybrids

    PubMed Central

    Ka, Ibrahima; Le Borgne, Vincent; Fujisawa, Kazunori; Hayashi, Takuya; Kim, Yoong Ahm; Endo, Morinobu; Ma, Dongling; El Khakani, My Ali

    2016-01-01

    The pulsed laser deposition method was used to decorate appropriately single wall carbon nanotubes (SWCNTs) with PbS quantum dots (QDs), leading to the formation of a novel class of SWCNTs/PbS-QDs nanohybrids (NHs), without resorting to any ligand engineering and/or surface functionalization. The number of laser ablation pulses (NLp) was used to control the average size of the PbS-QDs and their coverage on the SWCNTs’ surface. Photoconductive (PC) devices fabricated from these SWCNTs/PbS-QDs NHs have shown a significantly enhanced photoresponse, which is found to be PbS-QD size dependent. Wavelength-resolved photocurrent measurements revealed a strong photoconductivity of the NHs in the UV-visible region, which is shown to be due to multiple exciton generation (MEG) in the PbS-QDs. For the 6.5 nm-diameter PbS-QDs (with a bandgap (Eg) = 0.86 eV), the MEG contribution of the NHs based PC devices was shown to lead to a normalized internal quantum efficiency in excess of 300% for photon energies ≥4.5Eg. While the lowest MEG threshold in our NHs based PC devices is found to be of ~2.5Eg, the MEG efficiency reaches values as high as 0.9 ± 0.1. PMID:26830452

  2. Spin transport in undoped InGaAs/AlGaAs multiple quantum well studied via spin photocurrent excited by circularly polarized light.

    PubMed

    Zhu, Laipan; Liu, Yu; Huang, Wei; Qin, Xudong; Li, Yuan; Wu, Qing; Chen, Yonghai

    2016-12-01

    The spin diffusion and drift at different excitation wavelengths and different temperatures have been studied in undoped InGaAs/AlGaAs multiple quantum well (MQW). The spin polarization was created by optical spin orientation using circularly polarized light, and the reciprocal spin Hall effect was employed to measure the spin polarization current. We measured the ratio of the spin diffusion coefficient to the mobility of spin-polarized carriers. From the wavelength dependence of the ratio, we found that the spin diffusion and drift of holes became as important as electrons in this undoped MQW, and the ratio for light holes was much smaller than that for heavy holes at room temperature. From the temperature dependence of the ratio, the correction factors for the common Einstein relationship for spin-polarized electrons and heavy holes were firstly obtained to be 93 and 286, respectively. PMID:26744148

  3. Sub-250 nm room-temperature optical gain from AlGaN/AlN multiple quantum wells with strong band-structure potential fluctuations

    NASA Astrophysics Data System (ADS)

    Francesco Pecora, Emanuele; Zhang, Wei; Yu. Nikiforov, A.; Zhou, Lin; Smith, David J.; Yin, Jian; Paiella, Roberto; Dal Negro, Luca; Moustakas, T. D.

    2012-02-01

    Deep-UV optical gain has been demonstrated in Al0.7Ga0.3N/AlN multiple quantum wells under femtosecond optical pumping. Samples were grown by molecular beam epitaxy under a growth mode that introduces band structure potential fluctuations and high-density nanocluster-like features within the AlGaN wells. A maximum net modal gain value of 118 ± 9 cm-1 has been measured and the transparency threshold of 5 ± 1 µJ/cm2 was experimentally determined, corresponding to 1.4 × 1017 cm-3 excited carriers. These findings pave the way for the demonstration of solid-state lasers with sub-250 nm emission at room temperature.

  4. Enhanced Luminescence Efficiency of InGaN/GaN Multiple Quantum Wells by a Strain Relief Layer and Proper Si Doping

    NASA Astrophysics Data System (ADS)

    Tsai, Ping-Chieh; Su, Yan-Kuin; Chen, Wen-Ray; Huang, Chun-Yuan

    2010-04-01

    The effects of a strain relief layer (SRL) employed in the InGaN/GaN light-emitting diodes (LEDs) was demonstrated. The wavelength shift was reduced to as small as 2.5 nm by inserting a SRL between n-GaN and InGaN/GaN multiple quantum wells (MQWs). For the improvement of optical properties, a proper Si-doped layer was simultaneously added in the last several barriers of In0.08Ga0.92N/GaN SRL. It can be found that the output power was increased more than 25% as the Si doping level was increased up to 5 times in the last three barriers of SRL at an injection current of 20 mA. Furthermore, the forward voltages at 20 mA were almost the same for all LEDs with different doping levels and positions.

  5. Decay of multispin multiple-quantum coherent states in the NMR of a solid and the stabilization of their intensity profile with time

    SciTech Connect

    Zobov, V. E.; Lundin, A. A.

    2011-12-15

    Variations, experimentally observed in [14], in the intensity profiles of multiple-quantum (MQ) coherences in the presence of two special types of perturbations are explained on the basis of the theory, earlier developed by the authors, of the growth of the effective size of correlated clusters (the number of correlated spins) and the relaxation of MQ coherent states [23]. The intensity and the character of perturbation were controlled by the experimenters. It is shown that the observed stabilization of profiles with time is not associated with the stabilization of the cluster size. Quite the contrary, a cluster of correlated spins monotonically grows, while the observed variations in the intensity profile and its stabilization with time are attributed to the dependence of the decay rate of an MQ coherence on its order (its position in the MQ spectrum). The results of the theory are in good agreement with the experimental data.

  6. Strain-compensated (Ga,In)N/(Al,Ga)N/GaN multiple quantum wells for improved yellow/amber light emission

    SciTech Connect

    Lekhal, K.; Damilano, B. De Mierry, P.; Vennéguès, P.; Ngo, H. T.; Rosales, D.; Gil, B.; Hussain, S.

    2015-04-06

    Yellow/amber (570–600 nm) emitting In{sub x}Ga{sub 1−x}N/Al{sub y}Ga{sub 1−y}N/GaN multiple quantum wells (QWs) have been grown by metal organic chemical vapor deposition on GaN-on- sapphire templates. When the (Al,Ga)N thickness of the barrier increases, the room temperature photoluminescence is red-shifted while its yield increases. This is attributed to an increase of the QW internal electric field and an improvement of the material quality due to the compensation of the compressive strain of the In{sub x}Ga{sub 1−x}N QWs by the Al{sub y}Ga{sub 1−y}N layers, respectively.

  7. Hole injection from the sidewall of V-shaped pits into c-plane multiple quantum wells in InGaN light emitting diodes

    SciTech Connect

    Wu, Xiaoming; Liu, Junlin Jiang, Fengyi

    2015-10-28

    The role which the V-shaped pits (V-pits) play in InGaN/GaN multiple quantum well (MQW) light emitting diodes (LEDs) has been proposed to enable the formation of sidewall MQWs, whose higher bandgap than that of the c-plane MQWs is considered to act as an energy barrier to prevent carriers from reaching the dislocations. Here, with increasing proportion of current flowing via the V-pits, the emission of the c-plane MQWs broadens across the short-wavelength band and shows a blueshift successively. This phenomenon is attributed to hole injection from the sidewall of V-pits into the c-plane MQWs, which is a new discovery in the injection mechanism of InGaN/GaN MQW LEDs.

  8. Carrier localization in In-rich InGaN/GaN multiple quantum wells for green light-emitting diodes

    PubMed Central

    Jeong, Hyun; Jeong, Hyeon Jun; Oh, Hye Min; Hong, Chang-Hee; Suh, Eun-Kyung; Lerondel, Gilles; Jeong, Mun Seok

    2015-01-01

    Carrier localization phenomena in indium-rich InGaN/GaN multiple quantum wells (MQWs) grown on sapphire and GaN substrates were investigated. Temperature-dependent photoluminescence (PL) spectroscopy, ultraviolet near-field scanning optical microscopy (NSOM), and confocal time-resolved PL (TRPL) spectroscopy were employed to verify the correlation between carrier localization and crystal quality. From the spatially resolved PL measurements, we observed that the distribution and shape of luminescent clusters, which were known as an outcome of the carrier localization, are strongly affected by the crystalline quality. Spectroscopic analysis of the NSOM signal shows that carrier localization of MQWs with low crystalline quality is different from that of MQWs with high crystalline quality. This interrelation between carrier localization and crystal quality is well supported by confocal TRPL results. PMID:25792246

  9. Very simple combination of TROSY, CRINEPT and multiple quantum coherence for signal enhancement in an HN(CO)CA experiment for large proteins

    NASA Astrophysics Data System (ADS)

    Bayrhuber, Monika; Riek, Roland

    2011-04-01

    Sensitivity enhancement in liquid state nuclear magnetic resonance (NMR) triple resonance experiments for the sequential assignment of proteins is important for the investigation of large proteins or protein complexes. We present here the 3D TROSY-MQ/CRINEPT-HN(CO)CA which makes use of a 15N- 1H-TROSY element and a 13C'- 13CA CRINEPT step combined with a multiple quantum coherence during the 13CA evolution period. Because of the introduction of these relaxation-optimized elements and 10 less pulses required, when compared with the conventional TROSY-HN(CO)CA experiment an average signal enhancement of a factor of 1.8 was observed for the membrane protein-detergent complex KcsA with a rotational correlation time τ c of around 60 ns.

  10. Exciton localization in polar and semipolar (112̅2) In0.2Ga0.8N/GaN multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Dinh, Duc V.; Presa, Silvino; Maaskant, Pleun P.; Corbett, Brian; Parbrook, Peter J.

    2016-08-01

    The exciton localization (ELZ) in polar (0001) and semipolar (112̅2) In{}0.2Ga{}0.8{{N}} multiple-quantum-well (MQW) structures has been studied by excitation power density and temperature dependent photoluminescence. The ELZ in the (112̅2) MQW was found to be much stronger (ELZ degree σ E ∼ 40 –70 meV) compared to the (0001) MQW (σ E ∼ 5‑11 meV) that was attributed to the anisotropic growth on the (112̅2) surface. This strong ELZ was found to cause a blue-shift of the (112̅2) MQW exciton emission with rising temperature from 200 to 340 K, irrespective of excitation source used. A lower luminescence efficiency of the (112̅2) MQW was attributed to their anisotropic growth, and higher concentrations of unintentional impurities and point defects than the (0001) MQW.

  11. Spin depolarization under low electric fields at low temperatures in undoped InGaAs/AlGaAs multiple quantum well

    SciTech Connect

    Zhu, Laipan; Liu, Yu; Jiang, Chongyun; Yu, Jinling; Gao, Hansong; Ma, Hui; Qin, Xudong; Li, Yuan; Wu, Qing; Chen, Yonghai

    2014-10-13

    The spin polarization under low electric fields (≤300 V/cm) at low temperatures has been studied in undoped InGaAs/AlGaAs multiple quantum well. The spin polarization was created by optical spin orientation using circularly polarized light and the inverse spin-Hall effect was employed to measure the spin polarization current. We observed an obvious spin depolarization especially at lower temperatures (80–120 K). We ascribed the spin depolarization of the photoinduced electrons to the heating effect from the low electric fields (the low field regime 50–300 V/cm). This spin depolarization due to the heating effect is sensitive to temperature and electric field, suggesting a wide range of potential applications and devices.

  12. Long wavelength superluminal pulse propagation in a defect slab doped with GaAs/AlGaAs multiple quantum well nanostructure

    NASA Astrophysics Data System (ADS)

    Panahi, M.; Solookinejad, G.; Sangachin, E. Ahmadi; Asadpour, S. H.

    2015-12-01

    In this paper, long wavelength superluminal and subluminal properties of pulse propagation in a defect slab medium doped with four-level GaAs/AlGaAs multiple quantum wells (MQWs) with 15 periods of 17.5 nm GaAs wells and 15 nm Al0.3Ga0.7As barriers is theoretically discussed. It is shown that exciton spin relaxation (ESR) between excitonic states in MQWs can be used for controlling the superluminal and subluminal light transmissions and reflections at different wavelengths. We also show that reflection and transmission coefficients depend on the thickness of the slab for the resonance and nonresonance conditions. Moreover, we found that the ESR for nonresonance condition lead to superluminal light transmission and subluminal light reflection.

  13. Improved blue electroluminescence in InGaN/GaN multiple-quantum well light-emitting diodes with an electron blocking layer

    NASA Astrophysics Data System (ADS)

    Nam, Giwoong; Yoon, Hyunsik; Kim, Min Su; Lee, Jewon; Leem, Jae-Young; Kim, Byunggu; Ji, Iksoo; Lee, Dong-Yul; Lee, Chang-Lyoul; Kim, Jin Soo; Kim, Jong Su

    2013-04-01

    InGaN/GaN multiple-quantum-well light-emitting diodes (LEDs) with p-AlGaN electron blocking layers (EBLs) were grown by using metal-organic chemical vapor deposition. The effects of the EBL thickness on the electrical properties and the luminescent efficiency of the LEDs were investigated by using capacitance-voltage (C-V) measurements, current-voltage ( I — V) measurements, electroluminescence (EL), and time-resolved photoluminescence (TR-PL). The EL efficiency of the LEDs increased with increasing thickness of the p-AlGaN EBL. In addition, the EL efficiency of the LEDs also increased with increasing injection current. The carrier lifetime of the LEDs increased with increasing thickness of the p-AlGaN EBL.

  14. Vacancies in InxGa1-xN/GaN multiple quantum wells fabricated on m-plane GaN probed by a monoenergetic positron beam

    NASA Astrophysics Data System (ADS)

    Uedono, Akira; Kurihara, Kaori; Yoshihara, Nakaaki; Nagao, Satoshi; Ishibashi, Shoji

    2015-05-01

    Vacancy-type defects in InxGa1-xN/GaN multiple-quantum-well (MQW) structures fabricated on m-plane GaN by metal-organic chemical vapor deposition have been studied using a monoenergetic positron beam. Through measurements of Doppler broadening spectra of the annihilation radiation, the vacancy-type defects in MQW structures were probed. The positron trapping rate of defects decreased under photon illumination, which is attributed to the emission of electrons from those defects and/or the suppression of the positron diffusion by optically active defects. The energy level of the defects was close to the energy of photoluminescence emissions. The relationship between the energy width of the photoluminescence line and the defects is discussed.

  15. Shockley-Read-Hall recombination and efficiency droop in InGaN/GaN multiple-quantum-well green light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Zhao, Degang; Jiang, Desheng; Chen, Ping; Liu, Zongshun; Zhu, Jianjun; Li, Xiang; Liang, Feng; Liu, Jianping; Zhang, Liqun; Yang, Hui; Zhang, Yuantao; Du, Guotong

    2016-04-01

    The influence of Shockley-Read-Hall (SRH) non-radiative recombination on efficiency droop is investigated for two similar InGaN/GaN multiple-quantum-well green light-emitting diodes (LEDs) with quite different luminescence efficiency. The high-efficiency diode exhibits a pronounced efficiency peak followed by a significant droop as injection current increases, while the low-efficiency sample shows a relatively small droop. Combining with the recombination rate equations, our analysis reveals that, in comparison with the high-efficiency sample, in the low-efficiency diode the injected carrier density in InGaN well layers is decreased at high currents due to the strong SRH process, leading to an apparently reduced droop. This may be a possible physical mechanism responsible for the linkage between the low efficiency and the small efficiency droop.

  16. Generalized binomial τ-leap method for biochemical kinetics incorporating both delay and intrinsic noise

    NASA Astrophysics Data System (ADS)

    Leier, André; Marquez-Lago, Tatiana T.; Burrage, Kevin

    2008-05-01

    The delay stochastic simulation algorithm (DSSA) by Barrio et al. [Plos Comput. Biol. 2, 117(E) (2006)] was developed to simulate delayed processes in cell biology in the presence of intrinsic noise, that is, when there are small-to-moderate numbers of certain key molecules present in a chemical reaction system. These delayed processes can faithfully represent complex interactions and mechanisms that imply a number of spatiotemporal processes often not explicitly modeled such as transcription and translation, basic in the modeling of cell signaling pathways. However, for systems with widely varying reaction rate constants or large numbers of molecules, the simulation time steps of both the stochastic simulation algorithm (SSA) and the DSSA can become very small causing considerable computational overheads. In order to overcome the limit of small step sizes, various τ-leap strategies have been suggested for improving computational performance of the SSA. In this paper, we present a binomial τ-DSSA method that extends the τ-leap idea to the delay setting and avoids drawing insufficient numbers of reactions, a common shortcoming of existing binomial τ-leap methods that becomes evident when dealing with complex chemical interactions. The resulting inaccuracies are most evident in the delayed case, even when considering reaction products as potential reactants within the same time step in which they are produced. Moreover, we extend the framework to account for multicellular systems with different degrees of intercellular communication. We apply these ideas to two important genetic regulatory models, namely, the hes1 gene, implicated as a molecular clock, and a Her1/Her 7 model for coupled oscillating cells.

  17. Efficient charge-carrier extraction from Ag2S quantum dots prepared by the SILAR method for utilization of multiple exciton generation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoliang; Liu, Jianhua; Johansson, Erik M. J.

    2015-01-01

    The utilization of electron-hole pairs (EHPs) generated from multiple excitons in quantum dots (QDs) is of great interest toward efficient photovoltaic devices and other optoelectronic devices; however, extraction of charge carriers remains difficult. Herein, we extract photocharges from Ag2S QDs and investigate the dependence of the electric field on the extraction of charges from multiple exciton generation (MEG). Low toxic Ag2S QDs are directly grown on TiO2 mesoporous substrates by employing the successive ionic layer adsorption and reaction (SILAR) method. The contact between QDs is important for the initial charge separation after MEG and for the carrier transport, and the space between neighbor QDs decreases with more SILAR cycles, resulting in better charge extraction. At the optimal electric field for extraction of photocharges, the results suggest that the threshold energy (hνth) for MEG is 2.41Eg. The results reveal that Ag2S QD is a promising material for efficient extraction of charges from MEG and that QDs prepared by SILAR have an advantageous electrical contact facilitating charge separation and extraction.The utilization of electron-hole pairs (EHPs) generated from multiple excitons in quantum dots (QDs) is of great interest toward efficient photovoltaic devices and other optoelectronic devices; however, extraction of charge carriers remains difficult. Herein, we extract photocharges from Ag2S QDs and investigate the dependence of the electric field on the extraction of charges from multiple exciton generation (MEG). Low toxic Ag2S QDs are directly grown on TiO2 mesoporous substrates by employing the successive ionic layer adsorption and reaction (SILAR) method. The contact between QDs is important for the initial charge separation after MEG and for the carrier transport, and the space between neighbor QDs decreases with more SILAR cycles, resulting in better charge extraction. At the optimal electric field for extraction of photocharges, the

  18. Swarm intelligence for atmospheric compensation in free space optical communication-Modified shuffled frog leaping algorithm

    NASA Astrophysics Data System (ADS)

    Li, Zhaokun; Cao, Jingtai; Zhao, Xiaohui; Liu, Wei

    2015-03-01

    A conventional adaptive optics (AO) system is widely used to compensate atmospheric turbulence in free space optical (FSO) communication systems, but wavefront measurements based on phase-conjugation principle are not desired under strong scintillation circumstances. In this study we propose a novel swarm intelligence optimization algorithm, which is called modified shuffled frog leaping algorithm (MSFL), to compensate the wavefront aberration. Simulation and experiments results show that MSFL algorithm performs well in the atmospheric compensation and it can increase the coupling efficiency in receiver terminal and significantly improve the performance of the FSO communication systems.

  19. A syncopated leap-frog algorithm for orbit consistent plasma simulation of materials processing reactors

    SciTech Connect

    Cobb, J.W.; Leboeuf, J.N.

    1994-10-01

    The authors present a particle algorithm to extend simulation capabilities for plasma based materials processing reactors. The orbit integrator uses a syncopated leap-frog algorithm in cylindrical coordinates, which maintains second order accuracy, and minimizes computational complexity. Plasma source terms are accumulated orbit consistently directly in the frequency and azimuthal mode domains. Finally they discuss the numerical analysis of this algorithm. Orbit consistency greatly reduces the computational cost for a given level of precision. The computational cost is independent of the degree of time scale separation.

  20. Is hospital patient care becoming safer? A conversation with Lucian Leape. Interview by Peter I. Buerhaus.

    PubMed

    Leape, Lucian

    2007-01-01

    According to Lucian Leape, patient safety in hospitals is improving, and it is now possible to get to a level of zero defects. Growing recognition of the need for team training, use of trigger tools, improving the competency of physicians, and full disclosure and compensation to injured patients exemplify positive developments. Yet formidable barriers remain, including separatism in how doctors, nurses, and pharmacists learn; inadequate instruction in communication and team-building skills; poorly developed quality and safety curricula; lack of leadership among CEOs and hospital boards; physician apathy; absence of effective systems for accountability; and failure to believe in the possibility of eliminating medical errors and injuries. PMID:17925308

  1. Poleward leaping auroras, the substorm expansive and recovery phases and the recovery of the plasma sheet

    SciTech Connect

    Hones, E.W.

    1992-01-01

    The auroral motions and geomagnetic changes the characterize the substorm's expansive phase, maximum epoch, and recovery phase are discussed in the context of their possible associations with the dropout and, especially, the recovery of the magnetotail plasma sheet. The evidence that there may be an inordinately sudden large poleward excursion or displacement (a poleward leap) of the electrojet and the auroras at the expansive phase-recovery phase transition is described. The close temporal association of these signatures with the recovery of the plasma sheet, observed on many occasions, suggests a causal relationship between substorm maximum epoch and recovery phase on the one hand and plasma sheet recovery on the other.

  2. Poleward leaping auroras, the substorm expansive and recovery phases and the recovery of the plasma sheet

    SciTech Connect

    Hones, E.W.

    1992-05-01

    The auroral motions and geomagnetic changes the characterize the substorm`s expansive phase, maximum epoch, and recovery phase are discussed in the context of their possible associations with the dropout and, especially, the recovery of the magnetotail plasma sheet. The evidence that there may be an inordinately sudden large poleward excursion or displacement (a poleward leap) of the electrojet and the auroras at the expansive phase-recovery phase transition is described. The close temporal association of these signatures with the recovery of the plasma sheet, observed on many occasions, suggests a causal relationship between substorm maximum epoch and recovery phase on the one hand and plasma sheet recovery on the other.

  3. Leap to explore the region of neutron-rich heavy element isotopes

    SciTech Connect

    Hoffman, D.C.

    1985-10-01

    The research aims of the Large Einsteinium Activation Program (LEAP) are described. This program is a major initiative to exploit currently existing expertise in heavy element research and the potential for producing very heavy actinide target materials such as 285-day /sup 254/Es at the High Flux Isotope Reactor at Oak Ridge National Laboratory. The stated aims of the program are to produce heavy element isotopes, to conduct chemical studies of these isotopes, to study the nuclear properties of such isotopes, and to produce a superheavy element (183 neutrons) by the using a /sup 254/Es target and /sup 48/Ca projectiles. 13 refs., 2 figs., 2 tabs. (DWL)

  4. Atmospheric observations of multiple molecular species using ultra-high-resolution external cavity quantum cascade laser heterodyne radiometry.

    PubMed

    Weidmann, Damien; Tsai, Tracy; Macleod, Neil A; Wysocki, Gerard

    2011-06-01

    We demonstrate a widely tunable laser heterodyne radiometer operating in the thermal IR during an atmospheric observation campaign in the solar occultation viewing mode. An external cavity quantum cascade laser tunable within a range of 1120 to 1238 cm(-1) is used as the local oscillator (LO) of the instrument. Ultra-high-resolution (60 MHz or 0.002 cm(-1) transmission spectroscopy of several atmospheric species (water vapor, ozone, nitrous oxide, methane, and dichlorodifluoromethane) has been demonstrated within four precisely selected molecule-specific narrow spectral windows (∼1 cm(-1). Atmospheric transmission lines within each selected window were fully resolved through mode-hop-free continuous tuning of the LO frequency. Comparison measurements were made simultaneously with a high-resolution Fourier transform spectrometer to demonstrate the advantages of the laser heterodyne system for atmospheric sounding at high spectral and spatial resolutions. PMID:21633412

  5. Temperature dependence of mid-infrared intersubband absorption in AlGaN/GaN multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Kotani, Teruhisa; Arita, Munetaka; Hoshino, Katsuyuki; Arakawa, Yasuhiko

    2016-02-01

    The temperature dependence of the mid-infrared intersubband (ISB) absorption in non-polar (m-plane) and polar (c-plane) AlGaN/GaN quantum wells (QWs) is studied. The ISB absorption shifts to higher energy as the temperature is reduced from 300 K to below 10 K. Both m-plane and c-plane QWs show a small energy shift (1.6-2.6 meV) compared to AlGaAs/GaAs (3.5-5.2 meV) and AlSb/InAs (6.2 and 12 meV) QWs. Theoretical calculations considering the temperature induced material constant changes show good agreement with the experimental results. These results suggest that ISB transition energies in AlGaN/GaN QWs are more stable against temperature change mainly because of the heavy effective masses and small nonparabolicities.

  6. InGaN/GaN Multiple Quantum Well Light-Emitting Diodes grown on Polar, Semi-polar and Non-Polar Orientations

    NASA Astrophysics Data System (ADS)

    Mukund, Aadhithya Hosalli

    Cost effective solid-state lighting (SSL) is gaining much attention in recent years. As a result, there has been a great demand for high efficiency light emitting diodes (LEDs). InGaN/GaN multiple quantum well (MQW) based light-emitting diodes (LEDs) emitting in the blue/green region have emerged as promising candidates in realizing the next-generation SSL technology. InGaN/GaN quantum well structures for optoelectronic devices are conventionally grown on the c-plane (polar plane) which has a large polarization field. This large field within the quantum well structures results in a low rate of radiative recombination. This polarization issue is also partly responsible for the "green gap" or the poor external quantum efficiency observed for LEDs emitting in the green region of the visible spectrum and beyond. The alternative to this polarization issue is to grow on semi-polar orientations with a reduced field relative to the c-plane or on non-polar orientations which has zero polarization field. In this dissertation, alternative approaches to grow on semi-polar and nonpolar orientations are explored. The first of these approaches explores the possibility of growing on the facets of GaN nanowires that are oriented along desirable orientations from the perspective of polarization. A "proof of concept" LED structure, that has embedded voids, is overgrown on GaN nanowires. Three times improvement in the light-output power is observed for the LED overgrown on GaN nanowires relative to the conventional c-plane LED. The higher light-output power is attributed primarily to reduced piezo-electric fields and improved light extraction as a result of wave-guiding by the embedded voids. The second of these approaches explores the growth of MQW LEDs on semi-polar and non-polar bulk GaN substrates. A modified growth approach is used for incorporating higher amounts of indium to enable green-emitting MQWs. The challenges with these bulk GaN substrates and the effect of varying

  7. Hydrogen Generation using non-polar coaxial InGaN/GaN Multiple Quantum Well Structure Formed on Hollow n-GaN Nanowires.

    PubMed

    Park, Ji-Hyeon; Mandal, Arjun; Kang, San; Chatterjee, Uddipta; Kim, Jin Soo; Park, Byung-Guon; Kim, Moon-Deock; Jeong, Kwang-Un; Lee, Cheul-Ro

    2016-01-01

    This article demonstrates for the first time to the best of our knowledge, the merits of InGaN/GaN multiple quantum wells (MQWs) grown on hollow n-GaN nanowires (NWs) as a plausible alternative for stable photoelectrochemical water splitting and efficient hydrogen generation. These hollow nanowires are achieved by a growth method rather not by conventional etching process. Therefore this approach becomes simplistic yet most effective. We believe relatively low Ga flux during the selective area growth (SAG) aids the hollow nanowire to grow. To compare the optoelectronic properties, simultaneously solid nanowires are also studied. In this present communication, we exhibit that lower thermal conductivity of hollow n-GaN NWs affects the material quality of InGaN/GaN MQWs by limiting In diffusion. As a result of this improvement in material quality and structural properties, photocurrent and photosensitivity are enhanced compared to the structures grown on solid n-GaN NWs. An incident photon-to-current efficiency (IPCE) of around ~33.3% is recorded at 365 nm wavelength for hollow NWs. We believe that multiple reflections of incident light inside the hollow n-GaN NWs assists in producing a larger amount of electron hole pairs in the active region. As a result the rate of hydrogen generation is also increased. PMID:27556534

  8. Hydrogen Generation using non-polar coaxial InGaN/GaN Multiple Quantum Well Structure Formed on Hollow n-GaN Nanowires

    PubMed Central

    Park, Ji-Hyeon; Mandal, Arjun; Kang, San; Chatterjee, Uddipta; Kim, Jin Soo; Park, Byung-Guon; Kim, Moon-Deock; Jeong, Kwang-Un; Lee, Cheul-Ro

    2016-01-01

    This article demonstrates for the first time to the best of our knowledge, the merits of InGaN/GaN multiple quantum wells (MQWs) grown on hollow n-GaN nanowires (NWs) as a plausible alternative for stable photoelectrochemical water splitting and efficient hydrogen generation. These hollow nanowires are achieved by a growth method rather not by conventional etching process. Therefore this approach becomes simplistic yet most effective. We believe relatively low Ga flux during the selective area growth (SAG) aids the hollow nanowire to grow. To compare the optoelectronic properties, simultaneously solid nanowires are also studied. In this present communication, we exhibit that lower thermal conductivity of hollow n-GaN NWs affects the material quality of InGaN/GaN MQWs by limiting In diffusion. As a result of this improvement in material quality and structural properties, photocurrent and photosensitivity are enhanced compared to the structures grown on solid n-GaN NWs. An incident photon-to-current efficiency (IPCE) of around ~33.3% is recorded at 365 nm wavelength for hollow NWs. We believe that multiple reflections of incident light inside the hollow n-GaN NWs assists in producing a larger amount of electron hole pairs in the active region. As a result the rate of hydrogen generation is also increased. PMID:27556534

  9. An evaluation of an ultra-high-volume airborne particulate sampler, the LEAP.

    PubMed

    Tu, K W

    1984-06-01

    A modified ultra-high-volume liquid electrostatic aerosol precipitator sampler (LEAP) was calibrated with near monodisperse aerosols of water-soluble and insoluble materials in the size range of 0.02 to 4 microns diameter. The water-soluble materials were ammonium sulfate and ammonium hydrogen sulfate. The insoluble materials included carnauba wax, stearic acid, silver chloride and Y(THD)3. The particulate collection efficiency of the unit ranged from 40 to 98%, depending on particle size, sampling air flow and also on particle material. Tests with water-soluble aerosols showed higher collection efficiency than those with the insoluble aerosols by about 2 to 10%. A sharp decline in the collection efficiency for the particles smaller than 0.1 micron was observed. A comparison with the available manufacturer's data for the particle diameters of 0.1 to 3 microns suggests that the manufacturer overestimated the collection efficiency by 6 to 20% for an air flow of 10 m3/min. We consider the LEAP to be a useful ultra-high volume sampler, especially suited for low-level or short-term sampling. PMID:6741789

  10. Evaluation of an ultra-high-volume airborne particulate sampler, the LEAP

    SciTech Connect

    Tu, K.W.

    1984-06-01

    A modified ultra-high-volume liquid electrostatic aerosol precipitator sampler (LEAP) was calibrated with near monodisperse aerosols of water-soluble and insoluble materials in the size range of 0.02 to 4 ..mu..m diameter. The water-soluble materials were ammonium sulfate and ammonium hydrogen sulfate. The insoluble materials included carnauba wax, stearic acid, silver chloride and Y(THD)/sub 3/. The particulate collection efficiency of the unit ranged from 40 to 98%, depending on particle size, sampling air flow and also on particle material. Tests with water-soluble aerosols showed higher collection efficiency than those with the insoluble aerosols by about 2 to 10%. A sharp decline in the collection efficiency for the particles smaller than 0.1 ..mu..m was observed. A comparison with the available manufacturer's data for the particle diameters of 0.1 to 3 ..mu..m suggests that the manufacturer overestimated the collection efficiency by 6 to 20% for an air flow of 10 m/sup 3//min. The LEAP is considered to be a useful ultra-high volume sampler, especially suited for low-level or short-term sampling.

  11. Leaping eels electrify threats, supporting Humboldt's account of a battle with horses.

    PubMed

    Catania, Kenneth C

    2016-06-21

    In March 1800, Alexander von Humboldt observed the extraordinary spectacle of native fisherman collecting electric eels (Electrophorus electricus) by "fishing with horses" [von Humboldt A (1807) Ann Phys 25:34-43]. The strategy was to herd horses into a pool containing electric eels, provoking the eels to attack by pressing themselves against the horses while discharging. Once the eels were exhausted, they could be safely collected. This legendary tale of South American adventures helped propel Humboldt to fame and has been recounted and illustrated in many publications, but subsequent investigators have been skeptical, and no similar eel behavior has been reported in more than 200 years. Here I report a defensive eel behavior that supports Humboldt's account. The behavior consists of an approach and leap out of the water during which the eel presses its chin against a threatening conductor while discharging high-voltage volleys. The effect is to short-circuit the electric organ through the threat, with increasing power diverted to the threat as the eel attains greater height during the leap. Measurement of voltages and current during the behavior, and assessment of the equivalent circuit, reveal the effectiveness of the behavior and the basis for its natural selection. PMID:27274074

  12. Leaping eels electrify threats, supporting Humboldt’s account of a battle with horses

    PubMed Central

    Catania, Kenneth C.

    2016-01-01

    In March 1800, Alexander von Humboldt observed the extraordinary spectacle of native fisherman collecting electric eels (Electrophorus electricus) by “fishing with horses” [von Humboldt A (1807) Ann Phys 25:34–43]. The strategy was to herd horses into a pool containing electric eels, provoking the eels to attack by pressing themselves against the horses while discharging. Once the eels were exhausted, they could be safely collected. This legendary tale of South American adventures helped propel Humboldt to fame and has been recounted and illustrated in many publications, but subsequent investigators have been skeptical, and no similar eel behavior has been reported in more than 200 years. Here I report a defensive eel behavior that supports Humboldt’s account. The behavior consists of an approach and leap out of the water during which the eel presses its chin against a threatening conductor while discharging high-voltage volleys. The effect is to short-circuit the electric organ through the threat, with increasing power diverted to the threat as the eel attains greater height during the leap. Measurement of voltages and current during the behavior, and assessment of the equivalent circuit, reveal the effectiveness of the behavior and the basis for its natural selection. PMID:27274074

  13. The Characters of Leap Years in Qing Calendars (1644-1911)

    NASA Astrophysics Data System (ADS)

    Lu, Dalong

    In Qing Dynasty (1644-1911) three different calendars had been put into use which titles are Xiyang Xinfa Lishu (Treatise on Astronomy and Calendrical Science according to the New Method in West 1645-1666) Yuzhi Lixiang Kaocheng (Compendium of Calendrical Science and Astronomy compiled by Imperial Order 1725-1742) and Yuzhi Lixiang Kaocheng Houbian (Sequel Compendium of Calendrical Science and Astronomy compiled by Imperial Order 1742-1911). The characters of leap years in the three calendars are different for the last one which is selected the year of 1723 as it epoch and named as Guimao Yuan Li. This calendar is based on the 33-year pattern of leap years (there is a rather exact accord between days and years over this interval with eight days being intercalated per 33 years) and is slightly different from the former two calendars. Therefore the calendars of Qing Dynasty complied by Western Jesuits and Chinese astronomers can be regarded as the remarkable achievements in the history of calendar in the world.

  14. Flying fish accelerate at 5 G to leap from the water surface

    NASA Astrophysics Data System (ADS)

    Yang, Patricia; Phonekeo, Sulisay; Xu, Ke; Chang, Shui-Kai; Hu, David

    2013-11-01

    Flying fish can both swim underwater and glide in air. Transitioning from swimming to gliding requires penetration of the air-water interface, or breaking the ``surface tension barrier,'' a formidable task for juvenile flying fish measuring 1 to 5 cm in length. In this experimental investigation, we use high-speed videography to characterize the kinematics of juvenile flying fish as they leap from the water surface. During this process, which lasts 0.05 seconds, flying fish achieve body accelerations of 5 times earth's gravity and gliding speeds of 1.3 m/s, an order of magnitude higher than their steady swimming speed. We rationalize this anomalously high speed on the basis of the hydrodynamic and surface tension forces and torques experienced by the fish. Specifically, leaping fish experience skin friction forces only on the submerged part of their body, permitting them to achieve much higher speeds than in steady underwater swimming. We also perform experiments using a towed flying fish mimc to determine optimality of various parameters in this process, including body angle and start position with respect to the water surface.

  15. [Limb salvage or amputation after severe trauma to the lower extremities : Evidence from the LEAP Study].

    PubMed

    Müller, C W; Krettek, C; Decker, S; Hankemeier, S; Hawi, N

    2016-05-01

    Deciding between reconstruction and primary amputation after severe high-energy trauma to the lower extremities is difficult and consequential. The Lower Extremity Assessment Project (LEAP) prospectively included and investigated patients with severe, limb-threatening injuries below the femur, with third-grade open fractures, defined soft-tissue damage and amputation wounds. This paper aims to review the key results of the LEAP study, which were published in several parts, in due consideration of the newer relevant literature, and to deduce the consequences for clinical practice. The main results are as follows: No score is sufficiently reliable to predict the success of reconstruction. Loss of muscle seems to be more momentous than loss of bone. Any accompanying injuries that should be taken into account in the individual treatment concepts are crucial to the results, in addition to comorbidities and other individual patient-related factors, such as alcoholism, smoking, insurance, and social background. Psychological impairment is frequent after these injuries and should therefore be addressed regularly with regard to rehabilitation. PMID:27169849

  16. Fabrication of GeSn-multiple quantum wells by overgrowth of Sn on Ge by using molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Oliveira, F.; Fischer, I. A.; Benedetti, A.; Zaumseil, P.; Cerqueira, M. F.; Vasilevskiy, M. I.; Stefanov, S.; Chiussi, S.; Schulze, J.

    2015-12-01

    We report on the fabrication and structural characterization of epitaxially grown ultra-thin layers of Sn on Ge virtual substrates (Si buffer layer overgrown by a 50 nm thick Ge epilayer followed by an annealing step). Samples with 1 to 5 monolayers of Sn on Ge virtual substrates were grown using solid source molecular beam epitaxy and characterized by atomic force microscopy. We determined the critical thickness at which the transition from two-dimensional to three-dimensional growth occurs. This transition is due to the large lattice mismatch between Ge and Sn (≈14.7%). By depositing Ge on top of Sn layers, which have thicknesses at or just below the critical thickness, we were able to fabricate ultra-narrow GeSn multi-quantum-well structures that are fully embedded in Ge. We report results on samples with one and ten GeSn wells separated by 5 and 10 nm thick Ge spacer layers that were characterized by high resolution transmission electron microscopy and X-ray diffraction. We discuss the structure and material intermixing observed in the samples.

  17. Fabrication of GeSn-multiple quantum wells by overgrowth of Sn on Ge by using molecular beam epitaxy

    SciTech Connect

    Oliveira, F.; Fischer, I. A.; Schulze, J.; Benedetti, A.; Zaumseil, P.; Cerqueira, M. F.; Vasilevskiy, M. I.; Stefanov, S.; Chiussi, S.

    2015-12-28

    We report on the fabrication and structural characterization of epitaxially grown ultra-thin layers of Sn on Ge virtual substrates (Si buffer layer overgrown by a 50 nm thick Ge epilayer followed by an annealing step). Samples with 1 to 5 monolayers of Sn on Ge virtual substrates were grown using solid source molecular beam epitaxy and characterized by atomic force microscopy. We determined the critical thickness at which the transition from two-dimensional to three-dimensional growth occurs. This transition is due to the large lattice mismatch between Ge and Sn (≈14.7%). By depositing Ge on top of Sn layers, which have thicknesses at or just below the critical thickness, we were able to fabricate ultra-narrow GeSn multi-quantum-well structures that are fully embedded in Ge. We report results on samples with one and ten GeSn wells separated by 5 and 10 nm thick Ge spacer layers that were characterized by high resolution transmission electron microscopy and X-ray diffraction. We discuss the structure and material intermixing observed in the samples.

  18. Breaking the carbon dimer: The challenges of multiple bond dissociation with full configuration interaction quantum Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Booth, George H.; Cleland, Deidre; Thom, Alex J. W.; Alavi, Ali

    2011-08-01

    The full configuration interaction quantum Monte Carlo (FCIQMC) method, as well as its "initiator" extension (i-FCIQMC), is used to tackle the complex electronic structure of the carbon dimer across the entire dissociation reaction coordinate, as a prototypical example of a strongly correlated molecular system. Various basis sets of increasing size up to the large cc-pVQZ are used, spanning a fully accessible N-electron basis of over 1012 Slater determinants, and the accuracy of the method is demonstrated in each basis set. Convergence to the FCI limit is achieved in the largest basis with only O[10^7] walkers within random errorbars of a few tenths of a millihartree across the binding curve, and extensive comparisons to FCI, CCSD(T), MRCI, and CEEIS results are made where possible. A detailed exposition of the convergence properties of the FCIQMC methods is provided, considering convergence with elapsed imaginary time, number of walkers and size of the basis. Various symmetries which can be incorporated into the stochastic dynamic, beyond the standard abelian point group symmetry and spin polarisation are also described. These can have significant benefit to the computational effort of the calculations, as well as the ability to converge to various excited states. The results presented demonstrate a new benchmark accuracy in basis-set energies for systems of this size, significantly improving on previous state of the art estimates.

  19. On the increased efficiency in InGaN-based multiple quantum wells emitting at 530-590 nm with AlGaN interlayers

    NASA Astrophysics Data System (ADS)

    Koleske, D. D.; Fischer, A. J.; Bryant, B. N.; Kotula, P. G.; Wierer, J. J.

    2015-04-01

    InGaN/AlGaN/GaN-based multiple quantum wells (MQWs) with AlGaN interlayers (ILs) are investigated, specifically to examine the fundamental mechanisms behind their increased radiative efficiency at wavelengths of 530-590 nm. The AlzGa1-zN (z~0.38) IL is ~1-2 nm thick, and is grown after and at the same growth temperature as the ~3 nm thick InGaN quantum well (QW). This is followed by an increase in temperature for the growth of a ~10 nm thick GaN barrier layer. The insertion of the AlGaN IL within the MQW provides various benefits. First, the AlGaN IL allows for growth of the InxGa1-xN QW well below typical growth temperatures to achieve higher x (up to~0.25). Second, annealing the IL capped QW prior to the GaN barrier growth improves the AlGaN IL smoothness as determined by atomic force microscopy, improves the InGaN/AlGaN/GaN interface quality as determined from scanning transmission electron microscope images and x-ray diffraction, and increases the radiative efficiency by reducing non-radiative defects as determined by time-resolved photoluminescence measurements. Finally, the AlGaN IL increases the spontaneous and piezoelectric polarization induced electric fields acting on the InGaN QW, providing an additional red-shift to the emission wavelength as determined by Schrodinger-Poisson modeling and fitting to the experimental data. The relative impact of increased indium concentration and polarization fields on the radiative efficiency of MQWs with AlGaN ILs is explored along with implications to conventional longer wavelength emitters.

  20. Determination of the valence band offset of MOVPE-grown In0.48Ga0.52P/GaAs multiple quantum wells by admittance spectroscopy

    NASA Astrophysics Data System (ADS)

    Ghezzi, Carlo; Magnanini, Renato; Parisini, Antonella; Tarricone, Luciano; Gombia, Enos; Longo, Massimo

    2008-03-01

    The valence band discontinuity of the lattice matched In0.48Ga0.52P/GaAs heterostructure was determined through a careful analysis of the temperature and frequency dependence of the admittance of p+/MQW/n+ structures, formed by a nominally undoped InGaP/GaAs multiple quantum well region, interposed between p+ and n+ GaAs layers. The heterostructures were grown through metal organic vapor phase epitaxy by using tertiary butyl arsine and tertiary butyl phosphine as alternative precursors for the V-group elements. The growth conditions were optimized for obtaining sharp interfaces and negligible ordering effects in the cation sublattice. Accounting for the temperature dependence of the Fermi energy and the calculated confining energy (10meV) of the heavy holes in the wells, a valence band offset ΔEV=(356±5)meV was derived from the temperature variation of the resonance frequency at which the isothermal conductance over frequency G(ω)/ω curves show a maximum. The experimental uncertainty of this result is significantly low if compared with the wide range (240-400meV) of the previously reported ΔEV values. By considering the band gap difference between InGaP and GaAs, a conduction band offset ΔEC=119meV was estimated. The accuracy of the experimental procedure and the reliability of the main assumptions of the admittance spectroscopy measurements were accurately checked. The obtained results were discussed in light of the large and growing amount of literature data by taking into account the influence of the growth conditions on the physical properties of the InGaP/GaAs quantum wells.

  1. Photoreflectance and Phototransmittance of Narrow Well Strained Layer InxGa1-xAs/GaAs Coupled Multiple Quantum Well Structures

    NASA Astrophysics Data System (ADS)

    Pan, S. H.; Shen, H.; Hang, Z.; Pollak, F. H.; Zhuang, Weihua; Xu, Qian; Roth, A. P.; Masut, R. A.; Lacelle, C.; Morris, D.

    1988-08-01

    We have measured the photoreflectance (PR) spectra at 300K and 77K of two strained layer <001> InxGall-xAs/GaAs (x≍0.12) multiple quantum wells (MQW) with nominal well (Lz) and barrier (LB) widths of 50A/100A and 30A/100A, respectively, as deduced from the growth conditions. Phototransmittance at 77K of the latter sample has been studied. In both samples we have observed a number of features in the PR spectra corresponding to miniband dispersion (coupling between wells) of both confined and unconfined (above the GaAs barrier) transitions. The coupling between wells leads to different transition energies at the mini-Brillouin zone center (Γ) and edge (π) along the growth direction. This is the first observation of unconfined features and miniband dispersion in this system. Even though our samples have fairly wide barriers (LB ≍100A) the coupling between wells is an important effect because of the relatively small confinement energies for x≍0.12. Using the envelope function approach we have calculated the various transition energies taking into account both strain and quantum well effects, including miniband disper-sion. Good agreement with experiment is found for a heavy-hole valence band discontinuity of 0.3±0.05 and LZ/LB = 52±3A/105±5A(x=0.11±0.01) and 32±3A/95±5A(x=0.12±0.01) for the two samples, respectively. The In composition and well/barrier widths are thus in good agreement with the growth conditions. Although the symmetric component of the fundamental light-hole to conduction band transition is a strong feature, the small observed amplitude of the antisymmetric component for both samples is evidence for the type II nature of the light-hole to conduction band transitions.

  2. Optical properties of CdTe- Cd0.90Mn0.10Te multiple quantum well structures grown by pulsed laser evaporation and epitaxy

    NASA Astrophysics Data System (ADS)

    Dubowski, J. J.; Roth, A. P.; Deleporte, E.; Peter, G.; Feng, Z. C.; Perkowitz, S.

    1992-02-01

    Low-temperature photoluminescence, photoluminescence excitation and Raman spectroscopy measurements of CdTeCd 0.90Mn 0.10Te multiple quantum well (MQW) structures grown by pulsed laser evaporation and epitaxy (PLEE) on (001) Cd 1- xZn xTe substrates are carried out. The samples are grown from fluxes of Cd-Te and Cd-Mn-Te provided by ablation of solid CdTe and Cd 0.93Mn 0.07Te targets with Nd:YAG and excimer XeCl lasers, respectively. The excitonic lines corresponding to the quantum well E 1-HH 1 transition are investigated. Comparison between the observed PL excitonic emissions and calculated energy levels using a Kronig-Penney model with the well width as a fitting parameter allowed us to determine the "optical" well widths of the samples and to compare them with those determined from secondary ion mass spectroscopy in-depth profiles. Raman spectra for non-resonance excitation at 501.7 nm are dominated by the CdTe-like longitudinal optical (LO) modes at 166 cm -1 and MnTe-like LO modes at 194 cm -1 from the Cd 0.90Mn 0.10Te barriers. Under resonance conditions, with excitation at 476.5 nm the CdTe LO, 2LO and 3LO modes from the wells near 170,340 and 510 cm -1 dominate the spectra. The results clearly indicate that the PLEE-grown MQWs have the characteristics of the best currently available material.

  3. Site-resolved multiple-quantum filtered correlations and distance measurements by magic-angle spinning NMR: Theory and applications to spins with weak to vanishing quadrupolar couplings.

    PubMed

    Eliav, U; Haimovich, A; Goldbourt, A

    2016-01-14

    We discuss and analyze four magic-angle spinning solid-state NMR methods that can be used to measure internuclear distances and to obtain correlation spectra between a spin I = 1/2 and a half-integer spin S > 1/2 having a small quadrupolar coupling constant. Three of the methods are based on the heteronuclear multiple-quantum and single-quantum correlation experiments, that is, high rank tensors that involve the half spin and the quadrupolar spin are generated. Here, both zero and single-quantum coherence of the half spins are allowed and various coherence orders of the quadrupolar spin are generated, and filtered, via active recoupling of the dipolar interaction. As a result of generating coherence orders larger than one, the spectral resolution for the quadrupolar nucleus increases linearly with the coherence order. Since the formation of high rank tensors is independent of the existence of a finite quadrupolar interaction, these experiments are also suitable to materials in which there is high symmetry around the quadrupolar spin. A fourth experiment is based on the initial quadrupolar-driven excitation of symmetric high order coherences (up to p = 2S, where S is the spin number) and subsequently generating by the heteronuclear dipolar interaction higher rank (l + 1 or higher) tensors that involve also the half spins. Due to the nature of this technique, it also provides information on the relative orientations of the quadrupolar and dipolar interaction tensors. For the ideal case in which the pulses are sufficiently strong with respect to other interactions, we derive analytical expressions for all experiments as well as for the transferred echo double resonance experiment involving a quadrupolar spin. We show by comparison of the fitting of simulations and the analytical expressions to experimental data that the analytical expressions are sufficiently accurate to provide experimental (7)Li-(13)C distances in a complex of lithium, glycine, and water. Discussion

  4. Variations in the Quantum Efficiency of Multiple Exciton Generation for a Series of Chemically Treated PbSe Nanocrystal Films

    SciTech Connect

    Beard, M. C.; Midgett, A. G.; Law, M.; Semonin, O. E.; Ellingson, R. J.; Nozik, A. J.

    2009-01-01

    We study multiple exciton generation (MEG) in two series of chemically treated PbSe nanocrystal (NC) films. We find that the average number of excitons produced per absorbed photon varies between 1.0 and 2.4 ({+-} 0.2) at a photon energy of {approx}4E{sub g} for films consisting of 3.7 nm NCs and between 1.1 and 1.6 ({+-} 0.1) at hv {approx}5E{sub g} for films consisting of 7.4 nm NCs. The variations in MEG depend upon the chemical treatment used to electronically couple the NCs in each film. The single and multiexciton lifetimes also change with the chemical treatment: biexciton lifetimes increase with stronger inter-NC electronic coupling and exciton delocalization, while single exciton lifetimes decrease after most treatments relative to the same NCs in solution. Single exciton lifetimes are particularly affected by surface treatments that dope the films n-type, which we tentatively attribute to an Auger recombination process between a single exciton and an electron produced by ionization of the dopant donor. These results imply that a better understanding of the effects of surface chemistry on film doping, NC carrier dynamics, and inter-NC interactions is necessary to build solar energy conversion devices that can harvest the multiple carriers produced by MEG. Our results show that the MEG efficiency is very sensitive to the condition of the NC surface and suggest that the wide range of MEG efficiencies reported in the recent literature may be a result of uncontrolled differences in NC surface chemistry.

  5. Variations in the quantum efficiency of multiple exciton generation for a series of chemically treated PbSe nanocrystal films.

    PubMed

    Beard, Matthew C; Midgett, Aaron G; Law, Matt; Semonin, Octavi E; Ellingson, Randy J; Nozik, Arthur J

    2009-02-01

    We study multiple exciton generation (MEG) in two series of chemically treated PbSe nanocrystal (NC) films. We find that the average number of excitons produced per absorbed photon varies between 1.0 and 2.4 (+/-0.2) at a photon energy of approximately 4E(g) for films consisting of 3.7 nm NCs and between 1.1 and 1.6 (+/-0.1) at hnu approximately 5E(g) for films consisting of 7.4 nm NCs. The variations in MEG depend upon the chemical treatment used to electronically couple the NCs in each film. The single and multiexciton lifetimes also change with the chemical treatment: biexciton lifetimes increase with stronger inter-NC electronic coupling and exciton delocalization, while single exciton lifetimes decrease after most treatments relative to the same NCs in solution. Single exciton lifetimes are particularly affected by surface treatments that dope the films n-type, which we tentatively attribute to an Auger recombination process between a single exciton and an electron produced by ionization of the dopant donor. These results imply that a better understanding of the effects of surface chemistry on film doping, NC carrier dynamics, and inter-NC interactions is necessary to build solar energy conversion devices that can harvest the multiple carriers produced by MEG. Our results show that the MEG efficiency is very sensitive to the condition of the NC surface and suggest that the wide range of MEG efficiencies reported in the recent literature may be a result of uncontrolled differences in NC surface chemistry. PMID:19170560

  6. Taking a Leap of Faith: Redefining Teaching and Learning in Higher Education through Project-Based Learning

    ERIC Educational Resources Information Center

    Lee, Jean S.; Blackwell, Sue; Drake, Jennifer; Moran, Kathryn A.

    2014-01-01

    This study examines two aspects of teaching with a project-based learning (PBL) model in higher education settings: faculty definitions of PBL and faculty PBL practices, as evidenced by their self-described successes and challenges in implementation. Faculty participants took "a leap of faith" in their teaching practices to redefine what…

  7. An Effective Hybrid Cuckoo Search Algorithm with Improved Shuffled Frog Leaping Algorithm for 0-1 Knapsack Problems

    PubMed Central

    Wang, Gai-Ge; Feng, Qingjiang; Zhao, Xiang-Jun

    2014-01-01

    An effective hybrid cuckoo search algorithm (CS) with improved shuffled frog-leaping algorithm (ISFLA) is put forward for solving 0-1 knapsack problem. First of all, with the framework of SFLA, an improved frog-leap operator is designed with the effect of the global optimal information on the frog leaping and information exchange between frog individuals combined with genetic mutation with a small probability. Subsequently, in order to improve the convergence speed and enhance the exploitation ability, a novel CS model is proposed with considering the specific advantages of Lévy flights and frog-leap operator. Furthermore, the greedy transform method is used to repair the infeasible solution and optimize the feasible solution. Finally, numerical simulations are carried out on six different types of 0-1 knapsack instances, and the comparative results have shown the effectiveness of the proposed algorithm and its ability to achieve good quality solutions, which outperforms the binary cuckoo search, the binary differential evolution, and the genetic algorithm. PMID:25404940

  8. 34 CFR 692.11 - For what purposes may a State use its payments under the LEAP Program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false For what purposes may a State use its payments under the LEAP Program? 692.11 Section 692.11 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION LEVERAGING EDUCATIONAL ASSISTANCE PARTNERSHIP PROGRAM...

  9. 34 CFR 692.11 - For what purposes may a State use its payments under the LEAP Program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 4 2011-07-01 2011-07-01 false For what purposes may a State use its payments under the LEAP Program? 692.11 Section 692.11 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION (CONTINUED) LEVERAGING EDUCATIONAL ASSISTANCE PARTNERSHIP...

  10. An effective hybrid cuckoo search algorithm with improved shuffled frog leaping algorithm for 0-1 knapsack problems.

    PubMed

    Feng, Yanhong; Wang, Gai-Ge; Feng, Qingjiang; Zhao, Xiang-Jun

    2014-01-01

    An effective hybrid cuckoo search algorithm (CS) with improved shuffled frog-leaping algorithm (ISFLA) is put forward for solving 0-1 knapsack problem. First of all, with the framework of SFLA, an improved frog-leap operator is designed with the effect of the global optimal information on the frog leaping and information exchange between frog individuals combined with genetic mutation with a small probability. Subsequently, in order to improve the convergence speed and enhance the exploitation ability, a novel CS model is proposed with considering the specific advantages of Lévy flights and frog-leap operator. Furthermore, the greedy transform method is used to repair the infeasible solution and optimize the feasible solution. Finally, numerical simulations are carried out on six different types of 0-1 knapsack instances, and the comparative results have shown the effectiveness of the proposed algorithm and its ability to achieve good quality solutions, which outperforms the binary cuckoo search, the binary differential evolution, and the genetic algorithm. PMID:25404940

  11. Adaptive Grouping Cloud Model Shuffled Frog Leaping Algorithm for Solving Continuous Optimization Problems

    PubMed Central

    Liu, Haorui; Yi, Fengyan; Yang, Heli

    2016-01-01

    The shuffled frog leaping algorithm (SFLA) easily falls into local optimum when it solves multioptimum function optimization problem, which impacts the accuracy and convergence speed. Therefore this paper presents grouped SFLA for solving continuous optimization problems combined with the excellent characteristics of cloud model transformation between qualitative and quantitative research. The algorithm divides the definition domain into several groups and gives each group a set of frogs. Frogs of each region search in their memeplex, and in the search process the algorithm uses the “elite strategy” to update the location information of existing elite frogs through cloud model algorithm. This method narrows the searching space and it can effectively improve the situation of a local optimum; thus convergence speed and accuracy can be significantly improved. The results of computer simulation confirm this conclusion. PMID:26819584

  12. The application of Shuffled Frog Leaping Algorithm to Wavelet Neural Networks for acoustic emission source location

    NASA Astrophysics Data System (ADS)

    Cheng, Xinmin; Zhang, Xiaodan; Zhao, Li; Deng, Aideng; Bao, Yongqiang; Liu, Yong; Jiang, Yunliang

    2014-04-01

    When using acoustic emission to locate the friction fault source of rotating machinery, the effects of strong noise and waveform distortion make accurate locating difficult. Applying neural network for acoustic emission source location could be helpful. In the BP Wavelet Neural Network, BP is a local search algorithm, which falls into local minimum easily. The probability of successful search is low. We used Shuffled Frog Leaping Algorithm (SFLA) to optimize the parameters of the Wavelet Neural Network, and the optimized Wavelet Neural Network to locate the source. After having performed the experiments of friction acoustic emission's source location on the rotor friction test machine, the results show that the calculation of SFLA is simple and effective, and that locating is accurate with proper structure of the network and input parameters.

  13. The grand leap of the whale up the Niagara Falls: converting philosophical conclusions into policy prescriptions.

    PubMed

    Holm, Søren

    2015-04-01

    This article analyzes a neat conjuring trick employed in bioethics, that is, the immediate conversion of a philosophical conclusion into a policy prescription, and compares it to the "grand leap of the whale up the Niagara Falls" mentioned by Benjamin Franklin. It is shown that there is no simple and easy way to achieve the conversion, by considering arguments falling under four headings: (1) reasonable disagreement about values and theories, (2) general jurisprudential arguments, (3) the differences between policymaking and philosophy, and (4) the messy world of implementation. The particular issue used to illustrate the difficulties in moving from philosophical conclusion to policy description is infanticide of healthy infants, but the analysis is general, and the conclusion that the immediate move to policy is illegitimate is quite general. PMID:25719355

  14. An adaptive tau-leaping method for stochastic simulations of reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Padgett, Jill M. A.; Ilie, Silvana

    2016-03-01

    Stochastic modelling is critical for studying many biochemical processes in a cell, in particular when some reacting species have low population numbers. For many such cellular processes the spatial distribution of the molecular species plays a key role. The evolution of spatially heterogeneous biochemical systems with some species in low amounts is accurately described by the mesoscopic model of the Reaction-Diffusion Master Equation. The Inhomogeneous Stochastic Simulation Algorithm provides an exact strategy to numerically solve this model, but it is computationally very expensive on realistic applications. We propose a novel adaptive time-stepping scheme for the tau-leaping method for approximating the solution of the Reaction-Diffusion Master Equation. This technique combines effective strategies for variable time-stepping with path preservation to reduce the computational cost, while maintaining the desired accuracy. The numerical tests on various examples arising in applications show the improved efficiency achieved by the new adaptive method.

  15. Unsaturated fractured rock characterization methods and data sets at the Apache Leap Tuff Site

    SciTech Connect

    Rasmussen, T.C.; Evans, D.D.; Sheets, P.J.; Blanford, J.H.

    1990-08-01

    Performance assessment of high-level nuclear waste containment feasibility requires representative values of parameters as input, including parameter moments, distributional characteristics, and covariance structures between parameters. To meet this need, characterization methods and data sets for interstitial, hydraulic, pneumatic and thermal parameters for a slightly welded fractured tuff at the Apache Leap Tuff Site situated in central Arizona are reported in this document. The data sets include the influence of matric suction on measured parameters. Spatial variability is investigated by sampling along nine boreholes at regular distances. Laboratory parameter estimates for 105 core segments are provided, as well as field estimates centered on the intervals where the core segments were collected. Measurement uncertainty is estimated by repetitively testing control samples. 31 refs., 10 figs., 21 tabs.

  16. Improved delay-leaping simulation algorithm for biochemical reaction systems with delays

    NASA Astrophysics Data System (ADS)

    Yi, Na; Zhuang, Gang; Da, Liang; Wang, Yifei

    2012-04-01

    In biochemical reaction systems dominated by delays, the simulation speed of the stochastic simulation algorithm depends on the size of the wait queue. As a result, it is important to control the size of the wait queue to improve the efficiency of the simulation. An improved accelerated delay stochastic simulation algorithm for biochemical reaction systems with delays, termed the improved delay-leaping algorithm, is proposed in this paper. The update method for the wait queue is effective in reducing the size of the queue as well as shortening the storage and access time, thereby accelerating the simulation speed. Numerical simulation on two examples indicates that this method not only obtains a more significant efficiency compared with the existing methods, but also can be widely applied in biochemical reaction systems with delays.

  17. Medium- and Long-term Prediction of LOD Change with the Leap-step Autoregressive Model

    NASA Astrophysics Data System (ADS)

    Liu, Q. B.; Wang, Q. J.; Lei, M. F.

    2015-09-01

    It is known that the accuracies of medium- and long-term prediction of changes of length of day (LOD) based on the combined least-square and autoregressive (LS+AR) decrease gradually. The leap-step autoregressive (LSAR) model is more accurate and stable in medium- and long-term prediction, therefore it is used to forecast the LOD changes in this work. Then the LOD series from EOP 08 C04 provided by IERS (International Earth Rotation and Reference Systems Service) is used to compare the effectiveness of the LSAR and traditional AR methods. The predicted series resulted from the two models show that the prediction accuracy with the LSAR model is better than that from AR model in medium- and long-term prediction.

  18. Medium- and Long-term Prediction of LOD Change by the Leap-step Autoregressive Model

    NASA Astrophysics Data System (ADS)

    Wang, Qijie

    2015-08-01

    The accuracy of medium- and long-term prediction of length of day (LOD) change base on combined least-square and autoregressive (LS+AR) deteriorates gradually. Leap-step autoregressive (LSAR) model can significantly reduce the edge effect of the observation sequence. Especially, LSAR model greatly improves the resolution of signals’ low-frequency components. Therefore, it can improve the efficiency of prediction. In this work, LSAR is used to forecast the LOD change. The LOD series from EOP 08 C04 provided by IERS is modeled by both the LSAR and AR models. The results of the two models are analyzed and compared. When the prediction length is between 10-30 days, the accuracy improvement is less than 10%. When the prediction length amounts to above 30 day, the accuracy improved obviously, with the maximum being around 19%. The results show that the LSAR model has higher prediction accuracy and stability in medium- and long-term prediction.

  19. Comparison study of photoluminescence from InGaN/GaN multiple quantum wells and InGaN epitaxial layers under large hydrostatic pressure

    SciTech Connect

    Shan, W.; Perlin, P.; Ager, J.W. III; Walukiewicz, W.; Haller, E.E.; McCluskey, M.D.; Johnson, N.M.; Bour, D.P.

    1998-09-01

    We report the results of a comparison study of photoluminescence (PL) from an In{sub 0.15}Ga{sub 0.85}N/GaN multiple-quantum-well (MQW) sample and an In{sub 0.11}Ga{sub 0.89}N thick epitaxial-layer sample, which have very similar band-gap energies. Large hydrostatic pressures were used for our investigations. The PL emissions in both samples were found to shift linearly to higher energy with applied pressure. In the MQW sample, the pressure response of the InGaN is dominated by the GaN layers, which leads to a significantly weaker pressure dependence as compared to the epilayer sample. Our results yield a pressure coefficient of 2.8{times}10{sup {minus}3}thinspeV/kbar for the In{sub 0.15}Ga{sub 0.85}N/GaN MQW sample and 4.0{times}10{sup {minus}3}thinspeV/kbar for the In{sub 0.11}Ga{sub 0.89}N epilayer. An abrupt decrease of PL intensity in both samples was observed at pressures above 100 kbar, indicating the carriers involved in the radiative recombination processes in the samples originate primarily from the adjacent GaN layers. {copyright} {ital 1998 American Institute of Physics.}

  20. Demonstration of transverse-magnetic deep-ultraviolet stimulated emission from AlGaN multiple-quantum-well lasers grown on a sapphire substrate

    SciTech Connect

    Li, Xiao-Hang E-mail: dupuis@gatech.edu; Kao, Tsung-Ting; Satter, Md. Mahbub; Shen, Shyh-Chiang; Yoder, P. Douglas; Detchprohm, Theeradetch; Dupuis, Russell D. E-mail: dupuis@gatech.edu; Wei, Yong O.; Wang, Shuo; Xie, Hongen; Fischer, Alec M.; Ponce, Fernando A.

    2015-01-26

    We demonstrate transverse-magnetic (TM) dominant deep-ultraviolet (DUV) stimulated emission from photo-pumped AlGaN multiple-quantum-well lasers grown pseudomorphically on an AlN/sapphire template by means of photoluminescence at room temperature. The TM-dominant stimulated emission was observed at wavelengths of 239, 242, and 243 nm with low thresholds of 280, 250, and 290 kW/cm{sup 2}, respectively. In particular, the lasing wavelength of 239 nm is shorter compared to other reports for AlGaN lasers grown on foreign substrates including sapphire and SiC. The peak wavelength difference between the transverse-electric (TE)-polarized emission and TM-polarized emission was approximately zero for the lasers in this study, indicating the crossover of crystal-field split-off hole and heavy-hole valence bands. The rapid variation of polarization between TE- and TM-dominance versus the change in lasing wavelength from 243 to 249 nm can be attributed to a dramatic change in the TE-to-TM gain coefficient ratio for the sapphire-based DUV lasers in the vicinity of TE-TM switch.