Relativistic Quantum Mechanics and Field Theory
NASA Astrophysics Data System (ADS)
Gross, Franz
1999-04-01
An accessible, comprehensive reference to modern quantum mechanics and field theory. In surveying available books on advanced quantum mechanics and field theory, Franz Gross determined that while established books were outdated, newer titles tended to focus on recent developments and disregard the basics. Relativistic Quantum Mechanics and Field Theory fills this striking gap in the field. With a strong emphasis on applications to practical problems as well as calculations, Dr. Gross provides complete, up-to-date coverage of both elementary and advanced topics essential for a well-rounded understanding of the field. Developing the material at a level accessible even to newcomers to quantum mechanics, the book begins with topics that every physicist should know-quantization of the electromagnetic field, relativistic one body wave equations, and the theoretical explanation of atomic decay. Subsequent chapters prepare readers for advanced work, covering such major topics as gauge theories, path integral techniques, spontaneous symmetry breaking, and an introduction to QCD, chiral symmetry, and the Standard Model. A special chapter is devoted to relativistic bound state wave equations-an important topic that is often overlooked in other books. Clear and concise throughout, Relativistic Quantum Mechanics and Field Theory boasts examples from atomic and nuclear physics as well as particle physics, and includes appendices with background material. It is an essential reference for anyone working in quantum mechanics today.
Quantum mechanics of 4-derivative theories
NASA Astrophysics Data System (ADS)
Salvio, Alberto; Strumia, Alessandro
2016-04-01
A renormalizable theory of gravity is obtained if the dimension-less 4-derivative kinetic term of the graviton, which classically suffers from negative unbounded energy, admits a sensible quantization. We find that a 4-derivative degree of freedom involves a canonical coordinate with unusual time-inversion parity, and that a correspondingly unusual representation must be employed for the relative quantum operator. The resulting theory has positive energy eigenvalues, normalizable wavefunctions, unitary evolution in a negative-norm configuration space. We present a formalism for quantum mechanics with a generic norm.
Quantum Probability Theory and the Foundations of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Fröhlich, Jürg; Schubnel, Baptiste
By and large, people are better at coining expressions than at filling them with interesting, concrete contents. Thus, it may not be very surprising that there are many professional probabilists who may have heard the expression but do not appear to be aware of the need to develop "quantum probability theory" into a thriving, rich, useful field featured at meetings and conferences on probability theory. Although our aim, in this essay, is not to contribute new results on quantum probability theory, we hope to be able to let the reader feel the enormous potential and richness of this field. What we intend to do, in the following, is to contribute some novel points of view to the "foundations of quantum mechanics", using mathematical tools from "quantum probability theory" (such as the theory of operator algebras).
Quantum mechanical generalization of the balistic electron wind theory
NASA Astrophysics Data System (ADS)
Lacina, A.
1980-06-01
The Fiks' quasiclassical theory of the electron wind force is quantum mechanically generalized. Within the framework of this generalization the space dependence of the electron wind force is calculated in the vicinity of an interface between two media. It is found that quantum corrections may be comparable with or even greater than corresponding quasiclassical values.
Quantum Hamilton Mechanics and the Theory of Quantization Conditions
NASA Astrophysics Data System (ADS)
Bracken, Paul
A formulation of quantum mechanics in terms of complex canonical variables is presented. It is seen that these variables are governed by Hamilton's equations. It is shown that the action variables need to be quantized. By formulating a quantum Hamilton equation for the momentum variable, the energies for two different systems are determined. Quantum canonical transformation theory is introduced and the geometrical significance of a set of generalized quantization conditions which are obtained is discussed.
Spin Kinetic Models of Plasmas - Semiclassical and Quantum Mechanical Theory
Brodin, Gert; Marklund, Mattias; Zamanian, Jens
2009-11-10
In this work a recently published semiclassical spin kinetic model, generalizing those of previous authors are discussed. Some previously described properties are reviewed, and a new example illustrating the theory is presented. The generalization to a fully quantum mechanical description is discussed, and the main features of such a theory is outlined. Finally, the main conclusions are presented.
A modified Lax-Phillips scattering theory for quantum mechanics
NASA Astrophysics Data System (ADS)
Strauss, Y.
2015-07-01
The Lax-Phillips scattering theory is an appealing abstract framework for the analysis of scattering resonances. Quantum mechanical adaptations of the theory have been proposed. However, since these quantum adaptations essentially retain the original structure of the theory, assuming the existence of incoming and outgoing subspaces for the evolution and requiring the spectrum of the generator of evolution to be unbounded from below, their range of applications is rather limited. In this paper, it is shown that if we replace the assumption regarding the existence of incoming and outgoing subspaces by the assumption of the existence of Lyapunov operators for the quantum evolution (the existence of which has been proved for certain classes of quantum mechanical scattering problems), then it is possible to construct a structure analogous to the Lax-Phillips structure for scattering problems for which the spectrum of the generator of evolution is bounded from below.
A modified Lax-Phillips scattering theory for quantum mechanics
Strauss, Y.
2015-07-15
The Lax-Phillips scattering theory is an appealing abstract framework for the analysis of scattering resonances. Quantum mechanical adaptations of the theory have been proposed. However, since these quantum adaptations essentially retain the original structure of the theory, assuming the existence of incoming and outgoing subspaces for the evolution and requiring the spectrum of the generator of evolution to be unbounded from below, their range of applications is rather limited. In this paper, it is shown that if we replace the assumption regarding the existence of incoming and outgoing subspaces by the assumption of the existence of Lyapunov operators for the quantum evolution (the existence of which has been proved for certain classes of quantum mechanical scattering problems), then it is possible to construct a structure analogous to the Lax-Phillips structure for scattering problems for which the spectrum of the generator of evolution is bounded from below.
Neutrino oscillations: Quantum mechanics vs. quantum field theory
Akhmedov, Evgeny Kh.; Kopp, Joachim
2010-01-01
A consistent description of neutrino oscillations requires either the quantum-mechanical (QM) wave packet approach or a quantum field theoretic (QFT) treatment. We compare these two approaches to neutrino oscillations and discuss the correspondence between them. In particular, we derive expressions for the QM neutrino wave packets from QFT and relate the free parameters of the QM framework, in particular the effective momentum uncertainty of the neutrino state, to the more fundamental parameters of the QFT approach. We include in our discussion the possibilities that some of the neutrino's interaction partners are not detected, that the neutrino is produced in the decay of an unstable parent particle, and that the overlap of the wave packets of the particles involved in the neutrino production (or detection) process is not maximal. Finally, we demonstrate how the properly normalized oscillation probabilities can be obtained in the QFT framework without an ad hoc normalization procedure employed in the QM approach.
Quantum mechanics and reality: An interpretation of Everett's theory
NASA Astrophysics Data System (ADS)
Lehner, Christoph Albert
The central part of Everett's formulation of quantum mechanics is a quantum mechanical model of memory and of observation as the recording of information in a memory. To use this model as an answer to the measurement problem, Everett has to assume that a conscious observer can be in a superposition of such memory states and be unaware of it. This assumption has puzzled generations of readers. The fundamental aim of this dissertation is to find a set of simpler assumptions which are sufficient to show that Everett's model is empirically adequate. I argue that Everett's model needs three assumptions to account for the process of observation: an assumption of decoherence of observers as quantum mechanical systems; an assumption of supervenience of mental states (qualities) over quantum mechanical properties; and an assumption about the interpretation of quantum mechanical states in general: quantum mechanical states describe ensembles of states of affairs coexisting in the same system. I argue that the only plausible understanding of such ensembles is as ensembles of possibilities, and that all standard no-collapse interpretations agree in this reading of quantum mechanical states. Their differences can be understood as different theories about what marks the real state within this ensemble, and Everett's theory as the claim that no additional 'mark of reality' is necessary. Using the three assumptions, I argue that introspection cannot determine the objective quantum mechanical state of an observer. Rather, the introspective qualities of a quantum mechanical state can be represented by a (classical) statistical ensemble of subjective states. An analysis of these subjective states and their dynamics leads to the conclusion that they suffice to give empirically correct predictions. The argument for the empirical adequacy of the subjective state entails that knowledge of the objective quantum mechanical state is impossible in principle. Empirical reality for a conscious
Quantum mechanical model in gravity theory
NASA Astrophysics Data System (ADS)
Losyakov, V. V.
2016-05-01
We consider a model of a real massive scalar field defined as homogeneous on a d-dimensional sphere such that the sphere radius, time scale, and scalar field are related by the equations of the general theory of relativity. We quantize this system with three degrees of freedom, define the observables, and find dynamical mean values of observables in the regime where the scalar field mass is much less than the Planck mass.
The Misapplication of Probability Theory in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Racicot, Ronald
2014-03-01
This article is a revision of two papers submitted to the APS in the past two and a half years. In these papers, arguments and proofs are summarized for the following: (1) The wrong conclusion by EPR that Quantum Mechanics is incomplete, perhaps requiring the addition of ``hidden variables'' for completion. Theorems that assume such ``hidden variables,'' such as Bell's theorem, are also wrong. (2) Quantum entanglement is not a realizable physical phenomenon and is based entirely on assuming a probability superposition model for quantum spin. Such a model directly violates conservation of angular momentum. (3) Simultaneous multiple-paths followed by a quantum particle traveling through space also cannot possibly exist. Besides violating Noether's theorem, the multiple-paths theory is based solely on probability calculations. Probability calculations by themselves cannot possibly represent simultaneous physically real events. None of the reviews of the submitted papers actually refuted the arguments and evidence that was presented. These analyses should therefore be carefully evaluated since the conclusions reached have such important impact in quantum mechanics and quantum information theory.
"Spring theory of relativity" originating from quantum mechanics
NASA Astrophysics Data System (ADS)
Yefremov, Alexander P.
Compact derivation of mathematical equations similar to those of quantum and classical mechanics is given on the base of fractal decomposition of a three-dimensional space. In physical units the equations become Shrödinger and Hamilton-Jacobi equations, the wave function of a free particle associated with a virtual ring. Locally uniform motion of the ring in the physical space provides an original helix (or regular cylindrical spring) model of a relativistic theory equivalent in results with special relativity, the free particle's relativistic Lagrangian emerging automatically. Irregular spring model generates theory similar to general relativity.
Reality, Causality, and Probability, from Quantum Mechanics to Quantum Field Theory
NASA Astrophysics Data System (ADS)
Plotnitsky, Arkady
2015-10-01
These three lectures consider the questions of reality, causality, and probability in quantum theory, from quantum mechanics to quantum field theory. They do so in part by exploring the ideas of the key founding figures of the theory, such N. Bohr, W. Heisenberg, E. Schrödinger, or P. A. M. Dirac. However, while my discussion of these figures aims to be faithful to their thinking and writings, and while these lectures are motivated by my belief in the helpfulness of their thinking for understanding and advancing quantum theory, this project is not driven by loyalty to their ideas. In part for that reason, these lectures also present different and even conflicting ways of thinking in quantum theory, such as that of Bohr or Heisenberg vs. that of Schrödinger. The lectures, most especially the third one, also consider new physical, mathematical, and philosophical complexities brought in by quantum field theory vis-à-vis quantum mechanics. I close by briefly addressing some of the implications of the argument presented here for the current state of fundamental physics.
Introduction to Nonequilibrium Statistical Mechanics with Quantum Field Theory
NASA Astrophysics Data System (ADS)
Kita, T.
2010-04-01
In this article, we present a concise and self-contained introduction to nonequilibrium statistical mechanics with quantum field theory by considering an ensemble of interacting identical bosons or fermions as an example. Readers are assumed to be familiar with the Matsubara formalism of equilibrium statistical mechanics such as Feynman diagrams, the proper self-energy, and Dyson's equation. The aims are threefold: (i) to explain the fundamentals of nonequilibrium quantum field theory as simple as possible on the basis of the knowledge of the equilibrium counterpart; (ii) to elucidate the hierarchy in describing nonequilibrium systems from Dyson's equation on the Keldysh contour to the Navier-Stokes equation in fluid mechanics via quantum transport equations and the Boltzmann equation; (iii) to derive an expression of nonequilibrium entropy that evolves with time. In stage (i), we introduce nonequilibrium Green's function and the self-energy uniquely on the round-trip Keld ysh contour, thereby avoiding possible confusions that may arise from defining multiple Green's functions at the very beginning. We try to present the Feynman rules for the perturbation expansion as simple as possible. In particular, we focus on the self-consistent perturbation expansion with the Luttinger-Ward thermodynamic functional, i.e., Baym's Phi-derivable approximation, which has a crucial property for nonequilibrium systems of obeying various conservation laws automatically. We also show how the two-particle correlations can be calculated within the Phi-derivable approximation, i.e., an issue of how to handle the ``Bogoliubov-Born-Green-Kirkwood-Yvons (BBGKY) hierarchy''. Aim (ii) is performed through successive reductions of relevant variables with the Wigner transformation, the gradient expansion based on the Groenewold-Moyal product, and Enskog's expansion from local equilibrium. This part may be helpful for convincing readers that nonequilibrium systems ca n be handled
The quantum coherent mechanism for singlet fission: experiment and theory.
Chan, Wai-Lun; Berkelbach, Timothy C; Provorse, Makenzie R; Monahan, Nicholas R; Tritsch, John R; Hybertsen, Mark S; Reichman, David R; Gao, Jiali; Zhu, X-Y
2013-06-18
The absorption of one photon by a semiconductor material usually creates one electron-hole pair. However, this general rule breaks down in a few organic semiconductors, such as pentacene and tetracene, where one photon absorption may result in two electron-hole pairs. This process, where a singlet exciton transforms to two triplet excitons, can have quantum yields as high as 200%. Singlet fission may be useful to solar cell technologies to increase the power conversion efficiency beyond the so-called Shockley-Queisser limit. Through time-resolved two-photon photoemission (TR-2PPE) spectroscopy in crystalline pentacene and tetracene, our lab has recently provided the first spectroscopic signatures in singlet fission of a critical intermediate known as the multiexciton state (also called a correlated triplet pair). More importantly, we found that population of the multiexciton state rises at the same time as the singlet state on the ultrafast time scale upon photoexcitation. This observation does not fit with the traditional view of singlet fission involving the incoherent conversion of a singlet to a triplet pair. However, it provides an experimental foundation for a quantum coherent mechanism in which the electronic coupling creates a quantum superposition of the singlet and the multiexciton state immediately after optical excitation. In this Account, we review key experimental findings from TR-2PPE experiments and present a theoretical analysis of the quantum coherent mechanism based on electronic structural and density matrix calculations for crystalline tetracene lattices. Using multistate density functional theory, we find that the direct electronic coupling between singlet and multiexciton states is too weak to explain the experimental observation. Instead, indirect coupling via charge transfer intermediate states is two orders of magnitude stronger, and dominates the dynamics for ultrafast multiexciton formation. Density matrix calculation for the crystalline
M-theory Calabi-Yau Quantum Mechanics
NASA Astrophysics Data System (ADS)
Haupt, Alexander S.
2009-11-01
This thesis explores an exotic class of M-theory compactifications in which the compact manifold is taken to be a Calabi-Yau five-fold. The resulting effective theory is a one-dimensional N=2 super-mechanics model that exhibits peculiar features of one-dimensional supersymmetry, such as the appearance of fermion-only super-multiplets. The latter necessitates reducing also the fermionic sector of M-theory, which is not normally included in the compactification literature and is thus presented, together with the required technology, in detail. The one-dimensional effective theory is most elegantly described in superspace and therefore, a detailed account of one-dimensional flat and curved N=2 superspace is provided. This includes developing the theory of fermionic multiplets and the study of cross-couplings between 2a and 2b multiplets. Another important aspect is the inclusion of flux. We study its consistency conditions, its relation to supersymmetry and the way it gives rise to a potential in the one-dimensional effective action. It is also explained how the supersymmetry-preserving part of the potential can be obtained from a Gukov-type superpotential. The main motivation of this compactification scenario is rooted in the realm of cosmology. Its virtue is a democratic treatment of spatial dimensions. As opposed to the artificial 3+7 split in most string compactifications, the early universe starts out with all spatial dimensions compact and small in our approach. One then seeks for dynamical ways in which three dimensions grow large at late times. Possible realisations of this idea are discussed both at the classical and at the quantum level. Finally, preliminary work on Calabi-Yau five-fold compactifications of F-theory and the resulting two-dimensional string-like actions is presented.
New U-matrix theory in quantum mechanics
NASA Astrophysics Data System (ADS)
Lam, C. C.; Fung, P. C. W.
1983-04-01
We have analyzed Dyson's U-matrix theory of solving the Schrödinger equation in the interaction picture and are able to express the U matrix as a dominant term plus an infinite series involving multiple integrals of time. For a certain rather restrictive class of Hamiltonians, our theory is exact for a general time-dependent problem. For other Hamiltonians, we can only obtain approximate expressions for our U matrix and hence the wave function. Treating a time-independent problem as a special case of the time-dependent situation with a sudden-switching process, we have shown that our U matrix is exact. To demonstrate the working procedures of our theory, we apply it to study the well-known time-independent charged harmonic-oscillator problem and the more general harmonic oscillator with a time-dependent driving force. Compared with other methods, our new theory appears to lead to a result which contains more information than others due to the inclusion of noncommutability properties of operators in the operator Schrödinger equation. It has been shown that the classical Feynman path-integral formalism can be deduced from quantum mechanics with the use of the Green's-function operator. It is interesting to note that apart from a step function, the Green's-function operator is the same as that of our U(s) matrix, which is the U matrix obtained within the regime of the Schrödinger picture for a time-independent Hamiltonian, as a special case of our general time-dependent treatment.
A deformation quantization theory for noncommutative quantum mechanics
Costa Dias, Nuno; Prata, Joao Nuno; Gosson, Maurice de; Luef, Franz
2010-07-15
We show that the deformation quantization of noncommutative quantum mechanics previously considered by Dias and Prata ['Weyl-Wigner formulation of noncommutative quantum mechanics', J. Math. Phys. 49, 072101 (2008)] and Bastos, Dias, and Prata ['Wigner measures in non-commutative quantum mechanics', e-print arXiv:math-ph/0907.4438v1; Commun. Math. Phys. (to appear)] can be expressed as a Weyl calculus on a double phase space. We study the properties of the star-product thus defined and prove a spectral theorem for the star-genvalue equation using an extension of the methods recently initiated by de Gosson and Luef ['A new approach to the *-genvalue equation', Lett. Math. Phys. 85, 173-183 (2008)].
NASA Astrophysics Data System (ADS)
Schieve, William C.; Horwitz, Lawrence P.
2009-04-01
1. Foundations of quantum statistical mechanics; 2. Elementary examples; 3. Quantum statistical master equation; 4. Quantum kinetic equations; 5. Quantum irreversibility; 6. Entropy and dissipation: the microscopic theory; 7. Global equilibrium: thermostatics and the microcanonical ensemble; 8. Bose-Einstein ideal gas condensation; 9. Scaling, renormalization and the Ising model; 10. Relativistic covariant statistical mechanics of many particles; 11. Quantum optics and damping; 12. Entanglements; 13. Quantum measurement and irreversibility; 14. Quantum Langevin equation: quantum Brownian motion; 15. Linear response: fluctuation and dissipation theorems; 16. Time dependent quantum Green's functions; 17. Decay scattering; 18. Quantum statistical mechanics, extended; 19. Quantum transport with tunneling and reservoir ballistic transport; 20. Black hole thermodynamics; Appendix; Index.
Time-dependent perturbation theory in quantum mechanics and the renormalization group
NASA Astrophysics Data System (ADS)
Bhattacharjee, J. K.; Ray, D. S.
2016-06-01
Time-dependent perturbation theory in quantum mechanics is divergent at long times when the perturbation induces a resonance between two eigenstates of the unperturbed Hamiltonian. Divergences in perturbation theory are also common in quantum field theory and in critical phenomena. The renormalization group (RG) was designed to deal with these divergences. In the last two decades, this procedure has been extended to dynamical systems where the perturbation theory diverges in the long-time limit. In this article, we first review the connection between RG in the context of field theory and RG in the context of dynamical systems. We then show that the long-time divergence in the resonant situation in the time-dependent perturbation theory in quantum mechanics can be removed by using a RG-aided calculational scheme.
Quantum mechanical theory of dynamic nuclear polarization in solid dielectrics
Hu, Kan-Nian; Debelouchina, Galia T.; Smith, Albert A.; Griffin, Robert G.
2011-01-01
Microwave driven dynamic nuclear polarization (DNP) is a process in which the large polarization present in an electron spin reservoir is transferred to nuclei, thereby enhancing NMR signal intensities. In solid dielectrics there are three mechanisms that mediate this transfer—the solid effect (SE), the cross effect (CE), and thermal mixing (TM). Historically these mechanisms have been discussed theoretically using thermodynamic parameters and average spin interactions. However, the SE and the CE can also be modeled quantum mechanically with a system consisting of a small number of spins and the results provide a foundation for the calculations involving TM. In the case of the SE, a single electron–nuclear spin pair is sufficient to explain the polarization mechanism, while the CE requires participation of two electrons and a nuclear spin, and can be used to understand the improved DNP enhancements observed using biradical polarizing agents. Calculations establish the relations among the electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) frequencies and the microwave irradiation frequency that must be satisfied for polarization transfer via the SE or the CE. In particular, if δ, Δ < ω0I, where δ and Δ are the homogeneous linewidth and inhomogeneous breadth of the EPR spectrum, respectively, we verify that the SE occurs when ωM = ω0S ± ω0I, where ωM, ω0S and ω0I are, respectively, the microwave, and the EPR and NMR frequencies. Alternatively, when Δ > ω0I > δ, the CE dominates the polarization transfer. This two-electron process is optimized when ω0S1−ω0S2=ω0I and ωM∼ω0S1 orω0S2, where ω0S1 and ω0S2 are the EPR Larmor frequencies of the two electrons. Using these matching conditions, we calculate the evolution of the density operator from electron Zeeman order to nuclear Zeeman order for both the SE and the CE. The results provide insights into the influence of the microwave irradiation field, the
NASA Astrophysics Data System (ADS)
Bastin, Ted
2009-07-01
List of participants; Preface; Part I. Introduction: 1. The function of the colloquium - editorial; 2. The conceptual problem of quantum theory from the experimentalist's point of view O. R. Frisch; Part II. Niels Bohr and Complementarity: The Place of the Classical Language: 3. The Copenhagen interpretation C. F. von Weizsäcker; 4. On Bohr's views concerning the quantum theory D. Bohm; Part III. The Measurement Problem: 5. Quantal observation in statistical interpretation H. J. Groenewold; 6. Macroscopic physics, quantum mechanics and quantum theory of measurement G. M. Prosperi; 7. Comment on the Daneri-Loinger-Prosperi quantum theory of measurement Jeffrey Bub; 8. The phenomenology of observation and explanation in quantum theory J. H. M. Whiteman; 9. Measurement theory and complex systems M. A. Garstens; Part IV. New Directions within Quantum Theory: What does the Quantum Theoretical Formalism Really Tell Us?: 10. On the role of hidden variables in the fundamental structure of physics D. Bohm; 11. Beyond what? Discussion: space-time order within existing quantum theory C. W. Kilmister; 12. Definability and measurability in quantum theory Yakir Aharonov and Aage Petersen; 13. The bootstrap idea and the foundations of quantum theory Geoffrey F. Chew; Part V. A Fresh Start?: 14. Angular momentum: an approach to combinatorial space-time Roger Penrose; 15. A note on discreteness, phase space and cohomology theory B. J. Hiley; 16. Cohomology of observations R. H. Atkin; 17. The origin of half-integral spin in a discrete physical space Ted Bastin; Part VI. Philosophical Papers: 18. The unity of physics C. F. von Weizsäcker; 19. A philosophical obstacle to the rise of new theories in microphysics Mario Bunge; 20. The incompleteness of quantum mechanics or the emperor's missing clothes H. R. Post; 21. How does a particle get from A to B?; Ted Bastin; 22. Informational generalization of entropy in physics Jerome Rothstein; 23. Can life explain quantum mechanics? H. H
Relativity and Quantum Mechanics
Braendas, Erkki J.
2007-12-26
The old dilemma of quantum mechanics versus the theory of relativity is reconsidered via a first principles relativistically invariant theory. By analytic extension of quantum mechanics into the complex plane one may (i) include dynamical features such as time- and length-scales and (ii) examine the possibility and flexibility of so-called general Jordan block formations. The present viewpoint asks for a new perspective on the age-old problem of quantum mechanics versus the theory of relativity. To bring these ideas together, we will establish the relation with the Klein-Gordon-Dirac relativistic theory and confirm some dynamical features of both the special and the general relativity theory.
Quantum set theory and applications
Rodriguez, E.
1984-01-01
The work of von Neumann tells us that the logic of quantum mechanics is not Boolenan. This suggests the formulation of a quantum theory of sets based on quantum logic much as modern set theory is based on Boolean logic. In the first part of this dissertation such a quantum set theory is developed. In the second part, quantum set theory is proposed as a universal language for physics. A quantum topology and the beginnings of a quantum geometry are developed in this language. Finally, a toy model is studied. It gives indications of possible lines for progress in this program.
NASA Astrophysics Data System (ADS)
Kapustin, Anton
2013-06-01
We formulate physically motivated axioms for a physical theory which for systems with a finite number of degrees of freedom uniquely lead to quantum mechanics as the only nontrivial consistent theory. Complex numbers and the existence of the Planck constant common to all systems arise naturally in this approach. The axioms are divided into two groups covering kinematics and basic measurement theory, respectively. We show that even if the second group of axioms is dropped, there are no deformations of quantum mechanics which preserve the kinematic axioms. Thus, any theory going beyond quantum mechanics must represent a radical departure from the usual a priori assumptions about the laws of nature.
NASA Astrophysics Data System (ADS)
Khots, Boris; Khots, Dmitriy
2014-12-01
Certain results that have been predicted by Quantum Mechanics (QM) theory are not always supported by experiments. This defines a deep crisis in contemporary physics and, in particular, quantum mechanics. We believe that, in fact, the mathematical apparatus employed within today's physics is a possible reason. In particular, we consider the concept of infinity that exists in today's mathematics as the root cause of this problem. We have created Observer's Mathematics that offers an alternative to contemporary mathematics. This paper is an attempt to relay how Observer's Mathematics may explain some of the contradictions in QM theory results. We consider the Hamiltonian Mechanics, Newton equation, Schrodinger equation, two slit interference, wave-particle duality for single photons, uncertainty principle, Dirac equations for free electron in a setting of arithmetic, algebra, and topology provided by Observer's Mathematics (see www.mathrelativity.com). Certain results and communications pertaining to solution of these problems are provided.
Khots, Boris; Khots, Dmitriy
2014-12-10
Certain results that have been predicted by Quantum Mechanics (QM) theory are not always supported by experiments. This defines a deep crisis in contemporary physics and, in particular, quantum mechanics. We believe that, in fact, the mathematical apparatus employed within today's physics is a possible reason. In particular, we consider the concept of infinity that exists in today's mathematics as the root cause of this problem. We have created Observer's Mathematics that offers an alternative to contemporary mathematics. This paper is an attempt to relay how Observer's Mathematics may explain some of the contradictions in QM theory results. We consider the Hamiltonian Mechanics, Newton equation, Schrodinger equation, two slit interference, wave-particle duality for single photons, uncertainty principle, Dirac equations for free electron in a setting of arithmetic, algebra, and topology provided by Observer's Mathematics (see www.mathrelativity.com). Certain results and communications pertaining to solution of these problems are provided.
Moving Beyond Quantum Mechanics in Search for a Generalized Theory of Superconductivity
NASA Astrophysics Data System (ADS)
Akpojotor, Godfrey; Animalu, Alexander
2012-02-01
Though there are infinite number of theories currently in the literature in the search for a generalized theory of superconductivity (SC), there may be three domineering mechanisms for the Cooper pair formation (CPF) and their emergent theories of SC. Two of these mechanisms, electron-phonon interactions and electron-electron correlations which are based on the quantum theory axiom of action-at-a distance, may be only an approximation of the third mechanism which is contact interaction of the wavepackets of the two electrons forming the Cooper pair as envisaged in hadronic mechanics to be responsible for natural bonding of elements. The application of this hydronic --type interaction to the superconducting cuprates, iron based compounds and heavy fermions leads to interesting results. It is therefore suggested that the future of the search for the theory of SC may be considered from this natural possible bonding that at short distances, the CPF is by a nonlinear, nonlocal and nonhamiltonian strong hadronic-type interactions due to deep wave-overlapping of spinning particles leading to Hulthen potential that is attractive between two electrons in singlet couplings while at large distances the CPF is by superexchange interaction which is purely a quantum mechanical affairs.
A geometrical theory of energy trajectories in quantum mechanics
NASA Astrophysics Data System (ADS)
Hall, Richard L.
1983-02-01
Suppose f(r) is an attractive central potential of the form f(r)=∑ki=1 g(i)( f(i)(r)), where {f(i)} is a set of basis potentials (powers, log, Hulthén, sech2) and {g(i)} is a set of smooth increasing transformations which, for a given f, are either all convex or all concave. Formulas are derived for bounds on the energy trajectories Enl =Fnl(v) of the Hamiltonian H=-Δ+vf(r), where v is a coupling constant. The transform Λ( f)=F is carried out in two steps: f→f¯→F, where f¯(s) is called the kinetic potential of f and is defined by f¯(s)=inf(ψ,f,ψ) subject to ψ∈D⊆L2(R3), where D is the domain of H, ∥ψ∥=1, and (ψ,-Δψ)=s. A table is presented of the basis kinetic potentials { f¯(i)(s)}; the general trajectory bounds F*(v) are then shown to be given by a Legendre transformation of the form (s, f¯*(s)) →(v, F*(v)), where f¯*(s) =∑ki=1g(i)× ( f¯(i)(s)) and F*(v) =mins>0{s+v f¯*(s)}. With the aid of this potential construction set (a kind of Schrödinger Lego), ground-state trajectory bounds are derived for a variety of translation-invariant N-boson and N-fermion problems together with some excited-state trajectory bounds in the special case N=2. This article combines into a single simplified and more general theory the earlier ``potential envelope method'' and the ``method for linear combinations of elementary potentials.''
Orthogonal-state-based cryptography in quantum mechanics and local post-quantum theories
NASA Astrophysics Data System (ADS)
Aravinda, S.; Banerjee, Anindita; Pathak, Anirban; Srikanth, R.
2014-02-01
We introduce the concept of cryptographic reduction, in analogy with a similar concept in computational complexity theory. In this framework, class A of crypto-protocols reduces to protocol class B in a scenario X, if for every instance a of A, there is an instance b of B and a secure transformation X that reproduces a given b, such that the security of b guarantees the security of a. Here we employ this reductive framework to study the relationship between security in quantum key distribution (QKD) and quantum secure direct communication (QSDC). We show that replacing the streaming of independent qubits in a QKD scheme by block encoding and transmission (permuting the order of particles block by block) of qubits, we can construct a QSDC scheme. This forms the basis for the block reduction from a QSDC class of protocols to a QKD class of protocols, whereby if the latter is secure, then so is the former. Conversely, given a secure QSDC protocol, we can of course construct a secure QKD scheme by transmitting a random key as the direct message. Then the QKD class of protocols is secure, assuming the security of the QSDC class which it is built from. We refer to this method of deduction of security for this class of QKD protocols, as key reduction. Finally, we propose an orthogonal-state-based deterministic key distribution (KD) protocol which is secure in some local post-quantum theories. Its security arises neither from geographic splitting of a code state nor from Heisenberg uncertainty, but from post-measurement disturbance.
Quantum-mechanical diffraction theory of light from a small hole: Extinction-theorem approach
NASA Astrophysics Data System (ADS)
Jung, Jesper; Keller, Ole
2015-07-01
In a recent paper [Phys. Rev. A 90, 043830 (2014), 10.1103/PhysRevA.90.043830] it was shown that the so-called aperture response tensor is the central concept in the microscopic quantum theory of light diffraction from a small hole in a flat screen. It was further shown that the quantum mechanical theory of diffraction only requires a preknowledge of the incident field plus the electronic properties of identical screens with and without a hole. Starting from the quantum mechanical expression for the linear conductivity tensor, we study the related causal conductivity tensor paying particular attention to diamagnetic electron dynamics. Using a nonlocal-potential separation assumption, we present a calculation of the diamagnetic causal surface conductivity for a jellium quantum-well screen using a two-dimensional Hartree-Fock model. In the diamagnetic case the difference between the light-unperturbed electron densities for screens with (n0) and without (n∞0) holes are the primary quantities for the diffraction theory. In a central part (Sec. IV) of this article we determine n0 via a quantum-mechanical two-dimensional extinction-theorem approach related to elastic electron scattering from a hole with an electronic selvedge. For heuristic purposes we illustrate aspects of the extinction-theorem theory by applying the approach for an infinitely high potential barrier to the vacuum hole. Finally, we calculate and discuss the aperture response tensor in the small hole limit and in the zeroth-order Born approximation. Our final result for the aperture response tensor establishes the bridge to the anisotropic electric dipole polarizability tensor of the hole. It turns out that the effective optical aperture (hole) size relates closely to the extension of the relevant electronic wave functions scattered from the hole.
Quantum Field Theory in (0 + 1) Dimensions
ERIC Educational Resources Information Center
Boozer, A. D.
2007-01-01
We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
A development of quantum theory that was initiated in the 1920s by Werner Heisenberg (1901-76) and Erwin Schrödinger (1887-1961). The theory drew on a proposal made in 1925 Prince Louis de Broglie (1892-1987), that particles have wavelike properties (the wave-particle duality) and that an electron, for example, could in some respects be regarded as a wave with a wavelength that depended on its mo...
Quantum algorithms for quantum field theories.
Jordan, Stephen P; Lee, Keith S M; Preskill, John
2012-06-01
Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (φ(4) theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves exponential speedup over the fastest known classical algorithm. PMID:22654052
NASA Astrophysics Data System (ADS)
Griffiths, Robert B.
2001-11-01
Quantum mechanics is one of the most fundamental yet difficult subjects in physics. Nonrelativistic quantum theory is presented here in a clear and systematic fashion, integrating Born's probabilistic interpretation with Schrödinger dynamics. Basic quantum principles are illustrated with simple examples requiring no mathematics beyond linear algebra and elementary probability theory. The quantum measurement process is consistently analyzed using fundamental quantum principles without referring to measurement. These same principles are used to resolve several of the paradoxes that have long perplexed physicists, including the double slit and Schrödinger's cat. The consistent histories formalism used here was first introduced by the author, and extended by M. Gell-Mann, J. Hartle and R. Omnès. Essential for researchers yet accessible to advanced undergraduate students in physics, chemistry, mathematics, and computer science, this book is supplementary to standard textbooks. It will also be of interest to physicists and philosophers working on the foundations of quantum mechanics. Comprehensive account Written by one of the main figures in the field Paperback edition of successful work on philosophy of quantum mechanics
NASA Astrophysics Data System (ADS)
Simulik, Volodimir
2016-01-01
The new relativistic equations of motion for the particles with arbitrary spin and nonzero mass have been introduced. The axiomatic level description of the relativistic canonical quantum mechanics of the arbitrary mass and spin has been given. The 64-dimensional ClR(0,6) algebra in terms of Dirac gamma matrices has been suggested. The link between the relativistic canonical quantum mechanics of the arbitrary spin and the covariant local field theory has been found. Different methods of the Dirac equation derivation have been reviewed. The manifestly covariant field equations for an arbitrary spin that follow from the quantum mechanical equations have been considered. The covariant local field theory equations for spin s = (1,1) particle-antiparticle doublet, spin s = (1,0,1,0) particle antiparticle multiplet, spin s = (3/2,3/2) particle-antiparticle doublet, spin s = (2,2) particle-antiparticle doublet, spin s = (2,0,2,0) particle-antiparticle multiplet and spin s = (2,1,2,1) particle-antiparticle multiplet have been introduced. The Maxwell-like equations for the boson with spin s = 1 and nonzero mass have been introduced as well.
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
A theory based on the premise that, on the microscopic scale, physical quantities have discrete, rather than a continuous range of, values. The theory was devised in the early part of the twentieth century to account for certain phenomena that could not be explained by classical physics. In 1900, the German physicist, Max Planck (1858-1947), was able precisely to describe the previously unexplaine...
NASA Astrophysics Data System (ADS)
Robbin, J. M.
2007-07-01
he hallmark of a good book of problems is that it allows you to become acquainted with an unfamiliar topic quickly and efficiently. The Quantum Mechanics Solver fits this description admirably. The book contains 27 problems based mainly on recent experimental developments, including neutrino oscillations, tests of Bell's inequality, Bose Einstein condensates, and laser cooling and trapping of atoms, to name a few. Unlike many collections, in which problems are designed around a particular mathematical method, here each problem is devoted to a small group of phenomena or experiments. Most problems contain experimental data from the literature, and readers are asked to estimate parameters from the data, or compare theory to experiment, or both. Standard techniques (e.g., degenerate perturbation theory, addition of angular momentum, asymptotics of special functions) are introduced only as they are needed. The style is closer to a non-specialist seminar rather than an undergraduate lecture. The physical models are kept simple; the emphasis is on cultivating conceptual and qualitative understanding (although in many of the problems, the simple models fit the data quite well). Some less familiar theoretical techniques are introduced, e.g. a variational method for lower (not upper) bounds on ground-state energies for many-body systems with two-body interactions, which is then used to derive a surprisingly accurate relation between baryon and meson masses. The exposition is succinct but clear; the solutions can be read as worked examples if you don't want to do the problems yourself. Many problems have additional discussion on limitations and extensions of the theory, or further applications outside physics (e.g., the accuracy of GPS positioning in connection with atomic clocks; proton and ion tumor therapies in connection with the Bethe Bloch formula for charged particles in solids). The problems use mainly non-relativistic quantum mechanics and are organised into three
NASA Astrophysics Data System (ADS)
Escobar-Ruiz, M. A.; Shuryak, E.; Turbiner, A. V.
2016-05-01
We develop a new semiclassical approach, which starts with the density matrix given by the Euclidean time path integral with fixed coinciding end points, and proceed by identifying classical (minimal Euclidean action) path, to be referred to as a flucton, which passes through this end point. Fluctuations around a flucton path are included, by standard Feynman diagrams, previously developed for instantons. We calculate the Green function and evaluate the one loop determinant both by direct diagonalization of the fluctuation equation and also via the trick with the Green functions. The two-loop corrections are evaluated by explicit Feynman diagrams, and some curious cancellation of logarithmic and polylog terms is observed. The results are fully consistent with large-distance asymptotics obtained in quantum mechanics. Two classic examples—quartic double-well and sine-Gordon potentials—are discussed in detail, while powerlike potential and quartic anharmonic oscillator are discussed in brief. Unlike other semiclassical methods, like WKB, we do not use the Schrödinger equation, and all the steps generalize to multidimensional or quantum fields cases straightforwardly.
No-Go Theorems Face Background-Based Theories for Quantum Mechanics
NASA Astrophysics Data System (ADS)
Vervoort, Louis
2016-04-01
Recent experiments have shown that certain fluid-mechanical systems, namely oil droplets bouncing on oil films, can mimic a wide range of quantum phenomena, including double-slit interference, quantization of angular momentum and Zeeman splitting. Here I investigate what can be learned from these systems concerning no-go theorems as those of Bell and Kochen-Specker. In particular, a model for the Bell experiment is proposed that includes variables describing a `background' field or medium. This field mimics the surface wave that accompanies the droplets in the fluid-mechanical experiments. It appears that quite generally such a model can violate the Bell inequality and reproduce the quantum statistics, even if it is based on local dynamics only. The reason is that measurement independence is not valid in such models. This opens the door for local `background-based' theories, describing the interaction of particles and analyzers with a background field, to complete quantum mechanics. Experiments to test these ideas are also proposed.
ERIC Educational Resources Information Center
Velentzas, Athanasios; Halkia, Krystallia; Skordoulis, Constantine
2007-01-01
This work investigates the presence of Thought Experiments (TEs) which refer to the theory of relativity and to quantum mechanics in physics textbooks and in books popularizing physics theories. A further point of investigation is whether TEs--as presented in popular physics books--can be used as an introduction to familiarize secondary school…
Effective methods for quantum theories
NASA Astrophysics Data System (ADS)
Brahma, Suddhasattwa
Whenever a full theory is unavailable, effective frameworks serve as powerful tools for examining physical phenomena below some energy scale. However, standard quantum field theory techniques are not always applicable in various exotic, yet physically relevant, systems. This thesis presents a new effective method for quantum theories, which is particularly tailored towards background independent theories such as gravity. Our main motivation is to utilize these techniques to extract the semi-classical dynamics from canonical quantum gravity theories. Application to field theoretic toy models of loop quantum gravity and non-associative quantum mechanics is elaborated in detail. We also extend this framework to fully constrained systems, as is required for gravity, and discuss several consequences for quantum gravity.
NASA Astrophysics Data System (ADS)
Kuwahara, Y.; Nakamura, Y.; Yamanaka, Y.
2013-12-01
The 2×2-matrix structure of Green's functions is a common feature for the real-time formalisms of quantum field theory under thermal situations, such as the closed time path formalism and Thermo Field Dynamics (TFD). It has been believed to originate from quantum nature. Recently, Galley has proposed the Hamilton's principle with initial data for nonconservative classical systems, doubling each degree of freedom [1]. We show that the Galley's Hamilton formalism can be extended to quantum field and that the resulting theory is naturally identical with nonequilibrium TFD.
Scalar Theory of Everything model correspondence to the Big Bang model and to Quantum Mechanics
NASA Astrophysics Data System (ADS)
Hodge, John
2014-03-01
We are at a special moment in our scientific evolution that requires the big of cosmology and the small of light and of particle physics be united by a single model. The Scalar Theory of Everything model (STOE) suggests fundamental assumptions with consideration for the successful parts of current models and for the data inconsistent with current models. The STOE has been tested over the last 10 years with data concerning galaxy rotation curves; redshift at galactic, solar system, and earth scales; BH-galaxy disk properties; temperature of the universe; and light interference. The STOE is simpler, corresponds to both General Relativity and quantum mechanics, and solves many current mysteries and inconsistencies. Therefore, the STOE is founded on orthodox science. Data analysis in 2011 confirmed predictions of the STOE made in 2006 that no other model suggested.
Hawking temperature: an elementary approach based on Newtonian mechanics and quantum theory
NASA Astrophysics Data System (ADS)
Pinochet, Jorge
2016-01-01
In 1974, the British physicist Stephen Hawking discovered that black holes have a characteristic temperature and are therefore capable of emitting radiation. Given the scientific importance of this discovery, there is a profuse literature on the subject. Nevertheless, the available literature ends up being either too simple, which does not convey the true physical significance of the issue, or too technical, which excludes an ample segment of the audience interested in science, such as physics teachers and their students. The present article seeks to remedy this shortcoming. It develops a simple and plausible argument that provides insight into the fundamental aspects of Hawking’s discovery, which leads to an approximate equation for the so-called Hawking temperature. The exposition is mainly intended for physics teachers and their students, and it only requires elementary algebra, as well as basic notions of Newtonian mechanics and quantum theory.
Thellamurege, Nandun M.; Si, Dejun; Cui, Fengchao; Li, Hui
2014-05-07
A combined quantum mechanical/molecular mechanical/continuum (QM/MM/C) style second order Møller-Plesset perturbation theory (MP2) method that incorporates induced dipole polarizable force field and induced surface charge continuum solvation model is established. The Z-vector method is modified to include induced dipoles and induced surface charges to determine the MP2 response density matrix, which can be used to evaluate MP2 properties. In particular, analytic nuclear gradient is derived and implemented for this method. Using the Assisted Model Building with Energy Refinement induced dipole polarizable protein force field, the QM/MM/C style MP2 method is used to study the hydrogen bonding distances and strengths of the photoactive yellow protein chromopore in the wild type and the Glu46Gln mutant.
Advanced Concepts in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Esposito, Giampiero; Marmo, Giuseppe; Miele, Gennaro; Sudarshan, George
2014-11-01
Preface; 1. Introduction: the need for a quantum theory; 2. Experimental foundations of quantum theory; 3. Waves and particles; 4. Schrödinger picture, Heisenberg picture and probabilistic aspects; 5. Integrating the equations of motion; 6. Elementary applications: 1-dimensional problems; 7. Elementary applications: multidimensional problems; 8. Coherent states and related formalism; 9. Introduction to spin; 10. Symmetries in quantum mechanics; 11. Approximation methods; 12. Modern pictures of quantum mechanics; 13. Formulations of quantum mechanics and their physical implications; 14. Exam problems; Glossary of geometric concepts; References; Index.
NASA Astrophysics Data System (ADS)
Nishimura, Hirokazu
1996-06-01
Machida and Namiki developed a many-Hilbert-spaces formalism for dealing with the interaction between a quantum object and a measuring apparatus. Their mathematically rugged formalism was polished first by Araki from an operator-algebraic standpoint and then by Ozawa for Boolean quantum mechanics, which approaches a quantum system with a compatible family of continuous superselection rules from a notable and perspicacious viewpoint. On the other hand, Foulis and Randall set up a formal theory for the empirical foundation of all sciences, at the hub of which lies the notion of a manual of operations. They deem an operation as the set of possible outcomes and put down a manual of operations at a family of partially overlapping operations. Their notion of a manual of operations was incorporated into a category-theoretic standpoint into that of a manual of Boolean locales by Nishimura, who looked upon an operation as the complete Boolean algebra of observable events. Considering a family of Hilbert spaces not over a single Boolean locale but over a manual of Boolean locales as a whole, Ozawa's Boolean quantum mechanics is elevated into empirical quantum mechanics, which is, roughly speaking, the study of quantum systems with incompatible families of continuous superselection rules. To this end, we are obliged to develop empirical Hilbert space theory. In particular, empirical versions of the square root lemma for bounded positive operators, the spectral theorem for (possibly unbounded) self-adjoint operators, and Stone's theorem for one-parameter unitary groups are established.
NASA Astrophysics Data System (ADS)
Blencowe, Miles
The emergence of the macroscopic classical world from the microscopic quantum world is commonly understood to be a consequence of the fact that any given quantum system is open, unavoidably interacting with unobserved environmental degrees of freedom that will cause initial quantum superposition states of the system to decohere, resulting in classical mixtures of either-or alternatives. A fundamental question concerns how large a macroscopic object can be placed in a manifest quantum state, such as a center of mass quantum superposition state, under conditions where the effects of the interacting environmental degrees of freedom are reduced (i.e. in ultrahigh vacuum and at ultralow temperatures). Recent experiments have in fact demonstrated manifest quantum behavior in nano-to-micron-scale mechanical systems. Gravity has been invoked in various ways as playing a possible fundamental role in enforcing classicality of matter systems beyond a certain scale. Adopting the viewpoint that the standard perturbative quantization of general relativity provides an effective description of quantum gravity that is valid at ordinary energies, we show that it is possible to describe quantitatively how gravity as an environment can induce the decoherence of matter superposition states. The justification for such an approach follows from the fact that we are considering laboratory scale systems, where the matter is localized to regions of small curvature. As with other low energy effects, such as the quantum gravity correction to the Newtonian potential between two ordinary masses, it should be possible to quantitatively evaluate gravitationally induced decoherence rates by employing standard perturbative quantum gravity as an effective field theory; whatever the final form the eventual correct quantum theory of gravity takes, it must converge in its predictions with the effective field theory description at low energies. Research supported by the National Science Foundation (NSF
Wang, Hao; Yang, Weitao
2016-06-14
We developed a new method to calculate the atomic polarizabilities by fitting to the electrostatic potentials (ESPs) obtained from quantum mechanical (QM) calculations within the linear response theory. This parallels the conventional approach of fitting atomic charges based on electrostatic potentials from the electron density. Our ESP fitting is combined with the induced dipole model under the perturbation of uniform external electric fields of all orientations. QM calculations for the linear response to the external electric fields are used as input, fully consistent with the induced dipole model, which itself is a linear response model. The orientation of the uniform external electric fields is integrated in all directions. The integration of orientation and QM linear response calculations together makes the fitting results independent of the orientations and magnitudes of the uniform external electric fields applied. Another advantage of our method is that QM calculation is only needed once, in contrast to the conventional approach, where many QM calculations are needed for many different applied electric fields. The molecular polarizabilities obtained from our method show comparable accuracy with those from fitting directly to the experimental or theoretical molecular polarizabilities. Since ESP is directly fitted, atomic polarizabilities obtained from our method are expected to reproduce the electrostatic interactions better. Our method was used to calculate both transferable atomic polarizabilities for polarizable molecular mechanics' force fields and nontransferable molecule-specific atomic polarizabilities. PMID:27305996
Noncommutative quantum mechanics
NASA Astrophysics Data System (ADS)
Gamboa, J.; Loewe, M.; Rojas, J. C.
2001-09-01
A general noncommutative quantum mechanical system in a central potential V=V(r) in two dimensions is considered. The spectrum is bounded from below and, for large values of the anticommutative parameter θ, we find an explicit expression for the eigenvalues. In fact, any quantum mechanical system with these characteristics is equivalent to a commutative one in such a way that the interaction V(r) is replaced by V=V(HHO,Lz), where HHO is the Hamiltonian of the two-dimensional harmonic oscillator and Lz is the z component of the angular momentum. For other finite values of θ the model can be solved by using perturbation theory.
Theory of self-resonance after inflation. II. Quantum mechanics and particle-antiparticle asymmetry
NASA Astrophysics Data System (ADS)
Hertzberg, Mark P.; Karouby, Johanna; Spitzer, William G.; Becerra, Juana C.; Li, Lanqing
2014-12-01
We further develop a theory of self-resonance after inflation in a large class of models involving multiple scalar fields. We concentrate on inflaton potentials that carry an internal symmetry, but also analyze weak breaking of this symmetry. This is the second part of a two-part series of papers. Here in Part 2 we develop an understanding of the resonance structure from the underlying many-particle quantum mechanics. We begin with a small-amplitude analysis, which obtains the central resonant wave numbers, and relate it to perturbative processes. We show that the dominant resonance structure is determined by (i) the nonrelativistic scattering of many quantum particles and (ii) the application of Bose-Einstein statistics to the adiabatic and isocurvature modes, as introduced in Part 1 [M. P. Hertzberg et al., Phys. Rev. D 90, 123528 (2014)]. Other resonance structures are understood in terms of annihilations and decays. We set up Bunch-Davies vacuum initial conditions during inflation and track the evolution of modes including Hubble expansion. In the case of a complex inflaton carrying an internal U(1) symmetry, we show that when the isocurvature instability is active, the inflaton fragments into separate regions of ϕ -particles and anti-ϕ -particles. We then introduce a weak breaking of the U(1) symmetry; this can lead to baryogenesis, as shown by some of us recently [M. P. Hertzberg and J. Karouby, Phys. Lett. B 737, 34 (2014); Phys. Rev. D 89, 063523 (2014)]. Then using our results, we compute corrections to the particle-antiparticle asymmetry from this preheating era.
NASA Astrophysics Data System (ADS)
De Visser, Sam; Quesne, Matthew; Ward, Richard
2013-12-01
Cysteine protease enzymes are important for human physiology and catalyze key protein degradation pathways. These enzymes react via a nucleophilic reaction mechanism that involves a cysteine residue and the proton of a proximal histidine. Particularly efficient inhibitors of these enzymes are nitrile-based, however, the details of the catalytic reaction mechanism currently are poorly understood. To gain further insight into the inhibition of these molecules, we have performed a combined density functional theory and quantum mechanics/molecular mechanics study on the reaction of a nitrile-based inhibitor with the enzyme active site amino acids. We show here that small perturbations to the inhibitor structure can have dramatic effects on the catalysis and inhibition processes. Thus, we investigated a range of inhibitor templates and show that specific structural changes reduce the inhibitory efficiency by several orders of magnitude. Moreover, as the reaction takes place on a polar surface, we find strong differences between the DFT and QM/MM calculated energetics. In particular, the DFT model led to dramatic distortions from the starting structure and the convergence to a structure that would not fit the enzyme active site. In the subsequent QM/MM study we investigated the use of mechanical versus electronic embedding on the kinetics, thermodynamics and geometries along the reaction mechanism. We find minor effects on the kinetics of the reaction but large geometric and thermodynamics differences as a result of inclusion of electronic embedding corrections. The work here highlights the importance of model choice in the investigation of this biochemical reaction mechanism.
Grassmann matrix quantum mechanics
NASA Astrophysics Data System (ADS)
Anninos, Dionysios; Denef, Frederik; Monten, Ruben
2016-04-01
We explore quantum mechanical theories whose fundamental degrees of freedom are rectangular matrices with Grassmann valued matrix elements. We study particular models where the low energy sector can be described in terms of a bosonic Hermitian matrix quantum mechanics. We describe the classical curved phase space that emerges in the low energy sector. The phase space lives on a compact Kähler manifold parameterized by a complex matrix, of the type discovered some time ago by Berezin. The emergence of a semiclassical bosonic matrix quantum mechanics at low energies requires that the original Grassmann matrices be in the long rectangular limit. We discuss possible holographic interpretations of such matrix models which, by construction, are endowed with a finite dimensional Hilbert space.
NASA Astrophysics Data System (ADS)
Bender, Carl M.
2015-07-01
The average quantum physicist on the street would say that a quantum-mechanical Hamiltonian must be Dirac Hermitian (invariant under combined matrix transposition and complex conjugation) in order to guarantee that the energy eigenvalues are real and that time evolution is unitary. However, the Hamiltonian H = p2 + ix3, which is obviously not Dirac Hermitian, has a positive real discrete spectrum and generates unitary time evolution, and thus it defines a fully consistent and physical quantum theory. Evidently, the axiom of Dirac Hermiticity is too restrictive. While H = p2 + ix3 is not Dirac Hermitian, it is PT symmetric; that is, invariant under combined parity P (space reflection) and time reversal T. The quantum mechanics defined by a PT-symmetric Hamiltonian is a complex generalization of ordinary quantum mechanics. When quantum mechanics is extended into the complex domain, new kinds of theories having strange and remarkable properties emerge. In the past few years, some of these properties have been verified in laboratory experiments. A particularly interesting PT-symmetric Hamiltonian is H = p2 - x4, which contains an upside-down potential. This potential is discussed in detail, and it is explained in intuitive as well as in rigorous terms why the energy levels of this potential are real, positive, and discrete. Applications of PT-symmetry in quantum field theory are also discussed.
NASA Astrophysics Data System (ADS)
Ellerman, David
2014-03-01
In models of QM over finite fields (e.g., Schumacher's ``modal quantum theory'' MQT), one finite field stands out, Z2, since Z2 vectors represent sets. QM (finite-dimensional) mathematics can be transported to sets resulting in quantum mechanics over sets or QM/sets. This gives a full probability calculus (unlike MQT with only zero-one modalities) that leads to a fulsome theory of QM/sets including ``logical'' models of the double-slit experiment, Bell's Theorem, QIT, and QC. In QC over Z2 (where gates are non-singular matrices as in MQT), a simple quantum algorithm (one gate plus one function evaluation) solves the Parity SAT problem (finding the parity of the sum of all values of an n-ary Boolean function). Classically, the Parity SAT problem requires 2n function evaluations in contrast to the one function evaluation required in the quantum algorithm. This is quantum speedup but with all the calculations over Z2 just like classical computing. This shows definitively that the source of quantum speedup is not in the greater power of computing over the complex numbers, and confirms the idea that the source is in superposition.
Tang, Jau
1996-02-01
As an alternative to better physical explanations of the mechanisms of quantum interference and the origins of uncertainty broadening, a linear hopping model is proposed with ``color-varying`` dynamics to reflect fast exchange between time-reversed states. Intricate relations between this model, particle-wave dualism, and relativity are discussed. The wave function is shown to possess dual characteristics of a stable, localized ``soliton-like`` de Broglie wavelet and a delocalized, interfering Schroedinger carrier wave function.
Epigenetics: Biology's Quantum Mechanics.
Jorgensen, Richard A
2011-01-01
The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920s and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene - the molecular biological view and the epigenetic view - are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider. PMID:22639577
Quaternionic quantum field theory
Adler, S.L.
1985-08-19
We show that a quaternionic quantum field theory can be formulated when the numbers of bosonic and fermionic degrees of freedom are equal and the fermions, as well as the bosons, obey a second-order wave equation. The theory is initially defined in terms of a quaternion-imaginary Lagrangian using the Feynman sum over histories. A Schroedinger equation can be derived from the functional integral, which identifies the quaternion-imaginary quantum Hamiltonian. Conversely, the transformation theory based on this Hamiltonian can be used to rederive the functional-integral formulation.
Quantum mechanics from invariance principles
NASA Astrophysics Data System (ADS)
Moldoveanu, Florin
2015-07-01
Quantum mechanics is an extremely successful theory of nature and yet it lacks an intuitive axiomatization. In contrast, the special theory of relativity is well understood and is rooted into natural or experimentally justified postulates. Here we introduce an axiomatization approach to quantum mechanics which is very similar to special theory of relativity derivation. The core idea is that a composed system obeys the same laws of nature as its components. This leads to a Jordan-Lie algebraic formulation of quantum mechanics. The starting assumptions are minimal: the laws of nature are invariant under time evolution, the laws of nature are invariant under tensor composition, the laws of nature are relational, together with the ability to define a physical state (positivity). Quantum mechanics is singled out by a fifth experimentally justified postulate: nature violates Bell's inequalities.
Propensity, Probability, and Quantum Theory
NASA Astrophysics Data System (ADS)
Ballentine, Leslie E.
2016-08-01
Quantum mechanics and probability theory share one peculiarity. Both have well established mathematical formalisms, yet both are subject to controversy about the meaning and interpretation of their basic concepts. Since probability plays a fundamental role in QM, the conceptual problems of one theory can affect the other. We first classify the interpretations of probability into three major classes: (a) inferential probability, (b) ensemble probability, and (c) propensity. Class (a) is the basis of inductive logic; (b) deals with the frequencies of events in repeatable experiments; (c) describes a form of causality that is weaker than determinism. An important, but neglected, paper by P. Humphreys demonstrated that propensity must differ mathematically, as well as conceptually, from probability, but he did not develop a theory of propensity. Such a theory is developed in this paper. Propensity theory shares many, but not all, of the axioms of probability theory. As a consequence, propensity supports the Law of Large Numbers from probability theory, but does not support Bayes theorem. Although there are particular problems within QM to which any of the classes of probability may be applied, it is argued that the intrinsic quantum probabilities (calculated from a state vector or density matrix) are most naturally interpreted as quantum propensities. This does not alter the familiar statistical interpretation of QM. But the interpretation of quantum states as representing knowledge is untenable. Examples show that a density matrix fails to represent knowledge.
NASA Astrophysics Data System (ADS)
Gardner, David E.
This thesis describes qualitative research conducted to understand the problems students have when learning quantum mechanics. It differs from previous studies on educational issues associated with quantum mechanics in that I have examined the difficulties from the students' perspective. Three questions guided this research: What are the experiences of students learning quantum mechanics? What conceptual difficulties do students have with quantum mechanics? and, How do students approach learning quantum mechanics? From these questions, two themes emerged. First, students do not consider the quantum mechanical concepts of wave-particle duality or the uncertainty principle to be important sources of difficulties for them. Second, many of the difficulties students encounter are not related to conceptual understanding of specific topics, but stem from a mindset that is incongruent with the nature and structure of quantum mechanics. The implications for teaching are that the nature and structure of quantum mechanics should be emphasized and be an explicit part of instruction.
Perturbative N = 2 Supersymmetric Quantum Mechanics and L-Theory with Complex Coefficients
NASA Astrophysics Data System (ADS)
Berwick-Evans, Daniel
2016-01-01
We construct L-theory with complex coefficients from the geometry of 1|2-dimensional perturbative mechanics. Methods of perturbative quantization lead to wrong-way maps that we identify with those coming from the MSO orientation of L-theory tensored with the complex numbers. In particular, the total volume of a space of 1|2-dimensional vacua reads off the signature of a 4 k-dimensional oriented manifold.
Scale relativity theory and integrative systems biology: 2. Macroscopic quantum-type mechanics.
Nottale, Laurent; Auffray, Charles
2008-05-01
In these two companion papers, we provide an overview and a brief history of the multiple roots, current developments and recent advances of integrative systems biology and identify multiscale integration as its grand challenge. Then we introduce the fundamental principles and the successive steps that have been followed in the construction of the scale relativity theory, which aims at describing the effects of a non-differentiable and fractal (i.e., explicitly scale dependent) geometry of space-time. The first paper of this series was devoted, in this new framework, to the construction from first principles of scale laws of increasing complexity, and to the discussion of some tentative applications of these laws to biological systems. In this second review and perspective paper, we describe the effects induced by the internal fractal structures of trajectories on motion in standard space. Their main consequence is the transformation of classical dynamics into a generalized, quantum-like self-organized dynamics. A Schrödinger-type equation is derived as an integral of the geodesic equation in a fractal space. We then indicate how gauge fields can be constructed from a geometric re-interpretation of gauge transformations as scale transformations in fractal space-time. Finally, we introduce a new tentative development of the theory, in which quantum laws would hold also in scale space, introducing complexergy as a measure of organizational complexity. Initial possible applications of this extended framework to the processes of morphogenesis and the emergence of prokaryotic and eukaryotic cellular structures are discussed. Having founded elements of the evolutionary, developmental, biochemical and cellular theories on the first principles of scale relativity theory, we introduce proposals for the construction of an integrative theory of life and for the design and implementation of novel macroscopic quantum-type experiments and devices, and discuss their potential
Supersymmetric Quantum Field Theories
NASA Astrophysics Data System (ADS)
Grigore, D. R.
2005-03-01
We consider some supersymmetric multiplets in a purely quantum framework. A crucial point is to ensure the positivity of the scalar product in the Hilbert space of the quantum system. For the vector multiplet we obtain some discrepancies with respect to the literature in the expression of the super-propagator and we prove that the model is consistent only for positive mass. The gauge structure is constructed purely deductive and leads to the necessity of introducing scalar ghost superfields, in analogy to the usual gauge theories. Then we consider a supersymmetric extension of quantum gauge theory based on a vector multiplet containing supersymmetric partners of spin 3/2 for the vector fields. As an application we consider the supersymmetric electroweak theory. The resulting self-couplings of the gauge bosons agree with the standard model up to a divergence.
Communication: Quantum mechanics without wavefunctions
Schiff, Jeremy; Poirier, Bill
2012-01-21
We present a self-contained formulation of spin-free non-relativistic quantum mechanics that makes no use of wavefunctions or complex amplitudes of any kind. Quantum states are represented as ensembles of real-valued quantum trajectories, obtained by extremizing an action and satisfying energy conservation. The theory applies for arbitrary configuration spaces and system dimensionalities. Various beneficial ramifications--theoretical, computational, and interpretational--are discussed.
NASA Astrophysics Data System (ADS)
Akhmeteli, Andrey
2013-03-01
Is it possible to offer a ``no drama'' quantum theory? Something as simple (in principle) as classical electrodynamics - a theory described by a system of partial differential equations (PDE) in 3+1 dimensions, but reproducing unitary evolution of a quantum field theory in the Fock space? The following results suggest an affirmative answer: 1. The scalar field can be algebraically eliminated from scalar electrodynamics; the resulting equations describe independent evolution of the electromagnetic field (EMF). 2. After introduction of a complex 4-potential (producing the same EMF as the standard real 4-potential), the spinor field can be algebraically eliminated from spinor electrodynamics; the resulting equations describe independent evolution of EMF. 3. The resulting theories for EMF can be embedded into quantum field theories. Another fundamental result: in a general case, the Dirac equation is equivalent to a 4th order PDE for just one component, which can be made real by a gauge transform. Issues related to the Bell theorem are discussed. A. Akhmeteli, Int'l Journal of Quantum Information, Vol. 9, Suppl., 17-26 (2011) A. Akhmeteli, Journal of Mathematical Physics, Vol. 52, 082303 (2011) A. Akhmeteli, quant-ph/1111.4630 A. Akhmeteli, J. Phys.: Conf. Ser., Vol. 361, 012037 (2012)
NASA Astrophysics Data System (ADS)
Akhmeteli, Andrey
2012-02-01
Is it possible to offer a ``no drama'' quantum theory? Something as simple (in principle) as classical electrodynamics - a theory described by a system of partial differential equations (PDE) in 3+1 dimensions, but reproducing unitary evolution of a quantum field theory in the configuration space? The following results suggest an affirmative answer: 1. The scalar field can be algebraically eliminated from scalar electrodynamics; the resulting equations describe independent evolution of the electromagnetic field (EMF). 2. After introduction of a complex 4-potential (producing the same EMF as the standard real 4-potential), the spinor field can be algebraically eliminated from spinor electrodynamics; the resulting equations describe independent evolution of EMF. 3. The resulting theories for EMF can be embedded into quantum field theories. Another fundamental result: in a general case, the Dirac equation is equivalent to a 4th order PDE for just one component, which can be made real by a gauge transform. Issues related to the Bell theorem are discussed. A. Akhmeteli, Int'l Journal of Quantum Information, Vol. 9, Suppl., 17-26 (2011) A. Akhmeteli, Journal of Mathematical Physics, Vol. 52, 082303 (2011) A. Akhmeteli, quant-ph/1108.1588
Emergent mechanics, quantum and un-quantum
NASA Astrophysics Data System (ADS)
Ralston, John P.
2013-10-01
There is great interest in quantum mechanics as an "emergent" phenomenon. The program holds that nonobvious patterns and laws can emerge from complicated physical systems operating by more fundamental rules. We find a new approach where quantum mechanics itself should be viewed as an information management tool not derived from physics nor depending on physics. The main accomplishment of quantum-style theory comes in expanding the notion of probability. We construct a map from macroscopic information as data" to quantum probability. The map allows a hidden variable description for quantum states, and efficient use of the helpful tools of quantum mechanics in unlimited circumstances. Quantum dynamics via the time-dependent Shroedinger equation or operator methods actually represents a restricted class of classical Hamiltonian or Lagrangian dynamics, albeit with different numbers of degrees of freedom. We show that under wide circumstances such dynamics emerges from structureless dynamical systems. The uses of the quantum information management tools are illustrated by numerical experiments and practical applications
Nuclear Quantum Gravitation - The Correct Theory
NASA Astrophysics Data System (ADS)
Kotas, Ronald
2016-03-01
Nuclear Quantum Gravitation provides a clear, definitive Scientific explanation of Gravity and Gravitation. It is harmonious with Newtonian and Quantum Mechanics, and with distinct Scientific Logic. Nuclear Quantum Gravitation has 10 certain, Scientific proofs and 21 more good indications. With this theory the Physical Forces are obviously Unified. See: OBSCURANTISM ON EINSTEIN GRAVITATION? http://www.santilli- Foundation.org/inconsistencies-gravitation.php and Einstein's Theory of Relativity versus Classical Mechanics http://www.newtonphysics.on.ca/einstein/
Dynamical basis sets for algebraic variational calculations in quantum-mechanical scattering theory
NASA Technical Reports Server (NTRS)
Sun, Yan; Kouri, Donald J.; Truhlar, Donald G.; Schwenke, David W.
1990-01-01
New basis sets are proposed for linear algebraic variational calculations of transition amplitudes in quantum-mechanical scattering problems. These basis sets are hybrids of those that yield the Kohn variational principle (KVP) and those that yield the generalized Newton variational principle (GNVP) when substituted in Schlessinger's stationary expression for the T operator. Trial calculations show that efficiencies almost as great as that of the GNVP and much greater than the KVP can be obtained, even for basis sets with the majority of the members independent of energy.
Unified theory of exactly and quasiexactly solvable ''discrete'' quantum mechanics. I. Formalism
Odake, Satoru; Sasaki, Ryu
2010-08-15
We present a simple recipe to construct exactly and quasiexactly solvable Hamiltonians in one-dimensional ''discrete'' quantum mechanics, in which the Schroedinger equation is a difference equation. It reproduces all the known ones whose eigenfunctions consist of the Askey scheme of hypergeometric orthogonal polynomials of a continuous or a discrete variable. The recipe also predicts several new ones. An essential role is played by the sinusoidal coordinate, which generates the closure relation and the Askey-Wilson algebra together with the Hamiltonian. The relationship between the closure relation and the Askey-Wilson algebra is clarified.
Barnett, Stephen M.; Cresser, James D.
2005-08-15
We present a Markovian quantum theory of friction. Our approach is based on the idea that collisions between a Brownian particle and single molecules of the surrounding medium constitute, as far as the particle is concerned, instantaneous simultaneous measurements of its position and momentum.
Feynman's simple quantum mechanics
NASA Astrophysics Data System (ADS)
Taylor, Edwin F.
1997-03-01
This sample class presents an alternative to the conventional introduction to quantum mechanics and describes its current use in a credit course. This alternative introduction rests on theory presented in professional and popular writings by Richard Feynman. Feynman showed that Nature gives a simple command to the electron: "Explore all paths." All of nonrelativistic quantum mechanics, among other fundamental results, comes from this command. With a desktop computer the student points and clicks to tell a modeled electron which paths to follow. The computer then shows the results, which embody the elemental strangeness and paradoxical behaviors of the world of the very small. Feynman's approach requires few equations and provides a largely non-mathematical introduction to the wave function of conventional quantum mechanics. Draft software and materials already used for two semesters in an e-mail computer conference credit university course show that Feynman's approach works well with a variety of students. The sample class explores computer and written material and describes the next steps in its development.
Statistical mechanics of Coulomb gases as quantum theory on Riemann surfaces
NASA Astrophysics Data System (ADS)
Gulden, Tobias; Janas, Michael; Kamenev, Alex
2014-03-01
Statistical mechanics of 1D Coulomb gases may be mapped onto (in general) non-Hermitian quantum mechanics. We use this example to develop non-Hermitian instanton calculus. Treating momentum and coordinate as independent complex variables, constant energy manifolds are given by Riemann surfaces of genus g >= 1 . The actions along principal cycles on these surfaces obey an ODE in the moduli space of the Riemann surface known as the Picard-Fuchs equation. Solving the Picard-Fuchs equation yields semiclassical spectra as well as instanton effects such as width of Bloch bands (the latter determines energy barrier for charge transport). Both are shown to be in perfect agreement with numerical simulations. Applications include transport through biological ion channels as well as nanofluidics, e.g water filled nanotubes. The work was supported by NSF grant DMR1306734.
Statistical mechanics of Coulomb gases as quantum theory on Riemann surfaces
Gulden, T.; Janas, M.; Koroteev, P.; Kamenev, A.
2013-09-15
Statistical mechanics of a 1D multivalent Coulomb gas can be mapped onto non-Hermitian quantum mechanics. We use this example to develop the instanton calculus on Riemann surfaces. Borrowing from the formalism developed in the context of the Seiberg-Witten duality, we treat momentum and coordinate as complex variables. Constant-energy manifolds are given by Riemann surfaces of genus g {>=} 1. The actions along principal cycles on these surfaces obey the ordinary differential equation in the moduli space of the Riemann surface known as the Picard-Fuchs equation. We derive and solve the Picard-Fuchs equations for Coulomb gases of various charge content. Analysis of monodromies of these solutions around their singular points yields semiclassical spectra as well as instanton effects such as the Bloch bandwidth. Both are shown to be in perfect agreement with numerical simulations.
NASA Astrophysics Data System (ADS)
Akhmeteli, Andrey
2012-05-01
Is it possible to offer a "no drama" quantum theory? Something as simple (in principle) as classical electrodynamics - a theory described by a system of partial differential equations in 3+1 dimensions, but reproducing unitary evolution of a quantum field theory in the configuration space? The following results suggest an affirmative answer: 1. The scalar field can be algebraically eliminated from scalar electrodynamics; the resulting equations describe independent evolution of the electromagnetic field. 2. After introduction of a complex 4-potential (producing the same electromagnetic field as the standard real 4-potential), the spinor field can be algebraically eliminated from spinor electrodynamics; the resulting equations describe independent evolution of the electromagnetic field. 3. The resulting theories for the electromagnetic field can be embedded into quantum field theories. Another fundamental result: in a general case, the Dirac equation is equivalent to a 4th order partial differential equations for just one component, which can be made real by a gauge transform. Issues related to the Bell theorem are discussed.
PT quantum mechanics - Recent results
NASA Astrophysics Data System (ADS)
Bender, Carl M.
2012-09-01
Most quantum physicists believe that a quantum-mechanical Hamiltonian must be Dirac Hermitian (invariant under matrix transposition and complex conjugation) to be sure that the energy eigenvalues are real and that time evolution is unitary. However, the non-Dirac-hermitian Hamiltonian H = p2+ix3 has a real positive discrete spectrum and generates unitary time evolution and defines a fully consistent and physical quantum theory. Evidently, Dirac Hermiticity is too restrictive. While H = p2+ix3 is not Dirac Hermitian, it is PT symmetric (invariant under combined space reflection P and time reversal T). Another PT-symmetric Hamiltonian whose energy levels are real, positive and discrete is H = p2-x4, which contains an upside-down potential. The quantum mechanics defined by a PT-symmetric Hamiltonian is a complex generalization of ordinary quantum mechanics. When quantum mechanics and quantum field theory are extended into the complex domain, new kinds of theories having strange and remarkable properties emerge. In the past two years some of these properties have been verified in laboratory experiments. Here, we first discuss PT-symmetric Hamiltonians at a simple intuitive level and explain why the energy levels of such Hamiltonians may be real, positive, and discrete. Second, we describe a recent experiment in which the PT phase transition was observed. Third, we briefly mention that PT-symmetric theories can be useful at a fundamental level. While the double-scaling limit of an O(N)-symmetric gφ4 quantum field theory appears to be inconsistent because the critical value of g is negative, this limit is in fact not inconsistent because the critical theory is PT symmetric.
Revisiting Bohr's semiclassical quantum theory.
Ben-Amotz, Dor
2006-10-12
Bohr's atomic theory is widely viewed as remarkable, both for its accuracy in predicting the observed optical transitions of one-electron atoms and for its failure to fully correspond with current electronic structure theory. What is not generally appreciated is that Bohr's original semiclassical conception differed significantly from the Bohr-Sommerfeld theory and offers an alternative semiclassical approximation scheme with remarkable attributes. More specifically, Bohr's original method did not impose action quantization constraints but rather obtained these as predictions by simply matching photon and classical orbital frequencies. In other words, the hydrogen atom was treated entirely classically and orbital quantized emerged directly from the Planck-Einstein photon quantization condition, E = h nu. Here, we revisit this early history of quantum theory and demonstrate the application of Bohr's original strategy to the three quintessential quantum systems: an electron in a box, an electron in a ring, and a dipolar harmonic oscillator. The usual energy-level spectra, and optical selection rules, emerge by solving an algebraic (quadratic) equation, rather than a Bohr-Sommerfeld integral (or Schroedinger) equation. However, the new predictions include a frozen (zero-kinetic-energy) state which in some (but not all) cases lies below the usual zero-point energy. In addition to raising provocative questions concerning the origin of quantum-chemical phenomena, the results may prove to be of pedagogical value in introducing students to quantum mechanics. PMID:17020371
Quantum mechanical theory of collisional ionization in the presence of intense laser radiation
NASA Technical Reports Server (NTRS)
Bellum, J. C.; George, T. F.
1978-01-01
The paper presents a quantum mechanical formalism for treating ionizing collisions occurring in the presence of an intense laser field. Both the intense laser radiation and the internal electronic continuum states associated with the emitted electrons are rigorously taken into account by combining discretization techniques with expansions in terms of electronic-field representations for the quasi-molecule-plus-photon system. The procedure leads to a coupled-channel description of the heavy-particle dynamics which involves effective electronic-field potential surfaces and continua. It is suggested that laser-influenced ionizing collisions can be studied to verify the effects of intense laser radiation on inelastic collisional processes. Calculation procedures for electronic transition dipole matrix elements between discrete and continuum electronic states are outlined.
NASA Astrophysics Data System (ADS)
Jones, Robert
2011-03-01
I do not agree with mind-body dualism. Today the consensus view is that thought and mind is a combination of processes like memory, generalization, comparison, deduction, organization, induction, classification, feature detection, analogy, etc. performed by computational machinery. (R. Jones, Trans. of the Kansas Acad. Sci., vol. 109, # 3/4, 2006 and www.robert-w-jones.com, philosopher, theory of thought) But I believe that quantum mechanics is a more plausible dualist theory of reality. The quantum mechanical wave function is nonphysical, it exists in a 3N space (for an N body system) not in (x,y,z,t) 4-space, and does not possess physical properties. But real physical things like energy (which do exist in our 4-space world) influence the wave function and the wave function, in its turn, influences real physical things, like where a particle can be found in 4-space. The coupling between the spirit-like wave function and things found in the real (4-space) world (like energy) is via mathematical equations like the Schrodinger equation and Born normalization.
Emergence of four dimensional quantum mechanics from a deterministic theory in 11 dimensions
NASA Astrophysics Data System (ADS)
Doyen, G.; Drakova, D.
2015-07-01
We develop a deterministic theory which accounts for the coupling of a high dimensional continuum of environmental excitations (called gravonons) to massive particle in a very localized and very weak fashion. For the model presented Schrödinger's equation can be solved practically exactly in 11 spacetime dimensions and the result demonstrates that as a function of time an incoming matter wave incident on a screen extinguishes, except at a single interaction center on the detection screen. This transition is reminiscent of the wave - particle duality arising from the ’’collapse” (also called ’’process one”) postulated in the Copenhagen-von Neumann interpretation. In our theory it is replaced by a sticking process of the particle from the vacuum to the surface of the detection screen. This situation was verified in experiments by using massive molecules. In our theory this ”wave-particle transition” is connected to the different dimensionalities of the space for particle motion and the gravonon dynamics, the latter propagating in the hidden dimensions of 11 dimensional spacetime. The fact that the particle is detected at apparently statistically determined points on the screen is traced back to the weakness and locality of the interaction with the gravonons which allows coupling on the energy shell alone. Although the theory exhibits a completely deterministic ”chooser” mechanism for single site sticking, an apparent statistical character results, as it is found in the experiments, due to small heterogeneities in the atomic and gravonon structures.
NASA Astrophysics Data System (ADS)
Berkovitz, Joseph
Bruno de Finetti is one of the founding fathers of the subjectivist school of probability, where probabilities are interpreted as rational degrees of belief. His work on the relation between the theorems of probability and rationality is among the corner stones of modern subjective probability theory. De Finetti maintained that rationality requires that degrees of belief be coherent, and he argued that the whole of probability theory could be derived from these coherence conditions. De Finetti's interpretation of probability has been highly influential in science. This paper focuses on the application of this interpretation to quantum mechanics. We argue that de Finetti held that the coherence conditions of degrees of belief in events depend on their verifiability. Accordingly, the standard coherence conditions of degrees of belief that are familiar from the literature on subjective probability only apply to degrees of belief in events which could (in principle) be jointly verified; and the coherence conditions of degrees of belief in events that cannot be jointly verified are weaker. While the most obvious explanation of de Finetti's verificationism is the influence of positivism, we argue that it could be motivated by the radical subjectivist and instrumental nature of probability in his interpretation; for as it turns out, in this interpretation it is difficult to make sense of the idea of coherent degrees of belief in, and accordingly probabilities of unverifiable events. We then consider the application of this interpretation to quantum mechanics, concentrating on the Einstein-Podolsky-Rosen experiment and Bell's theorem.
The Quantum Underground: Early quantum theory textbooks
NASA Astrophysics Data System (ADS)
Gearhart, Clayton
2011-04-01
Quantum theory had its beginnings in 1900, when Max Planck derived his famous formula for the energy density of black-body radiation. But the early quantum theory textbooks we remember today--for example, those of Arnold Summerfeld (1919), Fritz Reiche (1921), and a shorter Report by James Jeans (1914), did not appear until some years later, and all were written by physicists who were themselves active participants in early quantum theory. Surprisingly, not all early texts fit this pattern. Reiche himself had written a review article on quantum theory for general readers in Die Naturwissenschaften in 1913, long before his research had shifted to quantum topics. And a year later, textbooks by Hermann Sieveking and Sigfried Valentiner treated quantum theory for students and non-specialists, although neither was active in quantum theoretical research. A third and better known author, Owen Richardson, also treated quantum theory in a 1914 book on electromagnetism. I will describe these early and little-known treatments of quantum theory, all of which were written by physicists whose primary research and professional interests lay elsewhere.
Generalized Quantum Theory and Mathematical Foundations of Quantum Field Theory
NASA Astrophysics Data System (ADS)
Maroun, Michael Anthony
This dissertation is divided into two main topics. The first is the generalization of quantum dynamics when the Schrodinger partial differential equation is not defined even in the weak mathematical sense because the potential function itself is a distribution in the spatial variable, the same variable that is used to define the kinetic energy operator, i.e. the Laplace operator. The procedure is an extension and broadening of the distributional calculus and offers spectral results as an alternative to the only other two known methods to date, namely a) the functional calculi; and b) non-standard analysis. Furthermore, the generalizations of quantum dynamics presented within give a resolution to the time asymmetry paradox created by multi-particle quantum mechanics due to the time evolution still being unitary. A consequence is the randomization of phases needed for the fundamental justification Pauli master equation. The second topic is foundations of the quantum theory of fields. The title is phrased as ``foundations'' to emphasize that there is no claim of uniqueness but rather a proposal is put forth, which is markedly different than that of constructive or axiomatic field theory. In particular, the space of fields is defined as a space of generalized functions with involutive symmetry maps (the CPT invariance) that affect the topology of the field space. The space of quantum fields is then endowed the Frechet property and interactions change the topology in such a way as to cause some field spaces to be incompatible with others. This is seen in the consequences of the Haag theorem. Various examples and discussions are given that elucidate a new view of the quantum theory of fields and its (lack of) mathematical structure.
Entangled states in quantum mechanics
NASA Astrophysics Data System (ADS)
Ruža, Jānis
2010-01-01
In some circles of quantum physicists, a view is maintained that the nonseparability of quantum systems-i.e., the entanglement-is a characteristic feature of quantum mechanics. According to this view, the entanglement plays a crucial role in the solution of quantum measurement problem, the origin of the “classicality” from the quantum physics, the explanation of the EPR paradox by a nonlocal character of the quantum world. Besides, the entanglement is regarded as a cornerstone of such modern disciplines as quantum computation, quantum cryptography, quantum information, etc. At the same time, entangled states are well known and widely used in various physics areas. In particular, this notion is widely used in nuclear, atomic, molecular, solid state physics, in scattering and decay theories as well as in other disciplines, where one has to deal with many-body quantum systems. One of the methods, how to construct the basis states of a composite many-body quantum system, is the so-called genealogical decomposition method. Genealogical decomposition allows one to construct recurrently by particle number the basis states of a composite quantum system from the basis states of its forming subsystems. These coupled states have a structure typical for entangled states. If a composite system is stable, the internal structure of its forming basis states does not manifest itself in measurements. However, if a composite system is unstable and decays onto its forming subsystems, then the measurables are the quantum numbers, associated with these subsystems. In such a case, the entangled state has a dynamical origin, determined by the Hamiltonian of the corresponding decay process. Possible correlations between the quantum numbers of resulting subsystems are determined by the symmetries-conservation laws of corresponding dynamical variables, and not by the quantum entanglement feature.
Quantum algorithms for quantum field theories
NASA Astrophysics Data System (ADS)
Jordan, Stephen
2015-03-01
Ever since Feynman's original proposal for quantum computers, one of the primary applications envisioned has been efficient simulation of other quantum systems. In fact, it has been conjectured that quantum computers would be universal simulators, which can simulate all physical systems using computational resources that scale polynomially with the system's number of degrees of freedom. Quantum field theories have posed a challenge in that the set of degrees of freedom is formally infinite. We show how quantum computers, if built, could nevertheless efficiently simulate certain quantum field theories at bounded energy scales. Our algorithm includes a new state preparation technique which we believe may find additional applications in quantum algorithms. Joint work with Keith Lee and John Preskill.
Informational derivation of quantum theory
NASA Astrophysics Data System (ADS)
Chiribella, Giulio; D'Ariano, Giacomo Mauro; Perinotti, Paolo
2011-07-01
We derive quantum theory from purely informational principles. Five elementary axioms—causality, perfect distinguishability, ideal compression, local distinguishability, and pure conditioning—define a broad class of theories of information processing that can be regarded as standard. One postulate—purification—singles out quantum theory within this class.
NASA Technical Reports Server (NTRS)
Shen, Y.; Shen, Z. J.; Shen, G. T.; Yang, B. C.
1996-01-01
By the measurement theory of quantum mechanics and the method of Fourier transform,we proved that the wave function psi(x,y,z,t)= (8/((2(pi)(2L(exp (1/2)))(exp 3))(Phi(L,t,x)Phi(L,t,y)Phi(L,t,z)). According to the theory that the velocity of any particle can not be larger than the velocity of light and the Born interpretation, when absolute value of delta greater than (ct+ L),Phi(L,t,delta) = 0. But according to the calculation, we proved that for some delta, even if absolute value of delta is greater than (ct+L), Phi(L,t,delta) is not equal to 0.
Quantum Information Theory for Quantum Communication
NASA Astrophysics Data System (ADS)
Koashi, Masato
This chapter gives a concise description of the fundamental concepts of quantum information and quantum communication, which is pertinent to the discussions in the subsequent chapters. Beginning with the basic set of rules that dictate quantum mechanics, the chapter explains the most general ways to describe quantum states, measurements, and state transformations. Convenient mathematical tools are also presented to provide an intuitive picture of a qubit, which is the simplest unit of quantum information. The chapter then elaborates on the distinction between quantum communication and classical communication, with emphasis on the role of quantum entanglement as a communication resource. Quantum teleportation and dense coding are then explained in the context of optimal resource conversions among quantum channels, classical channels, and entanglement.
Bender, Carl M; DeKieviet, Maarten; Klevansky, S P
2013-04-28
PT-symmetric quantum mechanics (PTQM) has become a hot area of research and investigation. Since its beginnings in 1998, there have been over 1000 published papers and more than 15 international conferences entirely devoted to this research topic. Originally, PTQM was studied at a highly mathematical level and the techniques of complex variables, asymptotics, differential equations and perturbation theory were used to understand the subtleties associated with the analytic continuation of eigenvalue problems. However, as experiments on PT-symmetric physical systems have been performed, a simple and beautiful physical picture has emerged, and a PT-symmetric system can be understood as one that has a balanced loss and gain. Furthermore, the PT phase transition can now be understood intuitively without resorting to sophisticated mathematics. Research on PTQM is following two different paths: at a fundamental level, physicists are attempting to understand the underlying mathematical structure of these theories with the long-range objective of applying the techniques of PTQM to understanding some of the outstanding problems in physics today, such as the nature of the Higgs particle, the properties of dark matter, the matter-antimatter asymmetry in the universe, neutrino oscillations and the cosmological constant; at an applied level, new kinds of PT-synthetic materials are being developed, and the PT phase transition is being observed in many physical contexts, such as lasers, optical wave guides, microwave cavities, superconducting wires and electronic circuits. The purpose of this Theme Issue is to acquaint the reader with the latest developments in PTQM. The articles in this volume are written in the style of mini-reviews and address diverse areas of the emerging and exciting new area of PT-symmetric quantum mechanics. PMID:23509390
Principles of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Landé, Alfred
2013-10-01
ödinger's equation for non-conservative systems; 46. Pertubation theory; 47. Orthogonality, normalization and Hermitian conjugacy; 48. General matrix elements; Part IV. The Principle of Correspondence: 49. Contact transformations in classical mechanics; 50. Point transformations; 51. Contact transformations in quantum mechanics; 52. Constants of motion and angular co-ordinates; 53. Periodic orbits; 54. De Broglie and Schrödinger function; correspondence to classical mechanics; 55. Packets of probability; 56. Correspondence to hydrodynamics; 57. Motion and scattering of wave packets; 58. Formal correspondence between classical and quantum mechanics; Part V. Mathematical Appendix: Principle of Invariance: 59. The general theorem of transformation; 60. Operator calculus; 61. Exchange relations; three criteria for conjugacy; 62. First method of canonical transformation; 63. Second method of canonical transformation; 64. Proof of the transformation theorem; 65. Invariance of the matrix elements against unitary transformations; 66. Matrix mechanics; Index of literature; Index of names and subjects.
Mullin, Jonathan; Valley, Nicholas; Blaber, Martin G; Schatz, George C
2012-09-27
Multiscale models that combine quantum mechanics and classical electrodynamics are presented, which allow for the evaluation of surface-enhanced Raman (SERS) and hyper-Raman scattering spectra (SEHRS) for both chemical (CHEM) and electrodynamic (EM) enhancement mechanisms. In these models, time-dependent density functional theory (TDDFT) for a system consisting of the adsorbed molecule and a metal cluster fragment of the metal particle is coupled to Mie theory for the metal particle, with the surface of the cluster being overlaid with the surface of the metal particle. In model A, the electromagnetic enhancement from plasmon-excitation of the metal particle is combined with the chemical enhancement associated with a static treatment of the molecule-metal structure to determine overall spectra. In model B, the frequency dependence of the Raman spectrum of the isolated molecule is combined with the enhancements determined in model A to refine the enhancement estimate. An equivalent theory at the level of model A is developed for hyper-Raman spectra calculations. Application to pyridine interacting with a 20 nm diameter silver sphere is presented, including comparisons with an earlier model (denoted G), which combines plasmon enhanced fields with gas-phase Raman (or hyper-Raman) spectra. The EM enhancement factor for spherical particles at 357 nm is found to be 10(4) and 10(6) for SERS and SEHRS, respectively. Including both chemical and electromagnetic mechanisms at the level of model A leads to enhancements on the order of 10(4) and 10(9) for SERS and SEHRS. PMID:22946645
BOOK REVIEW: Relativistic Quantum Mechanics
NASA Astrophysics Data System (ADS)
Antoine, J.-P.
2004-01-01
The aim of relativistic quantum mechanics is to describe the finer details of the structure of atoms and molecules, where relativistic effects become nonnegligible. It is a sort of intermediate realm, between the familiar nonrelativistic quantum mechanics and fully relativistic quantum field theory, and thus it lacks the simplicity and elegance of both. Yet it is a necessary tool, mostly for quantum chemists. Pilkuhn's book offers to this audience an up-to-date survey of these methods, which is quite welcome since most previous textbooks are at least ten years old. The point of view of the author is to start immediately in the relativistic domain, following the lead of Maxwell's equations rather than classical mechanics, and thus to treat the nonrelativistic version as an approximation. Thus Chapter 1 takes off from Maxwell's equations (in the noncovariant Coulomb gauge) and gradually derives the basic aspects of Quantum Mechanics in a rather pedestrian way (states and observables, Hilbert space, operators, quantum measurement, scattering,. Chapter 2 starts with the Lorentz transformations, then continues with the Pauli spin equation and the Dirac equation and some of their applications (notably the hydrogen atom). Chapter 3 is entitled `Quantum fields and particles', but falls short of treating quantum field theory properly: only creation/annihilation operators are considered, for a particle in a box. The emphasis is on two-electron states (the Pauli principle, the Foldy--Wouthuysen elimination of small components of Dirac spinors, Breit projection operators. Chapter 4 is devoted to scattering theory and the description of relativistic bound states. Chapter 5, finally, covers hyperfine interactions and radiative corrections. As we said above, relativistic quantum mechanics is by nature limited in scope and rather inelegant and Pilkuhn's book is no exception. The notation is often heavy (mostly noncovariant) and the mathematical level rather low. The central topic
Free Quantum Field Theory from Quantum Cellular Automata
NASA Astrophysics Data System (ADS)
Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo; Tosini, Alessandro
2015-10-01
After leading to a new axiomatic derivation of quantum theory (see D'Ariano et al. in Found Phys, 2015), the new informational paradigm is entering the domain of quantum field theory, suggesting a quantum automata framework that can be regarded as an extension of quantum field theory to including an hypothetical Planck scale, and with the usual quantum field theory recovered in the relativistic limit of small wave-vectors. Being derived from simple principles (linearity, unitarity, locality, homogeneity, isotropy, and minimality of dimension), the automata theory is quantum ab-initio, and does not assume Lorentz covariance and mechanical notions. Being discrete it can describe localized states and measurements (unmanageable by quantum field theory), solving all the issues plaguing field theory originated from the continuum. These features make the theory an ideal framework for quantum gravity, with relativistic covariance and space-time emergent solely from the interactions, and not assumed a priori. The paper presents a synthetic derivation of the automata theory, showing how the principles lead to a description in terms of a quantum automaton over a Cayley graph of a group. Restricting to Abelian groups we show how the automata recover the Weyl, Dirac and Maxwell dynamics in the relativistic limit. We conclude with some new routes about the more general scenario of non-Abelian Cayley graphs. The phenomenology arising from the automata theory in the ultra-relativistic domain and the analysis of corresponding distorted Lorentz covariance is reviewed in Bisio et al. (Found Phys 2015, in this same issue).
Hybrid theory and calculation of e-N2 scattering. [quantum mechanics - nuclei (nuclear physics)
NASA Technical Reports Server (NTRS)
Chandra, N.; Temkin, A.
1975-01-01
A theory of electron-molecule scattering was developed which was a synthesis of close coupling and adiabatic-nuclei theories. The theory is shown to be a close coupling theory with respect to vibrational degrees of freedom but is a adiabatic-nuclei theory with respect to rotation. It can be applied to any number of partial waves required, and the remaining ones can be calculated purely in one or the other approximation. A theoretical criterion based on fixed-nuclei calculations and not on experiment can be given as to which partial waves and energy domains require the various approximations. The theory allows all cross sections (i.e., pure rotational, vibrational, simultaneous vibration-rotation, differential and total) to be calculated. Explicit formulae for all the cross sections are presented.
Tests of alternative quantum theories with neutrons
Sponar, S.; Durstberger-Rennhofer, K.; Badurek, G.; Hasegawa, Y.; Klepp, J.; Schmitzer, C.; Bartosik, H.
2014-12-04
According to Bell’s theorem, every theory based on local realism is at variance with certain predictions of quantum mechanics. A theory that maintains realism but abandons reliance on locality, which has been proposed by Leggett, is incompatible with experimentally observable quantum correlations. In our experiment correlation measurements of spin-energy entangled single-neutrons violate a Leggett-type inequality by more than 7.6 standard deviations. The experimental data falsify the contextual realistic model and are fully in favor of quantum mechanics.
Polymer quantum mechanics and its continuum limit
Corichi, Alejandro; Vukasinac, Tatjana; Zapata, Jose A.
2007-08-15
A rather nonstandard quantum representation of the canonical commutation relations of quantum mechanics systems, known as the polymer representation, has gained some attention in recent years, due to its possible relation with Planck scale physics. In particular, this approach has been followed in a symmetric sector of loop quantum gravity known as loop quantum cosmology. Here we explore different aspects of the relation between the ordinary Schroedinger theory and the polymer description. The paper has two parts. In the first one, we derive the polymer quantum mechanics starting from the ordinary Schroedinger theory and show that the polymer description arises as an appropriate limit. In the second part we consider the continuum limit of this theory, namely, the reverse process in which one starts from the discrete theory and tries to recover back the ordinary Schroedinger quantum mechanics. We consider several examples of interest, including the harmonic oscillator, the free particle, and a simple cosmological model.
A general theory of quantum relativity
NASA Astrophysics Data System (ADS)
Minic, Djordje; Tze, Chia-Hsiung
2004-02-01
The geometric form of standard quantum mechanics is compatible with the two postulates: (1) the laws of physics are invariant under the choice of experimental setup and (2) every quantum observation or event is intrinsically statistical. These postulates remain compatible within a background independent extension of quantum theory with a local intrinsic time implying the relativity of the concept of a quantum event. In this extension the space of quantum events becomes dynamical and only individual quantum events make sense observationally. At the core of such a general theory of quantum relativity is the three-way interplay between the symplectic form, the dynamical metric and non-integrable almost complex structure of the space of quantum events. Such a formulation provides a missing conceptual ingredient in the search for a background independent quantum theory of gravity and matter. The crucial new technical element in our scheme derives from a set of recent mathematical results on certain infinite-dimensional almost Kahler manifolds which replace the complex projective spaces of standard quantum mechanics.
Treating time travel quantum mechanically
NASA Astrophysics Data System (ADS)
Allen, John-Mark A.
2014-10-01
The fact that closed timelike curves (CTCs) are permitted by general relativity raises the question as to how quantum systems behave when time travel to the past occurs. Research into answering this question by utilizing the quantum circuit formalism has given rise to two theories: Deutschian-CTCs (D-CTCs) and "postselected" CTCs (P-CTCs). In this paper the quantum circuit approach is thoroughly reviewed, and the strengths and shortcomings of D-CTCs and P-CTCs are presented in view of their nonlinearity and time-travel paradoxes. In particular, the "equivalent circuit model"—which aims to make equivalent predictions to D-CTCs, while avoiding some of the difficulties of the original theory—is shown to contain errors. The discussion of D-CTCs and P-CTCs is used to motivate an analysis of the features one might require of a theory of quantum time travel, following which two overlapping classes of alternate theories are identified. One such theory, the theory of "transition probability" CTCs (T-CTCs), is fully developed. The theory of T-CTCs is shown not to have certain undesirable features—such as time-travel paradoxes, the ability to distinguish nonorthogonal states with certainty, and the ability to clone or delete arbitrary pure states—that are present with D-CTCs and P-CTCs. The problems with nonlinear extensions to quantum mechanics are discussed in relation to the interpretation of these theories, and the physical motivations of all three theories are discussed and compared.
Towards a theory of intention: An application of quantum mechanics within psychotherapy
NASA Astrophysics Data System (ADS)
Van Wyck, Jennifer
This study incorporated grounded research methodology to analyze and code three fields of research: psychoneuroimmunology, psychokinesis, and guided imagery. The works of Tiller (2001, 2007) and Dyer (2004) were used as a validity check for the grounded theory results and provided further input into a final theory of intention. It was found that intention requires three elements to be most successful in producing targeted outcomes. These include consciousness, thought, and emotion. The emotional aspect of intention had previously been mentioned but never incorporated into earlier theories of intention and appears to be a new finding that has potentially strong implications. The paper concludes with a discussion of how the theory of intention can inform practice in the field of psychotherapy.
NASA Astrophysics Data System (ADS)
Błaszak, Maciej; Domański, Ziemowit
2012-02-01
This paper develops an alternative formulation of quantum mechanics known as the phase space quantum mechanics or deformation quantization. It is shown that the quantization naturally arises as an appropriate deformation of the classical Hamiltonian mechanics. More precisely, the deformation of the point-wise product of observables to an appropriate noncommutative ⋆-product and the deformation of the Poisson bracket to an appropriate Lie bracket are the key elements in introducing the quantization of classical Hamiltonian systems. The formalism of the phase space quantum mechanics is presented in a very systematic way for the case of any smooth Hamiltonian function and for a very wide class of deformations. The considered class of deformations and the corresponding ⋆-products contains as a special case all deformations which can be found in the literature devoted to the subject of the phase space quantum mechanics. Fundamental properties of ⋆-products of observables, associated with the considered deformations are presented as well. Moreover, a space of states containing all admissible states is introduced, where the admissible states are appropriate pseudo-probability distributions defined on the phase space. It is proved that the space of states is endowed with a structure of a Hilbert algebra with respect to the ⋆-multiplication. The most important result of the paper shows that developed formalism is more fundamental than the axiomatic ordinary quantum mechanics which appears in the presented approach as the intrinsic element of the general formalism. The equivalence of two formulations of quantum mechanics is proved by observing that the Wigner-Moyal transform has all properties of the tensor product. This observation allows writing many previous results found in the literature in a transparent way, from which the equivalence of the two formulations of quantum mechanics follows naturally. In addition, examples of a free particle and a simple harmonic
NASA Astrophysics Data System (ADS)
Salam, Abdus; Wigner, E. P.
2010-03-01
Preface; List of contributors; Bibliography of P. A. M. Dirac; 1. Dirac in Cambridge R. J. Eden and J. C. Polkinghorne; 2. Travels with Dirac in the Rockies J. H. Van Vleck; 3. 'The golden age of theoretical physics': P. A. M. Dirac's scientific work from 1924 to 1933 Jagdish Mehra; 4. Foundation of quantum field theory Res Jost; 5. The early history of the theory of electron: 1897-1947 A. Pais; 6. The Dirac equation A. S. Wightman; 7. Fermi-Dirac statistics Rudolph Peierls; 8. Indefinite metric in state space W. Heisenberg; 9. On bras and kets J. M. Jauch; 10. The Poisson bracket C. Lanczos; 11. La 'fonction' et les noyaux L. Schwartz; 12. On the Dirac magnetic poles Edoardo Amadli and Nicola Cabibbo; 13. The fundamental constants and their time variation Freeman J. Dyson; 14. On the time-energy uncertainty relation Eugene P. Wigner; 15. The path-integral quantisation of gravity Abdus Salam and J. Strathdee; Index; Plates.
Speakable and Unspeakable in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Bell, J. S.; Aspect, Introduction by Alain
2004-06-01
List of papers on quantum philosophy by J. S. Bell; Preface; Acknowledgements; Introduction by Alain Aspect; 1. On the problem of hidden variables in quantum mechanics; 2. On the Einstein-Rosen-Podolsky paradox; 3. The moral aspects of quantum mechanics; 4. Introduction to the hidden-variable question; 5. Subject and object; 6. On wave packet reduction in the Coleman-Hepp model; 7. The theory of local beables; 8. Locality in quantum mechanics: reply to critics; 9. How to teach special relativity; 10. Einstein-Podolsky-Rosen experiments; 11. The measurement theory of Everett and de Broglie's pilot wave; 12. Free variables and local causality; 13. Atomic-cascade photons and quantum-mechanical nonlocality; 14. de Broglie-Bohm delayed choice double-slit experiments and density matrix; 15. Quantum mechanics for cosmologists; 16. Bertlmann's socks and the nature of reality; 17. On the impossible pilot wave; 18. Speakable and unspeakable in quantum mechanics; 19. Beables for quantum field theory; 20. Six possible worlds of quantum mechanics; 21. EPR correlations and EPR distributions; 22. Are there quantum jumps?; 23. Against 'measurement'; 24. La Nouvelle cuisine.
Quantum Mechanics From the Cradle?
ERIC Educational Resources Information Center
Martin, John L.
1974-01-01
States that the major problem in learning quantum mechanics is often the student's ignorance of classical mechanics and that one conceptual hurdle in quantum mechanics is its statistical nature, in contrast to the determinism of classical mechanics. (MLH)
Quantum theory of measurements as quantum decision theory
NASA Astrophysics Data System (ADS)
Yukalov, V. I.; Sornette, D.
2015-03-01
Theory of quantum measurements is often classified as decision theory. An event in decision theory corresponds to the measurement of an observable. This analogy looks clear for operationally testable simple events. However, the situation is essentially more complicated in the case of composite events. The most difficult point is the relation between decisions under uncertainty and measurements under uncertainty. We suggest a unified language for describing the processes of quantum decision making and quantum measurements. The notion of quantum measurements under uncertainty is introduced. We show that the correct mathematical foundation for the theory of measurements under uncertainty, as well as for quantum decision theory dealing with uncertain events, requires the use of positive operator-valued measure that is a generalization of projection-valued measure. The latter is appropriate for operationally testable events, while the former is necessary for characterizing operationally uncertain events. In both decision making and quantum measurements, one has to distinguish composite nonentangled events from composite entangled events. Quantum probability can be essentially different from classical probability only for entangled events. The necessary condition for the appearance of an interference term in the quantum probability is the occurrence of entangled prospects and the existence of an entangled strategic state of a decision maker or of an entangled statistical state of a measuring device.
The Nature of Quantum Truth: Logic, Set Theory, & Mathematics in the Context of Quantum Theory
NASA Astrophysics Data System (ADS)
Frey, Kimberly
The purpose of this dissertation is to construct a radically new type of mathematics whose underlying logic differs from the ordinary classical logic used in standard mathematics, and which we feel may be more natural for applications in quantum mechanics. Specifically, we begin by constructing a first order quantum logic, the development of which closely parallels that of ordinary (classical) first order logic --- the essential differences are in the nature of the logical axioms, which, in our construction, are motivated by quantum theory. After showing that the axiomatic first order logic we develop is sound and complete (with respect to a particular class of models), this logic is then used as a foundation on which to build (axiomatic) mathematical systems --- and we refer to the resulting new mathematics as "quantum mathematics." As noted above, the hope is that this form of mathematics is more natural than classical mathematics for the description of quantum systems, and will enable us to address some foundational aspects of quantum theory which are still troublesome --- e.g. the measurement problem --- as well as possibly even inform our thinking about quantum gravity. After constructing the underlying logic, we investigate properties of several mathematical systems --- e.g. axiom systems for abstract algebras, group theory, linear algebra, etc. --- in the presence of this quantum logic. In the process, we demonstrate that the resulting quantum mathematical systems have some strange, but very interesting features, which indicates a richness in the structure of mathematics that is classically inaccessible. Moreover, some of these features do indeed suggest possible applications to foundational questions in quantum theory. We continue our investigation of quantum mathematics by constructing an axiomatic quantum set theory, which we show satisfies certain desirable criteria. Ultimately, we hope that such a set theory will lead to a foundation for quantum
Generalization of the Activated Complex Theory of Reaction Rates. I. Quantum Mechanical Treatment
DOE R&D Accomplishments Database
Marcus, R. A.
1964-01-01
In its usual form activated complex theory assumes a quasi-equilibrium between reactants and activated complex, a separable reaction coordinate, a Cartesian reaction coordinate, and an absence of interaction of rotation with internal motion in the complex. In the present paper a rate expression is derived without introducing the Cartesian assumption. The expression bears a formal resemblance to the usual one and reduces to it when the added assumptions of the latter are introduced.
Categorical aspects of reconstructing quantum theory
NASA Astrophysics Data System (ADS)
Lal, Raymond; Coecke, Bob
2012-02-01
We present steps towards a new understanding of reconstructions of quantum theory. Chiribella, D'Ariano, and Perinotti (CDP) have recently produced a fascinating reconstruction of the formalism of quantum theory, which brings to light its operational origins. We use parts of the formalism of categorical quantum mechanics to expose the underlying mathematical structures of information flow in the CDP reconstruction. Our results include an elegant relation between teleportation and local tomography, and an equivalence betweeen a purely category-theoretic description of the purification of a mixed state, and the purification axiom of CDP.
Fundamentals of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Tang, C. L.
2005-06-01
Quantum mechanics has evolved from a subject of study in pure physics to one with a wide range of applications in many diverse fields. The basic concepts of quantum mechanics are explained in this book in a concise and easy-to-read manner emphasising applications in solid state electronics and modern optics. Following a logical sequence, the book is focused on the key ideas and is conceptually and mathematically self-contained. The fundamental principles of quantum mechanics are illustrated by showing their application to systems such as the hydrogen atom, multi-electron ions and atoms, the formation of simple organic molecules and crystalline solids of practical importance. It leads on from these basic concepts to discuss some of the most important applications in modern semiconductor electronics and optics. Containing many homework problems and worked examples, the book is suitable for senior-level undergraduate and graduate level students in electrical engineering, materials science and applied physics. Clear exposition of quantum mechanics written in a concise and accessible style Precise physical interpretation of the mathematical foundations of quantum mechanics Illustrates the important concepts and results by reference to real-world examples in electronics and optoelectronics Contains homeworks and worked examples, with solutions available for instructors
Studies in quantum field theory
NASA Astrophysics Data System (ADS)
Polmar, S. K.
The theoretical physics group at Washington University has been devoted to the solution of problems in theoretical and mathematical physics. All of the personnel on this task have a similar approach to their research in that they apply sophisticated analytical and numerical techniques to problems primarily in quantum field theory. Specifically, this group has worked on quantum chromodynamics, classical Yang-Mills fields, chiral symmetry breaking condensates, lattice field theory, strong-coupling approximations, perturbation theory in large order, nonlinear waves, 1/N expansions, quantum solitons, phase transitions, nuclear potentials, and early universe calculations.
Unification of quantum information theory
NASA Astrophysics Data System (ADS)
Abeyesinghe, Anura
We present the unification of many previously disparate results in noisy quantum Shannon theory and the unification of all of noiseless quantum Shannon theory. More specifically we deal here with bipartite, unidirectional, and memoryless quantum Shannon theory. We find all the optimal protocols and quantify the relationship between the resources used, both for the one-shot and for the ensemble case, for what is arguably the most fundamental task in quantum information theory: sharing entangled states between a sender and a receiver. We find that all of these protocols are derived from our one-shot superdense coding protocol and relate nicely to each other. We then move on to noisy quantum information theory and give a simple, direct proof of the "mother" protocol, or rather her generalization to the Fully Quantum Slepian-Wolf protocol (FQSW). FQSW simultaneously accomplishes two goals: quantum communication-assisted entanglement distillation, and state transfer from the sender to the receiver. As a result, in addition to her other "children," the mother protocol generates the state merging primitive of Horodecki, Oppenheim, and Winter as well as a new class of distributed compression protocols for correlated quantum sources, which are optimal for sources described by separable density operators. Moreover, the mother protocol described here is easily transformed into the so-called "father" protocol, demonstrating that the division of single-sender/single-receiver protocols into two families was unnecessary: all protocols in the family are children of the mother.
Quantum Theory is an Information Theory
NASA Astrophysics Data System (ADS)
D'Ariano, Giacomo M.; Perinotti, Paolo
2016-03-01
In this paper we review the general framework of operational probabilistic theories (OPT), along with the six axioms from which quantum theory can be derived. We argue that the OPT framework along with a relaxed version of five of the axioms, define a general information theory. We close the paper with considerations about the role of the observer in an OPT, and the interpretation of the von Neumann postulate and the Schrödinger-cat paradox.
Quantum Mechanics Beyond Hilbert Space
NASA Astrophysics Data System (ADS)
Antoine, J.-P.
Going Beyond Hilbert Space Why? The Different Formalisms What Does One Obtain? The Mathematical Formalism Rigged Hilbert Spaces Scales and Lattices of Hilbert Spaces Partial Inner Product Spaces Operators on PIP-Spaces Application in Quantum Mechanics: The Fock-Bargmann Representation - Revisited A RHS of Entire Functions A LHS of Entire Functions Around ℑ Application in Scattering Theory RHS: Resonances, Gamow Vectors, Arrow of Time LHS: Integral Equations vs. Complex Scaling Conclusion
NASA Astrophysics Data System (ADS)
Katzarov, Ivaylo H.; Pashov, Dimitar L.; Paxton, Anthony T.
2013-08-01
We present calculations of free energy barriers and diffusivities as functions of temperature for the diffusion of hydrogen in α-Fe. This is a fully quantum mechanical approach since the total energy landscape is computed using a self-consistent, transferable tight binding model for interstitial impurities in magnetic iron. Also the hydrogen nucleus is treated quantum mechanically and we compare here two approaches in the literature both based in the Feynman path integral formulation of statistical mechanics. We find that the quantum transition state theory which admits greater freedom for the proton to explore phase space gives result in better agreement with experiment than the alternative which is based on fixed centroid calculations of the free energy barrier. This will have an impact on future modeling and the simulation of hydrogen trapping and diffusion.
Quantum theory of Manakov solitons
Rand, Darren; Prucnal, Paul R.; Steiglitz, Ken
2005-05-15
A fully quantum mechanical model of two-component Manakov solitons is developed in both the Heisenberg and Schroedinger representations, followed by an analytical, linearized quantum theory of Manakov solitons in the Heisenberg picture. This theory is used to analyze the vacuum-induced fluctuations of Manakov soliton propagation and collision. The vacuum fluctuations induce phase diffusion and dispersion in Manakov soliton propagation. Calculations of the position, polarization angle, and polarization state fluctuations show an increase in collision-induced noise with a decrease in the relative velocity between the two solitons, as expected because of an increase in the interaction length. Fluctuations in both the polarization angle and state are shown to be independent of propagation distance, opening up possibilities for communications, switching, and logic, exploiting these properties of Manakov solitons. Calculations of the phase noise reveal, surprisingly, that the collision-induced fluctuations can be reduced slightly below the level of fluctuations in the absence of collision, due to cross-correlation effects between the collision-induced phase and amplitude fluctuations of the soliton. The squeezing effect of Manakov solitons is also studied and proven, unexpectedly, to have the same theoretical optimum as scalar solitons.
No extension of quantum theory can have improved predictive power.
Colbeck, Roger; Renner, Renato
2011-01-01
According to quantum theory, measurements generate random outcomes, in stark contrast with classical mechanics. This raises the question of whether there could exist an extension of the theory that removes this indeterminism, as suspected by Einstein, Podolsky and Rosen. Although this has been shown to be impossible, existing results do not imply that the current theory is maximally informative. Here we ask the more general question of whether any improved predictions can be achieved by any extension of quantum theory. Under the assumption that measurements can be chosen freely, we answer this question in the negative: no extension of quantum theory can give more information about the outcomes of future measurements than quantum theory itself. Our result has significance for the foundations of quantum mechanics, as well as applications to tasks that exploit the inherent randomness in quantum theory, such as quantum cryptography. PMID:21811240
Choi, B.H.; Poe, R.T.
1985-08-01
We present a systematic formulation of the atom--surface scattering dynamics which includes the vibrational states of the atoms in the solid (phonons). The properties of the total scattering wave function of the system, a representation of the interaction potential matrix, and the characteristics of the independent physical solutions are all derived from the translational invariance of the full Hamiltonian. The scattering equations in the integral forms as well as the related Green functions were also obtained. The configurational representations of the Green functions, in particular, are quite different from those of the conventional scattering theory where the collision partners are spatially localized. Various versions of the integral expression of scattering, transition, and reactance matrices were also obtained. They are useful for introducing approximation schemes. From the present formulation, some specific theoretical schemes which are more realistic compared to those that have been employed so far and at the same time capable of yielding effective ab initio computation are derived in the following paper. The time reversal invariance and the microscopic reversibility of the atom--surface scattering were discussed. The relations between the in and outgoing scattering wave functions which are satisfied in the atom--surface system and important in the transition matrix methods were presented. The phonon annihilation and creation, and the adsorption and desorption of the atom are related through the time reversal invariance, and thus the microscopic reversibility can be tested by the experiment.
Elementary Concepts of Quantum Theory
ERIC Educational Resources Information Center
Warren, J. W.
1974-01-01
Discusses the importance and difficulties of teaching basic quantum theory. Presents a discussion of wave-particle duality, indeterminacy, the nature of a quantized state of a system, and the exclusion principle. (MLH)
Spacetime states and covariant quantum theory
NASA Astrophysics Data System (ADS)
Reisenberger, Michael; Rovelli, Carlo
2002-06-01
In its usual presentation, classical mechanics appears to give time a very special role. But it is well known that mechanics can be formulated so as to treat the time variable on the same footing as the other variables in the extended configuration space. Such covariant formulations are natural for relativistic gravitational systems, where general covariance conflicts with the notion of a preferred physical-time variable. The standard presentation of quantum mechanics, in turn, again gives time a very special role, raising well known difficulties for quantum gravity. Is there a covariant form of (canonical) quantum mechanics? We observe that the preferred role of time in quantum theory is the consequence of an idealization: that measurements are instantaneous. Canonical quantum theory can be given a covariant form by dropping this idealization. States prepared by noninstantaneous measurements are described by ``spacetime smeared states.'' The theory can be formulated in terms of these states, without making any reference to a special time variable. The quantum dynamics is expressed in terms of the propagator, an object covariantly defined on the extended configuration space.
Vukmirovic, Nenad; Wang, Lin-Wang
2009-11-10
This review covers the description of the methodologies typically used for the calculation of the electronic structure of self-assembled and colloidal quantum dots. These are illustrated by the results of their application to a selected set of physical effects in quantum dots.
Knot theory and statistical mechanics
Jones, V.F.R. )
1990-11-01
Certain algebraic relations used to solve models in statistical mechanics were key to describing a mathematical property of knots known as a polynomial invariant. This connection, tenuous at first, has since developed into a significant flow of ideas. The appearance of such common ground is not atypical of recent developments in mathematics and physics--ideas from different fields interact and produce unexpected results. Indeed, the discovery of the connection between knots and statistical mechanics passed through a theory intimately related to the mathematical structure of quantum physics. This theory, called von Neumann algebras, is distinguished by the idea of continuous dimensionality. Spaces typically have dimensions that are natural numbers, such as 2, 3 or 11, but in von Neumann algebras dimensions such as 2 or {pi} are equally possible. This possibility for continuous dimension played a key role in joining knot theory and statistical mechanics. In another direction, the knot invariants were soon found to occur in quantum field theory. Indeed, Edward Witten of the Institute for Advanced Study in Princeton, N.J., has shown that topological quantum field theory provides a natural way of expressing the new ideas about knots. This advance, in turn, has allowed a beautiful generalization about the invariants of knots in more complicated three-dimensional spaces known as three-manifolds, in which space itself may contain holes and loops.
Quantum Hamilton-Jacobi theory.
Roncadelli, Marco; Schulman, L S
2007-10-26
Quantum canonical transformations have attracted interest since the beginning of quantum theory. Based on their classical analogues, one would expect them to provide a powerful quantum tool. However, the difficulty of solving a nonlinear operator partial differential equation such as the quantum Hamilton-Jacobi equation (QHJE) has hindered progress along this otherwise promising avenue. We overcome this difficulty. We show that solutions to the QHJE can be constructed by a simple prescription starting from the propagator of the associated Schrödinger equation. Our result opens the possibility of practical use of quantum Hamilton-Jacobi theory. As an application, we develop a surprising relation between operator ordering and the density of paths around a semiclassical trajectory. PMID:17995307
Quantum spectral dimension in quantum field theory
NASA Astrophysics Data System (ADS)
Calcagni, Gianluca; Modesto, Leonardo; Nardelli, Giuseppe
2016-03-01
We reinterpret the spectral dimension of spacetimes as the scaling of an effective self-energy transition amplitude in quantum field theory (QFT), when the system is probed at a given resolution. This picture has four main advantages: (a) it dispenses with the usual interpretation (unsatisfactory in covariant approaches) where, instead of a transition amplitude, one has a probability density solving a nonrelativistic diffusion equation in an abstract diffusion time; (b) it solves the problem of negative probabilities known for higher-order and nonlocal dispersion relations in classical and quantum gravity; (c) it clarifies the concept of quantum spectral dimension as opposed to the classical one. We then consider a class of logarithmic dispersion relations associated with quantum particles and show that the spectral dimension dS of spacetime as felt by these quantum probes can deviate from its classical value, equal to the topological dimension D. In particular, in the presence of higher momentum powers it changes with the scale, dropping from D in the infrared (IR) to a value dSUV ≤ D in the ultraviolet (UV). We apply this general result to Stelle theory of renormalizable gravity, which attains the universal value dSUV = 2 for any dimension D.
Quantum mechanics and the generalized uncertainty principle
Bang, Jang Young; Berger, Micheal S.
2006-12-15
The generalized uncertainty principle has been described as a general consequence of incorporating a minimal length from a theory of quantum gravity. We consider a simple quantum mechanical model where the operator corresponding to position has discrete eigenvalues and show how the generalized uncertainty principle results for minimum uncertainty wave packets.
(Studies in quantum field theory)
Not Available
1990-01-01
During the period 4/1/89--3/31/90 the theoretical physics group supported by Department of Energy Contract No. AC02-78ER04915.A015 and consisting of Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Senior Research Associate Visser has made progress in many areas of theoretical and mathematical physics. Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Research Associate Visser are currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large order; quark condensation in QCD; chiral symmetry breaking; the 1/N expansion in quantum field theory; effective potential and action in quantum field theories, including OCD; studies of the early universe and inflation, and quantum gravity.
Causal structure in categorical quantum mechanics
NASA Astrophysics Data System (ADS)
Lal, Raymond Ashwin
Categorical quantum mechanics is a way of formalising the structural features of quantum theory using category theory. It uses compound systems as the primitive notion, which is formalised by using symmetric monoidal categories. This leads to an elegant formalism for describing quantum protocols such as quantum teleportation. In particular, categorical quantum mechanics provides a graphical calculus that exposes the information flow of such protocols in an intuitive way. However, the graphical calculus also reveals surprising features of these protocols; for example, in the quantum teleportation protocol, information appears to flow `backwards-in-time'. This leads to question of how causal structure can be described within categorical quantum mechanics, and how this might lead to insight regarding the structural compatibility between quantum theory and relativity. This thesis is concerned with the project of formalising causal structure in categorical quantum mechanics. We begin by studying an abstract view of Bell-type experiments, as described by `no-signalling boxes', and we show that under time-reversal no-signalling boxes generically become signalling. This conflicts with the underlying symmetry of relativistic causal structure. This leads us to consider the framework of categorical quantum mechanics from the perspective of relativistic causal structure. We derive the properties that a symmetric monoidal category must satisfy in order to describe systems in such a background causal structure. We use these properties to define a new type of category, and this provides a formal framework for describing protocols in spacetime. We explore this new structure, showing how it leads to an understanding of the counter-intuitive information flow of protocols in categorical quantum mechanics. We then find that the formal properties of our new structure are naturally related to axioms for reconstructing quantum theory, and we show how a reconstruction scheme based on
Uncertainty in quantum mechanics: faith or fantasy?
Penrose, Roger
2011-12-13
The word 'uncertainty', in the context of quantum mechanics, usually evokes an impression of an essential unknowability of what might actually be going on at the quantum level of activity, as is made explicit in Heisenberg's uncertainty principle, and in the fact that the theory normally provides only probabilities for the results of quantum measurement. These issues limit our ultimate understanding of the behaviour of things, if we take quantum mechanics to represent an absolute truth. But they do not cause us to put that very 'truth' into question. This article addresses the issue of quantum 'uncertainty' from a different perspective, raising the question of whether this term might be applied to the theory itself, despite its unrefuted huge success over an enormously diverse range of observed phenomena. There are, indeed, seeming internal contradictions in the theory that lead us to infer that a total faith in it at all levels of scale leads us to almost fantastical implications. PMID:22042902
The Measurement Problem in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Ogawa, Shuzo
2001-02-01
Since the establishment of quantum mechanics in the 20s of this century, the controversial discussions 1 have ever continued about its basis, that is the measurement problem of quantum mechanics. Strangely those discussions are prevailed mainly in the circle of theoretical group, while the experimental physicists who are directly concerned with the measurement, indifferently to the discussion have performed their study works, showing firmly the validity of quantum theory. This curious affair seems to be stemmed from the situation that the discussions overlooked by basing on what quantum theoretic ground the experimental equipments are installed, its sure operations are examined and the obtained results are explained, etc. In this talk 2 we shall aim to make clear the relation between the experiment and the structure of quantum mechanics, and to present some epistemological considerations on the quantum mechanics.
Recoverability in quantum information theory
NASA Astrophysics Data System (ADS)
Wilde, Mark
The fact that the quantum relative entropy is non-increasing with respect to quantum physical evolutions lies at the core of many optimality theorems in quantum information theory and has applications in other areas of physics. In this work, we establish improvements of this entropy inequality in the form of physically meaningful remainder terms. One of the main results can be summarized informally as follows: if the decrease in quantum relative entropy between two quantum states after a quantum physical evolution is relatively small, then it is possible to perform a recovery operation, such that one can perfectly recover one state while approximately recovering the other. This can be interpreted as quantifying how well one can reverse a quantum physical evolution. Our proof method is elementary, relying on the method of complex interpolation, basic linear algebra, and the recently introduced Renyi generalization of a relative entropy difference. The theorem has a number of applications in quantum information theory, which have to do with providing physically meaningful improvements to many known entropy inequalities. This is based on arXiv:1505.04661, now accepted for publication in Proceedings of the Royal Society A. I acknowledge support from startup funds from the Department of Physics and Astronomy at LSU, the NSF under Award No. CCF-1350397, and the DARPA Quiness Program through US Army Research Office award W31P4Q-12-1-0019.
Neutron Interference Experiments and Quantum Measurement Theory
NASA Astrophysics Data System (ADS)
Namiko, M.; Otake, Y.; Soshi, H.
1987-03-01
Physical and epistemological implications of recent experiments on the neutron interference are discussed from the viewpoint of the Machida-Namiki theory of measurement in quantum mechanics, without resort to discussion on the number-phase uncertainty relation. The same idea is also applied to the neutrino oscillation problem.
Backlund Transformation in Quantum Field Theory
NASA Astrophysics Data System (ADS)
Burt, Philip
1996-11-01
Solutions of nonlinear field equations with polynomial nonlin earities are well known(P.B.Burt,Quantum Mechanics and Nonlinear Waves,Harwood Academic,Chur,1981).These solutions have been used to describe spin zero systems with self interactions. General- izations to systmes of fermions and bosons with various inter- actions lend themselves to description of quantum field theories with proper normalization. No ultraviolet divergences occur in such theories. The solutions themselves represent weak Backlund transformation of the nonlinear field equations and the related Klein Gordonequation(C.Rogers and W.F.Ames,Nonlinear Boundary Value Problems in Science and Engineering, Academic Press,New York,1989).
Basing quantum theory on information processing
NASA Astrophysics Data System (ADS)
Barnum, Howard
2008-03-01
I consider information-based derivations of the quantum formalism, in a framework encompassing quantum and classical theory and a broad spectrum of theories serving as foils to them. The most ambitious hope for such a derivation is a role analogous to Einstein's development of the dynamics and kinetics of macroscopic bodies, and later of their gravitational interactions, on the basis of simple principles with clear operational meanings and experimental consequences. Short of this, it could still provide a principled understanding of the features of quantum mechanics that account for its greater-than-classical information-processing power, helping guide the search for new quantum algorithms and protocols. I summarize the convex operational framework for theories, and discuss information-processing in theories therein. Results include the fact that information that can be obtained without disturbance is inherently classical, generalized no-cloning and no-broadcasting theorems, exponentially secure bit commitment in all non-classical theories without entanglement, properties of theories that allow teleportation, and properties of theories that allow ``remote steering'' of ensembles using entanglement. Joint work with collaborators including Jonathan Barrett, Matthew Leifer, Alexander Wilce, Oscar Dahlsten, and Ben Toner.
Dual field theories of quantum computation
NASA Astrophysics Data System (ADS)
Vanchurin, Vitaly
2016-06-01
Given two quantum states of N q-bits we are interested to find the shortest quantum circuit consisting of only one- and two- q-bit gates that would transfer one state into another. We call it the quantum maze problem for the reasons described in the paper. We argue that in a large N limit the quantum maze problem is equivalent to the problem of finding a semiclassical trajectory of some lattice field theory (the dual theory) on an N +1 dimensional space-time with geometrically flat, but topologically compact spatial slices. The spatial fundamental domain is an N dimensional hyper-rhombohedron, and the temporal direction describes transitions from an arbitrary initial state to an arbitrary target state and so the initial and final dual field theory conditions are described by these two quantum computational states. We first consider a complex Klein-Gordon field theory and argue that it can only be used to study the shortest quantum circuits which do not involve generators composed of tensor products of multiple Pauli Z matrices. Since such situation is not generic we call it the Z-problem. On the dual field theory side the Z-problem corresponds to massless excitations of the phase (Goldstone modes) that we attempt to fix using Higgs mechanism. The simplest dual theory which does not suffer from the massless excitation (or from the Z-problem) is the Abelian-Higgs model which we argue can be used for finding the shortest quantum circuits. Since every trajectory of the field theory is mapped directly to a quantum circuit, the shortest quantum circuits are identified with semiclassical trajectories. We also discuss the complexity of an actual algorithm that uses a dual theory prospective for solving the quantum maze problem and compare it with a geometric approach. We argue that it might be possible to solve the problem in sub-exponential time in 2 N , but for that we must consider the Klein-Gordon theory on curved spatial geometry and/or more complicated (than N -torus
Supersymmetry in quantum mechanics
Lahiri, A. ); Roy, P.K. ); Bagghi, B. )
1990-04-20
A pedagogical review on supersymmetry in quantum mechanics is presented which provides a comprehensive coverage of the subject. First, the key ingredients of the quantization of the systems with anticommuting variables are discussed. The supersymmetric Hamiltonian in quantum mechanics is then constructed by emphasizing the role of partner potentials and the superpotentials. The authors also make explicit the mathematical formulation of the Hamiltonian by considering in detail the N = 1 and N = 2 supersymmetric (quantum) mechanics. Supersymmetry is then discussed in the context of one-dimensional problems and the importance of the factorization method is highlighted. They treat in detail the technique of constructing a hierarchy of Hamiltonians employing the so-called 'shape-invariance' of potentials. To make transparent the relationship between supersymmetry and solvable potentials, they also solve several examples. They then go over the formulation of supersymmetry in radial problems, paying a special attention to the Coulomb and isotropic oscillator potentials. They show that the ladder operator technique may be suitable modified in higher dimensions for generating isospectral Hamiltonians. Next, the criteria for the breaking of supersymmetry is considered and their range of applicability is examined by suitably modifying he definition of Witten's index. Finally, the authors perform some numerical calculations for a class of potentials to show how a modified WKB approximation works in supersymmetric cases.
NASA Astrophysics Data System (ADS)
Fan, Hong-Yi; Lou, Sen-Yue
2015-07-01
Based on the operator Hermite polynomials method (OHPM), we study Stirling numbers in the context of quantum mechanics, i.e., we present operator realization of generating function formulas of Stirling numbers with some applications. As a by-product, we derive a summation formula involving both Stirling number and Hermite polynomials. Project supported by the National Natural Science Foundation of China (Grant No. 11175113).
Weak Quantum Theory: Formal Framework and Selected Applications
Atmanspacher, Harald; Filk, Thomas; Roemer, Hartmann
2006-01-04
Two key concepts of quantum theory, complementarity and entanglement, are considered with respect to their significance in and beyond physics. An axiomatically formalized, weak version of quantum theory, more general than the ordinary quantum theory of physical systems, is described. Its mathematical structure generalizes the algebraic approach to ordinary quantum theory. The crucial formal feature leading to complementarity and entanglement is the non-commutativity of observables.The ordinary Hilbert space quantum mechanics can be recovered by stepwise adding the necessary features. This provides a hierarchy of formal frameworks of decreasing generality and increasing specificity. Two concrete applications, more specific than weak quantum theory and more general than ordinary quantum theory, are discussed: (i) complementarity and entanglement in classical dynamical systems, and (ii) complementarity and entanglement in the bistable perception of ambiguous stimuli.
PT-Symmetric Quantum Field Theory
NASA Astrophysics Data System (ADS)
Bender, Carl M.
2011-09-01
In 1998 it was discovered that the requirement that a Hamiltonian be Dirac Hermitian (H = H†) can be weakened and generalized to the requirement that a Hamiltonian be PT symmetric ([H,PT] = 0); that is, invariant under combined space reflection and time reversal. Weakening the constraint of Hermiticity allows one to consider new kinds of physically acceptable Hamiltonians and, in effect, it amounts to extending quantum mechanics from the real (Hermitian) domain into the complex domain. Much work has been done on the analysis of various PT-symmetric quantum-mechanical models. However, only very little analysis has been done on PT-symmetric quantum-field-theoretic models. Here, we describe some of what has been done in the context of PT-symmetric quantum field theory and describe some possible fundamental applications.
BOOK REVIEWS: Quantum Mechanics: Fundamentals
NASA Astrophysics Data System (ADS)
Whitaker, A.
2004-02-01
This review is of three books, all published by Springer, all on quantum theory at a level above introductory, but very different in content, style and intended audience. That of Gottfried and Yan is of exceptional interest, historical and otherwise. It is a second edition of Gottfried’s well-known book published by Benjamin in 1966. This was written as a text for a graduate quantum mechanics course, and has become one of the most used and respected accounts of quantum theory, at a level mathematically respectable but not rigorous. Quantum mechanics was already solidly established by 1966, but this second edition gives an indication of progress made and changes in perspective over the last thirty-five years, and also recognises the very substantial increase in knowledge of quantum theory obtained at the undergraduate level. Topics absent from the first edition but included in the second include the Feynman path integral, seen in 1966 as an imaginative but not very useful formulation of quantum theory. Feynman methods were given only a cursory mention by Gottfried. Their practical importance has now been fully recognised, and a substantial account of them is provided in the new book. Other new topics include semiclassical quantum mechanics, motion in a magnetic field, the S matrix and inelastic collisions, radiation and scattering of light, identical particle systems and the Dirac equation. A topic that was all but totally neglected in 1966, but which has flourished increasingly since, is that of the foundations of quantum theory. John Bell’s work of the mid-1960s has led to genuine theoretical and experimental achievement, which has facilitated the development of quantum optics and quantum information theory. Gottfried’s 1966 book played a modest part in this development. When Bell became increasingly irritated with the standard theoretical approach to quantum measurement, Viki Weisskopf repeatedly directed him to Gottfried’s book. Gottfried had devoted a
On the geometrization of quantum mechanics
NASA Astrophysics Data System (ADS)
Tavernelli, Ivano
2016-08-01
Nonrelativistic quantum mechanics is commonly formulated in terms of wavefunctions (probability amplitudes) obeying the static and the time-dependent Schrödinger equations (SE). Despite the success of this representation of the quantum world a wave-particle duality concept is required to reconcile the theory with observations (experimental measurements). A first solution to this dichotomy was introduced in the de Broglie-Bohm theory according to which a pilot-wave (solution of the SE) is guiding the evolution of particle trajectories. Here, I propose a geometrization of quantum mechanics that describes the time evolution of particles as geodesic lines in a curved space, whose curvature is induced by the quantum potential. This formulation allows therefore the incorporation of all quantum effects into the geometry of space-time, as it is the case for gravitation in the general relativity.
Experimental status of quaternionic quantum mechanics
NASA Astrophysics Data System (ADS)
Brumby, S. P.; Joshi, G. C.
1996-05-01
Analysis of the logical foundations of quantum mechanics indicates the possibility of constructing a theory using quaternionic Hilbert spaces. Whether this mathematical structure reflects reality is a matter for experiment to decide. We review the only direct search for quaternionic quantum mechanics yet carried out and outline a recent proposal by the present authors to look for quaternionic effects in correlated multi-particle systems. We set out how such experiments might distinguish between the several quaternionic models proposed in the literature.
Time and the foundations of quantum mechanics
NASA Astrophysics Data System (ADS)
Pashby, Thomas
Quantum mechanics has provided philosophers of science with many counterintuitive insights and interpretive puzzles, but little has been written about the role that time plays in the theory. One reason for this is the celebrated argument of Wolfgang Pauli against the inclusion of time as an observable of the theory, which has been seen as a demonstration that time may only enter the theory as a classical parameter. Against this orthodoxy I argue that there are good reasons to expect certain kinds of `time observables' to find a representation within quantum theory, including clock operators (which provide the means to measure the passage of time) and event time operators, which provide predictions for the time at which a particular event occurs, such as the appearance of a dot on a luminescent screen. I contend that these time operators deserve full status as observables of the theory, and on re ection provide a uniquely compelling reason to expand the set of observables allowed by the standard formalism of quantum mechanics. In addition, I provide a novel association of event time operators with conditional probabilities, and propose a temporally extended form of quantum theory to better accommodate the time of an event as an observable quantity. This leads to a proposal to interpret quantum theory within an event ontology, inspired by Bertrand Russell's Analysis of Matter. On this basis I mount a defense of Russell's relational theory of time against a recent attack.
NASA Astrophysics Data System (ADS)
Modesto, Leonardo; Piva, Marco; Rachwał, Lesław
2016-07-01
We explicitly compute the one-loop exact beta function for a nonlocal extension of the standard gauge theory, in particular, Yang-Mills and QED. The theory, made of a weakly nonlocal kinetic term and a local potential of the gauge field, is unitary (ghost-free) and perturbatively super-renormalizable. Moreover, in the action we can always choose the potential (consisting of one "killer operator") to make zero the beta function of the running gauge coupling constant. The outcome is a UV finite theory for any gauge interaction. Our calculations are done in D =4 , but the results can be generalized to even or odd spacetime dimensions. We compute the contribution to the beta function from two different killer operators by using two independent techniques, namely, the Feynman diagrams and the Barvinsky-Vilkovisky traces. By making the theories finite, we are able to solve also the Landau pole problems, in particular, in QED. Without any potential, the beta function of the one-loop super-renormalizable theory shows a universal Landau pole in the running coupling constant in the ultraviolet regime (UV), regardless of the specific higher-derivative structure. However, the dressed propagator shows neither the Landau pole in the UV nor the singularities in the infrared regime (IR).
Interpretation and Predictability of Quantum Mechanics and Quantum Cosmology
NASA Astrophysics Data System (ADS)
Wada, Sumio
A non-probabilistic interpretation of quantum mechanics asserts that we get a prediction only when a wave function has a peak. Taking this interpretation seriously, we discuss how to find a peak in the wave function of the universe, by using some minisuperspace models with homogeneous degrees of freedom and also a model with cosmological perturbations. Then we show how to recover our classical picture of the universe from the quantum theory, and comment on the physical meaning of the backreaction equation.
Massive supersymmetric quantum gauge theory
NASA Astrophysics Data System (ADS)
Grigore, D. R.; Gut, M.; Scharf, G.
2005-08-01
We continue the study of the supersymmetric vector multiplet in a purely quantum framework. We obtain some new results which make the connection with the standard literature. First we construct the one-particle physical Hilbert space taking into account the (quantum) gauge structure of the model. Then we impose the condition of positivity for the scalar product only on the physical Hilbert space. Finally we obtain a full supersymmetric coupling which is gauge invariant in the supersymmetric sense in the first order of perturbation theory. By integrating out the Grassmann variables we get an interacting Lagrangian for a massive Yang-Mills theory related to ordinary gauge theory; however the number of ghost fields is doubled so we do not obtain the same ghost couplings as in the standard model Lagrangian.
Consistency of PT-symmetric quantum mechanics
NASA Astrophysics Data System (ADS)
Brody, Dorje C.
2016-03-01
In recent reports, suggestions have been put forward to the effect that parity and time-reversal (PT) symmetry in quantum mechanics is incompatible with causality. It is shown here, in contrast, that PT-symmetric quantum mechanics is fully consistent with standard quantum mechanics. This follows from the surprising fact that the much-discussed metric operator on Hilbert space is not physically observable. In particular, for closed quantum systems in finite dimensions there is no statistical test that one can perform on the outcomes of measurements to determine whether the Hamiltonian is Hermitian in the conventional sense, or PT-symmetric—the two theories are indistinguishable. Nontrivial physical effects arising as a consequence of PT symmetry are expected to be observed, nevertheless, for open quantum systems with balanced gain and loss.
Quantum theory of Thomson scattering
NASA Astrophysics Data System (ADS)
Crowley, B. J. B.; Gregori, G.
2014-12-01
The general theory of the scattering of electromagnetic radiation in atomic plasmas and metals, in the non-relativistic regime, in which account is taken of the Kramers-Heisenberg polarization terms in the Hamiltonian, is described from a quantum mechanical viewpoint. As well as deriving the general formula for the double differential Thomson scattering cross section in an isotropic finite temperature multi-component system, this work also considers closely related phenomena such as absorption, refraction, Raman scattering, resonant (Rayleigh) scattering and Bragg scattering, and derives many essential relationships between these quantities. In particular, the work introduces the concept of scattering strength and the strength-density field which replaces the normal particle density field in the standard treatment of scattering by a collection of similar particles and it is the decomposition of the strength-density correlation function into more familiar-looking components that leads to the final result. Comparisons are made with previous work, in particular that of Chihara [1].
Shen, Lin; Yang, Weitao
2016-04-12
We developed a new multiresolution method that spans three levels of resolution with quantum mechanical, atomistic molecular mechanical, and coarse-grained models. The resolution-adapted all-atom and coarse-grained water model, in which an all-atom structural description of the entire system is maintained during the simulations, is combined with the ab initio quantum mechanics and molecular mechanics method. We apply this model to calculate the redox potentials of the aqueous ruthenium and iron complexes by using the fractional number of electrons approach and thermodynamic integration simulations. The redox potentials are recovered in excellent accordance with the experimental data. The speed-up of the hybrid all-atom and coarse-grained water model renders it computationally more attractive. The accuracy depends on the hybrid all-atom and coarse-grained water model used in the combined quantum mechanical and molecular mechanical method. We have used another multiresolution model, in which an atomic-level layer of water molecules around redox center is solvated in supramolecular coarse-grained waters for the redox potential calculations. Compared with the experimental data, this alternative multilayer model leads to less accurate results when used with the coarse-grained polarizable MARTINI water or big multipole water model for the coarse-grained layer. PMID:26930454
Diagrammatic quantum mechanics
NASA Astrophysics Data System (ADS)
Kauffman, Louis H.; Lomonaco, Samuel J.
2015-05-01
This paper explores how diagrams of quantum processes can be used for modeling and for quantum epistemology. The paper is a continuation of the discussion where we began this formulation. Here we give examples of quantum networks that represent unitary transformations by dint of coherence conditions that constitute a new form of non-locality. Local quantum devices interconnected in space can form a global quantum system when appropriate coherence conditions are maintained.
Testing foundations of quantum mechanics with photons
NASA Astrophysics Data System (ADS)
Shadbolt, Peter; Mathews, Jonathan C. F.; Laing, Anthony; O'Brien, Jeremy L.
2014-04-01
Quantum mechanics continues to predict effects at odds with a classical understanding of nature. Experiments with light at the single-photon level have historically been at the forefront of fundamental tests of quantum theory and the current developments in photonic technologies enable the exploration of new directions. Here we review recent photonic experiments to test two important themes in quantum mechanics: wave-particle duality, which is central to complementarity and delayed-choice experiments; and Bell nonlocality, where the latest theoretical and technological advances have allowed all controversial loopholes to be separately addressed in different experiments.
Intrusion Detection with Quantum Mechanics: A Photonic Quantum Fence
Humble, Travis S; Bennink, Ryan S; Grice, Warren P; Owens, Israel J
2008-01-01
We describe the use of quantum-mechanically entangled photons for sensing intrusions across a physical perimeter. Our approach to intrusion detection uses the no-cloning principle of quantum information science as protection against an intruder s ability to spoof a sensor receiver using a classical intercept-resend attack. We explore the bounds on detection using quantum detection and estimation theory, and we experimentally demonstrate the underlying principle of entanglement-based detection using the visibility derived from polarization-correlation measurements.
Haag's theorem in noncommutative quantum field theory
Antipin, K. V.; Mnatsakanova, M. N.; Vernov, Yu. S.
2013-08-15
Haag's theorem was extended to the general case of noncommutative quantum field theory when time does not commute with spatial variables. It was proven that if S matrix is equal to unity in one of two theories related by unitary transformation, then the corresponding one in the other theory is equal to unity as well. In fact, this result is valid in any SO(1, 1)-invariant quantum field theory, an important example of which is noncommutative quantum field theory.
An Axiomatic Basis for Quantum Mechanics
NASA Astrophysics Data System (ADS)
Cassinelli, Gianni; Lahti, Pekka
2016-06-01
In this paper we use the framework of generalized probabilistic theories to present two sets of basic assumptions, called axioms, for which we show that they lead to the Hilbert space formulation of quantum mechanics. The key results in this derivation are the co-ordinatization of generalized geometries and a theorem of Solér which characterizes Hilbert spaces among the orthomodular spaces. A generalized Wigner theorem is applied to reduce some of the assumptions of Solér's theorem to the theory of symmetry in quantum mechanics. Since this reduction is only partial we also point out the remaining open questions.
NASA Astrophysics Data System (ADS)
Huang, Yi-Ping; Hermele, Michael
Some pyrochlore oxides realize novel dipolar-octupolar (DO) doublets on the sites of the pyrochlore lattice of corner-sharing tetrahedra. With magnetic field along the (111) direction, such systems can approximately be described as decoupled layers of a S =1/2 XYZ model on Kagome planes, with perpendicular magnetic field. A recent quantum Monte Carlo study found a zero temperature disordered phase in this model, dubbed quantum kagome ice, and proposed that it is a type of Z2 quantum spin liquid (J. Carrasquilla, Z. Hao and R. G. Melko, Nat. Comm., 6, 7421). We will describe an effective theory for this putative Z2 spin liquid, and present results on its symmetry fractionalization and resulting properties that may be tested in future numerical simulations. the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) under Award # DE-SC0014415.
Quantum Mechanics Based Multiscale Modeling of Materials
NASA Astrophysics Data System (ADS)
Lu, Gang
2013-03-01
We present two quantum mechanics based multiscale approaches that can simulate extended defects in metals accurately and efficiently. The first approach (QCDFT) can treat multimillion atoms effectively via density functional theory (DFT). The method is an extension of the original quasicontinuum approach with DFT as its sole energetic formulation. The second method (QM/MM) has to do with quantum mechanics/molecular mechanics coupling based on the constrained density functional theory, which provides an exact framework for a self-consistent quantum mechanical embedding. Several important materials problems will be addressed using the multiscale modeling approaches, including hydrogen-assisted cracking in Al, magnetism-controlled dislocation properties in Fe and Si pipe diffusion along Al dislocation core. We acknowledge the support from the Office of Navel Research and the Army Research Office.
Inconstancy-theory/quantum-gravity
NASA Astrophysics Data System (ADS)
Murtaza, Faheem
1999-05-01
Inconstancy-theory is the union of "relativity" and "quantum" theories which rests upon the answers of the simple questions. 1) That if only the simple motion of a particle can not be observed without the "reference-frame" then how the whole universe can be expected to be observable without any "reference-frame". 2) Does not the inter-influence (Unity) of space-time-mass suggest that these are generated by common source and might not there be some invisible "flow" (dynamical-equilibrium) that is the cause of space-time-mass,as time itself is a flow. "Inconstancy" proposes, interalia, the principle that "relativity (generalised) is the universal law of nature in each and every respect". For that "inconstancy" admits only the light, being absolute, a real reference-frame and medium(mirror) for the display of relative "space-time-mass". Light as reference-frame in "Inconstancy" unifies "relativity" and "quantum" theories and establishes the inter-connection between "quantum-gravity" and strong-nuclear interactions, which offers the velocity of light in terms of physical and spatial-temporal components. "Inconstancy" introduces another "constant" operative in "quantum-gravity" and unveils the "graviton" location for its novel range as previously "relativity" escaped detection for v<<
Decoherence in quantum mechanics and quantum cosmology
NASA Technical Reports Server (NTRS)
Hartle, James B.
1992-01-01
A sketch of the quantum mechanics for closed systems adequate for cosmology is presented. This framework is an extension and clarification of that of Everett and builds on several aspects of the post-Everett development. It especially builds on the work of Zeh, Zurek, Joos and Zeh, and others on the interactions of quantum systems with the larger universe and on the ideas of Griffiths, Omnes, and others on the requirements for consistent probabilities of histories.
Creativity and the Quantum Theory.
ERIC Educational Resources Information Center
Goswami, Amit
1988-01-01
The idea that creative acts are quantum jumps in the brain's mechanism is explored. Descriptions of the creative process that support the central role of sudden and discontinuous leaps of thought are cited from various philosophers and scientists. Distinctions between the functions of the brain and of computers are drawn. (VW)
Quantum Simulation of Quantum Field Theories in Trapped Ions
Casanova, J.; Lamata, L.; Egusquiza, I. L.; Gerritsma, R.; Roos, C. F.; Garcia-Ripoll, J. J.; Solano, E.
2011-12-23
We propose the quantum simulation of fermion and antifermion field modes interacting via a bosonic field mode, and present a possible implementation with two trapped ions. This quantum platform allows for the scalable add up of bosonic and fermionic modes, and represents an avenue towards quantum simulations of quantum field theories in perturbative and nonperturbative regimes.
The future (and past) of quantum theory after the Higgs boson: a quantum-informational viewpoint.
Plotnitsky, Arkady
2016-05-28
Taking as its point of departure the discovery of the Higgs boson, this article considers quantum theory, including quantum field theory, which predicted the Higgs boson, through the combined perspective of quantum information theory and the idea of technology, while also adopting anon-realistinterpretation, in 'the spirit of Copenhagen', of quantum theory and quantum phenomena themselves. The article argues that the 'events' in question in fundamental physics, such as the discovery of the Higgs boson (a particularly complex and dramatic, but not essentially different, case), are made possible by the joint workings of three technologies: experimental technology, mathematical technology and, more recently, digital computer technology. The article will consider the role of and the relationships among these technologies, focusing on experimental and mathematical technologies, in quantum mechanics (QM), quantum field theory (QFT) and finite-dimensional quantum theory, with which quantum information theory has been primarily concerned thus far. It will do so, in part, by reassessing the history of quantum theory, beginning with Heisenberg's discovery of QM, in quantum-informational and technological terms. This history, the article argues, is defined by the discoveries of increasingly complex configurations of observed phenomena and the emergence of the increasingly complex mathematical formalism accounting for these phenomena, culminating in the standard model of elementary-particle physics, defining the current state of QFT. PMID:27091170
Dissipative Forces and Quantum Mechanics
ERIC Educational Resources Information Center
Eck, John S.; Thompson, W. J.
1977-01-01
Shows how to include the dissipative forces of classical mechanics in quantum mechanics by the use of non-Hermetian Hamiltonians. The Ehrenfest theorem for such Hamiltonians is derived, and simple examples which show the classical correspondences are given. (MLH)
Quantum cellular automaton theory of light
NASA Astrophysics Data System (ADS)
Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo
2016-05-01
We present a quantum theory of light based on the recent derivation of Weyl and Dirac quantum fields from general principles ruling the interactions of a countable set of abstract quantum systems, without using space-time and mechanics (D'Ariano and Perinotti, 2014). In a Planckian interpretation of the discreteness, the usual quantum field theory corresponds to the so-called relativistic regime of small wave-vectors. Within the present framework the photon is a composite particle made of an entangled pair of free Weyl Fermions, and the usual Bosonic statistics is recovered in the low photon density limit, whereas the Maxwell equations describe the relativistic regime. We derive the main phenomenological features of the theory in the ultra-relativistic regime, consisting in a dispersive propagation in vacuum, and in the occurrence of a small longitudinal polarization, along with a saturation effect originated by the Fermionic nature of the photon. We then discuss whether all these effects can be experimentally tested, and observe that only the dispersive effects are accessible to the current technology via observations of gamma-ray bursts.
Quantum theory of bilayer quantum Hall smectics
NASA Astrophysics Data System (ADS)
Papa, Emiliano; Schliemann, John; MacDonald, A. H.; Fisher, Matthew P.
2003-03-01
Mean-field theory predicts that bilayer quantum Hall systems at odd integer total filling factors can have stripe ground states, in which the top Landau level is occupied alternately by electrons in one of the two layers. We report on an analysis of the properties of these states based on a coupled-Luttinger-liquid description that is able to account for quantum fluctuations of charge-density and position along each stripe edge. The soft modes associated with the broken symmetries of the stripe state lead to an unusual coupled-Luttinger-liquid system with strongly enhanced low-temperature heat capacity and strongly suppressed low-energy tunneling density of states. We assess the importance of the intralayer and interlayer backscattering terms in the microscopic Hamiltonian, which are absent in the Luttinger liquid description, by employing a perturbative renormalization group approach which rescales time and length along but not transverse to the stripes. With interlayer backscattering interactions present the Luttinger-liquid states are unstable either to an incompressible striped state that has spontaneous interlayer phase coherence and a sizable charge gap even at relatively large layer separations, or to Wigner crystal states. Our quantitative estimates of the gaps produced by backscattering interactions are summarized in Fig. 11 by a schematic phase diagram intended to represent predicted experimental findings in very high mobility bilayer systems at dilution refrigerator temperatures as a function of layer separation and bilayer density balance. We predict that the bilayer will form incompressible isotropic interlayer phase-coherent states for small layer separations, say d⩽1.5l. At larger interlayer spacings, however, the bilayer will tend to form one of several different anisotropic states depending on the layer charge balance, which we parametrize by the fractional filling factor ν contributed by one of the two layers. For large charge imbalances (
Conformal quantum mechanics and holographic quench
NASA Astrophysics Data System (ADS)
Järvelä, Jarkko; Keränen, Ville; Keski-Vakkuri, Esko
2016-02-01
Recently, there has been much interest in holographic computations of two-point nonequilibrium Green functions from anti-de Sitter- (AdS-)Vaidya backgrounds. In the strongly coupled quantum field theory on the boundary, the dual interpretation of the background is an equilibration process called a holographic quench. The two-dimensional AdS-Vaidya spacetime is a special case, dual to conformal quantum mechanics. We study how the quench is incorporated into a Hamiltonian H +θ (t )Δ H and into correlation functions. With the help of recent work on correlation functions in conformal quantum mechanics, we first rederive the known two-point functions, and then compute nonequilibrium three- and four-point functions. We also compute the three-point function Witten diagram in the two-dimensional AdS-Vaidya background, and find agreement with the conformal quantum mechanics result.
Space and time from quantum mechanics
Chew, G.F.
1992-09-16
Classical mechanics historically preceded quantum mechanics and thus far has not been displaced from primary status; the path to construction of quantum theory has remained rooted in classical ideas about objective reality within space and time. Use of a less correct theory as underpinning for a more correct theory not only is unaesthetic but has spawned the perplexing and never-resolved puzzle of measurement. A growing number of physicist-philosophers torture themselves these days over collapse of the quantum-mechanical state vector when measurement is performed. Additionally, pointlike structure of the spacetime manifold underlying local classical fields has endowed quantum theory with mathematical dilemmas. It has been proposed by Gell-Mann and Hartle that objectively-realistic ideas such as measurement may lack a priori status, the predominantly classical present universe having evolved as a relic of the big bang. Other authors have suggested that spacetime itself need not be a priori but may stem from quantum mechanics. Haag has written recently that spacetime without (quantum) events is probably a meaningless concept. Henry Stapp and I have for several years been exploring a simple quantum system devoid of classical underpinning, even spacetime, but admitting within the Hilbert space a special Lie-group-related category of vector known as coherent state. Groups unitarily representable in our Hilbert space include the Poincare group, which relates to 3 + 1 spacetime. Coherent states generally are labeled by parameters associated with unitary group representations, and it has long been recognized that when such parameters become large a classical objective interpretation may result. Stapp and I have been attempting to understand space and time via large coherent-state parameters. Six years ago I presented to this gathering a preliminary report on our enterprise; in this paper I provide an update.
Space and time from quantum mechanics
NASA Astrophysics Data System (ADS)
Chew, G. F.
1992-09-01
Classical mechanics historically preceded quantum mechanics and thus far has not been displaced from primary status; the path to construction of quantum theory has remained rooted in classical ideas about objective reality within space and time. Use of a less correct theory as underpinning for a more correct theory not only is unaesthetic but has spawned the perplexing and never-resolved puzzle of measurement. A growing number of physicist-philosophers torture themselves these days over the collapse of the quantum-mechanical state vector when measurement is performed. Additionally, the pointlike structure of the spacetime manifold underlying local classical fields has endowed quantum theory with mathematical dilemmas. It has been proposed by Gell-Mann and Hartle that objectively-realistic ideas such as measurement may lack a priori status, the predominantly classical present universe having evolved as a relic of the big bang. Other authors have suggested that spacetime itself need not be a priori but may stem from quantum mechanics. Haag has written recently that spacetime without (quantum) events is probably a meaningless concept. Henry Stapp and I have for several years been exploring a simple quantum system devoid of classical underpinning, even spacetime, but admitting within the Hilbert space a special Lie-group-related category of vector known as a coherent state. Groups unitarily representable in our Hilbert space include the Poincare group, which relates to 3 + 1 spacetime. Coherent states generally are labeled by parameters associated with unitary group representations, and it has long been recognized that when such parameters become large a classical objective interpretation may result. Stapp and I have been attempting to understand space and time via large coherent-state parameters. Six years ago I presented to this gathering a preliminary report on our enterprise; in this paper I provide an update.
Gravity and Quantum Theory Unified
NASA Astrophysics Data System (ADS)
Warren, Gary
Historic arguments against Aether theories disappear if the Aether is a 4D compressible hyperfluid in which each particle is our observation of a hypervortex, formed in and comprised of hyperfluid. Such Aether resolves ``spooky action at a distance'' which allows unification of gravity and quantum theory. Light is transverse waves in free space (away from hypervortices) in the hyperfluid. Their detailed behavior is why we observe a curved 3D Lorentz universe - a slice through the 4D hyperverse. Meanwhile, detailed hypervortex behavior, including faster-than-light longitudinal waves in and along hypervortices, explain quantum phenomena. A particular Lagrangian for such a hyperfluid regenerates Maxwell's equations, plus an equation for gravity, and an equation for electric charge. Couplings among these equations generate a discrete spectrum of hypervortex solutions that we observe as a spectrum of particles. Gravity results from gradients in the fluid density near vortices. Observed clock rates depend on fluid density, and vortex motion thus intertwining gravity, clock rates and quantum phenomena. Implied experiments will be discussed.
From Entropic Dynamics to Quantum Theory
Caticha, Ariel
2009-12-08
Non-relativistic quantum theory is derived from information codified into an appropriate statistical model. The basic assumption is that there is an irreducible uncertainty in the location of particles so that the configuration space is a statistical manifold. The dynamics then follows from a principle of inference, the method of Maximum Entropy. The concept of time is introduced as a convenient way to keep track of change. The resulting theory resembles both Nelson's stochastic mechanics and general relativity. The statistical manifold is a dynamical entity: its geometry determines the evolution of the probability distribution which, in its turn, reacts back and determines the evolution of the geometry. There is a new quantum version of the equivalence principle: 'osmotic' mass equals inertial mass. Mass and the phase of the wave function are explained as features of purely statistical origin.
Subjective and objective probabilities in quantum mechanics
Srednicki, Mark
2005-05-15
We discuss how the apparently objective probabilities predicted by quantum mechanics can be treated in the framework of Bayesian probability theory, in which all probabilities are subjective. Our results are in accord with earlier work by Caves, Fuchs, and Schack, but our approach and emphasis are different. We also discuss the problem of choosing a noninformative prior for a density matrix.
The geometric semantics of algebraic quantum mechanics.
Cruz Morales, John Alexander; Zilber, Boris
2015-08-01
In this paper, we will present an ongoing project that aims to use model theory as a suitable mathematical setting for studying the formalism of quantum mechanics. We argue that this approach provides a geometric semantics for such a formalism by means of establishing a (non-commutative) duality between certain algebraic and geometric objects. PMID:26124252
Collective field theory for quantum Hall states
NASA Astrophysics Data System (ADS)
Laskin, M.; Can, T.; Wiegmann, P.
2015-12-01
We develop a collective field theory for fractional quantum Hall (FQH) states. We show that in the leading approximation for a large number of particles, the properties of Laughlin states are captured by a Gaussian free field theory with a background charge. Gradient corrections to the Gaussian field theory arise from the covariant ultraviolet regularization of the theory, which produces the gravitational anomaly. These corrections are described by a theory closely related to the Liouville theory of quantum gravity. The field theory simplifies the computation of correlation functions in FQH states and makes manifest the effect of quantum anomalies.
Modern Quantum Field Theory II - Proceeeings of the International Colloquium
NASA Astrophysics Data System (ADS)
Das, S. R.; Mandal, G.; Mukhi, S.; Wadia, S. R.
1995-08-01
The Table of Contents for the book is as follows: * Foreword * 1. Black Holes and Quantum Gravity * Quantum Black Holes and the Problem of Time * Black Hole Entropy and the Semiclassical Approximation * Entropy and Information Loss in Two Dimensions * Strings on a Cone and Black Hole Entropy (Abstract) * Boundary Dynamics, Black Holes and Spacetime Fluctuations in Dilation Gravity (Abstract) * Pair Creation of Black Holes (Abstract) * A Brief View of 2-Dim. String Theory and Black Holes (Abstract) * 2. String Theory * Non-Abelian Duality in WZW Models * Operators and Correlation Functions in c ≤ 1 String Theory * New Symmetries in String Theory * A Look at the Discretized Superstring Using Random Matrices * The Nested BRST Structure of Wn-Symmetries * Landau-Ginzburg Model for a Critical Topological String (Abstract) * On the Geometry of Wn Gravity (Abstract) * O(d, d) Tranformations, Marginal Deformations and the Coset Construction in WZNW Models (Abstract) * Nonperturbative Effects and Multicritical Behaviour of c = 1 Matrix Model (Abstract) * Singular Limits and String Solutions (Abstract) * BV Algebra on the Moduli Spaces of Riemann Surfaces and String Field Theory (Abstract) * 3. Condensed Matter and Statistical Mechanics * Stochastic Dynamics in a Deposition-Evaporation Model on a Line * Models with Inverse-Square Interactions: Conjectured Dynamical Correlation Functions of the Calogero-Sutherland Model at Rational Couplings * Turbulence and Generic Scale Invariance * Singular Perturbation Approach to Phase Ordering Dynamics * Kinetics of Diffusion-Controlled and Ballistically-Controlled Reactions * Field Theory of a Frustrated Heisenberg Spin Chain * FQHE Physics in Relativistic Field Theories * Importance of Initial Conditions in Determining the Dynamical Class of Cellular Automata (Abstract) * Do Hard-Core Bosons Exhibit Quantum Hall Effect? (Abstract) * Hysteresis in Ferromagnets * 4. Fundamental Aspects of Quantum Mechanics and Quantum Field Theory
BOOK REVIEWS: Quantum Mechanics: Fundamentals
NASA Astrophysics Data System (ADS)
Whitaker, A.
2004-02-01
This review is of three books, all published by Springer, all on quantum theory at a level above introductory, but very different in content, style and intended audience. That of Gottfried and Yan is of exceptional interest, historical and otherwise. It is a second edition of Gottfried’s well-known book published by Benjamin in 1966. This was written as a text for a graduate quantum mechanics course, and has become one of the most used and respected accounts of quantum theory, at a level mathematically respectable but not rigorous. Quantum mechanics was already solidly established by 1966, but this second edition gives an indication of progress made and changes in perspective over the last thirty-five years, and also recognises the very substantial increase in knowledge of quantum theory obtained at the undergraduate level. Topics absent from the first edition but included in the second include the Feynman path integral, seen in 1966 as an imaginative but not very useful formulation of quantum theory. Feynman methods were given only a cursory mention by Gottfried. Their practical importance has now been fully recognised, and a substantial account of them is provided in the new book. Other new topics include semiclassical quantum mechanics, motion in a magnetic field, the S matrix and inelastic collisions, radiation and scattering of light, identical particle systems and the Dirac equation. A topic that was all but totally neglected in 1966, but which has flourished increasingly since, is that of the foundations of quantum theory. John Bell’s work of the mid-1960s has led to genuine theoretical and experimental achievement, which has facilitated the development of quantum optics and quantum information theory. Gottfried’s 1966 book played a modest part in this development. When Bell became increasingly irritated with the standard theoretical approach to quantum measurement, Viki Weisskopf repeatedly directed him to Gottfried’s book. Gottfried had devoted a
Phase space quantum mechanics - Direct
Nasiri, S.; Sobouti, Y.; Taati, F.
2006-09-15
Conventional approach to quantum mechanics in phase space (q,p), is to take the operator based quantum mechanics of Schroedinger, or an equivalent, and assign a c-number function in phase space to it. We propose to begin with a higher level of abstraction, in which the independence and the symmetric role of q and p is maintained throughout, and at once arrive at phase space state functions. Upon reduction to the q- or p-space the proposed formalism gives the conventional quantum mechanics, however, with a definite rule for ordering of factors of noncommuting observables. Further conceptual and practical merits of the formalism are demonstrated throughout the text.
Quantum field perturbation theory revisited
NASA Astrophysics Data System (ADS)
Matone, Marco
2016-03-01
Schwinger's formalism in quantum field theory can be easily implemented in the case of scalar theories in D dimension with exponential interactions, such as μDexp (α ϕ ). In particular, we use the relation exp (α δ/δ J (x ) )exp (-Z0[J ])=exp (-Z0[J +αx]) with J the external source, and αx(y )=α δ (y -x ). Such a shift is strictly related to the normal ordering of exp (α ϕ ) and to a scaling relation which follows by renormalizing μ . Next, we derive a new formulation of perturbation theory for the potentials V (ϕ )=λ/n ! :ϕn: , using the generating functional associated to :exp (α ϕ ):. The Δ (0 )-terms related to the normal ordering are absorbed at once. The functional derivatives with respect to J to compute the generating functional are replaced by ordinary derivatives with respect to auxiliary parameters. We focus on scalar theories, but the method is general and similar investigations extend to other theories.
Emergence of Quantum Mechanics from a Sub-Quantum Statistical Mechanics
NASA Astrophysics Data System (ADS)
Grössing, Gerhard
2015-10-01
A research program within the scope of theories on "Emergent Quantum Mechanics" is presented, which has gained some momentum in recent years. Via the modeling of a quantum system as a non-equilibrium steady-state maintained by a permanent throughput of energy from the zero-point vacuum, the quantum is considered as an emergent system. We implement a specific "bouncer-walker" model in the context of an assumed sub-quantum statistical physics, in analogy to the results of experiments by Couder and Fort on a classical wave-particle duality. We can thus give an explanation of various quantum mechanical features and results on the basis of a "21st century classical physics", such as the appearance of Planck's constant, the Schrödinger equation, etc. An essential result is given by the proof that averaged particle trajectories' behaviors correspond to a specific type of anomalous diffusion termed "ballistic" diffusion on a sub-quantum level...
Quantum mechanics from classical statistics
Wetterich, C.
2010-04-15
Quantum mechanics can emerge from classical statistics. A typical quantum system describes an isolated subsystem of a classical statistical ensemble with infinitely many classical states. The state of this subsystem can be characterized by only a few probabilistic observables. Their expectation values define a density matrix if they obey a 'purity constraint'. Then all the usual laws of quantum mechanics follow, including Heisenberg's uncertainty relation, entanglement and a violation of Bell's inequalities. No concepts beyond classical statistics are needed for quantum physics - the differences are only apparent and result from the particularities of those classical statistical systems which admit a quantum mechanical description. Born's rule for quantum mechanical probabilities follows from the probability concept for a classical statistical ensemble. In particular, we show how the non-commuting properties of quantum operators are associated to the use of conditional probabilities within the classical system, and how a unitary time evolution reflects the isolation of the subsystem. As an illustration, we discuss a classical statistical implementation of a quantum computer.
Paul A.M. Dirac's The Principles of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Brown, Laurie M.
2006-12-01
Paul A.M. Dirac’s book, The Principles of Quantum Mechanics, summarized the foundations of a new science, much of which was his own creation. It expressed the spirit of the new quantum mechanics, creating a descriptive language that we still use. I discuss the successive editions of Dirac’s book and their critical reception, noting changes, especially in the formulation of the general theory and in its treatment of relativistic quantum theory and quantum electrodynamics. In the case of the later editions, I discuss Dirac’s negative attitude toward renormalized quantum electrodynamics.
Quantum Theories of Self-Localization
NASA Astrophysics Data System (ADS)
Bernstein, Lisa Joan
In the classical dynamics of coupled oscillator systems, nonlinearity leads to the existence of stable solutions in which energy remains localized for all time. Here the quantum-mechanical counterpart of classical self-localization is investigated in the context of two model systems. For these quantum models, the terms corresponding to classical nonlinearities modify a subset of the stationary quantum states to be particularly suited to the creation of nonstationary wavepackets that localize energy for long times. The first model considered here is the Quantized Discrete Self-Trapping model (QDST), a system of anharmonic oscillators with linear dispersive coupling used to model local modes of vibration in polyatomic molecules. A simple formula is derived for a particular symmetry class of QDST systems which gives an analytic connection between quantum self-localization and classical local modes. This formula is also shown to be useful in the interpretation of the vibrational spectra of some molecules. The second model studied is the Frohlich/Einstein Dimer (FED), a two-site system of anharmonically coupled oscillators based on the Frohlich Hamiltonian and motivated by the theory of Davydov solitons in biological protein. The Born-Oppenheimer perturbation method is used to obtain approximate stationary state wavefunctions with error estimates for the FED at the first excited level. A second approach is used to reduce the first excited level FED eigenvalue problem to a system of ordinary differential equations. A simple theory of low-energy self-localization in the FED is discussed. The quantum theories of self-localization in the intrinsic QDST model and the extrinsic FED model are compared.
Quantum Mechanics in Insulators
NASA Astrophysics Data System (ADS)
Aeppli, G.
2009-08-01
Atomic physics is undergoing a large revival because of the possibility of trapping and cooling ions and atoms both for individual quantum control as well as collective quantum states, such as Bose-Einstein condensates. The present lectures start from the `atomic' physics of isolated atoms in semiconductors and insulators and proceed to coupling them together to yield magnets undergoing quantum phase transitions as well as displaying novel quantum states with no classical analogs. The lectures are based on: G.-Y. Xu et al., Science 317, 1049-1052 (2007); G. Aeppli, P. Warburton, C. Renner, BT Technology Journal, 24, 163-169 (2006); H. M. Ronnow et al., Science 308, 392-395 (2005) and N. Q. Vinh et al., PNAS 105, 10649-10653 (2008).
Quantum Mechanics in Insulators
Aeppli, G.
2009-08-20
Atomic physics is undergoing a large revival because of the possibility of trapping and cooling ions and atoms both for individual quantum control as well as collective quantum states, such as Bose-Einstein condensates. The present lectures start from the 'atomic' physics of isolated atoms in semiconductors and insulators and proceed to coupling them together to yield magnets undergoing quantum phase transitions as well as displaying novel quantum states with no classical analogs. The lectures are based on: G.-Y. Xu et al., Science 317, 1049-1052 (2007); G. Aeppli, P. Warburton, C. Renner, BT Technology Journal, 24, 163-169 (2006); H. M. Ronnow et al., Science 308, 392-395 (2005) and N. Q. Vinh et al., PNAS 105, 10649-10653 (2008).
Construction of relativistic quantum theory: a progress report
Noyes, H.P.
1986-06-01
We construct the particulate states of quantum physics using a recursive computer program that incorporates non-determinism by means of locally arbitrary choices. Quantum numbers and coupling constants arise from the construction via the unique 4-level combinatorial hierarchy. The construction defines indivisible quantum events with the requisite supraluminal correlations, yet does not allow supraluminal communication. Measurement criteria incorporate c, h-bar and m/sub p/ or (not ''and'') G, connected to laboratory events via finite particle number scattering theory and the counter paradigm. The resulting theory is discrete throughout, contains no infinities, and, as far as we have developed it, is in agreement with quantum mechanical and cosmological fact.
Noncommuting observables in quantum detection and estimation theory
NASA Technical Reports Server (NTRS)
Helstrom, C. W.
1971-01-01
In quantum detection theory, the optimum detection operators must commute; admitting simultaneous approximate measurement of noncommuting observables cannot yield a lower Bayes cost. In addition, the lower bounds on mean square errors of parameter estimates, predicted by the quantum mechanical Cramer-Rao inequality, cannot be reduced by such means.
Noncommunting observables in quantum detection and estimation theory
NASA Technical Reports Server (NTRS)
Helstrom, C. W.
1971-01-01
In quantum detection theory the optimum detection operators must commute; admitting simultaneous approximate measurement of noncommuting observables cannot yield a lower Bayes cost. The lower bounds on mean square errors of parameter estimates predicted by the quantum-mechanical Cramer-Rao inequality can also not be reduced by such means.
Interpretation and predictability of quantum mechanics and quantum cosmology
Wada, S.
1988-06-01
A non-probabilistic interpretation of quantum mechanics asserts that the authors get a prediction only when a wave function has a peak. Taking this interpretation seriously, the authors discuss how to find a peak in the wave function of the universe, by using some minisuperspace models. With homogeneous degrees of freedom and also a model with cosmological perturbations. Then the authors show how to recover their classical picture of the universe from the quantum theory, and comment on the physical meaning of the backreaction equation.
Consecutive Measurements in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Glick, Jennifer R.; Adami, Christoph
The physics of quantum measurement still continues to puzzle with no resolution in sight between competing interpretations, in particular because no interpretation has so far produced predictions that would be falsifiable via experiment. Here we present an analysis of consecutive projective measurements performed on a quantum state using quantum information theory, where the entanglement between the quantum system and a measuring device is explicitly taken into account, and where the consecutive measurements increase the joint Hilbert space while the wavefunction of the joint system never collapses. Using this relative-state formalism we rederive well-known results for the pairwise correlation between any two measurement devices, but show that considering the joint as well as conditional entropy of three devices reveals a difference between the collapse and no-collapse pictures of quantum measurement that is experimentally testable. This research was funded by a Michigan State University Enrichment Fellowship.
Quantum mechanics in complex systems
NASA Astrophysics Data System (ADS)
Hoehn, Ross Douglas
. These nodes are spaced far enough from each other to minimized the electronic repulsion of the electrons, while still providing adequate enough attraction so as to bind the excess elections into orbitals. We have found that even with relativistic considerations these species are stably bound within the field. It was also found that performing the dimensional scaling calculations for systems within the confines of laser fields to be a much simpler and more cost-effective method than the supporting D=3 SCF method. The dimensional scaling method is general and can be extended to include relativistic corrections to describe the stability of simple molecular systems in super-intense laser fields. Chapter 3, we delineate the model, and aspects therein, of inelastic electron tunneling and map this model to the protein environment. G protein-coupled receptors (GPCRs) constitute a large family of receptors that sense molecules outside of a cell and activate signal transduction pathways inside the cell. Modeling how an agonist activates such a receptor is important for understanding a wide variety of physiological processes and it is of tremendous value for pharmacology and drug design. Inelastic electron tunneling spectroscopy (IETS) has been proposed as the mechanism by which olfactory GPCRs are activated by an encapsulated agonist. In this note we apply this notion to GPCRs within the mammalian nervous system using ab initio quantum chemical modeling. We found that non-endogenous agonists of the serotonin receptor share a singular IET spectral aspect both amongst each other and with the serotonin molecule: a peak that scales in intensity with the known agonist activities. We propose an experiential validation of this model by utilizing lysergic acid dimethylamide (DAM-57), an ergot derivative, and its isotopologues in which hydrogen atoms are replaced by deuterium. If validated our theory may provide new avenues for guided drug design and better in silico prediction of
Superstrings and the Foundations of Quantum Mechanics
NASA Astrophysics Data System (ADS)
't Hooft, Gerard
2014-05-01
It is put forward that modern elementary particle physics cannot be completely unified with the laws of gravity and general relativity without addressing the question of the ontological interpretation of quantum mechanics itself. The position of superstring theory in this general question is emphasized: superstrings may well form exactly the right mathematical system that can explain how quantum mechanics can be linked to a deterministic picture of our world. Deterministic interpretations of quantum mechanics are usually categorically rejected, because of Bell's powerful observations, and indeed these apply here also, but we do emphasize that the models we arrive at are super-deterministic, which is exactly the case where Bell expressed his doubts. Strong correlations at space-like separations could explain the apparent contradictions.
Measurement and Fundamental Processes in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Jaeger, Gregg
2015-07-01
In the standard mathematical formulation of quantum mechanics, measurement is an additional, exceptional fundamental process rather than an often complex, but ordinary process which happens also to serve a particular epistemic function: during a measurement of one of its properties which is not already determined by a preceding measurement, a measured system, even if closed, is taken to change its state discontinuously rather than continuously as is usual. Many, including Bell, have been concerned about the fundamental role thus given to measurement in the foundation of the theory. Others, including the early Bohr and Schwinger, have suggested that quantum mechanics naturally incorporates the unavoidable uncontrollable disturbance of physical state that accompanies any local measurement without the need for an exceptional fundamental process or a special measurement theory. Disturbance is unanalyzable for Bohr, but for Schwinger it is due to physical interactions' being borne by fundamental particles having discrete properties and behavior which is beyond physical control. Here, Schwinger's approach is distinguished from more well known treatments of measurement, with the conclusion that, unlike most, it does not suffer under Bell's critique of quantum measurement. Finally, Schwinger's critique of measurement theory is explicated as a call for a deeper investigation of measurement processes that requires the use of a theory of quantum fields.
Emergent quantum mechanics without wavefunctions
NASA Astrophysics Data System (ADS)
Mesa Pascasio, J.; Fussy, S.; Schwabl, H.; Grössing, G.
2016-03-01
We present our model of an Emergent Quantum Mechanics which can be characterized by “realism without pre-determination”. This is illustrated by our analytic description and corresponding computer simulations of Bohmian-like “surreal” trajectories, which are obtained classically, i.e. without the use of any quantum mechanical tool such as wavefunctions. However, these trajectories do not necessarily represent ontological paths of particles but rather mappings of the probability density flux in a hydrodynamical sense. Modelling emergent quantum mechanics in a high-low intesity double slit scenario gives rise to the “quantum sweeper effect” with a characteristic intensity pattern. This phenomenon should be experimentally testable via weak measurement techniques.
Space--Time from Topos Quantum Theory
NASA Astrophysics Data System (ADS)
Flori, Cecilia
One of the main challenges in theoretical physics in the past 50 years has been to define a theory of quantum gravity, i.e. a theory which consistently combines general relativity and quantum theory in order to define a theory of space-time itself seen as a fluctuating field. As such, a definition of space-time is of paramount importance, but it is precisely the attainment of such a definition which is one of the main stumbling blocks in quantum gravity. One of the striking features of quantum gravity is that although both general relativity and quantum theory treat space-time as a four-dimensional (4D) manifold equipped with a metric, quantum gravity would suggest that, at the microscopic scale, space-time is somewhat discrete. Therefore the continuum structure of space-time suggested by the two main ingredients of quantum gravity seems to be thrown into discussion by quantum gravity itself. This seems quite an odd predicament, but it might suggest that perhaps a different mathematical structure other than a smooth manifold should model space-time. These considerations seem to shed doubts on the use of the continuum in general in a possible theory of quantum gravity. An alternative would be to develop a mathematical formalism for quantum gravity in which no fundamental role is played by the continuum and where a new concept of space-time, not modeled on a differentiable manifold, will emerge. This is precisely one of the aims of the topos theory approach to quantum theory and quantum gravity put forward by Isham, Butterfield, and Doering and subsequently developed by other authors. The aim of this article is to precisely elucidate how such an approach gives rise to a new definition of space-time which might be more appropriate for quantum gravity.
Uncertainty relation revisited from quantum estimation theory
Watanabe, Yu; Sagawa, Takahiro; Ueda, Masahito
2011-10-15
We use quantum estimation theory to formulate bounds of errors in quantum measurement for arbitrary quantum states and observables in a finite-dimensional Hilbert space. We prove that the measurement errors of two noncommuting observables satisfy Heisenberg-type uncertainty relation, find the achievable bound, and propose a strategy to achieve it.
Whiteheadian process and quantum theory
Stapp, H.
1998-08-01
There are deep similarities between Whitehead's idea of the process by which nature unfolds and the ideas of quantum theory. Whitehead says that the world is made of ''actual occasions'', each of which arises from potentialities created by prior actual occasions. These actual occasions are happenings modeled on experiential events, each of which comes into being and then perishes, only to be replaced by a successor. It is these experience-like happenings that are the basic realities of nature, according to Whitehead, not the persisting physical particles that Newtonian physics took be the basic entities. Similarly, Heisenberg says that what is really happening in a quantum process is the emergence of an actual from potentialities created by prior actualities. In the orthodox Copenhagen interpretation of quantum theory the actual things to which the theory refer are increments in ''our knowledge''. These increments are experiential events. The particles of classical physics lose their fundamental status: they dissolve into diffuse clouds of possibilities. At each stage of the unfolding of nature the complete cloud of possibilities acts like the potentiality for the occurrence of a next increment in knowledge, whose occurrence can radically change the cloud of possibilities/potentialities for the still-later increments in knowledge. The fundamental difference between these ideas about nature and the classical ideas that reigned from the time of Newton until this century concerns the status of the experiential aspects of nature. These are things such as thoughts, ideas, feelings, and sensations. They are distinguished from the physical aspects of nature, which are described in terms of quantities explicitly located in tiny regions of space and time. According to the ideas of classical physics the physical world is made up exclusively of things of this latter type, and the unfolding of the physical world is determined by causal connections involving only these things
Multiscale quantum simulation of quantum field theory using wavelets
NASA Astrophysics Data System (ADS)
Brennen, Gavin K.; Rohde, Peter; Sanders, Barry C.; Singh, Sukhwinder
2015-09-01
A successful approach to understand field theories is to resolve the physics into different length or energy scales using the renormalization group framework. We propose a quantum simulation of quantum field theory which encodes field degrees of freedom in a wavelet basis—a multiscale description of the theory. Since wavelet families can be constructed to have compact support at all resolutions, this encoding allows for quantum simulations to create particle excitations which are local at some chosen scale and provides a natural way to associate observables in the theory to finite-resolution detectors.
Three Attempts at Two Axioms for Quantum Mechanics
NASA Astrophysics Data System (ADS)
Rohrlich, Daniel
The axioms of nonrelativistic quantum mechanics lack clear physical meaning. In particular, they say nothing about nonlocality. Yet quantum mechanics is not only nonlocal, it is twice nonlocal: there are nonlocal quantum correlations, and there is the Aharonov-Bohm effect, which implies that an electric or magnetic field here may act on an electron there. Can we invert the logical hierarchy? That is, can we adopt nonlocality as an axiom for quantum mechanics and derive quantum mechanics from this axiom and an additional axiom of causality? Three versions of these two axioms lead to three different theories, characterized by "maximal nonlocal correlations", "jamming" and "modular energy". Where is quantum mechanics in these theories?
Conservation of information and the foundations of quantum mechanics
NASA Astrophysics Data System (ADS)
Chiribella, Giulio; Scandolo, Carlo Maria
2015-05-01
We review a recent approach to the foundations of quantum mechanics inspired by quantum information theory [1, 2]. The approach is based on a general framework, which allows one to address a large class of physical theories which share basic information-theoretic features. We first illustrate two very primitive features, expressed by the axioms of causality and purity-preservation, which are satisfied by both classical and quantum theory. We then discuss the axiom of purification, which expresses a strong version of the Conservation of Information and captures the core of a vast number of protocols in quantum information. Purification is a highly non-classical feature and leads directly to the emergence of entanglement at the purely conceptual level, without any reference to the superposition principle. Supplemented by a few additional requirements, satisfied by classical and quantum theory, it provides a complete axiomatic characterization of quantum theory for finite dimensional systems.
Quantum Mechanics and Narratability
NASA Astrophysics Data System (ADS)
Myrvold, Wayne C.
2016-05-01
As has been noted by several authors, in a relativistic context, there is an interesting difference between classical and quantum state evolution. For a classical system, a state history of a quantum system given along one foliation uniquely determines, without any consideration of the system's dynamics, a state history along any other foliation. This is not true for quantum state evolution; there are cases in which a state history along one foliation is compatible with multiple distinct state histories along some other, a phenomenon that David Albert has dubbed "non-narratability." In this article, we address the question of whether non-narratability is restricted to the sorts of special states that so far have been used to illustrate it. The results of the investigation suggest that there has been a misplaced emphasis on underdetermination of state histories; though this is generic for the special cases that have up until now been considered, involving bipartite systems in pure entangled states, it fails generically in cases in which more component systems are taken into account, and for bipartite systems that have some entanglement with their environment. For such cases, if we impose relativistic causality constraints on the evolution, then, except for very special states, a state history along one foliation uniquely determines a state history along any other. But this in itself is a marked difference between classical and quantum state evolution, because, in a classical setting, no considerations of dynamics at all are needed to go from a state history along one foliation to a state history along another.
Quantum Mechanics and Narratability
NASA Astrophysics Data System (ADS)
Myrvold, Wayne C.
2016-07-01
As has been noted by several authors, in a relativistic context, there is an interesting difference between classical and quantum state evolution. For a classical system, a state history of a quantum system given along one foliation uniquely determines, without any consideration of the system's dynamics, a state history along any other foliation. This is not true for quantum state evolution; there are cases in which a state history along one foliation is compatible with multiple distinct state histories along some other, a phenomenon that David Albert has dubbed "non-narratability." In this article, we address the question of whether non-narratability is restricted to the sorts of special states that so far have been used to illustrate it. The results of the investigation suggest that there has been a misplaced emphasis on underdetermination of state histories; though this is generic for the special cases that have up until now been considered, involving bipartite systems in pure entangled states, it fails generically in cases in which more component systems are taken into account, and for bipartite systems that have some entanglement with their environment. For such cases, if we impose relativistic causality constraints on the evolution, then, except for very special states, a state history along one foliation uniquely determines a state history along any other. But this in itself is a marked difference between classical and quantum state evolution, because, in a classical setting, no considerations of dynamics at all are needed to go from a state history along one foliation to a state history along another.
Kowalevski top in quantum mechanics
Matsuyama, A.
2013-09-15
The quantum mechanical Kowalevski top is studied by the direct diagonalization of the Hamiltonian. The spectra show different behaviors depending on the region divided by the bifurcation sets of the classical invariant tori. Some of these spectra are nearly degenerate due to the multiplicity of the invariant tori. The Kowalevski top has several symmetries and symmetry quantum numbers can be assigned to the eigenstates. We have also carried out the semiclassical quantization of the Kowalevski top by the EBK formulation. It is found that the semiclassical spectra are close to the exact values, thus the eigenstates can be also labeled by the integer quantum numbers. The symmetries of the system are shown to have close relations with the semiclassical quantum numbers and the near-degeneracy of the spectra. -- Highlights: •Quantum spectra of the Kowalevski top are calculated. •Semiclassical quantization is carried out by the EBK formulation. •Quantum states are labeled by the semiclassical integer quantum numbers. •Multiplicity of the classical torus makes the spectra nearly degenerate. •Symmetries, quantum numbers and near-degenerate spectra are closely related.
The Compton effect: Transition to quantum mechanics
NASA Astrophysics Data System (ADS)
Stuewer, R. H.
2000-11-01
The discovery of the Compton effect at the end of 1922 was a decisive event in the transition to the new quantum mechanics of 1925-1926 because it stimulated physicists to examine anew the fundamental problem of the interaction between radiation and matter. I first discuss Albert Einstein's light-quantum hypothesis of 1905 and why physicists greeted it with extreme skepticism, despite Robert A. Millikan's confirmation of Einstein's equation of the photoelectric effect in 1915. I then follow in some detail the experimental and theoretical research program that Arthur Holly Compton pursued between 1916 and 1922 at the University of Minnesota, the Westinghouse Lamp Company, the Cavendish Laboratory, and Washington University that culminated in his discovery of the Compton effect. Surprisingly, Compton was not influenced directly by Einstein's light-quantum hypothesis, in contrast to Peter Debye and H.A. Kramers, who discovered the quantum theory of scattering independently. I close by discussing the most significant response to that discovery, the Bohr-Kramers-Slater theory of 1924, its experimental refutation, and its influence on the emerging new quantum mechanics.
Reconstruction and Reinvention in Quantum Theory
NASA Astrophysics Data System (ADS)
Dickson, Michael
2015-10-01
I consider the fact that there are a number of interesting ways to `reconstruct' quantum theory, and suggest that, very broadly speaking, a form of `instrumentalism' makes good sense of the situation. This view runs against some common wisdom, which dismisses instrumentalism as `cheap'. In contrast, I consider how an instrumentalist might think about the reconstruction theorems, and, having made a distinction between `reconstructing' quantum theory and `reinventing' quantum theory, I suggest that there is an adequate (not `cheap') instrumentalist approach to the theory (and to these theorems) that invokes both.
Quantum mechanical coherence, resonance, and mind
Stapp, H.P.
1995-03-26
Norbert Wiener and J.B.S. Haldane suggested during the early thirties that the profound changes in our conception of matter entailed by quantum theory opens the way for our thoughts, and other experiential or mind-like qualities, to play a role in nature that is causally interactive and effective, rather than purely epiphenomenal, as required by classical mechanics. The mathematical basis of this suggestion is described here, and it is then shown how, by giving mind this efficacious role in natural process, the classical character of our perceptions of the quantum universe can be seen to be a consequence of evolutionary pressures for the survival of the species.
Quantum mechanics in complex systems
NASA Astrophysics Data System (ADS)
Hoehn, Ross Douglas
. These nodes are spaced far enough from each other to minimized the electronic repulsion of the electrons, while still providing adequate enough attraction so as to bind the excess elections into orbitals. We have found that even with relativistic considerations these species are stably bound within the field. It was also found that performing the dimensional scaling calculations for systems within the confines of laser fields to be a much simpler and more cost-effective method than the supporting D=3 SCF method. The dimensional scaling method is general and can be extended to include relativistic corrections to describe the stability of simple molecular systems in super-intense laser fields. Chapter 3, we delineate the model, and aspects therein, of inelastic electron tunneling and map this model to the protein environment. G protein-coupled receptors (GPCRs) constitute a large family of receptors that sense molecules outside of a cell and activate signal transduction pathways inside the cell. Modeling how an agonist activates such a receptor is important for understanding a wide variety of physiological processes and it is of tremendous value for pharmacology and drug design. Inelastic electron tunneling spectroscopy (IETS) has been proposed as the mechanism by which olfactory GPCRs are activated by an encapsulated agonist. In this note we apply this notion to GPCRs within the mammalian nervous system using ab initio quantum chemical modeling. We found that non-endogenous agonists of the serotonin receptor share a singular IET spectral aspect both amongst each other and with the serotonin molecule: a peak that scales in intensity with the known agonist activities. We propose an experiential validation of this model by utilizing lysergic acid dimethylamide (DAM-57), an ergot derivative, and its isotopologues in which hydrogen atoms are replaced by deuterium. If validated our theory may provide new avenues for guided drug design and better in silico prediction of
Indirect Acquisition of Information in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Ballesteros, M.; Fraas, M.; Fröhlich, J.; Schubnel, B.
2016-02-01
Long sequences of successive direct (projective) measurements or observations of just a few "uninteresting" physical quantities pertaining to a quantum system, such as clicks of some detectors, may reveal indirect, but precise and unambiguous information on the values of some very "interesting" observables of the system. In this paper, the mathematics underlying this claim is developed; i.e., we attempt to contribute to a mathematical theory of indirect and, in particular, non-demolition observations and measurements in quantum mechanics. Our attempt leads us to make some novel uses of classical notions and results of probability theory, such as the "algebra of functions measurable at infinity", the Central Limit Theorem, results concerning relative entropy and its role in the theory of large deviations, etc.
Quantum and semiclassical theories of chemical reaction rates
Miller, W.H. |
1995-09-01
A rigorous quantum mechanical theory (and a semiclassical approximation thereto) is described for calculating chemical reaction rates ``directly``, i.e., without having to solve the complete state-to-state reactive scattering problem. The approach has many vestiges of transition state theory, for which it may be thought of as the rigorous generalization.
The geometrical structure of quantum theory as a natural generalization of information geometry
Reginatto, Marcel
2015-01-13
Quantum mechanics has a rich geometrical structure which allows for a geometrical formulation of the theory. This formalism was introduced by Kibble and later developed by a number of other authors. The usual approach has been to start from the standard description of quantum mechanics and identify the relevant geometrical features that can be used for the reformulation of the theory. Here this procedure is inverted: the geometrical structure of quantum theory is derived from information geometry, a geometrical structure that may be considered more fundamental, and the Hilbert space of the standard formulation of quantum mechanics is constructed using geometrical quantities. This suggests that quantum theory has its roots in information geometry.
The geometrical structure of quantum theory as a natural generalization of information geometry
NASA Astrophysics Data System (ADS)
Reginatto, Marcel
2015-01-01
Quantum mechanics has a rich geometrical structure which allows for a geometrical formulation of the theory. This formalism was introduced by Kibble and later developed by a number of other authors. The usual approach has been to start from the standard description of quantum mechanics and identify the relevant geometrical features that can be used for the reformulation of the theory. Here this procedure is inverted: the geometrical structure of quantum theory is derived from information geometry, a geometrical structure that may be considered more fundamental, and the Hilbert space of the standard formulation of quantum mechanics is constructed using geometrical quantities. This suggests that quantum theory has its roots in information geometry.
Beyond relativity and quantum mechanics: space physics
NASA Astrophysics Data System (ADS)
Lindner, Henry H.
2011-09-01
Albert Einstein imposed an observer-based epistemology upon physics. Relativity and Quantum Mechanics limit physics to describing and modeling the observer's sensations and measurements. Their "underlying reality" consists only of ideas that serve to model the observer's experience. These positivistic models cannot be used to form physical theories of Cosmic phenomena. To do this, we must again remove the observer from the center of physics. When we relate motion to Cosmic space instead of to observers and we attempt to explain the causes of Cosmic phenomena, we are forced to admit that Cosmic space is a substance. We need a new physics of space. We can begin by replacing Relativity with a modified Lorentzian-Newtonian model of spatial flow, and Quantum Mechanics with a wave-based theory of light and electrons. Space physics will require the reinterpretation of all known phenomena, concepts, and mathematical models.
Energy conservation in quantum mechanics
NASA Astrophysics Data System (ADS)
Prentis, Jeffrey J.; Fedak, William A.
2004-05-01
In the classical mechanics of conservative systems, the position and momentum evolve deterministically such that the sum of the kinetic energy and potential energy remains constant in time. This canonical trademark of energy conservation is absent in the standard presentations of quantum mechanics based on the Schrödinger picture. We present a purely canonical proof of energy conservation that focuses exclusively on the time-dependent position x(t) and momentum p(t) operators. This treatment of energy conservation serves as an introduction to the Heisenberg picture and illuminates the classical-quantum connection. We derive a quantum-mechanical work-energy theorem and show explicitly how the time dependence of x and p and the noncommutivity of x and p conspire to bring about a perfect temporal balance between the evolving kinetic and potential parts of the total energy operator.
Emergence of quantum mechanics from a sub-quantum statistical mechanics
NASA Astrophysics Data System (ADS)
Grössing, Gerhard
2014-07-01
A research program within the scope of theories on "Emergent Quantum Mechanics" is presented, which has gained some momentum in recent years. Via the modeling of a quantum system as a non-equilibrium steady-state maintained by a permanent throughput of energy from the zero-point vacuum, the quantum is considered as an emergent system. We implement a specific "bouncer-walker" model in the context of an assumed sub-quantum statistical physics, in analogy to the results of experiments by Couder and Fort on a classical wave-particle duality. We can thus give an explanation of various quantum mechanical features and results on the basis of a "21st century classical physics", such as the appearance of Planck's constant, the Schrödinger equation, etc. An essential result is given by the proof that averaged particle trajectories' behaviors correspond to a specific type of anomalous diffusion termed "ballistic" diffusion on a sub-quantum level. It is further demonstrated both analytically and with the aid of computer simulations that our model provides explanations for various quantum effects such as double-slit or n-slit interference. We show the averaged trajectories emerging from our model to be identical to Bohmian trajectories, albeit without the need to invoke complex wavefunctions or any other quantum mechanical tool. Finally, the model provides new insights into the origins of entanglement, and, in particular, into the phenomenon of a "systemic" non-locality.
Quantum Mechanical Earth: Where Orbitals Become Orbits
ERIC Educational Resources Information Center
Keeports, David
2012-01-01
Macroscopic objects, although quantum mechanical by nature, conform to Newtonian mechanics under normal observation. According to the quantum mechanical correspondence principle, quantum behavior is indistinguishable from classical behavior in the limit of very large quantum numbers. The purpose of this paper is to provide an example of the…
Interpretation neutrality in the classical domain of quantum theory
NASA Astrophysics Data System (ADS)
Rosaler, Joshua
2016-02-01
I show explicitly how concerns about wave function collapse and ontology can be decoupled from the bulk of technical analysis necessary to recover localized, approximately Newtonian trajectories from quantum theory. In doing so, I demonstrate that the account of classical behavior provided by decoherence theory can be straightforwardly tailored to give accounts of classical behavior on multiple interpretations of quantum theory, including the Everett, de Broglie-Bohm and GRW interpretations. I further show that this interpretation-neutral, decoherence-based account conforms to a general view of inter-theoretic reduction in physics that I have elaborated elsewhere, which differs from the oversimplified picture that treats reduction as a matter of simply taking limits. This interpretation-neutral account rests on a general three-pronged strategy for reduction between quantum and classical theories that combines decoherence, an appropriate form of Ehrenfest's Theorem, and a decoherence-compatible mechanism for collapse. It also incorporates a novel argument as to why branch-relative trajectories should be approximately Newtonian, which is based on a little-discussed extension of Ehrenfest's Theorem to open systems, rather than on the more commonly cited but less germane closed-systems version. In the Conclusion, I briefly suggest how the strategy for quantum-classical reduction described here might be extended to reduction between other classical and quantum theories, including classical and quantum field theory and classical and quantum gravity.
A new introductory quantum mechanics curriculum
NASA Astrophysics Data System (ADS)
Kohnle, Antje; Bozhinova, Inna; Browne, Dan; Everitt, Mark; Fomins, Aleksejs; Kok, Pieter; Kulaitis, Gytis; Prokopas, Martynas; Raine, Derek; Swinbank, Elizabeth
2014-01-01
The Institute of Physics New Quantum Curriculum consists of freely available online learning and teaching materials (quantumphysics.iop.org) for a first course in university quantum mechanics starting from two-level systems. This approach immediately immerses students in inherently quantum-mechanical aspects by focusing on experiments that have no classical explanation. It allows from the start a discussion of the interpretive aspects of quantum mechanics and quantum information theory. This paper gives an overview of the resources available from the IOP website. The core text includes around 80 articles which are co-authored by leading experts, arranged in themes, and can be used flexibly to provide a range of alternative approaches. Many of the articles include interactive simulations with accompanying activities and problem sets that can be explored by students to enhance their understanding. Much of the linear algebra needed for this approach is included in the resource. Solutions to activities are available to instructors. The resources can be used in a variety of ways, from being supplemental to existing courses to forming a complete programme.
Faster than Hermitian quantum mechanics.
Bender, Carl M; Brody, Dorje C; Jones, Hugh F; Meister, Bernhard K
2007-01-26
Given an initial quantum state |psi(I)> and a final quantum state |psi(F)>, there exist Hamiltonians H under which |psi(I)> evolves into |psi(F)>. Consider the following quantum brachistochrone problem: subject to the constraint that the difference between the largest and smallest eigenvalues of H is held fixed, which H achieves this transformation in the least time tau? For Hermitian Hamiltonians tau has a nonzero lower bound. However, among non-Hermitian PT-symmetric Hamiltonians satisfying the same energy constraint, tau can be made arbitrarily small without violating the time-energy uncertainty principle. This is because for such Hamiltonians the path from |psi(I)> to |psi(F)> can be made short. The mechanism described here is similar to that in general relativity in which the distance between two space-time points can be made small if they are connected by a wormhole. This result may have applications in quantum computing. PMID:17358747
A Matter of Principle: The Principles of Quantum Theory, Dirac's Equation, and Quantum Information
NASA Astrophysics Data System (ADS)
Plotnitsky, Arkady
2015-10-01
This article is concerned with the role of fundamental principles in theoretical physics, especially quantum theory. The fundamental principles of relativity will be addressed as well, in view of their role in quantum electrodynamics and quantum field theory, specifically Dirac's work, which, in particular Dirac's derivation of his relativistic equation of the electron from the principles of relativity and quantum theory, is the main focus of this article. I shall also consider Heisenberg's earlier work leading him to the discovery of quantum mechanics, which inspired Dirac's work. I argue that Heisenberg's and Dirac's work was guided by their adherence to and their confidence in the fundamental principles of quantum theory. The final section of the article discusses the recent work by D'Ariano and coworkers on the principles of quantum information theory, which extend quantum theory and its principles in a new direction. This extension enabled them to offer a new derivation of Dirac's equations from these principles alone, without using the principles of relativity.
Hidden variables and nonlocality in quantum mechanics
NASA Astrophysics Data System (ADS)
Hemmick, Douglas Lloyd
1997-05-01
Most physicists hold a skeptical attitude toward a 'hidden variables' interpretation of quantum theory, despite David Bohm's successful construction of such a theory and John S. Bell's strong arguments in favor of the idea. The first reason for doubt concerns certain mathematical theorems (von Neumann's, Gleason's, Kochen and Specker's, and Bell's) which can be applied to the hidden variables issue. These theorems are often credited with proving that hidden variables are indeed 'impossible', in the sense that they cannot replicate the predictions of quantum mechanics. Many who do not draw such a strong conclusion nevertheless accept that hidden variables have been shown to exhibit prohibitively complicated features. The second concern is that the most sophisticated example of a hidden variables theory-that of David Bohm-exhibits non-locality, i.e., consequences of events at one place can propagate to other places instantaneously. However, neither the mathematical theorems in question nor the attribute of nonlocality detract from the importance of a hidden variables interpretation of quantum theory. Nonlocality is present in quantum mechanics itself, and is a required characteristic of any theory that agrees with the quantum mechanical predictions. We first discuss the earliest analysis of hidden variables-that of von Neumann's theorem-and review John S. Bell's refutation of von Neumann's 'impossibility proof'. We recall and elaborate on Bell's arguments regarding the theorems of Gleason, and Kochen and Specker. According to Bell, these latter theorems do not imply that hidden variables interpretations are untenable, but instead that such theories must exhibit contextuality, i.e., they must allow for the dependence of measurement results on the characteristics of both measured system and measuring apparatus. We demonstrate a new way to understand the implications of both Gleason's theorem and Kochen and Specker's theorem by noting that they prove a result we call
Interpreting Quantum Mechanics according to a Pragmatist Approach
NASA Astrophysics Data System (ADS)
Bächtold, Manuel
2008-09-01
The aim of this paper is to show that quantum mechanics can be interpreted according to a pragmatist approach. The latter consists, first, in giving a pragmatic definition to each term used in microphysics, second, in making explicit the functions any theory must fulfil so as to ensure the success of the research activity in microphysics, and third, in showing that quantum mechanics is the only theory which fulfils exactly these functions.
Asymptotic theory of quantum statistical inference
NASA Astrophysics Data System (ADS)
Hayashi, Masahito
Part I: Hypothesis Testing: Introduction to Part I -- Strong Converse and Stein's lemma in quantum hypothesis testing/Tomohiro Ogawa and Hiroshi Nagaoka -- The proper formula for relative entropy and its asymptotics in quantum probability/Fumio Hiai and Dénes Petz -- Strong Converse theorems in Quantum Information Theory/Hiroshi Nagaoka -- Asymptotics of quantum relative entropy from a representation theoretical viewpoint/Masahito Hayashi -- Quantum birthday problems: geometrical aspects of Quantum Random Coding/Akio Fujiwara -- Part II: Quantum Cramèr-Rao Bound in Mixed States Model: Introduction to Part II -- A new approach to Cramèr-Rao Bounds for quantum state estimation/Hiroshi Nagaoka -- On Fisher information of Quantum Statistical Models/Hiroshi Nagaoka -- On the parameter estimation problem for Quantum Statistical Models/Hiroshi Nagaoka -- A generalization of the simultaneous diagonalization of Hermitian matrices and its relation to Quantum Estimation Theory/Hiroshi Nagaoka -- A linear programming approach to Attainable Cramèr-Rao Type Bounds/Masahito Hayashi -- Statistical model with measurement degree of freedom and quantum physics/Masahito Hayashi and Keiji Matsumoto -- Asymptotic Quantum Theory for the Thermal States Family/Masahito Hayashi -- State estimation for large ensembles/Richard D. Gill and Serge Massar -- Part III: Quantum Cramèr-Rao Bound in Pure States Model: Introduction to Part III-- Quantum Fisher Metric and estimation for Pure State Models/Akio Fujiwara and Hiroshi Nagaoka -- Geometry of Quantum Estimation Theory/Akio Fujiwara -- An estimation theoretical characterization of coherent states/Akio Fujiwara and Hiroshi Nagaoka -- A geometrical approach to Quantum Estimation Theory/Keiji Matsumoto -- Part IV: Group symmetric approach to Pure States Model: Introduction to Part IV -- Optimal extraction of information from finite quantum ensembles/Serge Massar and Sandu Popescu -- Asymptotic Estimation Theory for a Finite-Dimensional Pure
Cloning in nonlinear Hamiltonian quantum and hybrid mechanics
NASA Astrophysics Data System (ADS)
Arsenović, D.; Burić, N.; Popović, D. B.; Radonjić, M.; Prvanović, S.
2014-10-01
The possibility of state cloning is analyzed in two types of generalizations of quantum mechanics with nonlinear evolution. It is first shown that nonlinear Hamiltonian quantum mechanics does not admit cloning without the cloning machine. It is then demonstrated that the addition of the cloning machine, treated as a quantum or as a classical system, makes cloning possible by nonlinear Hamiltonian evolution. However, a special type of quantum-classical theory, known as the mean-field Hamiltonian hybrid mechanics, does not admit cloning by natural evolution. The latter represents an example of a theory where it appears to be possible to communicate between two quantum systems at superluminal speed, but at the same time it is impossible to clone quantum pure states.
Supersymmetric quantum mechanics and its applications
Sukumar, C.V.
2004-12-23
The Hamiltonian in Supersymmetric Quantum Mechanics is defined in terms of charges that obey the same algebra as that of the generators of supersymmetry in field theory. The consequences of this symmetry for the spectra of the component parts that constitute the supersymmetric system are explored. The implications of supersymmetry for the solutions of the Schroedinger equation, the Dirac equation, the inverse scattering theory and the multi-soliton solutions of the KdV equation are examined. Applications to scattering problems in Nuclear Physics with specific reference to singular potentials which arise from considerations of supersymmetry will be discussed.
Quantum Theory of Laser Amplifiers.
NASA Astrophysics Data System (ADS)
Mander, Gillian Linda
Available from UMI in association with The British Library. Requires signed TDF. We calculate the input-output characteristics of a below threshold laser amplifier. Expressions are derived for the output second- and fourth-order spectral and temporal correlation functions in terms of the corresponding input quantities, and for the photocount first and second factorial moments for both homodyne and direct detection. The general results are applied to several cases of practical interest, including specific non-classical input states. We show that a maximum of twofold amplification is permitted if squeezing in the input is to survive at the output. Similarly, for preservation of photon antibunching in amplification we show that only very small gains are allowed. The model treated here provides a detailed example of the amplifier noise limitations imposed by quantum mechanics. In particular, we show that minimum noise occurs in a cavity that is asymmetric with respect to the mirror reflectivities. The latter part of this work treats the above threshold laser amplifier. The laser output is back-scattered from a moving target to provide a weak Doppler-shifted signal which re-enters the laser cavity and is amplified. We show that the three-level atomic lasing medium is equivalent to a two-level medium pumped by an inverted bath. We use the methods of quantum statistical analysis to obtain time -evolution equations for the c-number amplitudes of the laser and signal fields. We show that the results may be applied to the below threshold regime for appropriate values of the pump parameter. By considering the amplitude differential gain we show explicitly that the behaviour of the laser around threshold is characteristic of a second -order phase transition. We calculate the output intensity gain appropriate to a heterodyne detection process, and find good agreement between the predicted gain profiles and measured data for both carbon dioxide and argon-ion lasers.
Hermeneutics, Underdetermination and Quantum Mechanics.
ERIC Educational Resources Information Center
Cushing, James T.
1995-01-01
States that the existence of an essential underdetermination in the interpretation of the formalism of quantum mechanics, in spite of the widespread belief that logic and empirical considerations alone demand an indeterministic world view in physics, legitimizes the analysis of hermeneutics in science education. (LZ)
Renormalization group in quantum mechanics
Polony, J.
1996-12-01
The running coupling constants are introduced in quantum mechanics and their evolution is described with the help of the renormalization group equation. The harmonic oscillator and the propagation on curved spaces are presented as examples. The Hamiltonian and the Lagrangian scaling relations are obtained. These evolution equations are used to construct low energy effective models. Copyright {copyright} 1996 Academic Press, Inc.
The actual content of quantum theoretical kinematics and mechanics
NASA Technical Reports Server (NTRS)
Heisenberg, W.
1983-01-01
First, exact definitions are supplied for the terms: position, velocity, energy, etc. (of the electron, for instance), such that they are valid also in quantum mechanics. Canonically conjugated variables are determined simultaneously only with a characteristic uncertainty. This uncertainty is the intrinsic reason for the occurrence of statistical relations in quantum mechanics. Mathematical formulation is made possible by the Dirac-Jordan theory. Beginning from the basic principles thus obtained, macroscopic processes are understood from the viewpoint of quantum mechanics. Several imaginary experiments are discussed to elucidate the theory.
Effective equations for the quantum pendulum from momentous quantum mechanics
Hernandez, Hector H.; Chacon-Acosta, Guillermo
2012-08-24
In this work we study the quantum pendulum within the framework of momentous quantum mechanics. This description replaces the Schroedinger equation for the quantum evolution of the system with an infinite set of classical equations for expectation values of configuration variables, and quantum dispersions. We solve numerically the effective equations up to the second order, and describe its evolution.
NASA Astrophysics Data System (ADS)
Oriols, X.
2016-03-01
Exact predictions for most quantum systems are computationally inaccessible. This is the so-called many body problem, which is present in most common interpretations of quantum mechanics. Therefore, predictions of natural quantum phenomena have to rely on some approximations (assumptions or simplifications). In the literature, there are different types of approximations, ranging from those whose justification is basically based on theoretical developments to those whose justification lies on the agreement with experiments. This last type of approximations can convert a quantum theory into an “unfalsifiable” quantum theory, true by construction. On the practical side, converting some part of a quantum theory into an “unfalsifiable” one ensures a successful modeling (i.e. compatible with experiments) for quantum engineering applications. An example of including irreversibility and dissipation in the Bohmian modeling of open systems is presented. On the ontological level, however, the present-day foundational problems related to controversial quantum phenomena have to avoid (if possible) being contaminated by the unfalsifiability originated from the many body problem. An original attempt to show how the Bohmian theory itself (minimizing the role of many body approximations) explains the transitions from a microscopic quantum system towards a macroscopic classical one is presented.
Teaching Quantum Theory in the Introductory Course.
ERIC Educational Resources Information Center
Hobson, Art
1996-01-01
Describes an approach to teaching quantum theory without math with emphasis on some innovative approaches and topics such as nonlocality and Bell's theorem. Written in the form of suggestions to prospective instructors. (JRH)
Quantum Mechanics and the Role of Time:. are Quantum Systems Markovian?
NASA Astrophysics Data System (ADS)
Durt, Thomas
2013-06-01
The predictions of the Quantum Theory have been verified so far with astonishingly high accuracy. Despite of its impressive successes, the theory still presents mysterious features such as the border line between the classical and quantum world, or the deep nature of quantum nonlocality. These open questions motivated in the past several proposals of alternative and/or generalized approaches. We shall discuss in the present paper alternative theories that can be infered from a reconsideration of the status of time in quantum mechanics. Roughly speaking, quantum mechanics is usually formulated as a memory free (Markovian) theory at a fundamental level, but alternative, nonMarkovian, formulations are possible, and some of them can be tested in the laboratory. In our paper we shall give a survey of these alternative proposals, describe related experiments that were realized in the past and also formulate new experimental proposals.
Quantum theory - essential from cosmos to consciousness
NASA Astrophysics Data System (ADS)
Görnitz, T.
2010-06-01
Quantum theory is the most successful physical theory. About one third of the gross national product in the developed countries results from its applications. But very often quantum theory is still declared as "crazy" or "not understandable". However, quantum theory has a clear mathematical structure that expresses well-known experiences from every day life: A whole is often more than the sum of its parts, and not only the facts also the possibilities can act. If such structures become important then the consequences differ from the models of classical physics which rests on the fundamental differences between matter and motion, material and force, localization and extension, fullness and emptiness. From quantum theory one can learn that all these differences are useful in many cases but are not fundamental. There are equivalences between them, and these can be extended even to the equivalence between matter, energy and abstract quantum information. It is cosmological funded and is denominated as "Protyposis" to avoid the connotation of information and meaning. Protyposis enables a fundamentally new understanding of matter which can be seen as "formed", "condensed" or "designed" abstract quantum information. One result of the Protyposis is a derivation of Einstein's equations from the abstract quantum information. Another consequence is the ontological reality of the mind and its connection to a brain which can be explained without any dualistic model.
Geometric continuum regularization of quantum field theory
Halpern, M.B. . Dept. of Physics)
1989-11-08
An overview of the continuum regularization program is given. The program is traced from its roots in stochastic quantization, with emphasis on the examples of regularized gauge theory, the regularized general nonlinear sigma model and regularized quantum gravity. In its coordinate-invariant form, the regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal nonperturbative invariant continuum regularization across all quantum field theory. 54 refs.
A supersymmetric extension of quantum gauge theory
NASA Astrophysics Data System (ADS)
Grigore, D. R.; Scharf, G.
2003-01-01
We consider a supersymmetric extension of quantum gauge theory based on a vector multiplet containing supersymmetric partners of spin 3/2 for the vector fields. The constructions of the model follows closely the usual construction of gauge models in the Epstein-Glaser framework for perturbative field theory. Accordingly, all the arguments are completely of quantum nature without reference to a classical supersymmetric theory. As an application we consider the supersymmetric electroweak theory. The resulting self-couplings of the gauge bosons agree with the standard model up to a divergence.
The decoupling approach to quantum information theory
NASA Astrophysics Data System (ADS)
Dupuis, Frédéric
2010-04-01
Quantum information theory studies the fundamental limits that physical laws impose on information processing tasks such as data compression and data transmission on noisy channels. This thesis presents general techniques that allow one to solve many fundamental problems of quantum information theory in a unified framework. The central theorem of this thesis proves the existence of a protocol that transmits quantum data that is partially known to the receiver through a single use of an arbitrary noisy quantum channel. In addition to the intrinsic interest of this problem, this theorem has as immediate corollaries several central theorems of quantum information theory. The following chapters use this theorem to prove the existence of new protocols for two other types of quantum channels, namely quantum broadcast channels and quantum channels with side information at the transmitter. These protocols also involve sending quantum information partially known by the receiver with a single use of the channel, and have as corollaries entanglement-assisted and unassisted asymptotic coding theorems. The entanglement-assisted asymptotic versions can, in both cases, be considered as quantum versions of the best coding theorems known for the classical versions of these problems. The last chapter deals with a purely quantum phenomenon called locking. We demonstrate that it is possible to encode a classical message into a quantum state such that, by removing a subsystem of logarithmic size with respect to its total size, no measurement can have significant correlations with the message. The message is therefore "locked" by a logarithmic-size key. This thesis presents the first locking protocol for which the success criterion is that the trace distance between the joint distribution of the message and the measurement result and the product of their marginals be sufficiently small.
Quantum Uncertainty and Decision-Making in Game Theory
NASA Astrophysics Data System (ADS)
Asano, M.; Ohya, M.; Tanaka, Y.; Khrennikov, A.; Basieva, I.
2011-01-01
Recently a few authors pointed to a possibility to apply the mathematical formalism of quantum mechanics to cognitive psychology, in particular, to games of the Prisoners Dilemma (PD) type.6_18 In this paper, we discuss the problem of rationality in game theory and point out that the quantum uncertainty is similar to the uncertainty of knowledge, which a player feels subjectively in his decision-making.
Generalizing Prototype Theory: A Formal Quantum Framework.
Aerts, Diederik; Broekaert, Jan; Gabora, Liane; Sozzo, Sandro
2016-01-01
Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper. PMID:27065436
The facets of relativistic quantum field theory
NASA Astrophysics Data System (ADS)
Dosch, H. G.; Müller, V. F.
2010-04-01
Relativistic quantum field theory is generally recognized to form the adequate theoretical frame for subatomic physics, with the Standard Model of Particle Physics as a major achievement. We point out that quantum field theory in its present form is not a monolithic theory, but rather consists of distinct facets, which aim at a common ideal goal. We give a short overview of the strengths and limitations of these facets. We emphasize the theory-dependent relation between the quantum fields, and the basic objects in the empirical domain, the particles. Given the marked conceptual differences between the facets, we argue to view these, and therefore also the Standard Model, as symbolic constructions. We finally note that this view of physical theories originated in the 19th century and is related to the emergence of the classical field as an autonomous concept.
The facets of relativistic quantum field theory
NASA Astrophysics Data System (ADS)
Dosch, H. G.; Müller, V. F.
2011-04-01
Relativistic quantum field theory is generally recognized to form the adequate theoretical frame for subatomic physics, with the Standard Model of Particle Physics as a major achievement. We point out that quantum field theory in its present form is not a monolithic theory, but rather consists of distinct facets, which aim at a common ideal goal. We give a short overview of the strengths and limitations of these facets. We emphasize the theory-dependent relation between the quantum fields, and the basic objects in the empirical domain, the particles. Given the marked conceptual differences between the facets, we argue to view these, and therefore also the Standard Model, as symbolic constructions. We finally note that this view of physical theories originated in the 19th century and is related to the emergence of the classical field as an autonomous concept.
Generalizing Prototype Theory: A Formal Quantum Framework
Aerts, Diederik; Broekaert, Jan; Gabora, Liane; Sozzo, Sandro
2016-01-01
Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper. PMID:27065436
Quantum mechanics of black holes.
Witten, Edward
2012-08-01
The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely. PMID:22859480
Toward a physical theory of quantum cognition.
Takahashi, Taiki
2014-01-01
Recently, mathematical models based on quantum formalism have been developed in cognitive science. The target articles in this special issue of Topics in Cognitive Science clearly illustrate how quantum theoretical formalism can account for various aspects of human judgment and decision making in a quantitatively and mathematically rigorous manner. In this commentary, we show how future studies in quantum cognition and decision making should be developed to establish theoretical foundations based on physical theory, by introducing Taketani's three-stage theory of the development of science. Also, implications for neuroeconomics (another rapidly evolving approach to human judgment and decision making) are discussed. PMID:24482329
Quantum mechanics without the projection postulate
NASA Astrophysics Data System (ADS)
Bub, Jeffrey
1992-05-01
I show that the quantum state ω can be interpreted as defining a probability measure on a subalgebra of the algebra of projection operators that is not fixed (as in classical statistical mechanics) but changes with ω and appropriate boundary conditions, hence with the dynamics of the theory. This subalgebra, while not embeddable into a Boolean algebra, will always admit two-valued homomorphisms, which correspond to the different possible ways in which a set of “determinate” quantities (selected by ω and the boundary conditions) can have values. The probabilities defined by ω (via the Born rule) are probabilities over these two-valued homomorphisms or value assignments. So any universe of interacting systems, including those functioning as measuring instruments, can be modelled quantum mechanically without the projection postulate.
NASA Astrophysics Data System (ADS)
Balázs, András
2016-01-01
The Heisenberg-James-Stapp (quantum mechanical) mind model is surveyed and criticized briefly. The criticism points out that the model, while being essentially consistent concerning (human) consciousness, fundamentally lacks the evolutional point of view both onto- and phylogenetically. Ethology and other than Jamesian psychology is quoted and a quantum mechanical theoretical scheme is suggested to essentially extend Stapp's frame in an evolutionary context. It is proposed that its central supposition, spontaneous quantum measurement can be better utilized in an investigation of the origin of the "subjective" process, having come about concomitantly with the chemistry of the origin of life. We dwell on its applicability at this latter process, at its heart standing, it is supposed, the endophysical nonlinear "self-measurement" of (quantum mechanically describable) matter, and so our investigation is extended to this primeval phenomenon. It is suggested that the life phenomenon is an indirect C* → (W*) → C* quantum algebraic process transition, where the (W*) system would represent the living state. Summarized also are our previous results on an internalized, "reversed", time process, introduced originally by Gunji, which is subordinated to the external "forwards" time evolution, driving towards symmetry by gradual space-mappings, where the original splitting-up must have come about in a spontaneous symmetry breaking nonlinear "self-measurement" of matter in an endophysical World.
Three-space from quantum mechanics
Chew, G.F.; Stapp, H.P.
1988-08-01
We formulate a discrete quantum-mechanical precursor to spacetime geometry. The objective is to provide the foundation for a quantum mechanics that is rooted exclusively in quantum-mechanical concepts, with all classical features, including the three-dimensional spatial continuum, emerging dynamically.
Geometrical Phases in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Christian, Joy Julius
In quantum mechanics, the path-dependent geometrical phase associated with a physical system, over and above the familiar dynamical phase, was initially discovered in the context of adiabatically changing environments. Subsequently, Aharonov and Anandan liberated this phase from the original formulation of Berry, which used Hamiltonians, dependent on curves in a classical parameter space, to represent the cyclic variations of the environments. Their purely quantum mechanical treatment, independent of Hamiltonians, instead used the non-trivial topological structure of the projective space of one-dimensional subspaces of an appropriate Hilbert space. The geometrical phase, in their treatment, results from a parallel transport of the time-dependent pure quantum states along a curve in this space, which is endowed with an abelian connection. Unlike Berry, they were able to achieve this without resort to an adiabatic approximation or to a time-independent eigenvalue equation. Prima facie, these two approaches are conceptually quite different. After a review of both approaches, an exposition bridging this apparent conceptual gap is given; by rigorously analyzing a model composite system, it is shown that, in an appropriate correspondence limit, the Berry phase can be recovered as a special case from the Aharonov-Anandan phase. Moreover, the model composite system is used to show that Berry's correction to the traditional Born-Oppenheimer energy spectra indeed brings the spectra closer to the exact results. Then, an experimental arrangement to measure geometrical phases associated with cyclic and non-cyclic variations of quantum states of an entangled composite system is proposed, utilizing the fundamental ideas of the recently opened field of two-particle interferometry. This arrangement not only resolves the controversy regarding the true nature of the phases associated with photon states, but also unequivocally predicts experimentally accessible geometrical phases in a
NASA Astrophysics Data System (ADS)
Doyen, G.; Drakova, D.
2015-08-01
We construct a world model consisting of a matter field living in 4 dimensional spacetime and a gravitational field living in 11 dimensional spacetime. The seven hidden dimensions are compactified within a radius estimated by reproducing the particle-wave characteristics of diffraction experiments. In the presence of matter fields the gravitational field develops localized modes with elementary excitations called gravonons which are induced by the sources (massive particles). The final world model treated here contains only gravonons and a scalar matter field. The gravonons are localized in the environment of the massive particles which generate them. The solution of the Schrödinger equation for the world model yields matter fields which are localized in the 4 dimensional subspace. The localization has the following properties: (i) There is a chooser mechanism for the selection of the localization site. (ii) The chooser selects one site on the basis of minor energy differences and differences in the gravonon structure between the sites, which at present cannot be controlled experimentally and therefore let the choice appear statistical. (iii) The changes from one localization site to a neighbouring one take place in a telegraph-signal like manner. (iv) The times at which telegraph like jumps occur depend on subtleties of the gravonon structure which at present cannot be controlled experimentally and therefore let the telegraph-like jumps appear statistical. (v) The fact that the dynamical law acts in the configuration space of fields living in 11 dimensional spacetime lets the events observed in 4 dimensional spacetime appear non-local. In this way the phenomenology of CQM is obtained without the need of introducing the process of collapse and a probabilistic interpretation of the wave function. Operators defining observables need not be introduced. All experimental findings are explained in a deterministic way as a consequence of the time development of the wave
NASA Astrophysics Data System (ADS)
Liu, Jian; Miller, William H.
2011-03-01
We have reformulated and generalized our recent work [J. Liu and W. H. Miller, J. Chem. Phys. 126, 234110 (2007)] into an approach for generating a family of trajectory-based dynamics methods in the phase space formulation of quantum mechanics. The approach (equilibrium Liouville dynamics) is in the spirit of Liouville's theorem in classical mechanics. The trajectory-based dynamics is able to conserve the quantum canonical distribution for the thermal equilibrium system and approaches classical dynamics in the classical (ℏ → 0), high temperature (β → 0), and harmonic limits. Equilibrium Liouville dynamics provides the framework for the development of novel theoretical/computational tools for studying quantum dynamical effects in large/complex molecular systems.
Liu, Jian; Miller, William H
2011-03-14
We have reformulated and generalized our recent work [J. Liu and W. H. Miller, J. Chem. Phys. 126, 234110 (2007)] into an approach for generating a family of trajectory-based dynamics methods in the phase space formulation of quantum mechanics. The approach (equilibrium Liouville dynamics) is in the spirit of Liouville's theorem in classical mechanics. The trajectory-based dynamics is able to conserve the quantum canonical distribution for the thermal equilibrium system and approaches classical dynamics in the classical (ℏ → 0), high temperature (β → 0), and harmonic limits. Equilibrium Liouville dynamics provides the framework for the development of novel theoretical∕computational tools for studying quantum dynamical effects in large∕complex molecular systems. PMID:21405150
Hermeneutics, underdetermination and quantum mechanics
NASA Astrophysics Data System (ADS)
Cushing, James T.
1995-04-01
There exists an essential underdetermination in the interpretation of the formalism of quantum mechanics and this extends even to the question of whether or not physical phenomena at the most fundamental level are irreducibly and ineliminably indeterministic or absolutely deterministic. This is true in spite of the widespread belief that logic and empirical considerations alone demand an indeterministic world view in physics. This lends support to Martin Eger's analysis of a role for hermeneutics in science education.
Quantum mechanics and heat conduction
Bajpai, S.D. ); Mishra, S. )
1991-08-01
One of the fundamental problems in quantum mechanics is to find a solution of Schroedinger equation for different forms of potentials. The object of this paper is to obtain a series solution of a particular one-dimensional, time-dependent Schroedinger equation involving Hermite polynomials. The authors also show a relationship of their particular one-dimensional, time-dependent Schroedinger equation with an equation of heat conduction.
Complementarity in Categorical Quantum Mechanics
NASA Astrophysics Data System (ADS)
Heunen, Chris
2012-07-01
We relate notions of complementarity in three layers of quantum mechanics: (i) von Neumann algebras, (ii) Hilbert spaces, and (iii) orthomodular lattices. Taking a more general categorical perspective of which the above are instances, we consider dagger monoidal kernel categories for (ii), so that (i) become (sub)endohomsets and (iii) become subobject lattices. By developing a `point-free' definition of copyability we link (i) commutative von Neumann subalgebras, (ii) classical structures, and (iii) Boolean subalgebras.
NASA Astrophysics Data System (ADS)
Cui, Ping
The thesis comprises two major themes of quantum statistical dynamics. One is the development of quantum dissipation theory (QDT). It covers the establishment of some basic relations of quantum statistical dynamics, the construction of several nonequivalent complete second-order formulations, and the development of exact QDT. Another is related to the applications of quantum statistical dynamics to a variety of research fields. In particular, unconventional but novel theories of the electron transfer in Debye solvents, quantum transport, and quantum measurement are developed on the basis of QDT formulations. The thesis is organized as follows. In Chapter 1, we present some background knowledge in relation to the aforementioned two themes of this thesis. The key quantity in QDT is the reduced density operator rho(t) ≡ trBrho T(t); i.e., the partial trace of the total system and bath composite rhoT(t) over the bath degrees of freedom. QDT governs the evolution of reduced density operator, where the effects of bath are treated in a quantum statistical manner. In principle, the reduced density operator contains all dynamics information of interest. However, the conventional quantum transport theory is formulated in terms of nonequilibrium Green's function. The newly emerging field of quantum measurement in relation to quantum information and quantum computing does exploit a sort of QDT formalism. Besides the background of the relevant theoretical development, some representative experiments on molecular nanojunctions are also briefly discussed. In chapter 2, we outline some basic (including new) relations that highlight several important issues on QDT. The content includes the background of nonequilibrium quantum statistical mechanics, the general description of the total composite Hamiltonian with stochastic system-bath interaction, a novel parameterization scheme for bath correlation functions, a newly developed exact theory of driven Brownian oscillator (DBO
Quantum theory of laser-stimulated desorption
NASA Technical Reports Server (NTRS)
Slutsky, M. S.; George, T. F.
1978-01-01
A quantum theory of laser-stimulated desorption (LSDE) is presented and critically analyzed. It is shown how LSDE depends on laser-pulse characteristics and surface-lattice dynamics. Predictions of the theory for a Debye model of the lattice dynamics are compared to recent experimental results.
Quantum mechanics with coordinate dependent noncommutativity
Kupriyanov, V. G.
2013-11-15
Noncommutative quantum mechanics can be considered as a first step in the construction of quantum field theory on noncommutative spaces of generic form, when the commutator between coordinates is a function of these coordinates. In this paper we discuss the mathematical framework of such a theory. The noncommutativity is treated as an external antisymmetric field satisfying the Jacobi identity. First, we propose a symplectic realization of a given Poisson manifold and construct the Darboux coordinates on the obtained symplectic manifold. Then we define the star product on a Poisson manifold and obtain the expression for the trace functional. The above ingredients are used to formulate a nonrelativistic quantum mechanics on noncommutative spaces of general form. All considered constructions are obtained as a formal series in the parameter of noncommutativity. In particular, the complete algebra of commutation relations between coordinates and conjugated momenta is a deformation of the standard Heisenberg algebra. As examples we consider a free particle and an isotropic harmonic oscillator on the rotational invariant noncommutative space.
Logical reformulation of quantum mechanics. I. Foundations
Omnes, R.
1988-11-01
The basic rules of quantum mechanics are reformulated. They deal primarily with individual systems and do not assume that every ket may represent a physical state. The customary kinematic and dynamic rules then allow to construct consistent Boolean logics describing the history of a system, following essentially Griffiths' proposal. Logical implication is defined within these logics, the multiplicity of which reflects the complementary principle. Only one interpretive rule of quantum mechanics is necessary in such a framework. It states that these logics provide bona fide foundations for the description of a quantum system and for reasoning about it. One attempts to build up classical physics, including classical logic, on these quantum foundations. The resulting theory of measurement needs not to state a priori that the eigenvalues of an observable have to be the results of individual measurements nor to assume wave packet reduction. Both these properties can be obtained as consequences of the basic rules. One also needs not to postulate that every observable is measurable, even in principle. A proposition calculus is obtained, allowing in principle the replacement of the discussion of problems concerned with the practical interpretation of experiments by due calculations.
Quantum simulation of quantum field theory using continuous variables
Marshall, Kevin; Pooser, Raphael C.; Siopsis, George; Weedbrook, Christian
2015-12-14
Much progress has been made in the field of quantum computing using continuous variables over the last couple of years. This includes the generation of extremely large entangled cluster states (10,000 modes, in fact) as well as a fault tolerant architecture. This has lead to the point that continuous-variable quantum computing can indeed be thought of as a viable alternative for universal quantum computing. With that in mind, we present a new algorithm for continuous-variable quantum computers which gives an exponential speedup over the best known classical methods. Specifically, this relates to efficiently calculating the scattering amplitudes in scalar bosonic quantum field theory, a problem that is known to be hard using a classical computer. Thus, we give an experimental implementation based on cluster states that is feasible with today's technology.
Quantum simulation of quantum field theory using continuous variables
NASA Astrophysics Data System (ADS)
Marshall, Kevin; Pooser, Raphael; Siopsis, George; Weedbrook, Christian
2015-12-01
The year 1982 is often credited as the year that theoretical quantum computing was started with a keynote speech by Richard Feynman, who proposed a universal quantum simulator, the idea being that if you had such a machine you could in principle "imitate any quantum system, including the physical world." With that in mind, we present an algorithm for a continuous-variable quantum computing architecture which gives an exponential speedup over the best-known classical methods. Specifically, this relates to efficiently calculating the scattering amplitudes in scalar bosonic quantum field theory, a problem that is believed to be hard using a classical computer. Building on this, we give an experimental implementation based on continuous-variable states that is feasible with today's technology.
Quantum simulation of quantum field theory using continuous variables
Marshall, Kevin; Pooser, Raphael C.; Siopsis, George; Weedbrook, Christian
2015-12-14
Much progress has been made in the field of quantum computing using continuous variables over the last couple of years. This includes the generation of extremely large entangled cluster states (10,000 modes, in fact) as well as a fault tolerant architecture. This has lead to the point that continuous-variable quantum computing can indeed be thought of as a viable alternative for universal quantum computing. With that in mind, we present a new algorithm for continuous-variable quantum computers which gives an exponential speedup over the best known classical methods. Specifically, this relates to efficiently calculating the scattering amplitudes in scalar bosonicmore » quantum field theory, a problem that is known to be hard using a classical computer. Thus, we give an experimental implementation based on cluster states that is feasible with today's technology.« less
Theory of Nematic Fractional Quantum Hall States
NASA Astrophysics Data System (ADS)
You, Yizhi; Cho, Gil Young; Fradkin, Eduardo
2014-10-01
We derive an effective field theory for the isotropic-nematic quantum phase transition of fractional quantum Hall states. We demonstrate that for a system with an isotropic background the low-energy effective theory of the nematic order parameter has z =2 dynamical scaling exponent, due to a Berry phase term of the order parameter, which is related to the nondissipative Hall viscosity. Employing the composite fermion theory with a quadrupolar interaction between electrons, we show that a sufficiently attractive quadrupolar interaction triggers a phase transition from the isotropic fractional quantum Hall fluid into a nematic fractional quantum Hall phase. By investigating the spectrum of collective excitations, we demonstrate that the mass gap of the Girvin-MacDonald-Platzman mode collapses at the isotropic-nematic quantum phase transition. On the other hand, Laughlin quasiparticles and the Kohn collective mode remain gapped at this quantum phase transition, and Kohn's theorem is satisfied. The leading couplings between the nematic order parameter and the gauge fields include a term of the same form as the Wen-Zee term. A disclination of the nematic order parameter carries an unquantized electric charge. We also discuss the relation between nematic degrees of freedom and the geometrical response of the fractional quantum Hall fluid.
Hydrodynamic theory of quantum fluctuating superconductivity
NASA Astrophysics Data System (ADS)
Davison, Richard A.; Delacrétaz, Luca V.; Goutéraux, Blaise; Hartnoll, Sean A.
2016-08-01
A hydrodynamic theory of transport in quantum mechanically phase-disordered superconductors is possible when supercurrent relaxation can be treated as a slow process. We obtain general results for the frequency-dependent conductivity of such a regime. With time-reversal invariance, the conductivity is characterized by a Drude-type peak, with width given by the supercurrent relaxation rate. Using the memory matrix formalism, we obtain a formula for this width (and hence also the dc resistivity) when the supercurrent is relaxed by short-range density-density interactions. This leads to an effective field theoretic and fully quantum derivation of a classic result on flux flow resistance. With strong breaking of time-reversal invariance, the optical conductivity exhibits what we call a "hydrodynamic supercyclotron" resonance. We obtain the frequency and decay rate of this resonance for the case of supercurrent relaxation due to an emergent Chern-Simons gauge field. The supercurrent decay rate in this "topologically ordered superfluid vortex liquid" is determined by the conductivities of the normal fluid component, rather than the vortex core.
Faster than Hermitian Quantum Mechanics
Bender, Carl M.; Brody, Dorje C.; Jones, Hugh F.; Meister, Bernhard K.
2007-01-26
Given an initial quantum state vertical bar {psi}{sub I}> and a final quantum state vertical bar {psi}{sub F}>, there exist Hamiltonians H under which vertical bar {psi}{sub I}> evolves into vertical bar {psi}{sub F}>. Consider the following quantum brachistochrone problem: subject to the constraint that the difference between the largest and smallest eigenvalues of H is held fixed, which H achieves this transformation in the least time {tau}? For Hermitian Hamiltonians {tau} has a nonzero lower bound. However, among non-Hermitian PT-symmetric Hamiltonians satisfying the same energy constraint, {tau} can be made arbitrarily small without violating the time-energy uncertainty principle. This is because for such Hamiltonians the path from vertical bar {psi}{sub I}> to vertical bar {psi}{sub F}> can be made short. The mechanism described here is similar to that in general relativity in which the distance between two space-time points can be made small if they are connected by a wormhole. This result may have applications in quantum computing.
Facets of contextual realism in quantum mechanics
Pan, Alok Kumar; Home, Dipankar
2011-09-23
In recent times, there is an upsurge of interest in demonstrating the quantum contextuality. In this proceedings, we explore the two different forms of arguments that have been used for showing the contextual character of quantum mechanics. First line of study concerns the violations of the noncontextual realist models by quantum mechanics, where second line of study that is qualitatively distinct from the earlier one, demonstrates the contextuality within the formalism of quantum mechanics.
Are quantum-mechanical-like models possible, or necessary, outside quantum physics?
NASA Astrophysics Data System (ADS)
Plotnitsky, Arkady
2014-12-01
This article examines some experimental conditions that invite and possibly require recourse to quantum-mechanical-like mathematical models (QMLMs), models based on the key mathematical features of quantum mechanics, in scientific fields outside physics, such as biology, cognitive psychology, or economics. In particular, I consider whether the following two correlative features of quantum phenomena that were decisive for establishing the mathematical formalism of quantum mechanics play similarly important roles in QMLMs elsewhere. The first is the individuality and discreteness of quantum phenomena, and the second is the irreducibly probabilistic nature of our predictions concerning them, coupled to the particular character of the probabilities involved, as different from the character of probabilities found in classical physics. I also argue that these features could be interpreted in terms of a particular form of epistemology that suspends and even precludes a causal and, in the first place, realist description of quantum objects and processes. This epistemology limits the descriptive capacity of quantum theory to the description, classical in nature, of the observed quantum phenomena manifested in measuring instruments. Quantum mechanics itself only provides descriptions, probabilistic in nature, concerning numerical data pertaining to such phenomena, without offering a physical description of quantum objects and processes. While QMLMs share their use of the quantum-mechanical or analogous mathematical formalism, they may differ by the roles, if any, the two features in question play in them and by different ways of interpreting the phenomena they considered and this formalism itself. This article will address those differences as well.
Scaling theory for anomalous semiclassical quantum transport
NASA Astrophysics Data System (ADS)
Sena-Junior, M. I.; Macêdo, A. M. S.
2016-01-01
Quantum transport through devices coupled to electron reservoirs can be described in terms of the full counting statistics (FCS) of charge transfer. Transport observables, such as conductance and shot-noise power are just cumulants of FCS and can be obtained from the sample's average density of transmission eigenvalues, which in turn can be obtained from a finite element representation of the saddle-point equation of the Keldysh (or supersymmetric) nonlinear sigma model, known as quantum circuit theory. Normal universal metallic behavior in the semiclassical regime is controlled by the presence of a Fabry-Pérot singularity in the average density of transmission eigenvalues. We present general conditions for the suppression of Fabry-Pérot modes in the semiclassical regime in a sample of arbitrary shape, a disordered conductor or a network of ballistic quantum dots, which leads to an anomalous metallic phase. Through a double-scaling limit, we derive a scaling equation for anomalous metallic transport, in the form of a nonlinear differential equation, which generalizes the ballistic-diffusive scaling equation of a normal metal. The two-parameter stationary solution of our scaling equation generalizes Dorokhov's universal single-parameter distribution of transmission eigenvalues. We provide a simple interpretation of the stationary solution using a thermodynamic analogy with a spin-glass system. As an application, we consider a system formed by a diffusive wire coupled via a barrier to normal-superconductor reservoirs. We observe anomalous reflectionless tunneling, when all perfectly transmitting channels are suppressed, which cannot be explained by the usual mechanism of disorder-induced opening of tunneling channels.
Probability and Locality: Determinism Versus Indeterminism in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Dickson, William Michael
1995-01-01
Quantum mechanics is often taken to be necessarily probabilistic. However, this view of quantum mechanics appears to be more the result of historical accident than of careful analysis. Moreover, quantum mechanics in its usual form faces serious problems. Although the mathematical core of quantum mechanics--quantum probability theory- -does not face conceptual difficulties, the application of quantum probability to the physical world leads to problems. In particular, quantum mechanics seems incapable of describing our everyday macroscopic experience. Therefore, several authors have proposed new interpretations --including (but not limited to) modal interpretations, spontaneous localization interpretations, the consistent histories approach, and the Bohm theory--each of which deals with quantum-mechanical probabilities differently. Each of these interpretations promises to describe our macroscopic experience and, arguably, each succeeds. Is there any way to compare them? Perhaps, if we turn to another troubling aspect of quantum mechanics, non-locality. Non -locality is troubling because prima facie it threatens the compatibility of quantum mechanics with special relativity. This prima facie threat is mitigated by the no-signalling theorems in quantum mechanics, but nonetheless one may find a 'conflict of spirit' between nonlocality in quantum mechanics and special relativity. Do any of these interpretations resolve this conflict of spirit?. There is a strong relation between how an interpretation deals with quantum-mechanical probabilities and how it deals with non-locality. The main argument here is that only a completely deterministic interpretation can be completely local. That is, locality together with the empirical predictions of quantum mechanics (specifically, its strict correlations) entails determinism. But even with this entailment in hand, comparison of the various interpretations requires a look at each, to see how non-locality arises, or in the case of
Finite temperature quantum field theory in the functional Schroedinger picture
Lee, H. ); Na, K.; Yee, J.H. )
1995-03-15
We calculate the finite temperature Gaussian effective potential of scalar [phi][sup 4] theory in the functional Schroedinger picture. Our method is the direct generalization of the variational method proposed by Eboli, Jackiw, and Pi for quantum-mechanical systems, and gives the same result as that of Amelino-Camelia and Pi who used the self-consistent composite operator method.
Knot theory and quantum gravity
Rovelli, C.; Smolin, L.
1988-09-05
A new represenatation for quantum general relativity is described, which is defined in terms of functionals of sets of loops in three-space. In this representation exact solutions of the quantum constraints may be obtained. This result is related to the simplification of the constraints in Ashtekar's new formalism. We give in closed form the general solution of the diffeomorphisms constraint and a large class of solutions of the full set of constraints. These are classified by the knot and link classes of the spatial three-manifold.
Supersymmetric Liouville theory: A statistical mechanical approach
Barrozo, M.C.; Belvedere, L.V.
1996-02-01
The statistical mechanical system associated with the two-dimensional supersymmetric Liouville theory is obtained through an infrared-finite perturbation expansion. Considering the system confined in a finite volume and in the presence of a uniform neutralizing background, we show that the grand-partition function of this system describes a one-component gas, in which the Boltzmann factor is weighted by an integration over the Grassmann variables. This weight function introduces the dimensional reduction phenomenon. After performing the thermodynamic limit, the resulting supersymmetric quantum theory is translationally invariant. {copyright} {ital 1996 The American Physical Society.}
A Local Interpretation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Lopez, Carlos
2016-04-01
A local interpretation of quantum mechanics is presented. Its main ingredients are: first, a label attached to one of the "virtual" paths in the path integral formalism, determining the output for measurement of position or momentum; second, a mathematical model for spin states, equivalent to the path integral formalism for point particles in space time, with the corresponding label. The mathematical machinery of orthodox quantum mechanics is maintained, in particular amplitudes of probability and Born's rule; therefore, Bell's type inequalities theorems do not apply. It is shown that statistical correlations for pairs of particles with entangled spins have a description completely equivalent to the two slit experiment, that is, interference (wave like behaviour) instead of non locality gives account of the process. The interpretation is grounded in the experimental evidence of a point like character of electrons, and in the hypothetical existence of a wave like, the de Broglie, companion system. A correspondence between the extended Hilbert spaces of hidden physical states and the orthodox quantum mechanical Hilbert space shows the mathematical equivalence of both theories. Paradoxical behaviour with respect to the action reaction principle is analysed, and an experimental set up, modified two slit experiment, proposed to look for the companion system.
Hunting for Snarks in Quantum Mechanics
Hestenes, David
2009-12-08
A long-standing debate over the interpretation of quantum mechanics has centered on the meaning of Schroedinger's wave function {psi} for an electron. Broadly speaking, there are two major opposing schools. On the one side, the Copenhagen school(led by Bohr, Heisenberg and Pauli) holds that {psi} provides a complete description of a single electron state; hence the probability interpretation of {psi}{psi}* expresses an irreducible uncertainty in electron behavior that is intrinsic in nature. On the other side, the realist school(led by Einstein, de Broglie, Bohm and Jaynes) holds that {psi} represents a statistical ensemble of possible electron states; hence it is an incomplete description of a single electron state. I contend that the debaters have overlooked crucial facts about the electron revealed by Dirac theory. In particular, analysis of electron zitterbewegung(first noticed by Schroedinger) opens a window to particle substructure in quantum mechanics that explains the physical significance of the complex phase factor in {psi}. This led to a testable model for particle substructure with surprising support by recent experimental evidence. If the explanation is upheld by further research, it will resolve the debate in favor of the realist school. I give details. The perils of research on the foundations of quantum mechanics have been foreseen by Lewis Carroll in The Hunting of the Snark{exclamation_point}.
Consistent interpretations of quantum mechanics
NASA Astrophysics Data System (ADS)
Omnès, Roland
1992-04-01
Within the last decade, significant progress has been made towards a consistent and complete reformulation of the Copenhagen interpretation (an interpretation consisting in a formulation of the experimental aspects of physics in terms of the basic formalism; it is consistent if free from internal contradiction and complete if it provides precise predictions for all experiments). The main steps involved decoherence (the transition from linear superpositions of macroscopic states to a mixing), Griffiths histories describing the evolution of quantum properties, a convenient logical structure for dealing with histories, and also some progress in semiclassical physics, which was made possible by new methods. The main outcome is a theory of phenomena, viz., the classically meaningful properties of a macroscopic system. It shows in particular how and when determinism is valid. This theory can be used to give a deductive form to measurement theory, which now covers some cases that were initially devised as counterexamples against the Copenhagen interpretation. These theories are described, together with their applications to some key experiments and some of their consequences concerning epistemology.
Teaching Quantum Mechanics on an Introductory Level.
ERIC Educational Resources Information Center
Muller, Rainer; Wiesner, Hartmut
2002-01-01
Presents a new research-based course on quantum mechanics in which the conceptual issues of quantum mechanics are taught at an introductory level. Involves students in the discovery of how quantum phenomena deviate from classical everyday experiences. (Contains 31 references.) (Author/YDS)
Quantum Mechanical Observers and Time Reparametrization Symmetry
NASA Astrophysics Data System (ADS)
Konishi, Eiji
2012-07-01
We propose that the degree of freedom of measurement by quantum mechanical observers originates in the Goldstone mode of the spontaneously broken time reparametrization symmetry. Based on the classification of quantum states by their nonunitary temporal behavior as seen in the measurement processes, we describe the concepts of the quantum mechanical observers via the time reparametrization symmetry.
Quantum processes: A Whiteheadian interpretation of quantum field theory
NASA Astrophysics Data System (ADS)
Bain, Jonathan
Quantum processes: A Whiteheadian interpretation of quantum field theory is an ambitious and thought-provoking exercise in physics and metaphysics, combining an erudite study of the very complex metaphysics of A.N. Whitehead with a well-informed discussion of contemporary issues in the philosophy of algebraic quantum field theory. Hättich's overall goal is to construct an interpretation of quantum field theory. He does this by translating key concepts in Whitehead's metaphysics into the language of algebraic quantum field theory. In brief, this Hättich-Whitehead (H-W, hereafter) interpretation takes "actual occasions" as the fundamental ontological entities of quantum field theory. An actual occasion is the result of two types of processes: a "transition process" in which a set of initial possibly-possessed properties for the occasion (in the form of "eternal objects") is localized to a space-time region; and a "concrescence process" in which a subset of these initial possibly-possessed properties is selected and actualized to produce the occasion. Essential to these processes is the "underlying activity", which conditions the way in which properties are initially selected and subsequently actualized. In short, under the H-W interpretation of quantum field theory, an initial set of possibly-possessed eternal objects is represented by a Boolean sublattice of the lattice of projection operators determined by a von Neumann algebra R (O) associated with a region O of Minkowski space-time, and the underlying activity is represented by a state on R (O) obtained by conditionalizing off of the vacuum state. The details associated with the H-W interpretation involve imposing constraints on these representations motivated by principles found in Whitehead's metaphysics. These details are spelled out in the three sections of the book. The first section is a summary and critique of Whitehead's metaphysics, the second section introduces the formalism of algebraic quantum field
Quantum Computing and Number Theory
NASA Astrophysics Data System (ADS)
Sasaki, Yoshitaka
2013-09-01
The prime factorization can be efficiently solved on a quantum computer. This result was given by Shor in 1994. In the first half of this article, a review of Shor's algorithm with mathematical setups is given. In the second half of this article, the prime number theorem which is an essential tool to understand the distribution of prime numbers is given.
Reasonable fermionic quantum information theories require relativity
NASA Astrophysics Data System (ADS)
Friis, Nicolai
2016-03-01
We show that any quantum information theory based on anticommuting operators must be supplemented by a superselection rule deeply rooted in relativity to establish a reasonable notion of entanglement. While quantum information may be encoded in the fermionic Fock space, the unrestricted theory has a peculiar feature: the marginals of bipartite pure states need not have identical entropies, which leads to an ambiguous definition of entanglement. We solve this problem, by proving that it is removed by relativity, i.e., by the parity superselection rule that arises from Lorentz invariance via the spin-statistics connection. Our results hence unveil a fundamental conceptual inseparability of quantum information and the causal structure of relativistic field theory.
Foundations of a spacetime path formalism for relativistic quantum mechanics
Seidewitz, Ed
2006-11-15
Quantum field theory is the traditional solution to the problems inherent in melding quantum mechanics with special relativity. However, it has also long been known that an alternative first-quantized formulation can be given for relativistic quantum mechanics, based on the parametrized paths of particles in spacetime. Because time is treated similarly to the three space coordinates, rather than as an evolution parameter, such a spacetime approach has proved particularly useful in the study of quantum gravity and cosmology. This paper shows how a spacetime path formalism can be considered to arise naturally from the fundamental principles of the Born probability rule, superposition, and Poincare invariance. The resulting formalism can be seen as a foundation for a number of previous parametrized approaches in the literature, relating, in particular, 'off-shell' theories to traditional on-shell quantum field theory. It reproduces the results of perturbative quantum field theory for free and interacting particles, but provides intriguing possibilities for a natural program for regularization and renormalization. Further, an important consequence of the formalism is that a clear probabilistic interpretation can be maintained throughout, with a natural reduction to nonrelativistic quantum mechanics.
Scattering in the Euclidean formulation of relativistic quantum mechanics
NASA Astrophysics Data System (ADS)
Polyzou, Wayne
2013-10-01
Euclidean relativistic quantum mechanics is a formulation of relativistic quantum mechanics based on the Osterwalder-Schrader reconstruction theorem that exploits the logical independence of locality from the rest of the axioms of Euclidean field theory. I discuss the properties of Euclidean Green functions necessary for the existence of Møller wave operators and the construction of these wave operators in this formalism. Supported by the US Department of Energy, Grant - DE-AC02-81ER40038.
Quantum mechanics emerging from stochastic dynamics of virtual particles
NASA Astrophysics Data System (ADS)
Tsekov, Roumen
2016-03-01
It is shown how quantum mechanics emerges from the stochastic dynamics of force carriers. It is demonstrated that the Moyal equation corresponds to dynamic correlations between the real particle momentum and the virtual particle position, which are not present in classical mechanics. This new concept throws light on the physical meaning of quantum theory, showing that the Planck constant square is a second-second position-momentum cross-cumulant.
Quantum localization of classical mechanics
NASA Astrophysics Data System (ADS)
Batalin, Igor A.; Lavrov, Peter M.
2016-07-01
Quantum localization of classical mechanics within the BRST-BFV and BV (or field-antifield) quantization methods are studied. It is shown that a special choice of gauge fixing functions (or BRST-BFV charge) together with the unitary limit leads to Hamiltonian localization in the path integral of the BRST-BFV formalism. In turn, we find that a special choice of gauge fixing functions being proportional to extremals of an initial non-degenerate classical action together with a very special solution of the classical master equation result in Lagrangian localization in the partition function of the BV formalism.
Unstable states in quantum theory
NASA Astrophysics Data System (ADS)
Kuksa, V. I.
2014-05-01
Various approaches to the problem of describing unstable particles are reviewed. Fundamental problems that arise in quantum field description of these particles and the ways of their solution are considered. Among them, there is an approach related to the notion of the smeared (continuous) mass, which originates from the finite lifetime of unstable particles. The quantum field model of unstable particles with smeared mass, which is built upon two basic axiomatic elements, is considered in detail. The basic processes with unstable particles (decay and scattering) are considered within the framework of the model and the formalism for describing physical characteristics of those processes is developed. The model is successfully applied to describing the processes of pair and triple boson production at the linear collider, top quark pair production, and certain hadronic decays. Based on this model, the factorization method is developed, which allows a description of complicated and multistep scattering and decay processes with unstable particles to be considerably simplified.
The structure of classical extensions of quantum probability theory
NASA Astrophysics Data System (ADS)
Stulpe, Werner; Busch, Paul
2008-03-01
On the basis of a suggestive definition of a classical extension of quantum mechanics in terms of statistical models, we prove that every such classical extension is essentially given by the so-called Misra-Bugajski reduction map. We consider how this map enables one to understand quantum mechanics as a reduced classical statistical theory on the projective Hilbert space as phase space and discuss features of the induced hidden-variable model. Moreover, some relevant technical results on the topology and Borel structure of the projective Hilbert space are reviewed.
Quantum Walks: Theory, Application, and Implementation
NASA Astrophysics Data System (ADS)
Schmitz, Albert Thomas
The quantum walk is a method for conceptualizing and designing quantum computing algorithms and it comes in two forms: the continuous-time and discrete-time quantum walk. The thesis is organized into three parts, each of which looks to develop the concept and uses of the quantum walk. The first part is the theory of the quantum walk. This includes definitions and considerations for the various incarnations of the discrete-time quantum walk and a discussion on the general method for connecting the continuous-time and discrete-time versions. As a result, it is shown that most versions of the discrete-time quantum walk can be put into a general form and this can be used to simulate any continuous-time quantum walk. The second part uses these results for a hypothetical application. The application presented is a search algorithm that appears to scale in the time for completion independent of the size of the search space. This behavior is then elaborated upon and shown to have general qualitative agreement with simulations to within the approximations that are made. The third part introduces a method of implementation. Given a universal quantum computer, the method is discussed and shown to simulate an arbitrary discrete-time quantum walk. Some of the benefits of this method are that half the unitary evolution can be achieved without the use of any gates and there may be some possibility for error detection. The three parts combined suggest a possible experiment, given a quantum computing scheme of sufficient robustness.
Metric quantum field theory: A preliminary look
Watson, W.N.
1988-01-01
Spacetime coordinates are involved in uncertainty relations; spacetime itself appears to exhibit curvature. Could the continua associated with field variables exhibit curvature This question, as well as the ideas that (a) difficulties with quantum theories of gravitation may be due to their formulation in an incorrect analogy with other quantum field theories, (b) spacetime variables should not be any more basic than others for describing physical phenomena, and (c) if field continua do not exhibit curvature, the reasons would be of interest, motivated the formulation of a theory of variable curvature and torsion in the electromagnetic four-potential's reciprocal space. Curvature and torsion equation completely analogous to those for a gauge theory of gravitation (the Einstein-Cartan-Sciama-Kibble theory) are assumed for this continuum. The interaction-Hamiltonian density of this theory, to a first approximation, implies that in addition to the Maxwell-Dirac field interaction of ordinary quantum electrodynamics, there should also be an interaction between Dirac-field vector and pseudovector currents unmediated by photons, as well as other interactions involving two or three Dirac-field currents interacting with the Maxwell field at single spacetime events. Calculations expressing Bhabha-scattering cross sections for incident beams with parallel spins differ from those of unmodified quantum electrodynamics by terms of first order in the gravitational constant of the theory, but the corresponding cross section for unpolarized incident beams differs from that of the unmodified theory only by terms of higher order in that constant. Undesirable features of the present theory include its nonrenormalizability, the obscurity of the meaning of its inverse field operator, and its being based on electrodynamics rather than electroweak dynamics.
Integrable structures in quantum field theory
NASA Astrophysics Data System (ADS)
Negro, Stefano
2016-08-01
This review was born as notes for a lecture given at the Young Researchers Integrability School (YRIS) school on integrability in Durham, in the summer of 2015. It deals with a beautiful method, developed in the mid-nineties by Bazhanov, Lukyanov and Zamolodchikov and, as such, called BLZ. This method can be interpreted as a field theory version of the quantum inverse scattering, also known as the algebraic Bethe ansatz. Starting with the case of conformal field theories (CFTs) we show how to build the field theory analogues of commuting transfer T matrices and Baxter Q-operators of integrable lattice models. These objects contain the complete information of the integrable structure of the theory, viz. the integrals of motion, and can be used, as we will show, to derive the thermodynamic Bethe ansatz and nonlinear integral equations. This same method can be easily extended to the description of integrable structures of certain particular massive deformations of CFTs; these, in turn, can be described as quantum group reductions of the quantum sine-Gordon model and it is an easy step to include this last theory in the framework of BLZ approach. Finally we show an interesting and surprising connection of the BLZ structures with classical objects emerging from the study of classical integrable models via the inverse scattering transform method. This connection goes under the name of ODE/IM correspondence and we will present it for the specific case of quantum sine-Gordon model only.
Continuous wavelet transform in quantum field theory
NASA Astrophysics Data System (ADS)
Altaisky, M. V.; Kaputkina, N. E.
2013-07-01
We describe the application of the continuous wavelet transform to calculation of the Green functions in quantum field theory: scalar ϕ4 theory, quantum electrodynamics, and quantum chromodynamics. The method of continuous wavelet transform in quantum field theory, presented by Altaisky [Phys. Rev. D 81, 125003 (2010)] for the scalar ϕ4 theory, consists in substitution of the local fields ϕ(x) by those dependent on both the position x and the resolution a. The substitution of the action S[ϕ(x)] by the action S[ϕa(x)] makes the local theory into a nonlocal one and implies the causality conditions related to the scale a, the region causality [J. D. Christensen and L. Crane, J. Math. Phys. (N.Y.) 46, 122502 (2005)]. These conditions make the Green functions G(x1,a1,…,xn,an)=⟨ϕa1(x1)…ϕan(xn)⟩ finite for any given set of regions by means of an effective cutoff scale A=min(a1,…,an).
Models on the boundary between classical and quantum mechanics.
Hooft, Gerard 't
2015-08-01
Arguments that quantum mechanics cannot be explained in terms of any classical theory using only classical logic seem to be based on sound mathematical considerations: there cannot be physical laws that require 'conspiracy'. It may therefore be surprising that there are several explicit quantum systems where these considerations apparently do not apply. In this report, several such counterexamples are shown. These are quantum models that do have a classical origin. The most curious of these models is superstring theory. So now the question is asked: how can such a model feature 'conspiracy', and how bad is that? Is there conspiracy in the vacuum fluctuations? Arguments concerning Bell's theorem are further sharpened. PMID:26124246
Quantum time and spatial localization in relativistic quantum mechanics
NASA Astrophysics Data System (ADS)
von Zuben, Francis Stephen Geisler
1999-11-01
Two related problems in relativistic quantum mechanics, the apparent superluminal propagation of initially localized particles, and the dependence of their localization on the motion of the observer, are analyzed in the context of the theory of constraints. Time and energy operators are introduced for the free relativistic particle, and a parametrization invariant formulation is obtained through Dirac constraint theory. The resulting description is of a system constrained in momentum and energy, but not in position or time, for which observables are constants of the motion. The Klein-Gordon equation is recovered on a physical Hilbert space, constructed via integration over the proper time from an augmented Hilbert space, wherein time and energy are dynamical variables. It is shown that the position observable acts on states in the augmented space; those states having strictly positive energy are non-local in time. Localization arises on a particular space-like hyperplane from quantum interference in time, position measurements receiving contributions from the past and future. Apparent causality problems are resolved by noting that, as the particle is potentially in the past, it can propagate to distant regions without exceeding the speed of light. Non-locality of the same system to a moving observer is due to Lorentz rotation of spatial axes out of the interference minimum.
Quantum mechanical light harvesting mechanisms in photosynthesis
NASA Astrophysics Data System (ADS)
Scholes, Gregory
2012-02-01
More than 10 million billion photons of light strike a leaf each second. Incredibly, almost every red-coloured photon is captured by chlorophyll pigments and initiates steps to plant growth. Last year we reported that marine algae use quantum mechanics in order to optimize photosynthesis [1], a process essential to its survival. These and other insights from the natural world promise to revolutionize our ability to harness the power of the sun. In a recent review [2] we described the principles learned from studies of various natural antenna complexes and suggested how to utilize that knowledge to shape future technologies. We forecast the need to develop ways to direct and regulate excitation energy flow using molecular organizations that facilitate feedback and control--not easy given that the energy is only stored for a billionth of a second. In this presentation I will describe new results that explain the observation and meaning of quantum-coherent energy transfer. [4pt] [1] Elisabetta Collini, Cathy Y. Wong, Krystyna E. Wilk, Paul M. G. Curmi, Paul Brumer, and Gregory D. Scholes, ``Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature'' Nature 463, 644-648 (2010).[0pt] [2] Gregory D. Scholes, Graham R. Fleming, Alexandra Olaya-Castro and Rienk van Grondelle, ``Lessons from nature about solar light harvesting'' Nature Chem. 3, 763-774 (2011).
The amplitude of quantum field theory
Medvedev, B.V. ); Pavlov, V.P.; Polivanov, M.K. ); Sukhanov, A.D. )
1989-05-01
General properties of the transition amplitude in axiomatic quantum field theory are discussed. Bogolyubov's axiomatic method is chosen as the variant of the theory. The axioms of this method are analyzed. In particular, the significance of the off-shell extension and of the various forms of the causality condition are examined. A complete proof is given of the existence of a single analytic function whose boundary values are the amplitudes of all channels of a process with given particle number.
Mechanism for quantum speedup in open quantum systems
NASA Astrophysics Data System (ADS)
Liu, Hai-Bin; Yang, W. L.; An, Jun-Hong; Xu, Zhen-Yu
2016-02-01
The quantum speed limit (QSL) time for open system characterizes the most efficient response of the system to the environmental influences. Previous results showed that the non-Markovianity governs the quantum speedup. Via studying the dynamics of a dissipative two-level system, we reveal that the non-Markovian effect is only the dynamical way of the quantum speedup, while the formation of the system-environment bound states is the essential reason for the quantum speedup. Our attribution of the quantum speedup to the energy-spectrum character can supply another vital path for experiments when the quantum speedup shows up without any dynamical calculations. The potential experimental observation of our quantum speedup mechanism in the circuit QED system is discussed. Our results may be of both theoretical and experimental interest in exploring the ultimate QSL in realistic environments, and may open new perspectives for devising active quantum speedup devices.
Quantum mechanics without an equation of motion
Alhaidari, A. D.
2011-06-15
We propose a formulation of quantum mechanics for a finite level system whose potential function is not realizable and/or analytic solution of the wave equation is not feasible. The system's wavefunction is written as an infinite sum in a complete set of square integrable functions. Interaction in the theory is introduced in function space by a real finite tridiagonal symmetric matrix. The expansion coefficients of the wavefunction satisfy a three-term recursion relation incorporating the parameters of the interaction. Information about the structure and dynamics of the system is contained in the scattering matrix, which is defined in the usual way. The bound state energy spectrum (system's structure) is finite. Apart from the 2M- 1 dimensionless parameters of the interaction matrix, whose rank is M, the theory has one additional scale parameter. In the development, we utilize the kinematic tools of the J-matrix method.
Quantum theory of dynamic nuclear polarization in quantum dots
NASA Astrophysics Data System (ADS)
Economou, Sophia; Barnes, Edwin
2013-03-01
Nuclear spins play a major role in the dynamics of spin qubits in III-V semiconductor quantum dots. Although the hyperfine interaction between nuclear and electron (or hole) spins is typically viewed as the leading source of decoherence in these qubits, understanding how to experimentally control the nuclear spin polarization can not only ameliorate this problem, but in fact turn the nuclear spins into a valuable resource for quantum computing. Beyond extending decoherence times, control of this polarization can enable universal quantum computation as shown in singlet-triplet qubits and, in addition, offers the possibility of repurposing the nuclear spins into a robust quantum memory. In, we took a first step toward taking advantage of this resource by developing a general, fully quantum theory of non-unitary electron-nuclear spin dynamics with a periodic train of delta-function pulses as the external control driving the electron spin. Here, we extend this approach to other types of controls and further expand on the predictions and physical insights that emerge from the theory.
Quantum squeezing of a mechanical resonator
NASA Astrophysics Data System (ADS)
Lei, Chan U.; Weinstein, Aaron; Suh, Junho; Wollman, Emma; Schwab, Keith
Generating nonclassical states of a macroscopic object has been a subject of considerable interest. It offers a route toward fundamental test of quantum mechanics in an unexplored regime. However, a macroscopic quantum state is very susceptible to decoherence due to the environment. One way to generate robust quantum states is quantum reservoir engineering. In this work, we utilize the reservoir engineering scheme developed by Kronwald et al. to generate a steady quantum squeezed state of a micron-scale mechanical oscillator in an electromechanical system. Together with the backaction evading measurement technique, we demonstrate a quantum nondemolition measurement of the mechanical quadratures to characterize the quantum squeezed state. By measuring the quadrature variances of the mechanical motion, more than 3dB squeezing below the zero-point level has been achieved.
Universality of computation in real quantum theory
NASA Astrophysics Data System (ADS)
Belenchia, A.; D'Ariano, G. M.; Perinotti, P.
2013-10-01
Recently de la Torre et al. (Phys. Rev. Lett., 109 (2012) 090403) reconstructed Quantum Theory from its local structure on the basis of local discriminability and the existence of a one-parameter group of bipartite transformations containing an entangling gate. This result relies on universality of any entangling gate for quantum computation. Here we prove universality of C-NOT with local gates for Real Quantum Theory (RQT), showing that the universality requirement would not be sufficient for the result, whereas local discriminability and the local qubit structure play a crucial role. For reversible computation, generally an extra rebit is needed for RQT. As a by-product we also provide a short proof of universality of C-NOT for CQT.
Quantum Cylindrical Waves and Parametrized Field Theory
NASA Astrophysics Data System (ADS)
Varadarajan, Madhavan
In this article, we review some illustrative results in the study of two related toy models for quantum gravity, namely cylindrical waves (which are cylindrically symmetric gravitational fields)and parametrized field theory (which is just free scalar field theory on a flat space-time in generally covariant disguise). In the former, we focus on the phenomenon of unexpected large quantum gravity effects in regions of weak classical gravitational fields and on an analysis of causality in a quantum geometry. In the latter, we focus on Dirac quantization, argue that this is related to the unitary implementability of free scalar field evolution along curved foliations of the flat space-time and review the relevant results for unitary implementability.
Quantum stability of chameleon field theories.
Upadhye, Amol; Hu, Wayne; Khoury, Justin
2012-07-27
Chameleon scalar fields are dark-energy candidates which suppress fifth forces in high density regions of the Universe by becoming massive. We consider chameleon models as effective field theories and estimate quantum corrections to their potentials. Requiring that quantum corrections be small, so as to allow reliable predictions of fifth forces, leads to an upper bound m<0.0073(ρ/10 g cm(-3))(1/3) eV for gravitational-strength coupling whereas fifth force experiments place a lower bound of m>0.0042 eV. An improvement of less than a factor of two in the range of fifth force experiments could test all classical chameleon field theories whose quantum corrections are well controlled and couple to matter with nearly gravitational strength regardless of the specific form of the chameleon potential. PMID:23006073
Global effects in quaternionic quantum field theory
NASA Astrophysics Data System (ADS)
Brumby, S. P.; Joshi, G. C.
1996-12-01
We present some striking global consequences of a model quaternionic quantum field theory which is locally complex. We show how making the quaternionic structure a dynamical quantity naturally leads to the prediction of cosmic strings and nonbaryonic hot dark matter candidates.
Operational quantum theory without predefined time
NASA Astrophysics Data System (ADS)
Oreshkov, Ognyan; Cerf, Nicolas J.
2016-07-01
The standard formulation of quantum theory assumes a predefined notion of time. This is a major obstacle in the search for a quantum theory of gravity, where the causal structure of space-time is expected to be dynamical and fundamentally probabilistic in character. Here, we propose a generalized formulation of quantum theory without predefined time or causal structure, building upon a recently introduced operationally time-symmetric approach to quantum theory. The key idea is a novel isomorphism between transformations and states which depends on the symmetry transformation of time reversal. This allows us to express the time-symmetric formulation in a time-neutral form with a clear physical interpretation, and ultimately drop the assumption of time. In the resultant generalized formulation, operations are associated with regions that can be connected in networks with no directionality assumed for the connections, generalizing the standard circuit framework and the process matrix framework for operations without global causal order. The possible events in a given region are described by positive semidefinite operators on a Hilbert space at the boundary, while the connections between regions are described by entangled states that encode a nontrivial symmetry and could be tested in principle. We discuss how the causal structure of space-time could be understood as emergent from properties of the operators on the boundaries of compact space-time regions. The framework is compatible with indefinite causal order, timelike loops, and other acausal structures.
BOOK REVIEW: Mind, Matter and Quantum Mechanics (2nd edition)
NASA Astrophysics Data System (ADS)
Mahler, G.
2004-07-01
Quantum mechanics is usually defined in terms of some loosely connected axioms and rules. Such a foundation is far from the beauty of, e.g., the `principles' underlying classical mechanics. Motivated, in addition, by notorious interpretation problems, there have been numerous attempts to modify or `complete' quantum mechanics. A first attempt was based on so-called hidden variables; its proponents essentially tried to expel the non-classical nature of quantum mechanics. More recent proposals intend to complete quantum mechanics not within mechanics proper but on a `higher (synthetic) level'; by means of a combination with gravitation theory (R Penrose), with quantum information theory (C M Caves, C A Fuchs) or with psychology and brain science (H P Stapp). I think it is fair to say that in each case the combination is with a subject that, per se, suffers from a very limited understanding that is even more severe than that of quantum mechanics. This was acceptable, though, if it could convincingly be argued that scientific progress desperately needs to join forces. Quantum mechanics of a closed system was a beautiful and well understood theory with its respective state being presented as a point on a deterministic trajectory in Liouville space---not unlike the motion of a classical N-particle system in its 6N-dimensional phase-space. Unfortunately, we need an inside and an outside view, we need an external reference frame, we need an observer. This unavoidable partition is the origin of most of the troubles we have with quantum mechanics. A pragmatic solution is introduced in the form of so-called measurement postulates: one of the various incompatible properties of the system under consideration is supposed to be realized (i.e. to become a fact, to be defined without fundamental dispersion) based on `instantaneous' projections within some externally selected measurement basis. As a result, the theory becomes essentially statistical rather than deterministic
Heisenberg and the Interpretation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Camilleri, Kristian
2009-02-01
Preface; 1. Introduction; Part I. The Emergence of Quantum Mechanics: 2. Quantum mechanics and the principle of observability; 3. The problem of interpretation; Part II. The Heisenberg-Bohr Dialogue: 4. The wave-particle duality; 5. Indeterminacy and the limits of classical concepts: the turning point in Heisenberg's thought; 6. Heisenberg and Bohr: divergent viewpoints of complementarity; Part III. Heisenberg's Epistemology and Ontology of Quantum Mechanics: 7. The transformation of Kantian philosophy; 8. The linguistic turn in Heisenberg's thought; Conclusion; References; Index.
Heisenberg and the Interpretation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Camilleri, Kristian
2011-09-01
Preface; 1. Introduction; Part I. The Emergence of Quantum Mechanics: 2. Quantum mechanics and the principle of observability; 3. The problem of interpretation; Part II. The Heisenberg-Bohr Dialogue: 4. The wave-particle duality; 5. Indeterminacy and the limits of classical concepts: the turning point in Heisenberg's thought; 6. Heisenberg and Bohr: divergent viewpoints of complementarity; Part III. Heisenberg's Epistemology and Ontology of Quantum Mechanics: 7. The transformation of Kantian philosophy; 8. The linguistic turn in Heisenberg's thought; Conclusion; References; Index.
Emergence of a classical world from within quantum theory
NASA Astrophysics Data System (ADS)
Poulin, David
The starting point of this dissertation is that a quantum state represents the observer's knowledge about the system of interest. As it has been pointed out several times by the opponents of this epistemic interpretation, it is difficult to reconcile this point of view with our common notion of "physical reality", which exists independently of our monitoring, and can be discovered without disturbance. Indeed, if quantum theory is correct, it should apply to classical systems---including measurement devices---as well as to any other system. In this dissertation, we will study the quantum mechanisms responsible for our perception of the world and demonstrate how they lead to the emergence of an operational objective reality from within quantum theory: several observers gathering information through these mechanisms will arrive at a common consensus about the properties of the world. The two mechanisms we study in great detail are the redundant proliferation of information in the environment and the direct measurement of a macroscopic observable. An example of the first mechanism is the photon environment which provides us with our visual data about the world. Several independent observers learning about their surroundings in this indirect fashion will agree on their findings. An example of the second mechanism is our tactile information: when the tip of our finger touches an object, it interacts collectively with a very large number of molecules. Again, under realistic assumptions, this type of information acquisition will lead to a classical perception of the world.
Introduction to the Quantum Theory of Elementary Cycles
NASA Astrophysics Data System (ADS)
Dolce, Donatello
Elementary Cycles Theory (ECT) is a novel exact formulation of quantum-relativistic mechanics. Here, we present an introduction to its basic quantum aspects. On the one hand, Newton's law of inertia states that every isolated particle has persistent motion, i.e. constant energy and momentum. On the other hand, undulatory mechanics associates, by means of the Planck constant, a recurrence in time and space to the energy and the momentum of an elementary particle, respectively. Paraphrasing these two fundamental principles of modern physics, ECT postulates that every elementary constituent of nature (every elementary particle) is characterized by persistent intrinsic periodicity (as long it does not interact) whose space-time duration determines its kinematical state (energy and momentum). In other words, undulatory mechanics is imposed as constraint "overdetermining" relativistic mechanics, with fundamental motivations on Einstein's proposal of unification of quantum and relativistic theories. Every free particle is a (de Broglie) "periodic phenomenon" which can also be regarded as a reference clock and every system is decomposable in modulated elementary cycles. Indeed, ECT introduces a cyclic nature to the ordinary relativistic space-time coordinates. The resulting classical-relativistic mechanics turns out to be fully consistent with relativity and, at the same time, reproduces exactly all the fundamental aspects of ordinary quantum-relativistic mechanics (without any explicit quantisation). Relativity only fixes the differential structure of space-time without giving any prescription about the boundary of space-time, and the constraint of covariant periodicity (or similar relativistic boundary conditions) is allowed by the variational principle for relativistic theories. The constraint of intrinsic periodicity enforces the local nature of relativistic space-time and the wave-particle duality. Besides such unified description of relativistic and quantum dynamics
NASA Astrophysics Data System (ADS)
Oss, Stefano; Rosi, Tommaso
2015-04-01
We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many reasons why quantum mechanical systems and phenomena are difficult both to teach and deeply understand. They are described by equations that are generally hard to visualize, and they often oppose the so-called "common sense" based on the human perception of the world, which is built on mental images such as locality and causality. Moreover students cannot have direct experience of those systems and solutions, and generally do not even have the possibility to refer to pictures, videos, or experiments to fill this gap. Teachers often encounter quite serious troubles in finding out a sensible way to speak about the wonders of quantum physics at the high school level, where complex formalisms are not accessible at all. One should however consider that this is quite a common issue in physics and, more generally, in science education. There are plenty of natural phenomena whose models (not only at microscopic and atomic levels) are of difficult, if not impossible, visualization. Just think of certain kinds of waves, fields of forces, velocities, energy, angular momentum, and so on. One should also notice that physical reality is not the same as the images we make of it. Pictures (formal, abstract ones, as well as artists' views) are a convenient bridge between these two aspects.
Reciprocal relativity of noninertial frames: quantum mechanics
NASA Astrophysics Data System (ADS)
Low, Stephen G.
2007-04-01
Noninertial transformations on time-position-momentum-energy space {t, q, p, e} with invariant Born-Green metric ds^{2}=-d t^{2}+\\frac{1}{c^{2}}\\,d q^{2}+\\frac{1}{b^{2}} \\big(d p^{2}-\\frac{1}{c^{2}}\\,d e^{2}\\big) and the symplectic metric -de ∧ dt + dp ∧ dq are studied. This {\\cal U}1,3) group of transformations contains the Lorentz group as the inertial special case and, in the limit of small forces and velocities, reduces to the expected Hamilton transformations leaving invariant the symplectic metric and the nonrelativistic line element ds2 = -dt2. The {\\cal U}( 1,3) transformations bound relative velocities by c and relative forces by b. Spacetime is no longer an invariant subspace but is relative to noninertial observer frames. In the limit of b → ∞, spacetime is invariant. Born was lead to the metric by a concept of reciprocity between position and momentum degrees of freedom and for this reason we call this reciprocal relativity. For large b, such effects will almost certainly only manifest in a quantum regime. Wigner showed that special relativistic quantum mechanics follows from the projective representations of the inhomogeneous Lorentz group. Projective representations of a Lie group are equivalent to the unitary representations of its central extension. The same method of projective representations for the inhomogeneous {\\cal U}( 1,3) group is used to define the quantum theory in the noninertial case. The central extension of the inhomogeneous {\\cal U}( 1,3) group is the cover of the quaplectic group {\\cal Q}( 1,3) ={\\cal U}( 1,3) \\otimes _{s}{\\cal H}(4) . {\\cal H}( 4) is the Weyl-Heisenberg group. The {\\cal H}( 4) group, and the associated Heisenberg commutation relations central to quantum mechanics, results directly from requiring projective representations. A set of second-order wave equations result from the representations of the Casimir operators.
Quantum Bayesianism as the basis of general theory of decision-making.
Khrennikov, Andrei
2016-05-28
We discuss the subjective probability interpretation of the quantum-like approach to decision making and more generally to cognition. Our aim is to adopt the subjective probability interpretation of quantum mechanics, quantum Bayesianism (QBism), to serve quantum-like modelling and applications of quantum probability outside of physics. We analyse the classical and quantum probabilistic schemes of probability update, learning and decision-making and emphasize the role of Jeffrey conditioning and its quantum generalizations. Classically, this type of conditioning and corresponding probability update is based on the formula of total probability-one the basic laws of classical probability theory. PMID:27091160
Aspects of nonlocality in quantum field theory, quantum gravity and cosmology
NASA Astrophysics Data System (ADS)
Barvinsky, A. O.
2015-01-01
This paper contains a collection of essays on nonlocal phenomena in quantum field theory, gravity and cosmology. Mechanisms of nonlocal contributions to the quantum effective action are discussed within the covariant perturbation expansion in field strengths and spacetime curvatures. Euclidean version of the Schwinger-Keldysh technique for quantum expectation values is presented as a special rule of obtaining the nonlocal effective equations of motion for the mean quantum field from the Euclidean effective action. This rule is applied to a new model of ghost free nonlocal cosmology which can generate the de Sitter (dS) cosmological evolution at an arbitrary value of Λ — a model of dark energy with the dynamical scale selected by a kind of a scaling symmetry breaking mechanism. This model is shown to interpolate between the superhorizon phase of a scalar mediated gravity and the short distance general relativistic limit in a special metric frame related by a nonlocal conformal transformation to the original metric.
NASA Astrophysics Data System (ADS)
Blanchard, Philippe; Hellmich, Mario; Ługiewicz, Piotr; Olkiewicz, Robert
Quantum mechanics is the greatest revision of our conception of the character of the physical world since Newton. Consequently, David Hilbert was very interested in quantum mechanics. He and John von Neumann discussed it frequently during von Neumann's residence in Göttingen. He published in 1932 his book Mathematical Foundations of Quantum Mechanics. In Hilbert's opinion it was the first exposition of quantum mechanics in a mathematically rigorous way. The pioneers of quantum mechanics, Heisenberg and Dirac, neither had use for rigorous mathematics nor much interest in it. Conceptually, quantum theory as developed by Bohr and Heisenberg is based on the positivism of Mach as it describes only observable quantities. It first emerged as a result of experimental data in the form of statistical observations of quantum noise, the basic concept of quantum probability.
Solvay 1927: Quantum Theory at the Crossroads
NASA Astrophysics Data System (ADS)
Valentini, Antony
2011-04-01
We reconsider the crucial 1927 Solvay conference in the context of current research in the foundations of quantum theory. Contrary to folklore, the interpretation question was not settled at this conference and no consensus was reached; instead, a range of sharply conflicting views were presented and extensively discussed. Today, there is no longer an established or dominant interpretation of quantum theory, so it is important to re-evaluate the historical sources and keep the interpretation debate open. The proceedings of the conference contain much unexpected material, and are remarkable for their clear identification of key issues that remain controversial to this day. After providing a general overview, we focus on the extensive discussions of de Broglie's pilot-wave theory, which de Broglie presented for a many-body system, including the much misunderstood critique by Pauli.
Quantum mechanics without potential function
Alhaidari, A. D.; Ismail, M. E. H.
2015-07-15
In the standard formulation of quantum mechanics, one starts by proposing a potential function that models the physical system. The potential is then inserted into the Schrödinger equation, which is solved for the wavefunction, bound states energy spectrum, and/or scattering phase shift. In this work, however, we propose an alternative formulation in which the potential function does not appear. The aim is to obtain a set of analytically realizable systems, which is larger than in the standard formulation and may or may not be associated with any given or previously known potential functions. We start with the wavefunction, which is written as a bounded infinite sum of elements of a complete basis with polynomial coefficients that are orthogonal on an appropriate domain in the energy space. Using the asymptotic properties of these polynomials, we obtain the scattering phase shift, bound states, and resonances. This formulation enables one to handle not only the well-known quantum systems but also previously untreated ones. Illustrative examples are given for two- and three-parameter systems.
Spin Glass a Bridge Between Quantum Computation and Statistical Mechanics
NASA Astrophysics Data System (ADS)
Ohzeki, Masayuki
2013-09-01
In this chapter, we show two fascinating topics lying between quantum information processing and statistical mechanics. First, we introduce an elaborated technique, the surface code, to prepare the particular quantum state with robustness against decoherence. Interestingly, the theoretical limitation of the surface code, accuracy threshold, to restore the quantum state has a close connection with the problem on the phase transition in a special model known as spin glasses, which is one of the most active researches in statistical mechanics. The phase transition in spin glasses is an intractable problem, since we must strive many-body system with complicated interactions with change of their signs depending on the distance between spins. Fortunately, recent progress in spin-glass theory enables us to predict the precise location of the critical point, at which the phase transition occurs. It means that statistical mechanics is available for revealing one of the most interesting parts in quantum information processing. We show how to import the special tool in statistical mechanics into the problem on the accuracy threshold in quantum computation. Second, we show another interesting technique to employ quantum nature, quantum annealing. The purpose of quantum annealing is to search for the most favored solution of a multivariable function, namely optimization problem. The most typical instance is the traveling salesman problem to find the minimum tour while visiting all the cities. In quantum annealing, we introduce quantum fluctuation to drive a particular system with the artificial Hamiltonian, in which the ground state represents the optimal solution of the specific problem we desire to solve. Induction of the quantum fluctuation gives rise to the quantum tunneling effect, which allows nontrivial hopping from state to state. We then sketch a strategy to control the quantum fluctuation efficiently reaching the ground state. Such a generic framework is called
Study on a Possible Darwinian Origin of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Baladrón, C.
2011-03-01
A sketchy subquantum theory deeply influenced by Wheeler's ideas (Am. J. Phys. 51:398-404, 1983) and by the de Broglie-Bohm interpretation (Goldstein in Stanford Encyclopedia of Philosophy, 2006) of quantum mechanics is further analyzed. In this theory a fundamental system is defined as a dual entity formed by bare matter and a methodological probabilistic classical Turing machine. The evolution of the system would be determined by three Darwinian informational regulating principles. Some progress in the derivation of the postulates of quantum mechanics from these regulating principles is reported. The entanglement in a bipartite system is preliminarily considered.
Quantum to classical transition in quantum field theory
NASA Astrophysics Data System (ADS)
Lombardo, Fernando C.
1998-12-01
We study the quatum to classical transition process in the context of quantum field theory. Extending the influence functional formalism of Feynman and Vernon, we study the decoherence process for self-interacting quantum fields in flat space. We also use this formalism for arbitrary geometries to analyze the quantum to classical transition in quantum gravity. After summarizing the main results known for the quantum Brownian motion, we consider a self-interacting field theory in Minkowski spacetime. We compute a coarse grained effective action by integrating out the field modes with wavelength shorter than a critical value. From this effective action we obtain the evolution equation for the reduced density matrix (master equation). We compute the diffusion coefficients for this equation and analyze the decoherence induced on the long-wavelength modes. We generalize the results to the case of a conformally coupled scalar field in de Sitter spacetime. We show that the decoherence is effective as long as the critical wavelength is taken to be not shorter than the Hubble radius. On the other hand, we study the classical limit for scalar-tensorial models in two dimensions. We consider different couplings between the dilaton and the scalar field. We discuss the Hawking radiation process and, from an exact evaluation of the influence functional, we study the conditions by which decoherence ensures the validity of the semiclassical approximation in cosmological metrics. Finally we consider four dimensional models with massive scalar fields, arbitrary coupled to the geometry. We compute the Einstein-Langevin equations in order to study the effect of the fluctuations induced by the quantum fields on the classical geometry.
NASA Astrophysics Data System (ADS)
Prócel, L. M.; Trojman, L.; Moreno, J.; Crupi, F.; Maccaronio, V.; Degraeve, R.; Goux, L.; Simoen, E.
2013-08-01
The quantum point contact (QPC) model for dielectric breakdown is used to explain the electron transport mechanism in HfO2-based resistive random access memories (ReRAM) with TiN(30 nm)HfO2(5 nm)Hf(10 nm)TiN(30 nm) stacks. Based on experimental I-V characteristics of bipolar HfO2-based ReRAM, we extracted QPC model parameters related to the conduction mechanism in several devices in order to make a statistical study. In addition, we investigated the temperature effect on the conduction mechanism and compared it with the QPC model. Based on these experimental results, we show that the QPC model agrees well with the conduction behavior of HfO2-based ReRAM memory cells.
Quantum Theory of Atomic and Molecular Structures and Interactions
NASA Astrophysics Data System (ADS)
Makrides, Constantinos
This dissertation consists of topics in two related areas of research that together provide quantum mechanical descriptions of atomic and molecular interactions and reactions. The first is the ab initio electronic structure calculation that provides the atomic and molecular interaction potential, including the long-range potential. The second is the quantum theory of interactions that uses such potentials to understand scattering, long-range molecules, and reactions. In ab initio electronic structure calculations, we present results of dynamic polarizabilities for a variety of atoms and molecules, and the long-range dispersion coefficients for a number of atom-atom and atom-molecule cases. We also present results of a potential energy surface for the triatomic lithium-ytterbium-lithium system, aimed at understanding the related chemical reactions. In the quantum theory of interactions, we present a multichannel quantum-defect theory (MQDT) for atomic interactions in a magnetic field. This subject, which is complex especially for atoms with hyperfine structure, is essential for the understanding and the realization of control and tuning of atomic interactions by a magnetic field: a key feature that has popularized cold atom physics in its investigations of few-body and many-body quantum systems. Through the example of LiK, we show how MQDT provides a systematic and an efficient understanding of atomic interaction in a magnetic field, especially magnetic Feshbach resonances in nonzero partial waves.
Imperfect Cloning Operations in Algebraic Quantum Theory
NASA Astrophysics Data System (ADS)
Kitajima, Yuichiro
2015-01-01
No-cloning theorem says that there is no unitary operation that makes perfect clones of non-orthogonal quantum states. The objective of the present paper is to examine whether an imperfect cloning operation exists or not in a C*-algebraic framework. We define a universal -imperfect cloning operation which tolerates a finite loss of fidelity in the cloned state, and show that an individual system's algebra of observables is abelian if and only if there is a universal -imperfect cloning operation in the case where the loss of fidelity is less than . Therefore in this case no universal -imperfect cloning operation is possible in algebraic quantum theory.
Theory of quantum error-correcting codes
Knill, E.; Laflamme, R.
1997-02-01
Quantum error correction will be necessary for preserving coherent states against noise and other unwanted interactions in quantum computation and communication. We develop a general theory of quantum error correction based on encoding states into larger Hilbert spaces subject to known interactions. We obtain necessary and sufficient conditions for the perfect recovery of an encoded state after its degradation by an interaction. The conditions depend only on the behavior of the logical states. We use them to give a recovery-operator-independent definition of error-correcting codes. We relate this definition to four others: the existence of a left inverse of the interaction, an explicit representation of the error syndrome using tensor products, perfect recovery of the completely entangled state, and an information theoretic identity. Two notions of fidelity and error for imperfect recovery are introduced, one for pure and the other for entangled states. The latter is more appropriate when using codes in a quantum memory or in applications of quantum teleportation to communication. We show that the error for entangled states is bounded linearly by the error for pure states. A formal definition of independent interactions for qubits is given. This leads to lower bounds on the number of qubits required to correct e errors and a formal proof that the classical bounds on the probability of error of e-error-correcting codes applies to e-error-correcting quantum codes, provided that the interaction is dominated by an identity component. {copyright} {ital 1997} {ital The American Physical Society}
Colloquium: Theory of quantum corrals and quantum mirages
NASA Astrophysics Data System (ADS)
Fiete, Gregory A.; Heller, Eric J.
2003-07-01
Quantum corrals are two-dimensional structures built atom by atom on an atomically clean metallic surface using a scanning tunneling microscope (STM). These two-dimensional structures “corral” electrons in the surface states of noble metals, leading to standing-wave patterns in the electron density inside the quantum corral. The authors review the physics of quantum corrals and relate the signal of the STM to the scattering properties of substrate electrons from atomic impurities supported on the surface. The theory includes the effects of incoherent surface-state electron scattering at the impurities and quantitively describes nearly all of the current STM data on quantum corrals, including the recent quantum mirage experiments with Kondo effect. The physics underlying the recent mirage experiments is discussed, as are some of the outstanding questions regarding the Kondo effect from impurities in nanoscale structures on metallic surfaces. The authors also summarize recent work on variations of “quantum” corrals: Optical corrals and acoustical corrals.
Thermodynamic integration from classical to quantum mechanics
Habershon, Scott; Manolopoulos, David E.
2011-12-14
We present a new method for calculating quantum mechanical corrections to classical free energies, based on thermodynamic integration from classical to quantum mechanics. In contrast to previous methods, our method is numerically stable even in the presence of strong quantum delocalization. We first illustrate the method and its relationship to a well-established method with an analysis of a one-dimensional harmonic oscillator. We then show that our method can be used to calculate the quantum mechanical contributions to the free energies of ice and water for a flexible water model, a problem for which the established method is unstable.
"Mysticism" in Quantum Mechanics: The Forgotten Controversy
ERIC Educational Resources Information Center
Marin, Juan Miguel
2009-01-01
This paper argues that a European controversy over a "mystical" hypothesis, one assigning the mind a role to play at the material level of reality, shaped much of the debate over the interpretation of the quantum equations. It traces back the controversy to the past two decades, beginning in the late 1920s--birth of quantum theory--and concluding…
NASA Astrophysics Data System (ADS)
Mugur-Schächter, Mioara
1993-01-01
In previous works we have established that the spacetime probabilistic organization of the quantum theory is determined by the spacetime characteristics of the operations by which the observer produces the objects to be studied (“states” of microsystems) and obtains qualifications of these. Guided by this first conclusion, we have then built a “general syntax of relativized conceptualization” where any description is explicitly and systematically referred to the two basic epistemic operations by which the conceptor introduces the object to be qualified and then obtains qualifications of it. Inside this syntax there emerges a general typology of the relativized descriptions. Here we show that with respect to this typology the type of the predictive quantum mechanical descriptions acquires a precise definition. It appears that the quantum mechanical formalism has captured and has expressed directly in a mathematical language the most complex form in which can occur a first descriptional phase that lies universally at the bottom of any chain of conceptualization. The main features of the Hilbert-Dirac algorithms are decoded in terms of the general syntax of relativized conceptualization. This renders explicit the semantical contents of the quantum mechanical representations relating each one of these to its mathematical quantum mechanical expression. Basic insufficiencies are thus identified and, correlatively, false problems as well as answers to these, or guides toward answers. Globally the results obtained provide a basis for future attempts at a general mathematical representation of the processes of conceptualization. “Il pourrait, en effet, être dangereux pour l'avenir de la Physique qu'elle se contente trop facilement de purs formalismes, d'images floues et d'explications toutes verbales s'exprimant par des mots à signification imprécise”—Louis de Broglie, Certitudes et Incertitudes de la Science (Albin Michel, Paris, 1965).
Quantum Computation and Quantum Information
NASA Astrophysics Data System (ADS)
Nielsen, Michael A.; Chuang, Isaac L.
2010-12-01
Part I. Fundamental Concepts: 1. Introduction and overview; 2. Introduction to quantum mechanics; 3. Introduction to computer science; Part II. Quantum Computation: 4. Quantum circuits; 5. The quantum Fourier transform and its application; 6. Quantum search algorithms; 7. Quantum computers: physical realization; Part III. Quantum Information: 8. Quantum noise and quantum operations; 9. Distance measures for quantum information; 10. Quantum error-correction; 11. Entropy and information; 12. Quantum information theory; Appendices; References; Index.
Physics on the boundary between classical and quantum mechanics
NASA Astrophysics Data System (ADS)
't Hooft, Gerard
2014-04-01
Nature's laws in the domain where relativistic effects, gravitational effects and quantum effects are all comparatively strong are far from understood. This domain is called the Planck scale. Conceivably, a theory can be constructed where the quantum nature of phenomena at such scales can be attributed to something fundamentally simpler. However, arguments that quantum mechanics cannot be explained in terms of any classical theory using only classical logic seem to be based on sound mathematical considerations: there can't be physical laws that require "conspiracy". It may therefore be surprising that there are several explicit quantum systems where these considerations apparently do not apply. In the lecture we will show several such counterexamples. These are quantum models that do have a classical origin. The most curious of these models is superstring theory. This theory is often portrayed as to underly the quantum field theory of the subatomic particles, including the "Standard Model". So now the question is asked: how can this model feature "conspiracy", and how bad is that? Is there conspiracy in the vacuum fluctuations?
Quantum Mechanics with a Little Less Mystery
ERIC Educational Resources Information Center
Cropper, William H.
1969-01-01
Suggests the "route of the inquiring mind in presenting the esoteric quantum mechanical postulates and concepts in an understandable form. Explains that the quantum mechanical postulates are but useful mathematical forms to express thebroader principles of superposition and correspondence. Briefly describes some of the features which makes the…
Relativity of representations in quantum mechanics
NASA Astrophysics Data System (ADS)
de la Torre, A. C.
2002-03-01
Only the position representation is used in introductory quantum mechanics and the momentum representation is not usually presented until advanced undergraduate courses. To emphasize the relativity of the representations of the abstract formulation of quantum mechanics, two examples of representations related to the operators αX+(1-α)P and 1/2(XP+PX) are presented.
Physical theories, eternal inflation, and the quantum universe
NASA Astrophysics Data System (ADS)
Nomura, Yasunori
2011-11-01
Infinities in eternal inflation have long been plaguing cosmology, making any predictions highly sensitive to how they are regulated. The problem exists already at the level of semi-classical general relativity, and has a priori nothing to do with quantum gravity. On the other hand, we know that certain problems in semi-classical gravity, for example physics of black holes and their evaporation, have led to understanding of surprising, quantum natures of spacetime and gravity, such as the holographic principle and horizon complementarity. In this paper, we present a framework in which well-defined predictions are obtained in an eternally inflating multiverse, based on the principles of quantum mechanics. We propose that the entire multiverse is described purely from the viewpoint of a single "observer," who describes the world as a quantum state defined on his/her past light cones bounded by the (stretched) apparent horizons. We find that quantum mechanics plays an essential role in regulating infinities. The framework is "gauge invariant," i.e. predictions do not depend on how spacetime is parametrized, as it should be in a theory of quantum gravity. Our framework provides a fully unified treatment of quantum measurement processes and the multiverse. We conclude that the eternally inflating multiverse and many worlds in quantum mechanics are the same. Other important implications include: global spacetime can be viewed as a derived concept; the multiverse is a transient phenomenon during the world relaxing into a supersymmetric Minkowski state. We also present a model of "initial conditions" for the multiverse. By extrapolating our framework to the extreme, we arrive at a picture that the entire multiverse is a fluctuation in the stationary, fractal "mega-multiverse," in which an infinite sequence of multiverse productions occurs. The framework discussed here does not suffer from problems/paradoxes plaguing other measures proposed earlier, such as the youngness
Differentiability of correlations in realistic quantum mechanics
Cabrera, Alejandro; Faria, Edson de; Pujals, Enrique; Tresser, Charles
2015-09-15
We prove a version of Bell’s theorem in which the locality assumption is weakened. We start by assuming theoretical quantum mechanics and weak forms of relativistic causality and of realism (essentially the fact that observable values are well defined independently of whether or not they are measured). Under these hypotheses, we show that only one of the correlation functions that can be formulated in the framework of the usual Bell theorem is unknown. We prove that this unknown function must be differentiable at certain angular configuration points that include the origin. We also prove that, if this correlation is assumed to be twice differentiable at the origin, then we arrive at a version of Bell’s theorem. On the one hand, we are showing that any realistic theory of quantum mechanics which incorporates the kinematic aspects of relativity must lead to this type of rough correlation function that is once but not twice differentiable. On the other hand, this study brings us a single degree of differentiability away from a relativistic von Neumann no hidden variables theorem.
Differentiability of correlations in realistic quantum mechanics
NASA Astrophysics Data System (ADS)
Cabrera, Alejandro; de Faria, Edson; Pujals, Enrique; Tresser, Charles
2015-09-01
We prove a version of Bell's theorem in which the locality assumption is weakened. We start by assuming theoretical quantum mechanics and weak forms of relativistic causality and of realism (essentially the fact that observable values are well defined independently of whether or not they are measured). Under these hypotheses, we show that only one of the correlation functions that can be formulated in the framework of the usual Bell theorem is unknown. We prove that this unknown function must be differentiable at certain angular configuration points that include the origin. We also prove that, if this correlation is assumed to be twice differentiable at the origin, then we arrive at a version of Bell's theorem. On the one hand, we are showing that any realistic theory of quantum mechanics which incorporates the kinematic aspects of relativity must lead to this type of rough correlation function that is once but not twice differentiable. On the other hand, this study brings us a single degree of differentiability away from a relativistic von Neumann no hidden variables theorem.
Quantum mechanics of open systems
NASA Astrophysics Data System (ADS)
Melikidze, Akakii
In quantum mechanics, there is a set of problems where the system of interest interacts with another system, usually called "environment". This interaction leads to the exchange of energy and information and makes the dynamics of the system of interest essentially non-unitary. Such problems often appeared in condensed matter physics and attracted much attention after recent advances in nanotechnology. As broadly posed as they are, these problems require a variety of different approaches. This thesis is an attempt to examine several of these approaches in applications to different condensed matter problems. The first problem concerns the so-called "Master equation" approach which is very popular in quantum optics. I show that analytic properties of environmental correlators lead to strong restrictions on the applicability of the approach to the strong-coupling regime of interest in condensed matter physics. In the second problem, I use path integrals to treat the localization of particles on attractive short-range potentials when the environment produces an effective viscous friction force. I find that friction changes drastically the localization properties and leads to much stronger localization in comparison to the non-dissipative case. This has implications for the motion of heavy particles in fermionic liquids and, as will be argued below, is also relevant to the problem of high-temperature superconductivity. Finally, the third problem deals with the interplay of geometric phases and energy dissipation which occurs in the motion of vortices in superconductors. It is shown that this interplay leads to interesting predictions for vortex tunneling in high-temperature superconductors which have been partially confirmed by experiments.
Theory for non-equilibrium statistical mechanics.
Attard, Phil
2006-08-21
This paper reviews a new theory for non-equilibrium statistical mechanics. This gives the non-equilibrium analogue of the Boltzmann probability distribution, and the generalization of entropy to dynamic states. It is shown that this so-called second entropy is maximized in the steady state, in contrast to the rate of production of the conventional entropy, which is not an extremum. The relationships of the new theory to Onsager's regression hypothesis, Prigogine's minimal entropy production theorem, the Langevin equation, the formula of Green and Kubo, the Kawasaki distribution, and the non-equilibrium fluctuation and work theorems, are discussed. The theory is worked through in full detail for the case of steady heat flow down an imposed temperature gradient. A Monte Carlo algorithm based upon the steady state probability density is summarized, and results for the thermal conductivity of a Lennard-Jones fluid are shown to be in agreement with known values. Also discussed is the generalization to non-equilibrium mechanical work, and to non-equilibrium quantum statistical mechanics. As examples of the new theory two general applications are briefly explored: a non-equilibrium version of the second law of thermodynamics, and the origin and evolution of life. PMID:16883388
A quantum photonic dissipative transport theory
NASA Astrophysics Data System (ADS)
Lei, Chan U.; Zhang, Wei-Min
2012-05-01
In this paper, a quantum transport theory for describing photonic dissipative transport dynamics in nanophotonics is developed. The nanophotonic devices concerned in this paper consist of on-chip all-optical integrated circuits incorporating photonic bandgap waveguides and driven resonators embedded in nanostructured photonic crystals. The photonic transport through waveguides is entirely determined from the exact master equation of the driven resonators, which is obtained by explicitly eliminating all the degrees of freedom of the waveguides (treated as reservoirs). Back-reactions from the reservoirs are fully taken into account. The relation between the driven photonic dynamics and photocurrents is obtained explicitly. The non-Markovian memory structure and quantum decoherence dynamics in photonic transport can then be fully addressed. As an illustration, the theory is utilized to study the transport dynamics of a photonic transistor consisting of a nanocavity coupled to two waveguides in photonic crystals. The controllability of photonic transport through the external driven field is demonstrated.
Are nonlinear discrete cellular automata compatible with quantum mechanics?
NASA Astrophysics Data System (ADS)
Elze, Hans-Thomas
2015-07-01
We consider discrete and integer-valued cellular automata (CA). A particular class of which comprises “Hamiltonian CA” with equations of motion that bear similarities to Hamilton's equations, while they present discrete updating rules. The dynamics is linear, quite similar to unitary evolution described by the Schrödinger equation. This has been essential in our construction of an invertible map between such CA and continuous quantum mechanical models, which incorporate a fundamental discreteness scale. Based on Shannon's sampling theory, it leads, for example, to a one-to-one relation between quantum mechanical and CA conservation laws. The important issue of linearity of the theory is examined here by incorporating higher-order nonlinearities into the underlying action. These produce inconsistent nonlocal (in time) effects when trying to describe continuously such nonlinear CA. Therefore, in the present framework, only linear CA and local quantum mechanical dynamics are compatible.
Improving students' understanding of quantum mechanics
NASA Astrophysics Data System (ADS)
Zhu, Guangtian
2011-12-01
Learning physics is challenging at all levels. Students' difficulties in the introductory level physics courses have been widely studied and many instructional strategies have been developed to help students learn introductory physics. However, research shows that there is a large diversity in students' preparation and skills in the upper-level physics courses and it is necessary to provide scaffolding support to help students learn advanced physics. This thesis explores issues related to students' common difficulties in learning upper-level undergraduate quantum mechanics and how these difficulties can be reduced by research-based learning tutorials and peer instruction tools. We investigated students' difficulties in learning quantum mechanics by administering written tests and surveys to many classes and conducting individual interviews with a subset of students. Based on these investigations, we developed Quantum Interactive Learning Tutorials (QuILTs) and peer instruction tools to help students build a hierarchical knowledge structure of quantum mechanics through a guided approach. Preliminary assessments indicate that students' understanding of quantum mechanics is improved after using the research-based learning tools in the junior-senior level quantum mechanics courses. We also designed a standardized conceptual survey that can help instructors better probe students' understanding of quantum mechanics concepts in one spatial dimension. The validity and reliability of this quantum mechanics survey is discussed.
Optimal state discrimination and unstructured search in nonlinear quantum mechanics
NASA Astrophysics Data System (ADS)
Childs, Andrew M.; Young, Joshua
2016-02-01
Nonlinear variants of quantum mechanics can solve tasks that are impossible in standard quantum theory, such as perfectly distinguishing nonorthogonal states. Here we derive the optimal protocol for distinguishing two states of a qubit using the Gross-Pitaevskii equation, a model of nonlinear quantum mechanics that arises as an effective description of Bose-Einstein condensates. Using this protocol, we present an algorithm for unstructured search in the Gross-Pitaevskii model, obtaining an exponential improvement over a previous algorithm of Meyer and Wong. This result establishes a limitation on the effectiveness of the Gross-Pitaevskii approximation. More generally, we demonstrate similar behavior under a family of related nonlinearities, giving evidence that the ability to quickly discriminate nonorthogonal states and thereby solve unstructured search is a generic feature of nonlinear quantum mechanics.
Theory of helimagnons in itinerant quantum systems
NASA Astrophysics Data System (ADS)
Belitz, D.; Kirkpatrick, T. R.; Rosch, A.
2006-02-01
The nature and effects of the Goldstone mode in the ordered phase of helical or chiral itinerant magnets such as MnSi are investigated theoretically. It is shown that the Goldstone mode, or helimagnon, is a propagating mode with a highly anisotropic dispersion relation, in analogy to the Goldstone mode in chiral liquid crystals. Starting from a microscopic theory, a comprehensive effective theory is developed that allows for an explicit description of the helically ordered phase, including the helimagnons, for both classical and quantum helimagnets. The directly observable dynamical spin susceptibility, which reflects the properties of the helimagnon, is calculated.
Aspects of quantum gravity theory and phenomenology
NASA Astrophysics Data System (ADS)
Zampeli, Adamantia
Quantum gravity deals with the formulation of a physical theory consistent with both quantum and gravitational principles. The formulation is based on two main methods of quantisation, the canonical and the covariant one. In the first part of the thesis, the main problems of each method of quantisation are stated. In particular, the problem of time is analysed in the canonical quantisation framework and the conformal sickness problem of the Euclidean quantum gravity is studied with covariant methods. Quantum gravity phenomenology is studied through two models. The first one is a cosmological model obtained by reduced phase space quantisation. Implications for the early era of the universe as well as how phantom fields might arise are studied. The second one deals with the calculation of the response function of a detector in the presence of Dirac fields in a 2+1 dimensional spacetime. The spectrum detected is expected to invoke the apparent inversion of statistics of a quantum field. This calculation might have potential indications for the actual detection of thermal radiation in a graphene sheet.
Foundations for proper-time relativistic quantum theory
NASA Astrophysics Data System (ADS)
Gill, Tepper L.; Morris, Trey; Kurtz, Stewart K.
2015-05-01
This paper is a progress report on the foundations for the canonical proper-time approach to relativistic quantum theory. We first review the the standard square-root equation of relativistic quantum theory, followed by a review of the Dirac equation, providing new insights into the physical properties of both. We then introduce the canonical proper-time theory. For completeness, we give a brief outline of the canonical proper-time approach to electrodynamics and mechanics, and then introduce the canonical proper-time approach to relativistic quantum theory. This theory leads to three new relativistic wave equations. In each case, the canonical generator of proper-time translations is strictly positive definite, so that it represents a particle. We show that the canonical proper-time extension of the Dirac equation for Hydrogen gives results that are consistently closer to the experimental data, when compared to the Dirac equation. However, these results are not sufficient to account for either the Lamb shift or the anomalous magnetic moment.
Why space has three dimensions: A quantum mechanical explanation
NASA Astrophysics Data System (ADS)
Marcer, Peter; Schempp, Walter
2000-05-01
The theoretical physics of a quantum mechanical model of space, relativistic quantum holography, is described. It specifies three dimensions, such as is validated by the nature of our spatial experience, but where additionally, quantum non-locality, which Feynman described as the only mystery of quantum theory, is made manifest by means of observable phase relationships. For example, synchronicity between events, and other phenomena such as are described by the geometric/Berry phase, etc., which are outside the bounds of classical explanation. It can therefore be hypothesized: a) that we live in a entirely quantum mechanical world/universe and not a classical mechanical one (where quantum phenomena are confined to the microscopic scale) as is the current generally held scientific view, b) that three spatial dimensions are a fundamental consequence of quantum mechanics, c) that quantum holography is a natural candidate to explain quantum gravity, such that mass/inertia concerns not the eigenvalues of some operator, but rather the observable gauge invariant phases of a state vector, postulated to be that of the universe itself, as a whole, and d) that this model provides a natural explanation in terms of relativistic quantum signal processing of any each individual's perception and cognition will be of a three dimensional world, defined similarly in relation to each individual's quantum state vector, describing its mind/body and associated gauge invariant phases or mindset, which have observable consequences, such that mental processes and events can cause neural events and processes! These testable hypotheses, if validated, will have profound implications for our understanding, radically changing our scientific perspective on the world, as we enter the new millennium. .
ysteries, Puzzles, and Paradoxes in Quantum Mechanics. Proceedings
Rodolfo, B.
1999-02-01
These proceedings represent papers presented at the Mysteries, Puzzles, and Paradoxes in Quantum Mechanics Workshop held in Italy, in August 1998. The Workshop was devoted to recent experimental and theoretical advances such as new interference, effects, the quantum eraser, non{minus}disturbing and Schroedinger{minus}cat{minus}like states, experiments, EPR correlations, teleportation, superluminal effects, quantum information and computing, locality and causality, decoherence and measurement theory. Tachyonic information transfer was also discussed. There were 45 papers presented at the conference,out of which 2 have been abstracted for the Energy,Science and Technology database.(AIP)
Realist model approach to quantum mechanics
NASA Astrophysics Data System (ADS)
Hájíček, P.
2013-06-01
The paper proves that quantum mechanics is compatible with the constructive realism of modern philosophy of science. The proof is based on the observation that properties of quantum systems that are uniquely determined by their preparations can be assumed objective without the difficulties that are encountered by the same assumption about values of observables. The resulting realist interpretation of quantum mechanics is made rigorous by studying the space of quantum states—the convex set of state operators. Prepared states are classified according to their statistical structure into indecomposable and decomposable instead of pure and mixed. Simple objective properties are defined and showed to form a Boolean lattice.
Rosa, Marta; Micciarelli, Marco; Laio, Alessandro; Baroni, Stefano
2016-09-13
We introduce a method to evaluate the relative populations of different conformers of molecular species in solution, aiming at quantum mechanical accuracy, while keeping the computational cost at a nearly molecular-mechanics level. This goal is achieved by combining long classical molecular-dynamics simulations to sample the free-energy landscape of the system, advanced clustering techniques to identify the most relevant conformers, and thermodynamic perturbation theory to correct the resulting populations, using quantum-mechanical energies from density functional theory. A quantitative criterion for assessing the accuracy thus achieved is proposed. The resulting methodology is demonstrated in the specific case of cyanin (cyanidin-3-glucoside) in water solution. PMID:27494227
Quantum Mechanical Models Of The Fermi Shuttle
Sternberg, James
2011-06-01
The Fermi shuttle is a mechanism in which high energy electrons are produced in an atomic collision by multiple collisions with a target and a projectile atom. It is normally explained purely classically in terms of the electron's orbits prescribed in the collision. Common calculations to predict the Fermi shuttle use semi-classical methods, but these methods still rely on classical orbits. In reality such collisions belong to the realm of quantum mechanics, however. In this paper we discuss several purely quantum mechanical calculations which can produce the Fermi shuttle. Being quantum mechanical in nature, these calculations produce these features by wave interference, rather than by classical orbits.
Keldysh field theory for driven open quantum systems.
Sieberer, L M; Buchhold, M; Diehl, S
2016-09-01
Recent experimental developments in diverse areas-ranging from cold atomic gases to light-driven semiconductors to microcavity arrays-move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven-dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems. PMID:27482736
Keldysh field theory for driven open quantum systems
NASA Astrophysics Data System (ADS)
Sieberer, L. M.; Buchhold, M.; Diehl, S.
2016-09-01
Recent experimental developments in diverse areas—ranging from cold atomic gases to light-driven semiconductors to microcavity arrays—move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven–dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems.
Completeness of the Coulomb Wave Functions in Quantum Mechanics
ERIC Educational Resources Information Center
Mukunda, N.
1978-01-01
Gives an explicit and elementary proof that the radial energy eigenfunctions for the hydrogen atom in quantum mechanics, bound and scattering states included, form a complete set. The proof uses some properties of the confluent hypergeometric functions and the Cauchy residue theorem from analytic function theory. (Author/GA)
Elementary Quantum Mechanics in a High-Energy Process
ERIC Educational Resources Information Center
Denville, A.; And Others
1978-01-01
Compares two approaches to strong absorption in elementary quantum mechanics; the black sphere and a model based on the continuum theory of nuclear reactions. Examines the application to proton-antiproton interactions at low momenta and concludes that the second model is the appropriate and simplest to use. (Author/GA)
The History of Teaching Quantum Mechanics in Greece
ERIC Educational Resources Information Center
Tampakis, Constantin; Skordoulis, Constantin
2007-01-01
In this work, our goal is to examine the attitude of the Greek scientific community towards Quantum Mechanics and establish the history of teaching of this theory in Greece. We have examined Physics textbooks written by professors of the University of Athens, as well as records of public speeches, university yearbooks from 1923 to 1970, articles…
Spin and Uncertainty in the Interpretation of Quantum Mechanics.
ERIC Educational Resources Information Center
Hestenes, David
1979-01-01
Points out that quantum mechanics interpretations, using Heisenberg's Uncertainty Relations for the position and momentum of an electron, have their drawbacks. The interpretations are limited to the Schrodinger theory and fail to take into account either spin or relativity. Shows why spin cannot be ignored. (Author/GA)
Quasi-Hermitian quantum mechanics in phase space
Curtright, Thomas; Veitia, Andrzej
2007-10-15
We investigate quasi-Hermitian quantum mechanics in phase space using standard deformation quantization methods: Groenewold star products and Wigner transforms. We focus on imaginary Liouville theory as a representative example where exact results are easily obtained. We emphasize spatially periodic solutions, compute various distribution functions and phase-space metrics, and explore the relationships between them.
Operational Axioms for Quantum Mechanics
D'Ariano, Giacomo Mauro
2007-02-21
The mathematical formulation of Quantum Mechanics in terms of complex Hilbert space is derived for finite dimensions, starting from a general definition of physical experiment and from five simple Postulates concerning experimental accessibility and simplicity. For the infinite dimensional case, on the other hand, a C*-algebra representation of physical transformations is derived, starting from just four of the five Postulates via a Gelfand-Naimark-Segal (GNS) construction. The present paper simplifies and sharpens the previous derivation in Ref. [1]. The main ingredient of the axiomatization is the postulated existence of faithful states that allows one to calibrate the experimental apparatus. Such notion is at the basis of the operational definitions of the scalar product and of the transposed of a physical transformation. What is new in the present paper with respect to Ref. [1], is the operational deduction of an involution corresponding to the complex-conjugation for effects, whose extension to transformations allows to define the adjoint of a transformation when the extension is composition-preserving. The existence of such composition-preserving extension among possible extensions is analyzed.
The transactional interpretation of quantum mechanics
NASA Astrophysics Data System (ADS)
Cramer, John G.
1986-07-01
The interpretational problems of quantum mechanics are considered. The way in which the standard Copenhagen interpretation of quantum mechanics deals with these problems is reviewed. A new interpretation of the formalism of quantum mechanics, the transactional interpretation, is presented. The basic element of this interpretation is the transaction describing a quantum event as an exchange of advanced and retarded waves, as implied by the work of Wheeler and Feynman, Dirac, and others. The transactional interpretation is explicitly nonlocal and thereby consistent with recent tests of the Bell inequality, yet is relativistically invariant and fully causal. A detailed comparison of the transactional and Copenhagen interpretations is made in the context of well-known quantum-mechanical Gedankenexperimente and "paradoxes." The transactional interpretation permits quantum-mechanical wave functions to be interpreted as real waves physically present in space rather than as "mathematical representations of knowledge" as in the Copenhagen interpretation. The transactional interpretation is shown to provide insight into the complex character of the quantum-mechanical state vector and the mechanism associated with its "collapse." It also leads in a natural way to justification of the Heisenberg uncertainty principle and the Born probability law (P=ψψ*), basic elements of the Copenhagen interpretation.
On the theory of quantum measurement
NASA Technical Reports Server (NTRS)
Haus, Hermann A.; Kaertner, Franz X.
1994-01-01
Many so called paradoxes of quantum mechanics are clarified when the measurement equipment is treated as a quantized system. Every measurement involves nonlinear processes. Self consistent formulations of nonlinear quantum optics are relatively simple. Hence optical measurements, such as the quantum nondemolition (QND) measurement of photon number, are particularly well suited for such a treatment. It shows that the so called 'collapse of the wave function' is not needed for the interpretation of the measurement process. Coherence of the density matrix of the signal is progressively reduced with increasing accuracy of the photon number determination. If the QND measurement is incorporated into the double slit experiment, the contrast ratio of the fringes is found to decrease with increasing information on the photon number in one of the two paths.
On the tomographic picture of quantum mechanics
NASA Astrophysics Data System (ADS)
Ibort, A.; Man'ko, V. I.; Marmo, G.; Simoni, A.; Ventriglia, F.
2010-06-01
We formulate necessary and sufficient conditions for a symplectic tomogram of a quantum state to determine the density state. We establish a connection between the (re)construction by means of symplectic tomograms with the construction by means of Naimark positive definite functions on the Weyl-Heisenberg group. This connection is used to formulate properties which guarantee that tomographic probabilities describe quantum states in the probability representation of quantum mechanics.
Strange Bedfellows: Quantum Mechanics and Data Mining
Weinstein, Marvin; /SLAC
2009-12-16
Last year, in 2008, I gave a talk titled Quantum Calisthenics. This year I am going to tell you about how the work I described then has spun off into a most unlikely direction. What I am going to talk about is how one maps the problem of finding clusters in a given data set into a problem in quantum mechanics. I will then use the tricks I described to let quantum evolution lets the clusters come together on their own.
Strange Bedfellows: Quantum Mechanics and Data Mining
NASA Astrophysics Data System (ADS)
Weinstein, Marvin
2010-02-01
Last year, in 2008, I gave a talk titled Quantum Calisthenics. This year I am going to tell you about how the work I described then has spun off into a most unlikely direction. What I am going to talk about is how one maps the problem of finding clusters in a given data set into a problem in quantum mechanics. I will then use the tricks I described to let quantum evolution lets the clusters come together on their own.
String theory, quantum phase transitions, and the emergent Fermi liquid.
Cubrović, Mihailo; Zaanen, Jan; Schalm, Koenraad
2009-07-24
A central problem in quantum condensed matter physics is the critical theory governing the zero-temperature quantum phase transition between strongly renormalized Fermi liquids as found in heavy fermion intermetallics and possibly in high-critical temperature superconductors. We found that the mathematics of string theory is capable of describing such fermionic quantum critical states. Using the anti-de Sitter/conformal field theory correspondence to relate fermionic quantum critical fields to a gravitational problem, we computed the spectral functions of fermions in the field theory. By increasing the fermion density away from the relativistic quantum critical point, a state emerges with all the features of the Fermi liquid. PMID:19556462
John von Neumann's mathematical "Utopia" in quantum theory
NASA Astrophysics Data System (ADS)
Valente, Giovanni
This paper surveys John von Neumann's work on the mathematical foundations of quantum theories in the light of Hilbert's Sixth Problem concerning the geometrical axiomatization of physics. We argue that in von Neumann's view geometry was so tied to logic that he ultimately developed a logical interpretation of quantum probabilities. That motivated his abandonment of Hilbert space in favor of von Neumann algebras, specifically the type II1 factors, as the proper limit of quantum mechanics in infinite dimensions. Finally, we present the reasons why his axiomatic program remained an "unsolved problem" in mathematical physics. A recent unpublished result by Huzimiro Araki, proving that no algebra with a tracial state defined on it, such as the type II1 factors, can support any (regular) representation of the canonical commutation relations, is also reviewed and its consequences for von Neumann's projects are discussed.
Decoherence in an interacting quantum field theory: Thermal case
Koksma, Jurjen F.; Prokopec, Tomislav; Schmidt, Michael G.
2011-04-15
We study the decoherence of a renormalized quantum field theoretical system. We consider our novel correlator approach to decoherence where entropy is generated by neglecting observationally inaccessible correlators. Using out-of-equilibrium field theory techniques at finite temperatures, we show that the Gaussian von Neumann entropy for a pure quantum state asymptotes to the interacting thermal entropy. The decoherence rate can be well described by the single particle decay rate in our model. Connecting to electroweak baryogenesis scenarios, we moreover study the effects on the entropy of a changing mass of the system field. Finally, we compare our correlator approach to existing approaches to decoherence in the simple quantum mechanical analogue of our field theoretical model. The entropy following from the perturbative master equation suffers from physically unacceptable secular growth.
Extending quantum mechanics entails extending special relativity
NASA Astrophysics Data System (ADS)
Aravinda, S.; Srikanth, R.
2016-05-01
The complementarity between signaling and randomness in any communicated resource that can simulate singlet statistics is generalized by relaxing the assumption of free will in the choice of measurement settings. We show how to construct an ontological extension for quantum mechanics (QMs) through the oblivious embedding of a sound simulation protocol in a Newtonian spacetime. Minkowski or other intermediate spacetimes are ruled out as the locus of the embedding by virtue of hidden influence inequalities. The complementarity transferred from a simulation to the extension unifies a number of results about quantum non-locality, and implies that special relativity has a different significance for the ontological model and for the operational theory it reproduces. Only the latter, being experimentally accessible, is required to be Lorentz covariant. There may be certain Lorentz non-covariant elements at the ontological level, but they will be inaccessible at the operational level in a valid extension. Certain arguments against the extendability of QM, due to Conway and Kochen (2009) and Colbeck and Renner (2012), are attributed to their assumption that the spacetime at the ontological level has Minkowski causal structure.
Optimization of a relativistic quantum mechanical engine
NASA Astrophysics Data System (ADS)
Peña, Francisco J.; Ferré, Michel; Orellana, P. A.; Rojas, René G.; Vargas, P.
2016-08-01
We present an optimal analysis for a quantum mechanical engine working between two energy baths within the framework of relativistic quantum mechanics, adopting a first-order correction. This quantum mechanical engine, with the direct energy leakage between the energy baths, consists of two adiabatic and two isoenergetic processes and uses a three-level system of two noninteracting fermions as its working substance. Assuming that the potential wall moves at a finite speed, we derive the expression of power output and, in particular, reproduce the expression for the efficiency at maximum power.
Relational quadrilateralland II: The Quantum Theory
NASA Astrophysics Data System (ADS)
Anderson, Edward; Kneller, Sophie
2014-04-01
We provide the quantum treatment of the relational quadrilateral. The underlying reduced configuration spaces are ℂℙ2 and the cone over this. We consider exact free and isotropic HO potential cases and perturbations about these. Moreover, our purely relational kinematical quantization is distinct from the usual one for ℂℙ2, which turns out to carry absolutist connotations instead. Thus, this paper is the first to note absolute-versus-relational motion distinctions at the kinematical rather than dynamical level. It is also an example of value to the discussion of kinematical quantization along the lines of Isham, 1984. The relational quadrilateral is the simplest RPM whose mathematics is not standard in atomic physics (the triangle and four particles on a line are both based on 𝕊2 and ℝ3 mathematics). It is far more typical of the general quantum relational N-a-gon than the previously studied case of the relational triangle. We consider useful integrals as regards perturbation theory and the peaking interpretation of quantum cosmology. We subsequently consider problem of time (PoT) applications of this: quantum Kuchař beables, the Machian version of the semiclassical approach and the timeless naïve Schrödinger interpretation. These go toward extending the combined Machian semiclassical-Histories-Timeless Approach of [Int. J. Mod. Phys. D23 (2014) 1450014] to the case of the quadrilateral, which will be treated in subsequent papers.
Effective equilibrium theory of nonequilibrium quantum transport
NASA Astrophysics Data System (ADS)
Dutt, Prasenjit; Koch, Jens; Han, Jong; Le Hur, Karyn
2011-12-01
The theoretical description of strongly correlated quantum systems out of equilibrium presents several challenges and a number of open questions persist. Here, we focus on nonlinear electronic transport through an interacting quantum dot maintained at finite bias using a concept introduced by Hershfield [S. Hershfield, Phys. Rev. Lett. 70 2134 (1993)] whereby one can express such nonequilibrium quantum impurity models in terms of the system's Lippmann-Schwinger operators. These scattering operators allow one to reformulate the nonequilibrium problem as an effective equilibrium problem associated with a modified Hamiltonian. In this paper, we provide a pedagogical analysis of the core concepts of the effective equilibrium theory. First, we demonstrate the equivalence between observables computed using the Schwinger-Keldysh framework and the effective equilibrium approach, and relate Green's functions in the two theoretical frameworks. Second, we expound some applications of this method in the context of interacting quantum impurity models. We introduce a novel framework to treat effects of interactions perturbatively while capturing the entire dependence on the bias voltage. For the sake of concreteness, we employ the Anderson model as a prototype for this scheme. Working at the particle-hole symmetric point, we investigate the fate of the Abrikosov-Suhl resonance as a function of bias voltage and magnetic field.
Quantum theory of optical coherence of nonstationary light in the space-frequency domain
Lahiri, Mayukh; Wolf, Emil
2010-10-15
Classical theories of coherence for statistically stationary, as well as, nonstationary optical fields are frequently discussed both in the space-time and in the space-frequency domains. However, the quantum treatment of coherence theory is generally carried out in the space-time domain. In this paper, we present a quantum-mechanical theory of first-order coherence for statistically nonstationary light in the space-frequency domain.
Multiple-event probability in general-relativistic quantum mechanics
Hellmann, Frank; Mondragon, Mauricio; Perez, Alejandro; Rovelli, Carlo
2007-04-15
We discuss the definition of quantum probability in the context of 'timeless' general-relativistic quantum mechanics. In particular, we study the probability of sequences of events, or multievent probability. In conventional quantum mechanics this can be obtained by means of the 'wave function collapse' algorithm. We first point out certain difficulties of some natural definitions of multievent probability, including the conditional probability widely considered in the literature. We then observe that multievent probability can be reduced to single-event probability, by taking into account the quantum nature of the measuring apparatus. In fact, by exploiting the von-Neumann freedom of moving the quantum/classical boundary, one can always trade a sequence of noncommuting quantum measurements at different times, with an ensemble of simultaneous commuting measurements on the joint system+apparatus system. This observation permits a formulation of quantum theory based only on single-event probability, where the results of the wave function collapse algorithm can nevertheless be recovered. The discussion also bears on the nature of the quantum collapse.
Twistor Diagrams and Quantum Field Theory.
NASA Astrophysics Data System (ADS)
O'Donald, Lewis
Available from UMI in association with The British Library. Requires signed TDF. This thesis uses twistor diagram theory, as developed by Penrose (1975) and Hodges (1990c), to try to approach some of the difficulties inherent in the standard quantum field theoretic description of particle interactions. The resolution of these issues is the eventual goal of the twistor diagram program. First twistor diagram theory is introduced from a physical view-point, with the aim of studying larger diagrams than have been typically explored. Methods are evolved to tackle the double box and triple box diagrams. These lead to three methods of constructing an amplitude for the double box, and two ways for the triple box. Next this theory is applied to translate the channels of a Yukawa Feynman diagram, which has more than four external states, into various twistor diagrams. This provides a test of the skeleton hypothesis (of Hodges, 1990c) in these cases, and also shows that conformal breaking must enter into twistor diagrams before the translation of loop level Feynman diagrams. The issue of divergent Feynman diagrams is then considered. By using a twistor equivalent of the sum-over -states idea of quantum field theory, twistor translations of loop diagrams are conjectured. The various massless propagator corrections and vacuum diagrams calculated give results consistent with Feynman theory. Two diagrams are also found that give agreement with the finite parts of the Feynman "fish" diagrams of phi^4 -theory. However it is found that a more rigorous translation for the time-like fish requires new boundaries to be added to the twistor sum-over-states. The twistor diagram obtained is found to give the finite part of the relevant Feynman diagram.
Modeling Quantum Mechanical Observers via Neural-Glial Networks
NASA Astrophysics Data System (ADS)
Konishi, Eiji
2012-07-01
We investigate the theory of observers in the quantum mechanical world by using a novel model of the human brain which incorporates the glial network into the Hopfield model of the neural network. Our model is based on a microscopic construction of a quantum Hamiltonian of the synaptic junctions. Using the Eguchi-Kawai large N reduction, we show that, when the number of neurons and astrocytes is exponentially large, the degrees of freedom (d.o.f) of the dynamics of the neural and glial networks can be completely removed and, consequently, that the retention time of the superposition of the wavefunctions in the brain is as long as that of the microscopic quantum system of pre-synaptics sites. Based on this model, the classical information entropy of the neural-glial network is introduced. Using this quantity, we propose a criterion for the brain to be a quantum mechanical observer.
NASA Astrophysics Data System (ADS)
Greca, Ileana Maria; Freire, Olival
Teaching physics implies making choices. In the case of teaching quantum physics, besides an educational choice - the didactic strategy - another choice must be made, an epistemological one, concerning the interpretation of quantum theory itself. These two choices are closely connected. We have chosen a didactic strategy that privileges the phenomenological-conceptual approach, with emphasis upon quantum features of the systems, instead of searching for classical analogies. This choice has led us to present quantum theory associated with an orthodox, yet realistic, interpretation of the concept of quantum state, considered as the key concept of quantum theory, representing the physical reality of a system, independent of measurement processes. The results of the mplementation of this strategy, with three groups of engineering students, showed that more than a half of them attained a reasonable understanding of the basics of quantum mechanics (QM) for this level. In addition, a high degree of satisfaction was attained with the classes as 80% of the students of the experimental groups claimed to have liked it and to be interested in learning more about QM.
Distinguishing decoherence from alternative quantum theories by dynamical decoupling
NASA Astrophysics Data System (ADS)
Arenz, Christian; Hillier, Robin; Fraas, Martin; Burgarth, Daniel
2015-08-01
A long-standing challenge in the foundations of quantum mechanics is the verification of alternative collapse theories despite their mathematical similarity to decoherence. To this end, we suggest a method based on dynamical decoupling. Experimental observation of nonzero saturation of the decoupling error in the limit of fast-decoupling operations can provide evidence for alternative quantum theories. The low decay rates predicted by collapse models are challenging, but high-fidelity measurements as well as recent advances in decoupling schemes for qubits let us explore a similar parameter regime to experiments based on macroscopic superpositions. As part of the analysis we prove that unbounded Hamiltonians can be perfectly decoupled. We demonstrate this on a dilation of a Lindbladian to a fully Hamiltonian model that induces exponential decay.
Multichannel quantum defect theory for polar molecules
NASA Astrophysics Data System (ADS)
Elfimov, Sergei V.; Dorofeev, Dmitrii L.; Zon, Boris A.
2014-02-01
Our work is devoted to developing a general approach for nonpenetrating Rydberg states of polar molecules. We propose a method to estimate the accuracy of calculation of their wave functions and quantum defects. Basing on this method we estimate the accuracy of Born-Oppenheimer (BO) and inverse Born-Oppenheimer (IBO) approximations for these states. This estimation enables us to determine the space and energy regions where BO and IBO approximations are valid. It depends on the interplay between l coupling (due to dipole potential of the core) and l uncoupling (due to rotation the core). Next we consider the intermediate region where both BO and IBO are not valid. For this intermediate region we propose a modification of Fano's multichannel quantum defect theory to match BO and IBO wave functions and show that it gives more reliable results. They are demonstrated on the example of SO molecule.
Environmental management: principles from quantum theory.
Valadez, A M; Sportsman, S
1999-01-01
Management of the environment is a critical role component for any health care provider. Turmoil, multiple relationships, and new ways of "doing business" characterize today's health care system, and traditional management techniques, based on Newtonian physics may no longer be effective. Principles helpful for managing the current health care environment may be found in quantum theory. These include (1) the world is unpredictable; (2) the intent of the observer influences how the world is seen; and (3) interrelationships are what count, not the things themselves. These principles are derived from the work of Wheatley, who applied the quantum theoretical framework to leadership. Strategies for gaining competence in managing the new environment are explored. Such strategies include shared governance, the process of delegation, and coordination of services. These strategies may be helpful to colleagues in education as well as in practice. PMID:10450646
Mechanical equivalent of quantum heat engines.
Arnaud, Jacques; Chusseau, Laurent; Philippe, Fabrice
2008-06-01
Quantum heat engines employ as working agents multilevel systems instead of classical gases. We show that under some conditions quantum heat engines are equivalent to a series of reservoirs at different altitudes containing balls of various weights. A cycle consists of picking up at random a ball from one reservoir and carrying it to the next, thereby performing or absorbing some work. In particular, quantum heat engines, employing two-level atoms as working agents, are modeled by reservoirs containing balls of weight 0 or 1. The mechanical model helps us prove that the maximum efficiency of quantum heat engines is the Carnot efficiency. Heat pumps and negative temperatures are considered. PMID:18643212
A Reconstruction of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Kochen, Simon
2015-05-01
We show that exactly the same intuitively plausible definitions of state, observable, symmetry, dynamics, and compound systems of the classical Boolean structure of intrinsic properties of systems lead, when applied to the structure of extrinsic, relational quantum properties, to the standard quantum formalism, including the Schrödinger equation and the von Neumann-Lüders Projection Rule. This approach is then applied to resolving the paradoxes and difficulties of the orthodox interpretation.
On the nonclassical character of the phase-space representations of quantum mechanics
NASA Astrophysics Data System (ADS)
Guz, W.
1985-02-01
The quasiclassical representations of quantum theory, generalizing the concept of a phase-space representation of quantum mechanics, are studied with particular emphasis on some questions connected with the Jordan structure of the classical and quantum algebras of observables. A generalized version of the theorem of Gleason, Kahane, and Zelazko is used to establish some nonclassical features of these representations.
Quantum mechanical streamlines. I - Square potential barrier
NASA Technical Reports Server (NTRS)
Hirschfelder, J. O.; Christoph, A. C.; Palke, W. E.
1974-01-01
Exact numerical calculations are made for scattering of quantum mechanical particles hitting a square two-dimensional potential barrier (an exact analog of the Goos-Haenchen optical experiments). Quantum mechanical streamlines are plotted and found to be smooth and continuous, to have continuous first derivatives even through the classical forbidden region, and to form quantized vortices around each of the nodal points. A comparison is made between the present numerical calculations and the stationary wave approximation, and good agreement is found between both the Goos-Haenchen shifts and the reflection coefficients. The time-independent Schroedinger equation for real wavefunctions is reduced to solving a nonlinear first-order partial differential equation, leading to a generalization of the Prager-Hirschfelder perturbation scheme. Implications of the hydrodynamical formulation of quantum mechanics are discussed, and cases are cited where quantum and classical mechanical motions are identical.
Student Difficulties in Learning Quantum Mechanics.
ERIC Educational Resources Information Center
Johnston, I. D.; Crawford, K.; Fletcher, P. R.
1998-01-01
Reports on a preliminary project that uses a phenomenographic approach to explore the ways in which a small number of fundamental ideas are conceptualized by students who are judged to have mastered quantum mechanics material. (DDR)
Quantum mechanical stabilization of Minkowski signature wormholes
Visser, M.
1989-05-19
When one attempts to construct classical wormholes in Minkowski signature Lorentzian spacetimes violations of both the weak energy hypothesis and averaged weak energy hypothesis are encountered. Since the weak energy hypothesis is experimentally known to be violated quantum mechanically, this suggests that a quantum mechanical analysis of Minkowski signature wormholes is in order. In this note I perform a minisuperspace analysis of a simple class of Minkowski signature wormholes. By solving the Wheeler-de Witt equation for pure Einstein gravity on this minisuperspace the quantum mechanical wave function of the wormhole is obtained in closed form. The wormhole is shown to be quantum mechanically stabilized with an average radius of order the Planck length. 8 refs.
Fundamental Quantum Mechanics--A Graphic Presentation
ERIC Educational Resources Information Center
Wise, M. N.; Kelley, T. G.
1977-01-01
Describes a presentation of basic quantum mechanics for nonscience majors that relies on a computer-generated graphic display to circumvent the usual mathematical difficulties. It allows a detailed treatment of free-particle motion in a wave picture. (MLH)
How Rutherford missed discovering quantum mechanical identity
NASA Astrophysics Data System (ADS)
Temmer, G. M.
1989-03-01
An interesting quirk in the energy dependence of alpha-particle scattering from helium caused Lord Rutherford to miss a major discovery—namely, the consequences of quantum mechanical identity—before their prediction by Mott a short time later.
Delirium Quantum Or, where I will take quantum mechanics if it will let me
NASA Astrophysics Data System (ADS)
Fuchs, Christopher A.
2007-02-01
Once again, I take advantage of the wonderfully liberal and tolerant mood Andrei Khrennikov sets at his yearly conferences by submitting a nonstandard paper for the proceedings. This pseudo-paper consists of excerpts drawn from two of my samizdats [Quantum States: What the Hell Are They? and Darwinism All the Way Down (and Probabilism All the Way Back Up)] that I think best summarize what I am aiming for on the broadest scale with my quantum foundations program. Section 1 tries to draw a picture of a physical world whose essence is "Darwinism all the way down." Section 2 outlines how quantum theory should be viewed in light of that, i.e., as being an expression of probabilism (in Bruno de Finetti or Richard Jeffrey's sense) all the way back up. Section 3 describes how the idea of "identical" quantum measurement outcomes, though sounding atomistic in character, nonetheless meshes well with a William Jamesian style "radical pluralism." Sections 4 and 5 further detail how quantum theory should not be viewed so much as a "theory of the world," but rather as a theory of decision-making for agents immersed within a quantum world—that is, a world in continual creation. Finally, Sections 6 and 7 attempt to sketch once again the very positive sense in which quantum theory is incomplete, but still just as complete is it can be. In total, I hope these heady speculations convey some of the excitement and potential I see for the malleable world quantum mechanics hints of.
Maxwell-Garnett effective medium theory: Quantum nonlocal effects
Moradi, Afshin
2015-04-15
We develop the Maxwell-Garnett theory for the effective medium approximation of composite materials with metallic nanoparticles by taking into account the quantum spatial dispersion effects in dielectric response of nanoparticles. We derive a quantum nonlocal generalization of the standard Maxwell-Garnett formula, by means the linearized quantum hydrodynamic theory in conjunction with the Poisson equation as well as the appropriate additional quantum boundary conditions.
Ruling Out Multi-Order Interference in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Sinha, Urbasi; Couteau, Christophe; Jennewein, Thomas; Laflamme, Raymond; Weihs, Gregor
2010-07-01
Quantum mechanics and gravitation are two pillars of modern physics. Despite their success in describing the physical world around us, they seem to be incompatible theories. There are suggestions that one of these theories must be generalized to achieve unification. For example, Born’s rule—one of the axioms of quantum mechanics—could be violated. Born’s rule predicts that quantum interference, as shown by a double-slit diffraction experiment, occurs from pairs of paths. A generalized version of quantum mechanics might allow multipath (i.e., higher-order) interference, thus leading to a deviation from the theory. We performed a three-slit experiment with photons and bounded the magnitude of three-path interference to less than 10-2 of the expected two-path interference, thus ruling out third- and higher-order interference and providing a bound on the accuracy of Born’s rule. Our experiment is consistent with the postulate both in semiclassical and quantum regimes.
New methods for quantum mechanical reaction dynamics
Thompson, W.H. |
1996-12-01
Quantum mechanical methods are developed to describe the dynamics of bimolecular chemical reactions. We focus on developing approaches for directly calculating the desired quantity of interest. Methods for the calculation of single matrix elements of the scattering matrix (S-matrix) and initial state-selected reaction probabilities are presented. This is accomplished by the use of absorbing boundary conditions (ABC) to obtain a localized (L{sup 2}) representation of the outgoing wave scattering Green`s function. This approach enables the efficient calculation of only a single column of the S-matrix with a proportionate savings in effort over the calculation of the entire S-matrix. Applying this method to the calculation of the initial (or final) state-selected reaction probability, a more averaged quantity, requires even less effort than the state-to-state S-matrix elements. It is shown how the same representation of the Green`s function can be effectively applied to the calculation of negative ion photodetachment intensities. Photodetachment spectroscopy of the anion ABC{sup -} can be a very useful method for obtaining detailed information about the neutral ABC potential energy surface, particularly if the ABC{sup -} geometry is similar to the transition state of the neutral ABC. Total and arrangement-selected photodetachment spectra are calculated for the H{sub 3}O{sup -} system, providing information about the potential energy surface for the OH + H{sub 2} reaction when compared with experimental results. Finally, we present methods for the direct calculation of the thermal rate constant from the flux-position and flux-flux correlation functions. The spirit of transition state theory is invoked by concentrating on the short time dynamics in the area around the transition state that determine reactivity. These methods are made efficient by evaluating the required quantum mechanical trace in the basis of eigenstates of the Boltzmannized flux operator.
Quantum theory as the most robust description of reproducible experiments
NASA Astrophysics Data System (ADS)
De Raedt, Hans; Katsnelson, Mikhail I.; Michielsen, Kristel
2014-08-01
It is shown that the basic equations of quantum theory can be obtained from a straightforward application of logical inference to experiments for which there is uncertainty about individual events and for which the frequencies of the observed events are robust with respect to small changes in the conditions under which the experiments are carried out. There is no quantum world. There is only an abstract physical description. It is wrong to think that the task of physics is to find out how nature is. Physics concerns what we can say about nature [45]. Physics is to be regarded not so much as the study of something a priori given, but rather as the development of methods of ordering and surveying human experience. In this respect our task must be to account for such experience in a manner independent of individual subjective judgment and therefore objective in the sense that it can be unambiguously communicated in ordinary human language [46]. The physical content of quantum mechanics is exhausted by its power to formulate statistical laws governing observations under conditions specified in plain language [46]. The first two sentences of the first quote may be read as a suggestion to dispose of, in Mermin's words [47], the "bad habit" to take mathematical abstractions as the reality of the events (in the everyday sense of the word) that we experience through our senses. Although widely circulated, these sentences are reported by Petersen [45] and there is doubt that Bohr actually used this wording [48]. The last two sentences of the first quote and the second quote suggest that we should try to describe human experiences (confined to the realm of scientific inquiry) in a manner and language which is unambiguous and independent of the individual subjective judgment. Of course, the latter should not be construed to imply that the observed phenomena are independent of the choices made by the individual(s) in performing the scientific experiment [49].The third quote
Quantum-mechanical transport equation for atomic systems.
NASA Technical Reports Server (NTRS)
Berman, P. R.
1972-01-01
A quantum-mechanical transport equation (QMTE) is derived which should be applicable to a wide range of problems involving the interaction of radiation with atoms or molecules which are also subject to collisions with perturber atoms. The equation follows the time evolution of the macroscopic atomic density matrix elements of atoms located at classical position R and moving with classical velocity v. It is quantum mechanical in the sense that all collision kernels or rates which appear have been obtained from a quantum-mechanical theory and, as such, properly take into account the energy-level variations and velocity changes of the active (emitting or absorbing) atom produced in collisions with perturber atoms. The present formulation is better suited to problems involving high-intensity external fields, such as those encountered in laser physics.
Ordinary versus PT-symmetric Φ³ quantum field theory
Bender, Carl M.; Branchina, Vincenzo; Messina, Emanuele
2012-04-02
A quantum-mechanical theory is PT-symmetric if it is described by a Hamiltonian that commutes with PT, where the operator P performs space reflection and the operator T performs time reversal. A PT-symmetric Hamiltonian often has a parametric region of unbroken PT symmetry in which the energy eigenvalues are all real. There may also be a region of broken PT symmetry in which some of the eigenvalues are complex. These regions are separated by a phase transition that has been repeatedly observed in laboratory experiments. This paper focuses on the properties of a PT-symmetric igΦ³ quantum field theory. This quantum fieldmore » theory is the analog of the PT-symmetric quantum-mechanical theory described by the Hamiltonian H=p²+ix³, whose eigenvalues have been rigorously shown to be all real. This paper compares the renormalization group properties of a conventional Hermitian gΦ³ quantum field theory with those of the PT-symmetric igΦ³ quantum field theory. It is shown that while the conventional gΦ³ theory in d=6 dimensions is asymptotically free, the igΦ³ theory is like a gΦ⁴ theory in d=4 dimensions; it is energetically stable, perturbatively renormalizable, and trivial.« less
Ordinary versus PT-symmetric Φ³ quantum field theory
Bender, Carl M.; Branchina, Vincenzo; Messina, Emanuele
2012-04-02
A quantum-mechanical theory is PT-symmetric if it is described by a Hamiltonian that commutes with PT, where the operator P performs space reflection and the operator T performs time reversal. A PT-symmetric Hamiltonian often has a parametric region of unbroken PT symmetry in which the energy eigenvalues are all real. There may also be a region of broken PT symmetry in which some of the eigenvalues are complex. These regions are separated by a phase transition that has been repeatedly observed in laboratory experiments. This paper focuses on the properties of a PT-symmetric igΦ³ quantum field theory. This quantum field theory is the analog of the PT-symmetric quantum-mechanical theory described by the Hamiltonian H=p²+ix³, whose eigenvalues have been rigorously shown to be all real. This paper compares the renormalization group properties of a conventional Hermitian gΦ³ quantum field theory with those of the PT-symmetric igΦ³ quantum field theory. It is shown that while the conventional gΦ³ theory in d=6 dimensions is asymptotically free, the igΦ³ theory is like a gΦ⁴ theory in d=4 dimensions; it is energetically stable, perturbatively renormalizable, and trivial.
The $\\hbar$ Expansion in Quantum Field Theory
Brodsky, Stanley J.; Hoyer, Paul; /Southern Denmark U., CP3-Origins /Helsinki U. /Helsinki Inst. of Phys.
2010-10-27
We show how expansions in powers of Planck's constant {h_bar} = h = 2{pi} can give new insights into perturbative and nonperturbative properties of quantum field theories. Since {h_bar} is a fundamental parameter, exact Lorentz invariance and gauge invariance are maintained at each order of the expansion. The physics of the {h_bar} expansion depends on the scheme; i.e., different expansions are obtained depending on which quantities (momenta, couplings and masses) are assumed to be independent of {h_bar}. We show that if the coupling and mass parameters appearing in the Lagrangian density are taken to be independent of {h_bar}, then each loop in perturbation theory brings a factor of {h_bar}. In the case of quantum electrodynamics, this scheme implies that the classical charge e, as well as the fine structure constant are linear in {h_bar}. The connection between the number of loops and factors of {h_bar} is more subtle for bound states since the binding energies and bound-state momenta themselves scale with {h_bar}. The {h_bar} expansion allows one to identify equal-time relativistic bound states in QED and QCD which are of lowest order in {h_bar} and transform dynamically under Lorentz boosts. The possibility to use retarded propagators at the Born level gives valence-like wave-functions which implicitly describe the sea constituents of the bound states normally present in its Fock state representation.
NASA Astrophysics Data System (ADS)
Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro
2015-10-01
We discuss foundational issues of quantum information biology (QIB)—one of the most successful applications of the quantum formalism outside of physics. QIB provides a multi-scale model of information processing in bio-systems: from proteins and cells to cognitive and social systems. This theory has to be sharply distinguished from "traditional quantum biophysics". The latter is about quantum bio-physical processes, e.g., in cells or brains. QIB models the dynamics of information states of bio-systems. We argue that the information interpretation of quantum mechanics (its various forms were elaborated by Zeilinger and Brukner, Fuchs and Mermin, and D' Ariano) is the most natural interpretation of QIB. Biologically QIB is based on two principles: (a) adaptivity; (b) openness (bio-systems are fundamentally open). These principles are mathematically represented in the framework of a novel formalism— quantum adaptive dynamics which, in particular, contains the standard theory of open quantum systems.
ERIC Educational Resources Information Center
Oss, Stefano; Rosi, Tommaso
2015-01-01
We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many…
NASA Astrophysics Data System (ADS)
Aspelmeyer, Markus; Schwab, Keith
2008-09-01
The last five years have witnessed an amazing development in the field of nano- and micromechanics. What was widely considered fantasy ten years ago is about to become an experimental reality: the quantum regime of mechanical systems is within reach of current experiments. Two factors (among many) have contributed significantly to this situation. As part of the widespread effort into nanoscience and nanofabrication, it is now possible to produce high-quality nanomechanical and micromechanical resonators, spanning length scales of millimetres to nanometres, and frequencies from kilohertz to gigahertz. Researchers coupled these mechanical elements to high-sensitivity actuation and readout systems such as single-electron transistors, quantum dots, atomic point contacts, SQUID loops, high-finesse optical or microwave-cavities etc. Some of these ultra-sensitive readout schemes are in principle capable of detection at the quantum limit and a large part of the experimental effort is at present devoted to achieving this. On the other hand, the fact that the groups working in the field come from various different physics backgrounds—the authors of this editorial are a representative sample—has been a constant source of inspiration for helpful theoretical and experimental tools that have been adapted from other fields to the mechanical realm. To name just one example: ideas from quantum optics have led to the recent demonstration (both in theory and experiment) that coupling a mechanical resonator to a high-finesse optical cavity can be fully analogous to the well-known sideband-resolved laser cooling of ions and hence is capable in principle of cooling a mechanical mode into its quantum ground state. There is no doubt that such interdisciplinarity has been a crucial element for the development of the field. It is interesting to note that a very similar sociological phenomenon occurred earlier in the quantum information community, an area which is deeply enriched by the
Statistical mechanical theory of fluid mixtures
NASA Astrophysics Data System (ADS)
Zhao, Yueqiang; Wu, Zhengming; Liu, Weiwei
2014-01-01
A general statistical mechanical theory of fluid mixtures (liquid mixtures and gas mixtures) is developed based on the statistical mechanical expression of chemical potential of components in the grand canonical ensemble, which gives some new relationships between thermodynamic quantities (equilibrium ratio Ki, separation factor α and activity coefficient γi) and ensemble average potential energy u for one molecule. The statistical mechanical expressions of separation factor α and activity coefficient γi derived in this work make the fluid phase equilibrium calculations can be performed by molecular simulation simply and efficiently, or by the statistical thermodynamic approach (based on the saturated-vapor pressure of pure substance) that does not need microscopic intermolecular pair potential functions. The physical meaning of activity coefficient γi in the liquid phase is discussed in detail from a viewpoint of molecular thermodynamics. The calculated Vapor-Liquid Equilibrium (VLE) properties of argon-methane, methanol-water and n-hexane-benzene systems by this model fit well with experimental data in references, which indicates that this model is accurate and reliable in the prediction of VLE properties for small, large and strongly associating molecules; furthermore the statistical mechanical expressions of separation factor α and activity coefficient γi have good compatibility with classical thermodynamic equations and quantum mechanical COSMO-SAC approach.
NASA Technical Reports Server (NTRS)
Harger, R. O.
1974-01-01
Abstracts are reported relating to the techniques used in the research concerning optical transmission of information. Communication through the turbulent atmosphere, quantum mechanics, and quantum communication theory are discussed along with the results.
Testing Quantum Mechanics and Bell's Inequality with Astronomical Observations
NASA Astrophysics Data System (ADS)
Friedman, Andrew S.; Kaiser, David I.; Gallicchio, Jason; Team 1: University of Vienna, Institute for Quantum Optics and Quantum Information; Team 2: UC San Diego Cosmology Group; Team 3: NASA/JPL/Caltech
2016-06-01
We report on an in progress "Cosmic Bell" experiment that will leverage cosmology to test quantum mechanics and Bell's inequality using astronomical observations. Different iterations of our experiment will send polarization-entangled photons through the open air to detectors ~1-100 kilometers apart, whose settings would be rapidly chosen using real-time telescopic observations of Milky Way stars, and eventually distant, causally disconnected, cosmological sources - such as pairs of quasars or patches of the cosmic microwave background - all while the entangled pair is still in flight. This would, for the first time, attempt to fully close the so-called "setting independence" or "free will" loophole in experimental tests of Bell's inequality, whereby an alternative theory could mimic the quantum predictions if the experimental settings choices shared even a small correlation with unknown, local, causal influences a mere few milliseconds prior to the experiment. A full Cosmic Bell test would push any such influence all the way back to the hot big bang, since the end of any period of inflation, 13.8 billion years ago, an improvement of 20 orders of magnitude compared to the best previous experiments. Redshift z > 3.65 quasars observed at optical wavelengths are the optimal candidate source pairs using present technology. Our experiment is partially funded by the NSF INSPIRE program, in collaboration with MIT, UC San Diego, Harvey Mudd College, NASA/JPL/Caltech, and the University of Vienna. Such an experiment has implications for our understanding of nature at the deepest level. By testing quantum mechanics in a regime never before explored, we would at the very least extend our confidence in quantum theory, while at the same time severely constraining large classes of alternative theories. If the experiment were to uncover discrepancies from the quantum predictions, there could be crucial implications for early-universe cosmology, the security of quantum encryption
Phase space view of quantum mechanical systems and Fisher information
NASA Astrophysics Data System (ADS)
Nagy, Á.
2016-06-01
Pennini and Plastino showed that the form of the Fisher information generated by the canonical distribution function reflects the intrinsic structure of classical mechanics. Now, a quantum mechanical generalization of the Pennini-Plastino theory is presented based on the thermodynamical transcription of the density functional theory. Comparing to the classical case, the phase-space Fisher information contains an extra term due to the position dependence of the temperature. However, for the special case of constant temperature, the expression derived bears resemblance to the classical one. A complete analogy to the classical case is demonstrated for the linear harmonic oscillator.
Is the World Local or Nonlocal? Towards an Emergent Quantum Mechanics in the 21st Century
NASA Astrophysics Data System (ADS)
Walleczek, Jan; Grössing, Gerhard
2016-03-01
What defines an emergent quantum mechanics (EmQM)? Can new insight be advanced into the nature of quantum nonlocality by seeking new links between quantum and emergent phenomena as described by self-organization, complexity, or emergence theory? Could the development of a future EmQM lead to a unified, relational image of the cosmos? One key motivation for adopting the concept of emergence in relation to quantum theory concerns the persistent failure in standard physics to unify the two pillars in the foundations of physics: quantum theory and general relativity theory (GRT). The total contradiction in the foundational, metaphysical assumptions that define orthodox quantum theory versus GRT might render inter-theoretic unification impossible. On the one hand, indeterminism and non-causality define orthodox quantum mechanics, and, on the other hand, GRT is governed by causality and determinism. How could these two metaphysically-contradictory theories ever be reconciled? The present work argues that metaphysical contradiction necessarily implies physical contradiction. The contradictions are essentially responsible also for the measurement problem in quantum mechanics. A common foundation may be needed for overcoming the contradictions between the two foundational theories. The concept of emergence, and the development of an EmQM, might help advance a common foundation - physical and metaphysical - as required for successfull inter-theory unification.
Prime Numbers, Quantum Field Theory and the Goldbach Conjecture
NASA Astrophysics Data System (ADS)
Sanchis-Lozano, Miguel-Angel; Barbero G., J. Fernando; Navarro-Salas, José
2012-09-01
Motivated by the Goldbach conjecture in number theory and the Abelian bosonization mechanism on a cylindrical two-dimensional space-time, we study the reconstruction of a real scalar field as a product of two real fermion (so-called prime) fields whose Fourier expansion exclusively contains prime modes. We undertake the canonical quantization of such prime fields and construct the corresponding Fock space by introducing creation operators bp\\dag — labeled by prime numbers p — acting on the vacuum. The analysis of our model, based on the standard rules of quantum field theory and the assumption of the Riemann hypothesis, allows us to prove that the theory is not renormalizable. We also comment on the potential consequences of this result concerning the validity or breakdown of the Goldbach conjecture for large integer numbers.
Nonlinear quantum equations: Classical field theory
Rego-Monteiro, M. A.; Nobre, F. D.
2013-10-15
An exact classical field theory for nonlinear quantum equations is presented herein. It has been applied recently to a nonlinear Schrödinger equation, and it is shown herein to hold also for a nonlinear generalization of the Klein-Gordon equation. These generalizations were carried by introducing nonlinear terms, characterized by exponents depending on an index q, in such a way that the standard, linear equations, are recovered in the limit q→ 1. The main characteristic of this field theory consists on the fact that besides the usual Ψ(x(vector sign),t), a new field Φ(x(vector sign),t) needs to be introduced in the Lagrangian, as well. The field Φ(x(vector sign),t), which is defined by means of an additional equation, becomes Ψ{sup *}(x(vector sign),t) only when q→ 1. The solutions for the fields Ψ(x(vector sign),t) and Φ(x(vector sign),t) are found herein, being expressed in terms of a q-plane wave; moreover, both field equations lead to the relation E{sup 2}=p{sup 2}c{sup 2}+m{sup 2}c{sup 4}, for all values of q. The fact that such a classical field theory works well for two very distinct nonlinear quantum equations, namely, the Schrödinger and Klein-Gordon ones, suggests that this procedure should be appropriate for a wider class nonlinear equations. It is shown that the standard global gauge invariance is broken as a consequence of the nonlinearity.
Multiloop calculations in perturbative quantum field theory
NASA Astrophysics Data System (ADS)
Blokland, Ian Richard
This thesis deals with high-precision calculations in perturbative quantum field theory. In conjunction with detailed experimental measurements, perturbative quantum field theory provides the quantitative framework with which much of modern particle physics is understood. The results of three new theoretical calculations are presented. The first is a definitive resolution of a recent controversy involving the interaction of a muon with a magnetic field. Specifically, the light-by-light scattering contribution to the anomalous magnetic moment of the muon is shown to be of positive sign, thereby decreasing the discrepancy between theory and experiment. Despite this adjustment to the theoretical prediction, the remaining discrepancy might be a subtle signature of new kinds of particles. The second calculation involves the energy levels of a bound state formed from two charged particles of arbitrary masses. By employing recently developed mass expansion techniques, new classes of solutions are obtained for problems in a field of particle physics with a very rich history. The third calculation provides an improved prediction for the decay of a top quark. In order to obtain this result, a large class of multiloop integrals has been solved for the first time. Top quark decay is just one member of a family of interesting physical processes to which these new results apply. Since specialized calculational techniques are essential ingredients in all three calculations, they are motivated and explained carefully in this thesis. These techniques, once automated with symbolic computational software, have recently opened avenues of solution to a wide variety of important problems in particle physics.
Quantum Field Theories on the Lattice : Concepts behind their Numerical Simulations
NASA Astrophysics Data System (ADS)
Bietenholz, Wolfgang
2011-09-01
We review the basic ideas behind numerical simulations of quantum field theory, which lead to non-perturbative results in particle physics. We first sketch the functional integral formulation of quantum mechanics, its transition to Euclidean time and the link to statistical mechanics. Then we proceed to quantum field theory in the lattice regularization, and its applications to scalar fields, gauge fields and fermions. In particular we address the treatment of chiral symmetry. At last we describe the formulation of lattice QCD and comment on simulations and results.
Optimal guidance law in quantum mechanics
Yang, Ciann-Dong Cheng, Lieh-Lieh
2013-11-15
Following de Broglie’s idea of a pilot wave, this paper treats quantum mechanics as a problem of stochastic optimal guidance law design. The guidance scenario considered in the quantum world is that an electron is the flight vehicle to be guided and its accompanying pilot wave is the guidance law to be designed so as to guide the electron to a random target driven by the Wiener process, while minimizing a cost-to-go function. After solving the stochastic optimal guidance problem by differential dynamic programming, we point out that the optimal pilot wave guiding the particle’s motion is just the wavefunction Ψ(t,x), a solution to the Schrödinger equation; meanwhile, the closed-loop guidance system forms a complex state–space dynamics for Ψ(t,x), from which quantum operators emerge naturally. Quantum trajectories under the action of the optimal guidance law are solved and their statistical distribution is shown to coincide with the prediction of the probability density function Ψ{sup ∗}Ψ. -- Highlights: •Treating quantum mechanics as a pursuit-evasion game. •Reveal an interesting analogy between guided flight motion and guided quantum motion. •Solve optimal quantum guidance problem by dynamic programming. •Gives a formal proof of de Broglie–Bohm’s idea of a pilot wave. •The optimal pilot wave is shown to be a wavefunction solved from Schrödinger equation.
Kato expansion in quantum canonical perturbation theory
NASA Astrophysics Data System (ADS)
Nikolaev, Andrey
2016-06-01
This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson's ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.
Computations in quantum mechanics made easy
NASA Astrophysics Data System (ADS)
Korsch, H. J.; Rapedius, K.
2016-09-01
Convenient and simple numerical techniques for performing quantum computations based on matrix representations of Hilbert space operators are presented and illustrated by various examples. The applications include the calculations of spectral and dynamical properties for one-dimensional and two-dimensional single-particle systems as well as bosonic many-particle and open quantum systems. Due to their technical simplicity these methods are well suited as a tool for teaching quantum mechanics to undergraduates and graduates. Explicit implementations of the presented numerical methods in Matlab are given.
Hot Fluids and Nonlinear Quantum Mechanics
NASA Astrophysics Data System (ADS)
Mahajan, Swadesh M.; Asenjo, Felipe A.
2015-05-01
A hot relativistic fluid is viewed as a collection of quantum objects that represent interacting elementary particles. We present a conceptual framework for deriving nonlinear equations of motion obeyed by these hypothesized objects. A uniform phenomenological prescription, to affect the quantum transition from a corresponding classical system, is invoked to derive the nonlinear Schrödinger, Klein-Gordon, and Pauli-Schrödinger and Feynman-GellMaan equations. It is expected that the emergent hypothetical nonlinear quantum mechanics would advance, in a fundamental way, both the conceptual understanding and computational abilities, particularly, in the field of extremely high energy-density physics.
Much Polyphony but Little Harmony: Otto Sackur's Groping for a Quantum Theory of Gases
NASA Astrophysics Data System (ADS)
Badino, Massimiliano; Friedrich, Bretislav
2013-09-01
The endeavor of Otto Sackur (1880-1914) was driven, on the one hand, by his interest in Nernst's heat theorem, statistical mechanics, and the problem of chemical equilibrium and, on the other hand, by his goal to shed light on classical mechanics from the quantum vantage point. Inspired by the interplay between classical physics and quantum theory, Sackur chanced to expound his personal take on the role of the quantum in the changing landscape of physics in the turbulent 1910s. We tell the story of this enthusiastic practitioner of the old quantum theory and early contributor to quantum statistical mechanics, whose scientific ontogenesis provides a telling clue about the phylogeny of his contemporaries.
Quantum theory as the most robust description of reproducible experiments
NASA Astrophysics Data System (ADS)
De Raedt, Hans; Katsnelson, Mikhail I.; Michielsen, Kristel
2014-08-01
It is shown that the basic equations of quantum theory can be obtained from a straightforward application of logical inference to experiments for which there is uncertainty about individual events and for which the frequencies of the observed events are robust with respect to small changes in the conditions under which the experiments are carried out. There is no quantum world. There is only an abstract physical description. It is wrong to think that the task of physics is to find out how nature is. Physics concerns what we can say about nature [45]. Physics is to be regarded not so much as the study of something a priori given, but rather as the development of methods of ordering and surveying human experience. In this respect our task must be to account for such experience in a manner independent of individual subjective judgment and therefore objective in the sense that it can be unambiguously communicated in ordinary human language [46]. The physical content of quantum mechanics is exhausted by its power to formulate statistical laws governing observations under conditions specified in plain language [46]. The first two sentences of the first quote may be read as a suggestion to dispose of, in Mermin's words [47], the "bad habit" to take mathematical abstractions as the reality of the events (in the everyday sense of the word) that we experience through our senses. Although widely circulated, these sentences are reported by Petersen [45] and there is doubt that Bohr actually used this wording [48]. The last two sentences of the first quote and the second quote suggest that we should try to describe human experiences (confined to the realm of scientific inquiry) in a manner and language which is unambiguous and independent of the individual subjective judgment. Of course, the latter should not be construed to imply that the observed phenomena are independent of the choices made by the individual(s) in performing the scientific experiment [49].The third quote
The effective field theory treatment of quantum gravity
Donoghue, John F.
2012-09-24
This is a pedagogical introduction to the treatment of quantum general relativity as an effective field theory. It starts with an overview of the methods of effective field theory and includes an explicit example. Quantum general relativity matches this framework and I discuss gravitational examples as well as the limits of the effective field theory. I also discuss the insights from effective field theory on the gravitational effects on running couplings in the perturbative regime.
Quantum statistical mechanics of dense partially ionized hydrogen
NASA Technical Reports Server (NTRS)
Dewitt, H. E.; Rogers, F. J.
1972-01-01
The theory of dense hydrogen plasmas beginning with the two component quantum grand partition function is reviewed. It is shown that ionization equilibrium and molecular dissociation equilibrium can be treated in the same manner with proper consideration of all two-body states. A quantum perturbation expansion is used to give an accurate calculation of the equation of state of the gas for any degree of dissociation and ionization. The statistical mechanical calculation of the plasma equation of state is intended for stellar interiors. The general approach is extended to the calculation of the equation of state of the outer layers of large planets.
Accurate energies of the He atom with undergraduate quantum mechanics
NASA Astrophysics Data System (ADS)
Massé, Robert C.; Walker, Thad G.
2015-08-01
Estimating the energies and splitting of the 1s2s singlet and triplet states of helium is a classic exercise in quantum perturbation theory but yields only qualitatively correct results. Using a six-line computer program, the 1s2s energies calculated by matrix diagonalization using a seven-state basis improve the results to 0.4% error or better. This is an effective and practical illustration of the quantitative power of quantum mechanics, at a level accessible to undergraduate students.
Continuum regularization of quantum field theory
Bern, Z.
1986-04-01
Possible nonperturbative continuum regularization schemes for quantum field theory are discussed which are based upon the Langevin equation of Parisi and Wu. Breit, Gupta and Zaks made the first proposal for new gauge invariant nonperturbative regularization. The scheme is based on smearing in the ''fifth-time'' of the Langevin equation. An analysis of their stochastic regularization scheme for the case of scalar electrodynamics with the standard covariant gauge fixing is given. Their scheme is shown to preserve the masslessness of the photon and the tensor structure of the photon vacuum polarization at the one-loop level. Although stochastic regularization is viable in one-loop electrodynamics, two difficulties arise which, in general, ruins the scheme. One problem is that the superficial quadratic divergences force a bottomless action for the noise. Another difficulty is that stochastic regularization by fifth-time smearing is incompatible with Zwanziger's gauge fixing, which is the only known nonperturbaive covariant gauge fixing for nonabelian gauge theories. Finally, a successful covariant derivative scheme is discussed which avoids the difficulties encountered with the earlier stochastic regularization by fifth-time smearing. For QCD the regularized formulation is manifestly Lorentz invariant, gauge invariant, ghost free and finite to all orders. A vanishing gluon mass is explicitly verified at one loop. The method is designed to respect relevant symmetries, and is expected to provide suitable regularization for any theory of interest. Hopefully, the scheme will lend itself to nonperturbative analysis. 44 refs., 16 figs.
Quantum Gravity from the Point of View of Locally Covariant Quantum Field Theory
NASA Astrophysics Data System (ADS)
Brunetti, Romeo; Fredenhagen, Klaus; Rejzner, Katarzyna
2016-08-01
We construct perturbative quantum gravity in a generally covariant way. In particular our construction is background independent. It is based on the locally covariant approach to quantum field theory and the renormalized Batalin-Vilkovisky formalism. We do not touch the problem of nonrenormalizability and interpret the theory as an effective theory at large length scales.
Quantum Mechanics, Spacetime Locality, and Gravity
NASA Astrophysics Data System (ADS)
Nomura, Yasunori
2013-08-01
Quantum mechanics introduces the concept of probability at the fundamental level, yielding the measurement problem. On the other hand, recent progress in cosmology has led to the "multiverse" picture, in which our observed universe is only one of the many, bringing an apparent arbitrariness in defining probabilities, called the measure problem. In this paper, we discuss how these two problems are related with each other, developing a picture for quantum measurement and cosmological histories in the quantum mechanical universe. In order to describe the cosmological dynamics correctly within the full quantum mechanical context, we need to identify the structure of the Hilbert space for a system with gravity. We argue that in order to keep spacetime locality, the Hilbert space for dynamical spacetime must be defined only in restricted spacetime regions: in and on the (stretched) apparent horizon as viewed from a fixed reference frame. This requirement arises from eliminating all the redundancies and overcountings in a general relativistic, global spacetime description of nature. It is responsible for horizon complementarity as well as the "observer dependence" of horizons/spacetime—these phenomena arise to represent changes of the reference frame in the relevant Hilbert space. This can be viewed as an extension of the Poincaré transformation in the quantum gravitational context. Given an initial condition, the evolution of the multiverse state obeys the laws of quantum mechanics—it evolves deterministically and unitarily. The beginning of the multiverse, however, is still an open issue.
Multi-time wave functions for quantum field theory
Petrat, Sören; Tumulka, Roderich
2014-06-15
Multi-time wave functions such as ϕ(t{sub 1},x{sub 1},…,t{sub N},x{sub N}) have one time variable t{sub j} for each particle. This type of wave function arises as a relativistic generalization of the wave function ψ(t,x{sub 1},…,x{sub N}) of non-relativistic quantum mechanics. We show here how a quantum field theory can be formulated in terms of multi-time wave functions. We mainly consider a particular quantum field theory that features particle creation and annihilation. Starting from the particle–position representation of state vectors in Fock space, we introduce multi-time wave functions with a variable number of time variables, set up multi-time evolution equations, and show that they are consistent. Moreover, we discuss the relation of the multi-time wave function to two other representations, the Tomonaga–Schwinger representation and the Heisenberg picture in terms of operator-valued fields on space–time. In a certain sense and under natural assumptions, we find that all three representations are equivalent; yet, we point out that the multi-time formulation has several technical and conceptual advantages. -- Highlights: •Multi-time wave functions are manifestly Lorentz-covariant objects. •We develop consistent multi-time equations with interaction for quantum field theory. •We discuss in detail a particular model with particle creation and annihilation. •We show how multi-time wave functions are related to the Tomonaga–Schwinger approach. •We show that they have a simple representation in terms of operator valued fields.
Reality in quantum mechanics, Extended Everett Concept, and consciousness
NASA Astrophysics Data System (ADS)
Mensky, M. B.
2007-09-01
Conceptual problems in quantum mechanics result from the specific quantum concept of reality and require, for their solution, including the observer’s consciousness into the quantum theory of measurements. Most naturally, this is achieved in the framework of Everett’s “many-world interpretation” of quantum mechanics. According to this interpretation, various classical alternatives are perceived by consciousness separately from each other. In the Extended Everett Concept (EEC) proposed by the present author, the separation of the alternatives is identified with the phenomenon of consciousness. This explains the classical character of the alternatives and unusual manifestations of consciousness arising “at the edge of consciousness” (i.e., in sleep or trance) when its access to “other alternative classical realities” (other Everett’s worlds) becomes feasible. Because of reversibility of quantum evolution in EEC, all time moments in the quantum world are equivalent, while the impression of flow of time appears only in consciousness. If it is assumed that consciousness may influence the probabilities of alternatives (which is consistent in case of infinitely many Everett’s worlds), EEC explains free will, “probabilistic miracles” (observing low-probability events), and decreasing entropy in the sphere of life.
Causality Is Inconsistent With Quantum Field Theory
Wolf, Fred Alan
2011-11-29
Causality in quantum field theory means the vanishing of commutators for spacelike separated fields (VCSSF). I will show that VCSSF is not tenable. For VCSSF to be tenable, and therefore, to have both retarded and advanced propagators vanish in the elsewhere, a superposition of negative energy antiparticle and positive energy particle propagators, traveling forward in time, and a superposition of negative energy particle and positive energy antiparticle propagators, traveling backward in time, are required. Hence VCSSF predicts non-vanishing probabilities for both negative energy particles in the forward-through-time direction and positive energy antiparticles in the backwards-through-time direction. Therefore, since VCSSF is unrealizable in a stable universe, tachyonic propagation must occur in denial of causality.
Quantum graphs and random-matrix theory
NASA Astrophysics Data System (ADS)
Pluhař, Z.; Weidenmüller, H. A.
2015-07-01
For simple connected graphs with incommensurate bond lengths and with unitary symmetry we prove the Bohigas-Giannoni-Schmit (BGS) conjecture in its most general form. Using supersymmetry and taking the limit of infinite graph size, we show that the generating function for every (P,Q) correlation function for both closed and open graphs coincides with the corresponding expression of random-matrix theory. We show that the classical Perron-Frobenius operator is bistochastic and possesses a single eigenvalue +1. In the quantum case that implies the existence of a zero (or massless) mode of the effective action. That mode causes universal fluctuation properties. Avoiding the saddle-point approximation we show that for graphs that are classically mixing (i.e. for which the spectrum of the classical Perron-Frobenius operator possesses a finite gap) and that do not carry a special class of bound states, the zero mode dominates in the limit of infinite graph size.
Quantum walks and discrete gauge theories
NASA Astrophysics Data System (ADS)
Arnault, Pablo; Debbasch, Fabrice
2016-05-01
A particular example is produced to prove that quantum walks can be used to simulate full-fledged discrete gauge theories. A family of two-dimensional walks is introduced and its continuous limit is shown to coincide with the dynamics of a Dirac fermion coupled to arbitrary electromagnetic fields. The electromagnetic interpretation is extended beyond the continuous limit by proving that these discrete-time quantum walks (DTQWs) exhibit an exact discrete local U(1) gauge invariance and possess a discrete gauge-invariant conserved current. A discrete gauge-invariant electromagnetic field is also constructed and that field is coupled to the conserved current by a discrete generalization of Maxwell equations. The dynamics of the DTQWs under crossed electric and magnetic fields is finally explored outside the continuous limit by numerical simulations. Bloch oscillations and the so-called E ×B drift are recovered in the weak-field limit. Localization is observed for some values of the gauge fields.
Preference reversal in quantum decision theory
Yukalov, Vyacheslav I.; Sornette, Didier
2015-01-01
We consider the psychological effect of preference reversal and show that it finds a natural explanation in the frame of quantum decision theory. When people choose between lotteries with non-negative payoffs, they prefer a more certain lottery because of uncertainty aversion. But when people evaluate lottery prices, e.g., for selling to others the right to play them, they do this more rationally, being less subject to behavioral biases. This difference can be explained by the presence of the attraction factors entering the expression of quantum probabilities. Only the existence of attraction factors can explain why, considering two lotteries with close utility factors, a decision maker prefers one of them when choosing, but evaluates higher the other one when pricing. We derive a general quantitative criterion for the preference reversal to occur that relates the utilities of the two lotteries to the attraction factors under choosing vs. pricing and test successfully its application on experiments by Tversky et al. We also show that the planning paradox can be treated as a kind of preference reversal. PMID:26500592
Can you do quantum mechanics without Einstein?
NASA Astrophysics Data System (ADS)
Kim, Y. S.; Noz, Marilyn E.
2007-02-01
The present form of quantum mechanics is based on the Copenhagen school of interpretation. Einstein did not belong to the Copenhagen school, because he did not believe in probabilistic interpretation of fundamental physical laws. This is the reason why we are still debating whether there is a more deterministic theory. One cause of this separation between Einstein and the Copenhagen school could have been that the Copenhagen physicists thoroughly ignored Einstein's main concern: the principle of relativity. Paul A. M. Dirac was the first one to realize this problem. Indeed, from 1927 to 1963, Paul A. M. Dirac published at least four papers to study the problem of making the uncertainty relation consistent with Einstein's Lorentz covariance. It is interesting to combine those papers by Dirac to make the uncertainty relation consistent with relativity. It is shown that the mathematics of two coupled oscillators enables us to carry out this job. We are then led to the question of whether the concept of localized probability distribution is consistent with Lorentz covariance.
Quantum mechanics with a quartic dispersion law
NASA Astrophysics Data System (ADS)
Ruhl, Joanna
Creation of three-dimensional matter waves, the three-dimensional analog of one-dimensional solitons, has been a goal of experimental physics for some time. A recent proposal has suggested that changing the dispersion law from quadratic to quartic for ultra cold atoms in a shaken lattice should allow for the creation of these objects. In this thesis, we develop the theoretical basis for quantum mechanics with a quartic dispersion law. The probability current functional is constructed from the corresponding time-dependent Schrodinger equation, and used to derive the junction conditions that connect the derivatives of the wavefunction on one side of a potential discontinuity to the ones on the other side. Reflection and transmission amplitudes are determined for scattering problems concerning both step potentials and rectangular barriers/wells. For sufficiently narrow barriers/wells, we show that a delta-potential constitutes a simple but reliable model for the scatterer. The scattering properties of wide barriers/wells are consistent with the predictions of the classical theory. Finally, we find the eigenstates and eigenenergies of a particle in an infinitely deep well. A simple approximate expression for the high-energy spectrum is obtained; it is found to be fully consistent with Weyl's law. Our results should aid in the development of experimental systems capable of creating and sustaining self-supporting, mobile, three-dimensional matter waves.
Quantum rotor theory of systems of spin-2 bosons
NASA Astrophysics Data System (ADS)
Payrits, Matjaž; Barnett, Ryan
2016-08-01
We consider quantum phases of tightly confined spin-2 bosons in an external field under the presence of rotationally invariant interactions. Generalizing previous treatments, we show how this system can be mapped onto a quantum rotor model. Within the rotor framework, low-energy excitations about fragmented states, which cannot be accessed within standard Bogoliubov theory, can be obtained. In the spatially extended system in the thermodynamic limit there exists a mean field ground-state degeneracy between a family of nematic states for appropriate interaction parameters. It has been established that quantum fluctuations lift this degeneracy through the mechanism of order by disorder and select either a uniaxial or square-biaxial ground state. On the other hand, in the full quantum treatment of the analogous single-spatial-mode problem with finite-particle number, it is known that, due to symmetry-restoring fluctuations, there is a unique ground state across the entire nematic region of the phase diagram. Within the established rotor framework, we investigate the possible quantum phases under the presence of a quadratic Zeeman field, a problem which has previously received little attention. By investigating wave-function overlaps, we do not find any signatures of the order-by-disorder phenomenon which is present in the continuum case. Motivated by this, we consider an alternative external potential which breaks less symmetry than the quadratic Zeeman field. For this case, we do find the phenomenon of order by disorder in the fully quantum system. This is established within the rotor framework and with exact diagonalization.
Dualities between semiclassical strings and quantum gauge field theories
NASA Astrophysics Data System (ADS)
Ouyang, Peter
In this thesis we study several examples of the correspondence between gauge field theories and string theories. A recurrent theme of these studies is that distinctively quantum mechanical behavior on the gauge theory side of the correspondence can have a classical or semiclassical description in terms of string calculations, as one might expect from general considerations of open/closed duality. We begin in Chapter 1 by reviewing the simplest duality, which relates Type IIB supergravity in AdS5 x S5 to N = 4 SU(N) gauge theory at large N. Working with this background spacetirne, we turn to a study of D-brane probes with large quantum numbers in Chapter 2. We employ semiclassical methods to compute the excitation spectrum of these D-branes, including corrections of order 1/N, which are related to loop effects in the dual field theory. In Chapter 3 we discuss the gauge/gravity duals with N = 1 supersymmetry which arise from placing D-branes at a conifold singularity. The inclusion of fractional D3-branes breaks conformal invariance, leading to a rich variety of phenomena in the gauge theory, among them chiral anomalies, a cascade of Seiberg dualities and confinement in the infrared. We pay particular attention to the chiral anomalies of the gauge theory and show that they can be described in terms of classical spontaneous symmetry breaking in the dual string theory. In accord with low-energy confinement in the field theory, almost all of the moduli of the supergravity solution are fixed; we conclude Chapter 3 with some observations on the possibility of stabilizing the volume of the compact space in which the conifold is embedded. Finally, in Chapter 4 we study versions of the conifold theory with D7-branes, which introduce fundamental matter into the gauge theory. By solving the classical supergravity equations of motion we identify a variant of the Klebanov-Strassler duality cascade where the rate of the cascade decreases as the theory flows to low energies.
Multichannel framework for singular quantum mechanics
Camblong, Horacio E.; Epele, Luis N.; Fanchiotti, Huner; García Canal, Carlos A.; Ordóñez, Carlos R.
2014-01-15
A multichannel S-matrix framework for singular quantum mechanics (SQM) subsumes the renormalization and self-adjoint extension methods and resolves its boundary-condition ambiguities. In addition to the standard channel accessible to a distant (“asymptotic”) observer, one supplementary channel opens up at each coordinate singularity, where local outgoing and ingoing singularity waves coexist. The channels are linked by a fully unitary S-matrix, which governs all possible scenarios, including cases with an apparent nonunitary behavior as viewed from asymptotic distances. -- Highlights: •A multichannel framework is proposed for singular quantum mechanics and analogues. •The framework unifies several established approaches for singular potentials. •Singular points are treated as new scattering channels. •Nonunitary asymptotic behavior is subsumed in a unitary multichannel S-matrix. •Conformal quantum mechanics and the inverse quartic potential are highlighted.
A wave equation interpolating between classical and quantum mechanics
NASA Astrophysics Data System (ADS)
Schleich, W. P.; Greenberger, D. M.; Kobe, D. H.; Scully, M. O.
2015-10-01
We derive a ‘master’ wave equation for a family of complex-valued waves {{Φ }}\\equiv R{exp}[{{{i}}S}({cl)}/{{\\hbar }}] whose phase dynamics is dictated by the Hamilton-Jacobi equation for the classical action {S}({cl)}. For a special choice of the dynamics of the amplitude R which eliminates all remnants of classical mechanics associated with {S}({cl)} our wave equation reduces to the Schrödinger equation. In this case the amplitude satisfies a Schrödinger equation analogous to that of a charged particle in an electromagnetic field where the roles of the scalar and the vector potentials are played by the classical energy and the momentum, respectively. In general this amplitude is complex and thereby creates in addition to the classical phase {S}({cl)}/{{\\hbar }} a quantum phase. Classical statistical mechanics, as described by a classical matter wave, follows from our wave equation when we choose the dynamics of the amplitude such that it remains real for all times. Our analysis shows that classical and quantum matter waves are distinguished by two different choices of the dynamics of their amplitudes rather than two values of Planck’s constant. We dedicate this paper to the memory of Richard Lewis Arnowitt—a pioneer of many-body theory, a path finder at the interface of gravity and quantum mechanics, and a true leader in non-relativistic and relativistic quantum field theory.
NASA Astrophysics Data System (ADS)
Ruggenthaler, Michael; Flick, Johannes; Pellegrini, Camilla; Appel, Heiko; Tokatly, Ilya V.; Rubio, Angel
2014-07-01
In this work, we give a comprehensive derivation of an exact and numerically feasible method to perform ab initio calculations of quantum particles interacting with a quantized electromagnetic field. We present a hierarchy of density-functional-type theories that describe the interaction of charged particles with photons and introduce the appropriate Kohn-Sham schemes. We show how the evolution of a system described by quantum electrodynamics in Coulomb gauge is uniquely determined by its initial state and two reduced quantities. These two fundamental observables, the polarization of the Dirac field and the vector potential of the photon field, can be calculated by solving two coupled, nonlinear evolution equations without the need to explicitly determine the (numerically infeasible) many-body wave function of the coupled quantum system. To find reliable approximations to the implicit functionals, we present the appropriate Kohn-Sham construction. In the nonrelativistic limit, this density-functional-type theory of quantum electrodynamics reduces to the density-functional reformulation of the Pauli-Fierz Hamiltonian, which is based on the current density of the electrons and the vector potential of the photon field. By making further approximations, e.g., restricting the allowed modes of the photon field, we derive further density-functional-type theories of coupled matter-photon systems for the corresponding approximate Hamiltonians. In the limit of only two sites and one mode we deduce the appropriate effective theory for the two-site Hubbard model coupled to one photonic mode. This model system is used to illustrate the basic ideas of a density-functional reformulation in great detail and we present the exact Kohn-Sham potentials for our coupled matter-photon model system.
Statistical mechanics based on fractional classical and quantum mechanics
Korichi, Z.; Meftah, M. T.
2014-03-15
The purpose of this work is to study some problems in statistical mechanics based on the fractional classical and quantum mechanics. At first stage we have presented the thermodynamical properties of the classical ideal gas and the system of N classical oscillators. In both cases, the Hamiltonian contains fractional exponents of the phase space (position and momentum). At the second stage, in the context of the fractional quantum mechanics, we have calculated the thermodynamical properties for the black body radiation, studied the Bose-Einstein statistics with the related problem of the condensation and the Fermi-Dirac statistics.
Two basic Uncertainty Relations in Quantum Mechanics
Angelow, Andrey
2011-04-07
In the present article, we discuss two types of uncertainty relations in Quantum Mechanics-multiplicative and additive inequalities for two canonical observables. The multiplicative uncertainty relation was discovered by Heisenberg. Few years later (1930) Erwin Schroedinger has generalized and made it more precise than the original. The additive uncertainty relation is based on the three independent statistical moments in Quantum Mechanics-Cov(q,p), Var(q) and Var(p). We discuss the existing symmetry of both types of relations and applicability of the additive form for the estimation of the total error.
Two basic Uncertainty Relations in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Angelow, Andrey
2011-04-01
In the present article, we discuss two types of uncertainty relations in Quantum Mechanics-multiplicative and additive inequalities for two canonical observables. The multiplicative uncertainty relation was discovered by Heisenberg. Few years later (1930) Erwin Schrödinger has generalized and made it more precise than the original. The additive uncertainty relation is based on the three independent statistical moments in Quantum Mechanics-Cov(q,p), Var(q) and Var(p). We discuss the existing symmetry of both types of relations and applicability of the additive form for the estimation of the total error.
Remarks on Dersarkissian's cosmic quantum mechanics
NASA Astrophysics Data System (ADS)
Massa, C.
1985-12-01
Dersarkissian (1984) has proposed a cosmic quantum mechanics (CQM) characterized by the constant hg approximately equal to 10 to the 75th ergs approximately equal to 10 to the 102nd h, where h is Planck's constant of ordinary quantum mechanics; galaxies are the elementary particles of CQM. Uncertainty arguments in CQM give a number of constraints on the masses of galaxies and thus a concrete way to test CQM. A condition that has to be satisfied for a massive body to be subject to CQM is proposed.
Quantum and concept combination, entangled measurements, and prototype theory.
Aerts, Diederik
2014-01-01
We analyze the meaning of the violation of the marginal probability law for situations of correlation measurements where entanglement is identified. We show that for quantum theory applied to the cognitive realm such a violation does not lead to the type of problems commonly believed to occur in situations of quantum theory applied to the physical realm. We briefly situate our quantum approach for modeling concepts and their combinations with respect to the notions of "extension" and "intension" in theories of meaning, and in existing concept theories. PMID:24482332
A proof of von Neumann's postulate in Quantum Mechanics
Conte, Elio
2010-05-04
A Clifford algebraic analysis is explained. It gives proof of von Neumann's postulate on quantum measurement. It is of basic significance to explain the problem of quantum wave function reduction in quantum mechanics.
What Density Functional Theory could do for Quantum Information
NASA Astrophysics Data System (ADS)
Mattsson, Ann
2015-03-01
The Hohenberg-Kohn theorem of Density Functional Theory (DFT), and extensions thereof, tells us that all properties of a system of electrons can be determined through their density, which uniquely determines the many-body wave-function. Given access to the appropriate, universal, functionals of the density we would, in theory, be able to determine all observables of any electronic system, without explicit reference to the wave-function. On the other hand, the wave-function is at the core of Quantum Information (QI), with the wave-function of a set of qubits being the central computational resource in a quantum computer. While there is seemingly little overlap between DFT and QI, reliance upon observables form a key connection. Though the time-evolution of the wave-function and associated phase information is fundamental to quantum computation, the initial and final states of a quantum computer are characterized by observables of the system. While observables can be extracted directly from a system's wave-function, DFT tells us that we may be able to intuit a method for extracting them from its density. In this talk, I will review the fundamentals of DFT and how these principles connect to the world of QI. This will range from DFT's utility in the engineering of physical qubits, to the possibility of using it to efficiently (but approximately) simulate Hamiltonians at the logical level. The apparent paradox of describing algorithms based on the quantum mechanical many-body wave-function with a DFT-like theory based on observables will remain a focus throughout. The ultimate goal of this talk is to initiate a dialog about what DFT could do for QI, in theory and in practice. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Wald, Robert M.
2011-04-01
Few, if any, issues in physics have engendered as much discussion as the measurement problem in quantum mechanics. It is generally agreed that the `normal' dynamical evolution of the state vector in quantum mechanics is given by a unitary map. The linearity of this map implies that the state vector will, in general, be found in a superposition of eigenstates of a given observable (or, similarly, that the density matrix describing a subsystem will not correspond to a definite value of this observable). However, when we make a measurement of an observable, we always obtain a define value—although it is impossible to predict with certainty which value will be obtained. The traditional response to this issue is to postulate that when a measurement is made, the wavefunction `collapses' to an eigenstate of the observable being measured, perhaps due to the inherent classicality of the measuring apparatus (Bohr), or to the consciousness of the observer (Wigner), or possibly to some modification of quantum dynamics that occurs even when observations are not being made. The main motivation for the Everett (`many worlds') interpretation is to avoid introducing any such collapse postulate. This volume commemorates the 50th anniversary of the publication of Everett's paper in 1957 and contains 20 original articles as well as the transcripts of several discussions that took place at meetings devoted to the Everett interpretation at Oxford University and the Perimeter Institute. The attractiveness of the Everett interpretation is very succinctly summarized by a sentence from Vaidman's contribution (p 582): `The collapse, with its randomness, non-locality and the lack of a well-defined moment of occurrence, is such an ugly scar on quantum theory, that I, along with many others, am ready to follow Everett and deny its existence.' But the main drawback of the interpretation is then equally succinctly stated in the next sentence: `The price is the many worlds interpretation, i
The road to matrix mechanics: II. Ladenburg’s quantum interpretation of optical dispersion
NASA Astrophysics Data System (ADS)
Crivellari, Lucio
2016-09-01
This paper reviews Ladenburg’s development of the phenomenological theory of radiative transitions between the stationary states of an atom put forward by Einstein in 1917. The historical background as well as the far reaching outcomes of his work are considered and discussed; among them the Kramers–Heisenberg quantum dispersion theory that paved the way to Heisenberg’s formulation of matrix mechanics and the quantum-mechanical calculation of the spectral line profiles.
Theory of quantum gravity beyond Einstein and space-time dynamics with quantum inflation
NASA Astrophysics Data System (ADS)
Wu, Yue-Liang
2015-10-01
large. We show a mechanism for quantum inflation caused by the quantum loop contributions. The Gravifield behaves as a Goldstone-like field that transmutes the local spinnic gauge symmetry into the global Lorentz symmetry, which makes the spinnic gauge field becomes a hidden gauge field. As a consequence, the bosonic gravitational interactions can be described by the Goldstone-like Gravimetric field and space-time gauge field. The Einstein theory of general relativity is expected to be an effective low energy theory. Two types of gravity equation are resulted, one is the extension to Einstein’s equation of general relativity, and the other is a new type of gravitational equation that characterizes the spinnon dynamics.
Quantum Bianchi Type IX Cosmology in K-Essence Theory
NASA Astrophysics Data System (ADS)
Espinoza-García, Abraham; Socorro, J.; Pimentel, Luis O.
2014-09-01
We use one of the simplest forms of the K-essence theory and apply it to the anisotropic Bianchi type IX cosmological model, with a barotropic perfect fluid modeling the usual matter content. We show that the most important contribution of the scalar field occurs during a stiff matter phase. Also, we present a canonical quantization procedure of the theory which can be simplified by reinterpreting the scalar field as an exotic part of the total matter content. The solutions to the Wheeler-DeWitt equation were found using the Bohmian formulation Bohm (Phys. Rev. 85(2):166, 1952) of quantum mechanics, employing the amplitude-real-phase approach Moncrief and Ryan (Phys. Rev. D 44:2375, 1991), where the ansatz for the wave function is of the form Ψ( ℓ μ )= χ( ϕ) W( ℓ μ ), where S is the superpotential function, which plays an important role in solving the Hamilton-Jacobi equation.
Effective field theory of quantum gravity coupled to scalar electrodynamics
NASA Astrophysics Data System (ADS)
Ibiapina Bevilaqua, L.; Lehum, A. C.; da Silva, A. J.
2016-05-01
In this work, we use the framework of effective field theory to couple Einstein’s gravity to scalar electrodynamics and determine the renormalization of the model through the study of physical processes below Planck scale, a realm where quantum mechanics and general relativity are perfectly compatible. We consider the effective field theory up to dimension six operators, corresponding to processes involving one-graviton exchange. Studying the renormalization group functions, we see that the beta function of the electric charge is positive and possesses no contribution coming from gravitational interaction. Our result indicates that gravitational corrections do not alter the running behavior of the gauge coupling constants, even if massive particles are present.
Real-time dynamics of lattice gauge theories with a few-qubit quantum computer.
Martinez, Esteban A; Muschik, Christine A; Schindler, Philipp; Nigg, Daniel; Erhard, Alexander; Heyl, Markus; Hauke, Philipp; Dalmonte, Marcello; Monz, Thomas; Zoller, Peter; Blatt, Rainer
2016-06-23
Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman's idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron-positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle-antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments-the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories. PMID:27337339
Real-time dynamics of lattice gauge theories with a few-qubit quantum computer
NASA Astrophysics Data System (ADS)
Martinez, Esteban A.; Muschik, Christine A.; Schindler, Philipp; Nigg, Daniel; Erhard, Alexander; Heyl, Markus; Hauke, Philipp; Dalmonte, Marcello; Monz, Thomas; Zoller, Peter; Blatt, Rainer
2016-06-01
Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman’s idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron–positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle–antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments—the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories.
Reality Without Realism: On the Ontological and Epistemological Architecture of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Plotnitsky, Arkady; Khrennikov, Andrei
2015-10-01
First, this article considers the nature of quantum reality (the reality responsible for quantum phenomena) and the concept of realism (our ability to represent this reality) in quantum theory, in conjunction with the roles of locality, causality, and probability and statistics there. Second, it offers two interpretations of quantum mechanics, developed by the authors of this article, the second of which is also a different (from quantum mechanics) theory of quantum phenomena. Both of these interpretations are statistical. The first interpretation, by A. Plotnitsky, "the statistical Copenhagen interpretation," is nonrealist, insofar as the description or even conception of the nature of quantum objects and processes is precluded. The second, by A. Khrennikov, is ultimately realist, because it assumes that the quantum-mechanical level of reality is underlain by a deeper level of reality, described, in a realist fashion, by a model, based in the pre-quantum classical statistical field theory, the predictions of which reproduce those of quantum mechanics. Moreover, because the continuous fields considered in this model are transformed into discrete clicks of detectors, experimental outcomes in this model depend on the context of measurement in accordance with N. Bohr's interpretation and the statistical Copenhagen interpretation, which coincides with N. Bohr's interpretation in this regard.
Twisting all the way: From classical mechanics to quantum fields
Aschieri, Paolo
2008-01-15
We discuss the effects that a noncommutative geometry induced by a Drinfeld twist has on physical theories. We systematically deform all products and symmetries of the theory. We discuss noncommutative classical mechanics, in particular its deformed Poisson bracket and hence time evolution and symmetries. The twisting is then extended to classical fields, and then to the main interest of this work: quantum fields. This leads to a geometric formulation of quantization on noncommutative space-time, i.e., we establish a noncommutative correspondence principle from *-Poisson brackets to * commutators. In particular commutation relations among creation and annihilation operators are deduced.
Foundations of Quantum Mechanics: recent developments at INRIM
Genovese, Marco; Piacentini, Fabrizio
2011-09-23
This paper's purpose is to show some experiments performed in the 'Carlo Novero' labs of the Optics Division of the National Institute of Metrological Research (INRIM, Torino, Italy) in the last years, aiming to discriminate between Standard Quantum Mechanics and some specific, restricted class of Hidden Variable Theories (HVTs).The first experiment, realized in two different configurations, will perform the Alicki - Van Ryn non-classicality test on single particles, in our specific case heralded single photons. The second experiment instead will be on the testing of two restricted Local Realistic Theories (LRTs), properly built to describe polarization entangled photons experiments, whose inequalities are not affected by the detection loophole.
Quantum processes as a mechanism in olfaction for smell recognition?
NASA Astrophysics Data System (ADS)
Brookes, Jennifer
2011-03-01
The physics of smell is not well understood. The biological processes that occur following a signalling event are well understood (Buck 1991). However, the reasons how and why a signalling event occurs when a particular smell molecule and receptor combination is made, remains un-established. Luca Turin proposes a signalling mechanism which determines smell molecules by quantum mechanics (Turin 1996). Investigation of this mechanism shows it to be physically robust (Brookes,et al, 2007), and consequences of the theory provides quantitative measurements of smell and interesting potential experiments that may determine whether the recognition of smell is a quantum event. Brookes, J.C, Hartoutsiou, F, Horsfield, A.P and Stoneham, A.M. (2007). Physical Review Letters 98, no. 3 038101 Buck, L. (1991) Cell, 65, no.1 (4): 175-187. Turin, L. (1996) Chemical Sences 21, no 6. 773-791 With many thanks to the Wellcome Trust.
Projective spatial decomposition in quantum theory
NASA Astrophysics Data System (ADS)
Gheorghiu-Svirscevschi, Speranta Nadejda
A spatial projection theoretical framework is studied for the extraction of the dynamics within a bounded spatial domain of a quantum system. The functional structure of the projected subspace of states is identified as a Sobolev Hilbert space in order to accommodate arbitrary values of the wave functions on the domain boundary. Projected fundamental observables are constructed as projected bilinear forms on the total Hilbert space and their commutation relations and equations of motion are derived. Local density limits can be retrieved for first- order differential observables, but not for most higher- order differential operators due to the occurrence of products of singular distributions. The projected evolution is shown to be a time-reversible superposition of two unitary evolutions on the total Hilbert space. The theory is then extended to many-particle systems, although it looses the projective character through averaging over identical particles. As formal applications, flux-correlation function expressions for quantum transition rates are generalized in this projective ansatz and a double-well problem is transposed onto a two-level model on projected Sobolev subspaces corresponding to the individual potential wells. The spatial projection framework is also shown to find application as a computational method intended to yield a significant reduction in size for large-scale time- dependent Schroedinger problems. A domain-projection algorithm is proposed, which iterates in time the wave function on a limited domain by constructing consistent time-dependent boundary conditions on its surface. Test results are given for a model finite-difference version.
Comparison of Classical and Quantum Mechanical Uncertainties.
ERIC Educational Resources Information Center
Peslak, John, Jr.
1979-01-01
Comparisons are made for the particle-in-a-box, the harmonic oscillator, and the one-electron atom. A classical uncertainty principle is derived and compared with its quantum-mechanical counterpart. The results are discussed in terms of the statistical interpretation of the uncertainty principle. (Author/BB)
Quantum Mechanics Studies of Cellobiose Conformations
Technology Transfer Automated Retrieval System (TEKTRAN)
Three regions of the Phi,Psi space of cellobiose were analyzed with quantum mechanics. A central region, in which most crystal structures are found, was covered by a 9 x 9 grid of 20° increments of Phi and Psi. Besides these 81 constrained minimizations, we studied two central sub-regions and two re...
A broken symmetry ontology: Quantum mechanics as a broken symmetry
Buschmann, J.E.
1988-01-01
The author proposes a new broken symmetry ontology to be used to analyze the quantum domain. This ontology is motivated and grounded in a critical epistemological analysis, and an analysis of the basic role of symmetry in physics. Concurrently, he is led to consider nonheterogeneous systems, whose logical state space contains equivalence relations not associated with the causal relation. This allows him to find a generalized principle of symmetry and a generalized symmetry-conservation formalisms. In particular, he clarifies the role of Noether's theorem in field theory. He shows how a broken symmetry ontology already operates in a description of the weak interactions. Finally, by showing how a broken symmetry ontology operates in the quantum domain, he accounts for the interpretational problem and the essential incompleteness of quantum mechanics. He proposes that the broken symmetry underlying this ontological domain is broken dilation invariance.
Quantum Squeezing of Motion in a Mechanical Resonator
NASA Astrophysics Data System (ADS)
Wollman, Emma E.
Quantum mechanics places limits on the minimum energy of a harmonic oscillator via the ever-present "zero-point" fluctuations of the quantum ground state. Through squeezing, however, it is possible to decrease the noise of a single motional quadrature below the zero-point level as long as noise is added to the orthogonal quadrature. While squeezing below the quantum noise level was achieved decades ago with light, quantum squeezing of the motion of a mechanical resonator is a more difficult prospect due to the large thermal occupations of megahertz-frequency mechanical devices even at typical dilution refrigerator temperatures of ~ 10 mK. Kronwald, Marquardt, and Clerk (2013) propose a method of squeezing a single quadrature of mechanical motion below the level of its zero-point fluctuations, even when the mechanics starts out with a large thermal occupation. The scheme operates under the framework of cavity optomechanics, where an optical or microwave cavity is coupled to the mechanics in order to control and read out the mechanical state. In the proposal, two pump tones are applied to the cavity, each detuned from the cavity resonance by the mechanical frequency. The pump tones establish and couple the mechanics to a squeezed reservoir, producing arbitrarily-large, steady-state squeezing of the mechanical motion. In this dissertation, I describe two experiments related to the implementation of this proposal in an electromechanical system. I also expand on the theory presented in Kronwald et. al. to include the effects of squeezing in the presence of classical microwave noise, and without assumptions of perfect alignment of the pump frequencies. In the first experiment, we produce a squeezed thermal state using the method of Kronwald et. al. We perform back-action evading measurements of the mechanical squeezed state in order to probe the noise in both quadratures of the mechanics. Using this method, we detect single-quadrature fluctuations at the level of 1
NASA Astrophysics Data System (ADS)
Lütkenhaus, N.; Shields, A. J.
2009-04-01
work done to date relates to point-to-point links. Another recent advance has been the development of trusted networks for QKD. This is important for further increasing the range of the technology, and for overcoming denial-of-service attacks on an individual link. It is interesting to see that the optimization of QKD devices differs for point-to-point and network applications. Network operation is essential for widespread adoption of the technology, as it can dramatically reduce the deployment costs and allow connection flexibility. Also important is the multiplexing of the quantum signals with conventional network traffic. For the future, quantum repeaters should be developed for longer range links. On the theoretical side, different approaches to security proofs have recently started to converge, offering several paradigms of the same basic idea. Our improved theoretical understanding places more stringent demands on the QKD devices. We are aware by now that finite size effects in key generation arise not only from parameter estimation. It will not be possible to generate a key from just a few hundred received signals. It is a stimulating challenge for the theory of security proofs to develop lean proof strategies that work with finite signal block sizes. As QKD advances to a real-world cryptographic solution, side channel attacks must be carefully analysed. Theoretical security proofs for QKD schemes are so far based on physical models of these devices. It is in the nature of models that any real implementation will deviate from this model, creating a potential weakness for an eavesdropper to exploit. There are two solutions to this problem: the traditional path of refining the models to reduce the deviations, or the radically different approach of device-independent security proofs, in which none or only a few well controlled assumptions about the devices are made. Clearly, it is desirable to find security proofs that require only minimal or fairly general model
Time in classical and in quantum mechanics
NASA Astrophysics Data System (ADS)
Elçi, A.
2010-07-01
This paper presents an analysis of the time concept in classical mechanics from the perspective of the invariants of a motion. The analysis shows that there is a conceptual gap concerning time in the Dirac-Heisenberg-von Neumann formalism and that Bohr's complementarity principle does not fill the gap. In the Dirac-Heisenberg-von Neumann formalism, a particle's properties are represented by Heisenberg matrices. This axiom is the source of the time problem in quantum mechanics.
Quantum mechanical studies of carbon structures
Bartelt, Norman Charles; Ward, Donald; Zhou, Xiaowang; Foster, Michael E.; Schultz, Peter A.; Wang, Bryan M.; McCarty, Kevin F.
2015-10-01
Carbon nanostructures, such as nanotubes and graphene, are of considerable interest due to their unique mechanical and electrical properties. The materials exhibit extremely high strength and conductivity when defects created during synthesis are minimized. Atomistic modeling is one technique for high resolution studies of defect formation and mitigation. To enable simulations of the mechanical behavior and growth mechanisms of C nanostructures, a high-fidelity analytical bond-order potential for the C is needed. To generate inputs for developing such a potential, we performed quantum mechanical calculations of various C structures.
On the theory of Langmuir waves in a quantum plasma
Kuzelev, M. V.
2010-04-15
Nonlinear quantum-mechanical equations are derived for Langmuir waves in an isotropic electron collisionless plasma. A general analysis of dispersion relations is carried out for complex spectra of Langmuir waves and van Kampen waves in a quantum plasma with an arbitrary electron momentum distribution. Quantum nonlinear collisionless Landau damping in Maxwellian and degenerate plasmas is studied. It is shown that collisionless damping of Langmuir waves (including zero sound) occurs in collisionless plasmas due to quantum correction in the Cherenkov absorption condition, which is a purely quantum effect. Solutions to the quantum dispersion equation are obtained for a degenerate plasma.
Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories
NASA Astrophysics Data System (ADS)
Wiese, U.-J.
2013-11-01
Abelian and non-Abelian gauge theories are of central importance in many areas of physics. In condensed matter physics, Abelian U(1) lattice gauge theories arise in the description of certain quantum spin liquids. In quantum information theory, Kitaev's toric code is a Z(2) lattice gauge theory. In particle physics, Quantum Chromodynamics (QCD), the non-Abelian SU(3) gauge theory of the strong interactions between quarks and gluons, is non-perturbatively regularized on a lattice. Quantum link models extend the concept of lattice gauge theories beyond the Wilson formulation, and are well suited for both digital and analog quantum simulation using ultracold atomic gases in optical lattices. Since quantum simulators do not suffer from the notorious sign problem, they open the door to studies of the real-time evolution of strongly coupled quantum systems, which are impossible with classical simulation methods. A plethora of interesting lattice gauge theories suggests itself for quantum simulation, which should allow us to address very challenging problems, ranging from confinement and deconfinement, or chiral symmetry breaking and its restoration at finite baryon density, to color superconductivity and the real-time evolution of heavy-ion collisions, first in simpler model gauge theories and ultimately in QCD.
Quantum Mechanical Scattering in Nanoscale Systems
NASA Astrophysics Data System (ADS)
Gianfrancesco, A. G.; Ilyashenko, A.; Boucher, C. R.; Ram-Mohan, L. R.
2012-02-01
We investigate quantum scattering using the finite element method. Unlike textbook treatments employing asymptotic boundary conditions (BCs), we use modified BCs, which permits computation close to the near-field region and reduces the Cauchy BCs to Dirichlet BCs, greatly simplifying the analysis. Scattering from any finite quantum mechanical potential can be modeled, including scattering in a finite waveguide geometry and in the open domain. Being numerical, our analysis goes beyond the Born Approximation, and the finite element approach allows us to transcend geometric constraints. Results of the formulation will be presented with several case studies, including spin dependent scattering, demonstrating the high accuracy and flexibility attained in this approach.
A Primer on Resonances in Quantum Mechanics
Rosas-Ortiz, Oscar; Fernandez-Garcia, Nicolas; Cruz y Cruz, Sara
2008-11-13
After a pedagogical introduction to the concept of resonance in classical and quantum mechanics, some interesting applications are discussed. The subject includes resonances occurring as one of the effects of radiative reaction, the resonances involved in the refraction of electromagnetic waves by a medium with a complex refractive index, and quantum decaying systems described in terms of resonant states of the energy (Gamow-Siegert functions). Some useful mathematical approaches like the Fourier transform, the complex scaling method and the Darboux transformation are also reviewed.
QUANTUM MODE-COUPLING THEORY: Formulation and Applications to Normal and Supercooled Quantum Liquids
NASA Astrophysics Data System (ADS)
Rabani, Eran; Reichman, David R.
2005-05-01
We review our recent efforts to formulate and study a mode-coupling approach to real-time dynamic fluctuations in quantum liquids. Comparison is made between the theory and recent neutron scattering experiments performed on liquid ortho-deuterium and para-hydrogen. We discuss extensions of the theory to supercooled and glassy states where quantum fluctuations compete with thermal fluctuations. Experimental scenarios for quantum glassy liquids are briefly discussed.
The emergent Copenhagen interpretation of quantum mechanics
NASA Astrophysics Data System (ADS)
Hollowood, Timothy J.
2014-05-01
We introduce a new and conceptually simple interpretation of quantum mechanics based on reduced density matrices of sub-systems from which the standard Copenhagen interpretation emerges as an effective description of macroscopically large systems. This interpretation describes a world in which definite measurement results are obtained with probabilities that reproduce the Born rule. Wave function collapse is seen to be a useful but fundamentally unnecessary piece of prudent book keeping which is only valid for macro-systems. The new interpretation lies in a class of modal interpretations in that it applies to quantum systems that interact with a much larger environment. However, we show that it does not suffer from the problems that have plagued similar modal interpretations like macroscopic superpositions and rapid flipping between macroscopically distinct states. We describe how the interpretation fits neatly together with fully quantum formulations of statistical mechanics and that a measurement process can be viewed as a process of ergodicity breaking analogous to a phase transition. The key feature of the new interpretation is that joint probabilities for the ergodic subsets of states of disjoint macro-systems only arise as emergent quantities. Finally we give an account of the EPR-Bohm thought experiment and show that the interpretation implies the violation of the Bell inequality characteristic of quantum mechanics but in a way that is rather novel. The final conclusion is that the Copenhagen interpretation gives a completely satisfactory phenomenology of macro-systems interacting with micro-systems.
Quantum Computation: Theory, Practice, and Future Prospects
NASA Astrophysics Data System (ADS)
Chuang, Isaac
2000-03-01
Information is physical, and computation obeys physical laws. Ones and zeros -- elementary classical bits of information -- must be represented in physical media to be stored and processed. Traditionally, these objects are well described by classical physics, but increasingly, as we edge towards the limits of semiconductor technology, we reach a new regime where the laws of quantum physics become dominant. Strange new phenomena, like entanglement and quantum coherence, become available as new resources. How can such resources be utilized for computation? What physical systems allow construction and control of quantum phenomena? How is this relevant to future directions in information technology? The theoretical promise of quantum computation is polynomial speedup of searches, and exponentially speedups for other certain problems such as factoring. But the experimental challenge to realize such algorithms in practice is enormous: to date, quantum computers with only a handful of quantum bits have been realized in the laboratory, using electromagnetically trapped ions, and with magnetic resonance techniques. On the other hand, quantum information has been communicated over long distances using single photons. The future of quantum computation is currently subject to intense scrutiny. It may well be that these machines will not be practical. More quantum algorithms must be discovered, and new physical implementations must be realized. Quantum computation and quantum information are young fields with major issues to be overcome, but already, they have forever changed the way we think of the physical world and what can be computed with it.
Superconvergent perturbation method in quantum mechanics
Scherer, W. )
1995-02-27
An analog of Kolmogorov's superconvergent perturbation theory in classical mechanics is constructed for self-adjoint operators. It is different from the usual Rayleigh-Schroedinger perturbation theory and yields expansions for eigenvalues and eigenvectors in terms of functions of the perturbation parameter.
Quantum game theory and open access publishing
NASA Astrophysics Data System (ADS)
Hanauske, Matthias; Bernius, Steffen; Dugall, Berndt
2007-08-01
The digital revolution of the information age and in particular the sweeping changes of scientific communication brought about by computing and novel communication technology, potentiate global, high grade scientific information for free. The arXiv, for example, is the leading scientific communication platform, mainly for mathematics and physics, where everyone in the world has free access on. While in some scientific disciplines the open access way is successfully realized, other disciplines (e.g. humanities and social sciences) dwell on the traditional path, even though many scientists belonging to these communities approve the open access principle. In this paper we try to explain these different publication patterns by using a game theoretical approach. Based on the assumption, that the main goal of scientists is the maximization of their reputation, we model different possible game settings, namely a zero sum game, the prisoners’ dilemma case and a version of the stag hunt game, that show the dilemma of scientists belonging to “non-open access communities”. From an individual perspective, they have no incentive to deviate from the Nash equilibrium of traditional publishing. By extending the model using the quantum game theory approach it can be shown, that if the strength of entanglement exceeds a certain value, the scientists will overcome the dilemma and terminate to publish only traditionally in all three settings.
Testing Quantum Mechanics and Bell's Inequality with Astronomical Observations
NASA Astrophysics Data System (ADS)
Friedman, Andrew S.; Gallicchio, Jason; Kaiser, David I.; Guth, Alan H.
2015-01-01
We propose an experiment which would leverage cosmology to test quantum mechanics using astronomical observations. Our experiment would send entangled photons to detectors over 100 kilometers apart, whose settings would be rapidly chosen using real-time telescopic observations of distant, causally disconnected, cosmic sources - such as pairs of quasars or patches of the Cosmic Microwave Background - all while the entangled pair is still in flight. This would, for the first time, close close the so-called "setting independence" or "free will" loophole in experimental tests of Bell's inequality, whereby an alternative theory could mimic the quantum predictions if the experimental settings choices shared even a small correlation with some local "hidden variables" due to unknown causal influences a mere few milliseconds prior to the experiment. Our "Cosmic Bell" experiment would push any such hidden variable conspiracy all the way back to the hot big bang, since the end of any period of inflation, 13.8 Gyr ago, an improvement of 20 orders of magnitude. We demonstrate the real world feasibility of our experimental setup. While causally disjoint patches of the cosmic microwave background radiation at redshift z ~ 1090 could be used to set the detectors, z > 3.65 quasars observed at optical wavelengths are arguably the optimal candidate source pairs using present technology. Our proposal is supported by some of the world's leading quantum experimentalists, who have begun to collaborate with us to conduct the experiment in the next 2-3 years using some of the instrumentation they have already built and used at two astronomical observatories in the Canary Islands. Such an experiment has implications for our understanding of nature at the deepest level. By testing quantum mechanics in a regime never before explored, we would at the very least extend our confidence in quantum theory, while at the same time severely constraining large classes of alternative theories. If the
Knot theory and statistical mechanics
Kauffman, L.H.
1997-01-20
This paper gives a self-contained exposition of the basic structure of quantum link invariants as state summations for a vacuum-vacuum scattering amplitude. Models of Vaughan Jones are expressed in this context. A simple proof is given that an important subset of these invariants are built from Vassiliev invariants of finite type.
NASA Technical Reports Server (NTRS)
Isaacson, D.; Marchesin, D.; Paes-Leme, P. J.
1980-01-01
This paper is an expanded version of a talk given at the 1979 T.I.C.O.M. conference. It is a self-contained introduction, for applied mathematicians and numerical analysts, to quantum mechanics and quantum field theory. It also contains a brief description of the authors' numerical approach to the problems of quantum field theory, which may best be summarized by the question; Can we compute the eigenvalues and eigenfunctions of Schrodinger operators in infinitely many variables.
Novel symmetries in N=2 supersymmetric quantum mechanical models
Malik, R.P.; Khare, Avinash
2013-07-15
We demonstrate the existence of a novel set of discrete symmetries in the context of the N=2 supersymmetric (SUSY) quantum mechanical model with a potential function f(x) that is a generalization of the potential of the 1D SUSY harmonic oscillator. We perform the same exercise for the motion of a charged particle in the X–Y plane under the influence of a magnetic field in the Z-direction. We derive the underlying algebra of the existing continuous symmetry transformations (and corresponding conserved charges) and establish its relevance to the algebraic structures of the de Rham cohomological operators of differential geometry. We show that the discrete symmetry transformations of our present general theories correspond to the Hodge duality operation. Ultimately, we conjecture that any arbitrary N=2 SUSY quantum mechanical system can be shown to be a tractable model for the Hodge theory. -- Highlights: •Discrete symmetries of two completely different kinds of N=2 supersymmetric quantum mechanical models have been discussed. •The discrete symmetries provide physical realizations of Hodge duality. •The continuous symmetries provide the physical realizations of de Rham cohomological operators. •Our work sheds a new light on the meaning of the above abstract operators.
``the Human BRAIN & Fractal quantum mechanics''
NASA Astrophysics Data System (ADS)
Rosary-Oyong, Se, Glory
In mtDNA ever retrieved from Iman Tuassoly, et.al:Multifractal analysis of chaos game representation images of mtDNA''.Enhances the price & valuetales of HE. Prof. Dr-Ing. B.J. HABIBIE's N-219, in J. Bacteriology, Nov 1973 sought:'' 219 exist as separate plasmidDNA species in E.coli & Salmonella panama'' related to ``the brain 2 distinct molecular forms of the (Na,K)-ATPase..'' & ``neuron maintains different concentration of ions(charged atoms'' thorough Rabi & Heisenber Hamiltonian. Further, after ``fractal space time are geometric analogue of relativistic quantum mechanics''[Ord], sought L.Marek Crnjac: ``Chaotic fractals at the root of relativistic quantum physics''& from famous Nottale: ``Scale relativity & fractal space-time:''Application to Quantum Physics , Cosmology & Chaotic systems'',1995. Acknowledgements to HE. Mr. H. TUK SETYOHADI, Jl. Sriwijaya Raya 3, South-Jakarta, INDONESIA.
Some aspects of the theory of quantum groups
NASA Astrophysics Data System (ADS)
Demidov, E. E.
1993-12-01
CONTENTSIntroductionChapter I. Basic constructions § 1. Definition of a Hopf algebra § 2. Two constructions of quantum semigroups § 3. Universal coacting and R-matrix algebras § 4. The quantum determinant and antipode § 5. The dimension of quantum semigroupsChapter II. Representation theory § 6. Basic concepts of representation theory § 7. The quantum flag space of \\operatorname{GL}_{P, \\mathcal Q, c}(n) § 8. The Schur algebra and complete reducibility § 9. Representations of \\operatorname{SL}_J(2) §10. The Frobenius morphismChapter III. Non-commutative differential calculus §11. The non-commutative de Rham complex of an n-dimensional vector space §12. Quantum Weyl algebras §13. The de Rham complex of a quantum groupReferences
Bosson, Maël; Grudinin, Sergei; Redon, Stephane
2013-03-01
We present a novel Block-Adaptive Quantum Mechanics (BAQM) approach to interactive quantum chemistry. Although quantum chemistry models are known to be computationally demanding, we achieve interactive rates by focusing computational resources on the most active parts of the system. BAQM is based on a divide-and-conquer technique and constrains some nucleus positions and some electronic degrees of freedom on the fly to simplify the simulation. As a result, each time step may be performed significantly faster, which in turn may accelerate attraction to the neighboring local minima. By applying our approach to the nonself-consistent Atom Superposition and Electron Delocalization Molecular Orbital theory, we demonstrate interactive rates and efficient virtual prototyping for systems containing more than a thousand of atoms on a standard desktop computer. PMID:23108532
The Physical Renormalization of Quantum Field Theories
Binger, Michael William.; /Stanford U., Phys. Dept. /SLAC
2007-02-20
The profound revolutions in particle physics likely to emerge from current and future experiments motivates an improved understanding of the precise predictions of the Standard Model and new physics models. Higher order predictions in quantum field theories inevitably requires the renormalization procedure, which makes sensible predictions out of the naively divergent results of perturbation theory. Thus, a robust understanding of renormalization is crucial for identifying and interpreting the possible discovery of new physics. The results of this thesis represent a broad set of investigations in to the nature of renormalization. The author begins by motivating a more physical approach to renormalization based on gauge-invariant Green's functions. The resulting effective charges are first applied to gauge coupling unification. This approach provides an elegant formalism for understanding all threshold corrections, and the gauge couplings unify in a more physical manner compared to the usual methods. Next, the gauge-invariant three-gluon vertex is studied in detail, revealing an interesting and rich structure. The effective coupling for the three-gluon vertex, {alpha}(k{sub 1}{sup 2}, k{sub 2}{sup 2}, k{sub 3}{sup 2}), depends on three momentum scales and gives rise to an effective scale Q{sub eff}{sup 2}(k{sub 1}{sup 2}, k{sub 2}{sup 2}, k{sub 3}{sup 2}) which governs the (sometimes surprising) behavior of the vertex. The effects of nonzero internal masses are important and have a complicated threshold and pseudo-threshold structure. The pinch-technique effective charge is also calculated to two-loops and several applications are discussed. The Higgs boson mass in Split Supersymmetry is calculated to two-loops, including all one-loop threshold effects, leading to a downward shift in the Higgs mass of a few GeV. Finally, the author discusses some ideas regarding the overall structure of perturbation theory. This thesis lays the foundation for a comprehensive multi
Response to Dr. Pashby: Time operators and POVM observables in quantum mechanics
NASA Astrophysics Data System (ADS)
Fleming, Gordon N.
2015-11-01
I argue against a general time observable in quantum mechanics except for quantum gravity theory. Then I argue in support of case specific arrival, dwell and relative time observables with a cautionary note concerning the broad approach to POVM observables because of the wild proliferation available.
ERIC Educational Resources Information Center
Cataloglu, E.; Robinett, R. W.
2002-01-01
Describes an assessment instrument designed to test conceptual and visual understanding of quantum theory, probe various aspects of student understanding of some core ideas of quantum mechanics, and investigate how students develop over the undergraduate curriculum. (Contains 52 references.) (Author/YDS)
The Double-Well Potential in Quantum Mechanics: A Simple, Numerically Exact Formulation
ERIC Educational Resources Information Center
Jelic, V.; Marsiglio, F.
2012-01-01
The double-well potential is arguably one of the most important potentials in quantum mechanics, because the solution contains the notion of a state as a linear superposition of "classical" states, a concept which has become very important in quantum information theory. It is therefore desirable to have solutions to simple double-well potentials…
Quantum mechanics on phase space and teleportation
NASA Astrophysics Data System (ADS)
Messamah, Juba; Schroeck, Franklin E.; Hachemane, Mahmoud; Smida, Abdallah; Hamici, Amel H.
2015-03-01
The formalism of quantum mechanics on phase space is used to describe the standard protocol of quantum teleportation with continuous variables in order to partially investigate the interplay between this formalism and quantum information. Instead of the Wigner quasi-probability distributions used in the standard protocol, we use positive definite true probability densities which account for unsharp measurements through a proper wave function representing a non-ideal quantum measuring device. This is based on a result of Schroeck and may be taken on any relativistic or nonrelativistic phase space. The obtained formula is similar to a known formula in quantum optics, but contains the effect of the measuring device. It has been applied in three cases. In the first case, the two measuring devices, corresponding to the two entangled parts shared by Alice and Bob, are not entangled and described by two identical Gaussian wave functions with respect to the Heisenberg group. They lead to a probability density identical to the function which is analyzed and compared with the Wigner formalism. A new expression of the teleportation fidelity for a coherent state in terms of the quadrature variances is obtained. In the second case, these two measuring devices are entangled in a two-mode squeezed vacuum state. In the third case, two Gaussian states are combined in an entangled squeezed state. The overall observation is that the state of the measuring devices shared by Alice and Bob influences the fidelity of teleportation through their unsharpness and entanglement.
Lorentz symmetry breaking as a quantum field theory regulator
Visser, Matt
2009-07-15
Perturbative expansions of quantum field theories typically lead to ultraviolet (short-distance) divergences requiring regularization and renormalization. Many different regularization techniques have been developed over the years, but most regularizations require severe mutilation of the logical foundations of the theory. In contrast, breaking Lorentz invariance, while it is certainly a radical step, at least does not damage the logical foundations of the theory. I shall explore the features of a Lorentz symmetry breaking regulator in a simple polynomial scalar field theory and discuss its implications. In particular, I shall quantify just 'how much' Lorentz symmetry breaking is required to fully regulate the quantum theory and render it finite. This scalar field theory provides a simple way of understanding many of the key features of Horava's recent article [Phys. Rev. D 79, 084008 (2009)] on 3+1 dimensional quantum gravity.
Lorentz symmetry breaking as a quantum field theory regulator
NASA Astrophysics Data System (ADS)
Visser, Matt
2009-07-01
Perturbative expansions of quantum field theories typically lead to ultraviolet (short-distance) divergences requiring regularization and renormalization. Many different regularization techniques have been developed over the years, but most regularizations require severe mutilation of the logical foundations of the theory. In contrast, breaking Lorentz invariance, while it is certainly a radical step, at least does not damage the logical foundations of the theory. I shall explore the features of a Lorentz symmetry breaking regulator in a simple polynomial scalar field theory and discuss its implications. In particular, I shall quantify just “how much” Lorentz symmetry breaking is required to fully regulate the quantum theory and render it finite. This scalar field theory provides a simple way of understanding many of the key features of Hořava’s recent article [Phys. Rev. DPRVDAQ1550-7998 79, 084008 (2009)10.1103/PhysRevD.79.084008] on 3+1 dimensional quantum gravity.
BOOK REVIEW: Decoherence and the Appearance of a Classical World in Quantum Theory
NASA Astrophysics Data System (ADS)
Alicki, R.
2004-02-01
In the last decade decoherence has become a very popular topic mainly due to the progress in experimental techniques which allow monitoring of the process of decoherence for single microscopic or mesoscopic systems. The other motivation is the rapid development of quantum information and quantum computation theory where decoherence is the main obstacle in the implementation of bold theoretical ideas. All that makes the second improved and extended edition of this book very timely. Despite the enormous efforts of many authors decoherence with its consequences still remains a rather controversial subject. It touches on, namely, the notoriously confusing issues of quantum measurement theory and interpretation of quantum mechanics. The existence of different points of view is reflected by the structure and content of the book. The first three authors (Joos, Zeh and Kiefer) accept the standard formalism of quantum mechanics but seem to reject orthodox Copenhagen interpretation, Giulini and Kupsch stick to both while Stamatescu discusses models which go beyond the standard quantum theory. Fortunately, most of the presented results are independent of the interpretation and the mathematical formalism is common for the (meta)physically different approaches. After a short introduction by Joos followed by a more detailed review of the basic concepts by Zeh, chapter 3 (the longest chapter) by Joos is devoted to the environmental decoherence. Here the author considers mostly rather `down to earth' and well-motivated mechanisms of decoherence through collisions with atoms or molecules and the processes of emission, absorption and scattering of photons. The issues of decoherence induced superselection rules and localization of objects including the possible explanation of the molecular structure are discussed in details. Many other topics are also reviewed in this chapter, e.g., the so-called Zeno effect, relationships between quantum chaos and decoherence, the role of
Quantum theory and human perception of the macro-world.
Aerts, Diederik
2014-01-01
We investigate the question of 'why customary macroscopic entities appear to us humans as they do, i.e., as bounded entities occupying space and persisting through time', starting from our knowledge of quantum theory, how it affects the behavior of such customary macroscopic entities, and how it influences our perception of them. For this purpose, we approach the question from three perspectives. Firstly, we look at the situation from the standard quantum angle, more specifically the de Broglie wavelength analysis of the behavior of macroscopic entities, indicate how a problem with spin and identity arises, and illustrate how both play a fundamental role in well-established experimental quantum-macroscopical phenomena, such as Bose-Einstein condensates. Secondly, we analyze how the question is influenced by our result in axiomatic quantum theory, which proves that standard quantum theory is structurally incapable of describing separated entities. Thirdly, we put forward our new 'conceptual quantum interpretation', including a highly detailed reformulation of the question to confront the new insights and views that arise with the foregoing analysis. At the end of the final section, a nuanced answer is given that can be summarized as follows. The specific and very classical perception of human seeing-light as a geometric theory-and human touching-only ruled by Pauli's exclusion principle-plays a role in our perception of macroscopic entities as ontologically stable entities in space. To ascertain quantum behavior in such macroscopic entities, we will need measuring apparatuses capable of its detection. Future experimental research will have to show if sharp quantum effects-as they occur in smaller entities-appear to be ontological aspects of customary macroscopic entities. It remains a possibility that standard quantum theory is an incomplete theory, and hence incapable of coping ultimately with separated entities, meaning that a more general theory will be needed
Quantum Theory of Hyperfine Structure Transitions in Diatomic Molecules.
ERIC Educational Resources Information Center
Klempt, E.; And Others
1979-01-01
Described is an advanced undergraduate laboratory experiment in which radio-frequency transitions between molecular hyperfine structure states may be observed. Aspects of the quantum theory applied to the analysis of this physical system, are discussed. (Authors/BT)
Strategic leadership: a view from quantum and chaos theories.
McDaniel, R R
1997-01-01
Viewing health care from the perspective of chaos and quantum theories offers new insights into management techniques for effective and efficient delivery of health care services. This article introduces these concepts and gives specific prescriptions for managerial action. PMID:9058085
Information Theory Density Matrix for a Simple Quantum System.
ERIC Educational Resources Information Center
Titus, William J.
1979-01-01
Derives the density matrix that best describes, according to information theory, a one-dimensional single particle quantum system when the only information available is the values for the linear and quadratic position-momentum moments. (Author/GA)
Nonequilibrium GREEN’S Functions for High-Field Quantum Transport Theory
NASA Astrophysics Data System (ADS)
Bertoncini, Rita
A formulation of the Kadanoff-Baym-Keldysh theory of nonequilibrium quantum statistical mechanics is developed in order to describe nonperturbatively the effects of the electric field on electron-phonon scattering in nondegenerate semiconductors. We derive an analytic, gauge-invariant model for the spectral density of energy states that accounts for both intracollisional field effect and collisional broadening simultaneously. A kinetic equation for the quantum distribution function is derived and solved numerically. The nonlinear drift velocity versus applied field characteristics is also evaluated numerically. Many features of our nonlinear theory bear formal resemblance to linear-response theory.
NASA Astrophysics Data System (ADS)
Aspelmeyer, Markus; Schwab, Keith
2008-09-01
The last five years have witnessed an amazing development in the field of nano- and micromechanics. What was widely considered fantasy ten years ago is about to become an experimental reality: the quantum regime of mechanical systems is within reach of current experiments. Two factors (among many) have contributed significantly to this situation. As part of the widespread effort into nanoscience and nanofabrication, it is now possible to produce high-quality nanomechanical and micromechanical resonators, spanning length scales of millimetres to nanometres, and frequencies from kilohertz to gigahertz. Researchers coupled these mechanical elements to high-sensitivity actuation and readout systems such as single-electron transistors, quantum dots, atomic point contacts, SQUID loops, high-finesse optical or microwave-cavities etc. Some of these ultra-sensitive readout schemes are in principle capable of detection at the quantum limit and a large part of the experimental effort is at present devoted to achieving this. On the other hand, the fact that the groups working in the field come from various different physics backgrounds—the authors of this editorial are a representative sample—has been a constant source of inspiration for helpful theoretical and experimental tools that have been adapted from other fields to the mechanical realm. To name just one example: ideas from quantum optics have led to the recent demonstration (both in theory and experiment) that coupling a mechanical resonator to a high-finesse optical cavity can be fully analogous to the well-known sideband-resolved laser cooling of ions and hence is capable in principle of cooling a mechanical mode into its quantum ground state. There is no doubt that such interdisciplinarity has been a crucial element for the development of the field. It is interesting to note that a very similar sociological phenomenon occurred earlier in the quantum information community, an area which is deeply enriched by the
Applications of computational quantum mechanics
NASA Astrophysics Data System (ADS)
Temel, Burcin
This original research dissertation is composed of a new numerical technique based on Chebyshev polynomials that is applied on scattering problems, a phenomenological kinetics study for CO oxidation on RuO2 surface, and an experimental study on methanol coupling with doped metal oxide catalysts. Minimum Error Method (MEM), a least-squares minimization method, provides an efficient and accurate alternative to solve systems of ordinary differential equations. Existing methods usually utilize matrix methods which are computationally costful. MEM, which is based on the Chebyshev polynomials as a basis set, uses the recursion relationships and fast Chebyshev transforms which scale as O(N). For large basis set calculations this provides an enormous computational efficiency in the calculations. Chebyshev polynomials are also able to represent non-periodic problems very accurately. We applied MEM on elastic and inelastic scattering problems: it is more efficient and accurate than traditionally used Kohn variational principle, and it also provides the wave function in the interaction region. Phenomenological kinetics (PK) is widely used in industry to predict the optimum conditions for a chemical reaction. PK neglects the fluctuations, assumes no lateral interactions, and considers an ideal mix of reactants. The rate equations are tested by fitting the rate constants to the results of the experiments. Unfortunately, there are numerous examples where a fitted mechanism was later shown to be erroneous. We have undertaken a thorough comparison between the phenomenological equations and the results of kinetic Monte Carlo (KMC) simulations performed on the same system. The PK equations are qualitatively consistent with the KMC results but are quantitatively erroneous as a result of interplays between the adsorption and desorption events. The experimental study on methanol coupling with doped metal oxide catalysts demonstrates the doped metal oxides as a new class of catalysts
Comment on 'Nonlocality, Counterfactuals and Quantum Mechanics'
Stapp, H.P.
1999-04-14
A recent proof [H. P. Stapp, Am. J. Phys. 65, 300 (1997)], formulated in the symbolic language of modal logic, claims to show that contemporary quantum theory, viewed as a set of rules that allow us to calculate statistical predictions among certain kinds of observations, cannot be imbedded in any rational framework that conforms to the principles that (1) the experimenters' choices of which experiments they will perform can be considered to be free choices, (2) outcomes of measurements are unique, and (3) the free choices just mentioned have no backward-in-time effects of any kind. This claim is similar to Bell's theorem, but much stronger, because no reality assumption alien to quantum philosophy is used. The paper being commented on [W. Unruh, Phys. Rev. A 59, 126 (1999)] argues that some such reality assumption has been ''smuggled'' in. That argument is examined here and shown, I believe, to be defective.
Theory and Applications of Quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Deible, Michael John
With the development of peta-scale computers and exa-scale only a few years away, the quantum Monte Carlo (QMC) method, with favorable scaling and inherent parrallelizability, is poised to increase its impact on the electronic structure community. The most widely used variation of QMC is the diffusion Monte Carlo (DMC) method. The accuracy of the DMC method is only limited by the trial wave function that it employs. The effect of the trial wave function is studied here by initially developing correlation-consistent Gaussian basis sets for use in DMC calculations. These basis sets give a low variance in variance Monte Carlo calculations and improved convergence in DMC. The orbital type used in the trial wave function is then investigated, and it is shown that Brueckner orbitals result in a DMC energy comparable to a DMC energy with orbitals from density functional theory and significantly lower than orbitals from Hartree-Fock theory. Three large weakly interacting systems are then studied; a water-16 isomer, a methane clathrate, and a carbon dioxide clathrate. The DMC method is seen to be in good agreement with MP2 calculations and provides reliable benchmarks. Several strongly correlated systems are then studied. An H4 model system that allows for a fine tuning of the multi-configurational character of the wave function shows when the accuracy of the DMC method with a single Slater-determinant trial function begins to deviate from multi-reference benchmarks. The weakly interacting face-to-face ethylene dimer is studied with and without a rotation around the pi bond, which is used to increase the multi-configurational nature of the wave function. This test shows that the effect of a multi-configurational wave function in weakly interacting systems causes DMC with a single Slater-determinant to be unable to achieve sub-chemical accuracy. The beryllium dimer is studied, and it is shown that a very large determinant expansion is required for DMC to predict a binding
Betting on the outcomes of measurements: a Bayesian theory of quantum probability
NASA Astrophysics Data System (ADS)
Pitowsky, Itamar
We develop a systematic approach to quantum probability as a theory of rational betting in quantum gambles. In these games of chance, the agent is betting in advance on the outcomes of several (finitely many) incompatible measurements. One of the measurements is subsequently chosen and performed and the money placed on the other measurements is returned to the agent. We show how the rules of rational betting imply all the interesting features of quantum probability, even in such finite gambles. These include the uncertainty principle and the violation of Bell's inequality among others. Quantum gambles are closely related to quantum logic and provide a new semantics for it. We conclude with a philosophical discussion on the interpretation of quantum mechanics.
Diffeomorphism groups and nonlinear quantum mechanics
NASA Astrophysics Data System (ADS)
Goldin, Gerald A.
2012-02-01
This talk is dedicated to my friend and collaborator, Prof. Dr. Heinz-Dietrich Doebner, on the occasion of his 80th birthday. I shall review some highlights of the approach we have taken in deriving and interpreting an interesting class of nonlinear time-evolution equations for quantum-mechanical wave functions, with few equations; more detail may be found in the references. Then I shall comment on the corresponding hydrodynamical description.
Covariant quantum mechanics applied to noncommutative geometry
NASA Astrophysics Data System (ADS)
Astuti, Valerio
2015-08-01
We here report a result obtained in collaboration with Giovanni Amelino-Camelia, first shown in the paper [1]. Applying the manifestly covariant formalism of quantum mechanics to the much studied Snyder spacetime [2] we show how it is trivial in every physical observables, this meaning that every measure in this spacetime gives the same results that would be obtained in the flat Minkowski spacetime.
The interpretation of quantum mechanics through1935
NASA Astrophysics Data System (ADS)
Cushing, J. T.
2000-11-01
I first define what I mean by the term interpretation, then trace some of the major developments in attempts to fashion an interpretation of quantum mechanics from its early mathematical formulation (ca. 1925) up through the Einstein-Podolsky-Rosen paper, Bohr's response to it, and Schrödinger's insights on entanglement, in 1935. In the process, I question some of the conventional wisdom about how a unified interpretation emerged.
Collocation method for fractional quantum mechanics
Amore, Paolo; Hofmann, Christoph P.; Saenz, Ricardo A.; Fernandez, Francisco M.
2010-12-15
We show that it is possible to obtain numerical solutions to quantum mechanical problems involving a fractional Laplacian, using a collocation approach based on little sinc functions, which discretizes the Schroedinger equation on a uniform grid. The different boundary conditions are naturally implemented using sets of functions with the appropriate behavior. Good convergence properties are observed. A comparison with results based on a Wentzel-Kramers-Brillouin analysis is performed.
Quantum theory and human perception of the macro-world
Aerts, Diederik
2014-01-01
We investigate the question of ‘why customary macroscopic entities appear to us humans as they do, i.e., as bounded entities occupying space and persisting through time’, starting from our knowledge of quantum theory, how it affects the behavior of such customary macroscopic entities, and how it influences our perception of them. For this purpose, we approach the question from three perspectives. Firstly, we look at the situation from the standard quantum angle, more specifically the de Broglie wavelength analysis of the behavior of macroscopic entities, indicate how a problem with spin and identity arises, and illustrate how both play a fundamental role in well-established experimental quantum-macroscopical phenomena, such as Bose-Einstein condensates. Secondly, we analyze how the question is influenced by our result in axiomatic quantum theory, which proves that standard quantum theory is structurally incapable of describing separated entities. Thirdly, we put forward our new ‘conceptual quantum interpretation’, including a highly detailed reformulation of the question to confront the new insights and views that arise with the foregoing analysis. At the end of the final section, a nuanced answer is given that can be summarized as follows. The specific and very classical perception of human seeing—light as a geometric theory—and human touching—only ruled by Pauli's exclusion principle—plays a role in our perception of macroscopic entities as ontologically stable entities in space. To ascertain quantum behavior in such macroscopic entities, we will need measuring apparatuses capable of its detection. Future experimental research will have to show if sharp quantum effects—as they occur in smaller entities—appear to be ontological aspects of customary macroscopic entities. It remains a possibility that standard quantum theory is an incomplete theory, and hence incapable of coping ultimately with separated entities, meaning that a more general
A short course on quantum mechanics and methods of quantization
NASA Astrophysics Data System (ADS)
Ercolessi, Elisa
2015-07-01
These notes collect the lectures given by the author to the "XXIII International Workshop on Geometry and Physics" held in Granada (Spain) in September 2014. The first part of this paper aims at introducing a mathematical oriented reader to the realm of Quantum Mechanics (QM) and then to present the geometric structures that underline the mathematical formalism of QM which, contrary to what is usually done in Classical Mechanics (CM), are usually not taught in introductory courses. The mathematics related to Hilbert spaces and Differential Geometry are assumed to be known by the reader. In the second part, we concentrate on some quantization procedures, that are founded on the geometric structures of QM — as we have described them in the first part — and represent the ones that are more operatively used in modern theoretical physics. We will discuss first the so-called Coherent State Approach which, mainly complemented by "Feynman Path Integral Technique", is the method which is most widely used in quantum field theory. Finally, we will describe the "Weyl Quantization Approach" which is at the origin of modern tomographic techniques, originally used in optics and now in quantum information theory.
Memories of Crisis: Bohr, Kuhn, and the Quantum Mechanical ``Revolution''
NASA Astrophysics Data System (ADS)
Seth, Suman
2013-04-01
``The history of science, to my knowledge,'' wrote Thomas Kuhn, describing the years just prior to the development of matrix and wave mechanics, ``offers no equally clear, detailed, and cogent example of the creative functions of normal science and crisis.'' By 1924, most quantum theorists shared a sense that there was much wrong with all extant atomic models. Yet not all shared equally in the sense that the failure was either terribly surprising or particularly demoralizing. Not all agreed, that is, that a crisis for Bohr-like models was a crisis for quantum theory. This paper attempts to answer four questions: two about history, two about memory. First, which sub-groups of the quantum theoretical community saw themselves and their field in a state of crisis in the early 1920s? Second, why did they do so, and how was a sense of crisis related to their theoretical practices in physics? Third, do we regard the years before 1925 as a crisis because they were followed by the quantum mechanical revolution? And fourth, to reverse the last question, were we to call into the question the existence of a crisis (for some at least) does that make a subsequent revolution less revolutionary?
Quantum theory of cholesteric liquid crystals
NASA Astrophysics Data System (ADS)
Issaenko, Sergei A.
A long standing and central problem in cholesteric liquid crystals is to relate the macroscopic pitch to the underlying microscopic interactions. These interactions are of two types which we call quantum (dispersion) and classical. Here we show that, contrary to common belief, intermolecular biaxial correlations usually play an important role for dispersion forces. To understand the microscopic picture of cholesteric liquid crystal we first analyze the effective chiral interaction between molecules arising front long-range quantum interactions between fluctuating charge moments in terms of a simple model of a chiral molecule. This model is based on the approximations that (a) the dominant excited states of a molecule form a band whose width is small compared to the average energy of excitation above the ground state and (b) biaxial orientational correlation between adjacent molecules can be neglected. We consider a system consisted of elongated molecules and, although we invoke the expansion in terms of coordinates transverse to the long axis of constituent molecules, we treat the longitudinal coordinate exactly. We identify two distinct physical limits depending on whether one or both of the interacting molecules are excited in the virtual state. The two-molecule interaction can be interpreted in terms of a superposition of pairwise interactions between individual atoms (or local chiral centers) on a chiral molecule and centers of anisotropic part of polarizability on the other molecule, while the one-molecule term involves three-body interactions between two local dipole moments of a chiral molecule and centers of anisotropic part of polarizability on the other, possibly nonchiral molecule. The numerical estimates of the pitch appeared from the above mechanism even without the Taylor expansion of the potential turns out to be considerably larger than experimental results and so it appears that the mean field treatment of these interactions can be used only in
A model of the measurement process in quantum theory
NASA Astrophysics Data System (ADS)
Diel, H. H.
2015-07-01
The so-called measurement problem of quantum theory (QT) is still lacking a satisfactory, or at least widely agreed upon, solution. A number of theories, known as interpretations of quantum theory, have been proposed and found differing acceptance among physicists. Most of the proposed theories try to explain what happens during a QT measurement using a modification of the declarative equations that define the possible results of a measurement of QT observables or by making assumptions outside the scope of falsifiable physics. This paper proposes a solution to the QT measurement problem in terms of a model of the process for the evolution of two QT systems that interact in a way that represents a measurement. The model assumes that the interactions between the measured QT object and the measurement apparatus are ’’normal” interactions which adhere to the laws of quantum field theory.
Quantum mechanics, gravity and modified quantization relations.
Calmet, Xavier
2015-08-01
In this paper, we investigate a possible energy scale dependence of the quantization rules and, in particular, from a phenomenological point of view, an energy scale dependence of an effective [Formula: see text] (reduced Planck's constant). We set a bound on the deviation of the value of [Formula: see text] at the muon scale from its usual value using measurements of the anomalous magnetic moment of the muon. Assuming that inflation has taken place, we can conclude that nature is described by a quantum theory at least up to an energy scale of about 10(16) GeV. PMID:26124253
A quantum-mechanical relaxation model
NASA Astrophysics Data System (ADS)
Skomski, R.; Kashyap, A.; Sellmyer, D. J.
2012-04-01
The atomic origin of micromagnetic damping is investigated by developing and solving a quantum-mechanical relaxation model. A projection-operator technique is used to derive an analytical expression for the relaxation time as a function of the heat-bath and interaction parameters. The present findings are consistent with earlier research beyond the Landau-Lifshitz-Gilbert (LLG) equation and show that the underlying relaxation mechanism is very general. Zermelo's recurrence paradox means that there is no true irreversibility in non-interacting nanoparticles, but the corresponding recurrence times are very long and can be ignored in many cases.
Cosmology from group field theory formalism for quantum gravity.
Gielen, Steffen; Oriti, Daniele; Sindoni, Lorenzo
2013-07-19
We identify a class of condensate states in the group field theory (GFT) formulation of quantum gravity that can be interpreted as macroscopic homogeneous spatial geometries. We then extract the dynamics of such condensate states directly from the fundamental quantum GFT dynamics, following the procedure used in ordinary quantum fluids. The effective dynamics is a nonlinear and nonlocal extension of quantum cosmology. We also show that any GFT model with a kinetic term of Laplacian type gives rise, in a semiclassical (WKB) approximation and in the isotropic case, to a modified Friedmann equation. This is the first concrete, general procedure for extracting an effective cosmological dynamics directly from a fundamental theory of quantum geometry. PMID:23909305
Role of information theoretic uncertainty relations in quantum theory
NASA Astrophysics Data System (ADS)
Jizba, Petr; Dunningham, Jacob A.; Joo, Jaewoo
2015-04-01
Uncertainty relations based on information theory for both discrete and continuous distribution functions are briefly reviewed. We extend these results to account for (differential) Rényi entropy and its related entropy power. This allows us to find a new class of information-theoretic uncertainty relations (ITURs). The potency of such uncertainty relations in quantum mechanics is illustrated with a simple two-energy-level model where they outperform both the usual Robertson-Schrödinger uncertainty relation and Shannon entropy based uncertainty relation. In the continuous case the ensuing entropy power uncertainty relations are discussed in the context of heavy tailed wave functions and Schrödinger cat states. Again, improvement over both the Robertson-Schrödinger uncertainty principle and Shannon ITUR is demonstrated in these cases. Further salient issues such as the proof of a generalized entropy power inequality and a geometric picture of information-theoretic uncertainty relations are also discussed.
Role of information theoretic uncertainty relations in quantum theory
Jizba, Petr; Dunningham, Jacob A.; Joo, Jaewoo
2015-04-15
Uncertainty relations based on information theory for both discrete and continuous distribution functions are briefly reviewed. We extend these results to account for (differential) Rényi entropy and its related entropy power. This allows us to find a new class of information-theoretic uncertainty relations (ITURs). The potency of such uncertainty relations in quantum mechanics is illustrated with a simple two-energy-level model where they outperform both the usual Robertson–Schrödinger uncertainty relation and Shannon entropy based uncertainty relation. In the continuous case the ensuing entropy power uncertainty relations are discussed in the context of heavy tailed wave functions and Schrödinger cat states. Again, improvement over both the Robertson–Schrödinger uncertainty principle and Shannon ITUR is demonstrated in these cases. Further salient issues such as the proof of a generalized entropy power inequality and a geometric picture of information-theoretic uncertainty relations are also discussed.
Can We Describe Biological Systems with Quantum Mechanics?
NASA Astrophysics Data System (ADS)
Granados-Ramírez, C. G.; Benítez-Cardoza, C. G.; Carbajal-Tinoco, M. D.
2016-03-01
Quantum Mechanics is the favourite theory to predict the structure of any group of atoms, including biological molecules. Due to numerous difficulties, however, it is necessary to introduce a series of approximations to overcome such impediments. We present a coarse-grained model of circular dichroism (CD) that is based on the theory of optical activity, developed by DeVoe, in order to predict CD spectra. In first stage, we determine the polarisability of individual monomers (residues, in the case of peptides) from experiments of molar absorptivity. The complex polarisabilities are used together with peptide structures obtained by density functional theory and other methods to determine their corresponding CD spectra, which are in reasonable agreement with their experimental counterparts.
Formalism and applications of decohering histories in quantum mechanics
NASA Astrophysics Data System (ADS)
Chisolm, Eric Dewayne
Quantum mechanics possesses a nonintuitive feature which makes it difficult to interpret consistently: A generic quantum state can not be thought of as a classical statistical ensemble. Empirically, however, some things do behave as classical ensembles; for example, a measurement process produces a statistical ensemble of results, although a simple quantum mechanical calculation fails to verify this. The same could be said of everything in the ``classical'' world of our experience, where quantum effects are completely absent but it is not clear why. A formalism for systematically expressing these interference effects, developed by Griffiths, Omnés, and Gell-Mann and Hartle, is called the decohering histories formulation of quantum mechanics, and its fundamental notions are histories (sequences of events at a succession of times) and a decoherence functional, which measures the interference between histories. They suggest that quantum mechanics is properly thought of as a theory of closed systems in which only histories that diagonalize the decoherence functional actually occur, guaranteeing the absence of interference. I first explain why such a formalism is even necessary by deriving the most general form for an interference term and explaining why these terms pose an interpretive problem; then I describe the decoherence formulation. Next I consider decoherence as a geometrical condition in the space of linear operators on a Hilbert space; I use it to discuss exhaustively the types of decohering histories allowed in a finite dimensional state space, and I conclude that they cannot describe complicated stochastic processes. I also comment on the consequences of these results for systems with larger Hilbert spaces. Then I discuss attempts to demonstrate that decoherence occurs dynamically in the macroscopic world and in measurement situations; I exhibit a simple model of my own and I discuss the results of others, and I conclude that the calculations that are