Cloning in nonlinear Hamiltonian quantum and hybrid mechanics
NASA Astrophysics Data System (ADS)
Arsenović, D.; Burić, N.; Popović, D. B.; Radonjić, M.; Prvanović, S.
2014-10-01
The possibility of state cloning is analyzed in two types of generalizations of quantum mechanics with nonlinear evolution. It is first shown that nonlinear Hamiltonian quantum mechanics does not admit cloning without the cloning machine. It is then demonstrated that the addition of the cloning machine, treated as a quantum or as a classical system, makes cloning possible by nonlinear Hamiltonian evolution. However, a special type of quantum-classical theory, known as the mean-field Hamiltonian hybrid mechanics, does not admit cloning by natural evolution. The latter represents an example of a theory where it appears to be possible to communicate between two quantum systems at superluminal speed, but at the same time it is impossible to clone quantum pure states.
Supersymmetric descendants of self-adjointly extended quantum mechanical Hamiltonians
NASA Astrophysics Data System (ADS)
Al-Hashimi, M. H.; Salman, M.; Shalaby, A.; Wiese, U.-J.
2013-10-01
We consider the descendants of self-adjointly extended Hamiltonians in supersymmetric quantum mechanics on a half-line, on an interval, and on a punctured line or interval. While there is a 4-parameter family of self-adjointly extended Hamiltonians on a punctured line, only a 3-parameter sub-family has supersymmetric descendants that are themselves self-adjoint. We also address the self-adjointness of an operator related to the supercharge, and point out that only a sub-class of its most general self-adjoint extensions is physical. Besides a general characterization of self-adjoint extensions and their supersymmetric descendants, we explicitly consider concrete examples, including a particle in a box with general boundary conditions, with and without an additional point interaction. We also discuss bulk-boundary resonances and their manifestation in the supersymmetric descendant.
Supersymmetric descendants of self-adjointly extended quantum mechanical Hamiltonians
Al-Hashimi, M.H.; Salman, M.; Shalaby, A.; Wiese, U.-J.
2013-10-15
We consider the descendants of self-adjointly extended Hamiltonians in supersymmetric quantum mechanics on a half-line, on an interval, and on a punctured line or interval. While there is a 4-parameter family of self-adjointly extended Hamiltonians on a punctured line, only a 3-parameter sub-family has supersymmetric descendants that are themselves self-adjoint. We also address the self-adjointness of an operator related to the supercharge, and point out that only a sub-class of its most general self-adjoint extensions is physical. Besides a general characterization of self-adjoint extensions and their supersymmetric descendants, we explicitly consider concrete examples, including a particle in a box with general boundary conditions, with and without an additional point interaction. We also discuss bulk-boundary resonances and their manifestation in the supersymmetric descendant. -- Highlights: •Self-adjoint extension theory and contact interactions. •Application of self-adjoint extensions to supersymmetry. •Contact interactions in finite volume with Robin boundary condition.
Chou, Chia-Chun; Kouri, Donald J
2013-04-25
We show that there exist spurious states for the sector two tensor Hamiltonian in multidimensional supersymmetric quantum mechanics. For one-dimensional supersymmetric quantum mechanics on an infinite domain, the sector one and two Hamiltonians have identical spectra with the exception of the ground state of the sector one. For tensorial multidimensional supersymmetric quantum mechanics, there exist normalizable spurious states for the sector two Hamiltonian with energy equal to the ground state energy of the sector one. These spurious states are annihilated by the adjoint charge operator, and hence, they do not correspond to physical states for the original Hamiltonian. The Hermitian property of the sector two Hamiltonian implies the orthogonality between spurious and physical states. In addition, we develop a method for construction of a specific form of the spurious states for any quantum system and also generate several spurious states for a two-dimensional anharmonic oscillator system and for the hydrogen atom. PMID:23531015
Computing pKa Values with a Mixing Hamiltonian Quantum Mechanical/Molecular Mechanical Approach.
Liu, Yang; Fan, Xiaoli; Jin, Yingdi; Hu, Xiangqian; Hu, Hao
2013-09-10
Accurate computation of the pKa value of a compound in solution is important but challenging. Here, a new mixing quantum mechanical/molecular mechanical (QM/MM) Hamiltonian method is developed to simulate the free-energy change associated with the protonation/deprotonation processes in solution. The mixing Hamiltonian method is designed for efficient quantum mechanical free-energy simulations by alchemically varying the nuclear potential, i.e., the nuclear charge of the transforming nucleus. In pKa calculation, the charge on the proton is varied in fraction between 0 and 1, corresponding to the fully deprotonated and protonated states, respectively. Inspired by the mixing potential QM/MM free energy simulation method developed previously [H. Hu and W. T. Yang, J. Chem. Phys. 2005, 123, 041102], this method succeeds many advantages of a large class of λ-coupled free-energy simulation methods and the linear combination of atomic potential approach. Theory and technique details of this method, along with the calculation results of the pKa of methanol and methanethiol molecules in aqueous solution, are reported. The results show satisfactory agreement with the experimental data. PMID:26592414
Entropic dynamics: From entropy and information geometry to Hamiltonians and quantum mechanics
Caticha, Ariel; Bartolomeo, Daniel; Reginatto, Marcel
2015-01-13
Entropic Dynamics is a framework in which quantum theory is derived as an application of entropic methods of inference. There is no underlying action principle. Instead, the dynamics is driven by entropy subject to the appropriate constraints. In this paper we show how a Hamiltonian dynamics arises as a type of non-dissipative entropic dynamics. We also show that the particular form of the 'quantum potential' that leads to the Schrödinger equation follows naturally from information geometry.
Entropic dynamics: From entropy and information geometry to Hamiltonians and quantum mechanics
NASA Astrophysics Data System (ADS)
Caticha, Ariel; Bartolomeo, Daniel; Reginatto, Marcel
2015-01-01
Entropic Dynamics is a framework in which quantum theory is derived as an application of entropic methods of inference. There is no underlying action principle. Instead, the dynamics is driven by entropy subject to the appropriate constraints. In this paper we show how a Hamiltonian dynamics arises as a type of non-dissipative entropic dynamics. We also show that the particular form of the "quantum potential" that leads to the Schrödinger equation follows naturally from information geometry.
Programmable quantum simulation by dynamic Hamiltonian engineering
NASA Astrophysics Data System (ADS)
Hayes, David; Flammia, Steven T.; Biercuk, Michael J.
2014-08-01
Quantum simulation is a promising near term application for quantum information processors with the potential to solve computationally intractable problems using just a few dozen interacting qubits. A range of experimental platforms have recently demonstrated the basic functionality of quantum simulation applied to quantum magnetism, quantum phase transitions and relativistic quantum mechanics. However, in all cases, the physics of the underlying hardware restricts the achievable inter-particle interactions and forms a serious constraint on the versatility of the simulators. To broaden the scope of these analog devices, we develop a suite of pulse sequences that permit a user to efficiently realize average Hamiltonians that are beyond the native interactions of the system. Specifically, this approach permits the generation of all symmetrically coupled translation-invariant two-body Hamiltonians with homogeneous on-site terms, a class which includes all spin-1/2 XYZ chains, but generalized to include long-range couplings. Our work builds on previous work proving that universal simulation is possible using both entangling gates and single-qubit unitaries. We show that determining the appropriate ‘program’ of unitary pulse sequences which implements an arbitrary Hamiltonian transformation can be formulated as a linear program over functions defined by those pulse sequences, running in polynomial time and scaling efficiently in hardware resources. Our analysis extends from circuit model quantum information to adiabatic quantum evolutions, representing an important and broad-based success in applying functional analysis to the field of quantum information.
Modified Dirac Hamiltonian for efficient quantum mechanical simulations of micron sized devices
NASA Astrophysics Data System (ADS)
Habib, K. M. Masum; Sajjad, Redwan N.; Ghosh, Avik W.
2016-03-01
Representing massless Dirac fermions on a spatial lattice poses a potential challenge known as the Fermion Doubling problem. Addition of a quadratic term to the Dirac Hamiltonian provides a possible way to circumvent this problem. We show that the modified Hamiltonian with the additional term results in a very small Hamiltonian matrix when discretized on a real space square lattice. The resulting Hamiltonian matrix is considerably more efficient for numerical simulations without sacrificing on accuracy and is several orders of magnitude faster than the atomistic tight binding model. Using this Hamiltonian and the non-equilibrium Green's function formalism, we show several transport phenomena in graphene, such as magnetic focusing, chiral tunneling in the ballistic limit, and conductivity in the diffusive limit in micron sized graphene devices. The modified Hamiltonian can be used for any system with massless Dirac fermions such as Topological Insulators, opening up a simulation domain that is not readily accessible otherwise.
NASA Astrophysics Data System (ADS)
Benioff, Paul
1980-05-01
In this paper a microscopic quantum mechanical model of computers as represented by Turing machines is constructed. It is shown that for each number N and Turing machine Q there exists a Hamiltonian H N Q and a class of appropriate initial states such that if c is such an initial state, then ψ Q N (t)=exp(-1 H N Q t) ψ Q N (0) correctly describes at times t 3, t 6,⋯, t 3N model states that correspond to the completion of the first, second, ⋯, Nth computation step of Q. The model parameters can be adjusted so that for an arbitrary time interval Δ around t 3, t 6,⋯, t 3N, the "machine" part of ψ Q N (t) is stationary.
Five-dimensional Hamiltonian-Jacobi approach to relativistic quantum mechanics
Rose, Harald
2003-12-11
A novel theory is outlined for describing the dynamics of relativistic electrons and positrons. By introducing the Lorentz-invariant universal time as a fifth independent variable, the Hamilton-Jacobi formalism of classical mechanics is extended from three to four spatial dimensions. This approach allows one to incorporate gravitation and spin interactions in the extended five-dimensional Lagrangian in a covariant form. The universal time has the function of a hidden Bell parameter. By employing the method of variation with respect to the four coordinates of the particle and the components of the electromagnetic field, the path equation and the electromagnetic field produced by the charge and the spin of the moving particle are derived. In addition the covariant equations for the dynamics of the components of the spin tensor are obtained. These equations can be transformed to the familiar BMT equation in the case of homogeneous electromagnetic fields. The quantization of the five-dimensional Hamilton-Jacobi equation yields a five-dimensional spinor wave equation, which degenerates to the Dirac equation in the stationary case if we neglect gravitation. The quantity which corresponds to the probability density of standard quantum mechanics is the four-dimensional mass density which has a real physical meaning. By means of the Green method the wave equation is transformed into an integral equation enabling a covariant relativistic path integral formulation. Using this approach a very accurate approximation for the four-dimensional propagator is derived. The proposed formalism makes Dirac's hole theory obsolete and can readily be extended to many particles.
Quantum Hamiltonian Physics with Supercomputers
NASA Astrophysics Data System (ADS)
Vary, James P.
2014-06-01
The vision of solving the nuclear many-body problem in a Hamiltonian framework with fundamental interactions tied to QCD via Chiral Perturbation Theory is gaining support. The goals are to preserve the predictive power of the underlying theory, to test fundamental symmetries with the nucleus as laboratory and to develop new understandings of the full range of complex quantum phenomena. Advances in theoretical frameworks (renormalization and many-body methods) as well as in computational resources (new algorithms and leadership-class parallel computers) signal a new generation of theory and simulations that will yield profound insights into the origins of nuclear shell structure, collective phenomena and complex reaction dynamics. Fundamental discovery opportunities also exist in such areas as physics beyond the Standard Model of Elementary Particles, the transition between hadronic and quark-gluon dominated dynamics in nuclei and signals that characterize dark matter. I will review some recent achievements and present ambitious consensus plans along with their challenges for a coming decade of research that will build new links between theory, simulations and experiment. Opportunities for graduate students to embark upon careers in the fast developing field of supercomputer simulations is also discussed.
Position-dependent mass quantum Hamiltonians: general approach and duality
NASA Astrophysics Data System (ADS)
Rego-Monteiro, M. A.; Rodrigues, Ligia M. C. S.; Curado, E. M. F.
2016-03-01
We analyze a general family of position-dependent mass (PDM) quantum Hamiltonians which are not self-adjoint and include, as particular cases, some Hamiltonians obtained in phenomenological approaches to condensed matter physics. We build a general family of self-adjoint Hamiltonians which are quantum mechanically equivalent to the non-self-adjoint proposed ones. Inspired by the probability density of the problem, we construct an ansatz for the solutions of the family of self-adjoint Hamiltonians. We use this ansatz to map the solutions of the time independent Schrödinger equations generated by the non-self-adjoint Hamiltonians into the Hilbert space of the solutions of the respective dual self-adjoint Hamiltonians. This mapping depends on both the PDM and on a function of position satisfying a condition that assures the existence of a consistent continuity equation. We identify the non-self-adjoint Hamiltonians here studied with a very general family of Hamiltonians proposed in a seminal article of Harrison (1961 Phys. Rev. 123 85) to describe varying band structures in different types of metals. Therefore, we have self-adjoint Hamiltonians that correspond to the non-self-adjoint ones found in Harrison’s article.
Hamiltonian quantum computer in one dimension
NASA Astrophysics Data System (ADS)
Wei, Tzu-Chieh; Liang, John C.
2015-12-01
Quantum computation can be achieved by preparing an appropriate initial product state of qudits and then letting it evolve under a fixed Hamiltonian. The readout is made by measurement on individual qudits at some later time. This approach is called the Hamiltonian quantum computation and it includes, for example, the continuous-time quantum cellular automata and the universal quantum walk. We consider one spatial dimension and study the compromise between the locality k and the local Hilbert space dimension d . For geometrically 2-local (i.e., k =2 ), it is known that d =8 is already sufficient for universal quantum computation but the Hamiltonian is not translationally invariant. As the locality k increases, it is expected that the minimum required d should decrease. We provide a construction of a Hamiltonian quantum computer for k =3 with d =5 . One implication is that simulating one-dimensional chains of spin-2 particles is BQP-complete (BQP denotes "bounded error, quantum polynomial time"). Imposing translation invariance will increase the required d . For this we also construct another 3-local (k =3 ) Hamiltonian that is invariant under translation of a unit cell of two sites but that requires d to be 8.
Hamiltonian learning and certification using quantum resources.
Wiebe, Nathan; Granade, Christopher; Ferrie, Christopher; Cory, D G
2014-05-16
In recent years quantum simulation has made great strides, culminating in experiments that existing supercomputers cannot easily simulate. Although this raises the possibility that special purpose analog quantum simulators may be able to perform computational tasks that existing computers cannot, it also introduces a major challenge: certifying that the quantum simulator is in fact simulating the correct quantum dynamics. We provide an algorithm that, under relatively weak assumptions, can be used to efficiently infer the Hamiltonian of a large but untrusted quantum simulator using a trusted quantum simulator. We illustrate the power of this approach by showing numerically that it can inexpensively learn the Hamiltonians for large frustrated Ising models, demonstrating that quantum resources can make certifying analog quantum simulators tractable. PMID:24877920
Hamiltonian quantum dynamics with separability constraints
NASA Astrophysics Data System (ADS)
Burić, Nikola
2008-01-01
Schroedinger equation on a Hilbert space H, represents a linear Hamiltonian dynamical system on the space of quantum pure states, the projective Hilbert space PH. Separable states of a bipartite quantum system form a special submanifold of PH. We analyze the Hamiltonian dynamics that corresponds to the quantum system constrained on the manifold of separable states, using as an important example the system of two interacting qubits. The constraints introduce nonlinearities which render the dynamics nontrivial. We show that the qualitative properties of the constrained dynamics clearly manifest the symmetry of the qubits system. In particular, if the quantum Hamilton's operator has not enough symmetry, the constrained dynamics is nonintegrable, and displays the typical features of a Hamiltonian dynamical system with mixed phase space. Possible physical realizations of the separability constraints are discussed.
Dissipative Forces and Quantum Mechanics
ERIC Educational Resources Information Center
Eck, John S.; Thompson, W. J.
1977-01-01
Shows how to include the dissipative forces of classical mechanics in quantum mechanics by the use of non-Hermetian Hamiltonians. The Ehrenfest theorem for such Hamiltonians is derived, and simple examples which show the classical correspondences are given. (MLH)
Optimized spatial matrix representations of quantum Hamiltonians
NASA Astrophysics Data System (ADS)
Lv, Q. Z.; Jennings, D. J.; Betke, J.; Su, Q.; Grobe, R.
2016-01-01
We examine the accuracy of several approaches to represent the quantum mechanical Schrödinger, Klein-Gordon and Dirac Hamilton operators by optimized spatial matrices. Two of the approaches are based on periodic and reflecting boundaries and have an error scaling with the number of spatial grid points that is significantly better than the ones based on the usual approaches where the momentum operator is approximated by finite-difference schemes. These N × N matrices are optimum in the sense that their eigenvalues and eigenvectors are exact representations on the spatial grid for the continuous solutions of the corresponding force-free Hamiltonian. As an example, we apply these techniques to compute the vacuum's polarization charge density from the Dirac and Foldy-Wouthuysen theory.
Quantum control by means of hamiltonian structure manipulation.
Donovan, A; Beltrani, V; Rabitz, H
2011-04-28
A traditional quantum optimal control experiment begins with a specific physical system and seeks an optimal time-dependent field to steer the evolution towards a target observable value. In a more general framework, the Hamiltonian structure may also be manipulated when the material or molecular 'stockroom' is accessible as a part of the controls. The current work takes a step in this direction by considering the converse of the normal perspective to now start with a specific fixed field and employ the system's time-independent Hamiltonian structure as the control to identify an optimal form. The Hamiltonian structure control variables are taken as the system energies and transition dipole matrix elements. An analysis is presented of the Hamiltonian structure control landscape, defined by the observable as a function of the Hamiltonian structure. A proof of system controllability is provided, showing the existence of a Hamiltonian structure that yields an arbitrary unitary transformation when working with virtually any field. The landscape analysis shows that there are no suboptimal traps (i.e., local extrema) for controllable quantum systems when unconstrained structural controls are utilized to optimize a state-to-state transition probability. This analysis is corroborated by numerical simulations on model multilevel systems. The search effort to reach the top of the Hamiltonian structure landscape is found to be nearly invariant to system dimension. A control mechanism analysis is performed, showing a wide variety of behavior for different systems at the top of the Hamiltonian structure landscape. It is also shown that reducing the number of available Hamiltonian structure controls, thus constraining the system, does not always prevent reaching the landscape top. The results from this work lay a foundation for considering the laboratory implementation of optimal Hamiltonian structure manipulation for seeking the best control performance, especially with limited
Non-Hermitian quantum Hamiltonians with PT symmetry
Jones-Smith, Katherine; Mathur, Harsh
2010-10-15
We formulate quantum mechanics for non-Hermitian Hamiltonians that are invariant under PT, where P is the parity and T denotes time reversal, for the case that time-reversal symmetry is odd (T{sup 2}=-1), generalizing prior work for the even case (T{sup 2}=1). We discover an analog of Kramer's theorem for PT quantum mechanics, present a prototypical example of a PT quantum system with odd time reversal, and discuss potential applications of the formalism.
Quantum Hamiltonian identification from measurement time traces.
Zhang, Jun; Sarovar, Mohan
2014-08-22
Precise identification of parameters governing quantum processes is a critical task for quantum information and communication technologies. In this Letter, we consider a setting where system evolution is determined by a parametrized Hamiltonian, and the task is to estimate these parameters from temporal records of a restricted set of system observables (time traces). Based on the notion of system realization from linear systems theory, we develop a constructive algorithm that provides estimates of the unknown parameters directly from these time traces. We illustrate the algorithm and its robustness to measurement noise by applying it to a one-dimensional spin chain model with variable couplings. PMID:25192077
PT -symmetric Hamiltonians and their application in quantum information
NASA Astrophysics Data System (ADS)
Croke, Sarah
2015-05-01
We discuss the prospect of PT -symmetric Hamiltonians finding applications in quantum information science, and conclude that such evolution is unlikely to provide any benefit over existing techniques. Although it has been known for some time that PT -symmetric quantum theory, when viewed as a unitary theory, is exactly equivalent to standard quantum mechanics, proposals continue to be put forward for schemes in which PT -symmetric quantum theory can outperform standard quantum theory. The most recent of these is the suggestion to use PT -symmetric Hamiltonians to perform an exponentially fast database search, a task known to be impossible with a quantum computer. Further, such a scheme has been shown to apparently produce effects in conflict with fundamental information-theoretic principles, such as the impossibility of superluminal information transfer, and the invariance of entanglement under local operations. In this paper we propose three inequivalent experimental implementations of PT -symmetric Hamiltonians, with careful attention to the resources required to realize each such evolution. Such an operational approach allows us to resolve these apparent conflicts, and evaluate fully schemes proposed in the literature for faster time evolution and state discrimination.
Uncertainty relation for non-Hamiltonian quantum systems
Tarasov, Vasily E.
2013-01-15
General forms of uncertainty relations for quantum observables of non-Hamiltonian quantum systems are considered. Special cases of uncertainty relations are discussed. The uncertainty relations for non-Hamiltonian quantum systems are considered in the Schroedinger-Robertson form since it allows us to take into account Lie-Jordan algebra of quantum observables. In uncertainty relations, the time dependence of quantum observables and the properties of this dependence are discussed. We take into account that a time evolution of observables of a non-Hamiltonian quantum system is not an endomorphism with respect to Lie, Jordan, and associative multiplications.
New Hamiltonian constraint operator for loop quantum gravity
NASA Astrophysics Data System (ADS)
Yang, Jinsong; Ma, Yongge
2015-12-01
A new symmetric Hamiltonian constraint operator is proposed for loop quantum gravity, which is well defined in the Hilbert space of diffeomorphism invariant states up to non-planar vertices with valence higher than three. It inherits the advantage of the original regularization method to create new vertices to the spin networks. The quantum algebra of this Hamiltonian is anomaly-free on shell, and there is less ambiguity in its construction in comparison with the original method. The regularization procedure for this Hamiltonian constraint operator can also be applied to the symmetric model of loop quantum cosmology, which leads to a new quantum dynamics of the cosmological model.
A geometric Hamiltonian description of composite quantum systems and quantum entanglement
NASA Astrophysics Data System (ADS)
Pastorello, Davide
2015-05-01
Finite-dimensional Quantum Mechanics can be geometrically formulated as a proper classical-like Hamiltonian theory in a projective Hilbert space. The description of composite quantum systems within the geometric Hamiltonian framework is discussed in this paper. As summarized in the first part of this work, in the Hamiltonian formulation the phase space of a quantum system is the Kähler manifold given by the complex projective space P(H) of the Hilbert space H of the considered quantum theory. However the phase space of a bipartite system must be P(H1 ⊗ H2) and not simply P(H1) × P(H2) as suggested by the analogy with Classical Mechanics. A part of this paper is devoted to manage this problem. In the second part of the work, a definition of quantum entanglement and a proposal of entanglement measure are given in terms of a geometrical point of view (a rather studied topic in recent literature). Finally two known separability criteria are implemented in the Hamiltonian formalism.
Time and a physical Hamiltonian for quantum gravity.
Husain, Viqar; Pawłowski, Tomasz
2012-04-01
We present a nonperturbative quantization of general relativity coupled to dust and other matter fields. The dust provides a natural time variable, leading to a physical Hamiltonian with spatial diffeomorphism symmetry. The surprising feature is that the Hamiltonian is not a square root. This property, together with the kinematical structure of loop quantum gravity, provides a complete theory of quantum gravity, and puts applications to cosmology, quantum gravitational collapse, and Hawking radiation within technical reach. PMID:22540782
Hamiltonian mechanics and planar fishlike locomotion
NASA Astrophysics Data System (ADS)
Kelly, Scott; Xiong, Hailong; Burgoyne, Will
2007-11-01
A free deformable body interacting with a system of point vortices in the plane constitutes a Hamiltonian system. A free Joukowski foil with variable camber shedding point vortices in an ideal fluid according to a periodically applied Kutta condition provides a model for fishlike locomotion which bridges the gap between inviscid analytical models that sacrifice realism for tractability and viscous computational models inaccessible to tools from nonlinear control theory. We frame such a model in the context of Hamiltonian mechanics and describe its relevance both to the study of hydrodynamic interactions within schools of fish and to the realization of model-based control laws for biomimetic autonomous robotic vehicles.
Quantum and classical probability distributions for arbitrary Hamiltonians
NASA Astrophysics Data System (ADS)
Semay, Claude; Ducobu, Ludovic
2016-07-01
In the limit of large quantum excitations, the classical and quantum probability distributions for a Schrödinger equation can be compared by using the corresponding WKBJ solutions whose rapid oscillations are averaged. This result is extended for one-dimensional Hamiltonians with a non-usual kinetic part. The validity of the approach is tested with a Hamiltonian containing a relativistic kinetic energy operator.
Superfield Hamiltonian quantization in terms of quantum antibrackets
NASA Astrophysics Data System (ADS)
Batalin, Igor A.; Lavrov, Peter M.
2016-04-01
We develop a new version of the superfield Hamiltonian quantization. The main new feature is that the BRST-BFV charge and the gauge fixing Fermion are introduced on equal footing within the sigma model approach, which provides for the actual use of the quantum/derived antibrackets. We study in detail the generating equations for the quantum antibrackets and their primed counterparts. We discuss the finite quantum anticanonical transformations generated by the quantum antibracket.
Supersymmetry in quantum mechanics
Lahiri, A. ); Roy, P.K. ); Bagghi, B. )
1990-04-20
A pedagogical review on supersymmetry in quantum mechanics is presented which provides a comprehensive coverage of the subject. First, the key ingredients of the quantization of the systems with anticommuting variables are discussed. The supersymmetric Hamiltonian in quantum mechanics is then constructed by emphasizing the role of partner potentials and the superpotentials. The authors also make explicit the mathematical formulation of the Hamiltonian by considering in detail the N = 1 and N = 2 supersymmetric (quantum) mechanics. Supersymmetry is then discussed in the context of one-dimensional problems and the importance of the factorization method is highlighted. They treat in detail the technique of constructing a hierarchy of Hamiltonians employing the so-called 'shape-invariance' of potentials. To make transparent the relationship between supersymmetry and solvable potentials, they also solve several examples. They then go over the formulation of supersymmetry in radial problems, paying a special attention to the Coulomb and isotropic oscillator potentials. They show that the ladder operator technique may be suitable modified in higher dimensions for generating isospectral Hamiltonians. Next, the criteria for the breaking of supersymmetry is considered and their range of applicability is examined by suitably modifying he definition of Witten's index. Finally, the authors perform some numerical calculations for a class of potentials to show how a modified WKB approximation works in supersymmetric cases.
Statistical mechanics of Hamiltonian adaptive resolution simulations.
Español, P; Delgado-Buscalioni, R; Everaers, R; Potestio, R; Donadio, D; Kremer, K
2015-02-14
The Adaptive Resolution Scheme (AdResS) is a hybrid scheme that allows to treat a molecular system with different levels of resolution depending on the location of the molecules. The construction of a Hamiltonian based on the this idea (H-AdResS) allows one to formulate the usual tools of ensembles and statistical mechanics. We present a number of exact and approximate results that provide a statistical mechanics foundation for this simulation method. We also present simulation results that illustrate the theory. PMID:25681895
NASA Astrophysics Data System (ADS)
Błaszak, Maciej; Domański, Ziemowit
2012-02-01
This paper develops an alternative formulation of quantum mechanics known as the phase space quantum mechanics or deformation quantization. It is shown that the quantization naturally arises as an appropriate deformation of the classical Hamiltonian mechanics. More precisely, the deformation of the point-wise product of observables to an appropriate noncommutative ⋆-product and the deformation of the Poisson bracket to an appropriate Lie bracket are the key elements in introducing the quantization of classical Hamiltonian systems. The formalism of the phase space quantum mechanics is presented in a very systematic way for the case of any smooth Hamiltonian function and for a very wide class of deformations. The considered class of deformations and the corresponding ⋆-products contains as a special case all deformations which can be found in the literature devoted to the subject of the phase space quantum mechanics. Fundamental properties of ⋆-products of observables, associated with the considered deformations are presented as well. Moreover, a space of states containing all admissible states is introduced, where the admissible states are appropriate pseudo-probability distributions defined on the phase space. It is proved that the space of states is endowed with a structure of a Hilbert algebra with respect to the ⋆-multiplication. The most important result of the paper shows that developed formalism is more fundamental than the axiomatic ordinary quantum mechanics which appears in the presented approach as the intrinsic element of the general formalism. The equivalence of two formulations of quantum mechanics is proved by observing that the Wigner-Moyal transform has all properties of the tensor product. This observation allows writing many previous results found in the literature in a transparent way, from which the equivalence of the two formulations of quantum mechanics follows naturally. In addition, examples of a free particle and a simple harmonic
Faster than Hermitian quantum mechanics.
Bender, Carl M; Brody, Dorje C; Jones, Hugh F; Meister, Bernhard K
2007-01-26
Given an initial quantum state |psi(I)> and a final quantum state |psi(F)>, there exist Hamiltonians H under which |psi(I)> evolves into |psi(F)>. Consider the following quantum brachistochrone problem: subject to the constraint that the difference between the largest and smallest eigenvalues of H is held fixed, which H achieves this transformation in the least time tau? For Hermitian Hamiltonians tau has a nonzero lower bound. However, among non-Hermitian PT-symmetric Hamiltonians satisfying the same energy constraint, tau can be made arbitrarily small without violating the time-energy uncertainty principle. This is because for such Hamiltonians the path from |psi(I)> to |psi(F)> can be made short. The mechanism described here is similar to that in general relativity in which the distance between two space-time points can be made small if they are connected by a wormhole. This result may have applications in quantum computing. PMID:17358747
Hamiltonian formulations and symmetries in rod mechanics
Dichmann, D.J.; Li, Yiwei; Maddocks, J.H.
1996-12-31
This article provides a survey of contemporary rod mechanics, including both dynamic and static theories. Much of what we discuss is regarded as classic material within the mechanics community, but the objective here is to provide a self-contained account accessible to workers interested in modelling DNA. We also describe a number of recent results and computations involving rod mechanics that have been obtained by our group at the University of Maryland. This work was largely motivated by applications to modelling DNA, but our approach reflects a background of research in continuum mechanics. In particular, we emphasize the role that Hamiltonian formulations and symmetries play in the effective computation of special solutions, conservation laws of dynamics and integrals of statics. 41 refs., 10 figs.
Noncommutative quantum mechanics
NASA Astrophysics Data System (ADS)
Gamboa, J.; Loewe, M.; Rojas, J. C.
2001-09-01
A general noncommutative quantum mechanical system in a central potential V=V(r) in two dimensions is considered. The spectrum is bounded from below and, for large values of the anticommutative parameter θ, we find an explicit expression for the eigenvalues. In fact, any quantum mechanical system with these characteristics is equivalent to a commutative one in such a way that the interaction V(r) is replaced by V=V(HHO,Lz), where HHO is the Hamiltonian of the two-dimensional harmonic oscillator and Lz is the z component of the angular momentum. For other finite values of θ the model can be solved by using perturbation theory.
PT quantum mechanics - Recent results
NASA Astrophysics Data System (ADS)
Bender, Carl M.
2012-09-01
Most quantum physicists believe that a quantum-mechanical Hamiltonian must be Dirac Hermitian (invariant under matrix transposition and complex conjugation) to be sure that the energy eigenvalues are real and that time evolution is unitary. However, the non-Dirac-hermitian Hamiltonian H = p2+ix3 has a real positive discrete spectrum and generates unitary time evolution and defines a fully consistent and physical quantum theory. Evidently, Dirac Hermiticity is too restrictive. While H = p2+ix3 is not Dirac Hermitian, it is PT symmetric (invariant under combined space reflection P and time reversal T). Another PT-symmetric Hamiltonian whose energy levels are real, positive and discrete is H = p2-x4, which contains an upside-down potential. The quantum mechanics defined by a PT-symmetric Hamiltonian is a complex generalization of ordinary quantum mechanics. When quantum mechanics and quantum field theory are extended into the complex domain, new kinds of theories having strange and remarkable properties emerge. In the past two years some of these properties have been verified in laboratory experiments. Here, we first discuss PT-symmetric Hamiltonians at a simple intuitive level and explain why the energy levels of such Hamiltonians may be real, positive, and discrete. Second, we describe a recent experiment in which the PT phase transition was observed. Third, we briefly mention that PT-symmetric theories can be useful at a fundamental level. While the double-scaling limit of an O(N)-symmetric gφ4 quantum field theory appears to be inconsistent because the critical value of g is negative, this limit is in fact not inconsistent because the critical theory is PT symmetric.
Investigation of Commuting Hamiltonian in Quantum Markov Network
NASA Astrophysics Data System (ADS)
Jouneghani, Farzad Ghafari; Babazadeh, Mohammad; Bayramzadeh, Rogayeh; Movla, Hossein
2014-08-01
Graphical Models have various applications in science and engineering which include physics, bioinformatics, telecommunication and etc. Usage of graphical models needs complex computations in order to evaluation of marginal functions, so there are some powerful methods including mean field approximation, belief propagation algorithm and etc. Quantum graphical models have been recently developed in context of quantum information and computation, and quantum statistical physics, which is possible by generalization of classical probability theory to quantum theory. The main goal of this paper is preparing a primary generalization of Markov network, as a type of graphical models, to quantum case and applying in quantum statistical physics. We have investigated the Markov network and the role of commuting Hamiltonian terms in conditional independence with simple examples of quantum statistical physics.
Deconfined quantum criticality beyond designer Hamiltonians
NASA Astrophysics Data System (ADS)
Lang, Thomas C.; Kaul, Ribhu K.
The SU(6) symmetric generalization of the Hubbard model on the square lattice provides the simplest microscopic realization of the quantum phase transition from a Néel to a valence bond solid (VBS) ordered phase. By constructing dimensionless quantities such as ratios of the magnetic structure factor and valence bond correlations we are able to unambiguously determine the existence of weak, but robust antiferromagnetic order in the weak coupling regime and a plaquette VBS in the strong coupling limit. Furthermore these ratios provide a tool to accurately determine the (critical) point from both sides of the phase transition separating the two limits. Preliminary results suggest a direct continuous transition for which we extract estimates for the critical exponents and compare the scaling function with the SU(6) designer spin-models to investigate whether this quantum phase transition is compatible with the scenario of deconfined quantum criticality.
Quantum Monte Carlo Calculations in Solids with Downfolded Hamiltonians
NASA Astrophysics Data System (ADS)
Ma, Fengjie; Purwanto, Wirawan; Zhang, Shiwei; Krakauer, Henry
2015-06-01
We present a combination of a downfolding many-body approach with auxiliary-field quantum Monte Carlo (AFQMC) calculations for extended systems. Many-body calculations operate on a simpler Hamiltonian which retains material-specific properties. The Hamiltonian is systematically improvable and allows one to dial, in principle, between the simplest model and the original Hamiltonian. As a by-product, pseudopotential errors are essentially eliminated using frozen orbitals constructed adaptively from the solid environment. The computational cost of the many-body calculation is dramatically reduced without sacrificing accuracy. Excellent accuracy is achieved for a range of solids, including semiconductors, ionic insulators, and metals. We apply the method to calculate the equation of state of cubic BN under ultrahigh pressure, and determine the spin gap in NiO, a challenging prototypical material with strong electron correlation effects.
Quantum finance Hamiltonian for coupon bond European and barrier options
NASA Astrophysics Data System (ADS)
Baaquie, Belal E.
2008-03-01
Coupon bond European and barrier options are financial derivatives that can be analyzed in the Hamiltonian formulation of quantum finance. Forward interest rates are modeled as a two-dimensional quantum field theory and its Hamiltonian and state space is defined. European and barrier options are realized as transition amplitudes of the time integrated Hamiltonian operator. The double barrier option for a financial instrument is “knocked out” (terminated with zero value) if the price of the underlying instrument exceeds or falls below preset limits; the barrier option is realized by imposing boundary conditions on the eigenfunctions of the forward interest rates’ Hamiltonian. The price of the European coupon bond option and the zero coupon bond barrier option are calculated. It is shown that, is general, the constraint function for a coupon bond barrier option can—to a good approximation—be linearized. A calculation using an overcomplete set of eigenfunctions yields an approximate price for the coupon bond barrier option, which is given in the form of an integral of a factor that results from the barrier condition times another factor that arises from the payoff function.
Quantum integrals of motion for variable quadratic Hamiltonians
Cordero-Soto, Ricardo; Suazo, Erwin; Suslov, Sergei K.
2010-09-15
We construct integrals of motion for several models of the quantum damped oscillators in a framework of a general approach to the time-dependent Schroedinger equation with variable quadratic Hamiltonians. An extension of the Lewis-Riesenfeld dynamical invariant is given. The time-evolution of the expectation values of the energy-related positive operators is determined for the oscillators under consideration. A proof of uniqueness of the corresponding Cauchy initial value problem is discussed as an application.
Driver Hamiltonians for constrained optimization in quantum annealing
NASA Astrophysics Data System (ADS)
Hen, Itay; Sarandy, Marcelo S.
2016-06-01
One of the current major challenges surrounding the use of quantum annealers for solving practical optimization problems is their inability to encode even moderately sized problems, the main reason for this being the rigid layout of their quantum bits as well as their sparse connectivity. In particular, the implementation of constraints has become a major bottleneck in the embedding of practical problems, because the latter is typically achieved by adding harmful penalty terms to the problem Hamiltonian, a technique that often requires an all-to-all connectivity between the qubits. Recently, a novel technique designed to obviate the need for penalty terms was suggested; it is based on the construction of driver Hamiltonians that commute with the constraints of the problem, rendering the latter constants of motion. In this work we propose general guidelines for the construction of such driver Hamiltonians given an arbitrary set of constraints. We illustrate the broad applicability of our method by analyzing several diverse examples, namely, graph isomorphism, not-all-equal three-satisfiability, and the so-called Lechner-Hauke-Zoller constraints. We also discuss the significance of our approach in the context of current and future experimental quantum annealers.
Renormalization group in quantum mechanics
Polony, J.
1996-12-01
The running coupling constants are introduced in quantum mechanics and their evolution is described with the help of the renormalization group equation. The harmonic oscillator and the propagation on curved spaces are presented as examples. The Hamiltonian and the Lagrangian scaling relations are obtained. These evolution equations are used to construct low energy effective models. Copyright {copyright} 1996 Academic Press, Inc.
Participation spectroscopy and entanglement Hamiltonian of quantum spin models
NASA Astrophysics Data System (ADS)
Luitz, David J.; Laflorencie, Nicolas; Alet, Fabien
2014-08-01
Shannon-Rényi entropies and associated participation spectra quantify how much a many-body wave-function is localized in a given configuration basis. Using these tools, we present an analysis of the ground-state wave functions of various quantum spin systems in one and two dimensions. General ideas and a review of the current status of this field are first given, with a particular emphasis on universal subleading terms characterizing different quantum phases of matter, and associated transitions. We highlight the connection with the related entanglement entropies and spectra when this is possible. In a second part, new results are presented for the participation spectra of interacting spin models, mostly based on quantum Monte Carlo simulations, but also using perturbation theory in some cases. For full antiferromagnetic one-dimensional systems, participation spectra are analyzed in terms of ferromagnetic domain walls which experience a pairwise attractive interaction. This confinement potential is either linear for long-range Néel order, or logarithmic for quasi-long-range order. The case of subsystems is also analyzed in great detail for a 2d dimerized Heisenberg model undergoing a quantum phase transition between a gapped paramagnet and a Néel phase. Participation spectra of line shaped (1d) sub-systems are quantitatively compared with finite temperature participation spectra of ansatz effective boundary (1d) entanglement Hamiltonians. While short-range models describe almost perfectly the gapped side, the Néel regime is best compared using long-range effective Hamiltonians. Spectral comparisons performed using Kullback-Leibler divergences, a tool potentially useful for entanglement spectra, provide a quantitative way to identify both the best boundary entanglement Hamiltonian and effective temperature.
Hamiltonian mechanics and divergence-free fields
Boozer, A.H.
1986-08-01
The field lines, or integral curves, of a divergence-free field in three dimensions are shown to be topologically equivalent to the trajectories of a Hamiltonian with two degrees of freedom. The consideration of fields that depend on a parameter allow the construction of a canonical perturbation theory which is valid even if the perturbation is large. If the parametric dependence of the magnetic, or the vorticity field is interpreted as time dependence, evolution equations are obtained which give Kelvin's theorem or the flux conservation theorem for ideal fluids and plasmas. The Hamiltonian methods prove especially useful for study of fields in which the field lines must be known throughout a volume of space.
The Hamiltonian Mechanics of Stochastic Acceleration
Burby, J. W.
2013-07-17
We show how to nd the physical Langevin equation describing the trajectories of particles un- dergoing collisionless stochastic acceleration. These stochastic di erential equations retain not only one-, but two-particle statistics, and inherit the Hamiltonian nature of the underlying microscopic equations. This opens the door to using stochastic variational integrators to perform simulations of stochastic interactions such as Fermi acceleration. We illustrate the theory by applying it to two example problems.
NASA Astrophysics Data System (ADS)
Ajoy, Ashok; Cappellaro, Paola
2013-05-01
We propose a method for Hamiltonian engineering that requires no local control but only relies on collective qubit rotations and field gradients. The technique achieves a spatial modulation of the coupling strengths via a dynamical construction of a weighting function combined with a Bragg grating. As an example, we demonstrate how to generate the ideal Hamiltonian for perfect quantum information transport between two separated nodes of a large spin network. We engineer a spin chain with optimal couplings starting from a large spin network, such as one naturally occurring in crystals, while decoupling all unwanted interactions. For realistic experimental parameters, our method can be used to drive almost perfect quantum information transport at room temperature. The Hamiltonian engineering method can be made more robust under decoherence and coupling disorder by a novel apodization scheme. Thus, the method is quite general and can be used to engineer the Hamiltonian of many complex spin lattices with different topologies and interactions.
Ajoy, Ashok; Cappellaro, Paola
2013-05-31
We propose a method for Hamiltonian engineering that requires no local control but only relies on collective qubit rotations and field gradients. The technique achieves a spatial modulation of the coupling strengths via a dynamical construction of a weighting function combined with a Bragg grating. As an example, we demonstrate how to generate the ideal Hamiltonian for perfect quantum information transport between two separated nodes of a large spin network. We engineer a spin chain with optimal couplings starting from a large spin network, such as one naturally occurring in crystals, while decoupling all unwanted interactions. For realistic experimental parameters, our method can be used to drive almost perfect quantum information transport at room temperature. The Hamiltonian engineering method can be made more robust under decoherence and coupling disorder by a novel apodization scheme. Thus, the method is quite general and can be used to engineer the Hamiltonian of many complex spin lattices with different topologies and interactions. PMID:23767705
Quantum Hamiltonian theory of an electro-optical modulator
NASA Astrophysics Data System (ADS)
Miroshnichenko, G. P.; Gleim, A. V.
2015-07-01
A Quantum Hamiltonian formalism is proposed for the description of an electro-optical modulator based on the linear Pockels effect. Optical photons interact with photons of a microwave mode in a combined high- Q cavity made of a LiNbO3 crystal. The microwave photons occupy a coherent state, while optical photons have an arbitrary density matrix. The spectrum of a photodetected modulated signal is analyzed as a function of the frequency of a tunable optical filter. Numerical estimates are obtained, and quantum effects in the spectrum, such as the red shift of the central frequency and sidebands, the possibility of modulation of the optical signal by the microwave field vacuum, and the asymmetry of the intensity of the spectral sidebands, are discussed.
Faster than Hermitian Quantum Mechanics
Bender, Carl M.; Brody, Dorje C.; Jones, Hugh F.; Meister, Bernhard K.
2007-01-26
Given an initial quantum state vertical bar {psi}{sub I}> and a final quantum state vertical bar {psi}{sub F}>, there exist Hamiltonians H under which vertical bar {psi}{sub I}> evolves into vertical bar {psi}{sub F}>. Consider the following quantum brachistochrone problem: subject to the constraint that the difference between the largest and smallest eigenvalues of H is held fixed, which H achieves this transformation in the least time {tau}? For Hermitian Hamiltonians {tau} has a nonzero lower bound. However, among non-Hermitian PT-symmetric Hamiltonians satisfying the same energy constraint, {tau} can be made arbitrarily small without violating the time-energy uncertainty principle. This is because for such Hamiltonians the path from vertical bar {psi}{sub I}> to vertical bar {psi}{sub F}> can be made short. The mechanism described here is similar to that in general relativity in which the distance between two space-time points can be made small if they are connected by a wormhole. This result may have applications in quantum computing.
Emergent mechanics, quantum and un-quantum
NASA Astrophysics Data System (ADS)
Ralston, John P.
2013-10-01
There is great interest in quantum mechanics as an "emergent" phenomenon. The program holds that nonobvious patterns and laws can emerge from complicated physical systems operating by more fundamental rules. We find a new approach where quantum mechanics itself should be viewed as an information management tool not derived from physics nor depending on physics. The main accomplishment of quantum-style theory comes in expanding the notion of probability. We construct a map from macroscopic information as data" to quantum probability. The map allows a hidden variable description for quantum states, and efficient use of the helpful tools of quantum mechanics in unlimited circumstances. Quantum dynamics via the time-dependent Shroedinger equation or operator methods actually represents a restricted class of classical Hamiltonian or Lagrangian dynamics, albeit with different numbers of degrees of freedom. We show that under wide circumstances such dynamics emerges from structureless dynamical systems. The uses of the quantum information management tools are illustrated by numerical experiments and practical applications
Longhi, Stefano
2014-06-15
Quantum recurrence and dynamic localization are investigated in a class of ac-driven tight-binding Hamiltonians, the Krawtchouk quantum chain, which in the undriven case provides a paradigmatic Hamiltonian model that realizes perfect quantum state transfer and mirror inversion. The equivalence between the ac-driven single-particle Krawtchouk Hamiltonian H{sup -hat} (t) and the non-interacting ac-driven bosonic junction Hamiltonian enables to determine in a closed form the quasi energy spectrum of H{sup -hat} (t) and the conditions for exact wave packet reconstruction (dynamic localization). In particular, we show that quantum recurrence, which is predicted by the general quantum recurrence theorem, is exact for the Krawtchouk quantum chain in a dense range of the driving amplitude. Exact quantum recurrence provides perfect wave packet reconstruction at a frequency which is fractional than the driving frequency, a phenomenon that can be referred to as fractional dynamic localization.
The mathematics of a quantum Hamiltonian computing half adder Boolean logic gate.
Dridi, G; Julien, R; Hliwa, M; Joachim, C
2015-08-28
The mathematics behind the quantum Hamiltonian computing (QHC) approach of designing Boolean logic gates with a quantum system are given. Using the quantum eigenvalue repulsion effect, the QHC AND, NAND, OR, NOR, XOR, and NXOR Hamiltonian Boolean matrices are constructed. This is applied to the construction of a QHC half adder Hamiltonian matrix requiring only six quantum states to fullfil a half Boolean logical truth table. The QHC design rules open a nano-architectronic way of constructing Boolean logic gates inside a single molecule or atom by atom at the surface of a passivated semi-conductor. PMID:26234709
The mathematics of a quantum Hamiltonian computing half adder Boolean logic gate
NASA Astrophysics Data System (ADS)
Dridi, G.; Julien, R.; Hliwa, M.; Joachim, C.
2015-08-01
The mathematics behind the quantum Hamiltonian computing (QHC) approach of designing Boolean logic gates with a quantum system are given. Using the quantum eigenvalue repulsion effect, the QHC AND, NAND, OR, NOR, XOR, and NXOR Hamiltonian Boolean matrices are constructed. This is applied to the construction of a QHC half adder Hamiltonian matrix requiring only six quantum states to fullfil a half Boolean logical truth table. The QHC design rules open a nano-architectronic way of constructing Boolean logic gates inside a single molecule or atom by atom at the surface of a passivated semi-conductor.
PREFACE: 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics
NASA Astrophysics Data System (ADS)
Fring, Andreas; Jones, Hugh; Znojil, Miloslav
2008-06-01
Attempts to understand the quantum mechanics of non-Hermitian Hamiltonian systems can be traced back to the early days, one example being Heisenberg's endeavour to formulate a consistent model involving an indefinite metric. Over the years non-Hermitian Hamiltonians whose spectra were believed to be real have appeared from time to time in the literature, for instance in the study of strong interactions at high energies via Regge models, in condensed matter physics in the context of the XXZ-spin chain, in interacting boson models in nuclear physics, in integrable quantum field theories as Toda field theories with complex coupling constants, and also very recently in a field theoretical scenario in the quantization procedure of strings on an AdS5 x S5 background. Concrete experimental realizations of these types of systems in the form of optical lattices have been proposed in 2007. In the area of mathematical physics similar non-systematic results appeared sporadically over the years. However, intensive and more systematic investigation of these types of non- Hermitian Hamiltonians with real eigenvalue spectra only began about ten years ago, when the surprising discovery was made that a large class of one-particle systems perturbed by a simple non-Hermitian potential term possesses a real energy spectrum. Since then regular international workshops devoted to this theme have taken place. This special issue is centred around the 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics held in July 2007 at City University London. All the contributions contain significant new results or alternatively provide a survey of the state of the art of the subject or a critical assessment of the present understanding of the topic and a discussion of open problems. Original contributions from non-participants were also invited. Meanwhile many interesting results have been obtained and consensus has been reached on various central conceptual issues in the
Pseudo Hermitian formulation of the quantum Black-Scholes Hamiltonian
NASA Astrophysics Data System (ADS)
Jana, T. K.; Roy, P.
2012-04-01
We show that the non-Hermitian Black-Scholes Hamiltonian and its various generalizations are η-pseudo Hermitian. The metric operator η is explicitly constructed for this class of Hamiltonians. It is also shown that the effective Black-Scholes Hamiltonian and its partner form a pseudo supersymmetric system.
NASA Astrophysics Data System (ADS)
Schieve, William C.; Horwitz, Lawrence P.
2009-04-01
1. Foundations of quantum statistical mechanics; 2. Elementary examples; 3. Quantum statistical master equation; 4. Quantum kinetic equations; 5. Quantum irreversibility; 6. Entropy and dissipation: the microscopic theory; 7. Global equilibrium: thermostatics and the microcanonical ensemble; 8. Bose-Einstein ideal gas condensation; 9. Scaling, renormalization and the Ising model; 10. Relativistic covariant statistical mechanics of many particles; 11. Quantum optics and damping; 12. Entanglements; 13. Quantum measurement and irreversibility; 14. Quantum Langevin equation: quantum Brownian motion; 15. Linear response: fluctuation and dissipation theorems; 16. Time dependent quantum Green's functions; 17. Decay scattering; 18. Quantum statistical mechanics, extended; 19. Quantum transport with tunneling and reservoir ballistic transport; 20. Black hole thermodynamics; Appendix; Index.
A Hamiltonian theory of adaptive resolution simulations of classical and quantum models of nuclei
NASA Astrophysics Data System (ADS)
Kreis, Karsten; Donadio, Davide; Kremer, Kurt; Potestio, Raffaello
2015-03-01
Quantum delocalization of atomic nuclei strongly affects the physical properties of low temperature systems, such as superfluid helium. However, also at room temperature nuclear quantum effects can play an important role for molecules composed by light atoms. An accurate modeling of these effects is possible making use of the Path Integral formulation of Quantum Mechanics. In simulations, this numerically expensive description can be restricted to a small region of space, while modeling the remaining atoms as classical particles. In this way the computational resources required can be significantly reduced. In the present talk we demonstrate the derivation of a Hamiltonian formulation for a bottom-up, theoretically solid coupling between a classical model and a Path Integral description of the same system. The coupling between the two models is established with the so-called Hamiltonian Adaptive Resolution Scheme, resulting in a fully adaptive setup in which molecules can freely diffuse across the classical and the Path Integral regions by smoothly switching their description on the fly. Finally, we show the validation of the approach by means of adaptive resolution simulations of low temperature parahydrogen. Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany.
Entangled states in quantum mechanics
NASA Astrophysics Data System (ADS)
Ruža, Jānis
2010-01-01
In some circles of quantum physicists, a view is maintained that the nonseparability of quantum systems-i.e., the entanglement-is a characteristic feature of quantum mechanics. According to this view, the entanglement plays a crucial role in the solution of quantum measurement problem, the origin of the “classicality” from the quantum physics, the explanation of the EPR paradox by a nonlocal character of the quantum world. Besides, the entanglement is regarded as a cornerstone of such modern disciplines as quantum computation, quantum cryptography, quantum information, etc. At the same time, entangled states are well known and widely used in various physics areas. In particular, this notion is widely used in nuclear, atomic, molecular, solid state physics, in scattering and decay theories as well as in other disciplines, where one has to deal with many-body quantum systems. One of the methods, how to construct the basis states of a composite many-body quantum system, is the so-called genealogical decomposition method. Genealogical decomposition allows one to construct recurrently by particle number the basis states of a composite quantum system from the basis states of its forming subsystems. These coupled states have a structure typical for entangled states. If a composite system is stable, the internal structure of its forming basis states does not manifest itself in measurements. However, if a composite system is unstable and decays onto its forming subsystems, then the measurables are the quantum numbers, associated with these subsystems. In such a case, the entangled state has a dynamical origin, determined by the Hamiltonian of the corresponding decay process. Possible correlations between the quantum numbers of resulting subsystems are determined by the symmetries-conservation laws of corresponding dynamical variables, and not by the quantum entanglement feature.
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
A development of quantum theory that was initiated in the 1920s by Werner Heisenberg (1901-76) and Erwin Schrödinger (1887-1961). The theory drew on a proposal made in 1925 Prince Louis de Broglie (1892-1987), that particles have wavelike properties (the wave-particle duality) and that an electron, for example, could in some respects be regarded as a wave with a wavelength that depended on its mo...
Kreis, Karsten; Tuckerman, Mark E; Donadio, Davide; Kremer, Kurt; Potestio, Raffaello
2016-07-12
Quantum delocalization of atomic nuclei affects the physical properties of many hydrogen-rich liquids and biological systems even at room temperature. In computer simulations, quantum nuclei can be modeled via the path-integral formulation of quantum statistical mechanics, which implies a substantial increase in computational overhead. By restricting the quantum description to a small spatial region, this cost can be significantly reduced. Herein, we derive a bottom-up, rigorous, Hamiltonian-based scheme that allows molecules to change from quantum to classical and vice versa on the fly as they diffuse through the system, both reducing overhead and making quantum grand-canonical simulations possible. The method is validated via simulations of low-temperature parahydrogen. Our adaptive resolution approach paves the way to efficient quantum simulations of biomolecules, membranes, and interfaces. PMID:27214610
Non-commuting two-local Hamiltonians for quantum error suppression
NASA Astrophysics Data System (ADS)
Rieffel, Eleanor; Jiang, Zhang; QuAIL Team
Physical constraints make it challenging to implement and control multi-body interactions. Designing quantum information processes with Hamiltonians consisting of only one- and two-local terms is a worthwhile challenge. A common approach to robust storage of quantum information is to encode in the ground subspace of a Hamiltonian. Even allowing particles with high Hilbert-space dimension, it is not possible to protect quantum information from single-site errors by encoding in the ground subspace of any Hamiltonian containing only commuting two-local terms. We demonstrate how to get around this no-go result by encoding in the ground subspace of a Hamiltonian consisting of non-commuting two-local terms arising from the gauge operators of a subsystem code. Specifically, we show how to protect stored quantum information against single-qubit errors using a Hamiltonian consisting of sums of the gauge generators from Bacon-Shor codes and generalized-Bacon-Shor code. Thus, non-commuting two-local Hamiltonians have more error-suppressing power than commuting two-local Hamiltonians. Finally, we comment briefly on the robustness of the whole scheme.
Kowalevski top in quantum mechanics
Matsuyama, A.
2013-09-15
The quantum mechanical Kowalevski top is studied by the direct diagonalization of the Hamiltonian. The spectra show different behaviors depending on the region divided by the bifurcation sets of the classical invariant tori. Some of these spectra are nearly degenerate due to the multiplicity of the invariant tori. The Kowalevski top has several symmetries and symmetry quantum numbers can be assigned to the eigenstates. We have also carried out the semiclassical quantization of the Kowalevski top by the EBK formulation. It is found that the semiclassical spectra are close to the exact values, thus the eigenstates can be also labeled by the integer quantum numbers. The symmetries of the system are shown to have close relations with the semiclassical quantum numbers and the near-degeneracy of the spectra. -- Highlights: •Quantum spectra of the Kowalevski top are calculated. •Semiclassical quantization is carried out by the EBK formulation. •Quantum states are labeled by the semiclassical integer quantum numbers. •Multiplicity of the classical torus makes the spectra nearly degenerate. •Symmetries, quantum numbers and near-degenerate spectra are closely related.
NASA Astrophysics Data System (ADS)
Ramezanpour, A.
2016-06-01
We study the inverse problem of constructing an appropriate Hamiltonian from a physically reasonable set of orthogonal wave functions for a quantum spin system. Usually, we are given a local Hamiltonian and our goal is to characterize the relevant wave functions and energies (the spectrum) of the system. Here, we take the opposite approach; starting from a reasonable collection of orthogonal wave functions, we try to characterize the associated parent Hamiltonians, to see how the wave functions and the energy values affect the structure of the parent Hamiltonian. Specifically, we obtain (quasi) local Hamiltonians by a complete set of (multilayer) product states and a local mapping of the energy values to the wave functions. On the other hand, a complete set of tree wave functions (having a tree structure) results to nonlocal Hamiltonians and operators which flip simultaneously all the spins in a single branch of the tree graph. We observe that even for a given set of basis states, the energy spectrum can significantly change the nature of interactions in the Hamiltonian. These effects can be exploited in a quantum engineering problem optimizing an objective functional of the Hamiltonian.
Quantum localization of classical mechanics
NASA Astrophysics Data System (ADS)
Batalin, Igor A.; Lavrov, Peter M.
2016-07-01
Quantum localization of classical mechanics within the BRST-BFV and BV (or field-antifield) quantization methods are studied. It is shown that a special choice of gauge fixing functions (or BRST-BFV charge) together with the unitary limit leads to Hamiltonian localization in the path integral of the BRST-BFV formalism. In turn, we find that a special choice of gauge fixing functions being proportional to extremals of an initial non-degenerate classical action together with a very special solution of the classical master equation result in Lagrangian localization in the partition function of the BV formalism.
NASA Astrophysics Data System (ADS)
Gardner, David E.
This thesis describes qualitative research conducted to understand the problems students have when learning quantum mechanics. It differs from previous studies on educational issues associated with quantum mechanics in that I have examined the difficulties from the students' perspective. Three questions guided this research: What are the experiences of students learning quantum mechanics? What conceptual difficulties do students have with quantum mechanics? and, How do students approach learning quantum mechanics? From these questions, two themes emerged. First, students do not consider the quantum mechanical concepts of wave-particle duality or the uncertainty principle to be important sources of difficulties for them. Second, many of the difficulties students encounter are not related to conceptual understanding of specific topics, but stem from a mindset that is incongruent with the nature and structure of quantum mechanics. The implications for teaching are that the nature and structure of quantum mechanics should be emphasized and be an explicit part of instruction.
Superradiance, disorder, and the non-Hermitian Hamiltonian in open quantum systems
Celardo, G. L.; Biella, A.; Giusteri, G. G.; Mattiotti, F.; Zhang, Y.; Kaplan, L.
2014-10-15
We first briefly review the non-Hermitian effective Hamiltonian approach to open quantum systems and the associated phenomenon of superradiance. We next discuss the superradiance crossover in the presence of disorder and the relationship between superradiance and the localization transition. Finally, we investigate the regime of validity of the energy-independent effective Hamiltonian approximation and show that the results obtained by these methods are applicable to realistic physical systems.
Algebraic expression of the IBM3 hamiltonian in terms of various quantum numbers
NASA Astrophysics Data System (ADS)
Hasegawa, M.
1991-04-01
The properties of the IBM3 hamiltonian are algebraically studied. The IBM3 hamiltonian determined microscopically has as characteristic that the isospin T, rmrather than the spin J, is essential to classifying the energy spectra. The T-dependence of the two-body boson interactions is expressed in terms of the Casimir operators or quantum numbers of various groups. This algebraic approach makes preparations for phenomenological understanding of light nuclei with definite isospin.
Quantum simulation of pairing Hamiltonians with nearest-neighbor-interacting qubits
NASA Astrophysics Data System (ADS)
Wang, Zhixin; Gu, Xiu; Wu, Lian-Ao; Liu, Yu-xi
2016-06-01
Although a universal quantum computer is still far from reach, the tremendous advances in controllable quantum devices, in particular with solid-state systems, make it possible to physically implement "quantum simulators." Quantum simulators are physical setups able to simulate other quantum systems efficiently that are intractable on classical computers. Based on solid-state qubit systems with various types of nearest-neighbor interactions, we propose a complete set of algorithms for simulating pairing Hamiltonians. The fidelity of the target states corresponding to each algorithm is numerically studied. We also compare algorithms designed for different types of experimentally available Hamiltonians and analyze their complexity. Furthermore, we design a measurement scheme to extract energy spectra from the simulators. Our simulation algorithms might be feasible with state-of-the-art technology in solid-state quantum devices.
Spin Hamiltonian for the quantum Hall state in a ladder geometry
NASA Astrophysics Data System (ADS)
Kapit, E.; Luitel, P.; Schroeter, D. F.
2006-02-01
The first calculation of the true ground state of the parent Hamiltonian proposed by Laughlin [Laughlin, Ann. Phys. 191, 163 (1989)] for the m=2 fractional quantum Hall state on a torus is presented. Laughlin’s model is generalized to the case of a system in a ladder geometry and rewritten in terms of familiar spin-spin interactions, demonstrating that the model corresponds to a long-range Heisenberg Hamiltonian with an additional four-site interaction. The exact diagonalization of the Hamiltonian is performed to extract the energies, correlation functions, sublattice magnetization, and overlap with the quantum Hall state. Our results confirm the recent work showing that the model is not exact [Schroeter, Ann. Phys. 310, 155 (2004)] and also show it to be not without merit: the overlap between the quantum Hall (QH) state and exact ground state approaches the significant value of 0.83 in the limit that the ladder becomes infinitely long.
Universal adiabatic quantum computation via the space-time circuit-to-Hamiltonian construction.
Gosset, David; Terhal, Barbara M; Vershynina, Anna
2015-04-10
We show how to perform universal adiabatic quantum computation using a Hamiltonian which describes a set of particles with local interactions on a two-dimensional grid. A single parameter in the Hamiltonian is adiabatically changed as a function of time to simulate the quantum circuit. We bound the eigenvalue gap above the unique ground state by mapping our model onto the ferromagnetic XXZ chain with kink boundary conditions; the gap of this spin chain was computed exactly by Koma and Nachtergaele using its q-deformed version of SU(2) symmetry. We also discuss a related time-independent Hamiltonian which was shown by Janzing to be capable of universal computation. We observe that in the limit of large system size, the time evolution is equivalent to the exactly solvable quantum walk on Young's lattice. PMID:25910098
Quantum phase transitions in the consistent-Q Hamiltonian of the interacting boson model
NASA Astrophysics Data System (ADS)
Pan, Feng; Wang, Tao; Huo, Y.-S.; Draayer, J. P.
2008-12-01
Quantum phase transitional patterns in the whole parameter space of the consistent-Q Hamiltonian in the interacting boson model are studied based on an implemented Fortran code for the numerical computation of the matrix elements in the SU(3) Draayer-Akiyama basis. Results with respect to both ground and some excited states of the model Hamiltonian are discussed. Quantum phase transitional behavior in a variety of parameter situations is shown. It is found that transitional behavior of excited states is more complicated. Pt isotopes are taken as examples in illustrating the prolate-oblate shape phase transition.
Daskin, Anmer; Kais, Sabre
2011-04-14
Constructing appropriate unitary matrix operators for new quantum algorithms and finding the minimum cost gate sequences for the implementation of these unitary operators is of fundamental importance in the field of quantum information and quantum computation. Evolution of quantum circuits faces two major challenges: complex and huge search space and the high costs of simulating quantum circuits on classical computers. Here, we use the group leaders optimization algorithm to decompose a given unitary matrix into a proper-minimum cost quantum gate sequence. We test the method on the known decompositions of Toffoli gate, the amplification step of the Grover search algorithm, the quantum Fourier transform, and the sender part of the quantum teleportation. Using this procedure, we present the circuit designs for the simulation of the unitary propagators of the Hamiltonians for the hydrogen and the water molecules. The approach is general and can be applied to generate the sequence of quantum gates for larger molecular systems. PMID:21495747
Geometrical Phases in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Christian, Joy Julius
In quantum mechanics, the path-dependent geometrical phase associated with a physical system, over and above the familiar dynamical phase, was initially discovered in the context of adiabatically changing environments. Subsequently, Aharonov and Anandan liberated this phase from the original formulation of Berry, which used Hamiltonians, dependent on curves in a classical parameter space, to represent the cyclic variations of the environments. Their purely quantum mechanical treatment, independent of Hamiltonians, instead used the non-trivial topological structure of the projective space of one-dimensional subspaces of an appropriate Hilbert space. The geometrical phase, in their treatment, results from a parallel transport of the time-dependent pure quantum states along a curve in this space, which is endowed with an abelian connection. Unlike Berry, they were able to achieve this without resort to an adiabatic approximation or to a time-independent eigenvalue equation. Prima facie, these two approaches are conceptually quite different. After a review of both approaches, an exposition bridging this apparent conceptual gap is given; by rigorously analyzing a model composite system, it is shown that, in an appropriate correspondence limit, the Berry phase can be recovered as a special case from the Aharonov-Anandan phase. Moreover, the model composite system is used to show that Berry's correction to the traditional Born-Oppenheimer energy spectra indeed brings the spectra closer to the exact results. Then, an experimental arrangement to measure geometrical phases associated with cyclic and non-cyclic variations of quantum states of an entangled composite system is proposed, utilizing the fundamental ideas of the recently opened field of two-particle interferometry. This arrangement not only resolves the controversy regarding the true nature of the phases associated with photon states, but also unequivocally predicts experimentally accessible geometrical phases in a
Consistency of PT-symmetric quantum mechanics
NASA Astrophysics Data System (ADS)
Brody, Dorje C.
2016-03-01
In recent reports, suggestions have been put forward to the effect that parity and time-reversal (PT) symmetry in quantum mechanics is incompatible with causality. It is shown here, in contrast, that PT-symmetric quantum mechanics is fully consistent with standard quantum mechanics. This follows from the surprising fact that the much-discussed metric operator on Hilbert space is not physically observable. In particular, for closed quantum systems in finite dimensions there is no statistical test that one can perform on the outcomes of measurements to determine whether the Hamiltonian is Hermitian in the conventional sense, or PT-symmetric—the two theories are indistinguishable. Nontrivial physical effects arising as a consequence of PT symmetry are expected to be observed, nevertheless, for open quantum systems with balanced gain and loss.
Spin-Hamiltonian for the Quantum Hall State in a Ladder Geometry
NASA Astrophysics Data System (ADS)
Kapit, Eliot
2005-03-01
The first calculation of the true ground state of the parent-Hamiltonian proposed by Laughlin [R. B. Laughlin, Ann. Phys. 191, 163 (1989)] for the m=2 Fractional Quantum Hall state on a torus is presented. Laughlin's model is generalized to the case of a system in a ladder geometry and rewritten in terms of familiar spin-spin interactions, demonstrating that the model corresponds to a long-range Heisenberg Hamiltonian with an additional four-site interaction. The exact diagonalization of the Hamiltonian is performed to extract the energy, correlation functions, sub-lattice magnetization, and overlap with the Quantum Hall state. Our results confirm the recent work showing that the model is not exact [D. F. Schroeter, Ann. Phys. 310, 155 (2004)] and also show it to be not without merit: the overlap between the QH state and exact ground state approaches the significant value of 0.83 in the limit that the ladder becomes infinitely long.
Hamiltonian of photons in a single-mode optical fiber for quantum communications protocols
NASA Astrophysics Data System (ADS)
Miroshnichenko, G. P.
2012-05-01
A phenomenological Hamiltonian of photons in a single-mode stochastic inhomogeneous optical fiber (OF) is derived. Quantization of radiation is performed in the basis of an ideal OF with proper calibration that ensures transversality of the electric-field-displacement vector. Stochastic parameters of the Hamiltonian are determined by using the reciprocal tensor of the dielectric permittivity averaged over the OF segment volume. The Hamiltonian is parametrized by three phenomenological parameters and preserves the number of photons. It is assumed that the segment of the OF is divided into random subsegments with optical parameters defined by the Wiener process with respect to the longitudinal coordinate. The temporal dynamics of the single-photon density matrix is analyzed in the basis of states with orthogonal polarizations. The relative quantum beat error rate in the sifted quantum key distributed according to the BB84 protocol with polarization coding of information averaged over the scatter of the OF parameters is calculated.
Simulating continuous-time Hamiltonian dynamics by way of a discrete-time quantum walk
NASA Astrophysics Data System (ADS)
Schmitz, A. T.; Schwalm, W. A.
2016-03-01
Much effort has been made to connect the continuous-time and discrete-time quantum walks. We present a method for making that connection for a general graph Hamiltonian on a bigraph. Furthermore, such a scheme may be adapted for simulating discretized quantum models on a quantum computer. A coin operator is found for the discrete-time quantum walk which exhibits the same dynamics as the continuous-time evolution. Given the spectral decomposition of the graph Hamiltonian and certain restrictions, the discrete-time evolution is solved for explicitly and understood at or near important values of the parameters. Finally, this scheme is connected to past results for the 1D chain.
Hamiltonians for the Quantum Hall Effect on Spaces with Non-Constant Metrics
NASA Astrophysics Data System (ADS)
Bracken, Paul Francis
2007-01-01
The problem of studying the quantum Hall effect on manifolds with non constant metric is addressed. The Hamiltonian on a space with hyperbolic metric is determined, and the spectrum and eigenfunctions are calculated in closed form. The hyperbolic disk is also considered and some other applications of this approach are discussed as well.
The Hidden Symmetries of Spin-1 Ising Lattice Gas for Usual Quantum Hamiltonians
NASA Astrophysics Data System (ADS)
Payandeh, Farrin
2016-02-01
In this letter, the most common quantum Hamiltonian is exploited in order to compare the definite equivalences, corresponding to possible spin values in a lattice gas model, to those in a spin-1 Ising model. Our approach also requires interpolating both results in a p-state clock model, in order to find the hidden symmetries of both under consideration models.
Realization of a quantum Hamiltonian Boolean logic gate on the Si(001):H surface.
Kolmer, Marek; Zuzak, Rafal; Dridi, Ghassen; Godlewski, Szymon; Joachim, Christian; Szymonski, Marek
2015-08-01
The design and construction of the first prototypical QHC (Quantum Hamiltonian Computing) atomic scale Boolean logic gate is reported using scanning tunnelling microscope (STM) tip-induced atom manipulation on an Si(001):H surface. The NOR/OR gate truth table was confirmed by dI/dU STS (Scanning Tunnelling Spectroscopy) tracking how the surface states of the QHC quantum circuit on the Si(001):H surface are shifted according to the input logical status. PMID:26144212
Statistical mechanics based on fractional classical and quantum mechanics
Korichi, Z.; Meftah, M. T.
2014-03-15
The purpose of this work is to study some problems in statistical mechanics based on the fractional classical and quantum mechanics. At first stage we have presented the thermodynamical properties of the classical ideal gas and the system of N classical oscillators. In both cases, the Hamiltonian contains fractional exponents of the phase space (position and momentum). At the second stage, in the context of the fractional quantum mechanics, we have calculated the thermodynamical properties for the black body radiation, studied the Bose-Einstein statistics with the related problem of the condensation and the Fermi-Dirac statistics.
NASA Astrophysics Data System (ADS)
López-Moreno, Enrique; Grether, M.; Velázquez, Víctor
2011-11-01
A general spin system with a nonaxially symmetric Hamiltonian containing Jx, Jz-linear and Jz-quadratic terms, widely used in many-body fermionic and bosonic systems and in molecular magnetism, is considered for the variations of general parameters describing intensity interaction changes of each of its terms. For this model Hamiltonian, a semiclassical energy surface (ES) is obtained by means of the coherent-state formalism. An analysis of this ES function, based on catastrophe theory, determines the separatrix in the control parameter space of the system Hamiltonian: the loci of singularities representing semiclassical phase transitions. Here we show that distinct regions of qualitatively different spectrum structures, as well as a singular behavior of quantum states, are ruled by this separatrix: here we show that the separatrix not only describes ground-state singularities, which have been associated with quantum phase transitions, but also reveals the structure of the excited spectrum, distinguishing different quantum phases within the parameter space. Finally, we consider magnetic susceptibility and heat capacity of the system at finite temperature, in order to study thermal properties and thermodynamical phase transitions in the perspective of the separatrix of this Hamiltonian system.
Quantum simulations with a trilinear Hamiltonian in trapped-ion system
NASA Astrophysics Data System (ADS)
Ding, Shiqian; Maslennikov, Gleb; Hablutzel, Roland; Matsukevich, Dzmitry
2016-05-01
A non-degenerate parametric oscillator, described by a trilinear Hamiltonian, is one of the most fundamental models in quantum optics. We experimentally realize this kind of interaction in fully quantum regime with three motional modes of three trapped ytterbium ions. This interaction is induced by the intrinsic anharmonicity of Coulomb potential and manifests itself by more than 100 cycles of coherent energy exchange at single quantum level between different motional modes. By exploiting this interaction, we simulate the process of non-degenerate parametric down conversion in a regime of depleted pump, demonstrate deviation from the thermal statistic for the `signal' and `idler' modes and discuss its relation with a simple model of Hawking radiation. We also present experimental results on simulation of Jaynes-Cummings model using this trilinear Hamiltonian.
Conformal quantum mechanics and holographic quench
NASA Astrophysics Data System (ADS)
Järvelä, Jarkko; Keränen, Ville; Keski-Vakkuri, Esko
2016-02-01
Recently, there has been much interest in holographic computations of two-point nonequilibrium Green functions from anti-de Sitter- (AdS-)Vaidya backgrounds. In the strongly coupled quantum field theory on the boundary, the dual interpretation of the background is an equilibration process called a holographic quench. The two-dimensional AdS-Vaidya spacetime is a special case, dual to conformal quantum mechanics. We study how the quench is incorporated into a Hamiltonian H +θ (t )Δ H and into correlation functions. With the help of recent work on correlation functions in conformal quantum mechanics, we first rederive the known two-point functions, and then compute nonequilibrium three- and four-point functions. We also compute the three-point function Witten diagram in the two-dimensional AdS-Vaidya background, and find agreement with the conformal quantum mechanics result.
Optical-lattice Hamiltonians for relativistic quantum electrodynamics
Kapit, Eliot; Mueller, Erich
2011-03-15
We show how interpenetrating optical lattices containing Bose-Fermi mixtures can be constructed to emulate the thermodynamics of quantum electrodynamics (QED). We present models of neutral atoms on lattices in 1+1, 2+1, and 3+1 dimensions whose low-energy effective action reduces to that of photons coupled to Dirac fermions of the corresponding dimensionality. We give special attention to (2+1)-dimensional quantum electrodynamics (QED3) and discuss how two of its most interesting features, chiral symmetry breaking and Chern-Simons physics, could be observed experimentally.
Symmetry of quantum phase space in a degenerate Hamiltonian system
NASA Astrophysics Data System (ADS)
Berman, G. P.; Demikhovskii, V. Ya.; Kamenev, D. I.
2000-09-01
The structure of the global "quantum phase space" is analyzed for the harmonic oscillator perturbed by a monochromatic wave in the limit when the perturbation amplitude is small. Usually, the phenomenon of quantum resonance was studied in nondegenerate [G. M. Zaslavsky, Chaos in Dynamic Systems (Harwood Academic, Chur, 1985)] and degenerate [Demikhovskii, Kamenev, and Luna-Acosta, Phys. Rev. E 52, 3351 (1995)] classically chaotic systems only in the particular regions of the classical phase space, such as the center of the resonance or near the separatrix. The system under consideration is degenerate, and even an infinitely small perturbation generates in the classical phase space an infinite number of the resonant cells which are arranged in the pattern with the axial symmetry of the order 2μ (where μ is the resonance number). We show analytically that the Husimi functions of all Floquet states (the quantum phase space) have the same symmetry as the classical phase space. This correspondence is demonstrated numerically for the Husimi functions of the Floquet states corresponding to the motion near the elliptic stable points (centers of the classical resonance cells). The derived results are valid in the resonance approximation when the perturbation amplitude is small enough, and the stochastic layers in the classical phase space are exponentially thin. The developed approach can be used for studying a global symmetry of more complicated quantum systems with chaotic behavior.
NASA Astrophysics Data System (ADS)
Kapustin, Anton
2013-06-01
We formulate physically motivated axioms for a physical theory which for systems with a finite number of degrees of freedom uniquely lead to quantum mechanics as the only nontrivial consistent theory. Complex numbers and the existence of the Planck constant common to all systems arise naturally in this approach. The axioms are divided into two groups covering kinematics and basic measurement theory, respectively. We show that even if the second group of axioms is dropped, there are no deformations of quantum mechanics which preserve the kinematic axioms. Thus, any theory going beyond quantum mechanics must represent a radical departure from the usual a priori assumptions about the laws of nature.
Relativity and Quantum Mechanics
Braendas, Erkki J.
2007-12-26
The old dilemma of quantum mechanics versus the theory of relativity is reconsidered via a first principles relativistically invariant theory. By analytic extension of quantum mechanics into the complex plane one may (i) include dynamical features such as time- and length-scales and (ii) examine the possibility and flexibility of so-called general Jordan block formations. The present viewpoint asks for a new perspective on the age-old problem of quantum mechanics versus the theory of relativity. To bring these ideas together, we will establish the relation with the Klein-Gordon-Dirac relativistic theory and confirm some dynamical features of both the special and the general relativity theory.
Ab initio no core calculations of light nuclei and preludes to Hamiltonian quantum field theory
Vary, J. P.; Maris, P.; Honkanen, H.; Li, J.; Shirokov, A. M.; Brodsky, S. J.; Harindranath, A.
2009-12-17
Recent advances in ab initio quantum many-body methods and growth in computer power now enable highly precise calculations of nuclear structure. The precision has attained a level sufficient to make clear statements on the nature of 3-body forces in nuclear physics. Total binding energies, spin-dependent structure effects, and electroweak properties of light nuclei play major roles in pinpointing properties of the underlying strong interaction. Eventually, we anticipate a theory bridge with immense predictive power from QCD through nuclear forces to nuclear structure and nuclear reactions. Light front Hamiltonian quantum field theory offers an attractive pathway and we outline key elements.
Ab initio no core calculations of light nuclei and preludes to Hamiltonian quantum field theory
Vary, J.P.; Maris, P.; Shirokov, A.M.; Honkanen, H.; li, J.; Brodsky, S.J.; Harindranath, A.; Teramond, G.F.de; /Costa Rica U.
2009-08-03
Recent advances in ab initio quantum many-body methods and growth in computer power now enable highly precise calculations of nuclear structure. The precision has attained a level sufficient to make clear statements on the nature of 3-body forces in nuclear physics. Total binding energies, spin-dependent structure effects, and electroweak properties of light nuclei play major roles in pinpointing properties of the underlying strong interaction. Eventually,we anticipate a theory bridge with immense predictive power from QCD through nuclear forces to nuclear structure and nuclear reactions. Light front Hamiltonian quantum field theory offers an attractive pathway and we outline key elements.
Quantum Mechanics From the Cradle?
ERIC Educational Resources Information Center
Martin, John L.
1974-01-01
States that the major problem in learning quantum mechanics is often the student's ignorance of classical mechanics and that one conceptual hurdle in quantum mechanics is its statistical nature, in contrast to the determinism of classical mechanics. (MLH)
NASA Astrophysics Data System (ADS)
Rovelli, Carlo
Hamiltonian mechanics of field theory can be formulated in a generally covariant and background independent manner over a finite dimensional extended configuration space. I study the physical symplectic structure of the theory in this framework. This structure can be defined over a space of three-dimensional surfaces without boundary, in the extended configuration space. These surfaces provide a preferred over-coordinatization of phase space. I consider the covariant form of the Hamilton-Jacobi equation on , and a canonical function S on which is a preferred solution of the Hamilton-Jacobi equation. The application of this formalism to general relativity is fully covariant and yields directly the Ashtekar-Wheeler-DeWitt equation, the basic equation of canonical quantum gravity. Finally, I apply this formalism to discuss the partial observables of a covariant field theory and the role of the spin networks -basic objects in quantum gravity- in the classical theory.
NASA Astrophysics Data System (ADS)
Rovelli, Carlo
Hamiltonian mechanics of field theory can be formulated in a generally covariant and background independent manner over a finite dimensional extended configuration space. I study the physical symplectic structure of the theory in this framework. This structure can be defined over a space G of three-dimensional surfaces without boundary, in the extended configuration space. These surfaces provide a preferred over-coordinatization of phase space. I consider the covariant form of the Hamilton-Jacobi equation on G, and a canonical function S on G which is a preferred solution of the Hamilton-Jacobi equation. The application of this formalism to general relativity is fully covariant and yields directly the Ashtekar-Wheeler-DeWitt equation, the basic equation of canonical quantum gravity. Finally, I apply this formalism to discuss the partial observables of a covariant field theory and the role of the spin networks -basic objects in quantum gravity- in the classical theory.
Fundamentals of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Tang, C. L.
2005-06-01
Quantum mechanics has evolved from a subject of study in pure physics to one with a wide range of applications in many diverse fields. The basic concepts of quantum mechanics are explained in this book in a concise and easy-to-read manner emphasising applications in solid state electronics and modern optics. Following a logical sequence, the book is focused on the key ideas and is conceptually and mathematically self-contained. The fundamental principles of quantum mechanics are illustrated by showing their application to systems such as the hydrogen atom, multi-electron ions and atoms, the formation of simple organic molecules and crystalline solids of practical importance. It leads on from these basic concepts to discuss some of the most important applications in modern semiconductor electronics and optics. Containing many homework problems and worked examples, the book is suitable for senior-level undergraduate and graduate level students in electrical engineering, materials science and applied physics. Clear exposition of quantum mechanics written in a concise and accessible style Precise physical interpretation of the mathematical foundations of quantum mechanics Illustrates the important concepts and results by reference to real-world examples in electronics and optoelectronics Contains homeworks and worked examples, with solutions available for instructors
NASA Astrophysics Data System (ADS)
Nishimura, Hirokazu
1996-06-01
Machida and Namiki developed a many-Hilbert-spaces formalism for dealing with the interaction between a quantum object and a measuring apparatus. Their mathematically rugged formalism was polished first by Araki from an operator-algebraic standpoint and then by Ozawa for Boolean quantum mechanics, which approaches a quantum system with a compatible family of continuous superselection rules from a notable and perspicacious viewpoint. On the other hand, Foulis and Randall set up a formal theory for the empirical foundation of all sciences, at the hub of which lies the notion of a manual of operations. They deem an operation as the set of possible outcomes and put down a manual of operations at a family of partially overlapping operations. Their notion of a manual of operations was incorporated into a category-theoretic standpoint into that of a manual of Boolean locales by Nishimura, who looked upon an operation as the complete Boolean algebra of observable events. Considering a family of Hilbert spaces not over a single Boolean locale but over a manual of Boolean locales as a whole, Ozawa's Boolean quantum mechanics is elevated into empirical quantum mechanics, which is, roughly speaking, the study of quantum systems with incompatible families of continuous superselection rules. To this end, we are obliged to develop empirical Hilbert space theory. In particular, empirical versions of the square root lemma for bounded positive operators, the spectral theorem for (possibly unbounded) self-adjoint operators, and Stone's theorem for one-parameter unitary groups are established.
Chandrashekar, C. M.
2013-01-01
From the unitary operator used for implementing two-state discrete-time quantum walk on one-, two- and three- dimensional lattice we obtain a two-component Dirac-like Hamiltonian. In particular, using different pairs of Pauli basis as position translation states we obtain three different form of Hamiltonians for evolution on one-dimensional lattice. We extend this to two- and three-dimensional lattices using different Pauli basis states as position translation states for each dimension and show that the external coin operation, which is necessary for one-dimensional walk is not a necessary requirement for a walk on higher dimensions but can serve as an additional resource to control the dynamics. The two-component Hamiltonian we present here for quantum walk on different lattices can serve as a general framework to simulate, control, and study the dynamics of quantum systems governed by Dirac-like Hamiltonian. PMID:24088731
Realization of a quantum Hamiltonian Boolean logic gate on the Si(001):H surface
NASA Astrophysics Data System (ADS)
Kolmer, Marek; Zuzak, Rafal; Dridi, Ghassen; Godlewski, Szymon; Joachim, Christian; Szymonski, Marek
2015-07-01
The design and construction of the first prototypical QHC (Quantum Hamiltonian Computing) atomic scale Boolean logic gate is reported using scanning tunnelling microscope (STM) tip-induced atom manipulation on an Si(001):H surface. The NOR/OR gate truth table was confirmed by dI/dU STS (Scanning Tunnelling Spectroscopy) tracking how the surface states of the QHC quantum circuit on the Si(001):H surface are shifted according to the input logical status.The design and construction of the first prototypical QHC (Quantum Hamiltonian Computing) atomic scale Boolean logic gate is reported using scanning tunnelling microscope (STM) tip-induced atom manipulation on an Si(001):H surface. The NOR/OR gate truth table was confirmed by dI/dU STS (Scanning Tunnelling Spectroscopy) tracking how the surface states of the QHC quantum circuit on the Si(001):H surface are shifted according to the input logical status. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01912e
NASA Astrophysics Data System (ADS)
Blencowe, Miles
The emergence of the macroscopic classical world from the microscopic quantum world is commonly understood to be a consequence of the fact that any given quantum system is open, unavoidably interacting with unobserved environmental degrees of freedom that will cause initial quantum superposition states of the system to decohere, resulting in classical mixtures of either-or alternatives. A fundamental question concerns how large a macroscopic object can be placed in a manifest quantum state, such as a center of mass quantum superposition state, under conditions where the effects of the interacting environmental degrees of freedom are reduced (i.e. in ultrahigh vacuum and at ultralow temperatures). Recent experiments have in fact demonstrated manifest quantum behavior in nano-to-micron-scale mechanical systems. Gravity has been invoked in various ways as playing a possible fundamental role in enforcing classicality of matter systems beyond a certain scale. Adopting the viewpoint that the standard perturbative quantization of general relativity provides an effective description of quantum gravity that is valid at ordinary energies, we show that it is possible to describe quantitatively how gravity as an environment can induce the decoherence of matter superposition states. The justification for such an approach follows from the fact that we are considering laboratory scale systems, where the matter is localized to regions of small curvature. As with other low energy effects, such as the quantum gravity correction to the Newtonian potential between two ordinary masses, it should be possible to quantitatively evaluate gravitationally induced decoherence rates by employing standard perturbative quantum gravity as an effective field theory; whatever the final form the eventual correct quantum theory of gravity takes, it must converge in its predictions with the effective field theory description at low energies. Research supported by the National Science Foundation (NSF
Grassmann matrix quantum mechanics
NASA Astrophysics Data System (ADS)
Anninos, Dionysios; Denef, Frederik; Monten, Ruben
2016-04-01
We explore quantum mechanical theories whose fundamental degrees of freedom are rectangular matrices with Grassmann valued matrix elements. We study particular models where the low energy sector can be described in terms of a bosonic Hermitian matrix quantum mechanics. We describe the classical curved phase space that emerges in the low energy sector. The phase space lives on a compact Kähler manifold parameterized by a complex matrix, of the type discovered some time ago by Berezin. The emergence of a semiclassical bosonic matrix quantum mechanics at low energies requires that the original Grassmann matrices be in the long rectangular limit. We discuss possible holographic interpretations of such matrix models which, by construction, are endowed with a finite dimensional Hilbert space.
Quantum dynamics of a vibronically coupled linear chain using a surrogate Hamiltonian approach.
Lee, Myeong H; Troisi, Alessandro
2016-06-01
Vibronic coupling between the electronic and vibrational degrees of freedom has been reported to play an important role in charge and exciton transport in organic photovoltaic materials, molecular aggregates, and light-harvesting complexes. Explicitly accounting for effective vibrational modes rather than treating them as a thermal environment has been shown to be crucial to describe the effect of vibronic coupling. We present a methodology to study dissipative quantum dynamics of vibronically coupled systems based on a surrogate Hamiltonian approach, which is in principle not limited by Markov approximation or weak system-bath interaction, using a vibronic basis. We apply vibronic surrogate Hamiltonian method to a linear chain system and discuss how different types of relaxation process, intramolecular vibrational relaxation and intermolecular vibronic relaxation, influence population dynamics of dissipative vibronic systems. PMID:27276944
An efficient matrix product operator representation of the quantum chemical Hamiltonian.
Keller, Sebastian; Dolfi, Michele; Troyer, Matthias; Reiher, Markus
2015-12-28
We describe how to efficiently construct the quantum chemical Hamiltonian operator in matrix product form. We present its implementation as a density matrix renormalization group (DMRG) algorithm for quantum chemical applications. Existing implementations of DMRG for quantum chemistry are based on the traditional formulation of the method, which was developed from the point of view of Hilbert space decimation and attained higher performance compared to straightforward implementations of matrix product based DMRG. The latter variationally optimizes a class of ansatz states known as matrix product states, where operators are correspondingly represented as matrix product operators (MPOs). The MPO construction scheme presented here eliminates the previous performance disadvantages while retaining the additional flexibility provided by a matrix product approach, for example, the specification of expectation values becomes an input parameter. In this way, MPOs for different symmetries - abelian and non-abelian - and different relativistic and non-relativistic models may be solved by an otherwise unmodified program. PMID:26723662
An efficient matrix product operator representation of the quantum chemical Hamiltonian
NASA Astrophysics Data System (ADS)
Keller, Sebastian; Dolfi, Michele; Troyer, Matthias; Reiher, Markus
2015-12-01
We describe how to efficiently construct the quantum chemical Hamiltonian operator in matrix product form. We present its implementation as a density matrix renormalization group (DMRG) algorithm for quantum chemical applications. Existing implementations of DMRG for quantum chemistry are based on the traditional formulation of the method, which was developed from the point of view of Hilbert space decimation and attained higher performance compared to straightforward implementations of matrix product based DMRG. The latter variationally optimizes a class of ansatz states known as matrix product states, where operators are correspondingly represented as matrix product operators (MPOs). The MPO construction scheme presented here eliminates the previous performance disadvantages while retaining the additional flexibility provided by a matrix product approach, for example, the specification of expectation values becomes an input parameter. In this way, MPOs for different symmetries — abelian and non-abelian — and different relativistic and non-relativistic models may be solved by an otherwise unmodified program.
An efficient matrix product operator representation of the quantum chemical Hamiltonian
Keller, Sebastian Reiher, Markus; Dolfi, Michele Troyer, Matthias
2015-12-28
We describe how to efficiently construct the quantum chemical Hamiltonian operator in matrix product form. We present its implementation as a density matrix renormalization group (DMRG) algorithm for quantum chemical applications. Existing implementations of DMRG for quantum chemistry are based on the traditional formulation of the method, which was developed from the point of view of Hilbert space decimation and attained higher performance compared to straightforward implementations of matrix product based DMRG. The latter variationally optimizes a class of ansatz states known as matrix product states, where operators are correspondingly represented as matrix product operators (MPOs). The MPO construction scheme presented here eliminates the previous performance disadvantages while retaining the additional flexibility provided by a matrix product approach, for example, the specification of expectation values becomes an input parameter. In this way, MPOs for different symmetries — abelian and non-abelian — and different relativistic and non-relativistic models may be solved by an otherwise unmodified program.
Supersymmetric Quantum Mechanics For Atomic Electronic Systems
NASA Astrophysics Data System (ADS)
Markovich, Thomas; Biamonte, Mason; Kouri, Don
2012-02-01
We employ our new approach to non-relativistic supersymmetric quantum mechanics (SUSY-QM), (J. Phys. Chem. A 114, 8202(2010)) for any number of dimensions and distinguishable particles, to treat the hydrogen atom in full three-dimensional detail. In contrast to the standard one-dimensional radial equation SUSY-QM treatment of the hydrogen atom, where the superpotential is a scalar, in a full three-dimensional treatment, it is a vector which is independent of the angular momentum quantum number. The original scalar Schr"odinger Hamiltonian operator is factored into vector ``charge'' operators: Q and Q^. Using these operators, the first sector Hamiltonian is written as H1= Q^.Q + E0^1. The second sector Hamiltonian is a tensor given by H2= Q Q^ + E0^11 and is isospectral with H1. The second sector ground state, ψ0^(2), can be used to obtain the excited state wave functions of the first sector by application of the adjoint charge operator. We then adapt the aufbau principle to show this approach can be applied to treat the helium atom.
NASA Astrophysics Data System (ADS)
Edén, Mattias
2002-12-01
Order-selective multiple-quantum excitation in magic-angle spinning nuclear magnetic resonance is explored using a class of symmetry-based pulse sequences, denoted S Mχ. Simple rules are presented that aid the design of S Mχ schemes with certain desirable effective Hamiltonians. They are applied to construct sequences generating trilinear effective dipolar Hamiltonians, suitable for efficient excitation of triple-quantum coherences in rotating solids. The new sequences are investigated numerically and demonstrated by 1H experiments on adamantane.
NASA Astrophysics Data System (ADS)
Ellerman, David
2014-03-01
In models of QM over finite fields (e.g., Schumacher's ``modal quantum theory'' MQT), one finite field stands out, Z2, since Z2 vectors represent sets. QM (finite-dimensional) mathematics can be transported to sets resulting in quantum mechanics over sets or QM/sets. This gives a full probability calculus (unlike MQT with only zero-one modalities) that leads to a fulsome theory of QM/sets including ``logical'' models of the double-slit experiment, Bell's Theorem, QIT, and QC. In QC over Z2 (where gates are non-singular matrices as in MQT), a simple quantum algorithm (one gate plus one function evaluation) solves the Parity SAT problem (finding the parity of the sum of all values of an n-ary Boolean function). Classically, the Parity SAT problem requires 2n function evaluations in contrast to the one function evaluation required in the quantum algorithm. This is quantum speedup but with all the calculations over Z2 just like classical computing. This shows definitively that the source of quantum speedup is not in the greater power of computing over the complex numbers, and confirms the idea that the source is in superposition.
Cruz, Hans; Schuch, Dieter; Castaños, Octavio; Rosas-Ortiz, Oscar
2015-09-15
The sensitivity of the evolution of quantum uncertainties to the choice of the initial conditions is shown via a complex nonlinear Riccati equation leading to a reformulation of quantum dynamics. This sensitivity is demonstrated for systems with exact analytic solutions with the form of Gaussian wave packets. In particular, one-dimensional conservative systems with at most quadratic Hamiltonians are studied.
``the Human BRAIN & Fractal quantum mechanics''
NASA Astrophysics Data System (ADS)
Rosary-Oyong, Se, Glory
In mtDNA ever retrieved from Iman Tuassoly, et.al:Multifractal analysis of chaos game representation images of mtDNA''.Enhances the price & valuetales of HE. Prof. Dr-Ing. B.J. HABIBIE's N-219, in J. Bacteriology, Nov 1973 sought:'' 219 exist as separate plasmidDNA species in E.coli & Salmonella panama'' related to ``the brain 2 distinct molecular forms of the (Na,K)-ATPase..'' & ``neuron maintains different concentration of ions(charged atoms'' thorough Rabi & Heisenber Hamiltonian. Further, after ``fractal space time are geometric analogue of relativistic quantum mechanics''[Ord], sought L.Marek Crnjac: ``Chaotic fractals at the root of relativistic quantum physics''& from famous Nottale: ``Scale relativity & fractal space-time:''Application to Quantum Physics , Cosmology & Chaotic systems'',1995. Acknowledgements to HE. Mr. H. TUK SETYOHADI, Jl. Sriwijaya Raya 3, South-Jakarta, INDONESIA.
A Transfer Hamiltonian Model for Devices Based on Quantum Dot Arrays
Illera, S.; Prades, J. D.; Cirera, A.; Cornet, A.
2015-01-01
We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide. PMID:25879055
Supersymmetric quantum mechanics and its applications
Sukumar, C.V.
2004-12-23
The Hamiltonian in Supersymmetric Quantum Mechanics is defined in terms of charges that obey the same algebra as that of the generators of supersymmetry in field theory. The consequences of this symmetry for the spectra of the component parts that constitute the supersymmetric system are explored. The implications of supersymmetry for the solutions of the Schroedinger equation, the Dirac equation, the inverse scattering theory and the multi-soliton solutions of the KdV equation are examined. Applications to scattering problems in Nuclear Physics with specific reference to singular potentials which arise from considerations of supersymmetry will be discussed.
Landau problem in noncommutative quantum mechanics
NASA Astrophysics Data System (ADS)
Sayipjamal, Dulat; Li, Kang
2008-02-01
The Landau problem in non-commutative quantum mechanics (NCQM) is studied. First by solving the Schrödinger equations on noncommutative (NC) space we obtain the Landau energy levels and the energy correction that is caused by space-space noncommutativity. Then we discuss the noncommutative phase space case, namely, space-space and momentum-momentum non-commutative case, and we get the explicit expression of the Hamiltonian as well as the corresponding eigenfunctions and eigenvalues. Supported by National Natural Science Foundation of China (10465004, 10665001, 10575026) and Abdus Salam ICTP, Trieste, Italy
Epigenetics: Biology's Quantum Mechanics.
Jorgensen, Richard A
2011-01-01
The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920s and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene - the molecular biological view and the epigenetic view - are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider. PMID:22639577
Feynman's simple quantum mechanics
NASA Astrophysics Data System (ADS)
Taylor, Edwin F.
1997-03-01
This sample class presents an alternative to the conventional introduction to quantum mechanics and describes its current use in a credit course. This alternative introduction rests on theory presented in professional and popular writings by Richard Feynman. Feynman showed that Nature gives a simple command to the electron: "Explore all paths." All of nonrelativistic quantum mechanics, among other fundamental results, comes from this command. With a desktop computer the student points and clicks to tell a modeled electron which paths to follow. The computer then shows the results, which embody the elemental strangeness and paradoxical behaviors of the world of the very small. Feynman's approach requires few equations and provides a largely non-mathematical introduction to the wave function of conventional quantum mechanics. Draft software and materials already used for two semesters in an e-mail computer conference credit university course show that Feynman's approach works well with a variety of students. The sample class explores computer and written material and describes the next steps in its development.
NASA Astrophysics Data System (ADS)
Cao, Zhenwei
Over the years, people have found Quantum Mechanics to be extremely useful in explaining various physical phenomena from a microscopic point of view. Anderson localization, named after physicist P. W. Anderson, states that disorder in a crystal can cause non-spreading of wave packets, which is one possible mechanism (at single electron level) to explain metal-insulator transitions. The theory of quantum computation promises to bring greater computational power over classical computers by making use of some special features of Quantum Mechanics. The first part of this dissertation considers a 3D alloy-type model, where the Hamiltonian is the sum of the finite difference Laplacian corresponding to free motion of an electron and a random potential generated by a sign-indefinite single-site potential. The result shows that localization occurs in the weak disorder regime, i.e., when the coupling parameter lambda is very small, for energies E ≤ --Clambda 2. The second part of this dissertation considers adiabatic quantum computing (AQC) algorithms for the unstructured search problem to the case when the number of marked items is unknown. In an ideal situation, an explicit quantum algorithm together with a counting subroutine are given that achieve the optimal Grover speedup over classical algorithms, i.e., roughly speaking, reduce O(2n) to O(2n/2), where n is the size of the problem. However, if one considers more realistic settings, the result shows this quantum speedup is achievable only under a very rigid control precision requirement (e.g., exponentially small control error).
Classical limit of relativistic quantum mechanical equations in the Foldy-Wouthuysen representation
NASA Astrophysics Data System (ADS)
Silenko, A. Ya.
2013-03-01
It is shown that, under the Wentzel-Kramers-Brillouin approximation conditions, using the Foldy-Wouthuysen (FW) representation allows the problem of finding a classical limit of relativistic quantum mechanical equations to be reduced to the replacement of operators in the Hamiltonian and quantum mechanical equations of motion by the respective classical quantities.
Nontrivial systems and the necessity of the scalar quantum mechanics axioms
NASA Astrophysics Data System (ADS)
KotÅ¯lek, Jan
2009-06-01
We discuss the necessity of the axioms of scalar quantum mechanics introduced by Paschke and clearly demonstrate their geometric and/or physical meaning. We show that reasonable nonrelativistic quantum mechanics is exactly specified by the axioms. A system describing the electric Aharonov-Bohm effect is presented. It illustrates the topological obstructions for the existence of a Hamiltonian.
Ab-Initio Hamiltonian Approach to Light Nuclei And to Quantum Field Theory
Vary, J.P.; Honkanen, H.; Li, Jun; Maris, P.; Shirokov, A.M.; Brodsky, S.J.; Harindranath, A.; de Teramond, G.F.; Ng, E.G.; Yang, C.; Sosonkina, M.; /Ames Lab
2012-06-22
Nuclear structure physics is on the threshold of confronting several long-standing problems such as the origin of shell structure from basic nucleon-nucleon and three-nucleon interactions. At the same time those interactions are being developed with increasing contact to QCD, the underlying theory of the strong interactions, using effective field theory. The motivation is clear - QCD offers the promise of great predictive power spanning phenomena on multiple scales from quarks and gluons to nuclear structure. However, new tools that involve non-perturbative methods are required to build bridges from one scale to the next. We present an overview of recent theoretical and computational progress with a Hamiltonian approach to build these bridges and provide illustrative results for the nuclear structure of light nuclei and quantum field theory.
Advanced Concepts in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Esposito, Giampiero; Marmo, Giuseppe; Miele, Gennaro; Sudarshan, George
2014-11-01
Preface; 1. Introduction: the need for a quantum theory; 2. Experimental foundations of quantum theory; 3. Waves and particles; 4. Schrödinger picture, Heisenberg picture and probabilistic aspects; 5. Integrating the equations of motion; 6. Elementary applications: 1-dimensional problems; 7. Elementary applications: multidimensional problems; 8. Coherent states and related formalism; 9. Introduction to spin; 10. Symmetries in quantum mechanics; 11. Approximation methods; 12. Modern pictures of quantum mechanics; 13. Formulations of quantum mechanics and their physical implications; 14. Exam problems; Glossary of geometric concepts; References; Index.
NASA Astrophysics Data System (ADS)
Jones, Robert
2011-03-01
I do not agree with mind-body dualism. Today the consensus view is that thought and mind is a combination of processes like memory, generalization, comparison, deduction, organization, induction, classification, feature detection, analogy, etc. performed by computational machinery. (R. Jones, Trans. of the Kansas Acad. Sci., vol. 109, # 3/4, 2006 and www.robert-w-jones.com, philosopher, theory of thought) But I believe that quantum mechanics is a more plausible dualist theory of reality. The quantum mechanical wave function is nonphysical, it exists in a 3N space (for an N body system) not in (x,y,z,t) 4-space, and does not possess physical properties. But real physical things like energy (which do exist in our 4-space world) influence the wave function and the wave function, in its turn, influences real physical things, like where a particle can be found in 4-space. The coupling between the spirit-like wave function and things found in the real (4-space) world (like energy) is via mathematical equations like the Schrodinger equation and Born normalization.
Stability and Clustering for Lattice Many-Body Quantum Hamiltonians with Multiparticle Potentials
NASA Astrophysics Data System (ADS)
Faria da Veiga, Paulo A.; O'Carroll, Michael
2015-11-01
We analyze a quantum system of N identical spinless particles of mass m, in the lattice Z^d, given by a Hamiltonian H_N=T_N+V_N, with kinetic energy T_N≥ 0 and potential V_N=V_{N,2}+V_{N,3} composed of attractive pair and repulsive 3-body contact-potentials. This Hamiltonian is motivated by the desire to understand the stability of quantum field theories, with massive single particles and bound states in the energy-momentum spectrum, in terms of an approximate Hamiltonian for their N-particle sector. We determine the role of the potentials V_{N,2} and V_{N,3} on the physical stability of the system, such as to avoid a collapse of the N particles. Mathematically speaking, stability is associated with an N-linear lower bound for the infimum of the H_N spectrum, \\underline{σ }(H_N)≥ -cN, for c>0 independent of N. For V_{N,3}=0, H_N is unstable, and the system collapses. If V_{N,3}not =0, H_N is stable and, for strong enough repulsion, we obtain \\underline{σ }(H_N)≥ -c' N, where c'N is the energy of ( N/2) isolated bound pairs. This result is physically expected. A much less trivial result is that, as N varies, we show [ \\underline{σ }(V_N)/N ] has qualitatively the same behavior as the well-known curve for minus the nuclear binding energy per nucleon. Moreover, it turns out that there exists a saturation value N_s of N at and above which the system presents a clustering: the N particles distributed in two fragments and, besides lattice translations of particle positions, there is an energy degeneracy of all two fragments with particle numbers N_r and N_s-N_r, with N_r=1,ldots ,N_s-1.
Diagrammatic quantum mechanics
NASA Astrophysics Data System (ADS)
Kauffman, Louis H.; Lomonaco, Samuel J.
2015-05-01
This paper explores how diagrams of quantum processes can be used for modeling and for quantum epistemology. The paper is a continuation of the discussion where we began this formulation. Here we give examples of quantum networks that represent unitary transformations by dint of coherence conditions that constitute a new form of non-locality. Local quantum devices interconnected in space can form a global quantum system when appropriate coherence conditions are maintained.
Bender, Carl M; DeKieviet, Maarten; Klevansky, S P
2013-04-28
PT-symmetric quantum mechanics (PTQM) has become a hot area of research and investigation. Since its beginnings in 1998, there have been over 1000 published papers and more than 15 international conferences entirely devoted to this research topic. Originally, PTQM was studied at a highly mathematical level and the techniques of complex variables, asymptotics, differential equations and perturbation theory were used to understand the subtleties associated with the analytic continuation of eigenvalue problems. However, as experiments on PT-symmetric physical systems have been performed, a simple and beautiful physical picture has emerged, and a PT-symmetric system can be understood as one that has a balanced loss and gain. Furthermore, the PT phase transition can now be understood intuitively without resorting to sophisticated mathematics. Research on PTQM is following two different paths: at a fundamental level, physicists are attempting to understand the underlying mathematical structure of these theories with the long-range objective of applying the techniques of PTQM to understanding some of the outstanding problems in physics today, such as the nature of the Higgs particle, the properties of dark matter, the matter-antimatter asymmetry in the universe, neutrino oscillations and the cosmological constant; at an applied level, new kinds of PT-synthetic materials are being developed, and the PT phase transition is being observed in many physical contexts, such as lasers, optical wave guides, microwave cavities, superconducting wires and electronic circuits. The purpose of this Theme Issue is to acquaint the reader with the latest developments in PTQM. The articles in this volume are written in the style of mini-reviews and address diverse areas of the emerging and exciting new area of PT-symmetric quantum mechanics. PMID:23509390
Decoherence in quantum mechanics and quantum cosmology
NASA Technical Reports Server (NTRS)
Hartle, James B.
1992-01-01
A sketch of the quantum mechanics for closed systems adequate for cosmology is presented. This framework is an extension and clarification of that of Everett and builds on several aspects of the post-Everett development. It especially builds on the work of Zeh, Zurek, Joos and Zeh, and others on the interactions of quantum systems with the larger universe and on the ideas of Griffiths, Omnes, and others on the requirements for consistent probabilities of histories.
Principles of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Landé, Alfred
2013-10-01
ödinger's equation for non-conservative systems; 46. Pertubation theory; 47. Orthogonality, normalization and Hermitian conjugacy; 48. General matrix elements; Part IV. The Principle of Correspondence: 49. Contact transformations in classical mechanics; 50. Point transformations; 51. Contact transformations in quantum mechanics; 52. Constants of motion and angular co-ordinates; 53. Periodic orbits; 54. De Broglie and Schrödinger function; correspondence to classical mechanics; 55. Packets of probability; 56. Correspondence to hydrodynamics; 57. Motion and scattering of wave packets; 58. Formal correspondence between classical and quantum mechanics; Part V. Mathematical Appendix: Principle of Invariance: 59. The general theorem of transformation; 60. Operator calculus; 61. Exchange relations; three criteria for conjugacy; 62. First method of canonical transformation; 63. Second method of canonical transformation; 64. Proof of the transformation theorem; 65. Invariance of the matrix elements against unitary transformations; 66. Matrix mechanics; Index of literature; Index of names and subjects.
Orsucci, Davide; Burgarth, Daniel; Facchi, Paolo; Pascazio, Saverio; Nakazato, Hiromichi; Yuasa, Kazuya; Giovannetti, Vittorio
2015-12-15
The problem of Hamiltonian purification introduced by Burgarth et al. [Nat. Commun. 5, 5173 (2014)] is formalized and discussed. Specifically, given a set of non-commuting Hamiltonians (h{sub 1}, …, h{sub m}) operating on a d-dimensional quantum system ℋ{sub d}, the problem consists in identifying a set of commuting Hamiltonians (H{sub 1}, …, H{sub m}) operating on a larger d{sub E}-dimensional system ℋ{sub d{sub E}} which embeds ℋ{sub d} as a proper subspace, such that h{sub j} = PH{sub j}P with P being the projection which allows one to recover ℋ{sub d} from ℋ{sub d{sub E}}. The notions of spanning-set purification and generator purification of an algebra are also introduced and optimal solutions for u(d) are provided.
NASA Astrophysics Data System (ADS)
Bang, Jeongho; Lee, Seung-Woo; Lee, Chang-Woo; Jeong, Hyunseok
2015-01-01
We propose a quantum algorithm to obtain the lowest eigenstate of any Hamiltonian simulated by a quantum computer. The proposed algorithm begins with an arbitrary initial state of the simulated system. A finite series of transforms is iteratively applied to the initial state assisted with an ancillary qubit. The fraction of the lowest eigenstate in the initial state is then amplified up to 1. We prove that our algorithm can faithfully work for any arbitrary Hamiltonian in the theoretical analysis. Numerical analyses are also carried out. We firstly provide a numerical proof-of-principle demonstration with a simple Hamiltonian in order to compare our scheme with the so-called "Demon-like algorithmic cooling (DLAC)", recently proposed in Xu (Nat Photonics 8:113, 2014). The result shows a good agreement with our theoretical analysis, exhibiting the comparable behavior to the best `cooling' with the DLAC method. We then consider a random Hamiltonian model for further analysis of our algorithm. By numerical simulations, we show that the total number of iterations is proportional to , where is the difference between the two lowest eigenvalues and is an error defined as the probability that the finally obtained system state is in an unexpected (i.e., not the lowest) eigenstate.
Communication: Quantum mechanics without wavefunctions
Schiff, Jeremy; Poirier, Bill
2012-01-21
We present a self-contained formulation of spin-free non-relativistic quantum mechanics that makes no use of wavefunctions or complex amplitudes of any kind. Quantum states are represented as ensembles of real-valued quantum trajectories, obtained by extremizing an action and satisfying energy conservation. The theory applies for arbitrary configuration spaces and system dimensionalities. Various beneficial ramifications--theoretical, computational, and interpretational--are discussed.
Chiral transport equation from the quantum Dirac Hamiltonian and the on-shell effective field theory
NASA Astrophysics Data System (ADS)
Manuel, Cristina; Torres-Rincon, Juan M.
2014-10-01
We derive the relativistic chiral transport equation for massless fermions and antifermions by performing a semiclassical Foldy-Wouthuysen diagonalization of the quantum Dirac Hamiltonian. The Berry connection naturally emerges in the diagonalization process to modify the classical equations of motion of a fermion in an electromagnetic field. We also see that the fermion and antifermion dispersion relations are corrected at first order in the Planck constant by the Berry curvature, as previously derived by Son and Yamamoto for the particular case of vanishing temperature. Our approach does not require knowledge of the state of the system, and thus it can also be applied at high temperature. We provide support for our result by an alternative computation using an effective field theory for fermions and antifermions: the on-shell effective field theory. In this formalism, the off-shell fermionic modes are integrated out to generate an effective Lagrangian for the quasi-on-shell fermions/antifermions. The dispersion relation at leading order exactly matches the result from the semiclassical diagonalization. From the transport equation, we explicitly show how the axial and gauge anomalies are not modified at finite temperature and density despite the incorporation of the new dispersion relation into the distribution function.
Phase space quantum mechanics - Direct
Nasiri, S.; Sobouti, Y.; Taati, F.
2006-09-15
Conventional approach to quantum mechanics in phase space (q,p), is to take the operator based quantum mechanics of Schroedinger, or an equivalent, and assign a c-number function in phase space to it. We propose to begin with a higher level of abstraction, in which the independence and the symmetric role of q and p is maintained throughout, and at once arrive at phase space state functions. Upon reduction to the q- or p-space the proposed formalism gives the conventional quantum mechanics, however, with a definite rule for ordering of factors of noncommuting observables. Further conceptual and practical merits of the formalism are demonstrated throughout the text.
Quantum mechanics from classical statistics
Wetterich, C.
2010-04-15
Quantum mechanics can emerge from classical statistics. A typical quantum system describes an isolated subsystem of a classical statistical ensemble with infinitely many classical states. The state of this subsystem can be characterized by only a few probabilistic observables. Their expectation values define a density matrix if they obey a 'purity constraint'. Then all the usual laws of quantum mechanics follow, including Heisenberg's uncertainty relation, entanglement and a violation of Bell's inequalities. No concepts beyond classical statistics are needed for quantum physics - the differences are only apparent and result from the particularities of those classical statistical systems which admit a quantum mechanical description. Born's rule for quantum mechanical probabilities follows from the probability concept for a classical statistical ensemble. In particular, we show how the non-commuting properties of quantum operators are associated to the use of conditional probabilities within the classical system, and how a unitary time evolution reflects the isolation of the subsystem. As an illustration, we discuss a classical statistical implementation of a quantum computer.
Modeling Quantum Mechanical Observers via Neural-Glial Networks
NASA Astrophysics Data System (ADS)
Konishi, Eiji
2012-07-01
We investigate the theory of observers in the quantum mechanical world by using a novel model of the human brain which incorporates the glial network into the Hopfield model of the neural network. Our model is based on a microscopic construction of a quantum Hamiltonian of the synaptic junctions. Using the Eguchi-Kawai large N reduction, we show that, when the number of neurons and astrocytes is exponentially large, the degrees of freedom (d.o.f) of the dynamics of the neural and glial networks can be completely removed and, consequently, that the retention time of the superposition of the wavefunctions in the brain is as long as that of the microscopic quantum system of pre-synaptics sites. Based on this model, the classical information entropy of the neural-glial network is introduced. Using this quantity, we propose a criterion for the brain to be a quantum mechanical observer.
Extended supersymmetry and hidden symmetries in one-dimensional matrix quantum mechanics
NASA Astrophysics Data System (ADS)
Andrianov, A. A.; Sokolov, A. V.
2016-01-01
We study properties of nonlinear supersymmetry algebras realized in the one-dimensional quantum mechanics of matrix systems. Supercharges of these algebras are differential operators of a finite order in derivatives. In special cases, there exist independent supercharges realizing an (extended) supersymmetry of the same super-Hamiltonian. The extended supersymmetry generates hidden symmetries of the super-Hamiltonian. Such symmetries have been found in models with (2×2)-matrix potentials.
Quantum Mechanics in Insulators
NASA Astrophysics Data System (ADS)
Aeppli, G.
2009-08-01
Atomic physics is undergoing a large revival because of the possibility of trapping and cooling ions and atoms both for individual quantum control as well as collective quantum states, such as Bose-Einstein condensates. The present lectures start from the `atomic' physics of isolated atoms in semiconductors and insulators and proceed to coupling them together to yield magnets undergoing quantum phase transitions as well as displaying novel quantum states with no classical analogs. The lectures are based on: G.-Y. Xu et al., Science 317, 1049-1052 (2007); G. Aeppli, P. Warburton, C. Renner, BT Technology Journal, 24, 163-169 (2006); H. M. Ronnow et al., Science 308, 392-395 (2005) and N. Q. Vinh et al., PNAS 105, 10649-10653 (2008).
Quantum Mechanics in Insulators
Aeppli, G.
2009-08-20
Atomic physics is undergoing a large revival because of the possibility of trapping and cooling ions and atoms both for individual quantum control as well as collective quantum states, such as Bose-Einstein condensates. The present lectures start from the 'atomic' physics of isolated atoms in semiconductors and insulators and proceed to coupling them together to yield magnets undergoing quantum phase transitions as well as displaying novel quantum states with no classical analogs. The lectures are based on: G.-Y. Xu et al., Science 317, 1049-1052 (2007); G. Aeppli, P. Warburton, C. Renner, BT Technology Journal, 24, 163-169 (2006); H. M. Ronnow et al., Science 308, 392-395 (2005) and N. Q. Vinh et al., PNAS 105, 10649-10653 (2008).
Quantum mechanics from invariance principles
NASA Astrophysics Data System (ADS)
Moldoveanu, Florin
2015-07-01
Quantum mechanics is an extremely successful theory of nature and yet it lacks an intuitive axiomatization. In contrast, the special theory of relativity is well understood and is rooted into natural or experimentally justified postulates. Here we introduce an axiomatization approach to quantum mechanics which is very similar to special theory of relativity derivation. The core idea is that a composed system obeys the same laws of nature as its components. This leads to a Jordan-Lie algebraic formulation of quantum mechanics. The starting assumptions are minimal: the laws of nature are invariant under time evolution, the laws of nature are invariant under tensor composition, the laws of nature are relational, together with the ability to define a physical state (positivity). Quantum mechanics is singled out by a fifth experimentally justified postulate: nature violates Bell's inequalities.
Asplund, Erik; Kluener, Thorsten
2012-03-28
In this paper, control of open quantum systems with emphasis on the control of surface photochemical reactions is presented. A quantum system in a condensed phase undergoes strong dissipative processes. From a theoretical viewpoint, it is important to model such processes in a rigorous way. In this work, the description of open quantum systems is realized within the surrogate Hamiltonian approach [R. Baer and R. Kosloff, J. Chem. Phys. 106, 8862 (1997)]. An efficient and accurate method to find control fields is optimal control theory (OCT) [W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998); Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004)]. To gain control of open quantum systems, the surrogate Hamiltonian approach and OCT, with time-dependent targets, are combined. Three open quantum systems are investigated by the combined method, a harmonic oscillator immersed in an ohmic bath, CO adsorbed on a platinum surface, and NO adsorbed on a nickel oxide surface. Throughout this paper, atomic units, i.e., ({Dirac_h}/2{pi})=m{sub e}=e=a{sub 0}= 1, have been used unless otherwise stated.
NASA Astrophysics Data System (ADS)
Quesne, C.
2010-02-01
In a recent communication paper by Tremblay et al (2009 J. Phys. A: Math. Theor. 42 205206), it has been conjectured that for any integer value of k, some novel exactly solvable and integrable quantum Hamiltonian Hk on a plane is superintegrable and that the additional integral of motion is a 2kth-order differential operator Y2k. Here we demonstrate the conjecture for the infinite family of Hamiltonians Hk with odd k >= 3, whose first member corresponds to the three-body Calogero-Marchioro-Wolfes model after elimination of the centre-of-mass motion. Our approach is based on the construction of some D2k-extended and invariant Hamiltonian {\\cal H}_k, which can be interpreted as a modified boson oscillator Hamiltonian. The latter is then shown to possess a D2k-invariant integral of motion {\\cal Y}_{2k}, from which Y2k can be obtained by projection in the D2k identity representation space.
Emergent quantum mechanics without wavefunctions
NASA Astrophysics Data System (ADS)
Mesa Pascasio, J.; Fussy, S.; Schwabl, H.; Grössing, G.
2016-03-01
We present our model of an Emergent Quantum Mechanics which can be characterized by “realism without pre-determination”. This is illustrated by our analytic description and corresponding computer simulations of Bohmian-like “surreal” trajectories, which are obtained classically, i.e. without the use of any quantum mechanical tool such as wavefunctions. However, these trajectories do not necessarily represent ontological paths of particles but rather mappings of the probability density flux in a hydrodynamical sense. Modelling emergent quantum mechanics in a high-low intesity double slit scenario gives rise to the “quantum sweeper effect” with a characteristic intensity pattern. This phenomenon should be experimentally testable via weak measurement techniques.
Are nonlinear discrete cellular automata compatible with quantum mechanics?
NASA Astrophysics Data System (ADS)
Elze, Hans-Thomas
2015-07-01
We consider discrete and integer-valued cellular automata (CA). A particular class of which comprises “Hamiltonian CA” with equations of motion that bear similarities to Hamilton's equations, while they present discrete updating rules. The dynamics is linear, quite similar to unitary evolution described by the Schrödinger equation. This has been essential in our construction of an invertible map between such CA and continuous quantum mechanical models, which incorporate a fundamental discreteness scale. Based on Shannon's sampling theory, it leads, for example, to a one-to-one relation between quantum mechanical and CA conservation laws. The important issue of linearity of the theory is examined here by incorporating higher-order nonlinearities into the underlying action. These produce inconsistent nonlocal (in time) effects when trying to describe continuously such nonlinear CA. Therefore, in the present framework, only linear CA and local quantum mechanical dynamics are compatible.
CALL FOR PAPERS: Special issue on Pseudo Hermitian Hamiltonians in Quantum Physics
NASA Astrophysics Data System (ADS)
Fring, Andreas; Jones, Hugh F.; Znojil, Miloslav
2007-11-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to the subject of Pseudo Hermitian Hamiltonians in Quantum Physics as featured in the conference '6th International Workshop on Pseudo Hermitian Hamiltonians in Quantum Physics', City University London, UK, July 16--18 2007 (http://www.staff.city.ac.uk/~fring/PT/). Invited speakers at that meeting as well as other researchers working in the field are invited to submit a research paper to this issue. The Editorial Board has invited Andreas Fring, Hugh F Jones and Miloslav Znojil to serve as Guest Editors for the special issue. Their criteria for acceptance of contributions are as follows: •The subject of the paper should relate to the subject of the workshop ((see list of topics in the website of the conference http://www.staff.city.ac.uk/~fring/PT/). •Contributions will be refereed and processed according to the usual procedure of the journal. •Conference papers may be based on already published work but should either contain significant additional new results and/or insights or give a survey of the present state of the art, a critical assessment of the present understanding of a topic, and a discussion of open problems. •Papers submitted by non-participants should be original and contain substantial new results. The guidelines for the preparation of contributions are the following: •The DEADLINE for submission of contributions is 16 November 2007. This deadline will allow the special issue to appear in June 2008. •There is a nominal page limit of 16 printed pages (approximately 9600 words) per contribution. For papers exceeding this limit, the Guest Editors reserve the right to request a reduction in length. Further advice on publishing your work in Journal of Physics A: Mathematical and Theoretical may be found at www.iop.org/Journals/jphysa. •Contributions to the special issue should, if possible, be submitted electronically by web
Quantum Mechanics and Narratability
NASA Astrophysics Data System (ADS)
Myrvold, Wayne C.
2016-05-01
As has been noted by several authors, in a relativistic context, there is an interesting difference between classical and quantum state evolution. For a classical system, a state history of a quantum system given along one foliation uniquely determines, without any consideration of the system's dynamics, a state history along any other foliation. This is not true for quantum state evolution; there are cases in which a state history along one foliation is compatible with multiple distinct state histories along some other, a phenomenon that David Albert has dubbed "non-narratability." In this article, we address the question of whether non-narratability is restricted to the sorts of special states that so far have been used to illustrate it. The results of the investigation suggest that there has been a misplaced emphasis on underdetermination of state histories; though this is generic for the special cases that have up until now been considered, involving bipartite systems in pure entangled states, it fails generically in cases in which more component systems are taken into account, and for bipartite systems that have some entanglement with their environment. For such cases, if we impose relativistic causality constraints on the evolution, then, except for very special states, a state history along one foliation uniquely determines a state history along any other. But this in itself is a marked difference between classical and quantum state evolution, because, in a classical setting, no considerations of dynamics at all are needed to go from a state history along one foliation to a state history along another.
Quantum Mechanics and Narratability
NASA Astrophysics Data System (ADS)
Myrvold, Wayne C.
2016-07-01
As has been noted by several authors, in a relativistic context, there is an interesting difference between classical and quantum state evolution. For a classical system, a state history of a quantum system given along one foliation uniquely determines, without any consideration of the system's dynamics, a state history along any other foliation. This is not true for quantum state evolution; there are cases in which a state history along one foliation is compatible with multiple distinct state histories along some other, a phenomenon that David Albert has dubbed "non-narratability." In this article, we address the question of whether non-narratability is restricted to the sorts of special states that so far have been used to illustrate it. The results of the investigation suggest that there has been a misplaced emphasis on underdetermination of state histories; though this is generic for the special cases that have up until now been considered, involving bipartite systems in pure entangled states, it fails generically in cases in which more component systems are taken into account, and for bipartite systems that have some entanglement with their environment. For such cases, if we impose relativistic causality constraints on the evolution, then, except for very special states, a state history along one foliation uniquely determines a state history along any other. But this in itself is a marked difference between classical and quantum state evolution, because, in a classical setting, no considerations of dynamics at all are needed to go from a state history along one foliation to a state history along another.
Spin Glass a Bridge Between Quantum Computation and Statistical Mechanics
NASA Astrophysics Data System (ADS)
Ohzeki, Masayuki
2013-09-01
In this chapter, we show two fascinating topics lying between quantum information processing and statistical mechanics. First, we introduce an elaborated technique, the surface code, to prepare the particular quantum state with robustness against decoherence. Interestingly, the theoretical limitation of the surface code, accuracy threshold, to restore the quantum state has a close connection with the problem on the phase transition in a special model known as spin glasses, which is one of the most active researches in statistical mechanics. The phase transition in spin glasses is an intractable problem, since we must strive many-body system with complicated interactions with change of their signs depending on the distance between spins. Fortunately, recent progress in spin-glass theory enables us to predict the precise location of the critical point, at which the phase transition occurs. It means that statistical mechanics is available for revealing one of the most interesting parts in quantum information processing. We show how to import the special tool in statistical mechanics into the problem on the accuracy threshold in quantum computation. Second, we show another interesting technique to employ quantum nature, quantum annealing. The purpose of quantum annealing is to search for the most favored solution of a multivariable function, namely optimization problem. The most typical instance is the traveling salesman problem to find the minimum tour while visiting all the cities. In quantum annealing, we introduce quantum fluctuation to drive a particular system with the artificial Hamiltonian, in which the ground state represents the optimal solution of the specific problem we desire to solve. Induction of the quantum fluctuation gives rise to the quantum tunneling effect, which allows nontrivial hopping from state to state. We then sketch a strategy to control the quantum fluctuation efficiently reaching the ground state. Such a generic framework is called
Quantum mechanical force field for water with explicit electronic polarization
Han, Jaebeom; Mazack, Michael J. M.; Zhang, Peng; Truhlar, Donald G.; Gao, Jiali
2013-01-01
A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 106 self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across
Quantum mechanical force field for water with explicit electronic polarization
Han, Jaebeom; Mazack, Michael J. M.; Zhang, Peng; Truhlar, Donald G.; Gao, Jiali
2013-08-07
A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 10{sup 6} self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as
Energy conservation in quantum mechanics
NASA Astrophysics Data System (ADS)
Prentis, Jeffrey J.; Fedak, William A.
2004-05-01
In the classical mechanics of conservative systems, the position and momentum evolve deterministically such that the sum of the kinetic energy and potential energy remains constant in time. This canonical trademark of energy conservation is absent in the standard presentations of quantum mechanics based on the Schrödinger picture. We present a purely canonical proof of energy conservation that focuses exclusively on the time-dependent position x(t) and momentum p(t) operators. This treatment of energy conservation serves as an introduction to the Heisenberg picture and illuminates the classical-quantum connection. We derive a quantum-mechanical work-energy theorem and show explicitly how the time dependence of x and p and the noncommutivity of x and p conspire to bring about a perfect temporal balance between the evolving kinetic and potential parts of the total energy operator.
Quantum Mechanical Earth: Where Orbitals Become Orbits
ERIC Educational Resources Information Center
Keeports, David
2012-01-01
Macroscopic objects, although quantum mechanical by nature, conform to Newtonian mechanics under normal observation. According to the quantum mechanical correspondence principle, quantum behavior is indistinguishable from classical behavior in the limit of very large quantum numbers. The purpose of this paper is to provide an example of the…
BOOK REVIEW: Relativistic Quantum Mechanics
NASA Astrophysics Data System (ADS)
Antoine, J.-P.
2004-01-01
The aim of relativistic quantum mechanics is to describe the finer details of the structure of atoms and molecules, where relativistic effects become nonnegligible. It is a sort of intermediate realm, between the familiar nonrelativistic quantum mechanics and fully relativistic quantum field theory, and thus it lacks the simplicity and elegance of both. Yet it is a necessary tool, mostly for quantum chemists. Pilkuhn's book offers to this audience an up-to-date survey of these methods, which is quite welcome since most previous textbooks are at least ten years old. The point of view of the author is to start immediately in the relativistic domain, following the lead of Maxwell's equations rather than classical mechanics, and thus to treat the nonrelativistic version as an approximation. Thus Chapter 1 takes off from Maxwell's equations (in the noncovariant Coulomb gauge) and gradually derives the basic aspects of Quantum Mechanics in a rather pedestrian way (states and observables, Hilbert space, operators, quantum measurement, scattering,. Chapter 2 starts with the Lorentz transformations, then continues with the Pauli spin equation and the Dirac equation and some of their applications (notably the hydrogen atom). Chapter 3 is entitled `Quantum fields and particles', but falls short of treating quantum field theory properly: only creation/annihilation operators are considered, for a particle in a box. The emphasis is on two-electron states (the Pauli principle, the Foldy--Wouthuysen elimination of small components of Dirac spinors, Breit projection operators. Chapter 4 is devoted to scattering theory and the description of relativistic bound states. Chapter 5, finally, covers hyperfine interactions and radiative corrections. As we said above, relativistic quantum mechanics is by nature limited in scope and rather inelegant and Pilkuhn's book is no exception. The notation is often heavy (mostly noncovariant) and the mathematical level rather low. The central topic
Hermeneutics, Underdetermination and Quantum Mechanics.
ERIC Educational Resources Information Center
Cushing, James T.
1995-01-01
States that the existence of an essential underdetermination in the interpretation of the formalism of quantum mechanics, in spite of the widespread belief that logic and empirical considerations alone demand an indeterministic world view in physics, legitimizes the analysis of hermeneutics in science education. (LZ)
The Bogoliubov-de Gennes system, the AKNS hierarchy, and nonlinear quantum mechanical supersymmetry
Correa, Francisco; Dunne, Gerald V.; Plyushchay, Mikhail S.
2009-12-15
We show that the Ginzburg-Landau expansion of the grand potential for the Bogoliubov-de Gennes Hamiltonian is determined by the integrable nonlinear equations of the AKNS hierarchy, and that this provides the natural mathematical framework for a hidden nonlinear quantum mechanical supersymmetry underlying the dynamics.
Effective equations for the quantum pendulum from momentous quantum mechanics
Hernandez, Hector H.; Chacon-Acosta, Guillermo
2012-08-24
In this work we study the quantum pendulum within the framework of momentous quantum mechanics. This description replaces the Schroedinger equation for the quantum evolution of the system with an infinite set of classical equations for expectation values of configuration variables, and quantum dispersions. We solve numerically the effective equations up to the second order, and describe its evolution.
NASA Astrophysics Data System (ADS)
Lisitsyn, Ya. V.; Shapovalov, A. V.
1998-05-01
A study is made of the possibility of reducing quantum analogs of Hamiltonian systems to Lie algebras. The procedure of reducing classical systems to orbits in a coadjoint representation based on Lie algebra is well-known. An analog of this procedure for quantum systems described by linear differential equations (LDEs) in partial derivatives is proposed here on the basis of the method of noncommutative integration of LDEs. As an example illustrating the procedure, an examination is made of nontrivial systems that cannot be integrated by separation of variables: the Gryachev-Chaplygin hydrostat and the Kovalevskii gyroscope. In both cases, the problem is reduced to a system with a smaller number of variables.
Observation of Quantum Interference between Separated Mechanical Oscillator Wave Packets.
Kienzler, D; Flühmann, C; Negnevitsky, V; Lo, H-Y; Marinelli, M; Nadlinger, D; Home, J P
2016-04-01
We directly observe the quantum interference between two well-separated trapped-ion mechanical oscillator wave packets. The superposed state is created from a spin-motion entangled state using a heralded measurement. Wave packet interference is observed through the energy eigenstate populations. We reconstruct the Wigner function of these states by introducing probe Hamiltonians which measure Fock state populations in displaced and squeezed bases. Squeezed-basis measurements with 8 dB squeezing allow the measurement of interference for Δα=15.6, corresponding to a distance of 240 nm between the two superposed wave packets. PMID:27104686
Observation of Quantum Interference between Separated Mechanical Oscillator Wave Packets
NASA Astrophysics Data System (ADS)
Kienzler, D.; Flühmann, C.; Negnevitsky, V.; Lo, H.-Y.; Marinelli, M.; Nadlinger, D.; Home, J. P.
2016-04-01
We directly observe the quantum interference between two well-separated trapped-ion mechanical oscillator wave packets. The superposed state is created from a spin-motion entangled state using a heralded measurement. Wave packet interference is observed through the energy eigenstate populations. We reconstruct the Wigner function of these states by introducing probe Hamiltonians which measure Fock state populations in displaced and squeezed bases. Squeezed-basis measurements with 8 dB squeezing allow the measurement of interference for Δ α =15.6 , corresponding to a distance of 240 nm between the two superposed wave packets.
Action with Acceleration i: Euclidean Hamiltonian and Path Integral
NASA Astrophysics Data System (ADS)
Baaquie, Belal E.
2013-10-01
An action having an acceleration term in addition to the usual velocity term is analyzed. The quantum mechanical system is directly defined for Euclidean time using the path integral. The Euclidean Hamiltonian is shown to yield the acceleration Lagrangian and the path integral with the correct boundary conditions. Due to the acceleration term, the state space depends on both position and velocity — and hence the Euclidean Hamiltonian depends on two degrees of freedom. The Hamiltonian for the acceleration system is non-Hermitian and can be mapped to a Hermitian Hamiltonian using a similarity transformation; the matrix elements of the similarity transformation are explicitly evaluated.
Quantum mechanics of black holes.
Witten, Edward
2012-08-01
The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely. PMID:22859480
Three-space from quantum mechanics
Chew, G.F.; Stapp, H.P.
1988-08-01
We formulate a discrete quantum-mechanical precursor to spacetime geometry. The objective is to provide the foundation for a quantum mechanics that is rooted exclusively in quantum-mechanical concepts, with all classical features, including the three-dimensional spatial continuum, emerging dynamically.
Quantum Mechanics Beyond Hilbert Space
NASA Astrophysics Data System (ADS)
Antoine, J.-P.
Going Beyond Hilbert Space Why? The Different Formalisms What Does One Obtain? The Mathematical Formalism Rigged Hilbert Spaces Scales and Lattices of Hilbert Spaces Partial Inner Product Spaces Operators on PIP-Spaces Application in Quantum Mechanics: The Fock-Bargmann Representation - Revisited A RHS of Entire Functions A LHS of Entire Functions Around ℑ Application in Scattering Theory RHS: Resonances, Gamow Vectors, Arrow of Time LHS: Integral Equations vs. Complex Scaling Conclusion
Hermeneutics, underdetermination and quantum mechanics
NASA Astrophysics Data System (ADS)
Cushing, James T.
1995-04-01
There exists an essential underdetermination in the interpretation of the formalism of quantum mechanics and this extends even to the question of whether or not physical phenomena at the most fundamental level are irreducibly and ineliminably indeterministic or absolutely deterministic. This is true in spite of the widespread belief that logic and empirical considerations alone demand an indeterministic world view in physics. This lends support to Martin Eger's analysis of a role for hermeneutics in science education.
Quantum mechanics and heat conduction
Bajpai, S.D. ); Mishra, S. )
1991-08-01
One of the fundamental problems in quantum mechanics is to find a solution of Schroedinger equation for different forms of potentials. The object of this paper is to obtain a series solution of a particular one-dimensional, time-dependent Schroedinger equation involving Hermite polynomials. The authors also show a relationship of their particular one-dimensional, time-dependent Schroedinger equation with an equation of heat conduction.
Complementarity in Categorical Quantum Mechanics
NASA Astrophysics Data System (ADS)
Heunen, Chris
2012-07-01
We relate notions of complementarity in three layers of quantum mechanics: (i) von Neumann algebras, (ii) Hilbert spaces, and (iii) orthomodular lattices. Taking a more general categorical perspective of which the above are instances, we consider dagger monoidal kernel categories for (ii), so that (i) become (sub)endohomsets and (iii) become subobject lattices. By developing a `point-free' definition of copyability we link (i) commutative von Neumann subalgebras, (ii) classical structures, and (iii) Boolean subalgebras.
Facets of contextual realism in quantum mechanics
Pan, Alok Kumar; Home, Dipankar
2011-09-23
In recent times, there is an upsurge of interest in demonstrating the quantum contextuality. In this proceedings, we explore the two different forms of arguments that have been used for showing the contextual character of quantum mechanics. First line of study concerns the violations of the noncontextual realist models by quantum mechanics, where second line of study that is qualitatively distinct from the earlier one, demonstrates the contextuality within the formalism of quantum mechanics.
Treating time travel quantum mechanically
NASA Astrophysics Data System (ADS)
Allen, John-Mark A.
2014-10-01
The fact that closed timelike curves (CTCs) are permitted by general relativity raises the question as to how quantum systems behave when time travel to the past occurs. Research into answering this question by utilizing the quantum circuit formalism has given rise to two theories: Deutschian-CTCs (D-CTCs) and "postselected" CTCs (P-CTCs). In this paper the quantum circuit approach is thoroughly reviewed, and the strengths and shortcomings of D-CTCs and P-CTCs are presented in view of their nonlinearity and time-travel paradoxes. In particular, the "equivalent circuit model"—which aims to make equivalent predictions to D-CTCs, while avoiding some of the difficulties of the original theory—is shown to contain errors. The discussion of D-CTCs and P-CTCs is used to motivate an analysis of the features one might require of a theory of quantum time travel, following which two overlapping classes of alternate theories are identified. One such theory, the theory of "transition probability" CTCs (T-CTCs), is fully developed. The theory of T-CTCs is shown not to have certain undesirable features—such as time-travel paradoxes, the ability to distinguish nonorthogonal states with certainty, and the ability to clone or delete arbitrary pure states—that are present with D-CTCs and P-CTCs. The problems with nonlinear extensions to quantum mechanics are discussed in relation to the interpretation of these theories, and the physical motivations of all three theories are discussed and compared.
BOOK REVIEWS: Quantum Mechanics: Fundamentals
NASA Astrophysics Data System (ADS)
Whitaker, A.
2004-02-01
This review is of three books, all published by Springer, all on quantum theory at a level above introductory, but very different in content, style and intended audience. That of Gottfried and Yan is of exceptional interest, historical and otherwise. It is a second edition of Gottfried’s well-known book published by Benjamin in 1966. This was written as a text for a graduate quantum mechanics course, and has become one of the most used and respected accounts of quantum theory, at a level mathematically respectable but not rigorous. Quantum mechanics was already solidly established by 1966, but this second edition gives an indication of progress made and changes in perspective over the last thirty-five years, and also recognises the very substantial increase in knowledge of quantum theory obtained at the undergraduate level. Topics absent from the first edition but included in the second include the Feynman path integral, seen in 1966 as an imaginative but not very useful formulation of quantum theory. Feynman methods were given only a cursory mention by Gottfried. Their practical importance has now been fully recognised, and a substantial account of them is provided in the new book. Other new topics include semiclassical quantum mechanics, motion in a magnetic field, the S matrix and inelastic collisions, radiation and scattering of light, identical particle systems and the Dirac equation. A topic that was all but totally neglected in 1966, but which has flourished increasingly since, is that of the foundations of quantum theory. John Bell’s work of the mid-1960s has led to genuine theoretical and experimental achievement, which has facilitated the development of quantum optics and quantum information theory. Gottfried’s 1966 book played a modest part in this development. When Bell became increasingly irritated with the standard theoretical approach to quantum measurement, Viki Weisskopf repeatedly directed him to Gottfried’s book. Gottfried had devoted a
Quantum Hamiltonians with Weak Random Abstract Perturbation. I. Initial Length Scale Estimate
NASA Astrophysics Data System (ADS)
Borisov, Denis; Golovina, Anastasia; Veselić, Ivan
2016-09-01
We study random Hamiltonians on finite-size cubes and waveguide segments of increasing diameter. The number of random parameters determining the operator is proportional to the volume of the cube. In the asymptotic regime where the cube size, and consequently the number of parameters as well, tends to infinity, we derive deterministic and probabilistic variational bounds on the lowest eigenvalue, i.e. the spectral minimum, as well as exponential off-diagonal decay of the Green function at energies above, but close to the overall spectral bottom.
Teaching Quantum Mechanics on an Introductory Level.
ERIC Educational Resources Information Center
Muller, Rainer; Wiesner, Hartmut
2002-01-01
Presents a new research-based course on quantum mechanics in which the conceptual issues of quantum mechanics are taught at an introductory level. Involves students in the discovery of how quantum phenomena deviate from classical everyday experiences. (Contains 31 references.) (Author/YDS)
Quantum Mechanical Observers and Time Reparametrization Symmetry
NASA Astrophysics Data System (ADS)
Konishi, Eiji
2012-07-01
We propose that the degree of freedom of measurement by quantum mechanical observers originates in the Goldstone mode of the spontaneously broken time reparametrization symmetry. Based on the classification of quantum states by their nonunitary temporal behavior as seen in the measurement processes, we describe the concepts of the quantum mechanical observers via the time reparametrization symmetry.
Deformation of supersymmetric and conformal quantum mechanics through affine transformations
NASA Technical Reports Server (NTRS)
Spiridonov, Vyacheslav
1993-01-01
Affine transformations (dilatations and translations) are used to define a deformation of one-dimensional N = 2 supersymmetric quantum mechanics. Resulting physical systems do not have conserved charges and degeneracies in the spectra. Instead, superpartner Hamiltonians are q-isospectral, i.e. the spectrum of one can be obtained from another (with possible exception of the lowest level) by q(sup 2)-factor scaling. This construction allows easily to rederive a special self-similar potential found by Shabat and to show that for the latter a q-deformed harmonic oscillator algebra of Biedenharn and Macfarlane serves as the spectrum generating algebra. A general class of potentials related to the quantum conformal algebra su(sub q)(1,1) is described. Further possibilities for q-deformation of known solvable potentials are outlined.
Unified theory of exactly and quasiexactly solvable ''discrete'' quantum mechanics. I. Formalism
Odake, Satoru; Sasaki, Ryu
2010-08-15
We present a simple recipe to construct exactly and quasiexactly solvable Hamiltonians in one-dimensional ''discrete'' quantum mechanics, in which the Schroedinger equation is a difference equation. It reproduces all the known ones whose eigenfunctions consist of the Askey scheme of hypergeometric orthogonal polynomials of a continuous or a discrete variable. The recipe also predicts several new ones. An essential role is played by the sinusoidal coordinate, which generates the closure relation and the Askey-Wilson algebra together with the Hamiltonian. The relationship between the closure relation and the Askey-Wilson algebra is clarified.
Quantum mechanical light harvesting mechanisms in photosynthesis
NASA Astrophysics Data System (ADS)
Scholes, Gregory
2012-02-01
More than 10 million billion photons of light strike a leaf each second. Incredibly, almost every red-coloured photon is captured by chlorophyll pigments and initiates steps to plant growth. Last year we reported that marine algae use quantum mechanics in order to optimize photosynthesis [1], a process essential to its survival. These and other insights from the natural world promise to revolutionize our ability to harness the power of the sun. In a recent review [2] we described the principles learned from studies of various natural antenna complexes and suggested how to utilize that knowledge to shape future technologies. We forecast the need to develop ways to direct and regulate excitation energy flow using molecular organizations that facilitate feedback and control--not easy given that the energy is only stored for a billionth of a second. In this presentation I will describe new results that explain the observation and meaning of quantum-coherent energy transfer. [4pt] [1] Elisabetta Collini, Cathy Y. Wong, Krystyna E. Wilk, Paul M. G. Curmi, Paul Brumer, and Gregory D. Scholes, ``Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature'' Nature 463, 644-648 (2010).[0pt] [2] Gregory D. Scholes, Graham R. Fleming, Alexandra Olaya-Castro and Rienk van Grondelle, ``Lessons from nature about solar light harvesting'' Nature Chem. 3, 763-774 (2011).
Quantum damped oscillator II: Bateman's Hamiltonian vs. 2D parabolic potential barrier
Chruscinski, Dariusz . E-mail: darch@phys.uni.torun.pl
2006-04-15
We show that quantum Bateman's system which arises in the quantization of a damped harmonic oscillator is equivalent to a quantum problem with 2D parabolic potential barrier known also as 2D inverted isotropic oscillator. It turns out that this system displays the family of complex eigenvalues corresponding to the poles of analytical continuation of the resolvent operator to the complex energy plane. It is shown that this representation is more suitable than the hyperbolic one used recently by Blasone and Jizba.
Light-Front Hamiltonian Approach to the Bound-State Problem in Quantum Electrodynamics
NASA Astrophysics Data System (ADS)
Jones, Billy D.
1997-10-01
Why is the study of the Lamb shift in hydrogen, which at the level of detail found in this paper was largely completed by Bethe in 1947, of any real interest today? While completing such a calculation using new techniques may be very interesting for formal and academic reasons, our primary motivation is to lay groundwork for precision bound-state calculations in QCD. The Lamb shift provides an excellent pedagogical tool for illustrating light-front Hamiltonian techniques, which are not widely known; but more importantly it presents three of the central dynamical and computational problems that we must face to make these techniques useful for solving QCD: How does a constituent picture emerge in a gauge field theory? How do bound-state energy scales emerge non-perturbatively? How does rotational symmetry emerge in a non-perturbative light-front calculation?
Quantum mechanics in complex systems
NASA Astrophysics Data System (ADS)
Hoehn, Ross Douglas
This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown
Mechanism for quantum speedup in open quantum systems
NASA Astrophysics Data System (ADS)
Liu, Hai-Bin; Yang, W. L.; An, Jun-Hong; Xu, Zhen-Yu
2016-02-01
The quantum speed limit (QSL) time for open system characterizes the most efficient response of the system to the environmental influences. Previous results showed that the non-Markovianity governs the quantum speedup. Via studying the dynamics of a dissipative two-level system, we reveal that the non-Markovian effect is only the dynamical way of the quantum speedup, while the formation of the system-environment bound states is the essential reason for the quantum speedup. Our attribution of the quantum speedup to the energy-spectrum character can supply another vital path for experiments when the quantum speedup shows up without any dynamical calculations. The potential experimental observation of our quantum speedup mechanism in the circuit QED system is discussed. Our results may be of both theoretical and experimental interest in exploring the ultimate QSL in realistic environments, and may open new perspectives for devising active quantum speedup devices.
Balondo Iyela, Daddy; Govaerts, Jan; Hounkonnou, M. Norbert
2013-09-15
Within the context of supersymmetric quantum mechanics and its related hierarchies of integrable quantum Hamiltonians and potentials, a general programme is outlined and applied to its first two simplest illustrations. Going beyond the usual restriction of shape invariance for intertwined potentials, it is suggested to require a similar relation for Hamiltonians in the hierarchy separated by an arbitrary number of levels, N. By requiring further that these two Hamiltonians be in fact identical up to an overall shift in energy, a periodic structure is installed in the hierarchy which should allow for its resolution. Specific classes of orthogonal polynomials characteristic of such periodic hierarchies are thereby generated, while the methods of supersymmetric quantum mechanics then lead to generalised Rodrigues formulae and recursion relations for such polynomials. The approach also offers the practical prospect of quantum modelling through the engineering of quantum potentials from experimental energy spectra. In this paper, these ideas are presented and solved explicitly for the cases N= 1 and N= 2. The latter case is related to the generalised Laguerre polynomials, for which indeed new results are thereby obtained. In the context of dressing chains and deformed polynomial Heisenberg algebras, some partial results for N⩾ 3 also exist in the literature, which should be relevant to a complete study of the N⩾ 3 general periodic hierarchies.
Quantum squeezing of a mechanical resonator
NASA Astrophysics Data System (ADS)
Lei, Chan U.; Weinstein, Aaron; Suh, Junho; Wollman, Emma; Schwab, Keith
Generating nonclassical states of a macroscopic object has been a subject of considerable interest. It offers a route toward fundamental test of quantum mechanics in an unexplored regime. However, a macroscopic quantum state is very susceptible to decoherence due to the environment. One way to generate robust quantum states is quantum reservoir engineering. In this work, we utilize the reservoir engineering scheme developed by Kronwald et al. to generate a steady quantum squeezed state of a micron-scale mechanical oscillator in an electromechanical system. Together with the backaction evading measurement technique, we demonstrate a quantum nondemolition measurement of the mechanical quadratures to characterize the quantum squeezed state. By measuring the quadrature variances of the mechanical motion, more than 3dB squeezing below the zero-point level has been achieved.
Heisenberg and the Interpretation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Camilleri, Kristian
2009-02-01
Preface; 1. Introduction; Part I. The Emergence of Quantum Mechanics: 2. Quantum mechanics and the principle of observability; 3. The problem of interpretation; Part II. The Heisenberg-Bohr Dialogue: 4. The wave-particle duality; 5. Indeterminacy and the limits of classical concepts: the turning point in Heisenberg's thought; 6. Heisenberg and Bohr: divergent viewpoints of complementarity; Part III. Heisenberg's Epistemology and Ontology of Quantum Mechanics: 7. The transformation of Kantian philosophy; 8. The linguistic turn in Heisenberg's thought; Conclusion; References; Index.
Heisenberg and the Interpretation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Camilleri, Kristian
2011-09-01
Preface; 1. Introduction; Part I. The Emergence of Quantum Mechanics: 2. Quantum mechanics and the principle of observability; 3. The problem of interpretation; Part II. The Heisenberg-Bohr Dialogue: 4. The wave-particle duality; 5. Indeterminacy and the limits of classical concepts: the turning point in Heisenberg's thought; 6. Heisenberg and Bohr: divergent viewpoints of complementarity; Part III. Heisenberg's Epistemology and Ontology of Quantum Mechanics: 7. The transformation of Kantian philosophy; 8. The linguistic turn in Heisenberg's thought; Conclusion; References; Index.
Speakable and Unspeakable in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Bell, J. S.; Aspect, Introduction by Alain
2004-06-01
List of papers on quantum philosophy by J. S. Bell; Preface; Acknowledgements; Introduction by Alain Aspect; 1. On the problem of hidden variables in quantum mechanics; 2. On the Einstein-Rosen-Podolsky paradox; 3. The moral aspects of quantum mechanics; 4. Introduction to the hidden-variable question; 5. Subject and object; 6. On wave packet reduction in the Coleman-Hepp model; 7. The theory of local beables; 8. Locality in quantum mechanics: reply to critics; 9. How to teach special relativity; 10. Einstein-Podolsky-Rosen experiments; 11. The measurement theory of Everett and de Broglie's pilot wave; 12. Free variables and local causality; 13. Atomic-cascade photons and quantum-mechanical nonlocality; 14. de Broglie-Bohm delayed choice double-slit experiments and density matrix; 15. Quantum mechanics for cosmologists; 16. Bertlmann's socks and the nature of reality; 17. On the impossible pilot wave; 18. Speakable and unspeakable in quantum mechanics; 19. Beables for quantum field theory; 20. Six possible worlds of quantum mechanics; 21. EPR correlations and EPR distributions; 22. Are there quantum jumps?; 23. Against 'measurement'; 24. La Nouvelle cuisine.
NASA Astrophysics Data System (ADS)
Oss, Stefano; Rosi, Tommaso
2015-04-01
We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many reasons why quantum mechanical systems and phenomena are difficult both to teach and deeply understand. They are described by equations that are generally hard to visualize, and they often oppose the so-called "common sense" based on the human perception of the world, which is built on mental images such as locality and causality. Moreover students cannot have direct experience of those systems and solutions, and generally do not even have the possibility to refer to pictures, videos, or experiments to fill this gap. Teachers often encounter quite serious troubles in finding out a sensible way to speak about the wonders of quantum physics at the high school level, where complex formalisms are not accessible at all. One should however consider that this is quite a common issue in physics and, more generally, in science education. There are plenty of natural phenomena whose models (not only at microscopic and atomic levels) are of difficult, if not impossible, visualization. Just think of certain kinds of waves, fields of forces, velocities, energy, angular momentum, and so on. One should also notice that physical reality is not the same as the images we make of it. Pictures (formal, abstract ones, as well as artists' views) are a convenient bridge between these two aspects.
BOOK REVIEWS: Quantum Mechanics: Fundamentals
NASA Astrophysics Data System (ADS)
Whitaker, A.
2004-02-01
This review is of three books, all published by Springer, all on quantum theory at a level above introductory, but very different in content, style and intended audience. That of Gottfried and Yan is of exceptional interest, historical and otherwise. It is a second edition of Gottfried’s well-known book published by Benjamin in 1966. This was written as a text for a graduate quantum mechanics course, and has become one of the most used and respected accounts of quantum theory, at a level mathematically respectable but not rigorous. Quantum mechanics was already solidly established by 1966, but this second edition gives an indication of progress made and changes in perspective over the last thirty-five years, and also recognises the very substantial increase in knowledge of quantum theory obtained at the undergraduate level. Topics absent from the first edition but included in the second include the Feynman path integral, seen in 1966 as an imaginative but not very useful formulation of quantum theory. Feynman methods were given only a cursory mention by Gottfried. Their practical importance has now been fully recognised, and a substantial account of them is provided in the new book. Other new topics include semiclassical quantum mechanics, motion in a magnetic field, the S matrix and inelastic collisions, radiation and scattering of light, identical particle systems and the Dirac equation. A topic that was all but totally neglected in 1966, but which has flourished increasingly since, is that of the foundations of quantum theory. John Bell’s work of the mid-1960s has led to genuine theoretical and experimental achievement, which has facilitated the development of quantum optics and quantum information theory. Gottfried’s 1966 book played a modest part in this development. When Bell became increasingly irritated with the standard theoretical approach to quantum measurement, Viki Weisskopf repeatedly directed him to Gottfried’s book. Gottfried had devoted a
Quantum mechanics without potential function
Alhaidari, A. D.; Ismail, M. E. H.
2015-07-15
In the standard formulation of quantum mechanics, one starts by proposing a potential function that models the physical system. The potential is then inserted into the Schrödinger equation, which is solved for the wavefunction, bound states energy spectrum, and/or scattering phase shift. In this work, however, we propose an alternative formulation in which the potential function does not appear. The aim is to obtain a set of analytically realizable systems, which is larger than in the standard formulation and may or may not be associated with any given or previously known potential functions. We start with the wavefunction, which is written as a bounded infinite sum of elements of a complete basis with polynomial coefficients that are orthogonal on an appropriate domain in the energy space. Using the asymptotic properties of these polynomials, we obtain the scattering phase shift, bound states, and resonances. This formulation enables one to handle not only the well-known quantum systems but also previously untreated ones. Illustrative examples are given for two- and three-parameter systems.
NASA Astrophysics Data System (ADS)
Baykara, N. A.
2015-12-01
Recent studies on quantum evolutionary problems in Demiralp's group have arrived at a stage where the construction of an expectation value formula for a given algebraic function operator depending on only position operator becomes possible. It has also been shown that this formula turns into an algebraic recursion amongst some finite number of consecutive elements in a set of expectation values of an appropriately chosen basis set over the natural number powers of the position operator as long as the function under consideration and the system Hamiltonian are both autonomous. This recursion corresponds to a denumerable infinite number of algebraic equations whose solutions can or can not be obtained analytically. This idea is not completely original. There are many recursive relations amongst the expectation values of the natural number powers of position operator. However, those recursions may not be always efficient to get the system energy values and especially the eigenstate wavefunctions. The present approach is somehow improved and generalized form of those expansions. We focus on this issue for a specific system where the Hamiltonian is defined on the coordinate of a curved space instead of the Cartesian one.
Baykara, N. A.
2015-12-31
Recent studies on quantum evolutionary problems in Demiralp’s group have arrived at a stage where the construction of an expectation value formula for a given algebraic function operator depending on only position operator becomes possible. It has also been shown that this formula turns into an algebraic recursion amongst some finite number of consecutive elements in a set of expectation values of an appropriately chosen basis set over the natural number powers of the position operator as long as the function under consideration and the system Hamiltonian are both autonomous. This recursion corresponds to a denumerable infinite number of algebraic equations whose solutions can or can not be obtained analytically. This idea is not completely original. There are many recursive relations amongst the expectation values of the natural number powers of position operator. However, those recursions may not be always efficient to get the system energy values and especially the eigenstate wavefunctions. The present approach is somehow improved and generalized form of those expansions. We focus on this issue for a specific system where the Hamiltonian is defined on the coordinate of a curved space instead of the Cartesian one.
Quantum mechanical reality according to Copenhagen 2.0
NASA Astrophysics Data System (ADS)
Din, Allan M.
2016-05-01
The long-standing conceptual controversies concerning the interpretation of nonrelativistic quantum mechanics are argued, on one hand, to be due to its incompleteness, as affirmed by Einstein. But on the other hand, it appears to be possible to complete it at least partially, as Bohr might have appreciated it, in the framework of its standard mathematical formalism with observables as appropriately defined self-adjoint operators. This completion of quantum mechanics is based on the requirement on laboratory physics to be effectively confined to a bounded space region and on the application of the von Neumann deficiency theorem to properly define a set of self-adjoint extensions of standard observables, e.g. the momenta and the Hamiltonian, in terms of certain isometries on the region boundary. This is formalized mathematically in the setting of a boundary ontology for the so-called Qbox in which the wave function acquires a supplementary dependence on a set of Additional Boundary Variables (ABV). It is argued that a certain geometric subset of the ABV parametrizing Quasi-Periodic Translational Isometries (QPTI) has a particular physical importance by allowing for the definition of an ontic wave function, which has the property of epitomizing the spatial wave function “collapse.” Concomitantly the standard wave function in an unbounded geometry is interpreted as an epistemic wave function, which together with the ontic QPTI wave function gives rise to the notion of two-wave duality, replacing the standard concept of wave-particle duality. More generally, this approach to quantum physics in a bounded geometry provides a novel analytical basis for a better understanding of several conceptual notions of quantum mechanics, including reality, nonlocality, entanglement and Heisenberg’s uncertainty relation. The scope of this analysis may be seen as a foundational update of the multiple versions 1.x of the Copenhagen interpretation of quantum mechanics, which is
The Measurement Problem in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Ogawa, Shuzo
2001-02-01
Since the establishment of quantum mechanics in the 20s of this century, the controversial discussions 1 have ever continued about its basis, that is the measurement problem of quantum mechanics. Strangely those discussions are prevailed mainly in the circle of theoretical group, while the experimental physicists who are directly concerned with the measurement, indifferently to the discussion have performed their study works, showing firmly the validity of quantum theory. This curious affair seems to be stemmed from the situation that the discussions overlooked by basing on what quantum theoretic ground the experimental equipments are installed, its sure operations are examined and the obtained results are explained, etc. In this talk 2 we shall aim to make clear the relation between the experiment and the structure of quantum mechanics, and to present some epistemological considerations on the quantum mechanics.
Thermodynamic integration from classical to quantum mechanics
Habershon, Scott; Manolopoulos, David E.
2011-12-14
We present a new method for calculating quantum mechanical corrections to classical free energies, based on thermodynamic integration from classical to quantum mechanics. In contrast to previous methods, our method is numerically stable even in the presence of strong quantum delocalization. We first illustrate the method and its relationship to a well-established method with an analysis of a one-dimensional harmonic oscillator. We then show that our method can be used to calculate the quantum mechanical contributions to the free energies of ice and water for a flexible water model, a problem for which the established method is unstable.
Quantum mechanics in complex systems
NASA Astrophysics Data System (ADS)
Hoehn, Ross Douglas
This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown
Bridging coupled wires and lattice Hamiltonian for two-component bosonic quantum Hall states
NASA Astrophysics Data System (ADS)
Fuji, Yohei; He, Yin-Chen; Bhattacharjee, Subhro; Pollmann, Frank
2016-05-01
We investigate a model of hard-core bosons with correlated hopping on the honeycomb lattice in an external magnetic field by means of a coupled-wire approach. It has been numerically shown that this model exhibits at half filling the bosonic integer quantum Hall (BIQH) state, which is a symmetry-protected topological phase protected by the U (1 ) particle conservation [Y.-C. He et al., Phys. Rev. Lett. 115, 116803 (2015), 10.1103/PhysRevLett.115.116803]. By combining the bosonization approach and a coupled-wire construction, we analytically confirm this finding and show that it even holds in the strongly anisotropic (quasi-one-dimensional) limit. We discuss the stability of the BIQH phase against tunnelings that break the separate particle conservations on different sublattices down to a global particle conservation. We further argue that a phase transition between two different BIQH phases is in a deconfined quantum critical point described by two copies of the (2 +1 ) -dimensional O (4 ) nonlinear sigma model with the topological θ term at θ =π . Finally, we predict a possible fractional quantum Hall state, the Halperin (221 ) state, at 1 /6 filling.
Quantum Mechanics with a Little Less Mystery
ERIC Educational Resources Information Center
Cropper, William H.
1969-01-01
Suggests the "route of the inquiring mind in presenting the esoteric quantum mechanical postulates and concepts in an understandable form. Explains that the quantum mechanical postulates are but useful mathematical forms to express thebroader principles of superposition and correspondence. Briefly describes some of the features which makes the…
Relativity of representations in quantum mechanics
NASA Astrophysics Data System (ADS)
de la Torre, A. C.
2002-03-01
Only the position representation is used in introductory quantum mechanics and the momentum representation is not usually presented until advanced undergraduate courses. To emphasize the relativity of the representations of the abstract formulation of quantum mechanics, two examples of representations related to the operators αX+(1-α)P and 1/2(XP+PX) are presented.
Quantum mechanics of open systems
NASA Astrophysics Data System (ADS)
Melikidze, Akakii
In quantum mechanics, there is a set of problems where the system of interest interacts with another system, usually called "environment". This interaction leads to the exchange of energy and information and makes the dynamics of the system of interest essentially non-unitary. Such problems often appeared in condensed matter physics and attracted much attention after recent advances in nanotechnology. As broadly posed as they are, these problems require a variety of different approaches. This thesis is an attempt to examine several of these approaches in applications to different condensed matter problems. The first problem concerns the so-called "Master equation" approach which is very popular in quantum optics. I show that analytic properties of environmental correlators lead to strong restrictions on the applicability of the approach to the strong-coupling regime of interest in condensed matter physics. In the second problem, I use path integrals to treat the localization of particles on attractive short-range potentials when the environment produces an effective viscous friction force. I find that friction changes drastically the localization properties and leads to much stronger localization in comparison to the non-dissipative case. This has implications for the motion of heavy particles in fermionic liquids and, as will be argued below, is also relevant to the problem of high-temperature superconductivity. Finally, the third problem deals with the interplay of geometric phases and energy dissipation which occurs in the motion of vortices in superconductors. It is shown that this interplay leads to interesting predictions for vortex tunneling in high-temperature superconductors which have been partially confirmed by experiments.
Polymer quantum mechanics and its continuum limit
Corichi, Alejandro; Vukasinac, Tatjana; Zapata, Jose A.
2007-08-15
A rather nonstandard quantum representation of the canonical commutation relations of quantum mechanics systems, known as the polymer representation, has gained some attention in recent years, due to its possible relation with Planck scale physics. In particular, this approach has been followed in a symmetric sector of loop quantum gravity known as loop quantum cosmology. Here we explore different aspects of the relation between the ordinary Schroedinger theory and the polymer description. The paper has two parts. In the first one, we derive the polymer quantum mechanics starting from the ordinary Schroedinger theory and show that the polymer description arises as an appropriate limit. In the second part we consider the continuum limit of this theory, namely, the reverse process in which one starts from the discrete theory and tries to recover back the ordinary Schroedinger quantum mechanics. We consider several examples of interest, including the harmonic oscillator, the free particle, and a simple cosmological model.
Improving students' understanding of quantum mechanics
NASA Astrophysics Data System (ADS)
Zhu, Guangtian
2011-12-01
Learning physics is challenging at all levels. Students' difficulties in the introductory level physics courses have been widely studied and many instructional strategies have been developed to help students learn introductory physics. However, research shows that there is a large diversity in students' preparation and skills in the upper-level physics courses and it is necessary to provide scaffolding support to help students learn advanced physics. This thesis explores issues related to students' common difficulties in learning upper-level undergraduate quantum mechanics and how these difficulties can be reduced by research-based learning tutorials and peer instruction tools. We investigated students' difficulties in learning quantum mechanics by administering written tests and surveys to many classes and conducting individual interviews with a subset of students. Based on these investigations, we developed Quantum Interactive Learning Tutorials (QuILTs) and peer instruction tools to help students build a hierarchical knowledge structure of quantum mechanics through a guided approach. Preliminary assessments indicate that students' understanding of quantum mechanics is improved after using the research-based learning tools in the junior-senior level quantum mechanics courses. We also designed a standardized conceptual survey that can help instructors better probe students' understanding of quantum mechanics concepts in one spatial dimension. The validity and reliability of this quantum mechanics survey is discussed.
Comment on ``Adiabatic quantum computation with a one-dimensional projector Hamiltonian''
NASA Astrophysics Data System (ADS)
Kay, Alastair
2013-10-01
The partial adiabatic search algorithm was introduced in Tulsi's paper [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.80.052328 80, 052328 (2009)] as a modification of the usual adiabatic algorithm for a quantum search with the idea that most of the interesting computation only happens over a very short range of the adiabatic path. By focusing on that restricted range, one can potentially gain an advantage by reducing the control requirements on the system, enabling a uniform rate of evolution. In this Comment, we point out an oversight in Tulsi's paper [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.80.052328 80, 052328 (2009)] that invalidates its proof. However, the argument can be corrected, and the calculations in Tulsi's paper [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.80.052328 80, 052328 (2009)] are then sufficient to show that the scheme still works. Nevertheless, subsequent works [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.034304 82, 034304 (2010), Chin. Phys. BCPBHAJ1674-105610.1088/1674-1056/20/4/040309 20, 040309 (2011), Chin. Phys. BCPBHAJ1674-105610.1088/1674-1056/21/1/010306 21, 010306 (2012), AASRI Procedia 1, 5862 (2012), and Quantum Inf. Process.10.1007/s11128-013-0557-1 12, 2689 (2013)] cannot all be recovered in the same way.
Realist model approach to quantum mechanics
NASA Astrophysics Data System (ADS)
Hájíček, P.
2013-06-01
The paper proves that quantum mechanics is compatible with the constructive realism of modern philosophy of science. The proof is based on the observation that properties of quantum systems that are uniquely determined by their preparations can be assumed objective without the difficulties that are encountered by the same assumption about values of observables. The resulting realist interpretation of quantum mechanics is made rigorous by studying the space of quantum states—the convex set of state operators. Prepared states are classified according to their statistical structure into indecomposable and decomposable instead of pure and mixed. Simple objective properties are defined and showed to form a Boolean lattice.
Dynamical supersymmetric Dirac Hamiltonians
Ginocchio, J.N.
1986-01-01
Using the language of quantum electrodynamics, the Dirac Hamiltonian of a neutral fermion interacting with a tensor field is examined. A supersymmetry found for a general Dirac Hamiltonian of this type is discussed, followed by consideration of the special case of a harmonic electric potential. The square of the Dirac Hamiltonian of a neutral fermion interacting via an anomalous magnetic moment in an electric potential is shown to be equivalent to a three-dimensional supersymmetric Schroedinger equation. It is found that for a potential that grows as a power of r, the lowest energy of the Hamiltonian equals the rest mass of the fermion, and the Dirac eigenfunction has only an upper component which is normalizable. It is also found that the higher energy states have upper and lower components which form a supersymmetric doublet. 15 refs. (LEW)
Quantum Mechanical Models Of The Fermi Shuttle
Sternberg, James
2011-06-01
The Fermi shuttle is a mechanism in which high energy electrons are produced in an atomic collision by multiple collisions with a target and a projectile atom. It is normally explained purely classically in terms of the electron's orbits prescribed in the collision. Common calculations to predict the Fermi shuttle use semi-classical methods, but these methods still rely on classical orbits. In reality such collisions belong to the realm of quantum mechanics, however. In this paper we discuss several purely quantum mechanical calculations which can produce the Fermi shuttle. Being quantum mechanical in nature, these calculations produce these features by wave interference, rather than by classical orbits.
Quantum mechanics from Newton's second law and the canonical commutation relation [X, P] = i
NASA Astrophysics Data System (ADS)
Palenik, Mark C.
2014-07-01
Despite the fact that it has been known since the time of Heisenberg that quantum operators obey a quantum version of Newton's laws, students are often told that derivations of quantum mechanics must necessarily follow from the Hamiltonian or Lagrangian formulations of mechanics. Here, we first derive the existing Heisenberg equations of motion from Newton's laws and the uncertainty principle using only the equations F=\\frac{dP}{dt}, P=m\\frac{dV}{dt}, and [X, P] = i. Then, a new expression for the propagator is derived that makes a connection between time evolution in quantum mechanics and the motion of a classical particle under Newton's laws. The propagator is solved for three cases where an exact solution is possible: (1) the free particle; (2) the harmonic oscillator; and (3) a constant force, or linear potential in the standard interpretation. We then show that for a general for a general force F(X), by Taylor expanding X(t) in time, we can use this methodology to reproduce the Feynman path integral formula for the propagator. Such a picture may be useful for students as they make the transition from classical to quantum mechanics and help solidify the equivalence of the Hamiltonian, Lagrangian, and Newtonian pictures of physics in their minds.
Relation of quantum control mechanism to landscape structure
NASA Astrophysics Data System (ADS)
Nanduri, Arun; Donovan, Ashley; Ho, Tak-San; Rabitz, Herschel
2014-07-01
The control of quantum dynamics is generally accomplished by seeking a tailored electromagnetic field to meet a posed objective. A particular shaped field can be thought of as specifying a point on a quantum control landscape, which is the objective as a functional of the controls. Optimizing the pulse shape corresponds to climbing the landscape, and previous work showed that the paths taken up the landscapes, guided by a gradient algorithm, are surprisingly straight when projected into the space of control fields. The direct nature of these control trajectories can be quantified by the metric R ≥1, defined as the ratio of the length of the control trajectory to the Euclidean distance between its end points. The prior observation of often finding low values of R implies that the landscapes are structurally simple. In this work, we investigate whether there is a relationship between the intricacy of the control mechanism and the complexity of the trajectory taken through the control space reflected in the value of R. We use the Hamiltonian encoding procedure to identify the mechanism, and we examine control of the state-to-state transition probability. No significant correlation is found between the landscape structure, reflected in the value of R, and the control mechanism. This result has algorithmic implications, opening up the prospect of seeking fields producing particular mechanisms at little penalty in the search effort due to encountering complex landscape structure.
Quantum Transport in Crystals: Effective Mass Theorem and K·P Hamiltonians
NASA Astrophysics Data System (ADS)
Barletti, Luigi; Ben Abdallah, Naoufel
2011-11-01
In this paper the effective mass approximation and the k·p multi-band models, describing quantum evolution of electrons in a crystal lattice, are discussed. Electrons are assumed to move in both a periodic potential and a macroscopic one. The typical period {ɛ} of the periodic potential is assumed to be very small, while the macroscopic potential acts on a much bigger length scale. Such homogenization asymptotic is investigated by using the envelope-function decomposition of the electron wave function. If the external potential is smooth enough, the k·p and effective mass models, well known in solid-state physics, are proved to be close (in the strong sense) to the exact dynamics. Moreover, the position density of the electrons is proved to converge weakly to its effective mass approximation.
Causal structure in categorical quantum mechanics
NASA Astrophysics Data System (ADS)
Lal, Raymond Ashwin
Categorical quantum mechanics is a way of formalising the structural features of quantum theory using category theory. It uses compound systems as the primitive notion, which is formalised by using symmetric monoidal categories. This leads to an elegant formalism for describing quantum protocols such as quantum teleportation. In particular, categorical quantum mechanics provides a graphical calculus that exposes the information flow of such protocols in an intuitive way. However, the graphical calculus also reveals surprising features of these protocols; for example, in the quantum teleportation protocol, information appears to flow `backwards-in-time'. This leads to question of how causal structure can be described within categorical quantum mechanics, and how this might lead to insight regarding the structural compatibility between quantum theory and relativity. This thesis is concerned with the project of formalising causal structure in categorical quantum mechanics. We begin by studying an abstract view of Bell-type experiments, as described by `no-signalling boxes', and we show that under time-reversal no-signalling boxes generically become signalling. This conflicts with the underlying symmetry of relativistic causal structure. This leads us to consider the framework of categorical quantum mechanics from the perspective of relativistic causal structure. We derive the properties that a symmetric monoidal category must satisfy in order to describe systems in such a background causal structure. We use these properties to define a new type of category, and this provides a formal framework for describing protocols in spacetime. We explore this new structure, showing how it leads to an understanding of the counter-intuitive information flow of protocols in categorical quantum mechanics. We then find that the formal properties of our new structure are naturally related to axioms for reconstructing quantum theory, and we show how a reconstruction scheme based on
Conservation laws in the quantum mechanics of closed systems
Hartle, J.B. ||; Laflamme, R. |; Marolf, D.
1995-06-15
We investigate conservation laws in the quantum mechanics of closed systems and begin by reviewing an argument that exact decoherence implies the exact conservation of quantities that commute with the Hamiltonian. However, we also show that decoherence limits the alternatives that can be included in sets of histories that assess the conservation of these quantities. In the case of charge and energy, these limitations would be severe were these quantities not coupled to a gauge field. However, for the realistic cases of electric charge coupled to the electromagnetic field and mass coupled to spacetime curvature, we show that when alternative values of charge and mass decohere they always decohere exactly and are exactly conserved. Further, while decohering histories that describe possible changes in time of the total charge and mass are also subject to the limitations mentioned above, we show that these do not, in fact, restrict {ital physical} alternatives and are therefore not really limitations at all.
Ad Hoc Physical Hilbert Spaces in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Fernández, Francisco M.; Garcia, Javier; Semorádová, Iveta; Znojil, Miloslav
2015-12-01
The overall principles of what is now widely known as PT-symmetric quantum mechanics are listed, explained and illustrated via a few examples. In particular, models based on an elementary local interaction V(x) are discussed as motivated by the naturally emergent possibility of an efficient regularization of an otherwise unacceptable presence of a strongly singular repulsive core in the origin. The emphasis is put on the constructive aspects of the models. Besides the overall outline of the formalism we show how the low-lying energies of bound states may be found in closed form in certain dynamical regimes. Finally, once these energies are found real we explain that in spite of a manifest non-Hermiticity of the Hamiltonian the time-evolution of the system becomes unitary in a properly amended physical Hilbert space.
Operational Axioms for Quantum Mechanics
D'Ariano, Giacomo Mauro
2007-02-21
The mathematical formulation of Quantum Mechanics in terms of complex Hilbert space is derived for finite dimensions, starting from a general definition of physical experiment and from five simple Postulates concerning experimental accessibility and simplicity. For the infinite dimensional case, on the other hand, a C*-algebra representation of physical transformations is derived, starting from just four of the five Postulates via a Gelfand-Naimark-Segal (GNS) construction. The present paper simplifies and sharpens the previous derivation in Ref. [1]. The main ingredient of the axiomatization is the postulated existence of faithful states that allows one to calibrate the experimental apparatus. Such notion is at the basis of the operational definitions of the scalar product and of the transposed of a physical transformation. What is new in the present paper with respect to Ref. [1], is the operational deduction of an involution corresponding to the complex-conjugation for effects, whose extension to transformations allows to define the adjoint of a transformation when the extension is composition-preserving. The existence of such composition-preserving extension among possible extensions is analyzed.
New U-matrix theory in quantum mechanics
NASA Astrophysics Data System (ADS)
Lam, C. C.; Fung, P. C. W.
1983-04-01
We have analyzed Dyson's U-matrix theory of solving the Schrödinger equation in the interaction picture and are able to express the U matrix as a dominant term plus an infinite series involving multiple integrals of time. For a certain rather restrictive class of Hamiltonians, our theory is exact for a general time-dependent problem. For other Hamiltonians, we can only obtain approximate expressions for our U matrix and hence the wave function. Treating a time-independent problem as a special case of the time-dependent situation with a sudden-switching process, we have shown that our U matrix is exact. To demonstrate the working procedures of our theory, we apply it to study the well-known time-independent charged harmonic-oscillator problem and the more general harmonic oscillator with a time-dependent driving force. Compared with other methods, our new theory appears to lead to a result which contains more information than others due to the inclusion of noncommutability properties of operators in the operator Schrödinger equation. It has been shown that the classical Feynman path-integral formalism can be deduced from quantum mechanics with the use of the Green's-function operator. It is interesting to note that apart from a step function, the Green's-function operator is the same as that of our U(s) matrix, which is the U matrix obtained within the regime of the Schrödinger picture for a time-independent Hamiltonian, as a special case of our general time-dependent treatment.
``Simplest Molecule'' Clarifies Modern Physics II. Relativistic Quantum Mechanics
NASA Astrophysics Data System (ADS)
Harter, William; Reimer, Tyle
2015-05-01
A ``simplest molecule'' consisting of CW- laser beam pairs helps to clarify relativity from poster board - I. In spite of a seemingly massless evanescence, an optical pair also clarifies classical and quantum mechanics of relativistic matter and antimatter. Logical extension of (x,ct) and (ω,ck) geometry gives relativistic action functions of Hamiltonian, Lagrangian, and Poincare that may be constructed in a few ruler-and-compass steps to relate relativistic parameters for group or phase velocity, momentum, energy, rapidity, stellar aberration, Doppler shifts, and DeBroglie wavelength. This exposes hyperbolic and circular trigonometry as two sides of one coin connected by Legendre contact transforms. One is Hamiltonian-like with a longitudinal rapidity parameter ρ (log of Doppler shift). The other is Lagrange-like with a transverse angle parameter σ (stellar aberration). Optical geometry gives recoil in absorption, emission, and resonant Raman-Compton acceleration and distinguishes Einstein rest mass, Galilean momentum mass, and Newtonian effective mass. (Molecular photons appear less bullet-like and more rocket-like.) In conclusion, modern space-time physics appears as a simple result of the more self-evident Evenson's axiom: ``All colors go c.''
"simplest Molecule" Clarifies Modern Physics II. Relativistic Quantum Mechanics
NASA Astrophysics Data System (ADS)
Reimer, T. C.; Harter, W. G.
2014-06-01
A "simplest molecule" consisting of CW-laser beam pairs helps to clarify relativity in Talk I. In spite of a seemingly massless evanescence, an optical pair also clarifies classical and quantum mechanics of relativistic matter and anti-matter. *Logical extension of (x,ct) and (ω,ck) geometry gives relativistic action functions of Hamiltonian, Lagrangian, and Poincare that may be constructed in a few ruler-and-compass steps to relate relativistic parameters for group or phase velocity, momentum, energy, rapidity, stellar aberration, Doppler shifts, and DeBroglie wavelength. This exposes hyperbolic and circular trigonometry as two sides of one coin connected by Legendre contact transforms. One is Hamiltonian-like with a longitudinal rapidity parameter ρ (log of Doppler shift). The other is Lagrange-like with a transverse angle parameter σ (stellar aberration). Optical geometry gives recoil in absorption, emission, and resonant Raman-Compton acceleration and distinguishes Einstein rest mass, Galilean momentum mass, and Newtonian effective mass. (Molecular photons appear less bullet-like and more rocket-like.) In conclusion, modern space-time physics appears as a simple result of the more self-evident Evenson's axiom: "All colors go c."
Time-dependent {P} {T}-symmetric quantum mechanics
NASA Astrophysics Data System (ADS)
Gong, Jiangbin; Wang, Qing-hai
2013-12-01
The parity-time-reversal ( {P} {T})-symmetric quantum mechanics (QM) (PTQM) has developed into a noteworthy area of research. However, to date, most known studies of PTQM focused on the spectral properties of non-Hermitian Hamiltonian operators. In this work, we propose an axiom in PTQM in order to study general time-dependent problems in PTQM, e.g., those with a time-dependent {P} {T}-symmetric Hamiltonian and with a time-dependent metric. We illuminate our proposal by examining a proper mapping from a time-dependent Schrödinger-like equation of motion for PTQM to the familiar time-dependent Schrödinger equation in conventional QM. The rich structure of the proper mapping hints that time-dependent PTQM can be a fruitful extension of conventional QM. Under our proposed framework, we further study in detail the Berry-phase generation in a class of {P} {T}-symmetric two-level systems. It is found that a closed path in the parameter space of PTQM is often associated with an open path in a properly mapped problem in conventional QM. In one interesting case, we further interpret the Berry phase as the flux of a continuously tunable fictitious magnetic monopole, thus highlighting the difference between PTQM and conventional QM despite the existence of a proper mapping between them.
The transactional interpretation of quantum mechanics
NASA Astrophysics Data System (ADS)
Cramer, John G.
1986-07-01
The interpretational problems of quantum mechanics are considered. The way in which the standard Copenhagen interpretation of quantum mechanics deals with these problems is reviewed. A new interpretation of the formalism of quantum mechanics, the transactional interpretation, is presented. The basic element of this interpretation is the transaction describing a quantum event as an exchange of advanced and retarded waves, as implied by the work of Wheeler and Feynman, Dirac, and others. The transactional interpretation is explicitly nonlocal and thereby consistent with recent tests of the Bell inequality, yet is relativistically invariant and fully causal. A detailed comparison of the transactional and Copenhagen interpretations is made in the context of well-known quantum-mechanical Gedankenexperimente and "paradoxes." The transactional interpretation permits quantum-mechanical wave functions to be interpreted as real waves physically present in space rather than as "mathematical representations of knowledge" as in the Copenhagen interpretation. The transactional interpretation is shown to provide insight into the complex character of the quantum-mechanical state vector and the mechanism associated with its "collapse." It also leads in a natural way to justification of the Heisenberg uncertainty principle and the Born probability law (P=ψψ*), basic elements of the Copenhagen interpretation.
Consecutive Measurements in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Glick, Jennifer R.; Adami, Christoph
The physics of quantum measurement still continues to puzzle with no resolution in sight between competing interpretations, in particular because no interpretation has so far produced predictions that would be falsifiable via experiment. Here we present an analysis of consecutive projective measurements performed on a quantum state using quantum information theory, where the entanglement between the quantum system and a measuring device is explicitly taken into account, and where the consecutive measurements increase the joint Hilbert space while the wavefunction of the joint system never collapses. Using this relative-state formalism we rederive well-known results for the pairwise correlation between any two measurement devices, but show that considering the joint as well as conditional entropy of three devices reveals a difference between the collapse and no-collapse pictures of quantum measurement that is experimentally testable. This research was funded by a Michigan State University Enrichment Fellowship.
On the tomographic picture of quantum mechanics
NASA Astrophysics Data System (ADS)
Ibort, A.; Man'ko, V. I.; Marmo, G.; Simoni, A.; Ventriglia, F.
2010-06-01
We formulate necessary and sufficient conditions for a symplectic tomogram of a quantum state to determine the density state. We establish a connection between the (re)construction by means of symplectic tomograms with the construction by means of Naimark positive definite functions on the Weyl-Heisenberg group. This connection is used to formulate properties which guarantee that tomographic probabilities describe quantum states in the probability representation of quantum mechanics.
Strange Bedfellows: Quantum Mechanics and Data Mining
Weinstein, Marvin; /SLAC
2009-12-16
Last year, in 2008, I gave a talk titled Quantum Calisthenics. This year I am going to tell you about how the work I described then has spun off into a most unlikely direction. What I am going to talk about is how one maps the problem of finding clusters in a given data set into a problem in quantum mechanics. I will then use the tricks I described to let quantum evolution lets the clusters come together on their own.
Strange Bedfellows: Quantum Mechanics and Data Mining
NASA Astrophysics Data System (ADS)
Weinstein, Marvin
2010-02-01
Last year, in 2008, I gave a talk titled Quantum Calisthenics. This year I am going to tell you about how the work I described then has spun off into a most unlikely direction. What I am going to talk about is how one maps the problem of finding clusters in a given data set into a problem in quantum mechanics. I will then use the tricks I described to let quantum evolution lets the clusters come together on their own.
Optimization of a relativistic quantum mechanical engine
NASA Astrophysics Data System (ADS)
Peña, Francisco J.; Ferré, Michel; Orellana, P. A.; Rojas, René G.; Vargas, P.
2016-08-01
We present an optimal analysis for a quantum mechanical engine working between two energy baths within the framework of relativistic quantum mechanics, adopting a first-order correction. This quantum mechanical engine, with the direct energy leakage between the energy baths, consists of two adiabatic and two isoenergetic processes and uses a three-level system of two noninteracting fermions as its working substance. Assuming that the potential wall moves at a finite speed, we derive the expression of power output and, in particular, reproduce the expression for the efficiency at maximum power.
New approach to nonperturbative quantum mechanics with minimal length uncertainty
NASA Astrophysics Data System (ADS)
Pedram, Pouria
2012-01-01
The existence of a minimal measurable length is a common feature of various approaches to quantum gravity such as string theory, loop quantum gravity, and black-hole physics. In this scenario, all commutation relations are modified and the Heisenberg uncertainty principle is changed to the so-called Generalized (Gravitational) Uncertainty Principle (GUP). Here, we present a one-dimensional nonperturbative approach to quantum mechanics with minimal length uncertainty relation which implies X=x to all orders and P=p+(1)/(3)βp3 to first order of GUP parameter β, where X and P are the generalized position and momentum operators and [x,p]=iℏ. We show that this formalism is an equivalent representation of the seminal proposal by Kempf, Mangano, and Mann and predicts the same physics. However, this proposal reveals many significant aspects of the generalized uncertainty principle in a simple and comprehensive form and the existence of a maximal canonical momentum is manifest through this representation. The problems of the free particle and the harmonic oscillator are exactly solved in this GUP framework and the effects of GUP on the thermodynamics of these systems are also presented. Although X, P, and the Hamiltonian of the harmonic oscillator all are formally self-adjoint, the careful study of the domains of these operators shows that only the momentum operator remains self-adjoint in the presence of the minimal length uncertainty. We finally discuss the difficulties with the definition of potentials with infinitely sharp boundaries.
Quantum mechanics and the generalized uncertainty principle
Bang, Jang Young; Berger, Micheal S.
2006-12-15
The generalized uncertainty principle has been described as a general consequence of incorporating a minimal length from a theory of quantum gravity. We consider a simple quantum mechanical model where the operator corresponding to position has discrete eigenvalues and show how the generalized uncertainty principle results for minimum uncertainty wave packets.
NASA Astrophysics Data System (ADS)
Illera, S.; Prades, J. D.; Cirera, A.
2015-05-01
The role of different charge transport mechanisms in Si / Si O 2 structures has been studied. A theoretical model based on the Transfer Hamiltonian Formalism has been developed to explain experimental current trends in terms of three different elastic tunneling processes: (1) trap assisted tunneling; (2) transport through an intermediate quantum dot; and (3) direct tunneling between leads. In general, at low fields carrier transport is dominated by the quantum dots whereas, for moderate and high fields, transport through deep traps inherent to the SiO2 is the most relevant process. Besides, current trends in Si / Si O 2 superlattice structure have been properly reproduced.
Mechanical equivalent of quantum heat engines.
Arnaud, Jacques; Chusseau, Laurent; Philippe, Fabrice
2008-06-01
Quantum heat engines employ as working agents multilevel systems instead of classical gases. We show that under some conditions quantum heat engines are equivalent to a series of reservoirs at different altitudes containing balls of various weights. A cycle consists of picking up at random a ball from one reservoir and carrying it to the next, thereby performing or absorbing some work. In particular, quantum heat engines, employing two-level atoms as working agents, are modeled by reservoirs containing balls of weight 0 or 1. The mechanical model helps us prove that the maximum efficiency of quantum heat engines is the Carnot efficiency. Heat pumps and negative temperatures are considered. PMID:18643212
A Reconstruction of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Kochen, Simon
2015-05-01
We show that exactly the same intuitively plausible definitions of state, observable, symmetry, dynamics, and compound systems of the classical Boolean structure of intrinsic properties of systems lead, when applied to the structure of extrinsic, relational quantum properties, to the standard quantum formalism, including the Schrödinger equation and the von Neumann-Lüders Projection Rule. This approach is then applied to resolving the paradoxes and difficulties of the orthodox interpretation.
Intrusion Detection with Quantum Mechanics: A Photonic Quantum Fence
Humble, Travis S; Bennink, Ryan S; Grice, Warren P; Owens, Israel J
2008-01-01
We describe the use of quantum-mechanically entangled photons for sensing intrusions across a physical perimeter. Our approach to intrusion detection uses the no-cloning principle of quantum information science as protection against an intruder s ability to spoof a sensor receiver using a classical intercept-resend attack. We explore the bounds on detection using quantum detection and estimation theory, and we experimentally demonstrate the underlying principle of entanglement-based detection using the visibility derived from polarization-correlation measurements.
Interpretation and Predictability of Quantum Mechanics and Quantum Cosmology
NASA Astrophysics Data System (ADS)
Wada, Sumio
A non-probabilistic interpretation of quantum mechanics asserts that we get a prediction only when a wave function has a peak. Taking this interpretation seriously, we discuss how to find a peak in the wave function of the universe, by using some minisuperspace models with homogeneous degrees of freedom and also a model with cosmological perturbations. Then we show how to recover our classical picture of the universe from the quantum theory, and comment on the physical meaning of the backreaction equation.
Fundamental Quantum Mechanics--A Graphic Presentation
ERIC Educational Resources Information Center
Wise, M. N.; Kelley, T. G.
1977-01-01
Describes a presentation of basic quantum mechanics for nonscience majors that relies on a computer-generated graphic display to circumvent the usual mathematical difficulties. It allows a detailed treatment of free-particle motion in a wave picture. (MLH)
How Rutherford missed discovering quantum mechanical identity
NASA Astrophysics Data System (ADS)
Temmer, G. M.
1989-03-01
An interesting quirk in the energy dependence of alpha-particle scattering from helium caused Lord Rutherford to miss a major discovery—namely, the consequences of quantum mechanical identity—before their prediction by Mott a short time later.
Quantum mechanical streamlines. I - Square potential barrier
NASA Technical Reports Server (NTRS)
Hirschfelder, J. O.; Christoph, A. C.; Palke, W. E.
1974-01-01
Exact numerical calculations are made for scattering of quantum mechanical particles hitting a square two-dimensional potential barrier (an exact analog of the Goos-Haenchen optical experiments). Quantum mechanical streamlines are plotted and found to be smooth and continuous, to have continuous first derivatives even through the classical forbidden region, and to form quantized vortices around each of the nodal points. A comparison is made between the present numerical calculations and the stationary wave approximation, and good agreement is found between both the Goos-Haenchen shifts and the reflection coefficients. The time-independent Schroedinger equation for real wavefunctions is reduced to solving a nonlinear first-order partial differential equation, leading to a generalization of the Prager-Hirschfelder perturbation scheme. Implications of the hydrodynamical formulation of quantum mechanics are discussed, and cases are cited where quantum and classical mechanical motions are identical.
Student Difficulties in Learning Quantum Mechanics.
ERIC Educational Resources Information Center
Johnston, I. D.; Crawford, K.; Fletcher, P. R.
1998-01-01
Reports on a preliminary project that uses a phenomenographic approach to explore the ways in which a small number of fundamental ideas are conceptualized by students who are judged to have mastered quantum mechanics material. (DDR)
Quantum mechanical stabilization of Minkowski signature wormholes
Visser, M.
1989-05-19
When one attempts to construct classical wormholes in Minkowski signature Lorentzian spacetimes violations of both the weak energy hypothesis and averaged weak energy hypothesis are encountered. Since the weak energy hypothesis is experimentally known to be violated quantum mechanically, this suggests that a quantum mechanical analysis of Minkowski signature wormholes is in order. In this note I perform a minisuperspace analysis of a simple class of Minkowski signature wormholes. By solving the Wheeler-de Witt equation for pure Einstein gravity on this minisuperspace the quantum mechanical wave function of the wormhole is obtained in closed form. The wormhole is shown to be quantum mechanically stabilized with an average radius of order the Planck length. 8 refs.
Uncertainty in quantum mechanics: faith or fantasy?
Penrose, Roger
2011-12-13
The word 'uncertainty', in the context of quantum mechanics, usually evokes an impression of an essential unknowability of what might actually be going on at the quantum level of activity, as is made explicit in Heisenberg's uncertainty principle, and in the fact that the theory normally provides only probabilities for the results of quantum measurement. These issues limit our ultimate understanding of the behaviour of things, if we take quantum mechanics to represent an absolute truth. But they do not cause us to put that very 'truth' into question. This article addresses the issue of quantum 'uncertainty' from a different perspective, raising the question of whether this term might be applied to the theory itself, despite its unrefuted huge success over an enormously diverse range of observed phenomena. There are, indeed, seeming internal contradictions in the theory that lead us to infer that a total faith in it at all levels of scale leads us to almost fantastical implications. PMID:22042902
On the geometrization of quantum mechanics
NASA Astrophysics Data System (ADS)
Tavernelli, Ivano
2016-08-01
Nonrelativistic quantum mechanics is commonly formulated in terms of wavefunctions (probability amplitudes) obeying the static and the time-dependent Schrödinger equations (SE). Despite the success of this representation of the quantum world a wave-particle duality concept is required to reconcile the theory with observations (experimental measurements). A first solution to this dichotomy was introduced in the de Broglie-Bohm theory according to which a pilot-wave (solution of the SE) is guiding the evolution of particle trajectories. Here, I propose a geometrization of quantum mechanics that describes the time evolution of particles as geodesic lines in a curved space, whose curvature is induced by the quantum potential. This formulation allows therefore the incorporation of all quantum effects into the geometry of space-time, as it is the case for gravitation in the general relativity.
Experimental status of quaternionic quantum mechanics
NASA Astrophysics Data System (ADS)
Brumby, S. P.; Joshi, G. C.
1996-05-01
Analysis of the logical foundations of quantum mechanics indicates the possibility of constructing a theory using quaternionic Hilbert spaces. Whether this mathematical structure reflects reality is a matter for experiment to decide. We review the only direct search for quaternionic quantum mechanics yet carried out and outline a recent proposal by the present authors to look for quaternionic effects in correlated multi-particle systems. We set out how such experiments might distinguish between the several quaternionic models proposed in the literature.
Testing foundations of quantum mechanics with photons
NASA Astrophysics Data System (ADS)
Shadbolt, Peter; Mathews, Jonathan C. F.; Laing, Anthony; O'Brien, Jeremy L.
2014-04-01
Quantum mechanics continues to predict effects at odds with a classical understanding of nature. Experiments with light at the single-photon level have historically been at the forefront of fundamental tests of quantum theory and the current developments in photonic technologies enable the exploration of new directions. Here we review recent photonic experiments to test two important themes in quantum mechanics: wave-particle duality, which is central to complementarity and delayed-choice experiments; and Bell nonlocality, where the latest theoretical and technological advances have allowed all controversial loopholes to be separately addressed in different experiments.
Relativistic Quantum Mechanics and Field Theory
NASA Astrophysics Data System (ADS)
Gross, Franz
1999-04-01
An accessible, comprehensive reference to modern quantum mechanics and field theory. In surveying available books on advanced quantum mechanics and field theory, Franz Gross determined that while established books were outdated, newer titles tended to focus on recent developments and disregard the basics. Relativistic Quantum Mechanics and Field Theory fills this striking gap in the field. With a strong emphasis on applications to practical problems as well as calculations, Dr. Gross provides complete, up-to-date coverage of both elementary and advanced topics essential for a well-rounded understanding of the field. Developing the material at a level accessible even to newcomers to quantum mechanics, the book begins with topics that every physicist should know-quantization of the electromagnetic field, relativistic one body wave equations, and the theoretical explanation of atomic decay. Subsequent chapters prepare readers for advanced work, covering such major topics as gauge theories, path integral techniques, spontaneous symmetry breaking, and an introduction to QCD, chiral symmetry, and the Standard Model. A special chapter is devoted to relativistic bound state wave equations-an important topic that is often overlooked in other books. Clear and concise throughout, Relativistic Quantum Mechanics and Field Theory boasts examples from atomic and nuclear physics as well as particle physics, and includes appendices with background material. It is an essential reference for anyone working in quantum mechanics today.
A dynamical time operator in Dirac's relativistic quantum mechanics
NASA Astrophysics Data System (ADS)
Bauer, M.
2014-03-01
A self-adjoint dynamical time operator is introduced in Dirac's relativistic formulation of quantum mechanics and shown to satisfy a commutation relation with the Hamiltonian analogous to that of the position and momentum operators. The ensuing time-energy uncertainty relation involves the uncertainty in the instant of time when the wave packet passes a particular spatial position and the energy uncertainty associated with the wave packet at the same time, as envisaged originally by Bohr. The instantaneous rate of change of the position expectation value with respect to the simultaneous expectation value of the dynamical time operator is shown to be the phase velocity, in agreement with de Broglie's hypothesis of a particle associated wave whose phase velocity is larger than c. Thus, these two elements of the original basis and interpretation of quantum mechanics are integrated into its formal mathematical structure. Pauli's objection is shown to be resolved or circumvented. Possible relevance to current developments in electron channeling, in interference in time, in Zitterbewegung-like effects in spintronics, graphene and superconducting systems and in cosmology is noted.
Quantum-mechanical description of Lense-Thirring effect for relativistic scalar particles
NASA Astrophysics Data System (ADS)
Silenko, A. J.
2013-12-01
Exact expression for the Foldy-Wouthuysen Hamiltonian of scalar particles is used for a quantum-mechanical description of the relativistic Lense-Thirring effect. The exact evolution of the angular momentum operator in the Kerr field approximated by a spatially isotropic metric is found. The quantummechanical description of the full Lense-Thirring effect based on the Laplace-Runge-Lenz vector is given in the nonrelativistic and weak-field approximation. Relativistic quantum-mechanical equations for the velocity and acceleration operators are obtained. The equation for the acceleration defines the Coriolis-like and centrifugal-like accelerations and presents the quantum-mechanical description of the frame-dragging effect.
Quantum Probability Theory and the Foundations of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Fröhlich, Jürg; Schubnel, Baptiste
By and large, people are better at coining expressions than at filling them with interesting, concrete contents. Thus, it may not be very surprising that there are many professional probabilists who may have heard the expression but do not appear to be aware of the need to develop "quantum probability theory" into a thriving, rich, useful field featured at meetings and conferences on probability theory. Although our aim, in this essay, is not to contribute new results on quantum probability theory, we hope to be able to let the reader feel the enormous potential and richness of this field. What we intend to do, in the following, is to contribute some novel points of view to the "foundations of quantum mechanics", using mathematical tools from "quantum probability theory" (such as the theory of operator algebras).
Gorbatenko, M. V.; Neznamov, V. P.
2010-11-15
The authors prove that the dynamics of spin 1/2 particles in stationary gravitational fields can be described using an approach, which builds upon the formalism of pseudo-Hermitian Hamiltonians. The proof consists in the analysis of three expressions for Hamiltonians, which are derived from the Dirac equation and describe the dynamics of spin 1/2 particles in the gravitational field of the Kerr solution. The Hamiltonians correspond to different choices of tetrad vectors and differ from each other. The differences between the Hamiltonians confirm the conclusion known from many studies that the Hamiltonians derived from the Dirac equation are nonunique. Application of standard pseudo-Hermitian quantum mechanics rules to each of these Hamiltonians produces the same Hermitian Hamiltonian. The eigenvalue spectrum of the resulting Hamiltonian is the same as that of the Hamiltonians derived from the Dirac equation with any chosen system of tetrad vectors. For description of the dynamics of spin 1/2 particles in stationary gravitational fields can be used not only the formalism of pseudo-Hermitian Hamiltonians but also an alternative approach, which employs the Parker scalar product. The authors show that the alternative approach is equivalent to the formalism of pseudo-Hermitian Hamiltonians.
ERIC Educational Resources Information Center
Oss, Stefano; Rosi, Tommaso
2015-01-01
We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many…
Koller, Andrew; Olshanii, Maxim
2011-12-15
We present a case demonstrating the connection between supersymmetric quantum mechanics (SUSYQM), reflectionless scattering, and soliton solutions of integrable partial differential equations. We show that the members of a class of reflectionless Hamiltonians, namely, Akulin's Hamiltonians, are connected via supersymmetric chains to a potential-free Hamiltonian, explaining their reflectionless nature. While the reflectionless property in question has been mentioned in the literature for over two decades, the enabling algebraic mechanism was previously unknown. Our results indicate that the multisoliton solutions of the sine-Gordon and nonlinear Schroedinger equations can be systematically generated via the supersymmetric chains connecting Akulin's Hamiltonians. Our findings also explain a well-known but little-understood effect in laser physics: when a two-level atom, initially in the ground state, is subjected to a laser pulse of the form V(t)=(n({h_bar}/2{pi})/{tau})/cosh(t/{tau}), with n being an integer and {tau} being the pulse duration, it remains in the ground state after the pulse has been applied, for any choice of the laser detuning.
Hamiltonian description of the ideal fluid
Morrison, P.J.
1994-01-01
Fluid mechanics is examined from a Hamiltonian perspective. The Hamiltonian point of view provides a unifying framework; by understanding the Hamiltonian perspective, one knows in advance (within bounds) what answers to expect and what kinds of procedures can be performed. The material is organized into five lectures, on the following topics: rudiments of few-degree-of-freedom Hamiltonian systems illustrated by passive advection in two-dimensional fluids; functional differentiation, two action principles of mechanics, and the action principle and canonical Hamiltonian description of the ideal fluid; noncanonical Hamiltonian dynamics with examples; tutorial on Lie groups and algebras, reduction-realization, and Clebsch variables; and stability and Hamiltonian systems.
Davidson potential and SUSYQM in the Bohr Hamiltonian
Georgoudis, P. E.
2013-06-10
The Bohr Hamiltonian is modified through the Shape Invariance principle of SUper-SYmmetric Quantum Mechanics for the Davidson potential. The modification is equivalent to a conformal transformation of Bohr's metric, generating a different {beta}-dependence of the moments of inertia.
Rosta, Edina; Nowotny, Marcin; Yang, Wei; Hummer, Gerhard
2011-06-15
We use quantum mechanics/molecular mechanics simulations to study the cleavage of the ribonucleic acid (RNA) backbone catalyzed by ribonuclease H. This protein is a prototypical member of a large family of enzymes that use two-metal catalysis to process nucleic acids. By combining Hamiltonian replica exchange with a finite-temperature string method, we calculate the free energy surface underlying the RNA-cleavage reaction and characterize its mechanism. We find that the reaction proceeds in two steps. In a first step, catalyzed primarily by magnesium ion A and its ligands, a water molecule attacks the scissile phosphate. Consistent with thiol-substitution experiments, a water proton is transferred to the downstream phosphate group. The transient phosphorane formed as a result of this nucleophilic attack decays by breaking the bond between the phosphate and the ribose oxygen. In the resulting intermediate, the dissociated but unprotonated leaving group forms an alkoxide coordinated to magnesium ion B. In a second step, the reaction is completed by protonation of the leaving group, with a neutral Asp132 as a likely proton donor. The overall reaction barrier of ∼15 kcal mol(-1), encountered in the first step, together with the cost of protonating Asp132, is consistent with the slow measured rate of ∼1-100/min. The two-step mechanism is also consistent with the bell-shaped pH dependence of the reaction rate. The nonmonotonic relative motion of the magnesium ions along the reaction pathway agrees with X-ray crystal structures. Proton-transfer reactions and changes in the metal ion coordination emerge as central factors in the RNA-cleavage reaction. PMID:21539371
Quantum Mechanics Based Multiscale Modeling of Materials
NASA Astrophysics Data System (ADS)
Lu, Gang
2013-03-01
We present two quantum mechanics based multiscale approaches that can simulate extended defects in metals accurately and efficiently. The first approach (QCDFT) can treat multimillion atoms effectively via density functional theory (DFT). The method is an extension of the original quasicontinuum approach with DFT as its sole energetic formulation. The second method (QM/MM) has to do with quantum mechanics/molecular mechanics coupling based on the constrained density functional theory, which provides an exact framework for a self-consistent quantum mechanical embedding. Several important materials problems will be addressed using the multiscale modeling approaches, including hydrogen-assisted cracking in Al, magnetism-controlled dislocation properties in Fe and Si pipe diffusion along Al dislocation core. We acknowledge the support from the Office of Navel Research and the Army Research Office.
Optimal guidance law in quantum mechanics
Yang, Ciann-Dong Cheng, Lieh-Lieh
2013-11-15
Following de Broglie’s idea of a pilot wave, this paper treats quantum mechanics as a problem of stochastic optimal guidance law design. The guidance scenario considered in the quantum world is that an electron is the flight vehicle to be guided and its accompanying pilot wave is the guidance law to be designed so as to guide the electron to a random target driven by the Wiener process, while minimizing a cost-to-go function. After solving the stochastic optimal guidance problem by differential dynamic programming, we point out that the optimal pilot wave guiding the particle’s motion is just the wavefunction Ψ(t,x), a solution to the Schrödinger equation; meanwhile, the closed-loop guidance system forms a complex state–space dynamics for Ψ(t,x), from which quantum operators emerge naturally. Quantum trajectories under the action of the optimal guidance law are solved and their statistical distribution is shown to coincide with the prediction of the probability density function Ψ{sup ∗}Ψ. -- Highlights: •Treating quantum mechanics as a pursuit-evasion game. •Reveal an interesting analogy between guided flight motion and guided quantum motion. •Solve optimal quantum guidance problem by dynamic programming. •Gives a formal proof of de Broglie–Bohm’s idea of a pilot wave. •The optimal pilot wave is shown to be a wavefunction solved from Schrödinger equation.
Computations in quantum mechanics made easy
NASA Astrophysics Data System (ADS)
Korsch, H. J.; Rapedius, K.
2016-09-01
Convenient and simple numerical techniques for performing quantum computations based on matrix representations of Hilbert space operators are presented and illustrated by various examples. The applications include the calculations of spectral and dynamical properties for one-dimensional and two-dimensional single-particle systems as well as bosonic many-particle and open quantum systems. Due to their technical simplicity these methods are well suited as a tool for teaching quantum mechanics to undergraduates and graduates. Explicit implementations of the presented numerical methods in Matlab are given.
Hot Fluids and Nonlinear Quantum Mechanics
NASA Astrophysics Data System (ADS)
Mahajan, Swadesh M.; Asenjo, Felipe A.
2015-05-01
A hot relativistic fluid is viewed as a collection of quantum objects that represent interacting elementary particles. We present a conceptual framework for deriving nonlinear equations of motion obeyed by these hypothesized objects. A uniform phenomenological prescription, to affect the quantum transition from a corresponding classical system, is invoked to derive the nonlinear Schrödinger, Klein-Gordon, and Pauli-Schrödinger and Feynman-GellMaan equations. It is expected that the emergent hypothetical nonlinear quantum mechanics would advance, in a fundamental way, both the conceptual understanding and computational abilities, particularly, in the field of extremely high energy-density physics.
Quantum Mechanics, Spacetime Locality, and Gravity
NASA Astrophysics Data System (ADS)
Nomura, Yasunori
2013-08-01
Quantum mechanics introduces the concept of probability at the fundamental level, yielding the measurement problem. On the other hand, recent progress in cosmology has led to the "multiverse" picture, in which our observed universe is only one of the many, bringing an apparent arbitrariness in defining probabilities, called the measure problem. In this paper, we discuss how these two problems are related with each other, developing a picture for quantum measurement and cosmological histories in the quantum mechanical universe. In order to describe the cosmological dynamics correctly within the full quantum mechanical context, we need to identify the structure of the Hilbert space for a system with gravity. We argue that in order to keep spacetime locality, the Hilbert space for dynamical spacetime must be defined only in restricted spacetime regions: in and on the (stretched) apparent horizon as viewed from a fixed reference frame. This requirement arises from eliminating all the redundancies and overcountings in a general relativistic, global spacetime description of nature. It is responsible for horizon complementarity as well as the "observer dependence" of horizons/spacetime—these phenomena arise to represent changes of the reference frame in the relevant Hilbert space. This can be viewed as an extension of the Poincaré transformation in the quantum gravitational context. Given an initial condition, the evolution of the multiverse state obeys the laws of quantum mechanics—it evolves deterministically and unitarily. The beginning of the multiverse, however, is still an open issue.
Quantum conformal mechanics emerging from unitary representations of SL(2 , R)
NASA Astrophysics Data System (ADS)
Andrzejewski, Krzysztof
2016-04-01
The quantum mechanics of one degree of freedom exhibiting the exact conformal SL(2 , R) symmetry is presented. The starting point is the classification of the unitary irreducible representations of the SL(2 , R) group (or, to some extent, its universal covering). The coordinate representation is defined as the basis diagonalizing the special conformal generator K ˆ . As a particular case one obtains the AFF (de Alfaro et al., 1976) system with positive coupling constant. It is shown that for the negative coupling the conformal quantum mechanics in AFF form can be immersed into well-defined quantum theory with global action of SL(2 , R) as a symmetry group. It is indicated how the resulting theory emerges from the canonical/geometric quantization of the Hamiltonian dynamics on the relevant coadjoint orbits.
Time-dependent perturbation theory in quantum mechanics and the renormalization group
NASA Astrophysics Data System (ADS)
Bhattacharjee, J. K.; Ray, D. S.
2016-06-01
Time-dependent perturbation theory in quantum mechanics is divergent at long times when the perturbation induces a resonance between two eigenstates of the unperturbed Hamiltonian. Divergences in perturbation theory are also common in quantum field theory and in critical phenomena. The renormalization group (RG) was designed to deal with these divergences. In the last two decades, this procedure has been extended to dynamical systems where the perturbation theory diverges in the long-time limit. In this article, we first review the connection between RG in the context of field theory and RG in the context of dynamical systems. We then show that the long-time divergence in the resonant situation in the time-dependent perturbation theory in quantum mechanics can be removed by using a RG-aided calculational scheme.
Interpretation and predictability of quantum mechanics and quantum cosmology
Wada, S.
1988-06-01
A non-probabilistic interpretation of quantum mechanics asserts that the authors get a prediction only when a wave function has a peak. Taking this interpretation seriously, the authors discuss how to find a peak in the wave function of the universe, by using some minisuperspace models. With homogeneous degrees of freedom and also a model with cosmological perturbations. Then the authors show how to recover their classical picture of the universe from the quantum theory, and comment on the physical meaning of the backreaction equation.