Science.gov

Sample records for quantum mechanical hamiltonian

  1. Cloning in nonlinear Hamiltonian quantum and hybrid mechanics

    NASA Astrophysics Data System (ADS)

    Arsenović, D.; Burić, N.; Popović, D. B.; Radonjić, M.; Prvanović, S.

    2014-10-01

    The possibility of state cloning is analyzed in two types of generalizations of quantum mechanics with nonlinear evolution. It is first shown that nonlinear Hamiltonian quantum mechanics does not admit cloning without the cloning machine. It is then demonstrated that the addition of the cloning machine, treated as a quantum or as a classical system, makes cloning possible by nonlinear Hamiltonian evolution. However, a special type of quantum-classical theory, known as the mean-field Hamiltonian hybrid mechanics, does not admit cloning by natural evolution. The latter represents an example of a theory where it appears to be possible to communicate between two quantum systems at superluminal speed, but at the same time it is impossible to clone quantum pure states.

  2. Bicomplex hamiltonian systems in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Bagchi, Bijan; Banerjee, Abhijit

    2015-12-01

    We investigate bicomplex Hamiltonian systems in the framework of an analogous version of the Schrdinger equation. Since in such a setting three different types of conjugates of bicomplex numbers appear, each is found to define, in a natural way, a separate class of time reversal operator. However, the induced parity ({P})-time ({T})-symmetric models turn out to be mutually incompatible, except for two of them which could be chosen uniquely. The latter models are then explored by working within an extended phase space. Applications to the problems of harmonic oscillator, inverted oscillator and isotonic oscillator are considered and many new interesting properties are uncovered for the new types of {P}{T} symmetries.

  3. Supersymmetric descendants of self-adjointly extended quantum mechanical Hamiltonians

    SciTech Connect

    Al-Hashimi, M.H.; Salman, M.; Shalaby, A.; Wiese, U.-J.

    2013-10-15

    We consider the descendants of self-adjointly extended Hamiltonians in supersymmetric quantum mechanics on a half-line, on an interval, and on a punctured line or interval. While there is a 4-parameter family of self-adjointly extended Hamiltonians on a punctured line, only a 3-parameter sub-family has supersymmetric descendants that are themselves self-adjoint. We also address the self-adjointness of an operator related to the supercharge, and point out that only a sub-class of its most general self-adjoint extensions is physical. Besides a general characterization of self-adjoint extensions and their supersymmetric descendants, we explicitly consider concrete examples, including a particle in a box with general boundary conditions, with and without an additional point interaction. We also discuss bulk-boundary resonances and their manifestation in the supersymmetric descendant. -- Highlights: •Self-adjoint extension theory and contact interactions. •Application of self-adjoint extensions to supersymmetry. •Contact interactions in finite volume with Robin boundary condition.

  4. Quantum mechanics of chemical reactions: Recent developments in reactive scattering and in reaction path Hamiltonians

    SciTech Connect

    Miller, W.H.

    1988-12-01

    Two recent developments in the theory of chemical reaction dynamics are reviewed. First, it has recently been discovered that the S- matrix version of the Kohn variational principle is free of the ''Kohn anomalies'' that have plagued other versions and prevented its general use. This has considerably simplified quantum mechanical reactive scattering calculations, which provide the rigorous characterizations of bimolecular reactions. Second, a new kind of reaction path Hamiltonian has been developed, one based on the ''least motion'' path that interpolates linearly between the reactant and product geometry of the molecule (rather than the previously used minimum energy, or ''intrinsic'' reaction path). The form of Hamiltonian which results is much simpler than the original reaction path Hamiltonian, but more important is the fact that it provides a more physically correct description of hydrogen atom transfer reactions. 44 refs., 4 figs.

  5. Laboratory implementation of quantum-control-mechanism identification through Hamiltonian encoding and observable decoding

    SciTech Connect

    Rey-de-Castro, R.; Rabitz, H.

    2010-06-15

    We report on the laboratory implementation of quantum-control-mechanism identification through Hamiltonian encoding and observable decoding (HE-OD). Over a sequence of experiments, HE-OD introduces a special encoded signature into the components of a previously determined control field expressed in a chosen representation. The outcome appears as a modulated signal in the controlled system observable. Decoding the modulated signal identifies the hierarchy of correlations between components of the control field in a particular representation. In cases where the initial quantum state and observable operator are fully known, then HE-OD can also identify the transition amplitudes of the various Dyson expansion orders contributing to the controlled dynamics. The basic principles of HE-OD are illustrated for second harmonic generation when the components of the field representation are simply taken as the pixels in the pulse shaper. The outcome of HE-OD agrees well with simulations, verifying the concept.

  6. Entropic dynamics: From entropy and information geometry to Hamiltonians and quantum mechanics

    SciTech Connect

    Caticha, Ariel; Bartolomeo, Daniel; Reginatto, Marcel

    2015-01-13

    Entropic Dynamics is a framework in which quantum theory is derived as an application of entropic methods of inference. There is no underlying action principle. Instead, the dynamics is driven by entropy subject to the appropriate constraints. In this paper we show how a Hamiltonian dynamics arises as a type of non-dissipative entropic dynamics. We also show that the particular form of the 'quantum potential' that leads to the Schrödinger equation follows naturally from information geometry.

  7. A polarizable force-field model for quantum-mechanical-molecular-mechanical Hamiltonian using expansion of point charges into orbitals

    PubMed Central

    Biswas, P. K.; Gogonea, Valentin

    2008-01-01

    We present an ab initio polarizable representation of classical molecular mechanics (MM) atoms by employing an angular momentum-based expansion scheme of the point charges into partial wave orbitals. The charge density represented by these orbitals can be fully polarized, and for hybrid quantum-mechanical-molecular-mechanical (QM?MM) calculations, mutual polarization within the QM?MM Hamiltonian can be obtained. We present the mathematical formulation and the analytical expressions for the energy and forces pertaining to the method. We further develop a variational scheme to appropriately determine the expansion coefficients and then validate the method by considering polarizations of ions by the QM system employing the hybrid GROMACS-CPMD QM?MM program. Finally, we present a simpler prescription for adding isotropic polarizability to MM atoms in a QM?MM simulation. Employing this simpler scheme, we present QM?MM energy minimization results for the classic case of a water dimer and a hydrogen sulfide dimer. Also, we present single-point QM?MM results with and without the polarization to study the change in the ionization potential of tetrahydrobiopterin (BH4) in water and the change in the interaction energy of solvated BH4 (described by MM) with the P450 heme described by QM. The model can be employed for the development of an extensive classical polarizable force-field. PMID:19045177

  8. Application of pseudo-Hermitian quantum mechanics to a PT-symmetric Hamiltonian with a continuum of scattering states

    SciTech Connect

    Mostafazadeh, Ali

    2005-10-01

    We extend the application of the techniques developed within the framework of the pseudo-Hermitian quantum mechanics to study a unitary quantum system described by an imaginary PT-symmetric potential v(x) having a continuous real spectrum. For this potential that has recently been used, in the context of optical potentials, for modeling the propagation of electromagnetic waves traveling in a waveguide half and half filled with gain and absorbing media, we give a perturbative construction of the physical Hilbert space, observables, localized states, and the equivalent Hermitian Hamiltonian. Ignoring terms of order three or higher in the non-Hermiticity parameter {zeta}, we show that the equivalent Hermitian Hamiltonian has the form p{sup 2}/2m+({zeta}{sup 2}/2){sigma}{sub n=0}{sup {infinity}}{l_brace}{alpha}{sub n}(x),p{sup 2n}{r_brace} with {alpha}{sub n}(x) vanishing outside an interval that is three times larger than the support of v(x), i.e., in 2/3 of the physical interaction region the potential v(x) vanishes identically. We provide a physical interpretation for this unusual behavior and comment on the classical limit of the system.

  9. Quantum Bootstrapping via Compressed Quantum Hamiltonian Learning

    NASA Astrophysics Data System (ADS)

    Wiebe, Nathan; Granade, Christopher; Cory, David

    2015-03-01

    Recent work has shown that quantum simulation is a valuable tool for learning empirical models for quantum systems. We build upon these results by showing that a small quantum simulators can be used to characterize and learn control models for larger devices for wide classes of physically realistic Hamiltonians. This leads to a new application for small quantum computers: characterizing and controlling larger quantum computers. Our protocol achieves this by using Bayesian inference in concert with Lieb-Robinson bounds and interactive quantum learning methods to achieve compressed simulations for characterization. Whereas Fisher information analysis shows that current methods which employ short-time evolution are suboptimal, interactive quantum learning allows us to overcome this limitation. We illustrate the efficiency of our bootstrapping protocol by showing numerically that an 8-qubit Ising model simulator can be used to calibrate and control a 50 qubit Ising simulator while using only about 750 kilobits of experimental data.

  10. A general formula for Rayleigh-Schroedinger perturbation energy utilizing a power series expansion of the quantum mechanical Hamiltonian

    SciTech Connect

    Herbert, J.M.

    1997-02-01

    Perturbation theory has long been utilized by quantum chemists as a method for approximating solutions to the Schroedinger equation. Perturbation treatments represent a system`s energy as a power series in which each additional term further corrects the total energy; it is therefore convenient to have an explicit formula for the nth-order energy correction term. If all perturbations are collected into a single Hamiltonian operator, such a closed-form expression for the nth-order energy correction is well known; however, use of a single perturbed Hamiltonian often leads to divergent energy series, while superior convergence behavior is obtained by expanding the perturbed Hamiltonian in a power series. This report presents a closed-form expression for the nth-order energy correction obtained using Rayleigh-Schroedinger perturbation theory and a power series expansion of the Hamiltonian.

  11. Hamiltonian tomography: the quantum (system) measurement problem

    NASA Astrophysics Data System (ADS)

    Cole, Jared H.

    2015-10-01

    To harness the power of controllable quantum systems for information processing or quantum simulation, it is essential to be able to accurately characterise the system's Hamiltonian. Although in principle this requires determining less parameters than full quantum process tomography, a general and extendable method for reconstructing a general Hamiltonian has been elusive. In their recent paper, Wang et al (2015 New J. Phys. 17 093017) apply dynamical decoupling to the problem of Hamiltonian tomography and show how to reconstruct a general many-body Hamiltonian comprised of arbitrary interactions between qubits.

  12. Five-dimensional Hamiltonian-Jacobi approach to relativistic quantum mechanics

    SciTech Connect

    Rose, Harald

    2003-12-11

    A novel theory is outlined for describing the dynamics of relativistic electrons and positrons. By introducing the Lorentz-invariant universal time as a fifth independent variable, the Hamilton-Jacobi formalism of classical mechanics is extended from three to four spatial dimensions. This approach allows one to incorporate gravitation and spin interactions in the extended five-dimensional Lagrangian in a covariant form. The universal time has the function of a hidden Bell parameter. By employing the method of variation with respect to the four coordinates of the particle and the components of the electromagnetic field, the path equation and the electromagnetic field produced by the charge and the spin of the moving particle are derived. In addition the covariant equations for the dynamics of the components of the spin tensor are obtained. These equations can be transformed to the familiar BMT equation in the case of homogeneous electromagnetic fields. The quantization of the five-dimensional Hamilton-Jacobi equation yields a five-dimensional spinor wave equation, which degenerates to the Dirac equation in the stationary case if we neglect gravitation. The quantity which corresponds to the probability density of standard quantum mechanics is the four-dimensional mass density which has a real physical meaning. By means of the Green method the wave equation is transformed into an integral equation enabling a covariant relativistic path integral formulation. Using this approach a very accurate approximation for the four-dimensional propagator is derived. The proposed formalism makes Dirac's hole theory obsolete and can readily be extended to many particles.

  13. Quantum Hamiltonian Physics with Supercomputers

    NASA Astrophysics Data System (ADS)

    Vary, James P.

    2014-06-01

    The vision of solving the nuclear many-body problem in a Hamiltonian framework with fundamental interactions tied to QCD via Chiral Perturbation Theory is gaining support. The goals are to preserve the predictive power of the underlying theory, to test fundamental symmetries with the nucleus as laboratory and to develop new understandings of the full range of complex quantum phenomena. Advances in theoretical frameworks (renormalization and many-body methods) as well as in computational resources (new algorithms and leadership-class parallel computers) signal a new generation of theory and simulations that will yield profound insights into the origins of nuclear shell structure, collective phenomena and complex reaction dynamics. Fundamental discovery opportunities also exist in such areas as physics beyond the Standard Model of Elementary Particles, the transition between hadronic and quark-gluon dominated dynamics in nuclei and signals that characterize dark matter. I will review some recent achievements and present ambitious consensus plans along with their challenges for a coming decade of research that will build new links between theory, simulations and experiment. Opportunities for graduate students to embark upon careers in the fast developing field of supercomputer simulations is also discussed.

  14. Relativistic non-Hamiltonian mechanics

    SciTech Connect

    Tarasov, Vasily E.

    2010-10-15

    Relativistic particle subjected to a general four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u{sub {mu}u}{sup {mu}} + c{sup 2} = 0, where c is the speed of light in vacuum. In the general case, four-forces are non-potential, and the relativistic particle is a non-Hamiltonian system in four-dimensional pseudo-Euclidean space-time. We consider non-Hamiltonian and dissipative systems in relativistic mechanics. Covariant forms of the principle of stationary action and the Hamilton's principle for relativistic mechanics of non-Hamiltonian systems are discussed. The equivalence of these principles is considered for relativistic particles subjected to potential and non-potential forces. We note that the equations of motion which follow from the Hamilton's principle are not equivalent to the equations which follow from the variational principle of stationary action. The Hamilton's principle and the principle of stationary action are not compatible in the case of systems with nonholonomic constraint and the potential forces. The principle of stationary action for relativistic particle subjected to non-potential forces can be used if the Helmholtz conditions are satisfied. The Hamilton's principle and the principle of stationary action are equivalent only for a special class of relativistic non-Hamiltonian systems.

  15. Relativistic non-Hamiltonian mechanics

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2010-10-01

    Relativistic particle subjected to a general four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u?u? + c2 = 0, where c is the speed of light in vacuum. In the general case, four-forces are non-potential, and the relativistic particle is a non-Hamiltonian system in four-dimensional pseudo-Euclidean space-time. We consider non-Hamiltonian and dissipative systems in relativistic mechanics. Covariant forms of the principle of stationary action and the Hamilton's principle for relativistic mechanics of non-Hamiltonian systems are discussed. The equivalence of these principles is considered for relativistic particles subjected to potential and non-potential forces. We note that the equations of motion which follow from the Hamilton's principle are not equivalent to the equations which follow from the variational principle of stationary action. The Hamilton's principle and the principle of stationary action are not compatible in the case of systems with nonholonomic constraint and the potential forces. The principle of stationary action for relativistic particle subjected to non-potential forces can be used if the Helmholtz conditions are satisfied. The Hamilton's principle and the principle of stationary action are equivalent only for a special class of relativistic non-Hamiltonian systems.

  16. Position-dependent mass quantum Hamiltonians: general approach and duality

    NASA Astrophysics Data System (ADS)

    Rego-Monteiro, M. A.; Rodrigues, Ligia M. C. S.; Curado, E. M. F.

    2016-03-01

    We analyze a general family of position-dependent mass (PDM) quantum Hamiltonians which are not self-adjoint and include, as particular cases, some Hamiltonians obtained in phenomenological approaches to condensed matter physics. We build a general family of self-adjoint Hamiltonians which are quantum mechanically equivalent to the non-self-adjoint proposed ones. Inspired by the probability density of the problem, we construct an ansatz for the solutions of the family of self-adjoint Hamiltonians. We use this ansatz to map the solutions of the time independent Schrödinger equations generated by the non-self-adjoint Hamiltonians into the Hilbert space of the solutions of the respective dual self-adjoint Hamiltonians. This mapping depends on both the PDM and on a function of position satisfying a condition that assures the existence of a consistent continuity equation. We identify the non-self-adjoint Hamiltonians here studied with a very general family of Hamiltonians proposed in a seminal article of Harrison (1961 Phys. Rev. 123 85) to describe varying band structures in different types of metals. Therefore, we have self-adjoint Hamiltonians that correspond to the non-self-adjoint ones found in Harrison’s article.

  17. Global and local Hamiltonians for quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Lv, Q. Z.; Su, Q.; Grobe, R.

    2015-12-01

    The set of EulerLagrange equations that extremelize the action associated with the Lagrangian space-time density of quantum electrodynamics leads to the well-known set of coupled DiracMaxwell equations. We compare three alternative Hamiltonian-based descriptions for quantum electrodynamics. We construct a local, a spatially global and a temporally global Hamiltonian and show that the corresponding Hamilton equations of motion are able to reproduce the DiracMaxwell equations. While this local Hamiltonian is fully equivalent to quantum electrodynamics, it does not provide any obvious conserved quantities. On the other hand, the two global Hamiltonians can be associated with the temporal and spatial generators of the dynamics and lead to spatially or temporally conserved observables if the fields fulfill certain boundary conditions.

  18. Hamiltonian quantum computer in one dimension

    NASA Astrophysics Data System (ADS)

    Wei, Tzu-Chieh; Liang, John C.

    2015-12-01

    Quantum computation can be achieved by preparing an appropriate initial product state of qudits and then letting it evolve under a fixed Hamiltonian. The readout is made by measurement on individual qudits at some later time. This approach is called the Hamiltonian quantum computation and it includes, for example, the continuous-time quantum cellular automata and the universal quantum walk. We consider one spatial dimension and study the compromise between the locality k and the local Hilbert space dimension d . For geometrically 2-local (i.e., k =2 ), it is known that d =8 is already sufficient for universal quantum computation but the Hamiltonian is not translationally invariant. As the locality k increases, it is expected that the minimum required d should decrease. We provide a construction of a Hamiltonian quantum computer for k =3 with d =5 . One implication is that simulating one-dimensional chains of spin-2 particles is BQP-complete (BQP denotes "bounded error, quantum polynomial time"). Imposing translation invariance will increase the required d . For this we also construct another 3-local (k =3 ) Hamiltonian that is invariant under translation of a unit cell of two sites but that requires d to be 8.

  19. Hamiltonian learning and certification using quantum resources.

    PubMed

    Wiebe, Nathan; Granade, Christopher; Ferrie, Christopher; Cory, D G

    2014-05-16

    In recent years quantum simulation has made great strides, culminating in experiments that existing supercomputers cannot easily simulate. Although this raises the possibility that special purpose analog quantum simulators may be able to perform computational tasks that existing computers cannot, it also introduces a major challenge: certifying that the quantum simulator is in fact simulating the correct quantum dynamics. We provide an algorithm that, under relatively weak assumptions, can be used to efficiently infer the Hamiltonian of a large but untrusted quantum simulator using a trusted quantum simulator. We illustrate the power of this approach by showing numerically that it can inexpensively learn the Hamiltonians for large frustrated Ising models, demonstrating that quantum resources can make certifying analog quantum simulators tractable. PMID:24877920

  20. Dissipative Forces and Quantum Mechanics

    ERIC Educational Resources Information Center

    Eck, John S.; Thompson, W. J.

    1977-01-01

    Shows how to include the dissipative forces of classical mechanics in quantum mechanics by the use of non-Hermetian Hamiltonians. The Ehrenfest theorem for such Hamiltonians is derived, and simple examples which show the classical correspondences are given. (MLH)

  1. Hamiltonian quantum cellular automata in one dimension

    NASA Astrophysics Data System (ADS)

    Nagaj, Daniel; Wocjan, Pawel

    2008-09-01

    We construct a simple translationally invariant, nearest-neighbor Hamiltonian on a chain of ten-dimensional qudits that makes it possible to realize universal quantum computing without any external control during the computational process. We only require the ability to prepare an initial computational basis state that encodes both the quantum circuit and its input. The computational process is then carried out by the autonomous Hamiltonian time evolution. After a time polynomially long in the size of the quantum circuit has passed, the result of the computation is obtained with high probability by measuring a few qudits in the computational basis. This result also implies that there cannot exist efficient classical simulation methods for generic translationally invariant nearest-neighbor Hamiltonians on qudit chains, unless quantum computers can be efficiently simulated by classical computers (or, put in complexity theoretic terms, unless BPP=BQP ).

  2. Optimized spatial matrix representations of quantum Hamiltonians

    NASA Astrophysics Data System (ADS)

    Lv, Q. Z.; Jennings, D. J.; Betke, J.; Su, Q.; Grobe, R.

    2016-01-01

    We examine the accuracy of several approaches to represent the quantum mechanical Schrdinger, Klein-Gordon and Dirac Hamilton operators by optimized spatial matrices. Two of the approaches are based on periodic and reflecting boundaries and have an error scaling with the number of spatial grid points that is significantly better than the ones based on the usual approaches where the momentum operator is approximated by finite-difference schemes. These N N matrices are optimum in the sense that their eigenvalues and eigenvectors are exact representations on the spatial grid for the continuous solutions of the corresponding force-free Hamiltonian. As an example, we apply these techniques to compute the vacuum's polarization charge density from the Dirac and Foldy-Wouthuysen theory.

  3. Geometric Construction of Quantum Hall Clustering Hamiltonians

    NASA Astrophysics Data System (ADS)

    Lee, Ching Hua; Papi?, Zlatko; Thomale, Ronny

    2015-10-01

    Many fractional quantum Hall wave functions are known to be unique highest-density zero modes of certain "pseudopotential" Hamiltonians. While a systematic method to construct such parent Hamiltonians has been available for the infinite plane and sphere geometries, the generalization to manifolds where relative angular momentum is not an exact quantum number, i.e., the cylinder or torus, remains an open problem. This is particularly true for non-Abelian states, such as the Read-Rezayi series (in particular, the Moore-Read and Read-Rezayi Z3 states) and more exotic nonunitary (Haldane-Rezayi and Gaffnian) or irrational (Haffnian) states, whose parent Hamiltonians involve complicated many-body interactions. Here, we develop a universal geometric approach for constructing pseudopotential Hamiltonians that is applicable to all geometries. Our method straightforwardly generalizes to the multicomponent SU (n ) cases with a combination of spin or pseudospin (layer, subband, or valley) degrees of freedom. We demonstrate the utility of our approach through several examples, some of which involve non-Abelian multicomponent states whose parent Hamiltonians were previously unknown, and we verify the results by numerically computing their entanglement properties.

  4. Non-Hermitian quantum Hamiltonians with PT symmetry

    SciTech Connect

    Jones-Smith, Katherine; Mathur, Harsh

    2010-10-15

    We formulate quantum mechanics for non-Hermitian Hamiltonians that are invariant under PT, where P is the parity and T denotes time reversal, for the case that time-reversal symmetry is odd (T{sup 2}=-1), generalizing prior work for the even case (T{sup 2}=1). We discover an analog of Kramer's theorem for PT quantum mechanics, present a prototypical example of a PT quantum system with odd time reversal, and discuss potential applications of the formalism.

  5. Renormalization group approach to quantum Hamiltonian dynamics

    NASA Astrophysics Data System (ADS)

    G?azek, Stanis?aw D.

    2015-03-01

    Ken Wilson developed powerful renormalization group procedures for constructing effective theories and solving a broad class of difficult physical problems. His insights allowed him to later advance the Hamiltonian approach to quantum dynamics of particles and fields in the Minkowski space-time, motivated by QCD. The latter advances are described in this article, concluding with a remark on Ken's related interest in difficult systemic issues of society.

  6. PT -symmetric Hamiltonians and their application in quantum information

    NASA Astrophysics Data System (ADS)

    Croke, Sarah

    2015-05-01

    We discuss the prospect of PT -symmetric Hamiltonians finding applications in quantum information science, and conclude that such evolution is unlikely to provide any benefit over existing techniques. Although it has been known for some time that PT -symmetric quantum theory, when viewed as a unitary theory, is exactly equivalent to standard quantum mechanics, proposals continue to be put forward for schemes in which PT -symmetric quantum theory can outperform standard quantum theory. The most recent of these is the suggestion to use PT -symmetric Hamiltonians to perform an exponentially fast database search, a task known to be impossible with a quantum computer. Further, such a scheme has been shown to apparently produce effects in conflict with fundamental information-theoretic principles, such as the impossibility of superluminal information transfer, and the invariance of entanglement under local operations. In this paper we propose three inequivalent experimental implementations of PT -symmetric Hamiltonians, with careful attention to the resources required to realize each such evolution. Such an operational approach allows us to resolve these apparent conflicts, and evaluate fully schemes proposed in the literature for faster time evolution and state discrimination.

  7. Hamiltonian mechanics limits microscopic engines

    NASA Astrophysics Data System (ADS)

    Anglin, James; Gilz, Lukas; Thesing, Eike

    2015-05-01

    We propose a definition of fully microscopic engines (micro-engines) in terms of pure mechanics, without reference to thermodynamics, equilibrium, or cycles imposed by external control, and without invoking ergodic theory. This definition is pragmatically based on the observation that what makes engines useful is energy transport across a large ratio of dynamical time scales. We then prove that classical and quantum mechanics set non-trivial limits-of different kinds-on how much of the energy that a micro-engine extracts from its fuel can be converted into work. Our results are not merely formal; they imply manageable design constraints on micro-engines. They also suggest the novel possibility that thermodynamics does not emerge from mechanics in macroscopic regimes, but rather represents the macroscopic limit of a generalized theory, valid on all scales, which governs the important phenomenon of energy transport across large time scale ratios. We propose experimental realizations of the dynamical mechanisms we identify, with trapped ions and in Bose-Einstein condensates (``motorized bright solitons'').

  8. Uncertainty relation for non-Hamiltonian quantum systems

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2013-01-01

    General forms of uncertainty relations for quantum observables of non-Hamiltonian quantum systems are considered. Special cases of uncertainty relations are discussed. The uncertainty relations for non-Hamiltonian quantum systems are considered in the Schrdinger-Robertson form since it allows us to take into account Lie-Jordan algebra of quantum observables. In uncertainty relations, the time dependence of quantum observables and the properties of this dependence are discussed. We take into account that a time evolution of observables of a non-Hamiltonian quantum system is not an endomorphism with respect to Lie, Jordan, and associative multiplications.

  9. Uncertainty relation for non-Hamiltonian quantum systems

    SciTech Connect

    Tarasov, Vasily E.

    2013-01-15

    General forms of uncertainty relations for quantum observables of non-Hamiltonian quantum systems are considered. Special cases of uncertainty relations are discussed. The uncertainty relations for non-Hamiltonian quantum systems are considered in the Schroedinger-Robertson form since it allows us to take into account Lie-Jordan algebra of quantum observables. In uncertainty relations, the time dependence of quantum observables and the properties of this dependence are discussed. We take into account that a time evolution of observables of a non-Hamiltonian quantum system is not an endomorphism with respect to Lie, Jordan, and associative multiplications.

  10. Quantum Monte Carlo simulations of complex Hamiltonians

    NASA Astrophysics Data System (ADS)

    Rousseau, Valery; Hettiarachchilage, Kalani; Tam, Ka-Ming; Moreno, Juana; Jarrell, Mark

    2013-03-01

    In the last two decades there have been tremendous advances in boson Quantum Monte Carlo methods, which allow for solving more and more complex Hamiltonians. In particular, it is now possible to simulate Hamiltonians that include terms that couple an arbitrary number of sites and/or particles, such as six-site ring-exchange terms. These ring-exchange interactions are crucial for the study of quantum fluctuations on highly frustrated systems. We illustrate how the Stochastic Green Function algorithm with Global Space-Time Update can easily simulate such complex systems, and present some results for a highly non-trivial model of bosons in a pyrochlore crystal with six-site ring-exchange terms. This work is supported by NSF OISE-0952300 (KH, VGR and JM) and by DOE SciDAC grant DE-FC02-06ER25792 (KMT and MJ). This work used the Extreme Science and Engineer- ing Discovery Environment (XSEDE), which is sup- ported by the National Science Foundation

  11. Loop quantum gravity without the Hamiltonian constraint

    NASA Astrophysics Data System (ADS)

    Bodendorfer, N.; Stottmeister, A.; Thurn, A.

    2013-04-01

    We show that under certain technical assumptions, including the existence of a constant mean curvature (CMC) slice and strict positivity of the scalar field, general relativity conformally coupled to a scalar field can be quantized on a partially reduced phase space, meaning reduced only with respect to the Hamiltonian constraint and a proper gauge fixing. More precisely, we introduce, in close analogy to shape dynamics, the generator of a local conformal transformation acting on both, the metric and the scalar field, which coincides with the CMC gauge condition. A new metric, which is invariant under this transformation, is constructed and used to define connection variables which can be quantized by standard loop quantum gravity methods. Since this connection is invariant under the local conformal transformation, the generator of which is shown to be a good gauge fixing for the Hamiltonian constraint, the Dirac bracket associated with implementing these constraints coincides with the Poisson bracket for the connection. Thus, the well developed kinematical quantization techniques for loop quantum gravity are available, while the Hamiltonian constraint has been solved (more precisely, gauge fixed) classically. The physical interpretation of this system is that of general relativity on a fixed spatial CMC slice, the associated time of which is given by the CMC. While it is hard to address dynamical problems in this framework (due to the complicated time function), it seems, due to good accessibility properties of the CMC gauge, to be well suited for problems such as the computation of black hole entropy, where actual physical states can be counted and the dynamics is only of indirect importance. The corresponding calculation yields the surprising result that the usual prescription of fixing the Barbero-Immirzi parameter ? to a constant value in order to obtain the well-known formula S = a(?)A/(4G) does not work for the black holes under consideration, while a recently proposed prescription involving an analytic continuation of ? to the case of a self-dual space-time connection yields the correct result. Also, the interpretation of the geometric operators gets an interesting twist, which exemplifies the deep relationship between observables and the choice of a time function and has consequences for loop quantum cosmology.

  12. New Hamiltonian constraint operator for loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Yang, Jinsong; Ma, Yongge

    2015-12-01

    A new symmetric Hamiltonian constraint operator is proposed for loop quantum gravity, which is well defined in the Hilbert space of diffeomorphism invariant states up to non-planar vertices with valence higher than three. It inherits the advantage of the original regularization method to create new vertices to the spin networks. The quantum algebra of this Hamiltonian is anomaly-free on shell, and there is less ambiguity in its construction in comparison with the original method. The regularization procedure for this Hamiltonian constraint operator can also be applied to the symmetric model of loop quantum cosmology, which leads to a new quantum dynamics of the cosmological model.

  13. An Alternative Adiabatic Quantum Algorithm for the Hamiltonian Cycle Problem

    NASA Astrophysics Data System (ADS)

    Zhang, Da-Jian; Tong, Dian-Min; Lu, Yao; Long, Gui-Lu

    2015-05-01

    We put forward an alternative quantum algorithm for finding Hamiltonian cycles in any N-vertex graph based on adiabatic quantum computing. With a von Neumann measurement on the final state, one may determine whether there is a Hamiltonian cycle in the graph and pick out a cycle if there is any. Although the proposed algorithm provides a quadratic speedup, it gives an alternative algorithm based on adiabatic quantum computation, which is of interest because of its inherent robustness.

  14. Time and a physical Hamiltonian for quantum gravity.

    PubMed

    Husain, Viqar; Pawłowski, Tomasz

    2012-04-01

    We present a nonperturbative quantization of general relativity coupled to dust and other matter fields. The dust provides a natural time variable, leading to a physical Hamiltonian with spatial diffeomorphism symmetry. The surprising feature is that the Hamiltonian is not a square root. This property, together with the kinematical structure of loop quantum gravity, provides a complete theory of quantum gravity, and puts applications to cosmology, quantum gravitational collapse, and Hawking radiation within technical reach. PMID:22540782

  15. Hamiltonian models of quantum computers which evolve quantum ballistically

    SciTech Connect

    Benioff, P.

    1996-12-31

    Quantum computation is a subject of much recent interest. In much of the work in the literature quantum computers are described as built up from a sequence of unitary operators where each unitary operator carries out a stage of the overall quantum computation. The sequence and connection of the different unitary operators is provided presumably by some external agent which governs the overall process. However there is no description of a an overall Hamiltonian needed to give the actual quantum dynamics of the computation process. In this talk, earlier work by the author is followed in that simple, time independent Hamiltonians are used to describe quantum computation, and the Schroedinger evolution of the computation system is considered to be quantum ballistic. However, the definition of quantum ballistic evolution used here is more general than that used in the earlier work. In particular, the requirement that the step operator {ital T} associated with a process be a partial isometry, used in, is relaxed to require that {ital T} be a contraction operator. (An operator {ital T} is a partial isometry if the self-adjoint operators T{sup {dagger}}T and TT{sup {dagger}} are also projection operators.{ital T} is a contraction operator if {vert_bar}{vert_bar} {ital T} {vert_bar}{vert_bar} {<=} 1.) The main purpose of this talk is to investigate some consequences for quantum computation under this weaker requirement. It will be seen that system motion along discrete paths in a basis still occurs. However the motion occurs in ,the presence of potentials whose height and distribution along the path depends on {ital T} and the path states.

  16. Numerical signatures of non-self-adjointness in quantum Hamiltonians

    NASA Astrophysics Data System (ADS)

    Ruf, M.; Mller, C.; Grobe, R.

    2011-08-01

    Non-self-adjoint quantum mechanical operators do not necessarily possess eigenvalues. Finite N N matrix representations of these operators, however, can be hermitian and therefore have a finite set of N real eigenvalues. Using the momentum operator, the kinetic energy operator, and the relativistic Hamiltonian of the Coulomb problem for the Klein-Gordon equation as examples, we examine analytically and also numerically the properties of the spectrum and eigenvectors in finite dimensional Hilbert spaces. We study the limit of N ? ? for which some eigenvalues cease to exist as the corresponding operators are not self-adjoint.

  17. Continuous decomposition of quantum measurements via Hamiltonian feedback

    NASA Astrophysics Data System (ADS)

    Florjanczyk, Jan; Brun, Todd A.

    2015-12-01

    We characterize the set of generalized quantum measurements that can be decomposed into a continuous measurement process using a stream of probe qubits and a tunable interaction Hamiltonian. Each probe in the stream interacts weakly with the target quantum system and then is measured projectively in a standard basis. This measurement result is used in a closed feedback loop to tune the interaction Hamiltonian for the next probe. The resulting evolution is a stochastic process with the structure of a one-dimensional random walk. To maintain this structure and require that at long times the measurement outcomes be independent of the path, the allowed interaction Hamiltonians must lie in a restricted set such that the Hamiltonian terms on the target system form a finite-dimensional Jordan algebra. This algebraic structure of the interaction Hamiltonians yields a large class of generalized measurements that can be continuously performed by our scheme and we fully describe this set.

  18. Non-Hamiltonian equilibrium statistical mechanics.

    PubMed

    Sergi, Alessandro

    2003-02-01

    In this paper the equilibrium statistical mechanics of non-Hamiltonian systems is formulated introducing an algebraic bracket. The latter defines non-Hamiltonian equations of motion in classical phase space according to the approach introduced in Phys. Rev. E 64, 056125 (2001). The Jacobi identity is no longer satisfied by the generalized bracket and as a result the algebra of phase space functions is not time translation invariant. The presence of a nonzero phase space compressibility spoils also the time-reversal invariance of the dynamics. The general Liouville equation is rederived and the properties of statistical averages are accounted for. The features of time correlation functions and linear response theory are also discussed. PMID:12636647

  19. Statistical mechanics of Hamiltonian adaptive resolution simulations.

    PubMed

    Espaol, P; Delgado-Buscalioni, R; Everaers, R; Potestio, R; Donadio, D; Kremer, K

    2015-02-14

    The Adaptive Resolution Scheme (AdResS) is a hybrid scheme that allows to treat a molecular system with different levels of resolution depending on the location of the molecules. The construction of a Hamiltonian based on the this idea (H-AdResS) allows one to formulate the usual tools of ensembles and statistical mechanics. We present a number of exact and approximate results that provide a statistical mechanics foundation for this simulation method. We also present simulation results that illustrate the theory. PMID:25681895

  20. Faster than Hermitian quantum mechanics.

    PubMed

    Bender, Carl M; Brody, Dorje C; Jones, Hugh F; Meister, Bernhard K

    2007-01-26

    Given an initial quantum state |psi(I)> and a final quantum state |psi(F)>, there exist Hamiltonians H under which |psi(I)> evolves into |psi(F)>. Consider the following quantum brachistochrone problem: subject to the constraint that the difference between the largest and smallest eigenvalues of H is held fixed, which H achieves this transformation in the least time tau? For Hermitian Hamiltonians tau has a nonzero lower bound. However, among non-Hermitian PT-symmetric Hamiltonians satisfying the same energy constraint, tau can be made arbitrarily small without violating the time-energy uncertainty principle. This is because for such Hamiltonians the path from |psi(I)> to |psi(F)> can be made short. The mechanism described here is similar to that in general relativity in which the distance between two space-time points can be made small if they are connected by a wormhole. This result may have applications in quantum computing. PMID:17358747

  1. Hamiltonian quantum simulation with bounded-strength controls

    NASA Astrophysics Data System (ADS)

    Bookatz, Adam D.; Wocjan, Pawel; Viola, Lorenza

    2014-04-01

    We propose dynamical control schemes for Hamiltonian simulation in many-body quantum systems that avoid instantaneous control operations and rely solely on realistic bounded-strength control Hamiltonians. Each simulation protocol consists of periodic repetitions of a basic control block, constructed as a modification of an Eulerian decoupling cycle, that would otherwise implement a trivial (zero) target Hamiltonian. For an open quantum system coupled to an uncontrollable environment, our approach may be employed to engineer an effective evolution that simulates a target Hamiltonian on the system while suppressing unwanted decoherence to the leading order, thereby allowing for dynamically corrected simulation. We present illustrative applications to both closed- and open-system simulation settings, with emphasis on simulation of non-local (two-body) Hamiltonians using only local (one-body) controls. In particular, we provide simulation schemes applicable to Heisenberg-coupled spin chains exposed to general linear decoherence, and show how to simulate Kitaev's honeycomb lattice Hamiltonian starting from Ising-coupled qubits, as potentially relevant to the dynamical generation of a topologically protected quantum memory. Additional implications for quantum information processing are discussed.

  2. Noncommutative quantum mechanics

    NASA Astrophysics Data System (ADS)

    Gamboa, J.; Loewe, M.; Rojas, J. C.

    2001-09-01

    A general noncommutative quantum mechanical system in a central potential V=V(r) in two dimensions is considered. The spectrum is bounded from below and, for large values of the anticommutative parameter ?, we find an explicit expression for the eigenvalues. In fact, any quantum mechanical system with these characteristics is equivalent to a commutative one in such a way that the interaction V(r) is replaced by V=V(HHO,Lz), where HHO is the Hamiltonian of the two-dimensional harmonic oscillator and Lz is the z component of the angular momentum. For other finite values of ? the model can be solved by using perturbation theory.

  3. Hamiltonian cosmology.

    NASA Technical Reports Server (NTRS)

    Ryan, M.

    1972-01-01

    The study of cosmological models by means of equations of motion in Hamiltonian form is considered. Hamiltonian methods applied to gravity seem to go back to Rosenfeld (1930), who constructed a quantum-mechanical Hamiltonian for linearized general relativity theory. The first to notice that cosmologies provided a simple model in which to demonstrate features of Hamiltonian formulation was DeWitt (1967). Applications of the ADM formalism to homogeneous cosmologies are discussed together with applications of the Hamiltonian formulation, giving attention also to Bianchi-type universes. Problems involving the concept of superspace and techniques of quantization are investigated.

  4. Algebraic quantum Hamiltonians on the plane

    NASA Astrophysics Data System (ADS)

    Sokolov, V. V.

    2015-07-01

    We consider second-order differential operators P with polynomial coefficients that preserve the vector space V n of polynomials of degrees not greater than n. We assume that the metric associated with the symbol of P is flat and that P is a potential operator. In the case of two independent variables, we obtain some classification results and find polynomial forms for the elliptic A 2 and G 2 Calogero-Moser Hamiltonians and for the elliptic Inozemtsev model.

  5. PT quantum mechanics - Recent results

    SciTech Connect

    Bender, Carl M.

    2012-09-26

    Most quantum physicists believe that a quantum-mechanical Hamiltonian must be Dirac Hermitian (invariant under matrix transposition and complex conjugation) to be sure that the energy eigenvalues are real and that time evolution is unitary. However, the non-Dirac-hermitian Hamiltonian H p{sup 2}+ix{sup 3} has a real positive discrete spectrum and generates unitary time evolution and defines a fully consistent and physical quantum theory. Evidently, Dirac Hermiticity is too restrictive. While H = p{sup 2}+ix{sup 3} is not Dirac Hermitian, it is PT symmetric (invariant under combined space reflection P and time reversal T). Another PT-symmetric Hamiltonian whose energy levels are real, positive and discrete is H = p{sup 2}-x{sup 4}, which contains an upside-down potential. The quantum mechanics defined by a PT-symmetric Hamiltonian is a complex generalization of ordinary quantum mechanics. When quantum mechanics and quantum field theory are extended into the complex domain, new kinds of theories having strange and remarkable properties emerge. In the past two years some of these properties have been verified in laboratory experiments. Here, we first discuss PT-symmetric Hamiltonians at a simple intuitive level and explain why the energy levels of such Hamiltonians may be real, positive, and discrete. Second, we describe a recent experiment in which the PT phase transition was observed. Third, we briefly mention that PT-symmetric theories can be useful at a fundamental level. While the double-scaling limit of an O(N)-symmetric g{phi}{sup 4} quantum field theory appears to be inconsistent because the critical value of g is negative, this limit is in fact not inconsistent because the critical theory is PT symmetric.

  6. The detectability lemma and its applications to quantum Hamiltonian complexity

    NASA Astrophysics Data System (ADS)

    Aharonov, Dorit; Arad, Itai; Vazirani, Umesh; Landau, Zeph

    2011-11-01

    Quantum Hamiltonian complexity, an emerging area at the intersection of condensed matter physics and quantum complexity theory, studies the properties of local Hamiltonians and their ground states. In this paper we focus on a seemingly specialized technical tool, the detectability lemma (DL), introduced in the context of the quantum PCP challenge (Aharonov et al 2009 arXiv:0811.3412), which is a major open question in quantum Hamiltonian complexity. We show that a reformulated version of the lemma is a versatile tool that can be used in place of the celebrated Lieb-Robinson (LR) bound to prove several important results in quantum Hamiltonian complexity. The resulting proofs are much simpler, more combinatorial and provide a plausible path toward tackling some fundamental open questions in Hamiltonian complexity. We provide an alternative simpler proof of the DL that removes a key restriction in the original statement (Aharonov et al 2009 arXiv:0811.3412), making it more suitable for the broader context of quantum Hamiltonian complexity. Specifically, we first use the DL to provide a one-page proof of Hastings' result that the correlations in the ground states of gapped Hamiltonians decay exponentially with distance (Hastings 2004 Phys. Rev. B 69 104431). We then apply the DL to derive a simpler and more intuitive proof of Hastings' seminal one-dimensional (1D) area law (Hastings 2007 J. Stat. Mech. (2007) P8024) (both these proofs are restricted to frustration-free systems). Proving the area law for two and higher dimensions is one of the most important open questions in the field of Hamiltonian complexity, and the combinatorial nature of the DL-based proof holds out hope for a possible generalization. Indeed, soon after the first publication of the methods presented here, they were applied to derive exponential improvements to Hastings' result (Arad et al 2011, Aharonov et al 2011) in the case of frustration-free 1D systems. Finally, we also provide a more general explanation of how the DL can be used to replace the LR bound.

  7. Quantum dynamics generated by the two-axis countertwisting Hamiltonian

    NASA Astrophysics Data System (ADS)

    Kajtoch, Dariusz; Witkowska, Emilia

    2015-07-01

    We study the quantum dynamics generated by the two-axis countertwisting Hamiltonian from an initial spin coherent state in a spin-1 /2 ensemble. A characteristic feature of the two-axis countertwisting Hamiltonian is the existence of four neutrally stable and two saddle unstable fixed points. The presence of the latter is responsible for a high level of squeezing. The squeezing is accompanied by the appearance of several quantum states of interest in quantum metrology with Heisenberg-limited sensitivity, and we show fidelity functions for some of them. We present exact results for the quantum Fisher information and the squeezing parameter. Although the overall time evolution of both changes strongly with the number of particles, we find that they have regular dynamics for short times. We explain scaling with the system size by using a Gaussian approach.

  8. Investigation of Commuting Hamiltonian in Quantum Markov Network

    NASA Astrophysics Data System (ADS)

    Jouneghani, Farzad Ghafari; Babazadeh, Mohammad; Bayramzadeh, Rogayeh; Movla, Hossein

    2014-08-01

    Graphical Models have various applications in science and engineering which include physics, bioinformatics, telecommunication and etc. Usage of graphical models needs complex computations in order to evaluation of marginal functions, so there are some powerful methods including mean field approximation, belief propagation algorithm and etc. Quantum graphical models have been recently developed in context of quantum information and computation, and quantum statistical physics, which is possible by generalization of classical probability theory to quantum theory. The main goal of this paper is preparing a primary generalization of Markov network, as a type of graphical models, to quantum case and applying in quantum statistical physics. We have investigated the Markov network and the role of commuting Hamiltonian terms in conditional independence with simple examples of quantum statistical physics.

  9. Path integral and effective Hamiltonian in loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Qin, Li; Huang, Haiyun; Ma, Yongge

    2013-06-01

    We study the path integral formulation of Friedmann universe filled with a massless scalar field in loop quantum cosmology. All the isotropic models of k=0,+1,-1 are considered. To construct the path integrals in the timeless framework, a multiple group-averaging approach is proposed. Meanwhile, since the transition amplitude in the deparameterized framework can be expressed in terms of group-averaging, the path integrals can be formulated for both deparameterized and timeless frameworks. Their relation is clarified. It turns out that the effective Hamiltonian derived from the path integral in deparameterized framework is equivalent to the effective Hamiltonian constraint derived from the path integral in timeless framework, since they lead to same equations of motion. Moreover, the effective Hamiltonian constraints of above models derived in canonical theory are confirmed by the path integral formulation.

  10. Quantum Monte Carlo Calculations in Solids with Downfolded Hamiltonians.

    PubMed

    Ma, Fengjie; Purwanto, Wirawan; Zhang, Shiwei; Krakauer, Henry

    2015-06-01

    We present a combination of a downfolding many-body approach with auxiliary-field quantum Monte Carlo (AFQMC) calculations for extended systems. Many-body calculations operate on a simpler Hamiltonian which retains material-specific properties. The Hamiltonian is systematically improvable and allows one to dial, in principle, between the simplest model and the original Hamiltonian. As a by-product, pseudopotential errors are essentially eliminated using frozen orbitals constructed adaptively from the solid environment. The computational cost of the many-body calculation is dramatically reduced without sacrificing accuracy. Excellent accuracy is achieved for a range of solids, including semiconductors, ionic insulators, and metals. We apply the method to calculate the equation of state of cubic BN under ultrahigh pressure, and determine the spin gap in NiO, a challenging prototypical material with strong electron correlation effects. PMID:26196632

  11. Phase Transitions in Disordered Quantum Hamiltonians

    NASA Astrophysics Data System (ADS)

    Scalettar, Richard T.

    1998-03-01

    The problem of the interplay between disorder and interactions in quantum systems is challenging and has a long history. Disorder can, by itself, cause localization and the vanishing of the conductivity, the Anderson transition. At appropriate densities, interactions can drive insulating states, the Mott transition, as well as ordered magnetic phases. In this talk I will describe the application of Quantum Monte Carlo techniques to the fermion Hubbard model, including calculations of the conductivity and density of states at the superconductor--insulator phase transition in the attractive model, and the effect of randomness on the Mott and magnetic phase transitions in the repulsive model.(N. Trivedi, R.T. Scalettar, and M. Randeria, Phys. Rev. B54), 3756 (1996); C. Huscroft and R.T. Scalettar, Phys. Rev. B55, 1185 (1997); M. Ulmke and R.T. Scalettar, Phys. Rev. B55, 4149 (1997); M. Ulmke, P. J. H. Denteneer, R. T. Scalettar, and G. T. Zimanyi, preprint.

  12. Supersymmetric q-deformed quantum mechanics

    SciTech Connect

    Traikia, M. H.; Mebarki, N.

    2012-06-27

    A supersymmetric q-deformed quantum mechanics is studied in the weak deformation approximation of the Weyl-Heisenberg algebra. The corresponding supersymmetric q-deformed hamiltonians and charges are constructed explicitly.

  13. Quantum metrology for the Ising Hamiltonian with transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Skotiniotis, Michael; Sekatski, Pavel; Dr, Wolfgang

    2015-07-01

    We consider quantum metrology for unitary evolutions generated by parameter-dependent Hamiltonians. We focus on the unitary evolutions generated by the Ising Hamiltonian that describes the dynamics of a one-dimensional chain of spins with nearest-neighbour interactions and in the presence of a global, transverse, magnetic field. We analytically solve the problem and show that the precision with which one can estimate the magnetic field (interaction strength) given one knows the interaction strength (magnetic field) scales at the Heisenberg limit, and can be achieved by a linear superposition of the vacuum and N free fermion states. In addition, we show that Greenberger-Horne-Zeilinger-type states exhibit Heisenberg scaling in precision throughout the entire regime of parameters. Moreover, we numerically observe that the optimal precision using a product input state scales at the standard quantum limit.

  14. Supersymmetry in quantum mechanics

    SciTech Connect

    Haymaker, R.W.; Rau, A.R.P.

    1986-10-01

    We give some illustrations and interpretations of supersymmetry in quantum mechanics in simple models. We show that the value of 2 for the g factor of the electron expresses the presence of supersymmetry in the Hamiltonian for an electron in a uniform magnetic field. The problem is considered both in the Schroedinger and Dirac formulations. We also show that the radial Coulomb problem with orbital angular momentum l, nuclear charge Z, and principal quantum number n, is supersymmetrically linked to the similar problem with charge Z(1-1/n) and quantum number n-1. Thereby the dependence of Coulomb energies only on the combination Z/n is seen as a manifestation of the supersymmetry in the radial Coulomb problem. Other examples of supersymmetry we consider are the Morse potential, the three-dimensional isotropic oscillator, the states of the helium atom and those of the hydrogen atom in an extremely strong magnetic field.

  15. Renormalization group in quantum mechanics

    SciTech Connect

    Polony, J.

    1996-12-01

    The running coupling constants are introduced in quantum mechanics and their evolution is described with the help of the renormalization group equation. The harmonic oscillator and the propagation on curved spaces are presented as examples. The Hamiltonian and the Lagrangian scaling relations are obtained. These evolution equations are used to construct low energy effective models. Copyright {copyright} 1996 Academic Press, Inc.

  16. Quantum integrals of motion for variable quadratic Hamiltonians

    SciTech Connect

    Cordero-Soto, Ricardo; Suazo, Erwin; Suslov, Sergei K.

    2010-09-15

    We construct integrals of motion for several models of the quantum damped oscillators in a framework of a general approach to the time-dependent Schroedinger equation with variable quadratic Hamiltonians. An extension of the Lewis-Riesenfeld dynamical invariant is given. The time-evolution of the expectation values of the energy-related positive operators is determined for the oscillators under consideration. A proof of uniqueness of the corresponding Cauchy initial value problem is discussed as an application.

  17. Supersymmetric Quantum Mechanics

    SciTech Connect

    David, J.; Fernandez, C.

    2010-10-11

    Supersymmetric quantum mechanics (SUSY QM) is a powerful tool for generating new potentials with known spectra departing from an initial solvable one. In these lecture notes we will present some general formulae concerning SUSY QM of first second order for one-dimensional arbitrary systems, we will illustrate the method through the trigonometric Poeschl-Teller potentials. Some intrinsically related subjects, as the algebraic structure inherited by the new Hamiltonians and the corresponding coherent states will be analyzed. The technique will be as well implemented for periodic potentials, for which the corresponding spectrum is composed of allowed bands separated by energy gaps.

  18. Interest rates in quantum finance: The Wilson expansion and Hamiltonian

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.

    2009-10-01

    Interest rate instruments form a major component of the capital markets. The Libor market model (LMM) is the finance industry standard interest rate model for both Libor and Euribor, which are the most important interest rates. The quantum finance formulation of the Libor market model is given in this paper and leads to a key generalization: all the Libors, for different future times, are imperfectly correlated. A key difference between a forward interest rate model and the LMM lies in the fact that the LMM is calibrated directly from the observed market interest rates. The short distance Wilson expansion [Phys. Rev. 179, 1499 (1969)] of a Gaussian quantum field is shown to provide the generalization of Ito calculus; in particular, the Wilson expansion of the Gaussian quantum field A(t,x) driving the Libors yields a derivation of the Libor drift term that incorporates imperfect correlations of the different Libors. The logarithm of Libor ?(t,x) is defined and provides an efficient and compact representation of the quantum field theory of the Libor market model. The Lagrangian and Feynman path integrals of the Libor market model of interest rates are obtained, as well as a derivation given by its Hamiltonian. The Hamiltonian formulation of the martingale condition provides an exact solution for the nonlinear drift of the Libor market model. The quantum finance formulation of the LMM is shown to reduce to the industry standard Bruce-Gatarek-Musiela-Jamshidian model when the forward interest rates are taken to be exactly correlated.

  19. Topological color codes and two-body quantum lattice Hamiltonians

    NASA Astrophysics Data System (ADS)

    Kargarian, M.; Bombin, H.; Martin-Delgado, M. A.

    2010-02-01

    Topological color codes are among the stabilizer codes with remarkable properties from the quantum information perspective. In this paper, we construct a lattice, the so-called ruby lattice, with coordination number 4 governed by a two-body Hamiltonian. In a particular regime of coupling constants, in a strong coupling limit, degenerate perturbation theory implies that the low-energy spectrum of the model can be described by a many-body effective Hamiltonian, which encodes the color code as its ground state subspace. Ground state subspace corresponds to a vortex-free sector. The gauge symmetry Z2Z2 of the color code could already be realized by identifying three distinct plaquette operators on the ruby lattice. All plaquette operators commute with each other and with the Hamiltonian being integrals of motion. Plaquettes are extended to closed strings or string-net structures. Non-contractible closed strings winding the space commute with Hamiltonian but not always with each other. This gives rise to exact topological degeneracy of the model. A connection to 2-colexes can be established via the coloring of the strings. We discuss it at the non-perturbative level. The particular structure of the two-body Hamiltonian provides a fruitful interpretation in terms of mapping onto bosons coupled to effective spins. We show that high-energy excitations of the model have fermionic statistics. They form three families of high-energy excitations each of one color. Furthermore, we show that they belong to a particular family of topological charges. The emergence of invisible charges is related to the string-net structure of the model. The emerging fermions are coupled to nontrivial gauge fields. We show that for particular 2-colexes, the fermions can see the background fluxes in the ground state. Also, we use the Jordan-Wigner transformation in order to test the integrability of the model via introducing Majorana fermions. The four-valent structure of the lattice prevents the fermionized Hamiltonian from being reduced to a quadratic form owing to interacting gauge fields. We also propose another construction for the two-body Hamiltonian based on the connection between color codes and cluster states. The corresponding two-body Hamiltonian encodes a cluster state defined on a bipartite lattice as its low-energy spectrum, and subsequent selective measurements give rise to the color code model. We discuss this latter approach along with the construction based on the ruby lattice.

  20. The Hamiltonian Mechanics of Stochastic Acceleration

    SciTech Connect

    Burby, J. W.

    2013-07-17

    We show how to nd the physical Langevin equation describing the trajectories of particles un- dergoing collisionless stochastic acceleration. These stochastic di erential equations retain not only one-, but two-particle statistics, and inherit the Hamiltonian nature of the underlying microscopic equations. This opens the door to using stochastic variational integrators to perform simulations of stochastic interactions such as Fermi acceleration. We illustrate the theory by applying it to two example problems.

  1. Dyson-Schwinger approach to Hamiltonian quantum chromodynamics

    NASA Astrophysics Data System (ADS)

    Campagnari, Davide R.; Reinhardt, Hugo

    2015-09-01

    The general method for treating non-Gaussian wave functionals in the Hamiltonian formulation of a quantum field theory, which was previously proposed and developed for Yang-Mills theory in Coulomb gauge, is generalized to full QCD. For this purpose the quark part of the QCD vacuum wave functional is expressed in the basis of coherent fermion states, which are defined in terms of Grassmann variables. Our variational Ansatz for the QCD vacuum wave functional is assumed to be given by exponentials of polynomials in the occurring fields and, furthermore, contains an explicit coupling of the quarks to the gluons. Exploiting Dyson-Schwinger equation techniques, we express the various n -point functions, which are required for the expectation values of observables like the Hamiltonian, in terms of the variational kernels of our trial Ansatz. Finally, the equations of motion for these variational kernels are derived by minimizing the energy density.

  2. Faster than Hermitian Quantum Mechanics

    SciTech Connect

    Bender, Carl M.; Brody, Dorje C.; Jones, Hugh F.; Meister, Bernhard K.

    2007-01-26

    Given an initial quantum state vertical bar {psi}{sub I}> and a final quantum state vertical bar {psi}{sub F}>, there exist Hamiltonians H under which vertical bar {psi}{sub I}> evolves into vertical bar {psi}{sub F}>. Consider the following quantum brachistochrone problem: subject to the constraint that the difference between the largest and smallest eigenvalues of H is held fixed, which H achieves this transformation in the least time {tau}? For Hermitian Hamiltonians {tau} has a nonzero lower bound. However, among non-Hermitian PT-symmetric Hamiltonians satisfying the same energy constraint, {tau} can be made arbitrarily small without violating the time-energy uncertainty principle. This is because for such Hamiltonians the path from vertical bar {psi}{sub I}> to vertical bar {psi}{sub F}> can be made short. The mechanism described here is similar to that in general relativity in which the distance between two space-time points can be made small if they are connected by a wormhole. This result may have applications in quantum computing.

  3. Quantum entropy of systems described by non-Hermitian Hamiltonians

    NASA Astrophysics Data System (ADS)

    Sergi, Alessandro; Zloshchastiev, Konstantin G.

    2016-03-01

    We study the quantum entropy of systems that are described by general non-Hermitian Hamiltonians, including those which can model the effects of sinks or sources. We generalize the von Neumann entropy to the non- Hermitian case and find that one needs both the normalized and non-normalized density operators in order to properly describe irreversible processes. It turns out that such a generalization monitors the onset of disorder in quantum dissipative systems. We give arguments for why one can consider the generalized entropy as the informational entropy describing the flow of information between the system and the bath. We illustrate the theory by explicitly studying few simple models, including tunneling systems with two energy levels and non-Hermitian detuning.

  4. quantum mechanics

    PubMed Central

    Bender, Carl M; DeKieviet, Maarten; Klevansky, S. P.

    2013-01-01

    -symmetric quantum mechanics (PTQM) has become a hot area of research and investigation. Since its beginnings in 1998, there have been over 1000 published papers and more than 15 international conferences entirely devoted to this research topic. Originally, PTQM was studied at a highly mathematical level and the techniques of complex variables, asymptotics, differential equations and perturbation theory were used to understand the subtleties associated with the analytic continuation of eigenvalue problems. However, as experiments on -symmetric physical systems have been performed, a simple and beautiful physical picture has emerged, and a -symmetric system can be understood as one that has a balanced loss and gain. Furthermore, the phase transition can now be understood intuitively without resorting to sophisticated mathe- matics. Research on PTQM is following two different paths: at a fundamental level, physicists are attempting to understand the underlying mathematical structure of these theories with the long-range objective of applying the techniques of PTQM to understanding some of the outstanding problems in physics today, such as the nature of the Higgs particle, the properties of dark matter, the matterantimatter asymmetry in the universe, neutrino oscillations and the cosmological constant; at an applied level, new kinds of -synthetic materials are being developed, and the phase transition is being observed in many physical contexts, such as lasers, optical wave guides, microwave cavities, superconducting wires and electronic circuits. The purpose of this Theme Issue is to acquaint the reader with the latest developments in PTQM. The articles in this volume are written in the style of mini-reviews and address diverse areas of the emerging and exciting new area of -symmetric quantum mechanics. PMID:23509390

  5. Quantum ballistic evolution in quantum mechanics: Application to quantum computers

    NASA Astrophysics Data System (ADS)

    Benioff, Paul

    1996-08-01

    Quantum computers are important examples of processes whose evolution can be described in terms of iterations of single-step operators or their adjoints. Based on this, Hamiltonian evolution of processes with associated step operators T is investigated here. The main limitation of this paper is to processes which evolve quantum ballistically, i.e., motion restricted to a collection of nonintersecting or distinct paths on an arbitrary basis. The main goal of this paper is proof of a theorem which gives necessary and sufficient conditions that T must satisfy so that there exists a Hamiltonian description of quantum ballistic evolution for the process, namely, that T is a partial isometry and is orthogonality preserving and stable on some basis. Simple examples of quantum ballistic evolution for quantum Turing machines with one and with more than one type of elementary step are discussed. It is seen that for nondeterministic machines the basis set can be quite complex with much entanglement present. It is also proven that, given a step operator T for an arbitrary deterministic quantum Turing machine, it is decidable if T is stable and orthogonality preserving, and if quantum ballistic evolution is possible. The proof fails if T is a step operator for a nondeterministic machine. It is an open question if such a decision procedure exists for nondeterministic machines. This problem does not occur in classical mechanics. Also the definition of quantum Turing machines used here is compared with that used by other authors.

  6. Hamiltonian theories of the fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Murthy, Ganpathy; Shankar, R.

    2003-10-01

    This paper reviews progress on the fractional quantum Hall effect (FQHE) based on what we term Hamiltonian theories, i.e., theories that proceed from the microscopic electronic Hamiltonian to the final solution via a sequence of transformations and approximations, in either the Hamiltonian or path-integral approach, as compared with theories based on exact diagonalization or trial wave functions. The authors focus on the Chern-Simons approach, in which electrons are converted to Chern-Simons fermions or bosons that carry along flux tubes, and on their own extended Hamiltonian theory, in which electrons are paired with pseudovortices to form composite fermions whose properties are a lot closer to the ultimate low-energy quasiparticles. The article addresses a variety of qualitative and quantitative questions: In what sense do electrons really bind to vortices? What is the internal structure of the composite fermion and what does it mean? What exactly is the dipole picture? What degree of freedom carries the Hall current when the quasiparticles are localized or neutral or both? How exactly is the kinetic energy quenched in the lowest Landau level and resurrected by interactions? How well does the composite-fermion picture work at and near ?=1/2? Is the system compressible at ?=1/2? If so, how can composite fermions be dipolar at ?=1/2 and still be compressible? How is compressibility demonstrated experimentally? How does the charge of the excitation get renormalized from that of the electron to that of the composite fermion in an operator treatment? Why do composite fermions sometimes appear to be free when they are not? How does one compute (approximate) transport gaps, zero-temperature magnetic transitions, the temperature-dependent polarizations of gapped and gapless states, the NMR relaxation rate 1/T1 in gapless states, and gaps in inhomogeneous states? It is seen that though the Chern-Simons and extended Hamiltonian approaches agree whenever a comparison is possible, results that are transparent in one approach are typically opaque in the other, making them truly complementary.

  7. PT-symmetric quantum mechanics

    SciTech Connect

    Bender, C.M.; Boettcher, S.; Meisinger, P.N.

    1999-05-01

    This paper proposes to broaden the canonical formulation of quantum mechanics. Ordinarily, one imposes the condition H{sup {dagger}}=H on the Hamiltonian, where {dagger} represents the mathematical operation of complex conjugation and matrix transposition. This conventional Hermiticity condition is sufficient to ensure that the Hamiltonian {ital H} has a real spectrum. However, replacing this mathematical condition by the weaker and more physical requirement H{sup {double_dagger}}=H, where {double_dagger} represents combined parity reflection and time reversal PT, one obtains new classes of complex Hamiltonians whose spectra are still real and positive. This generalization of Hermiticity is investigated using a complex deformation H=p{sup 2}+x{sup 2}(ix){sup {epsilon}} of the harmonic oscillator Hamiltonian, where {epsilon} is a real parameter. The system exhibits two phases: When {epsilon}{ge}0, the energy spectrum of {ital H} is real and positive as a consequence of PT symmetry. However, when {minus}1{lt}{epsilon}{lt}0, the spectrum contains an infinite number of complex eigenvalues and a finite number of real, positive eigenvalues because PT symmetry is spontaneously broken. The phase transition that occurs at {epsilon}=0 manifests itself in both the quantum-mechanical system and the underlying classical system. Similar qualitative features are exhibited by complex deformations of other standard real Hamiltonians H=p{sup 2}+x{sup 2N}(ix){sup {epsilon}} with {ital N} integer and {epsilon}{gt}{minus}N; each of these complex Hamiltonians exhibits a phase transition at {epsilon}=0. These PT-symmetric theories may be viewed as analytic continuations of conventional theories from real to complex phase space. {copyright} {ital 1999 American Institute of Physics.}

  8. Branched Hamiltonians and supersymmetry

    NASA Astrophysics Data System (ADS)

    Curtright, T. L.; Zachos, C. K.

    2014-04-01

    Some examples of branched Hamiltonians are explored both classically and in the context of quantum mechanics, as recently advocated by Shapere and Wilczek. These are in fact cases of switchback potentials, albeit in momentum space, as previously analyzed for quasi-Hamiltonian chaotic dynamical systems in a classical setting, and as encountered in analogous renormalization group flows for quantum theories which exhibit RG cycles. A basic two-worlds model, with a pair of Hamiltonian branches related by supersymmetry, is considered in detail.

  9. Quantum recurrence and fractional dynamic localization in ac-driven perfect state transfer Hamiltonians

    NASA Astrophysics Data System (ADS)

    Longhi, Stefano

    2014-06-01

    Quantum recurrence and dynamic localization are investigated in a class of ac-driven tight-binding Hamiltonians, the Krawtchouk quantum chain, which in the undriven case provides a paradigmatic Hamiltonian model that realizes perfect quantum state transfer and mirror inversion. The equivalence between the ac-driven single-particle Krawtchouk Hamiltonian H(t) and the non-interacting ac-driven bosonic junction Hamiltonian enables to determine in a closed form the quasi energy spectrum of H(t) and the conditions for exact wave packet reconstruction (dynamic localization). In particular, we show that quantum recurrence, which is predicted by the general quantum recurrence theorem, is exact for the Krawtchouk quantum chain in a dense range of the driving amplitude. Exact quantum recurrence provides perfect wave packet reconstruction at a frequency which is fractional than the driving frequency, a phenomenon that can be referred to as fractional dynamic localization.

  10. Quantum recurrence and fractional dynamic localization in ac-driven perfect state transfer Hamiltonians

    SciTech Connect

    Longhi, Stefano

    2014-06-15

    Quantum recurrence and dynamic localization are investigated in a class of ac-driven tight-binding Hamiltonians, the Krawtchouk quantum chain, which in the undriven case provides a paradigmatic Hamiltonian model that realizes perfect quantum state transfer and mirror inversion. The equivalence between the ac-driven single-particle Krawtchouk Hamiltonian H{sup -hat} (t) and the non-interacting ac-driven bosonic junction Hamiltonian enables to determine in a closed form the quasi energy spectrum of H{sup -hat} (t) and the conditions for exact wave packet reconstruction (dynamic localization). In particular, we show that quantum recurrence, which is predicted by the general quantum recurrence theorem, is exact for the Krawtchouk quantum chain in a dense range of the driving amplitude. Exact quantum recurrence provides perfect wave packet reconstruction at a frequency which is fractional than the driving frequency, a phenomenon that can be referred to as fractional dynamic localization.

  11. PREFACE: 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics

    NASA Astrophysics Data System (ADS)

    Fring, Andreas; Jones, Hugh; Znojil, Miloslav

    2008-06-01

    Attempts to understand the quantum mechanics of non-Hermitian Hamiltonian systems can be traced back to the early days, one example being Heisenberg's endeavour to formulate a consistent model involving an indefinite metric. Over the years non-Hermitian Hamiltonians whose spectra were believed to be real have appeared from time to time in the literature, for instance in the study of strong interactions at high energies via Regge models, in condensed matter physics in the context of the XXZ-spin chain, in interacting boson models in nuclear physics, in integrable quantum field theories as Toda field theories with complex coupling constants, and also very recently in a field theoretical scenario in the quantization procedure of strings on an AdS5 x S5 background. Concrete experimental realizations of these types of systems in the form of optical lattices have been proposed in 2007. In the area of mathematical physics similar non-systematic results appeared sporadically over the years. However, intensive and more systematic investigation of these types of non- Hermitian Hamiltonians with real eigenvalue spectra only began about ten years ago, when the surprising discovery was made that a large class of one-particle systems perturbed by a simple non-Hermitian potential term possesses a real energy spectrum. Since then regular international workshops devoted to this theme have taken place. This special issue is centred around the 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics held in July 2007 at City University London. All the contributions contain significant new results or alternatively provide a survey of the state of the art of the subject or a critical assessment of the present understanding of the topic and a discussion of open problems. Original contributions from non-participants were also invited. Meanwhile many interesting results have been obtained and consensus has been reached on various central conceptual issues in the growing community of this subject. It is, for instance, well understood that the reality of the spectrum can be attributed either to the unbroken PT-symmetry of the entire system, that is, invariance of the Hamiltonian and the corresponding wavefunctions under a simultaneous parity transformation and time reversal, or more generally to its pseudo-Hermiticity . When the spectrum is real and discrete the Hamiltonian is actually quasi-Hermitian, with a positive-definite metric operator, and can in principle be related by a similarity transformation to an isospectral Hermitian counterpart. For all approaches well-defined procedures have been developed, which allow one to construct metric operators and therefore a consistent description of the underlying quantum mechanical observables. Even though the general principles have been laid out, it remains a challenge in most concrete cases to implement the entire procedure. Solvable models in this sense, some of which may be found in this issue, remain a rare exception. Nonetheless, despite this progress some important questions are still unanswered. For instance, according to the current understanding the non-Hermitian Hamiltonian does not uniquely define the physics of the system since a meaningful metric can no longer be associated with the system in a non-trivial and unambiguous manner. A fully consistent scattering theory has also not yet been formulated. Other issues remain controversial, such as the quantum brachistochrone problem, the problem of forming a mixture between a Hermitian and non-Hermitian system, the new phenomenological possibilities of forming a kind of worm-hole effect, etc. We would like to acknowledge the financial support of the London Mathematical Society, the Institute of Physics, the Doppler Institute in Prague and the School of Engineering and Mathematical Science of City University London. We hope this special issue will be useful to the newcomer as well as to the expert in the subject. Workshop photograph Participants of the 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics.

  12. The mathematics of a quantum Hamiltonian computing half adder Boolean logic gate

    NASA Astrophysics Data System (ADS)

    Dridi, G.; Julien, R.; Hliwa, M.; Joachim, C.

    2015-08-01

    The mathematics behind the quantum Hamiltonian computing (QHC) approach of designing Boolean logic gates with a quantum system are given. Using the quantum eigenvalue repulsion effect, the QHC AND, NAND, OR, NOR, XOR, and NXOR Hamiltonian Boolean matrices are constructed. This is applied to the construction of a QHC half adder Hamiltonian matrix requiring only six quantum states to fullfil a half Boolean logical truth table. The QHC design rules open a nano-architectronic way of constructing Boolean logic gates inside a single molecule or atom by atom at the surface of a passivated semi-conductor.

  13. The mathematics of a quantum Hamiltonian computing half adder Boolean logic gate.

    PubMed

    Dridi, G; Julien, R; Hliwa, M; Joachim, C

    2015-08-28

    The mathematics behind the quantum Hamiltonian computing (QHC) approach of designing Boolean logic gates with a quantum system are given. Using the quantum eigenvalue repulsion effect, the QHC AND, NAND, OR, NOR, XOR, and NXOR Hamiltonian Boolean matrices are constructed. This is applied to the construction of a QHC half adder Hamiltonian matrix requiring only six quantum states to fullfil a half Boolean logical truth table. The QHC design rules open a nano-architectronic way of constructing Boolean logic gates inside a single molecule or atom by atom at the surface of a passivated semi-conductor. PMID:26234709

  14. Quantum-Merlin-Arthur-complete problems for stoquastic Hamiltonians and Markov matrices

    SciTech Connect

    Jordan, Stephen P.; Gosset, David; Love, Peter J.

    2010-03-15

    We show that finding the lowest eigenvalue of a 3-local symmetric stochastic matrix is Quantum-Merlin-Arthur-complete (QMA-complete). We also show that finding the highest energy of a stoquastic Hamiltonian is QMA-complete and that adiabatic quantum computation using certain excited states of a stoquastic Hamiltonian is universal. We also show that adiabatic evolution in the ground state of a stochastic frustration-free Hamiltonian is universal. Our results give a QMA-complete problem arising in the classical setting of Markov chains and adiabatically universal Hamiltonians that arise in many physical systems.

  15. Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    A development of quantum theory that was initiated in the 1920s by Werner Heisenberg (1901-76) and Erwin Schrödinger (1887-1961). The theory drew on a proposal made in 1925 Prince Louis de Broglie (1892-1987), that particles have wavelike properties (the wave-particle duality) and that an electron, for example, could in some respects be regarded as a wave with a wavelength that depended on its mo...

  16. The functional-analytic versus the functional-integral approach to quantum Hamiltonians: The one-dimensional hydrogen atoma)

    NASA Astrophysics Data System (ADS)

    Fischer, Werner; Leschke, Hajo; Mller, Peter

    1995-05-01

    The capabilities of the functional-analytic and of the functional-integral approach for the construction of the Hamiltonian as a self-adjoint operator on Hilbert space are compared in the context of non-relativistic quantum mechanics. Differences are worked out by taking the one-dimensional hydrogen atom as an example, that is, a point mass on the Euclidean line subjected to the inverse-distance potential. This particular choice is made with the intent to clarify a long-lasting discussion about its spectral properties. In fact, for the four-parameter family of possible Hamiltonians the corresponding energy-dependent Green functions are derived in closed form. The multiplicity of Hamiltonians should be kept in mind when modeling certain experimental situations as, for instance, in quantum wires.

  17. A Hamiltonian theory of adaptive resolution simulations of classical and quantum models of nuclei

    NASA Astrophysics Data System (ADS)

    Kreis, Karsten; Donadio, Davide; Kremer, Kurt; Potestio, Raffaello

    2015-03-01

    Quantum delocalization of atomic nuclei strongly affects the physical properties of low temperature systems, such as superfluid helium. However, also at room temperature nuclear quantum effects can play an important role for molecules composed by light atoms. An accurate modeling of these effects is possible making use of the Path Integral formulation of Quantum Mechanics. In simulations, this numerically expensive description can be restricted to a small region of space, while modeling the remaining atoms as classical particles. In this way the computational resources required can be significantly reduced. In the present talk we demonstrate the derivation of a Hamiltonian formulation for a bottom-up, theoretically solid coupling between a classical model and a Path Integral description of the same system. The coupling between the two models is established with the so-called Hamiltonian Adaptive Resolution Scheme, resulting in a fully adaptive setup in which molecules can freely diffuse across the classical and the Path Integral regions by smoothly switching their description on the fly. Finally, we show the validation of the approach by means of adaptive resolution simulations of low temperature parahydrogen. Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany.

  18. Kowalevski top in quantum mechanics

    SciTech Connect

    Matsuyama, A.

    2013-09-15

    The quantum mechanical Kowalevski top is studied by the direct diagonalization of the Hamiltonian. The spectra show different behaviors depending on the region divided by the bifurcation sets of the classical invariant tori. Some of these spectra are nearly degenerate due to the multiplicity of the invariant tori. The Kowalevski top has several symmetries and symmetry quantum numbers can be assigned to the eigenstates. We have also carried out the semiclassical quantization of the Kowalevski top by the EBK formulation. It is found that the semiclassical spectra are close to the exact values, thus the eigenstates can be also labeled by the integer quantum numbers. The symmetries of the system are shown to have close relations with the semiclassical quantum numbers and the near-degeneracy of the spectra. -- Highlights: Quantum spectra of the Kowalevski top are calculated. Semiclassical quantization is carried out by the EBK formulation. Quantum states are labeled by the semiclassical integer quantum numbers. Multiplicity of the classical torus makes the spectra nearly degenerate. Symmetries, quantum numbers and near-degenerate spectra are closely related.

  19. Optimal Identification of Hamiltonian Information by Closed-Loop Laser Control of Quantum Systems

    NASA Astrophysics Data System (ADS)

    Geremia, J. M.; Rabitz, Herschel

    2002-12-01

    A closed loop learning control concept is introduced for teaching lasers to manipulate quantum systems for the purpose of optimally identifying Hamiltonian information. The closed loop optimal identification algorithm operates by revealing the distribution of Hamiltonians consistent with the data. The control laser is guided to perform additional experiments, based on minimizing the dispersion of the distribution. Operation of such an apparatus is simulated for two model finite dimensional quantum systems.

  20. Optimal identification of Hamiltonian information by closed-loop laser control of quantum systems.

    PubMed

    Geremia, J M; Rabitz, Herschel

    2002-12-23

    A closed loop learning control concept is introduced for teaching lasers to manipulate quantum systems for the purpose of optimally identifying Hamiltonian information. The closed loop optimal identification algorithm operates by revealing the distribution of Hamiltonians consistent with the data. The control laser is guided to perform additional experiments, based on minimizing the dispersion of the distribution. Operation of such an apparatus is simulated for two model finite dimensional quantum systems. PMID:12484821

  1. Probabilistic Approach to Teaching the Principles of Quantum Mechanics

    ERIC Educational Resources Information Center

    Santos, Emilio

    1976-01-01

    Approaches the representation of quantum mechanics through Hilbert space postulates. Demonstrates that if the representation is to be accurate, an evolution operator of the form of a Hamiltonian must be used. (CP)

  2. Correct Quantum Chemistry in a Minimal Basis from Effective Hamiltonians.

    PubMed

    Watson, Thomas J; Chan, Garnet Kin-Lic

    2016-02-01

    We describe how to create ab initio effective Hamiltonians that qualitatively describe correct chemistry even when used with a minimal basis. The Hamiltonians are obtained by folding correlation down from a large parent basis into a small, or minimal, target basis, using the machinery of canonical transformations. We demonstrate the quality of these effective Hamiltonians to correctly capture a wide range of excited states in water, nitrogen, and ethylene and to describe ground and excited state bond breaking in nitrogen and the chromium dimer, all in small or minimal basis sets. PMID:26756223

  3. Testing Nonassociative Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Bojowald, Martin; Brahma, Suddhasattwa; Bykam, Umut

    2015-11-01

    The familiar concepts of state vectors and operators in quantum mechanics rely on associative products of observables. However, these notions do not apply to some exotic systems such as magnetic monopoles, which have long been known to lead to nonassociative algebras. Their quantum physics has remained obscure. This Letter presents the first derivation of potentially testable physical results in nonassociative quantum mechanics, based on effective potentials. They imply new effects which cannot be mimicked in usual quantum mechanics with standard magnetic fields.

  4. Superradiance, disorder, and the non-Hermitian Hamiltonian in open quantum systems

    SciTech Connect

    Celardo, G. L.; Biella, A.; Giusteri, G. G.; Mattiotti, F.; Zhang, Y.; Kaplan, L.

    2014-10-15

    We first briefly review the non-Hermitian effective Hamiltonian approach to open quantum systems and the associated phenomenon of superradiance. We next discuss the superradiance crossover in the presence of disorder and the relationship between superradiance and the localization transition. Finally, we investigate the regime of validity of the energy-independent effective Hamiltonian approximation and show that the results obtained by these methods are applicable to realistic physical systems.

  5. A generalized Hamiltonian constraint operator in loop quantum gravity and its simplest Euclidean matrix elements

    NASA Astrophysics Data System (ADS)

    Gaul, Marcus; Rovelli, Carlo

    2001-05-01

    We study a generalized version of the Hamiltonian constraint operator in non-perturbative loop quantum gravity. The generalization is based on admitting arbitrary irreducible SU(2) representations in the regularization of the operator, in contrast to the original definition where only the fundamental representation is taken. This leads to a quantization ambiguity and to a family of operators with the same classical limit. We calculate the action of the Euclidean part of the generalized Hamiltonian constraint on trivalent states, using the graphical notation of Temperley-Lieb recoupling theory. We discuss the relation between this generalization of the Hamiltonian constraint and crossing symmetry.

  6. Universal Adiabatic Quantum Computation via the Space-Time Circuit-to-Hamiltonian Construction

    NASA Astrophysics Data System (ADS)

    Gosset, David; Terhal, Barbara M.; Vershynina, Anna

    2015-04-01

    We show how to perform universal adiabatic quantum computation using a Hamiltonian which describes a set of particles with local interactions on a two-dimensional grid. A single parameter in the Hamiltonian is adiabatically changed as a function of time to simulate the quantum circuit. We bound the eigenvalue gap above the unique ground state by mapping our model onto the ferromagnetic X X Z chain with kink boundary conditions; the gap of this spin chain was computed exactly by Koma and Nachtergaele using its q -deformed version of SU(2) symmetry. We also discuss a related time-independent Hamiltonian which was shown by Janzing to be capable of universal computation. We observe that in the limit of large system size, the time evolution is equivalent to the exactly solvable quantum walk on Young's lattice.

  7. Consistency of PT-symmetric quantum mechanics

    NASA Astrophysics Data System (ADS)

    Brody, Dorje C.

    2016-03-01

    In recent reports, suggestions have been put forward to the effect that parity and time-reversal (PT) symmetry in quantum mechanics is incompatible with causality. It is shown here, in contrast, that PT-symmetric quantum mechanics is fully consistent with standard quantum mechanics. This follows from the surprising fact that the much-discussed metric operator on Hilbert space is not physically observable. In particular, for closed quantum systems in finite dimensions there is no statistical test that one can perform on the outcomes of measurements to determine whether the Hamiltonian is Hermitian in the conventional sense, or PT-symmetric—the two theories are indistinguishable. Nontrivial physical effects arising as a consequence of PT symmetry are expected to be observed, nevertheless, for open quantum systems with balanced gain and loss.

  8. Decomposition of unitary matrices for finding quantum circuits: application to molecular Hamiltonians.

    PubMed

    Daskin, Anmer; Kais, Sabre

    2011-04-14

    Constructing appropriate unitary matrix operators for new quantum algorithms and finding the minimum cost gate sequences for the implementation of these unitary operators is of fundamental importance in the field of quantum information and quantum computation. Evolution of quantum circuits faces two major challenges: complex and huge search space and the high costs of simulating quantum circuits on classical computers. Here, we use the group leaders optimization algorithm to decompose a given unitary matrix into a proper-minimum cost quantum gate sequence. We test the method on the known decompositions of Toffoli gate, the amplification step of the Grover search algorithm, the quantum Fourier transform, and the sender part of the quantum teleportation. Using this procedure, we present the circuit designs for the simulation of the unitary propagators of the Hamiltonians for the hydrogen and the water molecules. The approach is general and can be applied to generate the sequence of quantum gates for larger molecular systems. PMID:21495747

  9. Statistical mechanics based on fractional classical and quantum mechanics

    SciTech Connect

    Korichi, Z.; Meftah, M. T.

    2014-03-15

    The purpose of this work is to study some problems in statistical mechanics based on the fractional classical and quantum mechanics. At first stage we have presented the thermodynamical properties of the classical ideal gas and the system of N classical oscillators. In both cases, the Hamiltonian contains fractional exponents of the phase space (position and momentum). At the second stage, in the context of the fractional quantum mechanics, we have calculated the thermodynamical properties for the black body radiation, studied the Bose-Einstein statistics with the related problem of the condensation and the Fermi-Dirac statistics.

  10. Membrane quantum mechanics

    NASA Astrophysics Data System (ADS)

    Okazaki, Tadashi

    2015-01-01

    We consider the multiple M2-branes wrapped on a compact Riemann surface and study the arising quantum mechanics by taking the limit where the size of the Riemann surface goes to zero. The IR quantum mechanical models resulting from the BLG-model and the ABJM-model compactified on a torus are N = 16 and N = 12 superconformal gauged quantum mechanics. After integrating out the auxiliary gauge fields we find OSp (16 | 2) and SU (1, 1 | 6) quantum mechanics from the reduced systems. The curved Riemann surface is taken as a holomorphic curve in a Calabi-Yau space to preserve supersymmetry and we present a prescription of the topological twisting. We find the N = 8 superconformal gauged quantum mechanics that may describe the motion of two wrapped M2-branes in a K3 surface.

  11. Simulating continuous-time Hamiltonian dynamics by way of a discrete-time quantum walk

    NASA Astrophysics Data System (ADS)

    Schmitz, A. T.; Schwalm, W. A.

    2016-03-01

    Much effort has been made to connect the continuous-time and discrete-time quantum walks. We present a method for making that connection for a general graph Hamiltonian on a bigraph. Furthermore, such a scheme may be adapted for simulating discretized quantum models on a quantum computer. A coin operator is found for the discrete-time quantum walk which exhibits the same dynamics as the continuous-time evolution. Given the spectral decomposition of the graph Hamiltonian and certain restrictions, the discrete-time evolution is solved for explicitly and understood at or near important values of the parameters. Finally, this scheme is connected to past results for the 1D chain.

  12. The Hidden Symmetries of Spin-1 Ising Lattice Gas for Usual Quantum Hamiltonians

    NASA Astrophysics Data System (ADS)

    Payandeh, Farrin

    2016-02-01

    In this letter, the most common quantum Hamiltonian is exploited in order to compare the definite equivalences, corresponding to possible spin values in a lattice gas model, to those in a spin-1 Ising model. Our approach also requires interpolating both results in a p-state clock model, in order to find the hidden symmetries of both under consideration models.

  13. Realization of a quantum Hamiltonian Boolean logic gate on the Si(001):H surface.

    PubMed

    Kolmer, Marek; Zuzak, Rafal; Dridi, Ghassen; Godlewski, Szymon; Joachim, Christian; Szymonski, Marek

    2015-08-01

    The design and construction of the first prototypical QHC (Quantum Hamiltonian Computing) atomic scale Boolean logic gate is reported using scanning tunnelling microscope (STM) tip-induced atom manipulation on an Si(001):H surface. The NOR/OR gate truth table was confirmed by dI/dU STS (Scanning Tunnelling Spectroscopy) tracking how the surface states of the QHC quantum circuit on the Si(001):H surface are shifted according to the input logical status. PMID:26144212

  14. Conformal quantum mechanics and holographic quench

    NASA Astrophysics Data System (ADS)

    Järvelä, Jarkko; Keränen, Ville; Keski-Vakkuri, Esko

    2016-02-01

    Recently, there has been much interest in holographic computations of two-point nonequilibrium Green functions from anti-de Sitter- (AdS-)Vaidya backgrounds. In the strongly coupled quantum field theory on the boundary, the dual interpretation of the background is an equilibration process called a holographic quench. The two-dimensional AdS-Vaidya spacetime is a special case, dual to conformal quantum mechanics. We study how the quench is incorporated into a Hamiltonian H +θ (t )Δ H and into correlation functions. With the help of recent work on correlation functions in conformal quantum mechanics, we first rederive the known two-point functions, and then compute nonequilibrium three- and four-point functions. We also compute the three-point function Witten diagram in the two-dimensional AdS-Vaidya background, and find agreement with the conformal quantum mechanics result.

  15. Is quantum mechanics exact?

    SciTech Connect

    Kapustin, Anton

    2013-06-15

    We formulate physically motivated axioms for a physical theory which for systems with a finite number of degrees of freedom uniquely lead to quantum mechanics as the only nontrivial consistent theory. Complex numbers and the existence of the Planck constant common to all systems arise naturally in this approach. The axioms are divided into two groups covering kinematics and basic measurement theory, respectively. We show that even if the second group of axioms is dropped, there are no deformations of quantum mechanics which preserve the kinematic axioms. Thus, any theory going beyond quantum mechanics must represent a radical departure from the usual a priori assumptions about the laws of nature.

  16. Twisted spin Sutherland models from quantum Hamiltonian reduction

    NASA Astrophysics Data System (ADS)

    Fehr, L.; Pusztai, B. G.

    2008-05-01

    Recent general results on Hamiltonian reductions under polar group actions are applied to study some reductions of the free particle governed by the Laplace-Beltrami operator of a compact, connected, simple Lie group. The reduced systems associated with arbitrary finite-dimensional irreducible representations of the group by using the symmetry induced by twisted conjugations are described in detail. These systems generically yield integrable Sutherland-type many-body models with spin, which are called twisted spin Sutherland models if the underlying twisted conjugations are built on non-trivial Dynkin diagram automorphisms. The spectra of these models can be calculated, in principle, by solving certain Clebsch-Gordan problems, and the result is presented for the models associated with the symmetric tensorial powers of the defining representation of SU(N).

  17. Hamiltonian operator for loop quantum gravity coupled to a scalar field

    NASA Astrophysics Data System (ADS)

    Alesci, E.; Assanioussi, M.; Lewandowski, J.; Mkinen, I.

    2015-06-01

    We present the construction of a physical Hamiltonian operator in the deparametrized model of loop quantum gravity coupled to a free scalar field. This construction is based on the use of the recently introduced curvature operator, and on the idea of so-called special loops. We discuss in detail the regularization procedure and the assignment of the loops, along with the properties of the resulting operator. We compute the action of the squared Hamiltonian operator on spin network states, and close with some comments and outlooks.

  18. Adaptive Perturbation Theory I: Quantum Mechanics

    SciTech Connect

    Weinstein, Marvin; /SLAC

    2005-10-19

    Adaptive perturbation is a new method for perturbatively computing the eigenvalues and eigenstates of quantum mechanical Hamiltonians that heretofore were not believed to be treatable by such methods. The novel feature of adaptive perturbation theory is that it decomposes a given Hamiltonian, H, into an unperturbed part and a perturbation in a way which extracts the leading non-perturbative behavior of the problem exactly. This paper introduces the method in the context of the pure anharmonic oscillator and then goes on to apply it to the case of tunneling between both symmetric and asymmetric minima. It concludes with an introduction to the extension of these methods to the discussion of a quantum field theory. A more complete discussion of this issue will be given in the second paper in this series, and it will show how to use the method of adaptive perturbation theory to non-perturbatively extract the structure of mass, wavefunction and coupling constant renormalization.

  19. Optical-lattice Hamiltonians for relativistic quantum electrodynamics

    SciTech Connect

    Kapit, Eliot; Mueller, Erich

    2011-03-15

    We show how interpenetrating optical lattices containing Bose-Fermi mixtures can be constructed to emulate the thermodynamics of quantum electrodynamics (QED). We present models of neutral atoms on lattices in 1+1, 2+1, and 3+1 dimensions whose low-energy effective action reduces to that of photons coupled to Dirac fermions of the corresponding dimensionality. We give special attention to (2+1)-dimensional quantum electrodynamics (QED3) and discuss how two of its most interesting features, chiral symmetry breaking and Chern-Simons physics, could be observed experimentally.

  20. Universal quantum mechanics

    SciTech Connect

    Giddings, Steven B.

    2008-10-15

    If gravity respects quantum mechanics, it is important to identify the essential postulates of a quantum framework capable of incorporating gravitational phenomena. Such a construct likely requires elimination or modification of some of the 'standard' postulates of quantum mechanics, in particular, those involving time and measurement. This paper proposes a framework that appears sufficiently general to incorporate some expected features of quantum gravity. These include the statement that space and time may only emerge approximately and relationally. One perspective on such a framework is as a sort of generalization of the S-matrix approach to dynamics. Within this framework, more dynamical structure is required to fully specify a theory; this structure is expected to lack some of the elements of local quantum field theory. Some aspects of this structure are discussed, both in the context of scattering of perturbations about a flat background, and in the context of cosmology.

  1. Quantum Mechanics From the Cradle?

    ERIC Educational Resources Information Center

    Martin, John L.

    1974-01-01

    States that the major problem in learning quantum mechanics is often the student's ignorance of classical mechanics and that one conceptual hurdle in quantum mechanics is its statistical nature, in contrast to the determinism of classical mechanics. (MLH)

  2. Empirical quantum mechanics

    NASA Astrophysics Data System (ADS)

    Nishimura, Hirokazu

    1996-06-01

    Machida and Namiki developed a many-Hilbert-spaces formalism for dealing with the interaction between a quantum object and a measuring apparatus. Their mathematically rugged formalism was polished first by Araki from an operator-algebraic standpoint and then by Ozawa for Boolean quantum mechanics, which approaches a quantum system with a compatible family of continuous superselection rules from a notable and perspicacious viewpoint. On the other hand, Foulis and Randall set up a formal theory for the empirical foundation of all sciences, at the hub of which lies the notion of a manual of operations. They deem an operation as the set of possible outcomes and put down a manual of operations at a family of partially overlapping operations. Their notion of a manual of operations was incorporated into a category-theoretic standpoint into that of a manual of Boolean locales by Nishimura, who looked upon an operation as the complete Boolean algebra of observable events. Considering a family of Hilbert spaces not over a single Boolean locale but over a manual of Boolean locales as a whole, Ozawa's Boolean quantum mechanics is elevated into empirical quantum mechanics, which is, roughly speaking, the study of quantum systems with incompatible families of continuous superselection rules. To this end, we are obliged to develop empirical Hilbert space theory. In particular, empirical versions of the square root lemma for bounded positive operators, the spectral theorem for (possibly unbounded) self-adjoint operators, and Stone's theorem for one-parameter unitary groups are established.

  3. Quantum mechanics on York slices

    NASA Astrophysics Data System (ADS)

    Roser, Philipp

    2016-03-01

    For some time the York time parameter has been identified as a candidate for a physically meaningful time in cosmology. An associated Hamiltonian may be found by solving the Hamiltonian constraint for the momentum conjugate to the York time variable, although an explicit solution can only be found in highly symmetric cases. The Poisson structure of the remaining variables is not canonical. Here we quantise this dynamics in an anisotropic minisuperspace model via a natural extension of canonical quantisation. The resulting quantum theory has no momentum representation. Instead the position basis takes a fundamental role. We illustrate how the quantum theory and the modified representation of its momentum operators lead to a consistent theory in the presence of the constraints that arose during the Hamiltonian reduction. The quantised reduced Hamiltonian is Hermitian, although the momentum operators are not, the causes and implications of which we discuss. We are able to solve for the eigenspectrum of the Hamiltonian. Finally we discuss how far the results of this model extend to the general non-homogeneous case, in particular perturbation theory with York time.

  4. Studies of strongly correlated systems: From first principles computations to effective Hamiltonians and novel quantum phases

    NASA Astrophysics Data System (ADS)

    Barnett, Ryan

    In this thesis we derive minimal effective Hamiltonians from more detailed theories which are used to predict novel quantum phases of solid state and atomic and molecular systems. We consider the solid state systems of transition metal dichalcogenides, strands of stretched poly (CG)-poly (CG) DNA, and carbon nanotubes. The cold atomic and molecular systems we consider are alkali atoms in the F = 2 hyperfine state and dipolar molecules in an optical lattice.

  5. Ab initio no core calculations of light nuclei and preludes to Hamiltonian quantum field theory

    SciTech Connect

    Vary, J.P.; Maris, P.; Shirokov, A.M.; Honkanen, H.; li, J.; Brodsky, S.J.; Harindranath, A.; Teramond, G.F.de; /Costa Rica U.

    2009-08-03

    Recent advances in ab initio quantum many-body methods and growth in computer power now enable highly precise calculations of nuclear structure. The precision has attained a level sufficient to make clear statements on the nature of 3-body forces in nuclear physics. Total binding energies, spin-dependent structure effects, and electroweak properties of light nuclei play major roles in pinpointing properties of the underlying strong interaction. Eventually,we anticipate a theory bridge with immense predictive power from QCD through nuclear forces to nuclear structure and nuclear reactions. Light front Hamiltonian quantum field theory offers an attractive pathway and we outline key elements.

  6. Proceedings of quantum field theory, quantum mechanics, and quantum optics

    SciTech Connect

    Dodonov, V.V.; Man; ko, V.I.

    1991-01-01

    This book contains papers presented at the XVIII International Colloquium on Group Theoretical Methods in Physics held in Moscow on June 4-9, 1990. Topics covered include; applications of algebraic methods in quantum field theory, quantum mechanics, quantum optics, spectrum generating groups, quantum algebras, symmetries of equations, quantum physics, coherent states, group representations and space groups.

  7. Quantum mechanics over sets

    NASA Astrophysics Data System (ADS)

    Ellerman, David

    2014-03-01

    In models of QM over finite fields (e.g., Schumacher's ``modal quantum theory'' MQT), one finite field stands out, Z2, since Z2 vectors represent sets. QM (finite-dimensional) mathematics can be transported to sets resulting in quantum mechanics over sets or QM/sets. This gives a full probability calculus (unlike MQT with only zero-one modalities) that leads to a fulsome theory of QM/sets including ``logical'' models of the double-slit experiment, Bell's Theorem, QIT, and QC. In QC over Z2 (where gates are non-singular matrices as in MQT), a simple quantum algorithm (one gate plus one function evaluation) solves the Parity SAT problem (finding the parity of the sum of all values of an n-ary Boolean function). Classically, the Parity SAT problem requires 2n function evaluations in contrast to the one function evaluation required in the quantum algorithm. This is quantum speedup but with all the calculations over Z2 just like classical computing. This shows definitively that the source of quantum speedup is not in the greater power of computing over the complex numbers, and confirms the idea that the source is in superposition.

  8. Supersymmetric Quantum Mechanics For Atomic Electronic Systems

    NASA Astrophysics Data System (ADS)

    Markovich, Thomas; Biamonte, Mason; Kouri, Don

    2012-02-01

    We employ our new approach to non-relativistic supersymmetric quantum mechanics (SUSY-QM), (J. Phys. Chem. A 114, 8202(2010)) for any number of dimensions and distinguishable particles, to treat the hydrogen atom in full three-dimensional detail. In contrast to the standard one-dimensional radial equation SUSY-QM treatment of the hydrogen atom, where the superpotential is a scalar, in a full three-dimensional treatment, it is a vector which is independent of the angular momentum quantum number. The original scalar Schr"odinger Hamiltonian operator is factored into vector ``charge'' operators: Q and Q^. Using these operators, the first sector Hamiltonian is written as H1= Q^.Q + E0^1. The second sector Hamiltonian is a tensor given by H2= Q Q^ + E0^11 and is isospectral with H1. The second sector ground state, ?0^(2), can be used to obtain the excited state wave functions of the first sector by application of the adjoint charge operator. We then adapt the aufbau principle to show this approach can be applied to treat the helium atom.

  9. Stratified quantization approach to dissipative quantum systems: Derivation of the Hamiltonian and kinetic equations for reduced density matrices

    SciTech Connect

    Richardson, W.H. . E-mail: whr@stanford.edu

    2006-06-15

    A technique for describing dissipative quantum systems that utilizes a fundamental Hamiltonian, which is composed of intrinsic operators of the system, is presented. The specific system considered is a capacitor (or free particle) that is coupled to a resistor (or dissipative medium). The microscopic mechanisms that lead to dissipation are represented by the standard Hamiltonian. Now dissipation is really a collective phenomenon of entities that comprise a macroscopic or mesoscopic object. Hence operators that describe the collective features of the dissipative medium are utilized to construct the Hamiltonian that represents the coupled resistor and capacitor. Quantization of the spatial gauge function is introduced. The magnetic energy part of the coupled Hamiltonian is written in terms of that quantized gauge function and the current density of the dissipative medium. A detailed derivation of the kinetic equation that represents the capacitor or free particle is presented. The partial spectral densities and functions related to spectral densities, which enter the kinetic equations as coefficients of commutators, are evaluated. Explicit expressions for the nonMarkoffian contribution in terms of products of spectral densities and related functions are given. The influence of all two-time correlation functions are considered. Also stated is a remainder term that is a product of partial spectral densities and which is due to higher order terms in the correlation density matrix. The Markoffian part of the kinetic equation is compared with the Master equation that is obtained using the standard generator in the axiomatic approach. A detailed derivation of the Master equation that represents the dissipative medium is also presented. The dynamical equation for the resistor depends on the spatial wavevector, and the influence of the free particle on the diagonal elements (in wavevector space) is stated.

  10. Realization of a quantum Hamiltonian Boolean logic gate on the Si(001):H surface

    NASA Astrophysics Data System (ADS)

    Kolmer, Marek; Zuzak, Rafal; Dridi, Ghassen; Godlewski, Szymon; Joachim, Christian; Szymonski, Marek

    2015-07-01

    The design and construction of the first prototypical QHC (Quantum Hamiltonian Computing) atomic scale Boolean logic gate is reported using scanning tunnelling microscope (STM) tip-induced atom manipulation on an Si(001):H surface. The NOR/OR gate truth table was confirmed by dI/dU STS (Scanning Tunnelling Spectroscopy) tracking how the surface states of the QHC quantum circuit on the Si(001):H surface are shifted according to the input logical status.The design and construction of the first prototypical QHC (Quantum Hamiltonian Computing) atomic scale Boolean logic gate is reported using scanning tunnelling microscope (STM) tip-induced atom manipulation on an Si(001):H surface. The NOR/OR gate truth table was confirmed by dI/dU STS (Scanning Tunnelling Spectroscopy) tracking how the surface states of the QHC quantum circuit on the Si(001):H surface are shifted according to the input logical status. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01912e

  11. Geometrizing Relativistic Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Falciano, F. T.; Novello, M.; Salim, J. M.

    2010-12-01

    We propose a new approach to describe quantum mechanics as a manifestation of non-Euclidean geometry. In particular, we construct a new geometrical space that we shall call Qwist. A Qwist space has a extra scalar degree of freedom that ultimately will be identified with quantum effects. The geometrical properties of Qwist allow us to formulate a geometrical version of the uncertainty principle. This relativistic uncertainty relation unifies the position-momentum and time-energy uncertainty principles in a unique relation that recover both of them in the non-relativistic limit.

  12. Supersymmetric quantum mechanics and its applications

    SciTech Connect

    Sukumar, C.V.

    2004-12-23

    The Hamiltonian in Supersymmetric Quantum Mechanics is defined in terms of charges that obey the same algebra as that of the generators of supersymmetry in field theory. The consequences of this symmetry for the spectra of the component parts that constitute the supersymmetric system are explored. The implications of supersymmetry for the solutions of the Schroedinger equation, the Dirac equation, the inverse scattering theory and the multi-soliton solutions of the KdV equation are examined. Applications to scattering problems in Nuclear Physics with specific reference to singular potentials which arise from considerations of supersymmetry will be discussed.

  13. Landau problem in noncommutative quantum mechanics

    NASA Astrophysics Data System (ADS)

    Sayipjamal, Dulat; Li, Kang

    2008-02-01

    The Landau problem in non-commutative quantum mechanics (NCQM) is studied. First by solving the Schrdinger equations on noncommutative (NC) space we obtain the Landau energy levels and the energy correction that is caused by space-space noncommutativity. Then we discuss the noncommutative phase space case, namely, space-space and momentum-momentum non-commutative case, and we get the explicit expression of the Hamiltonian as well as the corresponding eigenfunctions and eigenvalues. Supported by National Natural Science Foundation of China (10465004, 10665001, 10575026) and Abdus Salam ICTP, Trieste, Italy

  14. Bohmian quantum mechanics with quantum trajectories

    NASA Astrophysics Data System (ADS)

    Jeong, Yeuncheol

    The quantum trajectory method in the hydrodynamical formulation of Madelung-Bohm-Takabayasi quantum mechanics is an example of showing the cognitive importance of scientific illustrations and metaphors, especially, in this case, in computational quantum chemistry and electrical engineering. The method involves several numerical schemes of solving a set of hydrodynamical equations of motion for probability density fluids, based on the propagation of those probability density trajectories. The quantum trajectory method gives rise to, for example, an authentic quantum electron transport theory of motion to, among others, classically-minded applied scientists who probably have less of a commitment to traditional quantum mechanics. They were not the usual audience of quantum mechanics and simply choose to use a non-Copenhagen type interpretation to their advantage. Thus, the metaphysical issues physicists had a trouble with are not the main concern of the scientists. With the advantages of a visual and illustrative trajectory, the quantum theory of motion by Bohm effectively bridges quantum and classical physics, especially, in the mesoscale domain. Without having an abrupt shift in actions and beliefs from the classical to the quantum world, scientists and engineers are able to enjoy human cognitive capacities extended into the quantum mechanical domain.

  15. An efficient matrix product operator representation of the quantum chemical Hamiltonian.

    PubMed

    Keller, Sebastian; Dolfi, Michele; Troyer, Matthias; Reiher, Markus

    2015-12-28

    We describe how to efficiently construct the quantum chemical Hamiltonian operator in matrix product form. We present its implementation as a density matrix renormalization group (DMRG) algorithm for quantum chemical applications. Existing implementations of DMRG for quantum chemistry are based on the traditional formulation of the method, which was developed from the point of view of Hilbert space decimation and attained higher performance compared to straightforward implementations of matrix product based DMRG. The latter variationally optimizes a class of ansatz states known as matrix product states, where operators are correspondingly represented as matrix product operators (MPOs). The MPO construction scheme presented here eliminates the previous performance disadvantages while retaining the additional flexibility provided by a matrix product approach, for example, the specification of expectation values becomes an input parameter. In this way, MPOs for different symmetries - abelian and non-abelian - and different relativistic and non-relativistic models may be solved by an otherwise unmodified program. PMID:26723662

  16. An efficient matrix product operator representation of the quantum chemical Hamiltonian

    NASA Astrophysics Data System (ADS)

    Keller, Sebastian; Dolfi, Michele; Troyer, Matthias; Reiher, Markus

    2015-12-01

    We describe how to efficiently construct the quantum chemical Hamiltonian operator in matrix product form. We present its implementation as a density matrix renormalization group (DMRG) algorithm for quantum chemical applications. Existing implementations of DMRG for quantum chemistry are based on the traditional formulation of the method, which was developed from the point of view of Hilbert space decimation and attained higher performance compared to straightforward implementations of matrix product based DMRG. The latter variationally optimizes a class of ansatz states known as matrix product states, where operators are correspondingly represented as matrix product operators (MPOs). The MPO construction scheme presented here eliminates the previous performance disadvantages while retaining the additional flexibility provided by a matrix product approach, for example, the specification of expectation values becomes an input parameter. In this way, MPOs for different symmetries abelian and non-abelian and different relativistic and non-relativistic models may be solved by an otherwise unmodified program.

  17. Error suppression in Hamiltonian-based quantum computation using energy penalties

    NASA Astrophysics Data System (ADS)

    Bookatz, Adam D.; Farhi, Edward; Zhou, Leo

    2015-08-01

    We consider the use of quantum error-detecting codes, together with energy penalties against leaving the code space, as a method for suppressing environmentally induced errors in Hamiltonian-based quantum computation. This method was introduced in Jordan et al. [Phys. Rev. A 74, 052322 (2006)], 10.1103/PhysRevA.74.052322 in the context of quantum adiabatic computation, but we consider it more generally. Specifically, we consider a computational Hamiltonian, which has been encoded using the logical qubits of a single-qubit error-detecting code, coupled to an environment of qubits by interaction terms that act one-locally on the system. Additional energy penalty terms penalize states outside of the code space. We prove that in the limit of infinitely large penalties, one-local errors are completely suppressed, and we derive some bounds for the finite penalty case. Our proof technique involves exact integration of the Schrodinger equation, making no use of master equations or their assumptions. We perform long time numerical simulations on a small (one logical qubit) computational system coupled to an environment and the results suggest that the energy penalty method achieves even greater protection than our bounds indicate.

  18. Quantum Mechanics, Volume 2

    NASA Astrophysics Data System (ADS)

    Cohen-Tannoudji, Claude; Diu, Bernard; Laloe, Frank

    1986-06-01

    Beginning students of quantum mechanics frequently have difficulty separating essential underlying principles from the specific examples to which these principles have historically been applied. This book is especially designed to eliminate that difficulty. Fourteen chapters, augmented by 14 "complementary sections," provide a clarity of organization, careful attention to pedagogical details, and a wealth of topics and examples that allow physics professors to tailor courses to meet students' specific needs. Each chapter starts with a clear exposition of the problem to be treated and then logically develops the physical and mathematical concept. These chapters emphasize the underlying principles of the material, undiluted by extensive references to applications and practical examples. (Such applications and practical examples are contained in the complementary sections.) The book begins with a qualitative introduction to quantum mechanical ideas using simple optical analogies and continues with a systematic presentation of the mathematical tools and postulates of quantum mechanics as well as a discussion of their physical content. Applications follow, starting with the simplest ones (two-level systems, the harmonic oscillator, etc.), and becoming gradually more complicated (the hydrogen atom, approximation methods, etc.). The complementary sections each expand this basic knowledge, supplying a wide range of applications and related topics which make use of the essential skills. Here the authors include carefully written, detailed expositions of a large number of special problems and more advanced topics-integrated as an essential portion of the text. These topics, however, are not interdependent; this allows professors to direct their quantum mechanics courses toward both physics and chemistry students.

  19. Euclidean relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Polyzou, W. N.; Kopp, Philip

    2012-04-01

    We discuss a formulation of exactly Poincar invariant quantum mechanics where the input is model Euclidean Green functions or their generating functional. We discuss the structure of the models, the construction of the Hilbert space, the construction and transformation properties of single-particle states, and the construction of GeV scale transition matrix elements. A simple model is utilized to demonstrate the feasibility of this approach.

  20. Time-evolution of quantum systems via a complex nonlinear Riccati equation. I. Conservative systems with time-independent Hamiltonian

    SciTech Connect

    Cruz, Hans; Schuch, Dieter; Castaños, Octavio; Rosas-Ortiz, Oscar

    2015-09-15

    The sensitivity of the evolution of quantum uncertainties to the choice of the initial conditions is shown via a complex nonlinear Riccati equation leading to a reformulation of quantum dynamics. This sensitivity is demonstrated for systems with exact analytic solutions with the form of Gaussian wave packets. In particular, one-dimensional conservative systems with at most quadratic Hamiltonians are studied.

  1. A Transfer Hamiltonian Model for Devices Based on Quantum Dot Arrays

    PubMed Central

    Illera, S.; Prades, J. D.; Cirera, A.; Cornet, A.

    2015-01-01

    We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide. PMID:25879055

  2. Statistically preferred basis of an open quantum system: its relation to the eigenbasis of a renormalized self-Hamiltonian.

    PubMed

    He, Lewei; Wang, Wen-Ge

    2014-02-01

    We study the problem of the basis of an open quantum system, under a quantum chaotic environment, which is preferred in view of its stationary reduced density matrix (RDM), that is, the basis in which the stationary RDM is diagonal. It is shown that, under an initial condition composed of sufficiently many energy eigenstates of the total system, such a basis is given by the eigenbasis of a renormalized self-Hamiltonian of the system, in the limit of large Hilbert space of the environment. Here, the renormalized self-Hamiltonian is given by the unperturbed self-Hamiltonian plus a certain average of the interaction Hamiltonian over the environmental degrees of freedom. Numerical simulations performed in two models, both with the kicked rotor as the environment, give results consistent with the above analytical predictions. PMID:25353440

  3. Statistically preferred basis of an open quantum system: Its relation to the eigenbasis of a renormalized self-Hamiltonian

    NASA Astrophysics Data System (ADS)

    He, Lewei; Wang, Wen-ge

    2014-02-01

    We study the problem of the basis of an open quantum system, under a quantum chaotic environment, which is preferred in view of its stationary reduced density matrix (RDM), that is, the basis in which the stationary RDM is diagonal. It is shown that, under an initial condition composed of sufficiently many energy eigenstates of the total system, such a basis is given by the eigenbasis of a renormalized self-Hamiltonian of the system, in the limit of large Hilbert space of the environment. Here, the renormalized self-Hamiltonian is given by the unperturbed self-Hamiltonian plus a certain average of the interaction Hamiltonian over the environmental degrees of freedom. Numerical simulations performed in two models, both with the kicked rotor as the environment, give results consistent with the above analytical predictions.

  4. Upper bounded and sliced Jaynes- and anti-Jaynes-Cummings Hamiltonians and Liouvillians in cavity quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Rosado, W.; de Moraes Neto, G. D.; Prado, F. O.; Moussa, M. H. Y.

    2015-11-01

    In this paper, we present a protocol to engineer upper-bounded and sliced Jaynes-Cummings and anti-Jaynes-Cummings Hamiltonians in cavity quantum electrodynamics. In the upper-bounded Hamiltonians, the atom-field interaction is confined to a subspace of Fock states ranging from $\\left\\vert 0\\right\\rangle $ up to $\\left\\vert 4\\right\\rangle $, while in the sliced interaction the Fock subspace ranges from $\\left\\vert M\\right\\rangle $ up to $\\left\\vert M+4\\right\\rangle $. We also show how to build upper-bounded and sliced Liouvillians irrespective of engineering Hamiltonians. The upper-bounded and sliced Hamiltonians and Liouvillians can be used, among other applications, to generate steady Fock states of a cavity mode and for the implementation of a quantum-scissors device for optical state truncation.

  5. Stability and Clustering for Lattice Many-Body Quantum Hamiltonians with Multiparticle Potentials

    NASA Astrophysics Data System (ADS)

    Faria da Veiga, Paulo A.; O'Carroll, Michael

    2015-11-01

    We analyze a quantum system of N identical spinless particles of mass m, in the lattice Z^d, given by a Hamiltonian H_N=T_N+V_N, with kinetic energy T_N? 0 and potential V_N=V_{N,2}+V_{N,3} composed of attractive pair and repulsive 3-body contact-potentials. This Hamiltonian is motivated by the desire to understand the stability of quantum field theories, with massive single particles and bound states in the energy-momentum spectrum, in terms of an approximate Hamiltonian for their N-particle sector. We determine the role of the potentials V_{N,2} and V_{N,3} on the physical stability of the system, such as to avoid a collapse of the N particles. Mathematically speaking, stability is associated with an N-linear lower bound for the infimum of the H_N spectrum, \\underline{? }(H_N)? -cN, for c>0 independent of N. For V_{N,3}=0, H_N is unstable, and the system collapses. If V_{N,3}not =0, H_N is stable and, for strong enough repulsion, we obtain \\underline{? }(H_N)? -c' N, where c'N is the energy of ( N/2) isolated bound pairs. This result is physically expected. A much less trivial result is that, as N varies, we show [ \\underline{? }(V_N)/N ] has qualitatively the same behavior as the well-known curve for minus the nuclear binding energy per nucleon. Moreover, it turns out that there exists a saturation value N_s of N at and above which the system presents a clustering: the N particles distributed in two fragments and, besides lattice translations of particle positions, there is an energy degeneracy of all two fragments with particle numbers N_r and N_s-N_r, with N_r=1,ldots ,N_s-1.

  6. Structural fluctuations and quantum transport through DNA molecular wires: a combined molecular dynamics and model Hamiltonian approach

    NASA Astrophysics Data System (ADS)

    Gutirrez, R.; Caetano, R.; Woiczikowski, P. B.; Kubar, T.; Elstner, M.; Cuniberti, G.

    2010-02-01

    Charge transport through a short DNA oligomer (Dickerson dodecamer (DD)) in the presence of structural fluctuations is investigated using a hybrid computational methodology based on a combination of quantum mechanical electronic structure calculations and classical molecular dynamics (MD) simulations with a model Hamiltonian approach. Based on a fragment orbital description, the DNA electronic structure can be coarse-grained in a very efficient way. The influence of dynamical fluctuations, arising either from the solvent fluctuations or from base-pair vibrational modes, can be taken into account in a straightforward way through the time series of the effective DNA electronic parameters, evaluated at snapshots along the MD trajectory. We show that charge transport can be promoted through the coupling to solvent fluctuations, which gate the on-site energies along the DNA wire.

  7. Quantum evolution: The case of weak localization for a 3D alloy-type Anderson model and application to Hamiltonian based quantum computation

    NASA Astrophysics Data System (ADS)

    Cao, Zhenwei

    Over the years, people have found Quantum Mechanics to be extremely useful in explaining various physical phenomena from a microscopic point of view. Anderson localization, named after physicist P. W. Anderson, states that disorder in a crystal can cause non-spreading of wave packets, which is one possible mechanism (at single electron level) to explain metal-insulator transitions. The theory of quantum computation promises to bring greater computational power over classical computers by making use of some special features of Quantum Mechanics. The first part of this dissertation considers a 3D alloy-type model, where the Hamiltonian is the sum of the finite difference Laplacian corresponding to free motion of an electron and a random potential generated by a sign-indefinite single-site potential. The result shows that localization occurs in the weak disorder regime, i.e., when the coupling parameter lambda is very small, for energies E ? --Clambda 2. The second part of this dissertation considers adiabatic quantum computing (AQC) algorithms for the unstructured search problem to the case when the number of marked items is unknown. In an ideal situation, an explicit quantum algorithm together with a counting subroutine are given that achieve the optimal Grover speedup over classical algorithms, i.e., roughly speaking, reduce O(2n) to O(2n/2), where n is the size of the problem. However, if one considers more realistic settings, the result shows this quantum speedup is achievable only under a very rigid control precision requirement (e.g., exponentially small control error).

  8. Gaussian effective potential: Quantum mechanics

    NASA Astrophysics Data System (ADS)

    Stevenson, P. M.

    1984-10-01

    We advertise the virtues of the Gaussian effective potential (GEP) as a guide to the behavior of quantum field theories. Much superior to the usual one-loop effective potential, the GEP is a natural extension of intuitive notions familiar from quantum mechanics. A variety of quantum-mechanical examples are studied here, with an eye to field-theoretic analogies. Quantum restoration of symmetry, dynamical mass generation, and "quantum-mechanical resuscitation" are among the phenomena discussed. We suggest how the GEP could become the basis of a systematic approximation procedure. A companion paper will deal with scalar field theory.

  9. Advanced Concepts in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Esposito, Giampiero; Marmo, Giuseppe; Miele, Gennaro; Sudarshan, George

    2014-11-01

    Preface; 1. Introduction: the need for a quantum theory; 2. Experimental foundations of quantum theory; 3. Waves and particles; 4. Schrödinger picture, Heisenberg picture and probabilistic aspects; 5. Integrating the equations of motion; 6. Elementary applications: 1-dimensional problems; 7. Elementary applications: multidimensional problems; 8. Coherent states and related formalism; 9. Introduction to spin; 10. Symmetries in quantum mechanics; 11. Approximation methods; 12. Modern pictures of quantum mechanics; 13. Formulations of quantum mechanics and their physical implications; 14. Exam problems; Glossary of geometric concepts; References; Index.

  10. Diffusion-Schrdinger Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Lasukov, V. V.; Lasukova, T. V.; Lasukova, O. V.; Novoselov, V. V.

    2014-08-01

    A quantum solution of a nonlinear differential equation of diffusion type with a potential term has been found. Diffusion-Schrdinger quantum mechanics can find wide application in quantum biology, biological electronics, synthetic biology, nanomedicine, the quantum theory of consciousness, cosmology, and other fields of science and technology. One consequence of the macroscopic nature of diffusion-Schrdinger quantum mechanics is the possibility of generation of hard photons. The dust plasma in the Universe can generate cosmic rays with ultra-relativistic energies in a galactic magnetic field via a diffusion mechanism.

  11. Contribution from the interaction Hamiltonian to the expectation value of particle number with the non-equilibrium quantum field theory

    SciTech Connect

    Hotta, Ryuuichi; Morozumi, Takuya; Takata, Hiroyuki

    2012-07-27

    We develop the method analyzing particle number non-conserving phenomena with non-equilibrium quantum field-theory. In this study, we consider a CP violating model with interaction Hamiltonian that breaks particle number conservation. To derive the quantum Boltzmann equation for the particle number, we solve Schwinger-Dyson equation, which are obtained from two particle irreducible closed-time-path (2PI CTP) effective action. In this calculation, we show the contribution from interaction Hamiltonian to the time evolution of expectation value of particle number.

  12. Principles of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Land, Alfred

    2013-10-01

    Preface; Introduction: 1. Observation and interpretation; 2. Difficulties of the classical theories; 3. The purpose of quantum theory; Part I. Elementary Theory of Observation (Principle of Complementarity): 4. Refraction in inhomogeneous media (force fields); 5. Scattering of charged rays; 6. Refraction and reflection at a plane; 7. Absolute values of momentum and wave length; 8. Double ray of matter diffracting light waves; 9. Double ray of matter diffracting photons; 10. Microscopic observation of ? (x) and ? (p); 11. Complementarity; 12. Mathematical relation between ? (x) and ? (p) for free particles; 13. General relation between ? (q) and ? (p); 14. Crystals; 15. Transition density and transition probability; 16. Resultant values of physical functions; matrix elements; 17. Pulsating density; 18. General relation between ? (t) and ? (?); 19. Transition density; matrix elements; Part II. The Principle of Uncertainty: 20. Optical observation of density in matter packets; 21. Distribution of momenta in matter packets; 22. Mathematical relation between ? and ?; 23. Causality; 24. Uncertainty; 25. Uncertainty due to optical observation; 26. Dissipation of matter packets; rays in Wilson Chamber; 27. Density maximum in time; 28. Uncertainty of energy and time; 29. Compton effect; 30. Bothe-Geiger and Compton-Simon experiments; 31. Doppler effect; Raman effect; 32. Elementary bundles of rays; 33. Jeans' number of degrees of freedom; 34. Uncertainty of electromagnetic field components; Part III. The Principle of Interference and Schrdinger's equation: 35. Physical functions; 36. Interference of probabilities for p and q; 37. General interference of probabilities; 38. Differential equations for ?p (q) and Xq (p); 39. Differential equation for ?? (q); 40. The general probability amplitude ??' (Q); 41. Point transformations; 42. General theorem of interference; 43. Conjugate variables; 44. Schrdinger's equation for conservative systems; 45. Schrdinger's equation for non-conservative systems; 46. Pertubation theory; 47. Orthogonality, normalization and Hermitian conjugacy; 48. General matrix elements; Part IV. The Principle of Correspondence: 49. Contact transformations in classical mechanics; 50. Point transformations; 51. Contact transformations in quantum mechanics; 52. Constants of motion and angular co-ordinates; 53. Periodic orbits; 54. De Broglie and Schrdinger function; correspondence to classical mechanics; 55. Packets of probability; 56. Correspondence to hydrodynamics; 57. Motion and scattering of wave packets; 58. Formal correspondence between classical and quantum mechanics; Part V. Mathematical Appendix: Principle of Invariance: 59. The general theorem of transformation; 60. Operator calculus; 61. Exchange relations; three criteria for conjugacy; 62. First method of canonical transformation; 63. Second method of canonical transformation; 64. Proof of the transformation theorem; 65. Invariance of the matrix elements against unitary transformations; 66. Matrix mechanics; Index of literature; Index of names and subjects.

  13. Quantum Mechanics as Dualism

    NASA Astrophysics Data System (ADS)

    Jones, Robert

    2011-03-01

    I do not agree with mind-body dualism. Today the consensus view is that thought and mind is a combination of processes like memory, generalization, comparison, deduction, organization, induction, classification, feature detection, analogy, etc. performed by computational machinery. (R. Jones, Trans. of the Kansas Acad. Sci., vol. 109, # 3/4, 2006 and www.robert-w-jones.com, philosopher, theory of thought) But I believe that quantum mechanics is a more plausible dualist theory of reality. The quantum mechanical wave function is nonphysical, it exists in a 3N space (for an N body system) not in (x,y,z,t) 4-space, and does not possess physical properties. But real physical things like energy (which do exist in our 4-space world) influence the wave function and the wave function, in its turn, influences real physical things, like where a particle can be found in 4-space. The coupling between the spirit-like wave function and things found in the real (4-space) world (like energy) is via mathematical equations like the Schrodinger equation and Born normalization.

  14. Diagrammatic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Kauffman, Louis H.; Lomonaco, Samuel J.

    2015-05-01

    This paper explores how diagrams of quantum processes can be used for modeling and for quantum epistemology. The paper is a continuation of the discussion where we began this formulation. Here we give examples of quantum networks that represent unitary transformations by dint of coherence conditions that constitute a new form of non-locality. Local quantum devices interconnected in space can form a global quantum system when appropriate coherence conditions are maintained.

  15. PT quantum mechanics.

    PubMed

    Bender, Carl M; DeKieviet, Maarten; Klevansky, S P

    2013-04-28

    PT-symmetric quantum mechanics (PTQM) has become a hot area of research and investigation. Since its beginnings in 1998, there have been over 1000 published papers and more than 15 international conferences entirely devoted to this research topic. Originally, PTQM was studied at a highly mathematical level and the techniques of complex variables, asymptotics, differential equations and perturbation theory were used to understand the subtleties associated with the analytic continuation of eigenvalue problems. However, as experiments on PT-symmetric physical systems have been performed, a simple and beautiful physical picture has emerged, and a PT-symmetric system can be understood as one that has a balanced loss and gain. Furthermore, the PT phase transition can now be understood intuitively without resorting to sophisticated mathematics. Research on PTQM is following two different paths: at a fundamental level, physicists are attempting to understand the underlying mathematical structure of these theories with the long-range objective of applying the techniques of PTQM to understanding some of the outstanding problems in physics today, such as the nature of the Higgs particle, the properties of dark matter, the matter-antimatter asymmetry in the universe, neutrino oscillations and the cosmological constant; at an applied level, new kinds of PT-synthetic materials are being developed, and the PT phase transition is being observed in many physical contexts, such as lasers, optical wave guides, microwave cavities, superconducting wires and electronic circuits. The purpose of this Theme Issue is to acquaint the reader with the latest developments in PTQM. The articles in this volume are written in the style of mini-reviews and address diverse areas of the emerging and exciting new area of PT-symmetric quantum mechanics. PMID:23509390

  16. Ab-Initio Hamiltonian Approach to Light Nuclei And to Quantum Field Theory

    SciTech Connect

    Vary, J.P.; Honkanen, H.; Li, Jun; Maris, P.; Shirokov, A.M.; Brodsky, S.J.; Harindranath, A.; de Teramond, G.F.; Ng, E.G.; Yang, C.; Sosonkina, M.; /Ames Lab

    2012-06-22

    Nuclear structure physics is on the threshold of confronting several long-standing problems such as the origin of shell structure from basic nucleon-nucleon and three-nucleon interactions. At the same time those interactions are being developed with increasing contact to QCD, the underlying theory of the strong interactions, using effective field theory. The motivation is clear - QCD offers the promise of great predictive power spanning phenomena on multiple scales from quarks and gluons to nuclear structure. However, new tools that involve non-perturbative methods are required to build bridges from one scale to the next. We present an overview of recent theoretical and computational progress with a Hamiltonian approach to build these bridges and provide illustrative results for the nuclear structure of light nuclei and quantum field theory.

  17. Decoherence in quantum mechanics and quantum cosmology

    NASA Technical Reports Server (NTRS)

    Hartle, James B.

    1992-01-01

    A sketch of the quantum mechanics for closed systems adequate for cosmology is presented. This framework is an extension and clarification of that of Everett and builds on several aspects of the post-Everett development. It especially builds on the work of Zeh, Zurek, Joos and Zeh, and others on the interactions of quantum systems with the larger universe and on the ideas of Griffiths, Omnes, and others on the requirements for consistent probabilities of histories.

  18. QUANTUM MECHANICS WITHOUT STATISTICAL POSTULATES

    SciTech Connect

    G. GEIGER; ET AL

    2000-11-01

    The Bohmian formulation of quantum mechanics describes the measurement process in an intuitive way without a reduction postulate. Due to the chaotic motion of the hidden classical particle all statistical features of quantum mechanics during a sequence of repeated measurements can be derived in the framework of a deterministic single system theory.

  19. Modern Approach to Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Townsend, John S.

    Inspired by Richard Feynman and J.J. Sakurai, A Modern Approach to Quantum Mechanics lets professors expose their undergraduates to the excitement and insight of Feynman's approach to quantum mechanics while simultaneously giving them a textbook that is well-ordered, logical, and pedagogically sound. This book covers all the topics that are typically presented in a standard upper-level course in quantum mechanics, but its teaching approach is new: Rather than organizing his book according to the historical development of the field and jumping into a mathematical discussion of wave mechanics, Townsend begins his book with the quantum mechanics of spin. Thus, the first five chapters of the book succeed in laying out the fundamentals of quantum mechanics with little or no wave mechanics, so the physics is not obscured by mathematics. Starting with spin systems gives students something new and interesting while providing elegant but straightforward examples of the essential structure of quantum mechanics. When wave mechanics is introduced later, students perceive it correctly as only one aspect of quantum mechanics and not the core of the subject. Praised for its pedagogical brilliance, clear writing, and careful explanations, this book is destined to become a landmark text.

  20. Theoretical issues in quantum computing: Graph isomorphism, PageRank, and Hamiltonian determination

    NASA Astrophysics Data System (ADS)

    Rudinger, Kenneth Michael

    This thesis explores several theoretical questions pertaining to quantum computing. First we examine several questions regarding multi-particle quantum random walk-based algorithms for the graph isomorphism problem. We find that there exists a non-trivial difference between continuous-time walks of one and two non-interacting particles as compared to non-interacting walks of three or more particles, in that the latter are able to distinguish many strongly regular graphs (SRGs), a class of graphs with many graph pairs that are difficult to distinguish. We demonstrate analytically where this distinguishing power comes from, and we show numerically that three-particle and four-particle non-interacting continuous-time walks can distinguish many pairs of strongly regular graphs. We additionally show that this distinguishing power, while it grows with particle number, is bounded, so that no continuous-time non-interacting walk of fixed particle number can distinguish all strongly regular graphs. We then investigate the relationship between continuous-time and discrete-time walks, in the context of the graph isomorphism problem. While it has been previously demonstrated numerically that discrete-time walks of non-interacting particles can distinguish some SRGs, we demonstrate where this distinguishing power comes from. We also show that while no continuous-time non-interacting walk of fixed particle number can distinguish SRGs, it remains a possibility that such a discrete-time walk could, leaving open the possibility of a non-trivial difference between discrete-time and continuous-time walks. The last piece of our work on graph isomorphism examines limitations on certain kinds of continuous-time walk-based algorithms for distinguishing graphs. We show that a very general class of continuous-time walk algorithms, with a broad class of allowable interactions, cannot distinguish all graphs. We next consider a previously-proposed quantum adiabatic algorithm for computing the PageRank vector, a necessary step in one of Google's search algorithms. It had been previously believed that this algorithm might offer a non-trivial speedup in preparing the PageRank vector. We demonstrate, however, that when this algorithm is tested on graphs that sufficiently resemble the graph of the World Wide Web, there is no appreciable speedup. Lastly, we consider the problem of Hamiltonian determination. We show that in the high temperature limit, the classical signal processing technique of compressed sensing may be used to recover the Hamiltonian for a system of qubits, provided that the Hamiltonian does not possess too many interactions, i.e., it is "sparse". This new procedure allows for the determination of the Hamiltonian with a number of measurements that can be significantly smaller than required by standard techniques.

  1. Foundations of Quantum Mechanics and Quantum Computation

    NASA Astrophysics Data System (ADS)

    Aspect, Alain; Leggett, Anthony; Preskill, John; Durt, Thomas; Pironio, Stefano

    2013-03-01

    I ask the question: What can we infer about the nature and structure of the physical world (a) from experiments already done to test the predictions of quantum mechanics (b) from the assumption that all future experiments will agree with those predictions? I discuss existing and projected experiments related to the two classic paradoxes of quantum mechanics, named respectively for EPR and Schrdinger's Cat, and show in particular that one natural conclusion from both types of experiment implies the abandonment of the concept of macroscopic counterfactual definiteness.

  2. Quantum Mechanics: Ontology Without Individuals

    NASA Astrophysics Data System (ADS)

    da Costa, Newton; Lombardi, Olimpia

    2014-12-01

    The purpose of the present paper is to consider the traditional interpretive problems of quantum mechanics from the viewpoint of a modal ontology of properties. In particular, we will try to delineate a quantum ontology that (i) is modal, because describes the structure of the realm of possibility, and (ii) lacks the ontological category of individual. The final goal is to supply an adequate account of quantum non-individuality on the basis of this ontology.

  3. Communication: Quantum mechanics without wavefunctions

    SciTech Connect

    Schiff, Jeremy; Poirier, Bill

    2012-01-21

    We present a self-contained formulation of spin-free non-relativistic quantum mechanics that makes no use of wavefunctions or complex amplitudes of any kind. Quantum states are represented as ensembles of real-valued quantum trajectories, obtained by extremizing an action and satisfying energy conservation. The theory applies for arbitrary configuration spaces and system dimensionalities. Various beneficial ramifications--theoretical, computational, and interpretational--are discussed.

  4. Precision Tests of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Weinberg, Steven

    2014-03-01

    It is proposed to set stringent limits on possible nonlinear corrections to ordinary quantum mechanics by searching for the detuning of resonant transitions. A suggested nonlinear generalization of quantum mechanics is used to show that such detuning would be expected in the rf transition in 9Be+ ions that is used to set frequency standards. Measurements at the National Bureau of Standards already set limits of order 10-21 on the fraction of the energy of the 9Be nucleus that could be due to nonlinear corrections to quantum mechanics, with good prospects of improving this by 2-3 orders of magnitude.

  5. Phase space quantum mechanics - Direct

    SciTech Connect

    Nasiri, S.; Sobouti, Y.; Taati, F.

    2006-09-15

    Conventional approach to quantum mechanics in phase space (q,p), is to take the operator based quantum mechanics of Schroedinger, or an equivalent, and assign a c-number function in phase space to it. We propose to begin with a higher level of abstraction, in which the independence and the symmetric role of q and p is maintained throughout, and at once arrive at phase space state functions. Upon reduction to the q- or p-space the proposed formalism gives the conventional quantum mechanics, however, with a definite rule for ordering of factors of noncommuting observables. Further conceptual and practical merits of the formalism are demonstrated throughout the text.

  6. Quantum Mechanics in Insulators

    SciTech Connect

    Aeppli, G.

    2009-08-20

    Atomic physics is undergoing a large revival because of the possibility of trapping and cooling ions and atoms both for individual quantum control as well as collective quantum states, such as Bose-Einstein condensates. The present lectures start from the 'atomic' physics of isolated atoms in semiconductors and insulators and proceed to coupling them together to yield magnets undergoing quantum phase transitions as well as displaying novel quantum states with no classical analogs. The lectures are based on: G.-Y. Xu et al., Science 317, 1049-1052 (2007); G. Aeppli, P. Warburton, C. Renner, BT Technology Journal, 24, 163-169 (2006); H. M. Ronnow et al., Science 308, 392-395 (2005) and N. Q. Vinh et al., PNAS 105, 10649-10653 (2008).

  7. Quantum mechanics from invariance principles

    NASA Astrophysics Data System (ADS)

    Moldoveanu, Florin

    2015-07-01

    Quantum mechanics is an extremely successful theory of nature and yet it lacks an intuitive axiomatization. In contrast, the special theory of relativity is well understood and is rooted into natural or experimentally justified postulates. Here we introduce an axiomatization approach to quantum mechanics which is very similar to special theory of relativity derivation. The core idea is that a composed system obeys the same laws of nature as its components. This leads to a Jordan-Lie algebraic formulation of quantum mechanics. The starting assumptions are minimal: the laws of nature are invariant under time evolution, the laws of nature are invariant under tensor composition, the laws of nature are relational, together with the ability to define a physical state (positivity). Quantum mechanics is singled out by a fifth experimentally justified postulate: nature violates Bell's inequalities.

  8. A quantum algorithm for obtaining the lowest eigenstate of a Hamiltonian assisted with an ancillary qubit system

    NASA Astrophysics Data System (ADS)

    Bang, Jeongho; Lee, Seung-Woo; Lee, Chang-Woo; Jeong, Hyunseok

    2015-01-01

    We propose a quantum algorithm to obtain the lowest eigenstate of any Hamiltonian simulated by a quantum computer. The proposed algorithm begins with an arbitrary initial state of the simulated system. A finite series of transforms is iteratively applied to the initial state assisted with an ancillary qubit. The fraction of the lowest eigenstate in the initial state is then amplified up to 1. We prove that our algorithm can faithfully work for any arbitrary Hamiltonian in the theoretical analysis. Numerical analyses are also carried out. We firstly provide a numerical proof-of-principle demonstration with a simple Hamiltonian in order to compare our scheme with the so-called "Demon-like algorithmic cooling (DLAC)", recently proposed in Xu (Nat Photonics 8:113, 2014). The result shows a good agreement with our theoretical analysis, exhibiting the comparable behavior to the best `cooling' with the DLAC method. We then consider a random Hamiltonian model for further analysis of our algorithm. By numerical simulations, we show that the total number of iterations is proportional to , where is the difference between the two lowest eigenvalues and is an error defined as the probability that the finally obtained system state is in an unexpected (i.e., not the lowest) eigenstate.

  9. Chiral transport equation from the quantum Dirac Hamiltonian and the on-shell effective field theory

    NASA Astrophysics Data System (ADS)

    Manuel, Cristina; Torres-Rincon, Juan M.

    2014-10-01

    We derive the relativistic chiral transport equation for massless fermions and antifermions by performing a semiclassical Foldy-Wouthuysen diagonalization of the quantum Dirac Hamiltonian. The Berry connection naturally emerges in the diagonalization process to modify the classical equations of motion of a fermion in an electromagnetic field. We also see that the fermion and antifermion dispersion relations are corrected at first order in the Planck constant by the Berry curvature, as previously derived by Son and Yamamoto for the particular case of vanishing temperature. Our approach does not require knowledge of the state of the system, and thus it can also be applied at high temperature. We provide support for our result by an alternative computation using an effective field theory for fermions and antifermions: the on-shell effective field theory. In this formalism, the off-shell fermionic modes are integrated out to generate an effective Lagrangian for the quasi-on-shell fermions/antifermions. The dispersion relation at leading order exactly matches the result from the semiclassical diagonalization. From the transport equation, we explicitly show how the axial and gauge anomalies are not modified at finite temperature and density despite the incorporation of the new dispersion relation into the distribution function.

  10. Quantum Mechanics and Reality

    ERIC Educational Resources Information Center

    DeWitt, Bryce S.

    1970-01-01

    Discusses the quantum theory of measurement and von Neumann's catastrophe of infinite regression." Examines three ways of escapint the von Neumann catastrophe, and suggests that the solution to the dilemma of inteterminism is a universe in which all possible outcomes of an experiment actually occur. Bibliography. (LC)

  11. The symplectic egg in classical and quantum mechanics

    NASA Astrophysics Data System (ADS)

    de Gosson, Maurice A.

    2013-05-01

    Symplectic geometry is the language of Classical Mechanics in its Hamiltonian formulation, and it also plays a crucial role in Quantum Mechanics. Symplectic geometry seemed to be well understood until 1985, when the mathematician Gromov discovered a surprising and unexpected property of canonical transformations: the non-squeezing theorem. Gromov's result, nicknamed the "principle of the symplectic camel," seems at first sight to be an abstruse piece of pure mathematics. It turns out that it has fundamentaland unsuspectedconsequences in the interpretations of both Classical and Quantum Mechanics, because it is essentially a classical form of the uncertainty principle. We invite the reader to a journey taking us from Gromov's non-squeezing theorem and its dynamical interpretation to the quantum uncertainty principle, opening the way to new insights.

  12. Supersymmetric quantum mechanics and paraquantization

    SciTech Connect

    Morchedi, O.; Mebarki, N.

    2012-06-27

    The paraquantum Hamiltonian of a free particle is shown to be supersymmetric. Depending on the space-time dimension, the corresponding N=1 and N=2 supercharges are constructed and the related Hamiltonians are derived.

  13. Quantum Dynamics of Multi Harmonic Oscillators Described by Time Variant Conic Hamiltonian and their Use in Contemporary Sciences

    SciTech Connect

    Demiralp, Metin

    2010-09-30

    This work focuses on the dynamics of a system of quantum multi harmonic oscillators whose Hamiltonian is conic in positions and momenta with time variant coefficients. While it is simple, this system is useful for modeling the dynamics of a number of systems in contemporary sciences where the equations governing spatial or temporal changes are described by sets of ODEs. The dynamical causal models used readily in neuroscience can be indirectly described by these systems. In this work, we want to show that it is possible to describe these systems using quantum wave function type entities and expectations if the dynamic of the system is related to a set of ODEs.

  14. Optimal control of open quantum systems: A combined surrogate Hamiltonian optimal control theory approach applied to photochemistry on surfaces

    SciTech Connect

    Asplund, Erik; Kluener, Thorsten

    2012-03-28

    In this paper, control of open quantum systems with emphasis on the control of surface photochemical reactions is presented. A quantum system in a condensed phase undergoes strong dissipative processes. From a theoretical viewpoint, it is important to model such processes in a rigorous way. In this work, the description of open quantum systems is realized within the surrogate Hamiltonian approach [R. Baer and R. Kosloff, J. Chem. Phys. 106, 8862 (1997)]. An efficient and accurate method to find control fields is optimal control theory (OCT) [W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998); Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004)]. To gain control of open quantum systems, the surrogate Hamiltonian approach and OCT, with time-dependent targets, are combined. Three open quantum systems are investigated by the combined method, a harmonic oscillator immersed in an ohmic bath, CO adsorbed on a platinum surface, and NO adsorbed on a nickel oxide surface. Throughout this paper, atomic units, i.e., ({Dirac_h}/2{pi})=m{sub e}=e=a{sub 0}= 1, have been used unless otherwise stated.

  15. Quantum mechanical force field for water with explicit electronic polarization

    PubMed Central

    Han, Jaebeom; Mazack, Michael J. M.; Zhang, Peng; Truhlar, Donald G.; Gao, Jiali

    2013-01-01

    A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 106 self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across biological ion channels through membranes. PMID:23927266

  16. Self-Referential Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Mitchell, Mark Kenneth

    1993-01-01

    A nonlinear quantum mechanics based upon the nonlinear logarithmic Schrodinger equation, is developed which has the property of self-reference, that is, the nonlinear term is dependent upon the square of the wavefunction. The self-referential system is examined in terms of its mathematical properties, the definition of the wavefunction, and the nonlinear system in the feedback between equation and solution. Theta operators are introduced which make possible new operations in the quantum phase. Two interpretations are presented utilizing the nonlinear quantum system: the idealistic interpretation based upon consciousness focused upon the measurement problem, and the statistical interpretation focused upon stochastic quantum fluctuations. Experimental properties are examined, beginning with a proposed analog of the Bohm-Aharonov experiment. Interference due to difference in path length for a split electron beam is effected in a region of spacetime where electromagnetic field and the vector potential are enclosed within but screened to be zero at the paths. If the wavefunction's geometrical phase contribution along the paths is different, then there should be interference induced purely by the wave-function alone. A positive result would be due to a purely wavefunction dependent effect. The spin phase of the wavefunction is postulated to be the source of the zitterbewegung of the electron. Reduction of the wavefunction in measurement is examined for self -referential quantum systems arising from consciousness and then arising from a stochastic quantum spacetime model. These results are applied to the mind-brain as a quantum processor producing a behavioral double slit experiment (ideation experiments) and nonlocal transferred potentials in an EPR-style experiment. Looking at the universe as a whole as a quantum self-referential system, leads to a modified zitterbewegung Wheeler-DeWitt equation; and, the transition from quantum-to-classical on a cosmological scale for the measurement problem is accomplished for an expanding-only deSitter quantum spacetime.

  17. Energy conservation in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Prentis, Jeffrey J.; Fedak, William A.

    2004-05-01

    In the classical mechanics of conservative systems, the position and momentum evolve deterministically such that the sum of the kinetic energy and potential energy remains constant in time. This canonical trademark of energy conservation is absent in the standard presentations of quantum mechanics based on the Schrdinger picture. We present a purely canonical proof of energy conservation that focuses exclusively on the time-dependent position x(t) and momentum p(t) operators. This treatment of energy conservation serves as an introduction to the Heisenberg picture and illuminates the classical-quantum connection. We derive a quantum-mechanical work-energy theorem and show explicitly how the time dependence of x and p and the noncommutivity of x and p conspire to bring about a perfect temporal balance between the evolving kinetic and potential parts of the total energy operator.

  18. Quantum mechanical simulation of liquids

    SciTech Connect

    Alder, B.J.; Ceperley, D.M.; Pollock, E.L.

    1985-09-01

    It is possible, in principle, to derive all of the macroscopic properties of matter from the laws that govern the behavior of its elementary constituents. These laws are embodied in quantum mechanics. In contrast to simulating classical systems, however, the quantum mechanical nature of the electrons must be taken into account. A similar but even more ambitious project is to avoid introducing the interaction potential completely and to calculate directly the properties of the entire collection of electrons and nuclei that comprise the molecules of the system. Here the question of whether the Monte Carlo method can also solve this and other problems in quantum many-body statistical mechanics is addressed. 8 references, 5 figures.

  19. QUANTUM MECHANICS. Quantum squeezing of motion in a mechanical resonator.

    PubMed

    Wollman, E E; Lei, C U; Weinstein, A J; Suh, J; Kronwald, A; Marquardt, F; Clerk, A A; Schwab, K C

    2015-08-28

    According to quantum mechanics, a harmonic oscillator can never be completely at rest. Even in the ground state, its position will always have fluctuations, called the zero-point motion. Although the zero-point fluctuations are unavoidable, they can be manipulated. Using microwave frequency radiation pressure, we have manipulated the thermal fluctuations of a micrometer-scale mechanical resonator to produce a stationary quadrature-squeezed state with a minimum variance of 0.80 times that of the ground state. We also performed phase-sensitive, back-action evading measurements of a thermal state squeezed to 1.09 times the zero-point level. Our results are relevant to the quantum engineering of states of matter at large length scales, the study of decoherence of large quantum systems, and for the realization of ultrasensitive sensing of force and motion. PMID:26315431

  20. Quantum Mechanical Earth: Where Orbitals Become Orbits

    ERIC Educational Resources Information Center

    Keeports, David

    2012-01-01

    Macroscopic objects, although quantum mechanical by nature, conform to Newtonian mechanics under normal observation. According to the quantum mechanical correspondence principle, quantum behavior is indistinguishable from classical behavior in the limit of very large quantum numbers. The purpose of this paper is to provide an example of the…

  1. Quantum Mechanical Earth: Where Orbitals Become Orbits

    ERIC Educational Resources Information Center

    Keeports, David

    2012-01-01

    Macroscopic objects, although quantum mechanical by nature, conform to Newtonian mechanics under normal observation. According to the quantum mechanical correspondence principle, quantum behavior is indistinguishable from classical behavior in the limit of very large quantum numbers. The purpose of this paper is to provide an example of the

  2. Reconstruction of Gaussian quantum mechanics from Liouville mechanics with an epistemic restriction

    NASA Astrophysics Data System (ADS)

    Bartlett, Stephen D.; Rudolph, Terry; Spekkens, Robert W.

    2012-07-01

    How would the world appear to us if its ontology was that of classical mechanics but every agent faced a restriction on how much they could come to know about the classical state? We show that in most respects it would appear to us as quantum. The statistical theory of classical mechanics, which specifies how probability distributions over phase space evolve under Hamiltonian evolution and under measurements, is typically called Liouville mechanics, so the theory we explore here is Liouville mechanics with an epistemic restriction. The particular epistemic restriction we posit as our foundational postulate specifies two constraints. The first constraint is a classical analog of Heisenberg's uncertainty principle; the second-order moments of position and momentum defined by the phase-space distribution that characterizes an agent's knowledge are required to satisfy the same constraints as are satisfied by the moments of position and momentum observables for a quantum state. The second constraint is that the distribution should have maximal entropy for the given moments. Starting from this postulate, we derive the allowed preparations, measurements, and transformations and demonstrate that they are isomorphic to those allowed in Gaussian quantum mechanics and generate the same experimental statistics. We argue that this reconstruction of Gaussian quantum mechanics constitutes additional evidence in favor of a research program wherein quantum states are interpreted as states of incomplete knowledge and that the phenomena that do not arise in Gaussian quantum mechanics provide the best clues for how one might reconstruct the full quantum theory.

  3. Time asymmetry in quantum mechanics: a pure mathematical point of view

    NASA Astrophysics Data System (ADS)

    Baumgärtel, Hellmut

    2008-08-01

    In the paper it is pointed out that 'time asymmetry in quantum mechanics' (TAQM) is an intrinsic element of the mathematical apparatus of quantum mechanics for semibounded Hamiltonians H with absolutely continuous spectrum coinciding with the positive half-line and of constant multiplicity. It is shown that the TAQM-semigroups are unsuitable for a spectral characterization of the resonances in terms of H.

  4. Remarks on Osmosis, Quantum Mechanics, and Gravity

    NASA Astrophysics Data System (ADS)

    Carroll, Robert

    2012-05-01

    Some relations of the quantum potential to Weyl geometry are indicated with applications to the Friedmann equations for a toy quantum cosmology. Osmotic velocity and pressure are briefly discussed in terms of quantum mechanics and superfluids with connections to gravity.

  5. Development of multicomponent semistochastic quantum Monte Carlo method for variational solution of molecular Hamiltonian without invoking the Born-Oppenheimer approximation

    NASA Astrophysics Data System (ADS)

    Ellis, Benjamin; Chakraborty, Arindam; Holmes, Adam; Changlani, Hitesh; Umrigar, Cyrus

    2013-03-01

    We present the multicomponent extension of the semistochastic quantum Monte Carlo (mc-SQMC) method for treating electron-nuclear correlation in the molecular Hamiltonian. All particles in the molecule are treated quantum mechanically and the variational solution is obtained with the SQMC method. The key feature of this approach is that the BO and separation-rotor approximation are not assumed. The application of the SQMC method for multicomponent systems involves many formidable challenges and this talk will focus on strategies to address these challenges including, appropriate coordinate system for the molecular Hamiltonian, separation of the center of mass kinetic energy, construction of the 1-particle basis functions for electrons and nuclei, construction of the multicomponent CI space and evaluation of connected configurations needed during propagation step in the SQMC method. Results from mc-SQMC will be presented for H2, He2, and H2O systems. The H2 system has been extensively studied using various methods, such as QMC and PIMC, making it an ideal system to test and compare the mc-SQMC implementation. The impact of the BO approximation and vibration-rotation coupling will be discussed by comparing mc-SQMC results with reported values for the weakly bound He2.

  6. Mathematical Aspects of Quantum Systems with a Pseudo-Hermitian Hamiltonian

    NASA Astrophysics Data System (ADS)

    Bebiano, N.; da Providncia, J.; da Providncia, J. P.

    2016-01-01

    A non-self-adjoint bosonic Hamiltonian H possessing real eigenvalues is investigated. It is shown that the operator can be diagonalized by making use of pseudo-bosonic operators. The biorthogonal sets of eigenvectors for the Hamiltonian and its adjoint are explicitly constructed. The positive definite operator which connects both sets of eigenvectors is also given. The dynamics of the model is briefly analyzed.

  7. Adaptive Perturbation Theory: Quantum Mechanics and Field Theory

    SciTech Connect

    Weinstein, Marvin; /SLAC

    2005-10-19

    Adaptive perturbation is a new method for perturbatively computing the eigenvalues and eigenstates of quantum mechanical Hamiltonians that are widely believed not to be solvable by such methods. The novel feature of adaptive perturbation theory is that it decomposes a given Hamiltonian, H, into an unperturbed part and a perturbation in a way which extracts the leading non-perturbative behavior of the problem exactly. In this talk I will introduce the method in the context of the pure anharmonic oscillator and then apply it to the case of tunneling between symmetric minima. After that, I will show how this method can be applied to field theory. In that discussion I will show how one can non-perturbatively extract the structure of mass, wavefunction and coupling constant renormalization.

  8. Aton, Relativity, and Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    2006-03-01

    In the mechanics of the Aton, we have shown that the Davisson-Germer experiments and other crystal based experiments can be modeled without recourse to particle-wave notions. We have also shown that the energy levels of the hydrogen atom and the helium atom can be calculated accurately with Atonic Mechanics, subject to the limits of three-body effects in the latter atom. Using the Aton concept, we now provide a way to unify Einstein's Relativity with what we commonly refer to as quantum mechanics. We note that entanglement is an intrinsic part of the mechanics of the Aton.

  9. Effective equations for the quantum pendulum from momentous quantum mechanics

    SciTech Connect

    Hernandez, Hector H.; Chacon-Acosta, Guillermo

    2012-08-24

    In this work we study the quantum pendulum within the framework of momentous quantum mechanics. This description replaces the Schroedinger equation for the quantum evolution of the system with an infinite set of classical equations for expectation values of configuration variables, and quantum dispersions. We solve numerically the effective equations up to the second order, and describe its evolution.

  10. Entropy production and equilibration in Yang-Mills quantum mechanics.

    PubMed

    Tsai, Hung-Ming; Mller, Berndt

    2012-01-01

    The Husimi distribution provides for a coarse-grained representation of the phase-space distribution of a quantum system, which may be used to track the growth of entropy of the system. We present a general and systematic method of solving the Husimi equation of motion for an isolated quantum system, and we construct a coarse-grained Hamiltonian whose expectation value is exactly conserved. As an application, we numerically solve the Husimi equation of motion for two-dimensional Yang-Mills quantum mechanics (the x-y model) and calculate the time evolution of the coarse-grained entropy of a highly excited state. We show that the coarse-grained entropy saturates to a value that coincides with the microcanonical entropy corresponding to the energy of the system. PMID:22400515

  11. Quantum mechanics of black holes.

    PubMed

    Witten, Edward

    2012-08-01

    The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely. PMID:22859480

  12. Quantum Mechanics of Black Holes

    NASA Astrophysics Data System (ADS)

    Witten, Edward

    2012-08-01

    The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely.

  13. The isotropic Hamiltonian formalism

    SciTech Connect

    Vaisman, Izu

    2011-02-10

    A Hamiltonian formalism is a procedure that allows to associate a dynamical system to a function and that includes classical Hamiltonian mechanics as a particular case. The present, expository paper gives a survey of the Hamiltonian formalism defined by an isotropic subbundle of TM+T*M, in particular, by a Dirac structure. We discuss reduction and geometric quantization of the Hamiltonian dynamical systems provided by this formalism.

  14. Quantum mechanics and the psyche

    NASA Astrophysics Data System (ADS)

    Galli Carminati, G.; Martin, F.

    2008-07-01

    In this paper we apply the last developments of the theory of measurement in quantum mechanics to the phenomenon of consciousness and especially to the awareness of unconscious components. Various models of measurement in quantum mechanics can be distinguished by the fact that there is, or there is not, a collapse of the wave function. The passive aspect of consciousness seems to agree better with models in which there is no collapse of the wave function, whereas in the active aspect of consciousness—i.e., that which goes together with an act or a choice—there seems to be a collapse of the wave function. As an example of the second possibility we study in detail the photon delayed-choice experiment and its consequences for subjective or psychological time. We apply this as an attempt to explain synchronicity phenomena. As a model of application of the awareness of unconscious components we study the mourning process. We apply also the quantum paradigm to the phenomenon of correlation at a distance between minds, as well as to group correlations that appear during group therapies or group training. Quantum entanglement leads to the formation of group unconscious or collective unconscious. Finally we propose to test the existence of such correlations during sessions of group training.

  15. Quantum isotonic nonlinear oscillator as a Hermitian counterpart of Swanson Hamiltonian and pseudo-supersymmetry

    NASA Astrophysics Data System (ADS)

    Ye?ilta?, zlem

    2011-07-01

    Within the ideas of pseudo-supersymmetry, we have studied a non-Hermitian Hamiltonian H_{-}=\\omega \\big(\\xi ^{\\dag } \\xi +\\frac{1}{2}\\big)+\\alpha \\xi ^{2}+\\beta \\xi ^{\\dag 2}, where ? ? ? and ? is a first-order differential operator, to obtain the partner potentials V+(x) and V-(x) which are new isotonic and isotonic nonlinear oscillators, respectively, as the Hermitian equivalents of the non-Hermitian partner Hamiltonians H. We have provided an algebraic way to obtain the spectrum and wavefunctions of a nonlinear isotonic oscillator. The solutions of V-(x) which are Hermitian counterparts of Swanson Hamiltonian are obtained under some parameter restrictions that are found. Also, we have checked whether the intertwining operator satisfies ?1H- = H+?1, where \\eta _{1}=\\rho ^{-1} {A} \\rho and {A} is the first-order differential operator, which factorizes Hermitian equivalents of H.

  16. Construction of the metric and equivalent Hermitian Hamiltonian via SUSY transformation operators

    SciTech Connect

    Shamshutdinova, V. V.

    2012-10-15

    The metric operator, which is the basic ingredient for studying a quantum system described by a pseudo-Hermitian Hamiltonian, provides the necessary means for obtaining an equivalent description of the system using a Hermitian Hamiltonian. In the framework of supersymmetric quantum mechanics, we propose a method of constructing the metric operator and to obtain the Hermitian Hamiltonian equivalent to the given pseudo-Hermitian.

  17. Quantum Mechanics Beyond Hilbert Space

    NASA Astrophysics Data System (ADS)

    Antoine, J.-P.

    Going Beyond Hilbert Space Why? The Different Formalisms What Does One Obtain? The Mathematical Formalism Rigged Hilbert Spaces Scales and Lattices of Hilbert Spaces Partial Inner Product Spaces Operators on PIP-Spaces Application in Quantum Mechanics: The Fock-Bargmann Representation - Revisited A RHS of Entire Functions A LHS of Entire Functions Around ? Application in Scattering Theory RHS: Resonances, Gamow Vectors, Arrow of Time LHS: Integral Equations vs. Complex Scaling Conclusion

  18. Euclidean relativistic quantum mechanics I

    NASA Astrophysics Data System (ADS)

    Polyzou, Wayne; Kopp, Philip

    2011-10-01

    We introduce a formulation of relativistic quantum mechanics where the dynamical input is Euclidean generating functionals or Green functions. We discuss how dynamical calculations can be performed in this framework without analytic continuation. We discuss the structure of model generating functionals, the construction of the Hilbert space, the Poincar Lie Algebra, one particle eigenstates, and representations of finite Poincar transformations. This work supported the U.S. Department of Energy, under contract DE-FG02-86ER40286.

  19. Euclidean relativistic quantum mechanics II

    NASA Astrophysics Data System (ADS)

    Kopp, Philip; Polyzou, Wayne

    2011-10-01

    We discuss the calculation of scattering amplitudes in relativistic Euclidean quantum mechanics. We discuss the general formulation of the scattering problem, in terms of the existence of wave operators and formal methods for computing scattering amplitudes without analytic continuation. Two models are discussed to illustrate the method and the accuracy of the computations. This work supported the U.S. Department of Energy, under contract DE-FG02-86ER40286.

  20. Facets of contextual realism in quantum mechanics

    SciTech Connect

    Pan, Alok Kumar; Home, Dipankar

    2011-09-23

    In recent times, there is an upsurge of interest in demonstrating the quantum contextuality. In this proceedings, we explore the two different forms of arguments that have been used for showing the contextual character of quantum mechanics. First line of study concerns the violations of the noncontextual realist models by quantum mechanics, where second line of study that is qualitatively distinct from the earlier one, demonstrates the contextuality within the formalism of quantum mechanics.

  1. Action with Acceleration i: Euclidean Hamiltonian and Path Integral

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.

    2013-10-01

    An action having an acceleration term in addition to the usual velocity term is analyzed. The quantum mechanical system is directly defined for Euclidean time using the path integral. The Euclidean Hamiltonian is shown to yield the acceleration Lagrangian and the path integral with the correct boundary conditions. Due to the acceleration term, the state space depends on both position and velocity — and hence the Euclidean Hamiltonian depends on two degrees of freedom. The Hamiltonian for the acceleration system is non-Hermitian and can be mapped to a Hermitian Hamiltonian using a similarity transformation; the matrix elements of the similarity transformation are explicitly evaluated.

  2. Treating time travel quantum mechanically

    NASA Astrophysics Data System (ADS)

    Allen, John-Mark A.

    2014-10-01

    The fact that closed timelike curves (CTCs) are permitted by general relativity raises the question as to how quantum systems behave when time travel to the past occurs. Research into answering this question by utilizing the quantum circuit formalism has given rise to two theories: Deutschian-CTCs (D-CTCs) and "postselected" CTCs (P-CTCs). In this paper the quantum circuit approach is thoroughly reviewed, and the strengths and shortcomings of D-CTCs and P-CTCs are presented in view of their nonlinearity and time-travel paradoxes. In particular, the "equivalent circuit model"which aims to make equivalent predictions to D-CTCs, while avoiding some of the difficulties of the original theoryis shown to contain errors. The discussion of D-CTCs and P-CTCs is used to motivate an analysis of the features one might require of a theory of quantum time travel, following which two overlapping classes of alternate theories are identified. One such theory, the theory of "transition probability" CTCs (T-CTCs), is fully developed. The theory of T-CTCs is shown not to have certain undesirable featuressuch as time-travel paradoxes, the ability to distinguish nonorthogonal states with certainty, and the ability to clone or delete arbitrary pure statesthat are present with D-CTCs and P-CTCs. The problems with nonlinear extensions to quantum mechanics are discussed in relation to the interpretation of these theories, and the physical motivations of all three theories are discussed and compared.

  3. Teaching Quantum Mechanics on an Introductory Level.

    ERIC Educational Resources Information Center

    Muller, Rainer; Wiesner, Hartmut

    2002-01-01

    Presents a new research-based course on quantum mechanics in which the conceptual issues of quantum mechanics are taught at an introductory level. Involves students in the discovery of how quantum phenomena deviate from classical everyday experiences. (Contains 31 references.) (Author/YDS)

  4. Quantum mechanical effects from deformation theory

    SciTech Connect

    Much, A.

    2014-02-15

    We consider deformations of quantum mechanical operators by using the novel construction tool of warped convolutions. The deformation enables us to obtain several quantum mechanical effects where electromagnetic and gravitomagnetic fields play a role. Furthermore, a quantum plane can be defined by using the deformation techniques. This in turn gives an experimentally verifiable effect.

  5. Fuzzy amplitude densities and stochastic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Gudder, Stanley

    1989-03-01

    Fuzzy amplitude densities are employed to obtain probability distributions for measurements that are not perfectly accurate. The resulting quantum probability theory is motivated by the path integral formalism for quantum mechanics. Measurements that are covariant relative to a symmetry group are considered. It is shown that the theory includes traditional as well as stochastic quantum mechanics.

  6. Complexified coherent states and quantum evolution with non-Hermitian Hamiltonians

    NASA Astrophysics Data System (ADS)

    Graefe, Eva-Maria; Schubert, Roman

    2012-06-01

    The complex geometry underlying the Schrdinger dynamics of coherent states for non-Hermitian Hamiltonians is investigated. In particular, two seemingly contradictory approaches are compared: (i) a complex WKB formalism, for which the centres of coherent states naturally evolve along complex trajectories, which leads to a class of complexified coherent states; (ii) the investigation of the dynamical equations for the real expectation values of position and momentum, for which an Ehrenfest theorem has been derived in a previous paper, yielding real but non-Hamiltonian classical dynamics on phase space for the real centres of coherent states. Both approaches become exact for quadratic Hamiltonians. The apparent contradiction is resolved building on an observation by Huber, Heller and Littlejohn, that complexified coherent states are equivalent if their centres lie on a specific complex Lagrangian manifold. A rich underlying complex symplectic geometry is unravelled. In particular, a natural complex structure is identified that defines a projection from complex to real phase space, mapping complexified coherent states to their real equivalents. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to Coherent states: mathematical and physical aspects.

  7. Propagators in polymer quantum mechanics

    SciTech Connect

    Flores-Gonzlez, Ernesto Morales-Tcotl, Hugo A. Reyes, Juan D.

    2013-09-15

    Polymer Quantum Mechanics is based on some of the techniques used in the loop quantization of gravity that are adapted to describe systems possessing a finite number of degrees of freedom. It has been used in two ways: on one hand it has been used to represent some aspects of the loop quantization in a simpler context, and, on the other, it has been applied to each of the infinite mechanical modes of other systems. Indeed, this polymer approach was recently implemented for the free scalar field propagator. In this work we compute the polymer propagators of the free particle and a particle in a box; amusingly, just as in the non polymeric case, the one of the particle in a box may be computed also from that of the free particle using the method of images. We verify the propagators hereby obtained satisfy standard properties such as: consistency with initial conditions, composition and Greens function character. Furthermore they are also shown to reduce to the usual Schrdinger propagators in the limit of small parameter ?{sub 0}, the length scale introduced in the polymer dynamics and which plays a role analog of that of Planck length in Quantum Gravity. -- Highlights: Formulas for propagators of free and particle in a box in polymer quantum mechanics. Initial conditions, composition and Greens function character is checked. Propagators reduce to corresponding Schrdinger ones in an appropriately defined limit. Results show overall consistency of the polymer framework. For the particle in a box results are also verified using formula from method of images.

  8. Deformation of supersymmetric and conformal quantum mechanics through affine transformations

    NASA Technical Reports Server (NTRS)

    Spiridonov, Vyacheslav

    1993-01-01

    Affine transformations (dilatations and translations) are used to define a deformation of one-dimensional N = 2 supersymmetric quantum mechanics. Resulting physical systems do not have conserved charges and degeneracies in the spectra. Instead, superpartner Hamiltonians are q-isospectral, i.e. the spectrum of one can be obtained from another (with possible exception of the lowest level) by q(sup 2)-factor scaling. This construction allows easily to rederive a special self-similar potential found by Shabat and to show that for the latter a q-deformed harmonic oscillator algebra of Biedenharn and Macfarlane serves as the spectrum generating algebra. A general class of potentials related to the quantum conformal algebra su(sub q)(1,1) is described. Further possibilities for q-deformation of known solvable potentials are outlined.

  9. Quantum mechanical light harvesting mechanisms in photosynthesis

    NASA Astrophysics Data System (ADS)

    Scholes, Gregory

    2012-02-01

    More than 10 million billion photons of light strike a leaf each second. Incredibly, almost every red-coloured photon is captured by chlorophyll pigments and initiates steps to plant growth. Last year we reported that marine algae use quantum mechanics in order to optimize photosynthesis [1], a process essential to its survival. These and other insights from the natural world promise to revolutionize our ability to harness the power of the sun. In a recent review [2] we described the principles learned from studies of various natural antenna complexes and suggested how to utilize that knowledge to shape future technologies. We forecast the need to develop ways to direct and regulate excitation energy flow using molecular organizations that facilitate feedback and control--not easy given that the energy is only stored for a billionth of a second. In this presentation I will describe new results that explain the observation and meaning of quantum-coherent energy transfer. [4pt] [1] Elisabetta Collini, Cathy Y. Wong, Krystyna E. Wilk, Paul M. G. Curmi, Paul Brumer, and Gregory D. Scholes, ``Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature'' Nature 463, 644-648 (2010).[0pt] [2] Gregory D. Scholes, Graham R. Fleming, Alexandra Olaya-Castro and Rienk van Grondelle, ``Lessons from nature about solar light harvesting'' Nature Chem. 3, 763-774 (2011).

  10. A semiclassical correction for quantum mechanical energy levels

    SciTech Connect

    Kaledin, Alexey L.; McCurdy, C. William; Miller, William H.

    2010-08-07

    We propose a semiclassical method for correcting molecular energy levels obtained from a quantum mechanical variational calculation. A variational calculation gives the energy level (i.e., eigenvalue) as the expectation value of the molecular Hamiltonian <{phi}|H|{phi}>, where |{phi}> is the trial wave function. The true (i.e., exact) eigenvalue E can thus be expressed as this variational result plus a correction, i.e., E=<{phi}|H|{phi}>+{Delta}E, the correction being due to the lack of exactness of the trial wave function. A formally exact expression for {Delta}E is usually given (via Loewdin partitioning methodology) in terms of the Greens function of the Hamiltonian projected onto the orthogonal complement of |{phi}>. Formal treatment of this expression (using Brillouin-Wigner perturbation theory to infinite order) leads to an expression for {Delta}E that involves matrix elements of the Greens function for the unprojected, i.e., full molecular Hamiltonian, which can then be approximated semiclassically. (Specifically, the Greens function is expressed as the Fourier transform of the quantum mechanical time evolution operator, e{sup -}iHt/({h_bar}/2{pi}), which in turn is approximated by using an initial value representation of semiclassical theory.) Calculations for several test problems (a one dimensional quartic potential, and vibrational energy levels of H{sub 2}O and H{sub 2}CO) clearly support our proposition that the error in the total eigenvalue E arises solely due to the semiclassical error in approximating {Delta}E, which is usually a small fraction of the total energy E itself.

  11. Entropy Production and Equilibration in Yang-Mills Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Tsai, Hung-Ming

    Entropy production in relativistic heavy-ion collisions is an important physical quantity for studying the equilibration and thermalization of hot matters of quantum chromodynamics (QCD). To formulate a nontrivial definition of entropy for an isolated quantum system, a certain kind of coarse graining may be applied so that the entropy for this isolated quantum system depends on time explicitly. The Husimi distribution, which is a coarse grained distribution in the phase space, is a suitable candidate for this approach. We proposed a general and systematic method of solving the equation of motion of the Husimi distribution for an isolated quantum system. The Husimi distribution is positive (semi-)definite all over the phase space. In this method, we assume the Husimi distribution is composed of a large number of Gaussian test functions. The equation of motion of the Husimi distribution, formulated as a partial differential equation, can be transformed into a system of ordinary differential equations for the centers and the widths of these Gaussian test functions. We numerically solve the system of ordinary differential equations for the centers and the widths of these test functions to obtain the Husimi distribution as a function of time. To ensure the numerical solutions of the trajectories of the test particles preserve physical conservation laws, we obtain a constant of motion for the quantum system. We constructed a coarse grained Hamiltonian whose expectation value is exactly conserved. The conservation of the coarse grained energy confirms the validity of this method. Moreover, we calculated the time evolution of the coarse grained entropy for a model system (Yang-Mills quantum mechanics). Yang-Mills quantum mechanics is a quantum system whose classical correspondence possesses chaotic behaviors. The numerical results revealed that the coarse grained entropy for Yang-Mills quantum mechanics saturates to a value that coincides with the microcanonical entropy corresponding to the energy of the system. Our results confirmed the validity of the framework of first-principle evaluation of the coarse grained entropy growth rate. We show that, in the energy regime under study, the relaxation time for the entropy production in Yang-Mills quantum mechanics is approximately the same as the characteristic time of the system, indicating fast equilibration of the system. Fast equilibration of Yang-Mills quantum mechanics is consistent to current understanding of fast equilibration of hot QCD matter in relativistic heavy-ion collisions.

  12. Quantum mechanics in complex systems

    NASA Astrophysics Data System (ADS)

    Hoehn, Ross Douglas

    This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown. These nodes are spaced far enough from each other to minimized the electronic repulsion of the electrons, while still providing adequate enough attraction so as to bind the excess elections into orbitals. We have found that even with relativistic considerations these species are stably bound within the field. It was also found that performing the dimensional scaling calculations for systems within the confines of laser fields to be a much simpler and more cost-effective method than the supporting D=3 SCF method. The dimensional scaling method is general and can be extended to include relativistic corrections to describe the stability of simple molecular systems in super-intense laser fields. Chapter 3, we delineate the model, and aspects therein, of inelastic electron tunneling and map this model to the protein environment. G protein-coupled receptors (GPCRs) constitute a large family of receptors that sense molecules outside of a cell and activate signal transduction pathways inside the cell. Modeling how an agonist activates such a receptor is important for understanding a wide variety of physiological processes and it is of tremendous value for pharmacology and drug design. Inelastic electron tunneling spectroscopy (IETS) has been proposed as the mechanism by which olfactory GPCRs are activated by an encapsulated agonist. In this note we apply this notion to GPCRs within the mammalian nervous system using ab initio quantum chemical modeling. We found that non-endogenous agonists of the serotonin receptor share a singular IET spectral aspect both amongst each other and with the serotonin molecule: a peak that scales in intensity with the known agonist activities. We propose an experiential validation of this model by utilizing lysergic acid dimethylamide (DAM-57), an ergot derivative, and its isotopologues in which hydrogen atoms are replaced by deuterium. If validated our theory may provide new avenues for guided drug design and better in silico prediction of efficacies. Our final chapter, explores methods which may be explored to assist in the early instruction in quantum mechanics. The learning of quantum mechanics is contingent upon an understanding of the physical significance of the mathematics that one must perform. Concepts such as normalization, superposition, interference, probability amplitude and entanglement can prove challenging for the beginning student. This paper outlines several class exercises that use a non-classical version of tic-tac-toe to instruct several topics in an undergraduate quantum mechanics course. Quantum tic-tac-toe (QTTT) is a quantum analogue of classical tic-tac-toe (CTTT) benefiting from the use of superposition in movement, qualitative (and later quantitative) displays of entanglement and state collapse due to observation. QTTT can be used for the benefit of the students understanding in several other topics with the aid of proper discussion.

  13. Mechanism for quantum speedup in open quantum systems

    NASA Astrophysics Data System (ADS)

    Liu, Hai-Bin; Yang, W. L.; An, Jun-Hong; Xu, Zhen-Yu

    2016-02-01

    The quantum speed limit (QSL) time for open system characterizes the most efficient response of the system to the environmental influences. Previous results showed that the non-Markovianity governs the quantum speedup. Via studying the dynamics of a dissipative two-level system, we reveal that the non-Markovian effect is only the dynamical way of the quantum speedup, while the formation of the system-environment bound states is the essential reason for the quantum speedup. Our attribution of the quantum speedup to the energy-spectrum character can supply another vital path for experiments when the quantum speedup shows up without any dynamical calculations. The potential experimental observation of our quantum speedup mechanism in the circuit QED system is discussed. Our results may be of both theoretical and experimental interest in exploring the ultimate QSL in realistic environments, and may open new perspectives for devising active quantum speedup devices.

  14. Heisenberg and the Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Camilleri, Kristian

    2009-02-01

    Preface; 1. Introduction; Part I. The Emergence of Quantum Mechanics: 2. Quantum mechanics and the principle of observability; 3. The problem of interpretation; Part II. The Heisenberg-Bohr Dialogue: 4. The wave-particle duality; 5. Indeterminacy and the limits of classical concepts: the turning point in Heisenberg's thought; 6. Heisenberg and Bohr: divergent viewpoints of complementarity; Part III. Heisenberg's Epistemology and Ontology of Quantum Mechanics: 7. The transformation of Kantian philosophy; 8. The linguistic turn in Heisenberg's thought; Conclusion; References; Index.

  15. Heisenberg and the Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Camilleri, Kristian

    2011-09-01

    Preface; 1. Introduction; Part I. The Emergence of Quantum Mechanics: 2. Quantum mechanics and the principle of observability; 3. The problem of interpretation; Part II. The Heisenberg-Bohr Dialogue: 4. The wave-particle duality; 5. Indeterminacy and the limits of classical concepts: the turning point in Heisenberg's thought; 6. Heisenberg and Bohr: divergent viewpoints of complementarity; Part III. Heisenberg's Epistemology and Ontology of Quantum Mechanics: 7. The transformation of Kantian philosophy; 8. The linguistic turn in Heisenberg's thought; Conclusion; References; Index.

  16. Supersymmetric quantum mechanics: Engineered hierarchies of integrable potentials and related orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Balondo Iyela, Daddy; Govaerts, Jan; Hounkonnou, M. Norbert

    2013-09-01

    Within the context of supersymmetric quantum mechanics and its related hierarchies of integrable quantum Hamiltonians and potentials, a general programme is outlined and applied to its first two simplest illustrations. Going beyond the usual restriction of shape invariance for intertwined potentials, it is suggested to require a similar relation for Hamiltonians in the hierarchy separated by an arbitrary number of levels, N. By requiring further that these two Hamiltonians be in fact identical up to an overall shift in energy, a periodic structure is installed in the hierarchy which should allow for its resolution. Specific classes of orthogonal polynomials characteristic of such periodic hierarchies are thereby generated, while the methods of supersymmetric quantum mechanics then lead to generalised Rodrigues formulae and recursion relations for such polynomials. The approach also offers the practical prospect of quantum modelling through the engineering of quantum potentials from experimental energy spectra. In this paper, these ideas are presented and solved explicitly for the cases N = 1 and N = 2. The latter case is related to the generalised Laguerre polynomials, for which indeed new results are thereby obtained. In the context of dressing chains and deformed polynomial Heisenberg algebras, some partial results for N ? 3 also exist in the literature, which should be relevant to a complete study of the N ? 3 general periodic hierarchies.

  17. Speakable and Unspeakable in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Bell, J. S.; Aspect, Introduction by Alain

    2004-06-01

    List of papers on quantum philosophy by J. S. Bell; Preface; Acknowledgements; Introduction by Alain Aspect; 1. On the problem of hidden variables in quantum mechanics; 2. On the Einstein-Rosen-Podolsky paradox; 3. The moral aspects of quantum mechanics; 4. Introduction to the hidden-variable question; 5. Subject and object; 6. On wave packet reduction in the Coleman-Hepp model; 7. The theory of local beables; 8. Locality in quantum mechanics: reply to critics; 9. How to teach special relativity; 10. Einstein-Podolsky-Rosen experiments; 11. The measurement theory of Everett and de Broglie's pilot wave; 12. Free variables and local causality; 13. Atomic-cascade photons and quantum-mechanical nonlocality; 14. de Broglie-Bohm delayed choice double-slit experiments and density matrix; 15. Quantum mechanics for cosmologists; 16. Bertlmann's socks and the nature of reality; 17. On the impossible pilot wave; 18. Speakable and unspeakable in quantum mechanics; 19. Beables for quantum field theory; 20. Six possible worlds of quantum mechanics; 21. EPR correlations and EPR distributions; 22. Are there quantum jumps?; 23. Against 'measurement'; 24. La Nouvelle cuisine.

  18. A Bit of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Oss, Stefano; Rosi, Tommaso

    2015-04-01

    We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many reasons why quantum mechanical systems and phenomena are difficult both to teach and deeply understand. They are described by equations that are generally hard to visualize, and they often oppose the so-called "common sense" based on the human perception of the world, which is built on mental images such as locality and causality. Moreover students cannot have direct experience of those systems and solutions, and generally do not even have the possibility to refer to pictures, videos, or experiments to fill this gap. Teachers often encounter quite serious troubles in finding out a sensible way to speak about the wonders of quantum physics at the high school level, where complex formalisms are not accessible at all. One should however consider that this is quite a common issue in physics and, more generally, in science education. There are plenty of natural phenomena whose models (not only at microscopic and atomic levels) are of difficult, if not impossible, visualization. Just think of certain kinds of waves, fields of forces, velocities, energy, angular momentum, and so on. One should also notice that physical reality is not the same as the images we make of it. Pictures (formal, abstract ones, as well as artists' views) are a convenient bridge between these two aspects.

  19. BOOK REVIEWS: Quantum Mechanics: Fundamentals

    NASA Astrophysics Data System (ADS)

    Whitaker, A.

    2004-02-01

    This review is of three books, all published by Springer, all on quantum theory at a level above introductory, but very different in content, style and intended audience. That of Gottfried and Yan is of exceptional interest, historical and otherwise. It is a second edition of Gottfried’s well-known book published by Benjamin in 1966. This was written as a text for a graduate quantum mechanics course, and has become one of the most used and respected accounts of quantum theory, at a level mathematically respectable but not rigorous. Quantum mechanics was already solidly established by 1966, but this second edition gives an indication of progress made and changes in perspective over the last thirty-five years, and also recognises the very substantial increase in knowledge of quantum theory obtained at the undergraduate level. Topics absent from the first edition but included in the second include the Feynman path integral, seen in 1966 as an imaginative but not very useful formulation of quantum theory. Feynman methods were given only a cursory mention by Gottfried. Their practical importance has now been fully recognised, and a substantial account of them is provided in the new book. Other new topics include semiclassical quantum mechanics, motion in a magnetic field, the S matrix and inelastic collisions, radiation and scattering of light, identical particle systems and the Dirac equation. A topic that was all but totally neglected in 1966, but which has flourished increasingly since, is that of the foundations of quantum theory. John Bell’s work of the mid-1960s has led to genuine theoretical and experimental achievement, which has facilitated the development of quantum optics and quantum information theory. Gottfried’s 1966 book played a modest part in this development. When Bell became increasingly irritated with the standard theoretical approach to quantum measurement, Viki Weisskopf repeatedly directed him to Gottfried’s book. Gottfried had devoted a chapter of his book to these matters, titled ‘The Measurement Process and the Statistical Interpretation of Quantum Mechanics’. Gottfried considered the von Neumann or Dirac ‘collapse of state-vector’ (or ‘reduction postulate’ or ‘projection postulate’) was unsatisfactory, as he argued that it led inevitably to the requirement to include ‘consciousness’ in the theory. He replaced this by a more mathematically and conceptually sophisticated treatment in which, following measurement, the density matrix of the correlated measured and measuring systems, rho, is replaced by hat rho, in which the interference terms from rho have been removed. rho represents a pure state, and hat rho a mixture, but Gottfried argued that they are ‘indistinguishable’, and that we may make our replacement, ‘safe in the knowledge that the error will never be found’. Now our combined state is represented as a mixture, it is intuitive, Gottfried argued, to interpret it in a probabilistic way, |cm|2 being the probability of obtaining the mth measurement result. Bell liked Gottfried’s treatment little more than the cruder ‘collapse’ idea of von Neumann, and when, shortly before Bell’s death, his polemical article ‘Against measurement’ was published in the August 1990 issue of Physics World (pages 33-40), his targets included, not only Landau and Lifshitz’s classic Quantum Mechanics, pilloried for its advocacy of old-fashioned collapse, and a paper by van Kampen in Physica, but also Gottfried’s approach. Bell regarded his replacement of rho by hat rho as a ‘butchering’ of the density matrix, and considered, in any case, that even the butchered density matrix should represent co-existence of different terms, not a set of probabilities. Gottfried has replied to Bell ( Physics World, October 1991, pages 34-40; Nature 405, 533-36 (2000)). He has also become a major commentator on Bell’s work, for example editing the section on quantum foundations in the World Scientific edition of Bell’s collected works. Thus it is exceedingly interesting to discover how he has responded to Bell’s criticisms in the new edition of the book. To commence with general discussion of the new book, the authors recognise that the graduate student of today almost certainly has substantial experience of wave mechanics, and is probably familiar with the Dirac formalism. The 1966 edition had what seems, at least in retrospect, a relatively soft opening covering the basic ideas of wave mechanics and a substantial number of applications; it did not reach the Dirac formalism in the first two hundred pages, though it then moved on to tackle rather advanced topics, including a very substantial section on symmetries, which tackled a range of sophisticated issues. The new edition has been almost entirely rewritten; even at the level of basic text, it is difficult to trace sentences or paragraphs that have moved unscathed from one edition to the next. As well as the new topics, many of the old ones are discussed in much greater depth, and the general organisation is entirely different. As compared with the steady rise in level of the 1966 edition, the level of this book is fairly consistent throughout, and from the perspective of a beginning graduate student, I would estimate, a little tough. A brief introductory chapter gives a useful, though not particularly straightforward, discussion of complementarity, uncertainty and superposition, and concludes with an informative though very short summary of the discovery of quantum mechanics, together with a few nice photographs of some of its founders. There follow two substantial chapters which are preparation for the later study of actual systems. The first, called ‘The Formal Framework’ is a fairly comprehensive survey of the methods of quantum theory---Hilbert space, Dirac notation, mixtures, the density matrix, entanglement, canonical quantization, equations of motion, symmetries, conservation laws, propagators, Green’s functions, semiclassical quantum mechanics. The level of mathematical rigour is stated as ‘typical of the bulk of theoretical physics literature---slovenly’; those unhappy with this are directed to the well-known books of Jordan and Thirring. The next chapter---‘Basic Tools’---explains a set of topics which students will need to use when studying particular systems---angular momentum and its addition, free particles, the two-body system, and the standard approximation techniques. There follow chapters on low-dimensional systems---harmonic oscillator, Aharanov--Bohm effect, one-dimensional scattering, WKB and so on; hydrogenic atoms---the Kepler problem, fine and hyperfine structure, Zeeman and Stark effects; and on two-electron atoms---spin and statistics. As in the first edition, there is a substantial treatment of symmetries, including time reversal, Galileo transformations, the rotation group, the Wigner-Eckart theorem and the Berry phase. There are two long chapters on scattering---elastic and inelastic respectively, including an account of the S matrix. The treatment of electrodynamics is much extended and modernised compared to that in the first edition. There are discussions of the quantization of the free field, causality and uncertainty in electrodynamics, vacuum fluctuations including the Casimir effect and the Lamb shift, and radiative transitions. There is a treatment of quantum optics, but this a only a brief introduction to a rapidly expanding subject, designed to facilitate understanding of the experiments on Bell’s inequalities discussed in the later chapter on interpretation. Other topics are the photoeffect in hydrogen, scattering of photons, resonant scattering and spontaneous decay. Identical particles are discussed, with a treatment of second quantization and an introduction to Bose--Einstein condensation, and the last chapter is a brief introduction to relativistic quantum mechanics, including the Dirac equation, the electromagnetic interaction of a Dirac particle, the scattering of ultra-relativistic electrons and a treatment of bound states in a Coulomb field. Gottfried and Yan’s response both to the growing interest in work on foundational matters in general, and to the specific criticism of Bell on the previous edition is included in the chapter entitled `Interpretation'. This chapter appears to be something of a hybrid. The first four sections broadly discuss hidden variables. An account of the Einstein--Podolsky--Rosen approach is followed by a general study of hidden variables, including a discussion of what the authors call the Bell--Kochen--Specker theorem. Bell’s theorem is analysed in some detail; also included are the Clauser--Horne inequality and the experimental test of the Bell inequality by Aspect. There is an interesting discussion of locality. Granted that both quantum mechanics and experiment (the latter admittedly with a remaining loophole) are in conflict with what the authors call a classical conception of locality as embodied in the Bell inequality, they ask whether quantum mechanics is actually non-local if one uses a definition of locality entailing no ingredients unknown to quantum mechanics. Their answer is that it is a matter of taste. In the statistical distribution of measurement outcomes on separate systems in entangled states, there is no hint of non-locality and no question of superluminal signalling. But quantum mechanics displays perfect correlations between distant outcomes, even though Bell’s theorem demonstrates that pre-existing values cannot be assumed. The second part of this chapter is a discussion of the measurement procedure similar to that in the first edition. The authors aim to show how measurement results are obtained and displayed, and how the appropriate probabilities are determined. The expression of this intention, however, is accompanied by the statement that they are not attempting to derive the statistical interpretation of quantum mechanics, which is assumed, but to examine whether it gives a consistent account of measurement. The conclusion is that after a measurement, interference terms are ‘effectively’ absent; the set of ‘one-to-one correlations between states of the apparatus and the object’ has the same form as that of everyday statistics and is thus a probability distribution. This probability distribution refers to potentialities, only one of which is actually realized in any one trial. Opinions may differ on whether their treatment is any less vulnerable to criticisms such as those of Bell. To sum up, Gottfried and Yan’s book contains a vast amount of knowledge and understanding. As well as explaining the way in which quantum theory works, it attempts to illuminate fundamental aspects of the theory. A typical example is the ‘fable’ elaborated in Gottfried’s article in Nature cited above, that if Newton were shown Maxwell’s equations and the Lorentz force law, he could deduce the meaning of E and B, but if Maxwell were shown Schrödinger’s equation, he could not deduce the meaning of Psi. For use with a well-constructed course (and, of course, this is the avowed purpose of the book; a useful range of problems is provided for each chapter), or for the relative expert getting to grips with particular aspects of the subject or aiming for a deeper understanding, the book is certainly ideal. It might be suggested, though, that, even compared to the first edition, the isolated learner might find the wide range of topics, and the very large number of mathematical and conceptual techniques, introduced in necessarily limited space, somewhat overwhelming. The second book under consideration, that of Schwabl, contains ‘Advanced’ elements of quantum theory; it is designed for a course following on from one for which Gottfried and Yan, or Schwabl’s own `Quantum Mechanics' might be recommended. It is the second edition in English, and is a translation of the third German edition. It has a restricted range of general topics, and consists of three parts entitled `Nonrelativistic Many-Particle Systems', `Relativistic Wave Equations', and `Relativistic Fields'. Thus it studies in some depth areas of physics which are either dealt with in an introductory fashion, or not reached at all, by Gottfried and Yan. Despite its more advanced level, this book may actually be the more accessible to an isolated learner, because the various aspects are developed in an unhurried fashion; the author remarks that ‘the inclusion of all mathematical steps and full presentation of intermediate calculations ensures ease of understanding’. Many useful student problems are included. The presentation is said to be rigorous, but again this is a book for the physicist rather than the mathematician. The treatment of many-particle systems begins with a rather general introduction to second quantization, and then applies this formalism to spin-1/2 fermions and bosons. The study of fermions includes consideration of the Fermi sphere, the electron gas, and the Hartree--Fock equations for atoms; that of bosons includes Bose--Einstein condensation, Bogoliubov theory of the weakly interacting Bose gas, and a brief account of superfluidity. The last section of this part of the book investigates in detail the dynamics of many-particle systems on a microscopic quantum-mechanical basis using, in particular, the dynamical correlation functions. In the second part which considers relativistic wave equations, the Klein--Gordon and Dirac equations are derived, and the Lorentz covariance of the Dirac equation is established. The role of angular momentum in relativistic quantum mechanics is explained, as a preliminary to the study of the energy levels in a Coulomb potential using both the Klein--Gordon and Dirac equations, the latter being solved exactly for the hydrogen atom. For larger atoms, the Foldy--Wouthuysen transformation is explained, and also relativistic corrections and the Lamb shift. There is an interesting chapter on the physical interpretation of the Dirac equation, including such topics as the negative energy solutions, the Zitterbewegung and the Klein paradox. The last chapter in this part of the book is an extensive treatment of the symmetries and other properties of the Dirac equation, including the behaviour under rotation, translation, reflection, charge conjugation and time reversal. Helicity is explained, and the behaviour of zero-mass fermions is discussed; even though it now seems certain that neutrinos do not have zero-mass, this treatment provides a good approximation to their behaviour if they have high enough momenta. The last section on relativistic fields contains chapters on the quantization of relativistic fields, the free Klein--Gordon and Dirac fields, quantization of the radiation field, interacting fields and quantum electrodynamics, including the S matrix, Wick’s theorem and Feynman diagrams. Schwabl’s book would be excellent for those requiring a detailed presentation of the topics it includes, at a level of rigour appropriate to the physicist. It includes a substantial number of interesting problems. The third book under consideration, that by Gustafson and Sigal is very different from the others. In academic level, at least the initial sections may actually be slightly lower; the book covers a one-term course taken by senior undergraduates or junior graduate students in mathematics or physics, and the initial chapters are on basic topics, such as the physical background, basic dynamics, observables and the uncertainty principle. However the level of mathematical sophistication is far higher than in the other books. While the mathematical prerequisites are modest---real and complex analysis, elementary differential equations and preferably Lebesgue integration, a third of the book is made up of what are called mathematical supplements---on operator adjoints, the Fourier transform, tensor products, the trace and trace class operators, the Trotter product formula, operator determinants, the calculus of variations (a substantial treatment in a full chapter), spectral projections, and the projecting-out procedure. On the basis of these supplements, the level of mathematical sophistication and difficulty is increased substantially in the middle section of the book, where the topics considered are many-particle systems, density matrices, positive temperatures, the Feynman path integral, and quasi-classical analysis, and there is a final substantial step for the concluding chapters on resonances, an introduction to quantum field theory, and quantum electrodynamics of non-relativistic particles. A supplementary chapter contains an interesting approach to the remormalization group due to Bach, Fröhlich and Sigal himself. This book is well-written, and the topics discussed have been well thought-out. It would provide a useful approach to quantum theory for the mathematician, and would also provide access for the physicist to some mathematically advanced methods and topics, but the physicist would definitely have to be prepared to work hard at the mathematics required.

  20. Quantum mechanics: A new chapter?

    NASA Astrophysics Data System (ADS)

    Hofer, Werner A.

    2012-12-01

    We review the conceptual problems in quantum mechanics on a fundamental level. It is shown that the proposed model of extended electrons and a clear understanding of rotations in three dimensional space solve a large part of these problems, in particular the problems related to the ontological status and physical meaning of wavefunctions. It also solves the problem of non-locality. The experimental results obtained in Yves Couder's group and theoretical results by Gerdard Grössing indicate that the wave-like distribution of trajectories of electrons in interference experiments are most likely due to the quantized interactions leading to a discrete set of transferred momenta. A separate experimental confirmation of this interpretation for double-slit interferometry of photons has been given by the group of Steinberg.

  1. Quantum damped oscillator II: Bateman's Hamiltonian vs. 2D parabolic potential barrier

    SciTech Connect

    Chruscinski, Dariusz . E-mail: darch@phys.uni.torun.pl

    2006-04-15

    We show that quantum Bateman's system which arises in the quantization of a damped harmonic oscillator is equivalent to a quantum problem with 2D parabolic potential barrier known also as 2D inverted isotropic oscillator. It turns out that this system displays the family of complex eigenvalues corresponding to the poles of analytical continuation of the resolvent operator to the complex energy plane. It is shown that this representation is more suitable than the hyperbolic one used recently by Blasone and Jizba.

  2. Spectral and Quantum Dynamical Properties of the Weakly Coupled Fibonacci Hamiltonian

    NASA Astrophysics Data System (ADS)

    Damanik, David; Gorodetski, Anton

    2011-07-01

    We consider the spectrum of the Fibonacci Hamiltonian for small values of the coupling constant. It is known that this set is a Cantor set of zero Lebesgue measure. Here we study the limit, as the value of the coupling constant approaches zero, of its thickness and its Hausdorff dimension. We prove that the thickness tends to infinity and, consequently, the Hausdorff dimension of the spectrum tends to one. We also show that at small coupling, all gaps allowed by the gap labeling theorem are open and the length of every gap tends to zero linearly. Moreover, for a sufficiently small coupling, the sum of the spectrum with itself is an interval. This last result provides a rigorous explanation of a phenomenon for the Fibonacci square lattice discovered numerically by Even-Dar Mandel and Lifshitz. Finally, we provide explicit upper and lower bounds for the solutions to the difference equation and use them to study the spectral measures and the transport exponents.

  3. Quantum Mechanics with a Little Less Mystery

    ERIC Educational Resources Information Center

    Cropper, William H.

    1969-01-01

    Suggests the "route of the inquiring mind in presenting the esoteric quantum mechanical postulates and concepts in an understandable form. Explains that the quantum mechanical postulates are but useful mathematical forms to express thebroader principles of superposition and correspondence. Briefly describes some of the features which makes the

  4. Pseudospectra in non-Hermitian quantum mechanics

    NASA Astrophysics Data System (ADS)

    Krejčiřík, D.; Siegl, P.; Tater, M.; Viola, J.

    2015-10-01

    We propose giving the mathematical concept of the pseudospectrum a central role in quantum mechanics with non-Hermitian operators. We relate pseudospectral properties to quasi-Hermiticity, similarity to self-adjoint operators, and basis properties of eigenfunctions. The abstract results are illustrated by unexpected wild properties of operators familiar from PT -symmetric quantum mechanics.

  5. Polymer quantum mechanics and its continuum limit

    SciTech Connect

    Corichi, Alejandro; Vukasinac, Tatjana; Zapata, Jose A.

    2007-08-15

    A rather nonstandard quantum representation of the canonical commutation relations of quantum mechanics systems, known as the polymer representation, has gained some attention in recent years, due to its possible relation with Planck scale physics. In particular, this approach has been followed in a symmetric sector of loop quantum gravity known as loop quantum cosmology. Here we explore different aspects of the relation between the ordinary Schroedinger theory and the polymer description. The paper has two parts. In the first one, we derive the polymer quantum mechanics starting from the ordinary Schroedinger theory and show that the polymer description arises as an appropriate limit. In the second part we consider the continuum limit of this theory, namely, the reverse process in which one starts from the discrete theory and tries to recover back the ordinary Schroedinger quantum mechanics. We consider several examples of interest, including the harmonic oscillator, the free particle, and a simple cosmological model.

  6. Quantum mechanics of the inverted oscillator potential

    NASA Astrophysics Data System (ADS)

    Barton, G.

    1986-02-01

    The Hamiltonian ( 1/2m)p 2 - 1/2m? 2x 2 yields equations solvable in closed form; one is led to them by questions about the longest mean sojourn time T allowed by quantum mechanics to a system near unstable equilibrium. These equations are then studied further in their own right. After criticism of earlier arguments, one finds, by aid of the Green's function, that T ? -1log{ l/( {h?}/{m?) 1/2}} for sojourn in the region | x| < l, where l is the resolving power of the detector. Without appeal to some parameter like l one would get nonsense estimates T ?-1 (e.g., from the nondecay probability familiar in the decay of metastable states). in this potential wavepackets Gaussian in position do not split on impact: their peaks are either transmitted or reflected, depending on the sign of the energy E ? 0; however, they spread so fast that not all the probability ends up on the same side of the origin as the peak. The energy eigenfunctions (parabolic cylinder functions) identify the transmission and reflection amplitudes as T = (1 + e -2?E) -1/2ei?, R = -i(1 + e -2?E) -1/2 e -?E e i?, where ? = arg ?( 1/2 - iE) (in units where 2m = 1 = ? = h?). The density of states for the interval | x| ? L is 2? -1 log L + ? -1?'( E). Wavepackets that are peaked sharply enough in energy travel without dispersion in the asymptotic region | x| > | E|, and do split on impact in the usual way. The travel times and time delays of these packets are determined. For both reflection and transmission, and for both E ? 0, the time delays are given by ?'( E), which is a symmetric function of E, with a positive maximum at E = 0. In particular, packets tunneling under the barrier reemerge sooner if their energy is more negative. This paradox (which occurs also in other tunneling problems) is elucidated as far as possible. Coherent states are constructed by analogy to those of the ordinary oscillator. Though not integrable, their probability distributions do have a recognizable pattern which moves classically. Such states form a complete set only if generated from energy eigenstates with definite parity. If generated from scattering eigenstates, only certain special coherent states are physically admissible, and these do not form a complete set. The effects of resistive (energy dissipating) forces and of thermal agitation are considered briefly. At zero temperature ordinary resistive mechanisms enhance the sojourn time.

  7. Algebraic function operator expectation value based quantum eigenstate determination: A case of twisted or bent Hamiltonian, or, a spatially univariate quantum system on a curved space

    NASA Astrophysics Data System (ADS)

    Baykara, N. A.

    2015-12-01

    Recent studies on quantum evolutionary problems in Demiralp's group have arrived at a stage where the construction of an expectation value formula for a given algebraic function operator depending on only position operator becomes possible. It has also been shown that this formula turns into an algebraic recursion amongst some finite number of consecutive elements in a set of expectation values of an appropriately chosen basis set over the natural number powers of the position operator as long as the function under consideration and the system Hamiltonian are both autonomous. This recursion corresponds to a denumerable infinite number of algebraic equations whose solutions can or can not be obtained analytically. This idea is not completely original. There are many recursive relations amongst the expectation values of the natural number powers of position operator. However, those recursions may not be always efficient to get the system energy values and especially the eigenstate wavefunctions. The present approach is somehow improved and generalized form of those expansions. We focus on this issue for a specific system where the Hamiltonian is defined on the coordinate of a curved space instead of the Cartesian one.

  8. Relation of quantum control mechanism to landscape structure

    NASA Astrophysics Data System (ADS)

    Nanduri, Arun; Donovan, Ashley; Ho, Tak-San; Rabitz, Herschel

    2014-07-01

    The control of quantum dynamics is generally accomplished by seeking a tailored electromagnetic field to meet a posed objective. A particular shaped field can be thought of as specifying a point on a quantum control landscape, which is the objective as a functional of the controls. Optimizing the pulse shape corresponds to climbing the landscape, and previous work showed that the paths taken up the landscapes, guided by a gradient algorithm, are surprisingly straight when projected into the space of control fields. The direct nature of these control trajectories can be quantified by the metric R ?1, defined as the ratio of the length of the control trajectory to the Euclidean distance between its end points. The prior observation of often finding low values of R implies that the landscapes are structurally simple. In this work, we investigate whether there is a relationship between the intricacy of the control mechanism and the complexity of the trajectory taken through the control space reflected in the value of R. We use the Hamiltonian encoding procedure to identify the mechanism, and we examine control of the state-to-state transition probability. No significant correlation is found between the landscape structure, reflected in the value of R, and the control mechanism. This result has algorithmic implications, opening up the prospect of seeking fields producing particular mechanisms at little penalty in the search effort due to encountering complex landscape structure.

  9. Quantum mechanics from Newton's second law and the canonical commutation relation [X, P] = i

    NASA Astrophysics Data System (ADS)

    Palenik, Mark C.

    2014-07-01

    Despite the fact that it has been known since the time of Heisenberg that quantum operators obey a quantum version of Newton's laws, students are often told that derivations of quantum mechanics must necessarily follow from the Hamiltonian or Lagrangian formulations of mechanics. Here, we first derive the existing Heisenberg equations of motion from Newton's laws and the uncertainty principle using only the equations F=\\frac{dP}{dt}, P=m\\frac{dV}{dt}, and [X, P] = i. Then, a new expression for the propagator is derived that makes a connection between time evolution in quantum mechanics and the motion of a classical particle under Newton's laws. The propagator is solved for three cases where an exact solution is possible: (1) the free particle; (2) the harmonic oscillator; and (3) a constant force, or linear potential in the standard interpretation. We then show that for a general for a general force F(X), by Taylor expanding X(t) in time, we can use this methodology to reproduce the Feynman path integral formula for the propagator. Such a picture may be useful for students as they make the transition from classical to quantum mechanics and help solidify the equivalence of the Hamiltonian, Lagrangian, and Newtonian pictures of physics in their minds.

  10. Geometric phase in PT-symmetric quantum mechanics

    SciTech Connect

    Gong Jiangbin; Wang Qinghai

    2010-07-15

    Unitary evolution in PT-symmetric quantum mechanics (QM) with a time-dependent metric is found to yield an interesting class of adiabatic processes. As an explicit example, a Berry-like phase associated with a PT-symmetric two-level system is derived and is interpreted as the flux of a fictitious monopole with a tunable charge plus a singular string component with nontrivial phase contributions. To gain more insight, the Hermitian analog of our non-Hermitian problem is also analyzed, which results in an intriguing class of geometric-phase problems in conventional QM as well, where the Hamiltonian includes a perturbative term that is proportional to the rate of change in adiabatic parameters.

  11. Ad Hoc Physical Hilbert Spaces in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Fernández, Francisco M.; Garcia, Javier; Semorádová, Iveta; Znojil, Miloslav

    2015-12-01

    The overall principles of what is now widely known as PT-symmetric quantum mechanics are listed, explained and illustrated via a few examples. In particular, models based on an elementary local interaction V(x) are discussed as motivated by the naturally emergent possibility of an efficient regularization of an otherwise unacceptable presence of a strongly singular repulsive core in the origin. The emphasis is put on the constructive aspects of the models. Besides the overall outline of the formalism we show how the low-lying energies of bound states may be found in closed form in certain dynamical regimes. Finally, once these energies are found real we explain that in spite of a manifest non-Hermiticity of the Hamiltonian the time-evolution of the system becomes unitary in a properly amended physical Hilbert space.

  12. Conservation laws in the quantum mechanics of closed systems

    SciTech Connect

    Hartle, J.B.; Laflamme, R.; Marolf, D.

    1995-06-15

    We investigate conservation laws in the quantum mechanics of closed systems and begin by reviewing an argument that exact decoherence implies the exact conservation of quantities that commute with the Hamiltonian. However, we also show that decoherence limits the alternatives that can be included in sets of histories that assess the conservation of these quantities. In the case of charge and energy, these limitations would be severe were these quantities not coupled to a gauge field. However, for the realistic cases of electric charge coupled to the electromagnetic field and mass coupled to spacetime curvature, we show that when alternative values of charge and mass decohere they always decohere exactly and are exactly conserved. Further, while decohering histories that describe possible changes in time of the total charge and mass are also subject to the limitations mentioned above, we show that these do not, in fact, restrict {ital physical} alternatives and are therefore not really limitations at all.

  13. Quantum mechanical model for J / ? suppression in the LHC era

    NASA Astrophysics Data System (ADS)

    Pea, C.; Blaschke, D.

    2014-07-01

    We discuss the interplay of screening, absorption and regeneration effects, on the quantum mechanical evolution of quarkonia states, within a time-dependent harmonic oscillator (THO) model with complex oscillator strength. We compare the results with data for RAA /RAA (CNM) from CERN and RHIC experiments. In the absence of a measurement of cold nuclear matter (CNM) effects at LHC we estimate their role and interpret the recent data from the ALICE experiment. We also discuss the temperature dependence of the real and imaginary parts of the oscillator frequency which stand for screening and absorption/regeneration, respectively. We point out that a structure in the J / ? suppression pattern for In-In collisions at SPS is possibly related to the recently found X (3872) state in the charmonium spectrum. Theoretical support for this hypothesis comes from the cluster expansion of the plasma Hamiltonian for heavy quarkonia in a strongly correlated medium.

  14. The transactional interpretation of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Cramer, John G.

    1986-07-01

    The interpretational problems of quantum mechanics are considered. The way in which the standard Copenhagen interpretation of quantum mechanics deals with these problems is reviewed. A new interpretation of the formalism of quantum mechanics, the transactional interpretation, is presented. The basic element of this interpretation is the transaction describing a quantum event as an exchange of advanced and retarded waves, as implied by the work of Wheeler and Feynman, Dirac, and others. The transactional interpretation is explicitly nonlocal and thereby consistent with recent tests of the Bell inequality, yet is relativistically invariant and fully causal. A detailed comparison of the transactional and Copenhagen interpretations is made in the context of well-known quantum-mechanical Gedankenexperimente and "paradoxes." The transactional interpretation permits quantum-mechanical wave functions to be interpreted as real waves physically present in space rather than as "mathematical representations of knowledge" as in the Copenhagen interpretation. The transactional interpretation is shown to provide insight into the complex character of the quantum-mechanical state vector and the mechanism associated with its "collapse." It also leads in a natural way to justification of the Heisenberg uncertainty principle and the Born probability law (P=ψψ*), basic elements of the Copenhagen interpretation.

  15. Strange Bedfellows: Quantum Mechanics and Data Mining

    SciTech Connect

    Weinstein, Marvin; /SLAC

    2009-12-16

    Last year, in 2008, I gave a talk titled Quantum Calisthenics. This year I am going to tell you about how the work I described then has spun off into a most unlikely direction. What I am going to talk about is how one maps the problem of finding clusters in a given data set into a problem in quantum mechanics. I will then use the tricks I described to let quantum evolution lets the clusters come together on their own.

  16. "simplest Molecule" Clarifies Modern Physics II. Relativistic Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Reimer, T. C.; Harter, W. G.

    2014-06-01

    A "simplest molecule" consisting of CW-laser beam pairs helps to clarify relativity in Talk I. In spite of a seemingly massless evanescence, an optical pair also clarifies classical and quantum mechanics of relativistic matter and anti-matter. *Logical extension of (x,ct) and (ω,ck) geometry gives relativistic action functions of Hamiltonian, Lagrangian, and Poincare that may be constructed in a few ruler-and-compass steps to relate relativistic parameters for group or phase velocity, momentum, energy, rapidity, stellar aberration, Doppler shifts, and DeBroglie wavelength. This exposes hyperbolic and circular trigonometry as two sides of one coin connected by Legendre contact transforms. One is Hamiltonian-like with a longitudinal rapidity parameter ρ (log of Doppler shift). The other is Lagrange-like with a transverse angle parameter σ (stellar aberration). Optical geometry gives recoil in absorption, emission, and resonant Raman-Compton acceleration and distinguishes Einstein rest mass, Galilean momentum mass, and Newtonian effective mass. (Molecular photons appear less bullet-like and more rocket-like.) In conclusion, modern space-time physics appears as a simple result of the more self-evident Evenson's axiom: "All colors go c."

  17. ``Simplest Molecule'' Clarifies Modern Physics II. Relativistic Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Harter, William; Reimer, Tyle

    2015-05-01

    A ``simplest molecule'' consisting of CW- laser beam pairs helps to clarify relativity from poster board - I. In spite of a seemingly massless evanescence, an optical pair also clarifies classical and quantum mechanics of relativistic matter and antimatter. Logical extension of (x,ct) and (ω,ck) geometry gives relativistic action functions of Hamiltonian, Lagrangian, and Poincare that may be constructed in a few ruler-and-compass steps to relate relativistic parameters for group or phase velocity, momentum, energy, rapidity, stellar aberration, Doppler shifts, and DeBroglie wavelength. This exposes hyperbolic and circular trigonometry as two sides of one coin connected by Legendre contact transforms. One is Hamiltonian-like with a longitudinal rapidity parameter ρ (log of Doppler shift). The other is Lagrange-like with a transverse angle parameter σ (stellar aberration). Optical geometry gives recoil in absorption, emission, and resonant Raman-Compton acceleration and distinguishes Einstein rest mass, Galilean momentum mass, and Newtonian effective mass. (Molecular photons appear less bullet-like and more rocket-like.) In conclusion, modern space-time physics appears as a simple result of the more self-evident Evenson's axiom: ``All colors go c.''

  18. Quantum mechanics and the generalized uncertainty principle

    SciTech Connect

    Bang, Jang Young; Berger, Micheal S.

    2006-12-15

    The generalized uncertainty principle has been described as a general consequence of incorporating a minimal length from a theory of quantum gravity. We consider a simple quantum mechanical model where the operator corresponding to position has discrete eigenvalues and show how the generalized uncertainty principle results for minimum uncertainty wave packets.

  19. Marshall-positive SU (N ) quantum spin systems and classical loop models: A practical strategy to design sign-problem-free spin Hamiltonians

    NASA Astrophysics Data System (ADS)

    Kaul, Ribhu K.

    2015-02-01

    We consider bipartite SU (N ) spin Hamiltonians with a fundamental representation on one sublattice and a conjugate to fundamental on the other sublattice. By mapping these antiferromagnets to certain classical loop models in one higher dimension, we provide a practical strategy to write down a large family of SU (N ) symmetric spin Hamiltonians that satisfy Marshall's sign condition. This family includes all previously known sign-free SU (N ) spin models in this representation and in addition provides a large set of new models that are Marshall positive and can hence be studied efficiently with quantum Monte Carlo methods. As an application of our idea to the square lattice, we show that in addition to Sandvik's Q term, there is an independent nontrivial four-spin R term that is sign free. Using numerical simulations, we show how the R term provides a new route to the study of quantum criticality of Néel order.

  20. Comment on ``Adiabatic quantum computation with a one-dimensional projector Hamiltonian''

    NASA Astrophysics Data System (ADS)

    Kay, Alastair

    2013-10-01

    The partial adiabatic search algorithm was introduced in Tulsi's paper [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.80.052328 80, 052328 (2009)] as a modification of the usual adiabatic algorithm for a quantum search with the idea that most of the interesting computation only happens over a very short range of the adiabatic path. By focusing on that restricted range, one can potentially gain an advantage by reducing the control requirements on the system, enabling a uniform rate of evolution. In this Comment, we point out an oversight in Tulsi's paper [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.80.052328 80, 052328 (2009)] that invalidates its proof. However, the argument can be corrected, and the calculations in Tulsi's paper [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.80.052328 80, 052328 (2009)] are then sufficient to show that the scheme still works. Nevertheless, subsequent works [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.034304 82, 034304 (2010), Chin. Phys. BCPBHAJ1674-105610.1088/1674-1056/20/4/040309 20, 040309 (2011), Chin. Phys. BCPBHAJ1674-105610.1088/1674-1056/21/1/010306 21, 010306 (2012), AASRI Procedia 1, 5862 (2012), and Quantum Inf. Process.10.1007/s11128-013-0557-1 12, 2689 (2013)] cannot all be recovered in the same way.

  1. Quantum theory of two-photon correlated-spontaneous-emission lasers: Exact atom-field interaction Hamiltonian approach

    SciTech Connect

    Lu, N.; Zhu, S. )

    1989-11-15

    A quantum theory of two-photon correlated-spontaneous-emission lasers (CEL's) is developed, starting from the exact atom-field interaction Hamiltonian for cascade three-level atoms interacting with a single-mode radiation field. We consider the situation where the active atoms are prepared initially in a coherent superposition of three atomic levels and derive a master equation for the field-density operator by using a quantum theory for coherently pumped lasers. The master equation is transformed into a Fokker-Planck equation for the antinormal-ordering {ital Q} function. The drift coefficients of the Fokker-Planck equation enable us to study the steady-state operation of the two-photon CEL's analytically. We have studied both resonant two-photon CEL for which there is no threshold, and off-resonant two-photon CEL for which there exists a threshold. In both cases the initial atomic coherences provide phase locking, and squeezing in the phase quadrature of the field is found. The off-resonant two-photon CEL can build up from a vacuum when its linear gain is larger than the cavity loss (even without population inversion). Maximum squeezing is found in the no-population-inversion region with the laser intensities far below saturation in both cases, which are more than 90% for the resonant two-photon CEL and nearly 50% for the off-resonant one. Approximate steady-state {ital Q} functions are obtained for the resonant two-photon CEL and, in certain circumstances, for the off-resonant one.

  2. Fundamental Quantum Mechanics--A Graphic Presentation

    ERIC Educational Resources Information Center

    Wise, M. N.; Kelley, T. G.

    1977-01-01

    Describes a presentation of basic quantum mechanics for nonscience majors that relies on a computer-generated graphic display to circumvent the usual mathematical difficulties. It allows a detailed treatment of free-particle motion in a wave picture. (MLH)

  3. Quantum mechanical streamlines. I - Square potential barrier

    NASA Technical Reports Server (NTRS)

    Hirschfelder, J. O.; Christoph, A. C.; Palke, W. E.

    1974-01-01

    Exact numerical calculations are made for scattering of quantum mechanical particles hitting a square two-dimensional potential barrier (an exact analog of the Goos-Haenchen optical experiments). Quantum mechanical streamlines are plotted and found to be smooth and continuous, to have continuous first derivatives even through the classical forbidden region, and to form quantized vortices around each of the nodal points. A comparison is made between the present numerical calculations and the stationary wave approximation, and good agreement is found between both the Goos-Haenchen shifts and the reflection coefficients. The time-independent Schroedinger equation for real wavefunctions is reduced to solving a nonlinear first-order partial differential equation, leading to a generalization of the Prager-Hirschfelder perturbation scheme. Implications of the hydrodynamical formulation of quantum mechanics are discussed, and cases are cited where quantum and classical mechanical motions are identical.

  4. Quantum mechanical stabilization of Minkowski signature wormholes

    SciTech Connect

    Visser, M.

    1989-05-19

    When one attempts to construct classical wormholes in Minkowski signature Lorentzian spacetimes violations of both the weak energy hypothesis and averaged weak energy hypothesis are encountered. Since the weak energy hypothesis is experimentally known to be violated quantum mechanically, this suggests that a quantum mechanical analysis of Minkowski signature wormholes is in order. In this note I perform a minisuperspace analysis of a simple class of Minkowski signature wormholes. By solving the Wheeler-de Witt equation for pure Einstein gravity on this minisuperspace the quantum mechanical wave function of the wormhole is obtained in closed form. The wormhole is shown to be quantum mechanically stabilized with an average radius of order the Planck length. 8 refs.

  5. Student Difficulties in Learning Quantum Mechanics.

    ERIC Educational Resources Information Center

    Johnston, I. D.; Crawford, K.; Fletcher, P. R.

    1998-01-01

    Reports on a preliminary project that uses a phenomenographic approach to explore the ways in which a small number of fundamental ideas are conceptualized by students who are judged to have mastered quantum mechanics material. (DDR)

  6. Intrusion Detection with Quantum Mechanics: A Photonic Quantum Fence

    SciTech Connect

    Humble, Travis S; Bennink, Ryan S; Grice, Warren P; Owens, Israel J

    2008-01-01

    We describe the use of quantum-mechanically entangled photons for sensing intrusions across a physical perimeter. Our approach to intrusion detection uses the no-cloning principle of quantum information science as protection against an intruder s ability to spoof a sensor receiver using a classical intercept-resend attack. We explore the bounds on detection using quantum detection and estimation theory, and we experimentally demonstrate the underlying principle of entanglement-based detection using the visibility derived from polarization-correlation measurements.

  7. Elastic tunneling charge transport mechanisms in silicon quantum dots / Si O 2 thin films and superlattices

    NASA Astrophysics Data System (ADS)

    Illera, S.; Prades, J. D.; Cirera, A.

    2015-05-01

    The role of different charge transport mechanisms in Si / Si O 2 structures has been studied. A theoretical model based on the Transfer Hamiltonian Formalism has been developed to explain experimental current trends in terms of three different elastic tunneling processes: (1) trap assisted tunneling; (2) transport through an intermediate quantum dot; and (3) direct tunneling between leads. In general, at low fields carrier transport is dominated by the quantum dots whereas, for moderate and high fields, transport through deep traps inherent to the SiO2 is the most relevant process. Besides, current trends in Si / Si O 2 superlattice structure have been properly reproduced.

  8. Uncertainty in quantum mechanics: faith or fantasy?

    PubMed

    Penrose, Roger

    2011-12-13

    The word 'uncertainty', in the context of quantum mechanics, usually evokes an impression of an essential unknowability of what might actually be going on at the quantum level of activity, as is made explicit in Heisenberg's uncertainty principle, and in the fact that the theory normally provides only probabilities for the results of quantum measurement. These issues limit our ultimate understanding of the behaviour of things, if we take quantum mechanics to represent an absolute truth. But they do not cause us to put that very 'truth' into question. This article addresses the issue of quantum 'uncertainty' from a different perspective, raising the question of whether this term might be applied to the theory itself, despite its unrefuted huge success over an enormously diverse range of observed phenomena. There are, indeed, seeming internal contradictions in the theory that lead us to infer that a total faith in it at all levels of scale leads us to almost fantastical implications. PMID:22042902

  9. Macroscopic quantum mechanics in a classical spacetime.

    PubMed

    Yang, Huan; Miao, Haixing; Lee, Da-Shin; Helou, Bassam; Chen, Yanbei

    2013-04-26

    We apply the many-particle Schrdinger-Newton equation, which describes the coevolution of a many-particle quantum wave function and a classical space-time geometry, to macroscopic mechanical objects. By averaging over motions of the objects' internal degrees of freedom, we obtain an effective Schrdinger-Newton equation for their centers of mass, which can be monitored and manipulated at quantum levels by state-of-the-art optomechanics experiments. For a single macroscopic object moving quantum mechanically within a harmonic potential well, its quantum uncertainty is found to evolve at a frequency different from its classical eigenfrequency-with a difference that depends on the internal structure of the object-and can be observable using current technology. For several objects, the Schrdinger-Newton equation predicts semiclassical motions just like Newtonian physics, yet quantum uncertainty cannot be transferred from one object to another. PMID:23679686

  10. Macroscopic Quantum Mechanics, Tunnelling, and Classical Gravity

    NASA Astrophysics Data System (ADS)

    Good, Deborah C.; McLain, Marie A. P.; Carr, Lincoln D.

    2014-03-01

    Macroscopic quantum mechanics is an active area of experimental research, which could benefit from understanding the effects of gravitational interactions in tunnelling. The Schrödinger-Newton equation is one method for describing Newtonian gravitational interactions in quantum mechanics. While the Schrödinger-Newton equation has been thoroughly described for the single-particle case, there are still open questions in the many-body case. Therefore, we investigate semi-classical solutions to the Schrödinger-Newton equation for the many-body quantum tunnelling case using a variational-WKB method.

  11. Stochastic surrogate Hamiltonian

    SciTech Connect

    Katz, Gil; Kosloff, Ronnie; Gelman, David; Ratner, Mark A.

    2008-07-21

    The surrogate Hamiltonian is a general scheme to simulate the many body quantum dynamics composed of a primary system coupled to a bath. The method has been based on a representative bath Hamiltonian composed of two-level systems that is able to mimic the true system-bath dynamics up to a prespecified time. The original surrogate Hamiltonian method is limited to short time dynamics since the size of the Hilbert space required to obtain convergence grows exponentially with time. By randomly swapping bath modes with a secondary thermal reservoir, the method can simulate quantum dynamics of the primary system from short times to thermal equilibrium. By averaging a small number of realizations converged values of the system observables are obtained avoiding the exponential increase in resources. The method is demonstrated for the equilibration of a molecular oscillator with a thermal bath.

  12. A dynamical time operator in Dirac's relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Bauer, M.

    2014-03-01

    A self-adjoint dynamical time operator is introduced in Dirac's relativistic formulation of quantum mechanics and shown to satisfy a commutation relation with the Hamiltonian analogous to that of the position and momentum operators. The ensuing time-energy uncertainty relation involves the uncertainty in the instant of time when the wave packet passes a particular spatial position and the energy uncertainty associated with the wave packet at the same time, as envisaged originally by Bohr. The instantaneous rate of change of the position expectation value with respect to the simultaneous expectation value of the dynamical time operator is shown to be the phase velocity, in agreement with de Broglie's hypothesis of a particle associated wave whose phase velocity is larger than c. Thus, these two elements of the original basis and interpretation of quantum mechanics are integrated into its formal mathematical structure. Pauli's objection is shown to be resolved or circumvented. Possible relevance to current developments in electron channeling, in interference in time, in Zitterbewegung-like effects in spintronics, graphene and superconducting systems and in cosmology is noted.

  13. Coulomb problem in non-commutative quantum mechanics

    NASA Astrophysics Data System (ADS)

    Glikov, Veronika; Prenajder, Peter

    2013-05-01

    The aim of this paper is to find out how it would be possible for space non-commutativity (NC) to alter the quantum mechanics (QM) solution of the Coulomb problem. The NC parameter ? is to be regarded as a measure of the non-commutativity - setting ? = 0 which means a return to the standard quantum mechanics. As the very first step a rotationally invariant NC space {R}^3_?, an analog of the Coulomb problem configuration space (R3 with the origin excluded) is introduced. {R}^3_? is generated by NC coordinates realized as operators acting in an auxiliary (Fock) space F. The properly weighted Hilbert-Schmidt operators in F form H_?, a NC analog of the Hilbert space of the wave functions. We will refer to them as "wave functions" also in the NC case. The definition of a NC analog of the hamiltonian as a hermitian operator in H_? is one of the key parts of this paper. The resulting problem is exactly solvable. The full solution is provided, including formulas for the bound states for E < 0 and low-energy scattering for E > 0 (both containing NC corrections analytic in ?) and also formulas for high-energy scattering and unexpected bound states at ultra-high energy (both containing NC corrections singular in ?). All the NC contributions to the known QM solutions either vanish or disappear in the limit ? ? 0.

  14. Classical explanations of results of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Giese, Albrecht

    2015-09-01

    We present a particle model which was developed to explain special relativity by classical means. This model is also able to account for physical processes that are normally attributed to quantum mechanics. The model is able to describe several well-known QM processes by means of classical calculations, making them accessible to the imagination. An essential difference compared with the Standard Model of present-day particle physics is the fact that, in the model presented, particles are viewed as being extended rather than point-like. In addition, the strong force is shown to be the universal force operating in all particles. Also, the photon, which quantum mechanics views as being nothing but a quantum of energy, can be understood to have an internal structure. The model presented here is not merely a different way of explaining physics with similar results; in contrast to quantum mechanics, it has the ability to provide deeper insights into physical processes.

  15. A "Bit" of Quantum Mechanics

    ERIC Educational Resources Information Center

    Oss, Stefano; Rosi, Tommaso

    2015-01-01

    We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many…

  16. A "Bit" of Quantum Mechanics

    ERIC Educational Resources Information Center

    Oss, Stefano; Rosi, Tommaso

    2015-01-01

    We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many

  17. Quantum Mechanics, Spacetime Locality, and Gravity

    NASA Astrophysics Data System (ADS)

    Nomura, Yasunori

    2013-08-01

    Quantum mechanics introduces the concept of probability at the fundamental level, yielding the measurement problem. On the other hand, recent progress in cosmology has led to the "multiverse" picture, in which our observed universe is only one of the many, bringing an apparent arbitrariness in defining probabilities, called the measure problem. In this paper, we discuss how these two problems are related with each other, developing a picture for quantum measurement and cosmological histories in the quantum mechanical universe. In order to describe the cosmological dynamics correctly within the full quantum mechanical context, we need to identify the structure of the Hilbert space for a system with gravity. We argue that in order to keep spacetime locality, the Hilbert space for dynamical spacetime must be defined only in restricted spacetime regions: in and on the (stretched) apparent horizon as viewed from a fixed reference frame. This requirement arises from eliminating all the redundancies and overcountings in a general relativistic, global spacetime description of nature. It is responsible for horizon complementarity as well as the "observer dependence" of horizons/spacetimethese phenomena arise to represent changes of the reference frame in the relevant Hilbert space. This can be viewed as an extension of the Poincar transformation in the quantum gravitational context. Given an initial condition, the evolution of the multiverse state obeys the laws of quantum mechanicsit evolves deterministically and unitarily. The beginning of the multiverse, however, is still an open issue.

  18. Nonrelativistic Quantum Mechanics with Fundamental Environment

    NASA Astrophysics Data System (ADS)

    Gevorkyan, Ashot S.

    2011-03-01

    Spontaneous transitions between bound states of an atomic system, "Lamb Shift" of energy levels and many other phenomena in real nonrelativistic quantum systems are connected within the influence of the quantum vacuum fluctuations ( fundamental environment (FE)) which are impossible to consider in the limits of standard quantum-mechanical approaches. The joint system "quantum system (QS) + FE" is described in the framework of the stochastic differential equation (SDE) of Langevin-Schrdinger (L-Sch) type, and is defined on the extended space R 3 ? R { ?}, where R 3 and R { ?} are the Euclidean and functional spaces, respectively. The density matrix for single QS in FE is defined. The entropy of QS entangled with FE is defined and investigated in detail. It is proved that as a result of interaction of QS with environment there arise structures of various topologies which are a new quantum property of the system.

  19. Nambu quantum mechanics on discrete 3-tori

    NASA Astrophysics Data System (ADS)

    Axenides, M.; Floratos, E. G.; Nicolis, S.

    2009-07-01

    We propose a quantization of linear, volume preserving, maps on the discrete and finite 3-torus \\mathbb{T}_N^3 represented by elements of the group SL(3,\\mathbb{Z}_N) . These flows can be considered as special motions of the Nambu dynamics (linear Nambu flows) in the three-dimensional toroidal phase space and are characterized by invariant vectors a of \\mathbb{T}_N^3 . We quantize all such flows, which are necessarily restricted on a planar two-dimensional phase space, embedded in the 3-torus, transverse to the vector a. The corresponding maps belong to the little group of \\bm{a} \\in SL(3,\\mathbb{Z}_N) , which is an SL(2,\\mathbb{Z}_N) subgroup. The associated linear Nambu maps are generated by a pair of linear and quadratic Hamiltonians (Clebsch-Monge potentials of the flow) and the corresponding quantum maps realize the metaplectic representation of SL(3,\\mathbb{Z}_N) on the discrete group of three-dimensional magnetic translations, i.e. the non-commutative 3-torus with a deformation parameter the Nth root of unity. Other potential applications of our construction are related to the quantization of deterministic chaos in turbulent maps as well as to quantum tomography of three-dimensional objects.

  20. Quantum Mechanics Based Multiscale Modeling of Materials

    NASA Astrophysics Data System (ADS)

    Lu, Gang

    2013-03-01

    We present two quantum mechanics based multiscale approaches that can simulate extended defects in metals accurately and efficiently. The first approach (QCDFT) can treat multimillion atoms effectively via density functional theory (DFT). The method is an extension of the original quasicontinuum approach with DFT as its sole energetic formulation. The second method (QM/MM) has to do with quantum mechanics/molecular mechanics coupling based on the constrained density functional theory, which provides an exact framework for a self-consistent quantum mechanical embedding. Several important materials problems will be addressed using the multiscale modeling approaches, including hydrogen-assisted cracking in Al, magnetism-controlled dislocation properties in Fe and Si pipe diffusion along Al dislocation core. We acknowledge the support from the Office of Navel Research and the Army Research Office.

  1. Levitated Quantum Nano-Magneto-Mechanical Systems

    NASA Astrophysics Data System (ADS)

    Cirio, Mauro; Twamley, Jason; Brennen, Gavin K.; Milburn, Gerard J.

    2011-03-01

    Quantum nanomechanical sysems have attracted much attention as they provide new macroscopic platforms for the study of quantum mechanics but may also have applications in ultra-sensitive sensing, high precision measurements and in quantum computing. In this work we study the control and cooling of a quantum nanomechanical system which is magnetically levitated via the Meissner effect. Supercurrents in nano-sized superconducting loops give rise to a motional restoring force (trap), when placed in an highly inhomogenous magnetic field and can yield complete trapping of all translational and rotational motions of the levitated nano-object with motional oscillation frequencies ? ~ 10 - 100 MHz. As the supercurrents experience little damping this system will possess unprecendented motional quality factors, with Qmotion ~109 -1013 , and motional superposition states may remain coherent for days. We describe how to execute sideband cooling through inductive coupling to a nearby flux qubit, cooling the mechanical motion close to the ground state.

  2. Measurements and mathematical formalism of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Slavnov, D. A.

    2007-03-01

    A scheme for constructing quantum mechanics is given that does not have Hilbert space and linear operators as its basic elements. Instead, a version of algebraic approach is considered. Elements of a noncommutative algebra (observables) and functionals on this algebra (elementary states) associated with results of single measurements are used as primary components of the scheme. On the one hand, it is possible to use within the scheme the formalism of the standard (Kolmogorov) probability theory, and, on the other hand, it is possible to reproduce the mathematical formalism of standard quantum mechanics, and to study the limits of its applicability. A short outline is given of the necessary material from the theory of algebras and probability theory. It is described how the mathematical scheme of the paper agrees with the theory of quantum measurements, and avoids quantum paradoxes.

  3. Optimal guidance law in quantum mechanics

    SciTech Connect

    Yang, Ciann-Dong Cheng, Lieh-Lieh

    2013-11-15

    Following de Broglie’s idea of a pilot wave, this paper treats quantum mechanics as a problem of stochastic optimal guidance law design. The guidance scenario considered in the quantum world is that an electron is the flight vehicle to be guided and its accompanying pilot wave is the guidance law to be designed so as to guide the electron to a random target driven by the Wiener process, while minimizing a cost-to-go function. After solving the stochastic optimal guidance problem by differential dynamic programming, we point out that the optimal pilot wave guiding the particle’s motion is just the wavefunction Ψ(t,x), a solution to the Schrödinger equation; meanwhile, the closed-loop guidance system forms a complex state–space dynamics for Ψ(t,x), from which quantum operators emerge naturally. Quantum trajectories under the action of the optimal guidance law are solved and their statistical distribution is shown to coincide with the prediction of the probability density function Ψ{sup ∗}Ψ. -- Highlights: •Treating quantum mechanics as a pursuit-evasion game. •Reveal an interesting analogy between guided flight motion and guided quantum motion. •Solve optimal quantum guidance problem by dynamic programming. •Gives a formal proof of de Broglie–Bohm’s idea of a pilot wave. •The optimal pilot wave is shown to be a wavefunction solved from Schrödinger equation.

  4. Hot Fluids and Nonlinear Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Mahajan, Swadesh M.; Asenjo, Felipe A.

    2014-09-01

    A hot relativistic fluid is viewed as a collection of quantum objects that represent interacting elementary particles. We present a conceptual framework for deriving nonlinear equations of motion obeyed by these hypothesized objects. A uniform phenomenological prescription, to affect the quantum transition from a corresponding classical system, is invoked to derive the nonlinear Schrdinger, Klein-Gordon, and Pauli-Schrdinger and Feynman-GellMaan equations. It is expected that the emergent hypothetical nonlinear quantum mechanics would advance, in a fundamental way, both the conceptual understanding and computational abilities, particularly, in the field of extremely high energy-density physics.

  5. Hot Fluids and Nonlinear Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Mahajan, Swadesh M.; Asenjo, Felipe A.

    2015-05-01

    A hot relativistic fluid is viewed as a collection of quantum objects that represent interacting elementary particles. We present a conceptual framework for deriving nonlinear equations of motion obeyed by these hypothesized objects. A uniform phenomenological prescription, to affect the quantum transition from a corresponding classical system, is invoked to derive the nonlinear Schrdinger, Klein-Gordon, and Pauli-Schrdinger and Feynman-GellMaan equations. It is expected that the emergent hypothetical nonlinear quantum mechanics would advance, in a fundamental way, both the conceptual understanding and computational abilities, particularly, in the field of extremely high energy-density physics.

  6. Testing the limits of quantum mechanical superpositions

    NASA Astrophysics Data System (ADS)

    Arndt, Markus; Hornberger, Klaus

    2014-04-01

    Quantum physics has intrigued scientists and philosophers alike, because it challenges our notions of reality and locality -- concepts that we have grown to rely on in our macroscopic world. It is an intriguing open question whether the linearity of quantum mechanics extends into the macroscopic domain. Scientific progress over the past decades inspires hope that this debate may be settled by table-top experiments.

  7. Epistemology of quantum mechanics: the Vxj viewpoint

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei

    2011-09-01

    This paper summarizes the experience of the Vxj series of conferences - the longest series of conferences on foundations of quantum mechanics. One of the main lessons of this series is that the present state of development of quantum theory does not exclude a possibility to elaborate a local realistic interpretation. One of such interpretations, the Vxj interpretation, combines realism and contextuality. And it became recognized worldwide.

  8. Three-Hilbert-Space Formulation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Znojil, Miloslav

    2009-01-01

    In paper [Znojil M., Phys. Rev. D 78 (2008), 085003, 5 pages, arXiv:0809.2874] the two-Hilbert-space (2HS, a.k.a. cryptohermitian) formulation of Quantum Mechanics has been revisited. In the present continuation of this study (with the spaces in question denoted as H(auxiliary) and H(standard)) we spot a weak point of the 2HS formalism which lies in the double role played by H(auxiliary). As long as this confluence of roles may (and did!) lead to confusion in the literature, we propose an amended, three-Hilbert-space (3HS) reformulation of the same theory. As a byproduct of our analysis of the formalism we offer an amendment of the Dirac's bra-ket notation and we also show how its use clarifies the concept of covariance in time-dependent cases. Via an elementary example we finally explain why in certain quantum systems the generator H(gen) of the time-evolution of the wave functions may differ from their Hamiltonian H.

  9. From classical to quantum mechanics: ``How to translate physical ideas into mathematical language''

    NASA Astrophysics Data System (ADS)

    Bergeron, H.

    2001-09-01

    Following previous works by E. Prugove?ki [Physica A 91A, 202 (1978) and Stochastic Quantum Mechanics and Quantum Space-time (Reidel, Dordrecht, 1986)] on common features of classical and quantum mechanics, we develop a unified mathematical framework for classical and quantum mechanics (based on L2-spaces over classical phase space), in order to investigate to what extent quantum mechanics can be obtained as a simple modification of classical mechanics (on both logical and analytical levels). To obtain this unified framework, we split quantum theory in two parts: (i) general quantum axiomatics (a system is described by a state in a Hilbert space, observables are self-adjoints operators, and so on) and (ii) quantum mechanics proper that specifies the Hilbert space as L2(Rn); the Heisenberg rule [pi,qj]=-i??ij with p=-i??, the free Hamiltonian H=-?2?/2m and so on. We show that general quantum axiomatics (up to a supplementary "axiom of classicity") can be used as a nonstandard mathematical ground to formulate physical ideas and equations of ordinary classical statistical mechanics. So, the question of a "true quantization" with "?" must be seen as an independent physical problem not directly related with quantum formalism. At this stage, we show that this nonstandard formulation of classical mechanics exhibits a new kind of operation that has no classical counterpart: this operation is related to the "quantization process," and we show why quantization physically depends on group theory (the Galilei group). This analytical procedure of quantization replaces the "correspondence principle" (or canonical quantization) and allows us to map classical mechanics into quantum mechanics, giving all operators of quantum dynamics and the Schrdinger equation. The great advantage of this point of view is that quantization is based on concrete physical arguments and not derived from some "pure algebraic rule" (we exhibit also some limit of the correspondence principle). Moreover spins for particles are naturally generated, including an approximation of their interaction with magnetic fields. We also recover by this approach the semi-classical formalism developed by E. Prugove?ki [Stochastic Quantum Mechanics and Quantum Space-time (Reidel, Dordrecht, 1986)].

  10. Multichannel framework for singular quantum mechanics

    SciTech Connect

    Camblong, Horacio E.; Epele, Luis N.; Fanchiotti, Huner; García Canal, Carlos A.; Ordóñez, Carlos R.

    2014-01-15

    A multichannel S-matrix framework for singular quantum mechanics (SQM) subsumes the renormalization and self-adjoint extension methods and resolves its boundary-condition ambiguities. In addition to the standard channel accessible to a distant (“asymptotic”) observer, one supplementary channel opens up at each coordinate singularity, where local outgoing and ingoing singularity waves coexist. The channels are linked by a fully unitary S-matrix, which governs all possible scenarios, including cases with an apparent nonunitary behavior as viewed from asymptotic distances. -- Highlights: •A multichannel framework is proposed for singular quantum mechanics and analogues. •The framework unifies several established approaches for singular potentials. •Singular points are treated as new scattering channels. •Nonunitary asymptotic behavior is subsumed in a unitary multichannel S-matrix. •Conformal quantum mechanics and the inverse quartic potential are highlighted.

  11. Space and time from quantum mechanics

    NASA Astrophysics Data System (ADS)

    Chew, G. F.

    1992-09-01

    Classical mechanics historically preceded quantum mechanics and thus far has not been displaced from primary status; the path to construction of quantum theory has remained rooted in classical ideas about objective reality within space and time. Use of a less correct theory as underpinning for a more correct theory not only is unaesthetic but has spawned the perplexing and never-resolved puzzle of measurement. A growing number of physicist-philosophers torture themselves these days over the collapse of the quantum-mechanical state vector when measurement is performed. Additionally, the pointlike structure of the spacetime manifold underlying local classical fields has endowed quantum theory with mathematical dilemmas. It has been proposed by Gell-Mann and Hartle that objectively-realistic ideas such as measurement may lack a priori status, the predominantly classical present universe having evolved as a relic of the big bang. Other authors have suggested that spacetime itself need not be a priori but may stem from quantum mechanics. Haag has written recently that spacetime without (quantum) events is probably a meaningless concept. Henry Stapp and I have for several years been exploring a simple quantum system devoid of classical underpinning, even spacetime, but admitting within the Hilbert space a special Lie-group-related category of vector known as a coherent state. Groups unitarily representable in our Hilbert space include the Poincare group, which relates to 3 + 1 spacetime. Coherent states generally are labeled by parameters associated with unitary group representations, and it has long been recognized that when such parameters become large a classical objective interpretation may result. Stapp and I have been attempting to understand space and time via large coherent-state parameters. Six years ago I presented to this gathering a preliminary report on our enterprise; in this paper I provide an update.

  12. Space and time from quantum mechanics

    SciTech Connect

    Chew, G.F.

    1992-09-16

    Classical mechanics historically preceded quantum mechanics and thus far has not been displaced from primary status; the path to construction of quantum theory has remained rooted in classical ideas about objective reality within space and time. Use of a less correct theory as underpinning for a more correct theory not only is unaesthetic but has spawned the perplexing and never-resolved puzzle of measurement. A growing number of physicist-philosophers torture themselves these days over collapse of the quantum-mechanical state vector when measurement is performed. Additionally, pointlike structure of the spacetime manifold underlying local classical fields has endowed quantum theory with mathematical dilemmas. It has been proposed by Gell-Mann and Hartle that objectively-realistic ideas such as measurement may lack a priori status, the predominantly classical present universe having evolved as a relic of the big bang. Other authors have suggested that spacetime itself need not be a priori but may stem from quantum mechanics. Haag has written recently that spacetime without (quantum) events is probably a meaningless concept. Henry Stapp and I have for several years been exploring a simple quantum system devoid of classical underpinning, even spacetime, but admitting within the Hilbert space a special Lie-group-related category of vector known as coherent state. Groups unitarily representable in our Hilbert space include the Poincare group, which relates to 3 + 1 spacetime. Coherent states generally are labeled by parameters associated with unitary group representations, and it has long been recognized that when such parameters become large a classical objective interpretation may result. Stapp and I have been attempting to understand space and time via large coherent-state parameters. Six years ago I presented to this gathering a preliminary report on our enterprise; in this paper I provide an update.

  13. Davidson potential and SUSYQM in the Bohr Hamiltonian

    SciTech Connect

    Georgoudis, P. E.

    2013-06-10

    The Bohr Hamiltonian is modified through the Shape Invariance principle of SUper-SYmmetric Quantum Mechanics for the Davidson potential. The modification is equivalent to a conformal transformation of Bohr's metric, generating a different {beta}-dependence of the moments of inertia.

  14. Hamiltonian description of the ideal fluid

    SciTech Connect

    Morrison, P.J.

    1994-01-01

    Fluid mechanics is examined from a Hamiltonian perspective. The Hamiltonian point of view provides a unifying framework; by understanding the Hamiltonian perspective, one knows in advance (within bounds) what answers to expect and what kinds of procedures can be performed. The material is organized into five lectures, on the following topics: rudiments of few-degree-of-freedom Hamiltonian systems illustrated by passive advection in two-dimensional fluids; functional differentiation, two action principles of mechanics, and the action principle and canonical Hamiltonian description of the ideal fluid; noncanonical Hamiltonian dynamics with examples; tutorial on Lie groups and algebras, reduction-realization, and Clebsch variables; and stability and Hamiltonian systems.

  15. Two basic Uncertainty Relations in Quantum Mechanics

    SciTech Connect

    Angelow, Andrey

    2011-04-07

    In the present article, we discuss two types of uncertainty relations in Quantum Mechanics-multiplicative and additive inequalities for two canonical observables. The multiplicative uncertainty relation was discovered by Heisenberg. Few years later (1930) Erwin Schroedinger has generalized and made it more precise than the original. The additive uncertainty relation is based on the three independent statistical moments in Quantum Mechanics-Cov(q,p), Var(q) and Var(p). We discuss the existing symmetry of both types of relations and applicability of the additive form for the estimation of the total error.

  16. Thermodynamic formalism for quantum-mechanical systems

    NASA Astrophysics Data System (ADS)

    Beck, Christian

    1991-05-01

    Based on the thermodynamic formalism of dynamical systems I present an alternative formulation of Euclidean quantum mechanics on the lattice. A class of deterministic chaotic maps is introduced that simulate nonrelativistic quantum-mechanical systems with arbitrary scalar and vector potential. Applying thermodynamic formalism to these maps the partition function converges to the propagator of the Schrdinger equation (with imaginary time) and the free energy to the ground state energy in an appropriate scaling limit. To illustrate the method I determine ground state energies for the harmonic and anharmonic oscillator, and calculate the integrated propagator of the hydrogen atom.

  17. Emergence of Quantum Mechanics from a Sub-Quantum Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Grssing, Gerhard

    2015-10-01

    A research program within the scope of theories on "Emergent Quantum Mechanics" is presented, which has gained some momentum in recent years. Via the modeling of a quantum system as a non-equilibrium steady-state maintained by a permanent throughput of energy from the zero-point vacuum, the quantum is considered as an emergent system. We implement a specific "bouncer-walker" model in the context of an assumed sub-quantum statistical physics, in analogy to the results of experiments by Couder and Fort on a classical wave-particle duality. We can thus give an explanation of various quantum mechanical features and results on the basis of a "21st century classical physics", such as the appearance of Planck's constant, the Schrdinger equation, etc. An essential result is given by the proof that averaged particle trajectories' behaviors correspond to a specific type of anomalous diffusion termed "ballistic" diffusion on a sub-quantum level...

  18. A proof of von Neumann's postulate in Quantum Mechanics

    SciTech Connect

    Conte, Elio

    2010-05-04

    A Clifford algebraic analysis is explained. It gives proof of von Neumann's postulate on quantum measurement. It is of basic significance to explain the problem of quantum wave function reduction in quantum mechanics.

  19. A formula relating sojourn times to the time of arrival in Hamiltonian dynamics

    NASA Astrophysics Data System (ADS)

    Gournay, A.; Tiedra de Aldecoa, R.

    2012-06-01

    We consider on a manifold M equipped with a Poisson bracket { ·, ·} a Hamiltonian H with complete flow and a family Φ ≡ (Φ1, …, Φd) of abstract position observables satisfying the condition {{Φj, H}, H} = 0 for each j. Under these assumptions, we prove a new formula relating sojourn times in dilated regions defined in terms of Φ to the time of arrival of classical orbits. The correspondence between this formula and a formula established recently in the framework of quantum mechanics is put into evidence. Among other examples, our theory applies to Stark Hamiltonians, homogeneous Hamiltonians, purely kinetic Hamiltonians, the repulsive harmonic potential, central force systems, the Poincaré ball model, the wave equation, the nonlinear Schrödinger equation, the Korteweg-de Vries equation and quantum Hamiltonians defined via expectation values.

  20. Differentiable-path integrals in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Koch, Benjamin; Reyes, Ignacio

    2015-06-01

    A method is presented which restricts the space of paths entering the path integral of quantum mechanics to subspaces of C?, by only allowing paths which possess at least ? derivatives. The method introduces two external parameters, and induces the appearance of a particular time scale ?D such that for time intervals longer than ?D the model behaves as usual quantum mechanics. However, for time scales smaller than ?D, modifications to standard formulation of quantum theory occur. This restriction renders convergent some quantities which are usually divergent in the time-continuum limit ? ? 0. We illustrate the model by computing several meaningful physical quantities such as the mean square velocity , the canonical commutator, the Schrdinger equation and the energy levels of the harmonic oscillator. It is shown that an adequate choice of the parameters introduced makes the evolution unitary.

  1. Euclidean formulation of relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Kopp, P.; Polyzou, W. N.

    2012-01-01

    In this paper, we discuss a formulation of relativistic quantum mechanics that uses model Euclidean Green functions or their generating functional as input. This formalism has a close relation to quantum field theory, but as a theory of linear operators on a Hilbert space, it has the advantages of quantum mechanics. One interesting feature of this approach is that matrix elements of operators in normalizable states on the physical Hilbert space can be calculated directly using the Euclidean Green functions without performing an analytic continuation. The formalism is summarized in this paper. We discuss the motivation, advantages, and difficulties in using this formalism. We discuss how to compute bound states, scattering cross sections, and finite Poincar transformations without using analytic continuation. A toy model is used to demonstrate how matrix elements of e-?H in normalizable states can be used to construct sharp-momentum transition-matrix elements.

  2. The inside observer in quantum mechanics

    SciTech Connect

    Mould, R.

    1995-11-01

    The {open_quotes}observer{close_quotes} in physics has always referred to someone who stands on the outside of a system looking in. In this paper an {open_quotes}inside observer{close_quotes} is defined, and an experiment is proposed that tests a given formulation of the problem of measurement in quantum mechanics.

  3. Quantum Mechanics Studies of Cellobiose Conformations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three regions of the Phi,Psi space of cellobiose were analyzed with quantum mechanics. A central region, in which most crystal structures are found, was covered by a 9 x 9 grid of 20° increments of Phi and Psi. Besides these 81 constrained minimizations, we studied two central sub-regions and two re...

  4. Comparison of Classical and Quantum Mechanical Uncertainties.

    ERIC Educational Resources Information Center

    Peslak, John, Jr.

    1979-01-01

    Comparisons are made for the particle-in-a-box, the harmonic oscillator, and the one-electron atom. A classical uncertainty principle is derived and compared with its quantum-mechanical counterpart. The results are discussed in terms of the statistical interpretation of the uncertainty principle. (Author/BB)

  5. The geometric semantics of algebraic quantum mechanics.

    PubMed

    Cruz Morales, John Alexander; Zilber, Boris

    2015-08-01

    In this paper, we will present an ongoing project that aims to use model theory as a suitable mathematical setting for studying the formalism of quantum mechanics. We argue that this approach provides a geometric semantics for such a formalism by means of establishing a (non-commutative) duality between certain algebraic and geometric objects. PMID:26124252

  6. Quantum mechanics is compatible with realism

    SciTech Connect

    Burgos, M.E.

    1987-08-01

    A new paradox of quantum mechanics has recently been proposed by an author claiming that any attempt to inject realism in physical theory is bound to lead to inconsistencies. In this paper the author shows that the mentioned paradox is not such a one and that at present there are no reasons to reject realism.

  7. Can quantum mechanics fool the cosmic censor?

    SciTech Connect

    Matsas, G. E. A.; Silva, A. R. R. da; Richartz, M.; Saa, A.; Vanzella, D. A. T.

    2009-05-15

    We revisit the mechanism for violating the weak cosmic-censorship conjecture (WCCC) by overspinning a nearly-extreme charged black hole. The mechanism consists of an incoming massless neutral scalar particle, with low energy and large angular momentum, tunneling into the hole. We investigate the effect of the large angular momentum of the incoming particle on the background geometry and address recent claims that such a backreaction would invalidate the mechanism. We show that the large angular momentum of the incident particle does not constitute an obvious impediment to the success of the overspinning quantum mechanism, although the induced backreaction turns out to be essential to restoring the validity of the WCCC in the classical regime. These results seem to endorse the view that the 'cosmic censor' may be oblivious to processes involving quantum effects.

  8. PREFACE: Singular interactions in quantum mechanics: solvable models

    NASA Astrophysics Data System (ADS)

    Dell'Antonio, Gianfausto; Exner, Pavel; Geyler, Vladimir

    2005-06-01

    This issue comprises two dozen research papers which are all in one sense or another devoted to models in which the interaction is singular and sharply localized; a typical example is a quantum particle interacting with a family of δ-type potentials. Such an idealization usually makes analysis of their properties considerably easier, sometimes allowing us to reduce it to a simple algebraic problem—this is why one speaks about solvable models. The subject can be traced back to the early days of quantum mechanics; however, the progress in this field was slow and uneven until the 1960s, mostly because singular interactions are often difficult to deal with mathematically and intuitive arguments do not work. After overcoming the initial difficulties the `classical' theory of point interactions was developed, and finally summarized in 1988 in a monograph by Albeverio, Gesztesy, Høegh-Krohn, and Holden, which you will find quoted in numerous places within this issue. A reliable way to judge theories is to observe the progress they make within one or two decades. In this case there is no doubt that the field has witnessed a continuous development and covered areas which nobody had thought of when the subject first emerged. The reader may see it in the second edition of the aforementioned book which was published by AMS Chelsea only recently and contained a brief survey of these new achievements. It is no coincidence that this topical issue appears at the same time; it has been conceived as its counterpart and a forum at which fresh results in the field can demonstrated. Let us briefly survey the contents of the issue. While the papers included have in common the basic subject, they represent a broad spectrum philosophically as well as technically, and any attempt to classify them is somewhat futile. Nevertheless, we will divide them into a few groups. The first comprises contributions directly related to the usual point-interaction ideology. M Correggi and one of the editors study a toy model of a decay under the influence of a time-periodic δ potential. E Demiralp describes the spectrum of a spherical harmonic oscillator amended with a concentric family of δ-shell interactions. Another of the editors presents an isoperimetric problem for point interactions arranged at vertices of a polygon. W Huddell and R Hughes show how singular perturbations of a one-dimensional Dirac operator can be approximated by regular potentials, and J Brasche constructs a family of Hamiltonians in which the singular interaction has a more complicated support, namely a Brownian path. Finally, B Pavlov and I Antoniou apply the singular perturbation technique to another classical Hamiltonian, that of a generalized Friedrichs model; no matter that the unperturbed observable is called momentum in their paper. The three papers in the following group are distinguished by the fact that they consider systems which are fully or partially periodic. F Bentosela and M Tater analyse scattering on a crystalline `slab' modelled by point interactions distributed periodically on a finite number of parallel plates. E de Prunelé studies evolution of wavepackets in crystal models of different geometries, and M Avdonin et al discuss a simple model of a spin-dependent scattering on a one-dimensional array of quantum dots. The next group of papers is devoted to a topic which was untouched at the time of the aforementioned first edition, namely quantum graphs, which became a subject of interest after numerous applications of such systems to semiconductor, carbon and other nanostructures. Most contributions here deal with the `usual' model in which the Hamiltonian is a Schrödinger operator supported by the graph. P Kuchment describes spectral properties of such graphs, in particular periodic ones and those with decorations. S Albeverio and K Pankrashkin present a modification of Krein's formula which is suitable for constructing Hamiltonians of quantum graphs using boundary conditions at vertices directly. Two papers are devoted to inverse problems in this context: M Harmer studies inverse scattering for the matrix Schrödinger operator on the halfline with applications to star graphs, while P Kurasov and M Nowaczyk give a mathematically rigorous version of the known Gutkin-Smilansky result on the inverse spectral problem. The paper by O Post contributes to the question of how graphs can be approximated by more realistic `fat' graphs, and describes a class leading to disconnected quantum graphs. Finally, S Kondej and one of the editors study scattering in the context of `leaky' graphs which takes quantum tunnelling into account. While most results in this field describe one-particle Hamiltonians, more complicated systems have also been studied. In this issue we have three examples. C Cacciapuito, R Carlone, and R Figari discuss decoherence in a simple model of two particles, one heavy and one light, interacting through a δ potential; they give a rigorous meaning to a formula derived by Joos and Zeh. A related model by R Figari and A Teta is used to describe ionization. M Hallnäs, E Langmann, and C Paufler treat a true N-body situation, namely a model of one-dimensional gas of distinguishable particles interacting through generalized point interactions; they write the Bethe ansatz and present the solution of a particular case. The last group is a collection of contributions which in one sense or another are outside quantum mechanics, either modifying its postulates or applying it to a different physical situation. The latter applies to the paper of D Noja and A Posilicano in which they study nonlinear wave equations with point perturbations and show the existence of a solution to the Cauchy problem. F Coutinho et al discuss one-dimensional point interactions with energy-dependent coupling constant, S Albeverio and S Kuzhel examine a class of point interactions which are not symmetric but P-symmetric, where P is the parity operator, and M Znojil and V Jakubský consider a `double-well' PT-symmetric model with two δ interactions with an imaginary coupling. The last two papers present mathematical constructions. Yu Shondin demonstrates a way to define an interaction more singular than the usual δ potentials obtained by means of self-adjoint extensions, and V Koshmanenko presents a construction of strongly singular perturbations leading to rather unusual `Hamiltonians'.

  9. Time and the foundations of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Pashby, Thomas

    Quantum mechanics has provided philosophers of science with many counterintuitive insights and interpretive puzzles, but little has been written about the role that time plays in the theory. One reason for this is the celebrated argument of Wolfgang Pauli against the inclusion of time as an observable of the theory, which has been seen as a demonstration that time may only enter the theory as a classical parameter. Against this orthodoxy I argue that there are good reasons to expect certain kinds of `time observables' to find a representation within quantum theory, including clock operators (which provide the means to measure the passage of time) and event time operators, which provide predictions for the time at which a particular event occurs, such as the appearance of a dot on a luminescent screen. I contend that these time operators deserve full status as observables of the theory, and on re ection provide a uniquely compelling reason to expand the set of observables allowed by the standard formalism of quantum mechanics. In addition, I provide a novel association of event time operators with conditional probabilities, and propose a temporally extended form of quantum theory to better accommodate the time of an event as an observable quantity. This leads to a proposal to interpret quantum theory within an event ontology, inspired by Bertrand Russell's Analysis of Matter. On this basis I mount a defense of Russell's relational theory of time against a recent attack.

  10. Quantum mechanical studies of carbon structures

    SciTech Connect

    Bartelt, Norman Charles; Ward, Donald; Zhou, Xiaowang; Foster, Michael E.; Schultz, Peter A.; Wang, Bryan M.; McCarty, Kevin F.

    2015-10-01

    Carbon nanostructures, such as nanotubes and graphene, are of considerable interest due to their unique mechanical and electrical properties. The materials exhibit extremely high strength and conductivity when defects created during synthesis are minimized. Atomistic modeling is one technique for high resolution studies of defect formation and mitigation. To enable simulations of the mechanical behavior and growth mechanisms of C nanostructures, a high-fidelity analytical bond-order potential for the C is needed. To generate inputs for developing such a potential, we performed quantum mechanical calculations of various C structures.

  11. What is behind small deviations of quantum mechanics theory from experiments? Observer's mathematics point of view

    NASA Astrophysics Data System (ADS)

    Khots, Boris; Khots, Dmitriy

    2014-12-01

    Certain results that have been predicted by Quantum Mechanics (QM) theory are not always supported by experiments. This defines a deep crisis in contemporary physics and, in particular, quantum mechanics. We believe that, in fact, the mathematical apparatus employed within today's physics is a possible reason. In particular, we consider the concept of infinity that exists in today's mathematics as the root cause of this problem. We have created Observer's Mathematics that offers an alternative to contemporary mathematics. This paper is an attempt to relay how Observer's Mathematics may explain some of the contradictions in QM theory results. We consider the Hamiltonian Mechanics, Newton equation, Schrodinger equation, two slit interference, wave-particle duality for single photons, uncertainty principle, Dirac equations for free electron in a setting of arithmetic, algebra, and topology provided by Observer's Mathematics (see www.mathrelativity.com). Certain results and communications pertaining to solution of these problems are provided.

  12. What is behind small deviations of quantum mechanics theory from experiments? Observer's mathematics point of view

    SciTech Connect

    Khots, Boris; Khots, Dmitriy

    2014-12-10

    Certain results that have been predicted by Quantum Mechanics (QM) theory are not always supported by experiments. This defines a deep crisis in contemporary physics and, in particular, quantum mechanics. We believe that, in fact, the mathematical apparatus employed within today's physics is a possible reason. In particular, we consider the concept of infinity that exists in today's mathematics as the root cause of this problem. We have created Observer's Mathematics that offers an alternative to contemporary mathematics. This paper is an attempt to relay how Observer's Mathematics may explain some of the contradictions in QM theory results. We consider the Hamiltonian Mechanics, Newton equation, Schrodinger equation, two slit interference, wave-particle duality for single photons, uncertainty principle, Dirac equations for free electron in a setting of arithmetic, algebra, and topology provided by Observer's Mathematics (see www.mathrelativity.com). Certain results and communications pertaining to solution of these problems are provided.

  13. A Primer on Resonances in Quantum Mechanics

    SciTech Connect

    Rosas-Ortiz, Oscar; Fernandez-Garcia, Nicolas; Cruz y Cruz, Sara

    2008-11-13

    After a pedagogical introduction to the concept of resonance in classical and quantum mechanics, some interesting applications are discussed. The subject includes resonances occurring as one of the effects of radiative reaction, the resonances involved in the refraction of electromagnetic waves by a medium with a complex refractive index, and quantum decaying systems described in terms of resonant states of the energy (Gamow-Siegert functions). Some useful mathematical approaches like the Fourier transform, the complex scaling method and the Darboux transformation are also reviewed.

  14. Quantum mechanical coherence, resonance, and mind

    SciTech Connect

    Stapp, H.P.

    1995-03-26

    Norbert Wiener and J.B.S. Haldane suggested during the early thirties that the profound changes in our conception of matter entailed by quantum theory opens the way for our thoughts, and other experiential or mind-like qualities, to play a role in nature that is causally interactive and effective, rather than purely epiphenomenal, as required by classical mechanics. The mathematical basis of this suggestion is described here, and it is then shown how, by giving mind this efficacious role in natural process, the classical character of our perceptions of the quantum universe can be seen to be a consequence of evolutionary pressures for the survival of the species.

  15. RG-Whitham dynamics and complex Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Gorsky, A.; Milekhin, A.

    2015-06-01

    Inspired by the Seiberg-Witten exact solution, we consider some aspects of the Hamiltonian dynamics with the complexified phase space focusing at the renormalization group (RG)-like Whitham behavior. We show that at the Argyres-Douglas (AD) point the number of degrees of freedom in Hamiltonian system effectively reduces and argue that anomalous dimensions at AD point coincide with the Berry indexes in classical mechanics. In the framework of Whitham dynamics AD point turns out to be a fixed point. We demonstrate that recently discovered Dunne-nsal relation in quantum mechanics relevant for the exact quantization condition exactly coincides with the Whitham equation of motion in the ?-deformed theory.

  16. Emergence of quantum mechanics from a sub-quantum statistical mechanics

    NASA Astrophysics Data System (ADS)

    Grssing, Gerhard

    2014-07-01

    A research program within the scope of theories on "Emergent Quantum Mechanics" is presented, which has gained some momentum in recent years. Via the modeling of a quantum system as a non-equilibrium steady-state maintained by a permanent throughput of energy from the zero-point vacuum, the quantum is considered as an emergent system. We implement a specific "bouncer-walker" model in the context of an assumed sub-quantum statistical physics, in analogy to the results of experiments by Couder and Fort on a classical wave-particle duality. We can thus give an explanation of various quantum mechanical features and results on the basis of a "21st century classical physics", such as the appearance of Planck's constant, the Schrdinger equation, etc. An essential result is given by the proof that averaged particle trajectories' behaviors correspond to a specific type of anomalous diffusion termed "ballistic" diffusion on a sub-quantum level. It is further demonstrated both analytically and with the aid of computer simulations that our model provides explanations for various quantum effects such as double-slit or n-slit interference. We show the averaged trajectories emerging from our model to be identical to Bohmian trajectories, albeit without the need to invoke complex wavefunctions or any other quantum mechanical tool. Finally, the model provides new insights into the origins of entanglement, and, in particular, into the phenomenon of a "systemic" non-locality.

  17. Coulomb problem in non-commutative quantum mechanics

    SciTech Connect

    Galikova, Veronika; Presnajder, Peter

    2013-05-15

    The aim of this paper is to find out how it would be possible for space non-commutativity (NC) to alter the quantum mechanics (QM) solution of the Coulomb problem. The NC parameter {lambda} is to be regarded as a measure of the non-commutativity - setting {lambda}= 0 which means a return to the standard quantum mechanics. As the very first step a rotationally invariant NC space R{sub {lambda}}{sup 3}, an analog of the Coulomb problem configuration space (R{sup 3} with the origin excluded) is introduced. R{sub {lambda}}{sup 3} is generated by NC coordinates realized as operators acting in an auxiliary (Fock) space F. The properly weighted Hilbert-Schmidt operators in F form H{sub {lambda}}, a NC analog of the Hilbert space of the wave functions. We will refer to them as 'wave functions' also in the NC case. The definition of a NC analog of the hamiltonian as a hermitian operator in H{sub {lambda}} is one of the key parts of this paper. The resulting problem is exactly solvable. The full solution is provided, including formulas for the bound states for E < 0 and low-energy scattering for E > 0 (both containing NC corrections analytic in {lambda}) and also formulas for high-energy scattering and unexpected bound states at ultra-high energy (both containing NC corrections singular in {lambda}). All the NC contributions to the known QM solutions either vanish or disappear in the limit {lambda}{yields} 0.

  18. Spacetime coarse grainings in nonrelativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Hartle, J. B.

    1991-11-01

    Sum-over-histories generalizations of nonrelativistic quantum mechanics are explored in which probabilities are predicted, not just for alternatives defined on spacelike surfaces, but for alternatives defined by the behavior of spacetime histories with respect to spacetime regions. Closed, nonrelativistic systems are discussed whose histories are paths in a given configuration space. The action and the initial quantum state are assumed fixed and given. A formulation of quantum mechanics is used which assigns probabilities to members of sets of alternative coarse-grained histories of the system, that is, to the individual classes of a partition of its paths into exhaustive and exclusive classes. Probabilities are assigned to those sets which decohere, that is, whose probabilities are consistent with the sum rules of probability theory. Coarse graining by the behavior of paths with respect to regions of spacetime is described. For example, given a single region, the set of all paths may be partitioned into those which never pass through the region and those which pass through the region at least once. A sum-over-histories decoherence functional is defined for sets of alternative histories coarse-grained by spacetime regions. Techniques for the definition and effective computation of the relevant sums over histories by operator-product formulas are described and illustrated by examples. Methods based on Euclidean stochastic processes are also discussed and illustrated. Models of decoherence and measurement for spacetime coarse grainings are described. Issues of causality are investigated. Such spacetime generalizations of nonrelativistic quantum mechanics may be useful models for a generalized quantum mechanics of spacetime geometry.

  19. Emerging interpretations of quantum mechanics and recent progress in quantum measurement

    NASA Astrophysics Data System (ADS)

    Clarke, M. L.

    2014-01-01

    The focus of this paper is to provide a brief discussion on the quantum measurement process, by reviewing select examples highlighting recent progress towards its understanding. The areas explored include an outline of the measurement problem, the standard interpretation of quantum mechanics, quantum to classical transition, types of measurement (including weak and projective measurements) and newly emerging interpretations of quantum mechanics (decoherence theory, objective reality, quantum Darwinism and quantum Bayesianism).

  20. Role of intertwined Hamiltonian in two dimensional classical optics

    NASA Astrophysics Data System (ADS)

    Dehdashti, Shahram; Li, Rujiang; Liu, Xu; Raoofi, Mohammadreza; Chen, Hongsheng

    2015-07-01

    Intertwined Hamiltonian formalism originally has its roots in quantum field theory and non-relativistic quantum mechanics. In this work, we develop the non-relativistic two dimensional intertwined Hamiltonian formalism in classical optics. We obtain the properties of the intertwined media in detail and show that the differential part of intertwining operator is a series in Euclidean algebra generators. Also, we investigate quadratic gradient-index medium as an example of this structure, and obtain the intertwining operator and intertwined medium refractive index. Moreover, we study the preservation of quantum properties in the intertwined medium. For this, we consider superposition preservation as the most important property of quantum characters. We show that when a Schrdinger cat state is generated in gradient-index medium, we can construct another Schrdinger cat state in the intertwined one.

  1. Neutrino oscillations: Quantum mechanics vs. quantum field theory

    SciTech Connect

    Akhmedov, Evgeny Kh.; Kopp, Joachim; ,

    2010-01-01

    A consistent description of neutrino oscillations requires either the quantum-mechanical (QM) wave packet approach or a quantum field theoretic (QFT) treatment. We compare these two approaches to neutrino oscillations and discuss the correspondence between them. In particular, we derive expressions for the QM neutrino wave packets from QFT and relate the free parameters of the QM framework, in particular the effective momentum uncertainty of the neutrino state, to the more fundamental parameters of the QFT approach. We include in our discussion the possibilities that some of the neutrino's interaction partners are not detected, that the neutrino is produced in the decay of an unstable parent particle, and that the overlap of the wave packets of the particles involved in the neutrino production (or detection) process is not maximal. Finally, we demonstrate how the properly normalized oscillation probabilities can be obtained in the QFT framework without an ad hoc normalization procedure employed in the QM approach.

  2. Measurement and Fundamental Processes in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Jaeger, Gregg

    2015-07-01

    In the standard mathematical formulation of quantum mechanics, measurement is an additional, exceptional fundamental process rather than an often complex, but ordinary process which happens also to serve a particular epistemic function: during a measurement of one of its properties which is not already determined by a preceding measurement, a measured system, even if closed, is taken to change its state discontinuously rather than continuously as is usual. Many, including Bell, have been concerned about the fundamental role thus given to measurement in the foundation of the theory. Others, including the early Bohr and Schwinger, have suggested that quantum mechanics naturally incorporates the unavoidable uncontrollable disturbance of physical state that accompanies any local measurement without the need for an exceptional fundamental process or a special measurement theory. Disturbance is unanalyzable for Bohr, but for Schwinger it is due to physical interactions' being borne by fundamental particles having discrete properties and behavior which is beyond physical control. Here, Schwinger's approach is distinguished from more well known treatments of measurement, with the conclusion that, unlike most, it does not suffer under Bell's critique of quantum measurement. Finally, Schwinger's critique of measurement theory is explicated as a call for a deeper investigation of measurement processes that requires the use of a theory of quantum fields.

  3. Hidden variables and nonlocality in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Hemmick, Douglas Lloyd

    1997-05-01

    Most physicists hold a skeptical attitude toward a 'hidden variables' interpretation of quantum theory, despite David Bohm's successful construction of such a theory and John S. Bell's strong arguments in favor of the idea. The first reason for doubt concerns certain mathematical theorems (von Neumann's, Gleason's, Kochen and Specker's, and Bell's) which can be applied to the hidden variables issue. These theorems are often credited with proving that hidden variables are indeed 'impossible', in the sense that they cannot replicate the predictions of quantum mechanics. Many who do not draw such a strong conclusion nevertheless accept that hidden variables have been shown to exhibit prohibitively complicated features. The second concern is that the most sophisticated example of a hidden variables theory-that of David Bohm-exhibits non-locality, i.e., consequences of events at one place can propagate to other places instantaneously. However, neither the mathematical theorems in question nor the attribute of nonlocality detract from the importance of a hidden variables interpretation of quantum theory. Nonlocality is present in quantum mechanics itself, and is a required characteristic of any theory that agrees with the quantum mechanical predictions. We first discuss the earliest analysis of hidden variables-that of von Neumann's theorem-and review John S. Bell's refutation of von Neumann's 'impossibility proof'. We recall and elaborate on Bell's arguments regarding the theorems of Gleason, and Kochen and Specker. According to Bell, these latter theorems do not imply that hidden variables interpretations are untenable, but instead that such theories must exhibit contextuality, i.e., they must allow for the dependence of measurement results on the characteristics of both measured system and measuring apparatus. We demonstrate a new way to understand the implications of both Gleason's theorem and Kochen and Specker's theorem by noting that they prove a result we call 'spectral incompatibility'. We develop further insight into the concepts involved in these two theorems by investigating a special quantum mechanical experiment first described by David Albert. We review the Einstein-Podolsky-Rosen paradox, Bell's theorem, and Bell's later argument that these imply that quantum mechanics is irreducibly nonlocal. The paradox of Einstein, Podolsky, and Rosen was generalized by Erwin Schrodinger in the same paper where his famous 'cat paradox' appeared. We show that Schrodinger's conclusions can be derived using a simpler argument-one which makes clear the relationship between the quantum state and the 'perfect correlations' exhibited by the system. We use Schrodinger's EPR analysis to derive a wide variety of new quantum nonlocality proofs. These proofs share two important features with that of Greenberger, Horne, and Zeilinger. First, they are of a deterministic character, i.e., they are 'nonlocality without inequalities' proofs. Second, the quantum nonlocality results we develop may be experimentally verified so that one need only observe the 'perfect correlations' between the appropriate observables. This latter feature serves to contrast these proofs with EPR/Bell nonlocality, the laboratory confirmation of which demands not only the observation of perfect correlations, but also the observations required to test whether 'Bell's inequality' is violated. The 'Schrodinger nonlocality' proofs we give differ from the GHZ proof in that they apply to two-component composite systems, while the latter involves a composite system of at least three-components. In addition, some of the Schrodinger proofs involve classes of observables larger than that addressed in the GHZ proof. (Abstract shortened by UMI.)

  4. Quantum-Mechanical Force Laws for Transition Metals in Biomolecules.

    NASA Astrophysics Data System (ADS)

    Carlsson, Anders E.

    1998-03-01

    Transition metal ions, complexed by ligand molecules, play crucial roles in all known forms of life. For example, the active sites in many proteins are transition metals. Simulation of protein structure and function, as well as the design of new functional biomolecules, requires force fields that can treat transition metals accurately. This paper describes a method for predicting the functional form of angular forces surrounding transition metals in biomolecules. The method begins with a quantum-mechanical ligand-field Hamiltonian for the transition-metal d-shell, that contains couplings resulting from interaction with the ligand orbitals. It is shown that the moments of the d-complex electron density of states are given rigorously as sums of two-body and higher-order interactions between the ligands. For most transition metals, two-ligand (angular) potential has minima at 90 and 180 degrees, corresponding to the commonly formed octahedral structure. The three-ligand interaction changes sign as a function of band filling, and for late transition metals such as copper and nickel favors square-planar coordination over tetrahedral coordination. The functional forms developed here are a suitable starting point for developing semi-empirical force fields that can treat transition metals in biomolecules.

  5. How to Teach the Postulates of Quantum Mechanics without Enigma.

    ERIC Educational Resources Information Center

    Teixeira-Dias, Jose J. C.

    1983-01-01

    Shows how a statistical approach can help students accept postulates of quantum mechanics. The approach, which also makes students aware of the philosophical/humanistic implications of quantum mechanics, involves the following sequence: (1) important experiments in quantum mechanics; (2) conventional statistical interpretation; (3) mathematical

  6. Beyond relativity and quantum mechanics: space physics

    NASA Astrophysics Data System (ADS)

    Lindner, Henry H.

    2011-09-01

    Albert Einstein imposed an observer-based epistemology upon physics. Relativity and Quantum Mechanics limit physics to describing and modeling the observer's sensations and measurements. Their "underlying reality" consists only of ideas that serve to model the observer's experience. These positivistic models cannot be used to form physical theories of Cosmic phenomena. To do this, we must again remove the observer from the center of physics. When we relate motion to Cosmic space instead of to observers and we attempt to explain the causes of Cosmic phenomena, we are forced to admit that Cosmic space is a substance. We need a new physics of space. We can begin by replacing Relativity with a modified Lorentzian-Newtonian model of spatial flow, and Quantum Mechanics with a wave-based theory of light and electrons. Space physics will require the reinterpretation of all known phenomena, concepts, and mathematical models.

  7. Using the Internet to teach Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Breinig, Marianne

    1997-04-01

    All instructional materials for a Quantum Mechanics course for graduate students in physics at the University of Tennessee are distributed over the Internet. Class notes, problems, and solutions are available in portable document format (PDF). A discussion forum allows students to post questions and to discuss class materials among themselves and with the instructor. Using an Internet connection to various computers in the classroom allows the introduction of numerical and visualization techniques in class.

  8. Nonlinear entangled state representation in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Fan, Hongyi; Cheng, Hailing

    2002-03-01

    We develop Dirac's representation theory in quantum mechanics by constructing the nonlinear entangled state | ?> nl and its non-Hermite conjugate state nl??| with continuum variable. By virtue of the technique of integration within an ordered product of operators we show that | ?> nl and nl??| make up an orthonormal and complete representation. From | ?> nl we also deduce another kind of entangled states. Application of | ?> nl in studying two-mode squeezed state is demonstrated.

  9. Grounding quantum probability in psychological mechanism.

    PubMed

    Love, Bradley C

    2013-06-01

    Pothos & Busemeyer (P&B) provide a compelling case that quantum probability (QP) theory is a better match to human judgment than is classical probability (CP) theory. However, any theory (QP, CP, or other) phrased solely at the computational level runs the risk of being underconstrained. One suggestion is to ground QP accounts in mechanism, to leverage a wide range of process-level data. PMID:23673043

  10. Quantum mechanics on a fuzzy sphere

    NASA Astrophysics Data System (ADS)

    Madore, J.

    1991-07-01

    In a previous article, a model of euclidean space-time was presented in which the notion of a point does not exist at scales less than a certain length ?. At scales larger than ? the model resembles the 2-sphere S2. We here interpret this model as space and add to it an extra time coordinate. Non-relativistic quantum mechanics is considered on the resulting model. Laboratoire associ au CNRS.

  11. A Local Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Lopez, Carlos

    2015-12-01

    A local interpretation of quantum mechanics is presented. Its main ingredients are: first, a label attached to one of the "virtual" paths in the path integral formalism, determining the output for measurement of position or momentum; second, a mathematical model for spin states, equivalent to the path integral formalism for point particles in space time, with the corresponding label. The mathematical machinery of orthodox quantum mechanics is maintained, in particular amplitudes of probability and Born's rule; therefore, Bell's type inequalities theorems do not apply. It is shown that statistical correlations for pairs of particles with entangled spins have a description completely equivalent to the two slit experiment, that is, interference (wave like behaviour) instead of non locality gives account of the process. The interpretation is grounded in the experimental evidence of a point like character of electrons, and in the hypothetical existence of a wave like, the de Broglie, companion system. A correspondence between the extended Hilbert spaces of hidden physical states and the orthodox quantum mechanical Hilbert space shows the mathematical equivalence of both theories. Paradoxical behaviour with respect to the action reaction principle is analysed, and an experimental set up, modified two slit experiment, proposed to look for the companion system.

  12. Hunting for Snarks in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Hestenes, David

    2009-12-01

    A long-standing debate over the interpretation of quantum mechanics has centered on the meaning of Schroedinger's wave function ? for an electron. Broadly speaking, there are two major opposing schools. On the one side, the Copenhagen school (led by Bohr, Heisenberg and Pauli) holds that ? provides a complete description of a single electron state; hence the probability interpretation of ??* expresses an irreducible uncertainty in electron behavior that is intrinsic in nature. On the other side, the realist school (led by Einstein, de Broglie, Bohm and Jaynes) holds that ? represents a statistical ensemble of possible electron states; hence it is an incomplete description of a single electron state. I contend that the debaters have overlooked crucial facts about the electron revealed by Dirac theory. In particular, analysis of electron zitterbewegung (first noticed by Schroedinger) opens a window to particle substructure in quantum mechanics that explains the physical significance of the complex phase factor in ?. This led to a testable model for particle substructure with surprising support by recent experimental evidence. If the explanation is upheld by further research, it will resolve the debate in favor of the realist school. I give details. The perils of research on the foundations of quantum mechanics have been foreseen by Lewis Carroll in The Hunting of the Snark!

  13. Hunting for Snarks in Quantum Mechanics

    SciTech Connect

    Hestenes, David

    2009-12-08

    A long-standing debate over the interpretation of quantum mechanics has centered on the meaning of Schroedinger's wave function {psi} for an electron. Broadly speaking, there are two major opposing schools. On the one side, the Copenhagen school(led by Bohr, Heisenberg and Pauli) holds that {psi} provides a complete description of a single electron state; hence the probability interpretation of {psi}{psi}* expresses an irreducible uncertainty in electron behavior that is intrinsic in nature. On the other side, the realist school(led by Einstein, de Broglie, Bohm and Jaynes) holds that {psi} represents a statistical ensemble of possible electron states; hence it is an incomplete description of a single electron state. I contend that the debaters have overlooked crucial facts about the electron revealed by Dirac theory. In particular, analysis of electron zitterbewegung(first noticed by Schroedinger) opens a window to particle substructure in quantum mechanics that explains the physical significance of the complex phase factor in {psi}. This led to a testable model for particle substructure with surprising support by recent experimental evidence. If the explanation is upheld by further research, it will resolve the debate in favor of the realist school. I give details. The perils of research on the foundations of quantum mechanics have been foreseen by Lewis Carroll in The Hunting of the Snark{exclamation_point}.

  14. Suppression of the quantum-mechanical collapse by repulsive interactions in a quantum gas

    SciTech Connect

    Sakaguchi, Hidetsugu; Malomed, Boris A.

    2011-01-15

    The quantum-mechanical collapse (alias fall onto the center of particles attracted by potential -r{sup -2}) is a well-known issue in quantum theory. It is closely related to the quantum anomaly, i.e., breaking of the scaling invariance of the respective Hamiltonian by quantization. We demonstrate that the mean-field repulsive nonlinearity prevents the collapse and thus puts forward a solution to the quantum-anomaly problem that differs from that previously developed in the framework of the linear quantum-field theory. This solution may be realized in the 3D or 2D gas of dipolar bosons attracted by a central charge and in the 2D gas of magnetic dipoles attracted by a current filament. In the 3D setting, the dipole-dipole interactions are also taken into regard, in the mean-field approximation, resulting in a redefinition of the scattering length which accounts for the contact repulsion between the bosons. In lieu of the collapse, the cubic nonlinearity creates a 3D ground state (GS), which does not exist in the respective linear Schroedinger equation. The addition of the harmonic trap gives rise to a tristability, in the case when the Schroedinger equation still does not lead to the collapse. In the 2D setting, the cubic nonlinearity is not strong enough to prevent the collapse; however, the quintic term does it, creating the GS, as well as its counterparts carrying the angular momentum (vorticity). Counterintuitively, such self-trapped 2D modes exist even in the case of a weakly repulsive potential r{sup -2}. The 2D vortical modes avoid the phase singularity at the pivot (r=0) by having the amplitude diverging at r{yields}0 instead of the usual situation with the amplitude of the vortical mode vanishing at r{yields}0 (the norm of the mode converges despite of the singularity of the amplitude at r{yields}0). In the presence of the harmonic trap, the 2D quintic model with a weakly repulsive central potential r{sup -2} gives rise to three confined modes, the middle one being unstable, spontaneously developing into a breather. In both the 3D and 2D cases, the GS wave functions are found in a numerical form and in the form of an analytical approximation, which is asymptotically exact in the limit of the large norm.

  15. Quantum mechanical models for the Fermi shuttle

    NASA Astrophysics Data System (ADS)

    Sternberg, James; Ovchinnikov, S. Yu.; Macek, J. H.

    2009-05-01

    Although the Fermi shuttle was originally proposed as an explanation for highly energetic cosmic rays, it is also a mechanism for the production of high energy electrons in atomic collisions [1]. The Fermi shuttle is usually thought of as a classical effect and most models of this process rely on classical or semi-classical approximations. In this work we explore several quantum mechanical models for ion-atom collisions and examine the evidence for the Fermi shuttle in these models. [4pt] [1] B. Sulik, Cs. Koncz, K. Tok'esi, A. Orb'an, and D. Ber'enyi, Phys Rev. Lett. 88 073201 (2002)

  16. Elastic tunneling charge transport mechanisms in silicon quantum dots /SiO{sub 2} thin films and superlattices

    SciTech Connect

    Illera, S. Prades, J. D.; Cirera, A.

    2015-05-07

    The role of different charge transport mechanisms in Si/SiO{sub 2} structures has been studied. A theoretical model based on the Transfer Hamiltonian Formalism has been developed to explain experimental current trends in terms of three different elastic tunneling processes: (1) trap assisted tunneling; (2) transport through an intermediate quantum dot; and (3) direct tunneling between leads. In general, at low fields carrier transport is dominated by the quantum dots whereas, for moderate and high fields, transport through deep traps inherent to the SiO{sub 2} is the most relevant process. Besides, current trends in Si/SiO{sub 2} superlattice structure have been properly reproduced.

  17. Quantum mechanics with coordinate dependent noncommutativity

    SciTech Connect

    Kupriyanov, V. G.

    2013-11-15

    Noncommutative quantum mechanics can be considered as a first step in the construction of quantum field theory on noncommutative spaces of generic form, when the commutator between coordinates is a function of these coordinates. In this paper we discuss the mathematical framework of such a theory. The noncommutativity is treated as an external antisymmetric field satisfying the Jacobi identity. First, we propose a symplectic realization of a given Poisson manifold and construct the Darboux coordinates on the obtained symplectic manifold. Then we define the star product on a Poisson manifold and obtain the expression for the trace functional. The above ingredients are used to formulate a nonrelativistic quantum mechanics on noncommutative spaces of general form. All considered constructions are obtained as a formal series in the parameter of noncommutativity. In particular, the complete algebra of commutation relations between coordinates and conjugated momenta is a deformation of the standard Heisenberg algebra. As examples we consider a free particle and an isotropic harmonic oscillator on the rotational invariant noncommutative space.

  18. Quantum mechanics in structure-based drug design.

    PubMed

    Peters, Martin B; Raha, Kaushik; Merz, Kenneth M

    2006-05-01

    In principle, quantum mechanics provides a more accurate representation of molecular systems than other modeling approaches. While this notion is not a matter of dispute, it has not yet been definitively demonstrated within the realm of structure-based drug design that the use of quantum mechanical methods over the use of classical modeling approaches is justified in consideration of the increase in expense associated with quantum mechanical methods. Demonstrating that quantum mechanics-based methods can be superior to simpler models, and resolving problems relating to estimating the effects of conformational entropy, will provide key areas of interest in the coming years for in silico structure-based drug design. Recent applications using quantum mechanical methods in structure-based drug design are reviewed herein, and applications ranging from scoring receptor-ligand interactions using quantum mechanics to the generation of quantitative structure-activity relationships using quantum mechanics-derived descriptors are discussed. PMID:16729734

  19. Hamiltonian deformations of Gabor frames: First steps

    PubMed Central

    de Gosson, Maurice A.

    2015-01-01

    Gabor frames can advantageously be redefined using the Heisenberg–Weyl operators familiar from harmonic analysis and quantum mechanics. Not only does this redefinition allow us to recover in a very simple way known results of symplectic covariance, but it immediately leads to the consideration of a general deformation scheme by Hamiltonian isotopies (i.e. arbitrary paths of non-linear symplectic mappings passing through the identity). We will study in some detail an associated weak notion of Hamiltonian deformation of Gabor frames, using ideas from semiclassical physics involving coherent states and Gaussian approximations. We will thereafter discuss possible applications and extensions of our method, which can be viewed – as the title suggests – as the very first steps towards a general deformation theory for Gabor frames. PMID:25892903

  20. Indirect Acquisition of Information in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Ballesteros, M.; Fraas, M.; Fröhlich, J.; Schubnel, B.

    2016-02-01

    Long sequences of successive direct (projective) measurements or observations of just a few "uninteresting" physical quantities pertaining to a quantum system, such as clicks of some detectors, may reveal indirect, but precise and unambiguous information on the values of some very "interesting" observables of the system. In this paper, the mathematics underlying this claim is developed; i.e., we attempt to contribute to a mathematical theory of indirect and, in particular, non-demolition observations and measurements in quantum mechanics. Our attempt leads us to make some novel uses of classical notions and results of probability theory, such as the "algebra of functions measurable at infinity", the Central Limit Theorem, results concerning relative entropy and its role in the theory of large deviations, etc.

  1. Indirect Acquisition of Information in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Ballesteros, M.; Fraas, M.; Frhlich, J.; Schubnel, B.

    2016-01-01

    Long sequences of successive direct (projective) measurements or observations of just a few "uninteresting" physical quantities pertaining to a quantum system, such as clicks of some detectors, may reveal indirect, but precise and unambiguous information on the values of some very "interesting" observables of the system. In this paper, the mathematics underlying this claim is developed; i.e., we attempt to contribute to a mathematical theory of indirect and, in particular, non-demolition observations and measurements in quantum mechanics. Our attempt leads us to make some novel uses of classical notions and results of probability theory, such as the "algebra of functions measurable at infinity", the Central Limit Theorem, results concerning relative entropy and its role in the theory of large deviations, etc.

  2. Unstable trajectories and the quantum mechanical uncertainty

    SciTech Connect

    Moser, Hans R.

    2008-08-15

    There is still an ongoing discussion about various seemingly contradictory aspects of classical particle motion and its quantum mechanical counterpart. One of the best accepted viewpoints that intend to bridge the gap is the so-called Copenhagen Interpretation. A major issue there is to regard wave functions as probability amplitudes (usually for the position of a particle). However, the literature also reports on approaches that claim a trajectory for any quantum mechanical particle, Bohmian mechanics probably being the most prominent one among these ideas. We introduce a way to calculate trajectories as well, but our crucial ingredient is their well controlled local (thus also momentaneous) degree of instability. By construction, at every moment their unpredictability, i.e., their local separation rates of neighboring trajectories, is governed by the local value of the given modulus square of a wave function. We present extensive numerical simulations of the H and He atom, and for some velocity-related quantities, namely angular momentum and total energy, we inspect their agreement with the values appearing in wave mechanics. Further, we interpret the archetypal double slit interference experiment in the spirit of our findings. We also discuss many-particle problems far beyond He, which guides us to a variety of possible applications.

  3. Oscillator representations for self-adjoint Calogero Hamiltonians

    NASA Astrophysics Data System (ADS)

    Gitman, D. M.; Tyutin, I. V.; Voronov, B. L.

    2011-10-01

    In Gitman et al (2010 J. Phys. A: Math. Theor. 43 145205), we presented a mathematically rigorous quantum-mechanical treatment of a one-dimensional motion of a particle in the Calogero potential V(x) = αx-2. We described all possible self-adjoint (s.a.) operators (s.a. Hamiltonians) associated with the differential operation \\check{H}=-d_{x}^{2}+\\alpha x^{-2} for the Calogero Hamiltonian. Here, we discuss a new aspect of the problem, the so-called oscillator representations for the Calogero Hamiltonians. As is known, operators of the form \\hat{N}=\\hat{a}^{+}\\hat{a} and \\hat{A}=\\hat{a}\\hat{a}^{+} are called operators of oscillator type. Oscillator-type operators possess a number of useful properties in the case when the elementary operators \\hat{a } are closed. It turns out that some s.a. Calogero Hamiltonians allow oscillator-type representations. We describe such Hamiltonians and find the corresponding mutually adjoint elementary operators \\hat{a} and \\hat{a} ^{+}. An oscillator-type representation for a given Hamiltonian is generally not unique.

  4. The metaphysics of quantum mechanics: Modal interpretations

    NASA Astrophysics Data System (ADS)

    Gluck, Stuart Murray

    2004-11-01

    This dissertation begins with the argument that a preferred way of doing metaphysics is through philosophy of physics. An understanding of quantum physics is vital to answering questions such as: What counts as an individual object in physical ontology? Is the universe fundamentally indeterministic? Are indiscernibles identical? This study explores how the various modal interpretations of quantum mechanics answer these sorts of questions; modal accounts are one of the two classes of interpretations along with so-called collapse accounts. This study suggests a new alternative within the class of modal views that yields a more plausible ontology, one in which the Principle of the Identity of Indisceribles is necessarily true. Next, it shows that modal interpretations can consistently deny that the universe must be fundamentally indeterministic so long as they accept certain other metaphysical commitments: either a perfect initial distribution of states in the universe or some form of primitive dispositional properties. Finally, the study sketches out a future research project for modal interpretations based on developing quantified quantum logic.

  5. Simulation Of Wave Function And Probability Density Of Modified Poschl Teller Potential Derived Using Supersymmetric Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Angraini, Lily Maysari; Suparmi, Variani, Viska Inda

    2010-12-01

    SUSY quantum mechanics can be applied to solve Schrodinger equation for high dimensional system that can be reduced into one dimensional system and represented in lowering and raising operators. Lowering and raising operators can be obtained using relationship between original Hamiltonian equation and the (super) potential equation. In this paper SUSY quantum mechanics is used as a method to obtain the wave function and the energy level of the Modified Poschl Teller potential. The graph of wave function equation and probability density is simulated by using Delphi 7.0 programming language. Finally, the expectation value of quantum mechanics operator could be calculated analytically using integral form or probability density graph resulted by the programming.

  6. A fully 3D atomistic quantum mechanical study on random dopant induced effects in 25nm MOSFETs

    SciTech Connect

    Wang, Lin-Wang; Jiang, Xiang-Wei; Deng, Hui-Xiong; Luo, Jun-Wei; Li, Shu-Shen; Wang, Lin-Wang; Xia, Jian-Bai

    2008-07-11

    We present a fully 3D atomistic quantum mechanical simulation for nanometered MOSFET using a coupled Schroedinger equation and Poisson equation approach. Empirical pseudopotential is used to represent the single particle Hamiltonian and linear combination of bulk band (LCBB) method is used to solve the million atom Schroedinger's equation. We studied gate threshold fluctuations and threshold lowering due to the discrete dopant configurations. We compared our results with semiclassical simulation results. We found quantum mechanical effects increase the threshold fluctuation while decreases the threshold lowering. The increase of threshold fluctuation is in agreement with previous study based on approximated density gradient approach to represent the quantum mechanical effect. However, the decrease in threshold lowering is in contrast with the previous density gradient calculations.

  7. Non-representative Quantum Mechanical Weak Values

    NASA Astrophysics Data System (ADS)

    Svensson, B. E. Y.

    2015-12-01

    The operational definition of a weak value for a quantum mechanical system involves the limit of the weak measurement strength tending to zero. I study how this limit compares to the situation for the undisturbed (no weak measurement) system. Under certain conditions, which I investigate, this limit is discontinuous in the sense that it does not merge smoothly to the Hilbert space description of the undisturbed system. Hence, in these discontinuous cases, the weak value does not represent the undisturbed system. As a result, conclusions drawn from such weak values regarding the properties of the studied system cannot be upheld. Examples are given.

  8. An Introduction to Euclidean Relativistic Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Kopp, Philip; Polyzou, Wayne

    2014-03-01

    In nuclear physics, sub-nucleonic degrees of freedom are expected to become relevant at the few-Gev scale. Models at this scale require a relativistic treatment. The Euclidean formulation of relativistic quantum mechanics offers an efficient framework to model systems of a finite number of degrees of freedom at this scale. At the same time, the input Euclidean Green's functions are closely related to Green functions of Euclidean field theory. We discuss the formulation of the relativistic theory. We also develop scattering theory in this formalism. A solvable model is utilized to show the usefulness of this method. supported in part by the U.S. Dept. of Energy.

  9. QUANTUM MECHANICS: Enhanced: Schrodinger's Cat Is Out of the Hat.

    PubMed

    Tesche, C

    2000-10-27

    In 1935, Erwin Schrdinger suggested his famous gedanken experiment of the cat that is simultaneously "dead" and "alive" inside its box until the box is opened. But as Tesche explains in her Perspective, such a macroscopic manifestation of quantum mechanics has remained elusive until recently. The experiments by van der Wal et al. are an important step toward demonstrating that quantum mechanics can describe macroscopic phenomena. The approach may be exploited in quantum computing and quantum cryptography. PMID:17780511

  10. Generation of families of spectra in PT-symmetric quantum mechanics and scalar bosonic field theory.

    PubMed

    Schmidt, Steffen; Klevansky, S P

    2013-04-28

    This paper explains the systematics of the generation of families of spectra for the -symmetric quantum-mechanical Hamiltonians H=p(2)+x(2)(ix)(?), H=p(2)+(x(2))(?) and H=p(2)-(x(2))(?). In addition, it contrasts the results obtained with those found for a bosonic scalar field theory, in particular in one dimension, highlighting the similarities to and differences from the quantum-mechanical case. It is shown that the number of families of spectra can be deduced from the number of non-contiguous pairs of Stokes wedges that display PT symmetry. To do so, simple arguments that use the Wentzel-Kramers-Brillouin approximation are used, and these imply that the eigenvalues are real. However, definitive results are in most cases presently only obtainable numerically, and not all eigenvalues in each family may be real. Within the approximations used, it is illustrated that the difference between the quantum-mechanical and the field-theoretical cases lies in the number of accessible regions in which the eigenfunctions decay exponentially. This paper reviews and implements well-known techniques in complex analysis and PT-symmetric quantum theory. PMID:23509377

  11. Factorization of supersymmetric Hamiltonians in curvilinear coordinates

    NASA Astrophysics Data System (ADS)

    Gonzlez Len, M. A.; Mateos Guilarte, J.; de la Torre Mayado, M.

    2012-02-01

    Planar supersymmetric quantum mechanical systems with separable spectral problem in curvilinear coordinates are analyzed in full generality. We explicitly construct the supersymmetric extension of the Euler/Pauli Hamiltonian describing the motion of a light particle in the field of two heavy fixed Coulombian centers. We shall also show how the SUSY Kepler/Coulomb problem arises in two different limits of this problem: either, the two centers collapse in one center - a problem separable in polar coordinates -, or, one of the two centers flies to infinity - to meet the Coulomb problem separable in parabolic coordinates.

  12. Hamiltonian engineering via invariants and dynamical algebra

    NASA Astrophysics Data System (ADS)

    Torrontegui, E.; Martnez-Garaot, S.; Muga, J. G.

    2014-04-01

    We use the dynamical algebra of a quantum system and its dynamical invariants to inverse engineer feasible Hamiltonians for implementing shortcuts to adiabaticity. These are speeded up processes that end up with the same populations as slow, adiabatic ones. As application examples, we design families of shortcut Hamiltonians that drive two- and three-level systems between initial and final configurations, imposing physically motivated constraints on the terms (generators) allowed in the Hamiltonian.

  13. Quantum Mechanical Study of Nanoscale MOSFET

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan

    2001-01-01

    The steady state characteristics of MOSFETS that are of practical Interest are the drive current, off-current, dope of drain current versus drain voltage, and threshold voltage. In this section, we show that quantum mechanical simulations yield significantly different results from drift-diffusion based methods. These differences arise because of the following quantum mechanical features: (I) polysilicon gate depletion in a manner opposite to the classical case (II) dependence of the resonant levels in the channel on the gate voltage, (III) tunneling of charge across the gate oxide and from source to drain, (IV) quasi-ballistic flow of electrons. Conclusions dI/dV versus V does not increase in a manner commensurate with the increase in number of subbands. - The increase in dI/dV with bias is much smaller then the increase in the number of subbands - a consequence of bragg reflection. Our calculations show an increase in transmission with length of contact, as seen in experiments. It is desirable for molecular electronics applications to have a small contact area, yet large coupling. In this case, the circumferential dependence of the nanotube wave function dictates: - Transmission in armchair tubes saturates around unity - Transmission in zigzag tubes saturates at two.

  14. The formal path integral and quantum mechanics

    SciTech Connect

    Johnson-Freyd, Theo

    2010-11-15

    Given an arbitrary Lagrangian function on R{sup d} and a choice of classical path, one can try to define Feynman's path integral supported near the classical path as a formal power series parameterized by 'Feynman diagrams', although these diagrams may diverge. We compute this expansion and show that it is (formally, if there are ultraviolet divergences) invariant under volume-preserving changes of coordinates. We prove that if the ultraviolet divergences cancel at each order, then our formal path integral satisfies a 'Fubini theorem' expressing the standard composition law for the time evolution operator in quantum mechanics. Moreover, we show that when the Lagrangian is inhomogeneous quadratic in velocity such that its homogeneous-quadratic part is given by a matrix with constant determinant, then the divergences cancel at each order. Thus, by 'cutting and pasting' and choosing volume-compatible local coordinates, our construction defines a Feynman-diagrammatic 'formal path integral' for the nonrelativistic quantum mechanics of a charged particle moving in a Riemannian manifold with an external electromagnetic field.

  15. Differentiability of correlations in realistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Cabrera, Alejandro; de Faria, Edson; Pujals, Enrique; Tresser, Charles

    2015-09-01

    We prove a version of Bell's theorem in which the locality assumption is weakened. We start by assuming theoretical quantum mechanics and weak forms of relativistic causality and of realism (essentially the fact that observable values are well defined independently of whether or not they are measured). Under these hypotheses, we show that only one of the correlation functions that can be formulated in the framework of the usual Bell theorem is unknown. We prove that this unknown function must be differentiable at certain angular configuration points that include the origin. We also prove that, if this correlation is assumed to be twice differentiable at the origin, then we arrive at a version of Bell's theorem. On the one hand, we are showing that any realistic theory of quantum mechanics which incorporates the kinematic aspects of relativity must lead to this type of rough correlation function that is once but not twice differentiable. On the other hand, this study brings us a single degree of differentiability away from a relativistic von Neumann no hidden variables theorem.

  16. A quantum protective mechanism in photosynthesis

    NASA Astrophysics Data System (ADS)

    Marais, Adriana; Sinayskiy, Ilya; Petruccione, Francesco; van Grondelle, Rienk

    2015-03-01

    Since the emergence of oxygenic photosynthesis, living systems have developed protective mechanisms against reactive oxygen species. During charge separation in photosynthetic reaction centres, triplet states can react with molecular oxygen generating destructive singlet oxygen. The triplet product yield in bacteria is observed to be reduced by weak magnetic fields. Reaction centres from plants' photosystem II share many features with bacterial reaction centres, including a high-spin iron whose function has remained obscure. To explain observations that the magnetic field effect is reduced by the iron, we propose that its fast-relaxing spin plays a protective role in photosynthesis by generating an effective magnetic field. We consider a simple model of the system, derive an analytical expression for the effective magnetic field and analyse the resulting triplet yield reduction. The protective mechanism is robust for realistic parameter ranges, constituting a clear example of a quantum effect playing a macroscopic role vital for life.

  17. A quantum protective mechanism in photosynthesis

    PubMed Central

    Marais, Adriana; Sinayskiy, Ilya; Petruccione, Francesco; van Grondelle, Rienk

    2015-01-01

    Since the emergence of oxygenic photosynthesis, living systems have developed protective mechanisms against reactive oxygen species. During charge separation in photosynthetic reaction centres, triplet states can react with molecular oxygen generating destructive singlet oxygen. The triplet product yield in bacteria is observed to be reduced by weak magnetic fields. Reaction centres from plants' photosystem II share many features with bacterial reaction centres, including a high-spin iron whose function has remained obscure. To explain observations that the magnetic field effect is reduced by the iron, we propose that its fast-relaxing spin plays a protective role in photosynthesis by generating an effective magnetic field. We consider a simple model of the system, derive an analytical expression for the effective magnetic field and analyse the resulting triplet yield reduction. The protective mechanism is robust for realistic parameter ranges, constituting a clear example of a quantum effect playing a macroscopic role vital for life. PMID:25732807

  18. Supersymmetric quantum mechanics and the Korteweg--de Vries hierarchy

    SciTech Connect

    Grant, A.K.; Rosner, J.L. )

    1994-05-01

    The connection between supersymmetric quantum mechanics and the Korteweg--de Vries (KdV) equation is discussed, with particular emphasis on the KdV conservation laws. It is shown that supersymmetric quantum mechanics aids in the derivation of the conservation laws, and gives some insight into the Miura transformation that converts the KdV equation into the modified KdV equation. The construction of the [tau] function by means of supersymmetric quantum mechanics is discussed.

  19. Quantum model of a solid-state spin qubit: Ni cluster on a silicon surface by the generalized spin Hamiltonian and X-ray absorption spectroscopy investigations

    NASA Astrophysics Data System (ADS)

    Farberovich, Oleg V.; Mazalova, Victoria L.; Soldatov, Alexander V.

    2015-11-01

    We present here the quantum model of a Ni solid-state electron spin qubit on a silicon surface with the use of a density-functional scheme for the calculation of the exchange integrals in the non-collinear spin configurations in the generalized spin Hamiltonian (GSH) with the anisotropic exchange coupling parameters linking the nickel ions with a silicon substrate. In this model the interaction of a spin qubit with substrate is considered in GSH at the calculation of exchange integrals Jij of the nanosystem Ni7-Si in the one-electron approach taking into account chemical bonds of all Si-atoms of a substrate (environment) with atoms of the Ni7-cluster. The energy pattern was found from the effective GSH Hamiltonian acting in the restricted spin space of the Ni ions by the application of the irreducible tensor operators (ITO) technique. In this paper we offer the model of the quantum solid-state N-spin qubit based on the studying of the spin structure and the spin-dynamics simulations of the 3d-metal Ni clusters on the silicon surface. The solution of the problem of the entanglement between spin states in the N-spin systems is becoming more interesting when considering clusters or molecules with a spectral gap in their density of states. For quantifying the distribution of the entanglement between the individual spin eigenvalues (modes) in the spin structure of the N-spin system we use the density of entanglement (DOE). In this study we have developed and used the advanced high-precision numerical techniques to accurately assess the details of the decoherence process governing the dynamics of the N-spin qubits interacting with a silicon surface. We have studied the Rabi oscillations to evaluate the N-spin qubits system as a function of the time and the magnetic field. We have observed the stabilized Rabi oscillations and have stabilized the quantum dynamical qubit state and Rabi driving after a fixed time (0.327 ?s). The comparison of the energy pattern with the anisotropic exchange models conventionally used for the analysis of this system and, with the results of the experimental XANES spectra, shows that our complex investigations provide a good description of the pattern of the spin levels and the spin structures of the nanomagnetic Ni7 qubit. The results are discussed in the view of the general problem of the solid-state spin qubits and the spin structure of the Ni cluster.

  20. Quantum mechanical study of solvent effects in a prototype SN2 reaction in solution: Cl− attack on CH3Cl

    PubMed Central

    Kuechler, Erich R.; York, Darrin M.

    2014-01-01

    The nucleophilic attack of a chloride ion on methyl chloride is an important prototype SN2 reaction in organic chemistry that is known to be sensitive to the effects of the surrounding solvent. Herein, we develop a highly accurate Specific Reaction Parameter (SRP) model based on the Austin Model 1 Hamiltonian for chlorine to study the effects of solvation into an aqueous environment on the reaction mechanism. To accomplish this task, we apply high-level quantum mechanical calculations to study the reaction in the gas phase and combined quantum mechanical/molecular mechanical simulations with TIP3P and TIP4P-ew water models and the resulting free energy profiles are compared with those determined from simulations using other fast semi-empirical quantum models. Both gas phase and solution results with the SRP model agree very well with experiment and provide insight into the specific role of solvent on the reaction coordinate. Overall, the newly parameterized SRP Hamiltonian is able to reproduce both the gas phase and solution phase barriers, suggesting it is an accurate and robust model for simulations in the aqueous phase at greatly reduced computational cost relative to comparably accurate ab initio and density functional models. PMID:24511924

  1. Quantum mechanics in non-inertial reference frames: Time-dependent rotations and loop prolongations

    SciTech Connect

    Klink, W.H.; Wickramasekara, S.

    2013-09-15

    This is the fourth in a series of papers on developing a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of the Galilei group to include transformations amongst non-inertial reference frames. These representations show that in quantum mechanics, just as the case in classical mechanics, the transformations to accelerating reference frames give rise to fictitious forces. In previous work, we have shown that there exist representations of the Galilean line group that uphold the non-relativistic equivalence principle as well as representations that violate the equivalence principle. In these previous studies, the focus was on linear accelerations. In this paper, we undertake an extension of the formulation to include rotational accelerations. We show that the incorporation of rotational accelerations requires a class of loop prolongations of the Galilean line group and their unitary cocycle representations. We recover the centrifugal and Coriolis force effects from these loop representations. Loops are more general than groups in that their multiplication law need not be associative. Hence, our broad theoretical claim is that a Galilean quantum theory that holds in arbitrary non-inertial reference frames requires going beyond groups and group representations, the well-established framework for implementing symmetry transformations in quantum mechanics. -- Highlights: A formulation of Galilean quantum mechanics in non-inertial reference frames is presented. The Galilei group is generalized to infinite dimensional Galilean line group. Loop prolongations of Galilean line group contain central extensions of Galilei group. Unitary representations of the loops are constructed. These representations lead to terms in the Hamiltonian corresponding to fictitious forces, including centrifugal and Coriolis forces.

  2. Quantum mechanics and the direction of time

    SciTech Connect

    Hasegawa, H.; Petrosky, T. ); Prigogine, I. International Solvay Inst. for Physics and Chemistry, Brussels ); Tasaki, S. )

    1991-03-01

    In recent papers the authors have discussed the dynamical properties of large Poincare systems (LPS), that is, nonintegrable systems with a continuous spectrum (both classical and quantum). An interesting example of LPS is given by the Friedrichs model of field theory. As is well known, perturbation methods analytic in the coupling constant diverge because of resonant denominators. They show that this Poincare catastrophe can be eliminated by a natural time ordering of the dynamical states. They obtain then a dynamical theory which incorporates a privileged direction of time (and therefore the second law of thermodynamics). However, it is only in very simple situations that his time ordering can be performed in an extended Hilbert space. In general, they need to go to the Liouville space (superspace) and introduce a time ordering of dynamical states according to the number of particles involved in correlations. This leads then to a generalization of quantum mechanics in which the usual Heisenberg's eigenvalue problem is replaced by a complex eigenvalue problem in the Liouville space.

  3. Dynamical phase transitions in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Rotter, Ingrid

    2012-02-01

    The nucleus is described as an open many-body quantum system with a non-Hermitian Hamilton operator the eigenvalues of which are complex, in general. The eigenvalues may cross in the complex plane (exceptional points), the phases of the eigenfunctions are not rigid in approaching the crossing points and the widths bifurcate. By varying only one parameter, the eigenvalue trajectories usually avoid crossing and width bifurcation occurs at the critical value of avoided crossing. An analog spectroscopic redistribution takes place for discrete states below the particle decay threshold. By this means, a dynamical phase transition occurs in the many-level system starting at a critical value of the level density. Hence the properties of the low-lying nuclear states (described well by the shell model) and those of highly excited nuclear states (described by random ensembles) differ fundamentally from one another. The statement of Niels Bohr on the collective features of compound nucleus states at high level density is therefore not in contradiction to the shell-model description of nuclear (and atomic) states at low level density. Dynamical phase transitions are observed experimentally in different quantum mechanical systems by varying one or two parameters.

  4. Exponential complexity and ontological theories of quantum mechanics

    SciTech Connect

    Montina, A.

    2008-02-15

    Ontological theories of quantum mechanics describe a single system by means of well-defined classical variables and attribute the quantum uncertainties to our ignorance about the underlying reality represented by these variables. We consider the general class of ontological theories describing a quantum system by a set of variables with Markovian (either deterministic or stochastic) evolution. We provide proof that the number of continuous variables cannot be smaller than 2N-2, N being the Hilbert-space dimension. Thus, any ontological Markovian theory of quantum mechanics requires a number of variables which grows exponentially with the physical size. This result is relevant also in the framework of quantum Monte Carlo methods.

  5. Paul A.M. Dirac's The Principles of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Brown, Laurie M.

    2006-12-01

    Paul A.M. Diracs book, The Principles of Quantum Mechanics, summarized the foundations of a new science, much of which was his own creation. It expressed the spirit of the new quantum mechanics, creating a descriptive language that we still use. I discuss the successive editions of Diracs book and their critical reception, noting changes, especially in the formulation of the general theory and in its treatment of relativistic quantum theory and quantum electrodynamics. In the case of the later editions, I discuss Diracs negative attitude toward renormalized quantum electrodynamics.

  6. Covariant Hamiltonian dynamics with negative-energy states

    NASA Astrophysics Data System (ADS)

    de Sanctis, M.

    2007-07-01

    A relativistic quantum mechanics is studied for bound hadronic systems in the framework of the point form relativistic Hamiltonian dynamics. Negative-energy states are introduced taking into account the restrictions imposed by a correct definition of the Poincar group generators. We obtain nonpathological, manifestly covariant wave equations that dynamically contain the contributions of the negative-energy states. Auxiliary negative-energy states are also introduced, specially for studying the interactions of the hadronic systems with external probes.

  7. Information flow in quantum mechanics: The Quantum Maxwell Demon

    SciTech Connect

    Chapline, G.F.

    1990-08-09

    Quantum information can be lost only when a quantum system is placed in contact with a heat bath, and then only in proportion to the entropy generated. Applied to the universe as a whole this suggests that the universe is in an algorithmically simple nearly pure quantum state. This could be verified by squeezing'' the vacuum state, and it is quite plausible that this is exactly what is happening inside black holes. 14 refs.

  8. Tampering detection system using quantum-mechanical systems

    DOEpatents

    Humble, Travis S.; Bennink, Ryan S.; Grice, Warren P.

    2011-12-13

    The use of quantum-mechanically entangled photons for monitoring the integrity of a physical border or a communication link is described. The no-cloning principle of quantum information science is used as protection against an intruder's ability to spoof a sensor receiver using a `classical` intercept-resend attack. Correlated measurement outcomes from polarization-entangled photons are used to protect against quantum intercept-resend attacks, i.e., attacks using quantum teleportation.

  9. Quantum mechanical calculations to chemical accuracy

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1991-01-01

    The accuracy of current molecular-structure calculations is illustrated with examples of quantum mechanical solutions for chemical problems. Two approaches are considered: (1) the coupled-cluster singles and doubles (CCSD) with a perturbational estimate of the contribution of connected triple excitations, or CCDS(T); and (2) the multireference configuration-interaction (MRCI) approach to the correlation problem. The MRCI approach gains greater applicability by means of size-extensive modifications such as the averaged-coupled pair functional approach. The examples of solutions to chemical problems include those for C-H bond energies, the vibrational frequencies of O3, identifying the ground state of Al2 and Si2, and the Lewis-Rayleigh afterglow and the Hermann IR system of N2. Accurate molecular-wave functions can be derived from a combination of basis-set saturation studies and full configuration-interaction calculations.

  10. Coulomb branch localization in quiver quantum mechanics

    NASA Astrophysics Data System (ADS)

    Ohta, Kazutoshi; Sasai, Yuya

    2016-02-01

    We show how to exactly calculate the refined indices of {N}=4U(1)× U(N) supersymmetric quiver quantum mechanics in the Coulomb branch by using the localization technique. The Coulomb branch localization is discussed from the viewpoint of both non-linear and gauged linear sigma models. A classification of fixed points in the Coulomb branch differs from one in the Higgs branch, but the derived indices completely agree with the results which were obtained by the localization in the Higgs branch. In the Coulomb branch localization, the refined indices can be written as a summation over different sets of the Coulomb branch fixed points. We also discuss a space-time picture of the fixed points in the Coulomb branch.

  11. Supersymmetric quantum mechanics and Painlev equations

    NASA Astrophysics Data System (ADS)

    Bermudez, David; Fernndez C., David J.

    2014-01-01

    In these lecture notes we shall study first the supersymmetric quantum mechanics (SUSY QM), specially when applied to the harmonic and radial oscillators. In addition, we will define the polynomial Heisenberg algebras (PHA), and we will study the general systems ruled by them: for zero and first order we obtain the harmonic and radial oscillators, respectively; for second and third order the potential is determined by solutions to Painlev IV (PIV) and Painlev V (PV) equations. Taking advantage of this connection, later on we will find solutions to PIV and PV equations expressed in terms of confluent hypergeometric functions. Furthermore, we will classify them into several solution hierarchies, according to the specific special functions they are connected with.

  12. Is Quantum Mechanics the Whole Truth?

    SciTech Connect

    Leggett, Anthony J.

    2008-05-29

    Quantum mechanics has been enormously successful in describing nature at the atomic level and most physicists believe it is, in principle, the 'whole truth' about the world even at the everyday level. However, such a view, at first glance, leads to a severe problem. In certain circumstances, the most natural interpretation of the theory implies that no definite outcome of an experiment occurs until the act of observation. For many decades this problem was regarded as merely philosophical-it was thought it had no consequences that could be tested in experiment. However, in the last dozen years or so, the situation has changed dramatically in this respect. The problem, some popular resolutions of it, the current experimental situation and prospects for the future are discussed.

  13. New methods for quantum mechanical reaction dynamics

    SciTech Connect

    Thompson, W.H. |

    1996-12-01

    Quantum mechanical methods are developed to describe the dynamics of bimolecular chemical reactions. We focus on developing approaches for directly calculating the desired quantity of interest. Methods for the calculation of single matrix elements of the scattering matrix (S-matrix) and initial state-selected reaction probabilities are presented. This is accomplished by the use of absorbing boundary conditions (ABC) to obtain a localized (L{sup 2}) representation of the outgoing wave scattering Green`s function. This approach enables the efficient calculation of only a single column of the S-matrix with a proportionate savings in effort over the calculation of the entire S-matrix. Applying this method to the calculation of the initial (or final) state-selected reaction probability, a more averaged quantity, requires even less effort than the state-to-state S-matrix elements. It is shown how the same representation of the Green`s function can be effectively applied to the calculation of negative ion photodetachment intensities. Photodetachment spectroscopy of the anion ABC{sup -} can be a very useful method for obtaining detailed information about the neutral ABC potential energy surface, particularly if the ABC{sup -} geometry is similar to the transition state of the neutral ABC. Total and arrangement-selected photodetachment spectra are calculated for the H{sub 3}O{sup -} system, providing information about the potential energy surface for the OH + H{sub 2} reaction when compared with experimental results. Finally, we present methods for the direct calculation of the thermal rate constant from the flux-position and flux-flux correlation functions. The spirit of transition state theory is invoked by concentrating on the short time dynamics in the area around the transition state that determine reactivity. These methods are made efficient by evaluating the required quantum mechanical trace in the basis of eigenstates of the Boltzmannized flux operator.

  14. The Dirac Hamiltonian with a superstrong Coulomb field

    NASA Astrophysics Data System (ADS)

    Voronov, B. L.; Gitman, D. M.; Tyutin, I. V.

    2007-01-01

    We consider the quantum mechanical problem of a relativistic Dirac particle moving in the Coulomb field of a point charge Ze. It is often declared in the literature that a quantum mechanical description of such a system does not exist for charge values exceeding the so-called critical charge with Z = α-1 = 137 because the standard expression for the lower bound-state energy yields complex values at overcritical charges. We show that from the mathematical standpoint, there is no problem in defining a self-adjoint Hamiltonian for any charge value. Furthermore, the transition through the critical charge does not lead to any qualitative changes in the mathematical description of the system. A specific feature of overcritical charges is a nonuniqueness of the self-adjoint Hamiltonian, but this nonuniqueness is also characteristic for charge values less than critical (and larger than the subcritical charge with Z = (sqrt 3 /2)α ^{ - 1} = 118). We present the spectra and (generalized) eigenfunctions for all self-adjoint Hamiltonians. We use the methods of the theory of self-adjoint extensions of symmetric operators and the Krein method of guiding functionals. The relation of the constructed one-particle quantum mechanics to the real physics of electrons in superstrong Coulomb fields where multiparticle effects may be crucially important is an open question.

  15. TOPICAL REVIEW: Quantum systems with finite Hilbert space: Galois fields in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Vourdas, A.

    2007-08-01

    A 'Galois quantum system' in which the position and momentum take values in the Galois field GF(pell) is considered. It is comprised of ell-component systems which are coupled in a particular way and is described by a certain class of Hamiltonians. Displacements in the GF(pell) GF(pell) phase space and the corresponding Heisenberg Weyl group are studied. Symplectic transformations are shown to form the Sp(2, GF(pell)) group. Wigner and Weyl functions are defined and their properties are studied. Frobenius symmetries, which are based on Frobenius automorphisms in the theory of Galois fields, are a unique feature of these systems (for ell >= 2). If they commute with the Hamiltonian, there are constants of motion which are discussed. An analytic representation in the ell-sheeted complex plane provides an elegant formalism that embodies the properties of Frobenius transformations. The difference between a Galois quantum system and other finite quantum systems where the position and momentum take values in the ring [{\\bb Z}_p]^\\ell is discussed.

  16. Biological applications of hybrid quantum mechanics/molecular mechanics calculation.

    PubMed

    Kang, Jiyoung; Hagiwara, Yohsuke; Tateno, Masaru

    2012-01-01

    Since in most cases biological macromolecular systems including solvent water molecules are remarkably large, the computational costs of performing ab initio calculations for the entire structures are prohibitive. Accordingly, QM calculations that are jointed with MM calculations are crucial to evaluate the long-range electrostatic interactions, which significantly affect the electronic structures of biological macromolecules. A UNIX-shell-based interface program connecting the quantum mechanics (QMs) and molecular mechanics (MMs) calculation engines, GAMESS and AMBER, was developed in our lab. The system was applied to a metalloenzyme, azurin, and PU.1-DNA complex; thereby, the significance of the environmental effects on the electronic structures of the site of interest was elucidated. Subsequently, hybrid QM/MM molecular dynamics (MD) simulation using the calculation system was employed for investigation of mechanisms of hydrolysis (editing reaction) in leucyl-tRNA synthetase complexed with the misaminoacylated tRNA(Leu), and a novel mechanism of the enzymatic reaction was revealed. Thus, our interface program can play a critical role as a powerful tool for state-of-the-art sophisticated hybrid ab initio QM/MM MD simulations of large systems, such as biological macromolecules. PMID:22536015

  17. A causal net approach to relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Bateson, R. D.

    2012-05-01

    In this paper we discuss a causal network approach to describing relativistic quantum mechanics. Each vertex on the causal net represents a possible point event or particle observation. By constructing the simplest causal net based on Reichenbach-like conjunctive forks in proper time we can exactly derive the 1+1 dimension Dirac equation for a relativistic fermion and correctly model quantum mechanical statistics. Symmetries of the net provide various quantum mechanical effects such as quantum uncertainty and wavefunction, phase, spin, negative energy states and the effect of a potential. The causal net can be embedded in 3+1 dimensions and is consistent with the conventional Dirac equation. In the low velocity limit the causal net approximates to the Schrodinger equation and Pauli equation for an electromagnetic field. Extending to different momentum states the net is compatible with the Feynman path integral approach to quantum mechanics that allows calculation of well known quantum phenomena such as diffraction.

  18. Calculation of Host-Guest Binding Affinities Using a Quantum-Mechanical Energy Model

    PubMed Central

    Muddana, Hari S.; Gilson, Michael K.

    2012-01-01

    The prediction of protein-ligand binding affinities is of central interest in computer-aided drug discovery, but it is still difficult to achieve a high degree of accuracy. Recent studies suggesting that available force fields may be a key source of error motivate the present study, which reports the first mining minima (M2) binding affinity calculations based on a quantum mechanical energy model, rather than an empirical force field. We apply a semi-empirical quantum-mechanical energy function, PM6-DH+, coupled with the COSMO solvation model, to 29 host-guest systems with a wide range of measured binding affinities. After correction for a systematic error, which appears to derive from the treatment of polar solvation, the computed absolute binding affinities agree well with experimental measurements, with a mean error 1.6 kcal/mol and a correlation coefficient of 0.91. These calculations also delineate the contributions of various energy components, including solute energy, configurational entropy, and solvation free energy, to the binding free energies of these host-guest complexes. Comparison with our previous calculations, which used empirical force fields, point to significant differences in both the energetic and entropic components of the binding free energy. The present study demonstrates successful combination of a quantum mechanical Hamiltonian with the M2 affinity method. PMID:22737045

  19. Reverse Causation and the Transactional Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Cramer, John G.

    2006-10-01

    In the first part of the paper we present the transactional interpretation of quantum mechanics, a method of viewing the formalism of quantum mechanics that provides a way of visualizing quantum events and experiments. In the second part, we present an EPR gedankenexperiment that appears to lead to observer-level reverse causation. A transactional analysis of the experiment is presented. It easily accounts for the reported observations but does not reveal any barriers to its modification for reverse causation.

  20. Developing and Evaluating Animations for Teaching Quantum Mechanics Concepts

    ERIC Educational Resources Information Center

    Kohnle, Antje; Douglass, Margaret; Edwards, Tom J.; Gillies, Alastair D.; Hooley, Christopher A.; Sinclair, Bruce D.

    2010-01-01

    In this paper, we describe animations and animated visualizations for introductory and intermediate-level quantum mechanics instruction developed at the University of St Andrews. The animations aim to help students build mental representations of quantum mechanics concepts. They focus on known areas of student difficulty and misconceptions by

  1. Categorization of Quantum Mechanics Problems by Professors and Students

    ERIC Educational Resources Information Center

    Lin, Shih-Yin; Singh, Chandralekha

    2010-01-01

    We discuss the categorization of 20 quantum mechanics problems by physics professors and undergraduate students from two honours-level quantum mechanics courses. Professors and students were asked to categorize the problems based upon similarity of solution. We also had individual discussions with professors who categorized the problems. Faculty

  2. Students' Conceptual Difficulties in Quantum Mechanics: Potential Well Problems

    ERIC Educational Resources Information Center

    Ozcan, Ozgur; Didis, Nilufer; Tasar, Mehmet Fatih

    2009-01-01

    In this study, students' conceptual difficulties about some basic concepts in quantum mechanics like one-dimensional potential well problems and probability density of tunneling particles were identified. For this aim, a multiple choice instrument named Quantum Mechanics Conceptual Test has been developed by one of the researchers of this study

  3. Design and Validation of the Quantum Mechanics Conceptual Survey

    ERIC Educational Resources Information Center

    McKagan, S. B.; Perkins, K. K.; Wieman, C. E.

    2010-01-01

    The Quantum Mechanics Conceptual Survey (QMCS) is a 12-question survey of students' conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper, we describe the design and validation of the survey, a process that included

  4. In Defense of a Heuristic Interpretation of Quantum Mechanics

    ERIC Educational Resources Information Center

    Healy, Eamonn F.

    2010-01-01

    Although the presentation of quantum mechanics found in traditional textbooks is intellectually well founded, it suffers from a number of deficiencies. Specifically introducing quantum mechanics as a solution to the arcane dilemma, the ultraviolet catastrophe, does little to impress a nonscientific audience of the tremendous paradigmatic shift

  5. Quantum Mechanics from Periodic Dynamics: the bosonic case

    SciTech Connect

    Dolce, Donatello

    2010-05-04

    Enforcing the periodicity hypothesis of the 'old' formulation of Quantum Mechanics we show the possibility for a new scenario where Special Relativity and Quantum Mechanics are unified in a deterministic field theory. A novel interpretation of the AdS/CFT conjecture is discussed.

  6. Categorization of Quantum Mechanics Problems by Professors and Students

    ERIC Educational Resources Information Center

    Lin, Shih-Yin; Singh, Chandralekha

    2010-01-01

    We discuss the categorization of 20 quantum mechanics problems by physics professors and undergraduate students from two honours-level quantum mechanics courses. Professors and students were asked to categorize the problems based upon similarity of solution. We also had individual discussions with professors who categorized the problems. Faculty…

  7. Developing and Evaluating Animations for Teaching Quantum Mechanics Concepts

    ERIC Educational Resources Information Center

    Kohnle, Antje; Douglass, Margaret; Edwards, Tom J.; Gillies, Alastair D.; Hooley, Christopher A.; Sinclair, Bruce D.

    2010-01-01

    In this paper, we describe animations and animated visualizations for introductory and intermediate-level quantum mechanics instruction developed at the University of St Andrews. The animations aim to help students build mental representations of quantum mechanics concepts. They focus on known areas of student difficulty and misconceptions by…

  8. Students' Conceptual Difficulties in Quantum Mechanics: Potential Well Problems

    ERIC Educational Resources Information Center

    Ozcan, Ozgur; Didis, Nilufer; Tasar, Mehmet Fatih

    2009-01-01

    In this study, students' conceptual difficulties about some basic concepts in quantum mechanics like one-dimensional potential well problems and probability density of tunneling particles were identified. For this aim, a multiple choice instrument named Quantum Mechanics Conceptual Test has been developed by one of the researchers of this study…

  9. Design and Validation of the Quantum Mechanics Conceptual Survey

    ERIC Educational Resources Information Center

    McKagan, S. B.; Perkins, K. K.; Wieman, C. E.

    2010-01-01

    The Quantum Mechanics Conceptual Survey (QMCS) is a 12-question survey of students' conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper, we describe the design and validation of the survey, a process that included…

  10. Quantum mechanical features of optically pumped CW FIR lasers

    NASA Technical Reports Server (NTRS)

    Seligson, D.; Leite, J. R. R.; Sanchez, A.; Feld, M. S.; Ducloy, M.

    1977-01-01

    Quantum mechanical predictions for the gain of an optically pumped CW FIR laser are presented for cases in which one or both of the pump and FIR transitions are pressure or Doppler broadened. The results are compared to those based on the rate equation model. Some of the quantum mechanical predictions are verified in CH3OH.

  11. New Potentials for Old: The Darboux Transformation in Quantum Mechanics

    ERIC Educational Resources Information Center

    Williams, Brian Wesley; Celius, Tevye C.

    2008-01-01

    The Darboux transformation in quantum mechanics is reviewed at a basic level. Examples of how this transformation leads to exactly solvable potentials related to the "particle in a box" and the harmonic oscillator are shown in detail. The connection between the Darboux transformation and some modern operator based approaches to quantum mechanics

  12. In Defense of a Heuristic Interpretation of Quantum Mechanics

    ERIC Educational Resources Information Center

    Healy, Eamonn F.

    2010-01-01

    Although the presentation of quantum mechanics found in traditional textbooks is intellectually well founded, it suffers from a number of deficiencies. Specifically introducing quantum mechanics as a solution to the arcane dilemma, the ultraviolet catastrophe, does little to impress a nonscientific audience of the tremendous paradigmatic shift…

  13. Are quantum-mechanical-like models possible, or necessary, outside quantum physics?

    NASA Astrophysics Data System (ADS)

    Plotnitsky, Arkady

    2014-12-01

    This article examines some experimental conditions that invite and possibly require recourse to quantum-mechanical-like mathematical models (QMLMs), models based on the key mathematical features of quantum mechanics, in scientific fields outside physics, such as biology, cognitive psychology, or economics. In particular, I consider whether the following two correlative features of quantum phenomena that were decisive for establishing the mathematical formalism of quantum mechanics play similarly important roles in QMLMs elsewhere. The first is the individuality and discreteness of quantum phenomena, and the second is the irreducibly probabilistic nature of our predictions concerning them, coupled to the particular character of the probabilities involved, as different from the character of probabilities found in classical physics. I also argue that these features could be interpreted in terms of a particular form of epistemology that suspends and even precludes a causal and, in the first place, realist description of quantum objects and processes. This epistemology limits the descriptive capacity of quantum theory to the description, classical in nature, of the observed quantum phenomena manifested in measuring instruments. Quantum mechanics itself only provides descriptions, probabilistic in nature, concerning numerical data pertaining to such phenomena, without offering a physical description of quantum objects and processes. While QMLMs share their use of the quantum-mechanical or analogous mathematical formalism, they may differ by the roles, if any, the two features in question play in them and by different ways of interpreting the phenomena they considered and this formalism itself. This article will address those differences as well.

  14. Atoms and molecules in relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Styszy?ski, J.

    2008-03-01

    Relativistic N-electron Hamiltonian can be written as a sum of the one electron Dirac Hamiltonians for an electron moving in the external field of nucleus, the Coulomb repulsion potential energy between electrons and the Breit operator representing the magnetic and retardation corrections to this interaction. Approximating many-electron wave function by a sum of anti- symmetrised products of orthonormal single particle spinors and using it as a trial function in a variational method leads to the Dirac-Fock equations for N-electron system. However the presence of a continuum of negative energy states below the bound states in the spectrum of Dirac Hamiltonian is a source of a several difficulties in atomic and molecular structure calculations: the Brown-Ravenhall disease, variational collapse and variational prolapse. Taking the boundary conditions properly into account, imposing the kinetic balance condition for small and large component basis sets, using correct strategy in developing basis sets and employing the finite nuclear size model results in the workable finite-difference and the basis-set methods of calculation for relativistic atomic and molecular structure.

  15. Compressed sensing for Hamiltonian reconstruction

    NASA Astrophysics Data System (ADS)

    Rudinger, Kenneth; Joynt, Robert

    2015-11-01

    In engineered quantum systems, the Hamiltonian is often not completely known and needs to be determined experimentally with accuracy and efficiency. We show that this may be done at temperatures that are higher than the characteristic interaction energies, but not too much higher. The condition for this is that there are not too many multiparticle interactions: the Hamiltonian is sparse in a well-defined sense. The protocol that accomplishes this is related to compressed sensing methods of classical signal processing, in this case applied to sparse rather than low-rank matrices.

  16. Chirality, quantum mechanics, and biological determinism

    NASA Astrophysics Data System (ADS)

    Davies, P. C. W.

    2006-08-01

    The holy grail of astrobiology is the discovery of a second sample of life that has emerged de novo, independently of life on Earth (as opposed to extraterrestrial life that shares a common origin with terrestrial life via a panspermia process). It would then be possible to separate aspects of biology that are lawlike and expected from those that are accidental and contingent, and thus to address the question of whether the laws of nature are intrinsically bio-friendly. The popular assumption that life is an almost inevitable product of physics and chemistry, and therefore widespread in the universe, is known as biological determinism. It remains an open question whether biological determinism is correct, as there is little direct evidence in its favour from fundamental physics. Homochirality is a deep property of known life, and provides an important test case for the competing ideas of contingency versus lawfulness - or chance versus necessity. Conceivably, a chiral signature is imprinted on life by fundamental physics via parity-violating mixing of the weak and electromagnetic interactions. If so, homochirality would be universal and lawlike. On the other hand, it may be the result of chance: a random molecular accident during the pre-biotic phase. If the latter explanation is correct, one could expect that a second sample of life may have opposite chiral signature even if it resembled known life in its basic biochemistry. There is thus a curious obverse relationship between chirality and biogenesis in relation to biological determinism. If the chiral signature of life is the product of chance, we may hope to discover "mirror life" (i.e. organisms with opposite chiral signature) as evidence of a second genesis, and the latter would establish that life's emergence from non-life is quasi-deterministic. On the other hand, if the chiral signature is determined by fundamental physics, then it may be much harder to establish an independent origin for extraterrestrial life with biochemical make-up resembling that of known life. Whilst the experimental search for a second sample of life - possibly by detecting a chiral "anomaly" - continues, some theoretical investigations may be pursued to narrow down the options. Chiral determinism would be an intrinsically quantum process. There are hints that quantum mechanics plays a key role in biology, but the claim remains contentious. Here I review some of the evidence for quantum aspects of biology. I also summarize some proposals for testing biological determinism by seeking evidence for a multiple genesis events on Earth, and for identifying extant "alien microbes" - micro-organisms descended from an independent origin from familiar life.

  17. Quantum mechanics on the gravitational field

    SciTech Connect

    Teitelboim, C.

    1982-06-15

    An approach to the quantum theory of gravitation is developed by analogy with the quantum mechanics of the simplest generally covariant system: the relativistic point particle. The central object in the formalism is the transition amplitude from one three-geometry to another which is given by a path integral. In that path integral one sums over all possible histories which connect two three-geometries separated by a given local proper time and then integrates over all possible proper-time separations. The choice of the range of integration for the proper time fixes the boundary conditions for the transition amplitude. If only positive proper times are allowed, the resulting amplitude is causal. A perturbation theory is developed in which the expansion parameter is the signature which takes the value minus one when the field histories (spacetimes) have hperbolic signature and plus one for the Euclidean case. The ''free theory corresponds to zero signature and may be viewed as the result of replacing the Lorentz group as a symmetry group of the tangent spaces by one of its contractions, namely that one where the speed of light approaches zero. It is argued that besides that processes in which the universe starts or finishes at a singularity, there are also processes with a nonzero amplitude in which the universe starts and finishes in the same regular configuration without ever going through a singularity. These latter processes may be pictured as a loop in the configurtion space of the gravitational field. The work remains formal throughout in that no definite meaning is given to the functional integrals considered.

  18. Quantum mechanics of conformally and minimally coupled Friedmann-Robertson-Walker cosmology

    NASA Astrophysics Data System (ADS)

    Kim, Sang Pyo

    1992-10-01

    The expansion method by a time-dependent basis of the eigenfunctions for the space-coordinate-dependent sub-Hamiltonian is one of the most natural frameworks for quantum systems, relativistic as well as nonrelativistic. The complete set of wave functions is found in the product integral formulation, whose constants of integration are fixed by Cauchy initial data. The wave functions for the Friedmann-Robertson-Walker (FRW) cosmology conformally and minimally coupled to a scalar field with a power-law potential or a polynomial potential are expanded in terms of the eigenfunctions of the scalar field sub-Hamiltonian part. The resultant gravitational field part which is an ``intrinsic'' timelike variable-dependent matrix-valued differential equation is solved again in the product integral formulation. There are classically allowed regions for the ``intrinsic'' timelike variable depending on the scalar field quantum numbers and these regions increase accordingly as the quantum numbers increase. For a fixed large three-geometry the wave functions corresponding to the low excited (small quantum number) states of the scalar field are exponentially damped or diverging and the wave functions corresponding to the high excited (large quantum number) states are still oscillatory but become eventually exponential as the three-geometry becomes larger. Furthermore, a proposal is advanced that the wave functions exponentially damped for a large three-geometry may be interpreted as ``tunneling out'' wave functions into, and the wave functions exponentially diverging as ``tunneling in'' from, different universes with the same or different topologies, the former being interpreted as the recently proposed Hawking-Page wormhole wave functions. It is observed that there are complex as well as Euclidean actions depending on the quantum numbers of the scalar field part outside the classically allowed region both of the gravitational and scalar fields, suggesting the usefulness of complex geometry and complex trajectories. From the most general wave functions for the FRW cosmology conformally coupled to scalar field, the boundary conditions for the wormhole wave functions are modified so that the modulus of wave functions, instead of the wave functions themselves, should be exponentially damped for a large three-geometry and be regular up to some negative power of the three-geometry as the three-geometry collapses. The wave functions for the FRW cosmology minimally coupled to an inhomogeneous scalar field are similarly found in the product integral formulation. The role of a large number of the inhomogeneous modes of the scalar field is not only to increase the classically allowed regions for the gravitational part but also to provide a mechanism of the decoherence of quantum interferences between the different sizes of the universe.

  19. An algorithm for quantum mechanical finite-nuclear-mass variational calculations of atoms with L = 3 using all-electron explicitly correlated Gaussian basis functions

    NASA Astrophysics Data System (ADS)

    Sharkey, Keeper L.; Kirnosov, Nikita; Adamowicz, Ludwik

    2013-03-01

    A new algorithm for quantum-mechanical nonrelativistic calculation of the Hamiltonian matrix elements with all-electron explicitly correlated Gaussian functions for atoms with an arbitrary number of s electrons and with three p electrons, or one p electron and one d electron, or one f electron is developed and implemented. In particular the implementation concerns atomic states with L = 3 and M = 0. The Hamiltonian used in the approach is obtained by rigorously separating the center-of-mass motion from the laboratory-frame all particle Hamiltonian, and thus it explicitly depends on the finite mass of the nucleus. The approach is employed to perform test calculations on the lowest 2F state of the two main isotopes of the lithium atom, 7Li and 6Li.

  20. The wave function and minimum uncertainty function of the bound quadratic Hamiltonian system

    NASA Technical Reports Server (NTRS)

    Yeon, Kyu Hwang; Um, Chung IN; George, T. F.

    1994-01-01

    The bound quadratic Hamiltonian system is analyzed explicitly on the basis of quantum mechanics. We have derived the invariant quantity with an auxiliary equation as the classical equation of motion. With the use of this invariant it can be determined whether or not the system is bound. In bound system we have evaluated the exact eigenfunction and minimum uncertainty function through unitary transformation.

  1. An Infinite Order Discrete Variable Representation of an Effective Mass Hamiltonian: Application to Exciton Wave Functions in Quantum Confined Nanostructures.

    PubMed

    Kaledin, Alexey L; Lian, Tianquan; Hill, Craig L; Musaev, Djamaladdin G

    2014-08-12

    We describe an extension of the conventional Fourier grid discrete variable representation (DVR) to the bound state problem of a particle with a position-dependent mass. An infinite order DVR, derived for a variable mass kinetic energy operator, coupled with an efficient grid contraction scheme yields essentially exact eigenvalues for a chosen grid spacing. Implementation of the method is shown to be very practical due to the fact that in a DVR no integral evaluation is necessary and that the resultant kinetic energy matrix is sparse. Numerical calculations are presented for exciton states of spherical, cylindrical, and toric Type I (CdSe/ZnS) core-shell quantum dots. In these examples, electron-hole interaction is treated explicitly by solving a self-consistent Schrdinger-Poisson equation on a contracted DVR grid. Prospective applications of the developed approach to calculating electron transfer rates between adsorbed molecular acceptors and quantum confined nanocrystals of generic shape, dimensionality, and composition are also discussed. PMID:26588309

  2. Calendar effects in quantum mechanics in view of interactive holography

    NASA Astrophysics Data System (ADS)

    Berkovich, Simon

    2013-04-01

    Quantum mechanics in terms of interactive holography appears as `normal' science [1]. With the holography quantum behavior is determined by the interplay of material formations and their conjugate images. To begin with, this effortlessly elucidates the nonlocality in quantum entanglements. Then, it has been shown that Schr"odinger's dynamics for a single particle arises from Bi-Fragmental random walks of the particle itself and its holographic image. For many particles this picture blurs with fragments merging as bosons or fermions. In biomolecules, swapping of particles and their holographic placeholders leads to self-replication of the living matter. Because of broad interpretations of quantum formalism direct experiments attributing it to holography may not be very compelling. The holographic mechanism better reveals as an absolute frame of reference. A number of physical and biological events exhibit annual variations when Earth orbital position changes with respect to the universal holographic mechanism. The well established calendar variations of heart attacks can be regarded as a positive outcome of a generalization of the Michelson experiment, where holography is interferometry and ailing hearts are detectors of pathologically replicated proteins. Also, there have been already observed calendar changes in radioactive decay rates. The same could be expected for various fine quantum experiences, like, e.g., Josephson tunneling. In other words, Quantum Mechanics (February) Quantum Mechanics (August). [1] S. Berkovich, ``A comprehensive explanation of quantum mechanics,'' www.cs.gwu.edu/research/technical-report/170 .

  3. Review of student difficulties in upper-level quantum mechanics

    NASA Astrophysics Data System (ADS)

    Singh, Chandralekha; Marshman, Emily

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] Learning advanced physics, in general, is challenging not only due to the increased mathematical sophistication but also because one must continue to build on all of the prior knowledge acquired at the introductory and intermediate levels. In addition, learning quantum mechanics can be especially challenging because the paradigms of classical mechanics and quantum mechanics are very different. Here, we review research on student reasoning difficulties in learning upper-level quantum mechanics and research on students' problem-solving and metacognitive skills in these courses. Some of these studies were multiuniversity investigations. The investigations suggest that there is large diversity in student performance in upper-level quantum mechanics regardless of the university, textbook, or instructor, and many students in these courses have not acquired a functional understanding of the fundamental concepts. The nature of reasoning difficulties in learning quantum mechanics is analogous to reasoning difficulties found via research in introductory physics courses. The reasoning difficulties were often due to overgeneralizations of concepts learned in one context to another context where they are not directly applicable. Reasoning difficulties in distinguishing between closely related concepts and in making sense of the formalism of quantum mechanics were common. We conclude with a brief summary of the research-based approaches that take advantage of research on student difficulties in order to improve teaching and learning of quantum mechanics.

  4. Highlighting the Mechanism of the Quantum Speedup by Time-Symmetric and Relational Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Castagnoli, Giuseppe

    2015-11-01

    Bob hides a ball in one of four drawers. Alice is to locate it. Classically she has to open up to three drawers, quantally just one. The fundamental reason for this quantum speedup is not known. The usual representation of the quantum algorithm is limited to the process of solving the problem. We extend it to the process of setting the problem. The number of the drawer with the ball becomes a unitary transformation of the random outcome of the preparation measurement. This extended, time-symmetric, representation brings in relational quantum mechanics. It is with respect to Bob and any external observer and cannot be with respect to Alice. It would tell her the number of the drawer with the ball before she opens any drawer. To Alice, the projection of the quantum state due to the preparation measurement should be retarded at the end of her search; in the input state of the search, the drawer number is determined to Bob and undetermined to Alice. We show that, mathematically, one can ascribe any part of the selection of the random outcome of the preparation measurement to the final Alice's measurement. Ascribing half of it explains the speedup of the present algorithm. This leaves the input state to Bob unaltered and projects that to Alice on a state of lower entropy where she knows half of the number of the drawer with the ball in advance. The quantum algorithm turns out to be a sum over histories in each of which Alice knows in advance that the ball is in a pair of drawers and locates it by opening one of the two. In the sample of quantum algorithms examined, the part of the random outcome of the initial measurement selected by the final measurement is one half or slightly above it. Conversely, given an oracle problem, the assumption it is one half always corresponds to an existing quantum algorithm and gives the order of magnitude of the number of oracle queries required by the optimal one.

  5. Highlighting the Mechanism of the Quantum Speedup by Time-Symmetric and Relational Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Castagnoli, Giuseppe

    2016-03-01

    Bob hides a ball in one of four drawers. Alice is to locate it. Classically she has to open up to three drawers, quantally just one. The fundamental reason for this quantum speedup is not known. The usual representation of the quantum algorithm is limited to the process of solving the problem. We extend it to the process of setting the problem. The number of the drawer with the ball becomes a unitary transformation of the random outcome of the preparation measurement. This extended, time-symmetric, representation brings in relational quantum mechanics. It is with respect to Bob and any external observer and cannot be with respect to Alice. It would tell her the number of the drawer with the ball before she opens any drawer. To Alice, the projection of the quantum state due to the preparation measurement should be retarded at the end of her search; in the input state of the search, the drawer number is determined to Bob and undetermined to Alice. We show that, mathematically, one can ascribe any part of the selection of the random outcome of the preparation measurement to the final Alice's measurement. Ascribing half of it explains the speedup of the present algorithm. This leaves the input state to Bob unaltered and projects that to Alice on a state of lower entropy where she knows half of the number of the drawer with the ball in advance. The quantum algorithm turns out to be a sum over histories in each of which Alice knows in advance that the ball is in a pair of drawers and locates it by opening one of the two. In the sample of quantum algorithms examined, the part of the random outcome of the initial measurement selected by the final measurement is one half or slightly above it. Conversely, given an oracle problem, the assumption it is one half always corresponds to an existing quantum algorithm and gives the order of magnitude of the number of oracle queries required by the optimal one.

  6. High-efficiency quantum state transfer and quantum memory using a mechanical oscillator

    NASA Astrophysics Data System (ADS)

    Sete, Eyob A.; Eleuch, H.

    2015-03-01

    We analyze an optomechanical system that can be used to efficiently transfer a quantum state between an optical cavity and a distant mechanical oscillator coupled to a second optical cavity. We show that for a moderate mechanical Q factor it is possible to achieve a transfer efficiency of 99.4 % by using adjustable cavity damping rates and destructive interference. We also show that the quantum mechanical oscillator can be used as a quantum memory device with an efficiency of 96 % employing a pulsed optomechanical coupling. Although the mechanical dissipation slightly decreases the efficiency, its effect can be significantly reduced by designing a high-Q mechanical oscillator.

  7. A dissipative quantum mechanical beam-splitter.

    PubMed

    Ramakrishna, S A; Bandyopadhyay, A; Rai, J

    1998-01-19

    A dissipative beam-splitter (BS) has been analyzed by modeling the losses in the BS due to the excitation of optical phonons. The losses are obtained in terms of the BS medium properties. The model simplies the picture by treating the loss mechanism as a perturbation on the photon modes in a linear, non-lossy medium in the limit of small losses, instead of using the full field quantization in lossy, dispersive media. The model uses second order perturbation in the Markoff approximation and yields the Beer's law for absorption in the first approximation, thus providing a microscopic description of the absorption coecient. It is shown that the fluctuations in the modes get increased because of the losses. We show the existence of quantum interferences due to phase correlations between the input beams and it is shown that these correlations can result in loss quenching. Hence in spite of having such a dissipative medium, it is possible to design a lossless 50-50 BS at normal incidence which may have potential applications in laser optics and dielectric-coated mirrors. PMID:19377576

  8. Quantum mechanical model for Maya Blue

    NASA Astrophysics Data System (ADS)

    Fuentes, Mara E.; Pea, Brisa; Contreras, Csar; Montero, Ana L.; Chianelli, Russell; Alvarado, Manuel; Olivas, Ramn; Rodrguez, Luz M.; Camacho, Hctor; Montero-Cabrera, Luis A.

    This work is about Maya Blue (MB), a pigment developed by Mesoamerican civilizations between the 5th and 16th centuries from an aluminosilicate mineral (palygorskite) and an organic dye (indigo). Two different supramolecular quantum-mechanical models afford explanations for the unusual stability of MB based on the oxidation of the indigo molecule during the heating process and its interaction with palygorskite. A model considering indigo derivatives attached to several aluminates shows the principal features of the experimental visible spectrum of MB within the TD-DFT methodology. Another model of an indigo oxidized species confined within an inorganic supramolecular cavity system, that involves about 170 atoms, was calculated after a large configuration interaction of single excited determinants within the NDOL approximation (Montero-Cabrera et al., J Chem Phys, 2007, 127, 145102). It allows a correct reproduction and interpretation of the corresponding spectrum. This second methodology provides the most satisfactory results, being able to manage very big molecular systems at a QM level. Structural explanation for the unusual stability of MB is also provided.

  9. Can you do quantum mechanics without Einstein?

    SciTech Connect

    Kim, Y. S.; Noz, Marilyn E.

    2007-02-21

    The present form of quantum mechanics is based on the Copenhagen school of interpretation. Einstein did not belong to the Copenhagen school, because he did not believe in probabilistic interpretation of fundamental physical laws. This is the reason why we are still debating whether there is a more deterministic theory. One cause of this separation between Einstein and the Copenhagen school could have been that the Copenhagen physicists thoroughly ignored Einstein's main concern: the principle of relativity. Paul A. M. Dirac was the first one to realize this problem. Indeed, from 1927 to 1963, Paul A. M. Dirac published at least four papers to study the problem of making the uncertainty relation consistent with Einstein's Lorentz covariance. It is interesting to combine those papers by Dirac to make the uncertainty relation consistent with relativity. It is shown that the mathematics of two coupled oscillators enables us to carry out this job. We are then led to the question of whether the concept of localized probability distribution is consistent with Lorentz covariance.

  10. Quantum Mechanical Studies of DNA and LNA

    PubMed Central

    Shim, Irene; Lindow, Morten; Ørum, Henrik

    2014-01-01

    Quantum mechanical (QM) methodology has been employed to study the structure activity relations of DNA and locked nucleic acid (LNA). The QM calculations provide the basis for construction of molecular structure and electrostatic surface potentials from molecular orbitals. The topologies of the electrostatic potentials were compared among model oligonucleotides, and it was observed that small structural modifications induce global changes in the molecular structure and surface potentials. Since ligand structure and electrostatic potential complementarity with a receptor is a determinant for the bonding pattern between molecules, minor chemical modifications may have profound changes in the interaction profiles of oligonucleotides, possibly leading to changes in pharmacological properties. The QM modeling data can be used to understand earlier observations of antisense oligonucleotide properties, that is, the observation that small structural changes in oligonucleotide composition may lead to dramatic shifts in phenotypes. These observations should be taken into account in future oligonucleotide drug discovery, and by focusing more on non RNA target interactions it should be possible to utilize the exhibited property diversity of oligonucleotides to produce improved antisense drugs. PMID:24491259

  11. Quantum mechanical studies of DNA and LNA.

    PubMed

    Koch, Troels; Shim, Irene; Lindow, Morten; rum, Henrik; Bohr, Henrik G

    2014-04-01

    Quantum mechanical (QM) methodology has been employed to study the structure activity relations of DNA and locked nucleic acid (LNA). The QM calculations provide the basis for construction of molecular structure and electrostatic surface potentials from molecular orbitals. The topologies of the electrostatic potentials were compared among model oligonucleotides, and it was observed that small structural modifications induce global changes in the molecular structure and surface potentials. Since ligand structure and electrostatic potential complementarity with a receptor is a determinant for the bonding pattern between molecules, minor chemical modifications may have profound changes in the interaction profiles of oligonucleotides, possibly leading to changes in pharmacological properties. The QM modeling data can be used to understand earlier observations of antisense oligonucleotide properties, that is, the observation that small structural changes in oligonucleotide composition may lead to dramatic shifts in phenotypes. These observations should be taken into account in future oligonucleotide drug discovery, and by focusing more on non RNA target interactions it should be possible to utilize the exhibited property diversity of oligonucleotides to produce improved antisense drugs. PMID:24491259

  12. Can you do quantum mechanics without Einstein?

    NASA Astrophysics Data System (ADS)

    Kim, Y. S.; Noz, Marilyn E.

    2007-02-01

    The present form of quantum mechanics is based on the Copenhagen school of interpretation. Einstein did not belong to the Copenhagen school, because he did not believe in probabilistic interpretation of fundamental physical laws. This is the reason why we are still debating whether there is a more deterministic theory. One cause of this separation between Einstein and the Copenhagen school could have been that the Copenhagen physicists thoroughly ignored Einstein's main concern: the principle of relativity. Paul A. M. Dirac was the first one to realize this problem. Indeed, from 1927 to 1963, Paul A. M. Dirac published at least four papers to study the problem of making the uncertainty relation consistent with Einstein's Lorentz covariance. It is interesting to combine those papers by Dirac to make the uncertainty relation consistent with relativity. It is shown that the mathematics of two coupled oscillators enables us to carry out this job. We are then led to the question of whether the concept of localized probability distribution is consistent with Lorentz covariance.

  13. A dissipative quantum mechanical beam-splitter

    NASA Astrophysics Data System (ADS)

    Ramakrishna, S. Anantha; Bandyopadhyay, Abir; Rai, Jagdish

    1998-01-01

    A dissipative beam-splitter (BS) has been analyzed by modeling the losses in the BS due to the excitation of optical phonons. The losses are obtained in terms of the BS medium properties. The model simplies the picture by treating the loss mechanism as a perturbation on the photon modes in a linear, non-lossy medium in the limit of small losses, instead of using the full field quantization in lossy, dispersive media. The model uses second order perturbation in the Markoff approximation and yields the Beer's law for absorption in the first approximation, thus providing a microscopic description of the absorption coecient. It is shown that the fluctuations in the modes get increased because of the losses. We show the existence of quantum interferences due to phase correlations between the input beams and it is shown that these correlations can result in loss quenching. Hence in spite of having such a dissipative medium, it is possible to design a lossless 50-50 BS at normal incidence which may have potential applications in laser optics and dielectric-coated mirrors.

  14. Nonsupersymmetric strong coupling background from the large N quantum mechanics of two matrices coupled via a Yang-Mills interaction

    SciTech Connect

    Rodrigues, Joao P.; Zaidi, Alia

    2010-10-15

    We derive a planar sector of the large N nonsupersymmetric background of the quantum mechanical Hamiltonian of two Hermitian matrices coupled via a Yang-Mills interaction, in terms of the density of eigenvalues of one of the matrices. This background satisfies an implicit nonlinear integral equation, with a perturbative small coupling expansion and a solvable large coupling solution, which is obtained. The energy of system and the expectation value of several correlators are obtained in this strong coupling limit. They are free of infrared divergences.

  15. Natural star-products on symplectic manifolds and related quantum mechanical operators

    SciTech Connect

    Błaszak, Maciej Domański, Ziemowit

    2014-05-15

    In this paper is considered a problem of defining natural star-products on symplectic manifolds, admissible for quantization of classical Hamiltonian systems. First, a construction of a star-product on a cotangent bundle to an Euclidean configuration space is given with the use of a sequence of pair-wise commuting vector fields. The connection with a covariant representation of such a star-product is also presented. Then, an extension of the construction to symplectic manifolds over flat and non-flat pseudo-Riemannian configuration spaces is discussed. Finally, a coordinate free construction of related quantum mechanical operators from Hilbert space over respective configuration space is presented. -- Highlights: •Invariant representations of natural star-products on symplectic manifolds are considered. •Star-products induced by flat and non-flat connections are investigated. •Operator representations in Hilbert space of considered star-algebras are constructed.

  16. Properties of the Katugampola fractional derivative with potential application in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Anderson, Douglas R.; Ulness, Darin J.

    2015-06-01

    Katugampola [e-print arXiv:1410.6535] recently introduced a limit based fractional derivative, D? (referred to in this work as the Katugampola fractional derivative) that maintains many of the familiar properties of standard derivatives such as the product, quotient, and chain rules. Typically, fractional derivatives are handled using an integral representation and, as such, are non-local in character. The current work starts with a key property of the Katugampola fractional derivative, D ? [ y ] = t 1 - ? /d y d t , and the associated differential operator, D? = t1-?D1. These operators, their inverses, commutators, anti-commutators, and several important differential equations are studied. The anti-commutator serves as a basis for the development of a self-adjoint operator which could potentially be useful in quantum mechanics. A Hamiltonian is constructed from this operator and applied to the particle in a box model.

  17. "Mysticism" in Quantum Mechanics: The Forgotten Controversy

    ERIC Educational Resources Information Center

    Marin, Juan Miguel

    2009-01-01

    This paper argues that a European controversy over a "mystical" hypothesis, one assigning the mind a role to play at the material level of reality, shaped much of the debate over the interpretation of the quantum equations. It traces back the controversy to the past two decades, beginning in the late 1920s--birth of quantum theory--and concluding…

  18. "Mysticism" in Quantum Mechanics: The Forgotten Controversy

    ERIC Educational Resources Information Center

    Marin, Juan Miguel

    2009-01-01

    This paper argues that a European controversy over a "mystical" hypothesis, one assigning the mind a role to play at the material level of reality, shaped much of the debate over the interpretation of the quantum equations. It traces back the controversy to the past two decades, beginning in the late 1920s--birth of quantum theory--and concluding

  19. Development and validation of an achievement test in introductory quantum mechanics: The Quantum Mechanics Visualization Instrument (QMVI)

    NASA Astrophysics Data System (ADS)

    Cataloglu, Erdat

    The purpose of this study was to construct a valid and reliable multiple-choice achievement test to assess students' understanding of core concepts of introductory quantum mechanics. Development of the Quantum Mechanics Visualization Instrument (QMVI) occurred across four successive semesters in 1999--2001. During this time 213 undergraduate and graduate students attending the Pennsylvania State University (PSU) at University Park and Arizona State University (ASU) participated in this development and validation study. Participating students were enrolled in four distinct groups of courses: Modern Physics, Undergraduate Quantum Mechanics, Graduate Quantum Mechanics, and Chemistry Quantum Mechanics. Expert panels of professors of physics experienced in teaching quantum mechanics courses and graduate students in physics and science education established the core content and assisted in the validating of successive versions of the 24-question QMVI. Instrument development was guided by procedures outlined in the Standards for Educational and Psychological Testing (AERA-APA-NCME, 1999). Data gathered in this study provided information used in the development of successive versions of the QMVI. Data gathered in the final phase of administration of the QMVI also provided evidence that the intended score interpretation of the QMVI achievement test is valid and reliable. A moderate positive correlation coefficient of 0.49 was observed between the students' QMVI scores and their confidence levels. Analyses of variance indicated that students' scores in Graduate Quantum Mechanics and Undergraduate Quantum Mechanics courses were significantly higher than the mean scores of students in Modern Physics and Chemistry Quantum Mechanics courses (p < 0.05). That finding is consistent with the additional understanding and experience that should be anticipated in graduate students and junior-senior level students over sophomore physics majors and majors in another field. The moderate positive correlation coefficient of 0.42 observed between students' QMVI scores and their final course grades was also consistent with expectations in a valid instrument. In addition, the Cronbach-alpha reliability coefficient of the QMVI was found to be 0.82. Limited findings were drawn on students' understanding of introductory quantum mechanics concepts. Data suggested that the construct of quantum mechanics understanding is most likely multidimensional and the Main Topic defined as "Quantum Mechanics Postulates" may be an especially important factor for students in acquiring a successful understanding of quantum mechanics.

  20. The actual content of quantum theoretical kinematics and mechanics

    NASA Technical Reports Server (NTRS)

    Heisenberg, W.

    1983-01-01

    First, exact definitions are supplied for the terms: position, velocity, energy, etc. (of the electron, for instance), such that they are valid also in quantum mechanics. Canonically conjugated variables are determined simultaneously only with a characteristic uncertainty. This uncertainty is the intrinsic reason for the occurrence of statistical relations in quantum mechanics. Mathematical formulation is made possible by the Dirac-Jordan theory. Beginning from the basic principles thus obtained, macroscopic processes are understood from the viewpoint of quantum mechanics. Several imaginary experiments are discussed to elucidate the theory.

  1. Novel quantum Monte Carlo methods for spin-orbit Hamiltonians: 2D interacting electron gas with the Rashba interaction

    NASA Astrophysics Data System (ADS)

    Guo, Shi; Zhu, Minyi; Hu, Shuming; Mitas, Lubos

    2013-03-01

    Very recently, a quantum Monte Carlo (QMC) method was proposed for Rashba spin-orbit operators which expands the applicability of QMC to systems with variable spins. It is based on incorporating the spin-orbit into the Green's function and thus samples (ie, rotates) the spinors in the antisymmetric part of the trial function [1]. Here we propose a new alternative for both variational and diffusion Monte Carlo algorithms for calculations of systems with variable spins. Specifically, we introduce a new spin representation which allows us to sample the spin configurations efficiently and without introducing additional fluctuations. We develop the corresponding Green's function which treats the electron spin as a dynamical variable and we use the fixed-phase approximation to eliminate the negative probabilities. The trial wave function is a Slater determinant of spinors and spin-indepedent Jastrow correlations. The method also has the zero variance property. We benchmark the method on the 2D electron gas with the Rashba interaction and we find very good overall agreement with previously obtained results. Research supported by NSF and ARO.

  2. Thermal mechanics: A quantum mechanical analogue of nonequilibrium statistical thermodynamics

    NASA Astrophysics Data System (ADS)

    Zambrini, J.-C.; Yasue, K.

    1980-03-01

    A formal but not conventional equivalence between stochastic processes in nonequilibrium statistical thermodynamics and Schrdinger dynamics in quantum mechanics is shown. It is found, for each stochastic process described by a stochastic differential equation of It type, there exists a Schrdinger-like dynamics in which the absolute square of a wavefunction gives us the same probability distribution as the original stochastic process. In utilizing this equivalence between them, that is, rewriting the stochastic differential equation by an equivalent Schrdinger equation, it is possible to obtain the notion of deterministic limit of the stochastic process as a semi-classical limit of the "Schrdinger" equation. The deterministic limit thus obtained improves the conventional deterministic approximation in the sense of Onsager-Machlup. The present approach is valid for a general class of stochastic equations where local drifts and diffusion coefficients depend on the position. Two concrete examples are given. It should be noticed that the approach in the present form has nothing to do with the conventional one where only a formal similarity between the Fokker-Planck equation and the Schrdinger equation is considered.

  3. Relations between Newtonian mechanics, general relativity, and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Savickas, D.

    2002-08-01

    When Euclidean coordinate lengths are replaced by the metric lengths of a curved geometry within Newton's second law of motion, the metric form of the second law can be shown to be identical to the geodesic equation of motion of general relativity. The metric coefficients are contained in the metric lengths and satisfy the field equations of general relativity. Because metric lengths are the physically measured lengths, their use makes it possible to understand general relativity directly in terms of physical quantities such as energy and momentum within a curved space-time. The metric form of the second law contains gravitational effects in exactly the same manner as occurs in relativity. Its mathematical derivation uses vectors rather than tensors, and nongravitational forces can occur in this modified second law without a tensor form. Because quantum mechanics is based on Newtonian concepts of energy and momentum, it is shown that when metric lengths replace coordinate lengths in Dirac's wave equation, it has a covariant form under a metric transformation of the physically measured distances themselves, rather than a coordinate transformation. Metric transformations are also used to describe the Dirac equation for the gravitational central field in a Schwarzschild metric.

  4. Quantum Mechanics Concept Assessment: Development and Validation Study

    ERIC Educational Resources Information Center

    Sadaghiani, Homeyra R.; Pollock, Steven J.

    2015-01-01

    As part of an ongoing investigation of students' learning in first semester upper-division quantum mechanics, we needed a high-quality conceptual assessment instrument for comparing outcomes of different curricular approaches. The process of developing such a tool started with converting a preliminary version of a 14-item open-ended quantum

  5. New Potentials for Old: The Darboux Transformation in Quantum Mechanics

    ERIC Educational Resources Information Center

    Williams, Brian Wesley; Celius, Tevye C.

    2008-01-01

    The Darboux transformation in quantum mechanics is reviewed at a basic level. Examples of how this transformation leads to exactly solvable potentials related to the "particle in a box" and the harmonic oscillator are shown in detail. The connection between the Darboux transformation and some modern operator based approaches to quantum mechanics…

  6. Robust online Hamiltonian learning

    NASA Astrophysics Data System (ADS)

    Granade, Christopher E.; Ferrie, Christopher; Wiebe, Nathan; Cory, D. G.

    2012-10-01

    In this work we combine two distinct machine learning methodologies, sequential Monte Carlo and Bayesian experimental design, and apply them to the problem of inferring the dynamical parameters of a quantum system. We design the algorithm with practicality in mind by including parameters that control trade-offs between the requirements on computational and experimental resources. The algorithm can be implemented online (during experimental data collection), avoiding the need for storage and post-processing. Most importantly, our algorithm is capable of learning Hamiltonian parameters even when the parameters change from experiment-to-experiment, and also when additional noise processes are present and unknown. The algorithm also numerically estimates the Cramer-Rao lower bound, certifying its own performance.

  7. Accurate tight-binding Hamiltonian matrices from ab initio calculations: Minimal basis sets

    NASA Astrophysics Data System (ADS)

    Agapito, Luis A.; Ismail-Beigi, Sohrab; Curtarolo, Stefano; Fornari, Marco; Nardelli, Marco Buongiorno

    2016-01-01

    Projection of Bloch states obtained from quantum-mechanical calculations onto atomic orbitals is the fastest scheme to construct ab initio tight-binding Hamiltonian matrices. However, the presence of spurious states and unphysical hybridizations of the tight-binding eigenstates has hindered the applicability of this construction. Here we demonstrate that those spurious effects are due to the inclusion of Bloch states with low projectability. The mechanism for the formation of those effects is derived analytically. We present an improved scheme for the removal of the spurious states which results in an efficient scheme for the construction of highly accurate ab initio tight-binding Hamiltonians.

  8. Quantum mechanics of hyperbolic orbits in the Kepler problem

    SciTech Connect

    Rauh, Alexander; Parisi, Juergen

    2011-04-15

    The problem of deriving macroscopic properties from the Hamiltonian of the hydrogen atom is resumed by extending previous results in the literature, which predicted elliptic orbits, into the region of hyperbolic orbits. As a main tool, coherent states of the harmonic oscillator are used which are continued to imaginary frequencies. The Kustaanheimo-Stiefel (KS) map is applied to transform the original configuration space into the product space of four harmonic oscillators with a constraint. The relation derived between real time and oscillator (pseudo) time includes quantum corrections. In the limit ({h_bar}/2{pi}){yields}0, the time-dependent mean values of position and velocity describe the classical motion on a hyperbola and a circular hodograph, respectively. Moreover, the connection between pseudotime and real time comes out in analogy to Kepler's equation for elliptic orbits. The mean-square-root deviations of position and velocity components behave similarly in time to the corresponding ones of a spreading Gaussian wave packet in free space. To check the approximate treatment of the constraint, its contribution to the mean energy is determined with the result that it is negligible except for energy values close to the parabolic orbit with eccentricity equal to 1. It is inevitable to introduce a suitable scalar product in R{sup 4} which makes both the transformed Hamiltonian and the velocity operators Hermitian. An elementary necessary criterion is given for the energy interval where the constraint can be approximated by averaging.

  9. On Heat in a Quantum Mechanical Process

    NASA Astrophysics Data System (ADS)

    Deesuwan, Tanapat; Anders, Janet

    2013-05-01

    Heat is the portion of energy exchange between systems in thermodynamic process which, unlike work, is always associated with the change of the entropies of the systems. In the context of quantum thermodynamics, heat process is described by an incoherent generalised quantum evolution, which is a map between two quantum states that does not preserve the entropy. Based on an information-theoretic reasoning, we propose that heat involving in a general quantum thermodynamic process can be separated into two types: one that is due to the unital subclass of the evolutions and another one that is due to the others. According to these categories, we show how the former type of heat can be incorporated into Jarzynski equality, resulting in a generalised version of the equality. We also derive a Jarzynski inequality which incorporates all heat into the picture and show that this situation is just equivalent to the presence of Maxwell's demon.

  10. Bohmian mechanics with complex action: A new trajectory-based formulation of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Goldfarb, Yair; Degani, Ilan; Tannor, David J.

    2006-12-01

    In recent years there has been a resurgence of interest in Bohmian mechanics as a numerical tool because of its local dynamics, which suggest the possibility of significant computational advantages for the simulation of large quantum systems. However, closer inspection of the Bohmian formulation reveals that the nonlocality of quantum mechanics has not disappeared—it has simply been swept under the rug into the quantum force. In this paper we present a new formulation of Bohmian mechanics in which the quantum action, S, is taken to be complex. This leads to a single equation for complex S, and ultimately complex x and p but there is a reward for this complexification—a significantly higher degree of localization. The quantum force in the new approach vanishes for Gaussian wave packet dynamics, and its effect on barrier tunneling processes is orders of magnitude lower than that of the classical force. In fact, the current method is shown to be a rigorous extension of generalized Gaussian wave packet dynamics to give exact quantum mechanics. We demonstrate tunneling probabilities that are in virtually perfect agreement with the exact quantum mechanics down to 10-7 calculated from strictly localized quantum trajectories that do not communicate with their neighbors. The new formulation may have significant implications for fundamental quantum mechanics, ranging from the interpretation of non-locality to measures of quantum complexity.

  11. Quantum tic-tac-toe: A teaching metaphor for superposition in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Goff, Allan

    2006-11-01

    Quantum tic-tac-toe was developed as a metaphor for the counterintuitive nature of superposition exhibited by quantum systems. It offers a way of introducing quantum physics without advanced mathematics, provides a conceptual foundation for understanding the meaning of quantum mechanics, and is fun to play. A single superposition rule is added to the child's game of classical tic-tac-toe. Each move consists of a pair of marks subscripted by the number of the move ("spooky" marks) that must be placed in different squares. When a measurement occurs, one spooky mark becomes real and the other disappears. Quantum tic-tac-toe illustrates a number of quantum principles including states, superposition, collapse, nonlocality, entanglement, the correspondence principle, interference, and decoherence. The game can be played on paper or on a white board. A Web-based version provides a refereed playing board to facilitate the mechanics of play, making it ideal for classrooms with a computer projector.

  12. Particles, Waves, and the Interpretation of Quantum Mechanics

    ERIC Educational Resources Information Center

    Christoudouleas, N. D.

    1975-01-01

    Presents an explanation, without mathematical equations, of the basic principles of quantum mechanics. Includes wave-particle duality, the probability character of the wavefunction, and the uncertainty relations. (MLH)

  13. Why are probabilistic laws governing quantum mechanics and neurobiology?

    NASA Astrophysics Data System (ADS)

    Krger, Helmut

    2005-08-01

    We address the question: Why are dynamical laws governing in quantum mechanics and in neuroscience of probabilistic nature instead of being deterministic? We discuss some ideas showing that the probabilistic option offers advantages over the deterministic one.

  14. Quantum mechanical calculation of the carbine valent zone

    NASA Astrophysics Data System (ADS)

    Baitinger, E. M.; Gagarin, S. G.

    1989-07-01

    Results of a quantum mechanical calculation of the valent states of carbine are presented. A comparison is performed with data from spectroscopic experiments studying the valent states of this modification of solid carbon.

  15. A Simplified Quantum Mechanical Model of Diatomic Molecules

    ERIC Educational Resources Information Center

    Nielsen, Lars Drud

    1978-01-01

    Introduces a simple one-dimensional model of a diatomic molecule that can explain all the essential features of a real two particle quantum mechanical system and gives quantitative results in fair agreement with those of a hydrogen molecule. (GA)

  16. A low temperature expansion for matrix quantum mechanics

    NASA Astrophysics Data System (ADS)

    Lin, Ying-Hsuan; Shao, Shu-Heng; Wang, Yifan; Yin, Xi

    2015-05-01

    We analyze solutions to loop-truncated Schwinger-Dyson equations in massless and Wess-Zumino matrix quantum mechanics at finite temperature, where conventional perturbation theory breaks down due to IR divergences. We find a rather intricate low temperature expansion that involves fractional power scaling in the temperature, based on a consistent "soft collinear" approximation. We conjecture that at least in the matrix quantum mechanics, such scaling behavior holds to all perturbative orders in the 1 /N expansion. We discuss some preliminary results in analyzing the gauged supersymmetric quantum mechanics using Schwinger-Dyson equations, and comment on the connection to metastable microstates of black holes in the holographic dual of BFSS matrix quantum mechanics.

  17. Following Weyl on Quantum Mechanics: The Contribution of Ettore Majorana

    NASA Astrophysics Data System (ADS)

    Drago, A.; Esposito, S.

    2004-05-01

    After a quick historical account of the introduction of the group-theoretical description of Quantum Mechanics in terms of symmetries, as proposed by Weyl, we examine some unpublished papers by Ettore Majorana. Remarkable results achieved by him in frontier research topics as well as in physics teaching point out that the Italian physicist can be well considered as a follower of Weyl in his reformulation of Quantum Mechanics.

  18. Scalable quantum mechanical simulation of large polymer systems

    SciTech Connect

    Goedecker, S.; Hoisie, A.; Kress, J.; Lubeck, O.; Wasserman, H.

    1997-08-01

    We describe a program for quantum mechanical calculations of very large hydrocarbon polymer systems. It is based on a new algorithmic approach to the quantum mechanical tight binding equations that naturally leads to a very efficient parallel implementation and that scales linearly with respect to the number of atoms. We get both very high single node performance as well as a significant parallel speedup on the SGI Origin 2000 parallel computer.

  19. Quantum mechanics and the social sciences: After hermeneutics

    NASA Astrophysics Data System (ADS)

    Heelan, Patrick A.

    1995-04-01

    Quantum mechanics is interpreted, in the spirit of Niels Bohr and Werner Heisenberg, as about physical objects in so far as these are revealed by and within the local, social, and historical process of measurement. An analysis of the hermeneutical aspect of quantum mechanical measurement reveals close analogues with the hermeneutical social/historical sciences. The hermeneutical analysis of science requires the move from the epistemological attitude to an ontological one.

  20. Scattering in the Euclidean formulation of relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Polyzou, Wayne

    2013-10-01

    Euclidean relativistic quantum mechanics is a formulation of relativistic quantum mechanics based on the Osterwalder-Schrader reconstruction theorem that exploits the logical independence of locality from the rest of the axioms of Euclidean field theory. I discuss the properties of Euclidean Green functions necessary for the existence of Mller wave operators and the construction of these wave operators in this formalism. Supported by the US Department of Energy, Grant - DE-AC02-81ER40038.

  1. Contexts, Systems and Modalities: A New Ontology for Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Auffèves, Alexia; Grangier, Philippe

    2016-02-01

    In this article we present a possible way to make usual quantum mechanics fully compatible with physical realism, defined as the statement that the goal of physics is to study entities of the natural world, existing independently from any particular observer's perception, and obeying universal and intelligible rules. Rather than elaborating on the quantum formalism itself, we propose a new quantum ontology, where physical properties are attributed jointly to the system, and to the context in which it is embedded. In combination with a quantization principle, this non-classical definition of physical reality sheds new light on counter-intuitive features of quantum mechanics such as the origin of probabilities, non-locality, and the quantum-classical boundary.

  2. Contexts, Systems and Modalities: A New Ontology for Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Auffves, Alexia; Grangier, Philippe

    2015-09-01

    In this article we present a possible way to make usual quantum mechanics fully compatible with physical realism, defined as the statement that the goal of physics is to study entities of the natural world, existing independently from any particular observer's perception, and obeying universal and intelligible rules. Rather than elaborating on the quantum formalism itself, we propose a new quantum ontology, where physical properties are attributed jointly to the system, and to the context in which it is embedded. In combination with a quantization principle, this non-classical definition of physical reality sheds new light on counter-intuitive features of quantum mechanics such as the origin of probabilities, non-locality, and the quantum-classical boundary.

  3. Probability in the Many-Worlds Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Vaidman, Lev

    It is argued that, although in the Many-Worlds Interpretation of quantum mechanics there is no "probability" for an outcome of a quantum experiment in the usual sense, we can understand why we have an illusion of probability. The explanation involves: (a) A "sleeping pill" gedanken experiment which makes correspondence between an illegitimate question: "What is the probability of an outcome of a quantum measurement?" with a legitimate question: "What is the probability that `I' am in the world corresponding to that outcome?"; (b) A gedanken experiment which splits the world into several worlds which are identical according to some symmetry condition; and (c) Relativistic causality, which together with (b) explain the Born rule of standard quantum mechanics. The Quantum Sleeping Beauty controversy and "caring measure" replacing probability measure are discussed.

  4. On the hypothesis that quantum mechanism manifests classical mechanics: Numerical approach to the correspondence in search of quantum chaos

    SciTech Connect

    Lee, Sang-Bong

    1993-09-01

    Quantum manifestation of classical chaos has been one of the extensively studied subjects for more than a decade. Yet clear understanding of its nature still remains to be an open question partly due to the lack of a canonical definition of quantum chaos. The classical definition seems to be unsuitable in quantum mechanics partly because of the Heisenberg quantum uncertainty. In this regard, quantum chaos is somewhat misleading and needs to be clarified at the very fundamental level of physics. Since it is well known that quantum mechanics is more fundamental than classical mechanics, the quantum description of classically chaotic nature should be attainable in the limit of large quantum numbers. The focus of my research, therefore, lies on the correspondence principle for classically chaotic systems. The chaotic damped driven pendulum is mainly studied numerically using the split operator method that solves the time-dependent Schroedinger equation. For classically dissipative chaotic systems in which (multi)fractal strange attractors often emerge, several quantum dissipative mechanisms are also considered. For instance, Hoover`s and Kubo-Fox-Keizer`s approaches are studied with some computational analyses. But the notion of complex energy with non-Hermiticity is extensively applied. Moreover, the Wigner and Husimi distribution functions are examined with an equivalent classical distribution in phase-space, and dynamical properties of the wave packet in configuration and momentum spaces are also explored. The results indicate that quantum dynamics embraces classical dynamics although the classicalquantum correspondence fails to be observed in the classically chaotic regime. Even in the semi-classical limits, classically chaotic phenomena would eventually be suppressed by the quantum uncertainty.

  5. Sensible Quantum Mechanics:. are Probabilities Only in the Mind?

    NASA Astrophysics Data System (ADS)

    Page, Don N.

    Quantum mechanics may be formulated as Sensible Quantum Mechanics (SQM) so that it contains nothing probabilistic except conscious perceptions. Sets of these perceptions can be deterministically realized with measures given by expectation values of positive-operator-valued awareness operators. Ratios of the measures for these sets of perceptions can be interpreted as frequency-type probabilities for many actually existing sets. These probabilities generally cannot be given by the ordinary quantum probabilities for a single set of alternatives. Probabilism, or ascribing probabilities to unconscious aspects of the world, may be seen to be an aesthemamorphic myth.

  6. Kink mass quantum shifts from SUSY quantum mechanics

    NASA Astrophysics Data System (ADS)

    Izquierdo, Alberto Alonso; Guilarte, Juan Mateos; Plyushchay, Mikhail S.

    2013-04-01

    In this paper a new version of the DHN (Dashen-Hasslacher-Neveu) formula, which is used to compute the one-loop order kink mass correction in (1+1)-dimensional scalar field theory models, is constructed. The new expression is written in terms of the spectral data coming from the supersymmetric partner operator of the second-order small kink fluctuation operator and allows us to compute the kink mass quantum shift in new models for which this calculation was out of reach by means of the old formula.

  7. Electron exchange-correlation in quantum mechanics

    SciTech Connect

    Ritchie, B

    2009-01-30

    It is shown that Fermi-Dirac statistics is guaranteed by the Dirac current, from which spin-dependent quantum velocity fields and spin-dependent quantum trajectories can be inferred. Pauli's exclusion principle is demonstrated using the spin-dependent quantum trajectories. The Dirac current, unlike the Schroedinger current, is nonzero for stationary bound states due to the permanent magnetic moment of the electron. It is of order c{sup 0} in agreement with observation that Fermi-Dirac statistics is independent of electronic velocity. In summary the physical basis for exchange-correlation is found in Dirac's equation, although Schroedinger's equation may be used to evaluate the Dirac current in the nonrelativistic regime of electronic velocity.

  8. Towards quantifying complexity with quantum mechanics

    NASA Astrophysics Data System (ADS)

    Tan, Ryan; R. Terno, Daniel; Thompson, Jayne; Vedral, Vlatko; Gu, Mile

    2014-09-01

    While we have intuitive notions of structure and complexity, the formalization of this intuition is non-trivial. The statistical complexity is a popular candidate. It is based on the idea that the complexity of a process can be quantified by the complexity of its simplest mathematical model the model that requires the least past information for optimal future prediction. Here we review how such models, known as -machines can be further simplified through quantum logic, and explore the resulting consequences for understanding complexity. In particular, we propose a new measure of complexity based on quantum -machines. We apply this to a simple system undergoing constant thermalization. The resulting quantum measure of complexity aligns more closely with our intuition of how complexity should behave.

  9. 'Mysticism' in quantum mechanics: the forgotten controversy

    NASA Astrophysics Data System (ADS)

    Marin, Juan Miguel

    2009-07-01

    This paper argues that a European controversy over a 'mystical' hypothesis, one assigning the mind a role to play at the material level of reality, shaped much of the debate over the interpretation of the quantum equations. It traces back the controversy to the past two decades, beginning in the late 1920s—birth of quantum theory—and concluding with Erwin Schrödinger's lectures published as 'Mind and Matter'. Becoming aware of the issues at stake can help us understand the historical, philosophical and cultural background from which today's physics emerged.

  10. A coherent-state-based path integral for quantum mechanics on the Moyal plane

    NASA Astrophysics Data System (ADS)

    Tan, H. S.

    2006-12-01

    Inspired by a recent work that proposes using coherent states to evaluate the Feynman kernel in noncommutative space, we provide an independent formulation of the path-integral approach for quantum mechanics on the Moyal plane, with the transition amplitude defined between two coherent states of mean position coordinates. In our approach, we invoke solely a representation of the noncommutative algebra in terms of commutative variables. The kernel expression for a general Hamiltonian was found to contain Gaussian-like damping terms, and it is non-perturbative in the sense that it does not reduce to the commutative theory in the limit of vanishing ?the noncommutative parameter. As an example, we studied the free particle's propagator which turned out to be oscillating with period being the product of its mass and ?. Further, it satisfies the Pauli equation for a charged particle with its spin aligned to a constant, orthogonal B field in the ordinary Landau problem, thus providing an interesting evidence of how noncommutativity can induce spin-like effects at the quantum mechanical level.

  11. Statistical Structures Underlying Quantum Mechanics and Social Science

    NASA Astrophysics Data System (ADS)

    Wright, Ron

    2007-08-01

    Common observations of the unpredictability of human behavior and the influence of one question on the answer to another suggest social science experiments are probabilistic and may be mutually incompatible with one another, characteristics attributed to quantum mechanics (as distinguished from classical mechanics). This paper examines this superficial similarity in depth using the Foulis-Randall Operational Statistics language. In contradistinction to physics, social science deals with complex, open systems for which the set of possible experiments is unknowable and outcome interference is a graded phenomenon resulting from the ways the human brain processes information. It is concluded that social science is, in some ways, less classical than quantum mechanics, but that generalized quantum structures may provide appropriate descriptions of social science experiments. Specific challenges to extending quantum structures to social science are identified.

  12. Optimal state discrimination and unstructured search in nonlinear quantum mechanics

    NASA Astrophysics Data System (ADS)

    Childs, Andrew M.; Young, Joshua

    2016-02-01

    Nonlinear variants of quantum mechanics can solve tasks that are impossible in standard quantum theory, such as perfectly distinguishing nonorthogonal states. Here we derive the optimal protocol for distinguishing two states of a qubit using the Gross-Pitaevskii equation, a model of nonlinear quantum mechanics that arises as an effective description of Bose-Einstein condensates. Using this protocol, we present an algorithm for unstructured search in the Gross-Pitaevskii model, obtaining an exponential improvement over a previous algorithm of Meyer and Wong. This result establishes a limitation on the effectiveness of the Gross-Pitaevskii approximation. More generally, we demonstrate similar behavior under a family of related nonlinearities, giving evidence that the ability to quickly discriminate nonorthogonal states and thereby solve unstructured search is a generic feature of nonlinear quantum mechanics.

  13. Multiple-event probability in general-relativistic quantum mechanics

    SciTech Connect

    Hellmann, Frank; Mondragon, Mauricio; Perez, Alejandro; Rovelli, Carlo

    2007-04-15

    We discuss the definition of quantum probability in the context of 'timeless' general-relativistic quantum mechanics. In particular, we study the probability of sequences of events, or multievent probability. In conventional quantum mechanics this can be obtained by means of the 'wave function collapse' algorithm. We first point out certain difficulties of some natural definitions of multievent probability, including the conditional probability widely considered in the literature. We then observe that multievent probability can be reduced to single-event probability, by taking into account the quantum nature of the measuring apparatus. In fact, by exploiting the von-Neumann freedom of moving the quantum/classical boundary, one can always trade a sequence of noncommuting quantum measurements at different times, with an ensemble of simultaneous commuting measurements on the joint system+apparatus system. This observation permits a formulation of quantum theory based only on single-event probability, where the results of the wave function collapse algorithm can nevertheless be recovered. The discussion also bears on the nature of the quantum collapse.

  14. Multiple-event probability in general-relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Hellmann, Frank; Mondragon, Mauricio; Perez, Alejandro; Rovelli, Carlo

    2007-04-01

    We discuss the definition of quantum probability in the context of timeless general-relativistic quantum mechanics. In particular, we study the probability of sequences of events, or multievent probability. In conventional quantum mechanics this can be obtained by means of the wave function collapse algorithm. We first point out certain difficulties of some natural definitions of multievent probability, including the conditional probability widely considered in the literature. We then observe that multievent probability can be reduced to single-event probability, by taking into account the quantum nature of the measuring apparatus. In fact, by exploiting the von-Neumann freedom of moving the quantum/classical boundary, one can always trade a sequence of noncommuting quantum measurements at different times, with an ensemble of simultaneous commuting measurements on the joint system+apparatus system. This observation permits a formulation of quantum theory based only on single-event probability, where the results of the wave function collapse algorithm can nevertheless be recovered. The discussion also bears on the nature of the quantum collapse.

  15. Calculations of time-dependent observables in non-Hermitian quantum mechanics: The problem and a possible solution

    SciTech Connect

    Gilary, Ido; Fleischer, Avner; Moiseyev, Nimrod

    2005-07-15

    The solutions of the time-independent Schroedinger equation for non-Hermitian (NH) Hamiltonians have been extensively studied and calculated in many different fields of physics by using L{sup 2} methods that originally have been developed for the calculations of bound states. The existing non-Hermitian formalism breaks down when dealing with wave packets (WPs). An open question is how time-dependent expectation values can be calculated when the Hamiltonian is NH? Using the F-product formalism that was recently proposed by Moiseyev and Lein [J. Phys. Chem. 107, 7181 (2003)] we calculate the time-dependent expectation values of different observable quantities for a simple well-known study test case model Hamiltonian. We carry out a comparison between these results and those obtained from conventional (i.e., Hermitian) quantum mechanics (QM) calculations. The remarkable agreement between these results emphasizes the fact that in NH QM, unlike standard QM, there is no need to split the entire space into two regions, i.e., the interaction region and its surrounding. Our results open a door for a type of WP propagation calculations within the NH QM formalism that until now were impossible. In particular our work is relevant to the many different fields in physics and chemistry where complex absorbing potentials are introduced in order to reduce the propagation calculations to a restricted region in space where the artificial reflections from the edge of the numerical grid or box are avoided.

  16. Quantum mechanics and reality: An interpretation of Everett's theory

    NASA Astrophysics Data System (ADS)

    Lehner, Christoph Albert

    The central part of Everett's formulation of quantum mechanics is a quantum mechanical model of memory and of observation as the recording of information in a memory. To use this model as an answer to the measurement problem, Everett has to assume that a conscious observer can be in a superposition of such memory states and be unaware of it. This assumption has puzzled generations of readers. The fundamental aim of this dissertation is to find a set of simpler assumptions which are sufficient to show that Everett's model is empirically adequate. I argue that Everett's model needs three assumptions to account for the process of observation: an assumption of decoherence of observers as quantum mechanical systems; an assumption of supervenience of mental states (qualities) over quantum mechanical properties; and an assumption about the interpretation of quantum mechanical states in general: quantum mechanical states describe ensembles of states of affairs coexisting in the same system. I argue that the only plausible understanding of such ensembles is as ensembles of possibilities, and that all standard no-collapse interpretations agree in this reading of quantum mechanical states. Their differences can be understood as different theories about what marks the real state within this ensemble, and Everett's theory as the claim that no additional 'mark of reality' is necessary. Using the three assumptions, I argue that introspection cannot determine the objective quantum mechanical state of an observer. Rather, the introspective qualities of a quantum mechanical state can be represented by a (classical) statistical ensemble of subjective states. An analysis of these subjective states and their dynamics leads to the conclusion that they suffice to give empirically correct predictions. The argument for the empirical adequacy of the subjective state entails that knowledge of the objective quantum mechanical state is impossible in principle. Empirical reality for a conscious observer is not described by the objective state, but by a Everettian relative state conditional on the subjective state, and no theoretical 'mark of reality' is necessary for this concept of reality. I compare the resulting concept of reality to Kant's distinction between empirical and transcendental reality.

  17. Deformation quantization: Quantum mechanics lives and works in phase space

    NASA Astrophysics Data System (ADS)

    Zachos, Cosmas K.

    2014-09-01

    Wigner's 1932 quasi-probability Distribution Function in phase-space, his first paper in English, is a special (Weyl) representation of the density matrix. It has been useful in describing quantum flows in semiclassical limits; quantum optics; nuclear and physics; decoherence (eg, quantum computing); quantum chaos; "Welcher Weg" puzzles; molecular Talbot-Lau interferometry; atomic measurements. It is further of great importance in signal processing (time-frequency analysis). Nevertheless, a remarkable aspect of its internal logic, pioneered by H. Groenewold and J. Moyal, has only blossomed in the last quarter-century: It furnishes a third, alternate, formulation of Quantum Mechanics, independent of the conventional Hilbert Space (the gold medal), or Path Integral (the silver medal) formulations, and perhaps more intuitive, since it shares language with classical mechanics: one need not choose sides between coordinate or momentum space variables, since it is formulated simultaneously in terms of position and momentum. This bronze medal formulation is logically complete and self-standing, and accommodates the uncertainty principle in an unexpected manner, so that it offers unique insights into the classical limit of quantum theory. The observables in this formulation are cnumber functions in phase space instead of operators, with the same interpretation as their classical counterparts, only now composed together in novel algebraic ways using star products. One might then envision an imaginary world in which this formulation of quantum mechanics had preceded the conventional Hilbert-space formulation, and its own techniques and methods had arisen independently, perhaps out of generalizations of classical mechanics and statistical mechanics. A sampling of such intriguing techniques and methods has already been published in C. K. Zachos, Int Jou Mod Phys A17 297-316 (2002), and T. L. Curtright, D. B. Fairlie, and C. K. Zachos, A Concise Treatise on Quantum Mechanics in Phase Space, (Imperial Press & World Scientific, 2014).

  18. Classical and Quantum-Mechanical State Reconstruction

    ERIC Educational Resources Information Center

    Khanna, F. C.; Mello, P. A.; Revzen, M.

    2012-01-01

    The aim of this paper is to present the subject of state reconstruction in classical and in quantum physics, a subject that deals with the experimentally acquired information that allows the determination of the physical state of a system. Our first purpose is to explain a method for retrieving a classical state in phase space, similar to that

  19. The Transactional Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Kastner, Ruth E.

    2012-10-01

    Preface; 1. Introduction: quantum peculiarities; 2. The map vs the territory; 3. The original TI: fundamentals; 4. The new possibilist TI: fundamentals; 5. Challenges, replies, and applications; 6. PTI and relativity; 7. The metaphysics of possibility; 8. PTI and 'spacetime'; 9. Epilogue: more than meets the eye; Appendixes; References; Index.

  20. Classical and Quantum-Mechanical State Reconstruction

    ERIC Educational Resources Information Center

    Khanna, F. C.; Mello, P. A.; Revzen, M.

    2012-01-01

    The aim of this paper is to present the subject of state reconstruction in classical and in quantum physics, a subject that deals with the experimentally acquired information that allows the determination of the physical state of a system. Our first purpose is to explain a method for retrieving a classical state in phase space, similar to that…

  1. An approximate approach to quantum mechanical study of biomacromolecules

    NASA Astrophysics Data System (ADS)

    Chen, Xihua

    This thesis summarizes the author's major work in Prof. John Z.H. Zhang's Threoretical Chemistry research group. In Chapter 1, we present a general description of MFCC (molecular fractionation with conjugated caps) method that has been developed in this group to treat biomacromolecules in a divide-and-conquer fashion. Then we give in detail a computational study of MFCC application to peptide/protein that contains disulfide bonds. Continued on the basis of previous MFCC tests, this study provides another numerical support for the accuracy of the MFCC approach to full quantum mechanical calculation of protein/peptide-small molecule interaction. In Chapter 2, we further develop the MFCC scheme for quantum mechanical computation of DNA-ligand interaction energy. We study three oligonuclear acid interaction systems: dinucleotide dCG/water, trinucleotide dCGT/water and a Watson-Crick paired DNA segment dCGT/dGCA. The MFCC interaction energies are found to be in excellent agreement with the corresponding results obtained from the full system ab initio calculations. This study is an exemplification of the application of the general MFCC approach to biomacromolecules. In Chapter 3, firstly, a MFCC-downhill simplex method is proposed to study binding structures of ligands (atoms, ions, or small molecules) in large molecular complex systems. This method employs the MFCC approach to compute the interaction energy-structure relation of the system and implements the downhill simplex algorithm for structural optimization. Secondly, this method is numerically tested on a system of [KCp(18-crown-6)], as a simplest monatomic case study, to optimize the binding position of the potassium cation in a fixed coordination Cp and 18-crown-6 coordinating sphere. The result of the MFCC-downhill simplex optimization shows good agreement with both the crystal structure and with the full-system downhill simplex optimized structure. The effects of the initial structure of the simplex and of the method/basis-set levels of the quantum chemical calculation on the MFCC-downhill simplex optimization are also discussed. Finally, the MFCC-downhill simplex method is tested, as a general multiatomic case study, on a molecular system of cyclo-AAGAGG·H 2O to optimize the binding structure of water molecule to the fixed cyclohexapeptide. The MFCC-downhill simplex optimization results in good agreement with the crystal structure. The MFCC-downhill simplex method should be applicable to optimize the structures of ligands that bind to biomacromolecules such as proteins and DNAs. In Chapter 4, we propose a new approximate method for efficient calculation of biomacromolecular electronic properties, using a Density Matrix (DM) scheme which is integrated with the MFCC approach. In this MFCC-DM method, a biomacro-molecule such as a protein is partitioned by an MFCC scheme into properly capped fragments and concaps whose density matrices are calculated by conventional ab initio methods. These sub-system density matrices are then assembled to construct the full system density matrix which is finally employed to calculate the electronic energy, dipole moment, electronic density, electrostatic potential, etc., of the protein using Hartree-Fock or Density Functional Theory methods. By this MFCC-DM method, the self-consistent field (SCF) procedure for solving the full Hamiltonian problem is circumvented. Two implementations of this approach, MFCC-SDM and MFCC-GDM, are discussed. Systematic numerical studies are carried out on a series of extended polyglycines CH3CO-(GLY) n-NHCH3 (n=3-25) and excellent results are obtained. In Chapter 5, we present an improvement of MFCC-DM method and introduce a pairwise interaction correction (PIC) with which the MFCC-DM method is applicable to study a real-world protein with short-range structural complexity such as hydrogen bonding and close contact. In this MFCC-DM-PIC method, a protein molecule is partitioned into properly capped fragments and concaps according to a general MFCC scheme; the short-range inter-residual interactions are represented by a pair of small molecules (interacting units) which are made from the two involved residues that fall in a certain distance criterion. The density matrices of fragments, concaps, interacting units and pairs are then calculated respectively by conventional Hartree-Fock (HF) or Density Functional Theory (DFT) methods and assembled to construct an approximate full density matrix for protein electronic properties calculations. Numeric tests on seven conformationally varied peptides are presented to demonstrate the accuracy of this MFCC-DM-PIC method. The enegetics, electron density and electrostatic potential obtained by MFCC-DM-PIC are reported. The results are of ab initio quality and comparable to those by traditional full system (FS) computations. The MFCC-DM method is promising for the efficient quantum chemical study of the electronic properties of a variety of macromolecular systems.

  2. Quantum mechanics problems in observer's mathematics

    SciTech Connect

    Khots, Boris; Khots, Dmitriy

    2012-11-06

    This work considers the ontology, guiding equation, Schrodinger's equation, relation to the Born Rule, the conditional wave function of a subsystem in a setting of arithmetic, algebra and topology provided by Observer's Mathematics (see www.mathrelativity.com). Observer's Mathematics creates new arithmetic, algebra, geometry, topology, analysis and logic which do not contain the concept of continuum, but locally coincide with the standard fields. Certain results and communications pertaining to solutions of these problems are provided. In particular, we prove the following theorems: Theorem I (Two-slit interference). Let {Psi}{sub 1} be a wave from slit 1, {Psi}{sub 2} - from slit 2, and {Psi} = {Psi}{sub 1}+{Psi}{sub 2}. Then the probability of {Psi} being a wave equals to 0.5. Theorem II (k-bodies solution). For W{sub n} from m-observer point of view with m>log{sub 10}((2 Multiplication-Sign 10{sup 2n}-1){sup 2k}+1), the probability of standard expression of Hamiltonian variation is less than 1 and depends on n,m,k.

  3. Treating electrostatics with Wolf summation in combined quantum mechanical and molecular mechanical simulations.

    PubMed

    Ojeda-May, Pedro; Pu, Jingzhi

    2015-11-01

    The Wolf summation approach [D. Wolf et al., J. Chem. Phys. 110, 8254 (1999)], in the damped shifted force (DSF) formalism [C. J. Fennell and J. D. Gezelter, J. Chem. Phys. 124, 234104 (2006)], is extended for treating electrostatics in combined quantum mechanical and molecular mechanical (QM/MM) molecular dynamics simulations. In this development, we split the QM/MM electrostatic potential energy function into the conventional Coulomb r(-1) term and a term that contains the DSF contribution. The former is handled by the standard machinery of cutoff-based QM/MM simulations whereas the latter is incorporated into the QM/MM interaction Hamiltonian as a Fock matrix correction. We tested the resulting QM/MM-DSF method for two solution-phase reactions, i.e., the association of ammonium and chloride ions and a symmetric SN2 reaction in which a methyl group is exchanged between two chloride ions. The performance of the QM/MM-DSF method was assessed by comparing the potential of mean force (PMF) profiles with those from the QM/MM-Ewald and QM/MM-isotropic periodic sum (IPS) methods, both of which include long-range electrostatics explicitly. For ion association, the QM/MM-DSF method successfully eliminates the artificial free energy drift observed in the QM/MM-Cutoff simulations, in a remarkable agreement with the two long-range-containing methods. For the SN2 reaction, the free energy of activation obtained by the QM/MM-DSF method agrees well with both the QM/MM-Ewald and QM/MM-IPS results. The latter, however, requires a greater cutoff distance than QM/MM-DSF for a proper convergence of the PMF. Avoiding time-consuming lattice summation, the QM/MM-DSF method yields a 55% reduction in computational cost compared with the QM/MM-Ewald method. These results suggest that, in addition to QM/MM-IPS, the QM/MM-DSF method may serve as another efficient and accurate alternative to QM/MM-Ewald for treating electrostatics in condensed-phase simulations of chemical reactions. PMID:26547162

  4. Treating electrostatics with Wolf summation in combined quantum mechanical and molecular mechanical simulations

    NASA Astrophysics Data System (ADS)

    Ojeda-May, Pedro; Pu, Jingzhi

    2015-11-01

    The Wolf summation approach [D. Wolf et al., J. Chem. Phys. 110, 8254 (1999)], in the damped shifted force (DSF) formalism [C. J. Fennell and J. D. Gezelter, J. Chem. Phys. 124, 234104 (2006)], is extended for treating electrostatics in combined quantum mechanical and molecular mechanical (QM/MM) molecular dynamics simulations. In this development, we split the QM/MM electrostatic potential energy function into the conventional Coulomb r-1 term and a term that contains the DSF contribution. The former is handled by the standard machinery of cutoff-based QM/MM simulations whereas the latter is incorporated into the QM/MM interaction Hamiltonian as a Fock matrix correction. We tested the resulting QM/MM-DSF method for two solution-phase reactions, i.e., the association of ammonium and chloride ions and a symmetric SN2 reaction in which a methyl group is exchanged between two chloride ions. The performance of the QM/MM-DSF method was assessed by comparing the potential of mean force (PMF) profiles with those from the QM/MM-Ewald and QM/MM-isotropic periodic sum (IPS) methods, both of which include long-range electrostatics explicitly. For ion association, the QM/MM-DSF method successfully eliminates the artificial free energy drift observed in the QM/MM-Cutoff simulations, in a remarkable agreement with the two long-range-containing methods. For the SN2 reaction, the free energy of activation obtained by the QM/MM-DSF method agrees well with both the QM/MM-Ewald and QM/MM-IPS results. The latter, however, requires a greater cutoff distance than QM/MM-DSF for a proper convergence of the PMF. Avoiding time-consuming lattice summation, the QM/MM-DSF method yields a 55% reduction in computational cost compared with the QM/MM-Ewald method. These results suggest that, in addition to QM/MM-IPS, the QM/MM-DSF method may serve as another efficient and accurate alternative to QM/MM-Ewald for treating electrostatics in condensed-phase simulations of chemical reactions.

  5. Quantum Mechanics and the Role of Time:. are Quantum Systems Markovian?

    NASA Astrophysics Data System (ADS)

    Durt, Thomas

    2013-06-01

    The predictions of the Quantum Theory have been verified so far with astonishingly high accuracy. Despite of its impressive successes, the theory still presents mysterious features such as the border line between the classical and quantum world, or the deep nature of quantum nonlocality. These open questions motivated in the past several proposals of alternative and/or generalized approaches. We shall discuss in the present paper alternative theories that can be infered from a reconsideration of the status of time in quantum mechanics. Roughly speaking, quantum mechanics is usually formulated as a memory free (Markovian) theory at a fundamental level, but alternative, nonMarkovian, formulations are possible, and some of them can be tested in the laboratory. In our paper we shall give a survey of these alternative proposals, describe related experiments that were realized in the past and also formulate new experimental proposals.

  6. Evolutionary approach for determining first-principles hamiltonians

    NASA Astrophysics Data System (ADS)

    Hart, Gus L. W.; Blum, Volker; Walorski, Michael J.; Zunger, Alex

    2005-05-01

    Modern condensed-matter theory from first principles is highly successful when applied to materials of given structure-type or restricted unit-cell size. But this approach is limited where large cells or searches over millions of structure types become necessary. To treat these with first-principles accuracy, one 'coarse-grains' the many-particle Schrdinger equation into 'model hamiltonians' whose variables are configurational order parameters (atomic positions, spin and so on), connected by a few 'interaction parameters' obtained from a microscopic theory. But to construct a truly quantitative model hamiltonian, one must know just which types of interaction parameters to use, from possibly 106-108 alternative selections. Here we show how genetic algorithms, mimicking biological evolution ('survival of the fittest'), can be used to distil reliable model hamiltonian parameters from a database of first-principles calculations. We demonstrate this for a classic dilemma in solid-state physics, structural inorganic chemistry and metallurgy: how to predict the stable crystal structure of a compound given only its composition. The selection of leading parameters based on a genetic algorithm is general and easily applied to construct any other type of complex model hamiltonian from direct quantum-mechanical results.

  7. Theoretical calculations of spin-Hamiltonian parameters for CsCdX 3:Ni 2+ (X = Cl, Br) crystals from the two-mechanism model

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Xiao-Xuan, Wu; Wen-Chen, Zheng

    2008-12-01

    The high-order perturbation formulas of spin-Hamiltonian (SH) parameters ( g factors g?, g? and zero-field splitting D) for 3d 8 ions in trigonal octahedral sites of crystals are derived considering not only the crystal-field (CF) mechanism, but also the charge-transfer (CT) mechanism (which is neglected in the extensively used CF theory). From these formulas and by considering the suitable impurity-induced local lattice relaxation, the SH parameters of CsCdX 3:Ni 2+ (X = Cl, Br) crystals are calculated. The results are in reasonable agreement with the experimental values. The sign of QCT ( Q = ? g?, ? g? or D, where the g-shift ? gi = gi - ge, ge ? 2.0023 is the free-electron value) due to CT mechanism is the same as that of the corresponding QCF due to CF mechanism. The relative importance of CT mechanism (characterized by QCT/ QCF) increases with the increasing atomic number of ligand X. So, for 3d n ion clusters in crystals with heavy element ligand ion (e.g., Br -), the reasonable explanations of SH parameters should contain the contributions from both CF and CT mechanisms.

  8. Theoretical calculations of spin-Hamiltonian parameters for CsCdX(3):Ni(2+) (X=Cl, Br) crystals from the two-mechanism model.

    PubMed

    Wang, Fang; Xiao-Xuan, Wu; Wen-Chen, Zheng

    2008-12-01

    The high-order perturbation formulas of spin-Hamiltonian (SH) parameters (g factors g( parallel), g( perpendicular) and zero-field splitting D) for 3d(8) ions in trigonal octahedral sites of crystals are derived considering not only the crystal-field (CF) mechanism, but also the charge-transfer (CT) mechanism (which is neglected in the extensively used CF theory). From these formulas and by considering the suitable impurity-induced local lattice relaxation, the SH parameters of CsCdX(3):Ni(2+) (X=Cl, Br) crystals are calculated. The results are in reasonable agreement with the experimental values. The sign of Q(CT) (Q=Deltag( parallel), Deltag( perpendicular) or D, where the g-shift Deltag(i)=g(i)-g(e), g(e) approximately 2.0023 is the free-electron value) due to CT mechanism is the same as that of the corresponding Q(CF) due to CF mechanism. The relative importance of CT mechanism (characterized by Q(CT)/Q(CF)) increases with the increasing atomic number of ligand X. So, for 3d(n) ion clusters in crystals with heavy element ligand ion (e.g., Br(-)), the reasonable explanations of SH parameters should contain the contributions from both CF and CT mechanisms. PMID:18280786

  9. Combined quantum mechanical/molecular mechanics modeling for large organometallic and metallobiochemical systems

    NASA Astrophysics Data System (ADS)

    Leong, Max Kangchien

    A method of combined quantum mechanics/molecular mechanics has been developed to model larger organometallic and metallobiochemical systems where neither quantum mechanics nor molecular mechanics, applied separately, can solve the problem. An electronically transparent interface, which allows charge transfers between the quantum and classical fragments, is devised and realized by employing a special iterative procedure of double (intrafragment and interfragment) self-consistent calculations. The combined QM/MM scheme was successfully applied to model iron picket-fence porphyrin, vitamin B12, aquocobalamin, and vitamin B12 coenzyme molecules.

  10. Comment on ``Nonlocality, counterfactuals, and quantum mechanics''

    NASA Astrophysics Data System (ADS)

    Stapp, Henry P.

    1999-09-01

    A recent proof [H. P. Stapp, Am. J. Phys. 65, 300 (1997)], formulated in the symbolic language of modal logic, claims to show that contemporary quantum theory, viewed as a set of rules that allow us to calculate statistical predictions among certain kinds of observations, cannot be imbedded in any rational framework that conforms to the principles that (1) the experimenters' choices of which experiments they will perform can be considered to be free choices, (2) outcomes of measurements are unique, and (3) the free choices just mentioned have no backward-in-time effects of any kind. This claim is similar to Bell's theorem, but much stronger, because no reality assumption alien to quantum philosophy is used. The paper being commented on [W. Unruh, Phys. Rev. A 59, 126 (1999)] argues that some such reality assumption has been ``smuggled'' in. That argument is examined here and shown, I believe, to be defective.

  11. Comment on 'Nonlocality, Counterfactuals and Quantum Mechanics'

    SciTech Connect

    Stapp, H.P.

    1999-04-14

    A recent proof [H. P. Stapp, Am. J. Phys. 65, 300 (1997)], formulated in the symbolic language of modal logic, claims to show that contemporary quantum theory, viewed as a set of rules that allow us to calculate statistical predictions among certain kinds of observations, cannot be imbedded in any rational framework that conforms to the principles that (1) the experimenters' choices of which experiments they will perform can be considered to be free choices, (2) outcomes of measurements are unique, and (3) the free choices just mentioned have no backward-in-time effects of any kind. This claim is similar to Bell's theorem, but much stronger, because no reality assumption alien to quantum philosophy is used. The paper being commented on [W. Unruh, Phys. Rev. A 59, 126 (1999)] argues that some such reality assumption has been ''smuggled'' in. That argument is examined here and shown, I believe, to be defective.

  12. Randomness in quantum mechanics - nature's ultimate cryptogram?

    NASA Astrophysics Data System (ADS)

    Erber, T.; Putterman, S.

    1985-11-01

    The possibility that a single atom irradiated by coherent light will be equivalent to an infinite computer with regard to its ability to generate random numbers is addressed. A search for unexpected patterns of order by crypt analysis of the telegraph signal generated by the on/off time of the atom's fluorescence is described. The results will provide new experimental tests of the fundamental principles of quantum theory.

  13. Quantum mechanics from an equivalence principle

    SciTech Connect

    Faraggi, A.E.; Matone, M.

    1997-05-15

    The authors show that requiring diffeomorphic equivalence for one-dimensional stationary states implies that the reduced action S{sub 0} satisfies the quantum Hamilton-Jacobi equation with the Planck constant playing the role of a covariantizing parameter. The construction shows the existence of a fundamental initial condition which is strictly related to the Moebius symmetry of the Legendre transform and to its involutive character. The universal nature of the initial condition implies the Schroedinger equation in any dimension.

  14. Assessing Expertise in Quantum Mechanics using Categorization Task

    NASA Astrophysics Data System (ADS)

    Lin, Shih-Yin; Singh, Chandralekha

    2009-11-01

    We discuss the categorization of 20 quantum mechanics problems by 6 physics professors and 22 undergraduate students from two honors-level quantum mechanics courses. Professors and students were asked to categorize the problems based upon similarity of solution. We also had individual discussions with professors who categorized the problems. Faculty members' categorizations were overall rated better than those of students by three faculty members who evaluated all of the categorizations. But the categories created by faculty members were more diverse compared to the uniformity of the categories they created when asked to categorize introductory mechanics problems.

  15. Student understanding of time dependence in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Emigh, Paul J.; Passante, Gina; Shaffer, Peter S.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing the key role of the energy eigenbasis in determining the time dependence of wave functions. Through analysis of student responses to a set of four interrelated tasks, we categorize some of the difficulties that underlie common errors. The conceptual and reasoning difficulties that have been identified are illustrated through student responses to four sets of questions administered at different points in a junior-level course on quantum mechanics. Evidence is also given that the problems persist throughout undergraduate instruction and into the graduate level.

  16. Semiconductor Quantum Optics

    NASA Astrophysics Data System (ADS)

    Kira, Mackillo; Koch, Stephan W.

    2011-11-01

    1. Central concepts in classical mechanics; 2. Central concepts of classical electrodynamics; 3. Central concepts in quantum mechanics; 4. Central concepts in stationary quantum theory; 5. Central concepts in measurement theory; 6. Wigner's phase-space representation; 7. Hamiltonian formulation of classical electrodynamics; 8. System Hamiltonian of classical electrodynamics; 9. System Hamiltonian in the generalized Coulomb gauge; 10. Quantization of light and matter; 11. Quasiparticles in semiconductors; 12. Band structure of solids; 13. Interactions in semiconductors; 14. Generic quantum dynamics; 15. Cluster-expansion representation of the quantum dynamics; 16. Simple many-body systems; 17. Hierarchy problem for dipole systems; 18. Two-level approximation for optical transition; 19. Self-consistent extension of the two-level approach; 20. Dissipative extension of the two-level approach; 21. Quantum-optical extension of the two-level approach; 22. Quantum dynamics of two-level system; 23. Spectroscopy and quantum-optical correlations; 24. General aspects of semiconductor optics; 25. Introductory semiconductor optics; 26. Maxwell-semiconductor Bloch equations; 27. Coherent vs. incoherent excitons; 28. Semiconductor luminescence equations; 29. Many-body aspects of the semiconductor luminescence; 30. Advanced semiconductor quantum optics; Appendix; Index.

  17. Models on the boundary between classical and quantum mechanics.

    PubMed

    Hooft, Gerard 't

    2015-08-01

    Arguments that quantum mechanics cannot be explained in terms of any classical theory using only classical logic seem to be based on sound mathematical considerations: there cannot be physical laws that require 'conspiracy'. It may therefore be surprising that there are several explicit quantum systems where these considerations apparently do not apply. In this report, several such counterexamples are shown. These are quantum models that do have a classical origin. The most curious of these models is superstring theory. So now the question is asked: how can such a model feature 'conspiracy', and how bad is that? Is there conspiracy in the vacuum fluctuations? Arguments concerning Bell's theorem are further sharpened. PMID:26124246

  18. ysteries, Puzzles, and Paradoxes in Quantum Mechanics. Proceedings

    SciTech Connect

    Rodolfo, B.

    1999-02-01

    These proceedings represent papers presented at the Mysteries, Puzzles, and Paradoxes in Quantum Mechanics Workshop held in Italy, in August 1998. The Workshop was devoted to recent experimental and theoretical advances such as new interference, effects, the quantum eraser, non{minus}disturbing and Schroedinger{minus}cat{minus}like states, experiments, EPR correlations, teleportation, superluminal effects, quantum information and computing, locality and causality, decoherence and measurement theory. Tachyonic information transfer was also discussed. There were 45 papers presented at the conference,out of which 2 have been abstracted for the Energy,Science and Technology database.(AIP)

  19. PREFACE: Progress in supersymmetric quantum mechanics

    NASA Astrophysics Data System (ADS)

    Aref'eva, I.; Fernndez, D. J.; Hussin, V.; Negro, J.; Nieto, L. M.; Samsonov, B. F.

    2004-10-01

    The theory of integrable systems is grounded in the very beginning of theoretical physics: Kepler's system is an integrable system. This field of dynamical systems, where one looks for exact solutions of the equations of motion, has attracted most of the great figures in mathematical physics: Euler, Lagrange, Jacobi, etc. Liouville was the first to formulate the precise mathematical conditions ensuring solvability `by quadrature' of the dynamical equations, and his theorem still lies at the heart of the recent developments. The modern era started about thirty years ago with the systematic formulation of soliton solutions to nonlinear wave equations. Since then, impressive developments arose both for the classical and the quantum theory. Subtle mathematical techniques were devised for the resolution of these theories, relying on algebra (group theory), analysis and algebraic geometry (Riemann theory of surfaces). We therefore clearly see that the theory of integrable systems lies ab initio at a crossing of physics and mathematics, and that the developments of these last thirty years have strengthened this dual character, which makes it into an archetypal domain of mathematical physics. As regards the classical theory, beyond the direct connections to the various domains of classical soliton physics (hydrodynamics, condensed matter physics, laser optics, particle physics, plasma, biology or information coding), one has witnessed in these recent years more unexpected (and for some of them not yet well understood) connections to a priori farther fields of theoretical physics: string theory (through matrix models), topological field theories (two dimensional Yang--Mills, three dimensional Chern--Simons--Witten), or supersymmetric field theories (for instance the correspondence discovered by Seiberg and Witten between classical integrable models and quantum potentials). Quantum integrable theories provide examples of exactly (non perturbatively) solvable physical models. They thus allow one to obtain descriptions of non trivial phenomena such as second order phase transition in condensed systems (spin lattices) and exact solution of relativistic quantum field theories (Sine--Gordon...). On the other hand, they supply an excellent example of fruitful interface between physics and mathematics: the theory of quantum groups (and the germane theory of special functions) is a perfect illustration of this rle and perspectives of such new developments appear very promising. The purpose of the first RAQIS meeting was to bring together researchers from the various fields of mathematics and physics connected to the theory of quantum integrable systems. This conference was held in the framework of the European TMR network EUCLID `Integrable models and applications: from strings to condensed matter', contract number HPRN-CT-2002-00325. The RAQIS03 meeting took place at the Laboratoire d'Annecy-le-vieux de Physique Thorique (LAPTH, France) from 25 March to 28 March, 2003. The organising committee consisted of Daniel Arnaudon, Jean Avan, Luc Frappat, ric Ragoucy and Paul Sorba. Financial support was provided by Universit de Savoie and CNRS-DRI (Centre National de la Recherche Scientifique, Direction des Relations Internationales). In particular various scientific contacts with several Japanese participants were initiated thanks to the CNRS PICS contract number 911. This special issue of Journal of Physics A: Mathematical and General is dedicated to the subject of the RAQIS03 meeting in Annecy-le-vieux. Most of the contributors to this issue took part in the meeting, but this volume does not aim to be a proceedings in the usual sense of the word: contributions do not necessarily coincide with the reports presented at the meeting, nor are the contributors restricted exclusively to those people that were present. The intention of the special issue is to benefit from the occasion offered by the RAQIS03 meeting to highlight the important new areas in quantum integrability, by collecting together in one single volume a selection of article

  20. Diffraction theory in therms of quantum mechanics and relativity

    NASA Astrophysics Data System (ADS)

    Arsenault, Henri H.; Garcia-Martinez, Pascuala

    2001-12-01

    Diffraction properties of light can be derived from Quantum Mechanics and Relativity. Using the fact that position and momentum are conjugate variables, we show that the momentum distribution of light coincides with the well-known angular spectrum distribution. The momentum distribution links quantum theory and relativity to classical diffraction theory. We also show that the Huygens Principle and the momentum distribution are conjugate expressions at the diffraction aperture. These considerations lead to the geometrical theory of diffraction.

  1. Quantum mechanical signature in exclusive coherent pion production

    NASA Technical Reports Server (NTRS)

    Deutchman, P. A.; Buvel, R. L.; Maung, K. M.; Norbury, J. W.; Townsend, L. W.

    1986-01-01

    We calculate the coherent production of pions from subthreshold to relativistic energies in heavy-ion collisions using a quantum, microscopic, many-body model. For the first time, in this approach, we use harmonic oscillator wave functions to describe shell-model information. The theoretical quantum mechanical results obtained for the pion spectra represent an important improvement over our previous microscopic, many-body calculations.

  2. Electronic properties of site-controlled (111)-oriented zinc-blende InGaAs/GaAs quantum dots calculated using a symmetry-adapted kp Hamiltonian.

    PubMed

    Marquardt, O; O'Reilly, E P; Schulz, S

    2014-01-22

    In this work, we present and evaluate a (111)-rotated eight-band k ?p Hamiltonian for the zinc-blende crystal lattice to investigate the electronic properties of site-controlled InGaAs/GaAs quantum dots grown along the [111] direction. We derive the rotated Hamiltonian including strain and piezoelectric potentials. In combination with our previously formulated (111)-oriented continuum elasticity model, we employ this approach to investigate the electronic properties of a realistic site-controlled (111)-grown InGaAs quantum dot. We combine these studies with an evaluation of single-band effective mass and eight-band k ?p models, to investigate the capabilities of these models for the description of electronic properties of (111)-grown zinc-blende quantum dots. Moreover, the influence of second-order piezoelectric contributions on the polarization potential in such systems is studied. The description of the electronic structure of nanostructures grown on (111)-oriented surfaces can now be achieved with significantly reduced computational costs in comparison to calculations performed using the conventional (001)-oriented models. PMID:24355799

  3. Investigations of fundamental phenomena in quantum mechanics with neutrons

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yuji

    2014-04-01

    Neutron interferometer and polarimeter are used for the experimental investigations of quantum mechanical phenomena. Interferometry exhibits clear evidence of quantum-contextuality and polarimetry demonstrates conflicts of a contextual model of quantum mechanics la Leggett. In these experiments, entanglements are achieved between degrees of freedom in a single-particle: spin, path and energy degrees of freedom are manipulated coherently and entangled. Both experiments manifest the fact that quantum contextuality is valid for phenomena with matter waves with high precision. In addition, another experiment is described which deals with error-disturbance uncertainty relation: we have experimentally tested error-disturbance uncertainty relations, one is derived by Heisenberg and the other by Ozawa. Experimental results confirm the fact that the Heisenberg's uncertainty relation is often violated and that the new relation by Ozawa is always larger than the limit. At last, as an example of a counterfactual phenomenon of quantum mechanics, observation of so-called quantum Cheshire Cat is carried out by using neutron interferometer. Experimental results suggest that pre- and post-selected neutrons travel through one of the arms of the interferometer while their magnetic moment is located in the other arm.

  4. Quantum mechanics, gravity and modified quantization relations.

    PubMed

    Calmet, Xavier

    2015-08-01

    In this paper, we investigate a possible energy scale dependence of the quantization rules and, in particular, from a phenomenological point of view, an energy scale dependence of an effective [Formula: see text] (reduced Planck's constant). We set a bound on the deviation of the value of [Formula: see text] at the muon scale from its usual value using measurements of the anomalous magnetic moment of the muon. Assuming that inflation has taken place, we can conclude that nature is described by a quantum theory at least up to an energy scale of about 10(16) GeV. PMID:26124253

  5. The Many Problems with Quantum Mechanics from the Earliest Days on and How the Theory of Quantum Mechanics on Phase Space Addresses Them

    NASA Astrophysics Data System (ADS)

    Schroeck, Franklin E.

    2015-12-01

    We review the problems with quantum mechanics by translating or interpreting leading specialists in the field. Then we obtain a theory called quantum mechanics on phase space which is immune to these problems. Finally, we see how these problems are addressed by quantum mechanics on phase space.

  6. Time-Optimal Quantum Evolution

    NASA Astrophysics Data System (ADS)

    Carlini, Alberto; Hosoya, Akio; Koike, Tatsuhiko; Okudaira, Yosuke

    2006-02-01

    We present a general framework for finding the time-optimal evolution and the optimal Hamiltonian for a quantum system with a given set of initial and final states. Our formulation is based on the variational principle and is analogous to that for the brachistochrone in classical mechanics. We reduce the problem to a formal equation for the Hamiltonian which depends on certain constraint functions specifying the range of available Hamiltonians. For some simple examples of the constraints, we explicitly find the optimal solutions.

  7. Quantum mechanisms of density wave transport

    PubMed Central

    Miller, John H.; Wijesinghe, Asanga I.

    2012-01-01

    We report on new developments in the quantum picture of correlated electron transport in charge and spin density waves. The model treats the condensate as a quantum fluid in which charge soliton domain wall pairs nucleate above a Coulomb blockade threshold field. We employ a time-correlated soliton tunneling model, analogous to the theory of time-correlated single electron tunneling, to interpret the voltage oscillations and nonlinear current-voltage characteristics above threshold. An inverse scaling relationship between threshold field and dielectric response, originally proposed by Grner, emerges naturally from the model. Flat dielectric and other ac responses below threshold in NbSe3 and TaS3, as well as small density wave phase displacements, indicate that the measured threshold is often much smaller than the classical depinning field. In some materials, the existence of two distinct threshold fields suggests that both soliton nucleation and classical depinning may occur. In our model, the ratio of electrostatic charging to pinning energy helps determine whether soliton nucleation or classical depinning dominates. PMID:22711979

  8. David Bohm's Hidden Variables Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Hall, Ned; Feldman, Gary; Wulsin, Wells

    2001-04-01

    This talk presents the hidden variables interpretation of quantum mechanics as proposed by David Bohm in 1952. Using a pilot-wave, Bohms theory reproduces the standard predictions of quantum mechanics while at the same time postulating that particles at all times are localized at definite positions. By way of introduction, the foundational issue of the quantum mechanics measurement problem will be discussed. The talk will then focus on how Bohms formulation of a hidden variables theory stands up to philosophical examination. Traditional objections to the theory, such as the EPR paradox, will be addressed, as well as the deeper metaphysical implications it holds for our view of the universe.

  9. On testing for the stage of collapse in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Becker, Lon Stephen

    The question was considered whether it is possible to experimentally narrow down the time of collapse in the measurement process of quantum mechanics. A form of experiment was developed towards that end. The proof of John von Neumann that it is impossible to determine the time of collapse was analyzed, and its hidden assumptions were exploited in the design of the experiment. The reinterpretation of quantum mechanics by David Bohm was introduced to give an alternative way of looking at quantum mechanics. An objection to this view was discussed but rejected. Finally a pair of thought experiments were offered with the potential to be converted in the future into tests for whether collapse has occurred at various points in the measurement process.

  10. A deformation quantization theory for noncommutative quantum mechanics

    SciTech Connect

    Costa Dias, Nuno; Prata, Joao Nuno; Gosson, Maurice de; Luef, Franz

    2010-07-15

    We show that the deformation quantization of noncommutative quantum mechanics previously considered by Dias and Prata ['Weyl-Wigner formulation of noncommutative quantum mechanics', J. Math. Phys. 49, 072101 (2008)] and Bastos, Dias, and Prata ['Wigner measures in non-commutative quantum mechanics', e-print arXiv:math-ph/0907.4438v1; Commun. Math. Phys. (to appear)] can be expressed as a Weyl calculus on a double phase space. We study the properties of the star-product thus defined and prove a spectral theorem for the star-genvalue equation using an extension of the methods recently initiated by de Gosson and Luef ['A new approach to the *-genvalue equation', Lett. Math. Phys. 85, 173-183 (2008)].

  11. Quantum-mechanical transport equation for atomic systems.

    NASA Technical Reports Server (NTRS)

    Berman, P. R.

    1972-01-01

    A quantum-mechanical transport equation (QMTE) is derived which should be applicable to a wide range of problems involving the interaction of radiation with atoms or molecules which are also subject to collisions with perturber atoms. The equation follows the time evolution of the macroscopic atomic density matrix elements of atoms located at classical position R and moving with classical velocity v. It is quantum mechanical in the sense that all collision kernels or rates which appear have been obtained from a quantum-mechanical theory and, as such, properly take into account the energy-level variations and velocity changes of the active (emitting or absorbing) atom produced in collisions with perturber atoms. The present formulation is better suited to problems involving high-intensity external fields, such as those encountered in laser physics.

  12. Quantum-mechanical description of Faraday rotation in a single quantum dot

    NASA Astrophysics Data System (ADS)

    Ma, Yanjun; Levy, Jeremy

    2008-03-01

    Faraday rotation is one way to realize quantum non-demolition (QND) measurement of electron spin in a quantum dot. In the literature, it has been semiclassically modeled based on quantized electron spin states and classical electromagnetic fields. We have developed a fully quantum- mechanical model to describe Faraday rotation in single quantum dots, using an extension of the Jaynes-Cumming model which includes quantum Stokes operators. The intrinsic noise of Faraday rotation that results from the interaction between photon and electron is quantified under this model. Some effects, such as hyperfine interactions and transitions between off-resonant states such as light hole and conduction band electron states, and have not been included in our calculation. It is believed that these effects will affect the dynamics of spin and based on the current model, our calculation could be extended to examine the behavior of Faraday rotation with these effects included. This work was supported by NSF-DMR-0602846.

  13. Quantum mechanical study of solvent effects in a prototype S{sub N}2 reaction in solution: Cl{sup ?} attack on CH{sub 3}Cl

    SciTech Connect

    Kuechler, Erich R.; Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431 ; York, Darrin M.

    2014-02-07

    The nucleophilic attack of a chloride ion on methyl chloride is an important prototype S{sub N}2 reaction in organic chemistry that is known to be sensitive to the effects of the surrounding solvent. Herein, we develop a highly accurate Specific Reaction Parameter (SRP) model based on the Austin Model 1 Hamiltonian for chlorine to study the effects of solvation into an aqueous environment on the reaction mechanism. To accomplish this task, we apply high-level quantum mechanical calculations to study the reaction in the gas phase and combined quantum mechanical/molecular mechanical simulations with TIP3P and TIP4P-ew water models and the resulting free energy profiles are compared with those determined from simulations using other fast semi-empirical quantum models. Both gas phase and solution results with the SRP model agree very well with experiment and provide insight into the specific role of solvent on the reaction coordinate. Overall, the newly parameterized SRP Hamiltonian is able to reproduce both the gas phase and solution phase barriers, suggesting it is an accurate and robust model for simulations in the aqueous phase at greatly reduced computational cost relative to comparably accurate ab initio and density functional models.

  14. Statistical mechanical studies on the information processing with quantum fluctuation

    NASA Astrophysics Data System (ADS)

    Otsubo, Yosuke; Inoue, Jun-Ichi; Nagata, Kenji; Okada, Masato

    2014-03-01

    Quantum fluctuation induces the tunneling between states in a system and then can be used in combinatorial optimization problems. Such an algorithm is called quantum adiabatic computing. In this work, we investigate the quality of an information processing based on Bayes inference with the quantum fluctuation through the statistical mechanical approach. We then focus on the error correcting codes and CDMA multiuser demodulation which are described by conventional solvable spin glass models and can be analyzed by replica method in the thermodynamic limit. Introducing the quantum fluctuation into the decoding process of each problem, which is called quantum maximizer of the posteriori probability (QMPM) estimate, we analyze the decoding quality and then compare the results with those by the conventional MPM estimate which corresponds to finite temperature decoding From our limited results, the MPM based on the quantum fluctuation seems to achieve the same decoding quality as the thermal MPM does. We clarify the relationship between the optimal amplitude of transverse field and temperature for the mixture of quantum and classical MPMs. This work is supported by JSPS KAKENHI Grant Numbers 12J06501, 25330283, 25120009.

  15. Statistical Mechanics of Classical and Quantum Computational Complexity

    NASA Astrophysics Data System (ADS)

    Laumann, C. R.; Moessner, R.; Scardicchio, A.; Sondhi, S. L.

    The quest for quantum computers is motivated by their potential for solving problems that defy existing, classical, computers. The theory of computational complexity, one of the crown jewels of computer science, provides a rigorous framework for classifying the hardness of problems according to the computational resources, most notably time, needed to solve them. Its extension to quantum computers allows the relative power of quantum computers to be analyzed. This framework identifies families of problems which are likely hard for classical computers ("NP-complete") and those which are likely hard for quantum computers ("QMA-complete") by indirect methods. That is, they identify problems of comparable worst-case difficulty without directly determining the individual hardness of any given instance. Statistical mechanical methods can be used to complement this classification by directly extracting information about particular families of instances—typically those that involve optimization—by studying random ensembles of them. These pose unusual and interesting (quantum) statistical mechanical questions and the results shed light on the difficulty of problems for large classes of algorithms as well as providing a window on the contrast between typical and worst case complexity. In these lecture notes we present an introduction to this set of ideas with older work on classical satisfiability and recent work on quantum satisfiability as primary examples. We also touch on the connection of computational hardness with the physical notion of glassiness.

  16. Study on a Possible Darwinian Origin of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Baladrn, C.

    2011-03-01

    A sketchy subquantum theory deeply influenced by Wheeler's ideas (Am. J. Phys. 51:398-404, 1983) and by the de Broglie-Bohm interpretation (Goldstein in Stanford Encyclopedia of Philosophy, 2006) of quantum mechanics is further analyzed. In this theory a fundamental system is defined as a dual entity formed by bare matter and a methodological probabilistic classical Turing machine. The evolution of the system would be determined by three Darwinian informational regulating principles. Some progress in the derivation of the postulates of quantum mechanics from these regulating principles is reported. The entanglement in a bipartite system is preliminarily considered.

  17. Quantum-mechanical treatment of an electron undergoing synchrotron radiation.

    NASA Technical Reports Server (NTRS)

    White, D.

    1972-01-01

    The problem of an electron moving perpendicular to an intense magnetic field is approached from the framework of quantum mechanics. A numerical solution to the related rate equations describing the probabilities of occupation of the electron's energy states is put forth along with the expected errors involved. The quantum-mechanical approach is found to predict a significant amount of energy broadening with time for an initially monoenergetic electron beam entering a region of an intense magnetic field as long as the product of initial energy and magnetic field is of order 50 MG BeV or larger.

  18. Spacetime alternatives in the quantum mechanics of a relativistic particle

    SciTech Connect

    Whelan, J.T. Isaac Newton Institute for Mathematical Sciences, 20 Clarkson Road, Cambridge, CB3 0EH )

    1994-11-15

    Hartle's generalized quantum mechanics formalism is used to examine spacetime coarse grainings, i.e., sets of alternatives defined with respect to a region extended in time as well as space, in the quantum mechanics of a free relativistic particle. For a simple coarse graining and suitable initial conditions, tractable formulas are found for branch wave functions. Despite the nonlocality of the positive-definite version of the Klein-Gordon inner product, which means that nonoverlapping branches are not sufficient to imply decoherence, some initial conditions are found to give decoherence and allow the consistent assignment of probabilities.

  19. The role of the rigged Hilbert space in quantum mechanics

    NASA Astrophysics Data System (ADS)

    de la Madrid, Rafael

    2005-04-01

    There is compelling evidence that, when a continuous spectrum is present, the natural mathematical setting for quantum mechanics is the rigged Hilbert space rather than just the Hilbert space. In particular, Dirac's bra-ket formalism is fully implemented by the rigged Hilbert space rather than just by the Hilbert space. In this paper, we provide a pedestrian introduction to the role the rigged Hilbert space plays in quantum mechanics, by way of a simple, exactly solvable example. The procedure will be constructive and based on a recent publication. We also provide a thorough discussion on the physical significance of the rigged Hilbert space.

  20. Conceptual and mathematical barriers to students learning quantum mechanics

    NASA Astrophysics Data System (ADS)

    Sadaghiani, Homeyra R.

    Quantum mechanics has revolutionized the way we view the physical world. This theory has required a dramatic revision in the structure of the laws of mechanics governing the behavior of the particles and led to the discovery of macroscopic quantum effects ranging from lasers and superconductivity to neutron stars and radiation from black holes. Though its validity is well confirmed by the experimental evidence available, quantum mechanics remains somewhat of a mystery. The purpose of this study is to identify students' conceptual and mathematical difficulties in learning the core concepts of introductory quantum mechanics, with the eventual goal of developing instructional material to help students with these difficulties. We have investigated student understanding of several core topics in the introductory courses, including quantum measurement, probability, Uncertainty Principle, wave functions, energy eigenstates, recognizing symmetry in physical systems, and mathematical formalism. Student specific difficulties with these topics are discussed throughout this dissertation. In addition, we have studied student difficulties in learning, applying, and making sense out of complex mathematical processes in the physics classroom. We found students' achievement in quantum courses is not independent of their math backgrounds (correlation coefficient 0.547 for P631 and 0.347 for P263). In addition, there is a large jump in the level of mathematics at which one needs to succeed in physics courses after the sophomore level in The Ohio State University's physics curriculum. Many students do not have a functional understanding of probability and its related terminologies. For example, many students confuse the "expectation value" with "probability density" in measurement and some students confuse "probability density" with "probability amplitude" or describe the probability amplitude as a "place" or "area." Our data also suggested that students tend to use classical models when interpreting quantum systems; for example, some students associate a higher energy to a larger amplitude in a wave function. Others, have difficulty differentiating wave functions from energy eigenstates. Furthermore, some students do not use the relationship between the wave function and the wavenumber as a primary resource in for qualitative analysis of wave functions in regions of different potential. Many students have difficulty recognizing mathematical symbols for a given graph and lack the ability to associate the correct functions with their respective graphs. I addition, students do not distinguish an oscillatory function such as e-ix from an exponential decay function such as e-x. The results reported suggest recommendations for further study of student understanding of quantum mechanics and for the development of materials to aid understanding. These recommendations have potentially important implications for the teaching of introductory quantum mechanics and for the development of teaching aids, texts, and technology resources.

  1. Hilbert space for quantum mechanics on superspace

    SciTech Connect

    Coulembier, K.; De Bie, H.

    2011-06-15

    In superspace a realization of sl{sub 2} is generated by the super Laplace operator and the generalized norm squared. In this paper, an inner product on superspace for which this representation is skew-symmetric is considered. This inner product was already defined for spaces of weighted polynomials (see [K. Coulembier, H. De Bie, and F. Sommen, Orthogonality of Hermite polynomials in superspace and Mehler type formulae, Proc. London Math. Soc. (accepted) arXiv:1002.1118]). In this article, it is proven that this inner product can be extended to the super Schwartz space, but not to the space of square integrable functions. Subsequently, the correct Hilbert space corresponding to this inner product is defined and studied. A complete basis of eigenfunctions for general orthosymplectically invariant quantum problems is constructed for this Hilbert space. Then the integrability of the sl{sub 2}-representation is proven. Finally, the Heisenberg uncertainty principle for the super Fourier transform is constructed.

  2. Hilbert space for quantum mechanics on superspace

    NASA Astrophysics Data System (ADS)

    Coulembier, K.; De Bie, H.

    2011-06-01

    In superspace a realization of {sl}_2 is generated by the super Laplace operator and the generalized norm squared. In this paper, an inner product on superspace for which this representation is skew-symmetric is considered. This inner product was already defined for spaces of weighted polynomials (see [K. Coulembier, H. De Bie, and F. Sommen, Orthogonality of Hermite polynomials in superspace and Mehler type formulae, Proc. London Math. Soc. (accepted) arXiv:1002.1118]). In this article, it is proven that this inner product can be extended to the super Schwartz space, but not to the space of square integrable functions. Subsequently, the correct Hilbert space corresponding to this inner product is defined and studied. A complete basis of eigenfunctions for general orthosymplectically invariant quantum problems is constructed for this Hilbert space. Then the integrability of the {sl}_2-representation is proven. Finally, the Heisenberg uncertainty principle for the super Fourier transform is constructed.

  3. Reality, Causality, and Probability, from Quantum Mechanics to Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Plotnitsky, Arkady

    2015-10-01

    These three lectures consider the questions of reality, causality, and probability in quantum theory, from quantum mechanics to quantum field theory. They do so in part by exploring the ideas of the key founding figures of the theory, such N. Bohr, W. Heisenberg, E. Schrdinger, or P. A. M. Dirac. However, while my discussion of these figures aims to be faithful to their thinking and writings, and while these lectures are motivated by my belief in the helpfulness of their thinking for understanding and advancing quantum theory, this project is not driven by loyalty to their ideas. In part for that reason, these lectures also present different and even conflicting ways of thinking in quantum theory, such as that of Bohr or Heisenberg vs. that of Schrdinger. The lectures, most especially the third one, also consider new physical, mathematical, and philosophical complexities brought in by quantum field theory vis--vis quantum mechanics. I close by briefly addressing some of the implications of the argument presented here for the current state of fundamental physics.

  4. Quantum Magnetomechanics: Ultrahigh-Q-Levitated Mechanical Oscillators

    NASA Astrophysics Data System (ADS)

    Cirio, M.; Brennen, G. K.; Twamley, J.

    2012-10-01

    Engineering nanomechanical quantum systems possessing ultralong motional coherence times allows for applications in precision quantum sensing and quantum interfaces, but to achieve ultrahigh motional Q one must work hard to remove all forms of motional noise and heating. We examine a magneto-meso-mechanical quantum system that consists of a 3D arrangement of miniature superconducting loops which is stably levitated in a static inhomogeneous magnetic field. The motional decoherence is predominantly due to loss from induced eddy currents in the magnetized sphere which provides the trapping field ultimately yielding Q109 with motional oscillation frequencies of several hundreds of kilohertz. By inductively coupling this levitating object to a nearby driven flux qubit one can cool its motion very close to the ground state and this may permit the generation of macroscopic entangled motional states of multiple clusters.

  5. Inflation from quantum geometry.

    PubMed

    Bojowald, Martin

    2002-12-23

    Quantum geometry predicts that a universe evolves through an inflationary phase at small volume before exiting gracefully into a standard Friedmann phase. This does not require the introduction of additional matter fields with ad hoc potentials; rather, it occurs because of a quantum gravity modification of the kinetic part of ordinary matter Hamiltonians. An application of the same mechanism can explain why the present day cosmological acceleration is so tiny. PMID:12484808

  6. EDITORIAL: Focus on Mechanical Systems at the Quantum Limit FOCUS ON MECHANICAL SYSTEMS AT THE QUANTUM LIMIT

    NASA Astrophysics Data System (ADS)

    Aspelmeyer, Markus; Schwab, Keith

    2008-09-01

    The last five years have witnessed an amazing development in the field of nano- and micromechanics. What was widely considered fantasy ten years ago is about to become an experimental reality: the quantum regime of mechanical systems is within reach of current experiments. Two factors (among many) have contributed significantly to this situation. As part of the widespread effort into nanoscience and nanofabrication, it is now possible to produce high-quality nanomechanical and micromechanical resonators, spanning length scales of millimetres to nanometres, and frequencies from kilohertz to gigahertz. Researchers coupled these mechanical elements to high-sensitivity actuation and readout systems such as single-electron transistors, quantum dots, atomic point contacts, SQUID loops, high-finesse optical or microwave-cavities etc. Some of these ultra-sensitive readout schemes are in principle capable of detection at the quantum limit and a large part of the experimental effort is at present devoted to achieving this. On the other hand, the fact that the groups working in the field come from various different physics backgroundsthe authors of this editorial are a representative samplehas been a constant source of inspiration for helpful theoretical and experimental tools that have been adapted from other fields to the mechanical realm. To name just one example: ideas from quantum optics have led to the recent demonstration (both in theory and experiment) that coupling a mechanical resonator to a high-finesse optical cavity can be fully analogous to the well-known sideband-resolved laser cooling of ions and hence is capable in principle of cooling a mechanical mode into its quantum ground state. There is no doubt that such interdisciplinarity has been a crucial element for the development of the field. It is interesting to note that a very similar sociological phenomenon occurred earlier in the quantum information community, an area which is deeply enriched by the diverse backgrounds and approaches of the researchers. As diverse as the approaches are the manifold of goals and perspectives for operating mechanical systems close to or within the quantum regime. Already now, nanomechanical sensors achieve single-molecule mass detection and magnetic resonance force detection from single-electron spins although they are operated far from quantum. Quantum-limited mechanical devices promise a new technology with hitherto unachieved performance for high-resolution sensing. This is also of high relevance for macroscopic mechanical resonators used in gravitational wave detectors. Furthermore, the increasing capability to couple mechanical modes to individual quantum systems raises the interesting question of whether mechanics can serve as a quantum bus in hybrid implementations of quantum information processing. Finally, the possibility of generating quantum superposition states that involve displacements of a massive macroscopic object (such as the center of mass of a mechanical beam) provides a completely new parameter regime for testing quantum theory over the amazing range from nanomechanical objects of several picograms up to gram-scale mirrors used in gravitational wave interferometers. We are looking forward to these fascinating developments! This Focus Issue is intended to highlight the present status of the field and to provide both introduction and motivation for students and researchers who want to get familiar with this exciting area or even want to join it. It also complements the conference activities of our community during the last year, where a series of dedicated invited sessions at several international conferences (APS March Meeting 2008, CLEO/QELS 2008, OSA Frontiers in Optics 2008, PQE 2008/2009 etc) culminated in the first Gordon Conference on 'Mechanical Systems at the Quantum Limit'. Given the fast development of the field it was not surprising to see that during the collection of the following contributions new progress was reported almost on a monthly basis and new groups entered the field. We intend to keep submission to this Focus Issue open for some time and invite everyone to share their latest results with us. And finally, a note to our fellow colleagues: keep up the good work! We would like to call the next Focus Issue 'Mechanical Systems IN the Quantum Regime'. Focus on Mechanical Systems at the Quantum Limit Contents Classical to quantum transition of a driven nonlinear nanomechanical resonator Itamar Katz, Ron Lifshitz, Alex Retzker and Raphael Straub Experimental optomechanics with silicon micromirrors Olivier Arcizet, Chiara Molinelli, Tristan Briant, Pierre-Franois Cohadon, Antoine Heidmann, Jean-Marie Mackowski, Christophe Michel, Laurent Pinard, Olivier Franais and Lionel Rousseau Nonlinear quantum metrology using coupled nanomechanical resonators M J Woolley, G J Milburn and Carlton M Caves All mechanical mixing by means of orthogonally coupled cantilevers A Knoll, O Zger and U Duerig Parametric coupling between macroscopic quantum resonators L Tian, M S Allman and R W Simmonds Quantum noise in a nanomechanical Duffing resonator E Babourina-Brooks, A Doherty and G J Milburn Creating and verifying a quantum superposition in a micro-optomechanical system Dustin Kleckner, Igor Pikovski, Evan Jeffrey, Luuk Ament, Eric Eliel, Jeroen van den Brink and Dirk Bouwmeester Ground-state cooling of a nanomechanical resonator via a Cooper-pair box qubit Konstanze Jaehne, Klemens Hammerer and Margareta Wallquist Dissipation in circuit quantum electrodynamics: lasing and cooling of a low-frequency oscillator Julian Hauss, Arkady Fedorov, Stephan Andr, Valentina Brosco, Carsten Hutter, Robin Kothari, Sunil Yeshwanth, Alexander Shnirman and Gerd Schn Route to ponderomotive entanglement of light via optically trapped mirrors Christopher Wipf, Thomas Corbitt, Yanbei Chen and Nergis Mavalvala Nanomechanical-resonator-assisted induced transparency in a Cooper-pair box system Xiao-Zhong Yuan, Hsi-Sheng Goan, Chien-Hung Lin, Ka-Di Zhu and Yi-Wen Jiang High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators A Schliesser, G Anetsberger, R Rivire, O Arcizet and T J Kippenberg Optomechanical to mechanical entanglement transformation Giovanni Vacanti, Mauro Paternostro, G Massimo Palma and Vlatko Vedral The optomechanical instability in the quantum regime Max Ludwig, Bjrn Kubala and Florian Marquardt Quantum limits of photothermal and radiation pressure cooling of a movable mirror M Pinard and A Dantan Mechanical feedback in the high-frequency limit R El Boubsi, O Usmani and Ya M Blanter Back-action evasion and squeezing of a mechanical resonator using a cavity detector A A Clerk, F Marquardt and K Jacobs Simultaneous cooling and entanglement of mechanical modes of a micromirror in an optical cavity Claudiu Genes, David Vitali and Paolo Tombesi Dispersive optomechanics: a membrane inside a cavity A M Jayich, J C Sankey, B M Zwickl, C Yang, J D Thompson, S M Girvin, A A Clerk, F Marquardt and J G E Harris Cavity-assisted backaction cooling of mechanical resonators I Wilson-Rae, N Nooshi, J Dobrindt, T J Kippenberg and W Zwerger Cavity cooling of a nanomechanical resonator by light scattering I Favero and K Karrai Probing the quantum coherence of a nanomechanical resonator using a superconducting qubit: II. Implementation M P Blencowe and A D Armour Probing the quantum coherence of a nanomechanical resonator using a superconducting qubit: I. Echo scheme A D Armour and M P Blencowe Nanoelectromechanics of suspended carbon nanotubes A K Httel, M Poot, B Witkamp and H S J van der Zant Prospects for cooling nanomechanical motion by coupling to a superconducting microwave resonator J D Teufel, C A Regal and K W Lehnert

  7. Quantum Theory Without Waves: A Way of Eliminating Quantum Mechanical Paradoxes?

    NASA Astrophysics Data System (ADS)

    Cini, Marcello

    1. In his book The Philosophy of Quantum Mechanics Max Jammer writes: "The double nature of the macroscopic apparatus (on the one hand a classical Object and on the other hand obeying quantum mechanical laws) remained a somewhat questionable or at least obscure feature in Bohr's conception of quantum mechanical measurements." [l] It is fair to say that this ambiguity is still with us, after more than seventy years. Two related questions are still discussed within the small community of physicists who want to understand better the nature and the meaning of our fundamental theory of matter. On the one hand, one may ask: (a) How is it possible that classical objects with definite and context independent values of their dynamical variables exist, given that the laws of Quantum Mechanics forbid this possibility? On the other hand one may reverse the question and ask: (b) How is it possible that macroscopic objects, which, according to our everyday experience usually behave classically, may Show, under suitable circumstances, the bizarre behaviour predicted by Quantum Mechanics?

  8. Quantum mechanics concept assessment: Development and validation study

    NASA Astrophysics Data System (ADS)

    Sadaghiani, Homeyra R.; Pollock, Steven J.

    2015-06-01

    As part of an ongoing investigation of students' learning in first semester upper-division quantum mechanics, we needed a high-quality conceptual assessment instrument for comparing outcomes of different curricular approaches. The process of developing such a tool started with converting a preliminary version of a 14-item open-ended quantum mechanics assessment tool (QMAT) to a multiple-choice (MC) format. Further question refinement, development of effective distractors, adding new questions, and robust statistical analysis has led to a 31-item quantum mechanics concept assessment (QMCA) test. The QMCA is used as post-test only to assess students' knowledge about five main topics of quantum measurement: the time-independent Schrdinger equation, wave functions and boundary conditions, time evolution, and probability density. During two years of testing and refinement, the QMCA has been given in alpha (N =61 ) and beta versions (N =263 ) to students in upper division quantum mechanics courses at 11 different institutions with an average post-test score of 54%. By allowing for comparisons of student learning across different populations and institutions, the QMCA provides instructors and researchers a more standard measure of effectiveness of different curricula or teaching strategies on student conceptual understanding of quantum mechanics. In this paper, we discuss the construction of effective distractors and the use of student interviews and expert feedback to revise and validate both questions and distractors. We include the results of common statistical tests of reliability and validity, which suggest the instrument is presently in a stable, usable, and promising form.

  9. Ruling out multi-order interference in quantum mechanics.

    PubMed

    Sinha, Urbasi; Couteau, Christophe; Jennewein, Thomas; Laflamme, Raymond; Weihs, Gregor

    2010-07-23

    Quantum mechanics and gravitation are two pillars of modern physics. Despite their success in describing the physical world around us, they seem to be incompatible theories. There are suggestions that one of these theories must be generalized to achieve unification. For example, Born's rule--one of the axioms of quantum mechanics--could be violated. Born's rule predicts that quantum interference, as shown by a double-slit diffraction experiment, occurs from pairs of paths. A generalized version of quantum mechanics might allow multipath (i.e., higher-order) interference, thus leading to a deviation from the theory. We performed a three-slit experiment with photons and bounded the magnitude of three-path interference to less than 10(-2) of the expected two-path interference, thus ruling out third- and higher-order interference and providing a bound on the accuracy of Born's rule. Our experiment is consistent with the postulate both in semiclassical and quantum regimes. PMID:20651147

  10. Robust Online Hamiltonian Learning

    NASA Astrophysics Data System (ADS)

    Granade, Christopher; Ferrie, Christopher; Wiebe, Nathan; Cory, David

    2013-05-01

    In this talk, we introduce a machine-learning algorithm for the problem of inferring the dynamical parameters of a quantum system, and discuss this algorithm in the example of estimating the precession frequency of a single qubit in a static field. Our algorithm is designed with practicality in mind by including parameters that control trade-offs between the requirements on computational and experimental resources. The algorithm can be implemented online, during experimental data collection, or can be used as a tool for post-processing. Most importantly, our algorithm is capable of learning Hamiltonian parameters even when the parameters change from experiment-to-experiment, and also when additional noise processes are present and unknown. Finally, we discuss the performance of the our algorithm by appeal to the Cramer-Rao bound. This work was financially supported by the Canadian government through NSERC and CERC and by the United States government through DARPA. NW would like to acknowledge funding from USARO-DTO.

  11. Newton-Equivalent Hamiltonians for the Harmonic Oscillator

    NASA Astrophysics Data System (ADS)

    Degasperis, A.; Ruijsenaars, S. N. M.

    2001-10-01

    We consider a one-parameter family of Hamilton functions yielding the Newton equation of the harmonic oscillator, ?+?2x=0. The parameter may be viewed as the speed of light c, the nonrelativistic limit c?? yielding the usual Hamiltonian. For cHamiltonians are the product of a function of x and a function of p. In the quantum case, with a suitable ordering, we explicitly find the spectrum and the eigenfunctions of the Hamiltonian.

  12. Hamiltonian cosmology of bigravity

    NASA Astrophysics Data System (ADS)

    Soloviev, V. O.

    The purpose of this talk is to give an introduction both to the Hamiltonian formalism and to the cosmological equations of bigravity. In the Hamiltonian language we provide a study of flat-space cosmology in bigravity and massive gravity constructed mostly with de Rham, Gabadadze, Tolley (dRGT) potential. It is demonstrated that the Hamiltonian methods are powerful not only in proving the absence of the Boulware-Deser ghost, but also in addressing cosmological problems.

  13. In search of the adaptive foundations of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Baladrn, Carlos

    2010-01-01

    A subquantum theory is outlined in which the concept of continuity in the trajectory of a material system plays a crucial role to explain quantum behaviour. A particle or fundamental system is defined as a dual entity formed by bare matter and a methodological probabilistic classical Turing machine that are coupled through information transfer. The sketchy underlying mechanism, that determines the response of the system, is based on self-interaction. The evolution of the system is led by three Darwinian-informational regulating principles that maximize the survival expectations of the system, yielding the most convenient sequence of self-interaction events. The deduction of the postulates of quantum mechanics from our theory is discussed. Quantum behaviour would appear as a result of Darwinian natural selection. As a consequence of this theory, reality, locality and causality could be in a certain sense reconciled.

  14. Quantum squeezing of motion in a mechanical resonator

    NASA Astrophysics Data System (ADS)

    Wollman, E. E.; Lei, C. U.; Weinstein, A. J.; Suh, J.; Kronwald, A.; Marquardt, F.; Clerk, A. A.; Schwab, K. C.

    2015-08-01

    According to quantum mechanics, a harmonic oscillator can never be completely at rest. Even in the ground state, its position will always have fluctuations, called the zero-point motion. Although the zero-point fluctuations are unavoidable, they can be manipulated. Using microwave frequency radiation pressure, we have manipulated the thermal fluctuations of a micrometer-scale mechanical resonator to produce a stationary quadrature-squeezed state with a minimum variance of 0.80 times that of the ground state. We also performed phase-sensitive, back-action evading measurements of a thermal state squeezed to 1.09 times the zero-point level. Our results are relevant to the quantum engineering of states of matter at large length scales, the study of decoherence of large quantum systems, and for the realization of ultrasensitive sensing of force and motion.

  15. Quantum Mechanics, Pattern Recognition, and the Mammalian Brain

    NASA Astrophysics Data System (ADS)

    Chapline, George

    2008-10-01

    Although the usual way of representing Markov processes is time asymmetric, there is a way of describing Markov processes, due to Schrodinger, which is time symmetric. This observation provides a link between quantum mechanics and the layered Bayesian networks that are often used in automated pattern recognition systems. In particular, there is a striking formal similarity between quantum mechanics and a particular type of Bayesian network, the Helmholtz machine, which provides a plausible model for how the mammalian brain recognizes important environmental situations. One interesting aspect of this relationship is that the "wake-sleep" algorithm for training a Helmholtz machine is very similar to the problem of finding the potential for the multi-channel Schrodinger equation. As a practical application of this insight it may be possible to use inverse scattering techniques to study the relationship between human brain wave patterns, pattern recognition, and learning. We also comment on whether there is a relationship between quantum measurements and consciousness.

  16. Aspects of phase-space noncommutative quantum mechanics

    NASA Astrophysics Data System (ADS)

    Bertolami, O.; Leal, P.

    2015-11-01

    In this work some issues in the context of Noncommutative Quantum Mechanics (NCQM) are addressed. The main focus is on finding whether symmetries present in Quantum Mechanics still hold in the phase-space noncommutative version. In particular, the issues related with gauge invariance of the electromagnetic field and the weak equivalence principle (WEP) in the context of the gravitational quantum well (GQW) are considered. The question of the Lorentz symmetry and the associated dispersion relation is also examined. Constraints are set on the relevant noncommutative parameters so that gauge invariance and Lorentz invariance holds. In opposition, the WEP is verified to hold in the noncommutative setup, and it is only possible to observe a violation through an anisotropy of the noncommutative parameters.

  17. Is Quantum Mechanics Incompatible with Newton's First Law?

    NASA Astrophysics Data System (ADS)

    Rabinowitz, Mario

    2008-04-01

    Quantum mechanics (QM) clearly violates Newton’s First Law of Motion (NFLM) in the quantum domain for one of the simplest problems, yielding an effect in a force-free region much like the Aharonov-Bohm effect. In addition, there is an incompatibility between the predictions of QM in the classical limit, and that of classical mechanics (CM) with respect to NFLM. A general argument is made that such a disparity may be found commonly for a wide variety of quantum predictions in the classical limit. Alternatives to the Schrödinger equation are considered that might avoid this problem. The meaning of the classical limit is examined. Critical views regarding QM by Schrödinger, Bohm, Bell, Clauser, and others are presented to provide a more complete perspective.

  18. On the Lattice Structure of Probability Spaces in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Holik, Federico; Massri, César; Plastino, A.; Zuberman, Leandro

    2013-06-01

    Let {C} be the set of all possible quantum states. We study the convex subsets of {C} with attention focused on the lattice theoretical structure of these convex subsets and, as a result, find a framework capable of unifying several aspects of quantum mechanics, including entanglement and Jaynes' Max-Ent principle. We also encounter links with entanglement witnesses, which leads to a new separability criteria expressed in lattice language. We also provide an extension of a separability criteria based on convex polytopes to the infinite dimensional case and show that it reveals interesting facets concerning the geometrical structure of the convex subsets. It is seen that the above mentioned framework is also capable of generalization to any statistical theory via the so-called convex operational models' approach. In particular, we show how to extend the geometrical structure underlying entanglement to any statistical model, an extension which may be useful for studying correlations in different generalizations of quantum mechanics.

  19. Quantum mechanical cluster calculations of critical scintillationprocesses

    SciTech Connect

    Derenzo, Stephen E.; Klintenberg, Mattias K.; Weber, Marvin J.

    2000-02-22

    This paper describes the use of commercial quantum chemistrycodes to simu-late several critical scintillation processes. The crystalis modeled as a cluster of typically 50 atoms embedded in an array oftypically 5,000 point charges designed to reproduce the electrostaticfield of the infinite crystal. The Schrodinger equation is solved for theground, ionized, and excited states of the system to determine the energyand electron wavefunction. Computational methods for the followingcritical processes are described: (1) the formation and diffusion ofrelaxed holes, (2) the formation of excitons, (3) the trapping ofelectrons and holes by activator atoms, (4) the excitation of activatoratoms, and (5) thermal quenching. Examples include hole diffusion in CsI,the exciton in CsI, the excited state of CsI:Tl, the energy barrier forthe diffusion of relaxed holes in CaF2 and PbF2, and prompt hole trappingby activator atoms in CaF2:Eu and CdS:Te leading to an ultra-fast (<50ps) scintillation risetime.

  20. Completeness of the Coulomb Wave Functions in Quantum Mechanics

    ERIC Educational Resources Information Center

    Mukunda, N.

    1978-01-01

    Gives an explicit and elementary proof that the radial energy eigenfunctions for the hydrogen atom in quantum mechanics, bound and scattering states included, form a complete set. The proof uses some properties of the confluent hypergeometric functions and the Cauchy residue theorem from analytic function theory. (Author/GA)

  1. Exactly Solvable Quantum Mechanical Potentials: An Alternative Approach.

    ERIC Educational Resources Information Center

    Pronchik, Jeremy N.; Williams, Brian W.

    2003-01-01

    Describes an alternative approach to finding exactly solvable, one-dimensional quantum mechanical potentials. Differs from the usual approach in that instead of starting with a particular potential and seeking solutions to the related Schrodinger equations, it begins with known solutions to second-order ordinary differential equations and seeks to…

  2. Hidden algebra method (quasi-exact-solvability in quantum mechanics)

    SciTech Connect

    Turbiner, Alexander

    1996-02-20

    A general introduction to quasi-exactly-solvable problems of quantum mechanics is presented. Main attention is given to multidimensional quasi-exactly-solvable and exactly-solvable Schroedinger operators. Exact-solvability of the Calogero and Sutherland N-body problems ass ociated with an existence of the hidden algebra slN is discussed extensively.

  3. Elementary Quantum Mechanics in a High-Energy Process

    ERIC Educational Resources Information Center

    Denville, A.; And Others

    1978-01-01

    Compares two approaches to strong absorption in elementary quantum mechanics; the black sphere and a model based on the continuum theory of nuclear reactions. Examines the application to proton-antiproton interactions at low momenta and concludes that the second model is the appropriate and simplest to use. (Author/GA)

  4. A multiscale quantum mechanics/electromagnetics method for device simulations.

    PubMed

    Yam, ChiYung; Meng, Lingyi; Zhang, Yu; Chen, GuanHua

    2015-04-01

    Multiscale modeling has become a popular tool for research applying to different areas including materials science, microelectronics, biology, chemistry, etc. In this tutorial review, we describe a newly developed multiscale computational method, incorporating quantum mechanics into electronic device modeling with the electromagnetic environment included through classical electrodynamics. In the quantum mechanics/electromagnetics (QM/EM) method, the regions of the system where active electron scattering processes take place are treated quantum mechanically, while the surroundings are described by Maxwell's equations and a semiclassical drift-diffusion model. The QM model and the EM model are solved, respectively, in different regions of the system in a self-consistent manner. Potential distributions and current densities at the interface between QM and EM regions are employed as the boundary conditions for the quantum mechanical and electromagnetic simulations, respectively. The method is illustrated in the simulation of several realistic systems. In the case of junctionless field-effect transistors, transfer characteristics are obtained and a good agreement between experiments and simulations is achieved. Optical properties of a tandem photovoltaic cell are studied and the simulations demonstrate that multiple QM regions are coupled through the classical EM model. Finally, the study of a carbon nanotube-based molecular device shows the accuracy and efficiency of the QM/EM method. PMID:25611987

  5. Quantum-mechanical theory of optomechanical Brillouin cooling

    SciTech Connect

    Tomes, Matthew; Bahl, Gaurav; Carmon, Tal; Marquardt, Florian

    2011-12-15

    We analyze how to exploit Brillouin scattering of light from sound for the purpose of cooling optomechanical devices and present a quantum-mechanical theory for Brillouin cooling. Our analysis shows that significant cooling ratios can be obtained with standard experimental parameters. A further improvement of cooling efficiency is possible by increasing the dissipation of the optical anti-Stokes resonance.

  6. The History of Teaching Quantum Mechanics in Greece

    ERIC Educational Resources Information Center

    Tampakis, Constantin; Skordoulis, Constantin

    2007-01-01

    In this work, our goal is to examine the attitude of the Greek scientific community towards Quantum Mechanics and establish the history of teaching of this theory in Greece. We have examined Physics textbooks written by professors of the University of Athens, as well as records of public speeches, university yearbooks from 1923 to 1970, articles

  7. The History of Teaching Quantum Mechanics in Greece

    ERIC Educational Resources Information Center

    Tampakis, Constantin; Skordoulis, Constantin

    2007-01-01

    In this work, our goal is to examine the attitude of the Greek scientific community towards Quantum Mechanics and establish the history of teaching of this theory in Greece. We have examined Physics textbooks written by professors of the University of Athens, as well as records of public speeches, university yearbooks from 1923 to 1970, articles…

  8. Spontaneous symmetry breakdown in non-relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Muoz-Vega, R.; Garca-Quiroz, A.; Lpez-Chvez, Ernesto; Salinas-Hernndez, Encarnacin

    2012-10-01

    The advantages and disadvantages of some pedagogical non-relativistic quantum-mechanical models, used to illustrate spontaneous symmetry breakdown, are discussed. A spinor on the line subject to a magnetostatic interaction is presented as a toy model of the spontaneous breakdown of an internal symmetry.

  9. Overcoming Misconceptions in Quantum Mechanics with the Time Evolution Operator

    ERIC Educational Resources Information Center

    Quijas, P. C. Garcia; Aguilar, L. M. Arevalo

    2007-01-01

    Recently, there have been many efforts to use the research techniques developed in the field of physics education research to improve the teaching and learning of quantum mechanics. In particular, part of this research is focusing on misconceptions held by students. For instance, a set of misconceptions is associated with the concept of stationary…

  10. Quantum Mechanics Concept Assessment: Development and Validation Study

    ERIC Educational Resources Information Center

    Sadaghiani, Homeyra R.; Pollock, Steven J.

    2015-01-01

    As part of an ongoing investigation of students' learning in first semester upper-division quantum mechanics, we needed a high-quality conceptual assessment instrument for comparing outcomes of different curricular approaches. The process of developing such a tool started with converting a preliminary version of a 14-item open-ended quantum…

  11. Overcoming Misconceptions in Quantum Mechanics with the Time Evolution Operator

    ERIC Educational Resources Information Center

    Quijas, P. C. Garcia; Aguilar, L. M. Arevalo

    2007-01-01

    Recently, there have been many efforts to use the research techniques developed in the field of physics education research to improve the teaching and learning of quantum mechanics. In particular, part of this research is focusing on misconceptions held by students. For instance, a set of misconceptions is associated with the concept of stationary

  12. Equivalent emergence of time dependence in classical and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Briggs, John S.

    2015-05-01

    Beginning with the principle that a closed mechanical composite system is timeless, time can be defined by the regular changes in a suitable position coordinate (clock) in the observing part, when one part of the closed composite observes another part. Translating this scenario into both classical and quantum mechanics allows a transition to be made from a time-independent mechanics for the closed composite to a time-dependent description of the observed part alone. The use of Hamilton-Jacobi theory yields a very close parallel between the derivations in classical and quantum mechanics. The time-dependent equations, Hamilton-Jacobi or Schrdinger, appear as approximations since no observed system is truly closed. The quantum case has an additional feature in the condition that the observing environment must become classical in order to define a real classical time variable. This condition leads to a removal of entanglement engendered by the interaction between the observed system and the observing environment. Comparison is made to the similar emergence of time in quantum gravity theory.

  13. Quantum Mechanics of the Einstein-Hopf Model.

    ERIC Educational Resources Information Center

    Milonni, P. W.

    1981-01-01

    The Einstein-Hopf model for the thermodynamic equilibrium between the electromagnetic field and dipole oscillators is considered within the framework of quantum mechanics. Both the wave and particle aspects of the Einstein fluctuation formula are interpreted in terms of the fundamental absorption and emission processes. (Author/SK)

  14. The Hidden-Variables Controversy in Quantum Mechanics.

    ERIC Educational Resources Information Center

    Pinch, Trevor J.

    1979-01-01

    Describes the controversy over the hidden variable in quantum mechanics, especially over Bohm's theory, and the criticism and rejection it received as a result of the erroneous application of Von Neumann's impossibility proof, rather than Bohn's theory itself. Concludes that science, especially physics, is not permeated by social factors. (GA)

  15. Quantum Mechanics and Conceptual Change in High School Chemistry Textbooks.

    ERIC Educational Resources Information Center

    Shiland, Thomas W.

    1997-01-01

    Examines the presentation of quantum mechanics in eight secondary chemistry texts for elements associated with a conceptual change model: (1) dissatisfaction; (2) intelligibility; (3) plausibility; and (4) fruitfulness. Reports that these elements were not present in sufficient quantities to promote conceptual change. Presents recommendations for…

  16. 2D Quantum Simulation of MOSFET Using the Non Equilibrium Green's Function Method

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexel; Anantram, M. P.; Govindan, T. R.; Yan, Jerry (Technical Monitor)

    2000-01-01

    The objectives this viewgraph presentation summarizes include: (1) the development of a quantum mechanical simulator for ultra short channel MOSFET simulation, including theory, physical approximations, and computer code; (2) explore physics that is not accessible by semiclassical methods; (3) benchmarking of semiclassical and classical methods; and (4) study other two-dimensional devices and molecular structure, from discretized Hamiltonian to tight-binding Hamiltonian.

  17. Hidden supersymmetries in supersymmetric quantum mechanics

    NASA Astrophysics Data System (ADS)

    de Azcrraga, J. A.; Izquierdo, J. M.; Macfarlane, A. J.

    2001-06-01

    We discuss the appearance of additional, hidden supersymmetries for simple 0+1 Ad( G)-invariant supersymmetric models and analyse some geometrical mechanisms that lead to them. It is shown that their existence depends crucially on the availability of odd order invariant skewsymmetric tensors on the (generic) compact Lie algebra G, and hence on the cohomology properties of the Lie algebra considered.

  18. Physics on the boundary between classical and quantum mechanics

    NASA Astrophysics Data System (ADS)

    't Hooft, Gerard

    2014-04-01

    Nature's laws in the domain where relativistic effects, gravitational effects and quantum effects are all comparatively strong are far from understood. This domain is called the Planck scale. Conceivably, a theory can be constructed where the quantum nature of phenomena at such scales can be attributed to something fundamentally simpler. However, arguments that quantum mechanics cannot be explained in terms of any classical theory using only classical logic seem to be based on sound mathematical considerations: there can't be physical laws that require "conspiracy". It may therefore be surprising that there are several explicit quantum systems where these considerations apparently do not apply. In the lecture we will show several such counterexamples. These are quantum models that do have a classical origin. The most curious of these models is superstring theory. This theory is often portrayed as to underly the quantum field theory of the subatomic particles, including the "Standard Model". So now the question is asked: how can this model feature "conspiracy", and how bad is that? Is there conspiracy in the vacuum fluctuations?

  19. Topological origin of quantum mechanical vacuum transitions and tunneling

    NASA Astrophysics Data System (ADS)

    Bernardini, Alex E.; Chinaglia, Mariana

    2015-07-01

    The quantum transition between shifted zero-mode wave functions is shown to be induced by the systematic deformation of topological and non-topological defects that support the one-dimensional double-well (DW) potential tunneling dynamics. The topological profile of the zero-mode ground state, ?0, and the first excited state, ?1, of DW potentials are obtained through the analytical technique of topological defect deformation. Deformed defects create two inequivalent topological scenarios connected by a symmetry breaking that support the quantum conversion of a zero-mode stable vacuum into an unstable tachyonic quantum state. Our theoretical findings reveal the topological origin of two-level models where a nonstationary quantum state of unitary evolution, ?0 +exp(-iEt)?1, that exhibits a stable tunneling dynamics, is converted into a quantum superposition involving a self-vanishing tachyonic mode, exp(-Et)?0 + ?1, that parametrizes a tunneling coherent destruction. The non-classical nature of the symmetry breaking dynamics is recreated in terms of the single particle quantum mechanics of one-dimensional DW potentials.

  20. Quantum mechanical binding free energy calculation for phosphopeptide inhibitors of the Lck SH2 domain.

    PubMed

    Anisimov, Victor M; Cavasotto, Claudio N

    2011-07-30

    The accurate and efficient calculation of binding free energies is essential in computational biophysics. We present a linear-scaling quantum mechanical (QM)-based end-point method termed MM/QM-COSMO to calculate binding free energies in biomolecular systems, with an improved description of entropic changes. Molecular dynamics trajectories are re-evaluated using a semiempirical Hamiltonian and a continuum solvent model; translational and rotational entropies are calculated using configurational integrals, and internal entropy is calculated using the harmonic oscillator approximation. As an application, we studied the binding of a series of phosphotyrosine tetrapeptides to the human Lck SH2 domain, a key component in intracellular signal transduction, modulation of which can have therapeutic relevance in the treatment of cancer, osteoporosis, and autoimmune diseases. Calculations with molecular mechanics Poisson-Boltzmann, and generalized Born surface area methods showed large discrepancies with experimental data stemming from the enthalpic component, in agreement with an earlier report. The empirical force field-based solvent interaction energy scoring function yielded improved results, with average unsigned error of 3.6 kcal/mol, and a better ligand ranking. The MM/QM-COSMO method exhibited the best agreement both for absolute (average unsigned error = 0.7 kcal/mol) and relative binding free energy calculations. These results show the feasibility and promise of a full QM-based end-point method with an adequate balance of accuracy and computational efficiency. PMID:21484840