Quantum Field Theory for Mathematicians Hamiltonian Mechanics and Symplectic Geometry
Woit, Peter
Quantum Field Theory for Mathematicians · Hamiltonian Mechanics and Symplectic Geometry Integral Quantization Supersymmetric Quantum Mechanics Introduction to Scattering Theory · Classical Field Theory · Relativistic Fields, Poincar´e Group and Wigner Classification · Free Quantum Fields
Cloning in nonlinear Hamiltonian quantum and hybrid mechanics
D. Arsenovic; N. Buric; D. B. Popovic; M. Radonjic; S. Prvanovic
2014-11-17
Possibility of state cloning is analyzed in two types of generalizations of quantum mechanics with nonlinear evolution. It is first shown that nonlinear Hamiltonian quantum mechanics does not admit cloning without the cloning machine. It is then demonstrated that the addition of the cloning machine, treated as a quantum or as a classical system, makes the cloning possible by nonlinear Hamiltonian evolution. However, a special type of quantum-classical theory, known as the mean-field Hamiltonian hybrid mechanics, does not admit cloning by natural evolution. The latter represents an example of a theory where it appears to be possible to communicate between two quantum systems at super-luminal speed, but at the same time it is impossible to clone quantum pure states.
Cloning in nonlinear Hamiltonian quantum and hybrid mechanics
NASA Astrophysics Data System (ADS)
Arsenovi?, D.; Buri?, N.; Popovi?, D. B.; Radonji?, M.; Prvanovi?, S.
2014-10-01
The possibility of state cloning is analyzed in two types of generalizations of quantum mechanics with nonlinear evolution. It is first shown that nonlinear Hamiltonian quantum mechanics does not admit cloning without the cloning machine. It is then demonstrated that the addition of the cloning machine, treated as a quantum or as a classical system, makes cloning possible by nonlinear Hamiltonian evolution. However, a special type of quantum-classical theory, known as the mean-field Hamiltonian hybrid mechanics, does not admit cloning by natural evolution. The latter represents an example of a theory where it appears to be possible to communicate between two quantum systems at superluminal speed, but at the same time it is impossible to clone quantum pure states.
Bicomplex Hamiltonian systems in Quantum Mechanics
Bijan Bagchi; Abhijit Banerjee
2015-03-16
We investigate bicomplex Hamiltonian systems in the framework of an analogous version of the Schrodinger equation. Since in such a setting different types of conjugates of bicomplex numbers appear, each defines a separate class of time reversal operator. We are thus in a position to explore the corresponding extensions of parity (P)-time (T)-symmetric models by generalizing the concept of an extended phase space. Applications to the problems of harmonic oscillator, inverted oscillator and isotonic oscillator are considered and many new interesting properties are uncovered for the new types of PT symmetries.
Hamiltonian and physical Hilbert space in polymer quantum mechanics
Alejandro Corichi; Tatjana Vukasinac; Jose A. Zapata
2007-02-07
In this paper, a version of polymer quantum mechanics, which is inspired by loop quantum gravity, is considered and shown to be equivalent, in a precise sense, to the standard, experimentally tested, Schroedinger quantum mechanics. The kinematical cornerstone of our framework is the so called polymer representation of the Heisenberg-Weyl (H-W) algebra, which is the starting point of the construction. The dynamics is constructed as a continuum limit of effective theories characterized by a scale, and requires a renormalization of the inner product. The result is a physical Hilbert space in which the continuum Hamiltonian can be represented and that is unitarily equivalent to the Schroedinger representation of quantum mechanics. As a concrete implementation of our formalism, the simple harmonic oscillator is fully developed.
Hamiltonian and physical Hilbert space in polymer quantum mechanics
Corichi, A; Zapata, R J A; Corichi, Alejandro; Vukasinac, Tatjana; Zapata, Jose A.
2006-01-01
In this paper, a version of polymer quantum mechanics, which is inspired by loop quantum gravity, is considered and shown to be equivalent, in a precise sense, to the standard, experimentally tested, Schroedinger quantum mechanics. The kinematical cornerstone of our framework is the so called polymer representation of the Heisenberg-Weyl (H-W) algebra, which is the starting point of the construction. The dynamics is constructed as a continuum limit of effective theories characterized by a scale, and requires a renormalization of the inner product. The result is a physical Hilbert space in which the continuum Hamiltonian can be represented and that is unitarily equivalent to the Schroedinger representation of quantum mechanics. As a concrete implementation of our formalism, the simple harmonic oscillator is fully developed.
On the modification of Hamiltonians' spectrum in gravitational quantum mechanics
Pouria Pedram
2010-03-14
Different candidates of Quantum Gravity such as String Theory, Doubly Special Relativity, Loop Quantum Gravity and black hole physics all predict the existence of a minimum observable length or a maximum observable momentum which modifies the Heisenberg uncertainty principle. This modified version is usually called the Generalized (Gravitational) Uncertainty Principle (GUP) and changes all Hamiltonians in quantum mechanics. In this Letter, we use a recently proposed GUP which is consistent with String Theory, Doubly Special Relativity and black hole physics and predicts both a minimum measurable length and a maximum measurable momentum. This form of GUP results in two additional terms in any quantum mechanical Hamiltonian, proportional to $\\alpha p^3$ and $\\alpha^2 p^4$, respectively, where $\\alpha \\sim 1/M_{Pl}c$ is the GUP parameter. By considering both terms as perturbations, we study two quantum mechanical systems in the framework of the proposed GUP: a particle in a box and a simple harmonic oscillator. We demonstrate that, for the general polynomial potentials, the corrections to the highly excited eigenenergies are proportional to their square values. We show that this result is exact for the case of a particle in a box.
Supersymmetric descendants of self-adjointly extended quantum mechanical Hamiltonians
Al-Hashimi, M.H.; Salman, M.; Shalaby, A.; Wiese, U.-J.
2013-10-15
We consider the descendants of self-adjointly extended Hamiltonians in supersymmetric quantum mechanics on a half-line, on an interval, and on a punctured line or interval. While there is a 4-parameter family of self-adjointly extended Hamiltonians on a punctured line, only a 3-parameter sub-family has supersymmetric descendants that are themselves self-adjoint. We also address the self-adjointness of an operator related to the supercharge, and point out that only a sub-class of its most general self-adjoint extensions is physical. Besides a general characterization of self-adjoint extensions and their supersymmetric descendants, we explicitly consider concrete examples, including a particle in a box with general boundary conditions, with and without an additional point interaction. We also discuss bulk-boundary resonances and their manifestation in the supersymmetric descendant. -- Highlights: •Self-adjoint extension theory and contact interactions. •Application of self-adjoint extensions to supersymmetry. •Contact interactions in finite volume with Robin boundary condition.
Positive-operator-valued measures in the Hamiltonian formulation of quantum mechanics
NASA Astrophysics Data System (ADS)
Arsenovi?, D.; Buri?, N.; Popovi?, D. B.; Radonji?, M.; Prvanovi?, S.
2015-06-01
In the Hilbert space formulation of quantum mechanics, ideal measurements of physical variables are discussed using the spectral theory of Hermitian operators and the corresponding projector-valued measures (PVMs). However, more general types of measurements require the treatment in terms of positive-operator-valued measures (POVMs). In the Hamiltonian formulation of quantum mechanics, canonical coordinates are related to PVM. In this paper the results of an analysis of various aspects of applications of POVMs in the Hamiltonian formulation are reported. Several properties of state parameters and quantum observables given by POVMs or represented in an overcomplete basis, including the general Hamiltonian treatment of the Neumark extension, are presented. An analysis of the phase operator, given by the corresponding POVMs, in the Hilbert space and the Hamiltonian frameworks is also given.
Biswas, P K; Gogonea, V
2005-10-22
We describe a regularized and renormalized electrostatic coupling Hamiltonian for hybrid quantum-mechanical (QM)-molecular-mechanical (MM) calculations. To remedy the nonphysical QM/MM Coulomb interaction at short distances arising from a point electrostatic potential (ESP) charge of the MM atom and also to accommodate the effect of polarized MM atom in the coupling Hamiltonian, we propose a partial-wave expansion of the ESP charge and describe the effect of a s-wave expansion, extended over the covalent radius r(c), of the MM atom. The resulting potential describes that, at short distances, large scale cancellation of Coulomb interaction arises intrinsically from the localized expansion of the MM point charge and the potential self-consistently reduces to 1r(c) at zero distance providing a renormalization to the Coulomb energy near interatomic separations. Employing this renormalized Hamiltonian, we developed an interface between the Car-Parrinello molecular-dynamics program and the classical molecular-dynamics simulation program Groningen machine for chemical simulations. With this hybrid code we performed QM/MM calculations on water dimer, imidazole carbon monoxide (CO) complex, and imidazole-heme-CO complex with CO interacting with another imidazole. The QM/MM results are in excellent agreement with experimental data for the geometry of these complexes and other computational data found in literature. PMID:16268688
Mitra, Abhra; Rabitz, Herschel [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States)
2008-01-28
While closed-loop control of quantum dynamics in the laboratory is proving to be broadly successful, the control mechanisms induced by the fields are often left obscure. Hamiltonian encoding (HE) was originally introduced as a method for understanding mechanisms in quantum dynamics in the context of computational simulations, based on access to the system wavefunction. As a step towards laboratory implementation of HE, this paper addresses the issues raised by the use of observables rather than the wavefunction in HE. The goal of laboratory based HE is to obtain an understanding of control mechanism through a sequence of systematic control experiments, whose collective information can identify the underlying control mechanism defined as the set of significant amplitudes connecting the initial and final states. Mechanism is determined by means of observing the dynamics of special sequences of system Hamiltonians encoded through the control field. The proposed algorithm can handle complex systems, operates with no recourse to dynamical simulations, and functions with limited understanding of the system Hamiltonian. As with the closed-loop control experiments, the HE control mechanism identification algorithm performs a new experiment each time the dynamical outcome from an encoded Hamiltonian is called for. This paper presents the basic HE algorithm in the context of physical systems described by a finite dimensional Hilbert space. The method is simulated with simple models, and the extension to more complex systems is discussed.
Quantum Hamiltonians and Stochastic Jumps
Detlef Duerr; Sheldon Goldstein; Roderich Tumulka; Nino Zanghi
2004-07-15
With many Hamiltonians one can naturally associate a |Psi|^2-distributed Markov process. For nonrelativistic quantum mechanics, this process is in fact deterministic, and is known as Bohmian mechanics. For the Hamiltonian of a quantum field theory, it is typically a jump process on the configuration space of a variable number of particles. We define these processes for regularized quantum field theories, thereby generalizing previous work of John S. Bell [Phys. Rep. 137, 49 (1986)] and of ourselves [J. Phys. A: Math. Gen. 36, 4143 (2003)]. We introduce a formula expressing the jump rates in terms of the interaction Hamiltonian, and establish a condition for finiteness of the rates.
Miller, W.H.
1988-12-01
Two recent developments in the theory of chemical reaction dynamics are reviewed. First, it has recently been discovered that the S- matrix version of the Kohn variational principle is free of the ''Kohn anomalies'' that have plagued other versions and prevented its general use. This has considerably simplified quantum mechanical reactive scattering calculations, which provide the rigorous characterizations of bimolecular reactions. Second, a new kind of reaction path Hamiltonian has been developed, one based on the ''least motion'' path that interpolates linearly between the reactant and product geometry of the molecule (rather than the previously used minimum energy, or ''intrinsic'' reaction path). The form of Hamiltonian which results is much simpler than the original reaction path Hamiltonian, but more important is the fact that it provides a more physically correct description of hydrogen atom transfer reactions. 44 refs., 4 figs.
Quantum computing Hamiltonian cycles
T. Rudolph
1996-03-03
An algorithm for quantum computing Hamiltonian cycles of simple, cubic, bipartite graphs is discussed. It is shown that it is possible to evolve a quantum computer into an entanglement of states which map onto the set of all possible paths originating from a chosen vertex, and furthermore to subsequently project out all states not corresponding to Hamiltonian cycles.
Quantum Hamiltonians and Stochastic Jumps Detlef Durr
Goldstein, Sheldon
Quantum Hamiltonians and Stochastic Jumps Detlef DÂ¨urr , Sheldon Goldstein , Roderich Tumulka, and is known as Bohmian mechanics. For the Hamiltonian of a quantum field theory, it is typically a jump-distributed Markov process. For nonrelativistic quantum mechanics, this process is in fact deterministic
Gal Harari; Yacob Ben-Aryeh; Ady Mann
2014-12-11
In this work we present the simplest generic form of the propagator for the time-dependent quadratic Hamiltonian. We manifest the simplicity of our method by giving explicitly the propagators for a free particle in time-dependent electric field, forced harmonic oscillator and the Paul trap. Exact transition amplitudes and uncertainties are calculated analytically for the Paul trap and harmonic oscillator. The results show that near the instability regions very large quantum mechanical uncertainties are obtained as demonstrated in a special figure. The method is also applied to calculating the trajectory of a classical forced time-dependent harmonic oscillator.
NASA Astrophysics Data System (ADS)
Harari, Gal; Ben-Aryeh, Yacob; Mann, Ady
2015-06-01
In this work we present the simplest generic form of the propagator for the time-dependent quadratic Hamiltonian. We manifest the simplicity of our method by giving explicitly the propagators for a free particle in time-dependent electric field and the Paul trap. Exact transition amplitudes and uncertainties are calculated analytically for the Paul trap and harmonic oscillator (HO). The results show that near the instability regions very large quantum mechanical uncertainties are obtained as demonstrated in a special figure. The method is also applied to calculating the trajectory of a classical forced time-dependent HO.
Local Hamiltonians in quantum computation
Nagaj, Daniel
2008-01-01
In this thesis, I investigate aspects of local Hamiltonians in quantum computing. First, I focus on the Adiabatic Quantum Computing model, based on evolution with a time- dependent Hamiltonian. I show that to succeed using ...
Hamiltonian engineering for quantum systems
Sonia G Schirmer
2006-05-21
We describe different strategies for using a semi-classical controller to engineer quantum Hamiltonians to solve control problems such as quantum state or process engineering or optimization of observables.
NASA Astrophysics Data System (ADS)
Biswas, P. K.; Gogonea, Valentin
2008-10-01
We present an ab initio polarizable representation of classical molecular mechanics (MM) atoms by employing an angular momentum-based expansion scheme of the point charges into partial wave orbitals. The charge density represented by these orbitals can be fully polarized, and for hybrid quantum-mechanical-molecular-mechanical (QM/MM) calculations, mutual polarization within the QM/MM Hamiltonian can be obtained. We present the mathematical formulation and the analytical expressions for the energy and forces pertaining to the method. We further develop a variational scheme to appropriately determine the expansion coefficients and then validate the method by considering polarizations of ions by the QM system employing the hybrid GROMACS-CPMD QM/MM program. Finally, we present a simpler prescription for adding isotropic polarizability to MM atoms in a QM/MM simulation. Employing this simpler scheme, we present QM/MM energy minimization results for the classic case of a water dimer and a hydrogen sulfide dimer. Also, we present single-point QM/MM results with and without the polarization to study the change in the ionization potential of tetrahydrobiopterin (BH4) in water and the change in the interaction energy of solvated BH4 (described by MM) with the P450 heme described by QM. The model can be employed for the development of an extensive classical polarizable force-field.
Quantum graphs with spin Hamiltonians
J. M. Harrison
2008-01-30
The article surveys quantization schemes for metric graphs with spin. Typically quantum graphs are defined with the Laplace or Schrodinger operator which describe particles whose intrinsic angular momentum (spin) is zero. However, in many applications, for example modeling an electron (which has spin-1/2) on a network of thin wires, it is necessary to consider operators which allow spin-orbit interaction. The article presents a review of quantization schemes for graphs with three such Hamiltonian operators, the Dirac, Pauli and Rashba Hamiltonians. Comparing results for the trace formula, spectral statistics and spin-orbit localization on quantum graphs with spin Hamiltonians.
Liu, Rui; Xiong, Hongwei; Yang, Minghui
2012-11-01
An eight-dimensional quantum mechanical Hamiltonian has been proposed based on Palma and Clary's model in which the non-reacting CZ(3) group keeps a C(3v) symmetry in the X + YCZ(3) ? XY + CZ(3) reaction J. Palma and D. C. Clary [J. Chem. Phys. 112, 1859 (2000)]. By transforming the original cartesian coordinate system (x, s) into a scaled polar coordinate system (q, ?), the vibrational Hamiltonian of CZ(3) group is expressed in a simple form with a clear physical picture. This Hamiltonian is used to investigate the H + CH(4) ? H(2) + CH(3) reaction on the Jordan-Gilbert potential energy surface. The total reaction probabilities are calculated for the initial ground state, and umbrella, bending, symmetric, and asymmetric stretching excited states of CH(4) with total angular momentum J = 0. The integral cross sections for the reaction are also studied for these initial vibrational states with a centrifugal-sudden approximation. The total integral cross sections for the asymmetric stretching vibrational excited state are in good agreement with the experimental observations. The results also showed the difference of dynamical behavior between reactions from symmetric and asymmetric stretching excited states. The thermal rate constants are calculated for the temperature range T = 250-2000 K and compared with the experimental and other theoretical results. PMID:23145723
NASA Astrophysics Data System (ADS)
Liu, Rui; Xiong, Hongwei; Yang, Minghui
2012-11-01
An eight-dimensional quantum mechanical Hamiltonian has been proposed based on Palma and Clary's model in which the non-reacting CZ3 group keeps a C3v symmetry in the X + YCZ3 ? XY + CZ3 reaction J. Palma and D. C. Clary [J. Chem. Phys. 112, 1859 (2000), 10.1063/1.480749]. By transforming the original Cartesian coordinate system (x, s) into a scaled polar coordinate system (q, ?), the vibrational Hamiltonian of CZ3 group is expressed in a simple form with a clear physical picture. This Hamiltonian is used to investigate the H + CH4 ? H2 + CH3 reaction on the Jordan-Gilbert potential energy surface. The total reaction probabilities are calculated for the initial ground state, and umbrella, bending, symmetric, and asymmetric stretching excited states of CH4 with total angular momentum J = 0. The integral cross sections for the reaction are also studied for these initial vibrational states with a centrifugal-sudden approximation. The total integral cross sections for the asymmetric stretching vibrational excited state are in good agreement with the experimental observations. The results also showed the difference of dynamical behavior between reactions from symmetric and asymmetric stretching excited states. The thermal rate constants are calculated for the temperature range T = 250-2000 K and compared with the experimental and other theoretical results.
Mostafazadeh, Ali
2005-10-01
We extend the application of the techniques developed within the framework of the pseudo-Hermitian quantum mechanics to study a unitary quantum system described by an imaginary PT-symmetric potential v(x) having a continuous real spectrum. For this potential that has recently been used, in the context of optical potentials, for modeling the propagation of electromagnetic waves traveling in a waveguide half and half filled with gain and absorbing media, we give a perturbative construction of the physical Hilbert space, observables, localized states, and the equivalent Hermitian Hamiltonian. Ignoring terms of order three or higher in the non-Hermiticity parameter {zeta}, we show that the equivalent Hermitian Hamiltonian has the form p{sup 2}/2m+({zeta}{sup 2}/2){sigma}{sub n=0}{sup {infinity}}{l_brace}{alpha}{sub n}(x),p{sup 2n}{r_brace} with {alpha}{sub n}(x) vanishing outside an interval that is three times larger than the support of v(x), i.e., in 2/3 of the physical interaction region the potential v(x) vanishes identically. We provide a physical interpretation for this unusual behavior and comment on the classical limit of the system.
Programmable quantum simulation by dynamic Hamiltonian engineering
NASA Astrophysics Data System (ADS)
Hayes, David; Flammia, Steven T.; Biercuk, Michael J.
2014-08-01
Quantum simulation is a promising near term application for quantum information processors with the potential to solve computationally intractable problems using just a few dozen interacting qubits. A range of experimental platforms have recently demonstrated the basic functionality of quantum simulation applied to quantum magnetism, quantum phase transitions and relativistic quantum mechanics. However, in all cases, the physics of the underlying hardware restricts the achievable inter-particle interactions and forms a serious constraint on the versatility of the simulators. To broaden the scope of these analog devices, we develop a suite of pulse sequences that permit a user to efficiently realize average Hamiltonians that are beyond the native interactions of the system. Specifically, this approach permits the generation of all symmetrically coupled translation-invariant two-body Hamiltonians with homogeneous on-site terms, a class which includes all spin-1/2 XYZ chains, but generalized to include long-range couplings. Our work builds on previous work proving that universal simulation is possible using both entangling gates and single-qubit unitaries. We show that determining the appropriate ‘program’ of unitary pulse sequences which implements an arbitrary Hamiltonian transformation can be formulated as a linear program over functions defined by those pulse sequences, running in polynomial time and scaling efficiently in hardware resources. Our analysis extends from circuit model quantum information to adiabatic quantum evolutions, representing an important and broad-based success in applying functional analysis to the field of quantum information.
Quantum Bi-Hamiltonian Systems
José F. Cariñena; Janusz Grabowski; Giuseppe Marmo
2006-10-06
We define quantum bi-Hamiltonian systems, by analogy with the classical case, as derivations in operator algebras which are inner derivations with respect to two compatible associative structures. We find such structures by means of the associative version of Nijenhuis tensors. Explicit examples, e.g. for the harmonic oscillator, are given.
Herbert, J.M.
1997-02-01
Perturbation theory has long been utilized by quantum chemists as a method for approximating solutions to the Schroedinger equation. Perturbation treatments represent a system`s energy as a power series in which each additional term further corrects the total energy; it is therefore convenient to have an explicit formula for the nth-order energy correction term. If all perturbations are collected into a single Hamiltonian operator, such a closed-form expression for the nth-order energy correction is well known; however, use of a single perturbed Hamiltonian often leads to divergent energy series, while superior convergence behavior is obtained by expanding the perturbed Hamiltonian in a power series. This report presents a closed-form expression for the nth-order energy correction obtained using Rayleigh-Schroedinger perturbation theory and a power series expansion of the Hamiltonian.
Quantum Hamiltonian learning using imperfect quantum resources
NASA Astrophysics Data System (ADS)
Wiebe, Nathan; Granade, Christopher; Ferrie, Christopher; Cory, David
2014-04-01
Identifying an accurate model for the dynamics of a quantum system is a vexing problem that underlies a range of problems in experimental physics and quantum information theory. Recently, a method called quantum Hamiltonian learning has been proposed by the present authors that uses quantum simulation as a resource for modeling an unknown quantum system. This approach can, under certain circumstances, allow such models to be efficiently identified. A major caveat of that work is the assumption of that all elements of the protocol are noise free. Here we show that quantum Hamiltonian learning can tolerate substantial amounts of depolarizing noise and show numerical evidence that it can tolerate noise drawn from other realistic models. We further provide evidence that the learning algorithm will find a model that is maximally close to the true model in cases where the hypothetical model lacks terms present in the true model. Finally, we also provide numerical evidence that the algorithm works for noncommuting models. This work illustrates that quantum Hamiltonian learning can be performed using realistic resources and suggests that even imperfect quantum resources may be valuable for characterizing quantum systems.
Five-dimensional Hamiltonian-Jacobi approach to relativistic quantum mechanics
Rose, Harald
2003-12-11
A novel theory is outlined for describing the dynamics of relativistic electrons and positrons. By introducing the Lorentz-invariant universal time as a fifth independent variable, the Hamilton-Jacobi formalism of classical mechanics is extended from three to four spatial dimensions. This approach allows one to incorporate gravitation and spin interactions in the extended five-dimensional Lagrangian in a covariant form. The universal time has the function of a hidden Bell parameter. By employing the method of variation with respect to the four coordinates of the particle and the components of the electromagnetic field, the path equation and the electromagnetic field produced by the charge and the spin of the moving particle are derived. In addition the covariant equations for the dynamics of the components of the spin tensor are obtained. These equations can be transformed to the familiar BMT equation in the case of homogeneous electromagnetic fields. The quantization of the five-dimensional Hamilton-Jacobi equation yields a five-dimensional spinor wave equation, which degenerates to the Dirac equation in the stationary case if we neglect gravitation. The quantity which corresponds to the probability density of standard quantum mechanics is the four-dimensional mass density which has a real physical meaning. By means of the Green method the wave equation is transformed into an integral equation enabling a covariant relativistic path integral formulation. Using this approach a very accurate approximation for the four-dimensional propagator is derived. The proposed formalism makes Dirac's hole theory obsolete and can readily be extended to many particles.
Quantum mechanics with a time-dependent random unitary Hamiltonian: A perturbative
Fominov, Yakov
- nal, unitary, symplectic) Main problem: find the diffusion coefficient in the energy space [E(t) - E(0 limits!!! (with the same coefficient) 3 #12;Quantum corrections in the Kubo regime [M. A. Skvortsov, Phys -- dimensionless diffusion coefficient (universal function of ) 2 #12;Two limits of quantum evolution [M. Wilkinson
Relativistic non-Hamiltonian mechanics
Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.r [Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119991 (Russian Federation)
2010-10-15
Relativistic particle subjected to a general four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u{sub {mu}u}{sup {mu}} + c{sup 2} = 0, where c is the speed of light in vacuum. In the general case, four-forces are non-potential, and the relativistic particle is a non-Hamiltonian system in four-dimensional pseudo-Euclidean space-time. We consider non-Hamiltonian and dissipative systems in relativistic mechanics. Covariant forms of the principle of stationary action and the Hamilton's principle for relativistic mechanics of non-Hamiltonian systems are discussed. The equivalence of these principles is considered for relativistic particles subjected to potential and non-potential forces. We note that the equations of motion which follow from the Hamilton's principle are not equivalent to the equations which follow from the variational principle of stationary action. The Hamilton's principle and the principle of stationary action are not compatible in the case of systems with nonholonomic constraint and the potential forces. The principle of stationary action for relativistic particle subjected to non-potential forces can be used if the Helmholtz conditions are satisfied. The Hamilton's principle and the principle of stationary action are equivalent only for a special class of relativistic non-Hamiltonian systems.
Quantum Bootstrapping via Compressed Quantum Hamiltonian Learning
Nathan Wiebe; Christopher Granade; David G. Cory
2015-03-30
Recent work has shown that quantum simulation is a valuable tool for learning empirical models for quantum systems. We build upon these results by showing that a small quantum simulators can be used to characterize and learn control models for larger devices for wide classes of physically realistic Hamiltonians. This leads to a new application for small quantum computers: characterizing and controlling larger quantum computers. Our protocol achieves this by using Bayesian inference in concert with Lieb-Robinson bounds and interactive quantum learning methods to achieve compressed simulations for characterization. Whereas Fisher information analysis shows that current methods which employ short-time evolution are suboptimal, interactive quantum learning allows us to overcome this limitation. We illustrate the efficiency of our bootstrapping protocol by showing numerically that an 8-qubit Ising model simulator can be used to calibrate and control a 50 qubit Ising simulator while using only about 750 kilobits of experimental data.
Quantum Bootstrapping via Compressed Quantum Hamiltonian Learning
NASA Astrophysics Data System (ADS)
Wiebe, Nathan; Granade, Christopher; Cory, David
2015-03-01
Recent work has shown that quantum simulation is a valuable tool for learning empirical models for quantum systems. We build upon these results by showing that a small quantum simulators can be used to characterize and learn control models for larger devices for wide classes of physically realistic Hamiltonians. This leads to a new application for small quantum computers: characterizing and controlling larger quantum computers. Our protocol achieves this by using Bayesian inference in concert with Lieb-Robinson bounds and interactive quantum learning methods to achieve compressed simulations for characterization. Whereas Fisher information analysis shows that current methods which employ short-time evolution are suboptimal, interactive quantum learning allows us to overcome this limitation. We illustrate the efficiency of our bootstrapping protocol by showing numerically that an 8-qubit Ising model simulator can be used to calibrate and control a 50 qubit Ising simulator while using only about 750 kilobits of experimental data.
Quantumness of discrete Hamiltonian cellular automata
Hans-Thomas Elze
2014-07-08
We summarize a recent study of discrete (integer-valued) Hamiltonian cellular automata (CA) showing that their dynamics can only be consistently defined, if it is linear in the same sense as unitary evolution described by the Schr\\"odinger equation. This allows to construct an invertible map between such CA and continuous quantum mechanical models, which incorporate a fundamental scale. Presently, we emphasize general aspects of these findings, the construction of admissible CA observables, and the existence of solutions of the modified dispersion relation for stationary states.
Quantum Hamiltonian Physics with Supercomputers
NASA Astrophysics Data System (ADS)
Vary, James P.
2014-06-01
The vision of solving the nuclear many-body problem in a Hamiltonian framework with fundamental interactions tied to QCD via Chiral Perturbation Theory is gaining support. The goals are to preserve the predictive power of the underlying theory, to test fundamental symmetries with the nucleus as laboratory and to develop new understandings of the full range of complex quantum phenomena. Advances in theoretical frameworks (renormalization and many-body methods) as well as in computational resources (new algorithms and leadership-class parallel computers) signal a new generation of theory and simulations that will yield profound insights into the origins of nuclear shell structure, collective phenomena and complex reaction dynamics. Fundamental discovery opportunities also exist in such areas as physics beyond the Standard Model of Elementary Particles, the transition between hadronic and quark-gluon dominated dynamics in nuclei and signals that characterize dark matter. I will review some recent achievements and present ambitious consensus plans along with their challenges for a coming decade of research that will build new links between theory, simulations and experiment. Opportunities for graduate students to embark upon careers in the fast developing field of supercomputer simulations is also discussed.
Hamiltonian learning and certification using quantum resources.
Wiebe, Nathan; Granade, Christopher; Ferrie, Christopher; Cory, D G
2014-05-16
In recent years quantum simulation has made great strides, culminating in experiments that existing supercomputers cannot easily simulate. Although this raises the possibility that special purpose analog quantum simulators may be able to perform computational tasks that existing computers cannot, it also introduces a major challenge: certifying that the quantum simulator is in fact simulating the correct quantum dynamics. We provide an algorithm that, under relatively weak assumptions, can be used to efficiently infer the Hamiltonian of a large but untrusted quantum simulator using a trusted quantum simulator. We illustrate the power of this approach by showing numerically that it can inexpensively learn the Hamiltonians for large frustrated Ising models, demonstrating that quantum resources can make certifying analog quantum simulators tractable. PMID:24877920
Hamiltonian mechanics limits microscopic engines
NASA Astrophysics Data System (ADS)
Anglin, James; Gilz, Lukas; Thesing, Eike
2015-05-01
We propose a definition of fully microscopic engines (micro-engines) in terms of pure mechanics, without reference to thermodynamics, equilibrium, or cycles imposed by external control, and without invoking ergodic theory. This definition is pragmatically based on the observation that what makes engines useful is energy transport across a large ratio of dynamical time scales. We then prove that classical and quantum mechanics set non-trivial limits-of different kinds-on how much of the energy that a micro-engine extracts from its fuel can be converted into work. Our results are not merely formal; they imply manageable design constraints on micro-engines. They also suggest the novel possibility that thermodynamics does not emerge from mechanics in macroscopic regimes, but rather represents the macroscopic limit of a generalized theory, valid on all scales, which governs the important phenomenon of energy transport across large time scale ratios. We propose experimental realizations of the dynamical mechanisms we identify, with trapped ions and in Bose-Einstein condensates (``motorized bright solitons'').
Quaternionic Formulation of Supersymmetric Quantum Mechanics
Seema Rawat; O. P. S. Negi
2007-03-18
Quaternionic formulation of supersymmetric quantum mechanics has been developed consistently in terms of Hamiltonians, superpartner Hamiltonians, and supercharges for free particle and interacting field in one and three dimensions. Supercharges, superpartner Hamiltonians and energy eigenvalues are discussed and it has been shown that the results are consistent with the results of quantum mechanics.
The physical hamiltonian in nonperturbative quantum gravity
Carlo Rovelli; Lee Smolin
1993-08-05
A quantum hamiltonian which evolves the gravitational field according to time as measured by constant surfaces of a scalar field is defined through a regularization procedure based on the loop representation, and is shown to be finite and diffeomorphism invariant. The problem of constructing this hamiltonian is reduced to a combinatorial and algebraic problem which involves the rearrangements of lines through the vertices of arbitrary graphs. This procedure also provides a construction of the hamiltonian constraint as a finite operator on the space of diffeomorphism invariant states as well as a construction of the operator corresponding to the spatial volume of the universe.
Hamiltonian Mechanics of Stochastic Acceleration
NASA Astrophysics Data System (ADS)
Burby, J. W.; Zhmoginov, A. I.; Qin, H.
2013-11-01
We show how to find the physical Langevin equation describing the trajectories of particles undergoing collisionless stochastic acceleration. These stochastic differential equations retain not only one-, but two-particle statistics, and inherit the Hamiltonian nature of the underlying microscopic equations. This opens the door to using stochastic variational integrators to perform simulations of stochastic interactions such as Fermi acceleration. We illustrate the theory by applying it to two example problems.
Renormalization group approach to quantum Hamiltonian dynamics
NASA Astrophysics Data System (ADS)
G?azek, Stanis?aw D.
2015-03-01
Ken Wilson developed powerful renormalization group procedures for constructing effective theories and solving a broad class of difficult physical problems. His insights allowed him to later advance the Hamiltonian approach to quantum dynamics of particles and fields in the Minkowski space-time, motivated by QCD. The latter advances are described in this article, concluding with a remark on Ken's related interest in difficult systemic issues of society.
Quantum Hamiltonian identification from measurement time traces
Jun Zhang; Mohan Sarovar
2014-08-26
Precise identification of parameters governing quantum processes is a critical task for quantum information and communication technologies. In this work we consider a setting where system evolution is determined by a parameterized Hamiltonian, and the task is to estimate these parameters from temporal records of a restricted set of system observables (time traces). Based on the notion of system realization from linear systems theory we develop a constructive algorithm that provides estimates of the unknown parameters directly from these time traces. We illustrate the algorithm and its robustness to measurement noise by applying it to a one-dimensional spin chain model with variable couplings.
Quantum Hamiltonian identification from measurement time traces.
Zhang, Jun; Sarovar, Mohan
2014-08-22
Precise identification of parameters governing quantum processes is a critical task for quantum information and communication technologies. In this Letter, we consider a setting where system evolution is determined by a parametrized Hamiltonian, and the task is to estimate these parameters from temporal records of a restricted set of system observables (time traces). Based on the notion of system realization from linear systems theory, we develop a constructive algorithm that provides estimates of the unknown parameters directly from these time traces. We illustrate the algorithm and its robustness to measurement noise by applying it to a one-dimensional spin chain model with variable couplings. PMID:25192077
New approach on Supersymmetric Quantum Systems: Real and Complex Hamiltonians
Biswanath Rath
2015-05-01
We propose a new method for generating new Hamiltonians for the development of supersymmetric Quantum Mechanics for real as well as complex systems.interestingly Hamiltonians which can be realised in this method, can hardly be derieved using all previous formalisms developed so far.Further examples discussed here include both shape invariant and shape non-invariant potentials.We notice a new thing (which has not been revealed earlier) in the case of shape invariant potentials i.e by suitable choice of parameters in superpotential the generated hamiltonians satisfy either (i) SUSY conditions i.e $E_{n}^{(+)} =E_{n+1}^{(-)}$ ; $E_{0}^{(-)}=0$ or (ii) Iso-spectral condition i.e $E_{n}^{(+)}=E_{n}^{(-)}$ .However for non-shape invariant potentials energy relations depend only in the choice of superpotentials.We present both analytical as well as numerical results. PACS :11.30.Pb, 03.65.Db, 11.30.Er, 03.65.Ge Keywords - Superpotential, SUSY condition, Iso-spectral condition, real Hamiltonian, complex Hamiltonian, exactly solvable systems, numerical results.
Noncommutative quantum mechanics
NASA Astrophysics Data System (ADS)
Gamboa, J.; Loewe, M.; Rojas, J. C.
2001-09-01
A general noncommutative quantum mechanical system in a central potential V=V(r) in two dimensions is considered. The spectrum is bounded from below and, for large values of the anticommutative parameter ?, we find an explicit expression for the eigenvalues. In fact, any quantum mechanical system with these characteristics is equivalent to a commutative one in such a way that the interaction V(r) is replaced by V=V(HHO,Lz), where HHO is the Hamiltonian of the two-dimensional harmonic oscillator and Lz is the z component of the angular momentum. For other finite values of ? the model can be solved by using perturbation theory.
Uncertainty relation for non-Hamiltonian quantum systems
Tarasov, Vasily E. [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation)] [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation)
2013-01-15
General forms of uncertainty relations for quantum observables of non-Hamiltonian quantum systems are considered. Special cases of uncertainty relations are discussed. The uncertainty relations for non-Hamiltonian quantum systems are considered in the Schroedinger-Robertson form since it allows us to take into account Lie-Jordan algebra of quantum observables. In uncertainty relations, the time dependence of quantum observables and the properties of this dependence are discussed. We take into account that a time evolution of observables of a non-Hamiltonian quantum system is not an endomorphism with respect to Lie, Jordan, and associative multiplications.
Statistical mechanics of Hamiltonian adaptive resolution simulations.
Español, P; Delgado-Buscalioni, R; Everaers, R; Potestio, R; Donadio, D; Kremer, K
2015-02-14
The Adaptive Resolution Scheme (AdResS) is a hybrid scheme that allows to treat a molecular system with different levels of resolution depending on the location of the molecules. The construction of a Hamiltonian based on the this idea (H-AdResS) allows one to formulate the usual tools of ensembles and statistical mechanics. We present a number of exact and approximate results that provide a statistical mechanics foundation for this simulation method. We also present simulation results that illustrate the theory. PMID:25681895
Andrzejewski, K
2015-01-01
The quantum mechanics of one degree of freedom exhibiting the exact conformal SL(2,R) symmetry is presented. The starting point is the classification of the unitary irreducible representations of the SL(2,R) group (or, to some extent, its universal covering). The coordinate representation is defined as the basis diagonalizing the special conformal generator K. It is indicated how the resulting theory emerges from the canonical/geometric quantization of the Hamiltonian dynamics on the relevant coadjoint orbits.
K. Andrzejewski
2015-06-18
The quantum mechanics of one degree of freedom exhibiting the exact conformal SL(2,R) symmetry is presented. The starting point is the classification of the unitary irreducible representations of the SL(2,R) group (or, to some extent, its universal covering). The coordinate representation is defined as the basis diagonalizing the special conformal generator K. It is indicated how the resulting theory emerges from the canonical/geometric quantization of the Hamiltonian dynamics on the relevant coadjoint orbits.
Evolution Law of Quantum Observables from Classical Hamiltonian in Non-Commutative Phase Space
Daniela Dragoman
2006-04-11
The evolution equations of quantum observables are derived from the classical Hamiltonian equations of motion with the only additional assumption that the phase space is non-commutative. The demonstration of the quantum evolution laws is quite general; it does not rely on any assumption on the operator nature of x and p and is independent of the quantum mechanical formalism.
Experimental Quantum Hamiltonian Identification from Measurement Time Traces
Shi-yao Hou; Hang Li; Gui-Lu Long
2014-10-15
Identifying Hamiltonian of a quantum system is of vital importance for quantum information processing. In this Letter, we realized and benchmarked a quantum Hamiltonian identification algorithm recently proposed [Phys. Rev. Lett. \\textbf{113}, 080401 (2014)]. we realized the algorithm on liquid nuclear magnetic resonance quantum information processor using two different working media with different forms of Hamiltonian. Our experiment realized the quantum identification algorithm based on free induction decay signals. We also showed how to process data obtained in practical experiment. We studied the influence of decoherence by numerical simulations. Our experiments and simulations demonstrate that the algorithm is effective and robust.
Hamiltonian Control of Quantum Dynamical Semigroups: Stabilization and Convergence Speed
Cappellaro, Paola
We consider finite-dimensional Markovian open quantum systems, and characterize the extent to which time-independent Hamiltonian control may allow to stabilize a target quantum state or subspace and optimize the resulting ...
Estimation of many-body quantum Hamiltonians via compressive sensing
Shabani, A.
We develop an efficient and robust approach for quantum measurement of nearly sparse many-body quantum Hamiltonians based on the method of compressive sensing. This work demonstrates that with only O(sln(d)) experimental ...
Quantum mechanical irreversibility
NASA Astrophysics Data System (ADS)
Bohm, A.; Maxson, S.; Loewe, Mark; Gadella, M.
1997-02-01
Microphysical irreversibility is distinguished from the extrinsic irreversibility of open systems. The rigged Hilbert space (RHS) formulation of quantum mechanics is justified based on the foundations of quantum mechanics. Unlike the Hilbert space formulation of quantum mechanics, the rigged Hilbert space formulation of quantum mechanics allows for the description of decay and other irreversible processes because it allows for a preferred direction of time for time evolution generated by a semi-bounded, essentially self-adjoint Hamiltonian. This quantum mechanical arrow of time is obtained and applied to a resonance scattering experiment. Within the cintext of a resonance scattering experiment, it is shown how the dichotomy of state and observable leads to a pair of RHSs, one for states and one for observables. Using resonance scattering, it is shown how the Gamow vectors describing decaying states with complex energy eigenvalues ( ER - i?/2) emerge from the first-order resonance poles of the S-matrix. Then, these considerations are extended to S-matrix poles order N and it shown that this leads to Gamow vectors of higher order k = 0, 1, …, N - 1 which are also Jordan vectors of degree k + 1 = 1, 2,…, N. The matrix elements of the self-adjoint Hamiltonian between these vectors from a Jordan block of degree N. The two semigroups of time evolution generated by the Hamiltonian are obtained for Gamow vectors of any order. It is shown how the irreversible time evolution of Gamow vectors enables the derivation of an exact Golden Rule for the calculation of decay probabilities, from which the standard (approximate) Golden Rule is obtained as the Born approximation in the limit ?R ? ER.
NASA Astrophysics Data System (ADS)
Mandl, F.
1992-07-01
The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw The Physics of Stars Second Edition A. C. Phillips Computing for Scientists R. J. Barlow and A. R. Barnett Quantum Mechanics aims to teach those parts of the subject which every physicist should know. The object is to display the inherent structure of quantum mechanics, concentrating on general principles and on methods of wide applicability without taking them to their full generality. This book will equip students to follow quantum-mechanical arguments in books and scientific papers, and to cope with simple cases. To bring the subject to life, the theory is applied to the all-important field of atomic physics. No prior knowledge of quantum mechanics is assumed. However, it would help most readers to have met some elementary wave mechanics before. Primarily written for students, it should also be of interest to experimental research workers who require a good grasp of quantum mechanics without the full formalism needed by the professional theorist. Quantum Mechanics features: A flow diagram allowing topics to be studied in different orders or omitted altogether. Optional "starred" and highlighted sections containing more advanced and specialized material for the more ambitious reader. Sets of problems at the end of each chapter to help student understanding. Hints and solutions to the problems are given at the end of the book.
A geometric Hamiltonian description of composite quantum systems and quantum entanglement
Davide Pastorello
2014-08-08
Finite-dimensional Quantum Mechanics can be geometrically formulated as a proper classical-like Hamiltonian theory in a projective Hilbert space. The description of composite quantum systems within the geometric Hamiltonian framework is discussed in this paper. As summarized in the first part of this work, in the Hamiltonian formulation the phase space of a quantum system is the Kahler manifold given by the complex projective space P(H) of the Hilbert space H of the considered quantum theory. However the phase space of a bipartite system must be given by the projective space of the tensor product of two Hilbert spaces H and K and not simply by the cartesian product P(H)xP(K) as suggested by the analogy with Classical Mechanics. A part of this paper is devoted to manage this problem. In the second part of the work, a definition of quantum entanglement and a proposal of entanglement measure are given in terms of a geometrical point of view (a rather studied topic in recent literature). Finally two known separability criteria are implemented in the Hamiltonian formalism.
A geometric Hamiltonian description of composite quantum systems and quantum entanglement
NASA Astrophysics Data System (ADS)
Pastorello, Davide
2015-05-01
Finite-dimensional Quantum Mechanics can be geometrically formulated as a proper classical-like Hamiltonian theory in a projective Hilbert space. The description of composite quantum systems within the geometric Hamiltonian framework is discussed in this paper. As summarized in the first part of this work, in the Hamiltonian formulation the phase space of a quantum system is the Kähler manifold given by the complex projective space P(H) of the Hilbert space H of the considered quantum theory. However the phase space of a bipartite system must be P(H1 ? H2) and not simply P(H1) × P(H2) as suggested by the analogy with Classical Mechanics. A part of this paper is devoted to manage this problem. In the second part of the work, a definition of quantum entanglement and a proposal of entanglement measure are given in terms of a geometrical point of view (a rather studied topic in recent literature). Finally two known separability criteria are implemented in the Hamiltonian formalism.
Supersymmetry in quantum mechanics
NASA Astrophysics Data System (ADS)
Khare, Avinash
2004-12-01
An elementary introduction is given to the subject of supersymmetry in quantum mechanics which can be understood and appreciated by any one who has taken a first course in quantum mechanics. We demonstrate with explicit examples that given a solvable problem in quantum mechanics with n bound states, one can construct n new exactly solvable Hamiltonians having n - 1, n - 2,…, 0 bound states. The relationship between the eigenvalues, eigenfunctions and scattering matrix of the supersymmetric partner potentials is derived and a class of reflectionless potentials are explicitly constructed. We extend the operator method of solving the one-dimensional harmonic oscillator problem to a class of potentials called shape-invariant potentials. It is worth emphasizing that this class includes almost all the solvable problems that are found in the standard text books on quantum mechanics. Further, we show that given any potential with at least one bound state, one can very easily construct one continuous parameter family of potentials having same eigenvalues and s-matrix. The supersymmetry inspired WKB approximation (SWKB) is also discussed and it is shown that unlike the usual WKB, the lowest order SWKB approximation is exact for the shape-invariant potentials and further, this approximation is not only exact for large quantum numbers but by construction, it is also exact for the ground state. Finally, we also construct new exactly solvable periodic potentials by using the machinery of supersymmetric quantum mechanics.
Time and a physical Hamiltonian for quantum gravity.
Husain, Viqar; Paw?owski, Tomasz
2012-04-01
We present a nonperturbative quantization of general relativity coupled to dust and other matter fields. The dust provides a natural time variable, leading to a physical Hamiltonian with spatial diffeomorphism symmetry. The surprising feature is that the Hamiltonian is not a square root. This property, together with the kinematical structure of loop quantum gravity, provides a complete theory of quantum gravity, and puts applications to cosmology, quantum gravitational collapse, and Hawking radiation within technical reach. PMID:22540782
An Alternative Adiabatic Quantum Algorithm for the Hamiltonian Cycle Problem
NASA Astrophysics Data System (ADS)
Zhang, Da-Jian; Tong, Dian-Min; Lu, Yao; Long, Gui-Lu
2015-05-01
We put forward an alternative quantum algorithm for finding Hamiltonian cycles in any N-vertex graph based on adiabatic quantum computing. With a von Neumann measurement on the final state, one may determine whether there is a Hamiltonian cycle in the graph and pick out a cycle if there is any. Although the proposed algorithm provides a quadratic speedup, it gives an alternative algorithm based on adiabatic quantum computation, which is of interest because of its inherent robustness.
Time-Symmetry Breaking in Hamiltonian Mechanics
Wm. G. Hoover; Carol G. Hoover
2013-03-08
Hamiltonian trajectories are strictly time-reversible. Any time series of Hamiltonian coordinates {q} satisfying Hamilton's motion equations will likewise satisfy them when played "backwards", with the corresponding momenta changing signs : {+p} --> {-p}. Here we adopt Levesque and Verlet's precisely bit-reversible motion algorithm to ensure that the trajectory reversibility is exact, with the forward and backward sets of coordinates identical. Nevertheless, the associated instantaneous Lyapunov instability, or "sensitive dependence on initial conditions" of "chaotic" (or "Lyapunov unstable") bit-reversible coordinate trajectories can still exhibit an exponentially growing time-symmetry-breaking irreversibility. Surprisingly, the positive and negative exponents, as well as the forward and backward Lyapunov spectra, are usually not closely related, and so give four differing topological measures of "local" chaos. We have demonstrated this symmetry breaking for fluid shockwaves, for free expansions, and for chaotic molecular collisions. Here we illustrate and discuss this time-symmetry breaking for three statistical-mechanical systems, [1] a minimal (but still chaotic) one-body "cell model" with a four-dimensional phase space; [2] relatively small colliding crystallites, for which the whole Lyapunov spectrum is accessible; [3] a near-continuum inelastic collision of two larger 400-particle balls. In the last two of these pedagogical problems the two colliding bodies coalesce. The particles most prone to Lyapunov instability are dramatically different in the two time directions. Thus this Lyapunov-based symmetry breaking furnishes an interesting Arrow of Time.
Level Statistics for Quantum Hamiltonians --Some Preliminary Ideas toward Mathematical
Level Statistics for Quantum Hamiltonians --Some Preliminary Ideas toward Mathematical property of the Poisson point process. In particular, the spacings between enÂ ergy levels obey the exponential distribution, which is the phenomena called ``level clustering ''. Strict justification
Supersymmetric q-deformed quantum mechanics
Traikia, M. H.; Mebarki, N.
2012-06-27
A supersymmetric q-deformed quantum mechanics is studied in the weak deformation approximation of the Weyl-Heisenberg algebra. The corresponding supersymmetric q-deformed hamiltonians and charges are constructed explicitly.
Renormalization group in quantum mechanics
Polony, J. [Laboratory of Theoretical Physics, Louis Pasteur University, 3 rue de l`Universite, 67084 Strasbourg Cedex (France)] [Laboratory of Theoretical Physics, Louis Pasteur University, 3 rue de l`Universite, 67084 Strasbourg Cedex (France); [Department of Atomic Physics, Lorand Eoelvos University, Puskin u 5-7, 1088 Budapest (Hungary)
1996-12-01
The running coupling constants are introduced in quantum mechanics and their evolution is described with the help of the renormalization group equation. The harmonic oscillator and the propagation on curved spaces are presented as examples. The Hamiltonian and the Lagrangian scaling relations are obtained. These evolution equations are used to construct low energy effective models. Copyright {copyright} 1996 Academic Press, Inc.
Supersymmetric Quantum Mechanics
David, J.; Fernandez, C.
2010-10-11
Supersymmetric quantum mechanics (SUSY QM) is a powerful tool for generating new potentials with known spectra departing from an initial solvable one. In these lecture notes we will present some general formulae concerning SUSY QM of first second order for one-dimensional arbitrary systems, we will illustrate the method through the trigonometric Poeschl-Teller potentials. Some intrinsically related subjects, as the algebraic structure inherited by the new Hamiltonians and the corresponding coherent states will be analyzed. The technique will be as well implemented for periodic potentials, for which the corresponding spectrum is composed of allowed bands separated by energy gaps.
2T Physics and Quantum Mechanics
W. Chagas-Filho
2008-02-20
We use a local scale invariance of a classical Hamiltonian and describe how to construct six different formulations of quantum mechanics in spaces with two time-like dimensions. All these six formulations have the same classical limit described by the same Hamiltonian. One of these formulations is used as a basis for a complementation of the usual quantum mechanics when in the presence of gravity.
An Effective Hamiltonian Approach to Quantum Random Walk
Debajyoti Sarkar; Niladri Paul; Kaushik Bhattacharya; Tarun Kanti Ghosh
2015-09-18
In this article we present an effective Hamiltonian approach for Discrete Time Quantum Random Walk. A form of the Hamiltonian for one dimensional quantum walk has been prescribed, utilizing the fact that Hamiltonians are the generators of time translations. Then an attempt has been made to generalize the techniques to higher dimensions. We find that the Hamiltonian can be written as the sum of a Weyl Hamiltonian and a Dirac comb potential. The time evolution operator obtained from this prescribed Hamiltonian is in complete agreement with that of the standard approach. But in higher dimension we find that the time evolution operator is additive, instead of being multiplicative \\cite{Chandrasekhar:2013SREP08229}. We showed that in case of two-step walk, effectively the time evolution operator can have multiplicative form. In case of a square lattice, quantum walk has been studied computationally for different coins and the results for both the additive and the multiplicative approaches have been compared. Using the Graphene Hamiltonian the walk has been studied on a Graphene lattice and we conclude the preference of additive approach over the multiplicative one.
Hamiltonian quantum simulation with bounded-strength controls
NASA Astrophysics Data System (ADS)
Bookatz, Adam D.; Wocjan, Pawel; Viola, Lorenza
2014-04-01
We propose dynamical control schemes for Hamiltonian simulation in many-body quantum systems that avoid instantaneous control operations and rely solely on realistic bounded-strength control Hamiltonians. Each simulation protocol consists of periodic repetitions of a basic control block, constructed as a modification of an ‘Eulerian decoupling cycle,’ that would otherwise implement a trivial (zero) target Hamiltonian. For an open quantum system coupled to an uncontrollable environment, our approach may be employed to engineer an effective evolution that simulates a target Hamiltonian on the system while suppressing unwanted decoherence to the leading order, thereby allowing for dynamically corrected simulation. We present illustrative applications to both closed- and open-system simulation settings, with emphasis on simulation of non-local (two-body) Hamiltonians using only local (one-body) controls. In particular, we provide simulation schemes applicable to Heisenberg-coupled spin chains exposed to general linear decoherence, and show how to simulate Kitaev's honeycomb lattice Hamiltonian starting from Ising-coupled qubits, as potentially relevant to the dynamical generation of a topologically protected quantum memory. Additional implications for quantum information processing are discussed.
Bohmian mechanics contradicts quantum mechanics
Neumaier, Arnold
Bohmian mechanics contradicts quantum mechanics Arnold Neumaier Institut fur Mathematik, Universit and quantum mechanics predict values of opposite sign for certain time correlations. The discrepancy can no loophole for claiming that Bohmian mechanics reproduces all predictions of quantum mechanics exactly
On the Efficiency of Quantum Algorithms for Hamiltonian Simulation
Anargyros Papageorgiou; Chi Zhang
2010-10-11
We study the efficiency of algorithms simulating a system evolving with Hamiltonian $H=\\sum_{j=1}^m H_j$. We consider high order splitting methods that play a key role in quantum Hamiltonian simulation. We obtain upper bounds on the number of exponentials required to approximate $e^{-iHt}$ with error $\\e$. Moreover, we derive the order of the splitting method that optimizes the cost of the resulting algorithm. We show significant speedups relative to previously known results.
Bender, Carl M; DeKieviet, Maarten; Klevansky, S. P.
2013-01-01
-symmetric quantum mechanics (PTQM) has become a hot area of research and investigation. Since its beginnings in 1998, there have been over 1000 published papers and more than 15 international conferences entirely devoted to this research topic. Originally, PTQM was studied at a highly mathematical level and the techniques of complex variables, asymptotics, differential equations and perturbation theory were used to understand the subtleties associated with the analytic continuation of eigenvalue problems. However, as experiments on -symmetric physical systems have been performed, a simple and beautiful physical picture has emerged, and a -symmetric system can be understood as one that has a balanced loss and gain. Furthermore, the phase transition can now be understood intuitively without resorting to sophisticated mathe- matics. Research on PTQM is following two different paths: at a fundamental level, physicists are attempting to understand the underlying mathematical structure of these theories with the long-range objective of applying the techniques of PTQM to understanding some of the outstanding problems in physics today, such as the nature of the Higgs particle, the properties of dark matter, the matter–antimatter asymmetry in the universe, neutrino oscillations and the cosmological constant; at an applied level, new kinds of -synthetic materials are being developed, and the phase transition is being observed in many physical contexts, such as lasers, optical wave guides, microwave cavities, superconducting wires and electronic circuits. The purpose of this Theme Issue is to acquaint the reader with the latest developments in PTQM. The articles in this volume are written in the style of mini-reviews and address diverse areas of the emerging and exciting new area of -symmetric quantum mechanics. PMID:23509390
An additive Hamiltonian plus Landauer's Principle yields quantum theory
Chris Fields
2015-03-27
It is shown that no-signalling, a quantum of action, unitarity, detailed balance, Bell's theorem, the Hilbert-space representation of physical states and the Born rule all follow from the assumption of an additive Hamiltonian together with Landauer's principle. Common statements of the "classical limit" of quantum theory, as well as common assumptions made by "interpretations" of quantum theory, contradict additivity, Landauer's principle, or both.
Universal quantum walks and adiabatic algorithms by 1D Hamiltonians
Bradley A. Chase; Andrew J. Landahl
2008-02-08
We construct a family of time-independent nearest-neighbor Hamiltonians coupling eight-state systems on a 1D ring that enables universal quantum computation. Hamiltonians in this family can achieve universality either by driving a continuous-time quantum walk or by terminating an adiabatic algorithm. In either case, the universality property can be understood as arising from an efficient simulation of a programmable quantum circuit. Using gadget perturbation theory, one can demonstrate the same kind of universality for related Hamiltonian families acting on qubits in 2D. Our results demonstrate that simulating 1D chains of spin-7/2 particles is BQP-hard, and indeed BQP-complete because the outputs of decision problems can be encoded in the outputs of such simulations.
Quantum models related to fouled Hamiltonians of the harmonic oscillator
P. Tempesta; E. Alfinito; R. A. Leo; G. Soliani
2002-03-25
We study a pair of canonoid (fouled) Hamiltonians of the harmonic oscillator which provide, at the classical level, the same equation of motion as the conventional Hamiltonian. These Hamiltonians, say $K_{1}$ and $K_{2}$, result to be explicitly time-dependent and can be expressed as a formal rotation of two cubic polynomial functions, $H_{1}$ and $H_{2}$, of the canonical variables (q,p). We investigate the role of these fouled Hamiltonians at the quantum level. Adopting a canonical quantization procedure, we construct some quantum models and analyze the related eigenvalue equations. One of these models is described by a Hamiltonian admitting infinite self-adjoint extensions, each of them has a discrete spectrum on the real line. A self-adjoint extension is fixed by choosing the spectral parameter $\\epsilon$ of the associated eigenvalue equation equal to zero. The spectral problem is discussed in the context of three different representations. For $\\epsilon =0$, the eigenvalue equation is exactly solved in all these representations, in which square-integrable solutions are explicity found. A set of constants of motion corresponding to these quantum models is also obtained. Furthermore, the algebraic structure underlying the quantum models is explored. This turns out to be a nonlinear (quadratic) algebra, which could be applied for the determination of approximate solutions to the eigenvalue equations.
Quantum models related to fouled Hamiltonians of the harmonic oscillator
NASA Astrophysics Data System (ADS)
Tempesta, P.; Alfinito, E.; Leo, R. A.; Soliani, G.
2002-07-01
We study a pair of canonoid (fouled) Hamiltonians of the harmonic oscillator which provide, at the classical level, the same equation of motion as the conventional Hamiltonian. These Hamiltonians, say K1 and K2, result to be explicitly time dependent and can be expressed as a formal rotation of two cubic polynomial functions, H1 and H2, of the canonical variables (q,p). We investigate the role of these fouled Hamiltonians at the quantum level. Adopting a canonical quantization procedure, we construct some quantum models and analyze the related eigenvalue equations. One of these models is described by a Hamiltonian admitting infinite self-adjoint extensions, each of them has a discrete spectrum on the real line. A self-adjoint extension is fixed by choosing the spectral parameter ? of the associated eigenvalue equation equal to zero. The spectral problem is discussed in the context of three different representations. For ?=0, the eigenvalue equation is exactly solved in all these representations, in which square-integrable solutions are explicitly found. A set of constants of motion corresponding to these quantum models is also obtained. Furthermore, the algebraic structure underlying the quantum models is explored. This turns out to be a nonlinear (quadratic) algebra, which could be applied for the determination of approximate solutions to the eigenvalue equations.
Applied quantum mechanics 1 Applied Quantum Mechanics
Levi, Anthony F. J.
on. #12;Applied quantum mechanics 3 Problem 9.4 Modify the computer program used in Exercise 9Applied quantum mechanics 1 Applied Quantum Mechanics Chapter 9 problems LAST NAME FIRST NAME #12) such that the chemical potential EF« , where EF is the Fermi energy, then fk may be approximated by a Maxwell-Boltzmann
Minkowski Space and Quantum Mechanics
NASA Astrophysics Data System (ADS)
O'Hara, Paul
A paradigm shift distinguishes general relativity from classical mechanics. In general relativity the energy-momentum tensor is the effective cause of the ontological space-time curvature and vice-versa, while in classical physics, the structure of space-time is treated as an accidental cause, serving only as a backdrop against which the laws of physics unfold. This split in turn is inherited by quantum mechanics, which is usually developed by changing classical (including special relativity) Hamiltonians into quantum wave equations.
Hamiltonian mechanics and divergence-free fields
Boozer, A.H.
1986-08-01
The field lines, or integral curves, of a divergence-free field in three dimensions are shown to be topologically equivalent to the trajectories of a Hamiltonian with two degrees of freedom. The consideration of fields that depend on a parameter allow the construction of a canonical perturbation theory which is valid even if the perturbation is large. If the parametric dependence of the magnetic, or the vorticity field is interpreted as time dependence, evolution equations are obtained which give Kelvin's theorem or the flux conservation theorem for ideal fluids and plasmas. The Hamiltonian methods prove especially useful for study of fields in which the field lines must be known throughout a volume of space.
The Hamiltonian Mechanics of Stochastic Acceleration
Burby, J. W.
2013-07-17
We show how to nd the physical Langevin equation describing the trajectories of particles un- dergoing collisionless stochastic acceleration. These stochastic di erential equations retain not only one-, but two-particle statistics, and inherit the Hamiltonian nature of the underlying microscopic equations. This opens the door to using stochastic variational integrators to perform simulations of stochastic interactions such as Fermi acceleration. We illustrate the theory by applying it to two example problems.
Introduction: quantum resonances Classical and quantum mechanics
Ramond, Thierry
: quantum resonances Classical and quantum mechanics Microlocal analysis Resonances associated;..... . .... . .... . ..... . .... . .... . .... . ..... . .... . .... . .... . ..... . .... . .... . .... . ..... . .... . ..... . .... . .... . Introduction: quantum resonances Classical and quantum mechanics Microlocal analysis Resonances associated with homoclinic orbits Outline Introduction: quantum resonances Classical and quantum mechanics Microlocal
Fundamental length in quantum theories with PT-symmetric Hamiltonians
NASA Astrophysics Data System (ADS)
Znojil, Miloslav
2009-08-01
One-dimensional motion of a quantum point particle is usually described by its wave function ?(x), where the argument x?R represents a (measurable) coordinate and where the integrated probability density is normalized to one, ??*(x)?(x)=1. The direct observability of x may be lost in PT-symmetric quantum mechanics where a “smeared” metric kernel ?(x,x')??(x-x') may enter the double-integral normalization ??*(x)?(x,x')?(x')=1. We argue that such a formalism proves particularly suitable for the introduction of a nonvanishing fundamental length ?>0, which would characterize the “smearing width” of the kernel ?(x,x'). The technical feasibility of such a project is illustrated via a toy family of Hamiltonians H(N)(?) taken from Ref. . For each element of this family the complete set of all the eligible metric kernels ?(x,x')(N)(?) is constructed in closed form. We show that at any preselected non-negative fundamental length these metrics can be made to vanish unless |x-x'|??. The strictly local inner product of Ref. recurs at ?=0, while the popular CPT-symmetric option requires ?=? in this language.
Quantum dynamics generated by the two-axis countertwisting Hamiltonian
NASA Astrophysics Data System (ADS)
Kajtoch, Dariusz; Witkowska, Emilia
2015-07-01
We study the quantum dynamics generated by the two-axis countertwisting Hamiltonian from an initial spin coherent state in a spin-1 /2 ensemble. A characteristic feature of the two-axis countertwisting Hamiltonian is the existence of four neutrally stable and two saddle unstable fixed points. The presence of the latter is responsible for a high level of squeezing. The squeezing is accompanied by the appearance of several quantum states of interest in quantum metrology with Heisenberg-limited sensitivity, and we show fidelity functions for some of them. We present exact results for the quantum Fisher information and the squeezing parameter. Although the overall time evolution of both changes strongly with the number of particles, we find that they have regular dynamics for short times. We explain scaling with the system size by using a Gaussian approach.
Principal $\\hat{sl}(3)$ subspaces and quantum Toda Hamiltonian
B. Feigin; E. Feigin; M. Jimbo; T. Miwa; E. Mukhin
2007-08-27
We study a class of representations of the Lie algebra of Laurent polynomials with values in the nilpotent subalgebra of sl(3). We derive Weyl-type (bosonic) character formulas for these representations. We establish a connection between the bosonic formulas and the Whittaker vector in the Verma module for the quantum group $U_v sl(3)$. We also obtain a fermionic formula for an eigenfunction of the sl(3) quantum Toda Hamiltonian.
Geometric formulation of quantum mechanics
Hoshang Heydari
2015-03-01
Quantum mechanics is among the most important and successful mathematical model for describing our physical reality. The traditional formulation of quantum mechanics is linear and algebraic. In contrast classical mechanics is a geometrical and non-linear theory defined on a symplectic geometry. However, after invention of general relativity, we are convinced that geometry is physical and affect us in all scale. Hence the geometric formulation of quantum mechanics sought to give a unified picture of physical systems based on its underling geometrical structures, e.g., now, the states are represented by points of a symplectic manifold with a compatible Riemannian metric, the observable are real-valued functions on the manifold, and quantum evolution is governed by the symplectic flow that is generated by a Hamiltonian function. In this work we will give a compact introduction to main ideas of geometric formulation of quantum mechanics. We will provide the reader with the details of geometrical structures of both pure and mixed quantum states. We will also discuss and review some important applications of geometric quantum mechanics.
Quantum models related to fouled Hamiltonians of the harmonic oscillator
Tempesta, P; Leo, R A; Soliani, G
2002-01-01
We study a pair of canonoid (fouled) Hamiltonians of the harmonic oscillator which provide, at the classical level, the same equation of motion as the conventional Hamiltonian. These Hamiltonians, say $K_{1}$ and $K_{2}$, result to be explicitly time-dependent and can be expressed as a formal rotation of two cubic polynomial functions, $H_{1}$ and $H_{2}$, of the canonical variables (q,p). We investigate the role of these fouled Hamiltonians at the quantum level. Adopting a canonical quantization procedure, we construct some quantum models and analyze the related eigenvalue equations. One of these models is described by a Hamiltonian admitting infinite self-adjoint extensions, each of them has a discrete spectrum on the real line. A self-adjoint extension is fixed by choosing the spectral parameter $\\epsilon$ of the associated eigenvalue equation equal to zero. The spectral problem is discussed in the context of three different representations. For $\\epsilon =0$, the eigenvalue equation is exactly solved in a...
Dirac Algebroids in Lagrangian and Hamiltonian Mechanics
Katarzyna Grabowska; Janusz Grabowski
2011-01-13
We present a unified approach to constrained implicit Lagrangian and Hamiltonian systems based on the introduced concept of Dirac algebroid. The latter is a certain almost Dirac structure associated with the Courant algebroid on the dual $E^\\ast$ to a vector bundle $E$. If this almost Dirac structure is integrable (Dirac), we speak about a Dirac-Lie algebroid. The bundle $E$ plays the role of the bundle of kinematic configurations (quasi-velocities), while the bundle $E^\\ast$ - the role of the phase space. This setting is totally intrinsic and does not distinguish between regular and singular Lagrangians. The constraints are part of the framework, so the general approach does not change when nonholonomic constraints are imposed, and produces the (implicit) Euler-Lagrange and Hamilton equations in an elegant geometric way. The scheme includes all important cases of Lagrangian and Hamiltonian systems, no matter if they are with or without constraints, autonomous or non-autonomous etc., as well as their reductions; in particular, constrained systems on Lie algebroids. we prove also some basic facts about the geometry of Dirac and Dirac-Lie algebroids.
Investigation of Commuting Hamiltonian in Quantum Markov Network
NASA Astrophysics Data System (ADS)
Jouneghani, Farzad Ghafari; Babazadeh, Mohammad; Bayramzadeh, Rogayeh; Movla, Hossein
2014-08-01
Graphical Models have various applications in science and engineering which include physics, bioinformatics, telecommunication and etc. Usage of graphical models needs complex computations in order to evaluation of marginal functions, so there are some powerful methods including mean field approximation, belief propagation algorithm and etc. Quantum graphical models have been recently developed in context of quantum information and computation, and quantum statistical physics, which is possible by generalization of classical probability theory to quantum theory. The main goal of this paper is preparing a primary generalization of Markov network, as a type of graphical models, to quantum case and applying in quantum statistical physics. We have investigated the Markov network and the role of commuting Hamiltonian terms in conditional independence with simple examples of quantum statistical physics.
Optimisation of Quantum Hamiltonian Evolution: Two Projection Operators
Apoorva Patel; Anjani Priyadarsini
2015-03-19
Given a quantum Hamiltonian and its evolution time, the corresponding unitary evolution operator can be constructed in many different ways, corresponding to different trajectories between the desired end-points. A choice among these trajectories can then be made to obtain the best computational complexity and control over errors. It is shown how a construction based on Grover's algorithm scales linearly in time and logarithmically in error bound, and is clearly superior to the scheme based on straightforward application of the Lie-Trotter formula. The strategy is then extended to simulation of any Hamiltonian that is a linear combination of two projection operators.
Quantum Monte Carlo Calculations in Solids with Downfolded Hamiltonians
NASA Astrophysics Data System (ADS)
Ma, Fengjie; Purwanto, Wirawan; Zhang, Shiwei; Krakauer, Henry
2015-06-01
We present a combination of a downfolding many-body approach with auxiliary-field quantum Monte Carlo (AFQMC) calculations for extended systems. Many-body calculations operate on a simpler Hamiltonian which retains material-specific properties. The Hamiltonian is systematically improvable and allows one to dial, in principle, between the simplest model and the original Hamiltonian. As a by-product, pseudopotential errors are essentially eliminated using frozen orbitals constructed adaptively from the solid environment. The computational cost of the many-body calculation is dramatically reduced without sacrificing accuracy. Excellent accuracy is achieved for a range of solids, including semiconductors, ionic insulators, and metals. We apply the method to calculate the equation of state of cubic BN under ultrahigh pressure, and determine the spin gap in NiO, a challenging prototypical material with strong electron correlation effects.
Path Integral and Effective Hamiltonian in Loop Quantum Cosmology
Haiyun Huang; Yongge Ma; Li Qin
2011-06-27
We study the path integral formulation of Friedmann universe filled with a massless scalar field in loop quantum cosmology. All the isotropic models of $k=0,+1,-1$ are considered. To construct the path integrals in the timeless framework, a multiple group-averaging approach is proposed. Meanwhile, since the transition amplitude in the deparameterized framework can be expressed in terms of group-averaging, the path integrals can be formulated for both deparameterized and timeless frameworks. Their relation is clarified. It turns out that the effective Hamiltonian derived from the path integral in deparameterized framework is equivalent to the effective Hamiltonian constraint derived from the path integral in timeless framework, since they lead to same equations of motion. Moreover, the effective Hamiltonian constraints of above models derived in canonical theory are confirmed by the path integral formulation.
A. L. Stewart; G. Scolarici; L. Solombrino
1963-01-01
We characterize the quasianti-Hermitian quaternionic operators in QQM by means of their spectra; moreover, we state a necessary and sufficient condition for a set of quasianti-Hermitian quaternionic operators to be anti-Hermitian with respect to a uniquely defined positive scalar product in a infinite dimensional (right) quaternionic Hilbert space. According to such results we obtain two alternative descriptions of a quantum
Dynamics of Quantum Phase Transitions: Quantum Kibble-Zurek Mechanism
NASA Astrophysics Data System (ADS)
Dziarmaga, Jacek
2015-07-01
Ideally, in an adiabatic quantum computation or quantum state preparation, a simple ground state of an initial Hamiltonian is evolved adiabatically to an interesting ground state of a final Hamiltonian. Unfortunately, the simple and the interesting are often different enough to be separated by a quantum phase transition. Due to a vanishing energy gap between the ground state and excited states at the critical point, near the transition the adiabaticity is bound to fail. This failure is quantified by a quantum version of the Kibble-Zurek mechanism (KZM). In these notes I introduce KZM in its general textbook form, based on adiabatic/impulse approximation, and then support the picture by an exact solution of the integrable transverse field quantum Ising chain and an approximate one of the non-integrable Bose-Hubbard model. The last model illustrates typical problems with adiabatic quantum state preparation that are encoutered in atomic quantum simulators.
Quantum Mechanical Search and Harmonic Perturbation
Jie-Hong R. Jiang; Dah-Wei Chiou; Cheng-En Wu
2007-09-14
Perturbation theory in quantum mechanics studies how quantum systems interact with their environmental perturbations. Harmonic perturbation is a rare special case of time-dependent perturbations in which exact analysis exists. Some important technology advances, such as masers, lasers, nuclear magnetic resonance, etc., originated from it. Here we add quantum computation to this list with a theoretical demonstration. Based on harmonic perturbation, a quantum mechanical algorithm is devised to search the ground state of a given Hamiltonian. The intrinsic complexity of the algorithm is continuous and parametric in both time T and energy E. More precisely, the probability of locating a search target of a Hamiltonian in N-dimensional vector space is shown to be 1/(1+ c N E^{-2} T^{-2}) for some constant c. This result is optimal. As harmonic perturbation provides a different computation mechanism, the algorithm may suggest new directions in realizing quantum computers.
Quantum finance Hamiltonian for coupon bond European and barrier options.
Baaquie, Belal E
2008-03-01
Coupon bond European and barrier options are financial derivatives that can be analyzed in the Hamiltonian formulation of quantum finance. Forward interest rates are modeled as a two-dimensional quantum field theory and its Hamiltonian and state space is defined. European and barrier options are realized as transition amplitudes of the time integrated Hamiltonian operator. The double barrier option for a financial instrument is "knocked out" (terminated with zero value) if the price of the underlying instrument exceeds or falls below preset limits; the barrier option is realized by imposing boundary conditions on the eigenfunctions of the forward interest rates' Hamiltonian. The price of the European coupon bond option and the zero coupon bond barrier option are calculated. It is shown that, is general, the constraint function for a coupon bond barrier option can -- to a good approximation -- be linearized. A calculation using an overcomplete set of eigenfunctions yields an approximate price for the coupon bond barrier option, which is given in the form of an integral of a factor that results from the barrier condition times another factor that arises from the payoff function. PMID:18517460
Quantum metrology for the Ising Hamiltonian with transverse magnetic field
NASA Astrophysics Data System (ADS)
Skotiniotis, Michael; Sekatski, Pavel; Dür, Wolfgang
2015-07-01
We consider quantum metrology for unitary evolutions generated by parameter-dependent Hamiltonians. We focus on the unitary evolutions generated by the Ising Hamiltonian that describes the dynamics of a one-dimensional chain of spins with nearest-neighbour interactions and in the presence of a global, transverse, magnetic field. We analytically solve the problem and show that the precision with which one can estimate the magnetic field (interaction strength) given one knows the interaction strength (magnetic field) scales at the Heisenberg limit, and can be achieved by a linear superposition of the vacuum and N free fermion states. In addition, we show that Greenberger–Horne–Zeilinger-type states exhibit Heisenberg scaling in precision throughout the entire regime of parameters. Moreover, we numerically observe that the optimal precision using a product input state scales at the standard quantum limit.
Quantum Mechanics + Open Systems
Steinhoff, Heinz-Jürgen
Quantum Mechanics + Open Systems = Thermodynamics ? Jochen Gemmer T¨ubingen, 09.02.2006 #12., World Scientific) #12;Fundamental Law or Emergent Description? Quantum Mechanics i t = (- 2 2m + V or Emergent Description? Quantum Mechanics i t = (- 2 2m + V ) "Heisenberg Cut" Classical Mechanics: m d2
Quantum integrals of motion for variable quadratic Hamiltonians
Cordero-Soto, Ricardo, E-mail: ricardojavier81@gmail.co [Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ 85287-1804 (United States); Suazo, Erwin, E-mail: erwin.suazo@upr.ed [Department of Mathematical Sciences, University of Puerto Rico, Mayaquez, call box 9000, PR 00681-9000 (Puerto Rico); Suslov, Sergei K., E-mail: sks@asu.ed [School of Mathematical and Statistical Sciences and Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ 85287-1804 (United States)
2010-09-15
We construct integrals of motion for several models of the quantum damped oscillators in a framework of a general approach to the time-dependent Schroedinger equation with variable quadratic Hamiltonians. An extension of the Lewis-Riesenfeld dynamical invariant is given. The time-evolution of the expectation values of the energy-related positive operators is determined for the oscillators under consideration. A proof of uniqueness of the corresponding Cauchy initial value problem is discussed as an application.
Lifts of Time Dependent Complex Hamiltonian Mechanical Systems
Mehmet Tekkoyun
2009-03-02
In this study, firstly, the k-th order extension of complex product manifold is consid- ered. Then the higher order vertical, complete lifts of geometric structures on product manifold to its extended spaces are given. Also higher order lifts of tensor field of type (1,1) are presented. And then extended contact manifolds are defined. Finally higher order vertical and complete lifts of time dependent complex Hamiltonian equations on contact manifold to its extensions are introduced. In conclusion, geometric meaning of Hamiltonian mechanical systems is discussed.
NASA Astrophysics Data System (ADS)
Gardner, David E.
This thesis describes qualitative research conducted to understand the problems students have when learning quantum mechanics. It differs from previous studies on educational issues associated with quantum mechanics in that I have examined the difficulties from the students' perspective. Three questions guided this research: What are the experiences of students learning quantum mechanics? What conceptual difficulties do students have with quantum mechanics? and, How do students approach learning quantum mechanics? From these questions, two themes emerged. First, students do not consider the quantum mechanical concepts of wave-particle duality or the uncertainty principle to be important sources of difficulties for them. Second, many of the difficulties students encounter are not related to conceptual understanding of specific topics, but stem from a mindset that is incongruent with the nature and structure of quantum mechanics. The implications for teaching are that the nature and structure of quantum mechanics should be emphasized and be an explicit part of instruction.
Lie-Poisson integrators in Hamiltonian fluid mechanics
Ryan, B.J.
1993-01-01
This thesis explores the application of geometric mechanics to problems in 2D, incompressible, inviscid fluid mechanics. The main motivation is to try to develop symplectic integration algorithms to model the Hamiltonian structure of inviscid fluid flow. The main manifestation of this Hamiltonian or conservative nature is the preservation of the infinite family of Casimirs parametrized by the body integrals of vorticity in the 2D case. The main difficulties encountered in trying to model the Hamiltonian structure of a fluid mechanical system are that the configuration space for the Hamiltonian flow is an infinite dimensional Frechet space and that the phase space is not symplectic but Lie-Poisson. Therefore, an appropriate finite mode truncation must be constructed under the constraint that it too remains Poisson and in some sense converges to the infinite dimensional parent manifold. With such a truncation in hand, there still remains the obstacle of non-symplectic structure. This geometry invalidates the application of traditional symplectic integrators and requires a more sophisticated algorithm. The authors develop a Lie-Poisson truncation on the Lie group SU(N) for the Euler equations on the special geometry of a twice periodic domain in R[sup 2]. They show that this finite dimensional analog is compatible with the Arnold[5] formulation of Hamiltonian mechanics on Lie groups with a left or right invariant metric. They then proceed to review the Lie-Poisson integration literature and to develop Hamilton-Jacobi type symplectic algorithms for a broad class of Lie groups. For this same class of groups, they also succeed in constructing an explicit Lie-Poisson algorithm which radically improves computational speed over the current implicit schema. They test this new algorithm against a Hamilton-Jacobi implicit technique with favorable results.
Introduction to Quantum Mechanics
Eduardo J. S. Villaseñor
2008-04-23
The purpose of this contribution is to give a very brief introduction to Quantum Mechanics for an audience of mathematicians. I will follow Segal's approach to Quantum Mechanics paying special attention to algebraic issues. The usual representation of Quantum Mechanics on Hilbert spaces is also discussed.
Kowalevski top in quantum mechanics
Matsuyama, A., E-mail: spamatu@ipc.shizuoka.ac.jp
2013-09-15
The quantum mechanical Kowalevski top is studied by the direct diagonalization of the Hamiltonian. The spectra show different behaviors depending on the region divided by the bifurcation sets of the classical invariant tori. Some of these spectra are nearly degenerate due to the multiplicity of the invariant tori. The Kowalevski top has several symmetries and symmetry quantum numbers can be assigned to the eigenstates. We have also carried out the semiclassical quantization of the Kowalevski top by the EBK formulation. It is found that the semiclassical spectra are close to the exact values, thus the eigenstates can be also labeled by the integer quantum numbers. The symmetries of the system are shown to have close relations with the semiclassical quantum numbers and the near-degeneracy of the spectra. -- Highlights: •Quantum spectra of the Kowalevski top are calculated. •Semiclassical quantization is carried out by the EBK formulation. •Quantum states are labeled by the semiclassical integer quantum numbers. •Multiplicity of the classical torus makes the spectra nearly degenerate. •Symmetries, quantum numbers and near-degenerate spectra are closely related.
Dyson--Schwinger approach to Hamiltonian Quantum Chromodynamics
Campagnari, Davide R
2015-01-01
The general method for treating non-Gaussian wave functionals in the Hamiltonian formulation of a quantum field theory, which was previously proposed and developed for Yang--Mills theory in Coulomb gauge, is generalized to full QCD. For this purpose the quark part of the QCD vacuum wave functional is expressed in the basis of coherent fermion states, which are defined in term of Grassmann variables. Our variational ansatz for the QCD vacuum wave functional is assumed to be given by exponentials of polynomials in the occurring fields and, furthermore, contains an explicit coupling of the quarks to the gluons. Exploiting Dyson--Schwinger equation techniques, we express the various $n$-point functions, which are required for the expectation values of observables like the Hamiltonian, in terms of the variational kernels of our trial ansatz. Finally the equations of motion for these variational kernels are derived by minimizing the energy density.
Kreis, Karsten; Donadio, Davide; Kremer, Kurt; Potestio, Raffaello
2015-01-01
In computer simulations, quantum delocalization of atomic nuclei can be modeled making use of the Path Integral (PI) formulation of quantum statistical mechanics. This approach, however, comes with a large computational cost. By restricting the PI modeling to a small region of space, this cost can be significantly reduced. In the present work we derive a Hamiltonian formulation for a bottom-up, theoretically solid simulation protocol that allows molecules to change their resolution from quantum-mechanical to classical and vice versa on the fly, while freely diffusing across the system. This approach renders possible simulations of quantum systems at constant chemical potential. The validity of the proposed scheme is demonstrated by means of simulations of low temperature parahydrogen. Potential future applications include simulations of biomolecules, membranes, and interfaces.
Error suppression in Hamiltonian based quantum computation using energy penalties
Adam D. Bookatz; Edward Farhi; Leo Zhou
2014-07-06
We consider the use of quantum error detecting codes, together with energy penalties against leaving the codespace, as a method for suppressing environmentally induced errors in Hamiltonian based quantum computation. This method was introduced in [1] in the context of quantum adiabatic computation, but we consider it more generally. Specifically, we consider a computational Hamiltonian, which has been encoded using the logical qubits of a single-qubit error detecting code, coupled to an environment of qubits by interaction terms that act one-locally on the system. Energy penalty terms are added that penalize states outside of the codespace. We prove that in the limit of infinitely large penalties, one-local errors are completely suppressed, and we derive some bounds for the finite penalty case. Our proof technique involves exact integration of the Schrodinger equation, making no use of master equations or their assumptions. We perform long time numerical simulations on a small (one logical qubit) computational system coupled to an environment and the results suggest that the energy penalty method achieves even greater protection than our bounds indicate.
Ajoy, Ashok; Cappellaro, Paola
2013-05-31
We propose a method for Hamiltonian engineering that requires no local control but only relies on collective qubit rotations and field gradients. The technique achieves a spatial modulation of the coupling strengths via a dynamical construction of a weighting function combined with a Bragg grating. As an example, we demonstrate how to generate the ideal Hamiltonian for perfect quantum information transport between two separated nodes of a large spin network. We engineer a spin chain with optimal couplings starting from a large spin network, such as one naturally occurring in crystals, while decoupling all unwanted interactions. For realistic experimental parameters, our method can be used to drive almost perfect quantum information transport at room temperature. The Hamiltonian engineering method can be made more robust under decoherence and coupling disorder by a novel apodization scheme. Thus, the method is quite general and can be used to engineer the Hamiltonian of many complex spin lattices with different topologies and interactions. PMID:23767705
Interest rates in quantum finance: the Wilson expansion and Hamiltonian.
Baaquie, Belal E
2009-10-01
Interest rate instruments form a major component of the capital markets. The Libor market model (LMM) is the finance industry standard interest rate model for both Libor and Euribor, which are the most important interest rates. The quantum finance formulation of the Libor market model is given in this paper and leads to a key generalization: all the Libors, for different future times, are imperfectly correlated. A key difference between a forward interest rate model and the LMM lies in the fact that the LMM is calibrated directly from the observed market interest rates. The short distance Wilson expansion [Phys. Rev. 179, 1499 (1969)] of a Gaussian quantum field is shown to provide the generalization of Ito calculus; in particular, the Wilson expansion of the Gaussian quantum field A(t,x) driving the Libors yields a derivation of the Libor drift term that incorporates imperfect correlations of the different Libors. The logarithm of Libor phi(t,x) is defined and provides an efficient and compact representation of the quantum field theory of the Libor market model. The Lagrangian and Feynman path integrals of the Libor market model of interest rates are obtained, as well as a derivation given by its Hamiltonian. The Hamiltonian formulation of the martingale condition provides an exact solution for the nonlinear drift of the Libor market model. The quantum finance formulation of the LMM is shown to reduce to the industry standard Bruce-Gatarek-Musiela-Jamshidian model when the forward interest rates are taken to be exactly correlated. PMID:19905402
Quantum Hamiltonian theory of an electro-optical modulator
NASA Astrophysics Data System (ADS)
Miroshnichenko, G. P.; Gleim, A. V.
2015-07-01
A Quantum Hamiltonian formalism is proposed for the description of an electro-optical modulator based on the linear Pockels effect. Optical photons interact with photons of a microwave mode in a combined high- Q cavity made of a LiNbO3 crystal. The microwave photons occupy a coherent state, while optical photons have an arbitrary density matrix. The spectrum of a photodetected modulated signal is analyzed as a function of the frequency of a tunable optical filter. Numerical estimates are obtained, and quantum effects in the spectrum, such as the red shift of the central frequency and sidebands, the possibility of modulation of the optical signal by the microwave field vacuum, and the asymmetry of the intensity of the spectral sidebands, are discussed.
Geller, Michael R.
Quantum computing with electrical circuits: Hamiltonian construction for basic qubit circuits--where macroscopic collective variables such as polarization charge and electric current exhibit processing are probing a new and fascinating regime of electrical engineering--that of quantum electrical
Positive Commutators in Non-Equilibrium Quantum Statistical Mechanics
Marco Merkli
2000-01-01
The method of positive commutators, developed for zero temperature prob- lems over the last twenty years, has been an essential tool in the spectral analy- sis of Hamiltonians in quantum mechanics. We extend this method to positive temperatures, i.e. to non-equilibrium quantum statistical mechanics. We use the positive commutator technique to give an alternative proof of a fundamental property of
Statistical mechanics based on fractional classical and quantum mechanics
Korichi, Z.; Meftah, M. T.
2014-03-15
The purpose of this work is to study some problems in statistical mechanics based on the fractional classical and quantum mechanics. At first stage we have presented the thermodynamical properties of the classical ideal gas and the system of N classical oscillators. In both cases, the Hamiltonian contains fractional exponents of the phase space (position and momentum). At the second stage, in the context of the fractional quantum mechanics, we have calculated the thermodynamical properties for the black body radiation, studied the Bose-Einstein statistics with the related problem of the condensation and the Fermi-Dirac statistics.
Interacting Quantum Dot Coupled to a Kondo Spin: A Universal Hamiltonian Study Stefan Rotter,1
Stone, A. Douglas
Interacting Quantum Dot Coupled to a Kondo Spin: A Universal Hamiltonian Study Stefan Rotter,1 to a mesoscopic interacting quantum dot that is described by the ``universal Hamiltonian.'' The problem is solved and strong Kondo coupling limits. The ferromagnetic exchange interaction within the dot leads to a stepwise
From classical to quantum mechanics through optics
NASA Astrophysics Data System (ADS)
Masoliver, Jaume; Ros, Ana
2010-01-01
In this paper, we revise the main aspects of the 'Hamiltonian analogy': the fact that optical paths are completely analogous to mechanical trajectories. We follow Schrödinger's original idea and go beyond this analogy by changing over from the Hamilton's principal function S to the wavefunction ?. We thus travel from classical to quantum mechanics using optics as a guide. Unfortunately, and despite its mathematical beauty and simplicity, the connection between classical and quantum mechanics through optics is nowadays hardly known and mostly ignored in university education. The present work tries to fill this gap.
Galois Field Quantum Mechanics
Lay Nam Chang; Zachary Lewis; Djordje Minic; Tatsu Takeuchi
2013-01-06
We construct a discrete quantum mechanics using a vector space over the Galois field GF(q). We find that the correlations in our model do not violate the Clauser-Horne-Shimony-Holt (CHSH) version of Bell's inequality, despite the fact that the predictions of this discrete quantum mechanics cannot be reproduced with any hidden variable theory.
Chapin, Kimberly R.
1997-01-01
The role of time in quantum mechanics has been and is still very controversial. The purpose of this paper was to explore the historical interpretation of time in quantum mechanics, to determine the current status of this problem-L and to investigate...
Geometrization of Quantum Mechanics
J. F. Carinena; J. Clemente-Gallardo; G. Marmo
2007-03-23
We show that it is possible to represent various descriptions of Quantum Mechanics in geometrical terms. In particular we start with the space of observables and use the momentum map associated with the unitary group to provide an unified geometrical description for the different pictures of Quantum Mechanics. This construction provides an alternative to the usual GNS construction for pure states.
Noncommutative quantum mechanics
J. Gamboa; M. Loewe; J. C. Rojas
2001-01-01
A general noncommutative quantum mechanical system in a central potential V=V(r) in two dimensions is considered. The spectrum is bounded from below and, for large values of the anticommutative parameter theta, we find an explicit expression for the eigenvalues. In fact, any quantum mechanical system with these characteristics is equivalent to a commutative one in such a way that the
Consistency of PT-symmetric quantum mechanics
Brody, Dorje C
2015-01-01
In recent reports, suggestions have been put forward to the effect that parity and time-reversal (PT) symmetry in quantum mechanics is incompatible with causality. It is shown here, in contrast, that PT-symmetric quantum mechanics is fully consistent with standard quantum mechanics. This follows from the surprising fact that the much-discussed metric operator on Hilbert space is not physically observable. In particular, for closed quantum systems in finite dimensions there is no statistical test that one can perform on the outcomes of measurements to determine whether the Hamiltonian is Hermitian in the conventional sense, or PT-symmetric---the two theories are indistinguishable. Nontrivial physical effects arising as a consequence of PT symmetry are expected to be observed, nevertheless, for open quantum systems with balanced gain and loss.
Quantum Mechanical Methods for Biomolecular Simulations
NASA Astrophysics Data System (ADS)
Wong, Kin-Yiu; Song, Lingchun; Xie, Wangshen; Major, Dan T.; Lin, Yen-Lin; Cembran, Alessandro; Gao, Jiali
We discuss quantum mechanical methods for the description of the potential energy surface and for the treatment of nuclear quantum effects in chemical and biological applications. Two novel electronic structure methods are described, including an electronic structure-based explicit polarization (X-Pol) force field and an effective Hamiltonian molecular orbital and valence bond (EH-MOVB) theory. In addition, we present two path integral techniques to treat nuclear quantum effects, which include an analytical pathintegral method based on Kleinert’s variational perturbation theory, and integrated pathintegral free-energy perturbation and umbrella sampling (PI-FEP/UM) simulation. Studies have shown that quantum mechanics can be applied to biocatalytic systems in a variety of ways and scales. We hope that the methods presented in this article can further expand the scope of quantum mechanical applications to biomolecular systems
Longhi, Stefano, E-mail: stefano.longhi@fisi.polimi.it
2014-06-15
Quantum recurrence and dynamic localization are investigated in a class of ac-driven tight-binding Hamiltonians, the Krawtchouk quantum chain, which in the undriven case provides a paradigmatic Hamiltonian model that realizes perfect quantum state transfer and mirror inversion. The equivalence between the ac-driven single-particle Krawtchouk Hamiltonian H{sup -hat} (t) and the non-interacting ac-driven bosonic junction Hamiltonian enables to determine in a closed form the quasi energy spectrum of H{sup -hat} (t) and the conditions for exact wave packet reconstruction (dynamic localization). In particular, we show that quantum recurrence, which is predicted by the general quantum recurrence theorem, is exact for the Krawtchouk quantum chain in a dense range of the driving amplitude. Exact quantum recurrence provides perfect wave packet reconstruction at a frequency which is fractional than the driving frequency, a phenomenon that can be referred to as fractional dynamic localization.
Tadashi Okazaki
2014-11-03
We consider the multiple M2-branes wrapped on a compact Riemann surface and study the arising quantum mechanics by taking the limit where the size of the Riemann surface goes to zero. The IR quantum mechanical models resulting from the BLG-model and the ABJM-model compactified on a torus are N = 16 and N = 12 superconformal gauged quantum mechanics. After integrating out the auxiliary gauge fields we find OSp(16|2) and SU(1,1|6) quantum mechanics from the reduced systems. The curved Riemann surface is taken as a holomorphic curve in a Calabi-Yau space to preserve supersymmetry and we present a prescription of the topological twisting. We find the N = 8 superconformal gauged quantum mechanics that may describe the motion of two wrapped M2-branes in a K3 surface.
Covariant quantum mechanics and quantum symmetries
JanyÂ?ka, Josef
Covariant quantum mechanics and quantum symmetries Josef JanyÅ¸ska 1 , Marco Modugno 2 , Dirk Saller: quantum mechanics, classical mechanics, general relativity, infinitesimal symmetries. 2000 MSC: 81P99, 81Q Introduction 2 2 Covariant quantum mechanics 5 2.1 Classical background
PREFACE: 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics
NASA Astrophysics Data System (ADS)
Fring, Andreas; Jones, Hugh; Znojil, Miloslav
2008-06-01
Attempts to understand the quantum mechanics of non-Hermitian Hamiltonian systems can be traced back to the early days, one example being Heisenberg's endeavour to formulate a consistent model involving an indefinite metric. Over the years non-Hermitian Hamiltonians whose spectra were believed to be real have appeared from time to time in the literature, for instance in the study of strong interactions at high energies via Regge models, in condensed matter physics in the context of the XXZ-spin chain, in interacting boson models in nuclear physics, in integrable quantum field theories as Toda field theories with complex coupling constants, and also very recently in a field theoretical scenario in the quantization procedure of strings on an AdS5 x S5 background. Concrete experimental realizations of these types of systems in the form of optical lattices have been proposed in 2007. In the area of mathematical physics similar non-systematic results appeared sporadically over the years. However, intensive and more systematic investigation of these types of non- Hermitian Hamiltonians with real eigenvalue spectra only began about ten years ago, when the surprising discovery was made that a large class of one-particle systems perturbed by a simple non-Hermitian potential term possesses a real energy spectrum. Since then regular international workshops devoted to this theme have taken place. This special issue is centred around the 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics held in July 2007 at City University London. All the contributions contain significant new results or alternatively provide a survey of the state of the art of the subject or a critical assessment of the present understanding of the topic and a discussion of open problems. Original contributions from non-participants were also invited. Meanwhile many interesting results have been obtained and consensus has been reached on various central conceptual issues in the growing community of this subject. It is, for instance, well understood that the reality of the spectrum can be attributed either to the unbroken PT-symmetry of the entire system, that is, invariance of the Hamiltonian and the corresponding wavefunctions under a simultaneous parity transformation and time reversal, or more generally to its pseudo-Hermiticity . When the spectrum is real and discrete the Hamiltonian is actually quasi-Hermitian, with a positive-definite metric operator, and can in principle be related by a similarity transformation to an isospectral Hermitian counterpart. For all approaches well-defined procedures have been developed, which allow one to construct metric operators and therefore a consistent description of the underlying quantum mechanical observables. Even though the general principles have been laid out, it remains a challenge in most concrete cases to implement the entire procedure. Solvable models in this sense, some of which may be found in this issue, remain a rare exception. Nonetheless, despite this progress some important questions are still unanswered. For instance, according to the current understanding the non-Hermitian Hamiltonian does not uniquely define the physics of the system since a meaningful metric can no longer be associated with the system in a non-trivial and unambiguous manner. A fully consistent scattering theory has also not yet been formulated. Other issues remain controversial, such as the quantum brachistochrone problem, the problem of forming a mixture between a Hermitian and non-Hermitian system, the new phenomenological possibilities of forming a kind of worm-hole effect, etc. We would like to acknowledge the financial support of the London Mathematical Society, the Institute of Physics, the Doppler Institute in Prague and the School of Engineering and Mathematical Science of City University London. We hope this special issue will be useful to the newcomer as well as to the expert in the subject. Workshop photograph Participants of the 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantu
The mathematics of a quantum Hamiltonian computing half adder Boolean logic gate.
Dridi, G; Julien, R; Hliwa, M; Joachim, C
2015-08-28
The mathematics behind the quantum Hamiltonian computing (QHC) approach of designing Boolean logic gates with a quantum system are given. Using the quantum eigenvalue repulsion effect, the QHC AND, NAND, OR, NOR, XOR, and NXOR Hamiltonian Boolean matrices are constructed. This is applied to the construction of a QHC half adder Hamiltonian matrix requiring only six quantum states to fullfil a half Boolean logical truth table. The QHC design rules open a nano-architectronic way of constructing Boolean logic gates inside a single molecule or atom by atom at the surface of a passivated semi-conductor. PMID:26234709
The mathematics of a quantum Hamiltonian computing half adder Boolean logic gate
NASA Astrophysics Data System (ADS)
Dridi, G.; Julien, R.; Hliwa, M.; Joachim, C.
2015-08-01
The mathematics behind the quantum Hamiltonian computing (QHC) approach of designing Boolean logic gates with a quantum system are given. Using the quantum eigenvalue repulsion effect, the QHC AND, NAND, OR, NOR, XOR, and NXOR Hamiltonian Boolean matrices are constructed. This is applied to the construction of a QHC half adder Hamiltonian matrix requiring only six quantum states to fullfil a half Boolean logical truth table. The QHC design rules open a nano-architectronic way of constructing Boolean logic gates inside a single molecule or atom by atom at the surface of a passivated semi-conductor.
A General Mechanism of Diffusion in Hamiltonian Systems: Qualitative Results
Marian Gidea; Rafael de la Llave; Tere Seara
2014-12-04
We present a general mechanism to establish the existence of diffusing orbits in a large class of nearly integrable Hamiltonian systems. Our approach relies on the scattering map (outer) dynamics and on the recurrence property of the (inner) dynamics restricted to a normally hyperbolic invariant manifold. We apply topological methods to find trajectories that follow these two dynamics. This method differs, in several crucial aspects, from earlier works. There are virtually no assumptions on the inner dynamics, as the method does not use at all the invariant objects for the inner dynamics (e.g., primary and secondary tori, lower dimensional hyperbolic tori and their stable/unstable manifolds, Aubry-Mather sets). The method applies when the unperturbed Hamiltonian is not necessarily convex, and of arbitrary degrees of freedom. In addition, this mechanism is easy to verify (analytically or numerically) in concrete examples, as well as to establish diffusion in generic systems. We include several applications, such as bridging large gaps in a priori unstable models in any dimension, and establishing diffusion in cases when the inner dynamics in a non-twist map.
V. P. Belavkin; O. Melsheimer
1996-01-01
We give an explicit stochastic Hamiltonian model of discontinuous unitary evolution for quantum spontaneous jumps like in a system of atoms in quantum optics, or in a system of quantum particles that interacts singularly with `bubbles' which admit a continual counting observation. This model allows one to watch a quantum trajectory in a photodetector or in a cloud chamber by
Quantum mechanics is a relativity theory
Léon Brenig
2006-08-02
Non-relativistic quantum mechanics is shown to emerge from classical mechanics through the requirement of a relativity principle based on special transformations acting on position and momentum uncertainties. These transformations keep the Heisenberg inequalities invariant and form a group. They are related to dilatations of space variables provided the quantum potential is added to the classical Hamiltonian functional. The Schr\\"odinger equation appears to have a nonunitary and nonlinear companion acting in another time variable. Evolution in this time seems related to the state vector reduction.
Quantum Chaos and Statistical Mechanics
Mark Srednicki
1994-06-14
We briefly review the well known connection between classical chaos and classical statistical mechanics, and the recently discovered connection between quantum chaos and quantum statistical mechanics.
Kapustin, Anton [California Institute of Technology, Pasadena, California 91125 (United States)] [California Institute of Technology, Pasadena, California 91125 (United States)
2013-06-15
We formulate physically motivated axioms for a physical theory which for systems with a finite number of degrees of freedom uniquely lead to quantum mechanics as the only nontrivial consistent theory. Complex numbers and the existence of the Planck constant common to all systems arise naturally in this approach. The axioms are divided into two groups covering kinematics and basic measurement theory, respectively. We show that even if the second group of axioms is dropped, there are no deformations of quantum mechanics which preserve the kinematic axioms. Thus, any theory going beyond quantum mechanics must represent a radical departure from the usual a priori assumptions about the laws of nature.
Relativity and Quantum Mechanics
Braendas, Erkki J. [Department of Quantum Chemistry, Uppsala University, Box 518 S-751 20 Uppsala (Sweden)
2007-12-26
The old dilemma of quantum mechanics versus the theory of relativity is reconsidered via a first principles relativistically invariant theory. By analytic extension of quantum mechanics into the complex plane one may (i) include dynamical features such as time- and length-scales and (ii) examine the possibility and flexibility of so-called general Jordan block formations. The present viewpoint asks for a new perspective on the age-old problem of quantum mechanics versus the theory of relativity. To bring these ideas together, we will establish the relation with the Klein-Gordon-Dirac relativistic theory and confirm some dynamical features of both the special and the general relativity theory.
Quantum Mechanics Without Observers
W. H. Sulis
2013-03-03
The measurement problem and the role of observers have plagued quantum mechanics since its conception. Attempts to resolve these have introduced anthropomorphic or non-realist notions into physics. A shift of perspective based upon process theory and utilizing methods from combinatorial games, interpolation theory and complex systems theory results in a novel realist version of quantum mechanics incorporating quasi-local, nondeterministic hidden variables that are compatible with the no-hidden variable theorems and relativistic invariance, and reproduce the standard results of quantum mechanics to a high degree of accuracy without invoking observers.
Conformal quantum mechanics and holographic quench
Järvelä, Jarkko; Keski-Vakkuri, Esko
2015-01-01
Recently, there has been much interest in holographic computations of two-point non-equilibrium Green functions from AdS-Vaidya backgrounds. In the strongly coupled quantum field theory on the boundary, the dual interpretation of the background is an equilibration process called a holographic quench. The two dimensional AdS-Vaidya spacetime is a special case, dual to conformal quantum mechanics. We study how the quench is incorporated into a Hamiltonian $H + \\theta(t) \\Delta H$ and into correlation functions. With the help of recent work on correlation functions in conformal quantum mechanics, we first rederive the known two point functions, and then compute non-equilibrium 3- and 4-point functions. We also compute the 3-point function Witten diagram in the two-dimensional AdS-Vaidya background, and find agreement with the conformal quantum mechanics result.
Quantum Mechanics Without Wavefunctions
Jeremy Schiff; Bill Poirier
2012-01-11
We present a self-contained formulation of spin-free nonrelativistic quantum mechanics that makes no use of wavefunctions or complex amplitudes of any kind. Quantum states are represented as ensembles of real-valued quantum trajectories, obtained by extremizing an action and satisfying energy conservation. The theory applies for arbitrary configuration spaces and system dimensionalities. Various beneficial ramifications - theoretical, computational, and interpretational - are discussed.
Physicalism versus quantum mechanics
Stapp, Henry P; Theoretical Physics Group; Physics Division
2009-01-01
efficacious brain activity that possesses its causal power.power to causally effect the course of events in his or her quantum mechanically described brain, andbrain activity that causes its effects: “If anything is to exercize causal power
Quantum mechanics versus classical probability in biological evolution
E. Baake; M. Baake; H. Wagner
1998-01-01
We reconsider the mean-field Hamiltonian of the Ising quantum chain as a mutation-selection model of biological evolution. Direct calculation of its Perron-Frobenius eigenvector reveals a fundamental difference between the quantum-mechanical and probabilistic applications, and partially corrects previous results.
Supersymmetry in quantum mechanics
Avinash Khare
1997-01-01
In the past ten years, the ideas of supersymmetry have been profitably applied to many nonrelativistic quantum mechanical\\u000a problems. In particular, there is now a much deeper understanding of why certain potentials are analytically solvable. In\\u000a this lecture I review the theoretical formulation of supersymmetric quantum mechanics and discuss many of its applications.\\u000a I show that the well-known exactly solvable
Quantum Mechanics From the Cradle?
ERIC Educational Resources Information Center
Martin, John L.
1974-01-01
States that the major problem in learning quantum mechanics is often the student's ignorance of classical mechanics and that one conceptual hurdle in quantum mechanics is its statistical nature, in contrast to the determinism of classical mechanics. (MLH)
Quantum mechanics on York slices
Roser, Philipp
2015-01-01
For some time the York time parameter has been identified as a candidate for a physically meaningful time in cosmology. An associated Hamiltonian may be found by solving the Hamiltonian constraint for the momentum conjugate to the York time variable, although an explicit solution can only be found in highly symmetric cases. The Poisson structure of the remaining variables is not canonical. Here we quantise this dynamics in an anisotropic minisuperspace model via a natural extension of canonical quantisation. The resulting quantum theory has no momentum representation. Instead the position basis takes a fundamental role. We illustrate how the quantum theory and the modified representation of its momentum operators lead to a consistent theory in the presence of the constraints that arose during the Hamiltonian reduction. We are able to solve for the eigenspectrum of the Hamiltonian. Finally we discuss how far the results of this model extend to the general non-homogeneous case, in particular perturbation theory...
Quantum mechanical Carnot engine
C. M. Bender; D. C. Brody; B. K. Meister
2000-07-03
A cyclic thermodynamic heat engine runs most efficiently if it is reversible. Carnot constructed such a reversible heat engine by combining adiabatic and isothermal processes for a system containing an ideal gas. Here, we present an example of a cyclic engine based on a single quantum-mechanical particle confined to a potential well. The efficiency of this engine is shown to equal the Carnot efficiency because quantum dynamics is reversible. The quantum heat engine has a cycle consisting of adiabatic and isothermal quantum processes that are close analogues of the corresponding classical processes.
QUANTUM MECHANICS II Physics 342
Rosner, Jonathan L.
QUANTUM MECHANICS II Physics 342 KPTC 103 9:00 10:20 a.m. 1 Tues., Thurs. Winter Quarter 2011 quantum mechanics at the graduate level. The text for Quantum Mechanics II will be J. J. Sakurai and Jim Napolitano, Modern Quantum Mechanics, Second Edition (Addison-Wesley, San Francisco, 2011). For supplemental
A Quantum Mechanical Travelling Salesman
Ravindra N. Rao
2011-08-23
A quantum simulation of a travelling salesman is described. A vector space for a graph is defined together with a sequence of operators which transform a special initial state into a superposition states representing Hamiltonian tours. The quantum amplitude for any tour is a function of the classical cost of travelling along the edges in that tour. Tours with the largest quantum amplitude may be different than those with the smallest classically-computed cost.
Quantum State Restoration and Single-Copy Tomography for Ground States of Hamiltonians
Farhi, Edward
Given a single copy of an unknown quantum state, the no-cloning theorem limits the amount of information that can be extracted from it. Given a gapped Hamiltonian, in most situations it is impractical to compute properties ...
Effectively calculable quantum mechanics
Arkady Bolotin
2015-08-16
According to mathematical constructivism, a mathematical object can exist only if there is a way to compute (or "construct") it; so, what is non-computable is non-constructive. In the example of the quantum model, whose Fock states are associated with Fibonacci numbers, this paper shows that the mathematical formalism of quantum mechanics is non-constructive since it permits an undecidable (or effectively impossible) subset of Hilbert space. On the other hand, as it is argued in the paper, if one believes that testability of predictions is the most fundamental property of any physical theory, one need to accept that quantum mechanics must be an effectively calculable (and thus mathematically constructive) theory. With that, a way to reformulate quantum mechanics constructively, while keeping its mathematical foundation unchanged, leads to hypercomputation. In contrast, the proposed in the paper superselection rule, which acts by effectively forbidding a coherent superposition of quantum states corresponding to potential and actual infinity, can introduce computable constructivism in a quantum mechanical theory with no need for hypercomputation.
Adaptive Perturbation Theory I: Quantum Mechanics
Weinstein, Marvin; /SLAC
2005-10-19
Adaptive perturbation is a new method for perturbatively computing the eigenvalues and eigenstates of quantum mechanical Hamiltonians that heretofore were not believed to be treatable by such methods. The novel feature of adaptive perturbation theory is that it decomposes a given Hamiltonian, H, into an unperturbed part and a perturbation in a way which extracts the leading non-perturbative behavior of the problem exactly. This paper introduces the method in the context of the pure anharmonic oscillator and then goes on to apply it to the case of tunneling between both symmetric and asymmetric minima. It concludes with an introduction to the extension of these methods to the discussion of a quantum field theory. A more complete discussion of this issue will be given in the second paper in this series, and it will show how to use the method of adaptive perturbation theory to non-perturbatively extract the structure of mass, wavefunction and coupling constant renormalization.
The Global versus Local Hamiltonian Description of Quantum Input-Output Theory
John E. Gough
2014-09-24
The aim of this paper is to derive the global Hamiltonian form for a quantum system and bath, or more generally a quantum network with multiple quantum input field connections, based on the local descriptions. We give a new simple argument which shows that the global Hamiltonian for a single Markov component arises as the singular perturbation of the free translation operator. We show that the Fermi analogue takes an equivalent form provided the parity of the coefficients is correctly specified. This allows us to immediately extend the theory of quantum feedback networks to Fermi systems.
Must a Hamiltonian be Hermitian?
NASA Astrophysics Data System (ADS)
Bender, Carl M.; Brody, Dorje C.; Jones, Hugh F.
2003-11-01
A consistent physical theory of quantum mechanics can be built on a complex Hamiltonian that is not Hermitian but instead satisfies the physical condition of space-time reflection symmetry (PT symmetry). Thus, there are infinitely many new Hamiltonians that one can construct that might explain experimental data. One would think that a quantum theory based on a non-Hermitian Hamiltonian violates unitarity. However, if PT symmetry is not broken, it is possible to use a previously unnoticed physical symmetry of the Hamiltonian to construct an inner product whose associated norm is positive definite. This construction is general and works for any PT-symmetric Hamiltonian. The dynamics is governed by unitary time evolution. This formulation does not conflict with the requirements of conventional quantum mechanics. There are many possible observable and experimental consequences of extending quantum mechanics into the complex domain, both in particle physics and in solid state physics.
NSDL National Science Digital Library
Thaller, Bernd
Visual Quantum Mechanics provides illustrations of quantum mechanics using computer-generated animations. Visualizations provide learning experiences for beginners and offer new insights to the advanced student or researcher. This project includes the development of multimedia software for teaching and scientific software for the solution of the Shrodinger equation and the visualization of these solutions in two and three dimensions. The materials presented here are related to two texts by the author. A German translation is also available. Quicktime is needed to view these movies.
W. Chagas-Filho
2009-05-11
We point out a possible complementation of the basic equations of quantum mechanics in the presence of gravity. This complementation is suggested by the well-known fact that quantum mechanics can be equivalently formulated in the position or in the momentum representation. As a way to support this complementation, starting from the action that describes conformal gravity in the world-line formalism, we show that there are duality transformations that relate the dynamics in the presence of position dependent vector and tensor fields to the dynamics in the presence of momentum dependent vector and tensor fields.
Hamiltonian tomography for quantum many-body systems with arbitrary couplings
NASA Astrophysics Data System (ADS)
Wang, Sheng-Tao; Deng, Dong-Ling; Duan, L.-M.
2015-09-01
Characterization of qubit couplings in many-body quantum systems is essential for benchmarking quantum computation and simulation. We propose a tomographic measurement scheme to determine all the coupling terms in a general many-body Hamiltonian with arbitrary long-range interactions, provided the energy density of the Hamiltonian remains finite. Different from quantum process tomography, our scheme is fully scalable with the number of qubits as the required rounds of measurements increase only linearly with the number of coupling terms in the Hamiltonian. The scheme makes use of synchronized dynamical decoupling pulses to simplify the many-body dynamics so that the unknown parameters in the Hamiltonian can be retrieved one by one. We simulate the performance of the scheme under the influence of various pulse errors and show that it is robust to typical noise and experimental imperfections.
Non Hermitian Operators with Real Spectrum in Quantum Mechanics
João da Providência; Natália Bebiano; João Pinheiro da Providência
2009-09-29
Examples are given of non-Hermitian Hamiltonian operators which have a real spectrum. Some of the investigated operators are expressed in terms of the generators of the Weil-Heisenberg algebra. It is argued that the existence of an involutive operator $\\hat J$ which renders the Hamiltonian $\\hat J$-Hermitian leads to the unambiguous definition of an associated positive definite norm allowing for the standard probabilistic interpretation of quantum mechanics. Non-Hermitian extensions of the Poeschl-Teller Hamiltonian are also considered. Hermitian counterparts obtained by similarity transformations are constructed.
Correct quantum chemistry in a minimal basis from effective Hamiltonians
Watson, Thomas J
2015-01-01
We describe how to create ab-initio effective Hamiltonians that qualitatively describe correct chemistry even when used with a minimal basis. The Hamiltonians are obtained by folding correlation down from a large parent basis into a small, or minimal, target basis, using the machinery of canonical transformations. We demonstrate the quality of these effective Hamiltonians to correctly capture a wide range of excited states in water, nitrogen, and ethylene, and to describe ground and excited state bond-breaking in nitrogen and the chromium dimer, all in small or minimal basis sets.
Argyris Nicolaidis
2012-11-09
We suggest that the inner syntax of Quantum Mechanics is relational logic, a form of logic developed by C. S. Peirce during the years 1870 - 1880. The Peircean logic has the structure of category theory, with relation serving as an arrow (or morphism). At the core of the relational logical system is the law of composition of relations. This law leads to the fundamental quantum rule of probability as the square of an amplitude. Our study of a simple discrete model, extended to the continuum, indicates that a finite number of degrees of freedom can live in phase space. This "granularity" of phase space is determined by Planck's constant h. We indicate also the broader philosophical ramifications of a relational quantum mechanics.
Quantum Mechanics in Phase Space
Ali Mohammad Nassimi
2008-06-11
The basics of the Wigner formulation of Quantum-Mechanics and few related interpretational issues are presented in a simple language. This formulation has extensive applications in Quantum Optics and in Mixed Quantum-Classical formulations.
NASA Astrophysics Data System (ADS)
Aquilanti, Vincenzo; Marinelli, Dimitri; Marzuoli, Annalisa
2013-05-01
The action of the quantum mechanical volume operator, introduced in connection with a symmetric representation of the three-body problem and recently recognized to play a fundamental role in discretized quantum gravity models, can be given as a second-order difference equation which, by a complex phase change, we turn into a discrete Schrödinger-like equation. The introduction of discrete potential-like functions reveals the surprising crucial role here of hidden symmetries, first discovered by Regge for the quantum mechanical 6j symbols; insight is provided into the underlying geometric features. The spectrum and wavefunctions of the volume operator are discussed from the viewpoint of the Hamiltonian evolution of an elementary ‘quantum of space’, and a transparent asymptotic picture of the semiclassical and classical regimes emerges. The definition of coordinates adapted to the Regge symmetry is exploited for the construction of a novel set of discrete orthogonal polynomials, characterizing the oscillatory components of torsion-like modes.
QUICK QUANTUM MECHANICS ---Introduction ---
Jackson, Andrew D.
to their students. Thus, it was natural that the historical evolution of quantum mechanics relied on some aspects sin 2 ` â?? OE 2 ] \\Gamma V (r) : (2) The time evolution of the system is given once we determine, replace it by q(t) + ffif (t) where ffif (t) is completely arbitrary except for the facts
Galois Field Quantum Mechanics
NASA Astrophysics Data System (ADS)
Chang, Lay Nam; Lewis, Zachary; Minic, Djordje; Takeuchi, Tatsu
2013-04-01
We construct a discrete quantum mechanics (QM) using a vector space over the Galois field GF(q). We find that the correlations in our model do not violate the Clauser-Horne-Shimony-Holt (CHSH) version of Bell's inequality, despite the fact that the predictions of this discrete QM cannot be reproduced with any hidden variable theory.
Supersymmetry and quantum mechanics
Fred Cooper; Avinash Khare; Uday Sukhatme
1995-01-01
In the past ten years, the ideas of supersymmetry have been profitably applied to many nonrelativistic quantum mechanical problems. In particular, there is now a much deeper understanding of why certain potentials are analytically solvable and an array of powerful new approximation methods for handling potentials which are not exactly solvable. In this report, we review the theoretical formulation of
Quantum Mechanics and Gravitation
A. Westphal
2003-04-08
In summer 1999 an experiment at ILL, Grenoble was conducted. So-called ultra-cold neutrons (UCN) were trapped in the vertical direction between the Fermi-potential of a smooth mirror below and the gravitational potential of the earth above [Ne00, Ru00]. If quantum mechanics turns out to be a sufficiently correct description of the phenomena in the regime of classical, weak gravitation, one should observe the forming of quantized bound states in the vertical direction above a mirror. Already in a simplified view, the data of the experiment provides strong evidence for the existence of such gravitationally bound quantized states. A successful quantum-mechanical description would then provide a convincing argument, that the socalled first quantization can be used for gravitation as an interaction potential, as this is widely expected. Furthermore, looking at the characteristic length scales of about 10 mikron of such bound states formed by UCN, one sees, that a complete quantum mechanical description of this experiment additionally would enable one to check for possible modifications of Newtonian gravitation on distance scales being one order of magnitude below currently available tests [Ad00]. The work presented here deals mainly with the development of a quantum mechanical description of the experiment.
A theory of emergent quantum mechanics
Ricardo Gallego Torromé
2015-08-12
Hamilton-Randers dynamical systems, a particular class of Hamiltonian dynamical systems, are considered as mathematical models for deterministic emergent quantum mechanics. We show that in such framework, local diffeomorphism invariance, reversibility of the effective quantum dynamics and an universal maximal bound for proper acceleration emerge in that class of classical, deterministic and local models. Starting from the elements of Hamilton-Randers spaces, a phenomenological Hilbert space is constructed and associated with the space of wave functions of quantum mechanics. A geometric description for a spontaneous reduction of the quantum states, based on the concentration of measure phenomena as it appears in asymptotic Banach theory and probability theory, is described in general terms. It is also shown how the same concentration of measure phenomena plays a remarkable role in showing conditions for the existence of stable vacua states for the matter Hamiltonian. Furthermore, it is discussed the emergence of a weak equivalence principle from very fundamental principles of mathematical analysis and the basic assumptions of Hamilton-Randers theory. This fact, together with the existence in the theory of a maximal speed and the property of diffeomorphism invariance of the interaction driving the reduction of the quantum state, suggest that the reduction of the quantum state is driven by a gravitational type interaction. Moreover, since such interaction appears only in the dynamical domain when localization happens, it must be associated with a classical interaction. We make the hypothesis that such identification is universal and that indeed gravity is a domain of the dynamics of Hamilton-Randers systems. Hence Hamilton-Randers theory provides an unification scheme where quantum mechanics and classical gravity are both emergent.
Positive Commutators in Non-Equilibrium Quantum Statistical Mechanics
Marco Merkli
2001-01-01
: The method of positive commutators, developed for zero temperature problems over the last twenty years, has been an essential\\u000a tool in the spectral analysis of Hamiltonians in quantum mechanics. We extend this method to positive temperatures, i.e. to\\u000a non-equilibrium quantum statistical mechanics. We use the positive commutator technique to give an alternative proof of a\\u000a fundamental property of a
Path integral in energy representation in quantum mechanics
P. Putrov
2007-08-30
In this paper we develop the alternative path-integral approach to quantum mechanics. We present a resolvent of a Hamiltonian (which is Laplace transform of a evolution operator) in a form which has a sense of ``the sum over paths'' but it is much more better defined than the usual functional integral. We investigate this representation from various directions and compare such approach to quantum mechanics with the standard ones.
Physicalism versus quantum mechanics
Henry P. Stapp
2008-03-11
In the context of theories of the connection between mind and brain, physicalism is the demand that all is basically purely physical. But the concept of "physical" embodied in this demand is characterized essentially by the properties of the physical that hold in classical physical theories. Certain of these properties contradict the character of the physical in quantum mechanics, which provides a better, more comprehensive, and more fundamental account of phenomena. It is argued that the difficulties that have plaged physicalists for half a century, and that continue to do so, dissolve when the classical idea of the physical is replaced by its quantum successor. The argument is concretized in a way that makes it accessible to non-physicists by exploiting the recent evidence connecting our conscious experiences to macroscopic measurable synchronous oscillations occurring in well-separated parts of the brain. A specific new model of the mind-brain connection that is fundamentally quantum mechanical but that ties conscious experiences to these macroscopic synchronous oscillations is used to illustrate the essential disparities between the classical and quantum notions of the physical, and in particular to demonstrate the failure in the quantum world of the principle of the causal closure of the physical, a failure that goes beyond what is entailed by the randomness in the outcomes of observations, and that accommodates the efficacy in the brain of conscious intent.
Almost Periodic Orbits and Stability for Quantum Time-Dependent Hamiltonians
Cesar R. de Oliveira; Mariza S. Simsen
2007-11-05
We study almost periodic orbits of quantum systems and prove that for periodic time-dependent Hamiltonians an orbit is almost periodic if, and only if, it is precompact. In the case of quasiperiodic time-dependence we present an example of a precompact orbit that is not almost periodic. Finally we discuss some simple conditions assuring dynamical stability for nonautonomous quantum system.
On Randomness in Quantum Mechanics
Alberto C. de la Torre
2007-07-19
The quantum mechanical probability densities are compared with the probability densities treated by the theory of random variables. The relevance of their difference for the interpretation of quantum mechanics is commented.
NASA Astrophysics Data System (ADS)
Ellerman, David
2014-03-01
In models of QM over finite fields (e.g., Schumacher's ``modal quantum theory'' MQT), one finite field stands out, Z2, since Z2 vectors represent sets. QM (finite-dimensional) mathematics can be transported to sets resulting in quantum mechanics over sets or QM/sets. This gives a full probability calculus (unlike MQT with only zero-one modalities) that leads to a fulsome theory of QM/sets including ``logical'' models of the double-slit experiment, Bell's Theorem, QIT, and QC. In QC over Z2 (where gates are non-singular matrices as in MQT), a simple quantum algorithm (one gate plus one function evaluation) solves the Parity SAT problem (finding the parity of the sum of all values of an n-ary Boolean function). Classically, the Parity SAT problem requires 2n function evaluations in contrast to the one function evaluation required in the quantum algorithm. This is quantum speedup but with all the calculations over Z2 just like classical computing. This shows definitively that the source of quantum speedup is not in the greater power of computing over the complex numbers, and confirms the idea that the source is in superposition.
TRANSIENT QUANTUM MECHANICAL PROCESSES
L. COLLINS; J. KRESS; R. WALKER
1999-07-01
Our principal objective has centered on the development of sophisticated computational techniques to solve the time-dependent Schroedinger equation that governs the evolution of quantum mechanical systems. We have perfected two complementary methods, discrete variable representation and real space product formula, that show great promise in solving these complicated temporal problems. We have applied these methods to the interaction of laser light with molecules with the intent of not only investigating the basic mechanisms but also devising schemes for actually controlling the outcome of microscopic processes. Lasers now exist that produce pulses of such short duration as to probe a molecular process many times within its characteristic period--allowing the actual observation of an evolving quantum mechanical system. We have studied the potassium dimer as an example and found agreement with experimental changes in the intermediate state populations as a function of laser frequency--a simple control prescription. We have also employed elaborate quantum chemistry programs to improve the accuracy of basic input such as bound-bound and bound-free coupling moments. These techniques have far-ranging applicability; for example, to trapped quantum systems at very low temperatures such as Bose-Einstein condensates.
Glenn Eric Johnson
2014-12-21
The quantum field theories (QFT) constructed in [1,2] include phenomenology of interest. The constructions approximate: scattering by $1/r$ and Yukawa potentials in non-relativistic approximations; and the first contributing order of the Feynman series for Compton scattering. To have a semi-norm, photon states are constrained to transverse polarizations and for Compton scattering, the constructed cross section deviates at large momentum exchanges from the cross section prediction of the Feynman rules. Discussion includes the incompatibility of canonical quantization with the constructed interacting fields, and the role of interpretations of quantum mechanics in realizing QFT.
Superradiance, disorder, and the non-Hermitian Hamiltonian in open quantum systems
Celardo, G. L.; Biella, A.; Giusteri, G. G.; Mattiotti, F. [Dipartimento di Matematica e Fisica and Interdisciplinary Laboratories for Advanced Materials Physics, Università Cattolica, via Musei 41, 25121 Brescia (Italy); Zhang, Y.; Kaplan, L. [Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118 (United States)
2014-10-15
We first briefly review the non-Hermitian effective Hamiltonian approach to open quantum systems and the associated phenomenon of superradiance. We next discuss the superradiance crossover in the presence of disorder and the relationship between superradiance and the localization transition. Finally, we investigate the regime of validity of the energy-independent effective Hamiltonian approximation and show that the results obtained by these methods are applicable to realistic physical systems.
Quantum Simulation of Pairing Hamiltonians with Nearest-Neighbor Interacting Qubits
Zhixin Wang; Xiu Gu; Lian-Ao Wu; Yu-xi Liu
2014-11-23
Although a universal quantum computer is still far from reach, the tremendous advances in controllable quantum devices, in particular with solid-state systems, make it possible to physically implement "quantum simulators". Quantum simulators are physical setups able to simulate other quantum systems efficiently that are intractable on classical computers. Based on solid-state qubit systems with various types of nearest-neighbor interactions, we propose a complete set of algorithms for simulating pairing Hamiltonians. Fidelity of the target states corresponding to each algorithm is numerically studied. We also compare algorithms designed for different types of experimentally available Hamiltonians and analyze their complexity. Furthermore, we design a measurement scheme to extract energy spectra from the simulators. Our simulation algorithms might be feasible with state-of-the-art technology in solid-state quantum devices.
Path Integrals and Hamiltonians
NASA Astrophysics Data System (ADS)
Baaquie, Belal E.
2014-03-01
1. Synopsis; Part I. Fundamental Principles: 2. The mathematical structure of quantum mechanics; 3. Operators; 4. The Feynman path integral; 5. Hamiltonian mechanics; 6. Path integral quantization; Part II. Stochastic Processes: 7. Stochastic systems; Part III. Discrete Degrees of Freedom: 8. Ising model; 9. Ising model: magnetic field; 10. Fermions; Part IV. Quadratic Path Integrals: 11. Simple harmonic oscillators; 12. Gaussian path integrals; Part V. Action with Acceleration: 13. Acceleration Lagrangian; 14. Pseudo-Hermitian Euclidean Hamiltonian; 15. Non-Hermitian Hamiltonian: Jordan blocks; 16. The quartic potential: instantons; 17. Compact degrees of freedom; Index.
Feynman's simple quantum mechanics
NASA Astrophysics Data System (ADS)
Taylor, Edwin F.
1997-03-01
This sample class presents an alternative to the conventional introduction to quantum mechanics and describes its current use in a credit course. This alternative introduction rests on theory presented in professional and popular writings by Richard Feynman. Feynman showed that Nature gives a simple command to the electron: "Explore all paths." All of nonrelativistic quantum mechanics, among other fundamental results, comes from this command. With a desktop computer the student points and clicks to tell a modeled electron which paths to follow. The computer then shows the results, which embody the elemental strangeness and paradoxical behaviors of the world of the very small. Feynman's approach requires few equations and provides a largely non-mathematical introduction to the wave function of conventional quantum mechanics. Draft software and materials already used for two semesters in an e-mail computer conference credit university course show that Feynman's approach works well with a variety of students. The sample class explores computer and written material and describes the next steps in its development.
The structure of supersymmetry in ${\\cal PT}$ symmetric quantum mechanics
D. Bazeia; Ashok Das; L. Greenwood; L. Losano
2009-03-17
The structure of supersymmetry is analyzed systematically in ${\\cal PT}$ symmetric quantum mechanical theories. We give a detailed description of supersymmetric systems associated with one dimensional ${\\cal PT}$ symmetric quantum mechanical theories. We show that there is a richer structure present in these theories compared to the conventional theories associated with Hermitian Hamiltonians. We bring out various properties associated with these supersymmetric systems and generalize such quantum mechanical theories to higher dimensions as well as to the case of one dimensional shape invariant potentials.
Taming the zoo of supersymmetric quantum mechanical models
NASA Astrophysics Data System (ADS)
Smilga, A. V.
2013-05-01
We show that in many cases nontrivial and complicated supersymmetric quantum mechanical (SQM) models can be obtained from the simple model describing free dynamics in flat complex space by two operations: (i) Hamiltonian reduction and (ii) similarity transformation of the complex supercharges. We conjecture that it is true for any SQM model.
Lagrangian Approaches of Dirac and Feynman to Quantum Mechanics
Y. G. Yi
2006-03-23
A unified exposition of the Lagrangian approach to quantum mechanics is presented, embodying the main features of the approaches of Dirac and of Feynman. The arguments of the exposition address the relation of the Lagrangian approach to the Hamiltonian operator and how the correspondence principle fits into each context.
Universal adiabatic quantum computation via the space-time circuit-to-Hamiltonian construction.
Gosset, David; Terhal, Barbara M; Vershynina, Anna
2015-04-10
We show how to perform universal adiabatic quantum computation using a Hamiltonian which describes a set of particles with local interactions on a two-dimensional grid. A single parameter in the Hamiltonian is adiabatically changed as a function of time to simulate the quantum circuit. We bound the eigenvalue gap above the unique ground state by mapping our model onto the ferromagnetic XXZ chain with kink boundary conditions; the gap of this spin chain was computed exactly by Koma and Nachtergaele using its q-deformed version of SU(2) symmetry. We also discuss a related time-independent Hamiltonian which was shown by Janzing to be capable of universal computation. We observe that in the limit of large system size, the time evolution is equivalent to the exactly solvable quantum walk on Young's lattice. PMID:25910098
Fundamental length in quantum theories with PT-symmetric Hamiltonians II: The case of quantum graphs
Miloslav Znojil
2009-10-14
Manifestly non-Hermitian quantum graphs with real spectra are introduced and shown tractable as a new class of phenomenological models with several appealing descriptive properties. For illustrative purposes, just equilateral star-graphs are considered here in detail, with non-Hermiticities introduced by interactions attached to the vertices. The facilitated feasibility of the analysis of their spectra is achieved via their systematic approximative Runge-Kutta-inspired reduction to star-shaped discrete lattices. The resulting bound-state spectra are found real in a discretization-independent interval of couplings. This conclusion is reinterpreted as the existence of a hidden Hermiticity of our models, i.e., as the standard and manifest Hermiticity of the underlying Hamiltonian in one of less usual, {\\em ad hoc} representations ${\\cal H}_j$ of the Hilbert space of states in which the inner product is local (at $j=0$) or increasingly nonlocal (at $j=1,2, ...$). Explicit examples of these (of course, Hamiltonian-dependent) hermitizing inner products are offered in closed form. In this way each initial quantum graph is assigned a menu of optional, non-equivalent standard probabilistic interpretations exhibiting a controlled, tunable nonlocality.
NASA Astrophysics Data System (ADS)
Maitra, Rachel Lash
The ongoing quantization of the four fundamental forces of nature represents one of the most fruitful grounds for cross-pollination between physics and mathematics. While remaining vastly open, substantial progress has been made in the last decades: the expression of all basic physical theories in terms of geometry, specifically as gauge theories. This is accomplished by the recognition of the strong, weak, and electromagnetic fields as Yang-Mills (gauge) fields, and by the re-writing of general relativity in terms of gauge connection variables. The method of canonical quantization offers several advantages in treating gauge theories: the gauge fields themselves are the basic variables, while gauge constraints promote to quantum operators whose commutation relations reflect the classical Poisson brackets. In this thesis I construct a zero-energy ground state for canonically quantized Yang-Mills theory, for a particular ("nonlinear normal") factor ordering of the Hamiltonian operator. The inspiration for this project is to find an alternative to the Chern-Simons and Kodama states. These are closely related ground state solutions for (respectively) quantum Yang-Mills theory and quantum gravity with a positive cosmological constant. Objections to the Chem-Simons and Kodama states come from, among other arguments, their apparent lack of well-defined decay "at infinity." The ground state I have constructed, as the exponentiation of a strictly non-positive functional, manifestly enjoys good decay properties. In addition, I have constructed a similar ground state for scalar ?4 theory. The construction of these ground states represents a generalization to quantum field theories of work done by my thesis advisor V. Moncrief, in collaboration with M. Ryan, for quantum mechanical situations. Gauge, rotation, and translation invariance are directly verifiable for the nonlinear normal ordered Yang-Mills ground state; invariance under boosts remains as a question for future work. The analogous state for the abelian case (free Maxwell theory) enjoys full Poincare invariance.
Hamiltonian Design in Atom-Light Interactions with Rubidium Ensembles: A Quantum Information Toolbox
S. R. de Echaniz; M. Koschorreck; M. Napolitano; M. Kubasik; M. W. Mitchell
2007-12-05
We study the coupling between collective variables of atomic spin and light polarization in an ensemble of cold 87Rb probed with polarized light. The effects of multiple hyperfine levels manifest themselves as a rank-2 tensor polarizability, whose irreducible components can be selected by means of probe detuning. The D1 and D2 lines of Rb are explored and we identify different detunings which lead to Hamiltonians with different symmetries for rotations. As possible applications of these Hamiltonians, we describe schemes for spin squeezing, quantum cloning, quantum memory, and measuring atom number.
Hamiltonian design in atom-light interactions with rubidium ensembles: A quantum-information toolbox
NASA Astrophysics Data System (ADS)
de Echaniz, S. R.; Koschorreck, M.; Napolitano, M.; Kubasik, M.; Mitchell, M. W.
2008-03-01
We study the coupling between collective variables of atomic spin and light polarization in an ensemble of cold R87b probed with polarized light. The effects of multiple hyperfine levels manifest themselves as a rank-2 tensor polarizability, whose irreducible components can be selected by means of probe detuning. The D1 and D2 lines of Rb are explored and we identify different detunings which lead to Hamiltonians with different symmetries for rotations. As possible applications of these Hamiltonians, we describe schemes for spin squeezing, quantum cloning, quantum memory, and measuring atom number.
Three Pictures of Quantum Mechanics
Olszewski Jr., Edward A.
Relation #12;Quantum Statistics Â· The probability of an observation is found by computing matrix elementsThree Pictures of Quantum Mechanics Thomas R. Shafer April 17, 2009 #12;Outline of the Talk Â· Brief review of (or introduction to) quantum mechanics. Â· 3 different viewpoints on calculation. Â· SchrÃ¶dinger
Daskin, Anmer; Kais, Sabre
2011-04-14
Constructing appropriate unitary matrix operators for new quantum algorithms and finding the minimum cost gate sequences for the implementation of these unitary operators is of fundamental importance in the field of quantum information and quantum computation. Evolution of quantum circuits faces two major challenges: complex and huge search space and the high costs of simulating quantum circuits on classical computers. Here, we use the group leaders optimization algorithm to decompose a given unitary matrix into a proper-minimum cost quantum gate sequence. We test the method on the known decompositions of Toffoli gate, the amplification step of the Grover search algorithm, the quantum Fourier transform, and the sender part of the quantum teleportation. Using this procedure, we present the circuit designs for the simulation of the unitary propagators of the Hamiltonians for the hydrogen and the water molecules. The approach is general and can be applied to generate the sequence of quantum gates for larger molecular systems. PMID:21495747
Gravitomagnetism in quantum mechanics
Adler, Ronald J.; Chen Pisin
2010-07-15
We give a systematic treatment of the quantum mechanics of a spin zero particle in a combined electromagnetic field and a weak gravitational field that is produced by a slow moving matter source. The analysis is based on the Klein-Gordon equation expressed in generally covariant form and coupled minimally to the electromagnetic field. The Klein-Gordon equation is recast into Schroedinger equation form, which we then analyze in the nonrelativistic limit. We include a discussion of some rather general observable physical effects implied by the Schroedinger equation form, concentrating on gravitomagnetism. Of particular interest is the interaction of the orbital angular momentum of the particle with the gravitomagnetic field.
Gravitomagnetism in Quantum Mechanics
Ronald J. Adler; Pisin Chen
2010-05-19
We give a systematic treatment of the quantum mechanics of a spin zero particle in a combined electromagnetic field and a weak gravitational field, which is produced by a slow moving matter source. The analysis is based on the Klein-Gordon equation expressed in generally covariant form and coupled minimally to the electromagnetic field. The Klein-Gordon equation is recast into Schroedinger equation form (SEF), which we then analyze in the non-relativistic limit. We include a discussion of some rather general observable physical effects implied by the SEF, concentrating on gravitomagnetism. Of particular interest is the interaction of the orbital angular momentum of the particle with the gravitomagnetic field.
Assigning Quantum-Mechanical Initial Conditions to Cosmological Perturbations
Massimo Giovannini
2003-08-08
Quantum-mechanical initial conditions for the fluctuations of the geometry can be assigned in excess of a given physical wavelength. The two-point functions of the scalar and tensor modes of the geometry will then inherit corrections depending on which Hamiltonian is minimized at the initial stage of the evolution. The energy density of the background geometry is compared with the energy-momentum pseudo-tensor of the fluctuations averaged over the initial states, minimizing each different Hamiltonian. The minimization of adiabatic Hamiltonians leads to initial states whose back-reaction on the geometry is negligible. The minimization of non-adiabatic Hamiltonians, ultimately responsible for large corrections in the two-point functions, is associated with initial states whose energetic content is of the same order as the energy density of the background.
Quantum state restoration and single-copy tomography for ground states of Hamiltonians.
Farhi, Edward; Gosset, David; Hassidim, Avinatan; Lutomirski, Andrew; Nagaj, Daniel; Shor, Peter
2010-11-01
Given a single copy of an unknown quantum state, the no-cloning theorem limits the amount of information that can be extracted from it. Given a gapped Hamiltonian, in most situations it is impractical to compute properties of its ground state, even though in principle all the information about the ground state is encoded in the Hamiltonian. We show in this Letter that if you know the Hamiltonian of a system and have a single copy of its ground state, you can use a quantum computer to efficiently compute its local properties. Specifically, in this scenario, we give efficient algorithms that copy small subsystems of the state and estimate the full statistics of any local measurement. PMID:21231156
Quantum State Restoration and Single-Copy Tomography for Ground States of Hamiltonians
NASA Astrophysics Data System (ADS)
Farhi, Edward; Gosset, David; Hassidim, Avinatan; Lutomirski, Andrew; Nagaj, Daniel; Shor, Peter
2010-11-01
Given a single copy of an unknown quantum state, the no-cloning theorem limits the amount of information that can be extracted from it. Given a gapped Hamiltonian, in most situations it is impractical to compute properties of its ground state, even though in principle all the information about the ground state is encoded in the Hamiltonian. We show in this Letter that if you know the Hamiltonian of a system and have a single copy of its ground state, you can use a quantum computer to efficiently compute its local properties. Specifically, in this scenario, we give efficient algorithms that copy small subsystems of the state and estimate the full statistics of any local measurement.
Principles of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Landé, Alfred
2013-10-01
Preface; Introduction: 1. Observation and interpretation; 2. Difficulties of the classical theories; 3. The purpose of quantum theory; Part I. Elementary Theory of Observation (Principle of Complementarity): 4. Refraction in inhomogeneous media (force fields); 5. Scattering of charged rays; 6. Refraction and reflection at a plane; 7. Absolute values of momentum and wave length; 8. Double ray of matter diffracting light waves; 9. Double ray of matter diffracting photons; 10. Microscopic observation of ? (x) and ? (p); 11. Complementarity; 12. Mathematical relation between ? (x) and ? (p) for free particles; 13. General relation between ? (q) and ? (p); 14. Crystals; 15. Transition density and transition probability; 16. Resultant values of physical functions; matrix elements; 17. Pulsating density; 18. General relation between ? (t) and ? (?); 19. Transition density; matrix elements; Part II. The Principle of Uncertainty: 20. Optical observation of density in matter packets; 21. Distribution of momenta in matter packets; 22. Mathematical relation between ? and ?; 23. Causality; 24. Uncertainty; 25. Uncertainty due to optical observation; 26. Dissipation of matter packets; rays in Wilson Chamber; 27. Density maximum in time; 28. Uncertainty of energy and time; 29. Compton effect; 30. Bothe-Geiger and Compton-Simon experiments; 31. Doppler effect; Raman effect; 32. Elementary bundles of rays; 33. Jeans' number of degrees of freedom; 34. Uncertainty of electromagnetic field components; Part III. The Principle of Interference and Schrödinger's equation: 35. Physical functions; 36. Interference of probabilities for p and q; 37. General interference of probabilities; 38. Differential equations for ?p (q) and Xq (p); 39. Differential equation for ?? (q); 40. The general probability amplitude ??' (Q); 41. Point transformations; 42. General theorem of interference; 43. Conjugate variables; 44. Schrödinger's equation for conservative systems; 45. Schrödinger's equation for non-conservative systems; 46. Pertubation theory; 47. Orthogonality, normalization and Hermitian conjugacy; 48. General matrix elements; Part IV. The Principle of Correspondence: 49. Contact transformations in classical mechanics; 50. Point transformations; 51. Contact transformations in quantum mechanics; 52. Constants of motion and angular co-ordinates; 53. Periodic orbits; 54. De Broglie and Schrödinger function; correspondence to classical mechanics; 55. Packets of probability; 56. Correspondence to hydrodynamics; 57. Motion and scattering of wave packets; 58. Formal correspondence between classical and quantum mechanics; Part V. Mathematical Appendix: Principle of Invariance: 59. The general theorem of transformation; 60. Operator calculus; 61. Exchange relations; three criteria for conjugacy; 62. First method of canonical transformation; 63. Second method of canonical transformation; 64. Proof of the transformation theorem; 65. Invariance of the matrix elements against unitary transformations; 66. Matrix mechanics; Index of literature; Index of names and subjects.
Gaussian effective potential: Quantum mechanics
NASA Astrophysics Data System (ADS)
Stevenson, P. M.
1984-10-01
We advertise the virtues of the Gaussian effective potential (GEP) as a guide to the behavior of quantum field theories. Much superior to the usual one-loop effective potential, the GEP is a natural extension of intuitive notions familiar from quantum mechanics. A variety of quantum-mechanical examples are studied here, with an eye to field-theoretic analogies. Quantum restoration of symmetry, dynamical mass generation, and "quantum-mechanical resuscitation" are among the phenomena discussed. We suggest how the GEP could become the basis of a systematic approximation procedure. A companion paper will deal with scalar field theory.
Advanced Concepts in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Esposito, Giampiero; Marmo, Giuseppe; Miele, Gennaro; Sudarshan, George
2014-11-01
Preface; 1. Introduction: the need for a quantum theory; 2. Experimental foundations of quantum theory; 3. Waves and particles; 4. Schrödinger picture, Heisenberg picture and probabilistic aspects; 5. Integrating the equations of motion; 6. Elementary applications: 1-dimensional problems; 7. Elementary applications: multidimensional problems; 8. Coherent states and related formalism; 9. Introduction to spin; 10. Symmetries in quantum mechanics; 11. Approximation methods; 12. Modern pictures of quantum mechanics; 13. Formulations of quantum mechanics and their physical implications; 14. Exam problems; Glossary of geometric concepts; References; Index.
Diffusion-Schrödinger Quantum Mechanics
NASA Astrophysics Data System (ADS)
Lasukov, V. V.; Lasukova, T. V.; Lasukova, O. V.; Novoselov, V. V.
2014-08-01
A quantum solution of a nonlinear differential equation of diffusion type with a potential term has been found. Diffusion-Schrödinger quantum mechanics can find wide application in quantum biology, biological electronics, synthetic biology, nanomedicine, the quantum theory of consciousness, cosmology, and other fields of science and technology. One consequence of the macroscopic nature of diffusion-Schrödinger quantum mechanics is the possibility of generation of hard photons. The dust plasma in the Universe can generate cosmic rays with ultra-relativistic energies in a galactic magnetic field via a diffusion mechanism.
The Hidden Symmetries of Spin-1 Ising Lattice Gas for Usual Quantum Hamiltonians
NASA Astrophysics Data System (ADS)
Payandeh, Farrin
2015-07-01
In this letter, the most common quantum Hamiltonian is exploited in order to compare the definite equivalences, corresponding to possible spin values in a lattice gas model, to those in a spin-1 Ising model. Our approach also requires interpolating both results in a p-state clock model, in order to find the hidden symmetries of both under consideration models.
Gamification of Quantum Mechanics Teaching
Ole Eggers Bjælde; Mads Kock Pedersen; Jacob Sherson
2015-06-26
In this small scale study we demonstrate how a gamified teaching setup can be used effectively to support student learning in a quantum mechanics course. The quantum mechanics games were research games, which were played during lectures and the learning was measured with a pretest/posttest method with promising results. The study works as a pilot study to guide the planning of quantum mechanics courses in the future at Aarhus University in Denmark.
Gamification of Quantum Mechanics Teaching
Bjælde, Ole Eggers; Sherson, Jacob
2015-01-01
In this small scale study we demonstrate how a gamified teaching setup can be used effectively to support student learning in a quantum mechanics course. The quantum mechanics games were research games, which were played during lectures and the learning was measured with a pretest/posttest method with promising results. The study works as a pilot study to guide the planning of quantum mechanics courses in the future at Aarhus University in Denmark.
Polysymplectic Hamiltonian Field Theory
G. Sardanashvily
2015-05-06
Applied to field theory, the familiar symplectic technique leads to instantaneous Hamiltonian formalism on an infinite-dimensional phase space. A true Hamiltonian partner of first order Lagrangian theory on fibre bundles $Y\\to X$ is covariant Hamiltonian formalism in different variants, where momenta correspond to derivatives of fields relative to all coordinates on $X$. We follow polysymplectic (PS) Hamiltonian formalism on a Legendre bundle over $Y$ provided with a polysymplectic $TX$-valued form. If $X=\\mathbb R$, this is a case of time-dependent non-relativistic mechanics. PS Hamiltonian formalism is equivalent to the Lagrangian one if Lagrangians are hyperregular. A non-regular Lagrangian however leads to constraints and requires a set of associated Hamiltonians. We state comprehensive relations between Lagrangian and PS Hamiltonian theories in a case of semiregular and almost regular Lagrangians. Quadratic Lagrangian and PS Hamiltonian systems, e.g. Yang - Mills gauge theory are studied in detail. Quantum PS Hamiltonian field theory can be developed in the frameworks both of familiar functional integral quantization and quantization of the PS bracket.
Nonequilibrium Statistical Mechanics of Hamiltonian Rotators with Alternated Spins
NASA Astrophysics Data System (ADS)
Dymov, A.
2015-02-01
We consider a finite region of a d-dimensional lattice of nonlinear Hamiltonian rotators, where neighbouring rotators have opposite (alternated) spins and are coupled by a small potential of size . We weakly stochastically perturb the system in such a way that each rotator interacts with its own stochastic thermostat with a force of order . Then we introduce action-angle variables for the system of uncoupled rotators () and note that the sum of actions over all nodes is conserved by the purely Hamiltonian dynamics of the system with . We investigate the limiting (as ) dynamics of actions for solutions of the -perturbed system on time intervals of order . It turns out that the limiting dynamics is governed by a certain autonomous (stochastic) equation for the vector of actions. This equation has a completely non-Hamiltonian nature. This is a consequence of the fact that the system of rotators with alternated spins do not have resonances of the first order. The -perturbed system has a unique stationary measure and is mixing. Any limiting point of the family of stationary measures as is an invariant measure of the system of uncoupled integrable rotators. There are plenty of such measures. However, it turns out that only one of them describes the limiting dynamics of the -perturbed system: we prove that a limiting point of is unique, its projection to the space of actions is the unique stationary measure of the autonomous equation above, which turns out to be mixing, and its projection to the space of angles is the normalized Lebesque measure on the torus . The results and convergences, which concern the behaviour of actions on long time intervals, are uniform in the number of rotators. Those, concerning the stationary measures, are uniform in in some natural cases.
Renormalisation in Quantum Mechanics, Quantum Instantons and Quantum Chaos
H. Jirari; H. Kröger; X. Q. Luo; K. J. M. Moriarty
2001-02-05
We suggest how to construct non-perturbatively a renormalized action in quantum mechanics. We discuss similarties and differences with the standard effective action. We propose that the new quantum action is suitable to define and compute quantum instantons and quantum chaos.
Classical Limit of Relativistic Quantum Mechanical Equations in the Foldy-Wouthuysen Representation
A. J. Silenko
2013-02-08
It is shown that, under the Wentzel-Kramers-Brillouin approximation conditions, using the Foldy-Wouthuysen representation allows the problem of finding a classical limit of relativistic quantum mechanical equations to be reduced to the replacement of operators in the Hamiltonian and quantum mechanical equations of motion by the respective classical quantities.
From Quantum Mechanics to Thermodynamics?
Steinhoff, Heinz-Jürgen
From Quantum Mechanics to Thermodynamics? Dresden, 22.11.2004 Jochen Gemmer Universit¨at Osnabr to thermodynamical behavior · Quantum approach to thermodynamical behavior · The route to equilibrium · Summary of thermodynamical behavior entirely on the basis of Hamilton models and Schr¨odinger-type quantum dynamics. · define
Bohmian Mechanics and Quantum Information
Goldstein, Sheldon
that quantum theory is about informa- tion, and that quantum theory is best understood as arising from prin theory can be understood from a Bohmian perspective. I would like to explore the hypothesis that the ideaBohmian Mechanics and Quantum Information Sheldon Goldstein Departments of Mathematics, Physics
Quantum chaos in elementary quantum mechanics
Yu. Dabaghian
2004-07-30
We introduce an analytical solution to the one of the most familiar problems from the elementary quantum mechanics textbooks. The following discussion provides simple illustrations to a number of general concepts of quantum chaology, along with some recent developments in the field and a historical perspective on the subject.
Klein's programme and quantum mechanics
NASA Astrophysics Data System (ADS)
Clemente-Gallardo, Jesús; Marmo, Giuseppe
2015-04-01
We review the geometrical formulation of quantum mechanics to identify, according to Klein's programme, the corresponding group of transformations. For closed systems, it is the unitary group. For open quantum systems, the semigroup of Kraus maps contains, as a maximal subgroup, the general linear group. The same group emerges as the exponentiation of the C*-algebra associated with the quantum system, when thought of as a Lie algebra. Thus, open quantum systems seem to identify the general linear group as associated with quantum mechanics and moreover suggest to extend the Klein programme also to groupoids. The usual unitary group emerges as a maximal compact subgroup of the general linear group.
Quantum mechanics of leptogenesis
NASA Astrophysics Data System (ADS)
Mendizabal, S.
2011-04-01
Thermal leptogenesis is an attractive mechanism that explains in a simple way the matter-antimatter asymmetry of the universe. It is usually studied via the Boltzmann equations, which describes the time evolution of particle densities or distribution functions in a thermal bath. The Boltzmann equations are classical equations and suffer from basic conceptual problems and they lack to include many quantum phenomena. We show how to address leptogenesis systematically in a purely quantum way, by describing non-equilibrium excitations of a Majorana particle in the Kadanoff-Baym equations with significant emphasis on the initial and boundary conditions of the solutions. We apply our results to thermal leptogenesis, computing analytically the asymmetry generated, comparing it with the semiclassical Boltzmann approach. The non-locality of the Kadanoff-Baym equations shows how off-shell effects can have a huge impact on the generated asymmetry. The insertion of standard model decay widths to the particles excitations of the bath is also discussed. We explain how with a trivial insertion of these widths we regain locality on the processes.
Kindergarten Quantum Mechanics
Bob Coecke
2005-10-04
These lecture notes survey some joint work with Samson Abramsky as it was presented by me at several conferences in the summer of 2005. It concerns `doing quantum mechanics using only pictures of lines, squares, triangles and diamonds'. This picture calculus can be seen as a very substantial extension of Dirac's notation, and has a purely algebraic counterpart in terms of so-called Strongly Compact Closed Categories (introduced by Abramsky and I in quant-ph/0402130 and [4]) which subsumes my Logic of Entanglement quant-ph/0402014. For a survey on the `what', the `why' and the `hows' I refer to a previous set of lecture notes quant-ph/0506132. In a last section we provide some pointers to the body of technical literature on the subject.
Klein's paradox and quantum Hamiltonian dynamics in complex spacetime
NASA Astrophysics Data System (ADS)
Payandeh, Farrin
2014-05-01
In this paper, along with previous investigation in Payandeh et al., Chin. Phys. C 37, 113103 (2013), we will use the full set of free Dirac's solutions to remove the Klein's paradox. However, we choose a different approach, namely the relativistic quantum Hamilton-Jacobi equations and the resultant quantum states. We show that this full set of solutions can also be retained as a single wave function, and also possess the potential of removing Klein's paradox.
Iyela, Daddy Balondo; Hounkonnou, M Norbert
2012-01-01
Within the context of Supersymmetric Quantum Mechanics and its related hierarchies of integrable quantum Hamiltonians and potentials, a general programme is outlined and applied to its first two simplest illustrations. Going beyond the usual restriction of shape invariance for intertwined potentials, it is suggested to require a similar relation for Hamiltonians in the hierarchy separated by an arbitrary number of levels, N. By requiring further that these two Hamiltonians be in fact identical up to an overall shift in energy, a periodic structure is installed in the hierarchy of quantum systems which should allow for its solution. Specific classes of orthogonal polynomials characteristic of such periodic hierarchies are thereby generated, while the methods of Supersymmetric Quantum Mechanics then lead to generalised Rodrigues formulae and recursion relations for such polynomials. The approach also offers the practical prospect of quantum modelling through the engineering of quantum potentials from experiment...
Diagrammatic quantum mechanics
NASA Astrophysics Data System (ADS)
Kauffman, Louis H.; Lomonaco, Samuel J.
2015-05-01
This paper explores how diagrams of quantum processes can be used for modeling and for quantum epistemology. The paper is a continuation of the discussion where we began this formulation. Here we give examples of quantum networks that represent unitary transformations by dint of coherence conditions that constitute a new form of non-locality. Local quantum devices interconnected in space can form a global quantum system when appropriate coherence conditions are maintained.
Modern Approach to Quantum Mechanics
NASA Astrophysics Data System (ADS)
Townsend, John S.
Inspired by Richard Feynman and J.J. Sakurai, A Modern Approach to Quantum Mechanics lets professors expose their undergraduates to the excitement and insight of Feynman's approach to quantum mechanics while simultaneously giving them a textbook that is well-ordered, logical, and pedagogically sound. This book covers all the topics that are typically presented in a standard upper-level course in quantum mechanics, but its teaching approach is new: Rather than organizing his book according to the historical development of the field and jumping into a mathematical discussion of wave mechanics, Townsend begins his book with the quantum mechanics of spin. Thus, the first five chapters of the book succeed in laying out the fundamentals of quantum mechanics with little or no wave mechanics, so the physics is not obscured by mathematics. Starting with spin systems gives students something new and interesting while providing elegant but straightforward examples of the essential structure of quantum mechanics. When wave mechanics is introduced later, students perceive it correctly as only one aspect of quantum mechanics and not the core of the subject. Praised for its pedagogical brilliance, clear writing, and careful explanations, this book is destined to become a landmark text.
Quantum mechanics of cluster melting
Beck, T.L.; Doll, J.D.; Freeman, D.L.
1989-05-15
We present here prototype studies of the effects of quantum mechanics on the melting of clusters. Using equilibrium path integral methods, we examine the melting transition for small rare gas clusters. Argon and neon clusters are considered. We find the quantum-mechanical effects on the melting and coexistence properties of small neon clusters to be appreciable.
Invariance in adelic quantum mechanics
Branko Dragovich
2006-12-07
Adelic quantum mechanics is form invariant under an interchange of real and p-adic number fields as well as rings of p-adic integers. We also show that in adelic quantum mechanics Feynman's path integrals for quadratic actions with rational coefficients are invariant under changes of their entries within nonzero rational numbers.
QUANTUM MECHANICS WITHOUT STATISTICAL POSTULATES
G. GEIGER; ET AL
2000-11-01
The Bohmian formulation of quantum mechanics describes the measurement process in an intuitive way without a reduction postulate. Due to the chaotic motion of the hidden classical particle all statistical features of quantum mechanics during a sequence of repeated measurements can be derived in the framework of a deterministic single system theory.
T. P. Singh
2007-05-16
There are fundamental reasons as to why there should exist a reformulation of quantum mechanics which does not refer to a classical spacetime manifold. It follows as a consequence that quantum mechanics as we know it is a limiting case of a more general nonlinear quantum theory, with the nonlinearity becoming significant at the Planck mass/energy scale. This nonlinearity is responsible for a dynamically induced collapse of the wave-function, during a quantum measurement, and it hence falsifies the many-worlds interpretation of quantum mechanics. We illustrate this conclusion using a mathematical model based on a generalized Doebner-Goldin equation. The non-Hermitian part of the Hamiltonian in this norm-preserving, nonlinear, Schrodinger equation dominates during a quantum measurement, and leads to a breakdown of linear superposition.
A Study about the Supersymmetry in the context of Quantum Mechanics
Fabricio Marques
2011-11-04
In this work we present an introduction to Supersymmetry in the context of 1-dimensional Quantum Mechanics. For that purpose we develop the concept of hamiltonians factorization using the simple harmonic oscillator as an example, we introduce the supersymmetric oscilator and, next, we generalize these concepts to introduce the fundamentals of Supersymmetric Quantum Mechanics. We also discuss useful tools to solve problems in Quantum Mechanics which are intrinsecally related to Supersymmetry as hierarchy of hamiltonians and shape invariance. We present two approximation methods which will be specially useful: the well known Variational Method and the Logarithmic Perturbation Theory, the latter being closely related to the concepts of superpotentials and hierarchy of hamiltonians. Finally, we present problems related to superpotentials which are monomials in even powers of the x coordinate multiplied by the sign function epsilon(x), which seems to be a new class of problems in Supersymmetric Quantum Mechanics.
Classical and Quantum Mechanical Waves
NSDL National Science Digital Library
Riley, Lewis
This web site consists of lecture notes in classical and quantum mechanical waves. The notes include the basics of classical waves including connections to mechanical oscillators, wave packets, and acoustic and electromagnetic waves. The final section outlines the key concepts of the quantum mechanical wave equation including probability and current, free and bound states, time dependent perturbation theory, and radiation. Visual Python and Maple animations are included for download.
Intrinsic decoherence dynamics in smooth Hamiltonian systems: Quantum-classical correspondence
Gong, Jiangbin; Brumer, Paul
2003-08-01
A direct classical analog of the quantum dynamics of intrinsic decoherence in Hamiltonian systems, characterized by the time dependence of the linear entropy of the reduced density operator, is introduced. The similarities and differences between the classical and quantum decoherence dynamics of an initial quantum state are exposed using both analytical and computational results. In particular, the classicality of early-time intrinsic decoherence dynamics is explored analytically using a second-order perturbative treatment, and an interesting connection between decoherence rates and the stability nature of classical trajectories is revealed in a simple approximate classical theory of intrinsic decoherence dynamics. The results offer deeper insights into decoherence, dynamics of quantum entanglement, and quantum chaos.
Gosselin, P; Mohrbach, H; Gosselin, Pierre; B\\'{e}rard, Alain; Mohrbach, Herve
2006-01-01
It has been recently found that the equations of motion of several semiclassical systems must take into account terms arising from Berry phases contributions. Those terms are responsible for the spin Hall effect in semiconductor as well as the Magnus effect of light propagating in inhomogeneous media. Intensive ongoing research on this subject seems to indicate that a broad class of quantum systems may be affected by Berry phase terms. It is therefore important to find a general procedure allowing for the determination of semiclassical Hamiltonian with Berry Phase corrections. This article presents a general diagonalization method at order $\\hbar $ for a large class of quantum Hamiltonians directly inducing Berry phase corrections. As a consequence, Berry phase terms on both coordinates and momentum operators naturally arise during the diagonalization procedure. This leads to new equations of motion for a wide class of semiclassical system. As physical applications we consider here a Dirac particle in an elec...
Quantum simulation of time-dependent Hamiltonians and the convenient illusion of Hilbert space
David Poulin; Angie Qarry; R. D. Somma; Frank Verstraete
2011-02-07
We consider the manifold of all quantum many-body states that can be generated by arbitrary time-dependent local Hamiltonians in a time that scales polynomially in the system size, and show that it occupies an exponentially small volume in Hilbert space. This implies that the overwhelming majority of states in Hilbert space are not physical as they can only be produced after an exponentially long time. We establish this fact by making use of a time-dependent generalization of the Suzuki-Trotter expansion, followed by a counting argument. This also demonstrates that a computational model based on arbitrarily rapidly changing Hamiltonians is no more powerful than the standard quantum circuit model.
Quantum simulation of time-dependent Hamiltonians and the convenient illusion of Hilbert space
Poulin, David; Somma, R D; Verstraete, Frank
2011-01-01
We consider the manifold of all quantum many-body states that can be generated by arbitrary time-dependent local Hamiltonians in a time that scales polynomially in the system size, and show that it occupies an exponentially small volume in Hilbert space. This implies that the overwhelming majority of states in Hilbert space are not physical as they can only be produced after an exponentially long time. We establish this fact by making use of a time-dependent generalization of the Suzuki-Trotter expansion, followed by a counting argument. This also demonstrates that a computational model based on arbitrarily rapidly changing Hamiltonians is no more powerful than the standard quantum circuit model.
Decoherence in quantum mechanics and quantum cosmology
NASA Technical Reports Server (NTRS)
Hartle, James B.
1992-01-01
A sketch of the quantum mechanics for closed systems adequate for cosmology is presented. This framework is an extension and clarification of that of Everett and builds on several aspects of the post-Everett development. It especially builds on the work of Zeh, Zurek, Joos and Zeh, and others on the interactions of quantum systems with the larger universe and on the ideas of Griffiths, Omnes, and others on the requirements for consistent probabilities of histories.
An approach to nonstandard quantum mechanics
Andreas Raab
2006-12-27
We use nonstandard analysis to formulate quantum mechanics in hyperfinite-dimensional spaces. Self-adjoint operators on hyperfinite-dimensional spaces have complete eigensets, and bound states and continuum states of a Hamiltonian can thus be treated on an equal footing. We show that the formalism extends the standard formulation of quantum mechanics. To this end we develop the Loeb-function calculus in nonstandard hulls. The idea is to perform calculations in a hyperfinite-dimensional space, but to interpret expectation values in the corresponding nonstandard hull. We further apply the framework to non-relativistic quantum scattering theory. For time-dependent scattering theory, we identify the starting time and the finishing time of a scattering experiment, and we obtain a natural separation of time scales on which the preparation process, the interaction process, and the detection process take place. For time-independent scattering theory, we derive rigorously explicit formulas for the M{\\o}ller wave operators and the S-Matrix.
Noninertial quantum mechanical fluctuations
H. C. Rosu
2001-11-05
Zero point quantum fluctuations as seen from non-inertial reference frames are of interest for several reasons. In particular, because phenomena such as Unruh radiation (acceleration radiation) and Hawking radiation (quantum leakage from a black hole) depend intrinsically on both quantum zero-point fluctuations and some appropriate notion of an accelerating vacuum state, any experimental test of zero-point fluctuations in non-inertial frames is implicitly a test of the foundations of quantum field theory, and the Unruh and Hawking effects
Communication: quantum mechanics without wavefunctions.
Schiff, Jeremy; Poirier, Bill
2012-01-21
We present a self-contained formulation of spin-free non-relativistic quantum mechanics that makes no use of wavefunctions or complex amplitudes of any kind. Quantum states are represented as ensembles of real-valued quantum trajectories, obtained by extremizing an action and satisfying energy conservation. The theory applies for arbitrary configuration spaces and system dimensionalities. Various beneficial ramifications-theoretical, computational, and interpretational-are discussed. PMID:22280737
Communication: Quantum mechanics without wavefunctions
Schiff, Jeremy; Poirier, Bill
2012-01-21
We present a self-contained formulation of spin-free non-relativistic quantum mechanics that makes no use of wavefunctions or complex amplitudes of any kind. Quantum states are represented as ensembles of real-valued quantum trajectories, obtained by extremizing an action and satisfying energy conservation. The theory applies for arbitrary configuration spaces and system dimensionalities. Various beneficial ramifications--theoretical, computational, and interpretational--are discussed.
Quantum mechanical study of a generic quadratically coupled optomechanical system
H. Shi; M. Bhattacharya
2013-04-22
Typical optomechanical systems involving optical cavities and mechanical oscillators rely on a coupling that varies linearly with the oscillator displacement. However, recently a coupling varying instead as the square of the mechanical displacement has been realized, presenting new possibilities for non-demolition measurements and mechanical squeezing. In this article we present a quantum mechanical study of a generic quadratic-coupling optomechanical Hamiltonian. First, neglecting dissipation, we provide analytical results for the dressed states, spectrum, phonon statistics and entanglement. Subsequently, accounting for dissipation, we supply a numerical treatment using a master equation approach. We expect our results to be of use to optomechanical spectroscopy, state transfer, wavefunction engineering, and entanglement generation.
Quantum Mechanics as Quantum Information (and only a little more)
Fuchs, Christopher A.
Quantum Mechanics as Quantum Information (and only a little more) Christopher A. Fuchs Computing identify one element of quantum mechanics that I would not label a subjective term in the theory 1973 Foundations of Quantum Mechanics and Ordered Linear Spaces, Marburg, Germany 1974 Quantum
Quantum mechanics from classical statistics
Wetterich, C.
2010-04-15
Quantum mechanics can emerge from classical statistics. A typical quantum system describes an isolated subsystem of a classical statistical ensemble with infinitely many classical states. The state of this subsystem can be characterized by only a few probabilistic observables. Their expectation values define a density matrix if they obey a 'purity constraint'. Then all the usual laws of quantum mechanics follow, including Heisenberg's uncertainty relation, entanglement and a violation of Bell's inequalities. No concepts beyond classical statistics are needed for quantum physics - the differences are only apparent and result from the particularities of those classical statistical systems which admit a quantum mechanical description. Born's rule for quantum mechanical probabilities follows from the probability concept for a classical statistical ensemble. In particular, we show how the non-commuting properties of quantum operators are associated to the use of conditional probabilities within the classical system, and how a unitary time evolution reflects the isolation of the subsystem. As an illustration, we discuss a classical statistical implementation of a quantum computer.
Quantum mechanics from invariance principles
NASA Astrophysics Data System (ADS)
Moldoveanu, Florin
2015-07-01
Quantum mechanics is an extremely successful theory of nature and yet it lacks an intuitive axiomatization. In contrast, the special theory of relativity is well understood and is rooted into natural or experimentally justified postulates. Here we introduce an axiomatization approach to quantum mechanics which is very similar to special theory of relativity derivation. The core idea is that a composed system obeys the same laws of nature as its components. This leads to a Jordan-Lie algebraic formulation of quantum mechanics. The starting assumptions are minimal: the laws of nature are invariant under time evolution, the laws of nature are invariant under tensor composition, the laws of nature are relational, together with the ability to define a physical state (positivity). Quantum mechanics is singled out by a fifth experimentally justified postulate: nature violates Bell's inequalities.
Spin decoherence from Hamiltonian dynamics in quantum dots
NASA Astrophysics Data System (ADS)
Bhaktavatsala Rao, D. D.; Ravishankar, V.; Subrahmanyam, V.
2006-08-01
The dynamics of a spin- 1/2 particle coupled to a nuclear spin bath through an isotropic Heisenberg interaction is studied as a model for the spin decoherence in quantum dots. The time-dependent polarization of the central spin is calculated as a function of the bath-spin distribution and the polarizations of the initial bath state. For short times, the polarization of the central spin shows a Gaussian decay, and at later times it is revived displaying nonmonotonic time dependence. The decoherence time scale depends on moments of the bath-spin distribuition, and also on the polarization strengths in various bath-spin channels. The bath polarizations have a tendency to increase the decoherence time scale. The effective dynamics of the central spin polarization is shown to be described by a master equation with non-Markovian features.
Quantum mechanics & the big world
Jasper van Wezel
2007-01-01
Quantum Mechanics is one of the most successful\\u000aphysical theories of the last century. It explains physical\\u000aphenomena from the smallest to the largest lengthscales.\\u000aDespite this triumph, quantum mechanics is often perceived\\u000aas a mysterious theory, involving superposition states that are\\u000aalien to our everyday Big World.\\u000aThe construction of a future quantum computer relies on\\u000aour ability to
Bush, John W. M.
Some two centuries before the quantum revolution, Newton (1) suggested that corpuscles of light generate waves in an aethereal medium like skipping stones generate waves in water, with their motion then being affected by ...
Chandrashekar, C. M.
2013-01-01
From the unitary operator used for implementing two-state discrete-time quantum walk on one-, two- and three- dimensional lattice we obtain a two-component Dirac-like Hamiltonian. In particular, using different pairs of Pauli basis as position translation states we obtain three different form of Hamiltonians for evolution on one-dimensional lattice. We extend this to two- and three-dimensional lattices using different Pauli basis states as position translation states for each dimension and show that the external coin operation, which is necessary for one-dimensional walk is not a necessary requirement for a walk on higher dimensions but can serve as an additional resource to control the dynamics. The two-component Hamiltonian we present here for quantum walk on different lattices can serve as a general framework to simulate, control, and study the dynamics of quantum systems governed by Dirac-like Hamiltonian. PMID:24088731
Quantum Mechanics and The Big World
Wezel van Jasper
2007-01-01
Quantum Mechanics is one of the most successful physical theories of the last century. It explains physicalphenomena from the smallest to the largest lengthscales. Despite this triumph, quantum mechanics is often perceived as a mysterious theory, involving superposition states that are alien to our everyday Big World.In Quantum Mechanics and The Big World the connection between Quantum Mechanics and the
Quantum Mechanics Joachim Burgdorfer and Stefan Rotter
Rotter, Stefan
1 1 Quantum Mechanics Joachim Burgd¨orfer and Stefan Rotter 1.1 Introduction 3 1.2 Particle and Quantization 8 1.5 Angular Momentum in Quantum Mechanics 9 1.6 Formalism of Quantum Mechanics 12 1.7 Solution Quantization 33 1.9.3 Gutzwiller Trace Formula 34 1.10 Conceptual Aspects of Quantum Mechanics 35 1
QUANTUM MECHANICS AND REAL Department of Mathematics
Penrose, Oliver
QUANTUM MECHANICS AND REAL EVENTS O.Penrose Department of Mathematics Heriot-Watt University into the evolution of a quantum-mechanical system, without altering the usual laws of quantum mechanics in any way Although quantum mechanics is wonderfully successful for predicting the results of experiments done
Realization of a quantum Hamiltonian Boolean logic gate on the Si(001):H surface
NASA Astrophysics Data System (ADS)
Kolmer, Marek; Zuzak, Rafal; Dridi, Ghassen; Godlewski, Szymon; Joachim, Christian; Szymonski, Marek
2015-07-01
The design and construction of the first prototypical QHC (Quantum Hamiltonian Computing) atomic scale Boolean logic gate is reported using scanning tunnelling microscope (STM) tip-induced atom manipulation on an Si(001):H surface. The NOR/OR gate truth table was confirmed by dI/dU STS (Scanning Tunnelling Spectroscopy) tracking how the surface states of the QHC quantum circuit on the Si(001):H surface are shifted according to the input logical status.The design and construction of the first prototypical QHC (Quantum Hamiltonian Computing) atomic scale Boolean logic gate is reported using scanning tunnelling microscope (STM) tip-induced atom manipulation on an Si(001):H surface. The NOR/OR gate truth table was confirmed by dI/dU STS (Scanning Tunnelling Spectroscopy) tracking how the surface states of the QHC quantum circuit on the Si(001):H surface are shifted according to the input logical status. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01912e
Quantum Mechanisms of Electronic Signal Propagation Along a Microtubule
NASA Astrophysics Data System (ADS)
Craddock, Travis; Friesen, Douglas; Tuszynski, Jack
2011-03-01
Evidence has been accumulating for the involvement of quantum coherence and entanglement in light harvesting photosynthetic complexes. This tests the adage that biological systems are too ``warm and wet'' to support quantum phenomena. Recent advancements in experiment and theory have allowed investigators to probe other warm systems for coherent phenomena including polymer chains, bacteriorhodopsin and ion channels. A debate has raged for over a decade regarding hypothetical quantum coherence/ entanglement in microtubules. Here we theoretically investigate coherent energy transfer in microtubules via dipole excitations coupled to the environment in networks of chromophoric amino acids. We present the spatial structure and Hamiltonian, containing localized site energies and couplings between aromatic amino acids, for the microtubule constituent protein tubulin. Energy transfer is discussed in terms of quantum walk formalism and energy transfer efficiency. Plausibility arguments are presented for the conditions favoring a quantum mechanism of electronic signal propagation along a microtubule. Funding provided by NSERC.
New Type of Hamiltonians Without Ultraviolet Divergence for Quantum Field Theories
Teufel, Stefan
2015-01-01
We propose a novel type of Hamiltonians for quantum field theories. They are mathematically well-defined (and in particular, ultraviolet finite) without any ultraviolet cut-off such as smearing out the particles over a nonzero radius; rather, the particles are assigned radius zero. We describe explicit examples of such Hamiltonians. Their definition, which is best expressed in the particle-position representation of the wave function, involves a novel type of boundary condition on the wave function, which we call an interior-boundary condition. The relevant configuration space is one of a variable number of particles, and the relevant boundary consists of the configurations with two or more particles at the same location. The interior-boundary condition relates the value (or derivative) of the wave function at a boundary point to the value of the wave function at an interior point (here, in a sector of configuration space corresponding to a lesser number of particles).
Interacting Quantum Dot Coupled to a Kondo Spin: A Universal Hamiltonian Study
Stefan Rotter; Hakan E. Türeci; Y. Alhassid; A. Douglas Stone
2008-02-26
We study a mesoscopic interacting quantum dot described by the "universal Hamiltonian" that is coupled to a Kondo spin. The ferromagnetic exchange interaction within the dot leads to a stepwise increase of the ground state spin; this Stoner staircase is modified non-trivially by the Kondo interaction. We find that the spin-transition steps move to lower values of the exchange coupling for weak Kondo interaction, but shift back up for sufficiently strong Kondo coupling. The problem is solved numerically by diagonalizing the system Hamiltonian in a customized good-spin basis and analytically in the weak and strong Kondo coupling limits. The interplay of Kondo and ferromagnetic exchange can be probed with experimentally tunable parameters.
Quantum theory of atoms in molecules: results for the SR-ZORA Hamiltonian.
Anderson, James S M; Ayers, Paul W
2011-11-17
The quantum theory of atoms in molecules (QTAIM) is generalized to include relativistic effects using the popular scalar-relativistic zeroth-order regular approximation (SR-ZORA). It is usually assumed that the definition of the atom as a volume bounded by a zero-flux surface of the electron density is closely linked to the form of the kinetic energy, so it is somewhat surprising that the atoms corresponding to the relativistic kinetic-energy operator in the SR-ZORA Hamiltonian are also bounded by zero-flux surfaces. The SR-ZORA Hamiltonian should be sufficient for qualitative descriptions of molecular electronic structure across the periodic table, which suggests that QTAIM-based analysis can be useful for molecules and solids containing heavy atoms. PMID:22010759
Analytical spectrum for a Hamiltonian of quantum dots with Rashba spin–orbit coupling
NASA Astrophysics Data System (ADS)
Dossa, Anselme F.; Avossevou, Gabriel Y. H.
2014-12-01
We determine the analytical solution for a Hamiltonian describing a confined charged particle in a quantum dot, including Rashba spin-orbit coupling and Zeeman splitting terms. The approach followed in this paper is straightforward and uses the symmetrization of the wave function?s components. The eigenvalue problem for the Hamiltonian in Bargmann?s Hilbert space reduces to a system of coupled first-order differential equations. Then we exploit the symmetry in the system to obtain uncoupled second-order differential equations, which are found to be the Whittaker–Ince limit of the confluent Heun equations. Analytical expressions as well as numerical results are obtained for the spectrum. One of the main features of such models, namely, the level splitting, is present through the spectrum obtained in this paper.
Relations between multi-resolution analysis and quantum mechanics
F. Bagarello
2009-04-01
We discuss a procedure to construct multi-resolution analyses (MRA) of $\\Lc^2(\\R)$ starting from a given {\\em seed} function $h(s)$ which should satisfy some conditions. Our method, originally related to the quantum mechanical hamiltonian of the fractional quantum Hall effect (FQHE), is shown to be model independent. The role of a canonical map between certain canonically conjugate operators is discussed. This clarifies our previous procedure and makes much easier most of the original formulas, producing a convenient framework to produce examples of MRA.
NSDL National Science Digital Library
Galvez, Enrique
This web site, authored by Enrique Galvez and Charles Holbrow of Colgate University, outlines a project to develop undergraduate physics labs that investigate quantum interference and entanglement with photons. The labs are designed for simplicity and low cost. A description of the lab set up, background information, and an article on the project are provided.
ERIC Educational Resources Information Center
DeWitt, Bryce S.
1970-01-01
Discusses the quantum theory of measurement and von Neumann's catastrophe of infinite regression." Examines three ways of escapint the von Neumann catastrophe, and suggests that the solution to the dilemma of inteterminism is a universe in which all possible outcomes of an experiment actually occur. Bibliography. (LC)
Quantum Mechanics: Fundamentals
A Whitaker
2004-01-01
This review is of three books, all published by Springer, all on quantum theory at a level above introductory, but very different in content, style and intended audience.That of Gottfried and Yan is of exceptional interest, historical and otherwise. It is a second edition of Gottfried's well-known book published by Benjamin in 1966. This was written as a text for
NASA Astrophysics Data System (ADS)
Rusin, Tomasz M.
2000-02-01
We calculate the energy of excitons in parabolic quantum wells using the effective variational Hamiltonian (EVH) method which allows us to find all energy levels of the exciton by searching for solutions within a very broad class of trial functions whose form is also subject to variation. We use the new method to find the exciton binding energy of 1s, 2s and 3s states of an exciton formed below the ground electron and hole subbands in parabolic quantum wells made of (Ga, Al)As and (Cd, Mn)Te. We calculate also the binding energies of excitons formed between excited quantum well levels. The calculations are performed for various values of an external magnetic field parallel to the growth axis of the heterostructure.
An Efficient Matrix Product Operator Representation of the Quantum-Chemical Hamiltonian
Keller, Sebastian; Troyer, Matthias; Reiher, Markus
2015-01-01
We describe how to efficiently construct the quantum chemical Hamiltonian operator in matrix product form. We present its implementation as a density matrix renormalization group (DMRG) algorithm for quantum chemical applications in a purely matrix product based framework. Existing implementations of DMRG for quantum chemistry are based on the traditional formulation of the method, which was developed from a viewpoint of Hilbert space decimation and attained a higher performance compared to straightforward implementations of matrix product based DMRG. The latter variationally optimizes a class of ansatz states known as matrix product states (MPS), where operators are correspondingly represented as matrix product operators (MPO). The MPO construction scheme presented here eliminates the previous performance disadvantages while retaining the additional flexibility provided by a matrix product approach; for example, the specification of expectation values becomes an input parameter. In this way, MPOs for differe...
Are nonlinear discrete cellular automata compatible with quantum mechanics?
NASA Astrophysics Data System (ADS)
Elze, Hans-Thomas
2015-07-01
We consider discrete and integer-valued cellular automata (CA). A particular class of which comprises “Hamiltonian CA” with equations of motion that bear similarities to Hamilton's equations, while they present discrete updating rules. The dynamics is linear, quite similar to unitary evolution described by the Schrödinger equation. This has been essential in our construction of an invertible map between such CA and continuous quantum mechanical models, which incorporate a fundamental discreteness scale. Based on Shannon's sampling theory, it leads, for example, to a one-to-one relation between quantum mechanical and CA conservation laws. The important issue of linearity of the theory is examined here by incorporating higher-order nonlinearities into the underlying action. These produce inconsistent nonlocal (in time) effects when trying to describe continuously such nonlinear CA. Therefore, in the present framework, only linear CA and local quantum mechanical dynamics are compatible.
QUANTUM CHAOS, CLASSICAL RANDOMNESS, AND BOHMIAN MECHANICS
Goldstein, Sheldon
QUANTUM CHAOS, CLASSICAL RANDOMNESS, AND BOHMIAN MECHANICS Detlef DË? urr* ,+ , Sheldon Goldstein of quantum theory, Bohmian mechanics, in which ``quantum chaos'' also arises solely from the dynamical law. Moreover, this occurs in a manner far simpler than in the classical case. KEY WORDS: Quantum chaos; quantum
Bohmian Mechanics and Quantum Information
Sheldon Goldstein
2009-07-14
Many recent results suggest that quantum theory is about information, and that quantum theory is best understood as arising from principles concerning information and information processing. At the same time, by far the simplest version of quantum mechanics, Bohmian mechanics, is concerned, not with information but with the behavior of an objective microscopic reality given by particles and their positions. What I would like to do here is to examine whether, and to what extent, the importance of information, observation, and the like in quantum theory can be understood from a Bohmian perspective. I would like to explore the hypothesis that the idea that information plays a special role in physics naturally emerges in a Bohmian universe.
Quantum Mechanics (QM) Measurement Package
NSDL National Science Digital Library
Belloni, Mario
This set of tutorial worksheets, based on the OSP Quantum Mechanics Simulations, help students explore the effects of position, momentum, and energy measurements on quantum state wavepackets. The probabilistic change in the wavefunction upon measurements and the time propagation of the states are illustrated. Similar worksheets are available for measurements of single and superpositions of energy eigenstates. The worksheets can be run online or downloaded as a pdf (attached).
Hans Cruz; Dieter Schuch; Octavio Castaños; Oscar Rosas-Ortiz
2015-05-11
The sensitivity of the evolution of quantum uncertainties to the choice of the initial conditions is shown via a complex nonlinear Riccati equation leading to a reformulation of quantum dynamics. This sensitivity is demonstrated for systems with exact analytic solutions with the form of Gaussian wave packets. In particular, one-dimensional conservative systems with at most quadratic Hamiltonians are studied.
Quantum Mechanical Earth: Where Orbitals Become Orbits
ERIC Educational Resources Information Center
Keeports, David
2012-01-01
Macroscopic objects, although quantum mechanical by nature, conform to Newtonian mechanics under normal observation. According to the quantum mechanical correspondence principle, quantum behavior is indistinguishable from classical behavior in the limit of very large quantum numbers. The purpose of this paper is to provide an example of the…
R. Gutierrez; R. Caetano; P. B. Woiczikowski; T. Kubar; M. Elstner; G. Cuniberti
2009-10-02
Charge transport through a short DNA oligomer (Dickerson dodecamer) in presence of structural fluctuations is investigated using a hybrid computational methodology based on a combination of quantum mechanical electronic structure calculations and classical molecular dynamics simulations with a model Hamiltonian approach. Based on a fragment orbital description, the DNA electronic structure can be coarse-grained in a very efficient way. The influence of dynamical fluctuations arising either from the solvent fluctuations or from base-pair vibrational modes can be taken into account in a straightforward way through time series of the effective DNA electronic parameters, evaluated at snapshots along the MD trajectory. We show that charge transport can be promoted through the coupling to solvent fluctuations, which gate the onsite energies along the DNA wire.
Algebraic Quantum Mechanics and Pregeometry
NASA Astrophysics Data System (ADS)
Bohm, D. J.; Davies, P. G.; Hiley, B. J.
2006-01-01
We discuss the relation between the q-number approach to quantum mechanics suggested by Dirac and the notion of "pregeometry" introduced by Wheeler. By associating the q-numbers with the elements of an algebra and regarding the primitive idempotents as "generalized points", we suggest an approach that may make it possible to dispense with an a priori given space-time manifold. In this approach the algebra itself would carry the symmetries of translation, rotation, etc. Our suggestion is illustrated in a preliminary way by using a particular generalized Clifford algebra proposed originally by Weyl, which approaches the ordinary Heisenberg algebra a suitable limit. We thus obtain a certain insight into how quantum mechanics may be regarded as a purely algebraic theory, provided that we further introduce a new set of "neighbourhood operators", which remove an important kind of arbitrariness that has thus far been present in the attempt to treat quantum mechanics solely in terms of a Heisenberg algebra.
Error suppression in Hamiltonian-based quantum computation using energy penalties
NASA Astrophysics Data System (ADS)
Bookatz, Adam D.; Farhi, Edward; Zhou, Leo
2015-08-01
We consider the use of quantum error-detecting codes, together with energy penalties against leaving the code space, as a method for suppressing environmentally induced errors in Hamiltonian-based quantum computation. This method was introduced in Jordan et al. [Phys. Rev. A 74, 052322 (2006)], 10.1103/PhysRevA.74.052322 in the context of quantum adiabatic computation, but we consider it more generally. Specifically, we consider a computational Hamiltonian, which has been encoded using the logical qubits of a single-qubit error-detecting code, coupled to an environment of qubits by interaction terms that act one-locally on the system. Additional energy penalty terms penalize states outside of the code space. We prove that in the limit of infinitely large penalties, one-local errors are completely suppressed, and we derive some bounds for the finite penalty case. Our proof technique involves exact integration of the Schrodinger equation, making no use of master equations or their assumptions. We perform long time numerical simulations on a small (one logical qubit) computational system coupled to an environment and the results suggest that the energy penalty method achieves even greater protection than our bounds indicate.
NASA Astrophysics Data System (ADS)
Cao, Zhenwei
Over the years, people have found Quantum Mechanics to be extremely useful in explaining various physical phenomena from a microscopic point of view. Anderson localization, named after physicist P. W. Anderson, states that disorder in a crystal can cause non-spreading of wave packets, which is one possible mechanism (at single electron level) to explain metal-insulator transitions. The theory of quantum computation promises to bring greater computational power over classical computers by making use of some special features of Quantum Mechanics. The first part of this dissertation considers a 3D alloy-type model, where the Hamiltonian is the sum of the finite difference Laplacian corresponding to free motion of an electron and a random potential generated by a sign-indefinite single-site potential. The result shows that localization occurs in the weak disorder regime, i.e., when the coupling parameter lambda is very small, for energies E ? --Clambda 2. The second part of this dissertation considers adiabatic quantum computing (AQC) algorithms for the unstructured search problem to the case when the number of marked items is unknown. In an ideal situation, an explicit quantum algorithm together with a counting subroutine are given that achieve the optimal Grover speedup over classical algorithms, i.e., roughly speaking, reduce O(2n) to O(2n/2), where n is the size of the problem. However, if one considers more realistic settings, the result shows this quantum speedup is achievable only under a very rigid control precision requirement (e.g., exponentially small control error).
QUANTUM MECHANICS. Quantum squeezing of motion in a mechanical resonator.
Wollman, E E; Lei, C U; Weinstein, A J; Suh, J; Kronwald, A; Marquardt, F; Clerk, A A; Schwab, K C
2015-08-28
According to quantum mechanics, a harmonic oscillator can never be completely at rest. Even in the ground state, its position will always have fluctuations, called the zero-point motion. Although the zero-point fluctuations are unavoidable, they can be manipulated. Using microwave frequency radiation pressure, we have manipulated the thermal fluctuations of a micrometer-scale mechanical resonator to produce a stationary quadrature-squeezed state with a minimum variance of 0.80 times that of the ground state. We also performed phase-sensitive, back-action evading measurements of a thermal state squeezed to 1.09 times the zero-point level. Our results are relevant to the quantum engineering of states of matter at large length scales, the study of decoherence of large quantum systems, and for the realization of ultrasensitive sensing of force and motion. PMID:26315431
Jinsong Yang; Yongge Ma
2015-06-11
This is the second paper in the series to introduce a graphical method to loop quantum gravity. We employ the graphical method as a powerful tool to calculate the actions of the Hamiltonian constraint operator and the so-called inverse volume operator on spin network states with trivalent vertices. Both of the operators involve the co-triad operator which contains holonomies by construction. The non-ambiguous, concise and visual characters of our graphical method ensure the rigour for our calculations. Our results indicate some corrections to the existing results in literatures.
Yang, Jinsong
2015-01-01
This is the second paper in the series to introduce a graphical method to loop quantum gravity. We employ the graphical method as a powerful tool to calculate the actions of the Hamiltonian constraint operator and the so-called inverse volume operator on spin network states with trivalent vertices. Both of the operators involve the co-triad operator which contains holonomies by construction. The non-ambiguous, concise and visual characters of our graphical method ensure the rigour for our calculations. Our results indicate some corrections to the existing results in literatures for both operators.
H. Hernández-Saldaña
2012-12-21
A calculation of the classical analogue for the quantum wave function and local denity of states, in energy representation, is presented for simple Hamiltonian systems. Sucha analogous were proposed by M. V. Berry and A. voros considering the intersection of energy shells of two systems as the only semiclassical object which can give support to eigenfunctions. One of them is the system unser study and the other is the "unperturbed system" used to express the wave functions, even in the case that both systems are not close. For simple systems and as for scalable ones analytical expressions are obtainable. In the present work we offer examples of both.
Svetoslav S. Ivanov; Michael Johanning; Christof Wunderlich
2015-09-06
We propose a simplified mathematical construction of the quantum Fourier transform which is suited for systems described by Ising-type Hamiltonians. By contrast to the standard Cooley-Tuckey scheme, which prescribes sequences of CPHASE gates, our implementation is based on one-qubit gates and a free evolution process. We also show how to obtain a quadratic speed-up by applying the conditional interactions simultaneously. Thus rather than O($N^2$) our implementation time scales as O($N$). Finally, we show a realization of our method with homogeneous microwave driven ion traps in a magnetic field with gradient.
A Transfer Hamiltonian Model for Devices Based on Quantum Dot Arrays
Illera, S.; Prades, J. D.; Cirera, A.; Cornet, A.
2015-01-01
We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide. PMID:25879055
Supersymmetric quantum mechanics and paraquantization
Morchedi, O.; Mebarki, N. [Laboratoire de Physique Mathematique et Subatomique, Mentouri University, Constantine (Algeria)
2012-06-27
The paraquantum Hamiltonian of a free particle is shown to be supersymmetric. Depending on the space-time dimension, the corresponding N=1 and N=2 supercharges are constructed and the related Hamiltonians are derived.
Quantum mechanical force field for water with explicit electronic polarization.
Han, Jaebeom; Mazack, Michael J M; Zhang, Peng; Truhlar, Donald G; Gao, Jiali
2013-08-01
A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 10(6) self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across biological ion channels through membranes. PMID:23927266
Quantum mechanical force field for water with explicit electronic polarization
Han, Jaebeom; Mazack, Michael J. M.; Zhang, Peng; Truhlar, Donald G.; Gao, Jiali
2013-01-01
A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 106 self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across biological ion channels through membranes. PMID:23927266
Spin Glass a Bridge Between Quantum Computation and Statistical Mechanics
NASA Astrophysics Data System (ADS)
Ohzeki, Masayuki
2013-09-01
In this chapter, we show two fascinating topics lying between quantum information processing and statistical mechanics. First, we introduce an elaborated technique, the surface code, to prepare the particular quantum state with robustness against decoherence. Interestingly, the theoretical limitation of the surface code, accuracy threshold, to restore the quantum state has a close connection with the problem on the phase transition in a special model known as spin glasses, which is one of the most active researches in statistical mechanics. The phase transition in spin glasses is an intractable problem, since we must strive many-body system with complicated interactions with change of their signs depending on the distance between spins. Fortunately, recent progress in spin-glass theory enables us to predict the precise location of the critical point, at which the phase transition occurs. It means that statistical mechanics is available for revealing one of the most interesting parts in quantum information processing. We show how to import the special tool in statistical mechanics into the problem on the accuracy threshold in quantum computation. Second, we show another interesting technique to employ quantum nature, quantum annealing. The purpose of quantum annealing is to search for the most favored solution of a multivariable function, namely optimization problem. The most typical instance is the traveling salesman problem to find the minimum tour while visiting all the cities. In quantum annealing, we introduce quantum fluctuation to drive a particular system with the artificial Hamiltonian, in which the ground state represents the optimal solution of the specific problem we desire to solve. Induction of the quantum fluctuation gives rise to the quantum tunneling effect, which allows nontrivial hopping from state to state. We then sketch a strategy to control the quantum fluctuation efficiently reaching the ground state. Such a generic framework is called quantum annealing. The most typical instance is quantum adiabatic computation based on the adiabatic theorem. The quantum adiabatic computation as discussed in the other chapter, unfortunately, has a crucial bottleneck for a part of the optimization problems. We here introduce several recent trials to overcome such a weakpoint by use of developments in statistical mechanics. Through both of the topics, we would shed light on the birth of the interdisciplinary field between quantum mechanics and statistical mechanics.
Quantum and Classical Mechanics with Connected Graphs.
NASA Astrophysics Data System (ADS)
Molzahn, Frank Herbert
The dynamics of a nonrelativistic spinless N-particle system with time-dependent, smooth, scalar interactions is investigated. If the system also couples to an external vector field, the generalized Wigner-Kirkwood W-K expansion of the quantum propagator
Self-Referential Quantum Mechanics
NASA Astrophysics Data System (ADS)
Mitchell, Mark Kenneth
1993-01-01
A nonlinear quantum mechanics based upon the nonlinear logarithmic Schrodinger equation, is developed which has the property of self-reference, that is, the nonlinear term is dependent upon the square of the wavefunction. The self-referential system is examined in terms of its mathematical properties, the definition of the wavefunction, and the nonlinear system in the feedback between equation and solution. Theta operators are introduced which make possible new operations in the quantum phase. Two interpretations are presented utilizing the nonlinear quantum system: the idealistic interpretation based upon consciousness focused upon the measurement problem, and the statistical interpretation focused upon stochastic quantum fluctuations. Experimental properties are examined, beginning with a proposed analog of the Bohm-Aharonov experiment. Interference due to difference in path length for a split electron beam is effected in a region of spacetime where electromagnetic field and the vector potential are enclosed within but screened to be zero at the paths. If the wavefunction's geometrical phase contribution along the paths is different, then there should be interference induced purely by the wave-function alone. A positive result would be due to a purely wavefunction dependent effect. The spin phase of the wavefunction is postulated to be the source of the zitterbewegung of the electron. Reduction of the wavefunction in measurement is examined for self -referential quantum systems arising from consciousness and then arising from a stochastic quantum spacetime model. These results are applied to the mind-brain as a quantum processor producing a behavioral double slit experiment (ideation experiments) and nonlocal transferred potentials in an EPR-style experiment. Looking at the universe as a whole as a quantum self-referential system, leads to a modified zitterbewegung Wheeler-DeWitt equation; and, the transition from quantum-to-classical on a cosmological scale for the measurement problem is accomplished for an expanding-only deSitter quantum spacetime.
Remarks on osmosis, quantum mechanics, and gravity
Carroll, Robert
2011-01-01
Some relations of the quantum potential to Weyl geometry are indicated with applications to the Friedmann equations for a toy quantum cosmology. Osmotic velocity and pressure are briefly discussed in terms of quantum mechanics and superfluids with connections to gravity.
Remarks on osmosis, quantum mechanics, and gravity
Robert Carroll
2011-04-03
Some relations of the quantum potential to Weyl geometry are indicated with applications to the Friedmann equations for a toy quantum cosmology. Osmotic velocity and pressure are briefly discussed in terms of quantum mechanics and superfluids with connections to gravity.
Remarks on Osmosis, Quantum Mechanics, and Gravity
NASA Astrophysics Data System (ADS)
Carroll, Robert
2012-05-01
Some relations of the quantum potential to Weyl geometry are indicated with applications to the Friedmann equations for a toy quantum cosmology. Osmotic velocity and pressure are briefly discussed in terms of quantum mechanics and superfluids with connections to gravity.
To the nonlinear quantum mechanics
Miroslav Pardy
2001-11-20
The Schroedinger equation with the nonlinear term is derived by the natural generalization of the hydrodynamical model of quantum mechanics. The nonlinear term appears to be logically necessary because it enables explanation of the classical limit of the wave function, the collaps of the wave function and solves the Schroedinger cat paradox.
What quantum computers may tell us about quantum mechanics
Monroe, Christopher
17 What quantum computers may tell us about quantum mechanics Christopher R. Monroe University computing and storage media are being miniaturized to the atomic scale, is beginning to confront quantum of Michigan, Ann Arbor Quantum mechanics occupies a unique position in the history of science. It has sur
The quantum field theory interpretation of quantum mechanics
Alberto C. de la Torre
2015-03-02
It is shown that adopting the \\emph{Quantum Field} ---extended entity in space-time build by dynamic appearance propagation and annihilation of virtual particles--- as the primary ontology the astonishing features of quantum mechanics can be rendered intuitive. This interpretation of quantum mechanics follows from the formalism of the most successful theory in physics: quantum field theory.
Stability and Clustering for Lattice Many-Body Quantum Hamiltonians with Multiparticle Potentials
NASA Astrophysics Data System (ADS)
Faria da Veiga, Paulo A.; O'Carroll, Michael
2015-08-01
We analyze a quantum system of N identical spinless particles of mass m, in the lattice Z^d , given by a Hamiltonian H_N=T_N+V_N , with kinetic energy T_N?0 and potential V_N=V_{N,2}+V_{N,3} composed of attractive pair and repulsive 3-body contact-potentials. This Hamiltonian is motivated by the desire to understand the stability of quantum field theories, with massive single particles and bound states in the energy-momentum spectrum, in terms of an approximate Hamiltonian for their N-particle sector. We determine the role of the potentials V_{N,2} and V_{N,3} on the physical stability of the system, such as to avoid a collapse of the N particles. Mathematically speaking, stability is associated with an N-linear lower bound for the infimum of the H_N spectrum, \\underline{? }(H_N)? -cN , for c>0 independent of N. For V_{N,3}=0 , H_N is unstable, and the system collapses. If V_{N,3}not =0 , H_N is stable and, for strong enough repulsion, we obtain \\underline{? }(H_N)? -c' N , where c'N is the energy of (N/2) isolated bound pairs. This result is physically expected. A much less trivial result is that, as N varies, we show [ \\underline{? }(V_N)/N ] has qualitatively the same behavior as the well-known curve for minus the nuclear binding energy per nucleon. Moreover, it turns out that there exists a saturation value N_s of N at and above which the system presents a clustering: the N particles distributed in two fragments and, besides lattice translations of particle positions, there is an energy degeneracy of all two fragments with particle numbers N_r and N_s-N_r , with N_r=1,ldots ,N_s-1.
Pierre Gosselin; Alain Bérard; Herve Mohrbach
2007-06-28
It has been recently found that the equations of motion of several semiclassical systems must take into account terms arising from Berry phases contributions. Those terms are responsible for the spin Hall effect in semiconductor as well as the Magnus effect of light propagating in inhomogeneous media. Intensive ongoing research on this subject seems to indicate that a broad class of quantum systems may be affected by Berry phase terms. It is therefore important to find a general procedure allowing for the determination of semiclassical Hamiltonian with Berry Phase corrections. This article presents a general diagonalization method at order $\\hbar $ for a large class of quantum Hamiltonians directly inducing Berry phase corrections. As a consequence, Berry phase terms on both coordinates and momentum operators naturally arise during the diagonalization procedure. This leads to new equations of motion for a wide class of semiclassical system. As physical applications we consider here a Dirac particle in an electromagnetic or static gravitational field, and the propagation of a Bloch electrons in an external electromagnetic field.
Ashok Ajoy; Rama Koteswara Rao; Anil Kumar; Pranaw Rungta
2012-04-05
We propose an iterative algorithm to simulate the dynamics generated by any $n$-qubit Hamiltonian. The simulation entails decomposing the unitary time evolution operator $U$ (unitary) into a product of different time-step unitaries. The algorithm product-decomposes $U$ in a chosen operator basis by identifying a certain symmetry of $U$ that is intimately related to the number of gates in the decomposition. We illustrate the algorithm by first obtaining a polynomial decomposition in the Pauli basis of the $n$-qubit Quantum State Transfer unitary by Di Franco et. al. (Phys. Rev. Lett. 101, 230502 (2008)) that transports quantum information from one end of a spin chain to the other; and then implement it in Nuclear Magnetic Resonance to demonstrate that the decomposition is experimentally viable and well-scaled. We furthur experimentally test the resilience of the state transfer to static errors in the coupling parameters of the simulated Hamiltonian. This is done by decomposing and simulating the corresponding imperfect unitaries.
NASA Astrophysics Data System (ADS)
Ghosh, Shivam; Changlani, Hitesh; Pujari, Sumiran; Henley, C. L.
2011-03-01
The lowest energy excitations of spin 1/2 Heisenberg antiferromagnets on percolation clusters (about the Neel ordered state) were believed to be ``quantum rotor states'' scaling with cluster size as 1/N, until Wang and Sandvik [Wang et al, Phys. Rev. B 81, 054417 (2010)] discovered a class of states in the diluted square lattice that had even lower energies and had a different finite size scaling of the gap exponent. They conjectured these anomalous states were due to local even/odd sublattice imbalances, leading to emergent local moments called ``dangling spins'' that interact over large distances, mediated through intervening spins. We have pursued this question on the z=3 Bethe lattice at the percolation threshold. Exact diagonalization shows, forevery cluster, a split-off group of low-energy states having the same quantum numbers as can be made using the dangling spins. We identify these with the Wang-Sandvik anomalous states and model their energies using an effective pair Hamiltonian coupling the ``dangling spins.'' The couplings are a function of separation and geometry; the parameters are solved by fitting to a database of different clusters.The separation dependence of these interactions can be related to the gap scaling with N. We will also compare the effective Hamiltonian predictions to the intersite susceptibility matrix of each cluster.
Quantum Mechanics Of Consciousness
Rajat Kumar Pradhan
2009-07-29
A phenomenological approach using the states of spin-like observables is developed to understand the nature of consciousness and the totality of experience. The three states of consciousness are taken to form the triplet of eigenstates of a spin-one entity and are derived as the triplet resulting from the composition of two spins by treating the subject and the object as interacting two-state, spin-half systems with external and internal projections. The state of deep sleep is analysed in the light of this phenomenological approach and a novel understanding of the status of the individual consciousness in this state is obtained. The resulting fourth state i.e. the singlet state is interpreted to correspond to the superconscious state of intuitive experience and is justified by invoking the concept of the universal consciousness as the underlying source of all individual states of experience. It is proposed that the individual experiences result from the operations of four individualizing observables which project out the individual from the universal. The one-to-one correspondence between the individual and the universal states of experience is brought out and their identity in the fourth state is established by showing that all individualizing quantum numbers become zero in this state leaving no trace of any individuality.
Algorithmic Information Theoretic Issues in Quantum Mechanics
Algorithmic Information Theoretic Issues in Quantum Mechanics Gavriel Segre - PHD thesis October 20 of qubits one has to give up the Hilbert- Space Axiomatization of Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 III The road for quantum algorithmic randomness 104 5 The irreducibility of quantum probability
Probable Inference and Quantum Mechanics
Grandy, W. T. Jr. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82070 (United States)
2009-12-08
In its current very successful interpretation the quantum theory is fundamentally statistical in nature. Although commonly viewed as a probability amplitude whose (complex) square is a probability, the wavefunction or state vector continues to defy consensus as to its exact meaning, primarily because it is not a physical observable. Rather than approach this problem directly, it is suggested that it is first necessary to clarify the precise role of probability theory in quantum mechanics, either as applied to, or as an intrinsic part of the quantum theory. When all is said and done the unsurprising conclusion is that quantum mechanics does not constitute a logic and probability unto itself, but adheres to the long-established rules of classical probability theory while providing a means within itself for calculating the relevant probabilities. In addition, the wavefunction is seen to be a description of the quantum state assigned by an observer based on definite information, such that the same state must be assigned by any other observer based on the same information, in much the same way that probabilities are assigned.
Quantum mechanics of black holes.
Witten, Edward
2012-08-01
The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely. PMID:22859480
Hotta, Ryuuichi; Morozumi, Takuya; Takata, Hiroyuki
2012-07-27
We develop the method analyzing particle number non-conserving phenomena with non-equilibrium quantum field-theory. In this study, we consider a CP violating model with interaction Hamiltonian that breaks particle number conservation. To derive the quantum Boltzmann equation for the particle number, we solve Schwinger-Dyson equation, which are obtained from two particle irreducible closed-time-path (2PI CTP) effective action. In this calculation, we show the contribution from interaction Hamiltonian to the time evolution of expectation value of particle number.
Correspondence Truth and Quantum Mechanics
Vassilios Karakostas
2015-04-07
The logic of a physical theory reflects the structure of the propositions referring to the behaviour of a physical system in the domain of the relevant theory. It is argued in relation to classical mechanics that the propositional structure of the theory allows truth-value assignment in conformity with the traditional conception of a correspondence theory of truth. Every proposition in classical mechanics is assigned a definite truth value, either 'true' or 'false', describing what is actually the case at a certain moment of time. Truth-value assignment in quantum mechanics, however, differs; it is known, by means of a variety of 'no go' theorems, that it is not possible to assign definite truth values to all propositions pertaining to a quantum system without generating a Kochen-Specker contradiction. In this respect, the Bub-Clifton 'uniqueness theorem' is utilized for arguing that truth-value definiteness is consistently restored with respect to a determinate sublattice of propositions defined by the state of the quantum system concerned and a particular observable to be measured. An account of truth of contextual correspondence is thereby provided that is appropriate to the quantum domain of discourse. The conceptual implications of the resulting account are traced down and analyzed at length. In this light, the traditional conception of correspondence truth may be viewed as a species or as a limit case of the more generic proposed scheme of contextual correspondence when the non-explicit specification of a context of discourse poses no further consequences.
NONEQUILIBRIUM QUANTUM STATISTICAL MECHANICS AND THERMODYNAMICS #
NONEQUILIBRIUM QUANTUM STATISTICAL MECHANICS AND THERMODYNAMICS # Walid K. Abou Salem + Institut f nonequilibrium quantum statistical mechanics. Basic thermodynamic notions are clarified and di#erent reversible and irreversible thermodynamic processes are studied from the point of view of quantum statistical mechanics
From Quantum Mechanics to String Theory
From Quantum Mechanics to String Theory Relativity (why it makes sense) Quantum mechanics and the Strong Force Symmetry and Unification String Theory: a different kind of unification Extra Dimensions Strings and the Strong Force Thursday, May 7, 2009 #12;Review of Quantum Mechanics In general, particles
Visualizing quantum mechanics in phase space
Heiko Bauke; Noya Ruth Itzhak
2011-01-11
We examine the visualization of quantum mechanics in phase space by means of the Wigner function and the Wigner function flow as a complementary approach to illustrating quantum mechanics in configuration space by wave functions. The Wigner function formalism resembles the mathematical language of classical mechanics of non-interacting particles. Thus, it allows a more direct comparison between classical and quantum dynamical features.
129 Lecture Notes Relativistic Quantum Mechanics
Murayama, Hitoshi
129 Lecture Notes Relativistic Quantum Mechanics 1 Need for Relativistic Quantum Mechanics the single-particle Schr¨odinger wave equation, but obtained only by going to quantum field theory. We's equation of motion in mechanics. The initial condtions to solve the Newton's equation of motion
221B Lecture Notes Relativistic Quantum Mechanics
Murayama, Hitoshi
221B Lecture Notes Relativistic Quantum Mechanics 1 Need for Relativistic Quantum Mechanics We the single-particle Schr¨odinger wave equation, but obtained only by going to quantum field theory. We's equation of motion in mechanics. The initial condtions to solve the Newton's equation of motion
221B Lecture Notes Relativistic Quantum Mechanics
Murayama, Hitoshi
221B Lecture Notes Relativistic Quantum Mechanics 1 Need for Relativistic Quantum Mechanics We the single-particle Schr¨odinger wave equation, but obtained only by going to quantum field theory. We, similarly to the Newton's equation of motion in mechanics. The initial condtions to solve the Newton
Quantum Mechanics and Representation Theory Columbia University
Woit, Peter
Quantum Mechanics and Representation Theory Peter Woit Columbia University Texas Tech, November 21 2013 Peter Woit (Columbia University) Quantum Mechanics and Representation Theory November 2013 1 / 30, 1967 Peter Woit (Columbia University) Quantum Mechanics and Representation Theory November 2013 2 / 30
Improving student understanding of quantum mechanics
NASA Astrophysics Data System (ADS)
Singh, Chandralekha
2015-04-01
Learning quantum mechanics is challenging for many students. We are investigating the difficulties that upper-level students have in learning quantum mechanics. To help improve student understanding of quantum concepts, we are developing quantum interactive learning tutorials (QuILTs) and tools for peer-instruction. Many of the QuILTs employ computer simulations to help students visualize and develop better intuition about quantum phenomena. We will discuss the common students' difficulties and research-based tools we are developing to bridge the gap between quantitative and conceptual aspects of quantum mechanics and help students develop a solid grasp of quantum concepts. Support from the National Science Foundation is gratefully acknowledged.
Paradoxical Reflection in Quantum Mechanics
Pedro L. Garrido; Sheldon Goldstein; Jani Lukkarinen; Roderich Tumulka
2011-05-03
This article concerns a phenomenon of elementary quantum mechanics that is quite counter-intuitive, very non-classical, and apparently not widely known: a quantum particle can get reflected at a downward potential step. In contrast, classical particles get reflected only at upward steps. The conditions for this effect are that the wave length is much greater than the width of the potential step and the kinetic energy of the particle is much smaller than the depth of the potential step. This phenomenon is suggested by non-normalizable solutions to the time-independent Schroedinger equation, and we present evidence, numerical and mathematical, that it is also indeed predicted by the time-dependent Schroedinger equation. Furthermore, this paradoxical reflection effect suggests, and we confirm mathematically, that a quantum particle can be trapped for a long time (though not forever) in a region surrounded by downward potential steps, that is, on a plateau.
Larkin, Teresa L.
Conceptual Development of Quantum Mechanics: Experiences with the Visual Quantum Mechanics using a portion of the materials developed by the Visual Quantum Mechanics (VQM) project1 as part of our recent efforts to investigate student understanding of basic quantum mechanics concepts. The VQM
Quantum mechanics and the psyche
NASA Astrophysics Data System (ADS)
Galli Carminati, G.; Martin, F.
2008-07-01
In this paper we apply the last developments of the theory of measurement in quantum mechanics to the phenomenon of consciousness and especially to the awareness of unconscious components. Various models of measurement in quantum mechanics can be distinguished by the fact that there is, or there is not, a collapse of the wave function. The passive aspect of consciousness seems to agree better with models in which there is no collapse of the wave function, whereas in the active aspect of consciousness—i.e., that which goes together with an act or a choice—there seems to be a collapse of the wave function. As an example of the second possibility we study in detail the photon delayed-choice experiment and its consequences for subjective or psychological time. We apply this as an attempt to explain synchronicity phenomena. As a model of application of the awareness of unconscious components we study the mourning process. We apply also the quantum paradigm to the phenomenon of correlation at a distance between minds, as well as to group correlations that appear during group therapies or group training. Quantum entanglement leads to the formation of group unconscious or collective unconscious. Finally we propose to test the existence of such correlations during sessions of group training.
Statistical Mechanics and Quantum Cosmology
B. L. Hu
1995-11-29
Statistical mechanical concepts and processes such as decoherence, correlation, and dissipation can prove to be of basic importance to understanding some fundamental issues of quantum cosmology and theoretical physics such as the choice of initial states, quantum to classical transition and the emergence of time. Here we summarize our effort in 1) constructing a unified theoretical framework using techniques in interacting quantum field theory such as influence functional and coarse-grained effective action to discuss the interplay of noise, fluctuation, dissipation and decoherence; and 2) illustrating how these concepts when applied to quantum cosmology can alter the conventional views on some basic issues. Two questions we address are 1) the validity of minisuperspace truncation, which is usually assumed without proof in most discussions, and 2) the relevance of specific initial conditions, which is the prevailing view of the past decade. We also mention how some current ideas in chaotic dynamics, dissipative collective dynamics and complexity can alter our view of the quantum nature of the universe.
The Mechanism of Quantum Computation
NASA Astrophysics Data System (ADS)
Castagnoli, Giuseppe
2008-08-01
I provide an alternative way of seeing quantum computation. First, I describe an idealized classical problem solving machine whose coordinates are submitted to a nonfunctional relation representing all the problem constraints; moving an input part, reversibly and nondeterministically produces a solution through a many body interaction. The machine can be considered the many body generalization of another perfect machine, the bouncing ball model of reversible computation. The mathematical description of the machine’s motion, as it is, is applicable to quantum problem solving, an extension of the quantum algorithms that comprises the physical representation of the interdependence between the problem and the solution. The configuration space of the classical machine is replaced by the phase space of the quantum machine. The relation between the coordinates of the machine parts now applies to the populations of the reduced density operators of the parts of the computer register throughout state vector reduction. Thus, reduction produces the solution of the problem under a nonfunctional relation representing the problem-solution interdependence. At the light of this finding, the quantum speed up turns out to be “precognition” of the solution, namely the reduction of the initial ignorance of the solution due to backdating, to before running the algorithm, a part of the state vector reduction on the solution (a time-symmetric part in the case of unstructured problems); as such, it is bounded by state vector reduction through an entropic inequality. The computation mechanism under discussion might also explain the wholeness appearing in the introspective analysis of perception.
Quantum Mechanics in symmetry language
Houri Ziaeepour
2014-09-17
We consider symmetry as a foundational concept in quantum mechanics and rewrite quantum mechanics and measurement axioms in this description. We argue that issues related to measurements and physical reality of states can be better understood in this view. In particular, the abstract concept of symmetry provides a basis-independent definition for observables. Moreover, we show that the apparent projection/collapse of the state as the final step of measurement or decoherence is the result of breaking of symmetries. This phenomenon is comparable with a phase transition by spontaneous symmetry breaking, and makes the process of decoherence and classicality a natural fate of complex systems consisting of many interacting subsystems. Additionally, we demonstrate that the property of state space as a vector space representing symmetries is more fundamental than being an abstract Hilbert space, and its $L2$ integrability can be obtained from the imposed condition of being a representation of a symmetry group and general properties of probability distributions.
On the Various Aspects of Hamiltonian Description of the Mechanics of Continuous Media
G. Pronko
2009-08-21
We consider a general approach to the theory of continuous media starting from Lagrangian formalism. This formalism which uses the trajectories if constituents of media is very convenient for taking into account different types of interaction between particles typical for different media. Building the Hamiltonian formalism we discuss some issues which is not very well known, such as relation of famous Thompson theorem with the symmetry with respect to volume preserving diffeomorphisms. We also discuss the relation between Euler and Lagrange description and present similar to Euler $C^2$ formulation of continuous mechanics. In these general frameworks we consider as examples the theory of plasma and gravitating gas.
The Transactional Interpretation of Quantum Mechanics and Quantum Nonlocality
John G. Cramer
2015-02-28
Quantum nonlocality is discussed as an aspect of the quantum formalism that is seriously in need of interpretation. The Transactional Interpretation of quantum mechanics, which describes quantum processes as transactional "handshakes" between retarded $\\psi$ waves and advanced $\\psi*$ waves, is discussed. Examples of the use of the Transactional Interpretation in resolving quantum paradoxes and in understanding the counter-intuitive aspects of the formalism, particularly quantum nonlocality, are provided.
Supersymmetric Quantum Mechanics with Reflections
S. Post; L. Vinet; A. Zhedanov
2011-08-09
We consider a realization of supersymmetric quantum mechanics where supercharges are differential-difference operators with reflections. A supersymmetric system with an extended Scarf I potential is presented and analyzed. Its eigenfunctions are given in terms of little -1 Jacobi polynomials which obey an eigenvalue equation of Dunkl type and arise as a q-> -1 limit of the little q-Jacobi polynomials. Intertwining operators connecting the wave functions of extended Scarf I potentials with different parameters are presented.
Entropy production and equilibration in Yang-Mills quantum mechanics.
Tsai, Hung-Ming; Müller, Berndt
2012-01-01
The Husimi distribution provides for a coarse-grained representation of the phase-space distribution of a quantum system, which may be used to track the growth of entropy of the system. We present a general and systematic method of solving the Husimi equation of motion for an isolated quantum system, and we construct a coarse-grained Hamiltonian whose expectation value is exactly conserved. As an application, we numerically solve the Husimi equation of motion for two-dimensional Yang-Mills quantum mechanics (the x-y model) and calculate the time evolution of the coarse-grained entropy of a highly excited state. We show that the coarse-grained entropy saturates to a value that coincides with the microcanonical entropy corresponding to the energy of the system. PMID:22400515
Moiseyev, Nimrod
Theory of Diatomic Molecules in an External Electromagnetic Field from First Quantum Mechanical/rotational/vibrational/electronic dynamics of a diatomic molecule exposed to an interaction with an arbitrary external electromagnetic field is to provide a detailed derivation of the Hamiltonian for diatomic molecules in laser fields, regardless
The Bogoliubov-de Gennes system, the AKNS hierarchy, and nonlinear quantum mechanical supersymmetry
Correa, Francisco [Departamento de Fisica, Universidad de Santiago de Chile, Casilla 307, Santiago 2 (Chile); Dunne, Gerald V. [Physics Department, University of Connecticut, Storrs, CT 06269 (United States); Plyushchay, Mikhail S. [Departamento de Fisica, Universidad de Santiago de Chile, Casilla 307, Santiago 2 (Chile)], E-mail: m.plyushchay@gmail.com
2009-12-15
We show that the Ginzburg-Landau expansion of the grand potential for the Bogoliubov-de Gennes Hamiltonian is determined by the integrable nonlinear equations of the AKNS hierarchy, and that this provides the natural mathematical framework for a hidden nonlinear quantum mechanical supersymmetry underlying the dynamics.
An Arrow of Time Operator for Standard Quantum Mechanics
Y. Strauss; J. Silman; S. Machnes; L. P. Horwitz
2008-02-18
We introduce a self-adjoint operator that indicates the direction of time within the framework of standard quantum mechanics. That is, as a function of time its expectation value decreases monotonically for any initial state. This operator can be defined for any system governed by a Hamiltonian with a uniformly finitely degenerate, absolutely continuous and semibounded spectrum. We study some of the operator's properties and illustrate them for a large equivalence class of scattering problems. We also discuss some previous attempts to construct such an operator, and show that the no-go theorems developed in this context are not applicable to our construction.
Goddard III, William A.
and the classical statistical shell model Ching-Hwa Kiang and William A. Goddard III Materials and MolecularEffective Hamiltonians for motions with disparate time scales: The quantum shell model (Received 10 September 1992; accepted 5 October 1992) The shell model of atomic polarizability
Baranger, Harold U.
Hamiltonian formulation of quantum error correction and correlated noise: Effects of syndrome find formal expressions for the probability of a given syndrome history and the associated residual lost to the environment 12 . However, as we discuss below, QEC can very effectively slow down this loss
Effective equations for the quantum pendulum from momentous quantum mechanics
Hernandez, Hector H.; Chacon-Acosta, Guillermo
2012-08-24
In this work we study the quantum pendulum within the framework of momentous quantum mechanics. This description replaces the Schroedinger equation for the quantum evolution of the system with an infinite set of classical equations for expectation values of configuration variables, and quantum dispersions. We solve numerically the effective equations up to the second order, and describe its evolution.
Ab-Initio Hamiltonian Approach to Light Nuclei And to Quantum Field Theory
Vary, J.P.; /Iowa State U.; Honkanen, H.; /Iowa State U.; Li, Jun; /Iowa State U.; Maris, P.; /Iowa State U.; Shirokov, A.M.; /SINP, Moscow; Brodsky, S.J.; /SLAC /Stanford U., Phys. Dept.; Harindranath, A.; /Saha Inst.; de Teramond, G.F.; /Costa Rica U.; Ng, E.G.; /LBL, Berkeley; Yang, C.; /LBL, Berkeley; Sosonkina, M.; /Ames Lab
2012-06-22
Nuclear structure physics is on the threshold of confronting several long-standing problems such as the origin of shell structure from basic nucleon-nucleon and three-nucleon interactions. At the same time those interactions are being developed with increasing contact to QCD, the underlying theory of the strong interactions, using effective field theory. The motivation is clear - QCD offers the promise of great predictive power spanning phenomena on multiple scales from quarks and gluons to nuclear structure. However, new tools that involve non-perturbative methods are required to build bridges from one scale to the next. We present an overview of recent theoretical and computational progress with a Hamiltonian approach to build these bridges and provide illustrative results for the nuclear structure of light nuclei and quantum field theory.
Quantum mechanical light harvesting mechanisms in photosynthesis
NASA Astrophysics Data System (ADS)
Scholes, Gregory
2012-02-01
More than 10 million billion photons of light strike a leaf each second. Incredibly, almost every red-coloured photon is captured by chlorophyll pigments and initiates steps to plant growth. Last year we reported that marine algae use quantum mechanics in order to optimize photosynthesis [1], a process essential to its survival. These and other insights from the natural world promise to revolutionize our ability to harness the power of the sun. In a recent review [2] we described the principles learned from studies of various natural antenna complexes and suggested how to utilize that knowledge to shape future technologies. We forecast the need to develop ways to direct and regulate excitation energy flow using molecular organizations that facilitate feedback and control--not easy given that the energy is only stored for a billionth of a second. In this presentation I will describe new results that explain the observation and meaning of quantum-coherent energy transfer. [4pt] [1] Elisabetta Collini, Cathy Y. Wong, Krystyna E. Wilk, Paul M. G. Curmi, Paul Brumer, and Gregory D. Scholes, ``Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature'' Nature 463, 644-648 (2010).[0pt] [2] Gregory D. Scholes, Graham R. Fleming, Alexandra Olaya-Castro and Rienk van Grondelle, ``Lessons from nature about solar light harvesting'' Nature Chem. 3, 763-774 (2011).
Game Theory in Categorical Quantum Mechanics
Ali Nabi Duman
2014-05-17
Categorical quantum mechanics, which examines quantum theory via dagger-compact closed categories, gives satisfying high-level explanations to the quantum information procedures such as Bell-type entanglement or complementary observables (\\cite{AC}, \\cite{Co}, \\cite{Co2}). Inspired by the fact that Quantum Game Theory can be seen as branch of quantum information, we express Quantum Game Theory procedures using the topological semantics provided by Categorical Quantum Mechanics. We also investigate Bayesian Games with correlation from this novel point of view while considering the connection between Bayesian game theory and Bell non-locality investigated recently by Brunner and Linden \\cite{BL}.
PT Symmetry in Classical and Quantum Statistical Mechanics
Meisinger, Peter N
2012-01-01
PT-symmetric Hamiltonians and transfer matrices arise naturally in statistical mechanics. These classical and quantum models often require the use of complex or negative weights and thus fall outside of the conventional equilibrium statistical mechanics of Hermitian systems. PT-symmetric models form a natural class where the partition function is necessarily real, but not necessarily positive. The correlation functions of these models display a much richer set of behaviors than Hermitian systems, displaying sinusoidally-modulated exponential decay, as in a dense fluid, or even sinusoidal modulation without decay. Classical spin models with PT symmetry include Z(N) models with a complex magnetic field, the chiral Potts model and the anisotropic next-nearest-neighbor Ising (ANNNI) model. Quantum many-body problems with a non-zero chemical potential have a natural PT-symmetric representation related to the sign problem. Two-dimensional QCD with heavy quarks at non-zero chemical potential can be solved by diagona...
Bell trajectories for revealing quantum control mechanisms
Eric Dennis; Herschel Rabitz
2003-01-01
The dynamics induced while controlling quantum systems by optimally shaped laser pulses have often been difficult to understand in detail. A method is presented for quantifying the importance of specific sequences of quantum transitions involved in the control process. The method is based on a ``beable'' formulation of quantum mechanics due to John Bell that rigorously maps the quantum evolution
Iyengar, Srinivasan S.
Quantum Mechanics Course Number: C668 C668: Special topics in physical chemistry: Advanced Quantum will rationalize "complicated ideas" in quantum mechanics using physically in- tuitive arguments (I think@gmail.com Chemistry, Indiana University i c 2014, Srinivasan S. Iyengar (instructor) #12;Quantum Mechanics Course
Quantum mechanical effects from deformation theory
Much, A. [Max-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig, Germany and Institute for Theoretical Physics, University of Leipzig, 04009 Leipzig (Germany)] [Max-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig, Germany and Institute for Theoretical Physics, University of Leipzig, 04009 Leipzig (Germany)
2014-02-15
We consider deformations of quantum mechanical operators by using the novel construction tool of warped convolutions. The deformation enables us to obtain several quantum mechanical effects where electromagnetic and gravitomagnetic fields play a role. Furthermore, a quantum plane can be defined by using the deformation techniques. This in turn gives an experimentally verifiable effect.
Quantum Mechanics: Structures, Axioms and Paradoxes
Aerts, Diederik
Quantum Mechanics: Structures, Axioms and Paradoxes Diederik Aerts Center Leo Apostel, Brussels present an analysis of quantum mechanics and its problems and para- doxes taking into account the results that have been obtained during the last two decades by investigations in the field of `quantum structures re
Quantum-Mechanical by Seth Lloyd
Robins, Gabriel
Quantum-Mechanical Computers by Seth Lloyd Quantum-mechanical computers, if they can be constructed have. HYDROGEN ATOMS could be used to store bits of information in a quantum computer. An atom in its and its excited state, the electron will jump from one state to the other. 98 Scientific American
From Quantum Mechanics to String Theory
From Quantum Mechanics to String Theory Relativity (why it makes sense) Quantum mechanics Quarks and the Strong Force Symmetry and Unification String Theory: a different kind of unification Extra Dimensions Strings and the Strong Force Thursday, May 7, 2009 #12;Particle Interaction Summary quantum
Quantum Mechanical Observers and Time Reparametrization Symmetry
Eiji Konishi
2012-12-20
We propose that the degree of freedom of measurement by quantum mechanical observers originates in the Goldstone mode of the spontaneously broken time reparametrization symmetry. Based on the classification of quantum states by their non-unitary temporal behavior as seen in the measurement processes, we describe the concepts of the quantum mechanical observers via the time reparametrization symmetry.
Nonlinear backreaction in a quantum mechanical SQUID
J. F. Ralph; T. D. Clark; M. J. Everitt; P. Stiffell
2001-08-30
In this paper we discuss the coupling between a quantum mechanical superconducting quantum interference device (SQUID) and an applied static magnetic field. We demonstrate that the backreaction of a SQUID on the applied field can interfere with the ability to bias the SQUID at values of the static (DC) magnetic flux at, or near to, transitions in the quantum mechanical SQUID.
Brent H. Allen
1999-08-25
We develop a new systematic approach to quantum field theory that is designed to lead to physical states that rapidly converge in an expansion in free-particle Fock-space sectors. To make this possible, we use light-front field theory to isolate vacuum effects, and we place a smooth cutoff on the Hamiltonian to force its free-state matrix elements to quickly decrease as the difference of the free masses of the states increases. The cutoff violates a number of physical principles of light-front field theory, including Lorentz covariance and gauge covariance. This means that the operators in the Hamiltonian are not required to respect these physical principles. However, by requiring the Hamiltonian to produce cutoff-independent physical quantities and by requiring it to respect the unviolated physical principles of the theory, we are able to derive recursion relations that define the Hamiltonian to all orders in perturbation theory in terms of the fundamental parameters of the field theory. We present two applications of this method. First we work in massless phi-cubed theory in six dimensions. We derive the recursion relations that determine the Hamiltonian and demonstrate how they are used by computing and analyzing some of its second- and third-order matrix elements. Then we apply our method to pure-glue quantum chromodynamics. After deriving the recursion relations for this theory, we use them to calculate to second order the part of the Hamiltonian that is required to compute the spectrum. We diagonalize the Hamiltonian using basis-function expansions for the gluons' color, spin, and momentum degrees of freedom. We analyze our results for the spectrum, compare them to recent lattice results, and discuss the various sources of error in our calculation.
Quantum mechanics: Myths and facts
H. Nikolic
2007-04-16
A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of "myths", that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of relativistic QM or that QFT is a theory of particles, as well as myths on black-hole entropy. The fact is that the existence of various theoretical and interpretational ambiguities underlying these myths does not yet allow us to accept them as proven facts. I review the main arguments and counterarguments lying behind these myths and conclude that QM is still a not-yet-completely-understood theory open to further fundamental research.
Inverse scattering for Stark Hamiltonians with shortrange potentials.
Nicoleau, FranÃ§ois
Hamiltonian H = 1 2 p 2 \\Gamma x 1 + V (x) which describes the scattering of a quantum mechanical particle the inversion of the Radon transform (or the Fourier transform) on a hyperplane, (see section 2.3 for details
Treating time travel quantum mechanically
NASA Astrophysics Data System (ADS)
Allen, John-Mark A.
2014-10-01
The fact that closed timelike curves (CTCs) are permitted by general relativity raises the question as to how quantum systems behave when time travel to the past occurs. Research into answering this question by utilizing the quantum circuit formalism has given rise to two theories: Deutschian-CTCs (D-CTCs) and "postselected" CTCs (P-CTCs). In this paper the quantum circuit approach is thoroughly reviewed, and the strengths and shortcomings of D-CTCs and P-CTCs are presented in view of their nonlinearity and time-travel paradoxes. In particular, the "equivalent circuit model"—which aims to make equivalent predictions to D-CTCs, while avoiding some of the difficulties of the original theory—is shown to contain errors. The discussion of D-CTCs and P-CTCs is used to motivate an analysis of the features one might require of a theory of quantum time travel, following which two overlapping classes of alternate theories are identified. One such theory, the theory of "transition probability" CTCs (T-CTCs), is fully developed. The theory of T-CTCs is shown not to have certain undesirable features—such as time-travel paradoxes, the ability to distinguish nonorthogonal states with certainty, and the ability to clone or delete arbitrary pure states—that are present with D-CTCs and P-CTCs. The problems with nonlinear extensions to quantum mechanics are discussed in relation to the interpretation of these theories, and the physical motivations of all three theories are discussed and compared.
Treating Time Travel Quantum Mechanically
John-Mark A. Allen
2014-10-10
The fact that closed timelike curves (CTCs) are permitted by general relativity raises the question as to how quantum systems behave when time travel to the past occurs. Research into answering this question by utilising the quantum circuit formalism has given rise to two theories: Deutschian-CTCs (D-CTCs) and "postselected" CTCs (P-CTCs). In this paper the quantum circuit approach is thoroughly reviewed, and the strengths and shortcomings of D-CTCs and P-CTCs are presented in view of their non-linearity and time travel paradoxes. In particular, the "equivalent circuit model"---which aims to make equivalent predictions to D-CTCs, while avoiding some of the difficulties of the original theory---is shown to contain errors. The discussion of D-CTCs and P-CTCs is used to motivate an analysis of the features one might require of a theory of quantum time travel, following which two overlapping classes of new theories are identified. One such theory, the theory of "transition probability" CTCs (T-CTCs), is fully developed. The theory of T-CTCs is shown not to have certain undesirable features---such as time travel paradoxes, the ability to distinguish non-orthogonal states with certainty, and the ability to clone or delete arbitrary pure states---that are present with D-CTCs and P-CTCs. The problems with non-linear extensions to quantum mechanics are discussed in relation to the interpretation of these theories, and the physical motivations of all three theories are discussed and compared.
Correspondence Truth and Quantum Mechanics
Karakostas, Vassilios
2015-01-01
The logic of a physical theory reflects the structure of the propositions referring to the behaviour of a physical system in the domain of the relevant theory. It is argued in relation to classical mechanics that the propositional structure of the theory allows truth-value assignment in conformity with the traditional conception of a correspondence theory of truth. Every proposition in classical mechanics is assigned a definite truth value, either 'true' or 'false', describing what is actually the case at a certain moment of time. Truth-value assignment in quantum mechanics, however, differs; it is known, by means of a variety of 'no go' theorems, that it is not possible to assign definite truth values to all propositions pertaining to a quantum system without generating a Kochen-Specker contradiction. In this respect, the Bub-Clifton 'uniqueness theorem' is utilized for arguing that truth-value definiteness is consistently restored with respect to a determinate sublattice of propositions defined by the state...
Hilbert Space Quantum Mechanics Robert B. Griffiths
Griffiths, Robert B.
qitd114 Hilbert Space Quantum Mechanics Robert B. Griffiths Version of 16 January 2014 Contents 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 References: CQT = Consistent Quantum Theory by Griffiths (Cambridge, 2002), Ch. 2; Ch. 3; Ch. 4
Errors and paradoxes in quantum mechanics
D. Rohrlich
2007-08-28
Errors and paradoxes in quantum mechanics, entry in the Compendium of Quantum Physics: Concepts, Experiments, History and Philosophy, ed. F. Weinert, K. Hentschel, D. Greenberger and B. Falkenburg (Springer), to appear
Entropic Fluctuations in Quantum Statistical Mechanics
Jaksic, Vojkan
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.7 Quantum hypothesis testingEntropic Fluctuations in Quantum Statistical Mechanics An Introduction V. JAKSI Â´Ca , Y. OGATAb , Y 1.9 Large time limit I: Scattering theory
Propagators in polymer quantum mechanics
Flores-González, Ernesto, E-mail: eflores@xanum.uam.mx; Morales-Técotl, Hugo A., E-mail: hugo@xanum.uam.mx; Reyes, Juan D., E-mail: jdrp75@gmail.com
2013-09-15
Polymer Quantum Mechanics is based on some of the techniques used in the loop quantization of gravity that are adapted to describe systems possessing a finite number of degrees of freedom. It has been used in two ways: on one hand it has been used to represent some aspects of the loop quantization in a simpler context, and, on the other, it has been applied to each of the infinite mechanical modes of other systems. Indeed, this polymer approach was recently implemented for the free scalar field propagator. In this work we compute the polymer propagators of the free particle and a particle in a box; amusingly, just as in the non polymeric case, the one of the particle in a box may be computed also from that of the free particle using the method of images. We verify the propagators hereby obtained satisfy standard properties such as: consistency with initial conditions, composition and Green’s function character. Furthermore they are also shown to reduce to the usual Schrödinger propagators in the limit of small parameter ?{sub 0}, the length scale introduced in the polymer dynamics and which plays a role analog of that of Planck length in Quantum Gravity. -- Highlights: •Formulas for propagators of free and particle in a box in polymer quantum mechanics. •Initial conditions, composition and Green’s function character is checked. •Propagators reduce to corresponding Schrödinger ones in an appropriately defined limit. •Results show overall consistency of the polymer framework. •For the particle in a box results are also verified using formula from method of images.
Daddy Balondo Iyela; Jan Govaerts; M. Norbert Hounkonnou
2012-09-02
Within the context of Supersymmetric Quantum Mechanics and its related hierarchies of integrable quantum Hamiltonians and potentials, a general programme is outlined and applied to its first two simplest illustrations. Going beyond the usual restriction of shape invariance for intertwined potentials, it is suggested to require a similar relation for Hamiltonians in the hierarchy separated by an arbitrary number of levels, N. By requiring further that these two Hamiltonians be in fact identical up to an overall shift in energy, a periodic structure is installed in the hierarchy of quantum systems which should allow for its solution. Specific classes of orthogonal polynomials characteristic of such periodic hierarchies are thereby generated, while the methods of Supersymmetric Quantum Mechanics then lead to generalised Rodrigues formulae and recursion relations for such polynomials. The approach also offers the practical prospect of quantum modelling through the engineering of quantum potentials from experimental energy spectra. In this paper these ideas are presented and solved explicitly for the cases N=1 and N=2. The latter case is related to the generalised Laguerre polynomials, for which indeed new results are thereby obtained. At the same time new classes of integrable quantum potentials which generalise that of the harmonic oscillator and which are characterised by two arbitrary energy gaps are identified, for which a complete solution is achieved algebraically.
An extended phase space for Quantum Mechanics
C. Lopez
2015-09-23
The standard formulation of Quantum Mechanics violates locality of interactions and the action reaction principle. An alternative formulation in an extended phase space could preserve both principles, but Bell's theorems show that a distribution of probability in a space of local variables can not reproduce the quantum correlations. An extended phase space is defined in an alternative formulation of Quantum Mechanics. Quantum states are represented by a complex va\\-lued distribution of amplitude, so that Bell's theorems do not apply.
Lie Groups and Quantum Mechanics
P. G. L. Leacn; M. C. Nucci
2008-12-07
Mathematical modeling should present a consistent description of physical phenomena. We illustrate an inconsistency with two Hamiltonians -- the standard Hamiltonian and an example found in Goldstein -- for the simple harmonic oscillator and its quantisation. Both descriptions are rich in Lie point symmetries and so one can calculate many Jacobi Last Multipliers and therefore Lagrangians. The Last Multiplier provides the route to the resolution of this problem and indicates that the great debate about the quantisation of dissipative systems should never have occurred.
Vladimir Mashkevich
2008-03-13
The aim of these notes is to elucidate some aspects of quantum field theory in curved spacetime, especially those relating to the notion of particles. A selection of issues relevant to wave-particle duality is given. The case of a generic curved spacetime is outlined. A Hamiltonian formulation of quantum field theory in curved spacetime is elaborated for a preferred reference frame with a separated space metric (a static spacetime and a reductive synchronous reference frame). Applications: (1) Black hole. (2) The universe; the cosmological redshift is obtained in the context of quantum field theory.
On the complexity of classical and quantum algorithms for numerical problems in quantum mechanics
NASA Astrophysics Data System (ADS)
Bessen, Arvid J.
Our understanding of complex quantum mechanical processes is limited by our inability to solve the equations that govern them except for simple cases. Numerical simulation of quantum systems appears to be our best option to understand, design and improve quantum systems. It turns out, however, that computational problems in quantum mechanics are notoriously difficult to treat numerically. The computational time that is required often scales exponentially with the size of the problem. One of the most radical approaches for treating quantum problems was proposed by Feytiman in 1982 [46]: he suggested that quantum mechanics itself showed a promising way to simulate quantum physics. This idea, the so called quantum computer, showed its potential convincingly in one important regime with the development of Shor's integer factorization algorithm which improves exponentially on the best known classical algorithm. In this thesis we explore six different computational problems from quantum mechanics, study their computational complexity and try to find ways to remedy them. In the first problem we investigate the reasons behind the improved performance of Shor's and similar algorithms. We show that the key quantum part in Shor's algorithm, the quantum phase estimation algorithm, achieves its good performance through the use of power queries and we give lower bounds for all phase estimation algorithms that use power queries that match the known upper bounds. Our research indicates that problems that allow the use of power queries will achieve similar exponential improvements over classical algorithms. We then apply our lower bound technique for power queries to the Sturm-Liouville eigenvalue problem and show matching lower bounds to the upper bounds of Papageorgiou and Wozniakowski [85]. It seems to be very difficult, though, to find nontrivial instances of the Sturm-Lionville problem for which power queries can be simulated efficiently. A quantum computer differs from a classical computer that uses randomness, because it allows "negative probabilities" that can cancel each other (destructive interference). Ideally we would like to transfer classical randomized algorithms to the quantum computer and get speed improvements. One of the simplest classical randomized algorithm is the random walk and we study the behavior of the continuous-time quantum random walk. We analyze this random walk in one dimension and give analytical formulas for its behavior that demonstrate its interference properties. Is interference or cancellation really the most important advantage that a quantum computer has over a classical computer? To answer that question we study the class StociMA of "stochastic quantum" algorithms that only use classical gates, but are given a quantum "witness", i.e. an arbitrary quantum state that can guide the algorithm in computing the correct answer, but should not be able to "fool" it. We show that there exists a complete problem for this class, which we call the stoquastic local Hamiltonian problem. In this problem we try to compute the lowest eigenvalue of a Hamiltonian with interactions that span only a fixed number of particles and all contribute negatively. With the help of this problem we prove that MA ? StocIMA ? SBP ? QMA. This shows that interference is one of the most important parts of quantum computation. The simulation of the evolution of a general quantum system in time requires a computational time that is exponential in the dimension of the system. But maybe the problem that we ask for is too general and we can simulate special systems in polynomial time. In particular it would be interesting to study quantum systems of "limited energy", i.e. for which the state at starting time consists mainly out of components with small energy. We model this in the theory of weighted reproducing kernel Hilbert spaces with two different sets of weights: product weights and finite-order weights. We will show that the information cost of computing the evolution for start
Propagators in Polymer Quantum Mechanics
Ernesto Flores-González; Hugo A. Morales-Técotl; Juan D. Reyes
2013-02-07
Polymer Quantum Mechanics is based on some of the techniques used in the loop quantization of gravity that are adapted to describe systems possessing a finite number of degrees of freedom. It has been used in two ways: on one hand it has been used to represent some aspects of the loop quantization in a simpler context, and, on the other, it has been applied to each of the infinite mechanical modes of other systems. Indeed, this polymer approach was recently implemented for the free scalar field propagator. In this work we compute the polymer propagators of the free particle and a particle in a box; amusingly, just as in the non polymeric case, the one of the particle in a box may be computed also from that of the free particle using the method of images. We verify the propagators hereby obtained satisfy standard properties such as: consistency with initial conditions, composition and Green's function character. Furthermore they are also shown to reduce to the usual Schr\\"odinger propagators in the limit of small parameter $\\mu_0$, the length scale introduced in the polymer dynamics and which plays a role analog of that of Planck length in Quantum Gravity.
Quantum mechanics without state vectors
NASA Astrophysics Data System (ADS)
Weinberg, Steven
2014-10-01
Because the state vectors of isolated systems can be changed in entangled states by processes in other isolated systems, keeping only the density matrix fixed, it is proposed to give up the description of physical states in terms of ensembles of state vectors with various probabilities, relying only on density matrices. The density matrix is defined here by the formula giving the mean values of physical quantities, which implies the same properties as the usual definition in terms of state vectors and their probabilities. This change in the description of physical states opens up a large variety of new ways that the density matrix may transform under various symmetries, different from the unitary transformations of ordinary quantum mechanics. Such new transformation properties have been explored before, but so far only for the symmetry of time translations into the future, treated as a semigroup. Here, new transformation properties are studied for general symmetry transformations forming groups, not just semigroups. Arguments that such symmetries should act on the density matrix as in ordinary quantum mechanics are presented, but all of these arguments are found to be inconclusive.
Bananaworld: Quantum Mechanics for Primates
Jeffrey Bub
2013-01-08
This is intended to be a serious paper, in spite of the title. The idea is that quantum mechanics is about probabilistic correlations, i.e., about the structure of information, since a theory of information is essentially a theory of probabilistic correlations. To make this clear, it suffices to consider measurements of two binary-valued observables, x with outcomes a = 0 or 1, performed by Alice in a region A, and y with outcomes b = 0 or 1 performed by Bob in a separated region B --or, to emphasize the banality of the phenomena, two ways of peeling a banana, resulting in one of two tastes. The imagined bananas of Bananaworld are non-standard, with operational or phenomenal probabilistic correlations for peelings and tastes that lie outside the polytope of local correlations. The 'no go' theorems tell us that we can't shoe-horn these correlations into a classical correlation polytope, which has the structure of a simplex, by supposing that something has been left out of the story, without giving up fundamental principles that define what we mean by a physical system. The nonclassical features of quantum mechanics, including the irreducible information loss on measurement, are shown to be generic features of correlations that lie outside the local correlation polytope. As far as the conceptual problems are concerned, we might as well talk about bananas.
Principles of a 2nd Quantum Mechanics
Mioara Mugur-Schächter
2014-10-23
A qualitative but formalized representation of microstates is first established quite independently of the quantum mechanical mathematical formalism, exclusively under epistemological-operational-methodological constraints. Then, using this representation as a reference-and-imbedding-structure, the foundations of an intelligible reconstruction of the Hilbert-Dirac formulation of Quantum Mechanics is developed. Inside this reconstruction the measurement problem as well as the other major problems raised by the quantum mechanical formalism, dissolve.
Heisenberg and the Interpretation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Camilleri, Kristian
2011-09-01
Preface; 1. Introduction; Part I. The Emergence of Quantum Mechanics: 2. Quantum mechanics and the principle of observability; 3. The problem of interpretation; Part II. The Heisenberg-Bohr Dialogue: 4. The wave-particle duality; 5. Indeterminacy and the limits of classical concepts: the turning point in Heisenberg's thought; 6. Heisenberg and Bohr: divergent viewpoints of complementarity; Part III. Heisenberg's Epistemology and Ontology of Quantum Mechanics: 7. The transformation of Kantian philosophy; 8. The linguistic turn in Heisenberg's thought; Conclusion; References; Index.
Heisenberg and the Interpretation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Camilleri, Kristian
2009-02-01
Preface; 1. Introduction; Part I. The Emergence of Quantum Mechanics: 2. Quantum mechanics and the principle of observability; 3. The problem of interpretation; Part II. The Heisenberg-Bohr Dialogue: 4. The wave-particle duality; 5. Indeterminacy and the limits of classical concepts: the turning point in Heisenberg's thought; 6. Heisenberg and Bohr: divergent viewpoints of complementarity; Part III. Heisenberg's Epistemology and Ontology of Quantum Mechanics: 7. The transformation of Kantian philosophy; 8. The linguistic turn in Heisenberg's thought; Conclusion; References; Index.
Quantum Mechanics and Closed Timelike Curves
Florin Moldoveanu
2007-04-23
General relativity allows solutions exhibiting closed timelike curves. Time travel generates paradoxes and quantum mechanics generalizations were proposed to solve those paradoxes. The implications of self-consistent interactions on acausal region of space-time are investigated. If the correspondence principle is true, then all generalizations of quantum mechanics on acausal manifolds are not renormalizable. Therefore quantum mechanics can only be defined on global hyperbolic manifolds and all general relativity solutions exhibiting time travel are unphysical.
Deformation of supersymmetric and conformal quantum mechanics through affine transformations
NASA Technical Reports Server (NTRS)
Spiridonov, Vyacheslav
1993-01-01
Affine transformations (dilatations and translations) are used to define a deformation of one-dimensional N = 2 supersymmetric quantum mechanics. Resulting physical systems do not have conserved charges and degeneracies in the spectra. Instead, superpartner Hamiltonians are q-isospectral, i.e. the spectrum of one can be obtained from another (with possible exception of the lowest level) by q(sup 2)-factor scaling. This construction allows easily to rederive a special self-similar potential found by Shabat and to show that for the latter a q-deformed harmonic oscillator algebra of Biedenharn and Macfarlane serves as the spectrum generating algebra. A general class of potentials related to the quantum conformal algebra su(sub q)(1,1) is described. Further possibilities for q-deformation of known solvable potentials are outlined.
NASA Astrophysics Data System (ADS)
Bang, Jeongho; Lee, Seung-Woo; Lee, Chang-Woo; Jeong, Hyunseok
2015-01-01
We propose a quantum algorithm to obtain the lowest eigenstate of any Hamiltonian simulated by a quantum computer. The proposed algorithm begins with an arbitrary initial state of the simulated system. A finite series of transforms is iteratively applied to the initial state assisted with an ancillary qubit. The fraction of the lowest eigenstate in the initial state is then amplified up to 1. We prove that our algorithm can faithfully work for any arbitrary Hamiltonian in the theoretical analysis. Numerical analyses are also carried out. We firstly provide a numerical proof-of-principle demonstration with a simple Hamiltonian in order to compare our scheme with the so-called "Demon-like algorithmic cooling (DLAC)", recently proposed in Xu (Nat Photonics 8:113, 2014). The result shows a good agreement with our theoretical analysis, exhibiting the comparable behavior to the best `cooling' with the DLAC method. We then consider a random Hamiltonian model for further analysis of our algorithm. By numerical simulations, we show that the total number of iterations is proportional to , where is the difference between the two lowest eigenvalues and is an error defined as the probability that the finally obtained system state is in an unexpected (i.e., not the lowest) eigenstate.
Chaos and correspondence in classical and quantum Hamiltonian ratchets: A Heisenberg approach
Pelc, Jordan; Brumer, Paul [Chemical Physics Theory Group, Department of Chemistry, and Centre for Quantum Information and Quantum Control, University of Toronto, Toronto, M5S 3H6 (Canada); Gong Jiangbin [Department of Physics and Centre of Computational Science and Engineering, National University of Singapore, Singapore 117542 (Singapore); NUS Graduate School for Integrative Sciences and Engineering, Singapore 117597 (Singapore)
2009-06-15
Previous work [Gong and Brumer, Phys. Rev. Lett. 97, 240602 (2006)] motivates this study as to how asymmetry-driven quantum ratchet effects can persist despite a corresponding fully chaotic classical phase space. A simple perspective of ratchet dynamics, based on the Heisenberg picture, is introduced. We show that ratchet effects are in principle of common origin in classical and quantum mechanics, although full chaos suppresses these effects in the former but not necessarily the latter. The relationship between ratchet effects and coherent dynamical control is noted.
Chaos and Correspondence in Classical and Quantum Hamiltonian Ratchets: A Heisenberg Approach
Jordan Pelc; Jiangbin Gong; Paul Brumer
2009-06-08
Previous work [Gong and Brumer, Phys. Rev. Lett., 97, 240602 (2006)] motivates this study as to how asymmetry-driven quantum ratchet effects can persist despite a corresponding fully chaotic classical phase space. A simple perspective of ratchet dynamics, based on the Heisenberg picture, is introduced. We show that ratchet effects are in principle of common origin in classical and quantum mechanics, though full chaos suppresses these effects in the former but not necessarily the latter. The relationship between ratchet effects and coherent dynamical control is noted.
Quantum Mechanics Dung-Hai Lee
Murayama, Hitoshi
Quantum Mechanics Dung-Hai Lee Summer 2000 #12;Contents 1 A brief reminder of linear Algebra 3 1.5 Bell's inequality . . . . . . . . . . . . . . . . . . . . . . . 20 3 Quantum dynamics 23 3 . . . . . . . . . . . . . . . . . . . 43 3.12 Classical approximation . . . . . . . . . . . . . . . . . . 45 3.13 Quantum statistical
A framework for fast quantum mechanical algorithms
Lov K. Grover
1998-01-01
Summary A framework is presented for the design and analy- sis of quantum mechanical algorithms, the step quantum search algorithm is an immediate consequence of this framework. It leads to several other search-type applications - an example is presented where the Walsh- Hadamard (W-H) transform of the quantum search algo- rithm is replaced by another transform tailored to the parameters
Znojil, Miloslav [Nuclear Physics Institute ASCR, 250 68 Rez (Czech Republic)
2009-11-15
PT-symmetrization of quantum graphs is proposed as an innovation where an adjustable, tunable nonlocality is admitted. The proposal generalizes the PT-symmetric square-well models of Ref. [M. Znojil, Phys. Rev. D 80, 045022 (2009).] (with real spectrum and with a variable fundamental length {theta}) which are reclassified as the most elementary quantum q-pointed-star graphs with minimal q=2. Their equilateral q=3,4,... generalizations are considered, with interactions attached to the vertices. Runge-Kutta discretization of coordinates simplifies the quantitative analysis by reducing our graphs to star-shaped lattices of N=qK+1 points. The resulting bound-state spectra are found real in an N-independent interval of couplings {lambda} is an element of (-1,1). Inside this interval the set of closed-form metrics {theta}{sub j}{sup (N)}({lambda}) is constructed, defining independent eligible local (at j=0) or increasingly nonlocal (at j=1,2,...) inner products in the respective physical Hilbert spaces of states H{sub j}{sup (N)}({lambda}). In this way each graph is assigned a menu of nonequivalent, optional probabilistic quantum interpretations.
Igor G. Vladimirov; Ian R. Petersen
2012-05-16
This paper is concerned with a stochastic dissipativity theory using quadratic-exponential storage functions for open quantum systems with canonically commuting dynamic variables governed by quantum stochastic differential equations. The system is linearly coupled to external boson fields and has a quadratic Hamiltonian which is perturbed by nonquadratic functions of linear combinations of system variables. Such perturbations are similar to those in the classical Lur'e systems and make the quantum dynamics nonlinear. We study their effect on the quantum expectation of the exponential of a positive definite quadratic form of the system variables. This allows conditions to be established for the risk-sensitive stochastic storage function of the quantum system to remain bounded, thus securing boundedness for the moments of system variables of arbitrary order. These results employ a noncommutative analogue of the Doleans-Dade exponential and a multivariate partial differential version of the Gronwall-Bellman lemma.
NASA Astrophysics Data System (ADS)
Oss, Stefano; Rosi, Tommaso
2015-04-01
We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many reasons why quantum mechanical systems and phenomena are difficult both to teach and deeply understand. They are described by equations that are generally hard to visualize, and they often oppose the so-called "common sense" based on the human perception of the world, which is built on mental images such as locality and causality. Moreover students cannot have direct experience of those systems and solutions, and generally do not even have the possibility to refer to pictures, videos, or experiments to fill this gap. Teachers often encounter quite serious troubles in finding out a sensible way to speak about the wonders of quantum physics at the high school level, where complex formalisms are not accessible at all. One should however consider that this is quite a common issue in physics and, more generally, in science education. There are plenty of natural phenomena whose models (not only at microscopic and atomic levels) are of difficult, if not impossible, visualization. Just think of certain kinds of waves, fields of forces, velocities, energy, angular momentum, and so on. One should also notice that physical reality is not the same as the images we make of it. Pictures (formal, abstract ones, as well as artists' views) are a convenient bridge between these two aspects.
Quantum mechanics without potential function
NASA Astrophysics Data System (ADS)
Alhaidari, A. D.; Ismail, M. E. H.
2015-07-01
In the standard formulation of quantum mechanics, one starts by proposing a potential function that models the physical system. The potential is then inserted into the Schrödinger equation, which is solved for the wavefunction, bound states energy spectrum, and/or scattering phase shift. In this work, however, we propose an alternative formulation in which the potential function does not appear. The aim is to obtain a set of analytically realizable systems, which is larger than in the standard formulation and may or may not be associated with any given or previously known potential functions. We start with the wavefunction, which is written as a bounded infinite sum of elements of a complete basis with polynomial coefficients that are orthogonal on an appropriate domain in the energy space. Using the asymptotic properties of these polynomials, we obtain the scattering phase shift, bound states, and resonances. This formulation enables one to handle not only the well-known quantum systems but also previously untreated ones. Illustrative examples are given for two- and three-parameter systems.
Quantum mechanics without potential function
A. D. Alhaidari; M. E. H. Ismail
2015-06-26
In the standard formulation of quantum mechanics, one starts by proposing a potential function that models the physical system. The potential is then inserted into the Schr\\"odinger equation, which is solved for the wave function, bound states energy spectrum and/or scattering phase shift. In this work, however, we propose an alternative formulation in which the potential function does not appear. The aim is to obtain a set of analytically realizable systems, which is larger than in the standard formulation and may or may not be associated with any given or previously known potential functions. We start with the wavefunction, which is written as a bounded infinite sum of elements of a complete basis with polynomial coefficients that are orthogonal on an appropriate domain in the energy space. Using the asymptotic properties of these polynomials, we obtain the scattering phase shift, bound states and resonances. This formulation enables one to handle not only the well-known quantum systems but also previously untreated ones. Illustrative examples are given for two- and there-parameter systems.
Kindergarten Quantum Mechanics lectures notes
Coecke, B
2005-01-01
These lecture notes survey some joint work with Samson Abramsky as it was presented by me at several conferences in the summer of 2005. It concerns `doing quantum mechanics using only pictures of lines, squares, triangles and diamonds'. This picture calculus can be seen as a very substantial extension of Dirac's notation, and has a purely algebraic counterpart in terms of so-called Strongly Compact Closed Categories (introduced by Abramsky and I in quant-ph/0402130 and [4]) which subsumes my Logic of Entanglement quant-ph/0402014. For a survey on the `what', the `why' and the `hows' I refer to a previous set of lecture notes quant-ph/0506132. In a last section we provide some pointers to the body of technical literature on the subject.
Stochastic Theory of Quantum Mechanics
Maurice J. M. L. O. Godart
2014-03-31
The stochastic theory of non-relativistic quantum mechanics presented here relies heavily upon the theory of stochastic processes, with its definitions, theorems and specific vocabulary as well. Its main hypothesis states indeed that the classical trajectories of the particles are identical to the sample functions of a diffusion Markov process, whose conditional probability density is proposed as a substitute for the wave function. The Schroedinger equation and the so-called Nelson equations are used to determine the diffusion tensor and the drift vectors characteristic of such a process. It is then possible to write down the forward and backward Kolmogorov equations that are used to determine the conditional probability density, as well as the Fokker-Planck equation that is used to determine the normal probability density. This method is applied to several simple cases and the results obtained are compared with those of the orthodox theory. Among the most important differences let us mention that any system evolving freely from any original state returns spontaneously to its ground state, that the definitions of the particles velocities and momenta are impossible because the sample functions of a diffusion Markov process nowhere possess a derivative with respect to time and that the so-called collapse of the wave function is a mere mirage explained by the updating choice between new and older initial conditions in the resolution of partial differential equations. We finally attempt to extend the proposed theory to the domain of the relativistic quantum mechanics. It is promising but is clearly unfinished because it has not been possible up to now to solve the Nelson and Kolmogorov equations, except in the very simple case of a free particle.
Tests of CPT and Quantum Mechanics: experiment
NASA Astrophysics Data System (ADS)
Ambrosino, F.; Antonelli, A.; Antonelli, M.; Bacci, C.; Barva, M.; Beltrame, P.; Bencivenni, G.; Bertolucci, S.; Bini, C.; Bloise, C.; Bocchetta, S.; Bocci, V.; Bossi, F.; Bowring, D.; Branchini, P.; Bulychjov, S. A.; Caloi, R.; Campana, P.; Capon, G.; Capussela, T.; Carboni, G.; Ceradini, F.; Cervelli, F.; Chi, S.; Chiefari, G.; Ciambrone, P.; Conetti, S.; De Lucia, E.; De Santis, A.; De Simone, P.; De Zorzi, G.; Dell'Agnello, S.; Denig, A.; Di Domenico, A.; Di Donato, C.; Di Falco, S.; Di Micco, B.; Doria, A.; Dreucci, M.; Farilla, A.; Felici, G.; Ferrari, A.; Ferrer, M. L.; Finocchiaro, G.; Fiore, S.; Forti, C.; Franzini, P.; Gatti, C.; Gauzzi, P.; Giovannella, S.; Gorini, E.; Graziani, E.; Incagli, M.; Kluge, W.; Kulikov, V.; Lacava, F.; Lanfranchi, G.; Lee-Franzini, J.; Leone, D.; Martemianov, M.; Martini, M.; Massarotti, P.; Matsyuk, M.; Mei, W.; Meola, S.; Messi, R.; Miscetti, S.; Moulson, M.; Müller, S.; Murtas, F.; Napolitano, M.; Nguyen, F.; Palutan, M.; Pasqualucci, E.; Passalacqua, L.; Passeri, A.; Patera, V.; Perfetto, F.; Pontecorvo, L.; Primavera, M.; Santangelo, P.; Santovetti, E.; Saracino, G.; Schamberger, R. D.; Sciascia, B.; Sciubba, A.; Scuri, F.; Sfiligoi, I.; Sibidanov, A.; Spadaro, T.; Spiriti, E.; Tabidze, M.; Testa, M.; Tortora, L.; Valente, P.; Valeriani, B.; Venanzoni, G.; Veneziano, S.; Ventura, A.; Ventura, S.; Versaci, R.; Villella, I.; Xu, G.; KLOE Collaboration
2007-05-01
Neutral kaons provide one of the systems most sensitive to quantum mechanics and CPT violation. Models predicting quantum mechanics violation, also related to CPT violation, have been tested at the CPLEAR and KLOE experiments. In this report results of CPLEAR obtained by studying the time evolution of single and two entangled kaons are reviewed. New or improved limits on decoherence and CPT violation parameters have been obtained by KLOE studying the quantum interference in the channel ??KK?????. No deviations from the expectations of quantum mechanics and CPT symmetry have been observed.
Chiral transport equation from the quantum Dirac Hamiltonian and the on-shell effective field theory
Cristina Manuel; Juan M. Torres-Rincon
2014-10-22
We derive the relativistic chiral transport equation for massless fermions and antifermions by performing a semiclassical Foldy-Wouthuysen diagonalization of the quantum Dirac Hamiltonian. The Berry connection naturally emerges in the diagonalization process to modify the classical equations of motion of a fermion in an electromagnetic field. We also see that the fermion and antifermion dispersion relations are corrected at first order in the Planck constant by the Berry curvature, as previously derived by Son and Yamamoto for the particular case of vanishing temperature. Our approach does not require knowledge of the state of the system, and thus it can also be applied at high temperature. We provide support for our result by an alternative computation using an effective field theory for fermions and antifermions: the on-shell effective field theory. In this formalism, the off-shell fermionic modes are integrated out to generate an effective Lagrangian for the quasi-on-shell fermions/antifermions. The dispersion relation at leading order exactly matches the result from the semiclassical diagonalization. From the transport equation, we explicitly show how the axial and gauge anomalies are not modified at finite temperature and density despite the incorporation of the new dispersion relation into the distribution function.
New variables for classical and quantum gravity in all dimensions: I. Hamiltonian analysis
NASA Astrophysics Data System (ADS)
Bodendorfer, N.; Thiemann, T.; Thurn, A.
2013-02-01
Loop quantum gravity (LQG) relies heavily on a connection formulation of general relativity such that (1) the connection Poisson commutes with itself and (2) the corresponding gauge group is compact. This can be achieved starting from the Palatini or Holst action when imposing the time gauge. Unfortunately, this method is restricted to D + 1 = 4 spacetime dimensions. However, interesting string theories and supergravity theories require higher dimensions and it would therefore be desirable to have higher dimensional supergravity loop quantizations at one’s disposal in order to compare these approaches. In this series of papers we take first steps toward this goal. The present first paper develops a classical canonical platform for a higher dimensional connection formulation of the purely gravitational sector. The new ingredient is a different extension of the ADM phase space than the one used in LQG which does not require the time gauge and which generalizes to any dimension D > 1. The result is a Yang-Mills theory phase space subject to Gauß, spatial diffeomorphism and Hamiltonian constraint as well as one additional constraint, called the simplicity constraint. The structure group can be chosen to be SO(1, D) or SO(D + 1) and the latter choice is preferred for purposes of quantization.
Gregory S. Ezra
2004-01-01
Several questions in the statistical mechanics of non-Hamiltonian systems are discussed. The theory of differential forms on the phase space manifold is applied to provide a fully covariant formulation of the generalized Liouville equation. The properties of invariant volume elements are considered, and the nonexistence in general of smooth invariant measures noted. The time evolution of the generalized Gibbs entropy
From Quantum Mechanics to String Theory
From Quantum Mechanics to String Theory Relativity (why it makes sense) Quantum mechanics and the Strong Force Symmetry and Unification String Theory: a different kind of unification Extra Dimensions Strings and the Strong Force Thursday, May 7, 2009 #12;Relativity (Why it makes sense) Thursday, May 7
From Quantum Mechanics to String Theory
From Quantum Mechanics to String Theory Relativity (why it makes sense) Quantum mechanics Quarks and the Strong Force Symmetry and Unification String Theory: a different kind of unification that is naturally solved by string theory Strings vibrating in a variety of ways give rise to particles of different
From Quantum Mechanics to String Theory
From Quantum Mechanics to String Theory Relativity (why it makes sense) Quantum mechanics Quarks and the Strong Force Symmetry and Unification String Theory: a different kind of unification from the interaction energy Thursday, June 4, 2009 #12;String Theory: A different kind of unification
From Quantum Mechanics to String Theory
From Quantum Mechanics to String Theory Relativity (why it makes sense) Quantum mechanics Quarks and the Strong Force Symmetry and Unification String Theory: a different kind of unification Friday, June 19, 2009 #12;String Theory Origins We introduced string theory as a possible solution to our
From Quantum Mechanics to String Theory
From Quantum Mechanics to String Theory Relativity (why it makes sense) Quantum mechanics Quarks and the Strong Force Symmetry and Unification String Theory: a different kind of unification Extra Dimensions Strings and the Strong Force Thursday, May 7, 2009 #12;Scattering Summary the best way to study
From Quantum Mechanics to String Theory
From Quantum Mechanics to String Theory Relativity (why it makes sense) Quantum mechanics and the Strong Force Symmetry and Unification String Theory: a different kind of unification Extra Dimensions Strings and the Strong Force Thursday, May 7, 2009 #12;Review of Relativity The laws of physics
Quantum mechanics in complex systems
NASA Astrophysics Data System (ADS)
Hoehn, Ross Douglas
This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown. These nodes are spaced far enough from each other to minimized the electronic repulsion of the electrons, while still providing adequate enough attraction so as to bind the excess elections into orbitals. We have found that even with relativistic considerations these species are stably bound within the field. It was also found that performing the dimensional scaling calculations for systems within the confines of laser fields to be a much simpler and more cost-effective method than the supporting D=3 SCF method. The dimensional scaling method is general and can be extended to include relativistic corrections to describe the stability of simple molecular systems in super-intense laser fields. Chapter 3, we delineate the model, and aspects therein, of inelastic electron tunneling and map this model to the protein environment. G protein-coupled receptors (GPCRs) constitute a large family of receptors that sense molecules outside of a cell and activate signal transduction pathways inside the cell. Modeling how an agonist activates such a receptor is important for understanding a wide variety of physiological processes and it is of tremendous value for pharmacology and drug design. Inelastic electron tunneling spectroscopy (IETS) has been proposed as the mechanism by which olfactory GPCRs are activated by an encapsulated agonist. In this note we apply this notion to GPCRs within the mammalian nervous system using ab initio quantum chemical modeling. We found that non-endogenous agonists of the serotonin receptor share a singular IET spectral aspect both amongst each other and with the serotonin molecule: a peak that scales in intensity with the known agonist activities. We propose an experiential validation of this model by utilizing lysergic acid dimethylamide (DAM-57), an ergot derivative, and its isotopologues in which hydrogen atoms are replaced by deuterium. If validated our theory may provide new avenues for guided drug design and better in silico prediction of efficacies. Our final chapter, explores methods which may be explored to assist in the early instructio
Unified theory of exactly and quasiexactly solvable ''discrete'' quantum mechanics. I. Formalism
Odake, Satoru; Sasaki, Ryu
2010-08-15
We present a simple recipe to construct exactly and quasiexactly solvable Hamiltonians in one-dimensional ''discrete'' quantum mechanics, in which the Schroedinger equation is a difference equation. It reproduces all the known ones whose eigenfunctions consist of the Askey scheme of hypergeometric orthogonal polynomials of a continuous or a discrete variable. The recipe also predicts several new ones. An essential role is played by the sinusoidal coordinate, which generates the closure relation and the Askey-Wilson algebra together with the Hamiltonian. The relationship between the closure relation and the Askey-Wilson algebra is clarified.
An entropic picture of emergent quantum mechanics
D. Acosta; P. Fernandez de Cordoba; J. M. Isidro; J. L. G. Santander
2011-09-20
Quantum mechanics emerges a la Verlinde from a foliation of space by holographic screens, when regarding the latter as entropy reservoirs that a particle can exchange entropy with. This entropy is quantised in units of Boltzmann's constant k. The holographic screens can be treated thermodynamically as stretched membranes. On that side of a holographic screen where spacetime has already emerged, the energy representation of thermodynamics gives rise to the usual quantum mechanics. A knowledge of the different surface densities of entropy flow across all screens is equivalent to a knowledge of the quantum-mechanical wavefunction on space. The entropy representation of thermodynamics, as applied to a screen, can be used to describe quantum mechanics in the absence of spacetime, that is, quantum mechanics beyond a holographic screen, where spacetime has not yet emerged. Our approach can be regarded as a formal derivation of Planck's constant h from Boltzmann's constant k.
Demiralp, Metin
2010-09-30
This work focuses on the dynamics of a system of quantum multi harmonic oscillators whose Hamiltonian is conic in positions and momenta with time variant coefficients. While it is simple, this system is useful for modeling the dynamics of a number of systems in contemporary sciences where the equations governing spatial or temporal changes are described by sets of ODEs. The dynamical causal models used readily in neuroscience can be indirectly described by these systems. In this work, we want to show that it is possible to describe these systems using quantum wave function type entities and expectations if the dynamic of the system is related to a set of ODEs.
Improving students' understanding of quantum mechanics
NASA Astrophysics Data System (ADS)
Zhu, Guangtian
2011-12-01
Learning physics is challenging at all levels. Students' difficulties in the introductory level physics courses have been widely studied and many instructional strategies have been developed to help students learn introductory physics. However, research shows that there is a large diversity in students' preparation and skills in the upper-level physics courses and it is necessary to provide scaffolding support to help students learn advanced physics. This thesis explores issues related to students' common difficulties in learning upper-level undergraduate quantum mechanics and how these difficulties can be reduced by research-based learning tutorials and peer instruction tools. We investigated students' difficulties in learning quantum mechanics by administering written tests and surveys to many classes and conducting individual interviews with a subset of students. Based on these investigations, we developed Quantum Interactive Learning Tutorials (QuILTs) and peer instruction tools to help students build a hierarchical knowledge structure of quantum mechanics through a guided approach. Preliminary assessments indicate that students' understanding of quantum mechanics is improved after using the research-based learning tools in the junior-senior level quantum mechanics courses. We also designed a standardized conceptual survey that can help instructors better probe students' understanding of quantum mechanics concepts in one spatial dimension. The validity and reliability of this quantum mechanics survey is discussed.
Quantum Mechanical Models Of The Fermi Shuttle
Sternberg, James [University of Tennessee, Department of Physics and Astronomy, Knoxville TN 37996 (United States)
2011-06-01
The Fermi shuttle is a mechanism in which high energy electrons are produced in an atomic collision by multiple collisions with a target and a projectile atom. It is normally explained purely classically in terms of the electron's orbits prescribed in the collision. Common calculations to predict the Fermi shuttle use semi-classical methods, but these methods still rely on classical orbits. In reality such collisions belong to the realm of quantum mechanics, however. In this paper we discuss several purely quantum mechanical calculations which can produce the Fermi shuttle. Being quantum mechanical in nature, these calculations produce these features by wave interference, rather than by classical orbits.
Construction of the metric and equivalent Hermitian Hamiltonian via SUSY transformation operators
Shamshutdinova, V. V.
2012-10-15
The metric operator, which is the basic ingredient for studying a quantum system described by a pseudo-Hermitian Hamiltonian, provides the necessary means for obtaining an equivalent description of the system using a Hermitian Hamiltonian. In the framework of supersymmetric quantum mechanics, we propose a method of constructing the metric operator and to obtain the Hermitian Hamiltonian equivalent to the given pseudo-Hermitian.
Balondo Iyela, Daddy; Centre for Cosmology, Particle Physics and Phenomenology , Institut de Recherche en Mathématique et Physique , Université catholique de Louvain U.C.L., 2, Chemin du Cyclotron, B-1348 Louvain-la-Neuve; Département de Physique, Université de Kinshasa , B.P. 190 Kinshasa XI, Democratic Republic of Congo ; Govaerts, Jan; Centre for Cosmology, Particle Physics and Phenomenology , Institut de Recherche en Mathématique et Physique , Université catholique de Louvain U.C.L., 2, Chemin du Cyclotron, B-1348 Louvain-la-Neuve ; Hounkonnou, M. Norbert
2013-09-15
Within the context of supersymmetric quantum mechanics and its related hierarchies of integrable quantum Hamiltonians and potentials, a general programme is outlined and applied to its first two simplest illustrations. Going beyond the usual restriction of shape invariance for intertwined potentials, it is suggested to require a similar relation for Hamiltonians in the hierarchy separated by an arbitrary number of levels, N. By requiring further that these two Hamiltonians be in fact identical up to an overall shift in energy, a periodic structure is installed in the hierarchy which should allow for its resolution. Specific classes of orthogonal polynomials characteristic of such periodic hierarchies are thereby generated, while the methods of supersymmetric quantum mechanics then lead to generalised Rodrigues formulae and recursion relations for such polynomials. The approach also offers the practical prospect of quantum modelling through the engineering of quantum potentials from experimental energy spectra. In this paper, these ideas are presented and solved explicitly for the cases N= 1 and N= 2. The latter case is related to the generalised Laguerre polynomials, for which indeed new results are thereby obtained. In the context of dressing chains and deformed polynomial Heisenberg algebras, some partial results for N? 3 also exist in the literature, which should be relevant to a complete study of the N? 3 general periodic hierarchies.
Polymer Quantum Mechanics and its Continuum Limit
Alejandro Corichi; Tatjana Vukasinac; Jose A. Zapata
2007-08-22
A rather non-standard quantum representation of the canonical commutation relations of quantum mechanics systems, known as the polymer representation has gained some attention in recent years, due to its possible relation with Planck scale physics. In particular, this approach has been followed in a symmetric sector of loop quantum gravity known as loop quantum cosmology. Here we explore different aspects of the relation between the ordinary Schroedinger theory and the polymer description. The paper has two parts. In the first one, we derive the polymer quantum mechanics starting from the ordinary Schroedinger theory and show that the polymer description arises as an appropriate limit. In the second part we consider the continuum limit of this theory, namely, the reverse process in which one starts from the discrete theory and tries to recover back the ordinary Schroedinger quantum mechanics. We consider several examples of interest, including the harmonic oscillator, the free particle and a simple cosmological model.
Polymer quantum mechanics and its continuum limit
Corichi, Alejandro; Vukasinac, Tatjana; Zapata, Jose A.
2007-08-15
A rather nonstandard quantum representation of the canonical commutation relations of quantum mechanics systems, known as the polymer representation, has gained some attention in recent years, due to its possible relation with Planck scale physics. In particular, this approach has been followed in a symmetric sector of loop quantum gravity known as loop quantum cosmology. Here we explore different aspects of the relation between the ordinary Schroedinger theory and the polymer description. The paper has two parts. In the first one, we derive the polymer quantum mechanics starting from the ordinary Schroedinger theory and show that the polymer description arises as an appropriate limit. In the second part we consider the continuum limit of this theory, namely, the reverse process in which one starts from the discrete theory and tries to recover back the ordinary Schroedinger quantum mechanics. We consider several examples of interest, including the harmonic oscillator, the free particle, and a simple cosmological model.
Quantum Mechanics in Terms of Symmetric Measurements
NASA Astrophysics Data System (ADS)
Fuchs, Christopher
2006-03-01
In the neo-Bayesian view of quantum mechanics that Appleby, Caves, Pitowsky, Schack, the author, and others are developing, quantum states are taken to be compendia of partial beliefs about potential measurement outcomes, rather than objective properties of quantum systems. Different observers may validly have different quantum states for a single system, and the ultimate origin of each individual state assignment is taken to be unanalyzable within physical theory---its origin, instead, comes from prior probability assignments at stages of physical investigation or laboratory practice previous to quantum theory. The objective content of quantum mechanics thus resides somewhere else than in the quantum state, and various ideas for where that ``somewhere else'' is are presently under debate. What is overwhelmingly agreed upon in this effort is only the opening statement. Still, quantum states are not Bayesian probability assignments themselves, and different representations of the theory (in terms of state vectors or Wigner functions or C*-algebras, etc.) can take one further from or closer to a Bayesian point of view. It is thus worthwhile thinking about which representation might be the most propitious for the point of view and might quell some of the remaining debate. In this talk, I will present several results regarding a representation of quantum mechanics in terms of symmetric bases of positive-semidefinite operators. I also argue why this is probably the most natural representation for a Bayesian-style quantum mechanics.
Superconformal Quantum Mechanics from M2-branes
Tadashi Okazaki
2015-03-12
We discuss the superconformal quantum mechanics arising from the M2-branes. We begin with a comprehensive review on the superconformal quantum mechanics and emphasize that conformal symmetry and supersymmetry in quantum mechanics contain a number of exotic and enlightening properties which do not occur in higher dimensional field theories. We see that superfield and superspace formalism is available for $\\mathcal{N}\\le 8$ superconformal mechanical models. We then discuss the M2-branes with a focus on the world-volume descriptions of the multiple M2-branes which are superconformal three-dimensional Chern-Simons matter theories. Finally we argue that the two topics are connected in M-theoretical construction by considering the multiple M2-branes wrapped around a compact Riemann surface and study the emerging IR quantum mechanics. We establish that the resulting quantum mechanics realizes a set of novel $\\mathcal{N}\\ge 8$ superconformal quantum mechanical models which have not been reached so far. Also we discuss possible applications of the superconformal quantum mechanics to mathematical physics.
Koch, Christiane
Hamiltonian approach. This method is based on constructing a systembath Hamiltonian, with a finite but large regime, at zero temperature and for small excitations of the primary system, both methods converge to the Markovian limit. When initially the primary system is significantly excited, the spin bath can saturate
Suppressing Chaos of Warship Power System Based on the Quantum Mechanics Theory
NASA Astrophysics Data System (ADS)
Cong, Xinrong; Li, Longsuo
2014-08-01
Chaos control of marine power system is investigated by adding the Gaussian white noise to the system. The top Lyapunov exponent is computed to detect whether the classical system chaos or not, also the phase portraits are plotted to further verify the obtained results. The classical control of chaos and its quantum counterpart of the marine power system are investigated. The Hamiltonian of the controlled system is given to analyze the quantum counterpart of the classical system, which is based on the quantum mechanics theory.
A quantum-mechanical Maxwell's demon
Seth Lloyd
1996-12-12
A Maxwell's demon is a device that gets information and trades it in for thermodynamic advantage, in apparent (but not actual) contradiction to the second law of thermodynamics. Quantum-mechanical versions of Maxwell's demon exhibit features that classical versions do not: in particular, a device that gets information about a quantum system disturbs it in the process. In addition, the information produced by quantum measurement acts as an additional source of thermodynamic inefficiency. This paper investigates the properties of quantum-mechanical Maxwell's demons, and proposes experimentally realizable models of such devices.
Aalok Pandya
2008-09-08
The geometry of the symplectic structures and Fubini-Study metric is discussed. Discussion in the paper addresses geometry of Quantum Mechanics in the classical phase space. Also, geometry of Quantum Mechanics in the projective Hilbert space has been discussed for the chosen Quantum states. Since the theory of classical gravity is basically geometric in nature and Quantum Mechanics is in no way devoid of geometry, the explorations pertaining to more and more geometry in Quantum Mechanics could prove to be valuable for larger objectives such as understanding of gravity.
CALL FOR PAPERS: Special issue on Pseudo Hermitian Hamiltonians in Quantum Physics
NASA Astrophysics Data System (ADS)
Fring, Andreas; Jones, Hugh F.; Znojil, Miloslav
2007-11-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to the subject of Pseudo Hermitian Hamiltonians in Quantum Physics as featured in the conference '6th International Workshop on Pseudo Hermitian Hamiltonians in Quantum Physics', City University London, UK, July 16--18 2007 (http://www.staff.city.ac.uk/~fring/PT/). Invited speakers at that meeting as well as other researchers working in the field are invited to submit a research paper to this issue. The Editorial Board has invited Andreas Fring, Hugh F Jones and Miloslav Znojil to serve as Guest Editors for the special issue. Their criteria for acceptance of contributions are as follows: •The subject of the paper should relate to the subject of the workshop ((see list of topics in the website of the conference http://www.staff.city.ac.uk/~fring/PT/). •Contributions will be refereed and processed according to the usual procedure of the journal. •Conference papers may be based on already published work but should either contain significant additional new results and/or insights or give a survey of the present state of the art, a critical assessment of the present understanding of a topic, and a discussion of open problems. •Papers submitted by non-participants should be original and contain substantial new results. The guidelines for the preparation of contributions are the following: •The DEADLINE for submission of contributions is 16 November 2007. This deadline will allow the special issue to appear in June 2008. •There is a nominal page limit of 16 printed pages (approximately 9600 words) per contribution. For papers exceeding this limit, the Guest Editors reserve the right to request a reduction in length. Further advice on publishing your work in Journal of Physics A: Mathematical and Theoretical may be found at www.iop.org/Journals/jphysa. •Contributions to the special issue should, if possible, be submitted electronically by web upload at www.iop.org/Journals/jphysa or by e-mail to jphysa@iop.org, quoting 'JPhysA Special Issue—PHHQP07'. Submissions should ideally be in standard LaTeX form. Please see the website for further information on electronic submissions. •Authors unable to submit electronically may send hard copy contributions to: Publishing Administrators, Journal of Physics A, Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, UK, enclosing the electronic code on CD if available and quoting 'JPhysA Special Issue---PHHQP07'. All contributions should be accompanied by a read-me file or covering letter giving the postal and e-mail addresses for correspondence. The Publishing Office should be notified of any subsequent change of address. •This special issue will be published in the paper and online version of the journal. Each participant at the workshop and the corresponding author of each contribution will receive a complimentary copy of the issue.
Topological Strings from Quantum Mechanics
Alba Grassi; Yasuyuki Hatsuda; Marcos Marino
2014-11-27
We propose a general correspondence which associates a non-perturbative quantum-mechanical operator to a toric Calabi-Yau manifold, and we conjecture an explicit formula for its spectral determinant in terms of an M-theoretic version of the topological string free energy. As a consequence, we derive an exact quantization condition for the operator spectrum, in terms of the vanishing of a generalized theta function. The perturbative part of this quantization condition is given by the Nekrasov-Shatashvili limit of the refined topological string, but there are non-perturbative corrections determined by the conventional topological string. We analyze in detail the cases of local P2, local P1xP1 and local F1. In all these cases, the predictions for the spectrum agree with the existing numerical results. We also show explicitly that our conjectured spectral determinant leads to the correct spectral traces of the corresponding operators, which are closely related to topological string theory at orbifold points. Physically, our results provide a Fermi gas picture of topological strings on toric Calabi-Yau manifolds, which is fully non-perturbative and background independent. They also suggest the existence of an underlying theory of M2 branes behind this formulation. Mathematically, our results lead to precise, surprising conjectures relating the spectral theory of functional difference operators to enumerative geometry.
Quantum Mechanical Basis of Vision
Chakravarthi, Ramakrishna; Devi, A R Usha
2008-01-01
The two striking components of retina, i.e., the light sensitive neural layer in the eye, by which it responds to light are (the three types of) color sensitive Cones and color insensitive Rods (which outnumber the cones 20:1). The interaction between electromagnetic radiation and these photoreceptors (causing transitions between cis- and trans- states of rhodopsin molecules in the latter) offers a prime example of physical processes at the nano-bio interface. After a brief review of the basic facts about vision, we propose a quantum mechanical model (paralleling the Jaynes-Cummings model (JCM) of interaction of light with matter) of early vision describing the interaction of light with the two states of rhodopsin mentioned above. Here we model the early essential steps in vision incorporating, separately, the two well-known features of retinal transduction (converting light to neural signals): small numbers of cones respond to bright light (large number of photons) and large numbers of rods respond to faint ...
The Linguistic Interpretation of Quantum Mechanics
Shiro Ishikawa
2012-04-17
About twenty years ago, we proposed the mathematical formulation of Heisenberg's uncertainty principle, and further, we concluded that Heisenberg's uncertainty principle and EPR-paradox are not contradictory. This is true, however we now think that we should have argued about it under a certain firm interpretation of quantum mechanics. Recently we proposed the linguistic quantum interpretation (called quantum and classical measurement theory), which was characterized as a kind of metaphysical and linguistic turn of the Copenhagen interpretation. This turn from physics to language does not only extend quantum theory to classical systems but also yield the quantum mechanical world view (i.e., the philosophy of quantum mechanics, in other words, quantum philosophy). In fact, we can consider that traditional philosophies have progressed toward quantum philosophy. In this paper, we first review the linguistic quantum interpretation, and further, clarify the relation between EPR-paradox and Heisenberg's uncertainty principle. That is, the linguistic interpretation says that EPR-paradox is closely related to the fact that syllogism does not generally hold in quantum physics. This fact should be compared to the non-locality of Bell's inequality.
Four-dimensional understanding of quantum mechanics
Jarek Duda
2009-10-14
In this paper I will try to convince that quantum mechanics does not have to lead to indeterminism, but is just a natural consequence of four-dimensional nature of our world - that for example particles shouldn't be imagined as 'moving points' in space, but as their trajectories in the spacetime like in optimizing action formulation of Lagrangian mechanics. There will be analyzed simplified model - Boltzmann distribution among trajectories occurs to give quantum mechanic like behavior - for example electron moving in proton's potential would make some concrete trajectory which average exactly to the probability distribution of the quantum mechanical ground state. We will use this model to build intuition about quantum mechanics and discuss its generalizations to get some effective approximation of physics. We will see that topological excitations of the simplest model obtained this way already creates known from physics particle structure, their decay modes and electromagnetic/gravitational interactions between them.
Four-dimensional understanding of quantum mechanics
Duda, Jarek
2009-01-01
In this paper I will try to convince that quantum mechanics does not have to lead to indeterminism, but is just a natural consequence of four-dimensional nature of our world - that for example particles shouldn't be imagined as 'moving points' in space, but as their trajectories in the spacetime like in optimizing action formulation of Lagrangian mechanics. There will be analyzed simplified model - Boltzmann distribution among trajectories occurs to give quantum mechanic like behavior - for example electron moving in proton's potential would make some concrete trajectory which average exactly to the probability distribution of the quantum mechanical ground state. We will use this model to build intuition about quantum mechanics and discuss its generalizations to get some effective approximation of physics. We will see that topological excitations of the simplest model obtained this way already creates known from physics particle structure, their decay modes and electromagnetic/gravitational interactions betwe...
Gauging non-Hermitian Hamiltonians
H. F. Jones
2009-02-20
We address the problem of coupling non-Hermitian systems, treated as fundamental rather than effective theories, to the electromagnetic field. In such theories the observables are not the $\\bs{x}$ and $\\bs{p}$ appearing in the Hamiltonian, but quantities $\\bs{X}$ and $\\bs{P}$ constructed by means of the metric operator. Following the analogous procedure of gauging a global symmetry in Hermitian quantum mechanics we find that the corresponding gauge transformation in $\\bs{X}$ implies minimal substitution in the form $\\bs{P}\\to \\bs{P} - e\\bs{A}(\\bs{X})$. We discuss how the relevant matrix elements governing electromagnetic transitions may be calculated in the special case of the Swanson Hamiltonian, where the equivalent Hermitian Hamiltonian $h$ is local, and in the more generic example of the imaginary cubic interaction, where $H$ is local but $h$ is not.
HAMILTONIAN ABC Hamiltonian ABC
Welling, Max
HAMILTONIAN ABC Hamiltonian ABC Edward Meeds TMEEDS@GMAIL.COM Robert Leenders ROBERT Abstract Approximate Bayesian computation (ABC) is a powerful and elegant framework for performing inference in simulation-based models. However, due to the difficulty in scaling likelihood estimates, ABC
Action with Acceleration i: Euclidean Hamiltonian and Path Integral
NASA Astrophysics Data System (ADS)
Baaquie, Belal E.
2013-10-01
An action having an acceleration term in addition to the usual velocity term is analyzed. The quantum mechanical system is directly defined for Euclidean time using the path integral. The Euclidean Hamiltonian is shown to yield the acceleration Lagrangian and the path integral with the correct boundary conditions. Due to the acceleration term, the state space depends on both position and velocity — and hence the Euclidean Hamiltonian depends on two degrees of freedom. The Hamiltonian for the acceleration system is non-Hermitian and can be mapped to a Hermitian Hamiltonian using a similarity transformation; the matrix elements of the similarity transformation are explicitly evaluated.
Snyder noncommutativity and pseudo-Hermitian Hamiltonians from a Jordanian twist
Castro, P. G.
2011-06-15
Nonrelativistic quantum mechanics and conformal quantum mechanics are deformed through a Jordanian twist. The deformed space coordinates satisfy the Snyder noncommutativity. The resulting deformed Hamiltonians are pseudo-Hermitian Hamiltonians of the type discussed by Mostafazadeh. The quantization scheme makes use of the so-called 'unfolded formalism' discussed in previous works. A Hopf algebra structure, compatible with the physical interpretation of the coproduct, is introduced for the universal enveloping algebra of a suitably chosen dynamical Lie algebra (the Hamiltonian is contained among its generators). The multi-particle sector, uniquely determined by the deformed two-particle Hamiltonian, is composed of bosonic particles.
Spin-flavor oscillations of Dirac neutrinos described by relativistic quantum mechanics
Dvornikov, M. S.
2012-02-15
Spin-flavor oscillations of Dirac neutrinos in matter and a magnetic field are studied using the method of relativistic quantum mechanics. Using the exact solution of the wave equation for a massive neutrino, taking into account external fields, the effective Hamiltonian governing neutrino spin-flavor oscillations is derived. Then the The consistency of our approach with the commonly used quantum mechanical method is demonstrated. The obtained correction to the usual effective Hamiltonian results in the appearance of the new resonance in neutrino oscillations. Applications to spin-flavor neutrino oscillations in an expanding envelope of a supernova are discussed. In particular, transitions between right-polarized electron neutrinos and additional sterile neutrinos are studied for realistic background matter and magnetic field distributions. The influence of other factors such as the longitudinal magnetic field, the matter polarization, and the non-standard contributions to the neutrino effective potential, is also analyzed.
On Wigner functions and a damped star product in dissipative phase-space quantum mechanics
Belchev, B. Walton, M.A.
2009-03-15
Dito and Turrubiates recently introduced an interesting model of the dissipative quantum mechanics of a damped harmonic oscillator in phase space. Its key ingredient is a non-Hermitian deformation of the Moyal star product with the damping constant as deformation parameter. We compare the Dito-Turrubiates scheme with phase-space quantum mechanics (or deformation quantization) based on other star products, and extend it to incorporate Wigner functions. The deformed (or damped) star product is related to a complex Hamiltonian, and so necessitates a modified equation of motion involving complex conjugation. We find that with this change the Wigner function satisfies the classical equation of motion. This seems appropriate since non-dissipative systems with quadratic Hamiltonians share this property.
Playing Games with Quantum Mechanics
Simon J. D. Phoenix; Faisal Shah Khan
2012-02-22
We present a perspective on quantum games that focuses on the physical aspects of the quantities that are used to implement a game. If a game is to be played, it has to be played with objects and actions that have some physical existence. We call such games playable. By focusing on the notion of playability for games we can more clearly see the distinction between classical and quantum games and tackle the thorny issue of what it means to quantize a game. The approach we take can more properly be thought of as gaming the quantum rather than quantizing a game and we find that in this perspective we can think of a complete quantum game, for a given set of preferences, as representing a single family of quantum games with many different playable versions. The versions of Quantum Prisoners Dilemma presented in the literature can therefore be thought of specific instances of the single family of Quantum Prisoner's Dilemma with respect to a particular measurement. The conditions for equilibrium are given for playable quantum games both in terms of expected outcomes and a geometric approach. We discuss how any quantum game can be simulated with a classical game played with classical coins as far as the strategy selections and expected outcomes are concerned.
Visual Quantum Mechanics: Online Interactive Programs
NSDL National Science Digital Library
The Visual Quantum Mechanics project, from the Physics Education Group of Kansas State University's Department of Physics, develops innovative ways to "introduce quantum physics to high school and college students who do not have a background in modern physics or higher level math." Funded by the National Science Foundation, this resource for educators provides interactive computer visualizations and animations that introduce quantum mechanics. The interactive programs (which require Shockwave) include a spectroscopy lab suite, a probability illustrator, an energy band creator, quantum tunneling, a color creator (a Java version is also available), a wave function sketcher, a wave packet explorer, an energy diagram explorer, a diffraction suite, and a hydrogen spectroscopy program. These online demonstrations should prove to be excellent visual, hands-on teaching aids when introducing concepts involving quantum mechanics. Users can download Shockwave at the site.
Carlos Mochon
2007-04-14
Hamiltonian oracles are the continuum limit of the standard unitary quantum oracles. In this limit, the problem of finding the optimal query algorithm can be mapped into the problem of finding shortest paths on a manifold. The study of these shortest paths leads to lower bounds of the original unitary oracle problem. A number of example Hamiltonian oracles are studied in this paper, including oracle interrogation and the problem of computing the XOR of the hidden bits. Both of these problems are related to the study of geodesics on spheres with non-round metrics. For the case of two hidden bits a complete description of the geodesics is given. For n hidden bits a simple lower bound is proven that shows the problems require a query time proportional to n, even in the continuum limit. Finally, the problem of continuous Grover search is reexamined leading to a modest improvement to the protocol of Farhi and Gutmann.
Photon quantum mechanics and beam splitters
NASA Astrophysics Data System (ADS)
Holbrow, C. H.; Galvez, E.; Parks, M. E.
2002-03-01
We are developing materials for classroom teaching about the quantum behavior of photons in beam splitters as part of a project to create five experiments that use correlated photons to exhibit nonclassical quantum effects vividly and directly. Pedagogical support of student understanding of these experiments requires modification of the usual quantum mechanics course in ways that are illustrated by the treatment of the beam splitter presented here.
Strange Bedfellows: Quantum Mechanics and Data Mining
Weinstein, Marvin; /SLAC
2009-12-16
Last year, in 2008, I gave a talk titled Quantum Calisthenics. This year I am going to tell you about how the work I described then has spun off into a most unlikely direction. What I am going to talk about is how one maps the problem of finding clusters in a given data set into a problem in quantum mechanics. I will then use the tricks I described to let quantum evolution lets the clusters come together on their own.
Strange Bedfellows: Quantum Mechanics and Data Mining
NASA Astrophysics Data System (ADS)
Weinstein, Marvin
2010-02-01
Last year, in 2008, I gave a talk titled Quantum Calisthenics. This year I am going to tell you about how the work I described then has spun off into a most unlikely direction. What I am going to talk about is how one maps the problem of finding clusters in a given data set into a problem in quantum mechanics. I will then use the tricks I described to let quantum evolution lets the clusters come together on their own.
Destruction of states in quantum mechanics
P. Caban; J. Rembielinski; K. A. Smolinski; Z. Walczak
2002-03-19
A description of destruction of states on the grounds of quantum mechanics rather than quantum field theory is proposed. Several kinds of maps called supertraces are defined and used to describe the destruction procedure. The introduced algorithm can be treated as a supplement to the von Neumann-Lueders measurement. The discussed formalism may be helpful in a description of EPR type experiments and in quantum information theory.
Can quantum mechanics help distributed computing?
Anne Broadbent; Alain Tapp
2009-11-30
We present a brief survey of results where quantum information processing is useful to solve distributed computation tasks. We describe problems that are impossible to solve using classical resources but that become feasible with the help of quantum mechanics. We also give examples where the use of quantum information significantly reduces the need for communication. The main focus of the survey is on communication complexity but we also address other distributed tasks.
Strange Bedfellows: Quantum Mechanics and Data Mining
Marvin Weinstein
2009-11-03
Last year, in 2008, I gave a talk titled {\\it Quantum Calisthenics}. This year I am going to tell you about how the work I described then has spun off into a most unlikely direction. What I am going to talk about is how one maps the problem of finding clusters in a given data set into a problem in quantum mechanics. I will then use the tricks I described to let quantum evolution lets the clusters come together on their own.
Superconformal Quantum Mechanics from M2-branes
Okazaki, Tadashi
2015-01-01
We discuss the superconformal quantum mechanics arising from the M2-branes. We begin with a comprehensive review on the superconformal quantum mechanics and emphasize that conformal symmetry and supersymmetry in quantum mechanics contain a number of exotic and enlightening properties which do not occur in higher dimensional field theories. We see that superfield and superspace formalism is available for $\\mathcal{N}\\le 8$ superconformal mechanical models. We then discuss the M2-branes with a focus on the world-volume descriptions of the multiple M2-branes which are superconformal three-dimensional Chern-Simons matter theories. Finally we argue that the two topics are connected in M-theoretical construction by considering the multiple M2-branes wrapped around a compact Riemann surface and study the emerging IR quantum mechanics. We establish that the resulting quantum mechanics realizes a set of novel $\\mathcal{N}\\ge 8$ superconformal quantum mechanical models which have not been reached so far. Also we discus...
Quantum Mechanics and Multiply Connected Spaces
B. G. Sidharth
2006-05-16
t is well known that the difference between Quantum Mechanics and Classical Theory appears most crucially in the non Classical spin half of the former theory and the Wilson-Sommerfelt quantization rule. We argue that this is symptomatic of the fact that Quantum Theory is actually a theory in multiply connected space while Classical Theory operates in simply connected space.
Local quantum mechanics with finite Planck mass
M Kozlowski; J. Marciak -Kozlowska; M. pelc
2007-04-20
In this paper the motion of quantum particles with initial mass m is investigated. The quantum mechanics equation is formulated and solved. It is shown that the wave function contains the component which is depended on the gravitation fine structure constant
Quantum Mechanics and the Generalized Uncertainty Principle
Jang Young Bang; Micheal S. Berger
2006-11-30
The generalized uncertainty principle has been described as a general consequence of incorporating a minimal length from a theory of quantum gravity. We consider a simple quantum mechanical model where the operator corresponding to position has discrete eigenvalues and show how the generalized uncertainty principle results for minimum uncertainty wave packets.
Quantum Mechanics from Newton's Second Law and the Canonical Commutation Relation [X,P]=i
Mark C. Palenik
2014-04-11
Despite the fact that it has been known since the time of Heisenberg that quantum operators obey a quantum version of Newton's laws, students are often told that derivations of quantum mechanics must necessarily follow from the Hamiltonian or Lagrangian formulations of mechanics. Here, we first derive the existing Heisenberg equations of motion from Newton's laws and the uncertainty principle using only the equations $F=\\frac{dP}{dt}$, $P=m\\frac{dV}{dt}$, and $\\left[X,P\\right]=i$. Then, a new expression for the propagator is derived that makes a connection between time evolution in quantum mechanics and the motion of a classical particle under Newton's laws. The propagator is solved for three cases where an exact solution is possible 1) the free particle 2) the harmonic oscillator 3) a constant force, or linear potential in the standard interpretation. Such a picture may be useful for students as they make the transition from classical to quantum mechanics and help solidify the equivalence of the Hamiltonian, Lagrangian, and Newtonian formulations of physics in their minds.
Quantum mechanics from Newton's second law and the canonical commutation relation [X, P] = i
NASA Astrophysics Data System (ADS)
Palenik, Mark C.
2014-07-01
Despite the fact that it has been known since the time of Heisenberg that quantum operators obey a quantum version of Newton's laws, students are often told that derivations of quantum mechanics must necessarily follow from the Hamiltonian or Lagrangian formulations of mechanics. Here, we first derive the existing Heisenberg equations of motion from Newton's laws and the uncertainty principle using only the equations F=\\frac{dP}{dt}, P=m\\frac{dV}{dt}, and [X, P] = i. Then, a new expression for the propagator is derived that makes a connection between time evolution in quantum mechanics and the motion of a classical particle under Newton's laws. The propagator is solved for three cases where an exact solution is possible: (1) the free particle; (2) the harmonic oscillator; and (3) a constant force, or linear potential in the standard interpretation. We then show that for a general for a general force F(X), by Taylor expanding X(t) in time, we can use this methodology to reproduce the Feynman path integral formula for the propagator. Such a picture may be useful for students as they make the transition from classical to quantum mechanics and help solidify the equivalence of the Hamiltonian, Lagrangian, and Newtonian pictures of physics in their minds.
Argonov, V Yu
2008-01-01
Manifestation of dynamical instability and Hamiltonian chaos in the fundamental near-resonant matter-radiation interaction has been found analitically and in a Monte Carlo simulation in the behavior of atoms moving in a rigid optical lattice. Character of diffusion of spontaneously emitting atoms changes abruptly in the range of the values of parameters and initial conditions where their Hamiltonian dynamics is shown to be chaotic
Fundamental Quantum Mechanics--A Graphic Presentation
ERIC Educational Resources Information Center
Wise, M. N.; Kelley, T. G.
1977-01-01
Describes a presentation of basic quantum mechanics for nonscience majors that relies on a computer-generated graphic display to circumvent the usual mathematical difficulties. It allows a detailed treatment of free-particle motion in a wave picture. (MLH)
Quantum mechanical streamlines. I - Square potential barrier
NASA Technical Reports Server (NTRS)
Hirschfelder, J. O.; Christoph, A. C.; Palke, W. E.
1974-01-01
Exact numerical calculations are made for scattering of quantum mechanical particles hitting a square two-dimensional potential barrier (an exact analog of the Goos-Haenchen optical experiments). Quantum mechanical streamlines are plotted and found to be smooth and continuous, to have continuous first derivatives even through the classical forbidden region, and to form quantized vortices around each of the nodal points. A comparison is made between the present numerical calculations and the stationary wave approximation, and good agreement is found between both the Goos-Haenchen shifts and the reflection coefficients. The time-independent Schroedinger equation for real wavefunctions is reduced to solving a nonlinear first-order partial differential equation, leading to a generalization of the Prager-Hirschfelder perturbation scheme. Implications of the hydrodynamical formulation of quantum mechanics are discussed, and cases are cited where quantum and classical mechanical motions are identical.
Beyond Quantum Mechanics and General Relativity
Andrea Gregori
2010-02-24
In this note I present the main ideas of my proposal about the theoretical framework that could underlie, and therefore "unify", Quantum Mechanics and Relativity, and I briefly summarize the implications and predictions.
Relationship Between Quantum Walk and Relativistic Quantum Mechanics
C. M. Chandrashekar; Subhashish Banerjee; R. Srikanth
2010-06-26
Quantum walk models have been used as an algorithmic tool for quantum computation and to describe various physical processes. This paper revisits the relationship between relativistic quantum mechanics and the quantum walks. We show the similarities of the mathematical structure of the decoupled and coupled form of the discrete-time quantum walk to that of the Klein-Gordon and Dirac equations, respectively. In the latter case, the coin emerges as an analog of the spinor degree of freedom. Discrete-time quantum walk as a coupled form of the continuous-time quantum walk is also shown by transforming the decoupled form of the discrete-time quantum walk to the Schrodinger form. By showing the coin to be a means to make the walk reversible, and that the Dirac-like structure is a consequence of the coin use, our work suggests that the relativistic causal structure is a consequence of conservation of information. However, decoherence (modelled by projective measurements on position space) generates entropy that increases with time, making the walk irreversible and thereby producing an arrow of time. Lieb-Robinson bound is used to highlight the causal structure of the quantum walk to put in perspective the relativistic structure of quantum walk, maximum speed of the walk propagation and the earlier findings related to the finite spread of the walk probability distribution. We also present a two-dimensional quantum walk model on a two state system to which the study can be extended.
Relationship between quantum walks and relativistic quantum mechanics
Chandrashekar, C. M.; Banerjee, Subhashish; Srikanth, R.
2010-06-15
Quantum walk models have been used as an algorithmic tool for quantum computation and to describe various physical processes. This article revisits the relationship between relativistic quantum mechanics and the quantum walks. We show the similarities of the mathematical structure of the decoupled and coupled forms of the discrete-time quantum walk to that of the Klein-Gordon and Dirac equations, respectively. In the latter case, the coin emerges as an analog of the spinor degree of freedom. Discrete-time quantum walk as a coupled form of the continuous-time quantum walk is also shown by transforming the decoupled form of the discrete-time quantum walk to the Schroedinger form. By showing the coin to be a means to make the walk reversible and that the Dirac-like structure is a consequence of the coin use, our work suggests that the relativistic causal structure is a consequence of conservation of information. However, decoherence (modeled by projective measurements on position space) generates entropy that increases with time, making the walk irreversible and thereby producing an arrow of time. The Lieb-Robinson bound is used to highlight the causal structure of the quantum walk to put in perspective the relativistic structure of the quantum walk, the maximum speed of walk propagation, and earlier findings related to the finite spread of the walk probability distribution. We also present a two-dimensional quantum walk model on a two-state system to which the study can be extended.
Geometric phase in PT-symmetric quantum mechanics
Gong Jiangbin [Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Centre for Computational Science and Engineering, National University of Singapore (NUS), Singapore 117542 (Singapore); NUS Graduate School for Integrative Sciences and Engineering, Singapore 117597 (Singapore); Wang Qinghai [Department of Physics, National University of Singapore, Singapore 117542 (Singapore)
2010-07-15
Unitary evolution in PT-symmetric quantum mechanics (QM) with a time-dependent metric is found to yield an interesting class of adiabatic processes. As an explicit example, a Berry-like phase associated with a PT-symmetric two-level system is derived and is interpreted as the flux of a fictitious monopole with a tunable charge plus a singular string component with nontrivial phase contributions. To gain more insight, the Hermitian analog of our non-Hermitian problem is also analyzed, which results in an intriguing class of geometric-phase problems in conventional QM as well, where the Hamiltonian includes a perturbative term that is proportional to the rate of change in adiabatic parameters.
From Feynman Proof of Maxwell Equations to Noncommutative Quantum Mechanics
Bérard, A; Lages, J; Gosselin, P; Grandati, Y; Boumrar, H; Ménas, F
2007-01-01
In 1990, Dyson published a proof due to Feynman of the Maxwell equations assuming only the commutation relations between position and velocity. With this minimal assumption, Feynman never supposed the existence of Hamiltonian or Lagrangian formalism. In the present communication, we review the study of a relativistic particle using ``Feynman brackets.'' We show that Poincar\\'e's magnetic angular momentum and Dirac magnetic monopole are the consequences of the structure of the Lorentz Lie algebra defined by the Feynman's brackets. Then, we extend these ideas to the dual momentum space by considering noncommutative quantum mechanics. In this context, we show that the noncommutativity of the coordinates is responsible for a new effect called the spin Hall effect. We also show its relation with the Berry phase notion. As a practical application, we found an unusual spin-orbit contribution of a nonrelativistic particle that could be experimentally tested. Another practical application is the Berry phase effect on ...
Quantum mechanical model for J / ? suppression in the LHC era
NASA Astrophysics Data System (ADS)
Peña, C.; Blaschke, D.
2014-07-01
We discuss the interplay of screening, absorption and regeneration effects, on the quantum mechanical evolution of quarkonia states, within a time-dependent harmonic oscillator (THO) model with complex oscillator strength. We compare the results with data for RAA /RAA (CNM) from CERN and RHIC experiments. In the absence of a measurement of cold nuclear matter (CNM) effects at LHC we estimate their role and interpret the recent data from the ALICE experiment. We also discuss the temperature dependence of the real and imaginary parts of the oscillator frequency which stand for screening and absorption/regeneration, respectively. We point out that a structure in the J / ? suppression pattern for In-In collisions at SPS is possibly related to the recently found X (3872) state in the charmonium spectrum. Theoretical support for this hypothesis comes from the cluster expansion of the plasma Hamiltonian for heavy quarkonia in a strongly correlated medium.
Is quantum field theory a generalization of quantum mechanics?
A. V. Stoyanovsky
2009-09-10
We construct a mathematical model analogous to quantum field theory, but without the notion of vacuum and without measurable physical quantities. This model is a direct mathematical generalization of scattering theory in quantum mechanics to path integrals with multidimensional trajectories (whose mathematical interpretation has been given in a previous paper). In this model the normal ordering of operators in the Fock space is replaced by the Weyl-Moyal algebra. This model shows to be useful in proof of various results in quantum field theory: one first proves these results in the mathematical model and then "translates" them into the usual language of quantum field theory by more or less "ugly" procedures.
Steven Kenneth Kauffmann
2009-09-22
It is generally acknowledged that neither the Klein-Gordon equation nor the Dirac Hamiltonian can produce sound solitary-particle relativistic quantum mechanics due to the ill effects of their negative-energy solutions; instead their field-quantized wavefunctions are reinterpreted as dealing with particle and antiparticle simultaneously--despite the clear physical distinguishability of antiparticle from particle and the empirically known slight breaking of the underlying CP invariance. The natural square-root Hamiltonian of the free relativistic solitary particle is iterated to obtain the Klein-Gordon equation and linearized to obtain the Dirac Hamiltonian, steps that have calculational but not physical motivation, and which generate the above-mentioned problematic negative-energy solutions as extraneous artifacts. Since the natural square root Hamiltonian for the free relativistic solitary particle contrariwise produces physically unexceptionable quantum mechanics, this article focuses on extending that Hamiltonian to describe a solitary particle (of either spin 0 or spin one-half) in relativistic interaction with an external electromagnetic field. That is achieved by use of Lorentz-covariant solitary-particle four momentum techniques together with the assumption that well-known nonrelativistic dynamics applies in the particle's rest frame. Lorentz-invariant solitary particle actions, whose formal Hamiltonization is an equivalent alternative approach, are as well explicitly displayed. It is proposed that two separate solitary-particle wavefunctions, one for a particle and the other for its antiparticle, be independently quantized in lieu of "reinterpreting" negative energy solutions--which indeed don't even afflict proper solitary particles.
Some mutant forms of quantum mechanics
NASA Astrophysics Data System (ADS)
Takeuchi, Tatsu; Chang, Lay Nam; Lewis, Zachary; Minic, Djordje
2012-12-01
We construct a 'mutant' form of quantum mechanics on a vector space over the finite Galois field GF(q). We find that the correlations in our model do not violate the Clauser-Horne-Shimony-Holt (CHSH) version of Bell's inequality, despite the fact that the predictions of this discretized quantum mechanics cannot be reproduced with any hidden variable theory. An alternative 'mutation' is also suggested.
Nonequilibrium quantum statistical mechanics and thermodynamics
Walid K. Abou Salem
2006-01-23
The purpose of this work is to discuss recent progress in deriving the fundamental laws of thermodynamics (0th, 1st and 2nd-law) from nonequilibrium quantum statistical mechanics. Basic thermodynamic notions are clarified and different reversible and irreversible thermodynamic processes are studied from the point of view of quantum statistical mechanics. Special emphasis is put on new adiabatic theorems for steady states close to and far from equilibrium, and on investigating cyclic thermodynamic processes using an extension of Floquet theory.
Quantum mechanical effects on the shock Hugoniot
Bennett, B.I. (Los Alamos National Lab., NM (USA)); Liberman, D.A. (Lawrence Livermore National Lab., CA (USA))
1991-01-01
Calculations of the locus of shock Hugoniot states of aluminum, using two equations of state that either omit or include a quantum mechanical treatment for the material's electronic excitations, will be presented. The difference between the loci will be analyzed in the context of a comparison between an ab initio quantum mechanical model and a semiclassical treatment of the electronic states. The theoretical results are compared with high pressure (4--300 Mbars) data. 5 refs., 2 figs.
Quantum mechanics in de Sitter space
Subir Ghosh; Salvatore Mignemi
2011-01-25
We consider some possible phenomenological implications of the extended uncertainty principle, which is believed to hold for quantum mechanics in de Sitter spacetime. The relative size of the corrections to the standard results is however of the order of the ratio between the length scale of the quantum mechanical system and the de Sitter radius, and therefore exceedingly small. Nevertheless, the existence of effects due to the large scale curvature of spacetime in atomic experiments has a theoretical relevance.
Some Mutant Forms of Quantum Mechanics
Tatsu Takeuchi; Lay Nam Chang; Zachary Lewis; Djordje Minic
2012-08-28
We construct a `mutant' form of quantum mechanics on a vector space over the finite Galois field GF(q). We find that the correlations in our model do not violate the Clauser-Horne-Shimony-Holt (CHSH) version of Bell's inequality, despite the fact that the predictions of this discretized quantum mechanics cannot be reproduced with any hidden variable theory. An alternative `mutation' is also suggested.
Some Mutant Forms of Quantum Mechanics
Takeuchi, Tatsu; Lewis, Zachary; Minic, Djordje
2013-01-01
We construct a `mutant' form of quantum mechanics on a vector space over the finite Galois field GF(q). We find that the correlations in our model do not violate the Clauser-Horne-Shimony-Holt (CHSH) version of Bell's inequality, despite the fact that the predictions of this discretized quantum mechanics cannot be reproduced with any hidden variable theory. An alternative `mutation' is also suggested.
Quantum Semiotics: A Sign Language for Quantum Mechanics
Prashant
2006-01-01
Semiotics is the language of signs which has been used effectively in various disciplines of human scientific endeavor. It gives a beautiful and rich structure of language to express the basic tenets of any scientific discipline. In this article we attempt to develop from first principles such an axiomatic structure of semiotics for Quantum Mechanics. This would be a further enrichment to the already existing well understood mathematical structure of Quantum Mechanics but may give new insights and understanding to the theory and may help understand more lucidly the fundamentality of Nature which Quantum Theory attempts to explain.
Aalok Pandya
2009-01-19
The geometry of Quantum Mechanics in the context of uncertainty and complementarity, and probability is explored. We extend the discussion of geometry of uncertainty relations in wider perspective. Also, we discuss the geometry of probability in Quantum Mechanics and its interpretations. We give yet another interpretation to the notion of Faraday lines and loops as the locus of probability flow. Also, the possibilities of visualization of spectra of area operators by means of classical geometric forms and conventional Quantum Mechanics are explored.
CLNS 96/1399 Peculiarities of Quantum Mechanics
CLNS 96/1399 Peculiarities of Quantum Mechanics: Origins and Meaning Yuri F. Orlov Floyd R. Newman, specifically quantum, features of quantum mechanics --- quan tum nonlocality, indeterminism, interference are quantum observables themselves and are represented in quantum mechanics by density matrices of pure states
On a New Form of Quantum Mechanics (II)
N. Gorobey; A. Lukyanenko; I. Lukyanenko
2009-12-16
The correspondence of a new form of quantum mechanics based on a quantum version of the action principle, which was proposed earlier [arXiv:0807.3508], with the ordinary quantum mechanics is established. New potentialities of the quantum action principle in the interpretation of quantum mechanics are considered.
Quantum Information Theory and the Foundations of Quantum Mechanics
Christopher Gordon Timpson
2004-12-08
This thesis is a contribution to the debate on the implications of quantum information theory for the foundations of quantum mechanics. In Part 1, the logical and conceptual status of various notions of information is assessed. It is emphasized that the everyday notion of information is to be firmly distinguished from the technical notions arising in information theory; however it is maintained that in both settings `information' functions as an abstract noun, hence does not refer to a particular or substance (the worth of this point is illustrated in application to quantum teleportation). The claim that `Information is Physical' is assessed and argued to face a destructive dilemma. Accordingly, the slogan may not be understood as an ontological claim, but at best, as a methodological one. The reflections of Bruckner and Zeilinger (2001) and Deutsch and Hayden (2000) on the nature of information in quantum mechanics are critically assessed and some results presented on the characterization of entanglement in the Deutsch-Hayden formalism. Some philosophical aspects of quantum computation are discussed and general morals drawn concerning the nature of quantum information theory. In Part II, following some preliminary remarks, two particular information-theoretic approaches to the foundations of quantum mechanics are assessed in detail. It is argued that Zeilinger's (1999) Foundational Principle is unsuccessful as a foundational principle for quantum mechanics. The information-theoretic characterization theorem of Clifton, Bub and Halvorson (2003) is assessed more favourably, but the generality of the approach is questioned and it is argued that the implications of the theorem for the traditional foundational problems in quantum mechanics remains obscure.
Testing foundations of quantum mechanics with photons
Peter Shadbolt; Jonathan C. F. Matthews; Anthony Laing; Jeremy L. O'Brien
2015-01-15
The foundational ideas of quantum mechanics continue to give rise to counterintuitive theories and physical effects that are in conflict with a classical description of Nature. Experiments with light at the single photon level have historically been at the forefront of tests of fundamental quantum theory and new developments in photonics engineering continue to enable new experiments. Here we review recent photonic experiments to test two foundational themes in quantum mechanics: wave-particle duality, central to recent complementarity and delayed-choice experiments; and Bell nonlocality where recent theoretical and technological advances have allowed all controversial loopholes to be separately addressed in different photonics experiments.
Interpretations of Quantum Mechanics: a critical survey
Caponigro, Michele
2008-01-01
This brief survey analyzes the epistemological implications about the role of observer in the interpretations of Quantum Mechanics. As we know, the goal of most interpretations of quantum mechanics is to avoid the apparent intrusion of the observer into the measurement process. In the same time, there are implicit and hidden assumptions about his role. In fact, most interpretations taking as ontic level one of these fundamental concepts as information, physical law and matter bring us to new problematical questions. We think, that no interpretation of the quantum theory can avoid this intrusion until we do not clarify the nature of observer.
Interpretations of Quantum Mechanics: a critical survey
Michele Caponigro
2008-11-24
This brief survey analyzes the epistemological implications about the role of observer in the interpretations of Quantum Mechanics. As we know, the goal of most interpretations of quantum mechanics is to avoid the apparent intrusion of the observer into the measurement process. In the same time, there are implicit and hidden assumptions about his role. In fact, most interpretations taking as ontic level one of these fundamental concepts as information, physical law and matter bring us to new problematical questions. We think, that no interpretation of the quantum theory can avoid this intrusion until we do not clarify the nature of observer.
``Simplest Molecule'' Clarifies Modern Physics II. Relativistic Quantum Mechanics
NASA Astrophysics Data System (ADS)
Harter, William; Reimer, Tyle
2015-05-01
A ``simplest molecule'' consisting of CW- laser beam pairs helps to clarify relativity from poster board - I. In spite of a seemingly massless evanescence, an optical pair also clarifies classical and quantum mechanics of relativistic matter and antimatter. Logical extension of (x,ct) and (?,ck) geometry gives relativistic action functions of Hamiltonian, Lagrangian, and Poincare that may be constructed in a few ruler-and-compass steps to relate relativistic parameters for group or phase velocity, momentum, energy, rapidity, stellar aberration, Doppler shifts, and DeBroglie wavelength. This exposes hyperbolic and circular trigonometry as two sides of one coin connected by Legendre contact transforms. One is Hamiltonian-like with a longitudinal rapidity parameter ? (log of Doppler shift). The other is Lagrange-like with a transverse angle parameter ? (stellar aberration). Optical geometry gives recoil in absorption, emission, and resonant Raman-Compton acceleration and distinguishes Einstein rest mass, Galilean momentum mass, and Newtonian effective mass. (Molecular photons appear less bullet-like and more rocket-like.) In conclusion, modern space-time physics appears as a simple result of the more self-evident Evenson's axiom: ``All colors go c.''
The velocity operator in quantum mechanics in noncommutative space
Samuel Kovacik; Peter Presnajder
2013-09-18
We tested in the framework of quantum mechanics the consequences of a noncommutative (NC from now on) coordinates. We restricted ourselves to 3D rotationally invariant NC configuration spaces with dynamics specified by the Hamiltonian H = H(kin) + U, H(kin) is an analogue of kinetic energy and U = U(r) denotes an arbitrary rotationally invariant potential. We introduced the velocity operator by Heisenberg relation using the commutator of the coordinate and the Hamiltonian operators. We found that the NC velocity operator possesses various general, independent of potential, properties: 1) uncertainty relations indicate an existence of a natural kinetic energy cut-off, 2) vanishing commutator relations for velocity components, which is non-trivial in the NC case, 3) modified relation between the velocity operator and H(kin) that indicates the existence of maximal velocity and confirms the kinetic energy cut-off, 4) All these results sum up in canonical (general, not depending on a particular form of the central potential) commutation relations of the Euclidean group E(4), 5) NC Heisenberg equation for the velocity operator, relating acceleration to derivatives of the potential.
Uncertainty in quantum mechanics: faith or fantasy?
Penrose, Roger
2011-12-13
The word 'uncertainty', in the context of quantum mechanics, usually evokes an impression of an essential unknowability of what might actually be going on at the quantum level of activity, as is made explicit in Heisenberg's uncertainty principle, and in the fact that the theory normally provides only probabilities for the results of quantum measurement. These issues limit our ultimate understanding of the behaviour of things, if we take quantum mechanics to represent an absolute truth. But they do not cause us to put that very 'truth' into question. This article addresses the issue of quantum 'uncertainty' from a different perspective, raising the question of whether this term might be applied to the theory itself, despite its unrefuted huge success over an enormously diverse range of observed phenomena. There are, indeed, seeming internal contradictions in the theory that lead us to infer that a total faith in it at all levels of scale leads us to almost fantastical implications. PMID:22042902
Macroscopic quantum mechanics in a classical spacetime.
Yang, Huan; Miao, Haixing; Lee, Da-Shin; Helou, Bassam; Chen, Yanbei
2013-04-26
We apply the many-particle Schrödinger-Newton equation, which describes the coevolution of a many-particle quantum wave function and a classical space-time geometry, to macroscopic mechanical objects. By averaging over motions of the objects' internal degrees of freedom, we obtain an effective Schrödinger-Newton equation for their centers of mass, which can be monitored and manipulated at quantum levels by state-of-the-art optomechanics experiments. For a single macroscopic object moving quantum mechanically within a harmonic potential well, its quantum uncertainty is found to evolve at a frequency different from its classical eigenfrequency-with a difference that depends on the internal structure of the object-and can be observable using current technology. For several objects, the Schrödinger-Newton equation predicts semiclassical motions just like Newtonian physics, yet quantum uncertainty cannot be transferred from one object to another. PMID:23679686
Unitary dilation models of Turing machines in quantum mechanics
Benioff, P.
1995-05-01
A goal of quantum-mechanical models of the computation process is the description of operators that model changes in the information-bearing degrees of freedom. Iteration of the operators should correspond to steps in the computation, and the final state of halting computations should be stable under iteration. The problem is that operators constructed directly from the process description do not have these properties. In general these operators annihilate the halted state. If information-erasing steps are present, there are additional problems. These problems are illustrated in this paper by consideration of operators for two simple one-step processes and two simple Turing machines. In general the operators are not unitary and, if erasing steps are present, they are not even contraction operators. Various methods of extension or dilation to unitary operators are discussed. Here unitary power dilations are considered as a solution to these problems. It is seen that these dilations automatically provide a good solution to the initial- and final-state problems. For processes with erasing steps, recording steps must be included prior to the dilation, but only for the steps that erase information. Hamiltonians for these processes are also discussed. It is noted that {ital H}, described by exp({minus}{ital iH}{Delta})={ital U}{sup {ital T}}, where {ital U}{sup {ital T}} is a unitary step operator for the process and {Delta} a time interval, has complexity problems. These problems and those noted above are avoided here by the use of the Feynman approach to constructing Hamiltonians directly from the unitary power dilations of the model operators. It is seen that the Hamiltonians so constructed have some interesting properties.
Quantum Mechanics on the Hypercube
E. G. Floratos; S. Nicolis
2000-06-01
We construct quantum evolution operators on the space of states, that is represented by the vertices of the n-dimensional unit hypercube. They realize the metaplectic representation of the modular group SL(2,Z(2^n)). By construction this representation acts in a natural way on the coordinates of the non-commutative 2-torus,T^2, and thus is relevant for noncommutative field theories as well as theories of quantum space-time.
Avoiding Negative Probabilities in Quantum Mechanics
Nyambuya, Golden Gadzirayi
2013-01-01
As currently understood since its discovery, the bare Klein-Gordon theory consists of negative quantum probabilities which are considered to be physically meaningless if not outright obsolete. Despite this annoying setback, these negative probabilities are what led the great Paul Dirac in 1928 to the esoteric discovery of the Dirac Equation. The Dirac Equation led to one of the greatest advances in our understanding of the physical world. In this reading, we ask the seemingly senseless question, "Do negative probabilities exist in quantum mechanics?" In an effort to answer this question, we arrive at the conclusion that depending on the choice one makes of the quantum probability current, one will obtain negative probabilities. We thus propose a new quantum probability current of the Klein-Gordon theory. This quantum probability current leads directly to positive definite quantum probabilities. Because these negative probabilities are in the bare Klein-Gordon theory, intrinsically a result of negative energie...
Chemistry 6491: Quantum Mechanics Requirements and Grading Scheme
Sherrill, David
to quantum mechanics: Scope and applicability of quantum mechanics The Schr¨odinger equation (B) LinearChemistry 6491: Quantum Mechanics Requirements and Grading Scheme Problem sets 30% First test 20 and receive an overall passing grade. Topics Unit I: Fundamentals of Quantum Mechanics (A) Introduction
Quantum Mechanics Summary/Review Spring 2009 Compton Lecture Series
Quantum Mechanics Summary/Review Spring 2009 Compton Lecture Series: From Quantum Mechanics one component at a time. · Planck's constant determines the scale at which quantum mechanical effects could get rid of quantum mechanical effects The "wavelength" of particles given by h mv would all
The Möbius symmetry of quantum mechanics
NASA Astrophysics Data System (ADS)
Faraggi, Alon E.; Matone, Marco
2015-07-01
The equivalence postulate approach to quantum mechanics aims to formulate quantum mechanics from a fundamental geometrical principle. Underlying the formulation there exists a basic cocycle condition which is invariant under D-dimensional Mobius transformations with respect to the Euclidean or Minkowski metrics. The invariance under global Mobius transformations implies that spatial space is compact. Furthermore, it implies energy quantisation and undefinability of quantum trajectories without assuming any prior interpretation of the wave function. The approach may be viewed as conventional quantum mechanics with the caveat that spatial space is compact, as dictated by the Möbius symmetry, with the classical limit corresponding to the decompactification limit. Correspondingly, there exists a finite length scale in the formalism and consequently an intrinsic regularisation scheme. Evidence for the compactness of space may exist in the cosmic microwave background radiation.
N + 1 dimensional quantum mechanical model for a closed universe
T. R. Mongan
1999-02-10
A quantum mechanical model for an N + 1 dimensional universe arising from a quantum fluctuation is outlined. (3 + 1) dimensions are a closed infinitely-expanding universe and the remaining N - 3 dimensions are compact. The (3 + 1) non-compact dimensions are modeled by quantizing a canonical Hamiltonian description of a homogeneous isotropic universe. It is assumed gravity and the strong-electro-weak (SEW) forces had equal strength in the initial state. Inflation occurred when the compact N -3 dimensional space collapsed after a quantum transition from the initial state of the univers, during its evolution to the present state where gravity is much weaker than the SEW force. The model suggests the universe has no singularities and the large size of our present universe is determined by the relative strength of gravity and the SEW force today. A small cosmological constant, resulting from the zero point energy of the scalar field corresponding to the compact dimensions, makes the model universe expand forever.
Introduction to nonequilibrium quantum statistical mechanics
Jaksic, Vojkan
statistical mechanics 3 8 FGR thermodynamics of the SEBB model 58 8.1 The weak coupling limitIntroduction to nonÂequilibrium quantum statistical mechanics W. Aschbacher 1 , V. JaksÅ¸iâ?? c 2 , Y, Germany 2 Department of Mathematics and Statistics McGill University 805 Sherbrooke Street West Montreal
Graph reconstruction and quantum statistical mechanics
NASA Astrophysics Data System (ADS)
Cornelissen, Gunther; Marcolli, Matilde
2013-10-01
We study how far it is possible to reconstruct a graph from various Banach algebras associated to its universal covering, and extensions thereof to quantum statistical mechanical systems. It turns out that most the boundary operator algebras reconstruct only topological information, but the statistical mechanical point of view allows for complete reconstruction of multigraphs with minimal degree three.
Inertial and gravitational mass in quantum mechanics
E. Kajari; N. L. Harshman; E. M. Rasel; S. Stenholm; G. Süßmann; W. P. Schleich
2010-01-01
We show that in complete agreement with classical mechanics, the dynamics of any quantum mechanical wave packet in a linear\\u000a gravitational potential involves the gravitational and the inertial mass only as their ratio. In contrast, the spatial modulation of the corresponding energy wave function is determined by the third root of the product of the two masses. Moreover, the discrete
Quantum mechanics: last stop for reductionism
Gabriele Carcassi
2012-03-16
The state space of a homogeneous body is derived under two different assumptions: infinitesimal reducibility and irreducibility. The first assumption leads to a real vector space, used in classical mechanics, while the second one leads to a complex vector space, used in quantum mechanics.
Quantum mechanics as applied mathematical statistics
Skala, L., E-mail: Lubomir.Skala@mff.cuni.cz [Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic); University of Waterloo, Department of Applied Mathematics, Waterloo, Ontario, Canada N2L 3G1 (Canada); Cizek, J. [Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic); University of Waterloo, Department of Applied Mathematics, Waterloo, Ontario, Canada N2L 3G1 (Canada); Kapsa, V. [Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic)
2011-05-15
Basic mathematical apparatus of quantum mechanics like the wave function, probability density, probability density current, coordinate and momentum operators, corresponding commutation relation, Schroedinger equation, kinetic energy, uncertainty relations and continuity equation is discussed from the point of view of mathematical statistics. It is shown that the basic structure of quantum mechanics can be understood as generalization of classical mechanics in which the statistical character of results of measurement of the coordinate and momentum is taken into account and the most important general properties of statistical theories are correctly respected.
C 1-Classification of Gapped Parent Hamiltonians of Quantum Spin Chains
NASA Astrophysics Data System (ADS)
Bachmann, Sven; Ogata, Yoshiko
2015-09-01
We consider the C 1-classification of gapped Hamiltonians introduced in Fannes et al. (Commun Math Phys 144:443-490, 1992) and Nachtergaele (Commun Math Phys 175:565-606, 1996) as parent Hamiltonians of translation invariant finitely correlated states. Within this family, we show that the number of edge modes, which is equal at the left and right edge, is the complete invariant. The construction proves that translation invariance of the `bulk' ground state does not need to be broken to establish C 1-equivalence, namely that the spin chain does not need to be blocked.
A dynamical time operator in Dirac's relativistic quantum mechanics
NASA Astrophysics Data System (ADS)
Bauer, M.
2014-03-01
A self-adjoint dynamical time operator is introduced in Dirac's relativistic formulation of quantum mechanics and shown to satisfy a commutation relation with the Hamiltonian analogous to that of the position and momentum operators. The ensuing time-energy uncertainty relation involves the uncertainty in the instant of time when the wave packet passes a particular spatial position and the energy uncertainty associated with the wave packet at the same time, as envisaged originally by Bohr. The instantaneous rate of change of the position expectation value with respect to the simultaneous expectation value of the dynamical time operator is shown to be the phase velocity, in agreement with de Broglie's hypothesis of a particle associated wave whose phase velocity is larger than c. Thus, these two elements of the original basis and interpretation of quantum mechanics are integrated into its formal mathematical structure. Pauli's objection is shown to be resolved or circumvented. Possible relevance to current developments in electron channeling, in interference in time, in Zitterbewegung-like effects in spintronics, graphene and superconducting systems and in cosmology is noted.
Quantum Mechanics, Spacetime Locality, and Gravity
NASA Astrophysics Data System (ADS)
Nomura, Yasunori
2013-08-01
Quantum mechanics introduces the concept of probability at the fundamental level, yielding the measurement problem. On the other hand, recent progress in cosmology has led to the "multiverse" picture, in which our observed universe is only one of the many, bringing an apparent arbitrariness in defining probabilities, called the measure problem. In this paper, we discuss how these two problems are related with each other, developing a picture for quantum measurement and cosmological histories in the quantum mechanical universe. In order to describe the cosmological dynamics correctly within the full quantum mechanical context, we need to identify the structure of the Hilbert space for a system with gravity. We argue that in order to keep spacetime locality, the Hilbert space for dynamical spacetime must be defined only in restricted spacetime regions: in and on the (stretched) apparent horizon as viewed from a fixed reference frame. This requirement arises from eliminating all the redundancies and overcountings in a general relativistic, global spacetime description of nature. It is responsible for horizon complementarity as well as the "observer dependence" of horizons/spacetime—these phenomena arise to represent changes of the reference frame in the relevant Hilbert space. This can be viewed as an extension of the Poincaré transformation in the quantum gravitational context. Given an initial condition, the evolution of the multiverse state obeys the laws of quantum mechanics—it evolves deterministically and unitarily. The beginning of the multiverse, however, is still an open issue.
Dynamics of localized states in extended supersymmetric quantum mechanics with multi-well potentials
Berezovoj, V P
2011-01-01
In this paper we propose a non-perturbative approach to the description of the temporal dynamics of localized states. This approach is based on exactly solvable quantum mechanical models with multi-well potentials and their propagators. States of Hamiltonians with multi-well potentials form a suitable basis for the expansion of wave packets with different forms and localizations. We also consider the properties of the tunneling of wave packets, taking into account all states of Hamiltonians with symmetric and asymmetric potentials, as well as their dependence on the degree of localization and deformations of potentials. The study the dynamics of initially localized states shows, that applicability of the two-state approximation for the description of tunneling is considerably limited. This is especially true for the systems, which have several states in the over--barrier region, as for example in modern superconducting quantum interference devises and traps for cold atoms.
Dynamics of localized states in extended supersymmetric quantum mechanics with multi-well potentials
V. P. Berezovoj; M. I. Konchatnij
2011-11-03
In this paper we propose a self--consistent approach to the description of temporal dynamics of localized states. This approach is based on exactly solvable quantum mechanical models with multi-well potentials and their propagators. States of Hamiltonians with multi-well potentials form a suitable basis for the expansion of wave packets with different shapes and localization degrees. We also consider properties of the tunneling wave packets, taking into account all states of Hamiltonians with symmetric and asymmetric potentials, as well as their dependence on the degree of localization and deformations of potentials. The study of the dynamics of initially localized states shows that application of the two-state approximation for the description of tunneling is considerably limited, especially for systems, which have several states in the under-barrier region, as for example in modern superconducting quantum interference devices and traps for cold atoms.
Thermalization mechanism for time-periodic finite isolated interacting quantum systems
Dong E. Liu
2014-10-11
We present a theory to describe thermalization mechanism for time-periodic finite isolated interacting quantum systems. The long time asymptote of natural observables in Floquet states is directly related to averages of these observables governed by a time-independent effective Hamiltonian. We prove that if the effective system is nonintegrable and satisfies eigenstate thermalization hypothesis, quantum states of such time-periodic isolated systems will thermalize. After a long time evolution, system will relax to a stationary state, which only depends on an initial energy of the effective Hamiltonian and follows a generalized eigenstate thermalization hypothesis. A numerical test for the periodically modulated Bose-Hubbard model, with the extra nearest neighbor interaction on the bosonic lattice, agrees with the theoretical predictions.
Local currents for a deformed algebra of quantum mechanics with a fundamental length scale
NASA Astrophysics Data System (ADS)
Goldin, Gerald A.; Sarkar, Sarben
2006-03-01
We explore some explicit representations of a certain stable deformed algebra of quantum mechanics, considered by R Vilela Mendes, having a fundamental length scale. The relation of the irreducible representations of the deformed algebra to those of the (limiting) Heisenberg algebra is discussed, and we construct the generalized harmonic oscillator Hamiltonian in this framework. To obtain local currents for this algebra, we extend the usual nonrelativistic local current algebra of vector fields and the corresponding group of diffeomorphisms, modelling the quantum configuration space as a commutative spatial manifold with one additional dimension.
ERIC Educational Resources Information Center
Oss, Stefano; Rosi, Tommaso
2015-01-01
We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many…
Quantum mechanism of Biological Search
Younghun Kwon
2006-05-09
We wish to suggest an algorithm for biological search including DNA search. Our argument supposes that biological search be performed by quantum search.If we assume this, we can naturally answer the following long lasting puzzles such that "Why does DNA use the helix structure?" and "How can the evolution in biological system occur?".
BOOK REVIEWS: Quantum Mechanics: Fundamentals
Kurt Gottfri; Tung-Mow Yan
2004-01-01
This review is of three books, all published by Springer, all on quantum theory at a level above introductory, but very different in content, style and intended audience. That of Gottfried and Yan is of exceptional interest, historical and otherwise. It is a second edition of Gottfried's well-known book published by Benjamin in 1966. This was written as a text
Canonical Relational Quantum Mechanics from Information Theory
Joakim Munkhammar
2011-01-07
In this paper we construct a theory of quantum mechanics based on Shannon information theory. We define a few principles regarding information-based frames of reference, including explicitly the concept of information covariance, and show how an ensemble of all possible physical states can be setup on the basis of the accessible information in the local frame of reference. In the next step the Bayesian principle of maximum entropy is utilized in order to constrain the dynamics. We then show, with the aid of Lisi's universal action reservoir approach, that the dynamics is equivalent to that of quantum mechanics. Thereby we show that quantum mechanics emerges when classical physics is subject to incomplete information. We also show that the proposed theory is relational and that it in fact is a path integral version of Rovelli's relational quantum mechanics. Furthermore we give a discussion on the relation between the proposed theory and quantum mechanics, in particular the role of observation and correspondence to classical physics is addressed. In addition to this we derive a general form of entropy associated with the information covariance of the local reference frame. Finally we give a discussion and some open problems.
Luiz C L Botelho
2012-07-02
We present an illustrative application of the two famous mathematical theorems in differential topology in order to show the existence of periodic orbits with arbitrary given period for a class of hamiltonians .This result point out for a mathematical answer for the long standing problem of existence of Planetary Sistems around stars.
Testing the limits of quantum mechanical superpositions
Markus Arndt; Klaus Hornberger
2014-10-01
Quantum physics has intrigued scientists and philosophers alike, because it challenges our notions of reality and locality--concepts that we have grown to rely on in our macroscopic world. It is an intriguing open question whether the linearity of quantum mechanics extends into the macroscopic domain. Scientific progress over the last decades inspires hope that this debate may be decided by table-top experiments.
Classical Structures in Quantum Mechanics and Applications
Augusto Cesar Lobo; Clyffe de Assis Ribeiro
2012-12-21
The theory of Non-Relativistic Quantum Mechanics was created (or discovered) back in the 1920's mainly by Schr\\"odinger and Heisenberg, but it is fair enough to say that a more modern and unified approach to the subject was introduced by Dirac and Jordan with their (intrinsic) Transformation Theory. In his famous text book on quantum mechanics [1], Dirac introduced his well-known bra and ket notation and a view that even Einstein (who was, as well known, very critical towards the general quantum physical world-view) considered the most elegant presentation of the theory at that time[2]. One characteristic of this formulation is that the observables of position and momentum are truly treated equally so that an intrinsic phase-space approach seems a natural course to be taken. In fact, we may distinguish at least two different quantum mechanical approaches to the structure of the quantum phase space: The Weyl-Wigner (WW) formalism and the advent of the theory of Coherent States (CS). The Weyl-Wigner formalism has had many applications ranging from the discussion of the Classical/Quantum Mechanical transition and quantum chaos to signal analysis[3,4]. The Coherent State formalism had a profound impact on Quantum Optics and during the course of time has found applications in diverse areas such as geometric quantization, wavelet and harmonic analysis [5]. In this chapter we present a compact review of these formalisms (with also a more intrinsic and coordinate independent notation) towards some non-standard and up-to-date applications such as modular variables and weak values.
On Time. 6b: Quantum Mechanical Time
C. K. Raju
2008-08-09
The existence of small amounts of advanced radiation, or a tilt in the arrow of time, makes the basic equations of physics mixed-type functional differential equations. The novel features of such equations point to a microphysical structure of time. This corresponds to a change of logic at the microphysical level. We show that the resulting logic is a quantum logic. This provides a natural and rigorous explanation of quantum interference. This structured-time interpretation of quantum mechanics is briefly compared with various other interpretations of q.m.
Optimal guidance law in quantum mechanics
Yang, Ciann-Dong, E-mail: cdyang@mail.ncku.edu.tw; Cheng, Lieh-Lieh, E-mail: leo8101@hotmail.com
2013-11-15
Following de Broglie’s idea of a pilot wave, this paper treats quantum mechanics as a problem of stochastic optimal guidance law design. The guidance scenario considered in the quantum world is that an electron is the flight vehicle to be guided and its accompanying pilot wave is the guidance law to be designed so as to guide the electron to a random target driven by the Wiener process, while minimizing a cost-to-go function. After solving the stochastic optimal guidance problem by differential dynamic programming, we point out that the optimal pilot wave guiding the particle’s motion is just the wavefunction ?(t,x), a solution to the Schrödinger equation; meanwhile, the closed-loop guidance system forms a complex state–space dynamics for ?(t,x), from which quantum operators emerge naturally. Quantum trajectories under the action of the optimal guidance law are solved and their statistical distribution is shown to coincide with the prediction of the probability density function ?{sup ?}?. -- Highlights: •Treating quantum mechanics as a pursuit-evasion game. •Reveal an interesting analogy between guided flight motion and guided quantum motion. •Solve optimal quantum guidance problem by dynamic programming. •Gives a formal proof of de Broglie–Bohm’s idea of a pilot wave. •The optimal pilot wave is shown to be a wavefunction solved from Schrödinger equation.
CLNS 96/1443 Peculiarities of Quantum Mechanics
CLNS 96/1443 REVISED Peculiarities of Quantum Mechanics: Origins and Meaning 1 Yuri F. Orlov Floyd The most peculiar, specifically quantum, features of quantum mechanics --- quan tum nonlocality mechanics 1 This paper, to be presented to the Nordic Symposium on Basic Problems in Quantum Physics, June
Emergent quantum mechanics of finances
NASA Astrophysics Data System (ADS)
Nastasiuk, Vadim A.
2014-06-01
This paper is an attempt at understanding the quantum-like dynamics of financial markets in terms of non-differentiable price-time continuum having fractal properties. The main steps of this development are the statistical scaling, the non-differentiability hypothesis, and the equations of motion entailed by this hypothesis. From perspective of the proposed theory the dynamics of S&P500 index are analyzed.
Multichannel framework for singular quantum mechanics
Camblong, Horacio E.; Epele, Luis N.; Fanchiotti, Huner; García Canal, Carlos A.; Ordóñez, Carlos R.
2014-01-15
A multichannel S-matrix framework for singular quantum mechanics (SQM) subsumes the renormalization and self-adjoint extension methods and resolves its boundary-condition ambiguities. In addition to the standard channel accessible to a distant (“asymptotic”) observer, one supplementary channel opens up at each coordinate singularity, where local outgoing and ingoing singularity waves coexist. The channels are linked by a fully unitary S-matrix, which governs all possible scenarios, including cases with an apparent nonunitary behavior as viewed from asymptotic distances. -- Highlights: •A multichannel framework is proposed for singular quantum mechanics and analogues. •The framework unifies several established approaches for singular potentials. •Singular points are treated as new scattering channels. •Nonunitary asymptotic behavior is subsumed in a unitary multichannel S-matrix. •Conformal quantum mechanics and the inverse quartic potential are highlighted.
The Quantum Mechanical Arrows of Time
NASA Astrophysics Data System (ADS)
Hartle, James B.
The familiar textbook quantum mechanics of laboratory measurements incorporates a quantum mechanical arrow of time—the direction in time in which state vector reduction operates. This arrow is usually assumed to coincide with the direction of the thermodynamic arrow of the quasiclassical realm of everyday experience. But in the more general context of cosmology we seek an explanation of all observed arrows, and the relations between them, in terms of the conditions that specify our particular universe. This paper investigates quantum mechanical and thermodynamic arrows in a time-neutral formulation of quantum mechanics for a number of model cosmologies in fixed background spacetimes. We find that a general universe may not have well defined arrows of either kind. When arrows are emergent they need not point in the same direction over the whole of spacetime. Rather they may be local, pointing in different directions in different spacetime regions. Local arrows can therefore be consistent with global time symmetry. [Editors note: for a video of the talk given by Prof. Hartle at the Aharonov-80 conference in 2012 at Chapman University, see http://quantum.chapman.edu/talk-15.
Quantum Chaos via the Quantum Action
H. Kröger
2002-12-16
We discuss the concept of the quantum action with the purpose to characterize and quantitatively compute quantum chaos. As an example we consider in quantum mechanics a 2-D Hamiltonian system - harmonic oscillators with anharmonic coupling - which is classically a chaotic system. We compare Poincar\\'e sections obtained from the quantum action with those from the classical action.
Inertial and gravitational mass in quantum mechanics
E. Kajari; N. L. Harshman; E. M. Rasel; S. Stenholm; G. Süßmann; W. P. Schleich
2010-06-15
We show that in complete agreement with classical mechanics, the dynamics of any quantum mechanical wave packet in a linear gravitational potential involves the gravitational and the inertial mass only as their ratio. In contrast, the spatial modulation of the corresponding energy wave function is determined by the third root of the product of the two masses. Moreover, the discrete energy spectrum of a particle constrained in its motion by a linear gravitational potential and an infinitely steep wall depends on the inertial as well as the gravitational mass with different fractional powers. This feature might open a new avenue in quantum tests of the universality of free fall.
Two basic Uncertainty Relations in Quantum Mechanics
Angelow, Andrey [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko chaussee, 1784 Sofia (Bulgaria)
2011-04-07
In the present article, we discuss two types of uncertainty relations in Quantum Mechanics-multiplicative and additive inequalities for two canonical observables. The multiplicative uncertainty relation was discovered by Heisenberg. Few years later (1930) Erwin Schroedinger has generalized and made it more precise than the original. The additive uncertainty relation is based on the three independent statistical moments in Quantum Mechanics-Cov(q,p), Var(q) and Var(p). We discuss the existing symmetry of both types of relations and applicability of the additive form for the estimation of the total error.
Maxim Konyushikhin
2012-04-05
We study certain new models of supersymmetric quantum mechanics. The explicit form of the corresponding superfield and component actions, as well as of the quantum Hamiltonians and supercharges is given. It is shown that the Hamiltonian H=D*D, where D is flat four-dimensional Dirac operator in an external self-dual gauge background, Abelian or non-Abelian, is supersymmetric with N=4 supersymmetry. A generalization of this Hamiltonian to the motion on a curved conformally flat four-dimensional manifold exists. For an Abelian self-dual background, the corresponding Lagrangian can be derived from certain harmonic superspace expressions. If the Hamiltonian involves a non-Abelian self-dual gauge field, one can construct the Lagrangian formulation of it by introducing auxiliary bosonic variables with Wess-Zumino type action. For a special class of such Lagrangians when the gauge group is SU(2) and the gauge field is expressed in the `t Hooft ansatz form, it is possible to give a superfield description using the harmonic superspace formalism. As a new explicit example, the N=4 mechanics with Yang monopole in R^5 (= instanton on S^4) is considered. Independently, a similar system with N=4 supersymmetry in three dimensions also admits the superfield description. Although the three-dimensional system involves different superfields, its component Lagrangian and Hamiltonian appear to be the three-dimensional reduction of the mentioned four-dimensional system. The off-shell N=4 supersymmetry requires the gauge field to be a static form of the 't Hooft ansatz for the four-dimensional self-dual SU(2) gauge fields, that is a particular solution of Bogomolny equations for BPS monopoles.
Mossbauer neutrinos in quantum mechanics and quantum field theory
Joachim Kopp
2009-06-12
We demonstrate the correspondence between quantum mechanical and quantum field theoretical descriptions of Mossbauer neutrino oscillations. First, we compute the combined rate $\\Gamma$ of Mossbauer neutrino emission, propagation, and detection in quantum field theory, treating the neutrino as an internal line of a tree level Feynman diagram. We include explicitly the effect of homogeneous line broadening due to fluctuating electromagnetic fields in the source and detector crystals and show that the resulting formula for $\\Gamma$ is identical to the one obtained previously (Akhmedov et al., arXiv:0802.2513) for the case of inhomogeneous line broadening. We then proceed to a quantum mechanical treatment of Mossbauer neutrinos and show that the oscillation, coherence, and resonance terms from the field theoretical result can be reproduced if the neutrino is described as a superposition of Lorentz-shaped wave packet with appropriately chosen energies and widths. On the other hand, the emission rate and the detection cross section, including localization and Lamb-Mossbauer terms, cannot be predicted in quantum mechanics and have to be put in by hand.
Nambu Quantum Mechanics on Discrete 3-Tori
M. Axenides; E. G. Floratos; S. Nicolis
2009-01-17
We propose a quantization of linear, volume preserving, maps on the discrete and finite 3-torus T_N^3 represented by elements of the group SL(3,Z_N). These flows can be considered as special motions of the Nambu dynamics (linear Nambu flows) in the three dimensional toroidal phase space and are characterized by invariant vectors, a, of T_N^3. We quantize all such flows which are necessarily restricted on a planar two-dimensional phase space, embedded in the 3-torus, transverse to the vector a . The corresponding maps belong to the little group of the vector a in SL(3,Z_N) which is an SL(2,Z_N) subgroup. The associated linear Nambu maps are generated by a pair of linear and quadratic Hamiltonians (Clebsch-Monge potentials of the flow) and the corresponding quantum maps, realize the metaplectic representation of SL(3,Z_N) on the discrete group of three dimensional magnetic translations i.e. the non-commutative 3-torus with deformation parameter the N-th root of unity. Other potential applications of our construction are related to the quantization of deterministic chaos in turbulent maps as well as to quantum tomography of three dimensional objects.
Fuzzy quantum logic II. The logics of unsharp quantum mechanics
NASA Astrophysics Data System (ADS)
Cattaneo, Gianpiero
1993-10-01
A survey of the main results of the Italian group about the logics of unsharp quantum mechanics is presented. In particular partial ordered structures playing with respect to effect operators (linear bounded operators F on a Hilbert space ? such that ????, 0?????2) the role played by orthomodular posets with respect to orthogonal projections (corresponding to “sharp” effects) are analyzed. These structures are generally characterized by the splitting of standard orthocomplementation on projectors into two nonusual orthocomplementations (a fuzzy-like and an intuitionistic-like) giving rise to different kinds of Brouwer-Zadeh (BZ) posets: de Morgan BZ posets, BZ* posets, and BZ3 posets. Physically relevant generalizations of ortho-pair semantics (paraconsistent, regular paraconsistent, and minimal quantum logics) are introduced and their relevance with respect to the logic of unsharp quantum mechanics are discussed.
Quantum Energy Expectation in Periodic Time-Dependent hamiltonians via Green Functions
Cesar R. de Oliveira; Mariza S. Simsen
2009-07-31
Let $U_F$ be the Floquet operator of a time periodic hamiltonian $H(t)$. For each positive and discrete observable $A$ (which we call a {\\em probe energy}), we derive a formula for the Laplace time average of its expectation value up to time $T$ in terms of its eigenvalues and Green functions at the circle of radius $e^{1/T}$. Some simple applications are provided which support its usefulness.
Koller, Andrew; Olshanii, Maxim [Department of Physics, University of Massachusetts Boston, Boston, Massachusetts 02125 (United States)
2011-12-15
We present a case demonstrating the connection between supersymmetric quantum mechanics (SUSYQM), reflectionless scattering, and soliton solutions of integrable partial differential equations. We show that the members of a class of reflectionless Hamiltonians, namely, Akulin's Hamiltonians, are connected via supersymmetric chains to a potential-free Hamiltonian, explaining their reflectionless nature. While the reflectionless property in question has been mentioned in the literature for over two decades, the enabling algebraic mechanism was previously unknown. Our results indicate that the multisoliton solutions of the sine-Gordon and nonlinear Schroedinger equations can be systematically generated via the supersymmetric chains connecting Akulin's Hamiltonians. Our findings also explain a well-known but little-understood effect in laser physics: when a two-level atom, initially in the ground state, is subjected to a laser pulse of the form V(t)=(n({h_bar}/2{pi})/{tau})/cosh(t/{tau}), with n being an integer and {tau} being the pulse duration, it remains in the ground state after the pulse has been applied, for any choice of the laser detuning.
NASA Astrophysics Data System (ADS)
Lu, Zhenyu; Yang, Weitao
2004-07-01
Combined ab initio quantum mechanical and molecular mechanical calculations have been widely used for modeling chemical reactions in complex systems such as enzymes, with most applications being based on the determination of a minimum energy path connecting the reactant through the transition state to the product in the enzyme environment. However, statistical mechanics sampling and reaction dynamics calculations with a combined ab initio quantum mechanical (QM) and molecular mechanical (MM) potential are still not feasible because of the computational costs associated mainly with the ab initio quantum mechanical calculations for the QM subsystem. To address this issue, a reaction path potential energy surface is developed here for statistical mechanics and dynamics simulation of chemical reactions in enzymes and other complex systems. The reaction path potential follows the ideas from the reaction path Hamiltonian of Miller, Handy and Adams for gas phase chemical reactions but is designed specifically for large systems that are described with combined ab initio quantum mechanical and molecular mechanical methods. The reaction path potential is an analytical energy expression of the combined quantum mechanical and molecular mechanical potential energy along the minimum energy path. An expansion around the minimum energy path is made in both the nuclear and the electronic degrees of freedom for the QM subsystem internal energy, while the energy of the subsystem described with MM remains unchanged from that in the combined quantum mechanical and molecular mechanical expression and the electrostatic interaction between the QM and MM subsystems is described as the interaction of the MM charges with the QM charges. The QM charges are polarizable in response to the changes in both the MM and the QM degrees of freedom through a new response kernel developed in the present work. The input data for constructing the reaction path potential are energies, vibrational frequencies, and electron density response properties of the QM subsystem along the minimum energy path, all of which can be obtained from the combined quantum mechanical and molecular mechanical calculations. Once constructed, it costs much less for its evaluation. Thus, the reaction path potential provides a potential energy surface for rigorous statistical mechanics and reaction dynamics calculations of complex systems. As an example, the method is applied to the statistical mechanical calculations for the potential of mean force of the chemical reaction in triosephosphate isomerase.
Asymptotic freedom in the front-form Hamiltonian for quantum chromodynamics of gluons
NASA Astrophysics Data System (ADS)
Gómez-Rocha, María; G?azek, Stanis?aw D.
2015-09-01
Asymptotic freedom of gluons in pure-gauge QCD is obtained in the leading terms of their renormalized Hamiltonian in the Fock space, instead of considering virtual Green's functions or scattering amplitudes. Namely, we calculate the three-gluon interaction term in the effective front-form Hamiltonian for gluons in the Minkowski space-time using the renormalization group procedure for effective particles (RGPEP), with a new generator. The resulting three-gluon vertex is a function of the scale parameter, s , that has an interpretation of the size of effective gluons. The corresponding Hamiltonian running coupling constant, g?, depending on the associated momentum scale ? =1 /s , is calculated in the series expansion in powers of g0=g? 0 up to the terms of third order, assuming some small value for g0 at some large ?0. The result exhibits the same finite sensitivity to small-x regularization as the one obtained in an earlier RGPEP calculation, but the new calculation is simpler than the earlier one because of a simpler generator. This result establishes a degree of universality for pure-gauge QCD in the RGPEP.
Three-Hilbert-Space Formulation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Znojil, Miloslav
2009-01-01
In paper [Znojil M., Phys. Rev. D 78 (2008), 085003, 5 pages, arXiv:0809.2874] the two-Hilbert-space (2HS, a.k.a. cryptohermitian) formulation of Quantum Mechanics has been revisited. In the present continuation of this study (with the spaces in question denoted as H(auxiliary) and H(standard)) we spot a weak point of the 2HS formalism which lies in the double role played by H(auxiliary). As long as this confluence of roles may (and did!) lead to confusion in the literature, we propose an amended, three-Hilbert-space (3HS) reformulation of the same theory. As a byproduct of our analysis of the formalism we offer an amendment of the Dirac's bra-ket notation and we also show how its use clarifies the concept of covariance in time-dependent cases. Via an elementary example we finally explain why in certain quantum systems the generator H(gen) of the time-evolution of the wave functions may differ from their Hamiltonian H.
Macroscopic Quantum Mechanics in a Classical Spacetime
Huan Yang; Haixing Miao; Da-Shin Lee; Bassam Helou; Yanbei Chen
2013-04-23
We apply the many-particle Schr\\"{o}dinger-Newton equation, which describes the co-evolution of an many-particle quantum wave function and a classical space-time geometry, to macroscopic mechanical objects. By averaging over motions of the objects' internal degrees of freedom, we obtain an effective Schr\\"odinger-Newton equation for their centers of mass, which are degrees of freedom that can be monitored and manipulated at the quantum mechanical levels by state-of-the-art optoemchanics experiments. For a single macroscopic object moving quantum mechanically within a harmonic potential well, we found that its quantum uncertainty evolves in a different frequency from its classical eigenfrequency --- with a difference that depends on the internal structure of the object, and can be observable using current technology. For several objects, the Schr\\"odinger-Newton equation predicts semiclassical motions just like Newtonian physics, yet they do not allow quantum uncertainty to be transferred from one object to another through gravity.
Two-dimensional supersymmetry: From SUSY quantum mechanics to integrable classical models
Ioffe, M.V. [Department of Theoretical Physics, Sankt-Petersburg State University, 198504 St. Petersburg (Russian Federation) and Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, 47071 Valladolid (Spain)]. E-mail: m.ioffe@pobox.spbu.ru; Guilarte, J. Mateos [Departamento de Fisica Fundamental and IUFFyM, Facultad de Sciencias, Universidad de Salamanca, 37008 Salamanca (Spain)]. E-mail: guilarte@usal.es; Valinevich, P.A. [Department of Theoretical Physics, Sankt-Petersburg State University, 198504 St. Petersburg (Russian Federation)]. E-mail: pavel@PV7784.spb.edu
2006-11-15
Two known two-dimensional SUSY quantum mechanical constructions-the direct generalization of SUSY with first-order supercharges and higher-order SUSY with second-order supercharges-are combined for a class of 2-dim quantum models, which are not amenable to separation of variables. The appropriate classical limit of quantum systems allows us to construct SUSY-extensions of original classical scalar Hamiltonians. Special emphasis is placed on the symmetry properties of the models thus obtained-the explicit expressions of quantum symmetry operators and of classical integrals of motion are given for all (scalar and matrix) components of SUSY-extensions. Using Grassmanian variables, the symmetry operators and classical integrals of motion are written in a unique form for the whole Superhamiltonian. The links of the approach to the classical Hamilton-Jacobi method for related 'flipped' potentials are established.
Perturbation theory for quantum-mechanical observables
J. D. Franson; Michelle M. Donegan
2002-01-28
The quantum-mechanical state vector is not directly observable even though it is the fundamental variable that appears in Schrodinger's equation. In conventional time-dependent perturbation theory, the state vector must be calculated before the experimentally-observable expectation values of relevant operators can be computed. We discuss an alternative form of time-dependent perturbation theory in which the observable expectation values are calculated directly and expressed in the form of nested commutators. This result is consistent with the fact that the commutation relations determine the properties of a quantum system, while the commutators often have a form that simplifies the calculation and avoids canceling terms. The usefulness of this method is illustrated using several problems of interest in quantum optics and quantum information processing.
Quantum mechanics and the time travel paradox
David T. Pegg
2005-06-17
The closed causal chains arising from backward time travel do not lead to paradoxes if they are self consistent. This raises the question as to how physics ensures that only self-consistent loops are possible. We show that, for one particular case at least, the condition of self consistency is ensured by the interference of quantum mechanical amplitudes associated with the loop. If this can be applied to all loops then we have a mechanism by which inconsistent loops eliminate themselves.
Mechanism of the quantum speed-up
Giuseppe Castagnoli
2011-05-23
We explain the mechanism of the quantum speed-up - quantum algorithms requiring fewer computation steps than their classical equivalent - for a family of algorithms. Bob chooses a function and gives to Alice the black box that computes it. Alice, without knowing Bob's choice, should find a character of the function (e. g. its period) by computing its value for different arguments. There is naturally correlation between Bob's choice and the solution found by Alice. We show that, in quantum algorithms, this correlation becomes quantum. This highlights an overlooked measurement problem: sharing between two measurements the determination of correlated (thus redundant) measurement outcomes. Solving this problem explains the speed-up. All is like Alice, by reading the solution at the end of the algorithm, contributed to the initial choice of Bob, for half of it in quantum superposition for all the possible ways of taking this half. This contribution, back evolved to before running the algorithm, where Bob's choice is located, becomes Alice knowing in advance half of this choice. The quantum algorithm is the quantum superposition of all the possible ways of taking half of Bob's choice and, given the advanced knowledge of it, classically computing the missing half. This yields a speed-up with respect to the classical case where, initially, Bob's choice is completely unknown to Alice.
Using quantum mechanics to synthesize electronic devices
NASA Astrophysics Data System (ADS)
Schmidt, Petra; Levi, Anthony
2005-03-01
Adaptive quantum design [1] has been used to explore the possibility of creating new classes of electronic semiconductor devices. We show how non-equilibrium electron transmission through a synthesized conduction band potential profile can be used to obtain a desired current - voltage characteristic. We illustrate our methodology by designing a two-terminal linear resistive element in which current is limited by quantum mechanical transmission through a potential profile and power is dissipated non-locally in the electrodes. As electronic devices scale to dimensions in which the physics of operation is dominated by quantum mechanical effects, classical designs fail to deliver the desired functionality. Our device synthesis approach is a way to realize device functionality that may not otherwise be achieved. [1] Y.Chen, R.Yu, W.Li, O.Nohadani, S.Haas, A.F.J. Levi, Journal of Applied Physics, Vol.94, No.9, p6065, 2003
CPT and Quantum Mechanics Tests with Kaons
Jose Bernabeu; John Ellis; Nick E. Mavromatos; Dimitri V. Nanopoulos; Joannis Papavassiliou
2006-07-28
In this review we first discuss the theoretical motivations for possible CPT violation and deviations from ordinary quantum-mechanical behavior of field-theoretic systems in the context of an extended class of quantum-gravity models. Then we proceed to a description of precision tests of CPT symmetry using mainly neutral kaons. We emphasize the possibly unique role of neutral meson factories in providing specific tests of models where the quantum-mechanical CPT operator is not well-defined, leading to modifications of Einstein-Podolsky-Rosen particle correlators. Finally, we present tests of CPT, T, and CP using charged kaons, and in particular K_l4 decays, which are interesting due to the high statistics attainable in experiments.
Emergence of Quantum Mechanics from a Sub-Quantum Statistical Mechanics
NASA Astrophysics Data System (ADS)
Grössing, Gerhard
2015-10-01
A research program within the scope of theories on "Emergent Quantum Mechanics" is presented, which has gained some momentum in recent years. Via the modeling of a quantum system as a non-equilibrium steady-state maintained by a permanent throughput of energy from the zero-point vacuum, the quantum is considered as an emergent system. We implement a specific "bouncer-walker" model in the context of an assumed sub-quantum statistical physics, in analogy to the results of experiments by Couder and Fort on a classical wave-particle duality. We can thus give an explanation of various quantum mechanical features and results on the basis of a "21st century classical physics", such as the appearance of Planck's constant, the Schrödinger equation, etc. An essential result is given by the proof that averaged particle trajectories' behaviors correspond to a specific type of anomalous diffusion termed "ballistic" diffusion on a sub-quantum level...
A proof of von Neumann's postulate in Quantum Mechanics
Conte, Elio [Department of Pharmacology and Human Physiology, TIRES-Center for Innovative Technologies for Signal Detection and Processing, Department of Physics, University of Bari (Italy) and School of Advanced International Studies for Applied Theoretical and Non Linear Methodologies of Physics, Bari (Italy)
2010-05-04
A Clifford algebraic analysis is explained. It gives proof of von Neumann's postulate on quantum measurement. It is of basic significance to explain the problem of quantum wave function reduction in quantum mechanics.
The Poincare-Birkhoff theorem in Quantum Mechanics
D. A. Wisniacki; M. Saraceno; F. J. Arranz; R. M. Benito; F. Borondo
2011-05-07
Quantum manifestations of the dynamics around resonant tori in perturbed Hamiltonian systems, dictated by the Poincar\\'e--Birkhoff theorem, are shown to exist. They are embedded in the interactions involving states which differ in a number of quanta equal to the order of the classical resonance. Moreover, the associated classical phase space structures are mimicked in the quasiprobability density functions and their zeros.
A tossed coin as quantum mechanical object
Soiguine, Alexander M
2013-01-01
Comprehensive and physically consistent model of a tossed coin is presented in terms of geometric algebra. The model clearly shows that there is nothing elementary particle specific in the half-spin quantum mechanical formalism. It also demonstrates what really is behind this formalism, feasibly reveals the probabilistic meaning of wave function.
Quantum Mechanics Studies of Cellobiose Conformations
Technology Transfer Automated Retrieval System (TEKTRAN)
Three regions of the Phi,Psi space of cellobiose were analyzed with quantum mechanics. A central region, in which most crystal structures are found, was covered by a 9 x 9 grid of 20° increments of Phi and Psi. Besides these 81 constrained minimizations, we studied two central sub-regions and two re...
Quantum mechanical model for Maya Blue
María E. Fuentes; Brisa Peña; César Contreras; Ana L. Montero; Russell Chianelli; Manuel Alvarado; Ramón Olivas; Luz M. Rodríguez; Héctor Camacho; Luis A. Montero-Cabrera
2008-01-01
This work is about Maya Blue (MB), a pigment developed by Mesoamerican civilizations between the 5th and 16th centuries from an aluminosilicate mineral (palygorskite) and an organic dye (indigo). Two different supramolecular quantum-mechanical models afford explanations for the unusual stability of MB based on the oxidation of the indigo molecule during the heating process and its interaction with palygorskite. A
Errata and Addenda Elements of Quantum Mechanics
Fayer, Michael D.
Errata and Addenda Elements of Quantum Mechanics Michael D. Fayer Oxford University Press If you find errors in the book, please email them to fayer@stanford.edu. Last update: October 13, 2014 Chapter radial distribution, which shows the relative probability of finding a
The geometric semantics of algebraic quantum mechanics.
Cruz Morales, John Alexander; Zilber, Boris
2015-08-01
In this paper, we will present an ongoing project that aims to use model theory as a suitable mathematical setting for studying the formalism of quantum mechanics. We argue that this approach provides a geometric semantics for such a formalism by means of establishing a (non-commutative) duality between certain algebraic and geometric objects. PMID:26124252
New Trajectory Interpretation of Quantum Mechanics
P. R. Holland
1998-01-01
It was shown by de Broglie and Bohm that the concept of a deterministic particle trajectory is compatible with quantum mechanics. It is demonstrated by explicit construction that there exists another more general deterministic trajectory interpretation. The method exploits an internal angular degree of freedom that is implicit in the Schrödinger equation, in addition to the particle position. The de
WEAK MEASUREMENT IN QUANTUM MECHANICS ABRAHAM NEBEN
Rosner, Jonathan L.
WEAK MEASUREMENT IN QUANTUM MECHANICS ABRAHAM NEBEN PHYS 342 Final Project March 10, 2011 Contents of Postselection 4 4. Impossible Spin Measurements 5 5. Hardy's Paradox 5 6. Controversy over Weak Measurement 8 7 of a Measurement of a Component of the Spin of a Spin-1/2 Particle Can Turn Out to be 100." [1] The topic
Quantum Mechanical Effects in Gravitational Collapse
Eric Greenwood
2010-01-12
In this thesis we investigate quantum mechanical effects to various aspects of gravitational collapse. These quantum mechanical effects are implemented in the context of the Functional Schr\\"odinger formalism. The Functional Schr\\"odinger formalism allows us to investigate the time-dependent evolutions of the quantum mechanical effects, which is beyond the scope of the usual methods used to investigate the quantum mechanical corrections of gravitational collapse. Utilizing the time-dependent nature of the Functional Schr\\"odinger formalism, we study the quantization of a spherically symmetric domain wall from the view point of an asymptotic and infalling observer, in the absence of radiation. To build a more realistic picture, we then study the time-dependent nature of the induced radiation during the collapse using a semi-classical approach. Using the domain wall and the induced radiation, we then study the time-dependent evolution of the entropy of the domain wall. Finally we make some remarks about the possible inclusion of backreaction into the system.
Is Quantum Mechanics needed to explain consciousness ?
Knud Thomsen
2007-11-13
In this short comment to a recent contribution by E. Manousakis [1] it is argued that the reported agreement between the measured time evolution of conscious states during binocular rivalry and predictions derived from quantum mechanical formalisms does not require any direct effect of QM. The recursive consumption analysis process in the Ouroboros Model can yield the same behavior.