These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Biological applications of hybrid quantum mechanics/molecular mechanics calculation.  

PubMed

Since in most cases biological macromolecular systems including solvent water molecules are remarkably large, the computational costs of performing ab initio calculations for the entire structures are prohibitive. Accordingly, QM calculations that are jointed with MM calculations are crucial to evaluate the long-range electrostatic interactions, which significantly affect the electronic structures of biological macromolecules. A UNIX-shell-based interface program connecting the quantum mechanics (QMs) and molecular mechanics (MMs) calculation engines, GAMESS and AMBER, was developed in our lab. The system was applied to a metalloenzyme, azurin, and PU.1-DNA complex; thereby, the significance of the environmental effects on the electronic structures of the site of interest was elucidated. Subsequently, hybrid QM/MM molecular dynamics (MD) simulation using the calculation system was employed for investigation of mechanisms of hydrolysis (editing reaction) in leucyl-tRNA synthetase complexed with the misaminoacylated tRNA(Leu), and a novel mechanism of the enzymatic reaction was revealed. Thus, our interface program can play a critical role as a powerful tool for state-of-the-art sophisticated hybrid ab initio QM/MM MD simulations of large systems, such as biological macromolecules. PMID:22536015

Kang, Jiyoung; Hagiwara, Yohsuke; Tateno, Masaru

2012-01-01

2

Catalytic mechanism of RNA backbone cleavage by ribonuclease H from quantum mechanics/molecular mechanics simulations.  

PubMed

We use quantum mechanics/molecular mechanics simulations to study the cleavage of the ribonucleic acid (RNA) backbone catalyzed by ribonuclease H. This protein is a prototypical member of a large family of enzymes that use two-metal catalysis to process nucleic acids. By combining Hamiltonian replica exchange with a finite-temperature string method, we calculate the free energy surface underlying the RNA-cleavage reaction and characterize its mechanism. We find that the reaction proceeds in two steps. In a first step, catalyzed primarily by magnesium ion A and its ligands, a water molecule attacks the scissile phosphate. Consistent with thiol-substitution experiments, a water proton is transferred to the downstream phosphate group. The transient phosphorane formed as a result of this nucleophilic attack decays by breaking the bond between the phosphate and the ribose oxygen. In the resulting intermediate, the dissociated but unprotonated leaving group forms an alkoxide coordinated to magnesium ion B. In a second step, the reaction is completed by protonation of the leaving group, with a neutral Asp132 as a likely proton donor. The overall reaction barrier of ?15 kcal mol(-1), encountered in the first step, together with the cost of protonating Asp132, is consistent with the slow measured rate of ?1-100/min. The two-step mechanism is also consistent with the bell-shaped pH dependence of the reaction rate. The nonmonotonic relative motion of the magnesium ions along the reaction pathway agrees with X-ray crystal structures. Proton-transfer reactions and changes in the metal ion coordination emerge as central factors in the RNA-cleavage reaction. PMID:21539371

Rosta, Edina; Nowotny, Marcin; Yang, Wei; Hummer, Gerhard

2011-06-15

3

A density-based adaptive quantum mechanical/molecular mechanical method.  

PubMed

We present a density-based adaptive quantum mechanical/molecular mechanical (DBA-QM/MM) method, whereby molecules can switch layers from the QM to the MM region and vice versa. The adaptive partitioning of the molecular system ensures that the layer assignment can change during the optimization procedure, that is, on the fly. The switch from a QM molecule to a MM molecule is determined if there is an absence of noncovalent interactions to any atom of the QM core region. The presence/absence of noncovalent interactions is determined by analysis of the reduced density gradient. Therefore, the location of the QM/MM boundary is based on physical arguments, and this neatly removes some empiricism inherent in previous adaptive QM/MM partitioning schemes. The DBA-QM/MM method is validated by using a water-in-water setup and an explicitly solvated L-alanyl-L-alanine dipeptide. PMID:24954803

Waller, Mark P; Kumbhar, Sadhana; Yang, Jack

2014-10-20

4

Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology.  

PubMed

Computational enzymology is a rapidly maturing field that is increasingly integral to understanding mechanisms of enzyme-catalyzed reactions and their practical applications. Combined quantum mechanics/molecular mechanics (QM/MM) methods are important in this field. By treating the reacting species with a quantum mechanical method (i.e., a method that calculates the electronic structure of the active site) and including the enzyme environment with simpler molecular mechanical methods, enzyme reactions can be modeled. Here, we review QM/MM methods and their application to enzyme-catalyzed reactions to investigate fundamental and practical problems in enzymology. A range of QM/MM methods is available, from cheaper and more approximate methods, which can be used for molecular dynamics simulations, to highly accurate electronic structure methods. We discuss how modeling of reactions using such methods can provide detailed insight into enzyme mechanisms and illustrate this by reviewing some recent applications. We outline some practical considerations for such simulations. Further, we highlight applications that show how QM/MM methods can contribute to the practical development and application of enzymology, e.g., in the interpretation and prediction of the effects of mutagenesis and in drug and catalyst design. PMID:23557014

van der Kamp, Marc W; Mulholland, Adrian J

2013-04-23

5

Quantum mechanical/molecular mechanical (QM/MM) docking: an evaluation for known test systems  

NASA Astrophysics Data System (ADS)

A combined quantum mechanical/molecular mechanical (QM/MM) docking approach for the investigation of protein-inhibitor complexes is presented. Starting points for QM/MM optimizations are generated with AutoDock. The subsequent semiempirical AM1 QM/MM optimization of the complex obtained by the docking procedure gives a more detailed description of the binding mode and the electronic properties of the ligand. As we use a flexible protein environment in the QM/MM optimizations, we are able to simulate limited structural changes of the enzyme upon binding a ligand, even within a simple geometry optimization. The method was validated using a set of structurally known protein-inhibitor complexes, whose crystallographic data were taken from the Protein Data Bank. In addition to protein structures taken directly from complexes with the inhibitors, structures of uncomplexed HIV-1-protease and thrombin were also used successfully for QM/MM docking experiments. By comparing the resulting structures with those obtained using protein structures from protein-inhibitor complexes, we find that the method is able to simulate the effect of the induced fit when a simple optimization is adequate to reproduce the protein movement. Describing the ligand quantum mechanically gives a detailed view of its electronic properties, for example its polarization within the active site of the enzyme. This study suggests strongly that a QM/MM molecular dynamics approach will be able to simulate the induced fit in general cases.

Beierlein, Frank; Lanig, Harald; Schürer, Gudrun; Horn, Anselm H. C.; Clark, Timothy

6

Quantum Mechanical/Molecular Mechanical Studies on Spectral Tuning Mechanisms of Visual Pigments and Other Photoactive Proteins†  

PubMed Central

The protein environments surrounding the retinal tune electronic absorption maximum from 350 to 630 nm. Hybrid quantum mechanical/molecular mechanical (QM/MM) methods can be used in calculating excitation energies of retinal in its native protein environments and in studying the molecular basis of spectral tuning. We hereby review recent QM/MM results on the phototransduction of bovine rhodopsin, bacteriorhodopsin, sensory rhodopsin II, nonretinal photoactive yellow protein and their mutants. PMID:18331400

Altun, Ahmet; Yokoyama, Shozo; Morokuma, Keiji

2008-01-01

7

Quantum mechanics/molecular mechanics study of oxygen binding in hemocyanin.  

PubMed

We report a combined quantum mechanics/molecular mechanics (QM/MM) study on the mechanism of reversible dioxygen binding in the active site of hemocyanin (Hc). The QM region is treated by broken-symmetry density functional theory (DFT) with spin projection corrections. The X-ray structures of deoxygenated (deoxyHc) and oxygenated (oxyHc) hemocyanin are well reproduced by QM/MM geometry optimizations. The computed relative energies strongly depend on the chosen density functional. They are consistent with the available thermodynamic data for oxygen binding in hemocyanin and in synthetic model complexes when the BH&HLYP hybrid functional with 50% Hartree-Fock exchange is used. According to the QM(BH&HLYP)/MM results, the reaction proceeds stepwise with two sequential electron transfer (ET) processes in the triplet state followed by an intersystem crossing to the singlet product. The first ET step leads to a nonbridged superoxo CuB(II)-O2(•-) intermediate via a low-barrier transition state. The second ET step is even more facile and yields a side-on oxyHc complex with the characteristic Cu2O2 butterfly core, accompanied by triplet-singlet intersystem crossing. The computed barriers are very small so that the two ET processes are expected to very rapid and nearly simultaneous. PMID:24762083

Saito, Toru; Thiel, Walter

2014-05-15

8

Substrate Hydroxylation in Methane Monooxygenase: Quantitative Modeling via Mixed Quantum Mechanics/ Molecular Mechanics Techniques  

SciTech Connect

The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Using broken-symmetry unrestricted density functional theory quantum mechanical (QM) methods in concert with mixed quantum mechanics/molecular mechanics (QM/MM) methods, the hydroxylation of methane and substituted methanes by intermediate Q in methane monooxygenase hydroxylase (MMOH) has been quantitatively modeled. This protocol allows the protein environment to be included throughout the calculations and its effects (electrostatic, van der Waals, strain) upon the reaction to be accurately evaluated. With the current results, recent kinetic data for CH?X (X ) H, CH?, OH, CN, NO?) substrate hydroxylation in MMOH (Ambundo, E. A.; Friesner, R. A.; Lippard, S. J. J. Am. Chem. Soc. 2002, 124, 8770-8771) can be rationalized. Results for methane, which provide a quantitative test of the protocol, including a substantial kinetic isotope effect (KIE), are in reasonable agreement with experiment. Specific features of the interaction of each of the substrates with MMO are illuminated by the QM/MM modeling, and the resulting effects upon substrate binding are quantitatively incorporated into the calculations. The results as a whole point to the success of the QM/MM methodology and enhance our understanding of MMOH catalytic chemistry. We also identify systematic errors in the evaluation of the free energy of binding of the Michaelis complexes of the substrates, which most likely arise from inadequate sampling and/or the use of harmonic approximations to evaluate the entropy of the complex. More sophisticated sampling methods will be required to achieve greater accuracy in this aspect of the calculation.

Gherman, Benjamin F.; Lippard, Stephen J.; Friesner, Richard A.

2005-01-26

9

Converting fructose to 5-hydroxymethylfurfural: A quantum mechanics/molecular mechanics study of the mechanism and energetics  

SciTech Connect

We studied the energetics of the closed-ring mechanism of the acid-catalysed dehydration of D-fructose to 5-hydroxymethylfurfural (HMF) by carrying out canonical ensemble free-energy calculations using bias-sampling, hybrid Quantum Mechanics/Molecular Mechanics Molecular Dynamics simulations with explicit water solvent at 363 K. The quantum mechanical calculations are performed at the PM3 theory level. We find that the reaction proceeds via intramolecular proton and hydride transfers. Solvent dynamics effects are analysed, and we show that the activation energy for the hydride transfers is due to re-organization of the polar solvent environment. We also find that in some instances intramolecular proton transfer is facilitated by mediating water, whereas in others the presence of quantum mechanical water has no effect. From a micro-kinetic point of view, we find that the rate-determining step of the reaction involves a hydride transfer prior to the third dehydration step, requiring an activation free energy of 31.8 kcal/mol, and the respective rate is found in good agreement with reported experimental values in zeolites. Thermodynamically, the reaction is exothermic by ?F=20.5kcal/mol.

Caratzoulas, S.; Vlachos, Dion G.

2011-01-01

10

Nature of K[sup +]/crown ether interactions. A hybrid quantum mechanical-molecular mechanical study  

SciTech Connect

We present a hybrid quantum mechanical/molecular mechanical (QM/MM) molecular dynamics study of dimethyl ether (DME) and 18-crown-6 (18c6) interacting with K[sup +]. The QM/MM method employs the semiempirical AM1 method to describe the ethers, the MM parametrization of Dang for K[sup +], and the MM SPC/e model for H[sub 2]O. We parametrize the interaction Hamiltonian to the binding energies and optimized geometries for K[sup +]/DME using ab initio HF and MP2/6-31+G* results. The resulting QM/MM model describes the polarization response of both free DME and K[sup +]-complexed DME well. The QM/MM model gives good agreement with the experimental and ab initio structures for K[sup +]/18c6. We calculate gas-phase K[sup +]/18c6 binding energies of [minus]70.2 and [minus]72.0 kcal/mol with the QM/MM and MP2/6-31+G* (CP corrected) methods, respectively. Our simulation results for K[sup +]/18c6 in H[sub 2]O show that the most probable K[sup +]/18c6 center-of-mass displacement is 0.25 [angstrom], in marked contrast to previous molecular dynamics results of Dang and Kollman. Our result is consistent with K[sup +] having an optimal [open quotes]fit[close quotes] for the cavity of 18c6. Still, we find that K[sup +] retains significant solvent accessibility coordinating two H[sub 2]O molecules, on average, in the K[sup +]/18c6 simulation. 81 refs., 13 figs., 4 tabs.

Thompson, M.A.; Glendening, E.D.; Feller, D. (Pacific Northwest Lab., Richland, WA (United States))

1994-10-13

11

Mechanistic insights into Mg2+-independent prenylation by CloQ from classical molecular mechanics and hybrid quantum mechanics/molecular mechanics molecular dynamics simulations.  

PubMed

Understanding the mechanism of prenyltransferases is important to the design of engineered proteins capable of synthesizing derivatives of naturally occurring therapeutic agents. CloQ is a Mg(2+)-independent aromatic prenyltransferase (APTase) that transfers a dimethylallyl group to 4-hydroxyphenylpyruvate in the biosynthetic pathway for clorobiocin. APTases consist of a common ABBA fold that defines a ?-barrel containing the reaction cavity. Positively charged basic residues line the inside of the ?-barrel of CloQ to activate the pyrophosphate leaving group to replace the function of the Mg(2+) cofactor in other APTases. Classical molecular dynamics simulations of CloQ, its E281G and F68S mutants, and the related NovQ were used to explore the binding of the 4-hydroxyphenylpyruvate (4HPP) and dimethylallyl diphosphate substrates in the reactive cavity and the role of various conserved residues. Hybrid quantum mechanics/molecular mechanics potential of mean force (PMF) calculations show that the effect of the replacement of the Mg(2+) cofactor with basic residues yields a similar activation barrier for prenylation to Mg(2+)-dependent APTases like NphB. The topology of the binding pocket for 4HPP is important for selective prenylation at the ortho position of the ring. Methylation at this position alters the conformation of the substrate for O-prenylation at the phenol group. Further, a two-dimensional PMF scan shows that a "reverse" prenylation product may be a possible target for protein engineering. PMID:25020142

Bayse, Craig A; Merz, Kenneth M

2014-08-01

12

Free Energies of Chemical Reactions in Solution and in Enzymes with Ab Initio Quantum Mechanics\\/Molecular Mechanics Methods  

Microsoft Academic Search

Combined quantum mechanics\\/molecular mechanics (QM\\/MM) methods provide an accurate and efficient energetic description of complex chemical and biological systems, leading to significant advances in the understanding of chemical reactions in solution and in enzymes. Here we review progress in QM\\/MM methodology and applications, focusing on ab initio QM-based approaches. Ab initio QM\\/MM methods capitalize on the accuracy and reliability of

Hao Hu; Weitao Yang

2008-01-01

13

A Dissociative Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulation and Infrared Experiments Reveal Characteristics of the Strongly Hydrolytic Arsenic(III).  

PubMed

This work presents a hybrid ab initio quantum mechanical/molecular mechanical simulation at the RI-MP2 level of theory investigating the hydrolysis process of arsenic(III), ultimately leading to arsenous acid (H3AsO3). A newly implemented dissociative water model has been applied to treat the interactions in the classical region, which is capable of describing non-neutral water species such as hydroxide and oxonium ions. Three stages of hydrolysis have been observed during the simulation and besides profound dynamical considerations, detailed insights into structural changes and atomic partial charge shifts are presented. In particular, the geometrical properties of H-bonds involved in each of the three proton transfer events and subsequent proton hopping reactions are discussed. A Laguerre tessellation analysis has been employed to estimate the molecular volume of H3AsO3. Estimations of pKa values of the arsenic(III)-aquo-complexes have been obtained at the G4 and CBS-Q//B3 levels of theory using a thermodynamic cycle, whereas rate constants for the final hydrolysis step have been determined via reaction path optimization and transition state theory. Newly recorded Fourier transform infrared (FT-IR) spectroscopy measurements have been compared to power spectra obtained from the simulation data, confirming its quality. The simulation findings, as well as results from computational spectroscopic calculations utilizing the PT2-VSCF methodology, proved valuable for the interpretation of the experimental FT-IR data, elucidating the particularities of the strongly observed IR Raman noncoincidence effect. PMID:25157412

Canaval, Lorenz R; Lutz, Oliver M D; Weiss, Alexander K H; Huck, Christian W; Hofer, Thomas S

2014-11-17

14

Quantum mechanics/molecular mechanics investigation of the mechanism of phosphate transfer in human uridine-cytidine kinase 2.  

PubMed

The mechanisms of enzyme-catalyzed phosphate transfer and hydrolysis reactions are of great interest due to their importance and abundance in biochemistry. The reaction may proceed in a stepwise fashion, with either a pentavalent phosphorane or a metaphosphate anion intermediate, or by a concerted SN2 mechanism. Despite much theoretical work focused on a few key enzymes, a consensus for the mechanism has not been reached, and examples of all three possibilities have been demonstrated. We have investigated the mechanism of human uridine-cytidine kinase 2 (UCK2, EC 2.7.1.48), which catalyzes the transfer of a phosphate group from ATP to the ribose 5'-hydroxyl of cytidine and uridine. UCK2 is normally expressed in human placenta, but is overexpressed in certain cancer cells, where it is responsible for activating a class of antitumor prodrugs. The UCK2 mechanism was investigated by generating a 2D potential energy surface as a function of the P-O bonds forming and breaking, with energies calculated using a quantum mechanics/molecular mechanics potential (B3LYP/6-31G(d):AMBER). The mechanism of phosphate transfer is shown to be concerted, and is accompanied by concerted proton transfer from the 5'-hydroxyl to a conserved active site aspartic acid that serves as a catalytic base. The calculated barrier for this reaction is 15.1 kcal/mol, in relatively good agreement with the experimental barrier of 17.5 kcal/mol. The interactions of the enzyme active site with the reactant, transition state, and product are examined for their implications on the design of anticancer prodrugs or positron emission tomography (PET) reporter probes for this enzyme. PMID:19532987

Smith, Adam J T; Li, Ying; Houk, K N

2009-07-01

15

Quantum mechanics/molecular mechanics modeling of fatty acid amide hydrolase reactivation distinguishes substrate from irreversible covalent inhibitors  

PubMed Central

Carbamate and urea derivatives are important classes of fatty acid amide hydrolase (FAAH) inhibitors that carbamoylate the active-site nucleophile Ser241. In the present work, the reactivation mechanism of carbamoylated FAAH is investigated by means of a quantum mechanics/molecular mechanics (QM/MM) approach. The potential energy surfaces for decarbamoylation of FAAH covalent adducts, deriving from the O-aryl carbamate URB597 and from the N-piperazinylurea JNJ1661610, were calculated and compared to that for deacylation of FAAH acylated by the substrate oleamide. Calculations show that a carbamic group bound to Ser241 prevents efficient stabilization of transition states of hydrolysis, leading to large increments in the activation barrier. Moreover, the energy barrier for the piperazine carboxylate was significantly lower than that for the ciclohexyl carbamate derived from URB597. This is consistent with experimental data showing slowly reversible FAAH inhibition for the N-piperazinylurea inhibitor and irreversible inhibition for URB597. PMID:23425199

Lodola, Alessio; Capoferri, Luigi; Rivara, Silvia; Tarzia, Giorgio; Piomelli, Daniele; Mulholland, Adrian; Mor, Marco

2013-01-01

16

Unravelling novel synergies between organometallic and biological partners: a quantum mechanics/molecular mechanics study of an artificial metalloenzyme.  

PubMed

In recent years, the design of artificial metalloenzymes obtained by the insertion of homogeneous catalysts into biological macromolecules has become a major field of research. These hybrids, and the corresponding X-ray structures of several of them, are offering opportunities to better understand the synergy between organometallic and biological subsystems. In this work, we investigate the resting state and activation process of a hybrid inspired by an oxidative haemoenzyme but presenting an unexpected reactivity and structural features. An extensive series of quantum mechanics/molecular mechanics calculations show that the resting state and the activation processes of the novel enzyme differ from naturally occurring haemoenzymes in terms of the electronic state of the metal, participation of the first coordination sphere of the metal and the dynamic process. This study presents novel insights into the sensitivity of the association between organometallic and biological partners and illustrates the molecular challenge that represents the design of efficient enzymes based on this strategy. PMID:24829279

Ortega-Carrasco, Elisabeth; Lledós, Agustí; Maréchal, Jean-Didier

2014-07-01

17

Parallel iterative reaction path optimization in ab initio quantum mechanical/molecular mechanical modeling of enzyme reactions.  

PubMed

The determination of reaction paths for enzyme systems remains a great challenge for current computational methods. In this paper we present an efficient method for the determination of minimum energy reaction paths with the ab initio quantum mechanical/molecular mechanical approach. Our method is based on an adaptation of the path optimization procedure by Ayala and Schlegel for small molecules in gas phase, the iterative quantum mechanical/molecular mechanical (QM/MM) optimization method developed earlier in our laboratory and the introduction of a new metric defining the distance between different structures in the configuration space. In this method we represent the reaction path by a discrete set of structures. For each structure we partition the atoms into a core set that usually includes the QM subsystem and an environment set that usually includes the MM subsystem. These two sets are optimized iteratively: the core set is optimized to approximate the reaction path while the environment set is optimized to the corresponding energy minimum. In the optimization of the core set of atoms for the reaction path, we introduce a new metric to define the distances between the points on the reaction path, which excludes the soft degrees of freedom from the environment set and includes extra weights on coordinates describing chemical changes. Because the reaction path is represented by discrete structures and the optimization for each can be performed individually with very limited coupling, our method can be executed in a natural and efficient parallelization, with each processor handling one of the structures. We demonstrate the applicability and efficiency of our method by testing it on two systems previously studied by our group, triosephosphate isomerase and 4-oxalocrotonate tautomerase. In both cases the minimum energy paths for both enzymes agree with the previously reported paths. PMID:15260596

Liu, Haiyan; Lu, Zhenyu; Cisneros, G Andres; Yang, Weitao

2004-07-01

18

Quantum mechanics/molecular mechanics study on the oxygen binding and substrate hydroxylation step in AlkB repair enzymes.  

PubMed

AlkB repair enzymes are important nonheme iron enzymes that catalyse the demethylation of alkylated DNA bases in humans, which is a vital reaction in the body that heals externally damaged DNA bases. Its mechanism is currently controversial and in order to resolve the catalytic mechanism of these enzymes, a quantum mechanics/molecular mechanics (QM/MM) study was performed on the demethylation of the N(1) -methyladenine fragment by AlkB repair enzymes. Firstly, the initial modelling identified the oxygen binding site of the enzyme. Secondly, the oxygen activation mechanism was investigated and a novel pathway was found, whereby the catalytically active iron(IV)-oxo intermediate in the catalytic cycle undergoes an initial isomerisation assisted by an Arg residue in the substrate binding pocket, which then brings the oxo group in close contact with the methyl group of the alkylated DNA base. This enables a subsequent rate-determining hydrogen-atom abstraction on competitive ?- and ?-pathways on a quintet spin-state surface. These findings give evidence of different locations of the oxygen and substrate binding channels in the enzyme and the origin of the separation of the oxygen-bound intermediates in the catalytic cycle from substrate. Our studies are compared with small model complexes and the effect of protein and environment on the kinetics and mechanism is explained. PMID:24339041

Quesne, Matthew G; Latifi, Reza; Gonzalez-Ovalle, Luis E; Kumar, Devesh; de Visser, Sam P

2014-01-01

19

Inactivation of TEM-1 by avibactam (NXL-104): insights from quantum mechanics/molecular mechanics metadynamics simulations.  

PubMed

The fast and constant development of drug-resistant bacteria represents a serious medical emergence. To overcome this problem, the development of drugs with new structures and modes of action is urgently needed. In this context, avibactam represents a promising, innovative inhibitor of beta-lactamases with a novel molecular structure compared to previously developed inhibitors, showing a promising inhibitory activity toward a significant number of beta-lactamase enzymes. In this work, we studied, at the atomistic level, the mechanisms of formation of the covalent complex between avibactam and TEM-1, an experimentally well-characterized class A beta-lactamase, using classical and quantum mechanics/molecular mechanics (QM/MM) simulations combined with metadynamics. Our simulations provide a detailed structural and energetic picture of the molecular steps leading to the formation of the avibactam/TEM-1 covalent adduct. In particular, they support a mechanism in which the rate-determining step is the water-assisted Glu166 deprotonation by Ser70. In this mechanistic framework, the predicted activation energy is in good agreement with experimental kinetic measurements. Additionally, our simulations highlight the important role of Lys73 in assisting the Ser70 and Ser130 deprotonations. While based on the specific case of the avibactam/TEM-1, the simple protocol we present here can be immediately extended and applied to the study of covalent complex formation in different enzyme-inhibitor pairs. PMID:25050826

Sgrignani, Jacopo; Grazioso, Giovanni; De Amici, Marco; Colombo, Giorgio

2014-08-12

20

A quantum mechanics/molecular mechanics study of the catalytic mechanism and product specificity of viral histone lysine methyltransferase.  

PubMed

There are three reaction steps in the S-adenosylmethionine (AdoMet) methylation of lysine-NH2 catalyzed by a methyltransferase. They are (i) combination of enzyme.Lys-NH3+ with AdoMet, (ii) substrate ionization to provide enzyme.AdoMet.Lys-NH2, and (iii) methyl transfer providing enzyme.AdoHcy.Lys-N(Me)H2+ and the dissociation of AdoHcy. In this study of the viral histone methyltransferase (vSET), we find that substrate ionization of vSET.Lys27-NH3+, vSET.Lys27-N(Me)H2+, and vSET.Lys27-N(Me)2H+ takes place upon combination with AdoMet. The presence of a water channel allows dissociation of a proton to the solvent. There is no water channel in the absence of AdoMet. That the formation of a water channel is combined with AdoMet binding was first discovered in our investigation of Rubisco large subunit methyltransferase. Via a quantum mechanics/molecular mechanics (QM/MM) approach, the calculated free energy barrier (DeltaG++) of the first methyl transfer reaction catalyzed by vSET [Lys27-NH2 + AdoMet --> Lys27-N(Me)H2+ + AdoHcy] equals 22.5 +/- 4.3 kcal/mol, which is in excellent agreement with the free energy barrier (21.7 kcal/mol) calculated from the experimental rate constant (0.047 min-1). The calculated DeltaG++ of the second methyl transfer reaction [AdoMet + Lys27-N(Me)H --> AdoHcy + Lys27-N(Me)2H+] at the QM/MM level is 22.6 +/- 3.6 kcal/mol, which is in agreement with the value of 22.4 kcal/mol determined from the experimental rate constant (0.015 min-1). The third methylation [Lys27-N(Me)2 + AdoMet --> Lys27-N(Me)3+ + AdoHcy] is associated with a DeltaG++ of 23.1 +/- 4.0 kcal/mol, which is in agreement with the value of 23.0 kcal/mol determined from the experimental rate constant (0.005 min-1). Our computations establish that the first, second, and third methyl transfer steps catalyzed by vSET are linear SN2 reactions with the bond making being approximately 50% associative. PMID:17676763

Zhang, Xiaodong; Bruice, Thomas C

2007-08-28

21

Color Tuning in Short Wavelength-Sensitive Human and Mouse Visual Pigments: Ab initio Quantum Mechanics/Molecular Mechanics Studies  

PubMed Central

We have investigated the protonation state and photoabsorption spectrum of Schiff-base (SB) nitrogen bound 11-cis-retinal in human blue and mouse UV cone visual pigments as well as in bovine rhodopsin by hybrid quantum mechanical/molecular mechanical (QM/MM) calculations. We have employed both multireference (MRCISD+Q, MR-SORCI+Q, and MR-DDCI2+Q) and single reference (TD-B3LYP and RI-CC2) QM methods. The calculated ground-state and vertical excitation energies show that UV-sensitive pigments have deprotonated SB nitrogen, while violet-sensitive pigments have protonated SB nitrogen, in agreement with some indirect experimental evidence. A significant blue shift of the absorption maxima of violet-sensitive pigments relative to rhodopsins arises from the increase in bond length alternation of the polyene chain of 11-cis-retinal induced by polarizing fields of these pigments. The main counterion is Glu113 in both violet-sensitive vertebrate pigments and bovine rhodopsin. Neither Glu113 nor the remaining pigment has a significant influence on the first excitation energy of 11-cis-retinal in the UV-sensitive pigments that have deprotonated SB nitrogen. There is no charge transfer between the SB and ?-ionone terminals of 11-cis-retinal in the ground and first excited states. PMID:19630373

Altun, Ahmet; Yokoyama, Shozo; Morokuma, Keiji

2009-01-01

22

Calculating solution redox free energies with ab initio quantum mechanical/molecular mechanical minimum free energy path method  

SciTech Connect

A quantum mechanical/molecular mechanical minimum free energy path (QM/MM-MFEP) method was developed to calculate the redox free energies of large systems in solution with greatly enhanced efficiency for conformation sampling. The QM/MM-MFEP method describes the thermodynamics of a system on the potential of mean force surface of the solute degrees of freedom. The molecular dynamics (MD) sampling is only carried out with the QM subsystem fixed. It thus avoids 'on-the-fly' QM calculations and thus overcomes the high computational cost in the direct QM/MM MD sampling. In the applications to two metal complexes in aqueous solution, the new QM/MM-MFEP method yielded redox free energies in good agreement with those calculated from the direct QM/MM MD method. Two larger biologically important redox molecules, lumichrome and riboflavin, were further investigated to demonstrate the efficiency of the method. The enhanced efficiency and uncompromised accuracy are especially significant for biochemical systems. The QM/MM-MFEP method thus provides an efficient approach to free energy simulation of complex electron transfer reactions.

Zeng Xiancheng; Hu Hao; Hu Xiangqian; Yang Weitao [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States)

2009-04-28

23

Improved constrained optimization method for reaction-path determination in the generalized hybrid orbital quantum mechanical/molecular mechanical calculations  

NASA Astrophysics Data System (ADS)

The nudged elastic band (NEB) and string methods are widely used to obtain the reaction path of chemical reactions and phase transitions. In these methods, however, it is difficult to define an accurate Lagrangian to generate the conservative forces. On the other hand, the constrained optimization with locally updated planes (CO-LUP) scheme defines target function properly and suitable for micro-iteration optimizations in quantum mechanical/molecular mechanical (QM/MM) systems, which uses the efficient second order QM optimization. However, the method does have problems of inaccurate estimation of reactions and inappropriate accumulation of images around the energy minimum. We introduce three modifications into the CO-LUP scheme to overcome these problems: (1) An improved tangent estimation of the reaction path, which is used in the NEB method, (2) redistribution of images using an energy-weighted interpolation before updating local tangents, and (3) reduction of the number of constraints, in particular translation/rotation constraints, for improved convergence. First, we test the method on the isomerization of alanine dipeptide without QM/MM calculation, showing that the method is comparable to the string method both in accuracy and efficiency. Next, we apply the method for defining the reaction paths of the rearrangement reaction catalyzed by chorismate mutase (CM) and of the phosphoryl transfer reaction catalyzed by cAMP-dependent protein kinase (PKA) using generalized hybrid orbital QM/MM calculations. The reaction energy barrier of CM is in high agreement with the experimental value. The path of PKA reveals that the enzyme reaction is associative and there is a late transfer of the substrate proton to Asp 166, which is in agreement with the recently published result using the NEB method.

Jung, Jaewoon; Re, Suyong; Sugita, Yuji; Ten-no, Seiichiro

2013-01-01

24

Protein/Ligand Binding Free Energies Calculated with Quantum Mechanics/Molecular Frauke Gra1ter,, Sonja M. Schwarzl,, Annick Dejaegere,| Stefan Fischer,*, and  

E-print Network

Protein/Ligand Binding Free Energies Calculated with Quantum Mechanics/Molecular Mechanics Frauke of the complexes are predicted (the "docking" problem) as well as in how the free energy is calculated from)solvation during the binding process.3 Typically, binding free energies calculated with these methods have average

Gräter, Frauke

25

How Iron-Containing Proteins Control Dioxygen Chemistry: A Detailed Atomic Level Description Via Accurate Quantum Chemical and Mixed Quantum Mechanics/Molecular Mechanics Calculations.  

SciTech Connect

Over the past several years, rapid advances in computational hardware, quantum chemical methods, and mixed quantum mechanics/molecular mechanics (QM/MM) techniques have made it possible to model accurately the interaction of ligands with metal-containing proteins at an atomic level of detail. In this paper, we describe the application of our computational methodology, based on density functional (DFT) quantum chemical methods, to two diiron-containing proteins that interact with dioxygen: methane monooxygenase (MMO) and hemerythrin (Hr). Although the active sites are structurally related, the biological function differs substantially. MMO is an enzyme found in methanotrophic bacteria and hydroxylates aliphatic C-H bonds, whereas Hr is a carrier protein for dioxygen used by a number of marine invertebrates. Quantitative descriptions of the structures and energetics of key intermediates and transition states involved in the reaction with dioxygen are provided, allowing their mechanisms to be compared and contrasted in detail. An in-depth understanding of how the chemical identity of the first ligand coordination shell, structural features, electrostatic and van der Waals interactions of more distant shells control ligand binding and reactive chemistry is provided, affording a systematic analysis of how iron-containing proteins process dioxygen. Extensive contact with experiment is made in both systems, and a remarkable degree of accuracy and robustness of the calculations is obtained from both a qualitative and quantitative perspective.

Friesner, Richard A.(Columbia University) [Columbia University; Baik, Mu-Hyun (Columbia University) [Columbia University; Gherman, Benjamin F.(Columbia University) [Columbia University; Guallar, Victor (Washington University) [Washington University; Wirstam, Maria E.(1836) [1836; Murphy, Robert B.(Schrodinger Inc) [Schrodinger Inc; Lippard, Stephen J.(Massachusetts Institute of Technology) [Massachusetts Institute of Technology

2003-03-01

26

The Role of Magnesium for Geometry and Charge in GTP Hydrolysis, Revealed by Quantum Mechanics/Molecular Mechanics Simulations  

E-print Network

The Role of Magnesium for Geometry and Charge in GTP Hydrolysis, Revealed by Quantum Mechanics, People's Republic of China ABSTRACT The coordination of the magnesium ion in proteins by triphosphates conversion. For example, in Ras the magnesium ion contributes to the catalysis of GTP hydrolysis

Gerwert, Klaus

27

Hybrid Quantum Mechanical/Molecular Mechanics Study of the SN2 Reaction of CH3Cl+OH? in Water  

SciTech Connect

The SN2 mechanism for the reaction of CH3Cl + OH? in aqueous solution was investigated using combined quantum mechanical and molecular mechanics methodology. We analyzed structures of reactant, transition and product states along the reaction pathway. The free energy profile was calculated using the multi-layered representation with the DFT and CCSD(T) level of theory for the quantum-mechanical description of the reactive region. Our results show that the aqueous environment has a significant impact on the reaction process. We find that solvation energy contribution raises the reaction barrier by ~18.9 kcal/mol and the reaction free energy by ~24.5 kcal/mol. The presence of the solvent also induces perturbations in the electronic structure of the solute leading to an increase of 3.5 kcal/mol for the reaction barrier and a decrease of 5.6 kcal/mol for the reaction free energy respectively. Combining the results of two previous calculation results on CHCl3 + OH? and CH2Cl2 + OH? reactions in water, we demonstrate that increase in the chlorination of the methyl group (from CH3Cl to CHCl3) is accompanied by the decrease in the free energy reaction barrier, with the CH3Cl + OH? having the largest barrier among the three reactions.

Yin, Hongyun; Wang, Dunyou; Valiev, Marat

2011-11-03

28

DNA Damage: Quantum Mechanics/Molecular Mechanics Study on the Oxygen Binding and Substrate Hydroxylation Step in AlkB Repair Enzymes  

PubMed Central

AlkB repair enzymes are important nonheme iron enzymes that catalyse the demethylation of alkylated DNA bases in humans, which is a vital reaction in the body that heals externally damaged DNA bases. Its mechanism is currently controversial and in order to resolve the catalytic mechanism of these enzymes, a quantum mechanics/molecular mechanics (QM/MM) study was performed on the demethylation of the N1-methyladenine fragment by AlkB repair enzymes. Firstly, the initial modelling identified the oxygen binding site of the enzyme. Secondly, the oxygen activation mechanism was investigated and a novel pathway was found, whereby the catalytically active iron(IV)–oxo intermediate in the catalytic cycle undergoes an initial isomerisation assisted by an Arg residue in the substrate binding pocket, which then brings the oxo group in close contact with the methyl group of the alkylated DNA base. This enables a subsequent rate-determining hydrogen-atom abstraction on competitive ?-and ?-pathways on a quintet spin-state surface. These findings give evidence of different locations of the oxygen and substrate binding channels in the enzyme and the origin of the separation of the oxygen-bound intermediates in the catalytic cycle from substrate. Our studies are compared with small model complexes and the effect of protein and environment on the kinetics and mechanism is explained. PMID:24339041

Quesne, Matthew G; Latifi, Reza; Gonzalez-Ovalle, Luis E; Kumar, Devesh; de Visser, Sam P

2014-01-01

29

Quantum mechanics/molecular mechanics modeling of photoelectron spectra: the carbon 1s core-electron binding energies of ethanol-water solutions.  

PubMed

Using ethanol-water solutions as illustration, we demonstrate the capability of the hybrid quantum mechanics/molecular mechanics (QM/MM) paradigm to simulate core photoelectron spectroscopy: the binding energies and the chemical shifts. An integrated approach with QM/MM binding energy calculations coupled to preceding molecular dynamics sampling is adopted to generate binding energies averaged over the solute-solvent configurations available at a particular temperature and pressure and thus allowing for a statistical assessment with confidence levels for the final binding energies. The results are analyzed in terms of the contributions in the molecular mechanics model-electrostatic, polarization, and van der Waals-with atom or bond granulation of the corresponding MM charge and polarizability force-fields. The role of extramolecular charge transfer screening of the core-hole and explicit hydrogen bonding is studied by extending the QM core to cover the first solvation shell. The results are compared to those obtained from pure electrostatic and polarizable continuum models. Particularly, the dependence of the carbon 1s binding energies with respect to the ethanol concentration is studied. Our results indicate that QM/MM can be used as an all-encompassing model to study photoelectron binding energies and chemical shifts in solvent environments. PMID:25340948

Löytynoja, T; Niskanen, J; Jänkälä, K; Vahtras, O; Rinkevicius, Z; Agren, H

2014-11-20

30

Quantum Mechanics/Molecular Mechanics Studies on the Sulfoxidation of Dimethyl Sulfide by Compound I and Compound 0 of Cytochrome P450: Which Is the Better Oxidant?  

NASA Astrophysics Data System (ADS)

The cytochromes P450 are ubiquitous enzymes that are involved in key metabolizing processes in the body through the monoxygenation of substrates; however, their active oxidant is elusive. There have been reports that implicate that two oxidants, namely, the iron(IV)-oxo porphyrin cation radical (compound I) and the iron(III)-hydroperoxo complex (compound 0), both act as oxidants of sulfoxidation reactions, which contrasts theoretical studies on alkene epoxidation by compounds I and 0 that implicated compound 0 as a sluggish oxidant. To resolve this controversy and to establish the potency of compound I and compound 0 in sulfoxidation reactions, we have studied dimethyl sulfide sulfoxidation by both oxidants using the quantum mechanics/molecular mechanics (QM/MM) technique on cytochrome P450 enzymes and have set up a model of two P450 isozymes: P450cam and P450BM3. The calculations support earlier gas-phase density functional theory modeling and show that compound 0 is a sluggish oxidant that is unable to compete with compound I. Furthermore, compound I is shown to react with dimethyl sulfide via single-state reactivity on a dominant quartet spin state surface.

Porro, Cristina S.; Sutcliffe, Michael J.; de Visser, Sam P.

2009-06-01

31

Integral Equation Theory of Molecular Solvation Coupled with Quantum Mechanical/Molecular Mechanics Method in NWChem Package  

SciTech Connect

We have developed a hybrid approach based on a combination of integral equation theory of molecular liquids and QM/MM methodology in NorthWest computational Chemistry (NWChem) software package. We have split the evaluations into conse- quent QM/MM and statistical mechanics calculations based on the one-dimensional reference interaction site model, which allows us to reduce signicantly the time of computation. The method complements QM/MM capabilities existing in the NWChem package. The accuracy of the presented method was tested through com- putation of water structure around several organic solutes and their hydration free energies. We have also evaluated the solvent effect on the conformational equilibria. The applicability and limitations of the developed approach are discussed.

Chuev, Gennady N.; Valiev, Marat; Fedotova, Marina V.

2012-04-10

32

Variational and perturbative formulations of quantum mechanical/molecular mechanical free energy with mean-field embedding and its analytical gradients  

NASA Astrophysics Data System (ADS)

Conventional quantum chemical solvation theories are based on the mean-field embedding approximation. That is, the electronic wavefunction is calculated in the presence of the mean field of the environment. In this paper a direct quantum mechanical/molecular mechanical (QM/MM) analog of such a mean-field theory is formulated based on variational and perturbative frameworks. In the variational framework, an appropriate QM/MM free energy functional is defined and is minimized in terms of the trial wavefunction that best approximates the true QM wavefunction in a statistically averaged sense. Analytical free energy gradient is obtained, which takes the form of the gradient of effective QM energy calculated in the averaged MM potential. In the perturbative framework, the above variational procedure is shown to be equivalent to the first-order expansion of the QM energy (in the exact free energy expression) about the self-consistent reference field. This helps understand the relation between the variational procedure and the exact QM/MM free energy as well as existing QM/MM theories. Based on this, several ways are discussed for evaluating non-mean-field effects (i.e., statistical fluctuations of the QM wavefunction) that are neglected in the mean-field calculation. As an illustration, the method is applied to an SN2 Menshutkin reaction in water, NH3+CH3Cl?NH3CH3++Cl-, for which free energy profiles are obtained at the Hartree-Fock, MP2, B3LYP, and BHHLYP levels by integrating the free energy gradient. Non-mean-field effects are evaluated to be <0.5 kcal/mol using a Gaussian fluctuation model for the environment, which suggests that those effects are rather small for the present reaction in water.

Yamamoto, Takeshi

2008-12-01

33

Theoretical modeling of large molecular systems. Advances in the local self consistent field method for mixed quantum mechanics/molecular mechanics calculations.  

PubMed

Molecular mechanics methods can efficiently compute the macroscopic properties of a large molecular system but cannot represent the electronic changes that occur during a chemical reaction or an electronic transition. Quantum mechanical methods can accurately simulate these processes, but they require considerably greater computational resources. Because electronic changes typically occur in a limited part of the system, such as the solute in a molecular solution or the substrate within the active site of enzymatic reactions, researchers can limit the quantum computation to this part of the system. Researchers take into account the influence of the surroundings by embedding this quantum computation into a calculation of the whole system described at the molecular mechanical level, a strategy known as the mixed quantum mechanics/molecular mechanics (QM/MM) approach. The accuracy of this embedding varies according to the types of interactions included, whether they are purely mechanical or classically electrostatic. This embedding can also introduce the induced polarization of the surroundings. The difficulty in QM/MM calculations comes from the splitting of the system into two parts, which requires severing the chemical bonds that link the quantum mechanical subsystem to the classical subsystem. Typically, researchers replace the quantoclassical atoms, those at the boundary between the subsystems, with a monovalent link atom. For example, researchers might add a hydrogen atom when a C-C bond is cut. This Account describes another approach, the Local Self Consistent Field (LSCF), which was developed in our laboratory. LSCF links the quantum mechanical portion of the molecule to the classical portion using a strictly localized bond orbital extracted from a small model molecule for each bond. In this scenario, the quantoclassical atom has an apparent nuclear charge of +1. To achieve correct bond lengths and force constants, we must take into account the inner shell of the atom: for an sp(3) carbon atom, we consider the two core 1s electrons and treat that carbon as an atom with three electrons. This results in an LSCF+3 model. Similarly, a nitrogen atom with a lone pair of electrons available for conjugation is treated as an atom with five electrons (LSCF+5). This approach is particularly well suited to splitting peptide bonds and other bonds that include carbon or nitrogen atoms. To embed the induced polarization within the calculation, researchers must use a polarizable force field. However, because the parameters of the usual force fields include an average of the induction effects, researchers typically can obtain satisfactory results without explicitly introducing the polarization. When considering electronic transitions, researchers must take into account the changes in the electronic polarization. One approach is to simulate the electronic cloud of the surroundings by a continuum whose dielectric constant is equal to the square of the refractive index. This Electronic Response of the Surroundings (ERS) methodology allows researchers to model the changes in induced polarization easily. We illustrate this approach by modeling the electronic absorption of tryptophan in human serum albumin (HSA). PMID:23249409

Monari, Antonio; Rivail, Jean-Louis; Assfeld, Xavier

2013-02-19

34

Fundamental Reaction Pathway for Peptide Metabolism by Proteasome: Insights from First-principles Quantum Mechanical/Molecular Mechanical Free Energy Calculations  

PubMed Central

Proteasome is the major component of the crucial nonlysosomal protein degradation pathway in the cells, but the detailed reaction pathway is unclear. In this study, first-principles quantum mechanical/molecular mechanical free energy calculations have been performed to explore, for the first time, possible reaction pathways for proteasomal proteolysis/hydrolysis of a representative peptide, succinyl-leucyl-leucyl-valyl-tyrosyl-7-amino-4-methylcoumarin (Suc-LLVY-AMC). The computational results reveal that the most favorable reaction pathway consists of six steps. The first is a water-assisted proton transfer within proteasome, activating Thr1-O?. The second is a nucleophilic attack on the carbonyl carbon of a Tyr residue of substrate by the negatively charged Thr1-O?, followed by the dissociation of the amine AMC (third step). The fourth step is a nucleophilic attack on the carbonyl carbon of the Tyr residue of substrate by a water molecule, accompanied by a proton transfer from the water molecule to Thr1-Nz. Then, Suc-LLVY is dissociated (fifth step), and Thr1 is regenerated via a direct proton transfer from Thr1-Nz to Thr1-O?. According to the calculated energetic results, the overall reaction energy barrier of the proteasomal hydrolysis is associated with the transition state (TS3b) for the third step involving a water-assisted proton transfer. The determined most favorable reaction pathway and the rate-determining step have provided a reasonable interpretation of the reported experimental observations concerning the substituent and isotopic effects on the kinetics. The calculated overall free energy barrier of 18.2 kcal/mol is close to the experimentally-derived activation free energy of ~18.3–19.4 kcal/mol, suggesting that the computational results are reasonable. PMID:24111489

Wei, Donghui; Fang, Lei; Tang, Mingsheng; Zhan, Chang-Guo

2013-01-01

35

Computation of the free energy change associated with one-electron reduction of coenzyme immersed in water: A novel approach within the framework of the quantum mechanical\\/molecular mechanical method combined with the theory of energy representation  

Microsoft Academic Search

The isoalloxazine ring (flavin ring) is a part of the coenzyme flavin adenine dinucleotide and acts as an active site in the oxidation of a substrate. We have computed the free energy change Deltamured associated with one-electron reduction of the flavin ring immersed in water by utilizing the quantum mechanical\\/molecular mechanical method combined with the theory of energy representation (QM\\/MM-ER

Hideaki Takahashi; Hajime Ohno; Ryohei Kishi; Masayoshi Nakano; Nobuyuki Matubayasi

2008-01-01

36

Photoabsorption of acridine yellow and proflavin bound to human serum albumin studied by means of quantum mechanics/molecular dynamics.  

PubMed

Attempting to unravel mechanisms in optical probing of proteins, we have performed pilot calculations of two cationic chromophores-acridine yellow and proflavin-located at different binding sites within human serum albumin, including the two primary drug binding sites as well as a heme binding site. The computational scheme adopted involves classical molecular dynamics simulations of the ligands bound to the protein and subsequent linear response polarizable embedding density functional theory calculations of the excitation energies. A polarizable embedding potential consisting of point charges fitted to reproduce the electrostatic potential and isotropic atomic polarizabilities computed individually for every residue of the protein was used in the linear response calculations. Comparing the calculated aqueous solution-to-protein shifts of maximum absorption energies to available experimental data, we concluded that the cationic proflavin chromophore is likely not to bind albumin at its drug binding site 1 nor at its heme binding site. Although agreement with experimental data could only be obtained in qualitative terms, our results clearly indicate that the difference in optical response of the two probes is due to deprotonation, and not, as earlier suggested, to different binding sites. The ramifications of this finding for design of molecular probes targeting albumin or other proteins is briefly discussed. PMID:23356863

Aidas, K?stutis; Olsen, Jógvan Magnus H; Kongsted, Jacob; Ågren, Hans

2013-02-21

37

Solvent effects and potential of mean force: a multilayered-representation quantum mechanical/molecular mechanics study of the CH3Br + CN- reaction in aqueous solution.  

PubMed

The bimolecular nucleophilic substitution (SN2) reaction of CH3Br and CN(-) in aqueous solution was investigated using a multilayered-representation quantum mechanical and molecular mechanics methodology. The reactant complex, transition state, and product complex are identified and characterized in aqueous solution. The potentials of mean force are computed at both DFT and CCSD(T) levels of theory for the reaction region. The CCSD(T)/MM level of theory presents a free energy activation barrier height at 19.1 kcal mol(-1) which agrees very well with the experimental value of 20.7 kcal mol(-1), while the DFT/MM level of theory underestimated the barrier height at 16.5 kcal mol(-1). The results show that the aqueous environment has a significant contribution to the potential of mean force. Both the solvation effect and the polarization effect increase the activation barrier height by ?14.5 kcal mol(-1) and the solvation effect plays a major role by providing about 70% of the contribution. PMID:25159052

Xu, Yulong; Zhang, Jingxue; Wang, Dunyou

2014-10-01

38

A multilayered-representation quantum mechanical/molecular mechanics study of the SN2 reaction of CH3Br + OH- in aqueous solution  

NASA Astrophysics Data System (ADS)

The bimolecular nucleophilic substitution (SN2) reaction of CH3Br and OH- in aqueous solution was investigated using a multilayered-representation quantum mechanical and molecular mechanics methodology. Reactant complex, transition state, and product complex are identified and characterized in aqueous solution. The potentials of mean force are computed under both the density function theory and coupled-cluster single double (triple) (CCSD(T)) levels of theory for the reaction region. The results show that the aqueous environment has a significant impact on the reaction process. The solvation effect and the polarization effect combined raise the activation barrier height by ˜16.2 kcal/mol and the solvation effect is the dominant contribution to the potential of mean force. The CCSD(T)/MM representation presents a free energy activation barrier height of 22.8 kcal/mol and the rate constant at 298 K of 3.7 × 10-25 cm3 molecule-1 s-1 which agree very well with the experiment values at 23.0 kcal/mol and 2.6 × 10-25 cm3 molecule-1 s-1, respectively.

Xu, Yulong; Wang, Tingting; Wang, Dunyou

2012-11-01

39

Response to ``Comment on `Solvatochromic shifts of polar and non-polar molecules in ambient and supercritical water: A sequential quantum mechanics/molecular mechanics study including solute-solvent electron exchange-correlation''' [J. Chem. Phys. 138, 217101 (2013)  

NASA Astrophysics Data System (ADS)

In this response to Schwabe's recent comment [J. Chem. Phys. 138, 217101 (2013), 10.1063/1.4807839], we discuss the validity of Schwabe's interpretation of why a large quantum mechanics (QM) region is needed to converge the quantum mechanics/molecular mechanics (QM/MM) results for aqueous benzene, which he ascribed to our insufficient electrostatic potential or neglect of polarization effect. It is shown that improving the electrostatic potential with ground-state polarizable effective fragment potential and fragment molecular orbital methods instead of simple point charge embedding still deviates much from the experimental determinations for aqueous benzene, and solvent polarization in response to the solute excitation for such a system is also very small. We then resuggest enlarging the QM region size or incorporating new exchange repulsion potentials in QM/MM calculations to account for exchange interaction between a solute and its nearby solvents for the highly accurate electronic spectral shift calculations of non-polar solutes dissolved in water.

Ma, Haibo; Ma, Yingjin

2013-06-01

40

Simple and exact approach to the electronic polarization effect on the solvation free energy: Formulation for quantum-mechanical/ molecular-mechanical system and its applications to aqueous solutions  

NASA Astrophysics Data System (ADS)

We present a simple and exact numerical approach to compute the free energy contribution ?? in solvation due to the electron density polarization and fluctuation of a quantum-mechanical solute in the quantum-mechanical/molecular-mechanical (QM/MM) simulation combined with the theory of the energy representation (QM/MM-ER). Since the electron density fluctuation is responsible for the many-body QM-MM interactions, the standard version of the energy representation method cannot be applied directly. Instead of decomposing the QM-MM polarization energy into the pairwise additive and non-additive contributions, we take sum of the polarization energies in the QM-MM interaction and adopt it as a new energy coordinate for the method of energy representation. Then, it is demonstrated that the free energy ?? can be exactly formulated in terms of the energy distribution functions for the solution and reference systems with respect to this energy coordinate. The benchmark tests were performed to examine the numerical efficiency of the method with respect to the changes in the individual properties of the solvent and the solute. Explicitly, we computed the solvation free energy of a QM water molecule in ambient and supercritical water, and also the free-energy change associated with the isomerization reaction of glycine from neutral to zwitterionic structure in aqueous solution. In all the systems examined, it was demonstrated that the computed free energy ?? agrees with the experimental value, irrespective of the choice of the reference electron density of the QM solute. The present method was also applied to a prototype reaction of adenosine 5'-triphosphate hydrolysis where the effect of the electron density fluctuation is substantial due to the excess charge. It was demonstrated that the experimental free energy of the reaction has been accurately reproduced with the present approach.

Takahashi, Hideaki; Omi, Atsushi; Morita, Akihiro; Matubayasi, Nobuyuki

2012-06-01

41

Computation of the free energy change associated with one-electron reduction of coenzyme immersed in water: A novel approach within the framework of the quantum mechanical/molecular mechanical method combined with the theory of energy representation  

NASA Astrophysics Data System (ADS)

The isoalloxazine ring (flavin ring) is a part of the coenzyme flavin adenine dinucleotide and acts as an active site in the oxidation of a substrate. We have computed the free energy change ??red associated with one-electron reduction of the flavin ring immersed in water by utilizing the quantum mechanical/molecular mechanical method combined with the theory of energy representation (QM/MM-ER method) recently developed. As a novel treatment in implementing the QM/MM-ER method, we have identified the excess charge to be attached on the flavin ring as a solute while the remaining molecules, i.e., flavin ring and surrounding water molecules, are treated as solvent species. Then, the reduction free energy can be decomposed into the contribution ??red(QM) due to the oxidant described quantum chemically and the free energy ??red(MM) due to the water molecules represented by a classical model. By the sum of these contributions, the total reduction free energy ??red has been given as -80.1 kcal/mol. To examine the accuracy and efficiency of this approach, we have also conducted the ??red calculation using the conventional scheme that ??red is constructed from the solvation free energies of the flavin rings at the oxidized and reduced states. The conventional scheme has been implemented with the QM/MM-ER method and the calculated ??red has been estimated as -81.0 kcal/mol, showing excellent agreement with the value given by the new approach. The present approach is efficient, in particular, to compute free energy change for the reaction occurring in a protein since it enables ones to circumvent the numerical problem brought about by subtracting the huge solvation free energies of the proteins in two states before and after the reduction.

Takahashi, Hideaki; Ohno, Hajime; Kishi, Ryohei; Nakano, Masayoshi; Matubayasi, Nobuyuki

2008-11-01

42

Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface.  

PubMed

To accurately determine the reaction path and its energetics for enzymatic and solution-phase reactions, we present a sequential sampling and optimization approach that greatly enhances the efficiency of the ab initio quantum mechanics/molecular mechanics minimum free-energy path (QM/MM-MFEP) method. In the QM/MM-MFEP method, the thermodynamics of a complex reaction system is described by the potential of mean force (PMF) surface of the quantum mechanical (QM) subsystem with a small number of degrees of freedom, somewhat like describing a reaction process in the gas phase. The main computational cost of the QM/MM-MFEP method comes from the statistical sampling of conformations of the molecular mechanical (MM) subsystem required for the calculation of the QM PMF and its gradient. In our new sequential sampling and optimization approach, we aim to reduce the amount of MM sampling while still retaining the accuracy of the results by first carrying out MM phase-space sampling and then optimizing the QM subsystem in the fixed-size ensemble of MM conformations. The resulting QM optimized structures are then used to obtain more accurate sampling of the MM subsystem. This process of sequential MM sampling and QM optimization is iterated until convergence. The use of a fixed-size, finite MM conformational ensemble enables the precise evaluation of the QM potential of mean force and its gradient within the ensemble, thus circumventing the challenges associated with statistical averaging and significantly speeding up the convergence of the optimization process. To further improve the accuracy of the QM/MM-MFEP method, the reaction path potential method developed by Lu and Yang [Z. Lu and W. Yang, J. Chem. Phys. 121, 89 (2004)] is employed to describe the QM/MM electrostatic interactions in an approximate yet accurate way with a computational cost that is comparable to classical MM simulations. The new method was successfully applied to two example reaction processes, the classical SN2 reaction of Cl-+CH3Cl in solution and the second proton transfer step of the reaction catalyzed by the enzyme 4-oxalocrotonate tautomerase. The activation free energies calculated with this new sequential sampling and optimization approach to the QM/MM-MFEP method agree well with results from other simulation approaches such as the umbrella sampling technique with direct QM/MM dynamics sampling, demonstrating the accuracy of the iterative QM/MM-MFEP method. PMID:18205486

Hu, Hao; Lu, Zhenyu; Parks, Jerry M; Burger, Steven K; Yang, Weitao

2008-01-21

43

Solvatochromic shifts of polar and non-polar molecules in ambient and supercritical water: A sequential quantum mechanics/molecular mechanics study including solute-solvent electron exchange-correlation  

NASA Astrophysics Data System (ADS)

Polar and non-polar solutes (acetone and benzene) dissolved in ambient water and supercritical water are investigated theoretically using a sequential quantum mechanics (QM)/molecular mechanics (MM) method which combines classical molecular dynamics simulations and QM/MM calculations. From the detailed analysis of the dependence of the QM region size and point charge background region size as well as the different functionals, it is found that the inclusion of the solvent molecules within the first solvation shell into the QM region to account for the exchange-correlation between a solute and neighboring solvent molecules is important for the highly accurate spectral shift calculations, especially vital for the non-polar solutes whose interactions with the solvents are dominated by the quantum dispersions. At the same time, sufficiently large surrounding partial charge region (rcutoff ?15 Å) as well as the functional corrections to describe the long-range dispersion-corrections are also essential for the study of the electronic excited states in condensed phase. Our calculated solvatochromic shift values and their density dependencies at ambient and high temperature conditions are found to be in good agreements with experimental observations. This indicates that sound theoretical studies of solvatochromic shift can be achieved provided that a reasonable computational scheme with sufficiently large N^{QM}_{water} and rcutoff values is implemented. We also find both of aqueous acetone and aqueous benzene under high temperatures present three distinctive regions: low-density gas-like region, supercritical region, and high-density liquid-like region. The plateau behavior of solvatochromic shift in the supercritical region can be ascribed to the solvent clustering around the solute, which is a fundamental phenomenon of supercritical fluids (SCFs). The density dependence of our calculated coordination number of the first solvation shell nicely reproduces the trend of spectral shift and verifies the solvent clustering phenomenon of SCFs and its relationship with SCF's physicochemical properties.

Ma, Haibo; Ma, Yingjin

2012-12-01

44

Quantum Mechanics  

NASA Astrophysics Data System (ADS)

Preface; 1. Introduction; 2. Mathematical preliminaries; 3. The rules of quantum mechanics; 4. The connection between the fundamental rules and wave mechanics; 5. Further illustrations of the rules of quantum mechanics; 6. Further developments in one-dimensional wave mechanics; 7. The theory of angular momentum; 8. Wave mechanics in three dimensions: hydrogenic atoms; 9. Time-independent approximations for bound state problems; 10. Applications of static perturbation theory; 11. Identical particles; 12. Atomic structure; 13. Molecules; 14. The stability of matter; 15. Photons; 16. Interaction of non-relativistic charged particles and radiation; 17. Further topics in perturbation theory; 18. Scattering; 19. Special relativity and quantum mechanics: the Klein–Gordon equation; 20. The Dirac equation; 21. Interaction of a relativistic spin 1/2 particle with an external electromagnetic field; 22. The Dirac field; 23. Interaction between relativistic electrons, positrons, and photons; 24. The quantum mechanics of weak interactions; 25. The quantum measurement problem; Appendix A: useful inequalities for quantum mechanics; Appendix B: Bell's inequality; Appendix C: spin of the photon: vector spherical waves; Works cited; Bibliography; Index.

Commins, Eugene D.

2014-10-01

45

Quantum Mechanics  

NSDL National Science Digital Library

This website contains a number of descriptions of quantum mechanical phenomena, using 3D animations to illustrate the physics. The goal is to introduce basic concepts and phenomena using simulations rather than complex mathematics. The time-dependence of quantum systems is a focus of this material.

De Raedt, Hans; Michielsen, Kristel

2010-03-25

46

Applied quantum mechanics 1 Applied Quantum Mechanics  

E-print Network

Applied quantum mechanics 1 Applied Quantum Mechanics Chapter 5 problems LAST NAME FIRST NAME #12 with the effective electron mass at the band edges. #12;Applied quantum mechanics 3 (c) Write a computer program

Levi, Anthony F. J.

47

Applied quantum mechanics 1 Applied Quantum Mechanics  

E-print Network

Applied quantum mechanics 1 Applied Quantum Mechanics Chapter 1 problems LAST NAME FIRST NAME #12 happens to the beat frequency if the airplane moves in an arc? #12;Applied quantum mechanics 3 Problem 1

Levi, Anthony F. J.

48

Applied quantum mechanics 1 Applied Quantum Mechanics  

E-print Network

Applied quantum mechanics 1 Applied Quantum Mechanics Chapter 8 problems LAST NAME FIRST NAME #12;Applied quantum mechanics 3 (b) If the electron is in a semiconductor and has an effective mass m * 0.07 m

Levi, Anthony F. J.

49

Applied quantum mechanics 1 Applied Quantum Mechanics  

E-print Network

Applied quantum mechanics 1 Applied Quantum Mechanics Chapter 10 problems LAST NAME FIRST NAME #12 ­( ) L/( )= L/ #12;Applied quantum mechanics 3 (d) Use the results of (b) an (c) to draw the electron

Levi, Anthony F. J.

50

Finding the weakest link: exploring integrin-mediated mechanical molecular pathways.  

PubMed

From the extracellular matrix to the cytoskeleton, a network of molecular links connects cells to their environment. Molecules in this network transmit and detect mechanical forces, which subsequently determine cell behavior and fate. Here, we reconstruct the mechanical pathway followed by these forces. From matrix proteins to actin through integrins and adaptor proteins, we review how forces affect the lifetime of bonds and stretch or alter the conformation of proteins, and how these mechanical changes are converted into biochemical signals in mechanotransduction events. We evaluate which of the proteins in the network can participate in mechanotransduction and which are simply responsible for transmitting forces in a dynamic network. Besides their individual properties, we also analyze how the mechanical responses of a protein are determined by their serial connections from the matrix to actin, their parallel connections in integrin clusters and by the rate at which force is applied to them. All these define mechanical molecular pathways in cells, which are emerging as key regulators of cell function alongside better studied biochemical pathways. PMID:22797926

Roca-Cusachs, Pere; Iskratsch, Thomas; Sheetz, Michael P

2012-07-01

51

Applied quantum mechanics 1 Applied Quantum Mechanics  

E-print Network

Applied quantum mechanics 1 Applied Quantum Mechanics Chapter 6 problems LAST NAME FIRST NAME #12 --- and that for a Poisson distribution of such photons #12; 1 2 n ---------------- Applied quantum mechanics 3 (c) Apply conditions is the quantum mechanical result m t 2 2 d d x xd d V x ­= the same Newton's second law in which

Levi, Anthony F. J.

52

Applied quantum mechanics 1 Applied Quantum Mechanics  

E-print Network

Applied quantum mechanics 1 Applied Quantum Mechanics Chapter 6 problems LAST NAME FIRST NAME #12 of the system. (b) Find . (c) Find and show that . Under what conditions is the quantum mechanical result( ) td d A t( ) t A td d A /= A B i 2 --- A^ B^,[ ] A^ B^ Et 2 --- n n 1 2 --- #12;Applied quantum

Levi, Anthony F. J.

53

quantum mechanics  

PubMed Central

-symmetric quantum mechanics (PTQM) has become a hot area of research and investigation. Since its beginnings in 1998, there have been over 1000 published papers and more than 15 international conferences entirely devoted to this research topic. Originally, PTQM was studied at a highly mathematical level and the techniques of complex variables, asymptotics, differential equations and perturbation theory were used to understand the subtleties associated with the analytic continuation of eigenvalue problems. However, as experiments on -symmetric physical systems have been performed, a simple and beautiful physical picture has emerged, and a -symmetric system can be understood as one that has a balanced loss and gain. Furthermore, the phase transition can now be understood intuitively without resorting to sophisticated mathe- matics. Research on PTQM is following two different paths: at a fundamental level, physicists are attempting to understand the underlying mathematical structure of these theories with the long-range objective of applying the techniques of PTQM to understanding some of the outstanding problems in physics today, such as the nature of the Higgs particle, the properties of dark matter, the matter–antimatter asymmetry in the universe, neutrino oscillations and the cosmological constant; at an applied level, new kinds of -synthetic materials are being developed, and the phase transition is being observed in many physical contexts, such as lasers, optical wave guides, microwave cavities, superconducting wires and electronic circuits. The purpose of this Theme Issue is to acquaint the reader with the latest developments in PTQM. The articles in this volume are written in the style of mini-reviews and address diverse areas of the emerging and exciting new area of -symmetric quantum mechanics. PMID:23509390

Bender, Carl M; DeKieviet, Maarten; Klevansky, S. P.

2013-01-01

54

Bohmian mechanics contradicts quantum mechanics  

E-print Network

Bohmian mechanics contradicts quantum mechanics Arnold Neumaier Institut fur Mathematik, Universit and quantum mechanics predict values of opposite sign for certain time correlations. The discrepancy can no loophole for claiming that Bohmian mechanics reproduces all predictions of quantum mechanics exactly

Neumaier, Arnold

55

Applied quantum mechanics 1 Applied Quantum Mechanics  

E-print Network

Applied quantum mechanics 1 Applied Quantum Mechanics Chapter 9 problems LAST NAME FIRST NAME #12 10 cm 1­ = 2 1� 0.2� µm 3 2 µm 100 µA #12;Applied quantum mechanics 3 Problem 9.4 Modify the computer

Levi, Anthony F. J.

56

Quantum Mechanics in Quantum Computing  

Microsoft Academic Search

Mathew Johnson is a Ball State junior majoring in Mathematics (Option 1) with a minor in Physics. In his sophomore year, he participated in the student- faculty colloquium, where he explored quantum com- puting with several other students and faculty. Quantum mechanics is a scientific theory that seeks to describe atomic and subatomic particles (or quantum particles) as well as

Mathew Johnson

2003-01-01

57

Quantum Mechanics Measurements, Mutually  

E-print Network

Quantum Mechanics Measurements, Mutually Unbiased Bases and Finite Geometry Or why six is the first) #12;Quantum Mechanics for Dummies Finite dimensional quantum states are represented by trace one,1 -icS1,1[ ] #12;Quantum systems evolve and are measured. The evolution of a quantum system using

Gruner, Daniel S.

58

Quantum Mechanics  

Microsoft Academic Search

We characterize the quasianti-Hermitian quaternionic operators in QQM by means of their spectra; moreover, we state a necessary and sufficient condition for a set of quasianti-Hermitian quaternionic operators to be anti-Hermitian with respect to a uniquely defined positive scalar product in a infinite dimensional (right) quaternionic Hilbert space. According to such results we obtain two alternative descriptions of a quantum

A. L. Stewart; G. Scolarici; L. Solombrino

1963-01-01

59

Quantum Mechanics  

NASA Astrophysics Data System (ADS)

A development of quantum theory that was initiated in the 1920s by Werner Heisenberg (1901-76) and Erwin Schrödinger (1887-1961). The theory drew on a proposal made in 1925 Prince Louis de Broglie (1892-1987), that particles have wavelike properties (the wave-particle duality) and that an electron, for example, could in some respects be regarded as a wave with a wavelength that depended on its mo...

Murdin, P.

2000-11-01

60

Applied quantum mechanics 1 Applied Quantum Mechanics  

E-print Network

Applied quantum mechanics 1 Applied Quantum Mechanics Chapter 5 problems LAST NAME FIRST NAME #12 + --------------------------------------------- k = t 10/= t 1­= Ek 2t kxL( ) 2t 2kxL( )cos+cos= t 10/= t 1­= t 0.2­= #12;Applied quantum mechanics 3 (c) Write a computer program to plot the electron density of states for a square lat- tice

Levi, Anthony F. J.

61

Fractional quantum mechanics  

Microsoft Academic Search

A path integral approach to quantum physics has been developed. Fractional path integrals over the paths of the Lévy flights are defined. It is shown that if the fractality of the Brownian trajectories leads to standard quantum and statistical mechanics, then the fractality of the Lévy paths leads to fractional quantum mechanics and fractional statistical mechanics. The fractional quantum and

Nikolai Laskin

2000-01-01

62

Quantum Mechanics + Open Systems  

E-print Network

Quantum Mechanics + Open Systems = Thermodynamics ? Jochen Gemmer T¨ubingen, 09.02.2006 #12., World Scientific) #12;Fundamental Law or Emergent Description? Quantum Mechanics i t = (- 2 2m + V or Emergent Description? Quantum Mechanics i t = (- 2 2m + V ) "Heisenberg Cut" Classical Mechanics: m d2

Steinhoff, Heinz-Jürgen

63

Astrophysics QuantumMechanics  

E-print Network

Astrophysics Geometry QuantumMechanics Stochasticanalysis DifferentialEquations A N N U A L R E P O report 2010 6 Geometry 6 Stochastic analysis 8 Differential Equations 9 Astrophysics 11 Quantum Mechanics

Johansen, Tom Henning

64

Introduction to Quantum Mechanics  

E-print Network

The purpose of this contribution is to give a very brief introduction to Quantum Mechanics for an audience of mathematicians. I will follow Segal's approach to Quantum Mechanics paying special attention to algebraic issues. The usual representation of Quantum Mechanics on Hilbert spaces is also discussed.

Eduardo J. S. Villaseñor

2008-04-23

65

Quantum Mechanics II (Undergraduate)  

E-print Network

, and applications of quantum mechanics to materials science/solid-state physics. Grades: Homework: 15%, Midertm: 40 other selected topics from quantum information (see the QUNET reference) and solid-state physics. All

Nickrent, Daniel L.

66

Introduction to Quantum Mechanics  

NSDL National Science Digital Library

This text is intended for junior/senior Quantum Mechanics courses. It covers the fundamentals of quantum theory in a concise manner, covering topics from the basic formalism through perturbation theory, the adiabatic approximation, and scattering.

Griffiths, David J.

2005-04-16

67

Ph 125 Quantum Mechanics  

NSDL National Science Digital Library

This web site contains resources for a comprehensive quantum mechanics course designed for graduate and advanced undergraduate students at Cal Tech. The course has been revised to include quantum information science, and prepares students for a course in quantum computation. Lecture notes, a syllabus, homework problems with solutions, and exam solutions are available.

Mabuchi, Hideo

2005-12-05

68

Ph 125 Quantum Mechanics  

NSDL National Science Digital Library

This web site contains resources for a comprehensive quantum mechanics course designed for graduate and advanced undergraduate students at Cal Tech. The course has been revised to include quantum information science, and prepares students for a course in quantum computation. Lecture notes, a syllabus, homework problems with solutions, and exam solutions are available.

Mabuchi, Hideo

2011-01-21

69

Covariant quantum mechanics and quantum symmetries  

E-print Network

Covariant quantum mechanics and quantum symmetries Josef JanyŸska 1 , Marco Modugno 2 , Dirk Saller: quantum mechanics, classical mechanics, general relativity, infinitesimal symmetries. 2000 MSC: 81P99, 81Q Introduction 2 2 Covariant quantum mechanics 5 2.1 Classical background

JanyÂ?ka, Josef

70

An introduction to quantum probability, quantum mechanics, and quantum computation  

E-print Network

An introduction to quantum probability, quantum mechanics, and quantum computation Greg Kuperberg". Recently quantum computation has entered as a new reason for both mathematicians and computer scientists deterministic algorithms for some computational problems, quantum algorithms can be moderately faster

Thomases, Becca

71

Quantum Statistical Mechanics and Quantum Computation  

E-print Network

Quantum Statistical Mechanics and Quantum Computation 22-23 March 2012 Room 111, Jadwin Hall, focused meeting to explore the intersection between quantum statistical mechanics and quantum computation, specifically quantum complexity theory. Advances in complexity theory have interesting implications for physics

72

Time in quantum mechanics  

E-print Network

The role of time in quantum mechanics has been and is still very controversial. The purpose of this paper was to explore the historical interpretation of time in quantum mechanics, to determine the current status of this problem-L and to investigate...

Chapin, Kimberly R.

2012-06-07

73

Advanced Visual Quantum Mechanics  

NSDL National Science Digital Library

This page provides links to a range of teaching materials for use in an upper-level undergraduate quantum mechanics course. These are developed from some of the concepts of the Visual Quantum Mechanics course for high school and introductory college classes. Materials inlcude tutorial activities in concepts of energy diagrams, probability, and wavefunctions, and some computer activities.

Axmann, Wally; Group, Kansas S.

2004-04-04

74

Geometrization of Quantum Mechanics  

E-print Network

We show that it is possible to represent various descriptions of Quantum Mechanics in geometrical terms. In particular we start with the space of observables and use the momentum map associated with the unitary group to provide an unified geometrical description for the different pictures of Quantum Mechanics. This construction provides an alternative to the usual GNS construction for pure states.

J. F. Carinena; J. Clemente-Gallardo; G. Marmo

2007-01-19

75

Membrane Quantum Mechanics  

E-print Network

We consider the multiple M2-branes wrapped on a compact Riemann surface and study the arising quantum mechanics by taking the limit where the size of the Riemann surface goes to zero. The IR quantum mechanical models resulting from the BLG-model and the ABJM-model compactified on a torus are N = 16 and N = 12 superconformal gauged quantum mechanics. After integrating out the auxiliary gauge fields we find OSp(16|2) and SU(1,1|6) quantum mechanics from the reduced systems. The curved Riemann surface is taken as a holomorphic curve in a Calabi-Yau space to preserve supersymmetry and we present a prescription of the topological twisting. We find the N = 8 superconformal gauged quantum mechanics that may describe the motion of two wrapped M2-branes in a K3 surface.

Okazaki, Tadashi

2014-01-01

76

Multidimensional free energy volumes offer unique insights into reaction mechanisms, molecular conformation and association.  

PubMed

Free energy is a central measure in statistical mechanics and the means by which other thermodynamic properties of a system may be accessed. Using an efficient numerical method referred to as the Free Energy from Adaptive Reaction Coordinate Forces (FEARCF) method it is shown that multidimensional free energy volumes (FEVs) are computable and that they are critical to the understanding of reactions, conformational analysis and molecular association. Specifically the FEV of the hydrolysis reaction catalysed by a cellobiohydrolase I is shown to reveal molecular details of the reaction mechanism. The reaction is understood from a combination of the two dimensional reaction free energy surface, W(?(1), ?(2)) and the three dimensional glucopyranose ring pucker FEV, W(?(1), ?(2), ?(3)). These studies provide for the first time details of the evolution of the oxocarbenium ion, which is a key to characterizing transition state structures seen in carbohydrate chemistry. A long-standing challenge has been the unambiguous assignment of the relative orientation of molecular pairs in solution. Here we describe how the molecular association of the benzene dimer in water and their relative orientational attraction are found from four dimensional, FEVs W(?(1), ?(2), ?(3), ?(4)). PMID:22644347

Naidoo, Kevin J

2012-07-01

77

Is quantum mechanics exact?  

SciTech Connect

We formulate physically motivated axioms for a physical theory which for systems with a finite number of degrees of freedom uniquely lead to quantum mechanics as the only nontrivial consistent theory. Complex numbers and the existence of the Planck constant common to all systems arise naturally in this approach. The axioms are divided into two groups covering kinematics and basic measurement theory, respectively. We show that even if the second group of axioms is dropped, there are no deformations of quantum mechanics which preserve the kinematic axioms. Thus, any theory going beyond quantum mechanics must represent a radical departure from the usual a priori assumptions about the laws of nature.

Kapustin, Anton [California Institute of Technology, Pasadena, California 91125 (United States)] [California Institute of Technology, Pasadena, California 91125 (United States)

2013-06-15

78

Constructibility in Quantum Mechanics  

E-print Network

We propose a set theoretical foundation including an axiom of constructibility and derive a generalized quantum mechanics by postulating symmetry of action. The Schroedinger equation proves to be a special case of a nonlinear sigma model. Quantum mechanics is obtained here without the requirement for presupposing the statistical interpretation of the wave function; thus this derivation becomes continuous with prior physics. In this theory we also see space-time as relational and the fields as free of singularities.

D. J. Bendaniel

2008-06-06

79

Supersymmetry in quantum mechanics  

Microsoft Academic Search

In the past ten years, the ideas of supersymmetry have been profitably applied to many nonrelativistic quantum mechanical\\u000a problems. In particular, there is now a much deeper understanding of why certain potentials are analytically solvable. In\\u000a this lecture I review the theoretical formulation of supersymmetric quantum mechanics and discuss many of its applications.\\u000a I show that the well-known exactly solvable

Avinash Khare

1997-01-01

80

Evading quantum mechanics  

E-print Network

Quantum mechanics is potentially advantageous for certain information-processing tasks, but its probabilistic nature and requirement of measurement back action often limit the precision of conventional classical information-processing devices, such as sensors and atomic clocks. Here we show that by engineering the dynamics of coupled quantum systems, it is possible to construct a subsystem that evades the measurement back action of quantum mechanics, at all times of interest, and obeys any classical dynamics, linear or nonlinear, that we choose. We call such a system a quantum-mechanics-free subsystem (QMFS). All of the observables of a QMFS are quantum-nondemolition (QND) observables; moreover, they are dynamical QND observables, thus demolishing the widely held belief that QND observables are constants of motion. QMFSs point to a new strategy for designing classical information-processing devices in regimes where quantum noise is detrimental, unifying previous approaches that employ QND observables, back-action evasion, and quantum noise cancellation. Potential applications include gravitational-wave detection, optomechanical force sensing, atomic magnetometry, and classical computing. Demonstrations of dynamical QMFSs include the generation of broad-band squeezed light for use in interferometric gravitational-wave detection, experiments using entangled atomic spin ensembles, and implementations of the quantum Toffoli gate.

Mankei Tsang; Carlton M. Caves

2012-03-11

81

Graduate Quantum Mechanics Reform  

NSDL National Science Digital Library

We address four main areas in which graduate quantum mechanics education can be improved: course content, textbook, teaching methods, and assessment tools. We report on a three year longitudinal study at the Colorado School of Mines using innovations in all these areas. In particular, we have modified the content of the course to reflect progress in the field of quantum mechanics over the last 50 years, used textbooks that include such content, incorporated a variety of teaching techniques based on physics education research, and used a variety of assessment tools to study the effectiveness of these reforms. We present a new assessment tool, the Graduate Quantum Mechanics Conceptual Survey, and further testing of a previously developed assessment tool, the Quantum Mechanics Conceptual Survey. We find that graduate students respond well to research-based techniques that have been tested mainly in introductory courses, and that they learn much of the new content introduced in each version of the course. We also find that students' ability to answer conceptual questions about graduate quantum mechanics is highly correlated with their ability to solve calculational problems on the same topics. In contrast, we find that students' understanding of basic undergraduate quantum mechanics concepts at the modern physics level is not improved by instruction at the graduate level.

Carr, Lincoln D.; Mckagan, Sam B.

2009-05-06

82

The Teaching of Quantum Mechanics  

NSDL National Science Digital Library

This website has tips and techniques for teaching quantum mechanics. It presents and outlines central ideas in quantum mechanics and includes descriptions of textbooks and software that can be helpful in quantum classes.

Styer, Dan

2003-10-10

83

Quantum Mechanics From the Cradle?  

ERIC Educational Resources Information Center

States that the major problem in learning quantum mechanics is often the student's ignorance of classical mechanics and that one conceptual hurdle in quantum mechanics is its statistical nature, in contrast to the determinism of classical mechanics. (MLH)

Martin, John L.

1974-01-01

84

QUANTUM MECHANICS II Physics 342  

E-print Network

QUANTUM MECHANICS II Physics 342 KPTC 103 9:00 ­ 10:20 a.m. 1 Tues., Thurs. ­ Winter Quarter 2011 quantum mechanics at the graduate level. The text for Quantum Mechanics II will be J. J. Sakurai and Jim Napolitano, Modern Quantum Mechanics, Second Edition (Addison-Wesley, San Francisco, 2011). For supplemental

Rosner, Jonathan L.

85

Quantum mechanics over sets  

E-print Network

In the tradition of toy models of quantum mechanics in vector spaces over finite fields (e.g., Schumacher and Westmoreland's "modal quantum theory"), one finite field stands out, 2, since vectors over 2 have an interpretation as natural mathematical objects, i.e., sets. This engages a sets-to-vector-spaces bridge that is part of the mathematical folklore to translate both ways between set concepts and vector space concepts. Using that bridge, the mathematical framework of (finite-dimensional) quantum mechanics can be transported down to sets resulting in quantum mechanics over sets or QM/sets. This approach leads to a different treatment of Dirac's brackets than in "modal quantum theory" (MQT), and that gives a full probability calculus (unlike MQT that only has zero-one modalities of impossible and possible). That, in turn, leads to a rather fulsome theory of QM over sets that includes "logical" models of the double-slit experiment, Bell's Theorem, quantum information theory, quantum computing, and much else. Indeed, QM/sets is proposed as the "logic" of QM in the old-fashioned sense of "logic" as giving the simplified essentials of a theory. QM/sets is also a key part of a broader research program to provide an interpretation of QM based on the notion of "objective indefiniteness," a program that grew out the recent development of the logic of partitions mathematically dual to the usual Boolean logic of subsets.

David Ellerman

2013-10-30

86

What is quantum mechanics?  

Microsoft Academic Search

We discuss the arguments for suspecting that there exists a classical, i.e. deterministic theory underlying quantum mechanics. A difficulty is that an explanation must be found of the fact that the Hamiltonian, which is defined to be the operator that generates evolution in time, is bounded from below. The mechanism that can produce exactly such a constraint is identified in

Gerard't Hooft

2007-01-01

87

Probability in Quantum Mechanics  

Microsoft Academic Search

The concept of probability played an important role in the very beginning of ? quantum theory, when Max Planck (1858–1947)\\u000a postulated the discrete emission and absorption of radiation in a ? black body radiation. The quantum statistical mechanics\\u000a developed by Planck and his successors has extraordinary consequences treated elsewhere in this Compendium. Here, however,\\u000a the emphasis will be upon the

Abner Shimony

88

Dual Quantum Mechanics  

E-print Network

We point out a possible complementation of the basic equations of quantum mechanics in the presence of gravity. This complementation is suggested by the well-known fact that quantum mechanics can be equivalently formulated in the position or in the momentum representation. As a way to support this complementation, starting from the action that describes conformal gravity in the world-line formalism, we show that there are duality transformations that relate the dynamics in the presence of position dependent vector and tensor fields to the dynamics in the presence of momentum dependent vector and tensor fields.

W. Chagas-Filho

2009-05-11

89

Relational Quantum Mechanics  

E-print Network

We suggest that the inner syntax of Quantum Mechanics is relational logic, a form of logic developed by C. S. Peirce during the years 1870 - 1880. The Peircean logic has the structure of category theory, with relation serving as an arrow (or morphism). At the core of the relational logical system is the law of composition of relations. This law leads to the fundamental quantum rule of probability as the square of an amplitude. Our study of a simple discrete model, extended to the continuum, indicates that a finite number of degrees of freedom can live in phase space. This "granularity" of phase space is determined by Planck's constant h. We indicate also the broader philosophical ramifications of a relational quantum mechanics.

Nicolaidis, Argyris

2012-01-01

90

Relational Quantum Mechanics  

E-print Network

We suggest that the inner syntax of Quantum Mechanics is relational logic, a form of logic developed by C. S. Peirce during the years 1870 - 1880. The Peircean logic has the structure of category theory, with relation serving as an arrow (or morphism). At the core of the relational logical system is the law of composition of relations. This law leads to the fundamental quantum rule of probability as the square of an amplitude. Our study of a simple discrete model, extended to the continuum, indicates that a finite number of degrees of freedom can live in phase space. This "granularity" of phase space is determined by Planck's constant h. We indicate also the broader philosophical ramifications of a relational quantum mechanics.

Argyris Nicolaidis

2012-11-09

91

QUANTUM MECHANICS I Physics 341  

E-print Network

QUANTUM MECHANICS I Physics 341 KPTC 103 9:00 ­ 10:20 a.m. 1 Tues., Thurs. ­ Fall Quarter 1999 mechanics at the graduate level. The text for Quantum mechanics I and II will be J. J. Sakurai and Jim Napolitano, Modern Quantum Mechanics, Second Edition (Addison- Wesley, 2011). We will cover the first three

Rosner, Jonathan L.

92

Quantum Mechanics and Gravitation  

E-print Network

In summer 1999 an experiment at ILL, Grenoble was conducted. So-called ultra-cold neutrons (UCN) were trapped in the vertical direction between the Fermi-potential of a smooth mirror below and the gravitational potential of the earth above [Ne00, Ru00]. If quantum mechanics turns out to be a sufficiently correct description of the phenomena in the regime of classical, weak gravitation, one should observe the forming of quantized bound states in the vertical direction above a mirror. Already in a simplified view, the data of the experiment provides strong evidence for the existence of such gravitationally bound quantized states. A successful quantum-mechanical description would then provide a convincing argument, that the socalled first quantization can be used for gravitation as an interaction potential, as this is widely expected. Furthermore, looking at the characteristic length scales of about 10 mikron of such bound states formed by UCN, one sees, that a complete quantum mechanical description of this experiment additionally would enable one to check for possible modifications of Newtonian gravitation on distance scales being one order of magnitude below currently available tests [Ad00]. The work presented here deals mainly with the development of a quantum mechanical description of the experiment.

A. Westphal

2002-08-21

93

Interpretation of quantum mechanics  

Microsoft Academic Search

New axioms are proposed for the interpretation of quantum mechanics. They rest on a kind of calculus allowing to select meaningful physical statements and giving rules to check a given physical reasoning containing implications. Measurement theory is reformulated. Laboratoire associé au Centre National de la Recherche Scientifique.

Roland Omnès

1987-01-01

94

Supersymmetry and quantum mechanics  

Microsoft Academic Search

In the past ten years, the ideas of supersymmetry have been profitably applied to many nonrelativistic quantum mechanical problems. In particular, there is now a much deeper understanding of why certain potentials are analytically solvable and an array of powerful new approximation methods for handling potentials which are not exactly solvable. In this report, we review the theoretical formulation of

Fred Cooper; Avinash Khare; Uday Sukhatme

1995-01-01

95

Physicalism versus quantum mechanics  

E-print Network

In the context of theories of the connection between mind and brain, physicalism is the demand that all is basically purely physical. But the concept of "physical" embodied in this demand is characterized essentially by the properties of the physical that hold in classical physical theories. Certain of these properties contradict the character of the physical in quantum mechanics, which provides a better, more comprehensive, and more fundamental account of phenomena. It is argued that the difficulties that have plaged physicalists for half a century, and that continue to do so, dissolve when the classical idea of the physical is replaced by its quantum successor. The argument is concretized in a way that makes it accessible to non-physicists by exploiting the recent evidence connecting our conscious experiences to macroscopic measurable synchronous oscillations occurring in well-separated parts of the brain. A specific new model of the mind-brain connection that is fundamentally quantum mechanical but that ties conscious experiences to these macroscopic synchronous oscillations is used to illustrate the essential disparities between the classical and quantum notions of the physical, and in particular to demonstrate the failure in the quantum world of the principle of the causal closure of the physical, a failure that goes beyond what is entailed by the randomness in the outcomes of observations, and that accommodates the efficacy in the brain of conscious intent.

Henry P. Stapp

2008-03-11

96

Fields and Quantum Mechanics  

E-print Network

The quantum field theories (QFT) constructed in [1,2] include phenomenology of interest. The constructions approximate: scattering by $1/r$ and Yukawa potentials in non-relativistic approximations; and the first contributing order of the Feynman series for Compton scattering. To have a semi-norm, photon states are constrained to transverse polarizations and for Compton scattering, the constructed cross section deviates at large momentum exchanges from the cross section prediction of the Feynman rules. Discussion includes the incompatibility of canonical quantization with the constructed interacting fields, and the role of interpretations of quantum mechanics in realizing QFT.

Glenn Eric Johnson

2013-12-09

97

Epigenetics: Biology's Quantum Mechanics  

PubMed Central

The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920s and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene – the molecular biological view and the epigenetic view – are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider. PMID:22639577

Jorgensen, Richard A.

2011-01-01

98

On Randomness in Quantum Mechanics  

E-print Network

The quantum mechanical probability densities are compared with the probability densities treated by the theory of random variables. The relevance of their difference for the interpretation of quantum mechanics is commented.

Alberto C. de la Torre

2007-07-19

99

Does Quantum Mechanics Need Interpretation?  

E-print Network

Since the beginning, quantum mechanics has raised major foundational and interpretative problems. Foundational research has been an important factor in the development of quantum cryptography, quantum information theory and, perhaps one day, practical quantum computers. Many believe that, in turn, quantum information theory has bearing on foundational research. This is largely related to the so-called epistemic view of quantum states, which maintains that the state vector represents information on a system and has led to the suggestion that quantum theory needs no interpretation. I will argue that this and related approaches fail to take into consideration two different explanatory functions of quantum mechanics, namely that of accounting for classically unexplainable correlations between classical phenomena and that of explaining the microscopic structure of classical objects. If interpreting quantum mechanics means answering the question, "How can the world be for quantum mechanics to be true?", there seems to be no way around it.

Louis Marchildon

2009-02-17

100

Bohmian quantum mechanics with quantum trajectories  

NASA Astrophysics Data System (ADS)

The quantum trajectory method in the hydrodynamical formulation of Madelung-Bohm-Takabayasi quantum mechanics is an example of showing the cognitive importance of scientific illustrations and metaphors, especially, in this case, in computational quantum chemistry and electrical engineering. The method involves several numerical schemes of solving a set of hydrodynamical equations of motion for probability density fluids, based on the propagation of those probability density trajectories. The quantum trajectory method gives rise to, for example, an authentic quantum electron transport theory of motion to, among others, classically-minded applied scientists who probably have less of a commitment to traditional quantum mechanics. They were not the usual audience of quantum mechanics and simply choose to use a non-Copenhagen type interpretation to their advantage. Thus, the metaphysical issues physicists had a trouble with are not the main concern of the scientists. With the advantages of a visual and illustrative trajectory, the quantum theory of motion by Bohm effectively bridges quantum and classical physics, especially, in the mesoscale domain. Without having an abrupt shift in actions and beliefs from the classical to the quantum world, scientists and engineers are able to enjoy human cognitive capacities extended into the quantum mechanical domain.

Jeong, Yeuncheol

101

Can Quantum Cryptography Imply Quantum Mechanics?  

E-print Network

It has been suggested that the ability of quantum mechanics to allow secure distribution of secret key together with its inability to allow bit commitment or communicate superluminally might be sufficient to imply the rest of quantum mechanics. I argue using a toy theory as a counterexample that this is not the case. I further discuss whether an additional axiom (key storage) brings back the quantum nature of the theory.

John A. Smolin

2003-10-10

102

Relativity and quantum mechanics  

Microsoft Academic Search

Conditions under which quantum mechanics can be made compatible with the curved space-time of gravitation theories is investigated. A postulate is imposed in the formv=vg wherev is the kinematical Hamilton-Jacobi (geometric optic limit) velocity andvg is the group velocity of the waves. This imposes a severe condition on the possible coordinates in which the Schrödinger form (the coordinate realization) of

Hüseyin Yilmaz

1982-01-01

103

Quantum Mechanics Survey (QMS)  

NSDL National Science Digital Library

This 31-question research-based multiple-choice test is designed to evaluate studentsâ conceptual understanding of quantum mechanics in junior-level courses. The survey is based on investigations of studentsâ difficulties in quantum mechanics and should be given in a 50-minute period. Statistical results have shown the survey to be reliable and valid. A summary of the construction and analysis of the survey is available in Surveying studentsâ understanding of quantum mechanics in one spatial dimension, Am. J. Phys. 80 (3), 252-259. This assessment is free for use by instructors in their classroom. However, as it takes years of development effort to create and validate reliable assessment instruments, the file is password-protected. Furthermore, the author requests that 1. students are not given copies following examination; and 2. none of the questions are incorporated into web-based question delivery systems without adequate security to prevent printing or unauthorized access by students. To obtain the password, please send a request with your name, email, institution, and a link to a page at your institution that confirms you are an instructor.

Singh, Chandralekha; Zhu, Guangtian

2012-04-29

104

Quantum Mechanics and Representation Theory Columbia University  

E-print Network

Quantum Mechanics and Representation Theory Peter Woit Columbia University Texas Tech, November 21 2013 Peter Woit (Columbia University) Quantum Mechanics and Representation Theory November 2013 1 / 30 #12;Does Anyone Understand Quantum Mechanics? "No One Understands Quantum Mechanics" "I think

Woit, Peter

105

Principles of Fractional Quantum Mechanics  

E-print Network

A review of fundamentals and physical applications of fractional quantum mechanics has been presented. Fundamentals cover fractional Schr\\"odinger equation, quantum Riesz fractional derivative, path integral approach to fractional quantum mechanics, hermiticity of the Hamilton operator, parity conservation law and the current density. Applications of fractional quantum mechanics cover dynamics of a free particle, new representation for a free particle quantum mechanical kernel, infinite potential well, bound state in {\\delta}-potential well, linear potential, fractional Bohr atom and fractional oscillator. We also review fundamentals of the L\\'evy path integral approach to fractional statistical mechanics.

Nick Laskin

2010-09-28

106

Nonlinear friction in quantum mechanics  

E-print Network

The effect of nonlinear friction forces in quantum mechanics is studied via dissipative Madelung hydrodynamics. A new thermo-quantum diffusion equation is derived, which is solved for the particular case of quantum Brownian motion with a cubic friction. It is extended also by a chemical reaction term to describe quantum reaction-diffusion systems with nonlinear friction as well.

Roumen Tsekov

2010-03-01

107

What is quantum mechanics?  

NASA Astrophysics Data System (ADS)

We discuss the arguments for suspecting that there exists a classical, i.e. deterministic theory underlying quantum mechanics. A difficulty is that an explanation must be found of the fact that the Hamiltonian, which is defined to be the operator that generates evolution in time, is bounded from below. The mechanism that can produce exactly such a constraint is identified in this paper. It is the fact that not all classical data are registered in the quantum description. Large sets of values of these data are assumed to be indistinguishable, forming equivalence classes. It is argued that this should be attributed to information loss, such as what one might suspect to happen during the formation and annihilation of virtual black holes. The nature of the equivalence classes is further elucidated, as it follows from the positivity of the Hamiltonian. Our world is assumed to consist of a very large number of subsystems that may be regarded as approximately independent, or weakly interacting with one another. As long as two (or more) sectors of our world are treated as being independent, they all must be demanded to be restricted to positive energy states only. What follows from these considerations is a unique definition of energy in the quantum system in terms of the periodicity of the limit cycles of the deterministic model. An example of a deterministic dissipative model producing exact quantum mechanics is provided for the case of a finite-dimensional vector space. These lecture notes have been produced partly from material published earlier, and as such contain more material than what could be presented in the talk.

't Hooft, Gerard

2007-04-01

108

Logical foundation of quantum mechanics  

Microsoft Academic Search

The subject of this article is the reconstruction of quantum mechanics on the basis of a formal language of quantum mechanical propositions. During recent years, research in the foundations of the language of science has given rise to adialogic semantics that is adequate in the case of a formal language for quantum physics. The system ofsequential logic which is comprised

E. W. Stachow; Theoretische Physik

1980-01-01

109

Octonic relativistic quantum mechanics  

E-print Network

In this paper we represent the generalization of relativistic quantum mechanics on the base of eght-component values "octons", generating associative noncommutative spatial algebra. It is shown that the octonic second-order equation for the eight-component octonic wave function, obtained from the Einshtein relation for energy and momentum, describes particles with spin of 1/2. It is established that the octonic wave function of a particle in the state with defined spin projection has the specific spatial structure in the form of octonic oscillator with two spatial polarizations: longitudinal linear and transversal circular. The relations between bispinor and octonic descriptions of relativistic particles are established. We propose the eight-component spinors, which are octonic generalisation of two-component Pauli spinors and four-component Dirac bispinors. It is shown that proposed eight-component spinors separate the states with different spin projection, different particle-antiparticle state as well as different polarization of the octonic oscillator. We demonstrate that in the frames of octonic relativistic quantum mechanics the second-order equation for octonic wave function can be reformulated in the form of the system of first-order equations for quantum fields, which is analogous to the system of Maxwell equations for the electromagnetic field. It is established that for the special type of wave functions the second-order equation can be reduced to the single first-order equation, which is analogous to the Dirac equation. At the same time it is shown that this first-order equation describes particles, which do not create quantum fields.

V. L. Mironov; S. V. Mironov

2008-03-04

110

From Quantum Mechanics to Thermodynamics?  

E-print Network

From Quantum Mechanics to Thermodynamics? Dresden, 22.11.2004 Jochen Gemmer Universit¨at Osnabr Description? Quantum Mechanics i¯h t = (- ¯h2 2m + V ) Classical Mechanics: m d2 dt2 x = - V Thermodynamics: dU = TdS - pdV dS dt > 0 #12;Fundamental Law or Emergent Description? Quantum Mechanics i

Steinhoff, Heinz-Jürgen

111

Conformal Orthosymplectic Quantum Mechanics  

E-print Network

We present the most general curvature obstruction to the deformed parabolic orthosymplectic symmetry subalgebra of the supersymmetric quantum mechanical models recently developed to describe Lichnerowicz wave operators acting on arbitrary tensors and spinors. For geometries possessing a hypersurface-orthogonal homothetic conformal Killing vector we show that the parabolic subalgebra is enhanced to a (curvature-obstructed) orthosymplectic algebra. The new symmetries correspond to time-dependent conformal symmetries of the underlying particle model. We also comment on generalizations germane to three dimensions and new Chern--Simons-like particle models.

J. Burkart; A. Waldron

2008-12-20

112

Conformal orthosymplectic quantum mechanics  

NASA Astrophysics Data System (ADS)

We present the most general curvature obstruction to the deformed parabolic orthosymplectic symmetry subalgebra of the supersymmetric quantum mechanical models recently developed to describe Lichnerowicz wave operators acting on arbitrary tensors and spinors. For geometries possessing a hypersurface-orthogonal homothetic conformal Killing vector we show that the parabolic subalgebra is enhanced to a (curvature-obstructed) orthosymplectic algebra. The new symmetries correspond to time-dependent conformal symmetries of the underlying particle model. We also comment on generalizations germane to three dimensions and new Chern-Simons-like particle models.

Burkart, Joshua; Waldron, Andrew

2009-05-01

113

Supersymmetric Quantum Mechanics  

SciTech Connect

Supersymmetric quantum mechanics (SUSY QM) is a powerful tool for generating new potentials with known spectra departing from an initial solvable one. In these lecture notes we will present some general formulae concerning SUSY QM of first second order for one-dimensional arbitrary systems, we will illustrate the method through the trigonometric Poeschl-Teller potentials. Some intrinsically related subjects, as the algebraic structure inherited by the new Hamiltonians and the corresponding coherent states will be analyzed. The technique will be as well implemented for periodic potentials, for which the corresponding spectrum is composed of allowed bands separated by energy gaps.

David, J.; Fernandez, C. [Depto. de Fisica, Cinvestav, A.P. 14-740, 07000 Mexico D.F. (Mexico)

2010-10-11

114

Diffusion-Schrödinger Quantum Mechanics  

NASA Astrophysics Data System (ADS)

A quantum solution of a nonlinear differential equation of diffusion type with a potential term has been found. Diffusion-Schrödinger quantum mechanics can find wide application in quantum biology, biological electronics, synthetic biology, nanomedicine, the quantum theory of consciousness, cosmology, and other fields of science and technology. One consequence of the macroscopic nature of diffusion-Schrödinger quantum mechanics is the possibility of generation of hard photons. The dust plasma in the Universe can generate cosmic rays with ultra-relativistic energies in a galactic magnetic field via a diffusion mechanism.

Lasukov, V. V.; Lasukova, T. V.; Lasukova, O. V.; Novoselov, V. V.

2014-08-01

115

Quantum Mechanics as Dualism  

NASA Astrophysics Data System (ADS)

I do not agree with mind-body dualism. Today the consensus view is that thought and mind is a combination of processes like memory, generalization, comparison, deduction, organization, induction, classification, feature detection, analogy, etc. performed by computational machinery. (R. Jones, Trans. of the Kansas Acad. Sci., vol. 109, # 3/4, 2006 and www.robert-w-jones.com, philosopher, theory of thought) But I believe that quantum mechanics is a more plausible dualist theory of reality. The quantum mechanical wave function is nonphysical, it exists in a 3N space (for an N body system) not in (x,y,z,t) 4-space, and does not possess physical properties. But real physical things like energy (which do exist in our 4-space world) influence the wave function and the wave function, in its turn, influences real physical things, like where a particle can be found in 4-space. The coupling between the spirit-like wave function and things found in the real (4-space) world (like energy) is via mathematical equations like the Schrodinger equation and Born normalization.

Jones, Robert

2011-03-01

116

How iron-containing proteins control dioxygen chemistry: a detailed atomic level description via accurate quantum chemical and mixed  

E-print Network

27 September 2002 Abstract Over the past several years, rapid advances in computational hardware accurate quantum chemical and mixed quantum mechanics/molecular mechanics calculations Richard A. Friesner, quantum chemical methods, and mixed quantum mechanics/molecular mechanics (QM/MM) techniques have made

Baik, Mu-Hyun

117

Kindergarten Quantum Mechanics  

E-print Network

These lecture notes survey some joint work with Samson Abramsky as it was presented by me at several conferences in the summer of 2005. It concerns `doing quantum mechanics using only pictures of lines, squares, triangles and diamonds'. This picture calculus can be seen as a very substantial extension of Dirac's notation, and has a purely algebraic counterpart in terms of so-called Strongly Compact Closed Categories (introduced by Abramsky and I in quant-ph/0402130 and [4]) which subsumes my Logic of Entanglement quant-ph/0402014. For a survey on the `what', the `why' and the `hows' I refer to a previous set of lecture notes quant-ph/0506132. In a last section we provide some pointers to the body of technical literature on the subject.

Bob Coecke

2005-10-04

118

PT quantum mechanics.  

PubMed

PT-symmetric quantum mechanics (PTQM) has become a hot area of research and investigation. Since its beginnings in 1998, there have been over 1000 published papers and more than 15 international conferences entirely devoted to this research topic. Originally, PTQM was studied at a highly mathematical level and the techniques of complex variables, asymptotics, differential equations and perturbation theory were used to understand the subtleties associated with the analytic continuation of eigenvalue problems. However, as experiments on PT-symmetric physical systems have been performed, a simple and beautiful physical picture has emerged, and a PT-symmetric system can be understood as one that has a balanced loss and gain. Furthermore, the PT phase transition can now be understood intuitively without resorting to sophisticated mathematics. Research on PTQM is following two different paths: at a fundamental level, physicists are attempting to understand the underlying mathematical structure of these theories with the long-range objective of applying the techniques of PTQM to understanding some of the outstanding problems in physics today, such as the nature of the Higgs particle, the properties of dark matter, the matter-antimatter asymmetry in the universe, neutrino oscillations and the cosmological constant; at an applied level, new kinds of PT-synthetic materials are being developed, and the PT phase transition is being observed in many physical contexts, such as lasers, optical wave guides, microwave cavities, superconducting wires and electronic circuits. The purpose of this Theme Issue is to acquaint the reader with the latest developments in PTQM. The articles in this volume are written in the style of mini-reviews and address diverse areas of the emerging and exciting new area of PT-symmetric quantum mechanics. PMID:23509390

Bender, Carl M; DeKieviet, Maarten; Klevansky, S P

2013-04-28

119

On Finite $J$-Hermitian Quantum Mechanics  

E-print Network

In his recent paper arXiv:1312.7738, the author discussed $J$-Hermitian quantum mechanics and showed that $PT$-symmetric quantum mechanics is essentially $J$-Hermitian quantum mechanics. In this paper, the author discusses finite $J$-Hermitian quantum mechanics which is derived naturally from its continuum one and its relationship with finite $PT$-symmetric quantum mechanics.

Sungwook Lee

2014-01-21

120

Invariance in adelic quantum mechanics  

E-print Network

Adelic quantum mechanics is form invariant under an interchange of real and p-adic number fields as well as rings of p-adic integers. We also show that in adelic quantum mechanics Feynman's path integrals for quadratic actions with rational coefficients are invariant under changes of their entries within nonzero rational numbers.

Branko Dragovich

2006-12-07

121

Decoherence in quantum mechanics and quantum cosmology  

NASA Technical Reports Server (NTRS)

A sketch of the quantum mechanics for closed systems adequate for cosmology is presented. This framework is an extension and clarification of that of Everett and builds on several aspects of the post-Everett development. It especially builds on the work of Zeh, Zurek, Joos and Zeh, and others on the interactions of quantum systems with the larger universe and on the ideas of Griffiths, Omnes, and others on the requirements for consistent probabilities of histories.

Hartle, James B.

1992-01-01

122

Playing Games in Quantum Mechanical Settings:. Features of Quantum Games  

Microsoft Academic Search

In this lecture note, we present the implications of playing classical games in quantum mechanical settings where the quantum mechanical toolbox consisting of entanglement, quantum operations and measurement is used. After a brief introduction to the concepts of classical game theory and quantum mechanics, we study quantum games and their corresponding classical analogues to determine the novelties. In addition, we

Sahin Kaya Özdemir; Junichi Shimamura; Nobuyuki Imoto

2008-01-01

123

Quantum Mechanics 1 for graduate students  

E-print Network

Course 606 Quantum Mechanics 1 for graduate students Fall 2010 Instructor Valery Pokrovsky 1 electromagnetic field. Gauge invariance. Landau levels. 7. Semiclassical approximation. 8. Quantum mechanics. Scattering. The main textbook is E. Merzbacher, Quantum Mechanics, third edition, Wiley. Additional

124

Classical and Quantum Mechanical Waves  

NSDL National Science Digital Library

This web site consists of lecture notes in classical and quantum mechanical waves. The notes include the basics of classical waves including connections to mechanical oscillators, wave packets, and acoustic and electromagnetic waves. The final section outlines the key concepts of the quantum mechanical wave equation including probability and current, free and bound states, time dependent perturbation theory, and radiation. Visual Python and Maple animations are included for download.

Riley, Lewis

2006-07-22

125

Quantum Mechanics as Classical Physics  

E-print Network

Here I explore a novel no-collapse interpretation of quantum mechanics which combines aspects of two familiar and well-developed alternatives, Bohmian mechanics and the many-worlds interpretation. Despite reproducing the empirical predictions of quantum mechanics, the theory looks surprisingly classical. All there is at the fundamental level are particles interacting via Newtonian forces. There is no wave function. However, there are many worlds.

Charles Sebens

2014-02-27

126

Noninertial quantum mechanical fluctuations  

E-print Network

Zero point quantum fluctuations as seen from non-inertial reference frames are of interest for several reasons. In particular, because phenomena such as Unruh radiation (acceleration radiation) and Hawking radiation (quantum leakage from a black hole) depend intrinsically on both quantum zero-point fluctuations and some appropriate notion of an accelerating vacuum state, any experimental test of zero-point fluctuations in non-inertial frames is implicitly a test of the foundations of quantum field theory, and the Unruh and Hawking effects

H. C. Rosu

2000-12-20

127

Communication: Quantum mechanics without wavefunctions  

SciTech Connect

We present a self-contained formulation of spin-free non-relativistic quantum mechanics that makes no use of wavefunctions or complex amplitudes of any kind. Quantum states are represented as ensembles of real-valued quantum trajectories, obtained by extremizing an action and satisfying energy conservation. The theory applies for arbitrary configuration spaces and system dimensionalities. Various beneficial ramifications--theoretical, computational, and interpretational--are discussed.

Schiff, Jeremy [Department of Mathematics, Bar-Ilan University, Ramat Gan 52900 (Israel); Poirier, Bill [Department of Chemistry and Biochemistry, Texas Tech University, Box 41061, Lubbock, Texas 79409-1061 (United States) and Department of Physics, Texas Tech University, Box 41051, Lubbock, Texas 79409-1051 (United States)

2012-01-21

128

Scattering Relativity in Quantum Mechanics  

E-print Network

Transforming from one reference frame to another yields an equivalent physical description. If quantum fields are transformed one way and quantum states transformed a different way then the physics changes. We show how to use the resulting changed physical description to obtain the equations of motion of charged, massive particles in electromagnetic and gravitational fields. The derivation is based entirely on special relativity and quantum mechanics.

Richard Shurtleff

2011-08-09

129

Phase Space Quantum Mechanics - Direct  

E-print Network

Conventional approach to quantum mechanics in phase space, (q,p), is to take the operator based quantum mechanics of Schrodinger, or and equivalent, and assign a c-number function in phase space to it. We propose to begin with a higher level of abstraction, in which the independence and the symmetric role of q and p is maintained throughout, and at once arrive at phase space state functions. Upon reduction to the q- or p-space the proposed formalism gives the conventional quantum mechanics, however, with a definite rule for ordering of factors of non commuting observables. Further conceptual and practical merits of the formalism are demonstrated throughout the text.

S. Nasiri; Y. Sobouti; F. Taati

2006-05-15

130

Topological quantum mechanics  

SciTech Connect

The quantum theory of a type of generally covariant field theory, that has no local degrees of freedom, is described. Physical observables that capture topological properties of the manifold are identified and a representation of their Poisson algebra is constructed to obtain the quantum theory. A non-Abelian generalization to SU(2) is also discussed in a similar way.

Husain, V. (Department of Physics, University of Utah, Salt Lake City, Utah 84112 (US))

1991-03-15

131

Quantum mechanical description of waveguides  

E-print Network

In this paper, applying the spinor representation of the electromagnetic field, we present a quantum-mechanical description of waveguides. As an example of application, a potential qubit generated via photon tunneling is discussed.

Zhi-Yong Wang; Cai-Dong Xiong; Bing He

2006-11-02

132

Free will and quantum mechanics  

E-print Network

A simple example is provided showing that violation of free will allows to reproduce the quantum mechanical predictions, and that the Clauser-Horne parameter can take the maximum value 4 for a proper choice.

Antonio Di Lorenzo

2011-05-05

133

Quantum mechanics writ large  

E-print Network

Some two centuries before the quantum revolution, Newton (1) suggested that corpuscles of light generate waves in an aethereal medium like skipping stones generate waves in water, with their motion then being affected by ...

Bush, John W. M.

134

From Quantum Mechanics to String Theory  

E-print Network

From Quantum Mechanics to String Theory Relativity (why it makes sense) Quantum mechanics) New Particles anti-particles (combining special relativity and quantum mechanics pions (mediator/momentum/mass discrepancy must fit inside the quantum mechanical uncertainty p, E E2 - p2 c2 = 0 Thursday, May 7, 2009 #12

135

Chem 793 Quantum Mechanics I Chemistry 793  

E-print Network

Chem 793 Quantum Mechanics I Chemistry 793 Quantum Mechanics I Fall 2000 Course outline 1 formulation. · Constants of the motion. 2. Probability in classical and quantum mechanics · Probability University #12;Chem 793 Quantum Mechanics I 7. Separable problems in 2D and 3D · Direct product functions

136

Sampling with quantum mechanics  

E-print Network

A new algorithm for estimating the fraction of numbers that is present in a superpositional state which satisfies a given condition,is introduced.This algorithm is conceptually simple and does not require quantum Fourier transform.Also the number of steps required does not depend on the size of the data base to be searched.

M. P John

2003-06-26

137

Quantum mechanics needs no interpretation  

E-print Network

Probabilistic description of results of measurements and its consequences for understanding quantum mechanics are discussed. It is shown that the basic mathematical structure of quantum mechanics like the probability amplitude, Born rule, probability density current, commutation relations, momentum operator, uncertainty relations, rules for including the scalar and vector potentials and existence of antiparticles can be derived from the definition of the mean values of the space coordinates and time. Equations of motion of quantum mechanics, the Klein-Gordon equation, Schroedinger equation and Dirac equation are obtained from requirement of the relativistic invariance of the theory. Limit case of localized probability densities leads to the Hamilton-Jacobi equation of classical mechanics. Many particle systems are also discussed.

L. Skala; V. Kapsa

2004-12-22

138

Canonical Transformations in Quantum Mechanics  

E-print Network

Three elementary canonical transformations are shown both to have quantum implementations as finite transformations and to generate, classically and infinitesimally, the full canonical algebra. A general canonical transformation can, in principle, be realized quantum mechanically as a product of these transformations. It is found that the intertwining of two super-Hamiltonians is equivalent to there being a canonical transformation between them. A consequence is that the procedure for solving a differential equation can be viewed as a sequence of elementary canonical transformations trivializing the super-Hamiltonian associated to the equation. It is proposed that the quantum integrability of a system is equivalent to the existence of such a sequence.

Arlen Anderson

1992-05-22

139

PT quantum mechanics - Recent results  

SciTech Connect

Most quantum physicists believe that a quantum-mechanical Hamiltonian must be Dirac Hermitian (invariant under matrix transposition and complex conjugation) to be sure that the energy eigenvalues are real and that time evolution is unitary. However, the non-Dirac-hermitian Hamiltonian H p{sup 2}+ix{sup 3} has a real positive discrete spectrum and generates unitary time evolution and defines a fully consistent and physical quantum theory. Evidently, Dirac Hermiticity is too restrictive. While H = p{sup 2}+ix{sup 3} is not Dirac Hermitian, it is PT symmetric (invariant under combined space reflection P and time reversal T). Another PT-symmetric Hamiltonian whose energy levels are real, positive and discrete is H = p{sup 2}-x{sup 4}, which contains an upside-down potential. The quantum mechanics defined by a PT-symmetric Hamiltonian is a complex generalization of ordinary quantum mechanics. When quantum mechanics and quantum field theory are extended into the complex domain, new kinds of theories having strange and remarkable properties emerge. In the past two years some of these properties have been verified in laboratory experiments. Here, we first discuss PT-symmetric Hamiltonians at a simple intuitive level and explain why the energy levels of such Hamiltonians may be real, positive, and discrete. Second, we describe a recent experiment in which the PT phase transition was observed. Third, we briefly mention that PT-symmetric theories can be useful at a fundamental level. While the double-scaling limit of an O(N)-symmetric g{phi}{sup 4} quantum field theory appears to be inconsistent because the critical value of g is negative, this limit is in fact not inconsistent because the critical theory is PT symmetric.

Bender, Carl M. [Physics Department, Washington University, St. Louis, MO 63130 (United States)

2012-09-26

140

Quantum Mechanics (QM) Measurement Package  

NSDL National Science Digital Library

This set of tutorial worksheets, based on the OSP Quantum Mechanics Simulations, help students explore the effects of position, momentum, and energy measurements on quantum state wavepackets. The probabilistic change in the wavefunction upon measurements and the time propagation of the states are illustrated. Similar worksheets are available for measurements of single and superpositions of energy eigenstates. The worksheets can be run online or downloaded as a pdf (attached).

Belloni, Mario; Christian, Wolfgang

2010-01-07

141

Kowalevski top in quantum mechanics  

SciTech Connect

The quantum mechanical Kowalevski top is studied by the direct diagonalization of the Hamiltonian. The spectra show different behaviors depending on the region divided by the bifurcation sets of the classical invariant tori. Some of these spectra are nearly degenerate due to the multiplicity of the invariant tori. The Kowalevski top has several symmetries and symmetry quantum numbers can be assigned to the eigenstates. We have also carried out the semiclassical quantization of the Kowalevski top by the EBK formulation. It is found that the semiclassical spectra are close to the exact values, thus the eigenstates can be also labeled by the integer quantum numbers. The symmetries of the system are shown to have close relations with the semiclassical quantum numbers and the near-degeneracy of the spectra. -- Highlights: •Quantum spectra of the Kowalevski top are calculated. •Semiclassical quantization is carried out by the EBK formulation. •Quantum states are labeled by the semiclassical integer quantum numbers. •Multiplicity of the classical torus makes the spectra nearly degenerate. •Symmetries, quantum numbers and near-degenerate spectra are closely related.

Matsuyama, A., E-mail: spamatu@ipc.shizuoka.ac.jp

2013-09-15

142

Quantum Statistical Mechanics and Quantum Computation Thursday, 22 March 2012  

E-print Network

Quantum Statistical Mechanics and Quantum Computation Thursday, 22 March 2012 8:50 am Welcoming:30 ­ 5:30 "Criticality without frustration for quantum spin-1 chains" Sergey Bravyi 6:30 pm Dinner at Triumph Brewery 138 Nassau Street Princeton, NJ 08542 609-924-7855 Quantum Statistical Mechanics

143

A Criterion for Holism in Quantum Mechanics  

E-print Network

A Criterion for Holism in Quantum Mechanics # M.P Seevinck # # Utrecht University, The Netherlands, June 2003. # 1 #12; # Motivation # . The question whether or not quantum mechanics (QM) gives rise. Orthodox Quantum Mechanics . Criterion for Holism in the Quantum Formalism . Orthodox QM is Holistic

Seevinck, Michiel

144

A Criterion for Holism in Quantum Mechanics  

E-print Network

A Criterion for Holism in Quantum Mechanics M.P Seevinck Utrecht University, The Netherlands, June 2003. 1 #12; Motivation · The question whether or not quantum mechanics (QM) gives rise to some. Orthodox Quantum Mechanics · Criterion for Holism in the Quantum Formalism · Orthodox QM is Holistic

Seevinck, Michiel

145

ccsd00002942, ON SUPERSYMMETRIC QUANTUM MECHANICS  

E-print Network

ccsd­00002942, version 1 ­ 25 Sep 2004 ON SUPERSYMMETRIC QUANTUM MECHANICS M.R. KIBLER Institut de Quantum Mechanics of order k. The presentation is based on the introduction of a generalized Weyl supersymmetric Quantum Mechanics corresponds to k = 2. A connection between fractional supersymmetric Quantum

146

Quantum Mechanical Earth: Where Orbitals Become Orbits  

ERIC Educational Resources Information Center

Macroscopic objects, although quantum mechanical by nature, conform to Newtonian mechanics under normal observation. According to the quantum mechanical correspondence principle, quantum behavior is indistinguishable from classical behavior in the limit of very large quantum numbers. The purpose of this paper is to provide an example of the…

Keeports, David

2012-01-01

147

Algebraic Quantum Mechanics and Pregeometry  

E-print Network

We discuss the relation between the q-number approach to quantum mechanics suggested by Dirac and the notion of "pregeometry" introduced by Wheeler. By associating the q-numbers with the elements of an algebra and regarding the primitive idempotents as "generalized points" we suggest an approach that may make it possible to dispense with an a priori given space manifold. In this approach the algebra itself would carry the symmetries of translation, rotation, etc. Our suggestion is illustrated in a preliminary way by using a particular generalized Clifford Algebra proposed originally by Weyl, which approaches the ordinary Heisenberg algebra in a suitable limit. We thus obtain a certain insight into how quantum mechanics may be regarded as a purely algebraic theory, provided that we further introduce a new set of "neighbourhood operators", which remove an important kind of arbitrariness that has thus far been present in the attempt to treat quantum mechanics solely in terms of a Heisenberg algebra.

D. J. Bohm; P. G. Davies; B. J. Hiley

2006-11-30

148

THE OBJECTIVE INDEFINITENESS INTERPRETATION OF QUANTUM MECHANICS: Partition logic, logical information theory, and quantum mechanics  

E-print Network

THE OBJECTIVE INDEFINITENESS INTERPRETATION OF QUANTUM MECHANICS: Partition logic, logical information theory, and quantum mechanics David Ellerman University of California at Riverside www ago that quantum mechanics was not compatible with Boolean logic, then the natural thing to do would

Wüthrich, Christian

149

Remarks on osmosis, quantum mechanics, and gravity  

E-print Network

Some relations of the quantum potential to Weyl geometry are indicated with applications to the Friedmann equations for a toy quantum cosmology. Osmotic velocity and pressure are briefly discussed in terms of quantum mechanics and superfluids with connections to gravity.

Robert Carroll

2011-04-03

150

Remarks on osmosis, quantum mechanics, and gravity  

E-print Network

Some relations of the quantum potential to Weyl geometry are indicated with applications to the Friedmann equations for a toy quantum cosmology. Osmotic velocity and pressure are briefly discussed in terms of quantum mechanics and superfluids with connections to gravity.

Carroll, Robert

2011-01-01

151

Faster than Hermitian quantum mechanics.  

PubMed

Given an initial quantum state |psi(I)> and a final quantum state |psi(F)>, there exist Hamiltonians H under which |psi(I)> evolves into |psi(F)>. Consider the following quantum brachistochrone problem: subject to the constraint that the difference between the largest and smallest eigenvalues of H is held fixed, which H achieves this transformation in the least time tau? For Hermitian Hamiltonians tau has a nonzero lower bound. However, among non-Hermitian PT-symmetric Hamiltonians satisfying the same energy constraint, tau can be made arbitrarily small without violating the time-energy uncertainty principle. This is because for such Hamiltonians the path from |psi(I)> to |psi(F)> can be made short. The mechanism described here is similar to that in general relativity in which the distance between two space-time points can be made small if they are connected by a wormhole. This result may have applications in quantum computing. PMID:17358747

Bender, Carl M; Brody, Dorje C; Jones, Hugh F; Meister, Bernhard K

2007-01-26

152

Canonical Transformations in Quantum Mechanics  

E-print Network

Quantum canonical transformations are defined algebraically outside of a Hilbert space context. This generalizes the quantum canonical transformations of Weyl and Dirac to include non-unitary transformations. The importance of non-unitary transformations for constructing solutions of the Schr\\"odinger equation is discussed. Three elementary canonical transformations are shown both to have quantum implementations as finite transformations and to generate, classically and infinitesimally, the full canonical algebra. A general canonical transformation can be realized quantum mechanically as a product of these transformations. Each transformation corresponds to a familiar tool used in solving differential equations, and the procedure of solving a differential equation is systematized by the use of the canonical transformations. Several examples are done to illustrate the use of the canonical transformations. [This is an extensively revised version of hep-th-9205080: the first third of the paper is new material; the notation has been simplified, and further discussion has been added to the remainder.

Arlen Anderson

1993-05-13

153

OSP: Quantum-mechanical Measurement  

NSDL National Science Digital Library

This set of quantum mechanics java applets, part of the Open Source Physics project, provides simulations that demonstrate the effect of measurement on the time-dependence of quantum states. Exercises are available that demonstrate the results of measurement of energy, position, and momentum on states in potential wells (square well, harmonic oscillator, asymmetric well, etc). Eigenstates, superpositions of eigenstates, and wave packets can all be studied. Tutorials are also available. The material stresses the measurement of a quantum-mechanical wave function. The simulations can be delivered either through the OSP Launcher interface or embedded in html pages. The source code is available, and users are invited to contribute to the collection's development by submitting improvements. The simulations are available through the "View attached documents" link below.

Belloni, Mario; Christian, Wolfgang

2006-06-27

154

Quantum Mechanics and Physical Reality  

Microsoft Academic Search

IN a recent article by A. Einstein, B. Podolsky and N. Rosen, which appeared in the Physical Review of May 15, and was reviewed in NATURE of June 22, the question of the completeness of quantum mechanical description has been discussed on the basis of a ``criterion of physical reality'', which the authors formulate as follows : ``If, without in

N. Bohr

1935-01-01

155

Quantum Mechanics Of Consciousness  

E-print Network

A phenomenological approach using the states of spin-like observables is developed to understand the nature of consciousness and the totality of experience. The three states of consciousness are taken to form the triplet of eigenstates of a spin-one entity and are derived as the triplet resulting from the composition of two spins by treating the subject and the object as interacting two-state, spin-half systems with external and internal projections. The state of deep sleep is analysed in the light of this phenomenological approach and a novel understanding of the status of the individual consciousness in this state is obtained. The resulting fourth state i.e. the singlet state is interpreted to correspond to the superconscious state of intuitive experience and is justified by invoking the concept of the universal consciousness as the underlying source of all individual states of experience. It is proposed that the individual experiences result from the operations of four individualizing observables which project out the individual from the universal. The one-to-one correspondence between the individual and the universal states of experience is brought out and their identity in the fourth state is established by showing that all individualizing quantum numbers become zero in this state leaving no trace of any individuality.

Rajat Kumar Pradhan

2009-07-28

156

Simple Formulas for Improved Point-Charge Electrostatics in Classical Force Fields and Hybrid Quantum Mechanical/Molecular Mechanical Embedding  

PubMed Central

We present a simple damping scheme for point-charge electrostatics that could be used directly in classical force fields. The approach acts at the charge (or monopole) level only and allows the inclusion of short-range electrostatic penetration effects at a very low cost. Results are compared with density functional theory Coulomb intermolecular interaction energies and with several other methods such as distributed multipoles, damped distributed multipoles, and transferable Hermite-Gaussian densities. Realistic trends in the interactions are observed for atom-centered Mertz-Kollman corrected point-charge distributions. The approach allows increasing the selectivity of parameters in the case of metal complexes. In addition, two QM/MM calculations are presented where the damping function is employed to include the MM atoms located at the QM/MM boundary. The first calculation corresponds to the gas-phase proton transfer of aspartic acid through water and the second is the first step of the reaction catalyzed by the 4-oxalocrotonate tautomerase (4OT) enzyme. First, improved agreement is observed when using the damping approach compared with the conventional excluded charge method or when including all charges in the calculation. Second, in the case of 4OT, the damped charge approach is in agreement with previous calculations, whereas including all charges gives a significantly higher energy barrier. In both cases, no reparameterization of the van der Waals part of the force field was performed. PMID:19606279

Cisneros, G. A.; Tholander, S. Na-Im; Parisel, O.; Darden, T. A.; Elking, D.; Perera, L.; Piquemal, J.-P.

2009-01-01

157

A quantum mechanical/molecular mechanical study of the aspartic protease plasmepsin IV complexed with allophenylnorstatine-based inhibitor  

NASA Astrophysics Data System (ADS)

Plasmepsin IV (PM IV) is a potential target for developing drugs against malaria. This Letter presents results of QM/MM dynamic simulations applied to the study of the protonation state of two aspartates (Asp34 and Asp214) catalytic residues of PM IV in complex with KNI-764 inhibitor. The potential of mean force profile was used to assign the protonation state of the two catalytic aspartates in PM IV-KNI-764 complex. The results indicate that protonation of the 214 residue is more favorable. In addition, energy terms decomposition was used to explore key interactions between the main residues and KNI-764 inhibitor.

Silva, Natália de Farias; Lameira, Jerônimo; Alves, Cláudio Nahum

2011-06-01

158

Effective equations for the quantum pendulum from momentous quantum mechanics  

SciTech Connect

In this work we study the quantum pendulum within the framework of momentous quantum mechanics. This description replaces the Schroedinger equation for the quantum evolution of the system with an infinite set of classical equations for expectation values of configuration variables, and quantum dispersions. We solve numerically the effective equations up to the second order, and describe its evolution.

Hernandez, Hector H.; Chacon-Acosta, Guillermo [Universidad Autonoma de Chihuahua, Facultad de Ingenieria, Nuevo Campus Universitario, Chihuahua 31125 (Mexico); Departamento de Matematicas Aplicadas y Sistemas, Universidad Autonoma Metropolitana-Cuajimalpa, Artificios 40, Mexico D. F. 01120 (Mexico)

2012-08-24

159

Time Symmetry and Asymmetry in Quantum Mechanics and Quantum Cosmology  

Microsoft Academic Search

We investigate the origin of the arrow of time in quantum mechanics in the\\u000acontext of quantum cosmology. The ``Copenhagen'' quantum mechanics of measured\\u000asubsystems incorporates a fundamental arrow of time. Extending discussions of\\u000aAharonov, Bergmann and Lebovitz, Griffiths, and others we investigate a\\u000ageneralized quantum mechanics for cosmology that utilizes both an initial and a\\u000afinal density matrix to

Murray Gell-Mann; James B. Hartle

1993-01-01

160

Delay Time in Quaternionic Quantum Mechanics  

E-print Network

In looking for quaternionic violations of quantum mechanics, we discuss the delay time for pure quaternionic potentials. The study shows in which energy region it is possible to amplify the difference between quaternionic and complex quantum mechanics.

Stefano De Leo; Gisele Ducati

2012-04-11

161

Star Products for Relativistic Quantum Mechanics  

E-print Network

The star product formalism has proved to be an alternative formulation for nonrelativistic quantum mechanics. We want introduce here a covariant star product in order to extend the star product formalism to relativistic quantum mechanics in the proper time formulation.

P. Henselder

2007-05-24

162

Quantum Mechanics Joachim Burgdorfer and Stefan Rotter  

E-print Network

1 1 Quantum Mechanics Joachim Burgd¨orfer and Stefan Rotter 1.1 Introduction 3 1.2 Particle and Quantization 8 1.5 Angular Momentum in Quantum Mechanics 9 1.6 Formalism of Quantum Mechanics 12 1.7 Solution Quantization 33 1.9.3 Gutzwiller Trace Formula 34 1.10 Conceptual Aspects of Quantum Mechanics 35 1

Rotter, Stefan

163

Entanglement and Disentanglement in Relativistic Quantum Mechanics  

E-print Network

Entanglement and Disentanglement in Relativistic Quantum Mechanics Jeffrey A. Barrett August 16, 2014 Abstract A satisfactory formulation of relativistic quantum mechanics re- quires that one be able in relativistic quantum mechanics must ultimately depend on the details of one's strategy for addressing

Stanford, Kyle

164

Quantum Mechanics: From Realism to Intuitionism  

E-print Network

Quantum Mechanics: From Realism to Intuitionism A mathematical and philosophical investigation with the idea for this thesis I didn't know very much about the funda- ments of quantum mechanics. Discussions that the incomprehensibility of quantum mechanics is not easily stepped over. This became clearer to me when I followed

Bosma, Wieb

165

Quantum Mechanics Revisited Jean Claude Dutailly  

E-print Network

Quantum Mechanics Revisited Jean Claude Dutailly Paris (France) August 20, 2014 Abstract The purpose of the paper is to study the foundations of the main axioms of Quantum Mechanics. From a general a new theoretical foundation. ii) The quantum mechanics (QM) which is presented in all the books

Boyer, Edmond

166

From Quantum Mechanics to String Theory  

E-print Network

From Quantum Mechanics to String Theory Relativity (why it makes sense) Quantum mechanics Dimensions Strings and the Strong Force Thursday, May 7, 2009 #12;Particle Interaction Summary quantum mechanics and special relativity together imply the existence of anti-particles forces are mediated

167

Quantum Mechanics for Mathematicians: Introduction and Overview  

E-print Network

Quantum Mechanics for Mathematicians: Introduction and Overview Peter Woit Department Richard Feynman goes "I think it is safe to say that no one understands quantum mechanics."[1 was contrasting quantum mechanics with the theory of general relativity, a supposedly equally hard to understand

Woit, Peter

168

Probability in modal interpretations of quantum mechanics  

E-print Network

Probability in modal interpretations of quantum mechanics Dennis Dieks Institute for the History interpretations have the ambition to construe quantum mechanics as an ob- jective, man-independent description of physical reality. Their second leading idea is probabilism: quantum mechanics does not completely fix

Seevinck, Michiel

169

Quantum Mechanics: Structures, Axioms and Paradoxes  

E-print Network

Quantum Mechanics: Structures, Axioms and Paradoxes Diederik Aerts Center Leo Apostel, Brussels present an analysis of quantum mechanics and its problems and para- doxes taking into account the results a genuine incomplete- ness of standard quantum mechanics, however not an incompleteness that means

Aerts, Diederik

170

A Criterion for Holism in Quantum Mechanics  

E-print Network

A Criterion for Holism in Quantum Mechanics M.P Seevinck E-mail: M.P.Seevinck@phys.uu.nl Utrecht University, The Netherlands, August 2003. 1 #12; Motivation · The question whether or not quantum mechanics is it that makes quantum mechanics a holistic theory (if so), and other physical theories not (if so). · I propose

Seevinck, Michiel

171

On a realistic interpretation of quantum mechanics  

E-print Network

On a realistic interpretation of quantum mechanics Arnold Neumaier Institut fur Mathematik respecting the indeter- ministic nature of quantum mechanics, allows to speak of de#12;nite values for all], there are at least two levels of inter- preting quantum mechanics: the statistical interpretation in the narrower

Neumaier, Arnold

172

Visualizing quantum mechanics in phase space  

E-print Network

We examine the visualization of quantum mechanics in phase space by means of the Wigner function and the Wigner function flow as a complementary approach to illustrating quantum mechanics in configuration space by wave functions. The Wigner function formalism resembles the mathematical language of classical mechanics of non-interacting particles. Thus, it allows a more direct comparison between classical and quantum dynamical features.

Heiko Bauke; Noya Ruth Itzhak

2011-01-11

173

The Postulates of Quantum Mechanics (from Quantum Mechanics by Claude Cohen-Tannoudji, Bernard Diu, and  

E-print Network

The Postulates of Quantum Mechanics (from Quantum Mechanics by Claude Cohen-Tannoudji, Bernard Diu, and Franck Lalo¨e) Introduction The postulates of quantum mechanics are the theory. Their physical content to the following questions: (i) How is the state of a quantum mechanical system at a given time described

Nielsen, Steven O.

174

Supersymmetric Quantum Mechanics with Reflections  

E-print Network

We consider a realization of supersymmetric quantum mechanics where supercharges are differential-difference operators with reflections. A supersymmetric system with an extended Scarf I potential is presented and analyzed. Its eigenfunctions are given in terms of little -1 Jacobi polynomials which obey an eigenvalue equation of Dunkl type and arise as a q-> -1 limit of the little q-Jacobi polynomials. Intertwining operators connecting the wave functions of extended Scarf I potentials with different parameters are presented.

S. Post; L. Vinet; A. Zhedanov

2011-07-28

175

Supersymmetric Quantum Mechanics with Reflections  

E-print Network

A novel realization of supersymmetric quantum mechanics is obtained by using as supercharges, differential-difference operators with reflections. A supersymmetric system with an extended Scarf I potential is presented and analyzed. Its eigenfunctions are given in terms of little -1 Jacobi polynomials which obey an eigenvalue equation of Dunkl type and arise as a q-> -1 limit of the little q-Jacobi polynomials. Intertwining operators connecting the wave functions of extended Scarf I potentials with different parameters are presented.

Post, S; Zhedanov, A

2011-01-01

176

Game Theory in Categorical Quantum Mechanics  

E-print Network

Categorical quantum mechanics, which examines quantum theory via dagger-compact closed categories, gives satisfying high-level explanations to the quantum information procedures such as Bell-type entanglement or complementary observables (\\cite{AC}, \\cite{Co}, \\cite{Co2}). Inspired by the fact that Quantum Game Theory can be seen as branch of quantum information, we express Quantum Game Theory procedures using the topological semantics provided by Categorical Quantum Mechanics. We also investigate Bayesian Games with correlation from this novel point of view while considering the connection between Bayesian game theory and Bell non-locality investigated recently by Brunner and Linden \\cite{BL}.

Ali Nabi Duman

2014-05-17

177

Facets of contextual realism in quantum mechanics  

SciTech Connect

In recent times, there is an upsurge of interest in demonstrating the quantum contextuality. In this proceedings, we explore the two different forms of arguments that have been used for showing the contextual character of quantum mechanics. First line of study concerns the violations of the noncontextual realist models by quantum mechanics, where second line of study that is qualitatively distinct from the earlier one, demonstrates the contextuality within the formalism of quantum mechanics.

Pan, Alok Kumar [LPTM (CNRS Unite 8089), Universite de Cergy-Pontoise, 95302 Cergy-Pontoise cedex (France); Home, Dipankar [CAPSS, Department of Physics, Bose Institute, Salt Lake, Calcutta 700091 (India)

2011-09-23

178

Helping Students Learn Quantum Mechanics for Quantum Computing  

NSDL National Science Digital Library

Quantum information science and technology is a rapidly growing interdisciplinary field drawing researchers from science and engineering fields. Traditional instruction in quantum mechanics is insufficient to prepare students for research in quantum computing because there is a lack of emphasis in the current curriculum on quantum formalism and dynamics. We are investigating the difficulties students have with quantum mechanics and are developing and evaluating quantum interactive learning tutorials (QuILTs) to reduce the difficulties. Our investigation includes interviews with individual students and the development and administration of free-response and multiple-choice tests. We discuss the implications of our research and development project on helping students learn quantum mechanics relevant for quantum computing.

Singh, Chandralekha

2007-11-25

179

Playing Games in Quantum Mechanical Settings:. Features of Quantum Games  

NASA Astrophysics Data System (ADS)

In this lecture note, we present the implications of playing classical games in quantum mechanical settings where the quantum mechanical toolbox consisting of entanglement, quantum operations and measurement is used. After a brief introduction to the concepts of classical game theory and quantum mechanics, we study quantum games and their corresponding classical analogues to determine the novelties. In addition, we introduce a benchmark which attempts to make a fair comparison of classical games and their quantum extensions. This benchmark exploits the fact that in special settings a classical game should be reproduced as a subgame of its quantum extension. We obtained a rather surprising result that this requirement prevents the use of a large set of entangled states in quantum extension of classical games.

Özdemir, ?ahin Kaya; Shimamura, Junichi; Imoto, Nobuyuki

2008-04-01

180

A concise introduction to quantum probability, quantum mechanics, and quantum computation  

E-print Network

A concise introduction to quantum probability, quantum mechanics, and quantum computation Greg called "non-commutative probability". Recently quantum computation has entered as a new reason for both mathematicians and computer scientists to learn the precepts of quantum mechan- ics. Just as randomized

Thomases, Becca

181

BOOK REVIEWS: Quantum Mechanics: Fundamentals  

NASA Astrophysics Data System (ADS)

This review is of three books, all published by Springer, all on quantum theory at a level above introductory, but very different in content, style and intended audience. That of Gottfried and Yan is of exceptional interest, historical and otherwise. It is a second edition of Gottfried’s well-known book published by Benjamin in 1966. This was written as a text for a graduate quantum mechanics course, and has become one of the most used and respected accounts of quantum theory, at a level mathematically respectable but not rigorous. Quantum mechanics was already solidly established by 1966, but this second edition gives an indication of progress made and changes in perspective over the last thirty-five years, and also recognises the very substantial increase in knowledge of quantum theory obtained at the undergraduate level. Topics absent from the first edition but included in the second include the Feynman path integral, seen in 1966 as an imaginative but not very useful formulation of quantum theory. Feynman methods were given only a cursory mention by Gottfried. Their practical importance has now been fully recognised, and a substantial account of them is provided in the new book. Other new topics include semiclassical quantum mechanics, motion in a magnetic field, the S matrix and inelastic collisions, radiation and scattering of light, identical particle systems and the Dirac equation. A topic that was all but totally neglected in 1966, but which has flourished increasingly since, is that of the foundations of quantum theory. John Bell’s work of the mid-1960s has led to genuine theoretical and experimental achievement, which has facilitated the development of quantum optics and quantum information theory. Gottfried’s 1966 book played a modest part in this development. When Bell became increasingly irritated with the standard theoretical approach to quantum measurement, Viki Weisskopf repeatedly directed him to Gottfried’s book. Gottfried had devoted a chapter of his book to these matters, titled ‘The Measurement Process and the Statistical Interpretation of Quantum Mechanics’. Gottfried considered the von Neumann or Dirac ‘collapse of state-vector’ (or ‘reduction postulate’ or ‘projection postulate’) was unsatisfactory, as he argued that it led inevitably to the requirement to include ‘consciousness’ in the theory. He replaced this by a more mathematically and conceptually sophisticated treatment in which, following measurement, the density matrix of the correlated measured and measuring systems, rho, is replaced by hat rho, in which the interference terms from rho have been removed. rho represents a pure state, and hat rho a mixture, but Gottfried argued that they are ‘indistinguishable’, and that we may make our replacement, ‘safe in the knowledge that the error will never be found’. Now our combined state is represented as a mixture, it is intuitive, Gottfried argued, to interpret it in a probabilistic way, |cm|2 being the probability of obtaining the mth measurement result. Bell liked Gottfried’s treatment little more than the cruder ‘collapse’ idea of von Neumann, and when, shortly before Bell’s death, his polemical article ‘Against measurement’ was published in the August 1990 issue of Physics World (pages 33-40), his targets included, not only Landau and Lifshitz’s classic Quantum Mechanics, pilloried for its advocacy of old-fashioned collapse, and a paper by van Kampen in Physica, but also Gottfried’s approach. Bell regarded his replacement of rho by hat rho as a ‘butchering’ of the density matrix, and considered, in any case, that even the butchered density matrix should represent co-existence of different terms, not a set of probabilities. Gottfried has replied to Bell ( Physics World, October 1991, pages 34-40; Nature 405, 533-36 (2000)). He has also become a major commentator on Bell’s work, for example editing the section on quantum foundations in the World Scientific edition of Bell’s collected works. Thus it is exceedingly interesting to disco

Whitaker, A.

2004-02-01

182

Teaching Quantum Mechanics on an Introductory Level.  

ERIC Educational Resources Information Center

Presents a new research-based course on quantum mechanics in which the conceptual issues of quantum mechanics are taught at an introductory level. Involves students in the discovery of how quantum phenomena deviate from classical everyday experiences. (Contains 31 references.) (Author/YDS)

Muller, Rainer; Wiesner, Hartmut

2002-01-01

183

Treating time travel quantum mechanically  

NASA Astrophysics Data System (ADS)

The fact that closed timelike curves (CTCs) are permitted by general relativity raises the question as to how quantum systems behave when time travel to the past occurs. Research into answering this question by utilizing the quantum circuit formalism has given rise to two theories: Deutschian-CTCs (D-CTCs) and "postselected" CTCs (P-CTCs). In this paper the quantum circuit approach is thoroughly reviewed, and the strengths and shortcomings of D-CTCs and P-CTCs are presented in view of their nonlinearity and time-travel paradoxes. In particular, the "equivalent circuit model"—which aims to make equivalent predictions to D-CTCs, while avoiding some of the difficulties of the original theory—is shown to contain errors. The discussion of D-CTCs and P-CTCs is used to motivate an analysis of the features one might require of a theory of quantum time travel, following which two overlapping classes of alternate theories are identified. One such theory, the theory of "transition probability" CTCs (T-CTCs), is fully developed. The theory of T-CTCs is shown not to have certain undesirable features—such as time-travel paradoxes, the ability to distinguish nonorthogonal states with certainty, and the ability to clone or delete arbitrary pure states—that are present with D-CTCs and P-CTCs. The problems with nonlinear extensions to quantum mechanics are discussed in relation to the interpretation of these theories, and the physical motivations of all three theories are discussed and compared.

Allen, John-Mark A.

2014-10-01

184

Treating Time Travel Quantum Mechanically  

E-print Network

The fact that closed timelike curves (CTCs) are permitted by general relativity raises the question as to how quantum systems behave when time travel to the past occurs. Research into answering this question by utilising the quantum circuit formalism has given rise to two theories: Deutschian-CTCs (D-CTCs) and "postselected" CTCs (P-CTCs). In this paper the quantum circuit approach is thoroughly reviewed, and the strengths and shortcomings of D-CTCs and P-CTCs are presented in view of their non-linearity and time travel paradoxes. In particular, the "equivalent circuit model"---which aims to make equivalent predictions to D-CTCs, while avoiding some of the difficulties of the original theory---is shown to contain errors. The discussion of D-CTCs and P-CTCs is used to motivate an analysis of the features one might require of a theory of quantum time travel, following which two overlapping classes of new theories are identified. One such theory, the theory of "transition probability" CTCs (T-CTCs), is fully developed. The theory of T-CTCs is shown not to have certain undesirable features---such as time travel paradoxes, the ability to distinguish non-orthogonal states with certainty, and the ability to clone or delete arbitrary pure states---that are present with D-CTCs and P-CTCs. The problems with non-linear extensions to quantum mechanics are discussed in relation to the interpretation of these theories, and the physical motivations of all three theories are discussed and compared.

John-Mark A. Allen

2014-01-20

185

Orthodox Quantum Mechanics Free from Paradoxes  

E-print Network

A formulation of quantum mechanics based on an operational definition of state is presented. This formulation, which includes explicitly the macroscopic systems, assumes the probabilistic interpretation and is nevertheless objective. The classical paradoxes of quantum mechanics are analyzed and their origin is found to be the fictitious properties that are usually attributed to quantum-mechanical states. The hypothesis that any mixed state can always be considered as an incoherent superposition of pure states is found to contradict quantum mechanics. A solution of EPR paradox is proposed. It is shown that entanglement of quantum states is compatible with realism and locality of events, but implies non-local encoding of information.

Rodrigo Medina

2005-08-02

186

Quantum Mechanics of Proca Fields  

E-print Network

We construct the most general physically admissible positive-definite inner product on the space of Proca fields. Up to a trivial scaling this defines a five-parameter family of Lorentz invariant inner products that we use to construct a genuine Hilbert space for the quantum mechanics of Proca fields. If we identify the generator of time-translations with the Hamiltonian, we obtain a unitary quantum system that describes first-quantized Proca fields and does not involve the conventional restriction to the positive-frequency fields. We provide a rather comprehensive analysis of this system. In particular, we examine the conserved current density responsible for the conservation of the probabilities, explore the global gauge symmetry underlying the conservation of the probabilities, obtain a probability current density, construct position, momentum, helicity, spin, and angular momentum operators, and determine the localized Proca fields. We also compute the generalized parity ($\\cP$), generalized time-reversal ...

Zamani, Farhad

2008-01-01

187

Quantum mechanics: Myths and facts  

E-print Network

A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of "myths", that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of relativistic QM or that QFT is a theory of particles, as well as myths on black-hole entropy. The fact is that the existence of various theoretical and interpretational ambiguities underlying these myths does not yet allow us to accept them as proven facts. I review the main arguments and counterarguments lying behind these myths and conclude that QM is still a not-yet-completely-understood theory open to further fundamental research.

H. Nikolic

2006-09-21

188

Quantum mechanics: Myths and facts  

E-print Network

A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of "myths", that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of relativistic QM or that QFT is a theory of particles, as well as myths on black-hole entropy. The fact is that the existence of various theoretical and interpretational ambiguities underlying these myths does not yet allow us to accept them as proven facts. I review the main arguments and counterarguments lying behind these myths and conclude that QM is still a not-yet-completely-understood theory open to further fundamental research.

Nikolic, H

2006-01-01

189

Quantum Mechanics: Myths and Facts  

NASA Astrophysics Data System (ADS)

A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of “myths”, that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of relativistic QM or that QFT is a theory of particles, as well as myths on black-hole entropy. The fact is that the existence of various theoretical and interpretational ambiguities underlying these myths does not yet allow us to accept them as proven facts. I review the main arguments and counterarguments lying behind these myths and conclude that QM is still a not-yet-completely-understood theory open to further fundamental research.

Nikoli?, Hrvoje

2007-11-01

190

A quantum mechanical model of "dark matter"  

E-print Network

The role of singular solutions in some simple quantum mechanical models is studied. The space of the states of two-dimensional quantum harmonic oscillator is shown to be separated into sets of states with different properties.

V. V. Belokurov; E. T. Shavgulidze

2014-03-28

191

Web-based Quantum Mechanics I Course  

NSDL National Science Digital Library

This web site is an entire web-based Quantum Mechanics I Course based at the University of Tennessee. It includes instructional materials, in-class tutorials, simulations, links to other quantum resources, homework assignments, and solutions.

Breinig, Marianne

2009-09-17

192

Errors and paradoxes in quantum mechanics  

E-print Network

Errors and paradoxes in quantum mechanics, entry in the Compendium of Quantum Physics: Concepts, Experiments, History and Philosophy, ed. F. Weinert, K. Hentschel, D. Greenberger and B. Falkenburg (Springer), to appear

D. Rohrlich

2007-08-28

193

Exploration of similarities between classical wave mechanics and quantum mechanics  

Microsoft Academic Search

This dissertation explores classical analogs of one particle wave mechanics and multiparticle quantum entanglement by using classical wave optics. We develop classical measurement techniques to simulate one particle wave mechanics and quantum entanglement for up to four particles. Classical simulation of multi-particle entanglement is useful for quantum information processing (QIP) because much of the QIP does not require collapse and

Kim Fook Lee

2002-01-01

194

Multiverse interpretation of quantum mechanics  

NASA Astrophysics Data System (ADS)

We argue that the many worlds of quantum mechanics and the many worlds of the multiverse are the same thing, and that the multiverse is necessary to give exact operational meaning to probabilistic predictions from quantum mechanics. Decoherence—the modern version of wave-function collapse—is subjective in that it depends on the choice of a set of unmonitored degrees of freedom, the environment. In fact decoherence is absent in the complete description of any region larger than the future light cone of a measurement event. However, if one restricts to the causal diamond—the largest region that can be causally probed—then the boundary of the diamond acts as a one-way membrane and thus provides a preferred choice of environment. We argue that the global multiverse is a representation of the many worlds (all possible decoherent causal diamond histories) in a single geometry. We propose that it must be possible in principle to verify quantum-mechanical predictions exactly. This requires not only the existence of exact observables but two additional postulates: a single observer within the Universe can access infinitely many identical experiments; and the outcome of each experiment must be completely definite. In causal diamonds with a finite surface area, holographic entropy bounds imply that no exact observables exist, and both postulates fail: experiments cannot be repeated infinitely many times; and decoherence is not completely irreversible, so outcomes are not definite. We argue that our postulates can be satisfied in hats (supersymmetric multiverse regions with vanishing cosmological constant). We propose a complementarity principle that relates the approximate observables associated with finite causal diamonds to exact observables in the hat.

Bousso, Raphael; Susskind, Leonard

2012-02-01

195

Transfer of Learning in Quantum Mechanics  

NSDL National Science Digital Library

We investigate the difficulties that undergraduate students in quantum mechanics courses have in transferring learning from previous courses or within the same course from one context to another by administering written tests and conducting individual interviews. Quantum mechanics is abstract and its paradigm is very different from the classical one. A good grasp of the principles of quantum mechanics requires creating and organizing a knowledge structure consistent with the quantum postulates. Previously learned concepts such as the principle of superposition and probability can be useful in quantum mechanics if students are given opportunity to build associations between new and prior knowledge. We also discuss the need for better alignment between quantum mechanics and modern physics courses taken previously because semi-classical models can impede internalization of the quantum paradigm in more advanced courses.

Singh, Chandralekha

2010-01-18

196

Optimizing adiabaticity in quantum mechanics  

E-print Network

A condition on the Hamiltonian of a time-dependent quantum mechanical system is derived which, if satisfied, implies optimal adiabaticity (defined below). The condition is expressed in terms of the Hamiltonian and in terms of the evolution operator related to it. Since the latter depends in a complicated way on the Hamiltonian, it is not yet clear how the condition can be used to extract useful information about the optimal Hamiltonian. The condition is tested on an exactly-soluble time-dependent problem (a spin in a magnetic field), where perfectly adiabatic evolution can be easily identified.

MacKenzie, R; Renaud-Desjardins, L

2011-01-01

197

Optimizing adiabaticity in quantum mechanics  

E-print Network

A condition on the Hamiltonian of a time-dependent quantum mechanical system is derived which, if satisfied, implies optimal adiabaticity (defined below). The condition is expressed in terms of the Hamiltonian and in terms of the evolution operator related to it. Since the latter depends in a complicated way on the Hamiltonian, it is not yet clear how the condition can be used to extract useful information about the optimal Hamiltonian. The condition is tested on an exactly-soluble time-dependent problem (a spin in a magnetic field), where perfectly adiabatic evolution can be easily identified.

R. MacKenzie; M. Pineault; L. Renaud-Desjardins

2011-09-12

198

Quantum mechanical light harvesting mechanisms in photosynthesis  

NASA Astrophysics Data System (ADS)

More than 10 million billion photons of light strike a leaf each second. Incredibly, almost every red-coloured photon is captured by chlorophyll pigments and initiates steps to plant growth. Last year we reported that marine algae use quantum mechanics in order to optimize photosynthesis [1], a process essential to its survival. These and other insights from the natural world promise to revolutionize our ability to harness the power of the sun. In a recent review [2] we described the principles learned from studies of various natural antenna complexes and suggested how to utilize that knowledge to shape future technologies. We forecast the need to develop ways to direct and regulate excitation energy flow using molecular organizations that facilitate feedback and control--not easy given that the energy is only stored for a billionth of a second. In this presentation I will describe new results that explain the observation and meaning of quantum-coherent energy transfer. [4pt] [1] Elisabetta Collini, Cathy Y. Wong, Krystyna E. Wilk, Paul M. G. Curmi, Paul Brumer, and Gregory D. Scholes, ``Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature'' Nature 463, 644-648 (2010).[0pt] [2] Gregory D. Scholes, Graham R. Fleming, Alexandra Olaya-Castro and Rienk van Grondelle, ``Lessons from nature about solar light harvesting'' Nature Chem. 3, 763-774 (2011).

Scholes, Gregory

2012-02-01

199

I. BASICS OF STATISTICAL MECHANICS AND QUANTUM MECHANICS Markus Holzmann  

E-print Network

I. BASICS OF STATISTICAL MECHANICS AND QUANTUM MECHANICS Markus Holzmann LPMMC, Maison de Magist://www.lptl.jussieu.fr/users/markus/cours.html (Dated: March 1, 2010) We introduce basic concepts of classical and quantum statistical mechanics the basic concepts of statistical mechanics: partition function, free energy, density operators. As examples

200

Quantum mechanics without state vectors  

NASA Astrophysics Data System (ADS)

Because the state vectors of isolated systems can be changed in entangled states by processes in other isolated systems, keeping only the density matrix fixed, it is proposed to give up the description of physical states in terms of ensembles of state vectors with various probabilities, relying only on density matrices. The density matrix is defined here by the formula giving the mean values of physical quantities, which implies the same properties as the usual definition in terms of state vectors and their probabilities. This change in the description of physical states opens up a large variety of new ways that the density matrix may transform under various symmetries, different from the unitary transformations of ordinary quantum mechanics. Such new transformation properties have been explored before, but so far only for the symmetry of time translations into the future, treated as a semigroup. Here, new transformation properties are studied for general symmetry transformations forming groups, not just semigroups. Arguments that such symmetries should act on the density matrix as in ordinary quantum mechanics are presented, but all of these arguments are found to be inconclusive.

Weinberg, Steven

2014-10-01

201

Identical Particles in Quantum Mechanics  

E-print Network

If, in a system of identical particles, the one particle state is defined by the partial trace to one of the component spaces of the total Hilbert space, then all one particle states are identical. The particles are indistinguishable. This is often thought to be a typical quantum mechanical phenomenon. I will show however that an analogous procedure to define particle states exists in classical mechanics, which results in classical indistinguishable identical particles. From this analogy it follows that the indistinguishability of identical particles depends on how we define particle states. It is not an inevitable result of the symmetry postulate. Indeed, if particles are defined by partial traces, consistent use of the symmetry postulate leads to the conclusion that all identical particles in the universe are indistinguishable, so that particles can never be pointed at, not even in the classical limit. This does not correspond to the way the term particle is actually used in practice. I will argue that a particle should be defined in such a way that in the classical limit the quantum particle state becomes the state of a classical particle. This will lead us to a definition of particles which is in line with the way the term particle is actually used by physicists.

Andrea Lubberdink

2009-10-24

202

Bananaworld: Quantum Mechanics for Primates  

E-print Network

This is intended to be a serious paper, in spite of the title. The idea is that quantum mechanics is about probabilistic correlations, i.e., about the structure of information, since a theory of information is essentially a theory of probabilistic correlations. To make this clear, it suffices to consider measurements of two binary-valued observables, x with outcomes a = 0 or 1, performed by Alice in a region A, and y with outcomes b = 0 or 1 performed by Bob in a separated region B --or, to emphasize the banality of the phenomena, two ways of peeling a banana, resulting in one of two tastes. The imagined bananas of Bananaworld are non-standard, with operational or phenomenal probabilistic correlations for peelings and tastes that lie outside the polytope of local correlations. The 'no go' theorems tell us that we can't shoe-horn these correlations into a classical correlation polytope, which has the structure of a simplex, by supposing that something has been left out of the story, without giving up fundamental principles that define what we mean by a physical system. The nonclassical features of quantum mechanics, including the irreducible information loss on measurement, are shown to be generic features of correlations that lie outside the local correlation polytope. As far as the conceptual problems are concerned, we might as well talk about bananas.

Jeffrey Bub

2012-11-13

203

Quantum Mechanics and Closed Timelike Curves  

E-print Network

General relativity allows solutions exhibiting closed timelike curves. Time travel generates paradoxes and quantum mechanics generalizations were proposed to solve those paradoxes. The implications of self-consistent interactions on acausal region of space-time are investigated. If the correspondence principle is true, then all generalizations of quantum mechanics on acausal manifolds are not renormalizable. Therefore quantum mechanics can only be defined on global hyperbolic manifolds and all general relativity solutions exhibiting time travel are unphysical.

Florin Moldoveanu

2007-04-23

204

Bohmian particle trajectories contradict quantum mechanics  

E-print Network

The Bohmian interpretation of quantum mechanics adds particle trajectories to the wave function and ensures that the probability distribution of the particle positions agrees with quantum mechanics at any time. This is not sufficient to avoid contradictions with quantum mechanics. There are correlations between particle positions at different times which cannot be reproduced with real particle trajectories. A simple rearrangement of an experimental test of the Bell-CHSH inequality demonstrates this.

Michael Zirpel

2009-03-23

205

Quantum Statistical Mechanics. III. Equilibrium Probability  

E-print Network

Given are a first principles derivation and formulation of the probabilistic concepts that underly equilibrium quantum statistical mechanics. The transition to non-equilibrium probability is traversed briefly.

Phil Attard

2014-04-10

206

A Process Model of Quantum Mechanics  

E-print Network

A process model of quantum mechanics utilizes a combinatorial game to generate a discrete and finite causal space upon which can be defined a self-consistent quantum mechanics. An emergent space-time M and continuous wave function arise through a non-uniform interpolation process. Standard non-relativistic quantum mechanics emerges under the limit of infinite information (the causal space grows to infinity) and infinitesimal scale (the separation between points goes to zero). The model has the potential to address several paradoxes in quantum mechanics while remaining computationally powerful.

William Sulis

2014-04-13

207

Quantum Mechanics Dung-Hai Lee  

E-print Network

Quantum Mechanics Dung-Hai Lee Summer 2000 #12;Contents 1 A brief reminder of linear Algebra 3 1.5 Bell's inequality . . . . . . . . . . . . . . . . . . . . . . . 20 3 Quantum dynamics 23 3 . . . . . . . . . . . . . . . . . . . 43 3.12 Classical approximation . . . . . . . . . . . . . . . . . . 45 3.13 Quantum statistical

Murayama, Hitoshi

208

A Modern Approach to Quantum Mechanics  

NSDL National Science Digital Library

This textbook, unlike most others in the topic, introduces the basic quantum concepts using spin, rather than starting from wave mechanics. This grounding in quantum phenomena, rather than difficult mathematics, is then used to cover all the standard topics in quantum physics. Relationships to experimental results are stressed. An instructor's manual is available.

Townsend, John

2004-03-04

209

Improving Students' Understanding of Quantum Mechanics  

NSDL National Science Digital Library

Richard Feynman once famously stated that nobody understands quantum mechanics. He was, of course, referring to the many strange, unintuitive foundational aspects of quantum theory such as its inherent indeterminism and state reduction during measurement according to the Copenhagen interpretation. But despite its underlying fundamental mysteries, the theory has remained a cornerstone of modern physics. Most physicists, as students, are introduced to quantum mechanics in a modern-physics course, take quantum mechanics as advanced undergraduates, and then take it again in their first year of graduate school. One might think that after all this instruction, students would have become certified quantum mechanics, able to solve the Schrödinger equation, manipulate Dirac bras and kets, calculate expectation values, and, most importantly, interpret their results in terms of real or thought experiments. That sort of functional understanding of quantum mechanics is quite distinct from the foundational issues alluded to by Feynman.

Singh, Chandralekha; Belloni, Mario; Christian, Wolfgang

2008-06-23

210

Interactive Learning Tutorials on Quantum Mechanics  

NSDL National Science Digital Library

We discuss the development and evaluation of quantum interactive learning tutorials (QuILTs), which are suitable for undergraduate courses in quantum mechanics. QuILTs are based on the investigation of student difficulties in learning quantum physics. They exploit computer-based visualization tools and help students build links between the formal and conceptual aspects of quantum physics without compromising the technical content. They can be used both as supplements to lectures or as self-study tools.

Singh, Chandralekha

2013-08-08

211

Kindergarten Quantum Mechanics lectures notes  

E-print Network

These lecture notes survey some joint work with Samson Abramsky as it was presented by me at several conferences in the summer of 2005. It concerns `doing quantum mechanics using only pictures of lines, squares, triangles and diamonds'. This picture calculus can be seen as a very substantial extension of Dirac's notation, and has a purely algebraic counterpart in terms of so-called Strongly Compact Closed Categories (introduced by Abramsky and I in quant-ph/0402130 and [4]) which subsumes my Logic of Entanglement quant-ph/0402014. For a survey on the `what', the `why' and the `hows' I refer to a previous set of lecture notes quant-ph/0506132. In a last section we provide some pointers to the body of technical literature on the subject.

Coecke, B

2005-01-01

212

Kindergarten Quantum Mechanics: Lecture Notes  

SciTech Connect

These lecture notes survey some joint work with Samson Abramsky as it was presented by me at several conferences in the summer of 2005. It concerns 'doing quantum mechanics using only pictures of lines, squares, triangles and diamonds'. This picture calculus can be seen as a very substantial extension of Dirac's notation, and has a purely algebraic counterpart in terms of so-called Strongly Compact Closed Categories (introduced by Abramsky and I which subsumes my Logic of Entanglement. For a survey on the 'what', the 'why' and the 'hows' I refer to a previous set of lecture notes. In a last section we provide some pointers to the body of technical literature on the subject.

Coecke, Bob [Oxford University Computing Laboratory, Wolfson Building, Parks rd, OX1 3QD Oxford (United Kingdom)

2006-01-04

213

Tests of CPT and Quantum Mechanics: experiment  

NASA Astrophysics Data System (ADS)

Neutral kaons provide one of the systems most sensitive to quantum mechanics and CPT violation. Models predicting quantum mechanics violation, also related to CPT violation, have been tested at the CPLEAR and KLOE experiments. In this report results of CPLEAR obtained by studying the time evolution of single and two entangled kaons are reviewed. New or improved limits on decoherence and CPT violation parameters have been obtained by KLOE studying the quantum interference in the channel ??KK?????. No deviations from the expectations of quantum mechanics and CPT symmetry have been observed.

Ambrosino, F.; Antonelli, A.; Antonelli, M.; Bacci, C.; Barva, M.; Beltrame, P.; Bencivenni, G.; Bertolucci, S.; Bini, C.; Bloise, C.; Bocchetta, S.; Bocci, V.; Bossi, F.; Bowring, D.; Branchini, P.; Bulychjov, S. A.; Caloi, R.; Campana, P.; Capon, G.; Capussela, T.; Carboni, G.; Ceradini, F.; Cervelli, F.; Chi, S.; Chiefari, G.; Ciambrone, P.; Conetti, S.; De Lucia, E.; De Santis, A.; De Simone, P.; De Zorzi, G.; Dell'Agnello, S.; Denig, A.; Di Domenico, A.; Di Donato, C.; Di Falco, S.; Di Micco, B.; Doria, A.; Dreucci, M.; Farilla, A.; Felici, G.; Ferrari, A.; Ferrer, M. L.; Finocchiaro, G.; Fiore, S.; Forti, C.; Franzini, P.; Gatti, C.; Gauzzi, P.; Giovannella, S.; Gorini, E.; Graziani, E.; Incagli, M.; Kluge, W.; Kulikov, V.; Lacava, F.; Lanfranchi, G.; Lee-Franzini, J.; Leone, D.; Martemianov, M.; Martini, M.; Massarotti, P.; Matsyuk, M.; Mei, W.; Meola, S.; Messi, R.; Miscetti, S.; Moulson, M.; Müller, S.; Murtas, F.; Napolitano, M.; Nguyen, F.; Palutan, M.; Pasqualucci, E.; Passalacqua, L.; Passeri, A.; Patera, V.; Perfetto, F.; Pontecorvo, L.; Primavera, M.; Santangelo, P.; Santovetti, E.; Saracino, G.; Schamberger, R. D.; Sciascia, B.; Sciubba, A.; Scuri, F.; Sfiligoi, I.; Sibidanov, A.; Spadaro, T.; Spiriti, E.; Tabidze, M.; Testa, M.; Tortora, L.; Valente, P.; Valeriani, B.; Venanzoni, G.; Veneziano, S.; Ventura, A.; Ventura, S.; Versaci, R.; Villella, I.; Xu, G.; KLOE Collaboration

2007-05-01

214

PERSPECTIVE Quantum Mechanics of Black Holes  

E-print Network

PERSPECTIVE Quantum Mechanics of Black Holes Edward Witten The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived

215

QUANTUM MECHANICS AND DUALISM JEFFREY A. BARRETT  

E-print Network

mechanics, a strong variety of mind-body dualism provides a natural criterion for when collapses occur record. We will also consider options for avoiding a commitment to at least mind-body dualism. 1. Quantum of quantum mechanics requires one to endorse a strong variety of mind-body dualism. In particular, he argued

Stanford, Kyle

216

Pseudospectra in non-Hermitian quantum mechanics  

E-print Network

We propose giving the mathematical concept of the pseudospectrum a central role in quantum mechanics with non-Hermitian operators. We relate pseudospectral properties to quasi-Hermiticity, similarity to self-adjoint operators, and basis properties of eigenfunctions. The abstract results are illustrated by unexpected wild properties of operators familiar from PT-symmetric quantum mechanics.

D. Krejcirik; P. Siegl; M. Tater; J. Viola

2014-02-05

217

Quaternionic Formulation of Supersymmetric Quantum Mechanics  

E-print Network

Quaternionic formulation of supersymmetric quantum mechanics has been developed consistently in terms of Hamiltonians, superpartner Hamiltonians, and supercharges for free particle and interacting field in one and three dimensions. Supercharges, superpartner Hamiltonians and energy eigenvalues are discussed and it has been shown that the results are consistent with the results of quantum mechanics.

Seema Rawat; O. P. S. Negi

2007-03-18

218

On the quantum mechanics of supermembranes  

Microsoft Academic Search

We study the quantum-mechanical properties of a supermembrane and examine the nature of its ground state. A supersymmetric gauge theory of area-preserving transformations provides a convenient framework for this study. The supermembrane can be viewed as a limiting case of a class of models in supersymmetric quantum mechanics. Its mass does not depend on the zero modes and vanishes only

Bernard de Wit; J. Hoppe; H. Nicolai

1988-01-01

219

From Quantum Mechanics to String Theory  

E-print Network

of location Over time, the spike will often spread out again into a wave similar to the one it startedFrom Quantum Mechanics to String Theory Relativity (why it makes sense) Quantum mechanics lengths and times to change depending on reference frame Any physical observable (the result

220

From Quantum Mechanics to String Theory  

E-print Network

From Quantum Mechanics to String Theory Relativity (why it makes sense) Quantum mechanics Quarks and the Strong Force Symmetry and Unification String Theory: a different kind of unification from the interaction energy Thursday, June 4, 2009 #12;String Theory: A different kind of unification

221

From Quantum Mechanics to String Theory  

E-print Network

From Quantum Mechanics to String Theory Relativity (why it makes sense) Quantum mechanics Quarks and the Strong Force Symmetry and Unification String Theory: a different kind of unification that is naturally solved by string theory Strings vibrating in a variety of ways give rise to particles of different

222

From Quantum Mechanics to String Theory  

E-print Network

From Quantum Mechanics to String Theory Relativity (why it makes sense) Quantum mechanics Quarks and the Strong Force Symmetry and Unification String Theory: a different kind of unification Friday, June 19, 2009 #12;String Theory Origins We introduced string theory as a possible solution to our

223

Quantum Mechanics: Bell and Quantum Entropy for the Classroom  

E-print Network

In this article we are willing to give some first steps to quantum mechanics and a motivation of quantum mechanics and its interpretation for undergraduate students not from physics. After a short historical review in the development we discuss philosophical, physical and mathematical interpretation. We define local realism, locality and hidden variable theory which ends up in the EPR paradox, a place where questions on completeness and reality comes into play. The fundamental result of the last century was maybe Bell's that states that local realism is false if quantum mechanics is true. From this fact we can obtain the so called Bell inequalities. After a didactic example of the fact what these inequalities means we describe the key concept of quantum entanglement motivated here by quantum information theory. Also classical entropy and von Neuman entropy is discussed.

Pluch, Philipp

2014-01-01

224

An entropic picture of emergent quantum mechanics  

E-print Network

Quantum mechanics emerges a la Verlinde from a foliation of space by holographic screens, when regarding the latter as entropy reservoirs that a particle can exchange entropy with. This entropy is quantised in units of Boltzmann's constant k. The holographic screens can be treated thermodynamically as stretched membranes. On that side of a holographic screen where spacetime has already emerged, the energy representation of thermodynamics gives rise to the usual quantum mechanics. A knowledge of the different surface densities of entropy flow across all screens is equivalent to a knowledge of the quantum-mechanical wavefunction on space. The entropy representation of thermodynamics, as applied to a screen, can be used to describe quantum mechanics in the absence of spacetime, that is, quantum mechanics beyond a holographic screen, where spacetime has not yet emerged. Our approach can be regarded as a formal derivation of Planck's constant h from Boltzmann's constant k.

D. Acosta; P. Fernandez de Cordoba; J. M. Isidro; J. L. G. Santander

2011-07-10

225

Relationship between quantum walks and relativistic quantum mechanics  

SciTech Connect

Quantum walk models have been used as an algorithmic tool for quantum computation and to describe various physical processes. This article revisits the relationship between relativistic quantum mechanics and the quantum walks. We show the similarities of the mathematical structure of the decoupled and coupled forms of the discrete-time quantum walk to that of the Klein-Gordon and Dirac equations, respectively. In the latter case, the coin emerges as an analog of the spinor degree of freedom. Discrete-time quantum walk as a coupled form of the continuous-time quantum walk is also shown by transforming the decoupled form of the discrete-time quantum walk to the Schroedinger form. By showing the coin to be a means to make the walk reversible and that the Dirac-like structure is a consequence of the coin use, our work suggests that the relativistic causal structure is a consequence of conservation of information. However, decoherence (modeled by projective measurements on position space) generates entropy that increases with time, making the walk irreversible and thereby producing an arrow of time. The Lieb-Robinson bound is used to highlight the causal structure of the quantum walk to put in perspective the relativistic structure of the quantum walk, the maximum speed of walk propagation, and earlier findings related to the finite spread of the walk probability distribution. We also present a two-dimensional quantum walk model on a two-state system to which the study can be extended.

Chandrashekar, C. M. [Institute for Quantum Computing, University of Waterloo, Ontario N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada); Banerjee, Subhashish [Chennai Mathematical Institute, Padur PO, Siruseri 603 103 (India); Srikanth, R. [Poornaprajna Institute of Scientific Research, Devanahalli, Bangalore 562 110 (India); Raman Research Institute, Sadashiva Nagar, Bangalore 560 080 (India)

2010-06-15

226

Collimation processes in quantum mechanics interpreted in quantum real numbers  

Microsoft Academic Search

We reexamine the theory of quantum mechanics using non-standard real numbers, called quantum real numbers (qr-numbers), that are constructed from entities in the standard Hilbert space formulation of the theory. Our motivation is to elucidate certain apparently paradoxical features of the standard theory by enlarging the class of real numbers that physical quantities can take as numerical values. The concept

John Vincent Corbett; Thomas Durt

2009-01-01

227

Polymer Quantum Mechanics and its Continuum Limit  

E-print Network

A rather non-standard quantum representation of the canonical commutation relations of quantum mechanics systems, known as the polymer representation has gained some attention in recent years, due to its possible relation with Planck scale physics. In particular, this approach has been followed in a symmetric sector of loop quantum gravity known as loop quantum cosmology. Here we explore different aspects of the relation between the ordinary Schroedinger theory and the polymer description. The paper has two parts. In the first one, we derive the polymer quantum mechanics starting from the ordinary Schroedinger theory and show that the polymer description arises as an appropriate limit. In the second part we consider the continuum limit of this theory, namely, the reverse process in which one starts from the discrete theory and tries to recover back the ordinary Schroedinger quantum mechanics. We consider several examples of interest, including the harmonic oscillator, the free particle and a simple cosmological model.

Alejandro Corichi; Tatjana Vukasinac; Jose A. Zapata

2007-03-31

228

Polymer quantum mechanics and its continuum limit  

SciTech Connect

A rather nonstandard quantum representation of the canonical commutation relations of quantum mechanics systems, known as the polymer representation, has gained some attention in recent years, due to its possible relation with Planck scale physics. In particular, this approach has been followed in a symmetric sector of loop quantum gravity known as loop quantum cosmology. Here we explore different aspects of the relation between the ordinary Schroedinger theory and the polymer description. The paper has two parts. In the first one, we derive the polymer quantum mechanics starting from the ordinary Schroedinger theory and show that the polymer description arises as an appropriate limit. In the second part we consider the continuum limit of this theory, namely, the reverse process in which one starts from the discrete theory and tries to recover back the ordinary Schroedinger quantum mechanics. We consider several examples of interest, including the harmonic oscillator, the free particle, and a simple cosmological model.

Corichi, Alejandro [Instituto de Matematicas, Unidad Morelia, Universidad Nacional Autonoma de Mexico, UNAM-Campus Morelia, A. Postal 61-3, Morelia, Michoacan 58090 (Mexico); Departamento de Gravitacion y Teoria de Campos, Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A. Postal 70-543, Mexico D.F. 04510 (Mexico); Institute for Gravitational Physics and Geometry, Physics Department, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Vukasinac, Tatjana [Facultad de Ingenieria Civil, Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Michoacan 58000 (Mexico); Zapata, Jose A. [Instituto de Matematicas, Unidad Morelia, Universidad Nacional Autonoma de Mexico, UNAM-Campus Morelia, A. Postal 61-3, Morelia, Michoacan 58090 (Mexico)

2007-08-15

229

Improving Students' Understanding of Quantum Mechanics  

NSDL National Science Digital Library

Learning physics is challenging at all levels. Studentsâ difficulties in the introductory level physics courses have been widely studied and many instructional strategies have been developed to help students learn introductory physics. However, research shows that there is a large diversity in studentsâ preparation and skills in the upper-level physics courses and it is necessary to provide scaffolding support to help students learn advanced physics. This thesis explores issues related to studentsâ common difficulties in learning upper-level undergraduate quantum mechanics and how these difficulties can be reduced by research-based learning tutorials and peer instruction tools. We investigated studentsâ difficulties in learning quantum mechanics by administering written tests and surveys to many classes and conducting individual interviews with a subset of students. Based on these investigations, we developed Quantum Interactive Learning Tutorials (QuILTs) and peer instruction tools to help students build a hierarchical knowledge structure of quantum mechanics through a guided approach. Preliminary assessments indicate that studentsâ understanding of quantum mechanics is improved after using the research-based learning tools in the junior-senior level quantum mechanics courses. We also designed a standardized conceptual survey that can help instructors better probe studentsâ understanding of quantum mechanics concepts in one spatial dimension. The validity and reliability of this quantum mechanics survey is discussed.

Zhu, Guangtian

2011-07-31

230

Is Quantum Mechanics Falsifiable? A computational perspective on the foundations of Quantum Mechanics  

E-print Network

Quantum computation teaches us that quantum mechanics exhibits exponential complexity. We argue that the standard scientific paradigm of "predict and verify" cannot be applied to testing quantum mechanics in this limit of high complexity. We describe how QM can be tested in this regime by extending the usual scientific paradigm to include {\\it interactive experiments}.

Dorit Aharonov; Umesh Vazirani

2012-06-16

231

NON-COMMUTATIVE SPHERES AND NUMERICAL QUANTUM MECHANICS  

E-print Network

NON-COMMUTATIVE SPHERES AND NUMERICAL QUANTUM MECHANICS basic issues that arise when one attempts to mo* *del quantum mechanical systems on a computer, quantum mechanics. Contributed to the proceedings of a NATO conference on operator algebras, ma

Arveson, William

232

Quantum-mechanical analysis of single molecule quantum electronic devices  

Microsoft Academic Search

This paper documents the need to coherently apply quantum mechanics in order to analyze microscopic devices. We examine device physics and study characteristics of single-molecule processing devices. The device physics of the proposed single-molecule device is based on the controlled propagation of electrons. By applying quantum mechanics and advanced numeric schemes, we perform the device-level analysis researching electron propagation (motion),

Sergey Edward Lyshevski

2011-01-01

233

OPTI 570A-Quantum Mechanics Course Description  

E-print Network

OPTI 570A- Quantum Mechanics Course Description: This is a one-semester course designed to provide students with a solid understanding of quantum mechanics formalism, techniques, and important example physics, quantum optics, relativistic quantum mechanics and other advanced quantum mechanics topics

Arizona, University of

234

Background Independent Quantum Mechanics, Classical Geometric Forms and Geometric Quantum Mechanics-I  

E-print Network

The geometry of the symplectic structures and Fubini-Study metric is discussed. Discussion in the paper addresses geometry of Quantum Mechanics in the classical phase space. Also, geometry of Quantum Mechanics in the projective Hilbert space has been discussed for the chosen Quantum states. Since the theory of classical gravity is basically geometric in nature and Quantum Mechanics is in no way devoid of geometry, the explorations pertaining to more and more geometry in Quantum Mechanics could prove to be valuable for larger objectives such as understanding of gravity.

Aalok Pandya

2008-09-08

235

Quantum Physics Online: Wave Mechanics  

NSDL National Science Digital Library

This is a set of interactive Java applets illustrating the wave nature of quantum physics. Animations are used to illustrate propagation of wave packets, and scattering from potentials. There is also a simple illustration of a scanning tunneling microscope. These applets are part of an extensive collection of animations and simulations illustrating a large range of quantum topics, and an ongoing effort for developing a fully interactive quantum-physics class. Both French and English versions are available.

Joffre, Manuel

2004-03-28

236

A Quantum Mechanical Travelling Salesman  

E-print Network

A quantum simulation of a travelling salesman is described. A vector space for a graph is defined together with a sequence of operators which transform a special initial state into a superposition states representing Hamiltonian tours. The quantum amplitude for any tour is a function of the classical cost of travelling along the edges in that tour. Tours with the largest quantum amplitude may be different than those with the smallest classically-computed cost.

Ravindra N. Rao

2011-08-23

237

Playing Games with Quantum Mechanics  

E-print Network

We present a perspective on quantum games that focuses on the physical aspects of the quantities that are used to implement a game. If a game is to be played, it has to be played with objects and actions that have some physical existence. We call such games playable. By focusing on the notion of playability for games we can more clearly see the distinction between classical and quantum games and tackle the thorny issue of what it means to quantize a game. The approach we take can more properly be thought of as gaming the quantum rather than quantizing a game and we find that in this perspective we can think of a complete quantum game, for a given set of preferences, as representing a single family of quantum games with many different playable versions. The versions of Quantum Prisoners Dilemma presented in the literature can therefore be thought of specific instances of the single family of Quantum Prisoner's Dilemma with respect to a particular measurement. The conditions for equilibrium are given for playable quantum games both in terms of expected outcomes and a geometric approach. We discuss how any quantum game can be simulated with a classical game played with classical coins as far as the strategy selections and expected outcomes are concerned.

Simon J. D. Phoenix; Faisal Shah Khan

2012-02-21

238

Topological Strings from Quantum Mechanics  

E-print Network

We propose a general correspondence which associates a non-perturbative quantum-mechanical operator to a toric Calabi-Yau manifold, and we conjecture an explicit formula for its spectral determinant in terms of an M-theoretic version of the topological string free energy. As a consequence, we derive an exact quantization condition for the operator spectrum, in terms of the vanishing of a generalized theta function. The perturbative part of this quantization condition is given by the Nekrasov-Shatashvili limit of the refined topological string, but there are non-perturbative corrections determined by the conventional topological string. We analyze in detail the cases of local P2, local P1xP1 and local F1. In all these cases, the predictions for the spectrum agree with the existing numerical results. We also show explicitly that our conjectured spectral determinant leads to the correct spectral traces of the corresponding operators, which are closely related to topological string theory at orbifold points. Phys...

Grassi, Alba; Marino, Marcos

2014-01-01

239

Kinetic potentials in quantum mechanics  

NASA Astrophysics Data System (ADS)

Suppose that the Hamiltonian H=-?+vf(r) represents the energy of a particle which moves in an attractive central potential and obeys nonrelativistic quantum mechanics. The discrete eigenvalues Enl=Fnl(v) of H may be expressed as a Legendre transformation Fnl(v)=mins?0(s+vf¯nl(s)), n=1,2,3,..., l=0,1,2,..., where the ``kinetic potentials'' f¯nl(s) associated with f(r) are defined by f¯nl(s) =infDnl sup??Dnl, ???=1 ? ?(r) f ([?,-??)/s]1/2r)?(r)d3r, and Dnl is an n-dimensional subspace of L2(R3) labeled by Ylm(?,?), m=0, and contained in the domain D(H) of H. If the potential has the form f(r)=?Ni=1 g(i)( f(i)(r)) then in many interesting cases it turns out that the corresponding kinetic potentials can be closely approximated by ?Ni=1 g(i)( f¯nl(i)(s)). This nice behavior of the kinetic potentials leads to a constructive global approximation theory for Schrödinger eigenvalues. As an illustration, detailed recipes are provided for arbitrary linear combinations of power-law potentials and the log potential. For the linear plus Coulomb potential and the quartic anharmonic oscillator the approximate eigenvalues are compared to accurate values found by numerical integration.

Hall, Richard L.

1984-09-01

240

Strange Bedfellows: Quantum Mechanics and Data Mining  

NASA Astrophysics Data System (ADS)

Last year, in 2008, I gave a talk titled Quantum Calisthenics. This year I am going to tell you about how the work I described then has spun off into a most unlikely direction. What I am going to talk about is how one maps the problem of finding clusters in a given data set into a problem in quantum mechanics. I will then use the tricks I described to let quantum evolution lets the clusters come together on their own.

Weinstein, Marvin

2010-02-01

241

Strange Bedfellows: Quantum Mechanics and Data Mining  

E-print Network

Last year, in 2008, I gave a talk titled {\\it Quantum Calisthenics}. This year I am going to tell you about how the work I described then has spun off into a most unlikely direction. What I am going to talk about is how one maps the problem of finding clusters in a given data set into a problem in quantum mechanics. I will then use the tricks I described to let quantum evolution lets the clusters come together on their own.

Weinstein, Marvin

2009-01-01

242

Strange Bedfellows: Quantum Mechanics and Data Mining  

SciTech Connect

Last year, in 2008, I gave a talk titled Quantum Calisthenics. This year I am going to tell you about how the work I described then has spun off into a most unlikely direction. What I am going to talk about is how one maps the problem of finding clusters in a given data set into a problem in quantum mechanics. I will then use the tricks I described to let quantum evolution lets the clusters come together on their own.

Weinstein, Marvin; /SLAC

2009-12-16

243

Strange Bedfellows: Quantum Mechanics and Data Mining  

E-print Network

Last year, in 2008, I gave a talk titled {\\it Quantum Calisthenics}. This year I am going to tell you about how the work I described then has spun off into a most unlikely direction. What I am going to talk about is how one maps the problem of finding clusters in a given data set into a problem in quantum mechanics. I will then use the tricks I described to let quantum evolution lets the clusters come together on their own.

Marvin Weinstein

2009-11-03

244

Active Quantum Mechanics: Tutorials and Writing Assignments  

NSDL National Science Digital Library

This web site contains active-learning tutorials and writing assignments for upper-level undergraduate quantum mechanics. The tutorials focus on the mathematical formalism of quantum mechanics. The writing assignments focus on the interpretation of quantum mechanics, and particularly the role of experiments. The topics cover range from introduction to the Schrodinger equation through perturbation theory. In the course using these materials, students work in small groups to complete worksheet-based tutorials during class time, and do fairly typical homework problems and writing assignments, on their own.

Timberlake, Todd

2011-08-01

245

Canonical distribution and incompleteness of quantum mechanics  

E-print Network

The paper discusses the physical groundlessness of the models used for the derivation of canonical distribution and provides the experimental data demonstrating the incompleteness of quantum mechanics. The possibility of using statistical ensembles is presented as a consequence of the existence of probabilistic processes which are not accounted for by quantum mechanics. The paper provides a new analytical derivation of canonical distribution for macrosystems which takes into account subquantum processes. The paper discusses the possibility of the experimental study of a probability which is beyond quantum mechanics.

V. A. Skrebnev

2012-01-04

246

Four-dimensional understanding of quantum mechanics  

E-print Network

In this paper I will try to convince that quantum mechanics does not have to lead to indeterminism, but is just a natural consequence of four-dimensional nature of our world - that for example particles shouldn't be imagined as 'moving points' in space, but as their trajectories in the spacetime like in optimizing action formulation of Lagrangian mechanics. There will be analyzed simplified model - Boltzmann distribution among trajectories occurs to give quantum mechanic like behavior - for example electron moving in proton's potential would make some concrete trajectory which average exactly to the probability distribution of the quantum mechanical ground state. We will use this model to build intuition about quantum mechanics and discuss its generalizations to get some effective approximation of physics. We will see that topological excitations of the simplest model obtained this way already creates known from physics particle structure, their decay modes and electromagnetic/gravitational interactions between them.

Jarek Duda

2009-10-14

247

Visual Quantum Mechanics: Online Interactive Programs  

NSDL National Science Digital Library

The Visual Quantum Mechanics project, from the Physics Education Group of Kansas State University's Department of Physics, develops innovative ways to "introduce quantum physics to high school and college students who do not have a background in modern physics or higher level math." Funded by the National Science Foundation, this resource for educators provides interactive computer visualizations and animations that introduce quantum mechanics. The interactive programs (which require Shockwave) include a spectroscopy lab suite, a probability illustrator, an energy band creator, quantum tunneling, a color creator (a Java version is also available), a wave function sketcher, a wave packet explorer, an energy diagram explorer, a diffraction suite, and a hydrogen spectroscopy program. These online demonstrations should prove to be excellent visual, hands-on teaching aids when introducing concepts involving quantum mechanics. Users can download Shockwave at the site.

248

Space time symmetry in quantum mechanics  

E-print Network

New prescription to treat position and time equally in quantum mechanics is presented. Using this prescription, we could successfully derive some interesting formulae such as time-of-arrival for a free particle and quantum tunneling formula. The physical interpretation will be discussed.

Zinkoo Yun

2014-02-26

249

Can Quantum Mechanics Heal Classical Singularities?  

NASA Astrophysics Data System (ADS)

We study a broad class of spacetimes whose metric coefficients reduce to powers of a radius r in the limit of small r. We show that a large subset of classically singular spacetimes is nevertheless nonsingular quantum mechanically, in that the Hamiltonian operator is essentially self-adjoint so the evolution of quantum wave packets lacks the ambiguity associated with scattering off singularities.

Helliwell, T. M.; Konkowski, D. A.

2008-09-01

250

Quantum Mechanics and the Generalized Uncertainty Principle  

E-print Network

The generalized uncertainty principle has been described as a general consequence of incorporating a minimal length from a theory of quantum gravity. We consider a simple quantum mechanical model where the operator corresponding to position has discrete eigenvalues and show how the generalized uncertainty principle results for minimum uncertainty wave packets.

Jang Young Bang; Micheal S. Berger

2006-10-11

251

Quantum Mechanics and Multiply Connected Spaces  

E-print Network

t is well known that the difference between Quantum Mechanics and Classical Theory appears most crucially in the non Classical spin half of the former theory and the Wilson-Sommerfelt quantization rule. We argue that this is symptomatic of the fact that Quantum Theory is actually a theory in multiply connected space while Classical Theory operates in simply connected space.

B. G. Sidharth

2006-05-16

252

Local quantum mechanics with finite Planck mass  

E-print Network

In this paper the motion of quantum particles with initial mass m is investigated. The quantum mechanics equation is formulated and solved. It is shown that the wave function contains the component which is depended on the gravitation fine structure constant

M Kozlowski; J. Marciak -Kozlowska; M. pelc

2007-04-20

253

Web-based Quantum Mechanics II Course  

NSDL National Science Digital Library

This web site is an entire web-based Quantum Mechanics II Course based at the University of Tennessee; it has all instructional materials, in-class tutorials, simulations, links to other quantum resources, a discussion forum, homework assignments, and solutions.

Breinig, Marianne

2005-04-16

254

Gerbes, Quantum Mechanics and Gravity  

E-print Network

We prove that invariance of a quantum theory under the semiclassical vs. strong-quantum duality $S/\\hbar\\longleftrightarrow\\hbar/S$, where S is the classical action, is equivalent to noncommutativity (of the Heisenberg-algebra type) of the coordinates of the space on which S is defined. We place these facts in correspondence with gerbes and Neveu-Schwarz B-fields and discuss their implications for a quantum theory of gravity. Feynman's propagator turns out to be closely related to the trivialisation of a gerbe on configuration space.

J. M. Isidro

2005-10-10

255

CLNS 96/1399 Peculiarities of Quantum Mechanics  

E-print Network

CLNS 96/1399 Peculiarities of Quantum Mechanics: Origins and Meaning Yuri F. Orlov Floyd R. Newman, specifically quantum, features of quantum mechanics --- quan­ tum nonlocality, indeterminism, interference are quantum observables themselves and are represented in quantum mechanics by density matrices of pure states

256

On a New Form of Quantum Mechanics (II)  

E-print Network

The correspondence of a new form of quantum mechanics based on a quantum version of the action principle, which was proposed earlier [arXiv:0807.3508], with the ordinary quantum mechanics is established. New potentialities of the quantum action principle in the interpretation of quantum mechanics are considered.

N. Gorobey; A. Lukyanenko; I. Lukyanenko

2009-12-16

257

Supersymmetric q-deformed quantum mechanics  

SciTech Connect

A supersymmetric q-deformed quantum mechanics is studied in the weak deformation approximation of the Weyl-Heisenberg algebra. The corresponding supersymmetric q-deformed hamiltonians and charges are constructed explicitly.

Traikia, M. H.; Mebarki, N. [Laboratoire de Physique Mathematique et Subatomique, Mentouri University, Constantine (Algeria)

2012-06-27

258

Lecture Notes in Quantum Mechanics Doron Cohen  

E-print Network

, scattering resonances · The Aharonov-Bohm effect · Magnetic field (Landau levels, Hall effect) · Motion · Spherical geometry, phase shifts · Cross section, optical theorem, resonances Quantum mechanics in practice

Cohen, Doron

259

Student Difficulties in Learning Quantum Mechanics.  

ERIC Educational Resources Information Center

Reports on a preliminary project that uses a phenomenographic approach to explore the ways in which a small number of fundamental ideas are conceptualized by students who are judged to have mastered quantum mechanics material. (DDR)

Johnston, I. D.; Crawford, K.; Fletcher, P. R.

1998-01-01

260

Quantum mechanical streamlines. I - Square potential barrier  

NASA Technical Reports Server (NTRS)

Exact numerical calculations are made for scattering of quantum mechanical particles hitting a square two-dimensional potential barrier (an exact analog of the Goos-Haenchen optical experiments). Quantum mechanical streamlines are plotted and found to be smooth and continuous, to have continuous first derivatives even through the classical forbidden region, and to form quantized vortices around each of the nodal points. A comparison is made between the present numerical calculations and the stationary wave approximation, and good agreement is found between both the Goos-Haenchen shifts and the reflection coefficients. The time-independent Schroedinger equation for real wavefunctions is reduced to solving a nonlinear first-order partial differential equation, leading to a generalization of the Prager-Hirschfelder perturbation scheme. Implications of the hydrodynamical formulation of quantum mechanics are discussed, and cases are cited where quantum and classical mechanical motions are identical.

Hirschfelder, J. O.; Christoph, A. C.; Palke, W. E.

1974-01-01

261

Student difficulties in learning quantum mechanics  

NSDL National Science Digital Library

Reports on a preliminary project that uses a phenomenographic approach to explore the ways in which a small number of fundamental ideas are conceptualized by students who are judged to have mastered quantum mechanics material.

Johnston, Ian D.; Crawford, K.; Fletcher, P. R.

2006-06-19

262

Beyond Quantum Mechanics and General Relativity  

E-print Network

In this note I present the main ideas of my proposal about the theoretical framework that could underlie, and therefore "unify", Quantum Mechanics and Relativity, and I briefly summarize the implications and predictions.

Andrea Gregori

2010-02-24

263

Nonequilibrium quantum statistical mechanics and thermodynamics  

E-print Network

The purpose of this work is to discuss recent progress in deriving the fundamental laws of thermodynamics (0th, 1st and 2nd-law) from nonequilibrium quantum statistical mechanics. Basic thermodynamic notions are clarified and different reversible and irreversible thermodynamic processes are studied from the point of view of quantum statistical mechanics. Special emphasis is put on new adiabatic theorems for steady states close to and far from equilibrium, and on investigating cyclic thermodynamic processes using an extension of Floquet theory.

Walid K. Abou Salem

2006-01-23

264

Quantum mechanics in de Sitter space  

E-print Network

We consider some possible phenomenological implications of the extended uncertainty principle, which is believed to hold for quantum mechanics in de Sitter spacetime. The relative size of the corrections to the standard results is however of the order of the ratio between the length scale of the quantum mechanical system and the de Sitter radius, and therefore exceedingly small. Nevertheless, the existence of effects due to the large scale curvature of spacetime in atomic experiments has a theoretical relevance.

Subir Ghosh; Salvatore Mignemi

2009-11-30

265

SEI: Quantum Mechanics I Course Materials  

NSDL National Science Digital Library

This web site provides research-based materials for junior-level quantum mechanics I courses on quantum mechanics. Topics covered include the Schroedinger equation, bound state problems, Hilbert space and operators, the hydrogen atom, and spin. The course archives include documented student difficulties, learning goals, ConcepTests (clicker questions), class activities, homework, tutorials, and a conceptual assessment tool. All may be downloaded, although the assessment tools require permission from the authors for access.

Goldhaber, Steve; Pollock, Steven J.

2010-01-29

266

2T Physics and Quantum Mechanics  

E-print Network

We use a local scale invariance of a classical Hamiltonian and describe how to construct six different formulations of quantum mechanics in spaces with two time-like dimensions. All these six formulations have the same classical limit described by the same Hamiltonian. One of these formulations is used as a basis for a complementation of the usual quantum mechanics when in the presence of gravity.

W. Chagas-Filho

2008-02-20

267

Quantum Mechanics: Rigid Rotator Applet  

NSDL National Science Digital Library

This simulation shows time-dependent quantum state wavefunctions for the rigid rotator, the spherical harmonic states projected on a sphere. Position, angular momentum, and energy of the states can all be viewed, with phase shown with color. Energy-eigenstate wavefunctions, and combinations of states, can be created through changes in the amplitude and phase of the basis states using spinors, or through the creation of Gaussian wavefunctions with the mouse. The quantum numbers of the states are shown.

Falstad, Paul

2004-05-17

268

Background Independent Quantum Mechanics, Classical Geometric Forms and Geometric Quantum Mechanics-II  

E-print Network

The geometry of Quantum Mechanics in the context of uncertainty and complementarity, and probability is explored. We extend the discussion of geometry of uncertainty relations in wider perspective. Also, we discuss the geometry of probability in Quantum Mechanics and its interpretations. We give yet another interpretation to the notion of Faraday lines and loops as the locus of probability flow. Also, the possibilities of visualization of spectra of area operators by means of classical geometric forms and conventional Quantum Mechanics are explored.

Aalok Pandya

2009-01-19

269

Interpretations of Quantum Mechanics: a critical survey  

E-print Network

This brief survey analyzes the epistemological implications about the role of observer in the interpretations of Quantum Mechanics. As we know, the goal of most interpretations of quantum mechanics is to avoid the apparent intrusion of the observer into the measurement process. In the same time, there are implicit and hidden assumptions about his role. In fact, most interpretations taking as ontic level one of these fundamental concepts as information, physical law and matter bring us to new problematical questions. We think, that no interpretation of the quantum theory can avoid this intrusion until we do not clarify the nature of observer.

Michele Caponigro

2008-11-24

270

Interpretations of Quantum Mechanics: a critical survey  

E-print Network

This brief survey analyzes the epistemological implications about the role of observer in the interpretations of Quantum Mechanics. As we know, the goal of most interpretations of quantum mechanics is to avoid the apparent intrusion of the observer into the measurement process. In the same time, there are implicit and hidden assumptions about his role. In fact, most interpretations taking as ontic level one of these fundamental concepts as information, physical law and matter bring us to new problematical questions. We think, that no interpretation of the quantum theory can avoid this intrusion until we do not clarify the nature of observer.

Caponigro, Michele

2008-01-01

271

What is Time in Quantum Mechanics?  

E-print Network

Time of arrival in quantum mechanics is discussed in two versions: the classical axiomatic "time of arrival operator" introduced by J. Kijowski and the EEQT method. It is suggested that for free particles the two methods may lead to the same result. On the other hand the EEQT method can be easily geometrized within the framework of Galilei-Newton general relativistic quantum mechanics developed by M. Modugno and collaborators, and it can be applied to non-free evolutions. The way of geometrization of irreversible quantum dynamics based on dissipative Liouville equation is suggested.

Arkadiusz Jadczyk

2014-02-25

272

Testing foundations of quantum mechanics with photons  

NASA Astrophysics Data System (ADS)

Quantum mechanics continues to predict effects at odds with a classical understanding of nature. Experiments with light at the single-photon level have historically been at the forefront of fundamental tests of quantum theory and the current developments in photonic technologies enable the exploration of new directions. Here we review recent photonic experiments to test two important themes in quantum mechanics: wave-particle duality, which is central to complementarity and delayed-choice experiments; and Bell nonlocality, where the latest theoretical and technological advances have allowed all controversial loopholes to be separately addressed in different experiments.

Shadbolt, Peter; Mathews, Jonathan C. F.; Laing, Anthony; O'Brien, Jeremy L.

2014-04-01

273

Treating Time Travel Quantum Mechanically  

E-print Network

The fact that closed timelike curves (CTCs) are permitted by general relativity raises the question as to how quantum systems behave when time travel to the past occurs. Research into answering this question by utilising the quantum circuit formalism has given rise to two theories: D-CTCs and P-CTCs. In this paper the quantum circuit approach is thoroughly reviewed, and the strengths and shortcomings of D-CTCs and P-CTCs are presented in view of their non-linearity and time travel paradoxes. In particular, the "equivalent circuit model"---which aims to make equivalent predictions to D-CTCs, while avoiding some of the difficulties of the original theory---is shown to contain errors. The discussion of D-CTCs and P-CTCs is used to motivate an analysis of the features one might require of a theory of quantum time travel, following which two overlapping classes of new theories are identified. One such theory, the theory of T-CTCs, is fully developed. The theory of T-CTCs is shown to not have undesirable features--...

Allen, John-Mark A

2014-01-01

274

Quantum Mechanics, Spacetime Locality, and Gravity  

NASA Astrophysics Data System (ADS)

Quantum mechanics introduces the concept of probability at the fundamental level, yielding the measurement problem. On the other hand, recent progress in cosmology has led to the "multiverse" picture, in which our observed universe is only one of the many, bringing an apparent arbitrariness in defining probabilities, called the measure problem. In this paper, we discuss how these two problems are related with each other, developing a picture for quantum measurement and cosmological histories in the quantum mechanical universe. In order to describe the cosmological dynamics correctly within the full quantum mechanical context, we need to identify the structure of the Hilbert space for a system with gravity. We argue that in order to keep spacetime locality, the Hilbert space for dynamical spacetime must be defined only in restricted spacetime regions: in and on the (stretched) apparent horizon as viewed from a fixed reference frame. This requirement arises from eliminating all the redundancies and overcountings in a general relativistic, global spacetime description of nature. It is responsible for horizon complementarity as well as the "observer dependence" of horizons/spacetime—these phenomena arise to represent changes of the reference frame in the relevant Hilbert space. This can be viewed as an extension of the Poincaré transformation in the quantum gravitational context. Given an initial condition, the evolution of the multiverse state obeys the laws of quantum mechanics—it evolves deterministically and unitarily. The beginning of the multiverse, however, is still an open issue.

Nomura, Yasunori

2013-08-01

275

A quantum information approach to statistical mechanics  

E-print Network

We review some connections between quantum information and statistical mechanics. We focus on three sets of results for classical spin models. First, we show that the partition function of all classical spin models (including models in different dimensions, different types of many-body interactions, different symmetries, etc) can be mapped to the partition function of a single model. Second, we give efficient quantum algorithms to estimate the partition function of various classical spin models, such as the Ising or the Potts model. The proofs of these two results are based on a mapping from partition functions to quantum states and to quantum circuits, respectively. Finally, we show how classical spin models can be used to describe certain fluctuating lattices appearing in models of discrete quantum gravity.

Gemma De las Cuevas

2013-12-20

276

Quantum mechanics and the equivalence principle  

E-print Network

A quantum particle moving in a gravitational field may penetrate the classically forbidden region of the gravitational potential. This raises the question of whether the time of flight of a quantum particle in a gravitational field might deviate systematically from that of a classical particle due to tunnelling delay, representing a violation of the weak equivalence principle. I investigate this using a model quantum clock to measure the time of flight of a quantum particle in a uniform gravitational field, and show that a violation of the equivalence principle does not occur when the measurement is made far from the turning point of the classical trajectory. I conclude with some remarks about the strong equivalence principle in quantum mechanics.

P. C. W. Davies

2004-03-03

277

1 Introduction to quantum mechanics Quantum mechanics is the basic tool needed to describe, understand and devise  

E-print Network

1­1 1 Introduction to quantum mechanics Quantum mechanics is the basic tool needed to describe, understand and devise NMR experiments. Fortunately for NMR spectroscopists, the quantum mechanics of nuclear mathematical concepts frequently encountered in quantum mechanics and NMR. 0DWKHPDWLFDO FRQFHSWV 1.1.1 Complex

Foster, Mark P.

278

Quantum mechanics as applied mathematical statistics  

SciTech Connect

Basic mathematical apparatus of quantum mechanics like the wave function, probability density, probability density current, coordinate and momentum operators, corresponding commutation relation, Schroedinger equation, kinetic energy, uncertainty relations and continuity equation is discussed from the point of view of mathematical statistics. It is shown that the basic structure of quantum mechanics can be understood as generalization of classical mechanics in which the statistical character of results of measurement of the coordinate and momentum is taken into account and the most important general properties of statistical theories are correctly respected.

Skala, L., E-mail: Lubomir.Skala@mff.cuni.cz [Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic); University of Waterloo, Department of Applied Mathematics, Waterloo, Ontario, Canada N2L 3G1 (Canada); Cizek, J. [Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic); University of Waterloo, Department of Applied Mathematics, Waterloo, Ontario, Canada N2L 3G1 (Canada); Kapsa, V. [Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic)

2011-05-15

279

Notes on Quantum Mechanics and Consciousness  

E-print Network

There have lately been a variety of attempts to connect, or even explain, if not in fact, reduce human consciousness to quantum mechanical processes. Such attempts tend to draw a sharp and fundamental distinction between the role of consciousness in classical mechanics, and on the other hand, in quantum mechanics, with an insistence on the assumed exceptional character of the latter. What is strangely missed, however, is the role of human consciousness as such in the very discovery or creation of both of these physical theories. And this a priori role is far more important than all the possible a posteriori interplays between consciousness and the mentioned two theories of physics, interplays which may happen during one or another specific experiment, measurement, and so on. In this regard it is suggested that the specific features human consciousness may exhibit during interactions with quantum mechanical systems may as well have other explanations which do not appear to be less plausible, or less well founded.

Elemer E Rosinger

2005-08-13

280

Quantum mechanics: last stop for reductionism  

E-print Network

The state space of a homogeneous body is derived under two different assumptions: infinitesimal reducibility and irreducibility. The first assumption leads to a real vector space, used in classical mechanics, while the second one leads to a complex vector space, used in quantum mechanics.

Gabriele Carcassi

2012-03-16

281

Pseudo-Hermitian Representation of Quantum Mechanics  

E-print Network

A diagonalizable non-Hermitian Hamiltonian having a real spectrum may be used to define a unitary quantum system, if one modifies the inner product of the Hilbert space properly. We give a comprehensive and essentially self-contained review of the basic ideas and techniques responsible for the recent developments in this subject. We provide a critical assessment of the role of the geometry of the Hilbert space in conventional quantum mechanics to reveal the basic physical principle motivating our study. We then offer a survey of the necessary mathematical tools and elaborate on a number of relevant issues of fundamental importance. In particular, we discuss the role of the antilinear symmetries such as PT, the true meaning and significance of the charge operators C and the CPT-inner products, the nature of the physical observables, the equivalent description of such models using ordinary Hermitian quantum mechanics, the pertaining duality between local-non-Hermitian versus nonlocal-Hermitian descriptions of their dynamics, the corresponding classical systems, the pseudo-Hermitian canonical quantization scheme, various methods of calculating the (pseudo-) metric operators, subtleties of dealing with time-dependent quasi-Hermitian Hamiltonians and the path-integral formulation of the theory, and the structure of the state space and its ramifications for the quantum Brachistochrone problem. We also explore some concrete physical applications of the abstract concepts and tools that have been developed in the course of this investigation. These include applications in nuclear physics, condensed matter physics, relativistic quantum mechanics and quantum field theory, quantum cosmology, electromagnetic wave propagation, open quantum systems, magnetohydrodynamics, quantum chaos, and biophysics.

Ali Mostafazadeh

2008-10-31

282

Quantum electro-mechanical systems (QEMS)  

NASA Astrophysics Data System (ADS)

We give a quantum description of a Quantum Electro-Mechanical System (QEMS) comprising a single quantum dot harmonically bound between two electrodes and facilitating a tunnelling current between them. An example of such a system is a fullerene molecule between two metal electrodes. The description is based on a quantum master equation for the density operator of the electronic and vibrational degrees of freedom and thus incorporates the dynamics of both diagonal (population) and off diagonal (coherence) terms. We derive coupled equations of motion for the electron occupation number of the dot and the vibrational degrees of freedom, including damping of the vibration and thermo-mechanical noise, and give a semiclassical description of the dynamics under a variety of bias conditions. This dynamical description is related to observable features of the system including the stationary conductance as a function of bias voltage.

Utami, Dian W.; Goan, Hsi-Sheng; Milburn, Gerard J.

2004-04-01

283

Optimal guidance law in quantum mechanics  

SciTech Connect

Following de Broglie’s idea of a pilot wave, this paper treats quantum mechanics as a problem of stochastic optimal guidance law design. The guidance scenario considered in the quantum world is that an electron is the flight vehicle to be guided and its accompanying pilot wave is the guidance law to be designed so as to guide the electron to a random target driven by the Wiener process, while minimizing a cost-to-go function. After solving the stochastic optimal guidance problem by differential dynamic programming, we point out that the optimal pilot wave guiding the particle’s motion is just the wavefunction ?(t,x), a solution to the Schrödinger equation; meanwhile, the closed-loop guidance system forms a complex state–space dynamics for ?(t,x), from which quantum operators emerge naturally. Quantum trajectories under the action of the optimal guidance law are solved and their statistical distribution is shown to coincide with the prediction of the probability density function ?{sup ?}?. -- Highlights: •Treating quantum mechanics as a pursuit-evasion game. •Reveal an interesting analogy between guided flight motion and guided quantum motion. •Solve optimal quantum guidance problem by dynamic programming. •Gives a formal proof of de Broglie–Bohm’s idea of a pilot wave. •The optimal pilot wave is shown to be a wavefunction solved from Schrödinger equation.

Yang, Ciann-Dong, E-mail: cdyang@mail.ncku.edu.tw; Cheng, Lieh-Lieh, E-mail: leo8101@hotmail.com

2013-11-15

284

Objective and Subjective Probabilities in Quantum Mechanics  

E-print Network

The concept of probability was prominent in the original foundations of quantum mechanics, and continues to be so today. Indeed, the controversies regarding objective and subjective interpretations of probability have again become active. I argue that, although both objective and subjective probabilities have domains of relevance in QM, their roles are quite distinct. Even where both are legitimate, the objective and subjective probabilities differ, both conceptually and numerically. There are quantum probabilities that have no useful subjective interpretations, and there are subjective probabilities that cannot be realized as quantum probabilities.

Leslie Ballentine

2007-10-31

285

Quantum mechanical counterpart of nonlinear optics  

E-print Network

Raman-type laser excitation of a trapped atom allows one to realize the quantum mechanical counterpart of phenomena of nonlinear optics, such as Kerr-type nonlinearities, parametric amplification, and multi-mode mixing. Additionally, huge nonlinearities emerge from the interference of the atomic wave function with the laser waves. They lead to a partitioning of the phase space accompanied by a significantly different action of the time evolution in neighboring phase-space zones. For example, a nonlinearly modified coherent "displacement" of the motional quantum state may induce strong amplitude squeezing and quantum interferences.

S. Wallentowitz; W. Vogel

1997-05-15

286

On Time. 6b: Quantum Mechanical Time  

E-print Network

The existence of small amounts of advanced radiation, or a tilt in the arrow of time, makes the basic equations of physics mixed-type functional differential equations. The novel features of such equations point to a microphysical structure of time. This corresponds to a change of logic at the microphysical level. We show that the resulting logic is a quantum logic. This provides a natural and rigorous explanation of quantum interference. This structured-time interpretation of quantum mechanics is briefly compared with various other interpretations of q.m.

C. K. Raju

2008-08-09

287

A Primer on Resonances in Quantum Mechanics  

E-print Network

After a pedagogical introduction to the concept of resonance in classical and quantum mechanics, some interesting applications are discussed. The subject includes resonances occurring as one of the effects of radiative reaction, the resonances involved in the refraction of electromagnetic waves by a medium with a complex refractive index, and quantum decaying systems described in terms of resonant states of the energy. Some useful mathematical approaches like the Fourier transform, the complex scaling method and the Darboux transformation are also reviewed.

O. Rosas-Ortiz; N. Fernandez-Garcia; Sara Cruz y Cruz

2009-02-24

288

A Primer on Resonances in Quantum Mechanics  

E-print Network

After a pedagogical introduction to the concept of resonance in classical and quantum mechanics, some interesting applications are discussed. The subject includes resonances occurring as one of the effects of radiative reaction, the resonances involved in the refraction of electromagnetic waves by a medium with a complex refractive index, and quantum decaying systems described in terms of resonant states of the energy. Some useful mathematical approaches like the Fourier transform, the complex scaling method and the Darboux transformation are also reviewed.

Rosas-Ortiz, O; Cruz, Sara Cruz y; 10.1063/1.3040259

2009-01-01

289

Testing the limits of quantum mechanical superpositions  

NASA Astrophysics Data System (ADS)

Quantum physics has intrigued scientists and philosophers alike, because it challenges our notions of reality and locality -- concepts that we have grown to rely on in our macroscopic world. It is an intriguing open question whether the linearity of quantum mechanics extends into the macroscopic domain. Scientific progress over the past decades inspires hope that this debate may be settled by table-top experiments.

Arndt, Markus; Hornberger, Klaus

2014-04-01

290

Testing the limits of quantum mechanical superpositions  

E-print Network

Quantum physics has intrigued scientists and philosophers alike, because it challenges our notions of reality and locality--concepts that we have grown to rely on in our macroscopic world. It is an intriguing open question whether the linearity of quantum mechanics extends into the macroscopic domain. Scientific progress over the last decades inspires hope that this debate may be decided by table-top experiments.

Markus Arndt; Klaus Hornberger

2014-10-01

291

The Mechanism of Quantum Computation  

Microsoft Academic Search

I provide an alternative way of seeing quantum computation. First, I describe an idealized classical problem solving machine\\u000a whose coordinates are submitted to a nonfunctional relation representing all the problem constraints; moving an input part,\\u000a reversibly and nondeterministically produces a solution through a many body interaction. The machine can be considered the\\u000a many body generalization of another perfect machine, the

Giuseppe Castagnoli

2008-01-01

292

CLNS 96/1443 Peculiarities of Quantum Mechanics  

E-print Network

CLNS 96/1443 REVISED Peculiarities of Quantum Mechanics: Origins and Meaning 1 Yuri F. Orlov Floyd The most peculiar, specifically quantum, features of quantum mechanics --- quan­ tum nonlocality of pure states. Structurally, quantum mechanics is a result of applying non­Abelian symmetries to truth

293

Green's Functions and Their Applications to Quantum Mechanics  

E-print Network

Green's Functions and Their Applications to Quantum Mechanics Jeff Schueler June 2, 2011 Contents 1 Green's Functions in Quantum Mechanics and Many-body Theory 8 3.1 Time Independent Green's Fuctions, specifically in how they apply to quantum mechan- ics. I plan to introduce some of the fundamentals of quantum

Morrow, James A.

294

Quantum mechanics as "space-time statistical mechanics"?  

E-print Network

In this paper we discuss and analyse the idea of trying to see (non-relativistic) quantum mechanics as a ``space-time statistical mechanics'', by using the classical statistical mechanical method on objective microscopic space-time configurations. It is argued that this could perhaps be accomplished by giving up the assumption that the objective ``state'' of a system is independent of a future measurement performed on the system. This idea is then applied in an example of quantum state estimation on a qubit system.

Anders Månsson

2005-01-24

295

Space and time from quantum mechanics  

SciTech Connect

Classical mechanics historically preceded quantum mechanics and thus far has not been displaced from primary status; the path to construction of quantum theory has remained rooted in classical ideas about objective reality within space and time. Use of a less correct theory as underpinning for a more correct theory not only is unaesthetic but has spawned the perplexing and never-resolved puzzle of measurement. A growing number of physicist-philosophers torture themselves these days over collapse of the quantum-mechanical state vector when measurement is performed. Additionally, pointlike structure of the spacetime manifold underlying local classical fields has endowed quantum theory with mathematical dilemmas. It has been proposed by Gell-Mann and Hartle that objectively-realistic ideas such as measurement may lack a priori status, the predominantly classical present universe having evolved as a relic of the big bang. Other authors have suggested that spacetime itself need not be a priori but may stem from quantum mechanics. Haag has written recently that spacetime without (quantum) events is probably a meaningless concept. Henry Stapp and I have for several years been exploring a simple quantum system devoid of classical underpinning, even spacetime, but admitting within the Hilbert space a special Lie-group-related category of vector known as coherent state. Groups unitarily representable in our Hilbert space include the Poincare group, which relates to 3 + 1 spacetime. Coherent states generally are labeled by parameters associated with unitary group representations, and it has long been recognized that when such parameters become large a classical objective interpretation may result. Stapp and I have been attempting to understand space and time via large coherent-state parameters. Six years ago I presented to this gathering a preliminary report on our enterprise; in this paper I provide an update.

Chew, G.F.

1992-09-16

296

Space and time from quantum mechanics  

NASA Astrophysics Data System (ADS)

Classical mechanics historically preceded quantum mechanics and thus far has not been displaced from primary status; the path to construction of quantum theory has remained rooted in classical ideas about objective reality within space and time. Use of a less correct theory as underpinning for a more correct theory not only is unaesthetic but has spawned the perplexing and never-resolved puzzle of measurement. A growing number of physicist-philosophers torture themselves these days over the collapse of the quantum-mechanical state vector when measurement is performed. Additionally, the pointlike structure of the spacetime manifold underlying local classical fields has endowed quantum theory with mathematical dilemmas. It has been proposed by Gell-Mann and Hartle that objectively-realistic ideas such as measurement may lack a priori status, the predominantly classical present universe having evolved as a relic of the big bang. Other authors have suggested that spacetime itself need not be a priori but may stem from quantum mechanics. Haag has written recently that spacetime without (quantum) events is probably a meaningless concept. Henry Stapp and I have for several years been exploring a simple quantum system devoid of classical underpinning, even spacetime, but admitting within the Hilbert space a special Lie-group-related category of vector known as a coherent state. Groups unitarily representable in our Hilbert space include the Poincare group, which relates to 3 + 1 spacetime. Coherent states generally are labeled by parameters associated with unitary group representations, and it has long been recognized that when such parameters become large a classical objective interpretation may result. Stapp and I have been attempting to understand space and time via large coherent-state parameters. Six years ago I presented to this gathering a preliminary report on our enterprise; in this paper I provide an update.

Chew, G. F.

1992-09-01

297

First-Person Plural Quantum Mechanics  

E-print Network

Doing justice to quantum mechanics calls for a deeper examination of the relations between our experience, its objects, and its subjects than either third-person interpretations or the first-person singular interpretation of the QBist permit. The metaphysical space opened by Bohr's employment of the "Kantian wedge" between the objective world, about which we can communicate, and the world "in itself" allows quantum mechanics to unfold its metaphysical potential. This in turn makes it possible to go a long way towards bridging the epistemological gap between the empirical and transcendental conceptions of reality.

Mohrhoff, Ulrich

2014-01-01

298

First-Person Plural Quantum Mechanics  

E-print Network

Doing justice to quantum mechanics calls for a deeper examination of the relations between our experience, its objects, and its subjects than either third-person interpretations or the first-person singular interpretation of the QBist permit. The metaphysical space opened by Bohr's employment of the "Kantian wedge" between the objective world, about which we can communicate, and the world "in itself" allows quantum mechanics to unfold its metaphysical potential. This in turn makes it possible to go a long way towards bridging the epistemological gap between the empirical and transcendental conceptions of reality.

Ulrich Mohrhoff

2014-10-22

299

Two basic Uncertainty Relations in Quantum Mechanics  

SciTech Connect

In the present article, we discuss two types of uncertainty relations in Quantum Mechanics-multiplicative and additive inequalities for two canonical observables. The multiplicative uncertainty relation was discovered by Heisenberg. Few years later (1930) Erwin Schroedinger has generalized and made it more precise than the original. The additive uncertainty relation is based on the three independent statistical moments in Quantum Mechanics-Cov(q,p), Var(q) and Var(p). We discuss the existing symmetry of both types of relations and applicability of the additive form for the estimation of the total error.

Angelow, Andrey [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko chaussee, 1784 Sofia (Bulgaria)

2011-04-07

300

From Cbits to Qbits: Teaching computer scientists quantum mechanics  

NSDL National Science Digital Library

In this article, a strategy is suggested for teaching mathematically literate students, with no background in physics, just enough quantum mechanics for them to understand and develop algorithms in quantum computation and quantum information theory.

Mermin, N. D.

2004-04-29

301

A proof of von Neumann's postulate in Quantum Mechanics  

SciTech Connect

A Clifford algebraic analysis is explained. It gives proof of von Neumann's postulate on quantum measurement. It is of basic significance to explain the problem of quantum wave function reduction in quantum mechanics.

Conte, Elio [Department of Pharmacology and Human Physiology, TIRES-Center for Innovative Technologies for Signal Detection and Processing, Department of Physics, University of Bari (Italy) and School of Advanced International Studies for Applied Theoretical and Non Linear Methodologies of Physics, Bari (Italy)

2010-05-04

302

Quantum mechanics of time travel through post-selected teleportation  

E-print Network

This paper discusses the quantum mechanics of closed-timelike curves (CTCs) and of other potential methods for time travel. We analyze a specific proposal for such quantum time travel, the quantum description of CTCs based ...

Maccone, Lorenzo

303

Deformation Quantization: From Quantum Mechanics to Quantum Field Theory  

E-print Network

The aim of this paper is to give a basic overview of Deformation Quantization (DQ) to physicists. A summary is given here of some of the key developments over the past thirty years in the context of physics, from quantum mechanics to quantum field theory. Also, we discuss some of the conceptual advantages of DQ and how DQ may be related to algebraic quantum field theory. Additionally, our previous results are summarized which includes the construction of the Fedosov star-product on dS/AdS. One of the goals of these results was to verify that DQ gave the same results as previous analyses of these spaces. Another was to verify that the formal series used in the conventional treatment converged by obtaining exact and nonperturbative results for these spaces.

P. Tillman

2006-10-31

304

Partitions and Objective Indefiniteness in Quantum Mechanics  

E-print Network

Classical physics and quantum physics suggest two meta-physical types of reality: the classical notion of a objectively definite reality with properties "all the way down," and the quantum notion of an objectively indefinite type of reality. The problem of interpreting quantum mechanics (QM) is essentially the problem of making sense out of an objectively indefinite reality. These two types of reality can be respectively associated with the two mathematical concepts of subsets and quotient sets (or partitions) which are category-theoretically dual to one another and which are developed in two mathematical logics, the usual Boolean logic of subsets and the more recent logic of partitions. Our sense-making strategy is "follow the math" by showing how the logic and mathematics of set partitions can be transported in a natural way to Hilbert spaces where it yields the mathematical machinery of QM--which shows that the mathematical framework of QM is a type of logical system over the complex numbers. And then we show how the machinery of QM can be transported the other way down to the set-like vector spaces over Z_2 showing how the classical logical finite probability calculus (in a "non-commutative" version) is a type of "quantum mechanics" over Z_2, i.e., over sets. In this way, we try to make sense out of objective indefiniteness and thus to interpret quantum mechanics.

David Ellerman

2014-01-10

305

Macroscopic Quantum Mechanics in a Classical Spacetime  

E-print Network

We apply the many-particle Schr\\"{o}dinger-Newton equation, which describes the co-evolution of an many-particle quantum wave function and a classical space-time geometry, to macroscopic mechanical objects. By averaging over motions of the objects' internal degrees of freedom, we obtain an effective Schr\\"odinger-Newton equation for their centers of mass, which are degrees of freedom that can be monitored and manipulated at the quantum mechanical levels by state-of-the-art optoemchanics experiments. For a single macroscopic object moving quantum mechanically within a harmonic potential well, we found that its quantum uncertainty evolves in a different frequency from its classical eigenfrequency --- with a difference that depends on the internal structure of the object, and can be observable using current technology. For several objects, the Schr\\"odinger-Newton equation predicts semiclassical motions just like Newtonian physics, yet they do not allow quantum uncertainty to be transferred from one object to another through gravity.

Huan Yang; Haixing Miao; Da-Shin Lee; Bassam Helou; Yanbei Chen

2012-10-01

306

A new introductory quantum mechanics curriculum  

NASA Astrophysics Data System (ADS)

The Institute of Physics New Quantum Curriculum consists of freely available online learning and teaching materials (quantumphysics.iop.org) for a first course in university quantum mechanics starting from two-level systems. This approach immediately immerses students in inherently quantum-mechanical aspects by focusing on experiments that have no classical explanation. It allows from the start a discussion of the interpretive aspects of quantum mechanics and quantum information theory. This paper gives an overview of the resources available from the IOP website. The core text includes around 80 articles which are co-authored by leading experts, arranged in themes, and can be used flexibly to provide a range of alternative approaches. Many of the articles include interactive simulations with accompanying activities and problem sets that can be explored by students to enhance their understanding. Much of the linear algebra needed for this approach is included in the resource. Solutions to activities are available to instructors. The resources can be used in a variety of ways, from being supplemental to existing courses to forming a complete programme.

Kohnle, Antje; Bozhinova, Inna; Browne, Dan; Everitt, Mark; Fomins, Aleksejs; Kok, Pieter; Kulaitis, Gytis; Prokopas, Martynas; Raine, Derek; Swinbank, Elizabeth

2014-01-01

307

On Time in Quantum Mechanics  

E-print Network

Although time measurements are routinely performed in laboratories, their theoretical description is still an open problem. Correspondingly, the status of the energy-time uncertainty relation is unsettled. In the first part of this work the necessity of positive operator valued measures (POVM) as descriptions of every quantum experiment is reviewed, as well as the suggestive role played by the probability current in time measurements. Furthermore, it is shown that no POVM exists, which approximately agrees with the probability current on a very natural set of wave functions; nevertheless, the choice of the set is crucial, and on more restrictive sets the probability current does provide a good arrival time prediction. Some ideas to experimentally detect quantum effects in time measurements are discussed. In the second part of the work the energy-time uncertainty relation is considered, in particular for a model of alpha decay for which the variance of the energy can be calculated explicitly, and the variance of time can be estimated. This estimate is tight for systems with long lifetimes, in which case the uncertainty relation is shown to be satisfied. Also the linewidth-lifetime relation is shown to hold, but contrary to the common expectation, it is found that the two relations behave independently, and therefore it is not possible to interpret one as a consequence of the other. To perform the mentioned analysis quantitative scattering estimates are necessary. To this end, bounds of the form $\\|1_Re^{-iHt}\\psi\\|_2^2 \\leq C t^{-3}$ have been derived, where $\\psi$ denotes the initial state, $H$ the Hamiltonian, $R$ a positive constant, and $C$ is explicitly known. As intermediate step, bounds on the derivatives of the $S$-matrix in the form $\\|1_K S^{(n)}\\|_\\infty \\leq C_{n,K} $ have been established, with $n=1,2,3$, and the constants $C_{n,K}$ explicitly known.

Nicola Vona

2014-03-11

308

CPT and Quantum Mechanics Tests with Kaons  

E-print Network

In this review we first discuss the theoretical motivations for possible CPT violation and deviations from ordinary quantum-mechanical behavior of field-theoretic systems in the context of an extended class of quantum-gravity models. Then we proceed to a description of precision tests of CPT symmetry using mainly neutral kaons. We emphasize the possibly unique role of neutral meson factories in providing specific tests of models where the quantum-mechanical CPT operator is not well-defined, leading to modifications of Einstein-Podolsky-Rosen particle correlators. Finally, we present tests of CPT, T, and CP using charged kaons, and in particular K_l4 decays, which are interesting due to the high statistics attainable in experiments.

Jose Bernabeu; John Ellis; Nick E. Mavromatos; Dimitri V. Nanopoulos; Joannis Papavassiliou

2006-07-28

309

A Euclidean formulation of relativistic quantum mechanics  

E-print Network

In this paper we discuss a formulation of relativistic quantum mechanics that uses Euclidean Green functions or generating functionals as input. This formalism has a close relation to quantum field theory, but as a theory of linear operators on a Hilbert space, it has many of the advantages of quantum mechanics. One interesting feature of this approach is that matrix elements of operators in normalizable states on the physical Hilbert space can be calculated directly using the Euclidean Green functions without performing an analytic continuation. The formalism is summarized in this paper. We discuss the motivation, advantages and difficulties in using this formalism. We discuss how to compute bound states, scattering cross sections, and finite Poincare transformations without using analytic continuation. A toy model is used to demonstrate how matrix elements of exp(-beta H) in normalizable states can be used to construct-sharp momentum transition matrix elements.

Philip Kopp; Wayne Polyzou

2011-06-21

310

Open Source Physics: Quantum Mechanical Measurement  

NSDL National Science Digital Library

This set of quantum mechanics java applets, part of the Open Source Physics project, provides simulations that demonstrate the effect of measurement on the time-dependence of quantum states. Exercises are available that demonstrate the results of measurement of energy, position, and momentum on states in potential wells (square well, harmonic oscillator, asymmetric well, etc). Eigenstates, superpositions of eigenstates, and wave packets can all be studied. Tutorials are also available. The material stresses the measurement of a quantum-mechanical wave function. The simulations can be delivered either through the OSP Launcher interface or embedded in html pages. The source code is available, and users are invited to contribute to the collection's development by submitting improvements. The simulations are available through the "View attached documents" link below.

Belloni, Mario; Christian, Wolfgang

2008-06-02

311

Quantum statistical mechanics, L-series, Anabelian Geometry  

E-print Network

Quantum statistical mechanics, L-series, Anabelian Geometry Matilde Marcolli Adem Lectures, Mexico City, January 2011 Matilde Marcolli Quantum statistical mechanics, L-series, Anabelian Geometry #12 Mechanics, L-series and Anabelian Geometry, arXiv:1009.0736 Matilde Marcolli Quantum statistical mechanics

Marcolli, Matilde

312

Subjective and Objective Probabilities in Quantum Mechanics  

E-print Network

We discuss how the apparently objective probabilities predicted by quantum mechanics can be treated in the framework of Bayesian probability theory, in which all probabilities are subjective. Our results are in accord with earlier work by Caves, Fuchs, and Schack, but our approach and emphasis are different. We also discuss the problem of choosing a noninformative prior for a density matrix.

Mark Srednicki

2005-01-03

313

WEAK MEASUREMENT IN QUANTUM MECHANICS ABRAHAM NEBEN  

E-print Network

WEAK MEASUREMENT IN QUANTUM MECHANICS ABRAHAM NEBEN PHYS 342 Final Project March 10, 2011 Contents of Postselection 4 4. Impossible Spin Measurements 5 5. Hardy's Paradox 5 6. Controversy over Weak Measurement 8 7 of a Measurement of a Component of the Spin of a Spin-1/2 Particle Can Turn Out to be 100." [1] The topic

Rosner, Jonathan L.

314

Is Quantum Mechanics needed to explain consciousness ?  

E-print Network

In this short comment to a recent contribution by E. Manousakis [1] it is argued that the reported agreement between the measured time evolution of conscious states during binocular rivalry and predictions derived from quantum mechanical formalisms does not require any direct effect of QM. The recursive consumption analysis process in the Ouroboros Model can yield the same behavior.

Knud Thomsen

2007-11-13

315

Comparison of Classical and Quantum Mechanical Uncertainties.  

ERIC Educational Resources Information Center

Comparisons are made for the particle-in-a-box, the harmonic oscillator, and the one-electron atom. A classical uncertainty principle is derived and compared with its quantum-mechanical counterpart. The results are discussed in terms of the statistical interpretation of the uncertainty principle. (Author/BB)

Peslak, John, Jr.

1979-01-01

316

Quantum mechanical model for Maya Blue  

Microsoft Academic Search

This work is about Maya Blue (MB), a pigment developed by Mesoamerican civilizations between the 5th and 16th centuries from an aluminosilicate mineral (palygorskite) and an organic dye (indigo). Two different supramolecular quantum-mechanical models afford explanations for the unusual stability of MB based on the oxidation of the indigo molecule during the heating process and its interaction with palygorskite. A

María E. Fuentes; Brisa Peña; César Contreras; Ana L. Montero; Russell Chianelli; Manuel Alvarado; Ramón Olivas; Luz M. Rodríguez; Héctor Camacho; Luis A. Montero-Cabrera

2008-01-01

317

Spin Glass: A Bridge between quantum computation and statistical mechanics  

E-print Network

We show two fascinating topics lying between quantum information processing and statistical mechanics. First, we introduce an elaborated technique, the surface code, to prepare the particular quantum state with robustness against decoherence. Second, we show another interesting technique to employ quantum nature, quantum annealing. Through both of the topics, we would shed light on the birth of the interdisciplinary field between quantum mechanics and statistical mechanics.

Masayuki Ohzeki

2012-04-13

318

Doubly special quantum and statistical mechanics from quantum $?$-Poincaré algebra  

E-print Network

Recently Amelino--Camelia proposed a ``Doubly Special Relativity'' theory with two observer independent scales (of speed and mass) that could replace the standard Special Relativity at energies close to the Planck scale. Such a theory might be a starting point in construction of quantum theory of space-time. In this paper we investigate the quantum and statistical mechanical consequences of such a proposal. We construct the generalized Newton--Wigner operator and find relations between energy/momentum and frequency/wavevector for position eigenstates of this operator. These relations indicate the existence of a minimum length scale. Next we analyze the statistical mechanics of the corresponding systems. We find that depending on the value of a parameter defining the canonical commutational algebra one has to do either with system with maximal possible temperature or with the one, which in the high temperature limit becomes discrete.

J. Kowalski-Glikman

2001-11-12

319

Riemann hypothesis and Quantum Mechanics  

E-print Network

In their 1995 paper, Jean-Beno\\^{i}t Bost and Alain Connes (BC) constructed a quantum dynamical system whose partition function is the Riemann zeta function $\\zeta(\\beta)$, where $\\beta$ is an inverse temperature. We formulate Riemann hypothesis (RH) as a property of the low temperature Kubo-Martin-Schwinger (KMS) states of this theory. More precisely, the expectation value of the BC phase operator can be written as $$\\phi_{\\beta}(q)=N_{q-1}^{\\beta-1} \\psi_{\\beta-1}(N_q), $$ where $N_q=\\prod_{k=1}^qp_k$ is the primorial number of order $q$ and $ \\psi_b $ a generalized Dedekind $\\psi$ function depending on one real parameter $b$ as $$ \\psi_b (q)=q \\prod_{p \\in \\mathcal{P,}p \\vert q}\\frac{1-1/p^b}{1-1/p}.$$ Fix a large inverse temperature $\\beta >2.$ The Riemann hypothesis is then shown to be equivalent to the inequality $$ N_q |\\phi_\\beta (N_q)|\\zeta(\\beta-1) >e^\\gamma \\log \\log N_q, $$ for $q$ large enough. Under RH, extra formulas for high temperatures KMS states ($1.5< \\beta <2$) are derived.

Michel Planat; Patrick Solé; Sami Omar

2010-12-21

320

Quantum mechanical coherence, resonance, and mind  

SciTech Connect

Norbert Wiener and J.B.S. Haldane suggested during the early thirties that the profound changes in our conception of matter entailed by quantum theory opens the way for our thoughts, and other experiential or mind-like qualities, to play a role in nature that is causally interactive and effective, rather than purely epiphenomenal, as required by classical mechanics. The mathematical basis of this suggestion is described here, and it is then shown how, by giving mind this efficacious role in natural process, the classical character of our perceptions of the quantum universe can be seen to be a consequence of evolutionary pressures for the survival of the species.

Stapp, H.P.

1995-03-26

321

Indistinguishable Particles in Quantum Mechanics: An Introduction  

E-print Network

In this article, we discuss the identity and indistinguishability of quantum systems and the consequent need to introduce an extra postulate in Quantum Mechanics to correctly describe situations involving indistinguishable particles. This is, for electrons, the Pauli Exclusion Principle, or in general, the Symmetrization Postulate. Then, we introduce fermions and bosons and the distributions respectively describing their statistical behaviour in indistinguishable situations. Following that, we discuss the spin-statistics connection, as well as alternative statistics and experimental evidence for all these results, including the use of bunching and antibunching of particles emerging from a beam splitter as a signature for some bosonic or fermionic states.

Y. Omar

2005-11-01

322

The emergent Copenhagen interpretation of quantum mechanics  

NASA Astrophysics Data System (ADS)

We introduce a new and conceptually simple interpretation of quantum mechanics based on reduced density matrices of sub-systems from which the standard Copenhagen interpretation emerges as an effective description of macroscopically large systems. This interpretation describes a world in which definite measurement results are obtained with probabilities that reproduce the Born rule. Wave function collapse is seen to be a useful but fundamentally unnecessary piece of prudent book keeping which is only valid for macro-systems. The new interpretation lies in a class of modal interpretations in that it applies to quantum systems that interact with a much larger environment. However, we show that it does not suffer from the problems that have plagued similar modal interpretations like macroscopic superpositions and rapid flipping between macroscopically distinct states. We describe how the interpretation fits neatly together with fully quantum formulations of statistical mechanics and that a measurement process can be viewed as a process of ergodicity breaking analogous to a phase transition. The key feature of the new interpretation is that joint probabilities for the ergodic subsets of states of disjoint macro-systems only arise as emergent quantities. Finally we give an account of the EPR-Bohm thought experiment and show that the interpretation implies the violation of the Bell inequality characteristic of quantum mechanics but in a way that is rather novel. The final conclusion is that the Copenhagen interpretation gives a completely satisfactory phenomenology of macro-systems interacting with micro-systems.

Hollowood, Timothy J.

2014-05-01

323

Nano, Quantum, and Statistical Mechanics and Thermodynamics: Educational Sites  

NSDL National Science Digital Library

This collection of links provides access to web sites associated with nano, quantum, and statistical mechanics and thermodynamics. The links are arranged by type: basic principles (including classical thermodynamics), nano, quantum, and statistical mechanics, mathematical techniques, applications, and references.

324

Quantum Hypothesis Testing Non-Equilibrium Statistical Mechanics  

E-print Network

Quantum Hypothesis Testing and Non-Equilibrium Statistical Mechanics V. Jaksi´c1 , Y. Ogata2 , C with recent developments in non-equilibrium quantum statistical mechanics. In particular, we relate the large

Boyer, Edmond

325

Quantum Entanglement and Decoherence: Beyond Particle Models. A Farewell to Quantum Mechanics's Weirdness  

E-print Network

Combining abstract to laboratory projected quantum states a general analysis of headline quantum phenomena is presented. Standard representation mode is replaced; instead quantum states sustained by elementary material constituents occupy its place. Renouncing to assign leading roles to language originated in classical physics when describing genuine quantum processes, together with sustainment concept most, if not all weirdness associated to Quantum Mechanics vanishes.

O. Tapia

2014-04-02

326

1/n expansion in quantum mechanics  

SciTech Connect

The classical approximation (/ell/ = n - 1 /yields/ /infinity/) for the energy /var epsilon/(/sup 0/) and the semiclassical expansion in problems of quantum mechanics are discussed. A recursive method is proposed for calculating the quantum corrections of arbitrary order to /var epsilon/ (/sup 0/), this being valid for both bound and quasistationary states. The generalization of the method to states with an arbitrary number of nodes and the possibility of a more general choice of the parameter of the semiclassical expansion are considered. The method is illustrated by the example of the Yukawa and funnel potentials and for the Stark effect in the hydrogen atom. These examples demonstrate the rapid convergence of the 1/n expansion even for small quantum numbers.

Vainberg, V.M.; Mur, V.D.; Popov, V.S.; Sergeev, A.V.; Shcheblykin, A.V.

1988-09-01

327

Quantum Mechanics Joachim Burgd orfer and Stefan Rotter  

E-print Network

1 1 Quantum Mechanics Joachim BurgdË? orfer and Stefan Rotter 1.1 Introduction 3 1.2 Particle and Quantization 8 1.5 Angular Momentum in Quantum Mechanics 9 1.6 Formalism of Quantum Mechanics 12 1.7 Solution Quantization 33 1.9.3 Gutzwiller Trace Formula 34 1.10 Conceptual Aspects of Quantum Mechanics 35 1

Rotter, Stefan

328

The Objective Inde...niteness Interpretation of Quantum Mechanics  

E-print Network

The Objective Inde...niteness Interpretation of Quantum Mechanics David Ellerman University of California at Riverside Draft (not for quotation) May 28, 2013 Abstract Quantum mechanics (QM models indef- inite elements that become more de...nite as distinctions are made. If quantum mechanics

Wüthrich, Christian

329

Quantum statistical mechanics, L-series, Anabelian Geometry  

E-print Network

Quantum statistical mechanics, L-series, Anabelian Geometry Matilde Marcolli Beijing, August 2013 Matilde Marcolli Quantum statistical mechanics, L-series, Anabelian Geometry #12;joint work with Gunther Matilde Marcolli Quantum statistical mechanics, L-series, Anabelian Geometry #12;Number fields: finite

Marcolli, Matilde

330

Quantum statistical mechanics, L-series, Anabelian Geometry  

E-print Network

Quantum statistical mechanics, L-series, Anabelian Geometry Matilde Marcolli Colloquium, Harvard University, March 24, 2011 Matilde Marcolli Quantum statistical mechanics, L-series, Anabelian Geometry #12 as partition functions of physical systems Matilde Marcolli Quantum statistical mechanics, L-series, Anabelian

Marcolli, Matilde

331

Harvard University Physics 143b: Quantum Mechanics II  

E-print Network

Harvard University Physics 143b: Quantum Mechanics II Instructor : Subir Sachdev, Lyman 343@fas.harvard.edu This is the second half of an introductory course on quantum mechanics. The course will complete the text book: the photon 5. Relativistic quantum mechanics: the Dirac equation 6. Einstein-Podolsky-Rosen "paradox", Bell

332

Harvard University Physics 143b: Quantum Mechanics II  

E-print Network

Harvard University Physics 143b: Quantum Mechanics II Instructor : Subir Sachdev, Lyman 343@physics.harvard.edu This is the second half of an introductory course on quantum mechanics. The course will complete the text book: the photon 5. Relativistic quantum mechanics: the Dirac equation 6. Scattering theory. 7. Einstein

333

Faculty Disagreement about the Teaching of Quantum Mechanics  

E-print Network

Faculty Disagreement about the Teaching of Quantum Mechanics Michael Dubson1 , Steve Goldhaber1 (matter wave vs. information wave vs. something else). Keywords: upper-division quantum mechanics, curriculum reform, faculty survey, quantum mechanics textbooks PACS: 01.40.-d, 01.40.Fk, 01.40.gb, 01.40.G

Colorado at Boulder, University of

334

Physica D 145 (2000) 330348 Lyapunov exponent in quantum mechanics.  

E-print Network

Physica D 145 (2000) 330­348 Lyapunov exponent in quantum mechanics. A phase-space approach V extension of the notion of Lyapunov exponent to quantum mechanics, the method that is developed is also trajectories in phase-space, it is not obvious what the corresponding quantities in quantum mechanics should be

Vilela Mendes, Rui

335

The syllabus of the Course 624 Quantum Mechanics 2  

E-print Network

The syllabus of the Course 624 Quantum Mechanics 2 Spring 2009. Instructor V.L. Pokrovsky. 1. Many-body quantum mechanics. Second quantization. Spin and statistics. Bose- Einstein condensation. 6's phase. Landau-Zener theory. Principal textbook: E. Merzbacher, Quantum Mechanics, 3-d edition, Wiley

336

Quantum Mechanics as a Science -Religion Bridge By Stanley Klein  

E-print Network

Quantum Mechanics as a Science - Religion Bridge By Stanley Klein (May 1, 2002) Stanley Klein and for fitting contact lenses. Klein's interest in quantum mechanics and brain research has led him to explore of more than 20 years, DUALITY, summarizes his theme that the duality of quantum mechanics provides

Klein, Stanley

337

Quantum Mechanics Summary/Review Spring 2009 Compton Lecture Series  

E-print Network

time, the spike will generally spread out again, and the information about position will be lost one component at a time. · Planck's constant determines the scale at which quantum mechanical effectsQuantum Mechanics Summary/Review Spring 2009 Compton Lecture Series: From Quantum Mechanics

338

A Chaotic, Deterministic Model for Quantum Mechanics  

E-print Network

With the decline of the Copenhagen interpretation of quantum mechanics and the recent experiments indicating that quantum mechanics does actually embody 'objective reality', one might ask if a 'mechanical', conceptual model for quantum mechanics could be found. We propose such a model. Vacuum energy fluctuations imply mass fluctuations and, through general relativity, curvature fluctuations. And those fluctuations are indicated by fluctuations of the metric tensor. The metric tensor fluctuations can 'explain' the uncertainty relations and non-commuting properties of conjugate variables. We argue that that the probability density is proportional to the square root of minus the determinant of the metric tensor (the differential volume element). We argue that the metric elements are not stochastic but are oscillating at a high enough frequency that measured values of same appear stochastic (i.e. crypto-stochastic). We suggest that the oscillations at the position of particles are described as torsional vibrations. A crypto-stochastic (or chaotic) oscillating metric yields, among other things, a model of super-position, photon polarization, and entanglement, and all within the confines of a 4-dimensional space-time.

Carl Frederick

2014-06-20

339

Neutrino oscillations: Quantum mechanics vs. quantum field theory  

SciTech Connect

A consistent description of neutrino oscillations requires either the quantum-mechanical (QM) wave packet approach or a quantum field theoretic (QFT) treatment. We compare these two approaches to neutrino oscillations and discuss the correspondence between them. In particular, we derive expressions for the QM neutrino wave packets from QFT and relate the free parameters of the QM framework, in particular the effective momentum uncertainty of the neutrino state, to the more fundamental parameters of the QFT approach. We include in our discussion the possibilities that some of the neutrino's interaction partners are not detected, that the neutrino is produced in the decay of an unstable parent particle, and that the overlap of the wave packets of the particles involved in the neutrino production (or detection) process is not maximal. Finally, we demonstrate how the properly normalized oscillation probabilities can be obtained in the QFT framework without an ad hoc normalization procedure employed in the QM approach.

Akhmedov, Evgeny Kh.; Kopp, Joachim; ,

2010-01-01

340

Clocks And Dynamics In Quantum Mechanics  

E-print Network

We argue that (1) our perception of time through change and (2) the gap between reality and our observation of it are at the heart of both quantum mechanics and the dynamical mechanism of physical systems. We suggest that the origin of quantum uncertainty lies with the absence of infinities or infinitesimals in observational data and that our concept of time derives from observing changing data (events). We argue that the fundamentally important content of the Superposition Principle is not the "probability amplitude" of posterior state observation but future state availability conditional only on prior information. Since event detection also implies posterior conditions (e.g. a specific type of detectable event occurred) as well as prior conditions, the probabilities of detected outcomes are also conditional on properties of the posterior properties of the observation. Such posterior conditions cannot affect the prior state availabilities and this implies violation of counter-factual definiteness. A componen...

York, Michael

2014-01-01

341

Beyond relativity and quantum mechanics: space physics  

NASA Astrophysics Data System (ADS)

Albert Einstein imposed an observer-based epistemology upon physics. Relativity and Quantum Mechanics limit physics to describing and modeling the observer's sensations and measurements. Their "underlying reality" consists only of ideas that serve to model the observer's experience. These positivistic models cannot be used to form physical theories of Cosmic phenomena. To do this, we must again remove the observer from the center of physics. When we relate motion to Cosmic space instead of to observers and we attempt to explain the causes of Cosmic phenomena, we are forced to admit that Cosmic space is a substance. We need a new physics of space. We can begin by replacing Relativity with a modified Lorentzian-Newtonian model of spatial flow, and Quantum Mechanics with a wave-based theory of light and electrons. Space physics will require the reinterpretation of all known phenomena, concepts, and mathematical models.

Lindner, Henry H.

2011-09-01

342

The preparation of states in quantum mechanics  

E-print Network

The important problem of how to prepare a quantum mechanical system, $S$, in a specific initial state of interest - e.g., for the purposes of some experiment - is addressed. Three distinct methods of state preparation are described. One of these methods has the attractive feature that it enables one to prepare $S$ in a preassigned initial state with certainty; i.e., the probability of success in preparing $S$ in a given state is unity. This method relies on coupling $S$ to an open quantum-mechanical environment, $E$, in such a way that the dynamics of $S \\vee E$ pulls the state of $S$ towards an "attractor", which is the desired initial state of $S$. This method is analyzed in detail.

Juerg Froehlich; Baptiste Schubnel

2014-09-28

343

Quantum Mechanics, Gravity, and the Multiverse  

NASA Astrophysics Data System (ADS)

The discovery of accelerating expansion of the universe has led us to take the dramatic view that our universe may be one of the many universes in which low energy physical laws take different forms: the multiverse. I explain why/how this view is supported both observationally and theoretically, especially by string theory and eternal inflation. I then describe how quantum mechanics plays a crucial role in understanding the multiverse, even at the largest distance scales. The resulting picture leads to a revolutionary change of our view of spacetime and gravity, and completely unifies the paradigm of the eternally inflating multiverse with the many worlds interpretation of quantum mechanics. The picture also provides a solution to a long-standing problem in eternal inflation, called the measure problem, which I briefly describe.

Nomura, Yasunori

2012-04-01

344

Quantum-mechanical DFT calculation supported Raman spectroscopic study of some amino acids in bovine insulin.  

PubMed

In this article Quantum mechanical (QM) calculations by Density Functional Theory (DFT) have been performed of all amino acids present in bovine insulin. Simulated Raman spectra of those amino acids are compared with their experimental spectra and the major bands are assigned. The results are in good agreement with experiment. We have also verified the DFT results with Quantum mechanical molecular mechanics (QM/MM) results for some amino acids. QM/MM results are very similar with the DFT results. Although the theoretical calculation of individual amino acids are feasible, but the calculated Raman spectrum of whole protein molecule is difficult or even quite impossible task, since it relies on lengthy and costly quantum-chemical computation. However, we have tried to simulate the Raman spectrum of whole protein by adding the proportionate contribution of the Raman spectra of each amino acid present in this protein. In DFT calculations, only the contributions of disulphide bonds between cysteines are included but the contribution of the peptide and hydrogen bonds have not been considered. We have recorded the Raman spectra of bovine insulin using micro-Raman set up. The experimental spectrum is found to be very similar with the resultant simulated Raman spectrum with some exceptions. PMID:24747859

Tah, Bidisha; Pal, Prabir; Roy, Sourav; Dutta, Debodyuti; Mishra, Sabyashachi; Ghosh, Manash; Talapatra, G B

2014-08-14

345

Physical Interpretations of Nilpotent Quantum Mechanics  

E-print Network

Nilpotent quantum mechanics provides a powerful method of making efficient calculations. More importantly, however, it provides insights into a number of fundamental physical problems through its use of a dual vector space and its explicit construction of vacuum. Physical interpretation of the nilpotent formalism is discussed with respect to boson and baryon structures, the mass-gap problem, zitterbewgung, Berry phase, renormalization, and related issues.

Peter Rowlands

2010-04-09

346

Nine Formulations of Quantum Mechanics: Lecture  

NSDL National Science Digital Library

In this lecture, Dr. Daniel Styer, a physics professor at Oberlin College, guides the listener through nine formulations of quantum mechanics. Styer discusses each formulation's unique abilities and challenges, then offers his perspective on the application to undergraduate education. This lecture was delivered at the Kavli Institute for Physics, as a part of the Theorists at Undergraduate Institutions mini-program. Audio, video and slides are included.

Styer, Dan

2005-08-07

347

Chiral quantum mechanics (CQM) for antihydrogen systems  

E-print Network

A first deception of QM on antiH already appears in one-center integrals for two-center systems (G. Van Hooydonk, physics/0511115). In reality, full QM is a theory for chiral systems but the QM establishment was wrong footed with a permutation of reference frames. With chiral quantum mechanics (CQM), the theoretical ban on natural antiH must be lifted as soon as possible.

G. Van Hooydonk

2005-12-03

348

Quantum Mechanics and Motion: A Modern Perspective  

E-print Network

This essay is an attempted to address, from a modern perspective, the motion of a particle. Quantum mechanically, motion consists of a series of localizations due to repeated interactions that, taken close to the limit of the continuum, yields a world-line. If a force acts on the particle, its probability distribution is accordingly modified. This must also be true for macroscopic objects, although now the description is far more complicated by the structure of matter and associated surface physics.

Gerald E. Marsh

2009-12-27

349

Sixty years of quantum wave mechanics  

NASA Astrophysics Data System (ADS)

We present an inaugural lecture, originally given by the author on 2 June 1987 at the Queen's University of Belfast, but in an edited version, on the topic "Sixty years of quantum wave mechanics". A short historical survey is given as an introduction to some of the author's own personal research in the theory of atomic collisions, notably heavy-particle collisions and semiclassical methods.

Crothers, D. S. F.

1989-11-01

350

Euclidean Quantum Mechanics and Universal Nonlinear Filtering  

Microsoft Academic Search

An important problem in applied science is the continuous nonlinear filtering\\u000aproblem, i.e., the estimation of a Langevin state that is observed indirectly.\\u000aIn this paper, it is shown that Euclidean quantum mechanics is closely related\\u000ato the continuous nonlinear filtering problem. The key is the configuration\\u000aspace Feynman path integral representation of the fundamental solution of a\\u000aFokker-Planck type

Bhashyam Balaji

2009-01-01

351

Relativistic Non-Hermitian Quantum Mechanics  

E-print Network

We develop relativistic wave equations in the framework of the new non-hermitian ${\\cal PT}$ quantum mechanics. The familiar Hermitian Dirac equation emerges as an exact result of imposing the Dirac algebra, the criteria of ${\\cal PT}$-symmetric quantum mechanics, and relativistic invariance. However, relaxing the constraint that in particular the mass matrix be Hermitian also allows for models that have no counterpart in conventional quantum mechanics. For example it is well-known that a quartet of Weyl spinors coupled by a Hermitian mass matrix reduces to two independent Dirac fermions; here we show that the same quartet of Weyl spinors, when coupled by a non-Hermitian but $\\cal{PT}$ symmetric mass matrix, describes a single relativistic particle that can have massless dispersion relation even though the mass matrix is non-zero.The ${\\cal PT}$-generalized Dirac equation is also Lorentz invariant, unitary in time, and CPT respecting, even though as a non-interacting theory it violates ${\\cal P}$ and ${\\cal T}$ individually. The relativistic wave equations are reformulated as canonical fermionic field theories to facilitate the study of interactions, and are shown to maintain many of the canonical structures from Hermitian field theory, but with new and interesting new possibilities permitted by the non-hermiticity parameter $m_2$.

Katherine Jones-Smith; Harsh Mathur

2009-08-28

352

Quantum mechanics and low energy nucleon dynamics  

E-print Network

We discuss the problem of consistency of quantum mechanics as applied to low energy nucleon dynamics with the symmetries of QCD. It is shown that the dynamics consistent with these symmetries is not governed by the Schrodinger equation. We present a new way to formulate the effective theory of nuclear forces as an inevitable consequence of the basic principles of quantum mechanics and the symmetries of strong interactions. We show that being formulated in this way the effective theory of nuclear forces can be put on the same firm theoretical grounds as the quantum mechanics of atomic phenomena. In this case the effective theory allows one to describe with a given accuracy not only two-nucleon scattering, but also the evolution of nucleon systems, and places the constraints on the off-shell behavior of the two-nucleon interaction. In this way we predict the off-shell behavior of the S wave two-nucleon T-matrix at very low energies when the pionless theory is applicable. Further extensions and applications of this approach are discussed.

Renat Kh. Gainutdinov; Aigul A. Mutygullina

2003-04-03

353

Hunting for Snarks in Quantum Mechanics  

SciTech Connect

A long-standing debate over the interpretation of quantum mechanics has centered on the meaning of Schroedinger's wave function {psi} for an electron. Broadly speaking, there are two major opposing schools. On the one side, the Copenhagen school(led by Bohr, Heisenberg and Pauli) holds that {psi} provides a complete description of a single electron state; hence the probability interpretation of {psi}{psi}* expresses an irreducible uncertainty in electron behavior that is intrinsic in nature. On the other side, the realist school(led by Einstein, de Broglie, Bohm and Jaynes) holds that {psi} represents a statistical ensemble of possible electron states; hence it is an incomplete description of a single electron state. I contend that the debaters have overlooked crucial facts about the electron revealed by Dirac theory. In particular, analysis of electron zitterbewegung(first noticed by Schroedinger) opens a window to particle substructure in quantum mechanics that explains the physical significance of the complex phase factor in {psi}. This led to a testable model for particle substructure with surprising support by recent experimental evidence. If the explanation is upheld by further research, it will resolve the debate in favor of the realist school. I give details. The perils of research on the foundations of quantum mechanics have been foreseen by Lewis Carroll in The Hunting of the Snark{exclamation_point}.

Hestenes, David [Physics Department, Arizona State University, Tempe, Arizona 85287 (United States)

2009-12-08

354

Hunting for Snarks in Quantum Mechanics  

NASA Astrophysics Data System (ADS)

A long-standing debate over the interpretation of quantum mechanics has centered on the meaning of Schroedinger's wave function ? for an electron. Broadly speaking, there are two major opposing schools. On the one side, the Copenhagen school (led by Bohr, Heisenberg and Pauli) holds that ? provides a complete description of a single electron state; hence the probability interpretation of ??* expresses an irreducible uncertainty in electron behavior that is intrinsic in nature. On the other side, the realist school (led by Einstein, de Broglie, Bohm and Jaynes) holds that ? represents a statistical ensemble of possible electron states; hence it is an incomplete description of a single electron state. I contend that the debaters have overlooked crucial facts about the electron revealed by Dirac theory. In particular, analysis of electron zitterbewegung (first noticed by Schroedinger) opens a window to particle substructure in quantum mechanics that explains the physical significance of the complex phase factor in ?. This led to a testable model for particle substructure with surprising support by recent experimental evidence. If the explanation is upheld by further research, it will resolve the debate in favor of the realist school. I give details. The perils of research on the foundations of quantum mechanics have been foreseen by Lewis Carroll in The Hunting of the Snark!

Hestenes, David

2009-12-01

355

Quantum selfish gene (biological evolution in terms of quantum mechanics)  

E-print Network

I propose to treat the biological evolution of genoms by means of quantum mechanical tools. We start with the concept of meta- gene, which specifies the "selfish gene" of R.Dawkins. Meta- gene encodes the abstract living unity, which can live relatively independently of the others, and can contain a few real creatures. Each population of living creatures we treat as the wave function on meta- genes, which module squared is the total number of creatures with the given meta-gene, and the phase is the sum of "aspirations" to change the classical states of meta- genes. Each individual life thus becomes one of possible outcomes of the virtual quantum measurement of this function. The evolution of genomes is described by the unitary operator in the space of psi-functions or by Kossovsky-Lindblad equation in the case of open biosystems. This operator contains all the information about specific conditions under which individuals are, and how "aspirations" of their meta- genes may be implemented at the biochemical level. We show the example of quantum description of the population with two parts of meta-gene: "wolves" and "deer", which can be simultaneously in the same abstract living unity. "Selfish gene" reconciled with the notion of individuality of alive beings that gives possibility to consider evolutionary scenarios and their possible physical causes from the single position.

Yuri I. Ozhigov

2013-12-07

356

Quantum mechanics, by itself, implies perception of a classical world  

E-print Network

Several versions of reality can simultaneously exist in the states of quantum mechanics, but we perceive only one classical version. The question is whether the mathematics of quantum mechanics, by itself, implies we perceive only one classical version. Zurek has used a method involving the environment, redundancy, decoherence and quantum Darwinism to show that quantum mechanics does indeed imply this result, but the argument is quite complex. Here we give a simpler method based on linearity.

Casey Blood

2010-09-23

357

FIG. 1: Size-dependent color emission of quantum dots. This is a purely quantum mechanical FIG. 2: Size-dependent color emission of quantum dots. This is a purely quantum mechanical  

E-print Network

FIG. 1: Size-dependent color emission of quantum dots. This is a purely quantum mechanical effect. FIG. 2: Size-dependent color emission of quantum dots. This is a purely quantum mechanical effect. 1 #12;FIG. 3: Size-dependent color emission of quantum dots. This is a purely quantum mechanical effect

Nielsen, Steven O.

358

Bohmian mechanics in relativistic quantum mechanics, quantum field theory and string theory  

E-print Network

I present a short overview of my recent achievements on the Bohmian interpretation of relativistic quantum mechanics, quantum field theory and string theory. This includes the relativistic-covariant Bohmian equations for particle trajectories, the problem of particle creation and destruction, the Bohmian interpretation of fermionic fields and the intrinsically Bohmian quantization of fields and strings based on the De Donder-Weyl covariant canonical formalism.

H. Nikolic

2006-10-12

359

Optimal guidance law in quantum mechanics  

NASA Astrophysics Data System (ADS)

Following de Broglie's idea of a pilot wave, this paper treats quantum mechanics as a problem of stochastic optimal guidance law design. The guidance scenario considered in the quantum world is that an electron is the flight vehicle to be guided and its accompanying pilot wave is the guidance law to be designed so as to guide the electron to a random target driven by the Wiener process, while minimizing a cost-to-go function. After solving the stochastic optimal guidance problem by differential dynamic programming, we point out that the optimal pilot wave guiding the particle's motion is just the wavefunction ?(t,x), a solution to the Schrödinger equation; meanwhile, the closed-loop guidance system forms a complex state-space dynamics for ?(t,x), from which quantum operators emerge naturally. Quantum trajectories under the action of the optimal guidance law are solved and their statistical distribution is shown to coincide with the prediction of the probability density function ???.

Yang, Ciann-Dong; Cheng, Lieh-Lieh

2013-11-01

360

Quantum mechanics with coordinate dependent noncommutativity  

SciTech Connect

Noncommutative quantum mechanics can be considered as a first step in the construction of quantum field theory on noncommutative spaces of generic form, when the commutator between coordinates is a function of these coordinates. In this paper we discuss the mathematical framework of such a theory. The noncommutativity is treated as an external antisymmetric field satisfying the Jacobi identity. First, we propose a symplectic realization of a given Poisson manifold and construct the Darboux coordinates on the obtained symplectic manifold. Then we define the star product on a Poisson manifold and obtain the expression for the trace functional. The above ingredients are used to formulate a nonrelativistic quantum mechanics on noncommutative spaces of general form. All considered constructions are obtained as a formal series in the parameter of noncommutativity. In particular, the complete algebra of commutation relations between coordinates and conjugated momenta is a deformation of the standard Heisenberg algebra. As examples we consider a free particle and an isotropic harmonic oscillator on the rotational invariant noncommutative space.

Kupriyanov, V. G. [CMCC, Universidade Federal do ABC, Santo André, SP (Brazil)] [CMCC, Universidade Federal do ABC, Santo André, SP (Brazil)

2013-11-15

361

Advances in relativistic molecular quantum mechanics  

NASA Astrophysics Data System (ADS)

A quantum mechanical equation H?=E? is composed of three components, viz., Hamiltonian H, wave function ?, and property E(?), each of which is confronted with fundamental issues in the relativistic regime, e.g., (1) What is the most appropriate relativistic many-body Hamiltonian? How to solve the resulting equation? (2) How does the relativistic wave function behave at the coalescence of two electrons? How to do relativistic explicit correlation? (3) How to formulate relativistic properties properly?, to name just a few. It is shown here that the charge-conjugated contraction of Fermion operators, dictated by the charge conjugation symmetry, allows for a bottom-up construction of a relativistic Hamiltonian that is in line with the principles of quantum electrodynamics (QED). Various approximate but accurate forms of the Hamiltonian can be obtained based entirely on physical arguments. In particular, the exact two-component Hamiltonians can be formulated in a general way to cast electric and magnetic fields, as well as electron self-energy and vacuum polarization, into a unified framework. While such algebraic two-component Hamiltonians are incompatible with explicit correlation, four-component relativistic explicitly correlated approaches can indeed be made fully parallel to the nonrelativistic counterparts by virtue of the ‘extended no-pair projection’ and the coalescence conditions. These findings open up new avenues for future developments of relativistic molecular quantum mechanics. In particular, ‘molecular QED’ will soon become an active and exciting field.

Liu, Wenjian

2014-04-01

362

Surveying Studentsâ Understanding of Quantum Mechanics  

NSDL National Science Digital Library

Development of research-based multiple-choice tests about quantum mechanics is important for assessing studentsâ difficulties and for evaluating curricula and pedagogies that strive to reduce the difficulties. We explore the difficulties that the undergraduate and graduate students have with non-relativistic quantum mechanics of one particle in one spatial dimension. We developed a research-based conceptual multiple-choice survey that targets these issues to obtain information about the common difficulties and administered it to more than a hundred students from seven different institutions. The issues targeted in the survey include the set of possible wavefunctions, bound and scattering states, quantum measurement, expectation values, the role of the Hamiltonian, time-dependence of wavefunction and time-dependence of expectation value. We find that the advanced undergraduate and graduate students have many common difficulties with these concepts and that research-based tutorials and peer-instruction tools can significantly reduce these difficulties. The survey can be administered to assess the effectiveness of various intructional strategies.

Singh, Chandralekha; Zhu, Guangtian

2010-12-31

363

An approach to nonstandard quantum mechanics  

E-print Network

We use nonstandard analysis to formulate quantum mechanics in hyperfinite-dimensional spaces. Self-adjoint operators on hyperfinite-dimensional spaces have complete eigensets, and bound states and continuum states of a Hamiltonian can thus be treated on an equal footing. We show that the formalism extends the standard formulation of quantum mechanics. To this end we develop the Loeb-function calculus in nonstandard hulls. The idea is to perform calculations in a hyperfinite-dimensional space, but to interpret expectation values in the corresponding nonstandard hull. We further apply the framework to non-relativistic quantum scattering theory. For time-dependent scattering theory, we identify the starting time and the finishing time of a scattering experiment, and we obtain a natural separation of time scales on which the preparation process, the interaction process, and the detection process take place. For time-independent scattering theory, we derive rigorously explicit formulas for the M{\\o}ller wave operators and the S-Matrix.

Andreas Raab

2006-12-27

364

Path integration in relativistic quantum mechanics  

E-print Network

The simple physics of a free particle reveals important features of the path-integral formulation of relativistic quantum theories. The exact quantum-mechanical propagator is calculated here for a particle described by the simple relativistic action proportional to its proper time. This propagator is nonvanishing outside the light cone, implying that spacelike trajectories must be included in the path integral. The propagator matches the WKB approximation to the corresponding configuration-space path integral far from the light cone; outside the light cone that approximation consists of the contribution from a single spacelike geodesic. This propagator also has the unusual property that its short-time limit does not coincide with the WKB approximation, making the construction of a concrete skeletonized version of the path integral more complicated than in nonrelativistic theory.

Ian H. Redmount; Wai-Mo Suen

1992-10-28

365

Quantum Mechanics of a Rotating Billiard  

E-print Network

Integrability of a square billiard is spontaneously broken as it rotates about one of its corners. The system becomes quasi-integrable where the invariant tori are broken with respect to a certain parameter, $\\lambda = 2E/\\omega^{2}$ where E is the energy of the particle inside the billiard and $\\omega$ is the angular frequency of rotation of billiard. We study the system classically and quantum mechanically in view of obtaining a correspondence in the two descriptions. Classical phase space in Poincar\\'{e} surface of section shows transition from regular to chaotic motion as the parameter $\\lambda$ is decreased. In the Quantum counterpart, the spectral statistics shows a transition from Poisson to Wigner distribution as the system turns chaotic with decrease in $\\lambda$. The wavefunction statistics however show breakdown of time-reversal symmetry as $\\lambda$ decreases.

Nandan Jha; Sudhir R. Jain

2014-06-12

366

Quantum Mechanics à la Langevin and Supersymmetry  

E-print Network

We study quantum mechanics in the stochastic formulation, using the functional integral approach. The noise term enters the classical action as a local contribution of anticommuting fields. The partition function is not invariant under ${\\mathcal N}=1$ SUSY, but can be obtained from a, manifestly, supersymmetric expression, upon fixing a local fermionic symmetry, called $\\kappa-$symmetry. The kinetic term for the fermions is a total derivative and can contribute only on the boundaries. We define combinations that scale appropriately, as the lattice spacing is taken to zero and the lattice size to infinity and provide evidence, by numerical simulations, that the correlation functions of the auxiliary field do satisfy Wick's theorem. We show, in particular, that simulations can be carried out using a purely bosonic action. The physical import is that the classical trajectory, $\\phi(\\tau)$, becomes a (chiral) superfield, $(\\phi(\\tau),\\psi_{\\alpha}(\\tau),F(\\tau))$, when quantum fluctuations are taken into account.

S. Nicolis

2013-11-14

367

5.74 Introductory Quantum Mechanics II, Spring 2005  

E-print Network

Time-dependent quantum mechanics and spectroscopy. Topics covered include perturbation theory, two-level systems, light-matter interactions, relaxation in quantum systems, correlation functions and linear response theory, ...

Tokmakoff, Andrei

368

5.74 Introductory Quantum Mechanics II, Spring 2007  

E-print Network

Time-dependent quantum mechanics and spectroscopy. Topics covered include perturbation theory, two-level systems, light-matter interactions, relaxation in quantum systems, correlation functions and linear response theory, ...

Tokmakoff, Andrei

369

5.74 Introductory Quantum Mechanics II, Spring 2003  

E-print Network

Time-dependent quantum mechanics and spectroscopy. Topics covered include perturbation theory, two-level systems, light-matter interactions, relaxation in quantum systems, correlation functions and linear response theory, ...

Tokmakoff, Andrei

370

Quantum mechanism helps agents combat "bad" social choice rules  

E-print Network

Quantum strategies have been successfully applied to game theory for years. However, as a reverse problem of game theory, the theory of mechanism design is ignored by physicists. In this paper, the theory of mechanism design is generalized to a quantum domain. The main result is that by virtue of a quantum mechanism, agents who satisfy a certain condition can combat "bad" social choice rules instead of being restricted by the traditional mechanism design theory.

Haoyang Wu

2010-02-23

371

Clocks And Dynamics In Quantum Mechanics  

E-print Network

We argue that (1) our perception of time through change and (2) the gap between reality and our observation of it are at the heart of both quantum mechanics and the dynamical mechanism of physical systems. We suggest that the origin of quantum uncertainty lies with the absence of infinities or infinitesimals in observational data and that our concept of time derives from observing changing data (events). We argue that the fundamentally important content of the Superposition Principle is not the "probability amplitude" of posterior state observation but future state availability conditional only on prior information. Since event detection also implies posterior conditions (e.g. a specific type of detectable event occurred) as well as prior conditions, the probabilities of detected outcomes are also conditional on properties of the posterior properties of the observation. Such posterior conditions cannot affect the prior state availabilities and this implies violation of counter-factual definiteness. A component of a quantum system may be chosen to represent a clock and changes in other components can then be expected to be correlated with clocks with which they are entangled. Instead of traditional time-dependent equations of motion we provide a specific mechanism whereby evolution of data is instead quasi-causally related to the relative \\availability\\ of states and equations of motion are expressed in terms of quantized clock variables. We also suggest that time-reversal symmetry-breaking in weak interactions is an artifice of a conventional choice of co-ordinate time-function. Analysis of a "free" particle suggests that conventional co-ordinate space-time emerges from how we measure the separation of objects and events.

Michael York

2014-05-05

372

Renormalization group invariance of quantum mechanics  

NASA Astrophysics Data System (ADS)

We propose a framework to renormalize the nonrelativistic quantum mechanics with arbitrary singular interactions. The scattering equation is written to have one or more subtraction in the kernel at a given energy scale. The scattering amplitude is the solution of a nth order derivative equation in respect to the renormalization scale, which is the nonrelativistic counterpart of the Callan-Symanzik formalism. Scaled running potentials for the subtracted equations keep the physics invariant for a sliding subtraction point. An example of a singular potential, that requires more than one subtraction to renormalize the theory is shown.

Frederico, T.; Delfino, A.; Tomio, L.

2000-05-01

373

Hidden geometric character of relativistic quantum mechanics  

SciTech Connect

Geometry can be an unsuspected source of equations with physical relevance, as everybody is aware since Einstein formulated the general theory of relativity. However, efforts to extend a similar type of reasoning to other areas of physics, namely, electrodynamics, quantum mechanics, and particle physics, usually had very limited success; particularly in quantum mechanics the standard formalism is such that any possible relation to geometry is impossible to detect; other authors have previously trod the geometric path to quantum mechanics, some of that work being referred to in the text. In this presentation we will follow an alternate route to show that quantum mechanics has indeed a strong geometric character. The paper makes use of geometric algebra, also known as Clifford algebra, in five-dimensional space-time. The choice of this space is given the character of first principle, justified solely by the consequences that can be derived from such choice and their consistency with experimental results. Given a metric space of any dimension, one can define monogenic functions, the natural extension of analytic functions to higher dimensions; such functions have null vector derivative and have previously been shown by other authors to play a decisive role in lower dimensional spaces. All monogenic functions have null Laplacian by consequence; in a hyperbolic space this fact leads inevitably to a wave equation with planelike solutions. This is also true for five-dimensional space-time and we will explore those solutions, establishing a parallel with the solutions of the free particle Dirac equation. For this purpose we will invoke the isomorphism between the complex algebra of 4x4 matrices, also known as Dirac's matrices. There is one problem with this isomorphism, because the solutions to Dirac's equation are usually known as spinors (column matrices) that do not belong to the 4x4 matrix algebra and as such are excluded from the isomorphism. We will show that a solution in terms of Dirac spinors is equivalent to a plane wave solution. Just as one finds in the standard formulation, monogenic functions can be naturally split into positive/negative energy together with left/right ones. This split is provided by geometric projectors and we will show that there is a second set of projectors providing an alternate fourfold split. The possible implications of this alternate split are not yet fully understood and are presently the subject of profound research.

Almeida, Jose B. [Physics Department, Universidade do Minho, 4710-057 Braga (Portugal)

2007-01-15

374

Vector Models in PT Quantum Mechanics  

E-print Network

We present two examples of non-Hermitian Hamiltonians which consist of an unperturbed part plus a perturbation that behaves like a vector, in the framework of PT quantum mechanics. The first example is a generalization of the recent work by Bender and Kalveks, wherein the E2 algebra was examined; here we consider the E3 algebra representing a particle on a sphere, and identify the critical value of coupling constant which marks the transition from real to imaginary eigenvalues. Next we analyze a model with SO(3) symmetry, and in the process extend the application of the Wigner-Eckart theorem to a non-Hermitian setting.

Katherine Jones-Smith; Rudolph Kalveks

2013-04-21

375

Improved lattice actions for supersymmetric quantum mechanics  

E-print Network

We analyze the Euclidean version of supersymmetric quantum mechanics on the lattice by means of a numerical path integral. We consider two different lattice derivatives and improve the actions containing them with respect to supersymmetry by systematically adding interaction terms with non-zero extent. To quantize this improvement, we measure boson and fermion masses and Ward identities for the naive as well as the improved models. The masses are degenerate in all models, but the magnitude of the Ward identities decreases significantly for both derivative operators using the improved actions. This is a clear sign that the breaking of supersymmetry due to lattice artifacts is reduced.

Sebastian Schierenberg; Falk Bruckmann

2012-10-19

376

Euclidean Quantum Mechanics and Universal Nonlinear Filtering  

E-print Network

An important problem in applied science is the continuous nonlinear filtering problem, i.e., the estimation of a Langevin state that is observed indirectly. In this paper, it is shown that Euclidean quantum mechanics is closely related to the continuous nonlinear filtering problem. The key is the configuration space Feynman path integral representation of the fundamental solution of a Fokker-Planck type of equation termed the Yau Equation of continuous-continuous filtering. A corollary is the equivalence between nonlinear filtering problem and a time-varying Schr\\"odinger equation.

Bhashyam Balaji

2008-09-25

377

Wigner Measures in Noncommutative Quantum Mechanics  

E-print Network

We study the properties of quasi-distributions or Wigner measures in the context of noncommutative quantum mechanics. In particular, we obtain necessary and sufficient conditions for a phase-space function to be a noncommutative Wigner measure, for a Gaussian to be a noncommutative Wigner measure, and derive certain properties of the marginal distributions which are not shared by ordinary Wigner measures. Moreover, we derive the Robertson-Schr\\"odinger uncertainty principle. Finally, we show explicitly how the set of noncommutative Wigner measures relates to the sets of Liouville and (commutative) Wigner measures.

C. Bastos; N. C. Dias; J. N. Prata

2009-07-25

378

Topological Solution of Bohmian Quantum Mechanics  

NASA Astrophysics Data System (ADS)

The topological solutions of the De Broglie-Bohm quantum mechanics are presented. Starting from the Schrödinger equation for one particle system and ?-mapping topological current theory, the trajectory of the particle is derived explicitly, and can be used as the world line of the particle. The world line is just at the zero point of the wave function and it is shown that the vorticity of the world line can be expressed by Hopf index and Brouwer degree. The evolution of the world line at the bifurcation point is given.

Shi, Xuguang; Yu, Ming; Duan, Yishi

379

The metaphysics of quantum mechanics: Modal interpretations  

NASA Astrophysics Data System (ADS)

This dissertation begins with the argument that a preferred way of doing metaphysics is through philosophy of physics. An understanding of quantum physics is vital to answering questions such as: What counts as an individual object in physical ontology? Is the universe fundamentally indeterministic? Are indiscernibles identical? This study explores how the various modal interpretations of quantum mechanics answer these sorts of questions; modal accounts are one of the two classes of interpretations along with so-called collapse accounts. This study suggests a new alternative within the class of modal views that yields a more plausible ontology, one in which the Principle of the Identity of Indisceribles is necessarily true. Next, it shows that modal interpretations can consistently deny that the universe must be fundamentally indeterministic so long as they accept certain other metaphysical commitments: either a perfect initial distribution of states in the universe or some form of primitive dispositional properties. Finally, the study sketches out a future research project for modal interpretations based on developing quantified quantum logic.

Gluck, Stuart Murray

2004-11-01

380

Bhomian Mechanics vs. Standard Quantum Mechanics: a Difference in Experimental Predictions  

E-print Network

Standard Quantum Mechanics (QM) predicts an anti-intuitive fenomenon here referred to as "quantum autoscattering", which is excluded by Bhomian Mechanics. The scheme of a gedanken experiment testing the QM prediction is briefly discussed.

Artur Szczepanski

2010-02-08

381

Smallest Relational Mechanics Model of Quantum Cosmology  

E-print Network

Relational particle mechanics are models in which there is, overall, no time, position, orientation (nor, sometimes, scale). They are useful for whole-universe modelling - the setting for quantum cosmology. This note concerns 3 particles in 1d in shape-scale split variables. The scale part parallels certain Friedmann equations, while in this note the shape part involves functions on the circle. The scale part is taken to be `heavy' and `slow' so the semiclassical approach applies and scale provides an approximate timestandard with repect to which the light physics runs. Relational particle mechanics moreover provide conceptual models of inhomogeneity, structure formation and nontrivial linear constraints (minisuperspace models do not and midisuperspace models only do at the cost of substantial complications).

Edward Anderson

2009-08-13

382

Quantum Mechanical Study of Nanoscale MOSFET  

NASA Technical Reports Server (NTRS)

The steady state characteristics of MOSFETS that are of practical Interest are the drive current, off-current, dope of drain current versus drain voltage, and threshold voltage. In this section, we show that quantum mechanical simulations yield significantly different results from drift-diffusion based methods. These differences arise because of the following quantum mechanical features: (I) polysilicon gate depletion in a manner opposite to the classical case (II) dependence of the resonant levels in the channel on the gate voltage, (III) tunneling of charge across the gate oxide and from source to drain, (IV) quasi-ballistic flow of electrons. Conclusions dI/dV versus V does not increase in a manner commensurate with the increase in number of subbands. - The increase in dI/dV with bias is much smaller then the increase in the number of subbands - a consequence of bragg reflection. Our calculations show an increase in transmission with length of contact, as seen in experiments. It is desirable for molecular electronics applications to have a small contact area, yet large coupling. In this case, the circumferential dependence of the nanotube wave function dictates: - Transmission in armchair tubes saturates around unity - Transmission in zigzag tubes saturates at two.

Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan

2001-01-01

383

The formal path integral and quantum mechanics  

SciTech Connect

Given an arbitrary Lagrangian function on R{sup d} and a choice of classical path, one can try to define Feynman's path integral supported near the classical path as a formal power series parameterized by 'Feynman diagrams', although these diagrams may diverge. We compute this expansion and show that it is (formally, if there are ultraviolet divergences) invariant under volume-preserving changes of coordinates. We prove that if the ultraviolet divergences cancel at each order, then our formal path integral satisfies a 'Fubini theorem' expressing the standard composition law for the time evolution operator in quantum mechanics. Moreover, we show that when the Lagrangian is inhomogeneous quadratic in velocity such that its homogeneous-quadratic part is given by a matrix with constant determinant, then the divergences cancel at each order. Thus, by 'cutting and pasting' and choosing volume-compatible local coordinates, our construction defines a Feynman-diagrammatic 'formal path integral' for the nonrelativistic quantum mechanics of a charged particle moving in a Riemannian manifold with an external electromagnetic field.

Johnson-Freyd, Theo [Department of Mathematics, University of California - Berkeley, 970 Evans Hall, Berkeley, California 94720 (United States)

2010-11-15

384

Mind, Matter and Quantum Mechanics (2nd edition)  

Microsoft Academic Search

Quantum mechanics is usually defined in terms of some loosely connected axioms and rules. Such a foundation is far from the beauty of, e.g., the `principles' underlying classical mechanics. Motivated, in addition, by notorious interpretation problems, there have been numerous attempts to modify or `complete' quantum mechanics. A first attempt was based on so-called hidden variables; its proponents essentially tried

G Mahler

2004-01-01

385

BOOK REVIEW: Mind, Matter and Quantum Mechanics (2nd edition)  

Microsoft Academic Search

Quantum mechanics is usually defined in terms of some loosely connected axioms and rules. Such a foundation is far from the beauty of, e.g., the `principles' underlying classical mechanics. Motivated, in addition, by notorious interpretation problems, there have been numerous attempts to modify or `complete' quantum mechanics. A first attempt was based on so-called hidden variables; its proponents essentially tried

H. P. Stapp

2004-01-01

386

A note on the Landauer principle in quantum statistical mechanics  

E-print Network

A note on the Landauer principle in quantum statistical mechanics Vojkan Jaksi´c1 and Claude results concerning the derivation of the Landauer bound from the first principles of statistical mechanics and proof of the Landauer principle in the context of quantum statistical mechanics has led to a number

Boyer, Edmond

387

Generalization of Classical Statistical Mechanics to Quantum Mechanics and Stable Property of Condensed Matter  

E-print Network

Classical statistical average values are generally generalized to average values of quantum mechanics, it is discovered that quantum mechanics is direct generalization of classical statistical mechanics, and we generally deduce both a new general continuous eigenvalue equation and a general discrete eigenvalue equation in quantum mechanics, and discover that a eigenvalue of quantum mechanics is just an extreme value of an operator in possibility distribution, the eigenvalue f is just classical observable quantity. A general classical statistical uncertain relation is further given, the general classical statistical uncertain relation is generally generalized to quantum uncertainty principle, the two lost conditions in classical uncertain relation and quantum uncertainty principle, respectively, are found. We generally expound the relations among uncertainty principle, singularity and condensed matter stability, discover that quantum uncertainty principle prevents from the appearance of singularity of the electromagnetic potential between nucleus and electrons, and give the failure conditions of quantum uncertainty principle. Finally, we discover that the classical limit of quantum mechanics is classical statistical mechanics, the classical statistical mechanics may further be degenerated to classical mechanics, and we discover that only saying that the classical limit of quantum mechanics is classical mechanics is mistake. As application examples, we deduce both Shrodinger equation and state superposition principle, deduce that there exist decoherent factor from a general mathematical representation of state superposition principle, and the consistent difficulty between statistical interpretation of quantum mechanics and determinant property of classical mechanics is overcome.

Y. C. Huang; F. C. Ma; N. Zhang

2005-06-09

388

Surveying Instructors' Attitudes and Approaches to Teaching Quantum Mechanics  

NASA Astrophysics Data System (ADS)

Understanding instructors' attitudes and approaches to teaching quantum mechanics can be helpful in developing research-based learning tools. Here we discuss the findings from a survey in which 13 instructors reflected on issues related to quantum mechanics teaching. Topics included opinions about the goals of a quantum mechanics course, general challenges in teaching the subject, students' preparation for the course, comparison between their own learning of quantum mechanics vs. how they teach it and the extent to which contemporary topics are incorporated into the syllabus.

Siddiqui, Shabnam; Singh, Chandralekha

2010-10-01

389

Surveying Instructorsâ Attitudes and Approaches to Teaching Quantum Mechanics  

NSDL National Science Digital Library

Understanding instructorsâ attitudes and approaches to teaching quantum mechanics can be helpful in developing research-based learning tools. Here we discuss the findings from a survey in which 13 instructors reflected on issues related to quantum mechanics teaching. Topics included opinions about the goals of a quantum mechanics course, general challenges in teaching the subject, studentsâ preparation for the course, comparison between their own learning of quantum mechanics vs. how they teach it and the extent to which contemporary topics are incorporated into the syllabus.

Siddiqui, Shabnam; Singh, Chandralekha

2010-12-31

390

Fundamental phenomena of quantum mechanics explored with neutron interferometers  

E-print Network

Ongoing fascination with quantum mechanics keeps driving the development of the wide field of quantum-optics, including its neutron-optics branch. Application of neutron-optical methods and, especially, neutron interferometry and polarimetry has a long-standing tradition for experimental investigations of fundamental quantum phenomena. We give an overview of related experimental efforts made in recent years.

J. Klepp; S. Sponar; Y. Hasegawa

2014-07-09

391

On The Relation of Weyl Geometry and Bohmian Quantum Mechanics  

E-print Network

It is shown that the recently geometric formulation of quantum mechanics implies the use of Weyl geometry. It is discussed that the natural framework for both gravity and quantum is Weyl geometry. At the end a Weyl invariant theory is built, and it is shown that both gravity and quantum are present at the level of equations of motion.

Fatimah Shojai; Ali Shojai

2003-06-22

392

Quantum Mechanics with Basic Field Theory  

NASA Astrophysics Data System (ADS)

Preface; 1. Basic formalism; 2. Fundamental commutator and time evolution of state vectors and operators; 3. Dynamical equations; 4. Free particles; 5. Particles with spin 1/2; 6. Gauge invariance, angular momentum and spin; 7. Stern-Gerlach experiments; 8. Some exactly solvable bound state problems; 9. Harmonic oscillator; 10. Coherent states; 11. Two-dimensional isotropic harmonic oscillator; 12. Landau levels and quantum Hall effect; 13. Two-level problems; 14. Spin 1/2 systems in the presence of magnetic field; 15. Oscillation and regeneration in neutrino and neutral K-mesons as two-level systems; 16. Time-independent perturbation for bound states; 17. Time-dependent perturbation; 18. Interaction of charged particles and radiation in perturbation theory; 19. Scattering in one dimension; 20. Scattering in three dimensions - a formal theory; 21. Partial wave amplitudes and phase shifts; 22. Analytic structure of the S-matrix; 23. Poles of the Green's function and composite systems; 24. Approximation methods for bound states and scattering; 25. Lagrangian method and Feynman path integrals; 26. Rotations and angular momentum; 27. Symmetry in quantum mechanics and symmetry groups; 28. Addition of angular momenta; 29. Irreducible tensors and Wigner-Eckart theorem; 30. Entangled states; 31. Special theory of relativity: Klein Gordon and Maxwell's equation; 32. Klein Gordon and Maxwell's equation; 33. Dirac equation; 34. Dirac equation in the presence of spherically symmetric potentials; 35. Dirac equation in a relativistically invariant form; 36. Interaction of Dirac particle with electromagnetic field; 37. Multiparticle systems and second quantization; 38. Interactions of electrons and phonons in condensed matter; 39. Superconductivity; 40. Bose Einstein condensation and superfluidity; 41. Lagrangian formulation of classical fields; 42. Spontaneous symmetry breaking; 43. Basic quantum electrodynamics and Feynman diagrams; 44. Radiative corrections; 45. Anomalous magnetic moment and Lamb shift; Appendix; References; Index.

Desai, Bipin R.

2009-12-01

393

Fragment quantum mechanical calculation of proteins and its applications.  

PubMed

Conspectus The desire to study molecular systems that are much larger than what the current state-of-the-art ab initio or density functional theory methods could handle has naturally led to the development of novel approximate methods, including semiempirical approaches, reduced-scaling methods, and fragmentation methods. The major computational limitation of ab initio methods is the scaling problem, because the cost of ab initio calculation scales nth power or worse with system size. In the past decade, the fragmentation approach based on chemical locality has opened a new door for developing linear-scaling quantum mechanical (QM) methods for large systems and for applications to large molecular systems such as biomolecules. The fragmentation approach is highly attractive from a computational standpoint. First, the ab initio calculation of individual fragments can be conducted almost independently, which makes it suitable for massively parallel computations. Second, the electron properties, such as density and energy, are typically combined in a linear fashion to reproduce those for the entire molecular system, which makes the overall computation scale linearly with the size of the system. In this Account, two fragmentation methods and their applications to macromolecules are described. They are the electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) method and the automated fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) approach. The EE-GMFCC method is developed from the MFCC approach, which was initially used to obtain accurate protein-ligand QM interaction energies. The main idea of the MFCC approach is that a pair of conjugate caps (concaps) is inserted at the location where the subsystem is divided by cutting the chemical bond. In addition, the pair of concaps is fused to form molecular species such that the overcounted effect from added concaps can be properly removed. By introducing the electrostatic embedding field in each fragment calculation and two-body interaction energy correction on top of the MFCC approach, the EE-GMFCC method is capable of accurately reproducing the QM molecular properties (such as the dipole moment, electron density, and electrostatic potential), the total energy, and the electrostatic solvation energy from full system calculations for proteins. On the other hand, the AF-QM/MM method was used for the efficient QM calculation of protein nuclear magnetic resonance (NMR) parameters, including the chemical shift, chemical shift anisotropy tensor, and spin-spin coupling constant. In the AF-QM/MM approach, each amino acid and all the residues in its vicinity are automatically assigned as the QM region through a distance cutoff for each residue-centric QM/MM calculation. Local chemical properties of the central residue can be obtained from individual QM/MM calculations. The AF-QM/MM approach precisely reproduces the NMR chemical shifts of proteins in the gas phase from full system QM calculations. Furthermore, via the incorporation of implicit and explicit solvent models, the protein NMR chemical shifts calculated by the AF-QM/MM method are in excellent agreement with experimental values. The applications of the AF-QM/MM method may also be extended to more general biological systems such as DNA/RNA and protein-ligand complexes. PMID:24851673

He, Xiao; Zhu, Tong; Wang, Xianwei; Liu, Jinfeng; Zhang, John Z H

2014-09-16

394

Tampering detection system using quantum-mechanical systems  

DOEpatents

The use of quantum-mechanically entangled photons for monitoring the integrity of a physical border or a communication link is described. The no-cloning principle of quantum information science is used as protection against an intruder's ability to spoof a sensor receiver using a `classical` intercept-resend attack. Correlated measurement outcomes from polarization-entangled photons are used to protect against quantum intercept-resend attacks, i.e., attacks using quantum teleportation.

Humble, Travis S. (Knoxville, TN); Bennink, Ryan S. (Knoxville, TN); Grice, Warren P. (Oak Ridge, TN)

2011-12-13

395

Twist deformation of rotationally invariant quantum mechanics  

SciTech Connect

Noncommutative quantum mechanics in 3D is investigated in the framework of an abelian Drinfeld twist which deforms a given Hopf algebra structure. Composite operators (of coordinates and momenta) entering the Hamiltonian have to be reinterpreted as primitive elements of a dynamical Lie algebra which could be either finite (for the harmonic oscillator) or infinite (in the general case). The deformed brackets of the deformed angular momenta close the so(3) algebra. On the other hand, undeformed rotationally invariant operators can become, under deformation, anomalous (the anomaly vanishes when the deformation parameter goes to zero). The deformed operators, Taylor-expanded in the deformation parameter, can be selected to minimize the anomaly. We present the deformations (and their anomalies) of undeformed rotationally invariant operators corresponding to the harmonic oscillator (quadratic potential), the anharmonic oscillator (quartic potential), and the Coulomb potential.

Chakraborty, B. [S.N. Bose National Center for Basic Sciences, JD Block, Sector III, Salt-Lake, Kolkata-700098 (India); Kuznetsova, Z. [UFABC, Rua Catequese 242, Bairro Jardim, cep 09090-400, Santo Andre (Brazil); Toppan, F. [CBPF, Rua Dr. Xavier Sigaud 150, cep 22290-180, Rio de Janeiro (Brazil)

2010-11-15

396

On geometric aspects of topological quantum mechanics  

NASA Astrophysics Data System (ADS)

We construct a Chern-Simons gauge theory for dg Lie and L-infinity algebras on any one-dimensional manifold and quantize this theory using the Batalin-Vilkovisky formalism and Costello's renormalization techniques. Koszul duality and derived geometry allow us to encode topological quantum mechanics, a nonlinear sigma model of maps from a 1-manifold into a cotangent bundle T* X, as such a Chern-Simons theory. Our main result is that the partition function of this theory is naturally identified with the A genus of X. From the perspective of derived geometry, our quantization constructs a volume form on the derived loop space which can be identified with the A class.

Grady, Ryan E.

397

Quantum mechanical calculations to chemical accuracy  

NASA Technical Reports Server (NTRS)

The accuracy of current molecular-structure calculations is illustrated with examples of quantum mechanical solutions for chemical problems. Two approaches are considered: (1) the coupled-cluster singles and doubles (CCSD) with a perturbational estimate of the contribution of connected triple excitations, or CCDS(T); and (2) the multireference configuration-interaction (MRCI) approach to the correlation problem. The MRCI approach gains greater applicability by means of size-extensive modifications such as the averaged-coupled pair functional approach. The examples of solutions to chemical problems include those for C-H bond energies, the vibrational frequencies of O3, identifying the ground state of Al2 and Si2, and the Lewis-Rayleigh afterglow and the Hermann IR system of N2. Accurate molecular-wave functions can be derived from a combination of basis-set saturation studies and full configuration-interaction calculations.

Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

1991-01-01

398

Supersymmetric quantum mechanics and Painlevé equations  

NASA Astrophysics Data System (ADS)

In these lecture notes we shall study first the supersymmetric quantum mechanics (SUSY QM), specially when applied to the harmonic and radial oscillators. In addition, we will define the polynomial Heisenberg algebras (PHA), and we will study the general systems ruled by them: for zero and first order we obtain the harmonic and radial oscillators, respectively; for second and third order the potential is determined by solutions to Painlevé IV (PIV) and Painlevé V (PV) equations. Taking advantage of this connection, later on we will find solutions to PIV and PV equations expressed in terms of confluent hypergeometric functions. Furthermore, we will classify them into several solution hierarchies, according to the specific special functions they are connected with.

Bermudez, David; Fernández C., David J.

2014-01-01

399

A causal net approach to relativistic quantum mechanics  

NASA Astrophysics Data System (ADS)

In this paper we discuss a causal network approach to describing relativistic quantum mechanics. Each vertex on the causal net represents a possible point event or particle observation. By constructing the simplest causal net based on Reichenbach-like conjunctive forks in proper time we can exactly derive the 1+1 dimension Dirac equation for a relativistic fermion and correctly model quantum mechanical statistics. Symmetries of the net provide various quantum mechanical effects such as quantum uncertainty and wavefunction, phase, spin, negative energy states and the effect of a potential. The causal net can be embedded in 3+1 dimensions and is consistent with the conventional Dirac equation. In the low velocity limit the causal net approximates to the Schrodinger equation and Pauli equation for an electromagnetic field. Extending to different momentum states the net is compatible with the Feynman path integral approach to quantum mechanics that allows calculation of well known quantum phenomena such as diffraction.

Bateson, R. D.

2012-05-01

400

A Causal Net Approach to Relativistic Quantum Mechanics  

E-print Network

In this paper we discuss a causal network approach to describing relativistic quantum mechanics. Each vertex on the causal net represents a possible point event or particle observation. By constructing the simplest causal net based on Reichenbach-like conjunctive forks in proper time we can exactly derive the 1+1 dimension Dirac equation for a relativistic fermion and correctly model quantum mechanical statistics. Symmetries of the net provide various quantum mechanical effects such as quantum uncertainty and wavefunction, phase, spin, negative energy states and the effect of a potential. The causal net can be embedded in 3+1 dimensions and is consistent with the conventional Dirac equation. In the low velocity limit the causal net approximates to the Schrodinger equation and Pauli equation for an electromagnetic field. Extending to different momentum states the net is compatible with the Feynman path integral approach to quantum mechanics that allows calculation of well known quantum phenomena such as diffraction.

R. D. Bateson

2010-07-14

401

Quantum mechanics, matter waves, and moving clocks  

E-print Network

This paper is divided into three parts. In the first (section 1), we demonstrate that all of quantum mechanics can be derived from the fundamental property that the propagation of a matter wave packet is described by the same gravitational and kinematic time dilation that applies to a clock. We will do so in several steps, first deriving the Schroedinger equation for a nonrelativistic particle without spin in a weak gravitational potential, and eventually the Dirac equation in curved space-time describing the propagation of a relativistic particle with spin in strong gravity. In the second part (sections 2-4), we present interesting consequences of the above quantum mechanics: that it is possible to use wave packets as a reference for a clock, to test general relativity, and to realize a mass standard based on a proposed redefinition of the international system of units, wherein the Planck constant would be assigned a fixed value. The clock achieved an absolute accuracy of 4 parts per billion (ppb). The experiment yields the fine structure constant $\\alpha = 7.297\\,352\\,589(15) \\times 10^{-3}$ with 2.0 ppb accuracy. We present improvements that have reduced the leading systematic error about 8-fold and improved the statistical uncertainty to 0.33 ppb in 6 hours of integration time, referred to $\\alpha$. In the third part (sections 5-7), we present possible future experiments with atom interferometry: A gravitational Aharonov-Bohm experiment and its application as a measurement of Newton's gravitational constant, antimatter interferometry, interferometry with charged particles, and interferometry in space. We will give a review of previously published material when appropriate, but will focus on new aspects that haven't been published before.

Holger Mueller

2013-12-23

402

Physlets and Open Source Physics for Quantum Mechanics: Visualizing Quantum-mechanical Revivals  

NSDL National Science Digital Library

In this paper we describe our five-year effort to create interactive curricular material for upper-level quantum mechanics courses. This material uses both Physlets and newly created Open Source Physics applets and applications to make the teaching of quantum mechanics visual and interactive. These exercises and tools address both quantitative and conceptual difficulties experienced by many students. Because the materials are Web based, they are extremely flexible and are appropriate for use with various pedagogies, such as the Just-in-Time Teaching technique. We briefly outline the features of Physlets and Open Source Physics programs and then describe our suite of Java programs that solve and visualize the problem of a wave packet in an infinite square well. The materials described in this paper can be found on the Open Source Physics Web site and on the MERLOT and ComPADRE digital libraries.

Belloni, Mario; Christian, Wolfgang

2011-02-01

403

The relation between quantum mechanics and higher brain functions: Lessons from quantum computation and  

E-print Network

of QM (the best we can make in non-relativistic atomic physics and quantum computation (Mermin 20031 The relation between quantum mechanics and higher brain functions: Lessons from quantum computation and neurobiology Christof Koch1,2 and Klaus Hepp1 April 2. 2007 1 Institute for Neuroinformatics

Koch, Christof

404

Algorithmic Information Theoretic Issues in Quantum Mechanics  

E-print Network

.1 The unpublished ideas of Sidney Coleman and Andrew Lesniewski210 6.2 Karl Svozil's invention of Quantum 248 6.6 Peter Gacs' quantum algorithmic entropy . . . . . . . . . . . . . 248 6.7 The algorithmic

405

Quantum mechanical reaction probabilities with a power series Green's function  

E-print Network

Quantum mechanical reaction probabilities with a power series Green's function Scott M. Auerbach for use in the calculation of quantum mechanical reaction probabilities. This is an iterative technique Green's function to the calculation of the cumulative reaction probability for the benchmark collinear H

Miller, William H.

406

Design and Validation of the Quantum Mechanics Conceptual Survey  

ERIC Educational Resources Information Center

The Quantum Mechanics Conceptual Survey (QMCS) is a 12-question survey of students' conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper, we describe the design and validation of the survey, a process that included…

McKagan, S. B.; Perkins, K. K.; Wieman, C. E.

2010-01-01

407

Students' Conceptual Difficulties in Quantum Mechanics: Potential Well Problems  

ERIC Educational Resources Information Center

In this study, students' conceptual difficulties about some basic concepts in quantum mechanics like one-dimensional potential well problems and probability density of tunneling particles were identified. For this aim, a multiple choice instrument named Quantum Mechanics Conceptual Test has been developed by one of the researchers of this study…

Ozcan, Ozgur; Didis, Nilufer; Tasar, Mehmet Fatih

2009-01-01

408

In Defense of a Heuristic Interpretation of Quantum Mechanics  

ERIC Educational Resources Information Center

Although the presentation of quantum mechanics found in traditional textbooks is intellectually well founded, it suffers from a number of deficiencies. Specifically introducing quantum mechanics as a solution to the arcane dilemma, the ultraviolet catastrophe, does little to impress a nonscientific audience of the tremendous paradigmatic shift…

Healy, Eamonn F.

2010-01-01

409

New Potentials for Old: The Darboux Transformation in Quantum Mechanics  

ERIC Educational Resources Information Center

The Darboux transformation in quantum mechanics is reviewed at a basic level. Examples of how this transformation leads to exactly solvable potentials related to the "particle in a box" and the harmonic oscillator are shown in detail. The connection between the Darboux transformation and some modern operator based approaches to quantum mechanics

Williams, Brian Wesley; Celius, Tevye C.

2008-01-01

410

Environment-Induced Decoherence in Noncommutative Quantum Mechanics  

E-print Network

We address the question of the appearence of ordinary quantum mechanics in the context of noncommutative quantum mechanics. We obtain the noncommutative extension of the Hu-Paz-Zhang master equation for a Brownian particle linearly coupled to a bath of harmonic oscillators. We consider the particular case of an Ohmic regime.

Joao Nuno Prata; Nuno Costa Dias

2006-12-02

411

Categorization of Quantum Mechanics Problems by Professors and Students  

ERIC Educational Resources Information Center

We discuss the categorization of 20 quantum mechanics problems by physics professors and undergraduate students from two honours-level quantum mechanics courses. Professors and students were asked to categorize the problems based upon similarity of solution. We also had individual discussions with professors who categorized the problems. Faculty…

Lin, Shih-Yin; Singh, Chandralekha

2010-01-01

412

Interactive Quantum Mechanics Exercises for Just-in-Time Teaching  

NSDL National Science Digital Library

This is a collection of online curricular material for a one-semester quantum mechanics course. It consists of interactive Java applets, Physlets, for interactive out-of-class exercises. These applets stress the visualization of quantum mechanical concepts for better student understanding. There are also illustrations suitable for both in-class and out-of-class use.

Belloni, Mario; Cain, Laurence; Christian, Wolfgang

2004-04-04

413

Quaternionic quantum mechanics allows non-local boxes  

E-print Network

We consider non-local properties of quanternionic quantum mechanics, in which the complex numbers are replaced by the quaternions as the underlying algebra. Specifically, we show that it is possible to construct a non-local box. This allows one to rule out quaternionic quantum mechanics using assumptions about communication complexity or information causality.

Matthew McKague

2009-11-09

414

Quantum Mechanical Determination of Rotational Energy Transfer Cross Sections  

Microsoft Academic Search

Studies of the quantum mechanical determination of rotationally inelastic molecular collision rates are reported. A unified derivation of the coupled equations of scattering is given for four different quantum mechanical approximations. A new method for integrating the resulting coupled equations is studied and tested on a realistic potential surface. This method differs from conventional methods by not requiring the construction

William Shepherd Borer

1991-01-01

415

Course Information Course: Quantum Mechanics III (Physics 918)  

E-print Network

1: Lecture notes from the instructor Text for Part 2: J.J. Sakurai, Advanced Quantum Mechanics of the quantum-mechanical perturbation theory and classical electrodynamics. For updating/ refreshing your (instructor's lecture notes), but not allowed to use any other notes. QUIZZES (in-class): 9/14, 10/3, 11/2, 11

Farritor, Shane

416

The bridge between classical and quantum mechanics from Fisher information  

E-print Network

Fisher information measures a disorder system, which is specified by a corresponding probability, the likelihood. In this article, we provide a bridge to connect classical and quantum mechanics by using Fisher information. Following the principle of minimum Fisher information, we describe the mechanism of quantum world from the Hamilton-Jacobi equation.

Tzu-Chao Hung

2014-07-31

417

Comparison of Quantum Mechanics and Molecular Mechanics Dimerization Energy Landscapes for Pairs of Ring-Containing Amino Acids in Proteins  

E-print Network

Comparison of Quantum Mechanics and Molecular Mechanics Dimerization Energy Landscapes for Pairs interactions. We also find a reasonable degree of correlation between the molecular mechanics energy landscapes, quantum mechanical calculations on small molecule models, and molecular mechanics potential decomposition

Morozov, Alexandre V.

418

Depicting qudit quantum mechanics and mutually unbiased qudit theories  

E-print Network

We generalize the ZX calculus to quantum systems of dimension higher than two. The resulting calculus is sound and universal for quantum mechanics. We define the notion of a mutually unbiased qudit theory and study two particular instances of these theories in detail: qudit stabilizer quantum mechanics and Spekkens-Schreiber toy theory for dits. The calculus allows us to analyze the structure of qudit stabilizer quantum mechanics and provides a geometrical picture of qudit stabilizer theory using D-toruses, which generalizes the Bloch sphere picture for qubit stabilizer quantum mechanics. We also use our framework to describe generalizations of Spekkens toy theory to higher dimensional systems. This gives a novel proof that qudit stabilizer quantum mechanics and Spekkens-Schreiber toy theory for dits are operationally equivalent in three dimensions. The qudit pictorial calculus is a useful tool to study quantum foundations, understand the relationship between qubit and qudit quantum mechanics, and provide a novel, high level description of quantum information protocols.

André Ranchin

2014-04-04

419

Cloning in nonlinear Hamiltonian quantum and hybrid mechanics  

NASA Astrophysics Data System (ADS)

The possibility of state cloning is analyzed in two types of generalizations of quantum mechanics with nonlinear evolution. It is first shown that nonlinear Hamiltonian quantum mechanics does not admit cloning without the cloning machine. It is then demonstrated that the addition of the cloning machine, treated as a quantum or as a classical system, makes cloning possible by nonlinear Hamiltonian evolution. However, a special type of quantum-classical theory, known as the mean-field Hamiltonian hybrid mechanics, does not admit cloning by natural evolution. The latter represents an example of a theory where it appears to be possible to communicate between two quantum systems at superluminal speed, but at the same time it is impossible to clone quantum pure states.

Arsenovi?, D.; Buri?, N.; Popovi?, D. B.; Radonji?, M.; Prvanovi?, S.

2014-10-01

420

Cloning in nonlinear Hamiltonian quantum and hybrid mechanics  

E-print Network

Possibility of state cloning is analyzed in two types of generalizations of quantum mechanics with nonlinear evolution. It is first shown that nonlinear Hamiltonian quantum mechanics does not admit cloning without the cloning machine. It is then demonstrated that the addition of the cloning machine, treated as a quantum or as a classical system, makes the cloning possible by nonlinear Hamiltonian evolution. However, a special type of quantum-classical theory, known as the mean-field Hamiltonian hybrid mechanics, does not admit cloning by natural evolution. The latter represents an example of a theory where it appears to be possible to communicate between two quantum systems at super-luminal speed, but at the same time it is impossible to clone quantum pure states.

D. Arsenovic; N. Buric; D. B. Popovic; M. Radonjic; S. Prvanovic

2014-11-17

421

The Born Rule in Quantum and Classical Mechanics  

E-print Network

Considerable effort has been devoted to deriving the Born rule (e.g. that $|\\psi(x)|^2 dx$ is the probability of finding a system, described by $\\psi$, between $x$ and $x + dx$) in quantum mechanics. Here we show that the Born rule is not solely quantum mechanical; rather, it arises naturally in the Hilbert space formulation of {\\it classical} mechanics as well. These results provide new insights into the nature of the Born rule, and impact on its understanding in the framework of quantum mechanics.

Paul Brumer; Jiangbin Gong

2006-04-24

422

Statistical Mechanics of Quantum-Classical Systems with Holonomic Constraints  

E-print Network

The statistical mechanics of quantum-classical systems with holonomic constraints is formulated rigorously by unifying the classical Dirac bracket and the quantum-classical bracket in matrix form. The resulting Dirac quantum-classical theory, which conserves the holonomic constraints exactly, is then used to formulate time evolution and statistical mechanics. The correct momentum-jump approximation for constrained system arises naturally from this formalism. Finally, in analogy with what was found in the classical case, it is shown that the rigorous linear response function of constrained quantum-classical systems contains non-trivial additional terms which are absent in the response of unconstrained systems.

Alessandro Sergi

2005-11-15

423

Quantum mechanical study of solvent effects in a prototype SN2 reaction in solution: Cl- attack on CH3Cl.  

PubMed

The nucleophilic attack of a chloride ion on methyl chloride is an important prototype SN2 reaction in organic chemistry that is known to be sensitive to the effects of the surrounding solvent. Herein, we develop a highly accurate Specific Reaction Parameter (SRP) model based on the Austin Model 1 Hamiltonian for chlorine to study the effects of solvation into an aqueous environment on the reaction mechanism. To accomplish this task, we apply high-level quantum mechanical calculations to study the reaction in the gas phase and combined quantum mechanical/molecular mechanical simulations with TIP3P and TIP4P-ew water models and the resulting free energy profiles are compared with those determined from simulations using other fast semi-empirical quantum models. Both gas phase and solution results with the SRP model agree very well with experiment and provide insight into the specific role of solvent on the reaction coordinate. Overall, the newly parameterized SRP Hamiltonian is able to reproduce both the gas phase and solution phase barriers, suggesting it is an accurate and robust model for simulations in the aqueous phase at greatly reduced computational cost relative to comparably accurate ab initio and density functional models. PMID:24511924

Kuechler, Erich R; York, Darrin M

2014-02-01

424

Quantum mechanical study of solvent effects in a prototype SN2 reaction in solution: Cl- attack on CH3Cl  

NASA Astrophysics Data System (ADS)

The nucleophilic attack of a chloride ion on methyl chloride is an important prototype SN2 reaction in organic chemistry that is known to be sensitive to the effects of the surrounding solvent. Herein, we develop a highly accurate Specific Reaction Parameter (SRP) model based on the Austin Model 1 Hamiltonian for chlorine to study the effects of solvation into an aqueous environment on the reaction mechanism. To accomplish this task, we apply high-level quantum mechanical calculations to study the reaction in the gas phase and combined quantum mechanical/molecular mechanical simulations with TIP3P and TIP4P-ew water models and the resulting free energy profiles are compared with those determined from simulations using other fast semi-empirical quantum models. Both gas phase and solution results with the SRP model agree very well with experiment and provide insight into the specific role of solvent on the reaction coordinate. Overall, the newly parameterized SRP Hamiltonian is able to reproduce both the gas phase and solution phase barriers, suggesting it is an accurate and robust model for simulations in the aqueous phase at greatly reduced computational cost relative to comparably accurate ab initio and density functional models.

Kuechler, Erich R.; York, Darrin M.

2014-02-01

425

Is Holographic Entropy and Gravity the result of Quantum Mechanics?  

E-print Network

In this paper we suggest a connection between quantum mechanics and Verlinde's recently proposed entropic force theory for the laws of Newton. We propose an entropy based on the quantum mechanical probability density distribution. With the assumption that the holographic principle holds we propose that our suggested quantum entropy generalizes the Bekenstein entropy used by Verlinde in his approach. Based on this assumption we suggest that Verlinde's entropic theory of gravity has a quantum mechanical origin. We establish a reformulation of the Newtonian potential for gravity based on this quantum mechanical entropy. We also discuss the notion of observation and the correspondence to classical physics. Finally we give a discussion, a number of open problems and some concluding remarks.

Joakim Munkhammar

2010-03-05

426

QUANTUM STATISTICAL MECHANICS OVER FUNCTION FIELDS CATERINA CONSANI AND MATILDE MARCOLLI  

E-print Network

QUANTUM STATISTICAL MECHANICS OVER FUNCTION FIELDS CATERINA CONSANI AND MATILDE MARCOLLI 1 interplay between quantum statistical mechanics and arithmetic. In the case of number fields, the symmetries]. Moreover, very recently Benoit Jacob constructed an interesting quantum statistical mechanical system

Marcolli, Matilde

427

Resources Students Use to Understand Quantum Mechanical Operators  

NSDL National Science Digital Library

The Paradigms team at Oregon State University has developed a quantum mechanics curriculum aimed at middle division students that begins with a strong emphasis on using operators, matrices and Dirac notation to describe quantum systems. The curriculum begins with spin systems, and this content ordering relies on students being able to understand quantum mechanical operators, eigenstates and quantum measurement without prior instruction on wave functions. We have analyzed classroom and an interview video to identify resources students use when considering these quantum ideas. Identification of such resources will inform introductory curricula that are prerequisite to the quantum Paradigms and inform the development of Paradigms materials that will guide students to use these resources productively.

Gire, Elizabeth; Manogue, Corinne A.

2008-11-04

428

Can you do quantum mechanics without Einstein?  

E-print Network

The present form of quantum mechanics is based on the Copenhagen school of interpretation. Einstein did not belong to the Copenhagen school, because he did not believe in probabilistic interpretation of fundamental physical laws. This is the reason why we are still debating whether there is a more deterministic theory. One cause of this separation between Einstein and the Copenhagen school could have been that the Copenhagen physicists thoroughly ignored Einstein's main concern: the principle of relativity. Paul A. M. Dirac was the first one to realize this problem. Indeed, from 1927 to 1963, Paul A. M. Dirac published at least four papers to study the problem of making the uncertainty relation consistent with Einstein's Lorentz covariance. It is interesting to combine those papers by Dirac to make the uncertainty relation consistent with relativity. It is shown that the mathematics of two coupled oscillators enables us to carry out this job. We are then led to the question of whether the concept of localized probability distribution is consistent with Lorentz covariance.

Y. S. Kim; Marilyn E. Noz

2006-09-17

429

Can you do quantum mechanics without Einstein?  

SciTech Connect

The present form of quantum mechanics is based on the Copenhagen school of interpretation. Einstein did not belong to the Copenhagen school, because he did not believe in probabilistic interpretation of fundamental physical laws. This is the reason why we are still debating whether there is a more deterministic theory. One cause of this separation between Einstein and the Copenhagen school could have been that the Copenhagen physicists thoroughly ignored Einstein's main concern: the principle of relativity. Paul A. M. Dirac was the first one to realize this problem. Indeed, from 1927 to 1963, Paul A. M. Dirac published at least four papers to study the problem of making the uncertainty relation consistent with Einstein's Lorentz covariance. It is interesting to combine those papers by Dirac to make the uncertainty relation consistent with relativity. It is shown that the mathematics of two coupled oscillators enables us to carry out this job. We are then led to the question of whether the concept of localized probability distribution is consistent with Lorentz covariance.

Kim, Y. S. [Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Noz, Marilyn E. [Department of Radiology, New York University, New York, New York 10016 (United States)

2007-02-21

430

Quantum Mechanical Studies of DNA and LNA  

PubMed Central

Quantum mechanical (QM) methodology has been employed to study the structure activity relations of DNA and locked nucleic acid (LNA). The QM calculations provide the basis for construction of molecular structure and electrostatic surface potentials from molecular orbitals. The topologies of the electrostatic potentials were compared among model oligonucleotides, and it was observed that small structural modifications induce global changes in the molecular structure and surface potentials. Since ligand structure and electrostatic potential complementarity with a receptor is a determinant for the bonding pattern between molecules, minor chemical modifications may have profound changes in the interaction profiles of oligonucleotides, possibly leading to changes in pharmacological properties. The QM modeling data can be used to understand earlier observations of antisense oligonucleotide properties, that is, the observation that small structural changes in oligonucleotide composition may lead to dramatic shifts in phenotypes. These observations should be taken into account in future oligonucleotide drug discovery, and by focusing more on non RNA target interactions it should be possible to utilize the exhibited property diversity of oligonucleotides to produce improved antisense drugs. PMID:24491259

Shim, Irene; Lindow, Morten; ?rum, Henrik

2014-01-01

431

BYU PHYS 731 Statistical Mechanics Chapter 7: Sethna Professor Manuel Berrondo Quantum Statistical Mechanics (equilibrium)  

E-print Network

BYU PHYS 731 Statistical Mechanics Chapter 7: Sethna Professor Manuel Berrondo Quantum Statistical #12;BYU PHYS 731 Statistical Mechanics Chapter 7: Sethna Professor Manuel Berrondo Quantum ensembles: = n pn |n n| density matrix 2 #12;BYU PHYS 731 Statistical Mechanics Chapter 7: Sethna Professor

Hart, Gus

432

Development and validation of an achievement test in introductory quantum mechanics: The Quantum Mechanics Visualization Instrument (QMVI)  

NASA Astrophysics Data System (ADS)

The purpose of this study was to construct a valid and reliable multiple-choice achievement test to assess students' understanding of core concepts of introductory quantum mechanics. Development of the Quantum Mechanics Visualization Instrument (QMVI) occurred across four successive semesters in 1999--2001. During this time 213 undergraduate and graduate students attending the Pennsylvania State University (PSU) at University Park and Arizona State University (ASU) participated in this development and validation study. Participating students were enrolled in four distinct groups of courses: Modern Physics, Undergraduate Quantum Mechanics, Graduate Quantum Mechanics, and Chemistry Quantum Mechanics. Expert panels of professors of physics experienced in teaching quantum mechanics courses and graduate students in physics and science education established the core content and assisted in the validating of successive versions of the 24-question QMVI. Instrument development was guided by procedures outlined in the Standards for Educational and Psychological Testing (AERA-APA-NCME, 1999). Data gathered in this study provided information used in the development of successive versions of the QMVI. Data gathered in the final phase of administration of the QMVI also provided evidence that the intended score interpretation of the QMVI achievement test is valid and reliable. A moderate positive correlation coefficient of 0.49 was observed between the students' QMVI scores and their confidence levels. Analyses of variance indicated that students' scores in Graduate Quantum Mechanics and Undergraduate Quantum Mechanics courses were significantly higher than the mean scores of students in Modern Physics and Chemistry Quantum Mechanics courses (p < 0.05). That finding is consistent with the additional understanding and experience that should be anticipated in graduate students and junior-senior level students over sophomore physics majors and majors in another field. The moderate positive correlation coefficient of 0.42 observed between students' QMVI scores and their final course grades was also consistent with expectations in a valid instrument. In addition, the Cronbach-alpha reliability coefficient of the QMVI was found to be 0.82. Limited findings were drawn on students' understanding of introductory quantum mechanics concepts. Data suggested that the construct of quantum mechanics understanding is most likely multidimensional and the Main Topic defined as "Quantum Mechanics Postulates" may be an especially important factor for students in acquiring a successful understanding of quantum mechanics.

Cataloglu, Erdat

433

The structure of supersymmetry in ${\\cal PT}$ symmetric quantum mechanics  

E-print Network

The structure of supersymmetry is analyzed systematically in ${\\cal PT}$ symmetric quantum mechanical theories. We give a detailed description of supersymmetric systems associated with one dimensional ${\\cal PT}$ symmetric quantum mechanical theories. We show that there is a richer structure present in these theories compared to the conventional theories associated with Hermitian Hamiltonians. We bring out various properties associated with these supersymmetric systems and generalize such quantum mechanical theories to higher dimensions as well as to the case of one dimensional shape invariant potentials.

D. Bazeia; Ashok Das; L. Greenwood; L. Losano

2008-11-06

434

A Novel Radiation to Test Foundations of Quantum Mechanics  

E-print Network

We point out that a new mechanism for radiation should exist if the Bohm theory of quantum mechanics is taken seriously. By traversing a quantum potential, an electron will necessarily be accelerated and radiate. For an illustration, we show that in the double-slit experiment this radiation yields a characteristic spectrum and a distinct pattern on the screen that is complementary to the pattern of the electrons. Experimentally, either the existence or the nonexistence of such a radiation would have important implications for the foundations of quantum mechanics.

Pisin Chen

2014-03-05

435

The Arrow of Time in Rigged Hilbert Space Quantum Mechanics  

E-print Network

Arno Bohm and Ilya Prigogine's Brussels-Austin Group have been working on the quantum mechanical arrow of time and irreversibility in rigged Hilbert space quantum mechanics. A crucial notion in Bohm's approach is the so-called preparation/registration arrow. An analysis of this arrow and its role in Bohm's theory of scattering is given. Similarly, the Brussels-Austin Group uses an excitation/de-excitation arrow for ordering events, which is also analyzed. The relationship between the two approaches is initially discussed focusing on their semi-group operators and time arrows. Finally a possible realist interpretation of the rigged Hilbert space formulation of quantum mechanics is considered.

Robert C. Bishop

2005-06-22

436

A review of the experimental tests of quantum mechanics  

SciTech Connect

In this paper a review of the experimental tests of quantum mechanics is presented. Tests of the wave-particle duality of matter for atoms, electrons, and neutrons are discussed. Also covered are applications of neutron interferometry to a variety of quantum mechanics tests. Tests of the topological nature of quantum mechanics (Aharonov-Bohm effect, Aharonov-Casher effect, Berry's phase, Aharonov-Anandan phase) are reviewed. Other topics reviewed include the experimental tests of the Bell inequality, nonlinear additions to the Schrodinger equation, the Pauli exclusion principle, the Zeno effect and the uniqueness of [dirac h].

Lamoreaux, S.K. (Washington Univ., Seattle, WA (United States). Dept. of Physics)

1992-10-30

437

"Mysticism" in Quantum Mechanics: The Forgotten Controversy  

ERIC Educational Resources Information Center

This paper argues that a European controversy over a "mystical" hypothesis, one assigning the mind a role to play at the material level of reality, shaped much of the debate over the interpretation of the quantum equations. It traces back the controversy to the past two decades, beginning in the late 1920s--birth of quantum theory--and concluding…

Marin, Juan Miguel

2009-01-01

438

Strange Bedfellows: Quantum Mechanics and Data Mining  

Microsoft Academic Search

Last year, in 2008, I gave a talk titled Quantum Calisthenics. This year I am going to tell you about how the work I described then has spun off into a most unlikely direction. What I am going to talk about is how one maps the problem of finding clusters in a given data set into a problem in quantum

Marvin Weinstein

2010-01-01

439

Is String Interactions the Origin of Quantum Mechanics?  

E-print Network

String theory developed by demanding consistency with quantum mechanics. In this paper we wish to reverse the reasoning. We pretend open string field theory is a fully consistent definition of the theory - it is at least a self consistent sector. Then we find in its structure that the rules of quantum mechanics emerge from the non-commutative nature of the basic string joining/splitting interactions, thus deriving rather than assuming the quantum commutation rules among the usual canonical quantum variables for all physical systems derivable from open string field theory. Morally we would apply such an argument to M-theory to cover all physics. If string or M-theory theory really underlies all physics, it seems that the door has been opened to an understanding of the origins of quantum mechanics.

Bars, Itzhak

2014-01-01

440

Is String Interaction the Origin of Quantum Mechanics?  

E-print Network

String theory developed by demanding consistency with quantum mechanics. In this paper we wish to reverse the reasoning. We pretend open string field theory is a fully consistent definition of the theory - it is at least a self consistent sector. Then we find in its structure that the rules of quantum mechanics emerge from the non-commutative nature of the basic string joining/splitting interactions, thus deriving rather than assuming the quantum commutation rules among the usual canonical quantum variables for all physical systems derivable from open string field theory. Morally we would apply such an argument to M-theory to cover all physics. If string or M-theory really underlies all physics, it seems that the door has been opened to an understanding of the origins of quantum mechanics.

Itzhak Bars; Dmitry Rychkov

2014-07-25

441

Quantum mechanics of Yano tensors: Dirac equation in curved spacetime  

Microsoft Academic Search

In spacetimes admitting Yano tensors, the classical theory of the spinning particle possesses enhanced worldline supersymmetry. Quantum mechanically generators of extra supersymmetries correspond to operators that in the classical limit commute with the Dirac operator and generate conserved quantities. We show that the result is preserved in the full quantum theory, that is, Yano symmetries are not anomalous. This was

Marco Cariglia

2004-01-01

442

Consistent histories and the interpretation of quantum mechanics  

Microsoft Academic Search

The usual formula for transition probabilities in nonrelativistic quantum mechanics is generalized to yield conditional probabilities for selected sequences of events at several different times, called “consistent histories,” through a criterion which ensures that, within limits which are explicitly defined within the formalism, classical rules for probabilities are satisfied. The interpretive scheme which results is applicable to closed (isolated) quantum

Robert B. Griffiths

1984-01-01

443

OSP Quantum Mechanics: Single Measurments of Spin States Worksheet  

NSDL National Science Digital Library

This set of tutorial worksheets, based on the OSP Quantum Mechanics Simulations, help students explore the measurement of quantum spins. The tutorial starts with an introduction of the physics of spins, and then presents the results of a single measurement on pure, mixed, and superposition states.

Belloni, Mario; Christian, Wolfgang

2010-01-11

444

On a commutative ring structure in quantum mechanics  

E-print Network

In this article, I propose a concept of the $p$-on which is modelled on the multi-photon absorptions in quantum optics. It provides a commutative ring structure in quantum mechanics. Using it, I will give an operator representation of the Riemann $\\zeta$ function.

Shigeki Matsutani

2009-10-10

445

NARST 1999: Research on Teaching and Learning Quantum Mechanics  

NSDL National Science Digital Library

This is a collection of nine papers from a session at the 1999 NARST conference on teaching and learning in quantum mechanics. Topics covered include conceptual understanding of students, computers and visualization, curriculum, and the relations between classical and quantum understanding.

2004-03-10

446

Infinite Divisibility in Euclidean Quantum Mechanics  

E-print Network

In simple -- but selected -- quantum systems, the probability distribution determined by the ground state wave function is infinitely divisible. Like all simple quantum systems, the Euclidean temporal extension leads to a system that involves a stochastic variable and which can be characterized by a probability distribution on continuous paths. The restriction of the latter distribution to sharp time expectations recovers the infinitely divisible behavior of the ground state probability distribution, and the question is raised whether or not the temporally extended probability distribution retains the property of being infinitely divisible. A similar question extended to a quantum field theory relates to whether or not such systems would have nontrivial scattering behavior.

John R. Klauder

2006-01-06

447

The Measure of Momentum in Quantum Mechanics  

NASA Astrophysics Data System (ADS)

The de Broglie relation p = h/? is often used in the heuristic deduction of the Schrödinger equation. Yet, this relation does not appear among the postulates of quantum theory. Actually, in most textbooks the physical definition of the quantum concept of momentum is often neglected. In this paper we show that the definition of momentum as derived quantity, operationally founded on the typical measurement of the so called "flight time", not only fits very well with the physical principles of the quantum theory, but can also help to avoid common ambiguities in the enunciation of Heisenberg's uncertainty principle.

Logiurato, Fabrizio; Tarsitani, Carlo

2006-06-01

448

Nonlinear Phenomenology from Quantum Mechanics: Soliton in a Lattice  

E-print Network

We study a soliton in an optical lattice holding bosonic atoms quantum mechanically using both an exact numerical solution and quantum Monte Carlo simulations. The computation of the state is combined with an explicit account of the measurements of the numbers of the atoms at the lattice sites. In particular, importance sampling in the quantum Monte Carlo method arguably produces faithful simulations of individual experiments. Even though the quantum state is invariant under lattice translations, an experiment may show a noisy version of the localized classical soliton.

Juha Javanainen; Uttam Shrestha

2009-03-29

449

Duality, Mechanical Wave Theory, New Quantum Operators and Nonlinear Equations in Quantum Theory  

E-print Network

Various dualities are summarized. Based on the universal wave-particle duality, along an opposite direction of the developed quantum mechanics, we use a method where the wave quantities frequency and wave length are replaced on various mechanical equations, and may be derive some new results. It is called the mechanical wave theory. From this we derive new operators which represent more physical quantities. Further, we propose some nonlinear equations and their solutions, which may be probably applied to quantum theory.

Yi-Fang Chang

2010-08-17

450

Quantum mechanics helps in learning for more intelligent robot  

E-print Network

A learning algorithm based on state superposition principle is presented. The physical implementation analysis and simulated experiment results show that quantum mechanics can give helps in learning for more intelligent robot.

Dao-Yi Dong; Chun-Lin Chen; Zong-Hai Chen; Chen-Bin Zhang

2005-06-18

451

Probabilistic Approach to Teaching the Principles of Quantum Mechanics  

ERIC Educational Resources Information Center

Approaches the representation of quantum mechanics through Hilbert space postulates. Demonstrates that if the representation is to be accurate, an evolution operator of the form of a Hamiltonian must be used. (CP)

Santos, Emilio

1976-01-01

452

Born series and unitarity in noncommutative quantum mechanics  

E-print Network

This paper is dedicated to present model independent results for noncommutative quantum mechanics. We determine sufficient conditions for the convergence of the Born series and, in the sequel, unitarity is proved in full generality.

F. S. Bemfica; H. O. Girotti

2008-02-11

453

A Simplified Quantum Mechanical Model of Diatomic Molecules  

ERIC Educational Resources Information Center

Introduces a simple one-dimensional model of a diatomic molecule that can explain all the essential features of a real two particle quantum mechanical system and gives quantitative results in fair agreement with those of a hydrogen molecule. (GA)

Nielsen, Lars Drud

1978-01-01

454

Quantum mechanics needs no consciousness (and the other way around)  

E-print Network

It has been suggested that consciousness plays an important role in quantum mechanics as it is necessary for the collapse of wave function during the measurement. Furthermore, this idea has spawned a symmetrical proposal: a possibility that quantum mechanics explains the emergence of consciousness in the brain. Here we formulated several predictions that follow from this hypothetical relationship and that can be empirically tested. Some of the experimental results that are already available suggest falsification of the first hypothesis. Thus, the suggested link between human consciousness and collapse of wave function does not seem viable. We discuss the constraints implied by the existing evidence on the role that the human observer may play for quantum mechanics and the role that quantum mechanics may play in the observer's consciousness.

Yu, Shan

2010-01-01

455

Quantum mechanics needs no consciousness (and the other way around)  

E-print Network

It has been suggested that consciousness plays an important role in quantum mechanics as it is necessary for the collapse of wave function during the measurement. Furthermore, this idea has spawned a symmetrical proposal: a possibility that quantum mechanics explains the emergence of consciousness in the brain. Here we formulated several predictions that follow from this hypothetical relationship and that can be empirically tested. Some of the experimental results that are already available suggest falsification of the first hypothesis. Thus, the suggested link between human consciousness and collapse of wave function does not seem viable. We discuss the constraints implied by the existing evidence on the role that the human observer may play for quantum mechanics and the role that quantum mechanics may play in the observer's consciousness.

Shan Yu; Danko Nikoli?

2010-09-13

456

A Low Temperature Expansion for Matrix Quantum Mechanics  

E-print Network

We analyze solutions to loop-truncated Schwinger-Dyson equations in massless N=2 and N=4 Wess-Zumino matrix quantum mechanics at finite temperature, where conventional perturbation theory breaks down due to IR divergences. We find a rather intricate low temperature expansion that involves fractional power scaling in the temperature, based on a consistent "soft collinear" approximation. We conjecture that at least in the N=4 matrix quantum mechanics, such scaling behavior holds to all perturbative orders in the 1/N expansion. We discuss some preliminary results in analyzing the gauged supersymmetric quantum mechanics using Schwinger-Dyson equations, and comment on the connection to metastable microstates of black holes in the holographic dual of BFSS matrix quantum mechanics.

Ying-Hsuan Lin; Shu-Heng Shao; Yifan Wang; Xi Yin

2013-04-05

457

24.111 Philosophy of Quantum Mechanics, Spring 2002  

E-print Network

Quantum mechanics is said to describe a world in which physical objects often lack "definite" properties, indeterminism creeps in at the point of "observation," ordinary logic does not apply, and distant events are perfectly ...

Hall, Edward J. (Edward Jonathon), 1966-

458

Quantum tic-tac-toe: A teaching metaphor for superposition in quantum mechanics  

NASA Astrophysics Data System (ADS)

Quantum tic-tac-toe was developed as a metaphor for the counterintuitive nature of superposition exhibited by quantum systems. It offers a way of introducing quantum physics without advanced mathematics, provides a conceptual foundation for understanding the meaning of quantum mechanics, and is fun to play. A single superposition rule is added to the child's game of classical tic-tac-toe. Each move consists of a pair of marks subscripted by the number of the move ("spooky" marks) that must be placed in different squares. When a measurement occurs, one spooky mark becomes real and the other disappears. Quantum tic-tac-toe illustrates a number of quantum principles including states, superposition, collapse, nonlocality, entanglement, the correspondence principle, interference, and decoherence. The game can be played on paper or on a white board. A Web-based version provides a refereed playing board to facilitate the mechanics of play, making it ideal for classrooms with a computer projector.

Goff, Allan

2006-11-01

459

Finite-dimensional quantum mechanics of a particle. II  

Microsoft Academic Search

The finite-dimensional quantum mechanics (FDQM) based on Weyl’s form of Heisenberg’s canonical commutation relations, developed\\u000a for the case of one-dimensional space, is extended to three-dimensional space. This FDQM is applicable to the physics of particles\\u000a confined to move within finite regions of space and is significantly different from the current quantum mechanics in the case\\u000a of atomic and subatomic particles

R. Jagannathan; T. S. Santhanam

1982-01-01

460

Geometrical description of algebraic structures: Applications to Quantum Mechanics  

E-print Network

Geometrization of physical theories have always played an important role in their analysis and development. In this contribution we discuss various aspects concerning the geometrization of physical theories: from classical mechanics to quantum mechanics. We will concentrate our attention into quantum theories and we will show how to use in a systematic way the transition from algebraic to geometrical structures to explore their geometry, mainly its Jordan-Lie structure.

José F. Cariñena; Alberto Ibort; Giuseppe Marmo; Giuseppe Morandi

2012-09-20

461

Michelson-Morley experiment within the quantum mechanics framework  

E-print Network

It is revisited the Michelson-Morley experiment within the quantum mechanics framework. One can define the wave function of photon in the whole space at a given moment of time. The phase difference between the source and receiver is a distance between the source and receiver at the time of reception hence it does not depend on the velocity of the frame. Then one can explain the null result of the Michelson-Morley experiment within the quantum mechanics framework.

D. L. Khokhlov

2008-04-17

462

Path integral in energy representation in quantum mechanics  

E-print Network

In this paper we develop the alternative path-integral approach to quantum mechanics. We present a resolvent of a Hamiltonian (which is Laplace transform of a evolution operator) in a form which has a sense of ``the sum over paths'' but it is much more better defined than the usual functional integral. We investigate this representation from various directions and compare such approach to quantum mechanics with the standard ones.

P. Putrov

2006-05-17

463

Multi-instantons in large N Matrix Quantum Mechanics  

E-print Network

We calculate the multi-instanton corrections to the ground state energy in large $N$ Matrix Quantum Mechanics. We find that they can be obtained, through a non-perturbative difference equation, from the multi-instanton series in conventional Quantum Mechanics, as determined by the exact WKB method. We test our results by verifying that the one-instanton correction controls the large order behavior of the $1/N$ expansion in the quartic potential and in the $c=1$ string.

Marcos Marino; Pavel Putrov

2009-11-16

464

OPERA data and The Equivalence Postulate of Quantum Mechanics  

E-print Network

An interpretation of the recent results reported by the OPERA collaboration is that neutrinos propagation in vacuum exceeds the speed of light. It has been further been suggested that this interpretation can be attributed to the variation of the particle speed arising from the Relativistic Quantum Hamilton Jacobi Equation. I show that this is in general not the case. I derive an expression for the quantum correction to the instantaneous relativistic velocity in the framework of the relativistic quantum Hamilton-Jacobi equation, which is derived from the equivalence postulate of quantum mechanics. While the quantum correction does indicate deviations from the classical energy--momentum relation, it does not necessarily lead to superluminal speeds. The quantum correction found herein has a non-trivial dependence on the energy and mass of the particle, as well as on distance travelled. I speculate on other possible observational consequences of the equivalence postulate approach.

Alon E. Faraggi

2011-10-09

465

On the hypothesis that quantum mechanism manifests classical mechanics: Numerical approach to the correspondence in search of quantum chaos  

SciTech Connect

Quantum manifestation of classical chaos has been one of the extensively studied subjects for more than a decade. Yet clear understanding of its nature still remains to be an open question partly due to the lack of a canonical definition of quantum chaos. The classical definition seems to be unsuitable in quantum mechanics partly because of the Heisenberg quantum uncertainty. In this regard, quantum chaos is somewhat misleading and needs to be clarified at the very fundamental level of physics. Since it is well known that quantum mechanics is more fundamental than classical mechanics, the quantum description of classically chaotic nature should be attainable in the limit of large quantum numbers. The focus of my research, therefore, lies on the correspondence principle for classically chaotic systems. The chaotic damped driven pendulum is mainly studied numerically using the split operator method that solves the time-dependent Schroedinger equation. For classically dissipative chaotic systems in which (multi)fractal strange attractors often emerge, several quantum dissipative mechanisms are also considered. For instance, Hoover`s and Kubo-Fox-Keizer`s approaches are studied with some computational analyses. But the notion of complex energy with non-Hermiticity is extensively applied. Moreover, the Wigner and Husimi distribution functions are examined with an equivalent classical distribution in phase-space, and dynamical properties of the wave packet in configuration and momentum spaces are also explored. The results indicate that quantum dynamics embraces classical dynamics although the classicalquantum correspondence fails to be observed in the classically chaotic regime. Even in the semi-classical limits, classically chaotic phenomena would eventually be suppressed by the quantum uncertainty.

Lee, Sang-Bong

1993-09-01

466

Quantum mechanics as a space-time theory  

E-print Network

We show how quantum mechanics can be understood as a space-time theory provided that its spatial continuum is modelled by a variable real number (qrumber) continuum. Such a continuum can be constructed using only standard Hilbert space entities. The geometry of atoms and subatomic objects differs from that of classical objects. The systems that are non-local when measured in the classical space-time continuum may be localized in the quantum continuum. We compare this new description of space-time with the Bohmian picture of quantum mechanics.

J. Corbett; T. Durt

2005-12-23

467

Quantum network of superconducting qubits through opto-mechanical interface  

E-print Network

We propose a scheme to realize quantum networking of superconducting qubits based on the opto-mechanical interface. The superconducting qubits interact with the microwave photons, which then couple to the optical photons through the opto-mechanical interface. The interface generates a quantum link between superconducting qubits and optical flying qubits with tunable pulse shapes and carrier frequencies, enabling transmission of quantum information to other superconducting or atomic qubits. We show that the scheme works under realistic experimental conditions and it also provides a way for fast initialization of the superconducting qubits under $1$ K instead of $20$ mK operation temperature.

Zhang-qi Yin; W. L. Yang; L. Sun; L. M. Duan

2014-07-18

468

Bohmian Trajectories as the Foundation of Quantum Mechanics  

E-print Network

Bohmian trajectories have been used for various purposes, including the numerical simulation of the time-dependent Schroedinger equation and the visualization of time-dependent wave functions. We review the purpose they were invented for: to serve as the foundation of quantum mechanics, i.e., to explain quantum mechanics in terms of a theory that is free of paradoxes and allows an understanding that is as clear as that of classical mechanics. Indeed, they succeed in serving that purpose in the context of a theory known as Bohmian mechanics, to which this article is an introduction.

Sheldon Goldstein; Roderich Tumulka; Nino Zanghi

2009-12-14

469

Is quantum mechanics based on an invariance principle?  

E-print Network

Non-relativistic quantum mechanics for a free particle is shown to emerge from classical mechanics through an invariance principle under transformations that preserve the Heisenberg position-momentum inequality. These transformations are induced by isotropic space dilations. This invariance imposes a change in the laws of classical mechanics that exactly corresponds to the transition to quantum mechanics. The Schroedinger equation appears jointly with a second nonlinear equation describing non-unitary processes. Unitary and non-unitary evolutions are exclusive and appear sequentially in time. The non-unitary equation admits solutions that seem to correspond to the collapse of the wave function.

Leon Brenig

2006-10-27

470

Contexts, Systems and Modalities: a new ontology for quantum mechanics  

E-print Network

The purpose of this article is to present standard quantum mechanics from an ontological point of view called physical realism: it states that the goal of physics is to study entities of the natural world, existing independently from any particular observer's perception, and obeying universal and intelligible rules. Though the compatibility of physical realism and quantum mechanics has been much debated, we claim here that both are perfectly compatible, provided that what is meant by physical properties is -- slightly but profoundly -- modified: contrary to the ordinary, classical ontology, physical properties must be attributed jointly to the system, and to the context in which it is embedded. This intrinsically bipartite nature of physical reality sheds new light on counter-intuitive features of quantum mechanics such as non-locality or the quantum-classical boundary.

Alexia Auffèves; Philippe Grangier

2014-09-07

471

Towards Quantifying Complexity with Quantum Mechanics  

E-print Network

While we have intuitive notions of structure and complexity, the formalization of this intuition is non-trivial. The statistical complexity is a popular candidate. It is based on the idea that the complexity of a process can be quantified by the complexity of its simplest mathematical model - the model that requires the least past information for optimal future prediction. Here we review how such models, known as $\\epsilon$-machines can be further simplified through quantum logic, and explore the resulting consequences for understanding complexity. In particular, we propose a new measure of complexity based on quantum $\\epsilon$-machines. We apply this to a simple system undergoing constant thermalization. The resulting quantum measure of complexity aligns more closely with our intuition of how complexity should behave.

Ryan Tan; Daniel R. Terno; Jayne Thompson; Vlatko Vedral; Mile Gu

2014-04-24

472

Multiple-event probability in general-relativistic quantum mechanics  

E-print Network

We discuss the definition of quantum probability in the context of "timeless" general--relativistic quantum mechanics. In particular, we study the probability of sequences of events, or multi-event probability. In conventional quantum mechanics this can be obtained by means of the ``wave function collapse" algorithm. We first point out certain difficulties of some natural definitions of multi-event probability, including the conditional probability widely considered in the literature. We then observe that multi-event probability can be reduced to single-event probability, by taking into account the quantum nature of the measuring apparatus. In fact, by exploiting the von-Neumann freedom of moving the quantum classical boundary, one can always trade a sequence of non-commuting quantum measurements at different times, with an ensemble of simultaneous commuting measurements on the joint system+apparatus system. This observation permits a formulation of quantum theory based only on single-event probability, where the results of the "wave function collapse" algorithm can nevertheless be recovered. The discussion bears also on the nature of the quantum collapse.

Frank Hellmann; Mauricio Mondragon; Alejandro Perez; Carlo Rovelli

2006-10-27

473

Deformation quantization: Quantum mechanics lives and works in phase space  

NASA Astrophysics Data System (ADS)

Wigner's 1932 quasi-probability Distribution Function in phase-space, his first paper in English, is a special (Weyl) representation of the density matrix. It has been useful in describing quantum flows in semiclassical limits; quantum optics; nuclear and physics; decoherence (eg, quantum computing); quantum chaos; "Welcher Weg" puzzles; molecular Talbot-Lau interferometry; atomic measurements. It is further of great importance in signal processing (time-frequency analysis). Nevertheless, a remarkable aspect of its internal logic, pioneered by H. Groenewold and J. Moyal, has only blossomed in the last quarter-century: It furnishes a third, alternate, formulation of Quantum Mechanics, independent of the conventional Hilbert Space (the gold medal), or Path Integral (the silver medal) formulations, and perhaps more intuitive, since it shares language with classical mechanics: one need not choose sides between coordinate or momentum space variables, since it is formulated simultaneously in terms of position and momentum. This bronze medal formulation is logically complete and self-standing, and accommodates the uncertainty principle in an unexpected manner, so that it offers unique insights into the classical limit of quantum theory. The observables in this formulation are cnumber functions in phase space instead of operators, with the same interpretation as their classical counterparts, only now composed together in novel algebraic ways using star products. One might then envision an imaginary world in which this formulation of quantum mechanics had preceded the conventional Hilbert-space formulation, and its own techniques and methods had arisen independently, perhaps out of generalizations of classical mechanics and statistical mechanics. A sampling of such intriguing techniques and methods has already been published in C. K. Zachos, Int Jou Mod Phys A17 297-316 (2002), and T. L. Curtright, D. B. Fairlie, and C. K. Zachos, A Concise Treatise on Quantum Mechanics in Phase Space, (Imperial Press & World Scientific, 2014).

Zachos, Cosmas K.

2014-09-01

474

Fault Models for Quantum Mechanical Switching Networks  

E-print Network

The difference between faults and errors is that, unlike faults, errors can be corrected using control codes. In classical test and verification one develops a test set separating a correct circuit from a circuit containing any considered fault. Classical faults are modelled at the logical level by fault models that act on classical states. The stuck fault model, thought of as a lead connected to a power rail or to a ground, is most typically considered. A classical test set complete for the stuck fault model propagates both binary basis states, 0 and 1, through all nodes in a network and is known to detect many physical faults. A classical test set complete for the stuck fault model allows all circuit nodes to be completely tested and verifies the function of many gates. It is natural to ask if one may adapt any of the known classical methods to test quantum circuits. Of course, classical fault models do not capture all the logical failures found in quantum circuits. The first obstacle faced when using methods from classical test is developing a set of realistic quantum-logical fault models. Developing fault models to abstract the test problem away from the device level motivated our study. Several results are established. First, we describe typical modes of failure present in the physical design of quantum circuits. From this we develop fault models for quantum binary circuits that enable testing at the logical level. The application of these fault models is shown by adapting the classical test set generation technique known as constructing a fault table to generate quantum test sets. A test set developed using this method is shown to detect each of the considered faults.