Biological applications of hybrid quantum mechanics/molecular mechanics calculation.
Kang, Jiyoung; Hagiwara, Yohsuke; Tateno, Masaru
2012-01-01
Since in most cases biological macromolecular systems including solvent water molecules are remarkably large, the computational costs of performing ab initio calculations for the entire structures are prohibitive. Accordingly, QM calculations that are jointed with MM calculations are crucial to evaluate the long-range electrostatic interactions, which significantly affect the electronic structures of biological macromolecules. A UNIX-shell-based interface program connecting the quantum mechanics (QMs) and molecular mechanics (MMs) calculation engines, GAMESS and AMBER, was developed in our lab. The system was applied to a metalloenzyme, azurin, and PU.1-DNA complex; thereby, the significance of the environmental effects on the electronic structures of the site of interest was elucidated. Subsequently, hybrid QM/MM molecular dynamics (MD) simulation using the calculation system was employed for investigation of mechanisms of hydrolysis (editing reaction) in leucyl-tRNA synthetase complexed with the misaminoacylated tRNA(Leu), and a novel mechanism of the enzymatic reaction was revealed. Thus, our interface program can play a critical role as a powerful tool for state-of-the-art sophisticated hybrid ab initio QM/MM MD simulations of large systems, such as biological macromolecules. PMID:22536015
NASA Astrophysics Data System (ADS)
Leong, Max Kangchien
A method of combined quantum mechanics/molecular mechanics has been developed to model larger organometallic and metallobiochemical systems where neither quantum mechanics nor molecular mechanics, applied separately, can solve the problem. An electronically transparent interface, which allows charge transfers between the quantum and classical fragments, is devised and realized by employing a special iterative procedure of double (intrafragment and interfragment) self-consistent calculations. The combined QM/MM scheme was successfully applied to model iron picket-fence porphyrin, vitamin B12, aquocobalamin, and vitamin B12 coenzyme molecules.
Schiffmann, Christoph; Sebastiani, Daniel
2011-05-10
We present an algorithmic extension of a numerical optimization scheme for analytic capping potentials for use in mixed quantum-classical (quantum mechanical/molecular mechanical, QM/MM) ab initio calculations. Our goal is to minimize bond-cleavage-induced perturbations in the electronic structure, measured by means of a suitable penalty functional. The optimization algorithm-a variant of the artificial bee colony (ABC) algorithm, which relies on swarm intelligence-couples deterministic (downhill gradient) and stochastic elements to avoid local minimum trapping. The ABC algorithm outperforms the conventional downhill gradient approach, if the penalty hypersurface exhibits wiggles that prevent a straight minimization pathway. We characterize the optimized capping potentials by computing NMR chemical shifts. This approach will increase the accuracy of QM/MM calculations of complex biomolecules. PMID:26610125
The Role of Gln61 in HRas GTP Hydrolysis: A Quantum Mechanics/Molecular Mechanics Study
Martín-García, Fernando; Mendieta-Moreno, Jesús Ignacio; López-Viñas, Eduardo; Gómez-Puertas, Paulino; Mendieta, Jesús
2012-01-01
Activation of the water molecule involved in GTP hydrolysis within the HRas?RasGAP system is analyzed using a tailored approach based on hybrid quantum mechanics/molecular mechanics (QM/MM) simulation. A new path emerges: transfer of a proton from the attacking water molecule to a second water molecule, then a different proton is transferred from this second water molecule to the GTP. Gln61 will stabilize the transient OH? and H3O+ molecules thus generated. This newly proposed mechanism was generated by using, for the first time to our knowledge, the entire HRas-RasGAP protein complex in a QM/MM simulation context. It also offers a rational explanation for previous experimental results regarding the decrease of GTPase rate found in the HRas Q61A mutant and the increase exhibited by the HRas Q61E mutant. PMID:22225809
A density-based adaptive quantum mechanical/molecular mechanical method.
Waller, Mark P; Kumbhar, Sadhana; Yang, Jack
2014-10-20
We present a density-based adaptive quantum mechanical/molecular mechanical (DBA-QM/MM) method, whereby molecules can switch layers from the QM to the MM region and vice versa. The adaptive partitioning of the molecular system ensures that the layer assignment can change during the optimization procedure, that is, on the fly. The switch from a QM molecule to a MM molecule is determined if there is an absence of noncovalent interactions to any atom of the QM core region. The presence/absence of noncovalent interactions is determined by analysis of the reduced density gradient. Therefore, the location of the QM/MM boundary is based on physical arguments, and this neatly removes some empiricism inherent in previous adaptive QM/MM partitioning schemes. The DBA-QM/MM method is validated by using a water-in-water setup and an explicitly solvated L-alanyl-L-alanine dipeptide. PMID:24954803
Quantum mechanics/molecular mechanics study of oxygen binding in hemocyanin.
Saito, Toru; Thiel, Walter
2014-05-15
We report a combined quantum mechanics/molecular mechanics (QM/MM) study on the mechanism of reversible dioxygen binding in the active site of hemocyanin (Hc). The QM region is treated by broken-symmetry density functional theory (DFT) with spin projection corrections. The X-ray structures of deoxygenated (deoxyHc) and oxygenated (oxyHc) hemocyanin are well reproduced by QM/MM geometry optimizations. The computed relative energies strongly depend on the chosen density functional. They are consistent with the available thermodynamic data for oxygen binding in hemocyanin and in synthetic model complexes when the BH&HLYP hybrid functional with 50% Hartree-Fock exchange is used. According to the QM(BH&HLYP)/MM results, the reaction proceeds stepwise with two sequential electron transfer (ET) processes in the triplet state followed by an intersystem crossing to the singlet product. The first ET step leads to a nonbridged superoxo CuB(II)-O2(•-) intermediate via a low-barrier transition state. The second ET step is even more facile and yields a side-on oxyHc complex with the characteristic Cu2O2 butterfly core, accompanied by triplet-singlet intersystem crossing. The computed barriers are very small so that the two ET processes are expected to very rapid and nearly simultaneous. PMID:24762083
Quantum Mechanics/Molecular Mechanics Modeling of Enzymatic Processes: Caveats and Breakthroughs.
Quesne, Matthew G; Borowski, Tomasz; de Visser, Sam P
2016-02-01
Nature has developed large groups of enzymatic catalysts with the aim to transfer substrates into useful products, which enables biosystems to perform all their natural functions. As such, all biochemical processes in our body (we drink, we eat, we breath, we sleep, etc.) are governed by enzymes. One of the problems associated with research on biocatalysts is that they react so fast that details of their reaction mechanisms cannot be obtained with experimental work. In recent years, major advances in computational hardware and software have been made and now large (bio)chemical systems can be studied using accurate computational techniques. One such technique is the quantum mechanics/molecular mechanics (QM/MM) technique, which has gained major momentum in recent years. Unfortunately, it is not a black-box method that is easily applied, but requires careful set-up procedures. In this work we give an overview on the technical difficulties and caveats of QM/MM and discuss work-protocols developed in our groups for running successful QM/MM calculations. PMID:26696271
Gherman, Benjamin F.; Lippard, Stephen J.; Friesner, Richard A.
2005-01-26
The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Using broken-symmetry unrestricted density functional theory quantum mechanical (QM) methods in concert with mixed quantum mechanics/molecular mechanics (QM/MM) methods, the hydroxylation of methane and substituted methanes by intermediate Q in methane monooxygenase hydroxylase (MMOH) has been quantitatively modeled. This protocol allows the protein environment to be included throughout the calculations and its effects (electrostatic, van der Waals, strain) upon the reaction to be accurately evaluated. With the current results, recent kinetic data for CH?X (X ) H, CH?, OH, CN, NO?) substrate hydroxylation in MMOH (Ambundo, E. A.; Friesner, R. A.; Lippard, S. J. J. Am. Chem. Soc. 2002, 124, 8770-8771) can be rationalized. Results for methane, which provide a quantitative test of the protocol, including a substantial kinetic isotope effect (KIE), are in reasonable agreement with experiment. Specific features of the interaction of each of the substrates with MMO are illuminated by the QM/MM modeling, and the resulting effects upon substrate binding are quantitatively incorporated into the calculations. The results as a whole point to the success of the QM/MM methodology and enhance our understanding of MMOH catalytic chemistry. We also identify systematic errors in the evaluation of the free energy of binding of the Michaelis complexes of the substrates, which most likely arise from inadequate sampling and/or the use of harmonic approximations to evaluate the entropy of the complex. More sophisticated sampling methods will be required to achieve greater accuracy in this aspect of the calculation.
Sproviero, Eduardo M; GascÃ³n, JosÃ© A; McEvoy, James P; Brudvig, Gary W; Batista, Victor S
2008-03-19
This paper investigates the mechanism of water splitting in photosystem II (PSII) as described by chemically sensible models of the oxygen-evolving complex (OEC) in the S0-S4 states. The reaction is the paradigm for engineering direct solar fuel production systems since it is driven by solar light and the catalyst involves inexpensive and abundant metals (calcium and manganese). Molecular models of the OEC Mn3CaO4Mn catalytic cluster are constructed by explicitly considering the perturbational influence of the surrounding protein environment according to state-of-the-art quantum mechanics/molecular mechanics (QM/MM) hybrid methods, in conjunction with the X-ray diffraction (XRD) structure of PSII from the cyanobacterium Thermosynechococcus elongatus. The resulting models are validated through direct comparisons with high-resolution extended X-ray absorption fine structure spectroscopic data. Structures of the S3, S4, and S0 states include an additional mu-oxo bridge between Mn(3) and Mn(4), not present in XRD structures, found to be essential for the deprotonation of substrate water molecules. The structures of reaction intermediates suggest a detailed mechanism of dioxygen evolution based on changes in oxidization and protonation states and structural rearrangements of the oxomanganese cluster and surrounding water molecules. The catalytic reaction is consistent with substrate water molecules coordinated as terminal ligands to Mn(4) and calcium and requires the formation of an oxyl radical by deprotonation of the substrate water molecule ligated to Mn(4) and the accumulation of four oxidizing equivalents. The oxyl radical is susceptible to nucleophilic attack by a substrate water molecule initially coordinated to calcium and activated by two basic species, including CP43-R357 and the mu-oxo bridge between Mn(3) and Mn(4). The reaction is concerted with water ligand exchange, swapping the activated water by a water molecule in the second coordination shell of calcium. PMID:18290643
Lonsdale, Richard; Hoyle, Simon; Grey, Daniel T; Ridder, Lars; Mulholland, Adrian J
2012-02-28
Soluble epoxide hydrolase (sEH) is an enzyme involved in drug metabolism that catalyzes the hydrolysis of epoxides to form their corresponding diols. sEH has a broad substrate range and shows high regio- and enantioselectivity for nucleophilic ring opening by Asp333. Epoxide hydrolases therefore have potential synthetic applications. We have used combined quantum mechanics/molecular mechanics (QM/MM) umbrella sampling molecular dynamics (MD) simulations (at the AM1/CHARMM22 level) and high-level ab initio (SCS-MP2) QM/MM calculations to analyze the reactions, and determinants of selectivity, for two substrates: trans-stilbene oxide (t-SO) and trans-diphenylpropene oxide (t-DPPO). The calculated free energy barriers from the QM/MM (AM1/CHARMM22) umbrella sampling MD simulations show a lower barrier for phenyl attack in t-DPPO, compared with that for benzylic attack, in agreement with experiment. Activation barriers in agreement with experimental rate constants are obtained only with the highest level of QM theory (SCS-MP2) used. Our results show that the selectivity of the ring-opening reaction is influenced by several factors, including proximity to the nucleophile, electronic stabilization of the transition state, and hydrogen bonding to two active site tyrosine residues. The protonation state of His523 during nucleophilic attack has also been investigated, and our results show that the protonated form is most consistent with experimental findings. The work presented here illustrates how determinants of selectivity can be identified from QM/MM simulations. These insights may also provide useful information for the design of novel catalysts for use in the synthesis of enantiopure compounds. PMID:22280021
Bayse, Craig A; Merz, Kenneth M
2014-08-01
Understanding the mechanism of prenyltransferases is important to the design of engineered proteins capable of synthesizing derivatives of naturally occurring therapeutic agents. CloQ is a Mg(2+)-independent aromatic prenyltransferase (APTase) that transfers a dimethylallyl group to 4-hydroxyphenylpyruvate in the biosynthetic pathway for clorobiocin. APTases consist of a common ABBA fold that defines a ?-barrel containing the reaction cavity. Positively charged basic residues line the inside of the ?-barrel of CloQ to activate the pyrophosphate leaving group to replace the function of the Mg(2+) cofactor in other APTases. Classical molecular dynamics simulations of CloQ, its E281G and F68S mutants, and the related NovQ were used to explore the binding of the 4-hydroxyphenylpyruvate (4HPP) and dimethylallyl diphosphate substrates in the reactive cavity and the role of various conserved residues. Hybrid quantum mechanics/molecular mechanics potential of mean force (PMF) calculations show that the effect of the replacement of the Mg(2+) cofactor with basic residues yields a similar activation barrier for prenylation to Mg(2+)-dependent APTases like NphB. The topology of the binding pocket for 4HPP is important for selective prenylation at the ortho position of the ring. Methylation at this position alters the conformation of the substrate for O-prenylation at the phenol group. Further, a two-dimensional PMF scan shows that a "reverse" prenylation product may be a possible target for protein engineering. PMID:25020142
Rosnik, Andreana M; Curutchet, Carles
2015-12-01
Over the past decade, both experimentalists and theorists have worked to develop methods to describe pigment-protein coupling in photosynthetic light-harvesting complexes in order to understand the molecular basis of quantum coherence effects observed in photosynthesis. Here we present an improved strategy based on the combination of quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations and excited-state calculations to predict the spectral density of electronic-vibrational coupling. We study the water-soluble chlorophyll-binding protein (WSCP) reconstituted with Chl a or Chl b pigments as the system of interest and compare our work with data obtained by Pieper and co-workers from differential fluorescence line-narrowing spectra ( Pieper et al. J. Phys. Chem. B 2011 , 115 ( 14 ), 4042 - 4052 ) . Our results demonstrate that the use of QM/MM MD simulations where the nuclear positions are still propagated at the classical level leads to a striking improvement of the predicted spectral densities in the middle- and high-frequency regions, where they nearly reach quantitative accuracy. This demonstrates that the so-called "geometry mismatch" problem related to the use of low-quality structures in QM calculations, not the quantum features of pigments high-frequency motions, causes the failure of previous studies relying on similar protocols. Thus, this work paves the way toward quantitative predictions of pigment-protein coupling and the comprehension of quantum coherence effects in photosynthesis. PMID:26610205
Nam, Kwangho; Gao, Jiali; York, Darrin M.
2009-01-01
The molecular mechanism of hairpin ribozyme catalysis is studied with molecular dynamics simulations using a combined quantum mechanical and molecular mechanical (QM/MM) potential with a recently developed semiempirical AM1/d-PhoT model for phosphoryl transfer reactions. Simulations are used to derive one- and two-dimensional potentials of mean force to examine specific reaction paths and assess the feasibility of proposed general acid and base mechanisms. Density-functional calculations of truncated active site models provide complementary insight to the simulation results. Key factors utilized by the hairpin ribozyme to enhance the rate of transphosphorylation are presented, and the roles of A38 and G8 as general acid and base catalysts are discussed. The computational results are consistent with available experimental data, provide support for a general acid/base mechanism played by functional groups on the nucleobases, and offer important insight into the ability of RNA to act as a catalyst without explicit participation by divalent metal ions. PMID:18345664
Lameira, Jeronimo; Alves, Cláudio Nahum; Moliner, Vicent; Martí, Sergio; Castillo, Raquel; Tuñón, Iñaki
2010-05-27
The enzyme O-glycoprotein 2-acetamino-2-deoxy-beta-d-glucopyranosidase (O-GlcNAcase) is responsible for the removal of N-acetylglucosamine moieties from 2-acetamido-2-deoxy-beta-D-glucopyranose (O-GlcNAc) residues of serine/threonine residues of modified proteins. We herein present results of hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations applied to the study of the interactions established between a bacterial Clostridium perfringens homologue (CpNagJ) and PUGNAc, a potent known inhibitor of this enzyme. Electrostatic binding free energy and energy term decomposition have been computed for the wild-type CpNagJ and several mutants: D297N, D298N, Y335F, N390A, N396A, D401A, and W490A. The theoretical results have been compared with recently experimental data based on crystallographic and mutation studies on the same system. Our results reveal that, first, there is a strong interaction between Asp401, Asp298, and Asp297 residues and the PUGNAc inhibitor; and, second, the electrostatic substrate binding free energy is higher in wild-type, N390A and W490A mutants than in D297N, D298N, Y335F, N396A, and D401A ones, in accordance with the experimental results. Finally, both our theoretical predictions and the experimental data are compatible with a substrate-assisted reaction mechanism, involving two conserved aspartate residues. PMID:20429600
Arafet, Kemel; Ferrer, Silvia; Moliner, Vicent
2015-06-01
Cruzain is a primary cysteine protease expressed by the protozoan parasite Trypanosoma cruzi during Chagas disease infection, and thus, the development of inhibitors of this protein is a promising target for designing an effective therapy against the disease. In this paper, the mechanism of inhibition of cruzain by two different irreversible peptidyl halomethyl ketones (PHK) inhibitors has been studied by means of hybrid quantum mechanics/molecular mechanics-molecular dynamics (MD) simulations to obtain a complete representation of the possible free energy reaction paths. These have been traced on free energy surfaces in terms of the potential of mean force computed at AM1d/MM and DFT/MM levels of theory. An analysis of the possible reaction mechanisms of the inhibition process has been performed showing that the nucleophilic attack of an active site cysteine, Cys25, on a carbon atom of the inhibitor and the cleavage of the halogen-carbon bond take place in a single step. PClK appears to be much more favorable than PFK from a kinetic point of view. This result would be in agreement with experimental studies in other papain-like enzymes. A deeper analysis of the results suggests that the origin of the differences between PClK and PFK can be the different stabilizing interactions established between the inhibitors and the residues of the active site of the protein. Any attempt to explore the viability of the inhibition process through a stepwise mechanism involving the formation of a thiohemiketal intermediate and a three-membered sulfonium intermediate has been unsuccessful. Nevertheless, a mechanism through a protonated thiohemiketal, with participation of His159 as a proton donor, appears to be feasible despite showing higher free energy barriers. Our results suggest that PClK can be used as a starting point to develop a proper inhibitor of cruzain. PMID:25965914
NASA Astrophysics Data System (ADS)
Philipp, Dean Michael
Methodology is discussed for mixed ab initio quantum mechanics/molecular mechanics modeling of systems where the quantum mechanics (QM) and molecular mechanics (MM) regions are within the same molecule. The ab initio QM calculations are at the restricted Hartree-Fock level using the pseudospectral method of the Jaguar program while the MM part is treated with the OPLS force fields implemented in the IMPACT program. The interface between the QM and MM regions, in particular, is elaborated upon, as it is dealt with by ``breaking'' bonds at the boundaries and using Boys-localized orbitals found from model molecules in place of the bonds. These orbitals are kept frozen during QM calculations. The mixed modeling presented here can be used for single point energy calculations and geometry optimizations. Results from tests of the method to find relative conformational energies and geometries of alanine tetrapeptides are presented along with comparisons to pure QM and pure MM calculations.
Yang, Seongeun; Cho, Minhaeng
2009-10-01
The vibrational absorption (IR) and vibrational circular dichroism (VCD) spectra of alanine dipeptide analog in water are directly calculated by Fourier transforming the time correlation functions of the electric and magnetic dipole moments, which are calculated using the dynamic partial charges and trajectory of the peptide generated from the quantum mechanical/molecular mechanical molecular dynamics simulations. The alanine dipeptide analog is treated at the Hartree-Fock level with 3-21G, 4-31G, 6-31G, and 6-31G(*) basis sets and the solvent H(2)O is modeled with the TIP3P water. The atomic partial charges are obtained from the Lowdin population analysis, which gives consistent IR spectral profiles irrespective of the basis sets used. The simulated VCD spectrum by a polyproline II(P(II))-dominant trajectory is compatible with the previous experimental results of the polyproline peptides, where the amide I and II VCD bands are negative couplets with a weak positive peak to the high frequency region. The sampling efficiency of the P(II) conformer is much lower than the other ones at all basis levels used. The simulated VCD spectrum of alpha-helix averaged over five trajectories has the reverse sign pattern compared to the P(II) spectrum and is found to be consistent with the previously observed spectral features of alpha-helical polypeptides. The sign patterns of the beta-strand VCD spectrum are qualitatively similar to the experimental spectra of beta-sheet rich proteins. The VCD spectra obtained from the trajectories containing several extended conformers such as beta and P(II) are not clearly distinguishable from the beta-strand-dominant spectra. It is interesting that the P(II) and the coil VCD spectra coincide in sign pattern and relative intensity for all amide modes. This demonstrates that the negative couplet structures of the amide I and II VCD spectra do not necessarily prove the dominance of either P(II) or coil conformation. We anticipate that the present method can be used to directly simulate the IR and VCD spectra of structurally heterogeneous biomolecules in condensed phases. PMID:19814574
Zeng Xiancheng; Hu Hao; Hu Xiangqian; Cohen, Aron J.; Yang Weitao
2008-03-28
Electron transfer (ET) reactions are one of the most important processes in chemistry and biology. Because of the quantum nature of the processes and the complicated roles of the solvent, theoretical study of ET processes is challenging. To simulate ET processes at the electronic level, we have developed an efficient density functional theory (DFT) quantum mechanical (QM)/molecular mechanical (MM) approach that uses the fractional number of electrons as the order parameter to calculate the redox free energy of ET reactions in solution. We applied this method to study the ET reactions of the aqueous metal complexes Fe(H{sub 2}O){sub 6}{sup 2+/3+} and Ru(H{sub 2}O){sub 6}{sup 2+/3+}. The calculated oxidation potentials, 5.82 eV for Fe(II/III) and 5.14 eV for Ru(II/III), agree well with the experimental data, 5.50 and 4.96 eV, for iron and ruthenium, respectively. Furthermore, we have constructed the diabatic free energy surfaces from histogram analysis based on the molecular dynamics trajectories. The resulting reorganization energy and the diabatic activation energy also show good agreement with experimental data. Our calculations show that using the fractional number of electrons (FNE) as the order parameter in the thermodynamic integration process leads to efficient sampling and validate the ab initio QM/MM approach in the calculation of redox free energies.
Link molecule method for quantum mechanical/molecular mechanical hybrid simulations
Nakamura, Yoshimichi . E-mail: NAKAMURA.Yoshimichi@nims.go.jp; Takahashi, Norihiko; Okamoto, Masakuni; Uda, Tsuyoshi; Ohno, Takahisa . E-mail: OHNO.Takahisa@nims.go.jp
2007-08-10
We present a new coupling method for hybrid simulations in which the system is partitioned into covalently linked quantum mechanical (QM) and molecular mechanical (MM) regions. Our method, called the 'link molecule method (LMM),' is substantially different from the link atom methods in that LMM is free from the delicate issue of how to remove the additional degrees of freedom with respect to the position of the virtual atoms linking the QM and the MM regions. The force acting on the atom at the regional boundary is obtained in a simple form based on the total energy conservation. The accuracy of LMM is demonstrated in detail using a system of silicon partitioned into the QM and the MM region at the (1 0 0) boundary plane. This condition has been difficult to simulate by conventional methods employing the link atoms because of the strong repulsion between the nearby link atoms.
Thellamurege, Nandun M.; Si, Dejun; Cui, Fengchao; Li, Hui
2014-05-07
A combined quantum mechanical/molecular mechanical/continuum (QM/MM/C) style second order Møller-Plesset perturbation theory (MP2) method that incorporates induced dipole polarizable force field and induced surface charge continuum solvation model is established. The Z-vector method is modified to include induced dipoles and induced surface charges to determine the MP2 response density matrix, which can be used to evaluate MP2 properties. In particular, analytic nuclear gradient is derived and implemented for this method. Using the Assisted Model Building with Energy Refinement induced dipole polarizable protein force field, the QM/MM/C style MP2 method is used to study the hydrogen bonding distances and strengths of the photoactive yellow protein chromopore in the wild type and the Glu46Gln mutant.
Ortega-Carrasco, Elisabeth; LledÃ³s, AgustÃ; MarÃ©chal, Jean-Didier
2014-01-01
In recent years, the design of artificial metalloenzymes obtained by the insertion of homogeneous catalysts into biological macromolecules has become a major field of research. These hybrids, and the corresponding X-ray structures of several of them, are offering opportunities to better understand the synergy between organometallic and biological subsystems. In this work, we investigate the resting state and activation process of a hybrid inspired by an oxidative haemoenzyme but presenting an unexpected reactivity and structural features. An extensive series of quantum mechanics/molecular mechanics calculations show that the resting state and the activation processes of the novel enzyme differ from naturally occurring haemoenzymes in terms of the electronic state of the metal, participation of the first coordination sphere of the metal and the dynamic process. This study presents novel insights into the sensitivity of the association between organometallic and biological partners and illustrates the molecular challenge that represents the design of efficient enzymes based on this strategy. PMID:24829279
2015-01-01
In combined quantum mechanical/molecular mechanical (QM/MM) free energy calculations, it is often advantageous to have a frozen geometry for the quantum mechanical (QM) region. For such multiple-environment single-system (MESS) cases, two schemes are proposed here for estimating the polarization energy: the first scheme, termed MESS-E, involves a Roothaan step extrapolation of the self-consistent field (SCF) energy; whereas the other scheme, termed MESS-H, employs a Newton–Raphson correction using an approximate inverse electronic Hessian of the QM region (which is constructed only once). Both schemes are extremely efficient, because the expensive Fock updates and SCF iterations in standard QM/MM calculations are completely avoided at each configuration. They produce reasonably accurate QM/MM polarization energies: MESS-E can predict the polarization energy within 0.25 kcal/mol in terms of the mean signed error for two of our test cases, solvated methanol and solvated ?-alanine, using the M06-2X or ?B97X-D functionals; MESS-H can reproduce the polarization energy within 0.2 kcal/mol for these two cases and for the oxyluciferin–luciferase complex, if the approximate inverse electronic Hessians are constructed with sufficient accuracy. PMID:25321186
Watanabe, Hiroshi C; Banno, Misa; Sakurai, Minoru
2016-03-01
Quantum effects in solute-solvent interactions, such as the many-body effect and the dipole-induced dipole, are known to be critical factors influencing the infrared spectra of species in the liquid phase. For accurate spectrum evaluation, the surrounding solvent molecules, in addition to the solute of interest, should be treated using a quantum mechanical method. However, conventional quantum mechanics/molecular mechanics (QM/MM) methods cannot handle free QM solvent molecules during molecular dynamics (MD) simulation because of the diffusion problem. To deal with this problem, we have previously proposed an adaptive QM/MM "size-consistent multipartitioning (SCMP) method". In the present study, as the first application of the SCMP method, we demonstrate the reproduction of the infrared spectrum of liquid-phase water, and evaluate the quantum effect in comparison with conventional QM/MM simulations. PMID:26898993
König, Gerhard; Mei, Ye; Pickard, Frank C; Simmonett, Andrew C; Miller, Benjamin T; Herbert, John M; Woodcock, H Lee; Brooks, Bernard R; Shao, Yihan
2016-01-12
A recently developed MESS-E-QM/MM method (multiple-environment single-system quantum mechanical molecular/mechanical calculations with a Roothaan-step extrapolation) is applied to the computation of hydration free energies for the blind SAMPL4 test set and for 12 small molecules. First, free energy simulations are performed with a classical molecular mechanics force field using fixed-geometry solute molecules and explicit TIP3P solvent, and then the non-Boltzmann-Bennett method is employed to compute the QM/MM correction (QM/MM-NBB) to the molecular mechanical hydration free energies. For the SAMPL4 set, MESS-E-QM/MM-NBB corrections to the hydration free energy can be obtained 2 or 3 orders of magnitude faster than fully converged QM/MM-NBB corrections, and, on average, the hydration free energies predicted with MESS-E-QM/MM-NBB fall within 0.10-0.20 kcal/mol of full-converged QM/MM-NBB results. Out of five density functionals (BLYP, B3LYP, PBE0, M06-2X, and ?B97X-D), the BLYP functional is found to be most compatible with the TIP3P solvent model and yields the most accurate hydration free energies against experimental values for solute molecules included in this study. PMID:26613419
NASA Astrophysics Data System (ADS)
Xu, Yulong; Zhang, Jingxue; Wang, Dunyou
2015-06-01
The CH3Cl + CN- reaction in water was studied using a multilevel quantum mechanics/molecular mechanics (MM) method with the multilevels, electrostatic potential, density functional theory (DFT) and coupled-cluster single double triple (CCSD(T)), for the solute region. The detailed, back-side attack SN2 reaction mechanism was mapped along the reaction pathway. The potentials of mean force were calculated under both the DFT and CCSD(T) levels for the reaction region. The CCSD(T)/MM level of theory presents a free energy activation barrier height at 20.3 kcal/mol, which agrees very well with the experiment value at 21.6 kcal/mol. The results show that the aqueous solution has a dominant role in shaping the potential of mean force. The solvation effect and the polarization effect together increase the activation barrier height by ˜11.4 kcal/mol: the solvation effect plays a major role by providing about 75% of the contribution, while polarization effect only contributes 25% to the activation barrier height. Our calculated potential of mean force under the CCSD(T)/MM also has a good agreement with the one estimated using data from previous gas-phase studies.
Biswas, P. K.; Gogonea, Valentin
2008-01-01
We present an ab initio polarizable representation of classical molecular mechanics (MM) atoms by employing an angular momentum-based expansion scheme of the point charges into partial wave orbitals. The charge density represented by these orbitals can be fully polarized, and for hybrid quantum-mechanical-molecular-mechanical (QM?MM) calculations, mutual polarization within the QM?MM Hamiltonian can be obtained. We present the mathematical formulation and the analytical expressions for the energy and forces pertaining to the method. We further develop a variational scheme to appropriately determine the expansion coefficients and then validate the method by considering polarizations of ions by the QM system employing the hybrid GROMACS-CPMD QM?MM program. Finally, we present a simpler prescription for adding isotropic polarizability to MM atoms in a QM?MM simulation. Employing this simpler scheme, we present QM?MM energy minimization results for the classic case of a water dimer and a hydrogen sulfide dimer. Also, we present single-point QM?MM results with and without the polarization to study the change in the ionization potential of tetrahydrobiopterin (BH4) in water and the change in the interaction energy of solvated BH4 (described by MM) with the P450 heme described by QM. The model can be employed for the development of an extensive classical polarizable force-field. PMID:19045177
Xu, Yulong; Zhang, Jingxue; Wang, Dunyou
2015-06-28
The CH3Cl + CN(-) reaction in water was studied using a multilevel quantum mechanics/molecular mechanics (MM) method with the multilevels, electrostatic potential, density functional theory (DFT) and coupled-cluster single double triple (CCSD(T)), for the solute region. The detailed, back-side attack SN2 reaction mechanism was mapped along the reaction pathway. The potentials of mean force were calculated under both the DFT and CCSD(T) levels for the reaction region. The CCSD(T)/MM level of theory presents a free energy activation barrier height at 20.3 kcal/mol, which agrees very well with the experiment value at 21.6 kcal/mol. The results show that the aqueous solution has a dominant role in shaping the potential of mean force. The solvation effect and the polarization effect together increase the activation barrier height by ?11.4 kcal/mol: the solvation effect plays a major role by providing about 75% of the contribution, while polarization effect only contributes 25% to the activation barrier height. Our calculated potential of mean force under the CCSD(T)/MM also has a good agreement with the one estimated using data from previous gas-phase studies. PMID:26133439
NASA Astrophysics Data System (ADS)
Jensen, Lasse; van Duijnen, Piet Th.
2005-08-01
In this work we have investigated the first hyperpolarizability of pNA in 1,4-dioxane solution using a quantum mechanics/molecular mechanics (QM/MM) model. The particular model adopted is the recently developed discrete solvent reaction field (DRF) model. The DRF model is a polarizable QM/MM model in which the QM part is treated using time-dependent density-functional theory and local-field effects are incorporated. This allows for direct computation of molecular effective properties which can be compared with experimental results. The solvation shift for the first hyperpolarizability is calculated to be 30% which is in good agreement with the experimental results. However, the calculated values, both in the gas phase and in solution, are by a factor of 2 larger than the experimental ones. This is in contrast to the calculation of the first hyperpolarizability for several small molecules in the gas phase where fair agreement is found with experimental. The inclusion of local-field effects in the calculations was found to be crucial and neglecting them led to results which are significantly larger. To test the DRF model the refractive index of liquid 1,4-dioxane was also calculated and found to be in good agreement with experiment.
Zeng Xiancheng; Hu Hao; Hu Xiangqian; Yang Weitao
2009-04-28
A quantum mechanical/molecular mechanical minimum free energy path (QM/MM-MFEP) method was developed to calculate the redox free energies of large systems in solution with greatly enhanced efficiency for conformation sampling. The QM/MM-MFEP method describes the thermodynamics of a system on the potential of mean force surface of the solute degrees of freedom. The molecular dynamics (MD) sampling is only carried out with the QM subsystem fixed. It thus avoids 'on-the-fly' QM calculations and thus overcomes the high computational cost in the direct QM/MM MD sampling. In the applications to two metal complexes in aqueous solution, the new QM/MM-MFEP method yielded redox free energies in good agreement with those calculated from the direct QM/MM MD method. Two larger biologically important redox molecules, lumichrome and riboflavin, were further investigated to demonstrate the efficiency of the method. The enhanced efficiency and uncompromised accuracy are especially significant for biochemical systems. The QM/MM-MFEP method thus provides an efficient approach to free energy simulation of complex electron transfer reactions.
NASA Astrophysics Data System (ADS)
Zeng, Xiancheng; Hu, Hao; Hu, Xiangqian; Yang, Weitao
2009-04-01
A quantum mechanical/molecular mechanical minimum free energy path (QM/MM-MFEP) method was developed to calculate the redox free energies of large systems in solution with greatly enhanced efficiency for conformation sampling. The QM/MM-MFEP method describes the thermodynamics of a system on the potential of mean force surface of the solute degrees of freedom. The molecular dynamics (MD) sampling is only carried out with the QM subsystem fixed. It thus avoids "on-the-fly" QM calculations and thus overcomes the high computational cost in the direct QM/MM MD sampling. In the applications to two metal complexes in aqueous solution, the new QM/MM-MFEP method yielded redox free energies in good agreement with those calculated from the direct QM/MM MD method. Two larger biologically important redox molecules, lumichrome and riboflavin, were further investigated to demonstrate the efficiency of the method. The enhanced efficiency and uncompromised accuracy are especially significant for biochemical systems. The QM/MM-MFEP method thus provides an efficient approach to free energy simulation of complex electron transfer reactions.
Lonsdale, Richard; Reetz, Manfred T
2015-11-25
Enoate reductases catalyze the reduction of activated C?C bonds with high enantioselectivity. The oxidative half-reaction, which involves the addition of a hydride and a proton to opposite faces of the C?C bond, has been studied for the first time by hybrid quantum mechanics/molecular mechanics (QM/MM). The reduction of 2-cyclohexen-1-one by YqjM from Bacillus subtilis was selected as the model system. Two-dimensional QM/MM (B3LYP-D/OPLS2005) reaction pathways suggest that the hydride and proton are added as distinct steps, with the former step preceding the latter. Furthermore, we present interesting insights into the reactivity of this enzyme, including the weak binding of the substrate in the active site, the role of the two active site histidine residues for polarization of the substrate C?O bond, structural details of the transition states to hydride and proton transfer, and the role of Tyr196 as proton donor. The information presented here will be useful for the future design of enantioselective YqjM mutants for other substrates. PMID:26521678
NASA Astrophysics Data System (ADS)
Jung, Jaewoon; Re, Suyong; Sugita, Yuji; Ten-no, Seiichiro
2013-01-01
The nudged elastic band (NEB) and string methods are widely used to obtain the reaction path of chemical reactions and phase transitions. In these methods, however, it is difficult to define an accurate Lagrangian to generate the conservative forces. On the other hand, the constrained optimization with locally updated planes (CO-LUP) scheme defines target function properly and suitable for micro-iteration optimizations in quantum mechanical/molecular mechanical (QM/MM) systems, which uses the efficient second order QM optimization. However, the method does have problems of inaccurate estimation of reactions and inappropriate accumulation of images around the energy minimum. We introduce three modifications into the CO-LUP scheme to overcome these problems: (1) An improved tangent estimation of the reaction path, which is used in the NEB method, (2) redistribution of images using an energy-weighted interpolation before updating local tangents, and (3) reduction of the number of constraints, in particular translation/rotation constraints, for improved convergence. First, we test the method on the isomerization of alanine dipeptide without QM/MM calculation, showing that the method is comparable to the string method both in accuracy and efficiency. Next, we apply the method for defining the reaction paths of the rearrangement reaction catalyzed by chorismate mutase (CM) and of the phosphoryl transfer reaction catalyzed by cAMP-dependent protein kinase (PKA) using generalized hybrid orbital QM/MM calculations. The reaction energy barrier of CM is in high agreement with the experimental value. The path of PKA reveals that the enzyme reaction is associative and there is a late transfer of the substrate proton to Asp 166, which is in agreement with the recently published result using the NEB method.
Samsonov, Sergey A; Theisgen, Stephan; Riemer, Thomas; Huster, Daniel; Pisabarro, M Teresa
2014-01-01
Glycosaminoglycans (GAGs) play an important role in many biological processes in the extracellular matrix. In a theoretical approach, structures of monosaccharide building blocks of natural GAGs and their sulfated derivatives were optimized by a B3LYP6311ppdd//B3LYP/6-31+G(d) method. The dependence of the observed conformational properties on the applied methodology is described. NMR chemical shifts and proton-proton spin-spin coupling constants were calculated using the GIAO approach and analyzed in terms of the method's accuracy and sensitivity towards the influence of sulfation, O1-methylation, conformations of sugar ring, and ? dihedral angle. The net sulfation of the monosaccharides was found to be correlated with the (1)H chemical shifts in the methyl group of the N-acetylated saccharides both theoretically and experimentally. The ? dihedral angle conformation populations of free monosaccharides and monosaccharide blocks within polymeric GAG molecules were calculated by a molecular dynamics approach using the GLYCAM06 force field and compared with the available NMR and quantum mechanical data. Qualitative trends for the impact of sulfation and ring conformation on the chemical shifts and proton-proton spin-spin coupling constants were obtained and discussed in terms of the potential and limitations of the computational methodology used to be complementary to NMR experiments and to assist in experimental data assignment. PMID:24804247
Caratzoulas, Stavros; Courtney, Timothy; Vlachos, Dionisios G.
2011-01-01
We use the conversion of protonated glycerol to acrolein for a case study of the mechanism of acid-catalyzed dehydration of polyols in aqueous environments. We employ hybrid Quamtum Mechanics/Molecular Mechanics Molecular Dynamics (QM/MM MD) simulations with biased sampling and perform free energy calculations for the elementary steps of the reaction. We investigate the effects of solvent dynamics and in particular the role of quantum mechanical water in the dehydration mechanism. We present results supporting a mechanism that proceeds via water-mediated proton transfers and thus through an enol intermediate. We find that the first dehydration may take place by two, low-energy pathways requiring, respectively, 20.9 and 18.8 kcal/mol of activation free energy. The second dehydration requires 19.9 kcal/mol of activation free energy while for the overall reaction we compute a free energy change of -8 kcal/mol.
Kanaan, Natalia; Crehuet, Ramon; Imhof, Petra
2015-09-24
Base excision of mismatched or damaged nucleotides catalyzed by glycosylase enzymes is the first step of the base excision repair system, a machinery preserving the integrity of DNA. Thymine DNA glycosylase recognizes and removes mismatched thymine by cleaving the C1'-N1 bond between the base and the sugar ring. Our quantum mechanical/molecular mechanical calculations of this reaction in human thymine DNA glycosylase reveal a requirement for a positive charge in the active site to facilitate C1'-N1 bond scission: protonation of His151 significantly lowers the free energy barrier for C1'-N1 bond dissociation compared to the situation with neutral His151. Shuttling a proton from His151 to the thymine base further reduces the activation free energy for glycosidic bond cleavage. Classical molecular dynamics simulations of the H151A mutant suggest that the mutation to the smaller, neutral, residue increases the water accessibility of the thymine base, rendering direct proton transfer from the bulk feasible. Quantum mechanical/molecular mechanical calculations of the glycosidic bond cleavage reaction in the H151A mutant show that the activation free energy is slightly lower than in the wild-type enzyme, explaining the experimentally observed higher reaction rates in this mutant. PMID:26320595
Friesner, Richard A.; Baik, Mu-Hyun; Gherman, Benjamin F.; Guallar, Victor; Wirstam, Maria E.; Murphy, Robert B.; Lippard, Stephen J.
2003-03-01
Over the past several years, rapid advances in computational hardware, quantum chemical methods, and mixed quantum mechanics/molecular mechanics (QM/MM) techniques have made it possible to model accurately the interaction of ligands with metal-containing proteins at an atomic level of detail. In this paper, we describe the application of our computational methodology, based on density functional (DFT) quantum chemical methods, to two diiron-containing proteins that interact with dioxygen: methane monooxygenase (MMO) and hemerythrin (Hr). Although the active sites are structurally related, the biological function differs substantially. MMO is an enzyme found in methanotrophic bacteria and hydroxylates aliphatic C-H bonds, whereas Hr is a carrier protein for dioxygen used by a number of marine invertebrates. Quantitative descriptions of the structures and energetics of key intermediates and transition states involved in the reaction with dioxygen are provided, allowing their mechanisms to be compared and contrasted in detail. An in-depth understanding of how the chemical identity of the first ligand coordination shell, structural features, electrostatic and van der Waals interactions of more distant shells control ligand binding and reactive chemistry is provided, affording a systematic analysis of how iron-containing proteins process dioxygen. Extensive contact with experiment is made in both systems, and a remarkable degree of accuracy and robustness of the calculations is obtained from both a qualitative and quantitative perspective.
NASA Astrophysics Data System (ADS)
Titmuss, Stephen J.; Cummins, Peter L.; Bliznyuk, Andrey A.; Rendell, Alistair P.; Gready, Jill E.
2000-03-01
Two theoretical methodologies - a combined quantum mechanical and molecular mechanical (QM/MM) model and a linear-scaling semiempirical SCF method (MOZYME) - were used to calculate energy profiles for an enzyme reaction path, that for hydride-ion transfer between 8-methylpterin and nicotinamide adenine dinucleotide phosphate (NADPH) in dihydrofolate reductase (DHFR). Profiles from the QM/MM model, which divides the system into QM and MM regions, were compared with those from MOZYME, which treats the entire ligand-protein complex quantum mechanically. If the coordinates of the MM region vary little, it is possible to define a QM/MM model for the DHFR reaction that gives energetics close to those from MOZYME. However, the QM/MM and MOZYME energies diverge when the MM geometry changes, largely due to the MM electrostatic energy. `Switching off' polarisation of the QM region by the MM region produced larger changes especially in the transition-state region. The results suggest caution should be used when generating reaction paths for QM/MM methods.
Xu, Dingguo; Guo, Hua
2009-01-01
Carboxypeptidase A is a zinc containing enzyme which cleaves the C-terminal residue in a polypeptide substrate. Despite much experimental work, there is still a significant controversy concerning its catalytic mechanism. In this study, the carboxypeptidase A catalyzed hydrolysis of the hippuryl-L-Phe molecule (kcat=17.7±0.7 s?1) is investigated using both density functional theory and a hybrid quantum mechanical/molecular mechanical approach. The enzymatic reaction was found to proceed via a promoted-water pathway with Glu270 serving as the general base and general acid. Free-energy calculations indicate that the first nucleophilic addition step is rate-limiting, with a barrier of 17.9 kcal/mol. Besides activating the zinc-bound water nucleophile, the zinc cofactor also serves as an electrophilic catalyst that stabilizes the substrate carbonyl oxygen during the formation of the tetrahedral intermediate. In the Michaelis complex, Arg127, rather than Zn(II), is responsible for the polarization of the substrate carbonyl and it also serves as the oxyanion hole. As a result, its mutation leads to a higher free-energy barrier, in agreement with experimental observations. PMID:19552427
Lameira, Jeronimo; Alves, Cláudio Nahum; Moliner, Vicent; Martí, Sergio; Kanaan, Natalia; Tuñón, Iñaki
2008-11-13
O-glycoprotein 2-acetamino-2-deoxy-beta- d-glucopyranosidase ( O-GlcNAcase) hydrolyzes 2-acetamido-2-deoxy-beta- d-glucopyranose ( O-GlcNAc) residues of serine/threonine residues of modified proteins. O-GlcNAc is present in many intracellular proteins and appears to have a role in the etiology of several diseases including cancer, Alzheimer's disease, and type II diabetes. In this work, we have carried out molecular dynamics simulations using a hybrid quantum mechanics/molecular mechanics approach to determine the binding of two potent inhibitors, PUGNAc and NAG, with a bacterial O-GlcNAcase. The results of these simulations show that Asp-401, Asp-298, and Asp-297 residues play an important role in the protein-inhibitor interactions. These results might be useful to design compounds with more interesting inhibitory activity on the basis of its three-dimensional structure. PMID:18939790
2015-01-01
The glmS ribozyme catalyzes a self-cleavage reaction at the phosphodiester bond between residues A-1 and G1. This reaction is thought to occur by an acid–base mechanism involving the glucosamine-6-phosphate cofactor and G40 residue. Herein quantum mechanical/molecular mechanical free energy simulations and pKa calculations, as well as experimental measurements of the rate constant for self-cleavage, are utilized to elucidate the mechanism, particularly the role of G40. Our calculations suggest that an external base deprotonates either G40(N1) or possibly A-1(O2?), which would be followed by proton transfer from G40(N1) to A-1(O2?). After this initial deprotonation, A-1(O2?) starts attacking the phosphate as a hydroxyl group, which is hydrogen-bonded to deprotonated G40, concurrent with G40(N1) moving closer to the hydroxyl group and directing the in-line attack. Proton transfer from A-1(O2?) to G40 is concomitant with attack of the scissile phosphate, followed by the remainder of the cleavage reaction. A mechanism in which an external base does not participate, but rather the proton transfers from A-1(O2?) to a nonbridging oxygen during nucleophilic attack, was also considered but deemed to be less likely due to its higher effective free energy barrier. The calculated rate constant for the favored mechanism is in agreement with the experimental rate constant measured at biological Mg2+ ion concentration. According to these calculations, catalysis is optimal when G40 has an elevated pKa rather than a pKa shifted toward neutrality, although a balance among the pKa’s of A-1, G40, and the nonbridging oxygen is essential. These results have general implications, as the hammerhead, hairpin, and twister ribozymes have guanines at a similar position as G40. PMID:25526516
Zhang, Sixue; Ganguly, Abir; Goyal, Puja; Bingaman, Jamie L; Bevilacqua, Philip C; Hammes-Schiffer, Sharon
2015-01-21
The glmS ribozyme catalyzes a self-cleavage reaction at the phosphodiester bond between residues A-1 and G1. This reaction is thought to occur by an acid-base mechanism involving the glucosamine-6-phosphate cofactor and G40 residue. Herein quantum mechanical/molecular mechanical free energy simulations and pKa calculations, as well as experimental measurements of the rate constant for self-cleavage, are utilized to elucidate the mechanism, particularly the role of G40. Our calculations suggest that an external base deprotonates either G40(N1) or possibly A-1(O2'), which would be followed by proton transfer from G40(N1) to A-1(O2'). After this initial deprotonation, A-1(O2') starts attacking the phosphate as a hydroxyl group, which is hydrogen-bonded to deprotonated G40, concurrent with G40(N1) moving closer to the hydroxyl group and directing the in-line attack. Proton transfer from A-1(O2') to G40 is concomitant with attack of the scissile phosphate, followed by the remainder of the cleavage reaction. A mechanism in which an external base does not participate, but rather the proton transfers from A-1(O2') to a nonbridging oxygen during nucleophilic attack, was also considered but deemed to be less likely due to its higher effective free energy barrier. The calculated rate constant for the favored mechanism is in agreement with the experimental rate constant measured at biological Mg(2+) ion concentration. According to these calculations, catalysis is optimal when G40 has an elevated pKa rather than a pKa shifted toward neutrality, although a balance among the pKa's of A-1, G40, and the nonbridging oxygen is essential. These results have general implications, as the hammerhead, hairpin, and twister ribozymes have guanines at a similar position as G40. PMID:25526516
Valiev, Marat; Yang, Jie; Adams, Joseph A; Taylor, Susan S; Weare, John H
2007-11-29
We present results of a theoretical analysis of the phosphorylation reaction in cAMP-dependent protein kinase using a combined quantum mechanical and molecular mechanics (QM/MM) approach. Detailed analysis of the reaction pathway is provided using a novel QM/MM implementation of the nudged elastic band method, finite temperature fluctuations of the protein environment are taken into account using free energy calculations, and an analysis of hydrogen bond interactions is performed on the basis of calculated frequency shifts. The late transfer of the substrate proton to the conserved aspartate (D166), the activation free energy of 15 kcal/mol, and the slight exothermic (-3 kcal/mol) character of the reaction are all consistent with the experimental data. The near attack conformation of D166 in the reactant state is maintained by interactions with threonine-201, asparagine-177, and most notably by a conserved water molecule serving as a strong structural link between the primary metal ion and the D166. The secondary Mg ion acts as a Lewis acid, attacking the beta-gamma bridging oxygen of ATP. This interaction, along with a strong hydrogen bond between the D166 and the substrate, contributes to the stabilization of the transition state. Lys-168 maintains a hydrogen bond to a transferring phosphoryl group throughout a reaction process. This interaction increases in the product state and contributes to its stabilization. PMID:17983217
Cisneros, G. Andrés; Perera, Lalith; García-Díaz, Miguel; Bebenek, Katarzyna; Kunkel, Thomas A.; Pedersen, Lee G.
2008-01-01
DNA polymerases play a crucial role in the cell cycle due to their involvement in genome replication and repair. Understanding the reaction mechanism by which these polymerases carry out their function can provide insights into these processes. Recently, the crystal structures of human DNA polymerase ? (Pol?) have been reported both for pre- and post- catalytic complexes (García-Díaz et al., DNA Repair, 3, 1333, 2007). Here we employ the pre-catalytic complex as a starting structure for the determination of the catalytic mechanism of Pol? using ab initio quantum mechanical/molecular mechanical methods. The reaction path has been calculated using Mg2+ and Mn2+ as the catalytic metals. In both cases the reaction proceeds through a two step mechanism where the 3?-OH of the primer sugar ring is deprotonated by one of the conserved Asp residues (D490) in the active site before the incorporation of the nucleotide to the nascent DNA chain. A significant charge transfer is observed between both metals and some residues in the active site as the reaction proceeds. The optimized reactant and product structures agree with the reported crystal structures. In addition, the calculated reaction barriers for both metals are close to experimentally estimated barriers. Energy decomposition analysis to explain individual residue contributions suggests that several amino acids surrounding the active site are important for catalysis. Some of these residues, including R420, R488 and E529, have been implicated in catalysis by previous mutagenesis experiments on the homologous residues on Pol?. Furthermore, Pol? residues R420 and E529 found to be important from the energy decomposition analysis, are homologous to residues R183 and E295 in Pol?, both of which are linked to cancer. In addition, residues R386, E391, K422 and K472 appear to have an important role in catalysis and could be a potential target for mutagenesis experiments. There is partial conservation of these residues across the Pol X family of DNA polymerases. PMID:18692600
Wohlgemuth, Matthias; Bonaci?-Koutecký, Vlasta; Mitri?, Roland
2011-08-01
We present a combination of time-dependent density functional theory with the quantum mechanical/molecular mechanical approach which can be applied to study nonadiabatic dynamical processes in molecular systems interacting with the environment. Our method is illustrated on the example of ultrafast excited state dynamics of indole in water. We compare the mechanisms of nonradiative relaxation and the electronic state lifetimes for isolated indole, indole in a sphere of classical water, and indole + 3H(2)O embedded in a classical water sphere. In the case of isolated indole, the initial excitation to the S(2) electronic state is followed by an ultrafast internal conversion to the S(1) state with a time constant of 17 fs. The S(1) state is long living (>30 ps) and deactivates to the ground state along the N-H stretching coordinate. This deactivation mechanism remains unchanged for indole in a classical water sphere. However, the lifetimes of the S(2) and S(1) electronic states are extended. The inclusion of three explicit water molecules opens a new relaxation channel which involves the electron transfer to the solvent, leading eventually to the formation of a solvated electron. The relaxation to the ground state takes place on a time scale of 60 fs and contributes to the lowering of the fluorescence quantum yield. Our simulations demonstrate the importance of including explicit water molecules in the theoretical treatment of solvated systems. PMID:21823688
Cisneros, G Andrés; Perera, Lalith; García-Díaz, Miguel; Bebenek, Katarzyna; Kunkel, Thomas A; Pedersen, Lee G
2008-11-01
DNA polymerases play a crucial role in the cell cycle due to their involvement in genome replication and repair. Understanding the reaction mechanism by which these polymerases carry out their function can provide insights into these processes. Recently, the crystal structures of human DNA polymerase lambda (Pollambda) have been reported both for pre- and post-catalytic complexes [García-Díaz et al., DNA Repair 3 (2007), 1333]. Here we employ the pre-catalytic complex as a starting structure for the determination of the catalytic mechanism of Pollambda using ab initio quantum mechanical/molecular mechanical methods. The reaction path has been calculated using Mg(2+) and Mn(2+) as the catalytic metals. In both cases the reaction proceeds through a two-step mechanism where the 3'-OH of the primer sugar ring is deprotonated by one of the conserved Asp residues (D490) in the active site before the incorporation of the nucleotide to the nascent DNA chain. A significant charge transfer is observed between both metals and some residues in the active site as the reaction proceeds. The optimized reactant and product structures agree with the reported crystal structures. In addition, the calculated reaction barriers for both metals are close to experimentally estimated barriers. Energy decomposition analysis to explain individual residue contributions suggests that several amino acids surrounding the active site are important for catalysis. Some of these residues, including R420, R488 and E529, have been implicated in catalysis by previous mutagenesis experiments on the homologous residues on Polbeta. Furthermore, Pollambda residues R420 and E529 found to be important from the energy decomposition analysis, are homologous to residues R183 and E295 in Polbeta, both of which are linked to cancer. In addition, residues R386, E391, K422 and K472 appear to have an important role in catalysis and could be a potential target for mutagenesis experiments. There is partial conservation of these residues across the Pol X family of DNA polymerases. PMID:18692600
NASA Astrophysics Data System (ADS)
Soriano, Alejandro; Silla, Estanislao; TuÃ±Ã³n, IÃ±aki
2002-04-01
The dissociative electron transfer reaction CH3Cl+e-â†’CH3â€¢+Cl- in aqueous solution is studied by using a QM/MM method. In this work the quantum subsystem (a methylchloride molecule plus an electron) is described using density functional theory while the solvent (300 water molecules) is described using the TIP3P classical potential. By means of molecular dynamics simulations and the thermodynamic integration technique we obtained the potential of mean force (PMF) for the carbon-chlorine bond dissociation of the neutral and radical anion species. Combining these two free energy curves we found a quadratic dependence of the activation free energy on the reaction free energy in agreement with Marcus' relationship, originally developed for electron transfer processes not involving bond breaking. We also investigated dynamical aspects by means of 60 dissociative trajectories started with the addition of an extra electron to different configurations of a methylchloride molecule in solution. The PMF shows the existence of a very flat region, in which the system is trapped during some finite time if the quantum subsystem quickly losses its excess kinetic energy transferring it to the solvent molecules. One of the most important factors determining the effectiveness of this energy transfer seems to be the existence of close contacts (hydrogen bonds) between the solute and the solvent.
NASA Astrophysics Data System (ADS)
Canaval, Lorenz R.; Passler, Peter P.; Rode, Bernd M.
2015-04-01
The quantum mechanical charge-field molecular dynamics (QMCF-MD) simulation method was employed to study the hydration properties of gadolinium(III) and terbium(III). Slight differences of the solvation shells' structural and dynamical properties were discovered. While the Lnsbnd O radial distribution functions are in excellent agreement with recent experiments, average coordination numbers of 8.5 (Gd) and 8.4 (Tb) were found. Vivid ligand exchange dynamics along with rapid intrashell rearrangements were observed, underlined by mean residence times in the picosecond range, which is characteristic for trivalent lanthanoides according to quantum mechanical simulations. Vibrational analysis yielded ion-water force constants below 100 N m-1.
Chuev, Gennady N.; Valiev, Marat; Fedotova, Marina V.
2012-04-10
We have developed a hybrid approach based on a combination of integral equation theory of molecular liquids and QM/MM methodology in NorthWest computational Chemistry (NWChem) software package. We have split the evaluations into conse- quent QM/MM and statistical mechanics calculations based on the one-dimensional reference interaction site model, which allows us to reduce signicantly the time of computation. The method complements QM/MM capabilities existing in the NWChem package. The accuracy of the presented method was tested through com- putation of water structure around several organic solutes and their hydration free energies. We have also evaluated the solvent effect on the conformational equilibria. The applicability and limitations of the developed approach are discussed.
Raich, LluÃs; Borodkin, Vladimir; Fang, Wenxia; Castro-LÃ³pez, Jorge; van Aalten, Daan M F; Hurtado-Guerrero, RamÃ³n; Rovira, Carme
2016-03-16
The conversion of glycoside hydrolases (GHs) into transglycosylases (TGs), i.e., from enzymes that hydrolyze carbohydrates to enzymes that synthesize them, represents a promising solution for the large-scale synthesis of complex carbohydrates for biotechnological purposes. However, the lack of knowledge about the molecular details of transglycosylation hampers the rational design of TGs. Here we present the first crystallographic structure of a natural glycosyl-enzyme intermediate (GEI) of Saccharomyces cerevisiae Gas2 in complex with an acceptor substrate and demonstrate, by means of quantum mechanics/molecular mechanics metadynamics simulations, that it is tuned for transglycosylation (Î”G(â§§) = 12 kcal/mol). The 2-OHÂ·Â·Â·nucleophile interaction is found to be essential for catalysis: its removal raises the free energy barrier significantly (11 and 16 kcal/mol for glycosylation and transglycosylation, respectively) and alters the conformational itinerary of the substrate (from (4)C1 â†’ [(4)E](â§§) â†’ (1,4)B/(4)E to (4)C1 â†’ [(4)H3](â§§) â†’ (4)C1). Our results suggest that changes in the interactions involving the 2-position could have an impact on the transglycosylation activity of several GHs. PMID:26859322
Goyal, Puja; Ghosh, Nilanjan; Phatak, Prasad; Clemens, Maike; Gaus, Michael; Elstner, Marcus; Cui, Qiang
2011-09-28
Identifying the group that acts as the proton storage/loading site is a challenging but important problem for understanding the mechanism of proton pumping in biomolecular proton pumps, such as bacteriorhodopsin (bR) and cytochrome c oxidase. Recent experimental studies of bR propelled the idea that the proton storage/release group (PRG) in bR is not an amino acid but a water cluster embedded in the protein. We argue that this idea is at odds with our knowledge of protein electrostatics, since invoking the water cluster as the PRG would require the protein to raise the pK(a) of a hydronium by almost 11 pK(a) units, which is difficult considering known cases of pK(a) shifts in proteins. Our recent quantum mechanics/molecular mechanics (QM/MM) simulations suggested an alternative "intermolecular proton bond" model in which the stored proton is shared between two conserved Glu residues (194 and 204). Here we show that this model leads to microscopic pK(a) values consistent with available experimental data and the functional requirement of a PRG. Extensive QM/MM simulations also show that, independent of a number of technical issues, such as the influence of QM region size, starting X-ray structure, and nuclear quantum effects, the "intermolecular proton bond" model is qualitatively consistent with available spectroscopic data. Potential of mean force calculations show explicitly that the stored proton strongly prefers the pair of Glu residues over the water cluster. The results and analyses help highlight the importance of considering protein electrostatics and provide arguments for why the "intermolecular proton bond" model is likely applicable to the PRG in biomolecular proton pumps in general. PMID:21761868
Takahashi, Hideaki; Ohno, Hajime; Yamauchi, Toshihiko; Kishi, Ryohei; Furukawa, Shin-Ichi; Nakano, Masayoshi; Matubayasi, Nobuyuki
2008-02-14
In the present work, we have performed quantum chemical calculations to determine preferable species among the ionic complexes that are present in ambient water due to the autodissociation of water molecule. First, we have formulated the relative population of the hydrated complexes with respect to the bare ion (H(3)O(+) or OH(-)) in terms of the solvation free energies of the relevant molecules. The solvation free energies for various ionic species (H(3)O(+), H(5)O(2) (+), H(7)O(3) (+), H(9)O(4) (+) or OH(-), H(3)O(2) (-), H(5)O(3) (-), H(7)O(4) (-), H(9)O(5) (-)), categorized as proton or hydroxide ion in solution, have been computed by employing the QM/MM-ER method recently developed by combining the quantum mechanical/molecular mechanical (QM/MM) approach with the theory of energy representation (ER). Then, the computed solvation free energies have been used to evaluate the ratio of the populations of the ionic complexes to that of the bare ion (H(3)O(+) or OH(-)). Our results suggest that the Zundel form, i.e., H(5)O(2) (+), is the most preferable in the solution among the cationic species listed above though the Eigen form (H(9)O(4) (+)) is very close to the Zundel complex in the free energy, while the anionic fragment from water molecules mostly takes the form of OH(-). It has also been found that the loss of the translational entropy of water molecules associated with the formation of the complex plays a role in determining the preferable size of the cluster. PMID:18282056
NASA Astrophysics Data System (ADS)
Takahashi, Hideaki; Ohno, Hajime; Yamauchi, Toshihiko; Kishi, Ryohei; Furukawa, Shin-ichi; Nakano, Masayoshi; Matubayasi, Nobuyuki
2008-02-01
In the present work, we have performed quantum chemical calculations to determine preferable species among the ionic complexes that are present in ambient water due to the autodissociation of water molecule. First, we have formulated the relative population of the hydrated complexes with respect to the bare ion (H3O+ or OH -) in terms of the solvation free energies of the relevant molecules. The solvation free energies for various ionic species (H3O+, H5O2+, H7O3+, H9O4+ or OH -, H3O2-, H5O3-, H7O4-, H9O5-), categorized as proton or hydroxide ion in solution, have been computed by employing the QM/MM-ER method recently developed by combining the quantum mechanical/molecular mechanical (QM/MM) approach with the theory of energy representation (ER). Then, the computed solvation free energies have been used to evaluate the ratio of the populations of the ionic complexes to that of the bare ion (H3O+ or OH -). Our results suggest that the Zundel form, i.e., H5O2+, is the most preferable in the solution among the cationic species listed above though the Eigen form (H9O4+) is very close to the Zundel complex in the free energy, while the anionic fragment from water molecules mostly takes the form of OH -. It has also been found that the loss of the translational entropy of water molecules associated with the formation of the complex plays a role in determining the preferable size of the cluster.
Monari, Antonio; Rivail, Jean-Louis; Assfeld, Xavier
2013-02-19
Molecular mechanics methods can efficiently compute the macroscopic properties of a large molecular system but cannot represent the electronic changes that occur during a chemical reaction or an electronic transition. Quantum mechanical methods can accurately simulate these processes, but they require considerably greater computational resources. Because electronic changes typically occur in a limited part of the system, such as the solute in a molecular solution or the substrate within the active site of enzymatic reactions, researchers can limit the quantum computation to this part of the system. Researchers take into account the influence of the surroundings by embedding this quantum computation into a calculation of the whole system described at the molecular mechanical level, a strategy known as the mixed quantum mechanics/molecular mechanics (QM/MM) approach. The accuracy of this embedding varies according to the types of interactions included, whether they are purely mechanical or classically electrostatic. This embedding can also introduce the induced polarization of the surroundings. The difficulty in QM/MM calculations comes from the splitting of the system into two parts, which requires severing the chemical bonds that link the quantum mechanical subsystem to the classical subsystem. Typically, researchers replace the quantoclassical atoms, those at the boundary between the subsystems, with a monovalent link atom. For example, researchers might add a hydrogen atom when a C-C bond is cut. This Account describes another approach, the Local Self Consistent Field (LSCF), which was developed in our laboratory. LSCF links the quantum mechanical portion of the molecule to the classical portion using a strictly localized bond orbital extracted from a small model molecule for each bond. In this scenario, the quantoclassical atom has an apparent nuclear charge of +1. To achieve correct bond lengths and force constants, we must take into account the inner shell of the atom: for an sp(3) carbon atom, we consider the two core 1s electrons and treat that carbon as an atom with three electrons. This results in an LSCF+3 model. Similarly, a nitrogen atom with a lone pair of electrons available for conjugation is treated as an atom with five electrons (LSCF+5). This approach is particularly well suited to splitting peptide bonds and other bonds that include carbon or nitrogen atoms. To embed the induced polarization within the calculation, researchers must use a polarizable force field. However, because the parameters of the usual force fields include an average of the induction effects, researchers typically can obtain satisfactory results without explicitly introducing the polarization. When considering electronic transitions, researchers must take into account the changes in the electronic polarization. One approach is to simulate the electronic cloud of the surroundings by a continuum whose dielectric constant is equal to the square of the refractive index. This Electronic Response of the Surroundings (ERS) methodology allows researchers to model the changes in induced polarization easily. We illustrate this approach by modeling the electronic absorption of tryptophan in human serum albumin (HSA). PMID:23249409
NASA Astrophysics Data System (ADS)
Passler, Peter P.; Rode, Bernd M.
2015-12-01
QMCF-MD simulations have been carried out for Pr(III), Nd(III), Pm(III) and Sm(III) ions in aqueous environment, employing ab initio quantum mechanical treatment for ion, first and second hydration shell. Interchanging prismatic structures are found for all ions, the main coordination number being 9, in good agreement with EXAFS experimental data. The ligand dynamics are characterized by first-shell mean residence times in the range of 50 to ?200 ps and by force constants for the Ln(III)-O(water) bond between 75 and 100 Nm-1.
Sekharan, Sivakumar; Yokoyama, Shozo; Morokuma, Keiji
2011-12-29
Since Vogt's discovery of A(3)-retinal or 3-hydroxyretinal in insects in 1983 and Matsui's discovery of A(4)-retinal or 4-hydroxyretinal in firefly squid in 1988, hydroxyretinal-protein interactions mediating vision have remained largely unexplored. In the present study, A(3)- and A(4)-retinals are theoretically incorporated into squid and bovine visual pigments by use of the hybrid quantum mechanics/molecular mechanics [SORCI+Q//B3LYP/6-31G(d):Amber96] method, and insights into structure, enantioselectivity, and spectroscopy are gathered and presented for the first time. Contrary to general perception, our findings rule out the formation of a hydrogen bond between the hydroxyl-bearing Î²-ionone ring portion of retinal and opsin. Compared to A(1)-pigments, A(3)- and A(4)-pigments exhibit slightly blue-shifted absorption maxima due to increase in bond-length alternation of the hydroxyretinal. We suggest that (i) the binding site of firefly squid (Watasenia scintillans) opsin is very similar to that of the Japanese common squid (Todarodes pacificus) opsin; (ii) the molecular mechanism of spectral tuning in small white butterflies involve sites S116 and T185 and breaking of a hydrogen bond between sites E180 and T185; and finally (iii) A(3)-retinal may have occurred during the conversion of A(1)- to A(2)-retinal and insects may have acquired them, in order to absorb light in the blue-green wavelength region and to speed up the G-protein signaling cascade. PMID:22087641
Wei, Donghui; Fang, Lei; Tang, Mingsheng; Zhan, Chang-Guo
2013-01-01
Proteasome is the major component of the crucial nonlysosomal protein degradation pathway in the cells, but the detailed reaction pathway is unclear. In this study, first-principles quantum mechanical/molecular mechanical free energy calculations have been performed to explore, for the first time, possible reaction pathways for proteasomal proteolysis/hydrolysis of a representative peptide, succinyl-leucyl-leucyl-valyl-tyrosyl-7-amino-4-methylcoumarin (Suc-LLVY-AMC). The computational results reveal that the most favorable reaction pathway consists of six steps. The first is a water-assisted proton transfer within proteasome, activating Thr1-O?. The second is a nucleophilic attack on the carbonyl carbon of a Tyr residue of substrate by the negatively charged Thr1-O?, followed by the dissociation of the amine AMC (third step). The fourth step is a nucleophilic attack on the carbonyl carbon of the Tyr residue of substrate by a water molecule, accompanied by a proton transfer from the water molecule to Thr1-Nz. Then, Suc-LLVY is dissociated (fifth step), and Thr1 is regenerated via a direct proton transfer from Thr1-Nz to Thr1-O?. According to the calculated energetic results, the overall reaction energy barrier of the proteasomal hydrolysis is associated with the transition state (TS3b) for the third step involving a water-assisted proton transfer. The determined most favorable reaction pathway and the rate-determining step have provided a reasonable interpretation of the reported experimental observations concerning the substituent and isotopic effects on the kinetics. The calculated overall free energy barrier of 18.2 kcal/mol is close to the experimentally-derived activation free energy of ~18.3–19.4 kcal/mol, suggesting that the computational results are reasonable. PMID:24111489
Pitari, Fabio; Bovi, Daniele; Narzi, Daniele; Guidoni, Leonardo
2015-09-29
The Mn4CaO5 cluster in the oxygen-evolving complex is the catalytic core of the Photosystem II (PSII) enzyme, responsible for the water splitting reaction in oxygenic photosynthesis. The role of the redox-inactive ion in the cluster has not yet been fully clarified, although several experimental data are available on Ca2+-depleted and Ca2+-substituted PSII complexes, indicating Sr2+-substituted PSII as the only modification that preserves oxygen evolution. In this work, we investigated the structural and electronic properties of the PSII catalytic core with Ca2+ replaced with Sr2+ and Cd2+ in the S2 state of the Kok?Joliot cycle by means of density functional theory and ab initio molecular dynamics based on a quantum mechanics/ molecular mechanics approach. Our calculations do not reveal significant differences between the substituted and wild-type systems in terms of geometries, thermodynamics, and kinetics of two previously identified intermediate states along the S2 to S3 transition, namely, the open cubane S2 A and closed cubane S2 B conformers. Conversely, our calculations show different pKa values for the water molecule bound to the three investigated heterocations. Specifically, for Cd-substituted PSII, the pKa value is 5.3 units smaller than the respective value in wild type Ca-PSII. On the basis of our results, we conclude that, assuming all the cations sharing the same binding site, the induced difference in the acidity of the binding pocket might influence the hydrogen bonding network and the redox levels to prevent the further evolution of the cycle toward the S3 state. PMID:26346422
Wang, Yanli; Schlick, Tamar
2008-10-01
The nucleotidyl-transfer reaction coupled with the conformational transitions in DNA polymerases is critical for maintaining the fidelity and efficiency of DNA synthesis. We examine here the possible reaction pathways of a Y-family DNA polymerase, Sulfolobus solfataricus DNA polymerase IV (Dpo4), for the correct insertion of dCTP opposite 8-oxoguanine using the quantum mechanics/molecular mechanics (QM/MM) approach, both from a chemistry-competent state and a crystal closed state. The latter examination is important for understanding pre-chemistry barriers to interpret the entire enzyme mechanism, since the crystal closed state is not an ideal state for initiating the chemical reaction. The most favorable reaction path involves initial deprotonation of O3'H via two bridging water molecules to O1A, overcoming an overall potential energy barrier of approximately 20.0 kcal/mol. The proton on O1A-P(alpha) then migrates to the gamma-phosphate oxygen of the incoming nucleotide as O3' attacks P(alpha), and the P(alpha)-O3A bond breaks. The other possible pathway in which the O3'H proton is transferred directly to O1A on P(alpha) has an overall energy barrier of 25.0 kcal/mol. In both reaction paths, the rate-limiting step is the initial deprotonation, and the trigonal-bipyramidal configuration for P(alpha) occurs during the concerted bond formation (O3'-P(alpha)) and breaking (P(alpha)-O3A), indicating the associative nature of the chemical reaction. In contrast, the Dpo4/DNA complex with an imperfect active-site geometry corresponding to the crystal state must overcome a much higher activation energy barrier (29.0 kcal/mol) to achieve a tightly organized site due to hindered O3'H deprotonation stemming from larger distances and distorted conformation of the proton acceptors. This significant difference demonstrates that the pre-chemistry reorganization in Dpo4 costs approximately 4.0 to 9.0 kcal/mol depending on the primer terminus environment. Compared to the higher fidelity DNA polymerase beta from the X-family, Dpo4 has a higher chemical reaction barrier (20.0 vs 15.0 kcal/mol) due to the more solvent-exposed active site. PMID:18785738
Wang, Binju; Li, Chunsen; Dubey, Kshatresh Dutta; Shaik, Sason
2015-06-17
Quantum mechanical/molecular mechanical calculations address the longstanding-question of a "second oxidant" in P450 enzymes wherein the proton-shuttle, which leads to formation of the "primary-oxidant" Compound I (Cpd I), was severed by mutating the crucial residue (in P450cam: Threonine-252-to-Alanine, hence T252A). Investigating the oxidant candidates Cpd I, ferric hydroperoxide, and ferric hydrogen peroxide (Fe(III)(O2H2)), and their reactions, generates reactivity networks which enable us to rule out a "second oxidant" and at the same time identify an additional coupling pathway that is responsible for the epoxidation of 5-methylenylcamphor by the T252A mutant. In this "second-coupling pathway", the reaction starts with the Fe(III)(O2H2) intermediate, which transforms to Cpd I via a O-O homolysis/H-abstraction mechanism. The persistence of Fe(III)(O2H2) and its oxidative reactivity are shown to be determined by interplay of substrate and protein. The substrate 5-methylenylcamphor prevents H2O2 release, while the protein controls the Fe(III)(O2H2) conversion to Cpd I by nailing-through hydrogen-bonding interactions-the conformation of the HO(•) radical produced during O-O homolysis. This conformation prevents HO(•) attack on the porphyrin's meso position, as in heme oxygenase, and prefers H-abstraction from Fe(IV)OH thereby generating H2O + Cpd I. Cpd I then performs substrate oxidations. Camphor cannot prevent H2O2 release and hence the T252A mutant does not oxidize camphor. This "second pathway" transpires also during H2O2 shunting of the cycle of wild-type P450cam, where the additional hydrogen-bonding with Thr252 prevents H2O2 release, and contributes to a successful Cpd I formation. The present results lead to a revised catalytic cycle of Cytochrome P450cam. PMID:26011529
McMillan, Andrew W.; Kier, Brandon L.; Shu, Irene; Byrne, Aimee; Andersen, Niels H.; Parson, William W.
2013-01-01
The quantum yield of tryptophan (Trp) fluorescence was measured in 30 designed miniproteins (17 ?-hairpins and 13 Trp-cage peptides), each containing a single Trp residue. Measurements were made in D2O and H2O to distinguish between fluorescence quenching mechanisms involving electron and proton transfer in the hairpin peptides, and at two temperatures to check for effects of partial unfolding of the Trp-cage peptides. The extent of folding of all the peptides also was measured by NMR. The fluorescence yields ranged from 0.01 in some of the Trp-cage peptides to 0.27 in some hairpins. Fluorescence quenching was found to occur by electron transfer from the excited indole ring of the Trp to a backbone amide group or the protonated side chain of a nearby histidine, glutamate, aspartate, tyrosine or cysteine residue. Ionized tyrosine side chains quenched strongly by resonance energy transfer or electron transfer to the excited indole ring. Hybrid classical/quantum mechanical molecular dynamics simulations were performed by a method that optimized induced electric dipoles separately for the ground and excited states in multiple ?–?* and charge-transfer (CT) excitations. Twenty 0.5-ns trajectories in the tryptophan's lowest excited singlet ?–?* state were run for each peptide, beginning by projections from trajectories in the ground state. Fluorescence quenching was correlated with the availability of a CT or exciton state that was strongly coupled to the ?–?* state and that matched or fell below the ?–?* state in energy. The fluorescence yields predicted by summing the calculated rates of charge and energy transfer are in good accord with the measured yields. PMID:23330783
NASA Astrophysics Data System (ADS)
Ishida, Toyokazu
2008-09-01
In this study, we investigated the electronic character of protein environment in enzymatic processes by performing all-electron QM calculations based on the fragment molecular orbital (FMO) method. By introducing a new computational strategy combining all-electron QM analysis with ab initio QM/MM modeling, we investigated the details of molecular interaction energy between a reactive substrate and amino acid residues at a catalytic site. For a practical application, we selected the chorismate mutase catalyzed reaction as an example. Because the computational time required to perform all-electron QM reaction path searches was very large, we employed the ab initio QM/MM modeling technique to construct reliable reaction profiles and performed all-electron FMO calculations for the selected geometries. The main focus of the paper is to analyze the details of electrostatic stabilization, which is considered to be the major feature of enzymatic catalyses, and to clarify how the electronic structure of proteins is polarized in response to the change in electron distribution of the substrate. By performing interaction energy decomposition analysis from a quantum chemical viewpoint, we clarified the relationship between the location of amino acid residues on the protein domain and the degree of electronic polarization of each residue. In particular, in the enzymatic transition state, Arg7, Glu78, and Arg90 are highly polarized in response to the delocalized electronic character of the substrate, and as a result, a large amount of electrostatic stabilization energy is stored in the molecular interaction between the enzyme and the substrate and supplied for transition state stabilization.
Nakamura, Shin; Ota, Kai; Shibuya, Yuichi; Noguchi, Takumi
2016-01-26
Photosynthetic water oxidation takes place at the Mn4CaO5 cluster in photosystem II. Around the Mn4CaO5 cluster, a hydrogen bond network is formed by several water molecules, including four water ligands. To clarify the role of this water network in the mechanism of water oxidation, we investigated the effects of the removal of Ca(2+) and substitution with metal ions on the vibrations of water molecules coupled to the Mn4CaO5 cluster by means of Fourier transform infrared (FTIR) difference spectroscopy and quantum mechanics/molecular mechanics (QM/MM) calculations. The OH stretching vibrations of nine water molecules forming a network between D1-D61 and YZ were calculated using the QM/MM method. On the the calculated normal modes, a broad positive feature at 3200-2500 cm(-1) in an S2-minus-S1 FTIR spectrum was attributed to the vibrations of strongly hydrogen-bonded OH bonds of water involving the vibrations of water ligands to a Mn ion and the in-phase coupled vibration of a water network connected to YZ, while bands in the 3700-3500 cm(-1) region were assigned to the coupled vibrations of weakly hydrogen-bonded OH bonds of water. All the water bands were lost upon Ca(2+) depletion and Ba(2+) substitution, which inhibit the S2 â†’ S3 transition, indicating that a solid water network was broken by these treatments. By contrast, Sr(2+) substitution slightly altered the water bands around 3600 cm(-1), reflecting minor modification in water interactions, consistent with the retention of water oxidation activity with a decreased efficiency. These results suggest that the water network around the Mn4CaO5 cluster plays an essential role in the water oxidation mechanism particularly in a concerted process of proton transfer and water insertion during the S2 â†’ S3 transition. PMID:26716470
2015-01-01
Mercuric reductase, MerA, is a key enzyme in bacterial mercury resistance. This homodimeric enzyme captures and reduces toxic Hg2+ to Hg0, which is relatively unreactive and can exit the cell passively. Prior to reduction, the Hg2+ is transferred from a pair of cysteines (C558? and C559? using Tn501 numbering) at the C-terminus of one monomer to another pair of cysteines (C136 and C141) in the catalytic site of the other monomer. Here, we present the X-ray structure of the C-terminal Hg2+ complex of the C136A/C141A double mutant of the Tn501 MerA catalytic core and explore the molecular mechanism of this Hg transfer with quantum mechanical/molecular mechanical (QM/MM) calculations. The transfer is found to be nearly thermoneutral and to pass through a stable tricoordinated intermediate that is marginally less stable than the two end states. For the overall process, Hg2+ is always paired with at least two thiolates and thus is present at both the C-terminal and catalytic binding sites as a neutral complex. Prior to Hg2+ transfer, C141 is negatively charged. As Hg2+ is transferred into the catalytic site, a proton is transferred from C136 to C559? while C558? becomes negatively charged, resulting in the net transfer of a negative charge over a distance of ?7.5 Å. Thus, the transport of this soft divalent cation is made energetically feasible by pairing a competition between multiple Cys thiols and/or thiolates for Hg2+ with a competition between the Hg2+ and protons for the thiolates. PMID:25343681
Hu Hao; Lu Zhenyu; Parks, Jerry M.; Burger, Steven K.; Yang Weitao
2008-01-21
To accurately determine the reaction path and its energetics for enzymatic and solution-phase reactions, we present a sequential sampling and optimization approach that greatly enhances the efficiency of the ab initio quantum mechanics/molecular mechanics minimum free-energy path (QM/MM-MFEP) method. In the QM/MM-MFEP method, the thermodynamics of a complex reaction system is described by the potential of mean force (PMF) surface of the quantum mechanical (QM) subsystem with a small number of degrees of freedom, somewhat like describing a reaction process in the gas phase. The main computational cost of the QM/MM-MFEP method comes from the statistical sampling of conformations of the molecular mechanical (MM) subsystem required for the calculation of the QM PMF and its gradient. In our new sequential sampling and optimization approach, we aim to reduce the amount of MM sampling while still retaining the accuracy of the results by first carrying out MM phase-space sampling and then optimizing the QM subsystem in the fixed-size ensemble of MM conformations. The resulting QM optimized structures are then used to obtain more accurate sampling of the MM subsystem. This process of sequential MM sampling and QM optimization is iterated until convergence. The use of a fixed-size, finite MM conformational ensemble enables the precise evaluation of the QM potential of mean force and its gradient within the ensemble, thus circumventing the challenges associated with statistical averaging and significantly speeding up the convergence of the optimization process. To further improve the accuracy of the QM/MM-MFEP method, the reaction path potential method developed by Lu and Yang [Z. Lu and W. Yang, J. Chem. Phys. 121, 89 (2004)] is employed to describe the QM/MM electrostatic interactions in an approximate yet accurate way with a computational cost that is comparable to classical MM simulations. The new method was successfully applied to two example reaction processes, the classical S{sub N}2 reaction of Cl{sup -}+CH{sub 3}Cl in solution and the second proton transfer step of the reaction catalyzed by the enzyme 4-oxalocrotonate tautomerase. The activation free energies calculated with this new sequential sampling and optimization approach to the QM/MM-MFEP method agree well with results from other simulation approaches such as the umbrella sampling technique with direct QM/MM dynamics sampling, demonstrating the accuracy of the iterative QM/MM-MFEP method.
Bender, Carl M; DeKieviet, Maarten; Klevansky, S. P.
2013-01-01
-symmetric quantum mechanics (PTQM) has become a hot area of research and investigation. Since its beginnings in 1998, there have been over 1000 published papers and more than 15 international conferences entirely devoted to this research topic. Originally, PTQM was studied at a highly mathematical level and the techniques of complex variables, asymptotics, differential equations and perturbation theory were used to understand the subtleties associated with the analytic continuation of eigenvalue problems. However, as experiments on -symmetric physical systems have been performed, a simple and beautiful physical picture has emerged, and a -symmetric system can be understood as one that has a balanced loss and gain. Furthermore, the phase transition can now be understood intuitively without resorting to sophisticated mathe- matics. Research on PTQM is following two different paths: at a fundamental level, physicists are attempting to understand the underlying mathematical structure of these theories with the long-range objective of applying the techniques of PTQM to understanding some of the outstanding problems in physics today, such as the nature of the Higgs particle, the properties of dark matter, the matter–antimatter asymmetry in the universe, neutrino oscillations and the cosmological constant; at an applied level, new kinds of -synthetic materials are being developed, and the phase transition is being observed in many physical contexts, such as lasers, optical wave guides, microwave cavities, superconducting wires and electronic circuits. The purpose of this Theme Issue is to acquaint the reader with the latest developments in PTQM. The articles in this volume are written in the style of mini-reviews and address diverse areas of the emerging and exciting new area of -symmetric quantum mechanics. PMID:23509390
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
A development of quantum theory that was initiated in the 1920s by Werner Heisenberg (1901-76) and Erwin SchrÃ¶dinger (1887-1961). The theory drew on a proposal made in 1925 Prince Louis de Broglie (1892-1987), that particles have wavelike properties (the wave-particle duality) and that an electron, for example, could in some respects be regarded as a wave with a wavelength that depended on its mo...
Testing Nonassociative Quantum Mechanics
NASA Astrophysics Data System (ADS)
Bojowald, Martin; Brahma, Suddhasattwa; Büyükçam, Umut
2015-11-01
The familiar concepts of state vectors and operators in quantum mechanics rely on associative products of observables. However, these notions do not apply to some exotic systems such as magnetic monopoles, which have long been known to lead to nonassociative algebras. Their quantum physics has remained obscure. This Letter presents the first derivation of potentially testable physical results in nonassociative quantum mechanics, based on effective potentials. They imply new effects which cannot be mimicked in usual quantum mechanics with standard magnetic fields.
Quantum Mechanics Based Multiscale Modeling of Materials
NASA Astrophysics Data System (ADS)
Lu, Gang
2013-03-01
We present two quantum mechanics based multiscale approaches that can simulate extended defects in metals accurately and efficiently. The first approach (QCDFT) can treat multimillion atoms effectively via density functional theory (DFT). The method is an extension of the original quasicontinuum approach with DFT as its sole energetic formulation. The second method (QM/MM) has to do with quantum mechanics/molecular mechanics coupling based on the constrained density functional theory, which provides an exact framework for a self-consistent quantum mechanical embedding. Several important materials problems will be addressed using the multiscale modeling approaches, including hydrogen-assisted cracking in Al, magnetism-controlled dislocation properties in Fe and Si pipe diffusion along Al dislocation core. We acknowledge the support from the Office of Navel Research and the Army Research Office.
NASA Astrophysics Data System (ADS)
Okazaki, Tadashi
2015-01-01
We consider the multiple M2-branes wrapped on a compact Riemann surface and study the arising quantum mechanics by taking the limit where the size of the Riemann surface goes to zero. The IR quantum mechanical models resulting from the BLG-model and the ABJM-model compactified on a torus are N = 16 and N = 12 superconformal gauged quantum mechanics. After integrating out the auxiliary gauge fields we find OSp (16 | 2) and SU (1, 1 | 6) quantum mechanics from the reduced systems. The curved Riemann surface is taken as a holomorphic curve in a Calabi-Yau space to preserve supersymmetry and we present a prescription of the topological twisting. We find the N = 8 superconformal gauged quantum mechanics that may describe the motion of two wrapped M2-branes in a K3 surface.
Kapustin, Anton
2013-06-15
We formulate physically motivated axioms for a physical theory which for systems with a finite number of degrees of freedom uniquely lead to quantum mechanics as the only nontrivial consistent theory. Complex numbers and the existence of the Planck constant common to all systems arise naturally in this approach. The axioms are divided into two groups covering kinematics and basic measurement theory, respectively. We show that even if the second group of axioms is dropped, there are no deformations of quantum mechanics which preserve the kinematic axioms. Thus, any theory going beyond quantum mechanics must represent a radical departure from the usual a priori assumptions about the laws of nature.
Giddings, Steven B.
2008-10-15
If gravity respects quantum mechanics, it is important to identify the essential postulates of a quantum framework capable of incorporating gravitational phenomena. Such a construct likely requires elimination or modification of some of the 'standard' postulates of quantum mechanics, in particular, those involving time and measurement. This paper proposes a framework that appears sufficiently general to incorporate some expected features of quantum gravity. These include the statement that space and time may only emerge approximately and relationally. One perspective on such a framework is as a sort of generalization of the S-matrix approach to dynamics. Within this framework, more dynamical structure is required to fully specify a theory; this structure is expected to lack some of the elements of local quantum field theory. Some aspects of this structure are discussed, both in the context of scattering of perturbations about a flat background, and in the context of cosmology.
Quantum Mechanics From the Cradle?
ERIC Educational Resources Information Center
Martin, John L.
1974-01-01
States that the major problem in learning quantum mechanics is often the student's ignorance of classical mechanics and that one conceptual hurdle in quantum mechanics is its statistical nature, in contrast to the determinism of classical mechanics. (MLH)
NASA Astrophysics Data System (ADS)
Nishimura, Hirokazu
1996-06-01
Machida and Namiki developed a many-Hilbert-spaces formalism for dealing with the interaction between a quantum object and a measuring apparatus. Their mathematically rugged formalism was polished first by Araki from an operator-algebraic standpoint and then by Ozawa for Boolean quantum mechanics, which approaches a quantum system with a compatible family of continuous superselection rules from a notable and perspicacious viewpoint. On the other hand, Foulis and Randall set up a formal theory for the empirical foundation of all sciences, at the hub of which lies the notion of a manual of operations. They deem an operation as the set of possible outcomes and put down a manual of operations at a family of partially overlapping operations. Their notion of a manual of operations was incorporated into a category-theoretic standpoint into that of a manual of Boolean locales by Nishimura, who looked upon an operation as the complete Boolean algebra of observable events. Considering a family of Hilbert spaces not over a single Boolean locale but over a manual of Boolean locales as a whole, Ozawa's Boolean quantum mechanics is elevated into empirical quantum mechanics, which is, roughly speaking, the study of quantum systems with incompatible families of continuous superselection rules. To this end, we are obliged to develop empirical Hilbert space theory. In particular, empirical versions of the square root lemma for bounded positive operators, the spectral theorem for (possibly unbounded) self-adjoint operators, and Stone's theorem for one-parameter unitary groups are established.
Noncommutative quantum mechanics
NASA Astrophysics Data System (ADS)
Gamboa, J.; Loewe, M.; Rojas, J. C.
2001-09-01
A general noncommutative quantum mechanical system in a central potential V=V(r) in two dimensions is considered. The spectrum is bounded from below and, for large values of the anticommutative parameter ?, we find an explicit expression for the eigenvalues. In fact, any quantum mechanical system with these characteristics is equivalent to a commutative one in such a way that the interaction V(r) is replaced by V=V(HHO,Lz), where HHO is the Hamiltonian of the two-dimensional harmonic oscillator and Lz is the z component of the angular momentum. For other finite values of ? the model can be solved by using perturbation theory.
Proceedings of quantum field theory, quantum mechanics, and quantum optics
Dodonov, V.V.; Man; ko, V.I.
1991-01-01
This book contains papers presented at the XVIII International Colloquium on Group Theoretical Methods in Physics held in Moscow on June 4-9, 1990. Topics covered include; applications of algebraic methods in quantum field theory, quantum mechanics, quantum optics, spectrum generating groups, quantum algebras, symmetries of equations, quantum physics, coherent states, group representations and space groups.
NASA Astrophysics Data System (ADS)
Ellerman, David
2014-03-01
In models of QM over finite fields (e.g., Schumacher's ``modal quantum theory'' MQT), one finite field stands out, Z2, since Z2 vectors represent sets. QM (finite-dimensional) mathematics can be transported to sets resulting in quantum mechanics over sets or QM/sets. This gives a full probability calculus (unlike MQT with only zero-one modalities) that leads to a fulsome theory of QM/sets including ``logical'' models of the double-slit experiment, Bell's Theorem, QIT, and QC. In QC over Z2 (where gates are non-singular matrices as in MQT), a simple quantum algorithm (one gate plus one function evaluation) solves the Parity SAT problem (finding the parity of the sum of all values of an n-ary Boolean function). Classically, the Parity SAT problem requires 2n function evaluations in contrast to the one function evaluation required in the quantum algorithm. This is quantum speedup but with all the calculations over Z2 just like classical computing. This shows definitively that the source of quantum speedup is not in the greater power of computing over the complex numbers, and confirms the idea that the source is in superposition.
Geometrizing Relativistic Quantum Mechanics
NASA Astrophysics Data System (ADS)
Falciano, F. T.; Novello, M.; Salim, J. M.
2010-12-01
We propose a new approach to describe quantum mechanics as a manifestation of non-Euclidean geometry. In particular, we construct a new geometrical space that we shall call Qwist. A Qwist space has a extra scalar degree of freedom that ultimately will be identified with quantum effects. The geometrical properties of Qwist allow us to formulate a geometrical version of the uncertainty principle. This relativistic uncertainty relation unifies the position-momentum and time-energy uncertainty principles in a unique relation that recover both of them in the non-relativistic limit.
Supersymmetry in quantum mechanics
Haymaker, R.W.; Rau, A.R.P.
1986-10-01
We give some illustrations and interpretations of supersymmetry in quantum mechanics in simple models. We show that the value of 2 for the g factor of the electron expresses the presence of supersymmetry in the Hamiltonian for an electron in a uniform magnetic field. The problem is considered both in the Schroedinger and Dirac formulations. We also show that the radial Coulomb problem with orbital angular momentum l, nuclear charge Z, and principal quantum number n, is supersymmetrically linked to the similar problem with charge Z(1-1/n) and quantum number n-1. Thereby the dependence of Coulomb energies only on the combination Z/n is seen as a manifestation of the supersymmetry in the radial Coulomb problem. Other examples of supersymmetry we consider are the Morse potential, the three-dimensional isotropic oscillator, the states of the helium atom and those of the hydrogen atom in an extremely strong magnetic field.
Bohmian quantum mechanics with quantum trajectories
NASA Astrophysics Data System (ADS)
Jeong, Yeuncheol
The quantum trajectory method in the hydrodynamical formulation of Madelung-Bohm-Takabayasi quantum mechanics is an example of showing the cognitive importance of scientific illustrations and metaphors, especially, in this case, in computational quantum chemistry and electrical engineering. The method involves several numerical schemes of solving a set of hydrodynamical equations of motion for probability density fluids, based on the propagation of those probability density trajectories. The quantum trajectory method gives rise to, for example, an authentic quantum electron transport theory of motion to, among others, classically-minded applied scientists who probably have less of a commitment to traditional quantum mechanics. They were not the usual audience of quantum mechanics and simply choose to use a non-Copenhagen type interpretation to their advantage. Thus, the metaphysical issues physicists had a trouble with are not the main concern of the scientists. With the advantages of a visual and illustrative trajectory, the quantum theory of motion by Bohm effectively bridges quantum and classical physics, especially, in the mesoscale domain. Without having an abrupt shift in actions and beliefs from the classical to the quantum world, scientists and engineers are able to enjoy human cognitive capacities extended into the quantum mechanical domain.
NASA Astrophysics Data System (ADS)
Cohen-Tannoudji, Claude; Diu, Bernard; Laloe, Frank
1986-06-01
Beginning students of quantum mechanics frequently have difficulty separating essential underlying principles from the specific examples to which these principles have historically been applied. This book is especially designed to eliminate that difficulty. Fourteen chapters, augmented by 14 "complementary sections," provide a clarity of organization, careful attention to pedagogical details, and a wealth of topics and examples that allow physics professors to tailor courses to meet students' specific needs. Each chapter starts with a clear exposition of the problem to be treated and then logically develops the physical and mathematical concept. These chapters emphasize the underlying principles of the material, undiluted by extensive references to applications and practical examples. (Such applications and practical examples are contained in the complementary sections.) The book begins with a qualitative introduction to quantum mechanical ideas using simple optical analogies and continues with a systematic presentation of the mathematical tools and postulates of quantum mechanics as well as a discussion of their physical content. Applications follow, starting with the simplest ones (two-level systems, the harmonic oscillator, etc.), and becoming gradually more complicated (the hydrogen atom, approximation methods, etc.). The complementary sections each expand this basic knowledge, supplying a wide range of applications and related topics which make use of the essential skills. Here the authors include carefully written, detailed expositions of a large number of special problems and more advanced topics-integrated as an essential portion of the text. These topics, however, are not interdependent; this allows professors to direct their quantum mechanics courses toward both physics and chemistry students.
Euclidean relativistic quantum mechanics
NASA Astrophysics Data System (ADS)
Polyzou, W. N.; Kopp, Philip
2012-04-01
We discuss a formulation of exactly Poincaré invariant quantum mechanics where the input is model Euclidean Green functions or their generating functional. We discuss the structure of the models, the construction of the Hilbert space, the construction and transformation properties of single-particle states, and the construction of GeV scale transition matrix elements. A simple model is utilized to demonstrate the feasibility of this approach.
Supersymmetric Quantum Mechanics
David, J.; Fernandez, C.
2010-10-11
Supersymmetric quantum mechanics (SUSY QM) is a powerful tool for generating new potentials with known spectra departing from an initial solvable one. In these lecture notes we will present some general formulae concerning SUSY QM of first second order for one-dimensional arbitrary systems, we will illustrate the method through the trigonometric Poeschl-Teller potentials. Some intrinsically related subjects, as the algebraic structure inherited by the new Hamiltonians and the corresponding coherent states will be analyzed. The technique will be as well implemented for periodic potentials, for which the corresponding spectrum is composed of allowed bands separated by energy gaps.
Gaussian effective potential: Quantum mechanics
NASA Astrophysics Data System (ADS)
Stevenson, P. M.
1984-10-01
We advertise the virtues of the Gaussian effective potential (GEP) as a guide to the behavior of quantum field theories. Much superior to the usual one-loop effective potential, the GEP is a natural extension of intuitive notions familiar from quantum mechanics. A variety of quantum-mechanical examples are studied here, with an eye to field-theoretic analogies. Quantum restoration of symmetry, dynamical mass generation, and "quantum-mechanical resuscitation" are among the phenomena discussed. We suggest how the GEP could become the basis of a systematic approximation procedure. A companion paper will deal with scalar field theory.
Advanced Concepts in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Esposito, Giampiero; Marmo, Giuseppe; Miele, Gennaro; Sudarshan, George
2014-11-01
Preface; 1. Introduction: the need for a quantum theory; 2. Experimental foundations of quantum theory; 3. Waves and particles; 4. SchrÃ¶dinger picture, Heisenberg picture and probabilistic aspects; 5. Integrating the equations of motion; 6. Elementary applications: 1-dimensional problems; 7. Elementary applications: multidimensional problems; 8. Coherent states and related formalism; 9. Introduction to spin; 10. Symmetries in quantum mechanics; 11. Approximation methods; 12. Modern pictures of quantum mechanics; 13. Formulations of quantum mechanics and their physical implications; 14. Exam problems; Glossary of geometric concepts; References; Index.
Diffusion-Schrödinger Quantum Mechanics
NASA Astrophysics Data System (ADS)
Lasukov, V. V.; Lasukova, T. V.; Lasukova, O. V.; Novoselov, V. V.
2014-08-01
A quantum solution of a nonlinear differential equation of diffusion type with a potential term has been found. Diffusion-Schrödinger quantum mechanics can find wide application in quantum biology, biological electronics, synthetic biology, nanomedicine, the quantum theory of consciousness, cosmology, and other fields of science and technology. One consequence of the macroscopic nature of diffusion-Schrödinger quantum mechanics is the possibility of generation of hard photons. The dust plasma in the Universe can generate cosmic rays with ultra-relativistic energies in a galactic magnetic field via a diffusion mechanism.
Principles of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Landé, Alfred
2013-10-01
Preface; Introduction: 1. Observation and interpretation; 2. Difficulties of the classical theories; 3. The purpose of quantum theory; Part I. Elementary Theory of Observation (Principle of Complementarity): 4. Refraction in inhomogeneous media (force fields); 5. Scattering of charged rays; 6. Refraction and reflection at a plane; 7. Absolute values of momentum and wave length; 8. Double ray of matter diffracting light waves; 9. Double ray of matter diffracting photons; 10. Microscopic observation of ? (x) and ? (p); 11. Complementarity; 12. Mathematical relation between ? (x) and ? (p) for free particles; 13. General relation between ? (q) and ? (p); 14. Crystals; 15. Transition density and transition probability; 16. Resultant values of physical functions; matrix elements; 17. Pulsating density; 18. General relation between ? (t) and ? (?); 19. Transition density; matrix elements; Part II. The Principle of Uncertainty: 20. Optical observation of density in matter packets; 21. Distribution of momenta in matter packets; 22. Mathematical relation between ? and ?; 23. Causality; 24. Uncertainty; 25. Uncertainty due to optical observation; 26. Dissipation of matter packets; rays in Wilson Chamber; 27. Density maximum in time; 28. Uncertainty of energy and time; 29. Compton effect; 30. Bothe-Geiger and Compton-Simon experiments; 31. Doppler effect; Raman effect; 32. Elementary bundles of rays; 33. Jeans' number of degrees of freedom; 34. Uncertainty of electromagnetic field components; Part III. The Principle of Interference and Schrödinger's equation: 35. Physical functions; 36. Interference of probabilities for p and q; 37. General interference of probabilities; 38. Differential equations for ?p (q) and Xq (p); 39. Differential equation for ?? (q); 40. The general probability amplitude ??' (Q); 41. Point transformations; 42. General theorem of interference; 43. Conjugate variables; 44. Schrödinger's equation for conservative systems; 45. Schrödinger's equation for non-conservative systems; 46. Pertubation theory; 47. Orthogonality, normalization and Hermitian conjugacy; 48. General matrix elements; Part IV. The Principle of Correspondence: 49. Contact transformations in classical mechanics; 50. Point transformations; 51. Contact transformations in quantum mechanics; 52. Constants of motion and angular co-ordinates; 53. Periodic orbits; 54. De Broglie and Schrödinger function; correspondence to classical mechanics; 55. Packets of probability; 56. Correspondence to hydrodynamics; 57. Motion and scattering of wave packets; 58. Formal correspondence between classical and quantum mechanics; Part V. Mathematical Appendix: Principle of Invariance: 59. The general theorem of transformation; 60. Operator calculus; 61. Exchange relations; three criteria for conjugacy; 62. First method of canonical transformation; 63. Second method of canonical transformation; 64. Proof of the transformation theorem; 65. Invariance of the matrix elements against unitary transformations; 66. Matrix mechanics; Index of literature; Index of names and subjects.
NASA Astrophysics Data System (ADS)
Jones, Robert
2011-03-01
I do not agree with mind-body dualism. Today the consensus view is that thought and mind is a combination of processes like memory, generalization, comparison, deduction, organization, induction, classification, feature detection, analogy, etc. performed by computational machinery. (R. Jones, Trans. of the Kansas Acad. Sci., vol. 109, # 3/4, 2006 and www.robert-w-jones.com, philosopher, theory of thought) But I believe that quantum mechanics is a more plausible dualist theory of reality. The quantum mechanical wave function is nonphysical, it exists in a 3N space (for an N body system) not in (x,y,z,t) 4-space, and does not possess physical properties. But real physical things like energy (which do exist in our 4-space world) influence the wave function and the wave function, in its turn, influences real physical things, like where a particle can be found in 4-space. The coupling between the spirit-like wave function and things found in the real (4-space) world (like energy) is via mathematical equations like the Schrodinger equation and Born normalization.
Diagrammatic quantum mechanics
NASA Astrophysics Data System (ADS)
Kauffman, Louis H.; Lomonaco, Samuel J.
2015-05-01
This paper explores how diagrams of quantum processes can be used for modeling and for quantum epistemology. The paper is a continuation of the discussion where we began this formulation. Here we give examples of quantum networks that represent unitary transformations by dint of coherence conditions that constitute a new form of non-locality. Local quantum devices interconnected in space can form a global quantum system when appropriate coherence conditions are maintained.
Bender, Carl M; DeKieviet, Maarten; Klevansky, S P
2013-04-28
PT-symmetric quantum mechanics (PTQM) has become a hot area of research and investigation. Since its beginnings in 1998, there have been over 1000 published papers and more than 15 international conferences entirely devoted to this research topic. Originally, PTQM was studied at a highly mathematical level and the techniques of complex variables, asymptotics, differential equations and perturbation theory were used to understand the subtleties associated with the analytic continuation of eigenvalue problems. However, as experiments on PT-symmetric physical systems have been performed, a simple and beautiful physical picture has emerged, and a PT-symmetric system can be understood as one that has a balanced loss and gain. Furthermore, the PT phase transition can now be understood intuitively without resorting to sophisticated mathematics. Research on PTQM is following two different paths: at a fundamental level, physicists are attempting to understand the underlying mathematical structure of these theories with the long-range objective of applying the techniques of PTQM to understanding some of the outstanding problems in physics today, such as the nature of the Higgs particle, the properties of dark matter, the matter-antimatter asymmetry in the universe, neutrino oscillations and the cosmological constant; at an applied level, new kinds of PT-synthetic materials are being developed, and the PT phase transition is being observed in many physical contexts, such as lasers, optical wave guides, microwave cavities, superconducting wires and electronic circuits. The purpose of this Theme Issue is to acquaint the reader with the latest developments in PTQM. The articles in this volume are written in the style of mini-reviews and address diverse areas of the emerging and exciting new area of PT-symmetric quantum mechanics. PMID:23509390
Decoherence in quantum mechanics and quantum cosmology
NASA Technical Reports Server (NTRS)
Hartle, James B.
1992-01-01
A sketch of the quantum mechanics for closed systems adequate for cosmology is presented. This framework is an extension and clarification of that of Everett and builds on several aspects of the post-Everett development. It especially builds on the work of Zeh, Zurek, Joos and Zeh, and others on the interactions of quantum systems with the larger universe and on the ideas of Griffiths, Omnes, and others on the requirements for consistent probabilities of histories.
QUANTUM MECHANICS WITHOUT STATISTICAL POSTULATES
G. GEIGER; ET AL
2000-11-01
The Bohmian formulation of quantum mechanics describes the measurement process in an intuitive way without a reduction postulate. Due to the chaotic motion of the hidden classical particle all statistical features of quantum mechanics during a sequence of repeated measurements can be derived in the framework of a deterministic single system theory.
Dissipative Forces and Quantum Mechanics
ERIC Educational Resources Information Center
Eck, John S.; Thompson, W. J.
1977-01-01
Shows how to include the dissipative forces of classical mechanics in quantum mechanics by the use of non-Hermetian Hamiltonians. The Ehrenfest theorem for such Hamiltonians is derived, and simple examples which show the classical correspondences are given. (MLH)
Modern Approach to Quantum Mechanics
NASA Astrophysics Data System (ADS)
Townsend, John S.
Inspired by Richard Feynman and J.J. Sakurai, A Modern Approach to Quantum Mechanics lets professors expose their undergraduates to the excitement and insight of Feynman's approach to quantum mechanics while simultaneously giving them a textbook that is well-ordered, logical, and pedagogically sound. This book covers all the topics that are typically presented in a standard upper-level course in quantum mechanics, but its teaching approach is new: Rather than organizing his book according to the historical development of the field and jumping into a mathematical discussion of wave mechanics, Townsend begins his book with the quantum mechanics of spin. Thus, the first five chapters of the book succeed in laying out the fundamentals of quantum mechanics with little or no wave mechanics, so the physics is not obscured by mathematics. Starting with spin systems gives students something new and interesting while providing elegant but straightforward examples of the essential structure of quantum mechanics. When wave mechanics is introduced later, students perceive it correctly as only one aspect of quantum mechanics and not the core of the subject. Praised for its pedagogical brilliance, clear writing, and careful explanations, this book is destined to become a landmark text.
Foundations of Quantum Mechanics and Quantum Computation
NASA Astrophysics Data System (ADS)
Aspect, Alain; Leggett, Anthony; Preskill, John; Durt, Thomas; Pironio, Stefano
2013-03-01
I ask the question: What can we infer about the nature and structure of the physical world (a) from experiments already done to test the predictions of quantum mechanics (b) from the assumption that all future experiments will agree with those predictions? I discuss existing and projected experiments related to the two classic paradoxes of quantum mechanics, named respectively for EPR and Schrödinger's Cat, and show in particular that one natural conclusion from both types of experiment implies the abandonment of the concept of macroscopic counterfactual definiteness.
Quantum Mechanics: Ontology Without Individuals
NASA Astrophysics Data System (ADS)
da Costa, Newton; Lombardi, Olimpia
2014-12-01
The purpose of the present paper is to consider the traditional interpretive problems of quantum mechanics from the viewpoint of a modal ontology of properties. In particular, we will try to delineate a quantum ontology that (i) is modal, because describes the structure of the realm of possibility, and (ii) lacks the ontological category of individual. The final goal is to supply an adequate account of quantum non-individuality on the basis of this ontology.
Communication: Quantum mechanics without wavefunctions
Schiff, Jeremy; Poirier, Bill
2012-01-21
We present a self-contained formulation of spin-free non-relativistic quantum mechanics that makes no use of wavefunctions or complex amplitudes of any kind. Quantum states are represented as ensembles of real-valued quantum trajectories, obtained by extremizing an action and satisfying energy conservation. The theory applies for arbitrary configuration spaces and system dimensionalities. Various beneficial ramifications--theoretical, computational, and interpretational--are discussed.
Precision Tests of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Weinberg, Steven
2014-03-01
It is proposed to set stringent limits on possible nonlinear corrections to ordinary quantum mechanics by searching for the detuning of resonant transitions. A suggested nonlinear generalization of quantum mechanics is used to show that such detuning would be expected in the rf transition in 9Be+ ions that is used to set frequency standards. Measurements at the National Bureau of Standards already set limits of order 10-21 on the fraction of the energy of the 9Be nucleus that could be due to nonlinear corrections to quantum mechanics, with good prospects of improving this by 2-3 orders of magnitude.
Phase space quantum mechanics - Direct
Nasiri, S.; Sobouti, Y.; Taati, F.
2006-09-15
Conventional approach to quantum mechanics in phase space (q,p), is to take the operator based quantum mechanics of Schroedinger, or an equivalent, and assign a c-number function in phase space to it. We propose to begin with a higher level of abstraction, in which the independence and the symmetric role of q and p is maintained throughout, and at once arrive at phase space state functions. Upon reduction to the q- or p-space the proposed formalism gives the conventional quantum mechanics, however, with a definite rule for ordering of factors of noncommuting observables. Further conceptual and practical merits of the formalism are demonstrated throughout the text.
Quantum Mechanics in Insulators
Aeppli, G.
2009-08-20
Atomic physics is undergoing a large revival because of the possibility of trapping and cooling ions and atoms both for individual quantum control as well as collective quantum states, such as Bose-Einstein condensates. The present lectures start from the 'atomic' physics of isolated atoms in semiconductors and insulators and proceed to coupling them together to yield magnets undergoing quantum phase transitions as well as displaying novel quantum states with no classical analogs. The lectures are based on: G.-Y. Xu et al., Science 317, 1049-1052 (2007); G. Aeppli, P. Warburton, C. Renner, BT Technology Journal, 24, 163-169 (2006); H. M. Ronnow et al., Science 308, 392-395 (2005) and N. Q. Vinh et al., PNAS 105, 10649-10653 (2008).
Quantum mechanics from invariance principles
NASA Astrophysics Data System (ADS)
Moldoveanu, Florin
2015-07-01
Quantum mechanics is an extremely successful theory of nature and yet it lacks an intuitive axiomatization. In contrast, the special theory of relativity is well understood and is rooted into natural or experimentally justified postulates. Here we introduce an axiomatization approach to quantum mechanics which is very similar to special theory of relativity derivation. The core idea is that a composed system obeys the same laws of nature as its components. This leads to a Jordan-Lie algebraic formulation of quantum mechanics. The starting assumptions are minimal: the laws of nature are invariant under time evolution, the laws of nature are invariant under tensor composition, the laws of nature are relational, together with the ability to define a physical state (positivity). Quantum mechanics is singled out by a fifth experimentally justified postulate: nature violates Bell's inequalities.
ERIC Educational Resources Information Center
DeWitt, Bryce S.
1970-01-01
Discusses the quantum theory of measurement and von Neumann's catastrophe of infinite regression." Examines three ways of escapint the von Neumann catastrophe, and suggests that the solution to the dilemma of inteterminism is a universe in which all possible outcomes of an experiment actually occur. Bibliography. (LC)
Quantum ballistic evolution in quantum mechanics: Application to quantum computers
NASA Astrophysics Data System (ADS)
Benioff, Paul
1996-08-01
Quantum computers are important examples of processes whose evolution can be described in terms of iterations of single-step operators or their adjoints. Based on this, Hamiltonian evolution of processes with associated step operators T is investigated here. The main limitation of this paper is to processes which evolve quantum ballistically, i.e., motion restricted to a collection of nonintersecting or distinct paths on an arbitrary basis. The main goal of this paper is proof of a theorem which gives necessary and sufficient conditions that T must satisfy so that there exists a Hamiltonian description of quantum ballistic evolution for the process, namely, that T is a partial isometry and is orthogonality preserving and stable on some basis. Simple examples of quantum ballistic evolution for quantum Turing machines with one and with more than one type of elementary step are discussed. It is seen that for nondeterministic machines the basis set can be quite complex with much entanglement present. It is also proven that, given a step operator T for an arbitrary deterministic quantum Turing machine, it is decidable if T is stable and orthogonality preserving, and if quantum ballistic evolution is possible. The proof fails if T is a step operator for a nondeterministic machine. It is an open question if such a decision procedure exists for nondeterministic machines. This problem does not occur in classical mechanics. Also the definition of quantum Turing machines used here is compared with that used by other authors.
Kowalevski top in quantum mechanics
Matsuyama, A.
2013-09-15
The quantum mechanical Kowalevski top is studied by the direct diagonalization of the Hamiltonian. The spectra show different behaviors depending on the region divided by the bifurcation sets of the classical invariant tori. Some of these spectra are nearly degenerate due to the multiplicity of the invariant tori. The Kowalevski top has several symmetries and symmetry quantum numbers can be assigned to the eigenstates. We have also carried out the semiclassical quantization of the Kowalevski top by the EBK formulation. It is found that the semiclassical spectra are close to the exact values, thus the eigenstates can be also labeled by the integer quantum numbers. The symmetries of the system are shown to have close relations with the semiclassical quantum numbers and the near-degeneracy of the spectra. -- Highlights: •Quantum spectra of the Kowalevski top are calculated. •Semiclassical quantization is carried out by the EBK formulation. •Quantum states are labeled by the semiclassical integer quantum numbers. •Multiplicity of the classical torus makes the spectra nearly degenerate. •Symmetries, quantum numbers and near-degenerate spectra are closely related.
PT quantum mechanics - Recent results
Bender, Carl M.
2012-09-26
Most quantum physicists believe that a quantum-mechanical Hamiltonian must be Dirac Hermitian (invariant under matrix transposition and complex conjugation) to be sure that the energy eigenvalues are real and that time evolution is unitary. However, the non-Dirac-hermitian Hamiltonian H p{sup 2}+ix{sup 3} has a real positive discrete spectrum and generates unitary time evolution and defines a fully consistent and physical quantum theory. Evidently, Dirac Hermiticity is too restrictive. While H = p{sup 2}+ix{sup 3} is not Dirac Hermitian, it is PT symmetric (invariant under combined space reflection P and time reversal T). Another PT-symmetric Hamiltonian whose energy levels are real, positive and discrete is H = p{sup 2}-x{sup 4}, which contains an upside-down potential. The quantum mechanics defined by a PT-symmetric Hamiltonian is a complex generalization of ordinary quantum mechanics. When quantum mechanics and quantum field theory are extended into the complex domain, new kinds of theories having strange and remarkable properties emerge. In the past two years some of these properties have been verified in laboratory experiments. Here, we first discuss PT-symmetric Hamiltonians at a simple intuitive level and explain why the energy levels of such Hamiltonians may be real, positive, and discrete. Second, we describe a recent experiment in which the PT phase transition was observed. Third, we briefly mention that PT-symmetric theories can be useful at a fundamental level. While the double-scaling limit of an O(N)-symmetric g{phi}{sup 4} quantum field theory appears to be inconsistent because the critical value of g is negative, this limit is in fact not inconsistent because the critical theory is PT symmetric.
Self-Referential Quantum Mechanics
NASA Astrophysics Data System (ADS)
Mitchell, Mark Kenneth
1993-01-01
A nonlinear quantum mechanics based upon the nonlinear logarithmic Schrodinger equation, is developed which has the property of self-reference, that is, the nonlinear term is dependent upon the square of the wavefunction. The self-referential system is examined in terms of its mathematical properties, the definition of the wavefunction, and the nonlinear system in the feedback between equation and solution. Theta operators are introduced which make possible new operations in the quantum phase. Two interpretations are presented utilizing the nonlinear quantum system: the idealistic interpretation based upon consciousness focused upon the measurement problem, and the statistical interpretation focused upon stochastic quantum fluctuations. Experimental properties are examined, beginning with a proposed analog of the Bohm-Aharonov experiment. Interference due to difference in path length for a split electron beam is effected in a region of spacetime where electromagnetic field and the vector potential are enclosed within but screened to be zero at the paths. If the wavefunction's geometrical phase contribution along the paths is different, then there should be interference induced purely by the wave-function alone. A positive result would be due to a purely wavefunction dependent effect. The spin phase of the wavefunction is postulated to be the source of the zitterbewegung of the electron. Reduction of the wavefunction in measurement is examined for self -referential quantum systems arising from consciousness and then arising from a stochastic quantum spacetime model. These results are applied to the mind-brain as a quantum processor producing a behavioral double slit experiment (ideation experiments) and nonlocal transferred potentials in an EPR-style experiment. Looking at the universe as a whole as a quantum self-referential system, leads to a modified zitterbewegung Wheeler-DeWitt equation; and, the transition from quantum-to-classical on a cosmological scale for the measurement problem is accomplished for an expanding-only deSitter quantum spacetime.
Energy conservation in quantum mechanics
NASA Astrophysics Data System (ADS)
Prentis, Jeffrey J.; Fedak, William A.
2004-05-01
In the classical mechanics of conservative systems, the position and momentum evolve deterministically such that the sum of the kinetic energy and potential energy remains constant in time. This canonical trademark of energy conservation is absent in the standard presentations of quantum mechanics based on the Schrödinger picture. We present a purely canonical proof of energy conservation that focuses exclusively on the time-dependent position x(t) and momentum p(t) operators. This treatment of energy conservation serves as an introduction to the Heisenberg picture and illuminates the classical-quantum connection. We derive a quantum-mechanical work-energy theorem and show explicitly how the time dependence of x and p and the noncommutivity of x and p conspire to bring about a perfect temporal balance between the evolving kinetic and potential parts of the total energy operator.
Quantum mechanical simulation of liquids
Alder, B.J.; Ceperley, D.M.; Pollock, E.L.
1985-09-01
It is possible, in principle, to derive all of the macroscopic properties of matter from the laws that govern the behavior of its elementary constituents. These laws are embodied in quantum mechanics. In contrast to simulating classical systems, however, the quantum mechanical nature of the electrons must be taken into account. A similar but even more ambitious project is to avoid introducing the interaction potential completely and to calculate directly the properties of the entire collection of electrons and nuclei that comprise the molecules of the system. Here the question of whether the Monte Carlo method can also solve this and other problems in quantum many-body statistical mechanics is addressed. 8 references, 5 figures.
QUANTUM MECHANICS. Quantum squeezing of motion in a mechanical resonator.
Wollman, E E; Lei, C U; Weinstein, A J; Suh, J; Kronwald, A; Marquardt, F; Clerk, A A; Schwab, K C
2015-08-28
According to quantum mechanics, a harmonic oscillator can never be completely at rest. Even in the ground state, its position will always have fluctuations, called the zero-point motion. Although the zero-point fluctuations are unavoidable, they can be manipulated. Using microwave frequency radiation pressure, we have manipulated the thermal fluctuations of a micrometer-scale mechanical resonator to produce a stationary quadrature-squeezed state with a minimum variance of 0.80 times that of the ground state. We also performed phase-sensitive, back-action evading measurements of a thermal state squeezed to 1.09 times the zero-point level. Our results are relevant to the quantum engineering of states of matter at large length scales, the study of decoherence of large quantum systems, and for the realization of ultrasensitive sensing of force and motion. PMID:26315431
Quantum Mechanical Earth: Where Orbitals Become Orbits
ERIC Educational Resources Information Center
Keeports, David
2012-01-01
Macroscopic objects, although quantum mechanical by nature, conform to Newtonian mechanics under normal observation. According to the quantum mechanical correspondence principle, quantum behavior is indistinguishable from classical behavior in the limit of very large quantum numbers. The purpose of this paper is to provide an example of theâ€¦
Quantum Mechanical Earth: Where Orbitals Become Orbits
ERIC Educational Resources Information Center
Keeports, David
2012-01-01
Macroscopic objects, although quantum mechanical by nature, conform to Newtonian mechanics under normal observation. According to the quantum mechanical correspondence principle, quantum behavior is indistinguishable from classical behavior in the limit of very large quantum numbers. The purpose of this paper is to provide an example of the…
Faster than Hermitian quantum mechanics.
Bender, Carl M; Brody, Dorje C; Jones, Hugh F; Meister, Bernhard K
2007-01-26
Given an initial quantum state |psi(I)> and a final quantum state |psi(F)>, there exist Hamiltonians H under which |psi(I)> evolves into |psi(F)>. Consider the following quantum brachistochrone problem: subject to the constraint that the difference between the largest and smallest eigenvalues of H is held fixed, which H achieves this transformation in the least time tau? For Hermitian Hamiltonians tau has a nonzero lower bound. However, among non-Hermitian PT-symmetric Hamiltonians satisfying the same energy constraint, tau can be made arbitrarily small without violating the time-energy uncertainty principle. This is because for such Hamiltonians the path from |psi(I)> to |psi(F)> can be made short. The mechanism described here is similar to that in general relativity in which the distance between two space-time points can be made small if they are connected by a wormhole. This result may have applications in quantum computing. PMID:17358747
Remarks on Osmosis, Quantum Mechanics, and Gravity
NASA Astrophysics Data System (ADS)
Carroll, Robert
2012-05-01
Some relations of the quantum potential to Weyl geometry are indicated with applications to the Friedmann equations for a toy quantum cosmology. Osmotic velocity and pressure are briefly discussed in terms of quantum mechanics and superfluids with connections to gravity.
Renormalization group in quantum mechanics
Polony, J.
1996-12-01
The running coupling constants are introduced in quantum mechanics and their evolution is described with the help of the renormalization group equation. The harmonic oscillator and the propagation on curved spaces are presented as examples. The Hamiltonian and the Lagrangian scaling relations are obtained. These evolution equations are used to construct low energy effective models. Copyright {copyright} 1996 Academic Press, Inc.
Aton, Relativity, and Quantum Mechanics
NASA Astrophysics Data System (ADS)
Phillips, Alfred, Jr.
2006-03-01
In the mechanics of the Aton, we have shown that the Davisson-Germer experiments and other crystal based experiments can be modeled without recourse to particle-wave notions. We have also shown that the energy levels of the hydrogen atom and the helium atom can be calculated accurately with Atonic Mechanics, subject to the limits of three-body effects in the latter atom. Using the Aton concept, we now provide a way to unify Einstein's Relativity with what we commonly refer to as quantum mechanics. We note that entanglement is an intrinsic part of the mechanics of the Aton.
Thompson, M.A.; Glendening, E.D.; Feller, D.; Kendall, R.
1995-08-01
Synthetic macrocycles have drawn much experimental and theoretical interest since Pederson first synthesized the crown-ether 18-crown-6 (18c6) in 1967. Crown-ethers show a remarkable range of specificity for a wide variety of cations that depends, in part, on the size of the ether, the type of donor atoms (e.g. oxygen, nitrogen, sulfur), and the polarity of the solvent. Crown-ethers and related macrocycles are of particular interest to research efforts in chemical separations applied to environmental remediation. For example, at the Hanford nuclear facility {sup 9O}Sr{sup 2+} and {sup 137}Cs{sup +} are two major generators of heat which complicate the disposal of nuclear waste. One example of the use of crown-ethers for radionuclide separation is the Strontium Extraction (SREX) process which uses di-t-butylcyclohexano-18-crown-6 for recovering {sup 9O}Sr{sup 2+} from acidic solution. A more thorough understanding of fundamental interactions of cation/crown-ether solution chemistry may provide the basis for rational design of new ligands useful in the separation of these and other radionuclides from radionuclide-containing waste streams at hazardous waste storage facilities. There is also a growing interest in the use of crown-ethers, cryptands, and other ligands for use in chemical sensors. Specifically, fluoroionophores, which consisting of a fluorophore (e.g. dye-molecule) linked to an ionophore (e.g. crown-ether), exhibit measurable changes in the photophysical properties of the fluorophore upon ion binding by the ionophore. Fluoroionophores would be useful for monitoring ground-water aquifers and industrial effluent streams for low-levels of hazardous radionuclides and other toxic metals.
Effective equations for the quantum pendulum from momentous quantum mechanics
Hernandez, Hector H.; Chacon-Acosta, Guillermo
2012-08-24
In this work we study the quantum pendulum within the framework of momentous quantum mechanics. This description replaces the Schroedinger equation for the quantum evolution of the system with an infinite set of classical equations for expectation values of configuration variables, and quantum dispersions. We solve numerically the effective equations up to the second order, and describe its evolution.
Quantum mechanics of black holes.
Witten, Edward
2012-08-01
The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely. PMID:22859480
Quantum Mechanics of Black Holes
NASA Astrophysics Data System (ADS)
Witten, Edward
2012-08-01
The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely.
Quantum mechanics and the psyche
NASA Astrophysics Data System (ADS)
Galli Carminati, G.; Martin, F.
2008-07-01
In this paper we apply the last developments of the theory of measurement in quantum mechanics to the phenomenon of consciousness and especially to the awareness of unconscious components. Various models of measurement in quantum mechanics can be distinguished by the fact that there is, or there is not, a collapse of the wave function. The passive aspect of consciousness seems to agree better with models in which there is no collapse of the wave function, whereas in the active aspect of consciousnessâ€”i.e., that which goes together with an act or a choiceâ€”there seems to be a collapse of the wave function. As an example of the second possibility we study in detail the photon delayed-choice experiment and its consequences for subjective or psychological time. We apply this as an attempt to explain synchronicity phenomena. As a model of application of the awareness of unconscious components we study the mourning process. We apply also the quantum paradigm to the phenomenon of correlation at a distance between minds, as well as to group correlations that appear during group therapies or group training. Quantum entanglement leads to the formation of group unconscious or collective unconscious. Finally we propose to test the existence of such correlations during sessions of group training.
Quantum Mechanics Beyond Hilbert Space
NASA Astrophysics Data System (ADS)
Antoine, J.-P.
Going Beyond Hilbert Space Why? The Different Formalisms What Does One Obtain? The Mathematical Formalism Rigged Hilbert Spaces Scales and Lattices of Hilbert Spaces Partial Inner Product Spaces Operators on PIP-Spaces Application in Quantum Mechanics: The Fock-Bargmann Representation - Revisited A RHS of Entire Functions A LHS of Entire Functions Around ? Application in Scattering Theory RHS: Resonances, Gamow Vectors, Arrow of Time LHS: Integral Equations vs. Complex Scaling Conclusion
Euclidean relativistic quantum mechanics I
NASA Astrophysics Data System (ADS)
Polyzou, Wayne; Kopp, Philip
2011-10-01
We introduce a formulation of relativistic quantum mechanics where the dynamical input is Euclidean generating functionals or Green functions. We discuss how dynamical calculations can be performed in this framework without analytic continuation. We discuss the structure of model generating functionals, the construction of the Hilbert space, the Poincaré Lie Algebra, one particle eigenstates, and representations of finite Poincaré transformations. This work supported the U.S. Department of Energy, under contract DE-FG02-86ER40286.
Euclidean relativistic quantum mechanics II
NASA Astrophysics Data System (ADS)
Kopp, Philip; Polyzou, Wayne
2011-10-01
We discuss the calculation of scattering amplitudes in relativistic Euclidean quantum mechanics. We discuss the general formulation of the scattering problem, in terms of the existence of wave operators and formal methods for computing scattering amplitudes without analytic continuation. Two models are discussed to illustrate the method and the accuracy of the computations. This work supported the U.S. Department of Energy, under contract DE-FG02-86ER40286.
Faster than Hermitian Quantum Mechanics
Bender, Carl M.; Brody, Dorje C.; Jones, Hugh F.; Meister, Bernhard K.
2007-01-26
Given an initial quantum state vertical bar {psi}{sub I}> and a final quantum state vertical bar {psi}{sub F}>, there exist Hamiltonians H under which vertical bar {psi}{sub I}> evolves into vertical bar {psi}{sub F}>. Consider the following quantum brachistochrone problem: subject to the constraint that the difference between the largest and smallest eigenvalues of H is held fixed, which H achieves this transformation in the least time {tau}? For Hermitian Hamiltonians {tau} has a nonzero lower bound. However, among non-Hermitian PT-symmetric Hamiltonians satisfying the same energy constraint, {tau} can be made arbitrarily small without violating the time-energy uncertainty principle. This is because for such Hamiltonians the path from vertical bar {psi}{sub I}> to vertical bar {psi}{sub F}> can be made short. The mechanism described here is similar to that in general relativity in which the distance between two space-time points can be made small if they are connected by a wormhole. This result may have applications in quantum computing.
Facets of contextual realism in quantum mechanics
Pan, Alok Kumar; Home, Dipankar
2011-09-23
In recent times, there is an upsurge of interest in demonstrating the quantum contextuality. In this proceedings, we explore the two different forms of arguments that have been used for showing the contextual character of quantum mechanics. First line of study concerns the violations of the noncontextual realist models by quantum mechanics, where second line of study that is qualitatively distinct from the earlier one, demonstrates the contextuality within the formalism of quantum mechanics.
Treating time travel quantum mechanically
NASA Astrophysics Data System (ADS)
Allen, John-Mark A.
2014-10-01
The fact that closed timelike curves (CTCs) are permitted by general relativity raises the question as to how quantum systems behave when time travel to the past occurs. Research into answering this question by utilizing the quantum circuit formalism has given rise to two theories: Deutschian-CTCs (D-CTCs) and "postselected" CTCs (P-CTCs). In this paper the quantum circuit approach is thoroughly reviewed, and the strengths and shortcomings of D-CTCs and P-CTCs are presented in view of their nonlinearity and time-travel paradoxes. In particular, the "equivalent circuit model"—which aims to make equivalent predictions to D-CTCs, while avoiding some of the difficulties of the original theory—is shown to contain errors. The discussion of D-CTCs and P-CTCs is used to motivate an analysis of the features one might require of a theory of quantum time travel, following which two overlapping classes of alternate theories are identified. One such theory, the theory of "transition probability" CTCs (T-CTCs), is fully developed. The theory of T-CTCs is shown not to have certain undesirable features—such as time-travel paradoxes, the ability to distinguish nonorthogonal states with certainty, and the ability to clone or delete arbitrary pure states—that are present with D-CTCs and P-CTCs. The problems with nonlinear extensions to quantum mechanics are discussed in relation to the interpretation of these theories, and the physical motivations of all three theories are discussed and compared.
Teaching Quantum Mechanics on an Introductory Level.
ERIC Educational Resources Information Center
Muller, Rainer; Wiesner, Hartmut
2002-01-01
Presents a new research-based course on quantum mechanics in which the conceptual issues of quantum mechanics are taught at an introductory level. Involves students in the discovery of how quantum phenomena deviate from classical everyday experiences. (Contains 31 references.) (Author/YDS)
Quantum mechanical effects from deformation theory
Much, A.
2014-02-15
We consider deformations of quantum mechanical operators by using the novel construction tool of warped convolutions. The deformation enables us to obtain several quantum mechanical effects where electromagnetic and gravitomagnetic fields play a role. Furthermore, a quantum plane can be defined by using the deformation techniques. This in turn gives an experimentally verifiable effect.
Fuzzy amplitude densities and stochastic quantum mechanics
NASA Astrophysics Data System (ADS)
Gudder, Stanley
1989-03-01
Fuzzy amplitude densities are employed to obtain probability distributions for measurements that are not perfectly accurate. The resulting quantum probability theory is motivated by the path integral formalism for quantum mechanics. Measurements that are covariant relative to a symmetry group are considered. It is shown that the theory includes traditional as well as stochastic quantum mechanics.
Propagators in polymer quantum mechanics
Flores-González, Ernesto Morales-Técotl, Hugo A. Reyes, Juan D.
2013-09-15
Polymer Quantum Mechanics is based on some of the techniques used in the loop quantization of gravity that are adapted to describe systems possessing a finite number of degrees of freedom. It has been used in two ways: on one hand it has been used to represent some aspects of the loop quantization in a simpler context, and, on the other, it has been applied to each of the infinite mechanical modes of other systems. Indeed, this polymer approach was recently implemented for the free scalar field propagator. In this work we compute the polymer propagators of the free particle and a particle in a box; amusingly, just as in the non polymeric case, the one of the particle in a box may be computed also from that of the free particle using the method of images. We verify the propagators hereby obtained satisfy standard properties such as: consistency with initial conditions, composition and Green’s function character. Furthermore they are also shown to reduce to the usual Schrödinger propagators in the limit of small parameter ?{sub 0}, the length scale introduced in the polymer dynamics and which plays a role analog of that of Planck length in Quantum Gravity. -- Highlights: •Formulas for propagators of free and particle in a box in polymer quantum mechanics. •Initial conditions, composition and Green’s function character is checked. •Propagators reduce to corresponding Schrödinger ones in an appropriately defined limit. •Results show overall consistency of the polymer framework. •For the particle in a box results are also verified using formula from method of images.
Quantum mechanical light harvesting mechanisms in photosynthesis
NASA Astrophysics Data System (ADS)
Scholes, Gregory
2012-02-01
More than 10 million billion photons of light strike a leaf each second. Incredibly, almost every red-coloured photon is captured by chlorophyll pigments and initiates steps to plant growth. Last year we reported that marine algae use quantum mechanics in order to optimize photosynthesis [1], a process essential to its survival. These and other insights from the natural world promise to revolutionize our ability to harness the power of the sun. In a recent review [2] we described the principles learned from studies of various natural antenna complexes and suggested how to utilize that knowledge to shape future technologies. We forecast the need to develop ways to direct and regulate excitation energy flow using molecular organizations that facilitate feedback and control--not easy given that the energy is only stored for a billionth of a second. In this presentation I will describe new results that explain the observation and meaning of quantum-coherent energy transfer. [4pt] [1] Elisabetta Collini, Cathy Y. Wong, Krystyna E. Wilk, Paul M. G. Curmi, Paul Brumer, and Gregory D. Scholes, ``Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature'' Nature 463, 644-648 (2010).[0pt] [2] Gregory D. Scholes, Graham R. Fleming, Alexandra Olaya-Castro and Rienk van Grondelle, ``Lessons from nature about solar light harvesting'' Nature Chem. 3, 763-774 (2011).
Quantum mechanics in complex systems
NASA Astrophysics Data System (ADS)
Hoehn, Ross Douglas
This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown. These nodes are spaced far enough from each other to minimized the electronic repulsion of the electrons, while still providing adequate enough attraction so as to bind the excess elections into orbitals. We have found that even with relativistic considerations these species are stably bound within the field. It was also found that performing the dimensional scaling calculations for systems within the confines of laser fields to be a much simpler and more cost-effective method than the supporting D=3 SCF method. The dimensional scaling method is general and can be extended to include relativistic corrections to describe the stability of simple molecular systems in super-intense laser fields. Chapter 3, we delineate the model, and aspects therein, of inelastic electron tunneling and map this model to the protein environment. G protein-coupled receptors (GPCRs) constitute a large family of receptors that sense molecules outside of a cell and activate signal transduction pathways inside the cell. Modeling how an agonist activates such a receptor is important for understanding a wide variety of physiological processes and it is of tremendous value for pharmacology and drug design. Inelastic electron tunneling spectroscopy (IETS) has been proposed as the mechanism by which olfactory GPCRs are activated by an encapsulated agonist. In this note we apply this notion to GPCRs within the mammalian nervous system using ab initio quantum chemical modeling. We found that non-endogenous agonists of the serotonin receptor share a singular IET spectral aspect both amongst each other and with the serotonin molecule: a peak that scales in intensity with the known agonist activities. We propose an experiential validation of this model by utilizing lysergic acid dimethylamide (DAM-57), an ergot derivative, and its isotopologues in which hydrogen atoms are replaced by deuterium. If validated our theory may provide new avenues for guided drug design and better in silico prediction of efficacies. Our final chapter, explores methods which may be explored to assist in the early instruction in quantum mechanics. The learning of quantum mechanics is contingent upon an understanding of the physical significance of the mathematics that one must perform. Concepts such as normalization, superposition, interference, probability amplitude and entanglement can prove challenging for the beginning student. This paper outlines several class exercises that use a non-classical version of tic-tac-toe to instruct several topics in an undergraduate quantum mechanics course. Quantum tic-tac-toe (QTTT) is a quantum analogue of classical tic-tac-toe (CTTT) benefiting from the use of superposition in movement, qualitative (and later quantitative) displays of entanglement and state collapse due to observation. QTTT can be used for the benefit of the students understanding in several other topics with the aid of proper discussion.
NASA Astrophysics Data System (ADS)
Moin, Syed Tarique; Hofer, Thomas S.; Weiss, Alexander K. H.; Rode, Bernd M.
2013-07-01
Ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) were successfully applied to Cu(II) embedded in water to elucidate structure and to understand dynamics of ligand exchange mechanism. From the simulation studies, it was found that using an extended large quantum mechanical region including two shells of hydration is required for a better description of the dynamics of exchanging water molecules. The structural features characterized by radial distribution function, angular distribution function and other analytical parameters were consistent with experimental data. The major outcome of this study was the dynamics of exchange mechanism and reactions in the first hydration shell that could not be studied so far. The dynamical data such as mean residence time of the first shell water molecules and other relevant data from the simulations are close to the results determined experimentally. Another major characteristic of hydrated Cu(II) is the Jahn-Teller distortion which was also successfully reproduced, leading to the final conclusion that the dominating aqua complex is a 6-coordinated species. The ab initio QMCF-MD formalism proved again its capabilities of unraveling even ambiguous properties of hydrated species that are far difficult to explore by any conventional quantum mechanics/molecular mechanics (QM/MM) approach or experiment.
Moin, Syed Tarique; Hofer, Thomas S.; Weiss, Alexander K. H.; Rode, Bernd M.
2013-07-07
Ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) were successfully applied to Cu(II) embedded in water to elucidate structure and to understand dynamics of ligand exchange mechanism. From the simulation studies, it was found that using an extended large quantum mechanical region including two shells of hydration is required for a better description of the dynamics of exchanging water molecules. The structural features characterized by radial distribution function, angular distribution function and other analytical parameters were consistent with experimental data. The major outcome of this study was the dynamics of exchange mechanism and reactions in the first hydration shell that could not be studied so far. The dynamical data such as mean residence time of the first shell water molecules and other relevant data from the simulations are close to the results determined experimentally. Another major characteristic of hydrated Cu(II) is the Jahn-Teller distortion which was also successfully reproduced, leading to the final conclusion that the dominating aqua complex is a 6-coordinated species. The ab initio QMCF-MD formalism proved again its capabilities of unraveling even ambiguous properties of hydrated species that are far difficult to explore by any conventional quantum mechanics/molecular mechanics (QM/MM) approach or experiment.
Mechanism for quantum speedup in open quantum systems
NASA Astrophysics Data System (ADS)
Liu, Hai-Bin; Yang, W. L.; An, Jun-Hong; Xu, Zhen-Yu
2016-02-01
The quantum speed limit (QSL) time for open system characterizes the most efficient response of the system to the environmental influences. Previous results showed that the non-Markovianity governs the quantum speedup. Via studying the dynamics of a dissipative two-level system, we reveal that the non-Markovian effect is only the dynamical way of the quantum speedup, while the formation of the system-environment bound states is the essential reason for the quantum speedup. Our attribution of the quantum speedup to the energy-spectrum character can supply another vital path for experiments when the quantum speedup shows up without any dynamical calculations. The potential experimental observation of our quantum speedup mechanism in the circuit QED system is discussed. Our results may be of both theoretical and experimental interest in exploring the ultimate QSL in realistic environments, and may open new perspectives for devising active quantum speedup devices.
Heisenberg and the Interpretation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Camilleri, Kristian
2009-02-01
Preface; 1. Introduction; Part I. The Emergence of Quantum Mechanics: 2. Quantum mechanics and the principle of observability; 3. The problem of interpretation; Part II. The Heisenberg-Bohr Dialogue: 4. The wave-particle duality; 5. Indeterminacy and the limits of classical concepts: the turning point in Heisenberg's thought; 6. Heisenberg and Bohr: divergent viewpoints of complementarity; Part III. Heisenberg's Epistemology and Ontology of Quantum Mechanics: 7. The transformation of Kantian philosophy; 8. The linguistic turn in Heisenberg's thought; Conclusion; References; Index.
Heisenberg and the Interpretation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Camilleri, Kristian
2011-09-01
Preface; 1. Introduction; Part I. The Emergence of Quantum Mechanics: 2. Quantum mechanics and the principle of observability; 3. The problem of interpretation; Part II. The Heisenberg-Bohr Dialogue: 4. The wave-particle duality; 5. Indeterminacy and the limits of classical concepts: the turning point in Heisenberg's thought; 6. Heisenberg and Bohr: divergent viewpoints of complementarity; Part III. Heisenberg's Epistemology and Ontology of Quantum Mechanics: 7. The transformation of Kantian philosophy; 8. The linguistic turn in Heisenberg's thought; Conclusion; References; Index.
Speakable and Unspeakable in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Bell, J. S.; Aspect, Introduction by Alain
2004-06-01
List of papers on quantum philosophy by J. S. Bell; Preface; Acknowledgements; Introduction by Alain Aspect; 1. On the problem of hidden variables in quantum mechanics; 2. On the Einstein-Rosen-Podolsky paradox; 3. The moral aspects of quantum mechanics; 4. Introduction to the hidden-variable question; 5. Subject and object; 6. On wave packet reduction in the Coleman-Hepp model; 7. The theory of local beables; 8. Locality in quantum mechanics: reply to critics; 9. How to teach special relativity; 10. Einstein-Podolsky-Rosen experiments; 11. The measurement theory of Everett and de Broglie's pilot wave; 12. Free variables and local causality; 13. Atomic-cascade photons and quantum-mechanical nonlocality; 14. de Broglie-Bohm delayed choice double-slit experiments and density matrix; 15. Quantum mechanics for cosmologists; 16. Bertlmann's socks and the nature of reality; 17. On the impossible pilot wave; 18. Speakable and unspeakable in quantum mechanics; 19. Beables for quantum field theory; 20. Six possible worlds of quantum mechanics; 21. EPR correlations and EPR distributions; 22. Are there quantum jumps?; 23. Against 'measurement'; 24. La Nouvelle cuisine.
NASA Astrophysics Data System (ADS)
Oss, Stefano; Rosi, Tommaso
2015-04-01
We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many reasons why quantum mechanical systems and phenomena are difficult both to teach and deeply understand. They are described by equations that are generally hard to visualize, and they often oppose the so-called "common sense" based on the human perception of the world, which is built on mental images such as locality and causality. Moreover students cannot have direct experience of those systems and solutions, and generally do not even have the possibility to refer to pictures, videos, or experiments to fill this gap. Teachers often encounter quite serious troubles in finding out a sensible way to speak about the wonders of quantum physics at the high school level, where complex formalisms are not accessible at all. One should however consider that this is quite a common issue in physics and, more generally, in science education. There are plenty of natural phenomena whose models (not only at microscopic and atomic levels) are of difficult, if not impossible, visualization. Just think of certain kinds of waves, fields of forces, velocities, energy, angular momentum, and so on. One should also notice that physical reality is not the same as the images we make of it. Pictures (formal, abstract ones, as well as artists' views) are a convenient bridge between these two aspects.
BOOK REVIEWS: Quantum Mechanics: Fundamentals
NASA Astrophysics Data System (ADS)
Whitaker, A.
2004-02-01
This review is of three books, all published by Springer, all on quantum theory at a level above introductory, but very different in content, style and intended audience. That of Gottfried and Yan is of exceptional interest, historical and otherwise. It is a second edition of Gottfriedâ€™s well-known book published by Benjamin in 1966. This was written as a text for a graduate quantum mechanics course, and has become one of the most used and respected accounts of quantum theory, at a level mathematically respectable but not rigorous. Quantum mechanics was already solidly established by 1966, but this second edition gives an indication of progress made and changes in perspective over the last thirty-five years, and also recognises the very substantial increase in knowledge of quantum theory obtained at the undergraduate level. Topics absent from the first edition but included in the second include the Feynman path integral, seen in 1966 as an imaginative but not very useful formulation of quantum theory. Feynman methods were given only a cursory mention by Gottfried. Their practical importance has now been fully recognised, and a substantial account of them is provided in the new book. Other new topics include semiclassical quantum mechanics, motion in a magnetic field, the S matrix and inelastic collisions, radiation and scattering of light, identical particle systems and the Dirac equation. A topic that was all but totally neglected in 1966, but which has flourished increasingly since, is that of the foundations of quantum theory. John Bellâ€™s work of the mid-1960s has led to genuine theoretical and experimental achievement, which has facilitated the development of quantum optics and quantum information theory. Gottfriedâ€™s 1966 book played a modest part in this development. When Bell became increasingly irritated with the standard theoretical approach to quantum measurement, Viki Weisskopf repeatedly directed him to Gottfriedâ€™s book. Gottfried had devoted a chapter of his book to these matters, titled â€˜The Measurement Process and the Statistical Interpretation of Quantum Mechanicsâ€™. Gottfried considered the von Neumann or Dirac â€˜collapse of state-vectorâ€™ (or â€˜reduction postulateâ€™ or â€˜projection postulateâ€™) was unsatisfactory, as he argued that it led inevitably to the requirement to include â€˜consciousnessâ€™ in the theory. He replaced this by a more mathematically and conceptually sophisticated treatment in which, following measurement, the density matrix of the correlated measured and measuring systems, rho, is replaced by hat rho, in which the interference terms from rho have been removed. rho represents a pure state, and hat rho a mixture, but Gottfried argued that they are â€˜indistinguishableâ€™, and that we may make our replacement, â€˜safe in the knowledge that the error will never be foundâ€™. Now our combined state is represented as a mixture, it is intuitive, Gottfried argued, to interpret it in a probabilistic way, |cm|2 being the probability of obtaining the mth measurement result. Bell liked Gottfriedâ€™s treatment little more than the cruder â€˜collapseâ€™ idea of von Neumann, and when, shortly before Bellâ€™s death, his polemical article â€˜Against measurementâ€™ was published in the August 1990 issue of Physics World (pages 33-40), his targets included, not only Landau and Lifshitzâ€™s classic Quantum Mechanics, pilloried for its advocacy of old-fashioned collapse, and a paper by van Kampen in Physica, but also Gottfriedâ€™s approach. Bell regarded his replacement of rho by hat rho as a â€˜butcheringâ€™ of the density matrix, and considered, in any case, that even the butchered density matrix should represent co-existence of different terms, not a set of probabilities. Gottfried has replied to Bell ( Physics World, October 1991, pages 34-40; Nature 405, 533-36 (2000)). He has also become a major commentator on Bellâ€™s work, for example editing the section on quantum foundations in the World Scientific edition of Bellâ€™s collected works. Thus it is exceedingly interesting to discover how he has responded to Bellâ€™s criticisms in the new edition of the book. To commence with general discussion of the new book, the authors recognise that the graduate student of today almost certainly has substantial experience of wave mechanics, and is probably familiar with the Dirac formalism. The 1966 edition had what seems, at least in retrospect, a relatively soft opening covering the basic ideas of wave mechanics and a substantial number of applications; it did not reach the Dirac formalism in the first two hundred pages, though it then moved on to tackle rather advanced topics, including a very substantial section on symmetries, which tackled a range of sophisticated issues. The new edition has been almost entirely rewritten; even at the level of basic text, it is difficult to trace sentences or paragraphs that have moved unscathed from one edition to the next. As well as the new topics, many of the old ones are discussed in much greater depth, and the general organisation is entirely different. As compared with the steady rise in level of the 1966 edition, the level of this book is fairly consistent throughout, and from the perspective of a beginning graduate student, I would estimate, a little tough. A brief introductory chapter gives a useful, though not particularly straightforward, discussion of complementarity, uncertainty and superposition, and concludes with an informative though very short summary of the discovery of quantum mechanics, together with a few nice photographs of some of its founders. There follow two substantial chapters which are preparation for the later study of actual systems. The first, called â€˜The Formal Frameworkâ€™ is a fairly comprehensive survey of the methods of quantum theory---Hilbert space, Dirac notation, mixtures, the density matrix, entanglement, canonical quantization, equations of motion, symmetries, conservation laws, propagators, Greenâ€™s functions, semiclassical quantum mechanics. The level of mathematical rigour is stated as â€˜typical of the bulk of theoretical physics literature---slovenlyâ€™; those unhappy with this are directed to the well-known books of Jordan and Thirring. The next chapter---â€˜Basic Toolsâ€™---explains a set of topics which students will need to use when studying particular systems---angular momentum and its addition, free particles, the two-body system, and the standard approximation techniques. There follow chapters on low-dimensional systems---harmonic oscillator, Aharanov--Bohm effect, one-dimensional scattering, WKB and so on; hydrogenic atoms---the Kepler problem, fine and hyperfine structure, Zeeman and Stark effects; and on two-electron atoms---spin and statistics. As in the first edition, there is a substantial treatment of symmetries, including time reversal, Galileo transformations, the rotation group, the Wigner-Eckart theorem and the Berry phase. There are two long chapters on scattering---elastic and inelastic respectively, including an account of the S matrix. The treatment of electrodynamics is much extended and modernised compared to that in the first edition. There are discussions of the quantization of the free field, causality and uncertainty in electrodynamics, vacuum fluctuations including the Casimir effect and the Lamb shift, and radiative transitions. There is a treatment of quantum optics, but this a only a brief introduction to a rapidly expanding subject, designed to facilitate understanding of the experiments on Bellâ€™s inequalities discussed in the later chapter on interpretation. Other topics are the photoeffect in hydrogen, scattering of photons, resonant scattering and spontaneous decay. Identical particles are discussed, with a treatment of second quantization and an introduction to Bose--Einstein condensation, and the last chapter is a brief introduction to relativistic quantum mechanics, including the Dirac equation, the electromagnetic interaction of a Dirac particle, the scattering of ultra-relativistic electrons and a treatment of bound states in a Coulomb field. Gottfried and Yanâ€™s response both to the growing interest in work on foundational matters in general, and to the specific criticism of Bell on the previous edition is included in the chapter entitled `Interpretation'. This chapter appears to be something of a hybrid. The first four sections broadly discuss hidden variables. An account of the Einstein--Podolsky--Rosen approach is followed by a general study of hidden variables, including a discussion of what the authors call the Bell--Kochen--Specker theorem. Bellâ€™s theorem is analysed in some detail; also included are the Clauser--Horne inequality and the experimental test of the Bell inequality by Aspect. There is an interesting discussion of locality. Granted that both quantum mechanics and experiment (the latter admittedly with a remaining loophole) are in conflict with what the authors call a classical conception of locality as embodied in the Bell inequality, they ask whether quantum mechanics is actually non-local if one uses a definition of locality entailing no ingredients unknown to quantum mechanics. Their answer is that it is a matter of taste. In the statistical distribution of measurement outcomes on separate systems in entangled states, there is no hint of non-locality and no question of superluminal signalling. But quantum mechanics displays perfect correlations between distant outcomes, even though Bellâ€™s theorem demonstrates that pre-existing values cannot be assumed. The second part of this chapter is a discussion of the measurement procedure similar to that in the first edition. The authors aim to show how measurement results are obtained and displayed, and how the appropriate probabilities are determined. The expression of this intention, however, is accompanied by the statement that they are not attempting to derive the statistical interpretation of quantum mechanics, which is assumed, but to examine whether it gives a consistent account of measurement. The conclusion is that after a measurement, interference terms are â€˜effectivelyâ€™ absent; the set of â€˜one-to-one correlations between states of the apparatus and the objectâ€™ has the same form as that of everyday statistics and is thus a probability distribution. This probability distribution refers to potentialities, only one of which is actually realized in any one trial. Opinions may differ on whether their treatment is any less vulnerable to criticisms such as those of Bell. To sum up, Gottfried and Yanâ€™s book contains a vast amount of knowledge and understanding. As well as explaining the way in which quantum theory works, it attempts to illuminate fundamental aspects of the theory. A typical example is the â€˜fableâ€™ elaborated in Gottfriedâ€™s article in Nature cited above, that if Newton were shown Maxwellâ€™s equations and the Lorentz force law, he could deduce the meaning of E and B, but if Maxwell were shown SchrÃ¶dingerâ€™s equation, he could not deduce the meaning of Psi. For use with a well-constructed course (and, of course, this is the avowed purpose of the book; a useful range of problems is provided for each chapter), or for the relative expert getting to grips with particular aspects of the subject or aiming for a deeper understanding, the book is certainly ideal. It might be suggested, though, that, even compared to the first edition, the isolated learner might find the wide range of topics, and the very large number of mathematical and conceptual techniques, introduced in necessarily limited space, somewhat overwhelming. The second book under consideration, that of Schwabl, contains â€˜Advancedâ€™ elements of quantum theory; it is designed for a course following on from one for which Gottfried and Yan, or Schwablâ€™s own `Quantum Mechanics' might be recommended. It is the second edition in English, and is a translation of the third German edition. It has a restricted range of general topics, and consists of three parts entitled `Nonrelativistic Many-Particle Systems', `Relativistic Wave Equations', and `Relativistic Fields'. Thus it studies in some depth areas of physics which are either dealt with in an introductory fashion, or not reached at all, by Gottfried and Yan. Despite its more advanced level, this book may actually be the more accessible to an isolated learner, because the various aspects are developed in an unhurried fashion; the author remarks that â€˜the inclusion of all mathematical steps and full presentation of intermediate calculations ensures ease of understandingâ€™. Many useful student problems are included. The presentation is said to be rigorous, but again this is a book for the physicist rather than the mathematician. The treatment of many-particle systems begins with a rather general introduction to second quantization, and then applies this formalism to spin-1/2 fermions and bosons. The study of fermions includes consideration of the Fermi sphere, the electron gas, and the Hartree--Fock equations for atoms; that of bosons includes Bose--Einstein condensation, Bogoliubov theory of the weakly interacting Bose gas, and a brief account of superfluidity. The last section of this part of the book investigates in detail the dynamics of many-particle systems on a microscopic quantum-mechanical basis using, in particular, the dynamical correlation functions. In the second part which considers relativistic wave equations, the Klein--Gordon and Dirac equations are derived, and the Lorentz covariance of the Dirac equation is established. The role of angular momentum in relativistic quantum mechanics is explained, as a preliminary to the study of the energy levels in a Coulomb potential using both the Klein--Gordon and Dirac equations, the latter being solved exactly for the hydrogen atom. For larger atoms, the Foldy--Wouthuysen transformation is explained, and also relativistic corrections and the Lamb shift. There is an interesting chapter on the physical interpretation of the Dirac equation, including such topics as the negative energy solutions, the Zitterbewegung and the Klein paradox. The last chapter in this part of the book is an extensive treatment of the symmetries and other properties of the Dirac equation, including the behaviour under rotation, translation, reflection, charge conjugation and time reversal. Helicity is explained, and the behaviour of zero-mass fermions is discussed; even though it now seems certain that neutrinos do not have zero-mass, this treatment provides a good approximation to their behaviour if they have high enough momenta. The last section on relativistic fields contains chapters on the quantization of relativistic fields, the free Klein--Gordon and Dirac fields, quantization of the radiation field, interacting fields and quantum electrodynamics, including the S matrix, Wickâ€™s theorem and Feynman diagrams. Schwablâ€™s book would be excellent for those requiring a detailed presentation of the topics it includes, at a level of rigour appropriate to the physicist. It includes a substantial number of interesting problems. The third book under consideration, that by Gustafson and Sigal is very different from the others. In academic level, at least the initial sections may actually be slightly lower; the book covers a one-term course taken by senior undergraduates or junior graduate students in mathematics or physics, and the initial chapters are on basic topics, such as the physical background, basic dynamics, observables and the uncertainty principle. However the level of mathematical sophistication is far higher than in the other books. While the mathematical prerequisites are modest---real and complex analysis, elementary differential equations and preferably Lebesgue integration, a third of the book is made up of what are called mathematical supplements---on operator adjoints, the Fourier transform, tensor products, the trace and trace class operators, the Trotter product formula, operator determinants, the calculus of variations (a substantial treatment in a full chapter), spectral projections, and the projecting-out procedure. On the basis of these supplements, the level of mathematical sophistication and difficulty is increased substantially in the middle section of the book, where the topics considered are many-particle systems, density matrices, positive temperatures, the Feynman path integral, and quasi-classical analysis, and there is a final substantial step for the concluding chapters on resonances, an introduction to quantum field theory, and quantum electrodynamics of non-relativistic particles. A supplementary chapter contains an interesting approach to the remormalization group due to Bach, FrÃ¶hlich and Sigal himself. This book is well-written, and the topics discussed have been well thought-out. It would provide a useful approach to quantum theory for the mathematician, and would also provide access for the physicist to some mathematically advanced methods and topics, but the physicist would definitely have to be prepared to work hard at the mathematics required.
Quantum mechanics: A new chapter?
NASA Astrophysics Data System (ADS)
Hofer, Werner A.
2012-12-01
We review the conceptual problems in quantum mechanics on a fundamental level. It is shown that the proposed model of extended electrons and a clear understanding of rotations in three dimensional space solve a large part of these problems, in particular the problems related to the ontological status and physical meaning of wavefunctions. It also solves the problem of non-locality. The experimental results obtained in Yves Couder's group and theoretical results by Gerdard GrÃ¶ssing indicate that the wave-like distribution of trajectories of electrons in interference experiments are most likely due to the quantized interactions leading to a discrete set of transferred momenta. A separate experimental confirmation of this interpretation for double-slit interferometry of photons has been given by the group of Steinberg.
PT-symmetric quantum mechanics
Bender, C.M.; Boettcher, S.; Meisinger, P.N.
1999-05-01
This paper proposes to broaden the canonical formulation of quantum mechanics. Ordinarily, one imposes the condition H{sup {dagger}}=H on the Hamiltonian, where {dagger} represents the mathematical operation of complex conjugation and matrix transposition. This conventional Hermiticity condition is sufficient to ensure that the Hamiltonian {ital H} has a real spectrum. However, replacing this mathematical condition by the weaker and more physical requirement H{sup {double_dagger}}=H, where {double_dagger} represents combined parity reflection and time reversal PT, one obtains new classes of complex Hamiltonians whose spectra are still real and positive. This generalization of Hermiticity is investigated using a complex deformation H=p{sup 2}+x{sup 2}(ix){sup {epsilon}} of the harmonic oscillator Hamiltonian, where {epsilon} is a real parameter. The system exhibits two phases: When {epsilon}{ge}0, the energy spectrum of {ital H} is real and positive as a consequence of PT symmetry. However, when {minus}1{lt}{epsilon}{lt}0, the spectrum contains an infinite number of complex eigenvalues and a finite number of real, positive eigenvalues because PT symmetry is spontaneously broken. The phase transition that occurs at {epsilon}=0 manifests itself in both the quantum-mechanical system and the underlying classical system. Similar qualitative features are exhibited by complex deformations of other standard real Hamiltonians H=p{sup 2}+x{sup 2N}(ix){sup {epsilon}} with {ital N} integer and {epsilon}{gt}{minus}N; each of these complex Hamiltonians exhibits a phase transition at {epsilon}=0. These PT-symmetric theories may be viewed as analytic continuations of conventional theories from real to complex phase space. {copyright} {ital 1999 American Institute of Physics.}
Quantum Mechanics with a Little Less Mystery
ERIC Educational Resources Information Center
Cropper, William H.
1969-01-01
Suggests the "route of the inquiring mind in presenting the esoteric quantum mechanical postulates and concepts in an understandable form. Explains that the quantum mechanical postulates are but useful mathematical forms to express thebroader principles of superposition and correspondence. Briefly describes some of the features which makes the…
Pseudospectra in non-Hermitian quantum mechanics
NASA Astrophysics Data System (ADS)
KrejÄiÅ™Ãk, D.; Siegl, P.; Tater, M.; Viola, J.
2015-10-01
We propose giving the mathematical concept of the pseudospectrum a central role in quantum mechanics with non-Hermitian operators. We relate pseudospectral properties to quasi-Hermiticity, similarity to self-adjoint operators, and basis properties of eigenfunctions. The abstract results are illustrated by unexpected wild properties of operators familiar from PT -symmetric quantum mechanics.
Polymer quantum mechanics and its continuum limit
Corichi, Alejandro; Vukasinac, Tatjana; Zapata, Jose A.
2007-08-15
A rather nonstandard quantum representation of the canonical commutation relations of quantum mechanics systems, known as the polymer representation, has gained some attention in recent years, due to its possible relation with Planck scale physics. In particular, this approach has been followed in a symmetric sector of loop quantum gravity known as loop quantum cosmology. Here we explore different aspects of the relation between the ordinary Schroedinger theory and the polymer description. The paper has two parts. In the first one, we derive the polymer quantum mechanics starting from the ordinary Schroedinger theory and show that the polymer description arises as an appropriate limit. In the second part we consider the continuum limit of this theory, namely, the reverse process in which one starts from the discrete theory and tries to recover back the ordinary Schroedinger quantum mechanics. We consider several examples of interest, including the harmonic oscillator, the free particle, and a simple cosmological model.
Hasegawa, Jun-ya; Yanai, Kazuma; Ishimura, Kazuya
2015-01-01
Intermolecular interactions regulate the molecular properties in proteins and solutions such as solvatochromic systems. Some of the interactions have to be described at an electronic-structure level. In this study, a commutator for calculating the excitation energy is used for deriving a first-order interacting space (FOIS) to describe the environmental response to solute excitation. The FOIS wave function for a solute-in-solvent cluster is solved by second-order perturbation theory. The contributions to the excitation energy are decomposed into each interaction and for each solvent. PMID:25393373
The transactional interpretation of quantum mechanics
NASA Astrophysics Data System (ADS)
Cramer, John G.
1986-07-01
The interpretational problems of quantum mechanics are considered. The way in which the standard Copenhagen interpretation of quantum mechanics deals with these problems is reviewed. A new interpretation of the formalism of quantum mechanics, the transactional interpretation, is presented. The basic element of this interpretation is the transaction describing a quantum event as an exchange of advanced and retarded waves, as implied by the work of Wheeler and Feynman, Dirac, and others. The transactional interpretation is explicitly nonlocal and thereby consistent with recent tests of the Bell inequality, yet is relativistically invariant and fully causal. A detailed comparison of the transactional and Copenhagen interpretations is made in the context of well-known quantum-mechanical Gedankenexperimente and "paradoxes." The transactional interpretation permits quantum-mechanical wave functions to be interpreted as real waves physically present in space rather than as "mathematical representations of knowledge" as in the Copenhagen interpretation. The transactional interpretation is shown to provide insight into the complex character of the quantum-mechanical state vector and the mechanism associated with its "collapse." It also leads in a natural way to justification of the Heisenberg uncertainty principle and the Born probability law (P=ÏˆÏˆ*), basic elements of the Copenhagen interpretation.
Strange Bedfellows: Quantum Mechanics and Data Mining
Weinstein, Marvin; /SLAC
2009-12-16
Last year, in 2008, I gave a talk titled Quantum Calisthenics. This year I am going to tell you about how the work I described then has spun off into a most unlikely direction. What I am going to talk about is how one maps the problem of finding clusters in a given data set into a problem in quantum mechanics. I will then use the tricks I described to let quantum evolution lets the clusters come together on their own.
Consistency of PT-symmetric quantum mechanics
NASA Astrophysics Data System (ADS)
Brody, Dorje C.
2016-03-01
In recent reports, suggestions have been put forward to the effect that parity and time-reversal (PT) symmetry in quantum mechanics is incompatible with causality. It is shown here, in contrast, that PT-symmetric quantum mechanics is fully consistent with standard quantum mechanics. This follows from the surprising fact that the much-discussed metric operator on Hilbert space is not physically observable. In particular, for closed quantum systems in finite dimensions there is no statistical test that one can perform on the outcomes of measurements to determine whether the Hamiltonian is Hermitian in the conventional sense, or PT-symmetricâ€”the two theories are indistinguishable. Nontrivial physical effects arising as a consequence of PT symmetry are expected to be observed, nevertheless, for open quantum systems with balanced gain and loss.
Stretched DNA Investigated Using Molecular-Dynamics and Quantum-Mechanical Calculations
Å˜ezÃ¡Ä, Jan; Hobza, Pavel; Harris, Sarah A.
2010-01-01
Abstract We combined atomistic molecular-dynamics simulations with quantum-mechanical calculations to investigate the sequence dependence of the stretching behavior of duplex DNA. Our combined quantum-mechanical/molecular-mechanical approach demonstrates that molecular-mechanical force fields are able to describe both the backbone and base-base interactions within the highly distorted nucleic acid structures produced by stretching the DNA from the 5â€² ends, which include conformations containing disassociated basepairs, just as well as these force fields describe relaxed DNA conformations. The molecular-dynamics simulations indicate that the force-induced melting pathway is sequence-dependent and is influenced by the availability of noncanonical hydrogen-bond interactions that can assist the disassociation of the DNA basepairs. The biological implications of these results are discussed. PMID:20074515
Quantum mechanics and the generalized uncertainty principle
Bang, Jang Young; Berger, Micheal S.
2006-12-15
The generalized uncertainty principle has been described as a general consequence of incorporating a minimal length from a theory of quantum gravity. We consider a simple quantum mechanical model where the operator corresponding to position has discrete eigenvalues and show how the generalized uncertainty principle results for minimum uncertainty wave packets.
Fundamental Quantum Mechanics--A Graphic Presentation
ERIC Educational Resources Information Center
Wise, M. N.; Kelley, T. G.
1977-01-01
Describes a presentation of basic quantum mechanics for nonscience majors that relies on a computer-generated graphic display to circumvent the usual mathematical difficulties. It allows a detailed treatment of free-particle motion in a wave picture. (MLH)
Quantum mechanical streamlines. I - Square potential barrier
NASA Technical Reports Server (NTRS)
Hirschfelder, J. O.; Christoph, A. C.; Palke, W. E.
1974-01-01
Exact numerical calculations are made for scattering of quantum mechanical particles hitting a square two-dimensional potential barrier (an exact analog of the Goos-Haenchen optical experiments). Quantum mechanical streamlines are plotted and found to be smooth and continuous, to have continuous first derivatives even through the classical forbidden region, and to form quantized vortices around each of the nodal points. A comparison is made between the present numerical calculations and the stationary wave approximation, and good agreement is found between both the Goos-Haenchen shifts and the reflection coefficients. The time-independent Schroedinger equation for real wavefunctions is reduced to solving a nonlinear first-order partial differential equation, leading to a generalization of the Prager-Hirschfelder perturbation scheme. Implications of the hydrodynamical formulation of quantum mechanics are discussed, and cases are cited where quantum and classical mechanical motions are identical.
Quantum mechanical stabilization of Minkowski signature wormholes
Visser, M.
1989-05-19
When one attempts to construct classical wormholes in Minkowski signature Lorentzian spacetimes violations of both the weak energy hypothesis and averaged weak energy hypothesis are encountered. Since the weak energy hypothesis is experimentally known to be violated quantum mechanically, this suggests that a quantum mechanical analysis of Minkowski signature wormholes is in order. In this note I perform a minisuperspace analysis of a simple class of Minkowski signature wormholes. By solving the Wheeler-de Witt equation for pure Einstein gravity on this minisuperspace the quantum mechanical wave function of the wormhole is obtained in closed form. The wormhole is shown to be quantum mechanically stabilized with an average radius of order the Planck length. 8 refs.
Student Difficulties in Learning Quantum Mechanics.
ERIC Educational Resources Information Center
Johnston, I. D.; Crawford, K.; Fletcher, P. R.
1998-01-01
Reports on a preliminary project that uses a phenomenographic approach to explore the ways in which a small number of fundamental ideas are conceptualized by students who are judged to have mastered quantum mechanics material. (DDR)
Supersymmetric q-deformed quantum mechanics
Traikia, M. H.; Mebarki, N.
2012-06-27
A supersymmetric q-deformed quantum mechanics is studied in the weak deformation approximation of the Weyl-Heisenberg algebra. The corresponding supersymmetric q-deformed hamiltonians and charges are constructed explicitly.
Intrusion Detection with Quantum Mechanics: A Photonic Quantum Fence
Humble, Travis S; Bennink, Ryan S; Grice, Warren P; Owens, Israel J
2008-01-01
We describe the use of quantum-mechanically entangled photons for sensing intrusions across a physical perimeter. Our approach to intrusion detection uses the no-cloning principle of quantum information science as protection against an intruder s ability to spoof a sensor receiver using a classical intercept-resend attack. We explore the bounds on detection using quantum detection and estimation theory, and we experimentally demonstrate the underlying principle of entanglement-based detection using the visibility derived from polarization-correlation measurements.
Uncertainty in quantum mechanics: faith or fantasy?
Penrose, Roger
2011-12-13
The word 'uncertainty', in the context of quantum mechanics, usually evokes an impression of an essential unknowability of what might actually be going on at the quantum level of activity, as is made explicit in Heisenberg's uncertainty principle, and in the fact that the theory normally provides only probabilities for the results of quantum measurement. These issues limit our ultimate understanding of the behaviour of things, if we take quantum mechanics to represent an absolute truth. But they do not cause us to put that very 'truth' into question. This article addresses the issue of quantum 'uncertainty' from a different perspective, raising the question of whether this term might be applied to the theory itself, despite its unrefuted huge success over an enormously diverse range of observed phenomena. There are, indeed, seeming internal contradictions in the theory that lead us to infer that a total faith in it at all levels of scale leads us to almost fantastical implications. PMID:22042902
Macroscopic quantum mechanics in a classical spacetime.
Yang, Huan; Miao, Haixing; Lee, Da-Shin; Helou, Bassam; Chen, Yanbei
2013-04-26
We apply the many-particle Schrödinger-Newton equation, which describes the coevolution of a many-particle quantum wave function and a classical space-time geometry, to macroscopic mechanical objects. By averaging over motions of the objects' internal degrees of freedom, we obtain an effective Schrödinger-Newton equation for their centers of mass, which can be monitored and manipulated at quantum levels by state-of-the-art optomechanics experiments. For a single macroscopic object moving quantum mechanically within a harmonic potential well, its quantum uncertainty is found to evolve at a frequency different from its classical eigenfrequency-with a difference that depends on the internal structure of the object-and can be observable using current technology. For several objects, the Schrödinger-Newton equation predicts semiclassical motions just like Newtonian physics, yet quantum uncertainty cannot be transferred from one object to another. PMID:23679686
Macroscopic Quantum Mechanics, Tunnelling, and Classical Gravity
NASA Astrophysics Data System (ADS)
Good, Deborah C.; McLain, Marie A. P.; Carr, Lincoln D.
2014-03-01
Macroscopic quantum mechanics is an active area of experimental research, which could benefit from understanding the effects of gravitational interactions in tunnelling. The SchrÃ¶dinger-Newton equation is one method for describing Newtonian gravitational interactions in quantum mechanics. While the SchrÃ¶dinger-Newton equation has been thoroughly described for the single-particle case, there are still open questions in the many-body case. Therefore, we investigate semi-classical solutions to the SchrÃ¶dinger-Newton equation for the many-body quantum tunnelling case using a variational-WKB method.
Classical explanations of results of quantum mechanics
NASA Astrophysics Data System (ADS)
Giese, Albrecht
2015-09-01
We present a particle model which was developed to explain special relativity by classical means. This model is also able to account for physical processes that are normally attributed to quantum mechanics. The model is able to describe several well-known QM processes by means of classical calculations, making them accessible to the imagination. An essential difference compared with the Standard Model of present-day particle physics is the fact that, in the model presented, particles are viewed as being extended rather than point-like. In addition, the strong force is shown to be the universal force operating in all particles. Also, the photon, which quantum mechanics views as being nothing but a quantum of energy, can be understood to have an internal structure. The model presented here is not merely a different way of explaining physics with similar results; in contrast to quantum mechanics, it has the ability to provide deeper insights into physical processes.
Conformal quantum mechanics and holographic quench
NASA Astrophysics Data System (ADS)
JÃ¤rvelÃ¤, Jarkko; KerÃ¤nen, Ville; Keski-Vakkuri, Esko
2016-02-01
Recently, there has been much interest in holographic computations of two-point nonequilibrium Green functions from anti-de Sitter- (AdS-)Vaidya backgrounds. In the strongly coupled quantum field theory on the boundary, the dual interpretation of the background is an equilibration process called a holographic quench. The two-dimensional AdS-Vaidya spacetime is a special case, dual to conformal quantum mechanics. We study how the quench is incorporated into a Hamiltonian H +Î¸ (t )Î” H and into correlation functions. With the help of recent work on correlation functions in conformal quantum mechanics, we first rederive the known two-point functions, and then compute nonequilibrium three- and four-point functions. We also compute the three-point function Witten diagram in the two-dimensional AdS-Vaidya background, and find agreement with the conformal quantum mechanics result.
ERIC Educational Resources Information Center
Oss, Stefano; Rosi, Tommaso
2015-01-01
We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are manyâ€¦
ERIC Educational Resources Information Center
Oss, Stefano; Rosi, Tommaso
2015-01-01
We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many…
Quantum Mechanics, Spacetime Locality, and Gravity
NASA Astrophysics Data System (ADS)
Nomura, Yasunori
2013-08-01
Quantum mechanics introduces the concept of probability at the fundamental level, yielding the measurement problem. On the other hand, recent progress in cosmology has led to the "multiverse" picture, in which our observed universe is only one of the many, bringing an apparent arbitrariness in defining probabilities, called the measure problem. In this paper, we discuss how these two problems are related with each other, developing a picture for quantum measurement and cosmological histories in the quantum mechanical universe. In order to describe the cosmological dynamics correctly within the full quantum mechanical context, we need to identify the structure of the Hilbert space for a system with gravity. We argue that in order to keep spacetime locality, the Hilbert space for dynamical spacetime must be defined only in restricted spacetime regions: in and on the (stretched) apparent horizon as viewed from a fixed reference frame. This requirement arises from eliminating all the redundancies and overcountings in a general relativistic, global spacetime description of nature. It is responsible for horizon complementarity as well as the "observer dependence" of horizons/spacetime—these phenomena arise to represent changes of the reference frame in the relevant Hilbert space. This can be viewed as an extension of the Poincaré transformation in the quantum gravitational context. Given an initial condition, the evolution of the multiverse state obeys the laws of quantum mechanics—it evolves deterministically and unitarily. The beginning of the multiverse, however, is still an open issue.
Nonrelativistic Quantum Mechanics with Fundamental Environment
NASA Astrophysics Data System (ADS)
Gevorkyan, Ashot S.
2011-03-01
Spontaneous transitions between bound states of an atomic system, "Lamb Shift" of energy levels and many other phenomena in real nonrelativistic quantum systems are connected within the influence of the quantum vacuum fluctuations ( fundamental environment (FE)) which are impossible to consider in the limits of standard quantum-mechanical approaches. The joint system "quantum system (QS) + FE" is described in the framework of the stochastic differential equation (SDE) of Langevin-Schrödinger (L-Sch) type, and is defined on the extended space R 3 ? R { ?}, where R 3 and R { ?} are the Euclidean and functional spaces, respectively. The density matrix for single QS in FE is defined. The entropy of QS entangled with FE is defined and investigated in detail. It is proved that as a result of interaction of QS with environment there arise structures of various topologies which are a new quantum property of the system.
Levitated Quantum Nano-Magneto-Mechanical Systems
NASA Astrophysics Data System (ADS)
Cirio, Mauro; Twamley, Jason; Brennen, Gavin K.; Milburn, Gerard J.
2011-03-01
Quantum nanomechanical sysems have attracted much attention as they provide new macroscopic platforms for the study of quantum mechanics but may also have applications in ultra-sensitive sensing, high precision measurements and in quantum computing. In this work we study the control and cooling of a quantum nanomechanical system which is magnetically levitated via the Meissner effect. Supercurrents in nano-sized superconducting loops give rise to a motional restoring force (trap), when placed in an highly inhomogenous magnetic field and can yield complete trapping of all translational and rotational motions of the levitated nano-object with motional oscillation frequencies ? ~ 10 - 100 MHz. As the supercurrents experience little damping this system will possess unprecendented motional quality factors, with Qmotion ~109 -1013 , and motional superposition states may remain coherent for days. We describe how to execute sideband cooling through inductive coupling to a nearby flux qubit, cooling the mechanical motion close to the ground state.
Measurements and mathematical formalism of quantum mechanics
NASA Astrophysics Data System (ADS)
Slavnov, D. A.
2007-03-01
A scheme for constructing quantum mechanics is given that does not have Hilbert space and linear operators as its basic elements. Instead, a version of algebraic approach is considered. Elements of a noncommutative algebra (observables) and functionals on this algebra (elementary states) associated with results of single measurements are used as primary components of the scheme. On the one hand, it is possible to use within the scheme the formalism of the standard (Kolmogorov) probability theory, and, on the other hand, it is possible to reproduce the mathematical formalism of standard quantum mechanics, and to study the limits of its applicability. A short outline is given of the necessary material from the theory of algebras and probability theory. It is described how the mathematical scheme of the paper agrees with the theory of quantum measurements, and avoids quantum paradoxes.
Optimal guidance law in quantum mechanics
Yang, Ciann-Dong Cheng, Lieh-Lieh
2013-11-15
Following de Broglieâ€™s idea of a pilot wave, this paper treats quantum mechanics as a problem of stochastic optimal guidance law design. The guidance scenario considered in the quantum world is that an electron is the flight vehicle to be guided and its accompanying pilot wave is the guidance law to be designed so as to guide the electron to a random target driven by the Wiener process, while minimizing a cost-to-go function. After solving the stochastic optimal guidance problem by differential dynamic programming, we point out that the optimal pilot wave guiding the particleâ€™s motion is just the wavefunction Î¨(t,x), a solution to the SchrÃ¶dinger equation; meanwhile, the closed-loop guidance system forms a complex stateâ€“space dynamics for Î¨(t,x), from which quantum operators emerge naturally. Quantum trajectories under the action of the optimal guidance law are solved and their statistical distribution is shown to coincide with the prediction of the probability density function Î¨{sup âˆ—}Î¨. -- Highlights: â€¢Treating quantum mechanics as a pursuit-evasion game. â€¢Reveal an interesting analogy between guided flight motion and guided quantum motion. â€¢Solve optimal quantum guidance problem by dynamic programming. â€¢Gives a formal proof of de Broglieâ€“Bohmâ€™s idea of a pilot wave. â€¢The optimal pilot wave is shown to be a wavefunction solved from SchrÃ¶dinger equation.
Hot Fluids and Nonlinear Quantum Mechanics
NASA Astrophysics Data System (ADS)
Mahajan, Swadesh M.; Asenjo, Felipe A.
2014-09-01
A hot relativistic fluid is viewed as a collection of quantum objects that represent interacting elementary particles. We present a conceptual framework for deriving nonlinear equations of motion obeyed by these hypothesized objects. A uniform phenomenological prescription, to affect the quantum transition from a corresponding classical system, is invoked to derive the nonlinear Schrödinger, Klein-Gordon, and Pauli-Schrödinger and Feynman-GellMaan equations. It is expected that the emergent hypothetical nonlinear quantum mechanics would advance, in a fundamental way, both the conceptual understanding and computational abilities, particularly, in the field of extremely high energy-density physics.
Hot Fluids and Nonlinear Quantum Mechanics
NASA Astrophysics Data System (ADS)
Mahajan, Swadesh M.; Asenjo, Felipe A.
2015-05-01
A hot relativistic fluid is viewed as a collection of quantum objects that represent interacting elementary particles. We present a conceptual framework for deriving nonlinear equations of motion obeyed by these hypothesized objects. A uniform phenomenological prescription, to affect the quantum transition from a corresponding classical system, is invoked to derive the nonlinear Schrödinger, Klein-Gordon, and Pauli-Schrödinger and Feynman-GellMaan equations. It is expected that the emergent hypothetical nonlinear quantum mechanics would advance, in a fundamental way, both the conceptual understanding and computational abilities, particularly, in the field of extremely high energy-density physics.
Testing the limits of quantum mechanical superpositions
NASA Astrophysics Data System (ADS)
Arndt, Markus; Hornberger, Klaus
2014-04-01
Quantum physics has intrigued scientists and philosophers alike, because it challenges our notions of reality and locality -- concepts that we have grown to rely on in our macroscopic world. It is an intriguing open question whether the linearity of quantum mechanics extends into the macroscopic domain. Scientific progress over the past decades inspires hope that this debate may be settled by table-top experiments.
Epistemology of quantum mechanics: the Växjö viewpoint
NASA Astrophysics Data System (ADS)
Khrennikov, Andrei
2011-09-01
This paper summarizes the experience of the Växjö series of conferences - the longest series of conferences on foundations of quantum mechanics. One of the main lessons of this series is that the present state of development of quantum theory does not exclude a possibility to elaborate a local realistic interpretation. One of such interpretations, the Växjö interpretation, combines realism and contextuality. And it became recognized worldwide.
Quantum mechanics on York slices
NASA Astrophysics Data System (ADS)
Roser, Philipp
2016-03-01
For some time the York time parameter has been identified as a candidate for a physically meaningful time in cosmology. An associated Hamiltonian may be found by solving the Hamiltonian constraint for the momentum conjugate to the York time variable, although an explicit solution can only be found in highly symmetric cases. The Poisson structure of the remaining variables is not canonical. Here we quantise this dynamics in an anisotropic minisuperspace model via a natural extension of canonical quantisation. The resulting quantum theory has no momentum representation. Instead the position basis takes a fundamental role. We illustrate how the quantum theory and the modified representation of its momentum operators lead to a consistent theory in the presence of the constraints that arose during the Hamiltonian reduction. The quantised reduced Hamiltonian is Hermitian, although the momentum operators are not, the causes and implications of which we discuss. We are able to solve for the eigenspectrum of the Hamiltonian. Finally we discuss how far the results of this model extend to the general non-homogeneous case, in particular perturbation theory with York time.
Multichannel framework for singular quantum mechanics
Camblong, Horacio E.; Epele, Luis N.; Fanchiotti, Huner; GarcÃa Canal, Carlos A.; OrdÃ³Ã±ez, Carlos R.
2014-01-15
A multichannel S-matrix framework for singular quantum mechanics (SQM) subsumes the renormalization and self-adjoint extension methods and resolves its boundary-condition ambiguities. In addition to the standard channel accessible to a distant (â€œasymptoticâ€) observer, one supplementary channel opens up at each coordinate singularity, where local outgoing and ingoing singularity waves coexist. The channels are linked by a fully unitary S-matrix, which governs all possible scenarios, including cases with an apparent nonunitary behavior as viewed from asymptotic distances. -- Highlights: â€¢A multichannel framework is proposed for singular quantum mechanics and analogues. â€¢The framework unifies several established approaches for singular potentials. â€¢Singular points are treated as new scattering channels. â€¢Nonunitary asymptotic behavior is subsumed in a unitary multichannel S-matrix. â€¢Conformal quantum mechanics and the inverse quartic potential are highlighted.
Statistical mechanics based on fractional classical and quantum mechanics
Korichi, Z.; Meftah, M. T.
2014-03-15
The purpose of this work is to study some problems in statistical mechanics based on the fractional classical and quantum mechanics. At first stage we have presented the thermodynamical properties of the classical ideal gas and the system of N classical oscillators. In both cases, the Hamiltonian contains fractional exponents of the phase space (position and momentum). At the second stage, in the context of the fractional quantum mechanics, we have calculated the thermodynamical properties for the black body radiation, studied the Bose-Einstein statistics with the related problem of the condensation and the Fermi-Dirac statistics.
Space and time from quantum mechanics
NASA Astrophysics Data System (ADS)
Chew, G. F.
1992-09-01
Classical mechanics historically preceded quantum mechanics and thus far has not been displaced from primary status; the path to construction of quantum theory has remained rooted in classical ideas about objective reality within space and time. Use of a less correct theory as underpinning for a more correct theory not only is unaesthetic but has spawned the perplexing and never-resolved puzzle of measurement. A growing number of physicist-philosophers torture themselves these days over the collapse of the quantum-mechanical state vector when measurement is performed. Additionally, the pointlike structure of the spacetime manifold underlying local classical fields has endowed quantum theory with mathematical dilemmas. It has been proposed by Gell-Mann and Hartle that objectively-realistic ideas such as measurement may lack a priori status, the predominantly classical present universe having evolved as a relic of the big bang. Other authors have suggested that spacetime itself need not be a priori but may stem from quantum mechanics. Haag has written recently that spacetime without (quantum) events is probably a meaningless concept. Henry Stapp and I have for several years been exploring a simple quantum system devoid of classical underpinning, even spacetime, but admitting within the Hilbert space a special Lie-group-related category of vector known as a coherent state. Groups unitarily representable in our Hilbert space include the Poincare group, which relates to 3 + 1 spacetime. Coherent states generally are labeled by parameters associated with unitary group representations, and it has long been recognized that when such parameters become large a classical objective interpretation may result. Stapp and I have been attempting to understand space and time via large coherent-state parameters. Six years ago I presented to this gathering a preliminary report on our enterprise; in this paper I provide an update.
Space and time from quantum mechanics
Chew, G.F.
1992-09-16
Classical mechanics historically preceded quantum mechanics and thus far has not been displaced from primary status; the path to construction of quantum theory has remained rooted in classical ideas about objective reality within space and time. Use of a less correct theory as underpinning for a more correct theory not only is unaesthetic but has spawned the perplexing and never-resolved puzzle of measurement. A growing number of physicist-philosophers torture themselves these days over collapse of the quantum-mechanical state vector when measurement is performed. Additionally, pointlike structure of the spacetime manifold underlying local classical fields has endowed quantum theory with mathematical dilemmas. It has been proposed by Gell-Mann and Hartle that objectively-realistic ideas such as measurement may lack a priori status, the predominantly classical present universe having evolved as a relic of the big bang. Other authors have suggested that spacetime itself need not be a priori but may stem from quantum mechanics. Haag has written recently that spacetime without (quantum) events is probably a meaningless concept. Henry Stapp and I have for several years been exploring a simple quantum system devoid of classical underpinning, even spacetime, but admitting within the Hilbert space a special Lie-group-related category of vector known as coherent state. Groups unitarily representable in our Hilbert space include the Poincare group, which relates to 3 + 1 spacetime. Coherent states generally are labeled by parameters associated with unitary group representations, and it has long been recognized that when such parameters become large a classical objective interpretation may result. Stapp and I have been attempting to understand space and time via large coherent-state parameters. Six years ago I presented to this gathering a preliminary report on our enterprise; in this paper I provide an update.
Two basic Uncertainty Relations in Quantum Mechanics
Angelow, Andrey
2011-04-07
In the present article, we discuss two types of uncertainty relations in Quantum Mechanics-multiplicative and additive inequalities for two canonical observables. The multiplicative uncertainty relation was discovered by Heisenberg. Few years later (1930) Erwin Schroedinger has generalized and made it more precise than the original. The additive uncertainty relation is based on the three independent statistical moments in Quantum Mechanics-Cov(q,p), Var(q) and Var(p). We discuss the existing symmetry of both types of relations and applicability of the additive form for the estimation of the total error.
Thermodynamic formalism for quantum-mechanical systems
NASA Astrophysics Data System (ADS)
Beck, Christian
1991-05-01
Based on the thermodynamic formalism of dynamical systems I present an alternative formulation of Euclidean quantum mechanics on the lattice. A class of deterministic chaotic maps is introduced that simulate nonrelativistic quantum-mechanical systems with arbitrary scalar and vector potential. Applying thermodynamic formalism to these maps the partition function converges to the propagator of the Schrödinger equation (with imaginary time) and the free energy to the ground state energy in an appropriate scaling limit. To illustrate the method I determine ground state energies for the harmonic and anharmonic oscillator, and calculate the integrated propagator of the hydrogen atom.
Emergence of Quantum Mechanics from a Sub-Quantum Statistical Mechanics
NASA Astrophysics Data System (ADS)
Grössing, Gerhard
2015-10-01
A research program within the scope of theories on "Emergent Quantum Mechanics" is presented, which has gained some momentum in recent years. Via the modeling of a quantum system as a non-equilibrium steady-state maintained by a permanent throughput of energy from the zero-point vacuum, the quantum is considered as an emergent system. We implement a specific "bouncer-walker" model in the context of an assumed sub-quantum statistical physics, in analogy to the results of experiments by Couder and Fort on a classical wave-particle duality. We can thus give an explanation of various quantum mechanical features and results on the basis of a "21st century classical physics", such as the appearance of Planck's constant, the Schrödinger equation, etc. An essential result is given by the proof that averaged particle trajectories' behaviors correspond to a specific type of anomalous diffusion termed "ballistic" diffusion on a sub-quantum level...
A proof of von Neumann's postulate in Quantum Mechanics
Conte, Elio
2010-05-04
A Clifford algebraic analysis is explained. It gives proof of von Neumann's postulate on quantum measurement. It is of basic significance to explain the problem of quantum wave function reduction in quantum mechanics.
Differentiable-path integrals in quantum mechanics
NASA Astrophysics Data System (ADS)
Koch, Benjamin; Reyes, Ignacio
2015-06-01
A method is presented which restricts the space of paths entering the path integral of quantum mechanics to subspaces of C?, by only allowing paths which possess at least ? derivatives. The method introduces two external parameters, and induces the appearance of a particular time scale ?D such that for time intervals longer than ?D the model behaves as usual quantum mechanics. However, for time scales smaller than ?D, modifications to standard formulation of quantum theory occur. This restriction renders convergent some quantities which are usually divergent in the time-continuum limit ? ? 0. We illustrate the model by computing several meaningful physical quantities such as the mean square velocity
Euclidean formulation of relativistic quantum mechanics
NASA Astrophysics Data System (ADS)
Kopp, P.; Polyzou, W. N.
2012-01-01
In this paper, we discuss a formulation of relativistic quantum mechanics that uses model Euclidean Green functions or their generating functional as input. This formalism has a close relation to quantum field theory, but as a theory of linear operators on a Hilbert space, it has the advantages of quantum mechanics. One interesting feature of this approach is that matrix elements of operators in normalizable states on the physical Hilbert space can be calculated directly using the Euclidean Green functions without performing an analytic continuation. The formalism is summarized in this paper. We discuss the motivation, advantages, and difficulties in using this formalism. We discuss how to compute bound states, scattering cross sections, and finite Poincaré transformations without using analytic continuation. A toy model is used to demonstrate how matrix elements of e-?H in normalizable states can be used to construct sharp-momentum transition-matrix elements.
The inside observer in quantum mechanics
Mould, R.
1995-11-01
The {open_quotes}observer{close_quotes} in physics has always referred to someone who stands on the outside of a system looking in. In this paper an {open_quotes}inside observer{close_quotes} is defined, and an experiment is proposed that tests a given formulation of the problem of measurement in quantum mechanics.
Quantum Mechanics Studies of Cellobiose Conformations
Technology Transfer Automated Retrieval System (TEKTRAN)
Three regions of the Phi,Psi space of cellobiose were analyzed with quantum mechanics. A central region, in which most crystal structures are found, was covered by a 9 x 9 grid of 20Â° increments of Phi and Psi. Besides these 81 constrained minimizations, we studied two central sub-regions and two re...
Comparison of Classical and Quantum Mechanical Uncertainties.
ERIC Educational Resources Information Center
Peslak, John, Jr.
1979-01-01
Comparisons are made for the particle-in-a-box, the harmonic oscillator, and the one-electron atom. A classical uncertainty principle is derived and compared with its quantum-mechanical counterpart. The results are discussed in terms of the statistical interpretation of the uncertainty principle. (Author/BB)
The geometric semantics of algebraic quantum mechanics.
Cruz Morales, John Alexander; Zilber, Boris
2015-08-01
In this paper, we will present an ongoing project that aims to use model theory as a suitable mathematical setting for studying the formalism of quantum mechanics. We argue that this approach provides a geometric semantics for such a formalism by means of establishing a (non-commutative) duality between certain algebraic and geometric objects. PMID:26124252
Quantum mechanics is compatible with realism
Burgos, M.E.
1987-08-01
A new paradox of quantum mechanics has recently been proposed by an author claiming that any attempt to inject realism in physical theory is bound to lead to inconsistencies. In this paper the author shows that the mentioned paradox is not such a one and that at present there are no reasons to reject realism.
Can quantum mechanics fool the cosmic censor?
Matsas, G. E. A.; Silva, A. R. R. da; Richartz, M.; Saa, A.; Vanzella, D. A. T.
2009-05-15
We revisit the mechanism for violating the weak cosmic-censorship conjecture (WCCC) by overspinning a nearly-extreme charged black hole. The mechanism consists of an incoming massless neutral scalar particle, with low energy and large angular momentum, tunneling into the hole. We investigate the effect of the large angular momentum of the incoming particle on the background geometry and address recent claims that such a backreaction would invalidate the mechanism. We show that the large angular momentum of the incident particle does not constitute an obvious impediment to the success of the overspinning quantum mechanism, although the induced backreaction turns out to be essential to restoring the validity of the WCCC in the classical regime. These results seem to endorse the view that the 'cosmic censor' may be oblivious to processes involving quantum effects.
Time and the foundations of quantum mechanics
NASA Astrophysics Data System (ADS)
Pashby, Thomas
Quantum mechanics has provided philosophers of science with many counterintuitive insights and interpretive puzzles, but little has been written about the role that time plays in the theory. One reason for this is the celebrated argument of Wolfgang Pauli against the inclusion of time as an observable of the theory, which has been seen as a demonstration that time may only enter the theory as a classical parameter. Against this orthodoxy I argue that there are good reasons to expect certain kinds of `time observables' to find a representation within quantum theory, including clock operators (which provide the means to measure the passage of time) and event time operators, which provide predictions for the time at which a particular event occurs, such as the appearance of a dot on a luminescent screen. I contend that these time operators deserve full status as observables of the theory, and on re ection provide a uniquely compelling reason to expand the set of observables allowed by the standard formalism of quantum mechanics. In addition, I provide a novel association of event time operators with conditional probabilities, and propose a temporally extended form of quantum theory to better accommodate the time of an event as an observable quantity. This leads to a proposal to interpret quantum theory within an event ontology, inspired by Bertrand Russell's Analysis of Matter. On this basis I mount a defense of Russell's relational theory of time against a recent attack.
Quantum mechanical studies of carbon structures
Bartelt, Norman Charles; Ward, Donald; Zhou, Xiaowang; Foster, Michael E.; Schultz, Peter A.; Wang, Bryan M.; McCarty, Kevin F.
2015-10-01
Carbon nanostructures, such as nanotubes and graphene, are of considerable interest due to their unique mechanical and electrical properties. The materials exhibit extremely high strength and conductivity when defects created during synthesis are minimized. Atomistic modeling is one technique for high resolution studies of defect formation and mitigation. To enable simulations of the mechanical behavior and growth mechanisms of C nanostructures, a high-fidelity analytical bond-order potential for the C is needed. To generate inputs for developing such a potential, we performed quantum mechanical calculations of various C structures.
A Primer on Resonances in Quantum Mechanics
Rosas-Ortiz, Oscar; Fernandez-Garcia, Nicolas; Cruz y Cruz, Sara
2008-11-13
After a pedagogical introduction to the concept of resonance in classical and quantum mechanics, some interesting applications are discussed. The subject includes resonances occurring as one of the effects of radiative reaction, the resonances involved in the refraction of electromagnetic waves by a medium with a complex refractive index, and quantum decaying systems described in terms of resonant states of the energy (Gamow-Siegert functions). Some useful mathematical approaches like the Fourier transform, the complex scaling method and the Darboux transformation are also reviewed.
Quantum mechanical coherence, resonance, and mind
Stapp, H.P.
1995-03-26
Norbert Wiener and J.B.S. Haldane suggested during the early thirties that the profound changes in our conception of matter entailed by quantum theory opens the way for our thoughts, and other experiential or mind-like qualities, to play a role in nature that is causally interactive and effective, rather than purely epiphenomenal, as required by classical mechanics. The mathematical basis of this suggestion is described here, and it is then shown how, by giving mind this efficacious role in natural process, the classical character of our perceptions of the quantum universe can be seen to be a consequence of evolutionary pressures for the survival of the species.
Emergence of quantum mechanics from a sub-quantum statistical mechanics
NASA Astrophysics Data System (ADS)
Grössing, Gerhard
2014-07-01
A research program within the scope of theories on "Emergent Quantum Mechanics" is presented, which has gained some momentum in recent years. Via the modeling of a quantum system as a non-equilibrium steady-state maintained by a permanent throughput of energy from the zero-point vacuum, the quantum is considered as an emergent system. We implement a specific "bouncer-walker" model in the context of an assumed sub-quantum statistical physics, in analogy to the results of experiments by Couder and Fort on a classical wave-particle duality. We can thus give an explanation of various quantum mechanical features and results on the basis of a "21st century classical physics", such as the appearance of Planck's constant, the Schrödinger equation, etc. An essential result is given by the proof that averaged particle trajectories' behaviors correspond to a specific type of anomalous diffusion termed "ballistic" diffusion on a sub-quantum level. It is further demonstrated both analytically and with the aid of computer simulations that our model provides explanations for various quantum effects such as double-slit or n-slit interference. We show the averaged trajectories emerging from our model to be identical to Bohmian trajectories, albeit without the need to invoke complex wavefunctions or any other quantum mechanical tool. Finally, the model provides new insights into the origins of entanglement, and, in particular, into the phenomenon of a "systemic" non-locality.
Spacetime coarse grainings in nonrelativistic quantum mechanics
NASA Astrophysics Data System (ADS)
Hartle, J. B.
1991-11-01
Sum-over-histories generalizations of nonrelativistic quantum mechanics are explored in which probabilities are predicted, not just for alternatives defined on spacelike surfaces, but for alternatives defined by the behavior of spacetime histories with respect to spacetime regions. Closed, nonrelativistic systems are discussed whose histories are paths in a given configuration space. The action and the initial quantum state are assumed fixed and given. A formulation of quantum mechanics is used which assigns probabilities to members of sets of alternative coarse-grained histories of the system, that is, to the individual classes of a partition of its paths into exhaustive and exclusive classes. Probabilities are assigned to those sets which decohere, that is, whose probabilities are consistent with the sum rules of probability theory. Coarse graining by the behavior of paths with respect to regions of spacetime is described. For example, given a single region, the set of all paths may be partitioned into those which never pass through the region and those which pass through the region at least once. A sum-over-histories decoherence functional is defined for sets of alternative histories coarse-grained by spacetime regions. Techniques for the definition and effective computation of the relevant sums over histories by operator-product formulas are described and illustrated by examples. Methods based on Euclidean stochastic processes are also discussed and illustrated. Models of decoherence and measurement for spacetime coarse grainings are described. Issues of causality are investigated. Such spacetime generalizations of nonrelativistic quantum mechanics may be useful models for a generalized quantum mechanics of spacetime geometry.
Emerging interpretations of quantum mechanics and recent progress in quantum measurement
NASA Astrophysics Data System (ADS)
Clarke, M. L.
2014-01-01
The focus of this paper is to provide a brief discussion on the quantum measurement process, by reviewing select examples highlighting recent progress towards its understanding. The areas explored include an outline of the measurement problem, the standard interpretation of quantum mechanics, quantum to classical transition, types of measurement (including weak and projective measurements) and newly emerging interpretations of quantum mechanics (decoherence theory, objective reality, quantum Darwinism and quantum Bayesianism).
Neutrino oscillations: Quantum mechanics vs. quantum field theory
Akhmedov, Evgeny Kh.; Kopp, Joachim; ,
2010-01-01
A consistent description of neutrino oscillations requires either the quantum-mechanical (QM) wave packet approach or a quantum field theoretic (QFT) treatment. We compare these two approaches to neutrino oscillations and discuss the correspondence between them. In particular, we derive expressions for the QM neutrino wave packets from QFT and relate the free parameters of the QM framework, in particular the effective momentum uncertainty of the neutrino state, to the more fundamental parameters of the QFT approach. We include in our discussion the possibilities that some of the neutrino's interaction partners are not detected, that the neutrino is produced in the decay of an unstable parent particle, and that the overlap of the wave packets of the particles involved in the neutrino production (or detection) process is not maximal. Finally, we demonstrate how the properly normalized oscillation probabilities can be obtained in the QFT framework without an ad hoc normalization procedure employed in the QM approach.
Measurement and Fundamental Processes in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Jaeger, Gregg
2015-07-01
In the standard mathematical formulation of quantum mechanics, measurement is an additional, exceptional fundamental process rather than an often complex, but ordinary process which happens also to serve a particular epistemic function: during a measurement of one of its properties which is not already determined by a preceding measurement, a measured system, even if closed, is taken to change its state discontinuously rather than continuously as is usual. Many, including Bell, have been concerned about the fundamental role thus given to measurement in the foundation of the theory. Others, including the early Bohr and Schwinger, have suggested that quantum mechanics naturally incorporates the unavoidable uncontrollable disturbance of physical state that accompanies any local measurement without the need for an exceptional fundamental process or a special measurement theory. Disturbance is unanalyzable for Bohr, but for Schwinger it is due to physical interactions' being borne by fundamental particles having discrete properties and behavior which is beyond physical control. Here, Schwinger's approach is distinguished from more well known treatments of measurement, with the conclusion that, unlike most, it does not suffer under Bell's critique of quantum measurement. Finally, Schwinger's critique of measurement theory is explicated as a call for a deeper investigation of measurement processes that requires the use of a theory of quantum fields.
Hidden variables and nonlocality in quantum mechanics
NASA Astrophysics Data System (ADS)
Hemmick, Douglas Lloyd
1997-05-01
Most physicists hold a skeptical attitude toward a 'hidden variables' interpretation of quantum theory, despite David Bohm's successful construction of such a theory and John S. Bell's strong arguments in favor of the idea. The first reason for doubt concerns certain mathematical theorems (von Neumann's, Gleason's, Kochen and Specker's, and Bell's) which can be applied to the hidden variables issue. These theorems are often credited with proving that hidden variables are indeed 'impossible', in the sense that they cannot replicate the predictions of quantum mechanics. Many who do not draw such a strong conclusion nevertheless accept that hidden variables have been shown to exhibit prohibitively complicated features. The second concern is that the most sophisticated example of a hidden variables theory-that of David Bohm-exhibits non-locality, i.e., consequences of events at one place can propagate to other places instantaneously. However, neither the mathematical theorems in question nor the attribute of nonlocality detract from the importance of a hidden variables interpretation of quantum theory. Nonlocality is present in quantum mechanics itself, and is a required characteristic of any theory that agrees with the quantum mechanical predictions. We first discuss the earliest analysis of hidden variables-that of von Neumann's theorem-and review John S. Bell's refutation of von Neumann's 'impossibility proof'. We recall and elaborate on Bell's arguments regarding the theorems of Gleason, and Kochen and Specker. According to Bell, these latter theorems do not imply that hidden variables interpretations are untenable, but instead that such theories must exhibit contextuality, i.e., they must allow for the dependence of measurement results on the characteristics of both measured system and measuring apparatus. We demonstrate a new way to understand the implications of both Gleason's theorem and Kochen and Specker's theorem by noting that they prove a result we call 'spectral incompatibility'. We develop further insight into the concepts involved in these two theorems by investigating a special quantum mechanical experiment first described by David Albert. We review the Einstein-Podolsky-Rosen paradox, Bell's theorem, and Bell's later argument that these imply that quantum mechanics is irreducibly nonlocal. The paradox of Einstein, Podolsky, and Rosen was generalized by Erwin Schrodinger in the same paper where his famous 'cat paradox' appeared. We show that Schrodinger's conclusions can be derived using a simpler argument-one which makes clear the relationship between the quantum state and the 'perfect correlations' exhibited by the system. We use Schrodinger's EPR analysis to derive a wide variety of new quantum nonlocality proofs. These proofs share two important features with that of Greenberger, Horne, and Zeilinger. First, they are of a deterministic character, i.e., they are 'nonlocality without inequalities' proofs. Second, the quantum nonlocality results we develop may be experimentally verified so that one need only observe the 'perfect correlations' between the appropriate observables. This latter feature serves to contrast these proofs with EPR/Bell nonlocality, the laboratory confirmation of which demands not only the observation of perfect correlations, but also the observations required to test whether 'Bell's inequality' is violated. The 'Schrodinger nonlocality' proofs we give differ from the GHZ proof in that they apply to two-component composite systems, while the latter involves a composite system of at least three-components. In addition, some of the Schrodinger proofs involve classes of observables larger than that addressed in the GHZ proof. (Abstract shortened by UMI.)
How to Teach the Postulates of Quantum Mechanics without Enigma.
ERIC Educational Resources Information Center
Teixeira-Dias, Jose J. C.
1983-01-01
Shows how a statistical approach can help students accept postulates of quantum mechanics. The approach, which also makes students aware of the philosophical/humanistic implications of quantum mechanics, involves the following sequence: (1) important experiments in quantum mechanics; (2) conventional statistical interpretation; (3) mathematical…
Beyond relativity and quantum mechanics: space physics
NASA Astrophysics Data System (ADS)
Lindner, Henry H.
2011-09-01
Albert Einstein imposed an observer-based epistemology upon physics. Relativity and Quantum Mechanics limit physics to describing and modeling the observer's sensations and measurements. Their "underlying reality" consists only of ideas that serve to model the observer's experience. These positivistic models cannot be used to form physical theories of Cosmic phenomena. To do this, we must again remove the observer from the center of physics. When we relate motion to Cosmic space instead of to observers and we attempt to explain the causes of Cosmic phenomena, we are forced to admit that Cosmic space is a substance. We need a new physics of space. We can begin by replacing Relativity with a modified Lorentzian-Newtonian model of spatial flow, and Quantum Mechanics with a wave-based theory of light and electrons. Space physics will require the reinterpretation of all known phenomena, concepts, and mathematical models.
Using the Internet to teach Quantum Mechanics
NASA Astrophysics Data System (ADS)
Breinig, Marianne
1997-04-01
All instructional materials for a Quantum Mechanics course for graduate students in physics at the University of Tennessee are distributed over the Internet. Class notes, problems, and solutions are available in portable document format (PDF). A discussion forum allows students to post questions and to discuss class materials among themselves and with the instructor. Using an Internet connection to various computers in the classroom allows the introduction of numerical and visualization techniques in class.
Nonlinear entangled state representation in quantum mechanics
NASA Astrophysics Data System (ADS)
Fan, Hongyi; Cheng, Hailing
2002-03-01
We develop Dirac's representation theory in quantum mechanics by constructing the nonlinear entangled state | ?> nl and its non-Hermite conjugate state nl??| with continuum variable. By virtue of the technique of integration within an ordered product of operators we show that | ?> nl and nl??| make up an orthonormal and complete representation. From | ?> nl we also deduce another kind of entangled states. Application of | ?> nl in studying two-mode squeezed state is demonstrated.
Grounding quantum probability in psychological mechanism.
Love, Bradley C
2013-06-01
Pothos & Busemeyer (P&B) provide a compelling case that quantum probability (QP) theory is a better match to human judgment than is classical probability (CP) theory. However, any theory (QP, CP, or other) phrased solely at the computational level runs the risk of being underconstrained. One suggestion is to ground QP accounts in mechanism, to leverage a wide range of process-level data. PMID:23673043
Quantum mechanics on a fuzzy sphere
NASA Astrophysics Data System (ADS)
Madore, J.
1991-07-01
In a previous article, a model of euclidean space-time was presented in which the notion of a point does not exist at scales less than a certain length ?. At scales larger than ? the model resembles the 2-sphere S2. We here interpret this model as space and add to it an extra time coordinate. Non-relativistic quantum mechanics is considered on the resulting model. Laboratoire associé au CNRS.
A Local Interpretation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Lopez, Carlos
2015-12-01
A local interpretation of quantum mechanics is presented. Its main ingredients are: first, a label attached to one of the "virtual" paths in the path integral formalism, determining the output for measurement of position or momentum; second, a mathematical model for spin states, equivalent to the path integral formalism for point particles in space time, with the corresponding label. The mathematical machinery of orthodox quantum mechanics is maintained, in particular amplitudes of probability and Born's rule; therefore, Bell's type inequalities theorems do not apply. It is shown that statistical correlations for pairs of particles with entangled spins have a description completely equivalent to the two slit experiment, that is, interference (wave like behaviour) instead of non locality gives account of the process. The interpretation is grounded in the experimental evidence of a point like character of electrons, and in the hypothetical existence of a wave like, the de Broglie, companion system. A correspondence between the extended Hilbert spaces of hidden physical states and the orthodox quantum mechanical Hilbert space shows the mathematical equivalence of both theories. Paradoxical behaviour with respect to the action reaction principle is analysed, and an experimental set up, modified two slit experiment, proposed to look for the companion system.
Hunting for Snarks in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Hestenes, David
2009-12-01
A long-standing debate over the interpretation of quantum mechanics has centered on the meaning of Schroedinger's wave function ? for an electron. Broadly speaking, there are two major opposing schools. On the one side, the Copenhagen school (led by Bohr, Heisenberg and Pauli) holds that ? provides a complete description of a single electron state; hence the probability interpretation of ??* expresses an irreducible uncertainty in electron behavior that is intrinsic in nature. On the other side, the realist school (led by Einstein, de Broglie, Bohm and Jaynes) holds that ? represents a statistical ensemble of possible electron states; hence it is an incomplete description of a single electron state. I contend that the debaters have overlooked crucial facts about the electron revealed by Dirac theory. In particular, analysis of electron zitterbewegung (first noticed by Schroedinger) opens a window to particle substructure in quantum mechanics that explains the physical significance of the complex phase factor in ?. This led to a testable model for particle substructure with surprising support by recent experimental evidence. If the explanation is upheld by further research, it will resolve the debate in favor of the realist school. I give details. The perils of research on the foundations of quantum mechanics have been foreseen by Lewis Carroll in The Hunting of the Snark!
Hunting for Snarks in Quantum Mechanics
Hestenes, David
2009-12-08
A long-standing debate over the interpretation of quantum mechanics has centered on the meaning of Schroedinger's wave function {psi} for an electron. Broadly speaking, there are two major opposing schools. On the one side, the Copenhagen school(led by Bohr, Heisenberg and Pauli) holds that {psi} provides a complete description of a single electron state; hence the probability interpretation of {psi}{psi}* expresses an irreducible uncertainty in electron behavior that is intrinsic in nature. On the other side, the realist school(led by Einstein, de Broglie, Bohm and Jaynes) holds that {psi} represents a statistical ensemble of possible electron states; hence it is an incomplete description of a single electron state. I contend that the debaters have overlooked crucial facts about the electron revealed by Dirac theory. In particular, analysis of electron zitterbewegung(first noticed by Schroedinger) opens a window to particle substructure in quantum mechanics that explains the physical significance of the complex phase factor in {psi}. This led to a testable model for particle substructure with surprising support by recent experimental evidence. If the explanation is upheld by further research, it will resolve the debate in favor of the realist school. I give details. The perils of research on the foundations of quantum mechanics have been foreseen by Lewis Carroll in The Hunting of the Snark{exclamation_point}.
Quantum mechanical models for the Fermi shuttle
NASA Astrophysics Data System (ADS)
Sternberg, James; Ovchinnikov, S. Yu.; Macek, J. H.
2009-05-01
Although the Fermi shuttle was originally proposed as an explanation for highly energetic cosmic rays, it is also a mechanism for the production of high energy electrons in atomic collisions [1]. The Fermi shuttle is usually thought of as a classical effect and most models of this process rely on classical or semi-classical approximations. In this work we explore several quantum mechanical models for ion-atom collisions and examine the evidence for the Fermi shuttle in these models. [4pt] [1] B. Sulik, Cs. Koncz, K. Tok'esi, A. Orb'an, and D. Ber'enyi, Phys Rev. Lett. 88 073201 (2002)
Zeng, Xiancheng; Hu, Xiangqian; Yang, Weitao
2013-01-01
A fragment-based fractional number of electron (FNE) approach, is developed to study entire electron transfer (ET) processes from the electron donor region to the acceptor region in condensed phase. Both regions are described by the density-fragment interaction (DFI) method while FNE as an efficient ET order parameter is applied to simulate the electron transfer process. In association with the QM/MM energy expression, the DFI-FNE method is demonstrated to describe ET processes robustly with the Ru2+-Ru3+ self-exchange ET as a proof-of-concept example. This method allows for systematic calculations of redox free energies, reorganization energies, and electronic couplings, and the absolute ET rate constants within the Marcus regime. PMID:23682243
Quantum mechanics with coordinate dependent noncommutativity
Kupriyanov, V. G.
2013-11-15
Noncommutative quantum mechanics can be considered as a first step in the construction of quantum field theory on noncommutative spaces of generic form, when the commutator between coordinates is a function of these coordinates. In this paper we discuss the mathematical framework of such a theory. The noncommutativity is treated as an external antisymmetric field satisfying the Jacobi identity. First, we propose a symplectic realization of a given Poisson manifold and construct the Darboux coordinates on the obtained symplectic manifold. Then we define the star product on a Poisson manifold and obtain the expression for the trace functional. The above ingredients are used to formulate a nonrelativistic quantum mechanics on noncommutative spaces of general form. All considered constructions are obtained as a formal series in the parameter of noncommutativity. In particular, the complete algebra of commutation relations between coordinates and conjugated momenta is a deformation of the standard Heisenberg algebra. As examples we consider a free particle and an isotropic harmonic oscillator on the rotational invariant noncommutative space.
Quantum mechanics in structure-based drug design.
Peters, Martin B; Raha, Kaushik; Merz, Kenneth M
2006-05-01
In principle, quantum mechanics provides a more accurate representation of molecular systems than other modeling approaches. While this notion is not a matter of dispute, it has not yet been definitively demonstrated within the realm of structure-based drug design that the use of quantum mechanical methods over the use of classical modeling approaches is justified in consideration of the increase in expense associated with quantum mechanical methods. Demonstrating that quantum mechanics-based methods can be superior to simpler models, and resolving problems relating to estimating the effects of conformational entropy, will provide key areas of interest in the coming years for in silico structure-based drug design. Recent applications using quantum mechanical methods in structure-based drug design are reviewed herein, and applications ranging from scoring receptor-ligand interactions using quantum mechanics to the generation of quantitative structure-activity relationships using quantum mechanics-derived descriptors are discussed. PMID:16729734
Adaptive Perturbation Theory I: Quantum Mechanics
Weinstein, Marvin; /SLAC
2005-10-19
Adaptive perturbation is a new method for perturbatively computing the eigenvalues and eigenstates of quantum mechanical Hamiltonians that heretofore were not believed to be treatable by such methods. The novel feature of adaptive perturbation theory is that it decomposes a given Hamiltonian, H, into an unperturbed part and a perturbation in a way which extracts the leading non-perturbative behavior of the problem exactly. This paper introduces the method in the context of the pure anharmonic oscillator and then goes on to apply it to the case of tunneling between both symmetric and asymmetric minima. It concludes with an introduction to the extension of these methods to the discussion of a quantum field theory. A more complete discussion of this issue will be given in the second paper in this series, and it will show how to use the method of adaptive perturbation theory to non-perturbatively extract the structure of mass, wavefunction and coupling constant renormalization.
Indirect Acquisition of Information in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Ballesteros, M.; Fraas, M.; FrÃ¶hlich, J.; Schubnel, B.
2016-02-01
Long sequences of successive direct (projective) measurements or observations of just a few "uninteresting" physical quantities pertaining to a quantum system, such as clicks of some detectors, may reveal indirect, but precise and unambiguous information on the values of some very "interesting" observables of the system. In this paper, the mathematics underlying this claim is developed; i.e., we attempt to contribute to a mathematical theory of indirect and, in particular, non-demolition observations and measurements in quantum mechanics. Our attempt leads us to make some novel uses of classical notions and results of probability theory, such as the "algebra of functions measurable at infinity", the Central Limit Theorem, results concerning relative entropy and its role in the theory of large deviations, etc.
Indirect Acquisition of Information in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Ballesteros, M.; Fraas, M.; Fröhlich, J.; Schubnel, B.
2016-01-01
Long sequences of successive direct (projective) measurements or observations of just a few "uninteresting" physical quantities pertaining to a quantum system, such as clicks of some detectors, may reveal indirect, but precise and unambiguous information on the values of some very "interesting" observables of the system. In this paper, the mathematics underlying this claim is developed; i.e., we attempt to contribute to a mathematical theory of indirect and, in particular, non-demolition observations and measurements in quantum mechanics. Our attempt leads us to make some novel uses of classical notions and results of probability theory, such as the "algebra of functions measurable at infinity", the Central Limit Theorem, results concerning relative entropy and its role in the theory of large deviations, etc.
Unstable trajectories and the quantum mechanical uncertainty
Moser, Hans R.
2008-08-15
There is still an ongoing discussion about various seemingly contradictory aspects of classical particle motion and its quantum mechanical counterpart. One of the best accepted viewpoints that intend to bridge the gap is the so-called Copenhagen Interpretation. A major issue there is to regard wave functions as probability amplitudes (usually for the position of a particle). However, the literature also reports on approaches that claim a trajectory for any quantum mechanical particle, Bohmian mechanics probably being the most prominent one among these ideas. We introduce a way to calculate trajectories as well, but our crucial ingredient is their well controlled local (thus also momentaneous) degree of instability. By construction, at every moment their unpredictability, i.e., their local separation rates of neighboring trajectories, is governed by the local value of the given modulus square of a wave function. We present extensive numerical simulations of the H and He atom, and for some velocity-related quantities, namely angular momentum and total energy, we inspect their agreement with the values appearing in wave mechanics. Further, we interpret the archetypal double slit interference experiment in the spirit of our findings. We also discuss many-particle problems far beyond He, which guides us to a variety of possible applications.
NASA Astrophysics Data System (ADS)
Tah, Bidisha; Pal, Prabir; Roy, Sourav; Dutta, Debodyuti; Mishra, Sabyashachi; Ghosh, Manash; Talapatra, G. B.
2014-08-01
In this article Quantum mechanical (QM) calculations by Density Functional Theory (DFT) have been performed of all amino acids present in bovine insulin. Simulated Raman spectra of those amino acids are compared with their experimental spectra and the major bands are assigned. The results are in good agreement with experiment. We have also verified the DFT results with Quantum mechanical molecular mechanics (QM/MM) results for some amino acids. QM/MM results are very similar with the DFT results. Although the theoretical calculation of individual amino acids are feasible, but the calculated Raman spectrum of whole protein molecule is difficult or even quite impossible task, since it relies on lengthy and costly quantum-chemical computation. However, we have tried to simulate the Raman spectrum of whole protein by adding the proportionate contribution of the Raman spectra of each amino acid present in this protein. In DFT calculations, only the contributions of disulphide bonds between cysteines are included but the contribution of the peptide and hydrogen bonds have not been considered. We have recorded the Raman spectra of bovine insulin using micro-Raman set up. The experimental spectrum is found to be very similar with the resultant simulated Raman spectrum with some exceptions.
The metaphysics of quantum mechanics: Modal interpretations
NASA Astrophysics Data System (ADS)
Gluck, Stuart Murray
2004-11-01
This dissertation begins with the argument that a preferred way of doing metaphysics is through philosophy of physics. An understanding of quantum physics is vital to answering questions such as: What counts as an individual object in physical ontology? Is the universe fundamentally indeterministic? Are indiscernibles identical? This study explores how the various modal interpretations of quantum mechanics answer these sorts of questions; modal accounts are one of the two classes of interpretations along with so-called collapse accounts. This study suggests a new alternative within the class of modal views that yields a more plausible ontology, one in which the Principle of the Identity of Indisceribles is necessarily true. Next, it shows that modal interpretations can consistently deny that the universe must be fundamentally indeterministic so long as they accept certain other metaphysical commitments: either a perfect initial distribution of states in the universe or some form of primitive dispositional properties. Finally, the study sketches out a future research project for modal interpretations based on developing quantified quantum logic.
Supersymmetric quantum mechanics and its applications
Sukumar, C.V.
2004-12-23
The Hamiltonian in Supersymmetric Quantum Mechanics is defined in terms of charges that obey the same algebra as that of the generators of supersymmetry in field theory. The consequences of this symmetry for the spectra of the component parts that constitute the supersymmetric system are explored. The implications of supersymmetry for the solutions of the Schroedinger equation, the Dirac equation, the inverse scattering theory and the multi-soliton solutions of the KdV equation are examined. Applications to scattering problems in Nuclear Physics with specific reference to singular potentials which arise from considerations of supersymmetry will be discussed.
Landau problem in noncommutative quantum mechanics
NASA Astrophysics Data System (ADS)
Sayipjamal, Dulat; Li, Kang
2008-02-01
The Landau problem in non-commutative quantum mechanics (NCQM) is studied. First by solving the Schrödinger equations on noncommutative (NC) space we obtain the Landau energy levels and the energy correction that is caused by space-space noncommutativity. Then we discuss the noncommutative phase space case, namely, space-space and momentum-momentum non-commutative case, and we get the explicit expression of the Hamiltonian as well as the corresponding eigenfunctions and eigenvalues. Supported by National Natural Science Foundation of China (10465004, 10665001, 10575026) and Abdus Salam ICTP, Trieste, Italy
Non-representative Quantum Mechanical Weak Values
NASA Astrophysics Data System (ADS)
Svensson, B. E. Y.
2015-12-01
The operational definition of a weak value for a quantum mechanical system involves the limit of the weak measurement strength tending to zero. I study how this limit compares to the situation for the undisturbed (no weak measurement) system. Under certain conditions, which I investigate, this limit is discontinuous in the sense that it does not merge smoothly to the Hilbert space description of the undisturbed system. Hence, in these discontinuous cases, the weak value does not represent the undisturbed system. As a result, conclusions drawn from such weak values regarding the properties of the studied system cannot be upheld. Examples are given.
An Introduction to Euclidean Relativistic Quantum Mechanics
NASA Astrophysics Data System (ADS)
Kopp, Philip; Polyzou, Wayne
2014-03-01
In nuclear physics, sub-nucleonic degrees of freedom are expected to become relevant at the few-Gev scale. Models at this scale require a relativistic treatment. The Euclidean formulation of relativistic quantum mechanics offers an efficient framework to model systems of a finite number of degrees of freedom at this scale. At the same time, the input Euclidean Green's functions are closely related to Green functions of Euclidean field theory. We discuss the formulation of the relativistic theory. We also develop scattering theory in this formalism. A solvable model is utilized to show the usefulness of this method. supported in part by the U.S. Dept. of Energy.
QUANTUM MECHANICS: Enhanced: Schrodinger's Cat Is Out of the Hat.
Tesche, C
2000-10-27
In 1935, Erwin Schrödinger suggested his famous gedanken experiment of the cat that is simultaneously "dead" and "alive" inside its box until the box is opened. But as Tesche explains in her Perspective, such a macroscopic manifestation of quantum mechanics has remained elusive until recently. The experiments by van der Wal et al. are an important step toward demonstrating that quantum mechanics can describe macroscopic phenomena. The approach may be exploited in quantum computing and quantum cryptography. PMID:17780511
Quantum Mechanical Study of Nanoscale MOSFET
NASA Technical Reports Server (NTRS)
Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan
2001-01-01
The steady state characteristics of MOSFETS that are of practical Interest are the drive current, off-current, dope of drain current versus drain voltage, and threshold voltage. In this section, we show that quantum mechanical simulations yield significantly different results from drift-diffusion based methods. These differences arise because of the following quantum mechanical features: (I) polysilicon gate depletion in a manner opposite to the classical case (II) dependence of the resonant levels in the channel on the gate voltage, (III) tunneling of charge across the gate oxide and from source to drain, (IV) quasi-ballistic flow of electrons. Conclusions dI/dV versus V does not increase in a manner commensurate with the increase in number of subbands. - The increase in dI/dV with bias is much smaller then the increase in the number of subbands - a consequence of bragg reflection. Our calculations show an increase in transmission with length of contact, as seen in experiments. It is desirable for molecular electronics applications to have a small contact area, yet large coupling. In this case, the circumferential dependence of the nanotube wave function dictates: - Transmission in armchair tubes saturates around unity - Transmission in zigzag tubes saturates at two.
The formal path integral and quantum mechanics
Johnson-Freyd, Theo
2010-11-15
Given an arbitrary Lagrangian function on R{sup d} and a choice of classical path, one can try to define Feynman's path integral supported near the classical path as a formal power series parameterized by 'Feynman diagrams', although these diagrams may diverge. We compute this expansion and show that it is (formally, if there are ultraviolet divergences) invariant under volume-preserving changes of coordinates. We prove that if the ultraviolet divergences cancel at each order, then our formal path integral satisfies a 'Fubini theorem' expressing the standard composition law for the time evolution operator in quantum mechanics. Moreover, we show that when the Lagrangian is inhomogeneous quadratic in velocity such that its homogeneous-quadratic part is given by a matrix with constant determinant, then the divergences cancel at each order. Thus, by 'cutting and pasting' and choosing volume-compatible local coordinates, our construction defines a Feynman-diagrammatic 'formal path integral' for the nonrelativistic quantum mechanics of a charged particle moving in a Riemannian manifold with an external electromagnetic field.
Differentiability of correlations in realistic quantum mechanics
NASA Astrophysics Data System (ADS)
Cabrera, Alejandro; de Faria, Edson; Pujals, Enrique; Tresser, Charles
2015-09-01
We prove a version of Bell's theorem in which the locality assumption is weakened. We start by assuming theoretical quantum mechanics and weak forms of relativistic causality and of realism (essentially the fact that observable values are well defined independently of whether or not they are measured). Under these hypotheses, we show that only one of the correlation functions that can be formulated in the framework of the usual Bell theorem is unknown. We prove that this unknown function must be differentiable at certain angular configuration points that include the origin. We also prove that, if this correlation is assumed to be twice differentiable at the origin, then we arrive at a version of Bell's theorem. On the one hand, we are showing that any realistic theory of quantum mechanics which incorporates the kinematic aspects of relativity must lead to this type of rough correlation function that is once but not twice differentiable. On the other hand, this study brings us a single degree of differentiability away from a relativistic von Neumann no hidden variables theorem.
A quantum protective mechanism in photosynthesis
NASA Astrophysics Data System (ADS)
Marais, Adriana; Sinayskiy, Ilya; Petruccione, Francesco; van Grondelle, Rienk
2015-03-01
Since the emergence of oxygenic photosynthesis, living systems have developed protective mechanisms against reactive oxygen species. During charge separation in photosynthetic reaction centres, triplet states can react with molecular oxygen generating destructive singlet oxygen. The triplet product yield in bacteria is observed to be reduced by weak magnetic fields. Reaction centres from plants' photosystem II share many features with bacterial reaction centres, including a high-spin iron whose function has remained obscure. To explain observations that the magnetic field effect is reduced by the iron, we propose that its fast-relaxing spin plays a protective role in photosynthesis by generating an effective magnetic field. We consider a simple model of the system, derive an analytical expression for the effective magnetic field and analyse the resulting triplet yield reduction. The protective mechanism is robust for realistic parameter ranges, constituting a clear example of a quantum effect playing a macroscopic role vital for life.
A quantum protective mechanism in photosynthesis
Marais, Adriana; Sinayskiy, Ilya; Petruccione, Francesco; van Grondelle, Rienk
2015-01-01
Since the emergence of oxygenic photosynthesis, living systems have developed protective mechanisms against reactive oxygen species. During charge separation in photosynthetic reaction centres, triplet states can react with molecular oxygen generating destructive singlet oxygen. The triplet product yield in bacteria is observed to be reduced by weak magnetic fields. Reaction centres from plants' photosystem II share many features with bacterial reaction centres, including a high-spin iron whose function has remained obscure. To explain observations that the magnetic field effect is reduced by the iron, we propose that its fast-relaxing spin plays a protective role in photosynthesis by generating an effective magnetic field. We consider a simple model of the system, derive an analytical expression for the effective magnetic field and analyse the resulting triplet yield reduction. The protective mechanism is robust for realistic parameter ranges, constituting a clear example of a quantum effect playing a macroscopic role vital for life. PMID:25732807
Supersymmetric quantum mechanics and the Korteweg--de Vries hierarchy
Grant, A.K.; Rosner, J.L. )
1994-05-01
The connection between supersymmetric quantum mechanics and the Korteweg--de Vries (KdV) equation is discussed, with particular emphasis on the KdV conservation laws. It is shown that supersymmetric quantum mechanics aids in the derivation of the conservation laws, and gives some insight into the Miura transformation that converts the KdV equation into the modified KdV equation. The construction of the [tau] function by means of supersymmetric quantum mechanics is discussed.
Quantum mechanics and the direction of time
Hasegawa, H.; Petrosky, T. ); Prigogine, I. International Solvay Inst. for Physics and Chemistry, Brussels ); Tasaki, S. )
1991-03-01
In recent papers the authors have discussed the dynamical properties of large Poincare systems (LPS), that is, nonintegrable systems with a continuous spectrum (both classical and quantum). An interesting example of LPS is given by the Friedrichs model of field theory. As is well known, perturbation methods analytic in the coupling constant diverge because of resonant denominators. They show that this Poincare catastrophe can be eliminated by a natural time ordering of the dynamical states. They obtain then a dynamical theory which incorporates a privileged direction of time (and therefore the second law of thermodynamics). However, it is only in very simple situations that his time ordering can be performed in an extended Hilbert space. In general, they need to go to the Liouville space (superspace) and introduce a time ordering of dynamical states according to the number of particles involved in correlations. This leads then to a generalization of quantum mechanics in which the usual Heisenberg's eigenvalue problem is replaced by a complex eigenvalue problem in the Liouville space.
Dynamical phase transitions in quantum mechanics
NASA Astrophysics Data System (ADS)
Rotter, Ingrid
2012-02-01
The nucleus is described as an open many-body quantum system with a non-Hermitian Hamilton operator the eigenvalues of which are complex, in general. The eigenvalues may cross in the complex plane (exceptional points), the phases of the eigenfunctions are not rigid in approaching the crossing points and the widths bifurcate. By varying only one parameter, the eigenvalue trajectories usually avoid crossing and width bifurcation occurs at the critical value of avoided crossing. An analog spectroscopic redistribution takes place for discrete states below the particle decay threshold. By this means, a dynamical phase transition occurs in the many-level system starting at a critical value of the level density. Hence the properties of the low-lying nuclear states (described well by the shell model) and those of highly excited nuclear states (described by random ensembles) differ fundamentally from one another. The statement of Niels Bohr on the collective features of compound nucleus states at high level density is therefore not in contradiction to the shell-model description of nuclear (and atomic) states at low level density. Dynamical phase transitions are observed experimentally in different quantum mechanical systems by varying one or two parameters.
Supersymmetric Quantum Mechanics For Atomic Electronic Systems
NASA Astrophysics Data System (ADS)
Markovich, Thomas; Biamonte, Mason; Kouri, Don
2012-02-01
We employ our new approach to non-relativistic supersymmetric quantum mechanics (SUSY-QM), (J. Phys. Chem. A 114, 8202(2010)) for any number of dimensions and distinguishable particles, to treat the hydrogen atom in full three-dimensional detail. In contrast to the standard one-dimensional radial equation SUSY-QM treatment of the hydrogen atom, where the superpotential is a scalar, in a full three-dimensional treatment, it is a vector which is independent of the angular momentum quantum number. The original scalar Schr"odinger Hamiltonian operator is factored into vector ``charge'' operators: Q and Q^. Using these operators, the first sector Hamiltonian is written as H1= Q^.Q + E0^1. The second sector Hamiltonian is a tensor given by H2= Q Q^ + E0^11 and is isospectral with H1. The second sector ground state, ?0^(2), can be used to obtain the excited state wave functions of the first sector by application of the adjoint charge operator. We then adapt the aufbau principle to show this approach can be applied to treat the helium atom.
Exponential complexity and ontological theories of quantum mechanics
Montina, A.
2008-02-15
Ontological theories of quantum mechanics describe a single system by means of well-defined classical variables and attribute the quantum uncertainties to our ignorance about the underlying reality represented by these variables. We consider the general class of ontological theories describing a quantum system by a set of variables with Markovian (either deterministic or stochastic) evolution. We provide proof that the number of continuous variables cannot be smaller than 2N-2, N being the Hilbert-space dimension. Thus, any ontological Markovian theory of quantum mechanics requires a number of variables which grows exponentially with the physical size. This result is relevant also in the framework of quantum Monte Carlo methods.
Paul A.M. Dirac's The Principles of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Brown, Laurie M.
2006-12-01
Paul A.M. Dirac’s book, The Principles of Quantum Mechanics, summarized the foundations of a new science, much of which was his own creation. It expressed the spirit of the new quantum mechanics, creating a descriptive language that we still use. I discuss the successive editions of Dirac’s book and their critical reception, noting changes, especially in the formulation of the general theory and in its treatment of relativistic quantum theory and quantum electrodynamics. In the case of the later editions, I discuss Dirac’s negative attitude toward renormalized quantum electrodynamics.
Information flow in quantum mechanics: The Quantum Maxwell Demon
Chapline, G.F.
1990-08-09
Quantum information can be lost only when a quantum system is placed in contact with a heat bath, and then only in proportion to the entropy generated. Applied to the universe as a whole this suggests that the universe is in an algorithmically simple nearly pure quantum state. This could be verified by squeezing'' the vacuum state, and it is quite plausible that this is exactly what is happening inside black holes. 14 refs.
Tampering detection system using quantum-mechanical systems
Humble, Travis S.; Bennink, Ryan S.; Grice, Warren P.
2011-12-13
The use of quantum-mechanically entangled photons for monitoring the integrity of a physical border or a communication link is described. The no-cloning principle of quantum information science is used as protection against an intruder's ability to spoof a sensor receiver using a `classical` intercept-resend attack. Correlated measurement outcomes from polarization-entangled photons are used to protect against quantum intercept-resend attacks, i.e., attacks using quantum teleportation.
Quantum mechanical calculations to chemical accuracy
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.
1991-01-01
The accuracy of current molecular-structure calculations is illustrated with examples of quantum mechanical solutions for chemical problems. Two approaches are considered: (1) the coupled-cluster singles and doubles (CCSD) with a perturbational estimate of the contribution of connected triple excitations, or CCDS(T); and (2) the multireference configuration-interaction (MRCI) approach to the correlation problem. The MRCI approach gains greater applicability by means of size-extensive modifications such as the averaged-coupled pair functional approach. The examples of solutions to chemical problems include those for C-H bond energies, the vibrational frequencies of O3, identifying the ground state of Al2 and Si2, and the Lewis-Rayleigh afterglow and the Hermann IR system of N2. Accurate molecular-wave functions can be derived from a combination of basis-set saturation studies and full configuration-interaction calculations.
Coulomb branch localization in quiver quantum mechanics
NASA Astrophysics Data System (ADS)
Ohta, Kazutoshi; Sasai, Yuya
2016-02-01
We show how to exactly calculate the refined indices of {N}=4U(1)Ã— U(N) supersymmetric quiver quantum mechanics in the Coulomb branch by using the localization technique. The Coulomb branch localization is discussed from the viewpoint of both non-linear and gauged linear sigma models. A classification of fixed points in the Coulomb branch differs from one in the Higgs branch, but the derived indices completely agree with the results which were obtained by the localization in the Higgs branch. In the Coulomb branch localization, the refined indices can be written as a summation over different sets of the Coulomb branch fixed points. We also discuss a space-time picture of the fixed points in the Coulomb branch.
Supersymmetric quantum mechanics and Painlevé equations
NASA Astrophysics Data System (ADS)
Bermudez, David; Fernández C., David J.
2014-01-01
In these lecture notes we shall study first the supersymmetric quantum mechanics (SUSY QM), specially when applied to the harmonic and radial oscillators. In addition, we will define the polynomial Heisenberg algebras (PHA), and we will study the general systems ruled by them: for zero and first order we obtain the harmonic and radial oscillators, respectively; for second and third order the potential is determined by solutions to Painlevé IV (PIV) and Painlevé V (PV) equations. Taking advantage of this connection, later on we will find solutions to PIV and PV equations expressed in terms of confluent hypergeometric functions. Furthermore, we will classify them into several solution hierarchies, according to the specific special functions they are connected with.
Is Quantum Mechanics the Whole Truth?
Leggett, Anthony J.
2008-05-29
Quantum mechanics has been enormously successful in describing nature at the atomic level and most physicists believe it is, in principle, the 'whole truth' about the world even at the everyday level. However, such a view, at first glance, leads to a severe problem. In certain circumstances, the most natural interpretation of the theory implies that no definite outcome of an experiment occurs until the act of observation. For many decades this problem was regarded as merely philosophical-it was thought it had no consequences that could be tested in experiment. However, in the last dozen years or so, the situation has changed dramatically in this respect. The problem, some popular resolutions of it, the current experimental situation and prospects for the future are discussed.
New methods for quantum mechanical reaction dynamics
Thompson, W.H. |
1996-12-01
Quantum mechanical methods are developed to describe the dynamics of bimolecular chemical reactions. We focus on developing approaches for directly calculating the desired quantity of interest. Methods for the calculation of single matrix elements of the scattering matrix (S-matrix) and initial state-selected reaction probabilities are presented. This is accomplished by the use of absorbing boundary conditions (ABC) to obtain a localized (L{sup 2}) representation of the outgoing wave scattering Green`s function. This approach enables the efficient calculation of only a single column of the S-matrix with a proportionate savings in effort over the calculation of the entire S-matrix. Applying this method to the calculation of the initial (or final) state-selected reaction probability, a more averaged quantity, requires even less effort than the state-to-state S-matrix elements. It is shown how the same representation of the Green`s function can be effectively applied to the calculation of negative ion photodetachment intensities. Photodetachment spectroscopy of the anion ABC{sup -} can be a very useful method for obtaining detailed information about the neutral ABC potential energy surface, particularly if the ABC{sup -} geometry is similar to the transition state of the neutral ABC. Total and arrangement-selected photodetachment spectra are calculated for the H{sub 3}O{sup -} system, providing information about the potential energy surface for the OH + H{sub 2} reaction when compared with experimental results. Finally, we present methods for the direct calculation of the thermal rate constant from the flux-position and flux-flux correlation functions. The spirit of transition state theory is invoked by concentrating on the short time dynamics in the area around the transition state that determine reactivity. These methods are made efficient by evaluating the required quantum mechanical trace in the basis of eigenstates of the Boltzmannized flux operator.
Fragment quantum mechanical calculation of proteins and its applications.
He, Xiao; Zhu, Tong; Wang, Xianwei; Liu, Jinfeng; Zhang, John Z H
2014-09-16
Conspectus The desire to study molecular systems that are much larger than what the current state-of-the-art ab initio or density functional theory methods could handle has naturally led to the development of novel approximate methods, including semiempirical approaches, reduced-scaling methods, and fragmentation methods. The major computational limitation of ab initio methods is the scaling problem, because the cost of ab initio calculation scales nth power or worse with system size. In the past decade, the fragmentation approach based on chemical locality has opened a new door for developing linear-scaling quantum mechanical (QM) methods for large systems and for applications to large molecular systems such as biomolecules. The fragmentation approach is highly attractive from a computational standpoint. First, the ab initio calculation of individual fragments can be conducted almost independently, which makes it suitable for massively parallel computations. Second, the electron properties, such as density and energy, are typically combined in a linear fashion to reproduce those for the entire molecular system, which makes the overall computation scale linearly with the size of the system. In this Account, two fragmentation methods and their applications to macromolecules are described. They are the electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) method and the automated fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) approach. The EE-GMFCC method is developed from the MFCC approach, which was initially used to obtain accurate protein-ligand QM interaction energies. The main idea of the MFCC approach is that a pair of conjugate caps (concaps) is inserted at the location where the subsystem is divided by cutting the chemical bond. In addition, the pair of concaps is fused to form molecular species such that the overcounted effect from added concaps can be properly removed. By introducing the electrostatic embedding field in each fragment calculation and two-body interaction energy correction on top of the MFCC approach, the EE-GMFCC method is capable of accurately reproducing the QM molecular properties (such as the dipole moment, electron density, and electrostatic potential), the total energy, and the electrostatic solvation energy from full system calculations for proteins. On the other hand, the AF-QM/MM method was used for the efficient QM calculation of protein nuclear magnetic resonance (NMR) parameters, including the chemical shift, chemical shift anisotropy tensor, and spin-spin coupling constant. In the AF-QM/MM approach, each amino acid and all the residues in its vicinity are automatically assigned as the QM region through a distance cutoff for each residue-centric QM/MM calculation. Local chemical properties of the central residue can be obtained from individual QM/MM calculations. The AF-QM/MM approach precisely reproduces the NMR chemical shifts of proteins in the gas phase from full system QM calculations. Furthermore, via the incorporation of implicit and explicit solvent models, the protein NMR chemical shifts calculated by the AF-QM/MM method are in excellent agreement with experimental values. The applications of the AF-QM/MM method may also be extended to more general biological systems such as DNA/RNA and protein-ligand complexes. PMID:24851673
A causal net approach to relativistic quantum mechanics
NASA Astrophysics Data System (ADS)
Bateson, R. D.
2012-05-01
In this paper we discuss a causal network approach to describing relativistic quantum mechanics. Each vertex on the causal net represents a possible point event or particle observation. By constructing the simplest causal net based on Reichenbach-like conjunctive forks in proper time we can exactly derive the 1+1 dimension Dirac equation for a relativistic fermion and correctly model quantum mechanical statistics. Symmetries of the net provide various quantum mechanical effects such as quantum uncertainty and wavefunction, phase, spin, negative energy states and the effect of a potential. The causal net can be embedded in 3+1 dimensions and is consistent with the conventional Dirac equation. In the low velocity limit the causal net approximates to the Schrodinger equation and Pauli equation for an electromagnetic field. Extending to different momentum states the net is compatible with the Feynman path integral approach to quantum mechanics that allows calculation of well known quantum phenomena such as diffraction.
Reverse Causation and the Transactional Interpretation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Cramer, John G.
2006-10-01
In the first part of the paper we present the transactional interpretation of quantum mechanics, a method of viewing the formalism of quantum mechanics that provides a way of visualizing quantum events and experiments. In the second part, we present an EPR gedankenexperiment that appears to lead to observer-level reverse causation. A transactional analysis of the experiment is presented. It easily accounts for the reported observations but does not reveal any barriers to its modification for reverse causation.
Developing and Evaluating Animations for Teaching Quantum Mechanics Concepts
ERIC Educational Resources Information Center
Kohnle, Antje; Douglass, Margaret; Edwards, Tom J.; Gillies, Alastair D.; Hooley, Christopher A.; Sinclair, Bruce D.
2010-01-01
In this paper, we describe animations and animated visualizations for introductory and intermediate-level quantum mechanics instruction developed at the University of St Andrews. The animations aim to help students build mental representations of quantum mechanics concepts. They focus on known areas of student difficulty and misconceptions by…
Categorization of Quantum Mechanics Problems by Professors and Students
ERIC Educational Resources Information Center
Lin, Shih-Yin; Singh, Chandralekha
2010-01-01
We discuss the categorization of 20 quantum mechanics problems by physics professors and undergraduate students from two honours-level quantum mechanics courses. Professors and students were asked to categorize the problems based upon similarity of solution. We also had individual discussions with professors who categorized the problems. Faculty…
Students' Conceptual Difficulties in Quantum Mechanics: Potential Well Problems
ERIC Educational Resources Information Center
Ozcan, Ozgur; Didis, Nilufer; Tasar, Mehmet Fatih
2009-01-01
In this study, students' conceptual difficulties about some basic concepts in quantum mechanics like one-dimensional potential well problems and probability density of tunneling particles were identified. For this aim, a multiple choice instrument named Quantum Mechanics Conceptual Test has been developed by one of the researchers of this study…
Design and Validation of the Quantum Mechanics Conceptual Survey
ERIC Educational Resources Information Center
McKagan, S. B.; Perkins, K. K.; Wieman, C. E.
2010-01-01
The Quantum Mechanics Conceptual Survey (QMCS) is a 12-question survey of students' conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper, we describe the design and validation of the survey, a process that included…
In Defense of a Heuristic Interpretation of Quantum Mechanics
ERIC Educational Resources Information Center
Healy, Eamonn F.
2010-01-01
Although the presentation of quantum mechanics found in traditional textbooks is intellectually well founded, it suffers from a number of deficiencies. Specifically introducing quantum mechanics as a solution to the arcane dilemma, the ultraviolet catastrophe, does little to impress a nonscientific audience of the tremendous paradigmatic shift…
Quantum Mechanics from Periodic Dynamics: the bosonic case
Dolce, Donatello
2010-05-04
Enforcing the periodicity hypothesis of the 'old' formulation of Quantum Mechanics we show the possibility for a new scenario where Special Relativity and Quantum Mechanics are unified in a deterministic field theory. A novel interpretation of the AdS/CFT conjecture is discussed.
Categorization of Quantum Mechanics Problems by Professors and Students
ERIC Educational Resources Information Center
Lin, Shih-Yin; Singh, Chandralekha
2010-01-01
We discuss the categorization of 20 quantum mechanics problems by physics professors and undergraduate students from two honours-level quantum mechanics courses. Professors and students were asked to categorize the problems based upon similarity of solution. We also had individual discussions with professors who categorized the problems. Facultyâ€¦
Developing and Evaluating Animations for Teaching Quantum Mechanics Concepts
ERIC Educational Resources Information Center
Kohnle, Antje; Douglass, Margaret; Edwards, Tom J.; Gillies, Alastair D.; Hooley, Christopher A.; Sinclair, Bruce D.
2010-01-01
In this paper, we describe animations and animated visualizations for introductory and intermediate-level quantum mechanics instruction developed at the University of St Andrews. The animations aim to help students build mental representations of quantum mechanics concepts. They focus on known areas of student difficulty and misconceptions byâ€¦
Students' Conceptual Difficulties in Quantum Mechanics: Potential Well Problems
ERIC Educational Resources Information Center
Ozcan, Ozgur; Didis, Nilufer; Tasar, Mehmet Fatih
2009-01-01
In this study, students' conceptual difficulties about some basic concepts in quantum mechanics like one-dimensional potential well problems and probability density of tunneling particles were identified. For this aim, a multiple choice instrument named Quantum Mechanics Conceptual Test has been developed by one of the researchers of this studyâ€¦
Design and Validation of the Quantum Mechanics Conceptual Survey
ERIC Educational Resources Information Center
McKagan, S. B.; Perkins, K. K.; Wieman, C. E.
2010-01-01
The Quantum Mechanics Conceptual Survey (QMCS) is a 12-question survey of students' conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper, we describe the design and validation of the survey, a process that includedâ€¦
Quantum mechanical features of optically pumped CW FIR lasers
NASA Technical Reports Server (NTRS)
Seligson, D.; Leite, J. R. R.; Sanchez, A.; Feld, M. S.; Ducloy, M.
1977-01-01
Quantum mechanical predictions for the gain of an optically pumped CW FIR laser are presented for cases in which one or both of the pump and FIR transitions are pressure or Doppler broadened. The results are compared to those based on the rate equation model. Some of the quantum mechanical predictions are verified in CH3OH.
New Potentials for Old: The Darboux Transformation in Quantum Mechanics
ERIC Educational Resources Information Center
Williams, Brian Wesley; Celius, Tevye C.
2008-01-01
The Darboux transformation in quantum mechanics is reviewed at a basic level. Examples of how this transformation leads to exactly solvable potentials related to the "particle in a box" and the harmonic oscillator are shown in detail. The connection between the Darboux transformation and some modern operator based approaches to quantum mechanics…
In Defense of a Heuristic Interpretation of Quantum Mechanics
ERIC Educational Resources Information Center
Healy, Eamonn F.
2010-01-01
Although the presentation of quantum mechanics found in traditional textbooks is intellectually well founded, it suffers from a number of deficiencies. Specifically introducing quantum mechanics as a solution to the arcane dilemma, the ultraviolet catastrophe, does little to impress a nonscientific audience of the tremendous paradigmatic shiftâ€¦
Are quantum-mechanical-like models possible, or necessary, outside quantum physics?
NASA Astrophysics Data System (ADS)
Plotnitsky, Arkady
2014-12-01
This article examines some experimental conditions that invite and possibly require recourse to quantum-mechanical-like mathematical models (QMLMs), models based on the key mathematical features of quantum mechanics, in scientific fields outside physics, such as biology, cognitive psychology, or economics. In particular, I consider whether the following two correlative features of quantum phenomena that were decisive for establishing the mathematical formalism of quantum mechanics play similarly important roles in QMLMs elsewhere. The first is the individuality and discreteness of quantum phenomena, and the second is the irreducibly probabilistic nature of our predictions concerning them, coupled to the particular character of the probabilities involved, as different from the character of probabilities found in classical physics. I also argue that these features could be interpreted in terms of a particular form of epistemology that suspends and even precludes a causal and, in the first place, realist description of quantum objects and processes. This epistemology limits the descriptive capacity of quantum theory to the description, classical in nature, of the observed quantum phenomena manifested in measuring instruments. Quantum mechanics itself only provides descriptions, probabilistic in nature, concerning numerical data pertaining to such phenomena, without offering a physical description of quantum objects and processes. While QMLMs share their use of the quantum-mechanical or analogous mathematical formalism, they may differ by the roles, if any, the two features in question play in them and by different ways of interpreting the phenomena they considered and this formalism itself. This article will address those differences as well.
Chirality, quantum mechanics, and biological determinism
NASA Astrophysics Data System (ADS)
Davies, P. C. W.
2006-08-01
The holy grail of astrobiology is the discovery of a second sample of life that has emerged de novo, independently of life on Earth (as opposed to extraterrestrial life that shares a common origin with terrestrial life via a panspermia process). It would then be possible to separate aspects of biology that are lawlike and expected from those that are accidental and contingent, and thus to address the question of whether the laws of nature are intrinsically bio-friendly. The popular assumption that life is an almost inevitable product of physics and chemistry, and therefore widespread in the universe, is known as biological determinism. It remains an open question whether biological determinism is correct, as there is little direct evidence in its favour from fundamental physics. Homochirality is a deep property of known life, and provides an important test case for the competing ideas of contingency versus lawfulness - or chance versus necessity. Conceivably, a chiral signature is imprinted on life by fundamental physics via parity-violating mixing of the weak and electromagnetic interactions. If so, homochirality would be universal and lawlike. On the other hand, it may be the result of chance: a random molecular accident during the pre-biotic phase. If the latter explanation is correct, one could expect that a second sample of life may have opposite chiral signature even if it resembled known life in its basic biochemistry. There is thus a curious obverse relationship between chirality and biogenesis in relation to biological determinism. If the chiral signature of life is the product of chance, we may hope to discover "mirror life" (i.e. organisms with opposite chiral signature) as evidence of a second genesis, and the latter would establish that life's emergence from non-life is quasi-deterministic. On the other hand, if the chiral signature is determined by fundamental physics, then it may be much harder to establish an independent origin for extraterrestrial life with biochemical make-up resembling that of known life. Whilst the experimental search for a second sample of life - possibly by detecting a chiral "anomaly" - continues, some theoretical investigations may be pursued to narrow down the options. Chiral determinism would be an intrinsically quantum process. There are hints that quantum mechanics plays a key role in biology, but the claim remains contentious. Here I review some of the evidence for quantum aspects of biology. I also summarize some proposals for testing biological determinism by seeking evidence for a multiple genesis events on Earth, and for identifying extant "alien microbes" - micro-organisms descended from an independent origin from familiar life.
Quantum mechanics on the gravitational field
Teitelboim, C.
1982-06-15
An approach to the quantum theory of gravitation is developed by analogy with the quantum mechanics of the simplest generally covariant system: the relativistic point particle. The central object in the formalism is the transition amplitude from one three-geometry to another which is given by a path integral. In that path integral one sums over all possible histories which connect two three-geometries separated by a given local proper time and then integrates over all possible proper-time separations. The choice of the range of integration for the proper time fixes the boundary conditions for the transition amplitude. If only positive proper times are allowed, the resulting amplitude is causal. A perturbation theory is developed in which the expansion parameter is the signature which takes the value minus one when the field histories (spacetimes) have hperbolic signature and plus one for the Euclidean case. The ''free theory corresponds to zero signature and may be viewed as the result of replacing the Lorentz group as a symmetry group of the tangent spaces by one of its contractions, namely that one where the speed of light approaches zero. It is argued that besides that processes in which the universe starts or finishes at a singularity, there are also processes with a nonzero amplitude in which the universe starts and finishes in the same regular configuration without ever going through a singularity. These latter processes may be pictured as a loop in the configurtion space of the gravitational field. The work remains formal throughout in that no definite meaning is given to the functional integrals considered.
Cloning in nonlinear Hamiltonian quantum and hybrid mechanics
NASA Astrophysics Data System (ADS)
ArsenoviÄ‡, D.; BuriÄ‡, N.; PopoviÄ‡, D. B.; RadonjiÄ‡, M.; PrvanoviÄ‡, S.
2014-10-01
The possibility of state cloning is analyzed in two types of generalizations of quantum mechanics with nonlinear evolution. It is first shown that nonlinear Hamiltonian quantum mechanics does not admit cloning without the cloning machine. It is then demonstrated that the addition of the cloning machine, treated as a quantum or as a classical system, makes cloning possible by nonlinear Hamiltonian evolution. However, a special type of quantum-classical theory, known as the mean-field Hamiltonian hybrid mechanics, does not admit cloning by natural evolution. The latter represents an example of a theory where it appears to be possible to communicate between two quantum systems at superluminal speed, but at the same time it is impossible to clone quantum pure states.
Calendar effects in quantum mechanics in view of interactive holography
NASA Astrophysics Data System (ADS)
Berkovich, Simon
2013-04-01
Quantum mechanics in terms of interactive holography appears as `normal' science [1]. With the holography quantum behavior is determined by the interplay of material formations and their conjugate images. To begin with, this effortlessly elucidates the nonlocality in quantum entanglements. Then, it has been shown that Schr"odinger's dynamics for a single particle arises from Bi-Fragmental random walks of the particle itself and its holographic image. For many particles this picture blurs with fragments merging as bosons or fermions. In biomolecules, swapping of particles and their holographic placeholders leads to self-replication of the living matter. Because of broad interpretations of quantum formalism direct experiments attributing it to holography may not be very compelling. The holographic mechanism better reveals as an absolute frame of reference. A number of physical and biological events exhibit annual variations when Earth orbital position changes with respect to the universal holographic mechanism. The well established calendar variations of heart attacks can be regarded as a positive outcome of a generalization of the Michelson experiment, where holography is interferometry and ailing hearts are detectors of pathologically replicated proteins. Also, there have been already observed calendar changes in radioactive decay rates. The same could be expected for various fine quantum experiences, like, e.g., Josephson tunneling. In other words, Quantum Mechanics (February) Quantum Mechanics (August). [1] S. Berkovich, ``A comprehensive explanation of quantum mechanics,'' www.cs.gwu.edu/research/technical-report/170 .
Review of student difficulties in upper-level quantum mechanics
NASA Astrophysics Data System (ADS)
Singh, Chandralekha; Marshman, Emily
2015-12-01
[This paper is part of the Focused Collection on Upper Division Physics Courses.] Learning advanced physics, in general, is challenging not only due to the increased mathematical sophistication but also because one must continue to build on all of the prior knowledge acquired at the introductory and intermediate levels. In addition, learning quantum mechanics can be especially challenging because the paradigms of classical mechanics and quantum mechanics are very different. Here, we review research on student reasoning difficulties in learning upper-level quantum mechanics and research on students' problem-solving and metacognitive skills in these courses. Some of these studies were multiuniversity investigations. The investigations suggest that there is large diversity in student performance in upper-level quantum mechanics regardless of the university, textbook, or instructor, and many students in these courses have not acquired a functional understanding of the fundamental concepts. The nature of reasoning difficulties in learning quantum mechanics is analogous to reasoning difficulties found via research in introductory physics courses. The reasoning difficulties were often due to overgeneralizations of concepts learned in one context to another context where they are not directly applicable. Reasoning difficulties in distinguishing between closely related concepts and in making sense of the formalism of quantum mechanics were common. We conclude with a brief summary of the research-based approaches that take advantage of research on student difficulties in order to improve teaching and learning of quantum mechanics.
Highlighting the Mechanism of the Quantum Speedup by Time-Symmetric and Relational Quantum Mechanics
NASA Astrophysics Data System (ADS)
Castagnoli, Giuseppe
2015-11-01
Bob hides a ball in one of four drawers. Alice is to locate it. Classically she has to open up to three drawers, quantally just one. The fundamental reason for this quantum speedup is not known. The usual representation of the quantum algorithm is limited to the process of solving the problem. We extend it to the process of setting the problem. The number of the drawer with the ball becomes a unitary transformation of the random outcome of the preparation measurement. This extended, time-symmetric, representation brings in relational quantum mechanics. It is with respect to Bob and any external observer and cannot be with respect to Alice. It would tell her the number of the drawer with the ball before she opens any drawer. To Alice, the projection of the quantum state due to the preparation measurement should be retarded at the end of her search; in the input state of the search, the drawer number is determined to Bob and undetermined to Alice. We show that, mathematically, one can ascribe any part of the selection of the random outcome of the preparation measurement to the final Alice's measurement. Ascribing half of it explains the speedup of the present algorithm. This leaves the input state to Bob unaltered and projects that to Alice on a state of lower entropy where she knows half of the number of the drawer with the ball in advance. The quantum algorithm turns out to be a sum over histories in each of which Alice knows in advance that the ball is in a pair of drawers and locates it by opening one of the two. In the sample of quantum algorithms examined, the part of the random outcome of the initial measurement selected by the final measurement is one half or slightly above it. Conversely, given an oracle problem, the assumption it is one half always corresponds to an existing quantum algorithm and gives the order of magnitude of the number of oracle queries required by the optimal one.
Highlighting the Mechanism of the Quantum Speedup by Time-Symmetric and Relational Quantum Mechanics
NASA Astrophysics Data System (ADS)
Castagnoli, Giuseppe
2016-03-01
Bob hides a ball in one of four drawers. Alice is to locate it. Classically she has to open up to three drawers, quantally just one. The fundamental reason for this quantum speedup is not known. The usual representation of the quantum algorithm is limited to the process of solving the problem. We extend it to the process of setting the problem. The number of the drawer with the ball becomes a unitary transformation of the random outcome of the preparation measurement. This extended, time-symmetric, representation brings in relational quantum mechanics. It is with respect to Bob and any external observer and cannot be with respect to Alice. It would tell her the number of the drawer with the ball before she opens any drawer. To Alice, the projection of the quantum state due to the preparation measurement should be retarded at the end of her search; in the input state of the search, the drawer number is determined to Bob and undetermined to Alice. We show that, mathematically, one can ascribe any part of the selection of the random outcome of the preparation measurement to the final Alice's measurement. Ascribing half of it explains the speedup of the present algorithm. This leaves the input state to Bob unaltered and projects that to Alice on a state of lower entropy where she knows half of the number of the drawer with the ball in advance. The quantum algorithm turns out to be a sum over histories in each of which Alice knows in advance that the ball is in a pair of drawers and locates it by opening one of the two. In the sample of quantum algorithms examined, the part of the random outcome of the initial measurement selected by the final measurement is one half or slightly above it. Conversely, given an oracle problem, the assumption it is one half always corresponds to an existing quantum algorithm and gives the order of magnitude of the number of oracle queries required by the optimal one.
High-efficiency quantum state transfer and quantum memory using a mechanical oscillator
NASA Astrophysics Data System (ADS)
Sete, Eyob A.; Eleuch, H.
2015-03-01
We analyze an optomechanical system that can be used to efficiently transfer a quantum state between an optical cavity and a distant mechanical oscillator coupled to a second optical cavity. We show that for a moderate mechanical Q factor it is possible to achieve a transfer efficiency of 99.4 % by using adjustable cavity damping rates and destructive interference. We also show that the quantum mechanical oscillator can be used as a quantum memory device with an efficiency of 96 % employing a pulsed optomechanical coupling. Although the mechanical dissipation slightly decreases the efficiency, its effect can be significantly reduced by designing a high-Q mechanical oscillator.
A dissipative quantum mechanical beam-splitter.
Ramakrishna, S A; Bandyopadhyay, A; Rai, J
1998-01-19
A dissipative beam-splitter (BS) has been analyzed by modeling the losses in the BS due to the excitation of optical phonons. The losses are obtained in terms of the BS medium properties. The model simplies the picture by treating the loss mechanism as a perturbation on the photon modes in a linear, non-lossy medium in the limit of small losses, instead of using the full field quantization in lossy, dispersive media. The model uses second order perturbation in the Markoff approximation and yields the Beer's law for absorption in the first approximation, thus providing a microscopic description of the absorption coecient. It is shown that the fluctuations in the modes get increased because of the losses. We show the existence of quantum interferences due to phase correlations between the input beams and it is shown that these correlations can result in loss quenching. Hence in spite of having such a dissipative medium, it is possible to design a lossless 50-50 BS at normal incidence which may have potential applications in laser optics and dielectric-coated mirrors. PMID:19377576
Quantum mechanical model for Maya Blue
NASA Astrophysics Data System (ADS)
Fuentes, María E.; Peña, Brisa; Contreras, César; Montero, Ana L.; Chianelli, Russell; Alvarado, Manuel; Olivas, Ramón; Rodríguez, Luz M.; Camacho, Héctor; Montero-Cabrera, Luis A.
This work is about Maya Blue (MB), a pigment developed by Mesoamerican civilizations between the 5th and 16th centuries from an aluminosilicate mineral (palygorskite) and an organic dye (indigo). Two different supramolecular quantum-mechanical models afford explanations for the unusual stability of MB based on the oxidation of the indigo molecule during the heating process and its interaction with palygorskite. A model considering indigo derivatives attached to several aluminates shows the principal features of the experimental visible spectrum of MB within the TD-DFT methodology. Another model of an indigo oxidized species confined within an inorganic supramolecular cavity system, that involves about 170 atoms, was calculated after a large configuration interaction of single excited determinants within the NDOL approximation (Montero-Cabrera et al., J Chem Phys, 2007, 127, 145102). It allows a correct reproduction and interpretation of the corresponding spectrum. This second methodology provides the most satisfactory results, being able to manage very big molecular systems at a QM level. Structural explanation for the unusual stability of MB is also provided.
Can you do quantum mechanics without Einstein?
Kim, Y. S.; Noz, Marilyn E.
2007-02-21
The present form of quantum mechanics is based on the Copenhagen school of interpretation. Einstein did not belong to the Copenhagen school, because he did not believe in probabilistic interpretation of fundamental physical laws. This is the reason why we are still debating whether there is a more deterministic theory. One cause of this separation between Einstein and the Copenhagen school could have been that the Copenhagen physicists thoroughly ignored Einstein's main concern: the principle of relativity. Paul A. M. Dirac was the first one to realize this problem. Indeed, from 1927 to 1963, Paul A. M. Dirac published at least four papers to study the problem of making the uncertainty relation consistent with Einstein's Lorentz covariance. It is interesting to combine those papers by Dirac to make the uncertainty relation consistent with relativity. It is shown that the mathematics of two coupled oscillators enables us to carry out this job. We are then led to the question of whether the concept of localized probability distribution is consistent with Lorentz covariance.
Quantum Mechanical Studies of DNA and LNA
Shim, Irene; Lindow, Morten; Ã˜rum, Henrik
2014-01-01
Quantum mechanical (QM) methodology has been employed to study the structure activity relations of DNA and locked nucleic acid (LNA). The QM calculations provide the basis for construction of molecular structure and electrostatic surface potentials from molecular orbitals. The topologies of the electrostatic potentials were compared among model oligonucleotides, and it was observed that small structural modifications induce global changes in the molecular structure and surface potentials. Since ligand structure and electrostatic potential complementarity with a receptor is a determinant for the bonding pattern between molecules, minor chemical modifications may have profound changes in the interaction profiles of oligonucleotides, possibly leading to changes in pharmacological properties. The QM modeling data can be used to understand earlier observations of antisense oligonucleotide properties, that is, the observation that small structural changes in oligonucleotide composition may lead to dramatic shifts in phenotypes. These observations should be taken into account in future oligonucleotide drug discovery, and by focusing more on non RNA target interactions it should be possible to utilize the exhibited property diversity of oligonucleotides to produce improved antisense drugs. PMID:24491259
Quantum mechanical studies of DNA and LNA.
Koch, Troels; Shim, Irene; Lindow, Morten; Ørum, Henrik; Bohr, Henrik G
2014-04-01
Quantum mechanical (QM) methodology has been employed to study the structure activity relations of DNA and locked nucleic acid (LNA). The QM calculations provide the basis for construction of molecular structure and electrostatic surface potentials from molecular orbitals. The topologies of the electrostatic potentials were compared among model oligonucleotides, and it was observed that small structural modifications induce global changes in the molecular structure and surface potentials. Since ligand structure and electrostatic potential complementarity with a receptor is a determinant for the bonding pattern between molecules, minor chemical modifications may have profound changes in the interaction profiles of oligonucleotides, possibly leading to changes in pharmacological properties. The QM modeling data can be used to understand earlier observations of antisense oligonucleotide properties, that is, the observation that small structural changes in oligonucleotide composition may lead to dramatic shifts in phenotypes. These observations should be taken into account in future oligonucleotide drug discovery, and by focusing more on non RNA target interactions it should be possible to utilize the exhibited property diversity of oligonucleotides to produce improved antisense drugs. PMID:24491259
Can you do quantum mechanics without Einstein?
NASA Astrophysics Data System (ADS)
Kim, Y. S.; Noz, Marilyn E.
2007-02-01
The present form of quantum mechanics is based on the Copenhagen school of interpretation. Einstein did not belong to the Copenhagen school, because he did not believe in probabilistic interpretation of fundamental physical laws. This is the reason why we are still debating whether there is a more deterministic theory. One cause of this separation between Einstein and the Copenhagen school could have been that the Copenhagen physicists thoroughly ignored Einstein's main concern: the principle of relativity. Paul A. M. Dirac was the first one to realize this problem. Indeed, from 1927 to 1963, Paul A. M. Dirac published at least four papers to study the problem of making the uncertainty relation consistent with Einstein's Lorentz covariance. It is interesting to combine those papers by Dirac to make the uncertainty relation consistent with relativity. It is shown that the mathematics of two coupled oscillators enables us to carry out this job. We are then led to the question of whether the concept of localized probability distribution is consistent with Lorentz covariance.
A dissipative quantum mechanical beam-splitter
NASA Astrophysics Data System (ADS)
Ramakrishna, S. Anantha; Bandyopadhyay, Abir; Rai, Jagdish
1998-01-01
A dissipative beam-splitter (BS) has been analyzed by modeling the losses in the BS due to the excitation of optical phonons. The losses are obtained in terms of the BS medium properties. The model simplies the picture by treating the loss mechanism as a perturbation on the photon modes in a linear, non-lossy medium in the limit of small losses, instead of using the full field quantization in lossy, dispersive media. The model uses second order perturbation in the Markoff approximation and yields the Beer's law for absorption in the first approximation, thus providing a microscopic description of the absorption coecient. It is shown that the fluctuations in the modes get increased because of the losses. We show the existence of quantum interferences due to phase correlations between the input beams and it is shown that these correlations can result in loss quenching. Hence in spite of having such a dissipative medium, it is possible to design a lossless 50-50 BS at normal incidence which may have potential applications in laser optics and dielectric-coated mirrors.
"Mysticism" in Quantum Mechanics: The Forgotten Controversy
ERIC Educational Resources Information Center
Marin, Juan Miguel
2009-01-01
This paper argues that a European controversy over a "mystical" hypothesis, one assigning the mind a role to play at the material level of reality, shaped much of the debate over the interpretation of the quantum equations. It traces back the controversy to the past two decades, beginning in the late 1920s--birth of quantum theory--and concludingâ€¦
"Mysticism" in Quantum Mechanics: The Forgotten Controversy
ERIC Educational Resources Information Center
Marin, Juan Miguel
2009-01-01
This paper argues that a European controversy over a "mystical" hypothesis, one assigning the mind a role to play at the material level of reality, shaped much of the debate over the interpretation of the quantum equations. It traces back the controversy to the past two decades, beginning in the late 1920s--birth of quantum theory--and concluding…
Nishimoto, Yoshio; Nakata, Hiroya; Fedorov, Dmitri G; Irle, Stephan
2015-12-17
The fully analytic gradient is developed for density-functional tight-binding (DFTB) combined with the fragment molecular orbital (FMO) method (FMO-DFTB). The response terms arising from the coupling of the electronic state to the embedding potential are derived, and the gradient accuracy is demonstrated on water clusters and a polypeptide. The radial distribution functions (RDFs) obtained with FMO-DFTB are found to be similar to those from conventional DFTB, while the computational cost is greatly reduced; for 256 water molecules one molecular dynamics (MD) step takes 73.26 and 0.68 s with full DFTB and FMO-DFTB, respectively, showing a speed-up factor of 108. FMO-DFTB/MD is applied to 100 ps MD simulations of liquid hydrogen halides and is found to reproduce experimental RDFs reasonably well. PMID:26623658
Rubinstein, Amir; Major, Dan Thomas
2010-05-11
Alanine racemase (AlaR) catalyzes the interconversion between l-Ala and d-Ala with the aid of the cofactor pyridoxal 5'-phosphate (PLP). The pyridine nitrogen in PLP in the wild-type enzyme is unprotonated due to interaction with Arg219, a rare feature among PLP-dependent enzymes. Herein, we performed combined quantum mechanics and molecular mechanics molecular dynamics simulations to study the Arg219Glu mutant AlaR. In this form of the enzyme, the PLP-pyridine nitrogen is protonated. This study suggests that the catalytic effect in the Arg219Glu mutant enzyme is due to a combined solvent and inherent stabilizing effect of the protonated cofactor, in contrast to the wild-type enzyme where the catalytic effect may be ascribed to solvent effects alone. Furthermore, we find that the quinonoid intermediate is greatly stabilized in the mutant enzyme, opening the possibility for side reactions such as transamination. We show that a computed 1,3-proton transfer in PLP due to the catalytic Lys39 is a feasible side reaction en route to transamination. PMID:20394349
NASA Astrophysics Data System (ADS)
Cataloglu, Erdat
The purpose of this study was to construct a valid and reliable multiple-choice achievement test to assess students' understanding of core concepts of introductory quantum mechanics. Development of the Quantum Mechanics Visualization Instrument (QMVI) occurred across four successive semesters in 1999--2001. During this time 213 undergraduate and graduate students attending the Pennsylvania State University (PSU) at University Park and Arizona State University (ASU) participated in this development and validation study. Participating students were enrolled in four distinct groups of courses: Modern Physics, Undergraduate Quantum Mechanics, Graduate Quantum Mechanics, and Chemistry Quantum Mechanics. Expert panels of professors of physics experienced in teaching quantum mechanics courses and graduate students in physics and science education established the core content and assisted in the validating of successive versions of the 24-question QMVI. Instrument development was guided by procedures outlined in the Standards for Educational and Psychological Testing (AERA-APA-NCME, 1999). Data gathered in this study provided information used in the development of successive versions of the QMVI. Data gathered in the final phase of administration of the QMVI also provided evidence that the intended score interpretation of the QMVI achievement test is valid and reliable. A moderate positive correlation coefficient of 0.49 was observed between the students' QMVI scores and their confidence levels. Analyses of variance indicated that students' scores in Graduate Quantum Mechanics and Undergraduate Quantum Mechanics courses were significantly higher than the mean scores of students in Modern Physics and Chemistry Quantum Mechanics courses (p < 0.05). That finding is consistent with the additional understanding and experience that should be anticipated in graduate students and junior-senior level students over sophomore physics majors and majors in another field. The moderate positive correlation coefficient of 0.42 observed between students' QMVI scores and their final course grades was also consistent with expectations in a valid instrument. In addition, the Cronbach-alpha reliability coefficient of the QMVI was found to be 0.82. Limited findings were drawn on students' understanding of introductory quantum mechanics concepts. Data suggested that the construct of quantum mechanics understanding is most likely multidimensional and the Main Topic defined as "Quantum Mechanics Postulates" may be an especially important factor for students in acquiring a successful understanding of quantum mechanics.
The actual content of quantum theoretical kinematics and mechanics
NASA Technical Reports Server (NTRS)
Heisenberg, W.
1983-01-01
First, exact definitions are supplied for the terms: position, velocity, energy, etc. (of the electron, for instance), such that they are valid also in quantum mechanics. Canonically conjugated variables are determined simultaneously only with a characteristic uncertainty. This uncertainty is the intrinsic reason for the occurrence of statistical relations in quantum mechanics. Mathematical formulation is made possible by the Dirac-Jordan theory. Beginning from the basic principles thus obtained, macroscopic processes are understood from the viewpoint of quantum mechanics. Several imaginary experiments are discussed to elucidate the theory.
Thermal mechanics: A quantum mechanical analogue of nonequilibrium statistical thermodynamics
NASA Astrophysics Data System (ADS)
Zambrini, J.-C.; Yasue, K.
1980-03-01
A formal but not conventional equivalence between stochastic processes in nonequilibrium statistical thermodynamics and Schrödinger dynamics in quantum mechanics is shown. It is found, for each stochastic process described by a stochastic differential equation of Itô type, there exists a Schrödinger-like dynamics in which the absolute square of a wavefunction gives us the same probability distribution as the original stochastic process. In utilizing this equivalence between them, that is, rewriting the stochastic differential equation by an equivalent Schrödinger equation, it is possible to obtain the notion of deterministic limit of the stochastic process as a semi-classical limit of the "Schrödinger" equation. The deterministic limit thus obtained improves the conventional deterministic approximation in the sense of Onsager-Machlup. The present approach is valid for a general class of stochastic equations where local drifts and diffusion coefficients depend on the position. Two concrete examples are given. It should be noticed that the approach in the present form has nothing to do with the conventional one where only a formal similarity between the Fokker-Planck equation and the Schrödinger equation is considered.
Relations between Newtonian mechanics, general relativity, and quantum mechanics
NASA Astrophysics Data System (ADS)
Savickas, D.
2002-08-01
When Euclidean coordinate lengths are replaced by the metric lengths of a curved geometry within Newton's second law of motion, the metric form of the second law can be shown to be identical to the geodesic equation of motion of general relativity. The metric coefficients are contained in the metric lengths and satisfy the field equations of general relativity. Because metric lengths are the physically measured lengths, their use makes it possible to understand general relativity directly in terms of physical quantities such as energy and momentum within a curved space-time. The metric form of the second law contains gravitational effects in exactly the same manner as occurs in relativity. Its mathematical derivation uses vectors rather than tensors, and nongravitational forces can occur in this modified second law without a tensor form. Because quantum mechanics is based on Newtonian concepts of energy and momentum, it is shown that when metric lengths replace coordinate lengths in Dirac's wave equation, it has a covariant form under a metric transformation of the physically measured distances themselves, rather than a coordinate transformation. Metric transformations are also used to describe the Dirac equation for the gravitational central field in a Schwarzschild metric.
Quantum Mechanics Concept Assessment: Development and Validation Study
ERIC Educational Resources Information Center
Sadaghiani, Homeyra R.; Pollock, Steven J.
2015-01-01
As part of an ongoing investigation of students' learning in first semester upper-division quantum mechanics, we needed a high-quality conceptual assessment instrument for comparing outcomes of different curricular approaches. The process of developing such a tool started with converting a preliminary version of a 14-item open-ended quantum…
New Potentials for Old: The Darboux Transformation in Quantum Mechanics
ERIC Educational Resources Information Center
Williams, Brian Wesley; Celius, Tevye C.
2008-01-01
The Darboux transformation in quantum mechanics is reviewed at a basic level. Examples of how this transformation leads to exactly solvable potentials related to the "particle in a box" and the harmonic oscillator are shown in detail. The connection between the Darboux transformation and some modern operator based approaches to quantum mechanicsâ€¦
Kuechler, Erich R.; York, Darrin M.
2014-01-01
The nucleophilic attack of a chloride ion on methyl chloride is an important prototype SN2 reaction in organic chemistry that is known to be sensitive to the effects of the surrounding solvent. Herein, we develop a highly accurate Specific Reaction Parameter (SRP) model based on the Austin Model 1 Hamiltonian for chlorine to study the effects of solvation into an aqueous environment on the reaction mechanism. To accomplish this task, we apply high-level quantum mechanical calculations to study the reaction in the gas phase and combined quantum mechanical/molecular mechanical simulations with TIP3P and TIP4P-ew water models and the resulting free energy profiles are compared with those determined from simulations using other fast semi-empirical quantum models. Both gas phase and solution results with the SRP model agree very well with experiment and provide insight into the specific role of solvent on the reaction coordinate. Overall, the newly parameterized SRP Hamiltonian is able to reproduce both the gas phase and solution phase barriers, suggesting it is an accurate and robust model for simulations in the aqueous phase at greatly reduced computational cost relative to comparably accurate ab initio and density functional models. PMID:24511924
On Heat in a Quantum Mechanical Process
NASA Astrophysics Data System (ADS)
Deesuwan, Tanapat; Anders, Janet
2013-05-01
Heat is the portion of energy exchange between systems in thermodynamic process which, unlike work, is always associated with the change of the entropies of the systems. In the context of quantum thermodynamics, heat process is described by an incoherent generalised quantum evolution, which is a map between two quantum states that does not preserve the entropy. Based on an information-theoretic reasoning, we propose that heat involving in a general quantum thermodynamic process can be separated into two types: one that is due to the unital subclass of the evolutions and another one that is due to the others. According to these categories, we show how the former type of heat can be incorporated into Jarzynski equality, resulting in a generalised version of the equality. We also derive a Jarzynski inequality which incorporates all heat into the picture and show that this situation is just equivalent to the presence of Maxwell's demon.
Quantum mechanics of the inverted oscillator potential
NASA Astrophysics Data System (ADS)
Barton, G.
1986-02-01
The Hamiltonian ( 1/2m)p 2 - 1/2m? 2x 2 yields equations solvable in closed form; one is led to them by questions about the longest mean sojourn time T allowed by quantum mechanics to a system near unstable equilibrium. These equations are then studied further in their own right. After criticism of earlier arguments, one finds, by aid of the Green's function, that T ˜ ? -1log{ l/( {h?}/{m?) 1/2}} for sojourn in the region | x| < l, where l is the resolving power of the detector. Without appeal to some parameter like l one would get nonsense estimates T ˜ ?-1 (e.g., from the nondecay probability familiar in the decay of metastable states). in this potential wavepackets Gaussian in position do not split on impact: their peaks are either transmitted or reflected, depending on the sign of the energy E ? 0; however, they spread so fast that not all the probability ends up on the same side of the origin as the peak. The energy eigenfunctions (parabolic cylinder functions) identify the transmission and reflection amplitudes as T = (1 + e -2?E) -1/2ei?, R = -i(1 + e -2?E) -1/2 e -?E e i?, where ? = arg ?( 1/2 - iE) (in units where 2m = 1 = ? = h?). The density of states for the interval | x| ? L is 2? -1 log L + ? -1?'( E). Wavepackets that are peaked sharply enough in energy travel without dispersion in the asymptotic region | x| > | E|, and do split on impact in the usual way. The travel times and time delays of these packets are determined. For both reflection and transmission, and for both E ? 0, the time delays are given by ?'( E), which is a symmetric function of E, with a positive maximum at E = 0. In particular, packets tunneling under the barrier reemerge sooner if their energy is more negative. This paradox (which occurs also in other tunneling problems) is elucidated as far as possible. Coherent states are constructed by analogy to those of the ordinary oscillator. Though not integrable, their probability distributions do have a recognizable pattern which moves classically. Such states form a complete set only if generated from energy eigenstates with definite parity. If generated from scattering eigenstates, only certain special coherent states are physically admissible, and these do not form a complete set. The effects of resistive (energy dissipating) forces and of thermal agitation are considered briefly. At zero temperature ordinary resistive mechanisms enhance the sojourn time.
Bohmian mechanics with complex action: A new trajectory-based formulation of quantum mechanics
NASA Astrophysics Data System (ADS)
Goldfarb, Yair; Degani, Ilan; Tannor, David J.
2006-12-01
In recent years there has been a resurgence of interest in Bohmian mechanics as a numerical tool because of its local dynamics, which suggest the possibility of significant computational advantages for the simulation of large quantum systems. However, closer inspection of the Bohmian formulation reveals that the nonlocality of quantum mechanics has not disappearedâ€”it has simply been swept under the rug into the quantum force. In this paper we present a new formulation of Bohmian mechanics in which the quantum action, S, is taken to be complex. This leads to a single equation for complex S, and ultimately complex x and p but there is a reward for this complexificationâ€”a significantly higher degree of localization. The quantum force in the new approach vanishes for Gaussian wave packet dynamics, and its effect on barrier tunneling processes is orders of magnitude lower than that of the classical force. In fact, the current method is shown to be a rigorous extension of generalized Gaussian wave packet dynamics to give exact quantum mechanics. We demonstrate tunneling probabilities that are in virtually perfect agreement with the exact quantum mechanics down to 10-7 calculated from strictly localized quantum trajectories that do not communicate with their neighbors. The new formulation may have significant implications for fundamental quantum mechanics, ranging from the interpretation of non-locality to measures of quantum complexity.
Quantum tic-tac-toe: A teaching metaphor for superposition in quantum mechanics
NASA Astrophysics Data System (ADS)
Goff, Allan
2006-11-01
Quantum tic-tac-toe was developed as a metaphor for the counterintuitive nature of superposition exhibited by quantum systems. It offers a way of introducing quantum physics without advanced mathematics, provides a conceptual foundation for understanding the meaning of quantum mechanics, and is fun to play. A single superposition rule is added to the child's game of classical tic-tac-toe. Each move consists of a pair of marks subscripted by the number of the move ("spooky" marks) that must be placed in different squares. When a measurement occurs, one spooky mark becomes real and the other disappears. Quantum tic-tac-toe illustrates a number of quantum principles including states, superposition, collapse, nonlocality, entanglement, the correspondence principle, interference, and decoherence. The game can be played on paper or on a white board. A Web-based version provides a refereed playing board to facilitate the mechanics of play, making it ideal for classrooms with a computer projector.
Particles, Waves, and the Interpretation of Quantum Mechanics
ERIC Educational Resources Information Center
Christoudouleas, N. D.
1975-01-01
Presents an explanation, without mathematical equations, of the basic principles of quantum mechanics. Includes wave-particle duality, the probability character of the wavefunction, and the uncertainty relations. (MLH)
Why are probabilistic laws governing quantum mechanics and neurobiology?
NASA Astrophysics Data System (ADS)
Kröger, Helmut
2005-08-01
We address the question: Why are dynamical laws governing in quantum mechanics and in neuroscience of probabilistic nature instead of being deterministic? We discuss some ideas showing that the probabilistic option offers advantages over the deterministic one.
Quantum mechanical calculation of the carbine valent zone
NASA Astrophysics Data System (ADS)
Baitinger, E. M.; Gagarin, S. G.
1989-07-01
Results of a quantum mechanical calculation of the valent states of carbine are presented. A comparison is performed with data from spectroscopic experiments studying the valent states of this modification of solid carbon.
Probabilistic Approach to Teaching the Principles of Quantum Mechanics
ERIC Educational Resources Information Center
Santos, Emilio
1976-01-01
Approaches the representation of quantum mechanics through Hilbert space postulates. Demonstrates that if the representation is to be accurate, an evolution operator of the form of a Hamiltonian must be used. (CP)
A Simplified Quantum Mechanical Model of Diatomic Molecules
ERIC Educational Resources Information Center
Nielsen, Lars Drud
1978-01-01
Introduces a simple one-dimensional model of a diatomic molecule that can explain all the essential features of a real two particle quantum mechanical system and gives quantitative results in fair agreement with those of a hydrogen molecule. (GA)
A low temperature expansion for matrix quantum mechanics
NASA Astrophysics Data System (ADS)
Lin, Ying-Hsuan; Shao, Shu-Heng; Wang, Yifan; Yin, Xi
2015-05-01
We analyze solutions to loop-truncated Schwinger-Dyson equations in massless and Wess-Zumino matrix quantum mechanics at finite temperature, where conventional perturbation theory breaks down due to IR divergences. We find a rather intricate low temperature expansion that involves fractional power scaling in the temperature, based on a consistent "soft collinear" approximation. We conjecture that at least in the matrix quantum mechanics, such scaling behavior holds to all perturbative orders in the 1 /N expansion. We discuss some preliminary results in analyzing the gauged supersymmetric quantum mechanics using Schwinger-Dyson equations, and comment on the connection to metastable microstates of black holes in the holographic dual of BFSS matrix quantum mechanics.
Nitoker, Neta; Major, Dan Thomas
2015-01-20
Serine racemase (SerR) is a pyridoxal-5'-phosphate (PLP)-dependent enzyme catalyzing the racemization of l-Ser to d-Ser. In mammals, d-Ser is an endogenous coagonist required for the activation of N-methyl-d-aspartate receptors (NMDARs), thus making SerR a promising pharmaceutical target. However, mechanistic studies of SerR are scarce, and the details of the enzymatic racemization reaction are not fully understood. In the current study we elucidate the catalytic mechanism in SerR by employing combined multiscale classical/quantum simulations. The free energy profile of a model SerR racemization reaction is first calculated in the gas phase and in aqueous solution. To obtain the free energy profile for the enzymatic reaction, hybrid quantum mechanics/molecular mechanics molecular dynamics simulations in conjunction with umbrella sampling are performed. The results suggest that in SerR, similarly to the related enzyme alanine racemase, the unprotonated PLP-substrate intermediate is stabilized mostly due to solvation effects contributed by water molecules and active-site residues, as well as long-range electrostatic interactions with the enzyme environment. In addition to a deeper understanding of the racemization mechanism in SerR, based on our simulations we propose specific mutations, which might shift the SerR equilibrium in favor of either l-Ser or d-Ser. Finally, the current studies have produced catalytically competent forms of the rat and human enzymes, which may serve as targets for future docking studies and drug design. PMID:25493718
Following Weyl on Quantum Mechanics: The Contribution of Ettore Majorana
NASA Astrophysics Data System (ADS)
Drago, A.; Esposito, S.
2004-05-01
After a quick historical account of the introduction of the group-theoretical description of Quantum Mechanics in terms of symmetries, as proposed by Weyl, we examine some unpublished papers by Ettore Majorana. Remarkable results achieved by him in frontier research topics as well as in physics teaching point out that the Italian physicist can be well considered as a follower of Weyl in his reformulation of Quantum Mechanics.
Scalable quantum mechanical simulation of large polymer systems
Goedecker, S.; Hoisie, A.; Kress, J.; Lubeck, O.; Wasserman, H.
1997-08-01
We describe a program for quantum mechanical calculations of very large hydrocarbon polymer systems. It is based on a new algorithmic approach to the quantum mechanical tight binding equations that naturally leads to a very efficient parallel implementation and that scales linearly with respect to the number of atoms. We get both very high single node performance as well as a significant parallel speedup on the SGI Origin 2000 parallel computer.
Quantum mechanics and the social sciences: After hermeneutics
NASA Astrophysics Data System (ADS)
Heelan, Patrick A.
1995-04-01
Quantum mechanics is interpreted, in the spirit of Niels Bohr and Werner Heisenberg, as about physical objects in so far as these are revealed by and within the local, social, and historical process of measurement. An analysis of the hermeneutical aspect of quantum mechanical measurement reveals close analogues with the hermeneutical social/historical sciences. The hermeneutical analysis of science requires the move from the epistemological attitude to an ontological one.
Scattering in the Euclidean formulation of relativistic quantum mechanics
NASA Astrophysics Data System (ADS)
Polyzou, Wayne
2013-10-01
Euclidean relativistic quantum mechanics is a formulation of relativistic quantum mechanics based on the Osterwalder-Schrader reconstruction theorem that exploits the logical independence of locality from the rest of the axioms of Euclidean field theory. I discuss the properties of Euclidean Green functions necessary for the existence of Møller wave operators and the construction of these wave operators in this formalism. Supported by the US Department of Energy, Grant - DE-AC02-81ER40038.
Contexts, Systems and Modalities: A New Ontology for Quantum Mechanics
NASA Astrophysics Data System (ADS)
AuffÃ¨ves, Alexia; Grangier, Philippe
2016-02-01
In this article we present a possible way to make usual quantum mechanics fully compatible with physical realism, defined as the statement that the goal of physics is to study entities of the natural world, existing independently from any particular observer's perception, and obeying universal and intelligible rules. Rather than elaborating on the quantum formalism itself, we propose a new quantum ontology, where physical properties are attributed jointly to the system, and to the context in which it is embedded. In combination with a quantization principle, this non-classical definition of physical reality sheds new light on counter-intuitive features of quantum mechanics such as the origin of probabilities, non-locality, and the quantum-classical boundary.
Contexts, Systems and Modalities: A New Ontology for Quantum Mechanics
NASA Astrophysics Data System (ADS)
Auffèves, Alexia; Grangier, Philippe
2015-09-01
In this article we present a possible way to make usual quantum mechanics fully compatible with physical realism, defined as the statement that the goal of physics is to study entities of the natural world, existing independently from any particular observer's perception, and obeying universal and intelligible rules. Rather than elaborating on the quantum formalism itself, we propose a new quantum ontology, where physical properties are attributed jointly to the system, and to the context in which it is embedded. In combination with a quantization principle, this non-classical definition of physical reality sheds new light on counter-intuitive features of quantum mechanics such as the origin of probabilities, non-locality, and the quantum-classical boundary.
Probability in the Many-Worlds Interpretation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Vaidman, Lev
It is argued that, although in the Many-Worlds Interpretation of quantum mechanics there is no "probability" for an outcome of a quantum experiment in the usual sense, we can understand why we have an illusion of probability. The explanation involves: (a) A "sleeping pill" gedanken experiment which makes correspondence between an illegitimate question: "What is the probability of an outcome of a quantum measurement?" with a legitimate question: "What is the probability that `I' am in the world corresponding to that outcome?"; (b) A gedanken experiment which splits the world into several worlds which are identical according to some symmetry condition; and (c) Relativistic causality, which together with (b) explain the Born rule of standard quantum mechanics. The Quantum Sleeping Beauty controversy and "caring measure" replacing probability measure are discussed.
Lee, Sang-Bong
1993-09-01
Quantum manifestation of classical chaos has been one of the extensively studied subjects for more than a decade. Yet clear understanding of its nature still remains to be an open question partly due to the lack of a canonical definition of quantum chaos. The classical definition seems to be unsuitable in quantum mechanics partly because of the Heisenberg quantum uncertainty. In this regard, quantum chaos is somewhat misleading and needs to be clarified at the very fundamental level of physics. Since it is well known that quantum mechanics is more fundamental than classical mechanics, the quantum description of classically chaotic nature should be attainable in the limit of large quantum numbers. The focus of my research, therefore, lies on the correspondence principle for classically chaotic systems. The chaotic damped driven pendulum is mainly studied numerically using the split operator method that solves the time-dependent Schroedinger equation. For classically dissipative chaotic systems in which (multi)fractal strange attractors often emerge, several quantum dissipative mechanisms are also considered. For instance, Hoover`s and Kubo-Fox-Keizer`s approaches are studied with some computational analyses. But the notion of complex energy with non-Hermiticity is extensively applied. Moreover, the Wigner and Husimi distribution functions are examined with an equivalent classical distribution in phase-space, and dynamical properties of the wave packet in configuration and momentum spaces are also explored. The results indicate that quantum dynamics embraces classical dynamics although the classicalquantum correspondence fails to be observed in the classically chaotic regime. Even in the semi-classical limits, classically chaotic phenomena would eventually be suppressed by the quantum uncertainty.
Sensible Quantum Mechanics:. are Probabilities Only in the Mind?
NASA Astrophysics Data System (ADS)
Page, Don N.
Quantum mechanics may be formulated as Sensible Quantum Mechanics (SQM) so that it contains nothing probabilistic except conscious perceptions. Sets of these perceptions can be deterministically realized with measures given by expectation values of positive-operator-valued awareness operators. Ratios of the measures for these sets of perceptions can be interpreted as frequency-type probabilities for many actually existing sets. These probabilities generally cannot be given by the ordinary quantum “probabilities” for a single set of alternatives. Probabilism, or ascribing probabilities to unconscious aspects of the world, may be seen to be an aesthemamorphic myth.
Kink mass quantum shifts from SUSY quantum mechanics
NASA Astrophysics Data System (ADS)
Izquierdo, Alberto Alonso; Guilarte, Juan Mateos; Plyushchay, Mikhail S.
2013-04-01
In this paper a new version of the DHN (Dashen-Hasslacher-Neveu) formula, which is used to compute the one-loop order kink mass correction in (1+1)-dimensional scalar field theory models, is constructed. The new expression is written in terms of the spectral data coming from the supersymmetric partner operator of the second-order small kink fluctuation operator and allows us to compute the kink mass quantum shift in new models for which this calculation was out of reach by means of the old formula.
Electron exchange-correlation in quantum mechanics
Ritchie, B
2009-01-30
It is shown that Fermi-Dirac statistics is guaranteed by the Dirac current, from which spin-dependent quantum velocity fields and spin-dependent quantum trajectories can be inferred. Pauli's exclusion principle is demonstrated using the spin-dependent quantum trajectories. The Dirac current, unlike the Schroedinger current, is nonzero for stationary bound states due to the permanent magnetic moment of the electron. It is of order c{sup 0} in agreement with observation that Fermi-Dirac statistics is independent of electronic velocity. In summary the physical basis for exchange-correlation is found in Dirac's equation, although Schroedinger's equation may be used to evaluate the Dirac current in the nonrelativistic regime of electronic velocity.
Towards quantifying complexity with quantum mechanics
NASA Astrophysics Data System (ADS)
Tan, Ryan; R. Terno, Daniel; Thompson, Jayne; Vedral, Vlatko; Gu, Mile
2014-09-01
While we have intuitive notions of structure and complexity, the formalization of this intuition is non-trivial. The statistical complexity is a popular candidate. It is based on the idea that the complexity of a process can be quantified by the complexity of its simplest mathematical model —the model that requires the least past information for optimal future prediction. Here we review how such models, known as -machines can be further simplified through quantum logic, and explore the resulting consequences for understanding complexity. In particular, we propose a new measure of complexity based on quantum -machines. We apply this to a simple system undergoing constant thermalization. The resulting quantum measure of complexity aligns more closely with our intuition of how complexity should behave.
'Mysticism' in quantum mechanics: the forgotten controversy
NASA Astrophysics Data System (ADS)
Marin, Juan Miguel
2009-07-01
This paper argues that a European controversy over a 'mystical' hypothesis, one assigning the mind a role to play at the material level of reality, shaped much of the debate over the interpretation of the quantum equations. It traces back the controversy to the past two decades, beginning in the late 1920sâ€”birth of quantum theoryâ€”and concluding with Erwin SchrÃ¶dinger's lectures published as 'Mind and Matter'. Becoming aware of the issues at stake can help us understand the historical, philosophical and cultural background from which today's physics emerged.
Statistical Structures Underlying Quantum Mechanics and Social Science
NASA Astrophysics Data System (ADS)
Wright, Ron
2007-08-01
Common observations of the unpredictability of human behavior and the influence of one question on the answer to another suggest social science experiments are probabilistic and may be mutually incompatible with one another, characteristics attributed to quantum mechanics (as distinguished from classical mechanics). This paper examines this superficial similarity in depth using the Foulis-Randall Operational Statistics language. In contradistinction to physics, social science deals with complex, open systems for which the set of possible experiments is unknowable and outcome interference is a graded phenomenon resulting from the ways the human brain processes information. It is concluded that social science is, in some ways, “less classical” than quantum mechanics, but that generalized “quantum” structures may provide appropriate descriptions of social science experiments. Specific challenges to extending “quantum” structures to social science are identified.
Optimal state discrimination and unstructured search in nonlinear quantum mechanics
NASA Astrophysics Data System (ADS)
Childs, Andrew M.; Young, Joshua
2016-02-01
Nonlinear variants of quantum mechanics can solve tasks that are impossible in standard quantum theory, such as perfectly distinguishing nonorthogonal states. Here we derive the optimal protocol for distinguishing two states of a qubit using the Gross-Pitaevskii equation, a model of nonlinear quantum mechanics that arises as an effective description of Bose-Einstein condensates. Using this protocol, we present an algorithm for unstructured search in the Gross-Pitaevskii model, obtaining an exponential improvement over a previous algorithm of Meyer and Wong. This result establishes a limitation on the effectiveness of the Gross-Pitaevskii approximation. More generally, we demonstrate similar behavior under a family of related nonlinearities, giving evidence that the ability to quickly discriminate nonorthogonal states and thereby solve unstructured search is a generic feature of nonlinear quantum mechanics.
Multiple-event probability in general-relativistic quantum mechanics
Hellmann, Frank; Mondragon, Mauricio; Perez, Alejandro; Rovelli, Carlo
2007-04-15
We discuss the definition of quantum probability in the context of 'timeless' general-relativistic quantum mechanics. In particular, we study the probability of sequences of events, or multievent probability. In conventional quantum mechanics this can be obtained by means of the 'wave function collapse' algorithm. We first point out certain difficulties of some natural definitions of multievent probability, including the conditional probability widely considered in the literature. We then observe that multievent probability can be reduced to single-event probability, by taking into account the quantum nature of the measuring apparatus. In fact, by exploiting the von-Neumann freedom of moving the quantum/classical boundary, one can always trade a sequence of noncommuting quantum measurements at different times, with an ensemble of simultaneous commuting measurements on the joint system+apparatus system. This observation permits a formulation of quantum theory based only on single-event probability, where the results of the wave function collapse algorithm can nevertheless be recovered. The discussion also bears on the nature of the quantum collapse.
Multiple-event probability in general-relativistic quantum mechanics
NASA Astrophysics Data System (ADS)
Hellmann, Frank; Mondragon, Mauricio; Perez, Alejandro; Rovelli, Carlo
2007-04-01
We discuss the definition of quantum probability in the context of “timeless” general-relativistic quantum mechanics. In particular, we study the probability of sequences of events, or multievent probability. In conventional quantum mechanics this can be obtained by means of the “wave function collapse” algorithm. We first point out certain difficulties of some natural definitions of multievent probability, including the conditional probability widely considered in the literature. We then observe that multievent probability can be reduced to single-event probability, by taking into account the quantum nature of the measuring apparatus. In fact, by exploiting the von-Neumann freedom of moving the quantum/classical boundary, one can always trade a sequence of noncommuting quantum measurements at different times, with an ensemble of simultaneous commuting measurements on the joint system+apparatus system. This observation permits a formulation of quantum theory based only on single-event probability, where the results of the wave function collapse algorithm can nevertheless be recovered. The discussion also bears on the nature of the quantum collapse.
Quantum mechanics and reality: An interpretation of Everett's theory
NASA Astrophysics Data System (ADS)
Lehner, Christoph Albert
The central part of Everett's formulation of quantum mechanics is a quantum mechanical model of memory and of observation as the recording of information in a memory. To use this model as an answer to the measurement problem, Everett has to assume that a conscious observer can be in a superposition of such memory states and be unaware of it. This assumption has puzzled generations of readers. The fundamental aim of this dissertation is to find a set of simpler assumptions which are sufficient to show that Everett's model is empirically adequate. I argue that Everett's model needs three assumptions to account for the process of observation: an assumption of decoherence of observers as quantum mechanical systems; an assumption of supervenience of mental states (qualities) over quantum mechanical properties; and an assumption about the interpretation of quantum mechanical states in general: quantum mechanical states describe ensembles of states of affairs coexisting in the same system. I argue that the only plausible understanding of such ensembles is as ensembles of possibilities, and that all standard no-collapse interpretations agree in this reading of quantum mechanical states. Their differences can be understood as different theories about what marks the real state within this ensemble, and Everett's theory as the claim that no additional 'mark of reality' is necessary. Using the three assumptions, I argue that introspection cannot determine the objective quantum mechanical state of an observer. Rather, the introspective qualities of a quantum mechanical state can be represented by a (classical) statistical ensemble of subjective states. An analysis of these subjective states and their dynamics leads to the conclusion that they suffice to give empirically correct predictions. The argument for the empirical adequacy of the subjective state entails that knowledge of the objective quantum mechanical state is impossible in principle. Empirical reality for a conscious observer is not described by the objective state, but by a Everettian relative state conditional on the subjective state, and no theoretical 'mark of reality' is necessary for this concept of reality. I compare the resulting concept of reality to Kant's distinction between empirical and transcendental reality.
Deformation quantization: Quantum mechanics lives and works in phase space
NASA Astrophysics Data System (ADS)
Zachos, Cosmas K.
2014-09-01
Wigner's 1932 quasi-probability Distribution Function in phase-space, his first paper in English, is a special (Weyl) representation of the density matrix. It has been useful in describing quantum flows in semiclassical limits; quantum optics; nuclear and physics; decoherence (eg, quantum computing); quantum chaos; "Welcher Weg" puzzles; molecular Talbot-Lau interferometry; atomic measurements. It is further of great importance in signal processing (time-frequency analysis). Nevertheless, a remarkable aspect of its internal logic, pioneered by H. Groenewold and J. Moyal, has only blossomed in the last quarter-century: It furnishes a third, alternate, formulation of Quantum Mechanics, independent of the conventional Hilbert Space (the gold medal), or Path Integral (the silver medal) formulations, and perhaps more intuitive, since it shares language with classical mechanics: one need not choose sides between coordinate or momentum space variables, since it is formulated simultaneously in terms of position and momentum. This bronze medal formulation is logically complete and self-standing, and accommodates the uncertainty principle in an unexpected manner, so that it offers unique insights into the classical limit of quantum theory. The observables in this formulation are cnumber functions in phase space instead of operators, with the same interpretation as their classical counterparts, only now composed together in novel algebraic ways using star products. One might then envision an imaginary world in which this formulation of quantum mechanics had preceded the conventional Hilbert-space formulation, and its own techniques and methods had arisen independently, perhaps out of generalizations of classical mechanics and statistical mechanics. A sampling of such intriguing techniques and methods has already been published in C. K. Zachos, Int Jou Mod Phys A17 297-316 (2002), and T. L. Curtright, D. B. Fairlie, and C. K. Zachos, A Concise Treatise on Quantum Mechanics in Phase Space, (Imperial Press & World Scientific, 2014).
Classical and Quantum-Mechanical State Reconstruction
ERIC Educational Resources Information Center
Khanna, F. C.; Mello, P. A.; Revzen, M.
2012-01-01
The aim of this paper is to present the subject of state reconstruction in classical and in quantum physics, a subject that deals with the experimentally acquired information that allows the determination of the physical state of a system. Our first purpose is to explain a method for retrieving a classical state in phase space, similar to that…
The Transactional Interpretation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Kastner, Ruth E.
2012-10-01
Preface; 1. Introduction: quantum peculiarities; 2. The map vs the territory; 3. The original TI: fundamentals; 4. The new possibilist TI: fundamentals; 5. Challenges, replies, and applications; 6. PTI and relativity; 7. The metaphysics of possibility; 8. PTI and 'spacetime'; 9. Epilogue: more than meets the eye; Appendixes; References; Index.
Classical and Quantum-Mechanical State Reconstruction
ERIC Educational Resources Information Center
Khanna, F. C.; Mello, P. A.; Revzen, M.
2012-01-01
The aim of this paper is to present the subject of state reconstruction in classical and in quantum physics, a subject that deals with the experimentally acquired information that allows the determination of the physical state of a system. Our first purpose is to explain a method for retrieving a classical state in phase space, similar to thatâ€¦
Quantum Mechanics and the Role of Time:. are Quantum Systems Markovian?
NASA Astrophysics Data System (ADS)
Durt, Thomas
2013-06-01
The predictions of the Quantum Theory have been verified so far with astonishingly high accuracy. Despite of its impressive successes, the theory still presents mysterious features such as the border line between the classical and quantum world, or the deep nature of quantum nonlocality. These open questions motivated in the past several proposals of alternative and/or generalized approaches. We shall discuss in the present paper alternative theories that can be infered from a reconsideration of the status of time in quantum mechanics. Roughly speaking, quantum mechanics is usually formulated as a memory free (Markovian) theory at a fundamental level, but alternative, nonMarkovian, formulations are possible, and some of them can be tested in the laboratory. In our paper we shall give a survey of these alternative proposals, describe related experiments that were realized in the past and also formulate new experimental proposals.
Comment on ``Nonlocality, counterfactuals, and quantum mechanics''
NASA Astrophysics Data System (ADS)
Stapp, Henry P.
1999-09-01
A recent proof [H. P. Stapp, Am. J. Phys. 65, 300 (1997)], formulated in the symbolic language of modal logic, claims to show that contemporary quantum theory, viewed as a set of rules that allow us to calculate statistical predictions among certain kinds of observations, cannot be imbedded in any rational framework that conforms to the principles that (1) the experimenters' choices of which experiments they will perform can be considered to be free choices, (2) outcomes of measurements are unique, and (3) the free choices just mentioned have no backward-in-time effects of any kind. This claim is similar to Bell's theorem, but much stronger, because no reality assumption alien to quantum philosophy is used. The paper being commented on [W. Unruh, Phys. Rev. A 59, 126 (1999)] argues that some such reality assumption has been ``smuggled'' in. That argument is examined here and shown, I believe, to be defective.
Comment on 'Nonlocality, Counterfactuals and Quantum Mechanics'
Stapp, H.P.
1999-04-14
A recent proof [H. P. Stapp, Am. J. Phys. 65, 300 (1997)], formulated in the symbolic language of modal logic, claims to show that contemporary quantum theory, viewed as a set of rules that allow us to calculate statistical predictions among certain kinds of observations, cannot be imbedded in any rational framework that conforms to the principles that (1) the experimenters' choices of which experiments they will perform can be considered to be free choices, (2) outcomes of measurements are unique, and (3) the free choices just mentioned have no backward-in-time effects of any kind. This claim is similar to Bell's theorem, but much stronger, because no reality assumption alien to quantum philosophy is used. The paper being commented on [W. Unruh, Phys. Rev. A 59, 126 (1999)] argues that some such reality assumption has been ''smuggled'' in. That argument is examined here and shown, I believe, to be defective.
Randomness in quantum mechanics - nature's ultimate cryptogram?
NASA Astrophysics Data System (ADS)
Erber, T.; Putterman, S.
1985-11-01
The possibility that a single atom irradiated by coherent light will be equivalent to an infinite computer with regard to its ability to generate random numbers is addressed. A search for unexpected patterns of order by crypt analysis of the telegraph signal generated by the on/off time of the atom's fluorescence is described. The results will provide new experimental tests of the fundamental principles of quantum theory.
Quantum mechanics from an equivalence principle
Faraggi, A.E.; Matone, M.
1997-05-15
The authors show that requiring diffeomorphic equivalence for one-dimensional stationary states implies that the reduced action S{sub 0} satisfies the quantum Hamilton-Jacobi equation with the Planck constant playing the role of a covariantizing parameter. The construction shows the existence of a fundamental initial condition which is strictly related to the Moebius symmetry of the Legendre transform and to its involutive character. The universal nature of the initial condition implies the Schroedinger equation in any dimension.
Assessing Expertise in Quantum Mechanics using Categorization Task
NASA Astrophysics Data System (ADS)
Lin, Shih-Yin; Singh, Chandralekha
2009-11-01
We discuss the categorization of 20 quantum mechanics problems by 6 physics professors and 22 undergraduate students from two honors-level quantum mechanics courses. Professors and students were asked to categorize the problems based upon similarity of solution. We also had individual discussions with professors who categorized the problems. Faculty members' categorizations were overall rated better than those of students by three faculty members who evaluated all of the categorizations. But the categories created by faculty members were more diverse compared to the uniformity of the categories they created when asked to categorize introductory mechanics problems.
Student understanding of time dependence in quantum mechanics
NASA Astrophysics Data System (ADS)
Emigh, Paul J.; Passante, Gina; Shaffer, Peter S.
2015-12-01
[This paper is part of the Focused Collection on Upper Division Physics Courses.] The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing the key role of the energy eigenbasis in determining the time dependence of wave functions. Through analysis of student responses to a set of four interrelated tasks, we categorize some of the difficulties that underlie common errors. The conceptual and reasoning difficulties that have been identified are illustrated through student responses to four sets of questions administered at different points in a junior-level course on quantum mechanics. Evidence is also given that the problems persist throughout undergraduate instruction and into the graduate level.
Models on the boundary between classical and quantum mechanics.
Hooft, Gerard 't
2015-08-01
Arguments that quantum mechanics cannot be explained in terms of any classical theory using only classical logic seem to be based on sound mathematical considerations: there cannot be physical laws that require 'conspiracy'. It may therefore be surprising that there are several explicit quantum systems where these considerations apparently do not apply. In this report, several such counterexamples are shown. These are quantum models that do have a classical origin. The most curious of these models is superstring theory. So now the question is asked: how can such a model feature 'conspiracy', and how bad is that? Is there conspiracy in the vacuum fluctuations? Arguments concerning Bell's theorem are further sharpened. PMID:26124246
ysteries, Puzzles, and Paradoxes in Quantum Mechanics. Proceedings
Rodolfo, B.
1999-02-01
These proceedings represent papers presented at the Mysteries, Puzzles, and Paradoxes in Quantum Mechanics Workshop held in Italy, in August 1998. The Workshop was devoted to recent experimental and theoretical advances such as new interference, effects, the quantum eraser, non{minus}disturbing and Schroedinger{minus}cat{minus}like states, experiments, EPR correlations, teleportation, superluminal effects, quantum information and computing, locality and causality, decoherence and measurement theory. Tachyonic information transfer was also discussed. There were 45 papers presented at the conference,out of which 2 have been abstracted for the Energy,Science and Technology database.(AIP)
PREFACE: Progress in supersymmetric quantum mechanics
NASA Astrophysics Data System (ADS)
Aref'eva, I.; Fernández, D. J.; Hussin, V.; Negro, J.; Nieto, L. M.; Samsonov, B. F.
2004-10-01
The theory of integrable systems is grounded in the very beginning of theoretical physics: Kepler's system is an integrable system. This field of dynamical systems, where one looks for exact solutions of the equations of motion, has attracted most of the great figures in mathematical physics: Euler, Lagrange, Jacobi, etc. Liouville was the first to formulate the precise mathematical conditions ensuring solvability `by quadrature' of the dynamical equations, and his theorem still lies at the heart of the recent developments. The modern era started about thirty years ago with the systematic formulation of soliton solutions to nonlinear wave equations. Since then, impressive developments arose both for the classical and the quantum theory. Subtle mathematical techniques were devised for the resolution of these theories, relying on algebra (group theory), analysis and algebraic geometry (Riemann theory of surfaces). We therefore clearly see that the theory of integrable systems lies ab initio at a crossing of physics and mathematics, and that the developments of these last thirty years have strengthened this dual character, which makes it into an archetypal domain of mathematical physics. As regards the classical theory, beyond the direct connections to the various domains of classical soliton physics (hydrodynamics, condensed matter physics, laser optics, particle physics, plasma, biology or information coding), one has witnessed in these recent years more unexpected (and for some of them not yet well understood) connections to a priori farther fields of theoretical physics: string theory (through matrix models), topological field theories (two dimensional Yang--Mills, three dimensional Chern--Simons--Witten), or supersymmetric field theories (for instance the correspondence discovered by Seiberg and Witten between classical integrable models and quantum potentials). Quantum integrable theories provide examples of exactly (non perturbatively) solvable physical models. They thus allow one to obtain descriptions of non trivial phenomena such as second order phase transition in condensed systems (spin lattices) and exact solution of relativistic quantum field theories (Sine--Gordon...). On the other hand, they supply an excellent example of fruitful interface between physics and mathematics: the theory of quantum groups (and the germane theory of special functions) is a perfect illustration of this rôle and perspectives of such new developments appear very promising. The purpose of the first RAQIS meeting was to bring together researchers from the various fields of mathematics and physics connected to the theory of quantum integrable systems. This conference was held in the framework of the European TMR network EUCLID `Integrable models and applications: from strings to condensed matter', contract number HPRN-CT-2002-00325. The RAQIS03 meeting took place at the Laboratoire d'Annecy-le-vieux de Physique Théorique (LAPTH, France) from 25 March to 28 March, 2003. The organising committee consisted of Daniel Arnaudon, Jean Avan, Luc Frappat, Éric Ragoucy and Paul Sorba. Financial support was provided by Université de Savoie and CNRS-DRI (Centre National de la Recherche Scientifique, Direction des Relations Internationales). In particular various scientific contacts with several Japanese participants were initiated thanks to the CNRS PICS contract number 911. This special issue of Journal of Physics A: Mathematical and General is dedicated to the subject of the RAQIS03 meeting in Annecy-le-vieux. Most of the contributors to this issue took part in the meeting, but this volume does not aim to be a proceedings in the usual sense of the word: contributions do not necessarily coincide with the reports presented at the meeting, nor are the contributors restricted exclusively to those people that were present. The intention of the special issue is to benefit from the occasion offered by the RAQIS03 meeting to highlight the important new areas in quantum integrability, by collecting together in one single volume a selection of article
Diffraction theory in therms of quantum mechanics and relativity
NASA Astrophysics Data System (ADS)
Arsenault, Henri H.; Garcia-Martinez, Pascuala
2001-12-01
Diffraction properties of light can be derived from Quantum Mechanics and Relativity. Using the fact that position and momentum are conjugate variables, we show that the momentum distribution of light coincides with the well-known angular spectrum distribution. The momentum distribution links quantum theory and relativity to classical diffraction theory. We also show that the Huygens Principle and the momentum distribution are conjugate expressions at the diffraction aperture. These considerations lead to the geometrical theory of diffraction.
Quantum mechanical signature in exclusive coherent pion production
NASA Technical Reports Server (NTRS)
Deutchman, P. A.; Buvel, R. L.; Maung, K. M.; Norbury, J. W.; Townsend, L. W.
1986-01-01
We calculate the coherent production of pions from subthreshold to relativistic energies in heavy-ion collisions using a quantum, microscopic, many-body model. For the first time, in this approach, we use harmonic oscillator wave functions to describe shell-model information. The theoretical quantum mechanical results obtained for the pion spectra represent an important improvement over our previous microscopic, many-body calculations.
Entropy Production and Equilibration in Yang-Mills Quantum Mechanics
NASA Astrophysics Data System (ADS)
Tsai, Hung-Ming
Entropy production in relativistic heavy-ion collisions is an important physical quantity for studying the equilibration and thermalization of hot matters of quantum chromodynamics (QCD). To formulate a nontrivial definition of entropy for an isolated quantum system, a certain kind of coarse graining may be applied so that the entropy for this isolated quantum system depends on time explicitly. The Husimi distribution, which is a coarse grained distribution in the phase space, is a suitable candidate for this approach. We proposed a general and systematic method of solving the equation of motion of the Husimi distribution for an isolated quantum system. The Husimi distribution is positive (semi-)definite all over the phase space. In this method, we assume the Husimi distribution is composed of a large number of Gaussian test functions. The equation of motion of the Husimi distribution, formulated as a partial differential equation, can be transformed into a system of ordinary differential equations for the centers and the widths of these Gaussian test functions. We numerically solve the system of ordinary differential equations for the centers and the widths of these test functions to obtain the Husimi distribution as a function of time. To ensure the numerical solutions of the trajectories of the test particles preserve physical conservation laws, we obtain a constant of motion for the quantum system. We constructed a coarse grained Hamiltonian whose expectation value is exactly conserved. The conservation of the coarse grained energy confirms the validity of this method. Moreover, we calculated the time evolution of the coarse grained entropy for a model system (Yang-Mills quantum mechanics). Yang-Mills quantum mechanics is a quantum system whose classical correspondence possesses chaotic behaviors. The numerical results revealed that the coarse grained entropy for Yang-Mills quantum mechanics saturates to a value that coincides with the microcanonical entropy corresponding to the energy of the system. Our results confirmed the validity of the framework of first-principle evaluation of the coarse grained entropy growth rate. We show that, in the energy regime under study, the relaxation time for the entropy production in Yang-Mills quantum mechanics is approximately the same as the characteristic time of the system, indicating fast equilibration of the system. Fast equilibration of Yang-Mills quantum mechanics is consistent to current understanding of fast equilibration of hot QCD matter in relativistic heavy-ion collisions.
Investigations of fundamental phenomena in quantum mechanics with neutrons
NASA Astrophysics Data System (ADS)
Hasegawa, Yuji
2014-04-01
Neutron interferometer and polarimeter are used for the experimental investigations of quantum mechanical phenomena. Interferometry exhibits clear evidence of quantum-contextuality and polarimetry demonstrates conflicts of a contextual model of quantum mechanics á la Leggett. In these experiments, entanglements are achieved between degrees of freedom in a single-particle: spin, path and energy degrees of freedom are manipulated coherently and entangled. Both experiments manifest the fact that quantum contextuality is valid for phenomena with matter waves with high precision. In addition, another experiment is described which deals with error-disturbance uncertainty relation: we have experimentally tested error-disturbance uncertainty relations, one is derived by Heisenberg and the other by Ozawa. Experimental results confirm the fact that the Heisenberg's uncertainty relation is often violated and that the new relation by Ozawa is always larger than the limit. At last, as an example of a counterfactual phenomenon of quantum mechanics, observation of so-called quantum Cheshire Cat is carried out by using neutron interferometer. Experimental results suggest that pre- and post-selected neutrons travel through one of the arms of the interferometer while their magnetic moment is located in the other arm.
Reconstruction of Gaussian quantum mechanics from Liouville mechanics with an epistemic restriction
NASA Astrophysics Data System (ADS)
Bartlett, Stephen D.; Rudolph, Terry; Spekkens, Robert W.
2012-07-01
How would the world appear to us if its ontology was that of classical mechanics but every agent faced a restriction on how much they could come to know about the classical state? We show that in most respects it would appear to us as quantum. The statistical theory of classical mechanics, which specifies how probability distributions over phase space evolve under Hamiltonian evolution and under measurements, is typically called Liouville mechanics, so the theory we explore here is Liouville mechanics with an epistemic restriction. The particular epistemic restriction we posit as our foundational postulate specifies two constraints. The first constraint is a classical analog of Heisenberg's uncertainty principle; the second-order moments of position and momentum defined by the phase-space distribution that characterizes an agent's knowledge are required to satisfy the same constraints as are satisfied by the moments of position and momentum observables for a quantum state. The second constraint is that the distribution should have maximal entropy for the given moments. Starting from this postulate, we derive the allowed preparations, measurements, and transformations and demonstrate that they are isomorphic to those allowed in Gaussian quantum mechanics and generate the same experimental statistics. We argue that this reconstruction of Gaussian quantum mechanics constitutes additional evidence in favor of a research program wherein quantum states are interpreted as states of incomplete knowledge and that the phenomena that do not arise in Gaussian quantum mechanics provide the best clues for how one might reconstruct the full quantum theory.
Quantum mechanics, gravity and modified quantization relations.
Calmet, Xavier
2015-08-01
In this paper, we investigate a possible energy scale dependence of the quantization rules and, in particular, from a phenomenological point of view, an energy scale dependence of an effective [Formula: see text] (reduced Planck's constant). We set a bound on the deviation of the value of [Formula: see text] at the muon scale from its usual value using measurements of the anomalous magnetic moment of the muon. Assuming that inflation has taken place, we can conclude that nature is described by a quantum theory at least up to an energy scale of about 10(16)â€‰GeV. PMID:26124253
NASA Astrophysics Data System (ADS)
Schroeck, Franklin E.
2015-12-01
We review the problems with quantum mechanics by translating or interpreting leading specialists in the field. Then we obtain a theory called quantum mechanics on phase space which is immune to these problems. Finally, we see how these problems are addressed by quantum mechanics on phase space.
Nambu quantum mechanics on discrete 3-tori
NASA Astrophysics Data System (ADS)
Axenides, M.; Floratos, E. G.; Nicolis, S.
2009-07-01
We propose a quantization of linear, volume preserving, maps on the discrete and finite 3-torus \\mathbb{T}_N^3 represented by elements of the group SL(3,\\mathbb{Z}_N) . These flows can be considered as special motions of the Nambu dynamics (linear Nambu flows) in the three-dimensional toroidal phase space and are characterized by invariant vectors a of \\mathbb{T}_N^3 . We quantize all such flows, which are necessarily restricted on a planar two-dimensional phase space, embedded in the 3-torus, transverse to the vector a. The corresponding maps belong to the little group of \\bm{a} \\in SL(3,\\mathbb{Z}_N) , which is an SL(2,\\mathbb{Z}_N) subgroup. The associated linear Nambu maps are generated by a pair of linear and quadratic Hamiltonians (Clebsch-Monge potentials of the flow) and the corresponding quantum maps realize the metaplectic representation of SL(3,\\mathbb{Z}_N) on the discrete group of three-dimensional magnetic translations, i.e. the non-commutative 3-torus with a deformation parameter the Nth root of unity. Other potential applications of our construction are related to the quantization of deterministic chaos in turbulent maps as well as to quantum tomography of three-dimensional objects.
Quantum mechanisms of density wave transport
Miller, John H.; Wijesinghe, Asanga I.
2012-01-01
We report on new developments in the quantum picture of correlated electron transport in charge and spin density waves. The model treats the condensate as a quantum fluid in which charge soliton domain wall pairs nucleate above a Coulomb blockade threshold field. We employ a time-correlated soliton tunneling model, analogous to the theory of time-correlated single electron tunneling, to interpret the voltage oscillations and nonlinear current-voltage characteristics above threshold. An inverse scaling relationship between threshold field and dielectric response, originally proposed by Grüner, emerges naturally from the model. Flat dielectric and other ac responses below threshold in NbSe3 and TaS3, as well as small density wave phase displacements, indicate that the measured threshold is often much smaller than the classical depinning field. In some materials, the existence of two distinct threshold fields suggests that both soliton nucleation and classical depinning may occur. In our model, the ratio of electrostatic charging to pinning energy helps determine whether soliton nucleation or classical depinning dominates. PMID:22711979
David Bohm's Hidden Variables Interpretation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Hall, Ned; Feldman, Gary; Wulsin, Wells
2001-04-01
This talk presents the hidden variables interpretation of quantum mechanics as proposed by David Bohm in 1952. Using a pilot-wave, Bohm’s theory reproduces the standard predictions of quantum mechanics while at the same time postulating that particles at all times are localized at definite positions. By way of introduction, the foundational issue of the quantum mechanics measurement problem will be discussed. The talk will then focus on how Bohm’s formulation of a hidden variables theory stands up to philosophical examination. Traditional objections to the theory, such as the EPR paradox, will be addressed, as well as the deeper metaphysical implications it holds for our view of the universe.
On testing for the stage of collapse in quantum mechanics
NASA Astrophysics Data System (ADS)
Becker, Lon Stephen
The question was considered whether it is possible to experimentally narrow down the time of collapse in the measurement process of quantum mechanics. A form of experiment was developed towards that end. The proof of John von Neumann that it is impossible to determine the time of collapse was analyzed, and its hidden assumptions were exploited in the design of the experiment. The reinterpretation of quantum mechanics by David Bohm was introduced to give an alternative way of looking at quantum mechanics. An objection to this view was discussed but rejected. Finally a pair of thought experiments were offered with the potential to be converted in the future into tests for whether collapse has occurred at various points in the measurement process.
A deformation quantization theory for noncommutative quantum mechanics
Costa Dias, Nuno; Prata, Joao Nuno; Gosson, Maurice de; Luef, Franz
2010-07-15
We show that the deformation quantization of noncommutative quantum mechanics previously considered by Dias and Prata ['Weyl-Wigner formulation of noncommutative quantum mechanics', J. Math. Phys. 49, 072101 (2008)] and Bastos, Dias, and Prata ['Wigner measures in non-commutative quantum mechanics', e-print arXiv:math-ph/0907.4438v1; Commun. Math. Phys. (to appear)] can be expressed as a Weyl calculus on a double phase space. We study the properties of the star-product thus defined and prove a spectral theorem for the star-genvalue equation using an extension of the methods recently initiated by de Gosson and Luef ['A new approach to the *-genvalue equation', Lett. Math. Phys. 85, 173-183 (2008)].
The symplectic egg in classical and quantum mechanics
NASA Astrophysics Data System (ADS)
de Gosson, Maurice A.
2013-05-01
Symplectic geometry is the language of Classical Mechanics in its Hamiltonian formulation, and it also plays a crucial role in Quantum Mechanics. Symplectic geometry seemed to be well understood until 1985, when the mathematician Gromov discovered a surprising and unexpected property of canonical transformations: the non-squeezing theorem. Gromov's result, nicknamed the "principle of the symplectic camel," seems at first sight to be an abstruse piece of pure mathematics. It turns out that it has fundamental—and unsuspected—consequences in the interpretations of both Classical and Quantum Mechanics, because it is essentially a classical form of the uncertainty principle. We invite the reader to a journey taking us from Gromov's non-squeezing theorem and its dynamical interpretation to the quantum uncertainty principle, opening the way to new insights.
Quantum-mechanical transport equation for atomic systems.
NASA Technical Reports Server (NTRS)
Berman, P. R.
1972-01-01
A quantum-mechanical transport equation (QMTE) is derived which should be applicable to a wide range of problems involving the interaction of radiation with atoms or molecules which are also subject to collisions with perturber atoms. The equation follows the time evolution of the macroscopic atomic density matrix elements of atoms located at classical position R and moving with classical velocity v. It is quantum mechanical in the sense that all collision kernels or rates which appear have been obtained from a quantum-mechanical theory and, as such, properly take into account the energy-level variations and velocity changes of the active (emitting or absorbing) atom produced in collisions with perturber atoms. The present formulation is better suited to problems involving high-intensity external fields, such as those encountered in laser physics.
Quantum-mechanical description of Faraday rotation in a single quantum dot
NASA Astrophysics Data System (ADS)
Ma, Yanjun; Levy, Jeremy
2008-03-01
Faraday rotation is one way to realize quantum non-demolition (QND) measurement of electron spin in a quantum dot. In the literature, it has been semiclassically modeled based on quantized electron spin states and classical electromagnetic fields. We have developed a fully quantum- mechanical model to describe Faraday rotation in single quantum dots, using an extension of the Jaynes-Cumming model which includes quantum Stokes operators. The intrinsic noise of Faraday rotation that results from the interaction between photon and electron is quantified under this model. Some effects, such as hyperfine interactions and transitions between off-resonant states such as light hole and conduction band electron states, and have not been included in our calculation. It is believed that these effects will affect the dynamics of spin and based on the current model, our calculation could be extended to examine the behavior of Faraday rotation with these effects included. This work was supported by NSF-DMR-0602846.
Computational enzymology: modelling the mechanisms of biological catalysts.
Mulholland, Adrian J
2008-02-01
Simulations and modelling [e.g. with combined QM/MM (quantum mechanics/molecular mechanics) methods] are increasingly important in investigations of enzyme-catalysed reaction mechanisms. Calculations offer the potential of uniquely detailed, atomic-level insight into the fundamental processes of biological catalysis. Highly accurate methods promise quantitative comparison with experiments, and reliable predictions of mechanisms, revolutionizing enzymology. PMID:18208378
Statistical mechanical studies on the information processing with quantum fluctuation
NASA Astrophysics Data System (ADS)
Otsubo, Yosuke; Inoue, Jun-Ichi; Nagata, Kenji; Okada, Masato
2014-03-01
Quantum fluctuation induces the tunneling between states in a system and then can be used in combinatorial optimization problems. Such an algorithm is called quantum adiabatic computing. In this work, we investigate the quality of an information processing based on Bayes inference with the quantum fluctuation through the statistical mechanical approach. We then focus on the error correcting codes and CDMA multiuser demodulation which are described by conventional solvable spin glass models and can be analyzed by replica method in the thermodynamic limit. Introducing the quantum fluctuation into the decoding process of each problem, which is called quantum maximizer of the posteriori probability (QMPM) estimate, we analyze the decoding quality and then compare the results with those by the conventional MPM estimate which corresponds to finite temperature decoding From our limited results, the MPM based on the quantum fluctuation seems to achieve the same decoding quality as the thermal MPM does. We clarify the relationship between the optimal amplitude of transverse field and temperature for the mixture of quantum and classical MPMs. This work is supported by JSPS KAKENHI Grant Numbers 12J06501, 25330283, 25120009.
Statistical Mechanics of Classical and Quantum Computational Complexity
NASA Astrophysics Data System (ADS)
Laumann, C. R.; Moessner, R.; Scardicchio, A.; Sondhi, S. L.
The quest for quantum computers is motivated by their potential for solving problems that defy existing, classical, computers. The theory of computational complexity, one of the crown jewels of computer science, provides a rigorous framework for classifying the hardness of problems according to the computational resources, most notably time, needed to solve them. Its extension to quantum computers allows the relative power of quantum computers to be analyzed. This framework identifies families of problems which are likely hard for classical computers ("NP-complete") and those which are likely hard for quantum computers ("QMA-complete") by indirect methods. That is, they identify problems of comparable worst-case difficulty without directly determining the individual hardness of any given instance. Statistical mechanical methods can be used to complement this classification by directly extracting information about particular families of instancesâ€”typically those that involve optimizationâ€”by studying random ensembles of them. These pose unusual and interesting (quantum) statistical mechanical questions and the results shed light on the difficulty of problems for large classes of algorithms as well as providing a window on the contrast between typical and worst case complexity. In these lecture notes we present an introduction to this set of ideas with older work on classical satisfiability and recent work on quantum satisfiability as primary examples. We also touch on the connection of computational hardness with the physical notion of glassiness.
Study on a Possible Darwinian Origin of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Baladrón, C.
2011-03-01
A sketchy subquantum theory deeply influenced by Wheeler's ideas (Am. J. Phys. 51:398-404, 1983) and by the de Broglie-Bohm interpretation (Goldstein in Stanford Encyclopedia of Philosophy, 2006) of quantum mechanics is further analyzed. In this theory a fundamental system is defined as a dual entity formed by bare matter and a methodological probabilistic classical Turing machine. The evolution of the system would be determined by three Darwinian informational regulating principles. Some progress in the derivation of the postulates of quantum mechanics from these regulating principles is reported. The entanglement in a bipartite system is preliminarily considered.
Quantum-mechanical treatment of an electron undergoing synchrotron radiation.
NASA Technical Reports Server (NTRS)
White, D.
1972-01-01
The problem of an electron moving perpendicular to an intense magnetic field is approached from the framework of quantum mechanics. A numerical solution to the related rate equations describing the probabilities of occupation of the electron's energy states is put forth along with the expected errors involved. The quantum-mechanical approach is found to predict a significant amount of energy broadening with time for an initially monoenergetic electron beam entering a region of an intense magnetic field as long as the product of initial energy and magnetic field is of order 50 MG BeV or larger.
Spacetime alternatives in the quantum mechanics of a relativistic particle
Whelan, J.T. Isaac Newton Institute for Mathematical Sciences, 20 Clarkson Road, Cambridge, CB3 0EH )
1994-11-15
Hartle's generalized quantum mechanics formalism is used to examine spacetime coarse grainings, i.e., sets of alternatives defined with respect to a region extended in time as well as space, in the quantum mechanics of a free relativistic particle. For a simple coarse graining and suitable initial conditions, tractable formulas are found for branch wave functions. Despite the nonlocality of the positive-definite version of the Klein-Gordon inner product, which means that nonoverlapping branches are not sufficient to imply decoherence, some initial conditions are found to give decoherence and allow the consistent assignment of probabilities.
The role of the rigged Hilbert space in quantum mechanics
NASA Astrophysics Data System (ADS)
de la Madrid, Rafael
2005-04-01
There is compelling evidence that, when a continuous spectrum is present, the natural mathematical setting for quantum mechanics is the rigged Hilbert space rather than just the Hilbert space. In particular, Dirac's bra-ket formalism is fully implemented by the rigged Hilbert space rather than just by the Hilbert space. In this paper, we provide a pedestrian introduction to the role the rigged Hilbert space plays in quantum mechanics, by way of a simple, exactly solvable example. The procedure will be constructive and based on a recent publication. We also provide a thorough discussion on the physical significance of the rigged Hilbert space.
Conceptual and mathematical barriers to students learning quantum mechanics
NASA Astrophysics Data System (ADS)
Sadaghiani, Homeyra R.
Quantum mechanics has revolutionized the way we view the physical world. This theory has required a dramatic revision in the structure of the laws of mechanics governing the behavior of the particles and led to the discovery of macroscopic quantum effects ranging from lasers and superconductivity to neutron stars and radiation from black holes. Though its validity is well confirmed by the experimental evidence available, quantum mechanics remains somewhat of a mystery. The purpose of this study is to identify students' conceptual and mathematical difficulties in learning the core concepts of introductory quantum mechanics, with the eventual goal of developing instructional material to help students with these difficulties. We have investigated student understanding of several core topics in the introductory courses, including quantum measurement, probability, Uncertainty Principle, wave functions, energy eigenstates, recognizing symmetry in physical systems, and mathematical formalism. Student specific difficulties with these topics are discussed throughout this dissertation. In addition, we have studied student difficulties in learning, applying, and making sense out of complex mathematical processes in the physics classroom. We found students' achievement in quantum courses is not independent of their math backgrounds (correlation coefficient 0.547 for P631 and 0.347 for P263). In addition, there is a large jump in the level of mathematics at which one needs to succeed in physics courses after the sophomore level in The Ohio State University's physics curriculum. Many students do not have a functional understanding of probability and its related terminologies. For example, many students confuse the "expectation value" with "probability density" in measurement and some students confuse "probability density" with "probability amplitude" or describe the probability amplitude as a "place" or "area." Our data also suggested that students tend to use classical models when interpreting quantum systems; for example, some students associate a higher energy to a larger amplitude in a wave function. Others, have difficulty differentiating wave functions from energy eigenstates. Furthermore, some students do not use the relationship between the wave function and the wavenumber as a primary resource in for qualitative analysis of wave functions in regions of different potential. Many students have difficulty recognizing mathematical symbols for a given graph and lack the ability to associate the correct functions with their respective graphs. I addition, students do not distinguish an oscillatory function such as e-ix from an exponential decay function such as e-x. The results reported suggest recommendations for further study of student understanding of quantum mechanics and for the development of materials to aid understanding. These recommendations have potentially important implications for the teaching of introductory quantum mechanics and for the development of teaching aids, texts, and technology resources.
Hilbert space for quantum mechanics on superspace
Coulembier, K.; De Bie, H.
2011-06-15
In superspace a realization of sl{sub 2} is generated by the super Laplace operator and the generalized norm squared. In this paper, an inner product on superspace for which this representation is skew-symmetric is considered. This inner product was already defined for spaces of weighted polynomials (see [K. Coulembier, H. De Bie, and F. Sommen, Orthogonality of Hermite polynomials in superspace and Mehler type formulae, Proc. London Math. Soc. (accepted) arXiv:1002.1118]). In this article, it is proven that this inner product can be extended to the super Schwartz space, but not to the space of square integrable functions. Subsequently, the correct Hilbert space corresponding to this inner product is defined and studied. A complete basis of eigenfunctions for general orthosymplectically invariant quantum problems is constructed for this Hilbert space. Then the integrability of the sl{sub 2}-representation is proven. Finally, the Heisenberg uncertainty principle for the super Fourier transform is constructed.
Hilbert space for quantum mechanics on superspace
NASA Astrophysics Data System (ADS)
Coulembier, K.; De Bie, H.
2011-06-01
In superspace a realization of {sl}_2 is generated by the super Laplace operator and the generalized norm squared. In this paper, an inner product on superspace for which this representation is skew-symmetric is considered. This inner product was already defined for spaces of weighted polynomials (see [K. Coulembier, H. De Bie, and F. Sommen, Orthogonality of Hermite polynomials in superspace and Mehler type formulae, Proc. London Math. Soc. (accepted) arXiv:1002.1118]). In this article, it is proven that this inner product can be extended to the super Schwartz space, but not to the space of square integrable functions. Subsequently, the correct Hilbert space corresponding to this inner product is defined and studied. A complete basis of eigenfunctions for general orthosymplectically invariant quantum problems is constructed for this Hilbert space. Then the integrability of the {sl}_2-representation is proven. Finally, the Heisenberg uncertainty principle for the super Fourier transform is constructed.
Reality, Causality, and Probability, from Quantum Mechanics to Quantum Field Theory
NASA Astrophysics Data System (ADS)
Plotnitsky, Arkady
2015-10-01
These three lectures consider the questions of reality, causality, and probability in quantum theory, from quantum mechanics to quantum field theory. They do so in part by exploring the ideas of the key founding figures of the theory, such N. Bohr, W. Heisenberg, E. Schrödinger, or P. A. M. Dirac. However, while my discussion of these figures aims to be faithful to their thinking and writings, and while these lectures are motivated by my belief in the helpfulness of their thinking for understanding and advancing quantum theory, this project is not driven by loyalty to their ideas. In part for that reason, these lectures also present different and even conflicting ways of thinking in quantum theory, such as that of Bohr or Heisenberg vs. that of Schrödinger. The lectures, most especially the third one, also consider new physical, mathematical, and philosophical complexities brought in by quantum field theory vis-à-vis quantum mechanics. I close by briefly addressing some of the implications of the argument presented here for the current state of fundamental physics.
Quantum Magnetomechanics: Ultrahigh-Q-Levitated Mechanical Oscillators
NASA Astrophysics Data System (ADS)
Cirio, M.; Brennen, G. K.; Twamley, J.
2012-10-01
Engineering nanomechanical quantum systems possessing ultralong motional coherence times allows for applications in precision quantum sensing and quantum interfaces, but to achieve ultrahigh motional Q one must work hard to remove all forms of motional noise and heating. We examine a magneto-meso-mechanical quantum system that consists of a 3D arrangement of miniature superconducting loops which is stably levitated in a static inhomogeneous magnetic field. The motional decoherence is predominantly due to loss from induced eddy currents in the magnetized sphere which provides the trapping field ultimately yielding Q˜109 with motional oscillation frequencies of several hundreds of kilohertz. By inductively coupling this levitating object to a nearby driven flux qubit one can cool its motion very close to the ground state and this may permit the generation of macroscopic entangled motional states of multiple clusters.
NASA Astrophysics Data System (ADS)
Aspelmeyer, Markus; Schwab, Keith
2008-09-01
The last five years have witnessed an amazing development in the field of nano- and micromechanics. What was widely considered fantasy ten years ago is about to become an experimental reality: the quantum regime of mechanical systems is within reach of current experiments. Two factors (among many) have contributed significantly to this situation. As part of the widespread effort into nanoscience and nanofabrication, it is now possible to produce high-quality nanomechanical and micromechanical resonators, spanning length scales of millimetres to nanometres, and frequencies from kilohertz to gigahertz. Researchers coupled these mechanical elements to high-sensitivity actuation and readout systems such as single-electron transistors, quantum dots, atomic point contacts, SQUID loops, high-finesse optical or microwave-cavities etc. Some of these ultra-sensitive readout schemes are in principle capable of detection at the quantum limit and a large part of the experimental effort is at present devoted to achieving this. On the other hand, the fact that the groups working in the field come from various different physics backgrounds—the authors of this editorial are a representative sample—has been a constant source of inspiration for helpful theoretical and experimental tools that have been adapted from other fields to the mechanical realm. To name just one example: ideas from quantum optics have led to the recent demonstration (both in theory and experiment) that coupling a mechanical resonator to a high-finesse optical cavity can be fully analogous to the well-known sideband-resolved laser cooling of ions and hence is capable in principle of cooling a mechanical mode into its quantum ground state. There is no doubt that such interdisciplinarity has been a crucial element for the development of the field. It is interesting to note that a very similar sociological phenomenon occurred earlier in the quantum information community, an area which is deeply enriched by the diverse backgrounds and approaches of the researchers. As diverse as the approaches are the manifold of goals and perspectives for operating mechanical systems close to or within the quantum regime. Already now, nanomechanical sensors achieve single-molecule mass detection and magnetic resonance force detection from single-electron spins although they are operated far from quantum. Quantum-limited mechanical devices promise a new technology with hitherto unachieved performance for high-resolution sensing. This is also of high relevance for macroscopic mechanical resonators used in gravitational wave detectors. Furthermore, the increasing capability to couple mechanical modes to individual quantum systems raises the interesting question of whether mechanics can serve as a quantum bus in hybrid implementations of quantum information processing. Finally, the possibility of generating quantum superposition states that involve displacements of a massive macroscopic object (such as the center of mass of a mechanical beam) provides a completely new parameter regime for testing quantum theory over the amazing range from nanomechanical objects of several picograms up to gram-scale mirrors used in gravitational wave interferometers. We are looking forward to these fascinating developments! This Focus Issue is intended to highlight the present status of the field and to provide both introduction and motivation for students and researchers who want to get familiar with this exciting area or even want to join it. It also complements the conference activities of our community during the last year, where a series of dedicated invited sessions at several international conferences (APS March Meeting 2008, CLEO/QELS 2008, OSA Frontiers in Optics 2008, PQE 2008/2009 etc) culminated in the first Gordon Conference on 'Mechanical Systems at the Quantum Limit'. Given the fast development of the field it was not surprising to see that during the collection of the following contributions new progress was reported almost on a monthly basis and new groups entered the field. We intend to keep submission to this Focus Issue open for some time and invite everyone to share their latest results with us. And finally, a note to our fellow colleagues: keep up the good work! We would like to call the next Focus Issue 'Mechanical Systems IN the Quantum Regime'. Focus on Mechanical Systems at the Quantum Limit Contents Classical to quantum transition of a driven nonlinear nanomechanical resonator Itamar Katz, Ron Lifshitz, Alex Retzker and Raphael Straub Experimental optomechanics with silicon micromirrors Olivier Arcizet, Chiara Molinelli, Tristan Briant, Pierre-François Cohadon, Antoine Heidmann, Jean-Marie Mackowski, Christophe Michel, Laurent Pinard, Olivier Français and Lionel Rousseau Nonlinear quantum metrology using coupled nanomechanical resonators M J Woolley, G J Milburn and Carlton M Caves All mechanical mixing by means of orthogonally coupled cantilevers A Knoll, O Züger and U Duerig Parametric coupling between macroscopic quantum resonators L Tian, M S Allman and R W Simmonds Quantum noise in a nanomechanical Duffing resonator E Babourina-Brooks, A Doherty and G J Milburn Creating and verifying a quantum superposition in a micro-optomechanical system Dustin Kleckner, Igor Pikovski, Evan Jeffrey, Luuk Ament, Eric Eliel, Jeroen van den Brink and Dirk Bouwmeester Ground-state cooling of a nanomechanical resonator via a Cooper-pair box qubit Konstanze Jaehne, Klemens Hammerer and Margareta Wallquist Dissipation in circuit quantum electrodynamics: lasing and cooling of a low-frequency oscillator Julian Hauss, Arkady Fedorov, Stephan André, Valentina Brosco, Carsten Hutter, Robin Kothari, Sunil Yeshwanth, Alexander Shnirman and Gerd Schön Route to ponderomotive entanglement of light via optically trapped mirrors Christopher Wipf, Thomas Corbitt, Yanbei Chen and Nergis Mavalvala Nanomechanical-resonator-assisted induced transparency in a Cooper-pair box system Xiao-Zhong Yuan, Hsi-Sheng Goan, Chien-Hung Lin, Ka-Di Zhu and Yi-Wen Jiang High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators A Schliesser, G Anetsberger, R Rivière, O Arcizet and T J Kippenberg Optomechanical to mechanical entanglement transformation Giovanni Vacanti, Mauro Paternostro, G Massimo Palma and Vlatko Vedral The optomechanical instability in the quantum regime Max Ludwig, Björn Kubala and Florian Marquardt Quantum limits of photothermal and radiation pressure cooling of a movable mirror M Pinard and A Dantan Mechanical feedback in the high-frequency limit R El Boubsi, O Usmani and Ya M Blanter Back-action evasion and squeezing of a mechanical resonator using a cavity detector A A Clerk, F Marquardt and K Jacobs Simultaneous cooling and entanglement of mechanical modes of a micromirror in an optical cavity Claudiu Genes, David Vitali and Paolo Tombesi Dispersive optomechanics: a membrane inside a cavity A M Jayich, J C Sankey, B M Zwickl, C Yang, J D Thompson, S M Girvin, A A Clerk, F Marquardt and J G E Harris Cavity-assisted backaction cooling of mechanical resonators I Wilson-Rae, N Nooshi, J Dobrindt, T J Kippenberg and W Zwerger Cavity cooling of a nanomechanical resonator by light scattering I Favero and K Karrai Probing the quantum coherence of a nanomechanical resonator using a superconducting qubit: II. Implementation M P Blencowe and A D Armour Probing the quantum coherence of a nanomechanical resonator using a superconducting qubit: I. Echo scheme A D Armour and M P Blencowe Nanoelectromechanics of suspended carbon nanotubes A K Hüttel, M Poot, B Witkamp and H S J van der Zant Prospects for cooling nanomechanical motion by coupling to a superconducting microwave resonator J D Teufel, C A Regal and K W Lehnert
Quantum Theory Without Waves: A Way of Eliminating Quantum Mechanical Paradoxes?
NASA Astrophysics Data System (ADS)
Cini, Marcello
1. In his book The Philosophy of Quantum Mechanics Max Jammer writes: "The double nature of the macroscopic apparatus (on the one hand a classical Object and on the other hand obeying quantum mechanical laws) remained a somewhat questionable or at least obscure feature in Bohr's conception of quantum mechanical measurements." [l] It is fair to say that this ambiguity is still with us, after more than seventy years. Two related questions are still discussed within the small community of physicists who want to understand better the nature and the meaning of our fundamental theory of matter. On the one hand, one may ask: (a) How is it possible that classical objects with definite and context independent values of their dynamical variables exist, given that the laws of Quantum Mechanics forbid this possibility? On the other hand one may reverse the question and ask: (b) How is it possible that macroscopic objects, which, according to our everyday experience usually behave classically, may Show, under suitable circumstances, the bizarre behaviour predicted by Quantum Mechanics?
Quantum mechanics concept assessment: Development and validation study
NASA Astrophysics Data System (ADS)
Sadaghiani, Homeyra R.; Pollock, Steven J.
2015-06-01
As part of an ongoing investigation of students' learning in first semester upper-division quantum mechanics, we needed a high-quality conceptual assessment instrument for comparing outcomes of different curricular approaches. The process of developing such a tool started with converting a preliminary version of a 14-item open-ended quantum mechanics assessment tool (QMAT) to a multiple-choice (MC) format. Further question refinement, development of effective distractors, adding new questions, and robust statistical analysis has led to a 31-item quantum mechanics concept assessment (QMCA) test. The QMCA is used as post-test only to assess students' knowledge about five main topics of quantum measurement: the time-independent Schrödinger equation, wave functions and boundary conditions, time evolution, and probability density. During two years of testing and refinement, the QMCA has been given in alpha (N =61 ) and beta versions (N =263 ) to students in upper division quantum mechanics courses at 11 different institutions with an average post-test score of 54%. By allowing for comparisons of student learning across different populations and institutions, the QMCA provides instructors and researchers a more standard measure of effectiveness of different curricula or teaching strategies on student conceptual understanding of quantum mechanics. In this paper, we discuss the construction of effective distractors and the use of student interviews and expert feedback to revise and validate both questions and distractors. We include the results of common statistical tests of reliability and validity, which suggest the instrument is presently in a stable, usable, and promising form.
List, Nanna Holmgaard Jensen, Hans JÃ¸rgen Aagaard; Kongsted, Jacob; Beerepoot, Maarten T. P.; Gao, Bin; Ruud, Kenneth; Olsen, JÃ³gvan Magnus Haugaard
2015-01-21
We present an implementation of analytical quantum mechanical molecular gradients within the polarizable embedding (PE) model to allow for efficient geometry optimizations and vibrational analysis of molecules embedded in large, geometrically frozen environments. We consider a variational ansatz for the quantum region, covering (multiconfigurational) self-consistent-field and Kohnâ€“Sham density functional theory. As the first application of the implementation, we consider the internal vibrational Stark effect of the C=O group of acetophenone in different solvents and derive its vibrational linear Stark tuning rate using harmonic frequencies calculated from analytical gradients and computed local electric fields. Comparisons to PE calculations employing an enlarged quantum region as well as to a non-polarizable embedding scheme show that the inclusion of mutual polarization between acetophenone and water is essential in order to capture the structural modifications and the associated frequency shifts observed in water. For more apolar solvents, a proper description of dispersion and exchangeâ€“repulsion becomes increasingly important, and the quality of the optimized structures relies to a larger extent on the quality of the Lennard-Jones parameters.
List, Nanna Holmgaard; Beerepoot, Maarten T P; Olsen, Jógvan Magnus Haugaard; Gao, Bin; Ruud, Kenneth; Jensen, Hans Jørgen Aagaard; Kongsted, Jacob
2015-01-21
We present an implementation of analytical quantum mechanical molecular gradients within the polarizable embedding (PE) model to allow for efficient geometry optimizations and vibrational analysis of molecules embedded in large, geometrically frozen environments. We consider a variational ansatz for the quantum region, covering (multiconfigurational) self-consistent-field and Kohn-Sham density functional theory. As the first application of the implementation, we consider the internal vibrational Stark effect of the C=O group of acetophenone in different solvents and derive its vibrational linear Stark tuning rate using harmonic frequencies calculated from analytical gradients and computed local electric fields. Comparisons to PE calculations employing an enlarged quantum region as well as to a non-polarizable embedding scheme show that the inclusion of mutual polarization between acetophenone and water is essential in order to capture the structural modifications and the associated frequency shifts observed in water. For more apolar solvents, a proper description of dispersion and exchange-repulsion becomes increasingly important, and the quality of the optimized structures relies to a larger extent on the quality of the Lennard-Jones parameters. PMID:25612701
Ruling out multi-order interference in quantum mechanics.
Sinha, Urbasi; Couteau, Christophe; Jennewein, Thomas; Laflamme, Raymond; Weihs, Gregor
2010-07-23
Quantum mechanics and gravitation are two pillars of modern physics. Despite their success in describing the physical world around us, they seem to be incompatible theories. There are suggestions that one of these theories must be generalized to achieve unification. For example, Born's rule--one of the axioms of quantum mechanics--could be violated. Born's rule predicts that quantum interference, as shown by a double-slit diffraction experiment, occurs from pairs of paths. A generalized version of quantum mechanics might allow multipath (i.e., higher-order) interference, thus leading to a deviation from the theory. We performed a three-slit experiment with photons and bounded the magnitude of three-path interference to less than 10(-2) of the expected two-path interference, thus ruling out third- and higher-order interference and providing a bound on the accuracy of Born's rule. Our experiment is consistent with the postulate both in semiclassical and quantum regimes. PMID:20651147
Quantum mechanical force field for water with explicit electronic polarization
Han, Jaebeom; Mazack, Michael J. M.; Zhang, Peng; Truhlar, Donald G.; Gao, Jiali
2013-01-01
A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 106 self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across biological ion channels through membranes. PMID:23927266
In search of the adaptive foundations of quantum mechanics
NASA Astrophysics Data System (ADS)
Baladrón, Carlos
2010-01-01
A subquantum theory is outlined in which the concept of continuity in the trajectory of a material system plays a crucial role to explain quantum behaviour. A particle or fundamental system is defined as a dual entity formed by bare matter and a methodological probabilistic classical Turing machine that are coupled through information transfer. The sketchy underlying mechanism, that determines the response of the system, is based on self-interaction. The evolution of the system is led by three Darwinian-informational regulating principles that maximize the survival expectations of the system, yielding the most convenient sequence of self-interaction events. The deduction of the postulates of quantum mechanics from our theory is discussed. Quantum behaviour would appear as a result of Darwinian natural selection. As a consequence of this theory, reality, locality and causality could be in a certain sense reconciled.
Quantum squeezing of motion in a mechanical resonator
NASA Astrophysics Data System (ADS)
Wollman, E. E.; Lei, C. U.; Weinstein, A. J.; Suh, J.; Kronwald, A.; Marquardt, F.; Clerk, A. A.; Schwab, K. C.
2015-08-01
According to quantum mechanics, a harmonic oscillator can never be completely at rest. Even in the ground state, its position will always have fluctuations, called the zero-point motion. Although the zero-point fluctuations are unavoidable, they can be manipulated. Using microwave frequency radiation pressure, we have manipulated the thermal fluctuations of a micrometer-scale mechanical resonator to produce a stationary quadrature-squeezed state with a minimum variance of 0.80 times that of the ground state. We also performed phase-sensitive, back-action evading measurements of a thermal state squeezed to 1.09 times the zero-point level. Our results are relevant to the quantum engineering of states of matter at large length scales, the study of decoherence of large quantum systems, and for the realization of ultrasensitive sensing of force and motion.
Quantum Mechanics, Pattern Recognition, and the Mammalian Brain
NASA Astrophysics Data System (ADS)
Chapline, George
2008-10-01
Although the usual way of representing Markov processes is time asymmetric, there is a way of describing Markov processes, due to Schrodinger, which is time symmetric. This observation provides a link between quantum mechanics and the layered Bayesian networks that are often used in automated pattern recognition systems. In particular, there is a striking formal similarity between quantum mechanics and a particular type of Bayesian network, the Helmholtz machine, which provides a plausible model for how the mammalian brain recognizes important environmental situations. One interesting aspect of this relationship is that the "wake-sleep" algorithm for training a Helmholtz machine is very similar to the problem of finding the potential for the multi-channel Schrodinger equation. As a practical application of this insight it may be possible to use inverse scattering techniques to study the relationship between human brain wave patterns, pattern recognition, and learning. We also comment on whether there is a relationship between quantum measurements and consciousness.
Aspects of phase-space noncommutative quantum mechanics
NASA Astrophysics Data System (ADS)
Bertolami, O.; Leal, P.
2015-11-01
In this work some issues in the context of Noncommutative Quantum Mechanics (NCQM) are addressed. The main focus is on finding whether symmetries present in Quantum Mechanics still hold in the phase-space noncommutative version. In particular, the issues related with gauge invariance of the electromagnetic field and the weak equivalence principle (WEP) in the context of the gravitational quantum well (GQW) are considered. The question of the Lorentz symmetry and the associated dispersion relation is also examined. Constraints are set on the relevant noncommutative parameters so that gauge invariance and Lorentz invariance holds. In opposition, the WEP is verified to hold in the noncommutative setup, and it is only possible to observe a violation through an anisotropy of the noncommutative parameters.
Is Quantum Mechanics Incompatible with Newton's First Law?
NASA Astrophysics Data System (ADS)
Rabinowitz, Mario
2008-04-01
Quantum mechanics (QM) clearly violates Newtonâ€™s First Law of Motion (NFLM) in the quantum domain for one of the simplest problems, yielding an effect in a force-free region much like the Aharonov-Bohm effect. In addition, there is an incompatibility between the predictions of QM in the classical limit, and that of classical mechanics (CM) with respect to NFLM. A general argument is made that such a disparity may be found commonly for a wide variety of quantum predictions in the classical limit. Alternatives to the SchrÃ¶dinger equation are considered that might avoid this problem. The meaning of the classical limit is examined. Critical views regarding QM by SchrÃ¶dinger, Bohm, Bell, Clauser, and others are presented to provide a more complete perspective.
On the Lattice Structure of Probability Spaces in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Holik, Federico; Massri, CÃ©sar; Plastino, A.; Zuberman, Leandro
2013-06-01
Let {C} be the set of all possible quantum states. We study the convex subsets of {C} with attention focused on the lattice theoretical structure of these convex subsets and, as a result, find a framework capable of unifying several aspects of quantum mechanics, including entanglement and Jaynes' Max-Ent principle. We also encounter links with entanglement witnesses, which leads to a new separability criteria expressed in lattice language. We also provide an extension of a separability criteria based on convex polytopes to the infinite dimensional case and show that it reveals interesting facets concerning the geometrical structure of the convex subsets. It is seen that the above mentioned framework is also capable of generalization to any statistical theory via the so-called convex operational models' approach. In particular, we show how to extend the geometrical structure underlying entanglement to any statistical model, an extension which may be useful for studying correlations in different generalizations of quantum mechanics.
Quantum mechanical cluster calculations of critical scintillationprocesses
Derenzo, Stephen E.; Klintenberg, Mattias K.; Weber, Marvin J.
2000-02-22
This paper describes the use of commercial quantum chemistrycodes to simu-late several critical scintillation processes. The crystalis modeled as a cluster of typically 50 atoms embedded in an array oftypically 5,000 point charges designed to reproduce the electrostaticfield of the infinite crystal. The Schrodinger equation is solved for theground, ionized, and excited states of the system to determine the energyand electron wavefunction. Computational methods for the followingcritical processes are described: (1) the formation and diffusion ofrelaxed holes, (2) the formation of excitons, (3) the trapping ofelectrons and holes by activator atoms, (4) the excitation of activatoratoms, and (5) thermal quenching. Examples include hole diffusion in CsI,the exciton in CsI, the excited state of CsI:Tl, the energy barrier forthe diffusion of relaxed holes in CaF2 and PbF2, and prompt hole trappingby activator atoms in CaF2:Eu and CdS:Te leading to an ultra-fast (<50ps) scintillation risetime.
Completeness of the Coulomb Wave Functions in Quantum Mechanics
ERIC Educational Resources Information Center
Mukunda, N.
1978-01-01
Gives an explicit and elementary proof that the radial energy eigenfunctions for the hydrogen atom in quantum mechanics, bound and scattering states included, form a complete set. The proof uses some properties of the confluent hypergeometric functions and the Cauchy residue theorem from analytic function theory. (Author/GA)
Exactly Solvable Quantum Mechanical Potentials: An Alternative Approach.
ERIC Educational Resources Information Center
Pronchik, Jeremy N.; Williams, Brian W.
2003-01-01
Describes an alternative approach to finding exactly solvable, one-dimensional quantum mechanical potentials. Differs from the usual approach in that instead of starting with a particular potential and seeking solutions to the related Schrodinger equations, it begins with known solutions to second-order ordinary differential equations and seeks toâ€¦
Hidden algebra method (quasi-exact-solvability in quantum mechanics)
Turbiner, Alexander
1996-02-20
A general introduction to quasi-exactly-solvable problems of quantum mechanics is presented. Main attention is given to multidimensional quasi-exactly-solvable and exactly-solvable Schroedinger operators. Exact-solvability of the Calogero and Sutherland N-body problems ass ociated with an existence of the hidden algebra slN is discussed extensively.
Elementary Quantum Mechanics in a High-Energy Process
ERIC Educational Resources Information Center
Denville, A.; And Others
1978-01-01
Compares two approaches to strong absorption in elementary quantum mechanics; the black sphere and a model based on the continuum theory of nuclear reactions. Examines the application to proton-antiproton interactions at low momenta and concludes that the second model is the appropriate and simplest to use. (Author/GA)
A multiscale quantum mechanics/electromagnetics method for device simulations.
Yam, ChiYung; Meng, Lingyi; Zhang, Yu; Chen, GuanHua
2015-04-01
Multiscale modeling has become a popular tool for research applying to different areas including materials science, microelectronics, biology, chemistry, etc. In this tutorial review, we describe a newly developed multiscale computational method, incorporating quantum mechanics into electronic device modeling with the electromagnetic environment included through classical electrodynamics. In the quantum mechanics/electromagnetics (QM/EM) method, the regions of the system where active electron scattering processes take place are treated quantum mechanically, while the surroundings are described by Maxwell's equations and a semiclassical drift-diffusion model. The QM model and the EM model are solved, respectively, in different regions of the system in a self-consistent manner. Potential distributions and current densities at the interface between QM and EM regions are employed as the boundary conditions for the quantum mechanical and electromagnetic simulations, respectively. The method is illustrated in the simulation of several realistic systems. In the case of junctionless field-effect transistors, transfer characteristics are obtained and a good agreement between experiments and simulations is achieved. Optical properties of a tandem photovoltaic cell are studied and the simulations demonstrate that multiple QM regions are coupled through the classical EM model. Finally, the study of a carbon nanotube-based molecular device shows the accuracy and efficiency of the QM/EM method. PMID:25611987
Quantum-mechanical theory of optomechanical Brillouin cooling
Tomes, Matthew; Bahl, Gaurav; Carmon, Tal; Marquardt, Florian
2011-12-15
We analyze how to exploit Brillouin scattering of light from sound for the purpose of cooling optomechanical devices and present a quantum-mechanical theory for Brillouin cooling. Our analysis shows that significant cooling ratios can be obtained with standard experimental parameters. A further improvement of cooling efficiency is possible by increasing the dissipation of the optical anti-Stokes resonance.
The History of Teaching Quantum Mechanics in Greece
ERIC Educational Resources Information Center
Tampakis, Constantin; Skordoulis, Constantin
2007-01-01
In this work, our goal is to examine the attitude of the Greek scientific community towards Quantum Mechanics and establish the history of teaching of this theory in Greece. We have examined Physics textbooks written by professors of the University of Athens, as well as records of public speeches, university yearbooks from 1923 to 1970, articles…
The History of Teaching Quantum Mechanics in Greece
ERIC Educational Resources Information Center
Tampakis, Constantin; Skordoulis, Constantin
2007-01-01
In this work, our goal is to examine the attitude of the Greek scientific community towards Quantum Mechanics and establish the history of teaching of this theory in Greece. We have examined Physics textbooks written by professors of the University of Athens, as well as records of public speeches, university yearbooks from 1923 to 1970, articlesâ€¦
Spontaneous symmetry breakdown in non-relativistic quantum mechanics
NASA Astrophysics Data System (ADS)
Muñoz-Vega, R.; García-Quiroz, A.; López-Chávez, Ernesto; Salinas-Hernández, Encarnación
2012-10-01
The advantages and disadvantages of some pedagogical non-relativistic quantum-mechanical models, used to illustrate spontaneous symmetry breakdown, are discussed. A spinor on the line subject to a magnetostatic interaction is presented as a toy model of the spontaneous breakdown of an internal symmetry.
Overcoming Misconceptions in Quantum Mechanics with the Time Evolution Operator
ERIC Educational Resources Information Center
Quijas, P. C. Garcia; Aguilar, L. M. Arevalo
2007-01-01
Recently, there have been many efforts to use the research techniques developed in the field of physics education research to improve the teaching and learning of quantum mechanics. In particular, part of this research is focusing on misconceptions held by students. For instance, a set of misconceptions is associated with the concept of stationaryâ€¦
Quantum Mechanics Concept Assessment: Development and Validation Study
ERIC Educational Resources Information Center
Sadaghiani, Homeyra R.; Pollock, Steven J.
2015-01-01
As part of an ongoing investigation of students' learning in first semester upper-division quantum mechanics, we needed a high-quality conceptual assessment instrument for comparing outcomes of different curricular approaches. The process of developing such a tool started with converting a preliminary version of a 14-item open-ended quantumâ€¦
Overcoming Misconceptions in Quantum Mechanics with the Time Evolution Operator
ERIC Educational Resources Information Center
Quijas, P. C. Garcia; Aguilar, L. M. Arevalo
2007-01-01
Recently, there have been many efforts to use the research techniques developed in the field of physics education research to improve the teaching and learning of quantum mechanics. In particular, part of this research is focusing on misconceptions held by students. For instance, a set of misconceptions is associated with the concept of stationary…
Equivalent emergence of time dependence in classical and quantum mechanics
NASA Astrophysics Data System (ADS)
Briggs, John S.
2015-05-01
Beginning with the principle that a closed mechanical composite system is timeless, time can be defined by the regular changes in a suitable position coordinate (clock) in the observing part, when one part of the closed composite observes another part. Translating this scenario into both classical and quantum mechanics allows a transition to be made from a time-independent mechanics for the closed composite to a time-dependent description of the observed part alone. The use of Hamilton-Jacobi theory yields a very close parallel between the derivations in classical and quantum mechanics. The time-dependent equations, Hamilton-Jacobi or Schrödinger, appear as approximations since no observed system is truly closed. The quantum case has an additional feature in the condition that the observing environment must become classical in order to define a real classical time variable. This condition leads to a removal of entanglement engendered by the interaction between the observed system and the observing environment. Comparison is made to the similar emergence of time in quantum gravity theory.
Quantum Mechanics of the Einstein-Hopf Model.
ERIC Educational Resources Information Center
Milonni, P. W.
1981-01-01
The Einstein-Hopf model for the thermodynamic equilibrium between the electromagnetic field and dipole oscillators is considered within the framework of quantum mechanics. Both the wave and particle aspects of the Einstein fluctuation formula are interpreted in terms of the fundamental absorption and emission processes. (Author/SK)
The Hidden-Variables Controversy in Quantum Mechanics.
ERIC Educational Resources Information Center
Pinch, Trevor J.
1979-01-01
Describes the controversy over the hidden variable in quantum mechanics, especially over Bohm's theory, and the criticism and rejection it received as a result of the erroneous application of Von Neumann's impossibility proof, rather than Bohn's theory itself. Concludes that science, especially physics, is not permeated by social factors. (GA)
Quantum Mechanics and Conceptual Change in High School Chemistry Textbooks.
ERIC Educational Resources Information Center
Shiland, Thomas W.
1997-01-01
Examines the presentation of quantum mechanics in eight secondary chemistry texts for elements associated with a conceptual change model: (1) dissatisfaction; (2) intelligibility; (3) plausibility; and (4) fruitfulness. Reports that these elements were not present in sufficient quantities to promote conceptual change. Presents recommendations forâ€¦
Hidden supersymmetries in supersymmetric quantum mechanics
NASA Astrophysics Data System (ADS)
de Azcárraga, J. A.; Izquierdo, J. M.; Macfarlane, A. J.
2001-06-01
We discuss the appearance of additional, hidden supersymmetries for simple 0+1 Ad( G)-invariant supersymmetric models and analyse some geometrical mechanisms that lead to them. It is shown that their existence depends crucially on the availability of odd order invariant skewsymmetric tensors on the (generic) compact Lie algebra G, and hence on the cohomology properties of the Lie algebra considered.
Physics on the boundary between classical and quantum mechanics
NASA Astrophysics Data System (ADS)
't Hooft, Gerard
2014-04-01
Nature's laws in the domain where relativistic effects, gravitational effects and quantum effects are all comparatively strong are far from understood. This domain is called the Planck scale. Conceivably, a theory can be constructed where the quantum nature of phenomena at such scales can be attributed to something fundamentally simpler. However, arguments that quantum mechanics cannot be explained in terms of any classical theory using only classical logic seem to be based on sound mathematical considerations: there can't be physical laws that require "conspiracy". It may therefore be surprising that there are several explicit quantum systems where these considerations apparently do not apply. In the lecture we will show several such counterexamples. These are quantum models that do have a classical origin. The most curious of these models is superstring theory. This theory is often portrayed as to underly the quantum field theory of the subatomic particles, including the "Standard Model". So now the question is asked: how can this model feature "conspiracy", and how bad is that? Is there conspiracy in the vacuum fluctuations?
Topological origin of quantum mechanical vacuum transitions and tunneling
NASA Astrophysics Data System (ADS)
Bernardini, Alex E.; Chinaglia, Mariana
2015-07-01
The quantum transition between shifted zero-mode wave functions is shown to be induced by the systematic deformation of topological and non-topological defects that support the one-dimensional double-well (DW) potential tunneling dynamics. The topological profile of the zero-mode ground state, ?0, and the first excited state, ?1, of DW potentials are obtained through the analytical technique of topological defect deformation. Deformed defects create two inequivalent topological scenarios connected by a symmetry breaking that support the quantum conversion of a zero-mode stable vacuum into an unstable tachyonic quantum state. Our theoretical findings reveal the topological origin of two-level models where a nonstationary quantum state of unitary evolution, ?0 +exp(-iEt)?1, that exhibits a stable tunneling dynamics, is converted into a quantum superposition involving a self-vanishing tachyonic mode, exp(-Et)?0 + ?1, that parametrizes a tunneling coherent destruction. The non-classical nature of the symmetry breaking dynamics is recreated in terms of the single particle quantum mechanics of one-dimensional DW potentials.
NASA Astrophysics Data System (ADS)
Ihly, Rachelle
This thesis explores the understanding of the chemistry and physics of colloidal quantum dots for practical solar energy photoconversion. Solar cell devices that make use of PbS quantum dots generally rely on constant and unchanged optical properties such that band gap energies remain tuned within the device. The design and development of unique experiments to ascertain mechanisms of optical band gap shifts occurring in PbS quantum dot thin-films exposed to air are discussed. The systematic study of the absorption properties of PbS quantum dot films exposed to air, heat, and UV illumination as a function of quantum dot size has been described. A method to improve the air-stability of films with atomic layer deposition of alumina is demonstrated. Encapsulation of quantum dot films using a protective layer of alumina results in quantum dot solids that maintain tuned absorption for 1000 hours. This thesis focuses on the use of atomic force microscopy and electrical variants thereof to study the physical and electrical characteristics of quantum dot arrays. These types of studies have broad implications in understanding charge transport mechanisms and solar cell device operation, with a particular emphasis on quantum dot transistors and solar cells. Imaging the channel potential of a PbSe quantum dot thin-film in a transistor showed a uniform distribution of charge coinciding with the transistor current voltage characteristics. In a second study, solar cell device operation of ZnO/PbS heterojunction solar cells was investigated by scanning active cross-sections with Kelvin probe microscopy as a function of applied bias, illumination and device architecture. This technique directly provides operating potential and electric field profiles to characterize drift and diffusion currents occurring in the device. SKPM established a field-free region occurring in the quantum dot layer, indicative of diffusion-limited transport. These results provide the path to optimization of future architectures that may employ drift-based transport in the quantum dot layer for enhanced charge extraction and power conversion efficiency.
NASA Technical Reports Server (NTRS)
Kobayashi, Tsunehiro
1996-01-01
Quantum macroscopic motions are investigated in the scheme consisting of N-number of harmonic oscillators in terms of ultra-power representations of nonstandard analysis. Decoherence is derived from the large internal degrees of freedom of macroscopic matters.
Optical levitation of quantum nano-mechanical resonators
NASA Astrophysics Data System (ADS)
Chang, Darrick; Regal, Cindy; Papp, Scott; Wilson, Dalziel; Ye, Jun; Zoller, Peter; Painter, Oskar; Kimble, Jeff
2009-05-01
There recently has been great interest in being able to observe quantum signatures in the motion of small mechanical systems. One major obstacle in many of the current approaches is the large coupling of these systems to a thermal environment, which tends to rapidly drive these systems back to a classical state. We propose to overcome this difficulty by levitating a nano-scale, dielectric mechanical resonator inside a high-finesse cavity via an optical dipole force, thus effectively removing any external thermal contact and creating a highly isolated system. The dipole force creates a mechanical potential for the center-of-mass motion and an effective ``optical spring'' for various internal degrees of freedom, whose strengths can be widely tuned simply by changing the optical field intensity. Using standard sideband cooling techniques, we show that ground-state cooling of these degrees of freedom is easily achievable under realistic conditions. Furthermore, we show how the tunability can be used to realize even more exotic signatures of quantum mechanical behavior, including quantum state transfer between two mechanical degrees of freedom and strong squeezing of mechanical motion.
Quantum Mechanical Modeling of Ballistic MOSFETs
NASA Technical Reports Server (NTRS)
Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan (Technical Monitor)
2001-01-01
The objective of this project was to develop theory, approximations, and computer code to model quasi 1D structures such as nanotubes, DNA, and MOSFETs: (1) Nanotubes: Influence of defects on ballistic transport, electro-mechanical properties, and metal-nanotube coupling; (2) DNA: Model electron transfer (biochemistry) and transport experiments, and sequence dependence of conductance; and (3) MOSFETs: 2D doping profiles, polysilicon depletion, source to drain and gate tunneling, understand ballistic limit.
Quantum Mechanics for Everyone: Can it be done with Technology?
NASA Astrophysics Data System (ADS)
Zollman, Dean
2004-10-01
The Visual Quantum Mechanics project has created a series of teaching/learning units to introduce quantum physics to a variety of audiences ranging from high school students who normally would not study these topics to undergraduate physics majors. Most recently we have been developing materials relating modern medical procedures and contemporary physics. In all of these materials interactive computer visualizations are coupled with hands-on experiences to create a series of activities which help students learn about some aspects of quantum mechanics. Our goal is to enable students to obtain a qualitative and, where appropriate, a quantitative understanding of contemporary ideas in physics. Included in the instructional materials are student-centered activities that address a variety of concepts in quantum physics and applications to devices such as the light emitting diode, the electron microscope, an inexpensive infrared detection card, and the Star Trek Transporter. Whenever possible the students begin the study of a new concept with an experiment using inexpensive equipment. They, then, build models of the physical phenomenon using interactive computer visualization and conclude by applying those models to new situations. For physics students these visualizations are usually followed by a mathematical approach. For others the visualizations provide a framework for understanding the concepts. Thus, Visual Quantum Mechanics allows a wide range of students to begin to understand the basic concepts, implications and interpretations of quantum physics. At present we are building on this foundation to create materials which show the connection between contemporary physics and modern medical diagnosis. Additional information is available at http://web.phys.ksu.edu/.
Horizon quantum mechanics: A hitchhikerâ€™s guide to quantum black holes
NASA Astrophysics Data System (ADS)
Casadio, Roberto; Giugno, Andrea; Micu, Octavian
2016-01-01
It is congruous with the quantum nature of the world to view the spacetime geometry as an emergent structure that shows classical features only at some observational level. One can thus conceive the spacetime manifold as a purely theoretical arena, where quantum states are defined, with the additional freedom of changing coordinates like any other symmetry. Observables, including positions and distances, should then be described by suitable operators acting on such quantum states. In principle, the top-down (canonical) quantization of Einstein-Hilbert gravity falls right into this picture, but is notoriously very involved. The complication stems from allowing all the classical canonical variables that appear in the (presumably) fundamental action to become quantum observables acting on the â€œsuperspaceâ€ of all metrics, regardless of whether they play any role in the description of a specific physical system. On can instead revisit the more humble â€œminisuperspaceâ€ approach and choose the gravitational observables not simply by imposing some symmetry, but motivated by their proven relevance in the (classical) description of a given system. In particular, this review focuses on compact, spherically symmetric, quantum mechanical sources, in order to determine the probability that they are black holes (BHs) rather than regular particles. The gravitational radius is therefore lifted to the status of a quantum mechanical operator acting on the â€œhorizon wave function (HWF),â€ the latter being determined by the quantum state of the source. This formalism is then applied to several sources with a mass around the fundamental scale, which are viewed as natural candidates of quantum BHs.
Efficient hybrid-symbolic methods for quantum mechanical calculations
NASA Astrophysics Data System (ADS)
Scott, T. C.; Zhang, Wenxing
2015-06-01
We present hybrid symbolic-numerical tools to generate optimized numerical code for rapid prototyping and fast numerical computation starting from a computer algebra system (CAS) and tailored to any given quantum mechanical problem. Although a major focus concerns the quantum chemistry methods of H. Nakatsuji which has yielded successful and very accurate eigensolutions for small atoms and molecules, the tools are general and may be applied to any basis set calculation with a variational principle applied to its linear and non-linear parameters.
Jarzynski equality in PT-symmetric quantum mechanics
Deffner, Sebastian; Saxena, Avadh
2015-04-13
We show that the quantum Jarzynski equality generalizes to PT -symmetric quantum mechanics with unbroken PT -symmetry. In the regime of broken PT -symmetry the Jarzynski equality does not hold as also the CPT -norm is not preserved during the dynamics. These findings are illustrated for an experimentally relevant system – two coupled optical waveguides. It turns out that for these systems the phase transition between the regimes of unbroken and broken PT -symmetry is thermodynamically inhibited as the irreversible work diverges at the critical point.
Quantum statistical mechanics of dense partially ionized hydrogen
NASA Technical Reports Server (NTRS)
Dewitt, H. E.; Rogers, F. J.
1972-01-01
The theory of dense hydrogen plasmas beginning with the two component quantum grand partition function is reviewed. It is shown that ionization equilibrium and molecular dissociation equilibrium can be treated in the same manner with proper consideration of all two-body states. A quantum perturbation expansion is used to give an accurate calculation of the equation of state of the gas for any degree of dissociation and ionization. The statistical mechanical calculation of the plasma equation of state is intended for stellar interiors. The general approach is extended to the calculation of the equation of state of the outer layers of large planets.
Jarzynski equality in PT-symmetric quantum mechanics
Deffner, Sebastian; Saxena, Avadh
2015-04-13
We show that the quantum Jarzynski equality generalizes to PT -symmetric quantum mechanics with unbroken PT -symmetry. In the regime of broken PT -symmetry the Jarzynski equality does not hold as also the CPT -norm is not preserved during the dynamics. These findings are illustrated for an experimentally relevant system â€“ two coupled optical waveguides. It turns out that for these systems the phase transition between the regimes of unbroken and broken PT -symmetry is thermodynamically inhibited as the irreversible work diverges at the critical point.
Mechanically Mediated Microwave Frequency Conversion in the Quantum Regime
NASA Astrophysics Data System (ADS)
Lecocq, F.; Clark, J. B.; Simmonds, R. W.; Aumentado, J.; Teufel, J. D.
2016-01-01
We report the observation of efficient and low-noise frequency conversion between two microwave modes, mediated by the motion of a mechanical resonator subjected to radiation pressure. We achieve coherent conversion of more than 1012 photons/s with a 95% efficiency and a 14 kHz bandwidth. With less than 10-1 photons.s-1.Hz-1 of added noise, this optomechanical frequency converter is suitable for quantum state transduction. We show the ability to operate this converter as a tunable beam splitter, with direct applications for photon routing and communication through complex quantum networks.
Boundary dynamics and topology change in quantum mechanics
NASA Astrophysics Data System (ADS)
Pérez-Pardo, J. M.; Barbero-Liñán, M.; Ibort, A.
2015-06-01
We show how to use boundary conditions to drive the evolution on a quantum mechanical system. We will see how this problem can be expressed in terms of a time-dependent Schrödinger equation. In particular, we will need the theory of self-adjoint extensions of differential operators in manifolds with boundary. An introduction of the latter as well as meaningful examples will be given. It is known that different boundary conditions can be used to describe different topologies of the associated quantum systems. We will use the previous results to study the topology change and to obtain necessary conditions to accomplish it in a dynamical way.
Mechanically Mediated Microwave Frequency Conversion in the Quantum Regime.
Lecocq, F; Clark, J B; Simmonds, R W; Aumentado, J; Teufel, J D
2016-01-29
We report the observation of efficient and low-noise frequency conversion between two microwave modes, mediated by the motion of a mechanical resonator subjected to radiation pressure. We achieve coherent conversion of more than 10^{12}??photons/s with a 95% efficiency and a 14 kHz bandwidth. With less than 10^{-1}??photons·s^{-1}·Hz^{-1} of added noise, this optomechanical frequency converter is suitable for quantum state transduction. We show the ability to operate this converter as a tunable beam splitter, with direct applications for photon routing and communication through complex quantum networks. PMID:26871329
Classical and quantum mechanics in the Snyder space
NASA Astrophysics Data System (ADS)
Mignemi, S.
2012-02-01
The Snyder model is an example of noncommutative spacetime admitting a fundamental length scale and invariant under Lorentz transformations. Here, we consider its nonrelativistic counterpart, i.e. the Snyder model restricted to three-dimensional Euclidean space. We discuss the classical and the quantum mechanics of a free particle in this framework, and show that they strongly depend on the sign of a coupling constant ?, appearing in the fundamental commutators. If ? is negative, momenta are bounded, while for ? > 0 a minimal localization length arises. We also give the exact solution of the harmonic oscillator equations both in the classical and the quantum case, and show that its frequency is energy dependent.
A wave equation interpolating between classical and quantum mechanics
NASA Astrophysics Data System (ADS)
Schleich, W. P.; Greenberger, D. M.; Kobe, D. H.; Scully, M. O.
2015-10-01
We derive a â€˜masterâ€™ wave equation for a family of complex-valued waves {{Î¦ }}\\equiv R{exp}[{{{i}}S}({cl)}/{{\\hbar }}] whose phase dynamics is dictated by the Hamilton-Jacobi equation for the classical action {S}({cl)}. For a special choice of the dynamics of the amplitude R which eliminates all remnants of classical mechanics associated with {S}({cl)} our wave equation reduces to the SchrÃ¶dinger equation. In this case the amplitude satisfies a SchrÃ¶dinger equation analogous to that of a charged particle in an electromagnetic field where the roles of the scalar and the vector potentials are played by the classical energy and the momentum, respectively. In general this amplitude is complex and thereby creates in addition to the classical phase {S}({cl)}/{{\\hbar }} a quantum phase. Classical statistical mechanics, as described by a classical matter wave, follows from our wave equation when we choose the dynamics of the amplitude such that it remains real for all times. Our analysis shows that classical and quantum matter waves are distinguished by two different choices of the dynamics of their amplitudes rather than two values of Planckâ€™s constant. We dedicate this paper to the memory of Richard Lewis Arnowittâ€”a pioneer of many-body theory, a path finder at the interface of gravity and quantum mechanics, and a true leader in non-relativistic and relativistic quantum field theory.
A perspective on quantum mechanics calculations in ADMET predictions.
Bowen, J Phillip; Güner, Osman F
2013-01-01
Understanding the molecular basis of drug action has been an important objective for pharmaceutical scientists. With the increasing speed of computers and the implementation of quantum chemistry methodologies, pharmacodynamic and pharmacokinetic problems have become more computationally tractable. Historically the former has been the focus of drug design, but within the last two decades efforts to understand the latter have increased. It takes about fifteen years and over $1 billion dollars for a drug to go from laboratory hit, through lead optimization, to final approval by the U.S. Food and Drug Administration. While the costs have increased substantially, the overall clinical success rate for a compound to emerge from clinical trials is approximately 10%. Most of the attrition rate can be traced to ADMET (absorption, distribution, metabolism, excretion, and toxicity) problems, which is a powerful impetus to study these issues at an earlier stage in drug discovery. Quantum mechanics offers pharmaceutical scientists the opportunity to investigate pharmacokinetic problems at the molecular level prior to laboratory preparation and testing. This review will provide a perspective on the use of quantum mechanics or a combination of quantum mechanics coupled with other classical methods in the pharmacokinetic phase of drug discovery. A brief overview of the essential features of theory will be discussed, and a few carefully selected examples will be given to highlight the computational methods. PMID:23675934
Quantum processes as a mechanism in olfaction for smell recognition?
NASA Astrophysics Data System (ADS)
Brookes, Jennifer
2011-03-01
The physics of smell is not well understood. The biological processes that occur following a signalling event are well understood (Buck 1991). However, the reasons how and why a signalling event occurs when a particular smell molecule and receptor combination is made, remains un-established. Luca Turin proposes a signalling mechanism which determines smell molecules by quantum mechanics (Turin 1996). Investigation of this mechanism shows it to be physically robust (Brookes,et al, 2007), and consequences of the theory provides quantitative measurements of smell and interesting potential experiments that may determine whether the recognition of smell is a quantum event. Brookes, J.C, Hartoutsiou, F, Horsfield, A.P and Stoneham, A.M. (2007). Physical Review Letters 98, no. 3 038101 Buck, L. (1991) Cell, 65, no.1 (4): 175-187. Turin, L. (1996) Chemical Sences 21, no 6. 773-791 With many thanks to the Wellcome Trust.
NASA Astrophysics Data System (ADS)
Smolyaninov, Igor I.
2014-11-01
Modern advances in transformation optics and electromagnetic metamaterials made possible experimental demonstrations of highly unusual curvilinear “optical spaces”, such as various geometries necessary for electromagnetic cloaking. Recently we demonstrated that mapping light intensity in a hyperbolic metamaterial may also model the flow of time in an effective (2+1) dimensional Minkowski spacetime. Curving such an effective spacetime creates experimental model of a toy “big bang”. Here we demonstrate that at low light levels this model may be used to emulate a fully covariant version of quantum mechanics in a (2+1) dimensional Minkowski spacetime. When quantum mechanical description is applied near the toy “big bang”, the Everett's “universal wave function” formalism arises naturally, in which the wave function of the model “universe” appears to be a quantum superposition of mutually orthogonal “parallel universe” states.
A broken symmetry ontology: Quantum mechanics as a broken symmetry
Buschmann, J.E.
1988-01-01
The author proposes a new broken symmetry ontology to be used to analyze the quantum domain. This ontology is motivated and grounded in a critical epistemological analysis, and an analysis of the basic role of symmetry in physics. Concurrently, he is led to consider nonheterogeneous systems, whose logical state space contains equivalence relations not associated with the causal relation. This allows him to find a generalized principle of symmetry and a generalized symmetry-conservation formalisms. In particular, he clarifies the role of Noether's theorem in field theory. He shows how a broken symmetry ontology already operates in a description of the weak interactions. Finally, by showing how a broken symmetry ontology operates in the quantum domain, he accounts for the interpretational problem and the essential incompleteness of quantum mechanics. He proposes that the broken symmetry underlying this ontological domain is broken dilation invariance.
Quantum interference between H?+?D2 quasiclassical reaction mechanisms
NASA Astrophysics Data System (ADS)
Jambrina, Pablo G.; Herráez-Aguilar, Diego; Aoiz, F. Javier; Sneha, Mahima; Jankunas, Justinas; Zare, Richard N.
2015-08-01
Interferences are genuine quantum phenomena that appear whenever two seemingly distinct classical trajectories lead to the same outcome. They are common in elastic scattering but are seldom observable in chemical reactions. Here we report experimental measurements of the state-to-state angular distribution for the H?+?D2 reaction using the ‘photoloc’ technique. For products in low rotational and vibrational states, a characteristic oscillation pattern governs backward scattering. The comparison between the experiments, rigorous quantum calculations and classical trajectories on an accurate potential energy surface allows us to trace the origin of that structure to the quantum interference between different quasiclassical mechanisms, a phenomenon analogous to that observed in the double-slit experiment.
Non-reflexive Logical Foundation for Quantum Mechanics
NASA Astrophysics Data System (ADS)
da Costa, N. C. A.; de Ronde, C.
2014-12-01
On the one hand, non-reflexive logics are logics in which the principle of identity does not hold in general. On the other hand, quantum mechanics has difficulties regarding the interpretation of `particles' and their identity, also known in the literature as `the problem of indistinguishable particles'. In this article, we will argue that non-reflexive logics can be a useful tool to account for such quantum indistinguishability. In particular, we will provide a particular non-reflexive logic that can help us to analyze and discuss this problem. From a more general physical perspective, we will also analyze the limits imposed by the orthodox quantum formalism to consider the existence of indistinguishable particles in the first place, and argue that non-reflexive logics can also help us to think beyond the limits of classical identity.
Entropy production and equilibration in Yang-Mills quantum mechanics.
Tsai, Hung-Ming; Müller, Berndt
2012-01-01
The Husimi distribution provides for a coarse-grained representation of the phase-space distribution of a quantum system, which may be used to track the growth of entropy of the system. We present a general and systematic method of solving the Husimi equation of motion for an isolated quantum system, and we construct a coarse-grained Hamiltonian whose expectation value is exactly conserved. As an application, we numerically solve the Husimi equation of motion for two-dimensional Yang-Mills quantum mechanics (the x-y model) and calculate the time evolution of the coarse-grained entropy of a highly excited state. We show that the coarse-grained entropy saturates to a value that coincides with the microcanonical entropy corresponding to the energy of the system. PMID:22400515
Fractal geometry in quantum mechanics, field theory and spin systems
NASA Astrophysics Data System (ADS)
Kröger, H.
The goal of this article is to review the role of fractal geometry in quantum physics. There are two aspects: (a) The geometry of underlying space (space-time in relativistic systems) is fractal and one studies the dynamics of the quantum system. Example: percolation. (b) The underlying space-time is regular, and fractal geometry which shows up in particular observables is generated by the dynamics of the quantum system. Example: Brownian motion (imaginary time quantum mechanics), zig-zag paths of propagation in quantum mechanics (Feynman's path integral). Historically, the first example of fractal geometry in quantum mechanics was invoked by Feynman and Hibbs describing the self-similarity (fractal behavior) of paths occurring in the path integral. We discuss the geometry of such paths. We present analytical as well as numerical results, yielding Hausdorff dimension dH=2. Velocity-dependent interactions (propagation in a solid, Brueckner's theory of nuclear matter) allow for dH<2. Next, we consider quantum field theory. We discuss the relation of self-similarity, the renormalization group equation, scaling laws and critical behavior, also violation of scale invariance, like logarithmic scaling corrections in hadron structure functions. We discuss the fractal geometry of paths of the path integral in field theory. We present numerical results for the length of propagation and fractal dimension for the free fermion propagator which is relevant for the geometry of quark propagation in QCD. Then we look at order parameters for the confinement phase in QCD. The fractal dimension of closed monopole current loops is such an order parameter. We discuss properties of a fractal Wilson loop. We look at critical phenomena, in particular at critical exponents and its relation to non-integer dimension of space-time by use of an underlying fractal geometry with the purpose to determine lower or upper critical dimensions. As an example we consider the U(1) model of lattice gauge theory. As another topic we discuss fractal geometry and Hausdorff dimension of quantum gravity and also for gravity coupled to matter, like to the Ising model or to the 3-state Potts model. Finally, we study the role that fractal geometry plays in spin physics, in particular for the purpose to describe critical clusters.
NASA Astrophysics Data System (ADS)
Song, Jun; Zhou, Jun; Fan, Hong-Yi
2013-10-01
We study Hankel transformation of the induced entangled state representation by quantum mechanical operator algebraic method, the derivatives of functions and their ascending and lowering operators—studied by quantum mechanical operator algebraic method of the derivatives of functions.
Nonrelativistic quantum mechanics with consideration of influence of fundamental environment
Gevorkyan, A. S.
2013-08-15
Spontaneous transitions between bound states of an atomic system, the 'Lamb Shift' of energy levels and many other phenomena in real nonrelativistic quantum systems are connected with the influence of the quantum vacuum fluctuations (fundamental environment (FE)), which are impossible to consider in the framework of standard quantum-mechanical approaches. The joint system quantum system (QS) and FE is described in the framework of the stochastic differential equation (SDE) of Langevin-Schroedinger type and is defined on the extended space Double-Struck-Capital-R {sup 3} Circled-Times {Xi}{sup n}, where Double-Struck-Capital-R {sup 3} and {Xi}{sup n} are the Euclidean and functional spaces, respectively. The method of stochastic density matrix is developed and the von Neumann equation for reduced density matrix of QS with FE is generalized. The entropy of QS entangled with FE is defined and investigated. It is proved that the interaction of QS with the environment leads to emerging structures of various topologies which present new quantum-field properties of QS. It is shown that when the physical system (irrelatively to its being micro ormacro) breaks up into two fragments by means of FE, there arises between these fragments a nonpotential interaction which does not disappear at large distances.
Nonrelativistic quantum mechanics with consideration of influence of fundamental environment
NASA Astrophysics Data System (ADS)
Gevorkyan, A. S.
2013-08-01
Spontaneous transitions between bound states of an atomic system, the "Lamb Shift" of energy levels and many other phenomena in real nonrelativistic quantum systems are connected with the influence of the quantum vacuum fluctuations ( fundamental environment (FE)), which are impossible to consider in the framework of standard quantum-mechanical approaches. The joint system quantum system (QS) and FE is described in the framework of the stochastic differential equation (SDE) of Langevin-Schrödinger type and is defined on the extended space ?3?? n , where ?3 and ? n are the Euclidean and functional spaces, respectively. The method of stochastic density matrix is developed and the von Neumann equation for reduced density matrix of QS with FE is generalized. The entropy of QS entangled with FE is defined and investigated. It is proved that the interaction of QS with the environment leads to emerging structures of various topologies which present new quantum-field properties of QS. It is shown that when the physical system (irrelatively to its being micro ormacro) breaks up into two fragments by means of FE, there arises between these fragments a nonpotential interaction which does not disappear at large distances.
Delirium Quantum Or, where I will take quantum mechanics if it will let me
NASA Astrophysics Data System (ADS)
Fuchs, Christopher A.
2007-02-01
Once again, I take advantage of the wonderfully liberal and tolerant mood Andrei Khrennikov sets at his yearly conferences by submitting a nonstandard paper for the proceedings. This pseudo-paper consists of excerpts drawn from two of my samizdats [Quantum States: What the Hell Are They? and Darwinism All the Way Down (and Probabilism All the Way Back Up)] that I think best summarize what I am aiming for on the broadest scale with my quantum foundations program. Section 1 tries to draw a picture of a physical world whose essence is "Darwinism all the way down." Section 2 outlines how quantum theory should be viewed in light of that, i.e., as being an expression of probabilism (in Bruno de Finetti or Richard Jeffrey's sense) all the way back up. Section 3 describes how the idea of "identical" quantum measurement outcomes, though sounding atomistic in character, nonetheless meshes well with a William Jamesian style "radical pluralism." Sections 4 and 5 further detail how quantum theory should not be viewed so much as a "theory of the world," but rather as a theory of decision-making for agents immersed within a quantum worldâ€”that is, a world in continual creation. Finally, Sections 6 and 7 attempt to sketch once again the very positive sense in which quantum theory is incomplete, but still just as complete is it can be. In total, I hope these heady speculations convey some of the excitement and potential I see for the malleable world quantum mechanics hints of.
Emergence of a New Quantum Mechanics by Multivalued Logic
NASA Astrophysics Data System (ADS)
de Gerlicz, Claude Gaudeau; Antoine, Mathias; Bobola, Philippe; Flawisky, Nicolas; Hebras, Xavier; Mundedi, Musa
2013-09-01
Quantum Mechanics associated with new logic like Multivalued Logic and Fuzzy Logic has progressed in different ways and their applications can be found in many fields of sciences and technologies. All the concepts attached to this theory are far from the classical view. Classical mechanics can be viewed as crisp limit of a Fuzzy quantum mechanics. This leads to the following interpretation: It is the consequence of an assumption that a quantum particle "reside" in different place or in every path of the continuum of paths which collapse into a single "unique" trajectory of an observed classical motion The reality is "Fuzzy" and nonlocal not only in space but also in time. In this sense, idealised pointlike particles of classical mechanics corresponding to the ultimate sharpness of the fuzziness density emerge in a process of interaction between different parts of fuzzy wholeness. This process is viewed as a continuous process of defuzzification. It transforms a fuzzy reality into a crisp one. It is clear that the emerging crisp reality as a final step of measurements carries less of information that the underlying fuzzy reality. This means that there is an irreversible loss of information usually called "collapse of the wave function". It is not so much a "collapse" as a realization of one of the many possibilities existing within a fuzzy reality. Any measurements rearrange the fuzzy reality leading to different detection outcomes.
Testing Quantum Mechanics and Bell's Inequality with Astronomical Observations
NASA Astrophysics Data System (ADS)
Friedman, Andrew S.; Gallicchio, Jason; Kaiser, David I.; Guth, Alan H.
2015-01-01
We propose an experiment which would leverage cosmology to test quantum mechanics using astronomical observations. Our experiment would send entangled photons to detectors over 100 kilometers apart, whose settings would be rapidly chosen using real-time telescopic observations of distant, causally disconnected, cosmic sources - such as pairs of quasars or patches of the Cosmic Microwave Background - all while the entangled pair is still in flight. This would, for the first time, close close the so-called "setting independence" or "free will" loophole in experimental tests of Bell's inequality, whereby an alternative theory could mimic the quantum predictions if the experimental settings choices shared even a small correlation with some local "hidden variables" due to unknown causal influences a mere few milliseconds prior to the experiment. Our "Cosmic Bell" experiment would push any such hidden variable conspiracy all the way back to the hot big bang, since the end of any period of inflation, 13.8 Gyr ago, an improvement of 20 orders of magnitude. We demonstrate the real world feasibility of our experimental setup. While causally disjoint patches of the cosmic microwave background radiation at redshift z ~ 1090 could be used to set the detectors, z > 3.65 quasars observed at optical wavelengths are arguably the optimal candidate source pairs using present technology. Our proposal is supported by some of the world's leading quantum experimentalists, who have begun to collaborate with us to conduct the experiment in the next 2-3 years using some of the instrumentation they have already built and used at two astronomical observatories in the Canary Islands. Such an experiment has implications for our understanding of nature at the deepest level. By testing quantum mechanics in a regime never before explored, we would at the very least extend our confidence in quantum theory, while at the same time severely constraining large classes of alternative theories. If the experiment were to uncover discrepancies from the quantum predictions, there could be crucial implications for early-universe cosmology, the security of quantum encryption, and even new theoretical physics, including quantum gravity.
NASA Astrophysics Data System (ADS)
Ruder, Hanns; Wunner, GÃ¼nter; Herold, Heinz; Geyer, Florian
This book serves both students and researchers. It gives a clear and accessible introduction to quantum mechanical methods used to calculate properties of atoms exposed to strong magnetic fields in both laboratory and stellar environments. The results of the detailed calculations are listed in tables, making it a useful handbook for astrophysicists and atomic physicists alike. The emphasis is on hydrogen and helium and their isoelectronic sequences. Important applications are highlighted: the interpretation of the spectra of strongly magnetic white dwarf stars, and the prominent role of atoms in strong magnetic fields in studies of quantum chaos.
A quantum mechanical polarizable force field for biomolecular interactions
Donchev, A. G.; Ozrin, V. D.; Subbotin, M. V.; Tarasov, O. V.; Tarasov, V. I.
2005-01-01
We introduce a quantum mechanical polarizable force field (QMPFF) fitted solely to QM data at the MP2/aTZ(-hp) level. Atomic charge density is modeled by point-charge nuclei and floating exponentially shaped electron clouds. The functional form of interaction energy parallels quantum mechanics by including electrostatic, exchange, induction, and dispersion terms. Separate fitting of each term to the counterpart calculated from high-quality QM data ensures high transferability of QMPFF parameters to different molecular environments, as well as accurate fit to a broad range of experimental data in both gas and liquid phases. QMPFF, which is much more efficient than ab initio QM, is optimized for the accurate simulation of biomolecular systems and the design of drugs. PMID:15911753
The ZX-calculus is complete for stabilizer quantum mechanics
NASA Astrophysics Data System (ADS)
Backens, Miriam
2014-09-01
The ZX-calculus is a graphical calculus for reasoning about quantum systems and processes. It is known to be universal for pure state qubit quantum mechanics (QM), meaning any pure state, unitary operation and post-selected pure projective measurement can be expressed in the ZX-calculus. The calculus is also sound, i.e. any equality that can be derived graphically can also be derived using matrix mechanics. Here, we show that the ZX-calculus is complete for pure qubit stabilizer QM, meaning any equality that can be derived using matrices can also be derived pictorially. The proof relies on bringing diagrams into a normal form based on graph states and local Clifford operations.
Two dimensional quantum mechanical simulation of low dimensional tunneling devices
NASA Astrophysics Data System (ADS)
Alper, C.; Palestri, P.; Lattanzio, L.; Padilla, J. L.; Ionescu, A. M.
2015-11-01
We present a 2-D quantum mechanical simulation framework based on self-consistent solutions of the SchrÃ¶dinger and Poisson equations, using the Finite Element Method followed by tunneling current (direct and phonon assisted) calculation in post-processing. The quantum mechanical model is applied to Germanium electron-hole bilayer tunnel FETs (EHBTFET). It is found that 2D direct tunneling through the underlap regions may degrade the subthreshold characteristic of such devices and requires careful device optimization to make the tunneling in the overlap region dominate over the parasitic paths. It is found that OFF and ON state currents for the EHBTFET can be classified as point and line tunneling respectively. Oxide thickness was found to have little impact on the magnitude of the ON current, whereas it impacts the OFF current.
Quantum mechanical properties of graphene nano-flakes and quantum dots
NASA Astrophysics Data System (ADS)
Shi, Hongqing; Barnard, Amanda S.; Snook, Ian K.
2012-10-01
In recent years considerable attention has been given to methods for modifying and controlling the electronic and quantum mechanical properties of graphene quantum dots. However, as these types of properties are indirect consequences of the wavefunction of the material, a more efficient way of determining properties may be to engineer the wavefunction directly. One way of doing this may be via deliberate structural modifications, such as producing graphene nanostructures with specific sizes and shapes. In this paper we use quantum mechanical simulations to determine whether the wavefunction, quantified via the distribution of the highest occupied molecular orbital, has a direct and reliable relationship to the physical structure, and whether structural modifications can be useful for wavefunction engineering. We find that the wavefunction of small molecular graphene structures can be different from those of larger nanoscale counterparts, and the distribution of the highest occupied molecular orbital is strongly affected by the geometric shape (but only weakly by edge and corner terminations). This indicates that both size and shape may be more useful parameters in determining quantum mechanical and electronic properties, which should then be reasonably robust against variations in the chemical passivation or functionalisation around the circumference.
BOOK REVIEW: Mind, Matter and Quantum Mechanics (2nd edition)
NASA Astrophysics Data System (ADS)
Mahler, G.
2004-07-01
Quantum mechanics is usually defined in terms of some loosely connected axioms and rules. Such a foundation is far from the beauty of, e.g., the `principles' underlying classical mechanics. Motivated, in addition, by notorious interpretation problems, there have been numerous attempts to modify or `complete' quantum mechanics. A first attempt was based on so-called hidden variables; its proponents essentially tried to expel the non-classical nature of quantum mechanics. More recent proposals intend to complete quantum mechanics not within mechanics proper but on a `higher (synthetic) level'; by means of a combination with gravitation theory (R Penrose), with quantum information theory (C M Caves, C A Fuchs) or with psychology and brain science (H P Stapp). I think it is fair to say that in each case the combination is with a subject that, per se, suffers from a very limited understanding that is even more severe than that of quantum mechanics. This was acceptable, though, if it could convincingly be argued that scientific progress desperately needs to join forces. Quantum mechanics of a closed system was a beautiful and well understood theory with its respective state being presented as a point on a deterministic trajectory in Liouville space---not unlike the motion of a classical N-particle system in its 6N-dimensional phase-space. Unfortunately, we need an inside and an outside view, we need an external reference frame, we need an observer. This unavoidable partition is the origin of most of the troubles we have with quantum mechanics. A pragmatic solution is introduced in the form of so-called measurement postulates: one of the various incompatible properties of the system under consideration is supposed to be realized (i.e. to become a fact, to be defined without fundamental dispersion) based on `instantaneous' projections within some externally selected measurement basis. As a result, the theory becomes essentially statistical rather than deterministic; furthermore there is an asymmetry between the observed and the observing. This is the point where consciousness may come in. Complemented by an introduction and several appendices, Henry Stapp's book consists essentially of three parts: theory, implications, and new developments. The theory part gives a very readable account of the Copenhagen interpretation, some aspects of a psychophysical theory, and, eventually, hints towards a quantum foundation of the brain--mind connection. The next part, `implications', summarizes some previous attempts to bridge the gap between the working rules of quantum mechanics and their possible consequences for our understanding of this world (Pauli, Everett, Bohm, Heisenberg). The last section, `new developments', dwells on some ideas about the conscious brain and its possible foundation on quantum mechanics. The book is an interesting and, in part, fascinating contribution to a field that continues to be a companion to `practical' quantum mechanics since its very beginning. It is doubtful whether such types of `quantum ontologies' will ever become (empirically) testable; right now one can hardly expect more than to be offered some consistent `grand picture', which the reader may find more or less acceptable or even rewarding. Many practicing quantum physicists, though, will remain unimpressed. The shift from synthetic ontology to analytic ontology is the foundation of the present work. This means that fundamental wholes are being partitioned into their ontologically subordinate components by means of `events'. The actual event, in turn, is an abrupt change in the Heisenberg state describing the quantum universe. The new state then defines the tendencies associated with the next actual event. To avoid infinite regression in terms of going from one state of tendencies to the next, consciousness is there to give these events a special `feel', to provide a status of `intrinsic actuality'. The brain of an alert human observer is similar in an important way to a quantum detection device: it can amplify small signals to large macroscopic effects. On the other hand, actual events are not postulated to occur exclusively in brains. They are more generally associated with the formation of records. Records are necessarily part of the total state of the universe: it is obvious that the state of the universe cannot undergo a SchrÃ¶dinger dynamics and at the same time record its own history. `The full universe consists therefore of an exceedingly thin veneer of relatively sluggish, directly observable properties resting on a vast ocean or rapidly fluctuating unobservable ones.' The present ideas also bear on how the world should be seen to develop. While conventional cosmology encounters problems as to how to define the intial conditions, which would enter the governing equations of motion, here `the boundary conditions are set not at some initial time, but gradually by a sequence of acts that imposes a sequence of constraints. After any sequence of acts there remains a collection of possible worlds, some of which will be eliminated by the next act.' Connected with those acts is `meaning': there has always been some speculation about the special significance of local properties in our understanding of the world. One could argue that correlations (even the quantum correlations found, e.g., in the EPR-experiments) were as real as anything else. But also Stapp stresses the special role of locality: the `local observable properties, or properties similar to them are the natural, and perhaps exclusive, carriers of meaning in the quantum universe. From this point of view the quantum universe tends to create meaning.' This sounds like an absolute concept: meaning not with respect to something else, but defined intrinsically---not easy to digest. The role of consciousness in the developing quantum universe requires more attention. `The causal irrelevance of our thoughts within classical physics constitutes a serious deficiency of that theory, construed as a description of reality.' This is taken to be entirely different within quantum mechanics. `The core idea of quantum mechanics is to describe our activities as knowledge-seeking and knowledge-using agents.' `21st century science does not reduce human beings to mechanical automata. Rather it elevates human beings to agents whose free choices can, according to the known laws, actually influence their behaviour.' An example with respect to perception is discussed: `Why, when we look at a triangle, do we experience three lines joined at three points and not some pattern of neuron firings?' The brain `does not convert an actual whole triangle into some jumbled set of particle motions; rather it converts a concatenation of separate external events into the actualization of some single integrated pattern of neural activity that is congruent to the perceived whole triangle.' How convincing is this proposal? It is hard to tell. I think Henry Stapp did a good job, but there are tight limitations to any such endeavour. Quantum mechanics is often strange indeed, but it also gives rise to our classical world around us. For the emergence of classicality jumps and measurement projections (the basic phenomena connected with those fundamental events of choice) are not needed. Therefore, I doubt whether the explanation of the evolution of our world really allows (or requires) that much free choice. On the other hand, most scientist will agree that empirical science was not possible without free will: we could not ask independent questions if this asking was part of a deterministic trajectory. The fact that the result of a quantum measurement is indeterminate (within given probabilities) does certainly not explain free will. How about the type of measurment? The experimentalist will have to assume that he can select the pertinent observable within some limits. But given a certain design the so-called pointer basis (producing stable measurement results) is no longer a matter of free choice. `The main theme of classical physics is that we live in a clocklike universe.' Today it is often assumed that the universe was a big (quantum-) computer or a cellular automaton. Many would be all too happy to leave that rather restrictive picture behind. But where to go? Stapp suggests giving consciousness a prominent role: `The most profound alteration of the fundamental principles was to bring consciousness of human beings into the basic structure of the physical theory.' How far we are able to go in this direction will depend on the amount of concrete research results becoming available to support this view.
Hidden algebra method (quasi-exact-solvability in quantum mechanics)
Turbiner, A. |
1996-02-01
A general introduction to quasi-exactly-solvable problems of quantum mechanics is presented. Main attention is given to multidimensional quasi-exactly-solvable and exactly-solvable Schroedinger operators. Exact-solvability of the Calogero and Sutherland {ital N}-body problems ass ociated with an existence of the hidden algebra {ital sl}{sub {ital N}} is discussed extensively. {copyright} {ital 1996 American Institute of Physics.}
The Problem of Representation and Experience in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Ronde, Christian De
2014-03-01
In this paper we discuss the problem of representation and experience in quantum mechanics. We analyze the importance of metaphysics in physical thought and its relation to empiricism and analytic philosophy. We argue against both instrumentalism and scientific realism and claim that both perspectives tend to bypass the problem of representation and justify a "common sense" type experience. Finally, we present our expressionist conception of physics.
A new multimedia resource for teaching quantum mechanics concepts
NASA Astrophysics Data System (ADS)
Kohnle, Antje; Cassettari, Donatella; Edwards, Tom J.; Ferguson, Callum; Gillies, Alastair D.; Hooley, Christopher A.; Korolkova, Natalia; Llama, Joseph; Sinclair, Bruce D.
2012-02-01
We describe a collection of interactive animations and visualizations for teaching quantum mechanics. The animations can be used at all levels of the undergraduate curriculum. Each animation includes a step-by-step exploration that explains the key points. The animations and instructor resources are freely available. By using a diagnostic survey, we report substantial learning gains for students who have worked with the animations.
Quantum mechanical description of Stern-Gerlach experiments
Potel, G.; Gomez-Camacho, J.; Barranco, F.; Cruz-Barrios, S.
2005-05-15
The motion of neutral particles with magnetic moments in an inhomogeneous magnetic field is described in a quantum mechanical framework. The validity of the semiclassical approximations which are generally used to describe these phenomena is discussed. Approximate expressions for the evolution operator are derived and compared to the exact calculations. Focusing and spin-flip phenomena are predicted. The reliability of Stern-Gerlach experiments to measure spin projections is assessed in this framework.
A connection between supersymmetric quantum mechanics and Painlevé V equation
NASA Astrophysics Data System (ADS)
Bermudez, D.; Fernández C, David J.
2015-06-01
In this article we introduce the relation between supersymmetric quantum mechanics (SUSY QM) and a second-order non-linear differential equation known as Painleve V (PV) equation. To that end, we will first make a swift examination on the SUSY QM treatment of the radial oscillator and we will revisit its relation with the polynomial Heisenberg algebras (PHA). After that, we will formulate a theorem that connects SUSY QM to a set of solutions of the PV equation through specific PHA.
Resolution of the Klein Paradox within Relativistic Quantum Mechanics
Alhaidari, A. D.
2011-10-27
We present a resolution of the Klein paradox within the framework of one-particle relativistic quantum mechanics (no pair production). Not only reflection becomes total but the vacuum remains neutral as well. This is accomplished by replacing the pair production process with virtual negative energy ''incidence'' within the barrier in a process analogous to the introduction of image charges in electrostatic and virtual sources in optics.
Novel symmetries in N=2 supersymmetric quantum mechanical models
Malik, R.P.; Khare, Avinash
2013-07-15
We demonstrate the existence of a novel set of discrete symmetries in the context of the N=2 supersymmetric (SUSY) quantum mechanical model with a potential function f(x) that is a generalization of the potential of the 1D SUSY harmonic oscillator. We perform the same exercise for the motion of a charged particle in the Xâ€“Y plane under the influence of a magnetic field in the Z-direction. We derive the underlying algebra of the existing continuous symmetry transformations (and corresponding conserved charges) and establish its relevance to the algebraic structures of the de Rham cohomological operators of differential geometry. We show that the discrete symmetry transformations of our present general theories correspond to the Hodge duality operation. Ultimately, we conjecture that any arbitrary N=2 SUSY quantum mechanical system can be shown to be a tractable model for the Hodge theory. -- Highlights: â€¢Discrete symmetries of two completely different kinds of N=2 supersymmetric quantum mechanical models have been discussed. â€¢The discrete symmetries provide physical realizations of Hodge duality. â€¢The continuous symmetries provide the physical realizations of de Rham cohomological operators. â€¢Our work sheds a new light on the meaning of the above abstract operators.
A Separable, Dynamically Local Ontological Model of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Pienaar, Jacques
2015-10-01
A model of reality is called separable if the state of a composite system is equal to the union of the states of its parts, located in different regions of space. Spekkens has argued that it is trivial to reproduce the predictions of quantum mechanics using a separable ontological model, provided one allows for arbitrary violations of `dynamical locality'. However, since dynamical locality is strictly weaker than local causality, this leaves open the question of whether an ontological model for quantum mechanics can be both separable and dynamically local. We answer this question in the affirmative, using an ontological model based on previous work by Deutsch and Hayden. Although the original formulation of the model avoids Bell's theorem by denying that measurements result in single, definite outcomes, we show that the model can alternatively be cast in the framework of ontological models, where Bell's theorem does apply. We find that the resulting model violates local causality, but satisfies both separability and dynamical locality, making it a candidate for the `most local' ontological model of quantum mechanics.
Attosecond delays in photoionization: time and quantum mechanics
NASA Astrophysics Data System (ADS)
Maquet, Alfred; Caillat, Jérémie; Taïeb, Richard
2014-10-01
This article addresses topics regarding time measurements performed on quantum systems. The motivation is linked to the advent of ‘attophysics’ which makes feasible to follow the motion of electrons in atoms and molecules, with time resolution at the attosecond (1 as = 10-18 s) level, i.e. at the natural scale for electronic processes in these systems. In this context, attosecond ‘time-delays’ have been recently measured in experiments on photoionization and the question arises if such advances could cast a new light on the still active discussion on the status of the time variable in quantum mechanics. One issue still debatable is how to decide whether one can define a quantum time operator with eigenvalues associated to measurable ‘time-delays’, or time is a parameter, as it is implicit in the Newtonian classical mechanics. One objective of this paper is to investigate if the recent attophysics-based measurements could shed light on this parameter-operator conundrum. To this end, we present here the main features of the theory background, followed by an analysis of the experimental schemes that have been used to evidence attosecond ‘time-delays’ in photoionization. Our conclusion is that these results reinforce the view that time is a parameter which cannot be defined without reference to classical mechanics.
A Separable, Dynamically Local Ontological Model of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Pienaar, Jacques
2016-01-01
A model of reality is called separable if the state of a composite system is equal to the union of the states of its parts, located in different regions of space. Spekkens has argued that it is trivial to reproduce the predictions of quantum mechanics using a separable ontological model, provided one allows for arbitrary violations of `dynamical locality'. However, since dynamical locality is strictly weaker than local causality, this leaves open the question of whether an ontological model for quantum mechanics can be both separable and dynamically local. We answer this question in the affirmative, using an ontological model based on previous work by Deutsch and Hayden. Although the original formulation of the model avoids Bell's theorem by denying that measurements result in single, definite outcomes, we show that the model can alternatively be cast in the framework of ontological models, where Bell's theorem does apply. We find that the resulting model violates local causality, but satisfies both separability and dynamical locality, making it a candidate for the `most local' ontological model of quantum mechanics.
NASA Astrophysics Data System (ADS)
Santos, Jonas F. G.; Bernardini, Alex E.; Bastos, Catarina
2015-11-01
Novel quantization properties related to the state vectors and the energy spectrum of a two-dimensional system of free particles are obtained in the framework of noncommutative (NC) quantum mechanics (QM) supported by the Weyl-Wigner formalism. Besides reproducing the magnetic field aspect of a Zeeman-like effect, the momentum space NC parameter introduces mutual information properties quantified by the quantum purity related to the relevant coordinates of the corresponding Hilbert space. Supported by the QM in the phase-space, the thermodynamic limit is obtained, and the results are extended to three-dimensional systems. The noncommutativity imprints on the thermodynamic variables related to free particles are identified and, after introducing some suitable constraints to fix an axial symmetry, the analysis is extended to two- and- three dimensional quantum rotor systems, for which the quantization aspects and the deviation from standard QM results are verified.
Probability and Quantum Symmetries. II. The Theorem of NÅ`ther in quantum mechanics
NASA Astrophysics Data System (ADS)
Albeverio, S.; Rezende, J.; Zambrini, J.-C.
2006-06-01
For the largest class of physical systems having a classical analog, a new rigorous, but not probabilistic, Lagrangian version of nonrelativistic quantum mechanics is given, in terms of a notion of regularized action function. As a consequence of the study of the symmetries of this action, an associated Nœther theorem is obtained. All the quantum symmetries resulting from the canonical quantization procedure follow in this way, as well as a number of symmetries which are new even for the case of the simplest systems. The method is based on the study of a corresponding Lie algebra and an analytical continuation in the time parameter of the probabilistic construction given in paper I of this work. Generically, the associated quantum first integrals are time dependent and the probabilistic model provides a natural interpretation of the new symmetries. Various examples illustrate the physical relevance of our results.
Kuechler, Erich R.; Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431 ; York, Darrin M.
2014-02-07
The nucleophilic attack of a chloride ion on methyl chloride is an important prototype S{sub N}2 reaction in organic chemistry that is known to be sensitive to the effects of the surrounding solvent. Herein, we develop a highly accurate Specific Reaction Parameter (SRP) model based on the Austin Model 1 Hamiltonian for chlorine to study the effects of solvation into an aqueous environment on the reaction mechanism. To accomplish this task, we apply high-level quantum mechanical calculations to study the reaction in the gas phase and combined quantum mechanical/molecular mechanical simulations with TIP3P and TIP4P-ew water models and the resulting free energy profiles are compared with those determined from simulations using other fast semi-empirical quantum models. Both gas phase and solution results with the SRP model agree very well with experiment and provide insight into the specific role of solvent on the reaction coordinate. Overall, the newly parameterized SRP Hamiltonian is able to reproduce both the gas phase and solution phase barriers, suggesting it is an accurate and robust model for simulations in the aqueous phase at greatly reduced computational cost relative to comparably accurate ab initio and density functional models.
Classical and Quantum Mechanics via Supermetrics in Time
NASA Astrophysics Data System (ADS)
Gozzi, E.
2010-07-01
Koopman-von Neumann in the 30’s gave an operatorial formulation of Classical Mechanics. It was shown later on that this formulation could also be written in a path-integral form. We will label this functional approach as CPI (for classical path-integral) to distinguish it from the quantum mechanical one, which we will indicate with QPI. In the CPI two Grassmannian partners of time make their natural appearance and in this manner time becomes something like a three dimensional supermanifold. Next we introduce a metric in this supermanifold and show that a particular choice of the supermetric reproduces the CPI while a different one gives the QPI.
NASA Astrophysics Data System (ADS)
Halliwell, Jonathan J.; Ortiz, Miguel E.
1993-07-01
This paper is concerned with the question of the existence of composition laws in the sum-over-histories approach to relativistic quantum mechanics and quantum cosmology, and its connection with the existence of a canonical formulation. In nonrelativistic quantum mechanics, the propagator is represented by a sum over histories in which the paths move forward in time. The composition law of the propagator then follows from the fact that the paths intersect an intermediate surface of constant time once and only once, and a partition of the paths according to their crossing position may be affected. In relativistic quantum mechanics, by contrast, the propagators (or Green functions) may be represented by sums over histories in which the paths move backward and forward in time. They therefore intersect surfaces of constant time more than once, and the relativistic composition law, involving a normal derivative term, is not readily recovered. The principal technical aim of this paper is to show that the relativistic composition law may, in fact, be derived directly from a sum over histories by partitioning the paths according to their first crossing position of an intermediate surface. We review the various Green functions of the Klein-Gordon equation, and derive their composition laws. We obtain path-integral representations for all Green functions except the causal one. We use the proper time representation, in which the path integral has the form of a nonrelativistic sum over histories but is integrated over time. The question of deriving the composition laws therefore reduces to the question of factoring the propagators of nonrelativistic quantum mechanics across an arbitrary surface in configuration space. This may be achieved using a known result called the path decomposition expansion (PDX). We give a proof of the PDX using a spacetime lattice definition of the Euclidean propagator. We use the PDX to derive the composition laws of relativistic quantum mechanics from the sum over histories. We also derive canonical representations of all of the Green functions of relativistic quantum mechanics, i.e., express them in the form
Quantum Mechanics and the Principle of Maximal Variety
NASA Astrophysics Data System (ADS)
Smolin, Lee
2016-03-01
Quantum mechanics is derived from the principle that the universe contain as much variety as possible, in the sense of maximizing the distinctiveness of each subsystem. The quantum state of a microscopic system is defined to correspond to an ensemble of subsystems of the universe with identical constituents and similar preparations and environments. A new kind of interaction is posited amongst such similar subsystems which acts to increase their distinctiveness, by extremizing the variety. In the limit of large numbers of similar subsystems this interaction is shown to give rise to Bohm's quantum potential. As a result the probability distribution for the ensemble is governed by the Schroedinger equation. The measurement problem is naturally and simply solved. Microscopic systems appear statistical because they are members of large ensembles of similar systems which interact non-locally. Macroscopic systems are unique, and are not members of any ensembles of similar systems. Consequently their collective coordinates may evolve deterministically. This proposal could be tested by constructing quantum devices from entangled states of a modest number of quits which, by its combinatorial complexity, can be expected to have no natural copies.
Unraveling quantum mechanical effects in water using isotopic fractionation
Markland, Thomas E.; Berne, B. J.
2012-01-01
When two phases of water are at equilibrium, the ratio of hydrogen isotopes in each is slightly altered because of their different phase affinities. This isotopic fractionation process can be utilized to analyze water’s movement in the world’s climate. Here we show that equilibrium fractionation ratios, an entirely quantum mechanical property, also provide a sensitive probe to assess the magnitude of nuclear quantum fluctuations in water. By comparing the predictions of a series of water models, we show that those describing the OH chemical bond as rigid or harmonic greatly overpredict the magnitude of isotope fractionation. Models that account for anharmonicity in this coordinate are shown to provide much more accurate results because of their ability to give partial cancellation between inter- and intramolecular quantum effects. These results give evidence of the existence of competing quantum effects in water and allow us to identify how this cancellation varies across a wide-range of temperatures. In addition, this work demonstrates that simulation can provide accurate predictions and insights into hydrogen fractionation. PMID:22566650
NASA Astrophysics Data System (ADS)
Fleming, Patrick E.
2001-01-01
A standard die makes an ideal classical analog to a quantum mechanical system. In this paper, the relationships between an operator, wave functions that are eigenfunctions of the operator, and the corresponding eigenvalues are discussed. While the form of neither the operator nor the total wave function is known, the properties and expectation values for measurements on the system can be predicted. The connection between quantum mechanics and probability is explored using both "normal" and "loaded" dice. Using the orthonormality of the wave functions, the familiar result for the probability of rolling a single value and the expected average value for a large number of rolls are derived. The collapse of the wave function upon measurement of the system, which is analogous to the collapse of the probability distribution upon the die coming to rest, is also discussed.
The measurement problem in quantum mechanics: A phenomenological investigation
NASA Astrophysics Data System (ADS)
Hunter, Joel Brooks
2008-10-01
This dissertation is a phenomenological investigation of the measurement problem in quantum mechanics. The primary subject matter for description and analysis is scientific instruments and their use in experiments which elicit the measurement problem. A methodological critique is mounted against the ontological commitments taken for granted in the canonical interpretations of quantum theory and the scientific activity of measurement as the necessary interface between theoretical interest and perceptual results. I argue that an aesthetic dimension of reality functions as aproto-scientific establishment of sense-making that constantly operates to set integratively all other cognitively neat determinations, including scientifically rendered objects that are intrinsically non-visualizable. The way in which data "key in" to the original and originative register of the sensible in observation is clarified by examining prostheses, measuring apparatuses and instruments that are sense-conveying and -integrative with the human sensorium. Experiments, technology and instrumentation are examined in order to understand how knowing and that which is known is bonded by praxis-aisthesis. Quantum measurement is a praxic-dynamie activity and homologically structured and structur ing functional engagement in terms of instantiation, quantifiability, and spatiotemporal differentiation. The distinctions between a beauty-aesthetic and praxis-aisthesis are delineated. It is argued that a beauty-aesthetic is a construal of the economic dimension of scientific objects and work, and is not the primary manner in which the aesthetic dimension is disclosed. The economic dimension of abstractions reduces to an austere aesthetic of calculative economy. Nature itself, however, is not stingy; it is intrinsically capacious, extravagant, full of surprise, nuance, ambiguity and allusiveness. The capaciousness of Nature and the way in which we are integratively set within Nature in a materiality-phenomenality correlation discloses Nature's constituent potential, a condition more primitive than causal interplay. Finally, the relation between a physical mechanism or process and its functional mathematical representation is clarified. No physical mechanism or process accounts for the empirical effects of measurement outcomes in some quantum mechanical experiments. Within the milieu of ordinary perceptual experience, complete with its horizonal structure of spatiality and temporality, something uncaused is encountered which resists full determination in terms of mathematical representation. Keywords: Quantum Mechanics, Measurement Problem, Phenomenology, Prosthesis, Aesthetic
The GRW Theory and Vagueness in Quantum Mechanics.
NASA Astrophysics Data System (ADS)
Lewis, Peter John
This dissertation is an investigation into the adequacy of the GRW theory of quantum mechanics as a solution to the measurement problem, and a comparison between the GRW theory and the other potential solutions. A new problem, the vagueness problem, is found to afflict a broad class of quantum mechanical theories, including the GRW theory. The standard theory of quantum mechanics and the measurement problem from which it suffers are sketched. The GRW theory of quantum mechanics is explained, along with how it is intended to solve the measurement problem. The major obstacle to the adequacy of the GRW theory in this regard, known as the tails problem, is presented. Two potential lines of response to the tails problem are outlined, namely modifying the GRW dynamics and modifying the interpretation rule connecting the language of the theory to everyday language. The first of these is quickly shown to be unworkable. The second is investigated in some detail. A defense of this line of response in terms of the inherent vagueness of the translation between the language of physical theory and everyday language is presented. However, it is argued that any modified interpretation rule which can adequately respond to the tails problem will violate intuitions concerning counting and the logic of parts and wholes. This is termed the vagueness problem. The extent of the vagueness problem among the other promising solutions to the measurement problem is investigated. It is demonstrated that the modal theories suffer from this problem, but Bohm-type hidden variable theories do not. It is argued that this gives us reason to prefer the hidden variable theories over their competitors. The empirical adequacy of the GRW theory is investigated. It is found that empirical considerations cannot at present decide between the GRW theory and its alternatives, although they may be able to do so eventually. The conclusion drawn is that because of the vagueness problem, the GRW theory and the modal theories cannot be regarded as fully satisfactory quantum mechanical theories, and that the Bohm-type hidden variable theories are to be preferred.
Classical limit of quantum mechanics induced by continuous measurements
NASA Astrophysics Data System (ADS)
Oliveira, Adélcio C.
2014-01-01
We investigate the quantum-classical transition problem. The main issue addressed is how quantum mechanics can reproduce results provided by Newton’s laws of motion. We show that the measurement process is critical to resolve this issue. In the limit of continuous monitoring with minimal intervention the classical limit is reached. The Classical Limit of Quantum Mechanic, in Newtonian sense, is determined by two parameters: the semiclassical time (?) and the time interval between measurements (??u). If is ??u small enough, comparing with the ?, then the classical regime is achieved. The semiclassical time for Gaussian initial states coincides with the Ehrenfest time. We also show that the classical limit of an ensemble of Newtonian trajectories, the Liouville regime, is approximately obtained for the quartic oscillator model if the number of measurements in the time interval is large enough to destroy the revival and small enough to not reach the Newtonian regime. Namely, the Newtonian regime occurs when ????u and the Liouvillian regime is mimicked, for the position observable, if ??u?[?,TR], where TR is the revival time.
PREFACE: EmQM13: Emergent Quantum Mechanics 2013
NASA Astrophysics Data System (ADS)
2014-04-01
These proceedings comprise the invited lectures of the second international symposium on Emergent Quantum Mechanics (EmQM13), which was held at the premises of the Austrian Academy of Sciences in Vienna, Austria, 3-6 October 2013. The symposium was held at the ''Theatersaal'' of the Academy of Sciences, and was devoted to the open exploration of emergent quantum mechanics, a possible ''deeper level theory'' that interconnects three fields of knowledge: emergence, the quantum, and information. Could there appear a revised image of physical reality from recognizing new links between emergence, the quantum, and information? Could a novel synthesis pave the way towards a 21st century, ''superclassical'' physics? The symposium provided a forum for discussing (i) important obstacles which need to be overcome as well as (ii) promising developments and research opportunities on the way towards emergent quantum mechanics. Contributions were invited that presented current advances in both standard as well as unconventional approaches to quantum mechanics. The EmQM13 symposium was co-organized by Gerhard GrÃ¶ssing (Austrian Institute for Nonlinear Studies (AINS), Vienna), and by Jan Walleczek (Fetzer Franklin Fund, USA, and Phenoscience Laboratories, Berlin). After a very successful first conference on the same topic in 2011, the new partnership between AINS and the Fetzer Franklin Fund in producing the EmQM13 symposium was able to further expand interest in the promise of emergent quantum mechanics. The symposium consisted of two parts, an opening evening addressing the general public, and the scientific program of the conference proper. The opening evening took place at the Great Ceremonial Hall (Grosser Festsaal) of the Austrian Academy of Sciences, and it presented talks and a panel discussion on ''The Future of Quantum Mechanics'' with three distinguished speakers: Stephen Adler (Princeton), Gerard 't Hooft (Utrecht) and Masanao Ozawa (Nagoya). The articles contained in these proceedings represent the talks of the invited speakers as written immediately after the symposium. The volume starts with a contribution by organizers Jan Walleczek and Gerhard GrÃ¶ssing, essentially explaining why emergent quantum mechanics, and other deterministic approaches to quantum theory, must be considered viable approaches in quantum foundations today. This is followed by the exposition of Stephen Adler's talk who introduced to a general audience key questions at the current frontiers of quantum mechanics during the opening evening (with the contents of his conference talk appearing elsewhere). The conference proceedings then continues with the presentations as given in their chronological order i.e. starting with the opening talk of the scientific program by Gerard 't Hooft. While the page number was restricted for all invited speakers, the paper by Jeff Tollaksen was given more space, as his invited collaborator Yakir Aharonov was unable to deliver a separate talk, in order to represent both contributions in one paper. Note that the talks of all speakers, including the talks of those who could not be represented in this volume (M. Arndt, B. Braverman, C. Brukner, S. Colin, Y. Couder, B. Poirier, A. Steinberg, G. Weihs and H. Wiseman) are freely available on the conference website as video presentations (http://www.emqm13.org). The organizers wish to express their gratitude to Siegfried Fussy and Herbert Schwabl from AINS for the organizational support. The organizers also wish to thank Bruce Fetzer, President and CEO, John E. Fetzer Memorial Trust, and the Members of the Board of Trustees, for their strong support and for funding this symposium. We also wish to thank the Austrian Academy of Sciences for allowing the symposium to be held on their premises, and Anton Zeilinger, President of the Austrian Academy of Sciences, for his welcome address. The expertise of the Members of the Scientific Advisory Board of the EmQM13 symposium, Ana Maria Cetto (Mexico), Lajos DiÃ³si (Budapest), Maurice de Gosson (Vienna), Edward Nelson (Princeton), Theo Nieuwenhuizen (Amsterdam) and Helmut Rauch (Vienna), is also gratefully acknowledged. Finally, it is a pleasure to again thank Sarah Toms and her team at IOP Publishing (Bristol) for their friendly advice and help during the preparation of these proceedings. Vienna, Pisa, Berlin, February 2014 Gerhard GrÃ¶ssing, Hans-Thomas Elze, Johannes Mesa Pascasio, Jan Walleczek The front cover image shows two bouncing oil droplets on an oscillating oil surface, as they are employed by Couder, Fort, Bush, and others to show macroscopic analogues of wave-particle complementarity (courtesy of Dan Harris and John Bush, MIT).
A short course on quantum mechanics and methods of quantization
NASA Astrophysics Data System (ADS)
Ercolessi, Elisa
2015-07-01
These notes collect the lectures given by the author to the "XXIII International Workshop on Geometry and Physics" held in Granada (Spain) in September 2014. The first part of this paper aims at introducing a mathematical oriented reader to the realm of Quantum Mechanics (QM) and then to present the geometric structures that underline the mathematical formalism of QM which, contrary to what is usually done in Classical Mechanics (CM), are usually not taught in introductory courses. The mathematics related to Hilbert spaces and Differential Geometry are assumed to be known by the reader. In the second part, we concentrate on some quantization procedures, that are founded on the geometric structures of QM â€” as we have described them in the first part â€” and represent the ones that are more operatively used in modern theoretical physics. We will discuss first the so-called Coherent State Approach which, mainly complemented by "Feynman Path Integral Technique", is the method which is most widely used in quantum field theory. Finally, we will describe the "Weyl Quantization Approach" which is at the origin of modern tomographic techniques, originally used in optics and now in quantum information theory.
Black hole thermodynamics from near-horizon conformal quantum mechanics
Camblong, Horacio E.; Ordonez, Carlos R.
2005-05-15
The thermodynamics of black holes is shown to be directly induced by their near-horizon conformal invariance. This behavior is exhibited using a scalar field as a probe of the black hole gravitational background, for a general class of metrics in D spacetime dimensions (with D{>=}4). The ensuing analysis is based on conformal quantum mechanics, within a hierarchical near-horizon expansion. In particular, the leading conformal behavior provides the correct quantum statistical properties for the Bekenstein-Hawking entropy, with the near-horizon physics governing the thermodynamics from the outset. Most importantly: (i) this treatment reveals the emergence of holographic properties; (ii) the conformal coupling parameter is shown to be related to the Hawking temperature; and (iii) Schwarzschild-like coordinates, despite their 'coordinate singularity', can be used self-consistently to describe the thermodynamics of black holes.
Deformation of supersymmetric and conformal quantum mechanics through affine transformations
NASA Technical Reports Server (NTRS)
Spiridonov, Vyacheslav
1993-01-01
Affine transformations (dilatations and translations) are used to define a deformation of one-dimensional N = 2 supersymmetric quantum mechanics. Resulting physical systems do not have conserved charges and degeneracies in the spectra. Instead, superpartner Hamiltonians are q-isospectral, i.e. the spectrum of one can be obtained from another (with possible exception of the lowest level) by q(sup 2)-factor scaling. This construction allows easily to rederive a special self-similar potential found by Shabat and to show that for the latter a q-deformed harmonic oscillator algebra of Biedenharn and Macfarlane serves as the spectrum generating algebra. A general class of potentials related to the quantum conformal algebra su(sub q)(1,1) is described. Further possibilities for q-deformation of known solvable potentials are outlined.
Evanescent radiation, quantum mechanics and the Casimir effect
NASA Technical Reports Server (NTRS)
Schatten, Kenneth H.
1989-01-01
An attempt to bridge the gap between classical and quantum mechanics and to explain the Casimir effect is presented. The general nature of chaotic motion is discussed from two points of view: the first uses catastrophe theory and strange attractors to describe the deterministic view of this motion; the underlying framework for chaos in these classical dynamic systems is their extreme sensitivity to initial conditions. The second interpretation refers to randomness associated with probabilistic dynamics, as for Brownian motion. The present approach to understanding evanescent radiation and its relation to the Casimir effect corresponds to the first interpretation, whereas stochastic electrodynamics corresponds to the second viewpoint. The nonlinear behavior of the electromagnetic field is also studied. This well-understood behavior is utilized to examine the motions of two orbiting charges and shows a closeness between the classical behavior and the quantum uncertainty principle. The evanescent radiation is used to help explain the Casimir effect.
A Case Study of Teaching Quantum Mechanics Using Research Publications
NASA Astrophysics Data System (ADS)
Sharma, Manjula
2015-04-01
Significant research effort is dedicated to student learning of quantum mechanics. Students often find quantum interesting but are challenged by the abstraction. The mathematical detail detracts from the conceptual underpinnings. This presentation provides examples of innovating teaching which attempt to address these matters. It draws on an Australian Government Office for Learning and Teaching National Teaching Fellowship which involved 9 universities. The innovations use research publications in different ways within a lecture course. In some, papers which shaped the field are used to examine conceptual underpinnings, in some students critique research papers, and in others students search for papers to share with peers. The role of different face-to-face pedagogies such as whole class discussions and small group work will be discussed. Ways in which assessment has been changed will also be discussed.
Representations for a spins-first approach to quantum mechanics
NASA Astrophysics Data System (ADS)
Manogue, Corinne; Gire, Elizabeth; McIntyre, David; Tate, Janet
2012-02-01
In the Paradigms in Physics Curriculum at Oregon State University, we take a spins-first approach to quantum mechanics using a java simulation of successive Stern-Gerlach experiments to explore the postulates. The experimental schematic is a diagrammatic representation that we use throughout our discussion of quantum measurements. With a spins-first approach, it is natural to start with Dirac bra-ket language for states, observables, and projection operators. We also use explicit matrix representations of operators and ask students to translate between the Dirac and matrix languages. The projection of the state onto a basis is represented with a histogram. When we subsequently introduce wave functions, the wave function attains a natural interpretation as the continuous limit of these discrete histograms or a projection of a Dirac ket onto position or momentum eigenstates. We are able to test the students' facility with moving between these representations in later modules.
Quantum Mechanics of Chemisorption on GaAs Clusters
NASA Astrophysics Data System (ADS)
Naranjo, Frank; Hira, Ajit; Rivera, Ruben; Oviedo, Oliver
2015-03-01
This research focuses on the theoretical study of molecular clusters to examine the chemical properties of small GanAsn clusters (n = 2 - 10). We study the chemisorption of different atomic and molecular species on small clusters of metallic elements, by examining the interactions of H, H2, Li and Be adsorbates with the GaAs clusters. Semiconductor clusters are of interest for the study of quantum size effects and for metallization phenomena, Hybrid ab initio methods of quantum chemistry (particularly the DFT-B3LYP model) are used to derive optimal geometries for the clusters of interest. We compare calculated binding energies, bond-lengths, ionization potentials, electron affinities and HOMO-LUMO gaps for these clusters. Mapping of the singlet, triplet, and quintet, potential energy surfaces is performed. Implications for fundamental mechanisms of atomistic assembly on the GaAs surfaces are examined. Research funded by NSF.
Classical and quantum mechanics of the nonrelativistic Snyder model
NASA Astrophysics Data System (ADS)
Mignemi, S.
2011-07-01
The Snyder model is an example of noncommutative spacetime admitting a fundamental length scale ? and invariant under Lorentz transformations, that can be interpreted as a realization of the doubly special relativity axioms. Here, we consider its nonrelativistic counterpart, i.e. the Snyder model restricted to three-dimensional Euclidean space. We discuss the classical and the quantum mechanics of a free particle in this framework, and show that they strongly depend on the sign of a coupling constant ?, appearing in the fundamental commutators and proportional to ?2. For example, if ? is negative, momenta are bounded. On the contrary, for positive ?, positions and areas are quantized. We also give the exact solution of the harmonic oscillator equations both in the classical and the quantum case, and show that its frequency is energy dependent.
Quantum mechanism of nonlocal Gilbert damping in magnetic trilayers
NASA Astrophysics Data System (ADS)
Barati, Ehsan; Cinal, Marek
2015-06-01
A fully quantum-mechanical calculation of the Gilbert damping constant ? in magnetic trilayers is done by employing the torque-correlation formula within a realistic tight-binding model. A remarkable enhancement of ? in Co/NM1/NM2 trilayers is obtained due to adding the caps NM2=Pd, Pt, and it decays with the thickness of the spacers NM1=Cu, Ag, Au in agreement with experiment. Nonlocal origin of the Gilbert damping is visualized with its atomic layer contributions. It is shown that magnetization in Co is damped remotely by strong spin-orbit coupling in NM2 via quantum states with large amplitude in both Co and NM2.
Relation of quantum control mechanism to landscape structure
NASA Astrophysics Data System (ADS)
Nanduri, Arun; Donovan, Ashley; Ho, Tak-San; Rabitz, Herschel
2014-07-01
The control of quantum dynamics is generally accomplished by seeking a tailored electromagnetic field to meet a posed objective. A particular shaped field can be thought of as specifying a point on a quantum control landscape, which is the objective as a functional of the controls. Optimizing the pulse shape corresponds to climbing the landscape, and previous work showed that the paths taken up the landscapes, guided by a gradient algorithm, are surprisingly straight when projected into the space of control fields. The direct nature of these control trajectories can be quantified by the metric R ?1, defined as the ratio of the length of the control trajectory to the Euclidean distance between its end points. The prior observation of often finding low values of R implies that the landscapes are structurally simple. In this work, we investigate whether there is a relationship between the intricacy of the control mechanism and the complexity of the trajectory taken through the control space reflected in the value of R. We use the Hamiltonian encoding procedure to identify the mechanism, and we examine control of the state-to-state transition probability. No significant correlation is found between the landscape structure, reflected in the value of R, and the control mechanism. This result has algorithmic implications, opening up the prospect of seeking fields producing particular mechanisms at little penalty in the search effort due to encountering complex landscape structure.
The quantum coherent mechanism for singlet fission: experiment and theory.
Chan, Wai-Lun; Berkelbach, Timothy C; Provorse, Makenzie R; Monahan, Nicholas R; Tritsch, John R; Hybertsen, Mark S; Reichman, David R; Gao, Jiali; Zhu, X-Y
2013-06-18
The absorption of one photon by a semiconductor material usually creates one electron-hole pair. However, this general rule breaks down in a few organic semiconductors, such as pentacene and tetracene, where one photon absorption may result in two electron-hole pairs. This process, where a singlet exciton transforms to two triplet excitons, can have quantum yields as high as 200%. Singlet fission may be useful to solar cell technologies to increase the power conversion efficiency beyond the so-called Shockley-Queisser limit. Through time-resolved two-photon photoemission (TR-2PPE) spectroscopy in crystalline pentacene and tetracene, our lab has recently provided the first spectroscopic signatures in singlet fission of a critical intermediate known as the multiexciton state (also called a correlated triplet pair). More importantly, we found that population of the multiexciton state rises at the same time as the singlet state on the ultrafast time scale upon photoexcitation. This observation does not fit with the traditional view of singlet fission involving the incoherent conversion of a singlet to a triplet pair. However, it provides an experimental foundation for a quantum coherent mechanism in which the electronic coupling creates a quantum superposition of the singlet and the multiexciton state immediately after optical excitation. In this Account, we review key experimental findings from TR-2PPE experiments and present a theoretical analysis of the quantum coherent mechanism based on electronic structural and density matrix calculations for crystalline tetracene lattices. Using multistate density functional theory, we find that the direct electronic coupling between singlet and multiexciton states is too weak to explain the experimental observation. Instead, indirect coupling via charge transfer intermediate states is two orders of magnitude stronger, and dominates the dynamics for ultrafast multiexciton formation. Density matrix calculation for the crystalline tetracene lattice satisfactorily accounts for the experimental observations. It also reveals the critical roles of the charge transfer states and the high dephasing rates in ensuring the ultrafast formation of multiexciton states. In addition, we address the origins of microscopic relaxation and dephasing rates, and adopt these rates in a quantum master equation description. We show the need to take the theoretical effort one step further in the near future by combining high-level electronic structure calculations with accurate quantum relaxation dynamics for large systems. PMID:23581494
A Delayed Choice Quantum Eraser Explained by the Transactional Interpretation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Fearn, H.
2016-01-01
This paper explains the delayed choice quantum eraser of Kim et al. (A delayed choice quantum eraser, 1999) in terms of the transactional interpretation (TI) of quantum mechanics by Cramer (Rev Mod Phys 58:647, 1986, The quantum handshake, entanglement, nonlocality and transactions, 1986). It is kept deliberately mathematically simple to help explain the transactional technique. The emphasis is on a clear understanding of how the instantaneous "collapse" of the wave function due to a measurement at a specific time and place may be reinterpreted as a relativistically well-defined collapse over the entire path of the photon and over the entire transit time from slit to detector. This is made possible by the use of a retarded offer wave, which is thought to travel from the slits (or rather the small region within the parametric crystal where down-conversion takes place) to the detector and an advanced counter wave traveling backward in time from the detector to the slits. The point here is to make clear how simple the transactional picture is and how much more intuitive the collapse of the wave function becomes if viewed in this way. Also, any confusion about possible retro-causal signaling is put to rest. A delayed choice quantum eraser does not require any sort of backward in time communication. This paper makes the point that it is preferable to use the TI over the usual Copenhagen interpretation for a more intuitive understanding of the quantum eraser delayed choice experiment. Both methods give exactly the same end results and can be used interchangeably.
A Delayed Choice Quantum Eraser Explained by the Transactional Interpretation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Fearn, H.
2015-10-01
This paper explains the delayed choice quantum eraser of Kim et al. (A delayed choice quantum eraser, 1999) in terms of the transactional interpretation (TI) of quantum mechanics by Cramer (Rev Mod Phys 58:647, 1986, The quantum handshake, entanglement, nonlocality and transactions, 1986). It is kept deliberately mathematically simple to help explain the transactional technique. The emphasis is on a clear understanding of how the instantaneous "collapse" of the wave function due to a measurement at a specific time and place may be reinterpreted as a relativistically well-defined collapse over the entire path of the photon and over the entire transit time from slit to detector. This is made possible by the use of a retarded offer wave, which is thought to travel from the slits (or rather the small region within the parametric crystal where down-conversion takes place) to the detector and an advanced counter wave traveling backward in time from the detector to the slits. The point here is to make clear how simple the transactional picture is and how much more intuitive the collapse of the wave function becomes if viewed in this way. Also, any confusion about possible retro-causal signaling is put to rest. A delayed choice quantum eraser does not require any sort of backward in time communication. This paper makes the point that it is preferable to use the TI over the usual Copenhagen interpretation for a more intuitive understanding of the quantum eraser delayed choice experiment. Both methods give exactly the same end results and can be used interchangeably.
The Kantian element in the Copenhagen interpretation of quantum mechanics
NASA Astrophysics Data System (ADS)
Cale, David Lee
In Quantum Physics and the Philosophical Tradition, Aage Petersen makes the troubling claim that the entirety of the tradition of Western philosophy is "deconstructed" by quantum mechanics. This viewpoint applies, especially, to the relationship between Kantian philosophy and quantum theory. It is generally accepted that quantum mechanics, in its Copenhagen interpretation, has destroyed all validity for the classical belief in a deterministic underlying reality, a belief sustained throughout the nineteenth century through a philosophical ground in Kant's critical philosophy. This dissertation takes on the daunting task of determining what, if any, relationship can be had between contemporary physics and Kantian philosophy. It begins with a historical review of the challenges posed for Kant's arguments and proposed solutions, especially those offered by Cassirer. It then turns to the task of providing the Western philosophical tradition with an interpretation apart from Petersen's, which sees it as concerned only with the problem of being. The offered solution is the suggestion that Western philosophy be understood as a struggle, between epistemological and ontological perspectives, to provide a context for the various descriptions of nature provided by human scientific progress. Kant's philosophy is then interpreted as an effort to provide Newtonian physics with a valid context in the face of Hume's skepticism. The finding is that Kant was the first to suggest that an object does not acquire the spatio-temporal properties used in its physical description until introduced to an observer. The dissertation concludes that the authors of the Copenhagen interpretation were essentially engaged in Kant's enterprise through their attempt to provide an observer based context for the spatio-temporal descriptive principles used in the physics of their time.
Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks
Leggett, A.J.; Garg, A.
1985-03-04
It is shown that, in the contect of an idealized ''macroscopic quantum coherence'' experiment, the prediction of quantum mechanics are incompattible with the conjunction of two general assimptions which are designated ''macroscopic realism'' and ''noninvasive measurability at the macroscopiclevel.'' The conditions under which quantum mechanics can be tested against these assumptions in a realistic experiment are discussed.
Dark current mechanism of terahertz quantum-well photodetectors
Jia, J. Y.; Gao, J. H.; Hao, M. R.; Wang, T. M.; Shen, W. Z.; Zhang, Y. H.; Cao, J. C.; Guo, X. G.; Schneider, H.
2014-10-21
Dark current mechanisms of terahertz quantum-well photodetectors (THz QWPs) are systematically investigated experimentally and theoretically by measuring two newly designed structures combined with samples reported previously. In contrast to previous investigations, scattering-assisted tunneling dark current is found to cause significant contributions to total dark current. A criterion is also proposed to determine the major dark current mechanism at different peak response frequencies. We further determine background limited performance (BLIP) temperatures, which decrease both experimentally and theoretically as the electric field increases. This work gives good description of dark current mechanism for QWPs in the THz region and is extended to determine the transition fields and BLIP temperatures with response peaks from 3 to 12 THz.
NASA Astrophysics Data System (ADS)
Faleti?, Sergej
2015-05-01
Interviews with students suggest that even though they understand the formalism and the formal nature of quantum theory, they still often desire a mental picture of what the equations describe and some tangible experience with the wavefunctions. Here we discuss a mechanical wave system capable of reproducing correctly a mechanical equivalent of a quantum system in a potential, and the resulting waveforms in principle of any form. We have successfully reproduced the finite potential well, the potential barrier and the parabolic potential. We believe that these mechanical waveforms can provide a valuable experience base for introductory students to start from. We aim to show that mechanical systems that are described with the same mathematics as quantum mechanical, indeed behave in the same way. We believe that even if treated purely as a wave phenomenon, the system provides much insight into wave mechanics. This can be especially useful for physics teachers and others who often need to resort to concepts and experience rather than mathematics when explaining physical phenomena.
Morton, Seth Michael; Jensen, Lasse
2011-10-01
A frequency-dependent quantum mechanics/molecular mechanics method for the calculation of response properties of molecules adsorbed on metal nanoparticles is presented. This discrete interaction model/quantum mechanics (DIM/QM) method represents the nanoparticle atomistically, thus accounting for the local environment of the nanoparticle surface on the optical properties of the adsorbed molecule. Using the DIM/QM method, we investigate the coupling between the absorption of a silver nanoparticle and of a substituted naphthoquinone. This system is chosen since it shows strong coupling due to a molecular absorption peak that overlaps with the plasmon excitation in the metal nanoparticle. We show that there is a strong dependence not only on the distance of the molecule from the metal nanoparticle but also on its orientation relative to the nanoparticle. We find that when the transition dipole moment of an excitation is oriented towards the nanoparticle there is a significant increase in the molecular absorption as a result of coupling to the metal nanoparticle. In contrast, we find that the molecular absorption is decreased when the transition dipole moment is oriented parallel to the metal nanoparticle. The coupling between the molecule and the metal nanoparticle is found to be surprisingly long range and important on a length scale comparable to the size of the metal nanoparticle. A simple analytical model that describes the molecule and the metal nanoparticle as two interacting point objects is found to be in excellent agreement with the full DIM/QM calculations over the entire range studied. The results presented here are important for understanding plasmon-exciton hybridization, plasmon enhanced photochemistry, and single-molecule surface-enhanced Raman scattering. PMID:21992278
NASA Astrophysics Data System (ADS)
Morton, Seth Michael; Jensen, Lasse
2011-10-01
A frequency-dependent quantum mechanics/molecular mechanics method for the calculation of response properties of molecules adsorbed on metal nanoparticles is presented. This discrete interaction model/quantum mechanics (DIM/QM) method represents the nanoparticle atomistically, thus accounting for the local environment of the nanoparticle surface on the optical properties of the adsorbed molecule. Using the DIM/QM method, we investigate the coupling between the absorption of a silver nanoparticle and of a substituted naphthoquinone. This system is chosen since it shows strong coupling due to a molecular absorption peak that overlaps with the plasmon excitation in the metal nanoparticle. We show that there is a strong dependence not only on the distance of the molecule from the metal nanoparticle but also on its orientation relative to the nanoparticle. We find that when the transition dipole moment of an excitation is oriented towards the nanoparticle there is a significant increase in the molecular absorption as a result of coupling to the metal nanoparticle. In contrast, we find that the molecular absorption is decreased when the transition dipole moment is oriented parallel to the metal nanoparticle. The coupling between the molecule and the metal nanoparticle is found to be surprisingly long range and important on a length scale comparable to the size of the metal nanoparticle. A simple analytical model that describes the molecule and the metal nanoparticle as two interacting point objects is found to be in excellent agreement with the full DIM/QM calculations over the entire range studied. The results presented here are important for understanding plasmon-exciton hybridization, plasmon enhanced photochemistry, and single-molecule surface-enhanced Raman scattering.
NASA Astrophysics Data System (ADS)
Kuechler, Erich R.
Molecular modeling and computer simulation techniques can provide detailed insight into biochemical phenomena. This dissertation describes the development, implementation and parameterization of two methods for the accurate modeling of chemical reactions in aqueous environments, with a concerted scientific effort towards the inclusion of charge-dependent non-bonded non-electrostatic interactions into currently used computational frameworks. The first of these models, QXD, modifies interactions in a hybrid quantum mechanical/molecular (QM/MM) mechanical framework to overcome the current limitations of 'atom typing' QM atoms; an inaccurate and non-intuitive practice for chemically active species as these static atom types are dictated by the local bonding and electrostatic environment of the atoms they represent, which will change over the course of the simulation. The efficacy QXD model is demonstrated using a specific reaction parameterization (SRP) of the Austin Model 1 (AM1) Hamiltonian by simultaneously capturing the reaction barrier for chloride ion attack on methylchloride in solution and the solvation free energies of a series of compounds including the reagents of the reaction. The second, VRSCOSMO, is an implicit solvation model for use with the DFTB3/3OB Hamiltonian for biochemical reactions; allowing for accurate modeling of ionic compound solvation properties while overcoming the discontinuous nature of conventional PCM models when chemical reaction coordinates. The VRSCOSMO model is shown to accurately model the solvation properties of over 200 chemical compounds while also providing smooth, continuous reaction surfaces for a series of biologically motivated phosphoryl transesterification reactions. Both of these methods incorporate charge-dependent behavior into the non-bonded interactions variationally, allowing the 'size' of atoms to change in meaningful ways with respect to changes in local charge state, as to provide an accurate, predictive and transferable models for the interactions between the quantum mechanical system and their solvated surroundings.
Quantum mechanics in fractional and other anomalous spacetimes
Calcagni, Gianluca; Nardelli, Giuseppe; Scalisi, Marco
2012-10-15
We formulate quantum mechanics in spacetimes with real-order fractional geometry and more general factorizable measures. In spacetimes where coordinates and momenta span the whole real line, Heisenberg's principle is proven and the wave-functions minimizing the uncertainty are found. In spite of the fact that ordinary time and spatial translations are broken and the dynamics is not unitary, the theory is in one-to-one correspondence with a unitary one, thus allowing us to employ standard tools of analysis. These features are illustrated in the examples of the free particle and the harmonic oscillator. While fractional (and the more general anomalous-spacetime) free models are formally indistinguishable from ordinary ones at the classical level, at the quantum level they differ both in the Hilbert space and for a topological term fixing the classical action in the path integral formulation. Thus, all non-unitarity in fractional quantum dynamics is encoded in a contribution depending only on the initial and final states.
New type of N = 4 supersymmetric quantum mechanics
Ivanov, Evgeny; Sidorov, Stepan
2014-07-23
We overview a new type of supersymmetric quantum mechanics models based on the worldline realizations of the supergroup SU(2|1). Our main focus is on the models associated with the chiral multiplets (2,4,2). Considering two nonequivalent deformations of the standard N = 4, d = 1 superspace, we define the relevant chiral superfields and construct their SU(2|1) invariant actions. We give off- and on-shell descriptions of these models and perform their quantization. The basic peculiarities of such models and interrelations between them are briefly discussed.
A finite Zitterbewegung model for relativistic quantum mechanics
Noyes, H.P.
1990-02-19
Starting from steps of length h/mc and time intervals h/mc{sup 2}, which imply a quasi-local Zitterbewegung with velocity steps {plus minus}c, we employ discrimination between bit-strings of finite length to construct a necessary 3+1 dimensional event-space for relativistic quantum mechanics. By using the combinatorial hierarchy to label the strings, we provide a successful start on constructing the coupling constants and mass ratios implied by the scheme. Agreement with experiments is surprisingly accurate. 22 refs., 1 fig.
"Spring theory of relativity" originating from quantum mechanics
NASA Astrophysics Data System (ADS)
Yefremov, Alexander P.
Compact derivation of mathematical equations similar to those of quantum and classical mechanics is given on the base of fractal decomposition of a three-dimensional space. In physical units the equations become ShrÃ¶dinger and Hamilton-Jacobi equations, the wave function of a free particle associated with a virtual ring. Locally uniform motion of the ring in the physical space provides an original helix (or regular cylindrical spring) model of a relativistic theory equivalent in results with special relativity, the free particle's relativistic Lagrangian emerging automatically. Irregular spring model generates theory similar to general relativity.
Teaching Quantum Mechanics through Project-based Learning
NASA Astrophysics Data System (ADS)
Duda, Gintaras
2013-04-01
Project/Problem-based learning (PBL) is an active area of research within the physics education research (PER) community, however, work done to date has focused on introductory courses. This talk will explore research on upper division quantum mechanics, a junior/senior level course at Creighton, which was taught using PBL pedagogy with no in-class lectures. The talk will explore: 1. student learning in light of the new pedagogy and embedded meta-cognitive self-monitoring and reflective exercises and 2. the effect of the PBL curriculum on student attitudes students’ epistemologies.
Importance of parametrizing constraints in quantum-mechanical variational calculations
NASA Technical Reports Server (NTRS)
Chung, Kwong T.; Bhatia, A. K.
1992-01-01
In variational calculations of quantum mechanics, constraints are sometimes imposed explicitly on the wave function. These constraints, which are deduced by physical arguments, are often not uniquely defined. In this work, the advantage of parametrizing constraints and letting the variational principle determine the best possible constraint for the problem is pointed out. Examples are carried out to show the surprising effectiveness of the variational method if constraints are parameterized. It is also shown that misleading results may be obtained if a constraint is not parameterized.
Two-dimensional noncommutative quantum mechanics with the central potential
NASA Astrophysics Data System (ADS)
Chung, Won Sang
2016-03-01
Quantum mechanics in a noncommutative plane with both space noncommutativity and momentum noncommutativity is considered. For a general two-dimensional central field, we show that the theory can be perturbatively solved for large values of the space noncommutative parameter (Î¸) when the momentum noncommutative parameter (Î¸Â¯) is proportional to â„2/Î¸. We obtain the expressions for the eigenstates and eigenvalues. We also discuss the more general noncommutative algebra which have the nonvanishing commutator for [xÌ‚i,pÌ‚j] for different i, j.
Point form relativistic quantum mechanics and relativistic SU(6)
NASA Technical Reports Server (NTRS)
Klink, W. H.
1993-01-01
The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.
Octonic second-order equations of relativistic quantum mechanics
Mironov, Victor L.; Mironov, Sergey V.
2009-01-15
We demonstrate a generalization of relativistic quantum mechanics using eight-component value ''octons'' that generate an associative noncommutative spatial algebra. It is shown that the octonic second-order equation for the eight-component octonic wave function, obtained from the Einstein relation for energy and momentum, describes particles with spin 1/2. It is established that the octonic wave function of a particle in the state with defined spin projection has a specific spatial structure that takes the form of an octonic oscillator with two spatial polarizations: longitudinal linear and transverse circular.
Quantum mechanics, group theory, and C[sub 60
Rioux, F. )
1994-06-01
The recent discovery of a new allotropic form of carbon and its production in macroscopic amounts has generated a tremendous amount of research activity in chemistry, physics, and material science. It has also provided educators with an exciting new vehicle for breathing fresh life into some old, well-established methods and principles. Recently, for example, Boo demonstrated the power of group theory in classifying existing and hypothetical fullerenes by their symmetries. In a similar spirit this note describes a model for the electronic structure of C[sub 60] based on the most elementary principles of quantum mechanics and group theory.
Interactive Learning Solid State with Quantum Mechanical programs
NASA Astrophysics Data System (ADS)
Ruiz-Chavarria, Sabina; de La Mora, Pablo
2012-02-01
Nowadays Solid State can be learnt interactively with Quantum Mechanical programs. Here we present four systems Na, graphite, diamond and MgB2. With these programs their properties, charge density, band structure, density of states can be obtained and with the help of plotting programs their particular characteristics can be studied; type of bond (covalent, ionic, metallic, van der Waals), electrical properties (conductivity, anisotropy). In this form the student can interactively learn to ask questions and obtain answers about the properties of crystalline solids.
Foundation of quantum mechanics from the principle of relativity
Nottale, Laurent
2007-04-28
We briefly recall the main steps by which we suggest to found quantum mechanics and gauge field theories on the principle of relativity, once it is extended to scale transformations of the reference system. The wave functions are constructed as consequences of the nondifferentiability of a continuous space-time, while the Schroedinger and Dirac equations are obtained from its geodesics equations. In this framework, the gauge fields emerge as manifestation of the fractal geometry, and the gauge charges as the conservative quantities which are built from its internal symmetries.
Extended SUSY quantum mechanics: transition amplitudes and path integrals
NASA Astrophysics Data System (ADS)
Bastianelli, Fiorenzo; Bonezzi, Roberto; Corradini, Olindo; Latini, Emanuele
2011-06-01
Quantum mechanical models with extended supersymmetry find interesting applications in worldline approaches to relativistic field theories. In this paper we consider one-dimensional nonlinear sigma models with O( N) extended supersymmetry on the worldline, which are used in the study of higher spin fields on curved backgrounds. We calculate the transition amplitude for euclidean times (i.e. the heat kernel) in a perturbative expansion, using both canonical methods and path integrals. The latter are constructed using three different regularization schemes, and the corresponding counterterms that ensure scheme independence are explicitly identified.
Bodek, K.; Rozp?dzik, D.; Zejma, J.; Caban, P.; Rembieli?ski, J.; W?odarczyk, M.; Enders, J.; Köhler, A.; Kozela, A.
2013-11-07
The Polish-German project QUEST aims at studying relativistic quantum spin correlations of the Einstein-Rosen-Podolsky-Bohm type, through measurement of the correlation function and the corresponding probabilities for relativistic electron pairs. The results will be compared to theoretical predictions obtained by us within the framework of relativistic quantum mechanics, based on assumptions regarding the form of the relativistic spin operator. Agreement or divergence will be interpreted in the context of non-uniqueness of the relativistic spin operator in quantum mechanics as well as dependence of the correlation function on the choice of observables representing the spin. Pairs of correlated electrons will originate from the Mo/ller scattering of polarized 15 MeV electrons provided by the superconducting Darmstadt electron linear accelerator S-DALINAC, TU Darmstadt, incident on a Be target. Spin projections will be determined using the Mott polarimetry technique. Measurements (starting 2013) are planned for longitudinal and transverse beam polarizations and different orientations of the beam polarization vector w.r.t. the Mo/ller scattering plane. This is the first project to study relativistic spin correlations for particles with mass.
NASA Astrophysics Data System (ADS)
Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro
2015-10-01
We discuss foundational issues of quantum information biology (QIB)â€”one of the most successful applications of the quantum formalism outside of physics. QIB provides a multi-scale model of information processing in bio-systems: from proteins and cells to cognitive and social systems. This theory has to be sharply distinguished from "traditional quantum biophysics". The latter is about quantum bio-physical processes, e.g., in cells or brains. QIB models the dynamics of information states of bio-systems. We argue that the information interpretation of quantum mechanics (its various forms were elaborated by Zeilinger and Brukner, Fuchs and Mermin, and D' Ariano) is the most natural interpretation of QIB. Biologically QIB is based on two principles: (a) adaptivity; (b) openness (bio-systems are fundamentally open). These principles are mathematically represented in the framework of a novel formalismâ€” quantum adaptive dynamics which, in particular, contains the standard theory of open quantum systems.
NASA Astrophysics Data System (ADS)
Jekni?-Dugi?, J.; Dugi?, M.; Francom, A.
2014-01-01
We observe a Quantum Brownian Motion (QBM) Model Universe in conjunction with recently established Entanglement Relativity and Parallel Occurrence of Decoherence. The Parallel Occurrence of Decoherence establishes the simultaneous occurrence of decoherence for two mutually irreducible structures (decomposition into subsystems) of the total QBM model universe. First we find that Everett world branching for one structure excludes branching for the alternate structure and in order to reconcile this situation branching cannot be allowed for either of the structures considered. Second, we observe the non-existence of a third, "emergent structure", that could approximate both structures and also be allowed to branch. Ultimately we find unless world-branching requires additional criteria or conditions, or there is a privileged structure, that we provide a valid model that cannot be properly described by the Everett Interpretation of Quantum Mechanics.
A dynamical time operator in Dirac's relativistic quantum mechanics
NASA Astrophysics Data System (ADS)
Bauer, M.
2014-03-01
A self-adjoint dynamical time operator is introduced in Dirac's relativistic formulation of quantum mechanics and shown to satisfy a commutation relation with the Hamiltonian analogous to that of the position and momentum operators. The ensuing time-energy uncertainty relation involves the uncertainty in the instant of time when the wave packet passes a particular spatial position and the energy uncertainty associated with the wave packet at the same time, as envisaged originally by Bohr. The instantaneous rate of change of the position expectation value with respect to the simultaneous expectation value of the dynamical time operator is shown to be the phase velocity, in agreement with de Broglie's hypothesis of a particle associated wave whose phase velocity is larger than c. Thus, these two elements of the original basis and interpretation of quantum mechanics are integrated into its formal mathematical structure. Pauli's objection is shown to be resolved or circumvented. Possible relevance to current developments in electron channeling, in interference in time, in Zitterbewegung-like effects in spintronics, graphene and superconducting systems and in cosmology is noted.
Exploring one-dimensional quantum mechanics with transfer matrices
NASA Astrophysics Data System (ADS)
Walker, James S.; Gathright, J.
1994-05-01
An exact transfer-matrix formalism is developed for analyzing and solving problems in one-dimensional quantum mechanics. We show that with only three general-purpose matricesâ€”one to propagate a wave function over a region of constant potential, one to take a wave function over a discontinuity in a potential, and one to connect a wave function across a delta functionâ€”a rich and intriguing variety of behavior is revealed. Not only are standard results recovered with this technique, in ways suitable for presentation in the classroom, but new findings and applications are discussed as well. A primary advantage of the transfer-matrix approach is that it facilitates wide-ranging explorations of one-dimensional quantum mechanics by both students and researchers, especially when implemented with Mathematica. For those interested in pursuing independent explorations, an electronic, interactive version of this paper, complete with the figures given here and the code that generates them, is available over Internet as a Mathematica notebook.
On the Mean Field and Classical Limits of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Golse, FranÃ§ois; Mouhot, ClÃ©ment; Paul, Thierry
2016-01-01
The main result in this paper is a new inequality bearing on solutions of the N-body linear SchrÃ¶dinger equation and of the mean field Hartree equation. This inequality implies that the mean field limit of the quantum mechanics of N identical particles is uniform in the classical limit and provides a quantitative estimate of the quality of the approximation. This result applies to the case of C 1,1 interaction potentials. The quantity measuring the approximation of the N-body quantum dynamics by its mean field limit is analogous to the Monge-Kantorovich (or Wasserstein) distance with exponent 2. The inequality satisfied by this quantity is reminiscent of the work of Dobrushin on the mean field limit in classical mechanics [Func. Anal. Appl. 13, 115-123, (1979)]. Our approach to this problem is based on a direct analysis of the N-particle Liouville equation, and avoids using techniques based on the BBGKY hierarchy or on second quantization.
Metaphysical Underdetermination and Logical Determination: the Case of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Arenhart, Jonas R. B.
2014-03-01
The `underdetermination of metaphysics by the physics' is the thesis that our best scientific theories do not uniquely determine their ontologies. Non-relativistic quantum mechanics is famously thought to exemplify this kind of underdetermination: it may be seen as compatible with both an ontology of individual objects and with an ontology of non-individual objects. A possible way out of the dilema thus created consists in adopting some version of Ontic Structural Realism (OSR), a view according to which the metaphysically relevant aspect of the theory is its structure, not the nature of the objects dealt with. According to OSR, particular objects may be dispensed with (eliminated or re-conceptualized) in favor of the structure of the theory. In this paper we shall argue that the underdetermination of metaphysics by the physics is a consequence of a too strict naturalism in ontology. As a result, when a mitigated ontological naturalism is taken into account, underdetermination does not appear to have such dark consequences for object-oriented ontologies in quantum mechanics.
On the consistent histories approach to quantum mechanics
Dowker, F. |; Kent, A.
1996-03-01
We review the consistent histories formulations of quantum mechanics developed by Griffiths, Omnes, Gell-Man, and Hartle, and we describe the classifications of consistent sets. We illustrate some general features of consistent sets by a few lemmas and examples. We also consider various interpretations of the formalism, and we examine the new problems which arise in reconstructing the past and predicting the future. It is shown that Omnes characterization of true statements---statements that can be deduced unconditionally in his interpretation---is incorrect. We examine critically Gell-Mann and Hartle`s interpretation of the formalism, and in particular, their discussions of communication, prediction, and retrodiction, and we conclude that their explanation of the apparent persistence of quasiclassicality relies on assumptions about an as-yet-unknown theory of experience. Our overall conclusion is that the consistent histories approach illustrates the need to supplement quantum mechanics by some selection principle in order to produce a fundamental theory capable of unconditional predictions.
Coulomb problem in non-commutative quantum mechanics
NASA Astrophysics Data System (ADS)
Gáliková, Veronika; Prešnajder, Peter
2013-05-01
The aim of this paper is to find out how it would be possible for space non-commutativity (NC) to alter the quantum mechanics (QM) solution of the Coulomb problem. The NC parameter ? is to be regarded as a measure of the non-commutativity - setting ? = 0 which means a return to the standard quantum mechanics. As the very first step a rotationally invariant NC space {R}^3_?, an analog of the Coulomb problem configuration space (R3 with the origin excluded) is introduced. {R}^3_? is generated by NC coordinates realized as operators acting in an auxiliary (Fock) space F. The properly weighted Hilbert-Schmidt operators in F form H_?, a NC analog of the Hilbert space of the wave functions. We will refer to them as "wave functions" also in the NC case. The definition of a NC analog of the hamiltonian as a hermitian operator in H_? is one of the key parts of this paper. The resulting problem is exactly solvable. The full solution is provided, including formulas for the bound states for E < 0 and low-energy scattering for E > 0 (both containing NC corrections analytic in ?) and also formulas for high-energy scattering and unexpected bound states at ultra-high energy (both containing NC corrections singular in ?). All the NC contributions to the known QM solutions either vanish or disappear in the limit ? ? 0.
Critical nuclear charge of quantum mechanical three-body problem
NASA Astrophysics Data System (ADS)
Moini, Amirreza
The critical nuclear charge Zc for a three-body quantum mechanical system consisting of positive and negative charges is the minimum charge for the system to remain in a bound state. This work presents a study of the critical nuclear charge for heliumlike systems with infinite nuclear mass, and also a range of the reduced mass up to 0.5. The results help us to resolve a discrepancy in the literature for the infinite mass case, and they are the first to study the dependence on reduced mass. It is found that Zc has a maximum at mM = 3525, which is intermediate between the atomic structure of helium, and the molecular structure of H+2 . Zc for the infinite mass case is found to be 0.911028267. This value is compatible with the result of Baker, et al, who found the upper bound for Zc to be 0.91103. However, it does not agree with other results in the literature. The understanding of the critical charge will bring us a deeper appreciation of the stability of a three-body system as a function of the reduced mass, correlation effects of coulombic potential and more importantly, the physics of a three-body quantum mechanical system.
The Earth as a multiscale quantum-mechanical system
NASA Astrophysics Data System (ADS)
Richet, Pascal; Ottonello, Giulio
2014-11-01
Major features of the Earth's structure and dynamics originate in the contrast between the rigidity of Sisbnd O bonds and the softness of Sisbnd Osbnd Si linkages. Because this contrast results from orbital hybridization, a real understanding of bonding relies on ab initio quantum-mechanical principles. As investigated with first-principles interatomic potentials, the ?-? transitions of SiO2 polymorphs illustrate how soft Sisbnd Osbnd Si linkages give rise to dynamical structures at rather low temperatures and yield the low melting temperatures of SiO2-rich minerals that are at the roots of SiO2 enrichment in magmatic differentiation. The increasing concentration of alkalis throughout this process is another aspect that must also be studied in terms of molecular orbitals in relation with the presence of aluminum in tetrahedral coordination. Finally, calculations of noble gas solubility show that some important features can be treated with 'hybrid' calculations when, in addition to quantum-mechanical effects, the energy needed to create a cavity in the silicate melt is dealt with in a classical manner.
A Survey of Physical Principles Attempting to Define Quantum Mechanics
NASA Astrophysics Data System (ADS)
Oas, Gary; Acacio de Barros, J.
Quantum mechanics, one of the most successful theories in the history of science, was created to account for physical systems not describable by classical physics. Though it is consistent with all experiments conducted thus far, many of its core concepts (amplitudes, global phases, etc.) can not be directly accessed and its interpretation is still the subject of intense debate, more than 100 years since it was introduced. So, a fundamental question is why this particular mathematical model is the one that nature chooses, if indeed it is the correct model. In the past two decades there has been a renewed effort to determine what physical or informational principles define quantum mechanics. In this chapter, recent attempts at establishing reasonable physical principles are reviewed and their degree of success is tabulated. An alternative approach using joint quasi-probability distributions is shown to provide a common basis of representing most of the proposed principles. It is argued that having a common representation of the principles can provide intuition and guidance to relate current principles or advance new principles. The current state of affairs, along with some alternative views are discussed.
Towards a Quantum Spin Transducer with Mechanical Resonators
NASA Astrophysics Data System (ADS)
Safira, Arthur; Gieseler, Jan; Kabcenell, Aaron; Kolkowitz, Shimon; Patterson, Dave; Zibrov, Alexander; Harris, Jack; Lukin, Mikhail
2015-05-01
Nitrogen vacancy centers (NVs) are promising candidates for quantum computation, with room temperature optical spin read-out and initialization, microwave manipulability, and weak coupling to the environment resulting in long spin coherence times. The major outstanding challenge involves engineering coherent interactions between the spin states of spatially separated NV centers. To address this challenge, we are working towards the experimental realization of mechanical spin transducers. We have successfully fabricated high quality factor (Q >105) , doubly-clamped silicon nitride mechanical resonators integrated with magnetic tips, and report on experimental progress towards achieving the coherent coupling of the motion of these resonators with the electronic spin states of individual NV centers under cryogenic conditions. Such a system is expected to provide a scalable platform for mediating effective interactions between isolated spin qubits.
Quantum mechanical modeling of hydrogen assisted cracking in aluminum
NASA Astrophysics Data System (ADS)
Peng, Qing; Sun, Yi; Lu, Gang
2014-03-01
We report multiscale quantum mechanical modeling of hydrogen assisted cracking in aluminum which is central to H embrittlement phenomena. We find that dislocation emission and brittle cleavage can occur simultaneously. H embrittlement takes place when H occupies the top sites on the crack front surface and even a very low H coverage at 0.2 monolayers can lead to brittle cleavage. H atoms adsorbed on the crack surfaces tend to suppress dislocation emission, whereas the solute H atoms on the slip plane can promote dislocation emission. Top-site H atoms at the front surface are found to facilitate the migration of other H atoms towards the front surface, providing a mechanism for H accumulation at the crack tip. The study resolves a long-standing puzzle of why H embrittlement could occur in Al where the equilibrium H solubility is extremely low under normal conditions.
Quantum mechanical modeling of hydrogen assisted cracking in aluminum
NASA Astrophysics Data System (ADS)
Sun, Yi; Peng, Qing; Lu, Gang
2013-09-01
We report multiscale quantum mechanical modeling of hydrogen assisted cracking in aluminum which is central to H embrittlement phenomena. We find that dislocation emission and brittle cleavage can occur simultaneously. H embrittlement takes place when H occupies the top sites on the crack front surface and even a very low H coverage at 0.2 monolayers can lead to brittle cleavage. H atoms adsorbed on the crack surfaces tend to suppress dislocation emission, whereas the solute H atoms on the slip plane can promote dislocation emission. Top-site H atoms at the front surface are found to facilitate the migration of other H atoms towards the front surface, providing a mechanism for H accumulation at the crack tip. The study resolves a long-standing puzzle of why H embrittlement could occur in Al where the equilibrium H solubility is extremely low under normal conditions.
Student ability to distinguish between superposition states and mixed states in quantum mechanics
NASA Astrophysics Data System (ADS)
Passante, Gina; Emigh, Paul J.; Shaffer, Peter S.
2015-12-01
Superposition gives rise to the probabilistic nature of quantum mechanics and is therefore one of the concepts at the heart of quantum mechanics. Although we have found that many students can successfully use the idea of superposition to calculate the probabilities of different measurement outcomes, they are often unable to identify the experimental implications of a superposition state. In particular, they fail to recognize how a superposition state and a mixed state (sometimes called a "lack of knowledge" state) can produce different experimental results. We present data that suggest that superposition in quantum mechanics is a difficult concept for students enrolled in sophomore-, junior-, and graduate-level quantum mechanics courses. We illustrate how an interactive lecture tutorial can improve student understanding of quantum mechanical superposition. A longitudinal study suggests that the impact persists after an additional quarter of quantum mechanics instruction that does not specifically address these ideas.
Material Phase Causality or a Dynamics-Statistical Interpretation of Quantum Mechanics
Koprinkov, I. G.
2010-11-25
The internal phase dynamics of a quantum system interacting with an electromagnetic field is revealed in details. Theoretical and experimental evidences of a causal relation of the phase of the wave function to the dynamics of the quantum system are presented sistematically for the first time. A dynamics-statistical interpretation of the quantum mechanics is introduced.
Cognitive Issues in Learning Advanced Physics: An Example from Quantum Mechanics
NASA Astrophysics Data System (ADS)
Singh, Chandralekha; Zhu, Guangtian
2009-11-01
We are investigating cognitive issues in learning quantum mechanics in order to develop effective teaching and learning tools. The analysis of cognitive issues is particularly important for bridging the gap between the quantitative and conceptual aspects of quantum mechanics and for ensuring that the learning tools help students build a robust knowledge structure. We discuss the cognitive aspects of quantum mechanics that are similar or different from those of introductory physics and their implications for developing strategies to help students develop a good grasp of quantum mechanics.
Topology of optimally controlled quantum mechanical transition probability landscapes
Rabitz, H.; Ho, T.-S.; Hsieh, M.; Kosut, R.; Demiralp, M.
2006-07-15
An optimally controlled quantum system possesses a search landscape defined by the physical objective as a functional of the control field. This paper particularly explores the topological structure of quantum mechanical transition probability landscapes. The quantum system is assumed to be controllable and the analysis is based on the Euler-Lagrange variational equations derived from a cost function only requiring extremizing the transition probability. It is shown that the latter variational equations are automatically satisfied as a mathematical identity for control fields that either produce transition probabilities of zero or unit value. Similarly, the variational equations are shown to be inconsistent (i.e., they have no solution) for any control field that produces a transition probability different from either of these two extreme values. An upper bound is shown to exist on the norm of the functional derivative of the transition probability with respect to the control field anywhere over the landscape. The trace of the Hessian, evaluated for a control field producing a transition probability of a unit value, is shown to be bounded from below. Furthermore, the Hessian at a transition probability of unit value is shown to have an extensive null space and only a finite number of negative eigenvalues. Collectively, these findings show that (a) the transition probability landscape extrema consists of values corresponding to no control or full control, (b) approaching full control involves climbing a gentle slope with no false traps in the control space and (c) an inherent degree of robustness exists around any full control solution. Although full controllability may not exist in some applications, the analysis provides a basis to understand the evident ease of finding controls that produce excellent yields in simulations and in the laboratory.
An opto-magneto-mechanical quantum interface between distant superconducting qubits
Xia, Keyu; Vanner, Michael R.; Twamley, Jason
2014-01-01
A quantum internet, where widely separated quantum devices are coherently connected, is a fundamental vision for local and global quantum information networks and processing. Superconducting quantum devices can now perform sophisticated quantum engineering locally on chip and a detailed method to achieve coherent optical quantum interconnection between distant superconducting devices is a vital, but highly challenging, goal. We describe a concrete opto-magneto-mechanical system that can interconvert microwave-to-optical quantum information with high fidelity. In one such node we utilise the magnetic fields generated by the supercurrent of a flux qubit to coherently modulate a mechanical oscillator that is part of a high-Q optical cavity to achieve high fidelity microwave-to-optical quantum information exchange. We analyze the transfer between two spatially distant nodes connected by an optical fibre and using currently accessible parameters we predict that the fidelity of transfer could be as high as ~80%, even with significant loss. PMID:24994063
Quantum Mechanics and the Principle of Least Radix Economy
NASA Astrophysics Data System (ADS)
Garcia-Morales, Vladimir
2015-03-01
A new variational method, the principle of least radix economy, is formulated. The mathematical and physical relevance of the radix economy, also called digit capacity, is established, showing how physical laws can be derived from this concept in a unified way. The principle reinterprets and generalizes the principle of least action yielding two classes of physical solutions: least action paths and quantum wavefunctions. A new physical foundation of the Hilbert space of quantum mechanics is then accomplished and it is used to derive the SchrÃ¶dinger and Dirac equations and the breaking of the commutativity of spacetime geometry. The formulation provides an explanation of how determinism and random statistical behavior coexist in spacetime and a framework is developed that allows dynamical processes to be formulated in terms of chains of digits. These methods lead to a new (pre-geometrical) foundation for Lorentz transformations and special relativity. The Parker-Rhodes combinatorial hierarchy is encompassed within our approach and this leads to an estimate of the interaction strength of the electromagnetic and gravitational forces that agrees with the experimental values to an error of less than one thousandth. Finally, it is shown how the principle of least-radix economy naturally gives rise to Boltzmann's principle of classical statistical thermodynamics. A new expression for a general (path-dependent) nonequilibrium entropy is proposed satisfying the Second Law of Thermodynamics.
Q-spaces and the Foundations of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Domenech, Graciela; Holik, Federico; Krause, Décio
2008-11-01
Our aim in this paper is to take quite seriously Heinz Post’s claim that the non-individuality and the indiscernibility of quantum objects should be introduced right at the start, and not made a posteriori by introducing symmetry conditions. Using a different mathematical framework, namely, quasi-set theory, we avoid working within a label-tensor-product-vector-space-formalism, to use Redhead and Teller’s words, and get a more intuitive way of dealing with the formalism of quantum mechanics, although the underlying logic should be modified. We build a vector space with inner product, the Q-space, using the non-classical part of quasi-set theory, to deal with indistinguishable elements. Vectors in Q-space refer only to occupation numbers and permutation operators act as the identity operator on them, reflecting in the formalism the fact of unobservability of permutations. Thus, this paper can be regarded as a tentative to follow and enlarge Heinsenberg’s suggestion that new phenomena require the formation of a new “closed” (that is, axiomatic) theory, coping also with the physical theory’s underlying logic and mathematics.
Wall-crossing invariants: from quantum mechanics to knots
NASA Astrophysics Data System (ADS)
Galakhov, D.; Mironov, A.; Morozov, A.
2015-03-01
We offer a pedestrian-level review of the wall-crossing invariants. The story begins from the scattering theory in quantum mechanics where the spectrum reshuffling can be related to permutations of S-matrices. In nontrivial situations, starting from spin chains and matrix models, the S-matrices are operatorvalued and their algebra is described in terms of R- and mixing (Racah) U-matrices. Then the Kontsevich-Soibelman (KS) invariants are nothing but the standard knot invariants made out of these data within the Reshetikhin-Turaev-Witten approach. The R and Racah matrices acquire a relatively universal form in the semiclassical limit, where the basic reshufflings with the change of moduli are those of the Stokes line. Natural from this standpoint are matrices provided by the modular transformations of conformal blocks (with the usual identification R = T and U = S), and in the simplest case of the first degenerate field (2, 1), when the conformal blocks satisfy a second-order Shrödinger-like equation, the invariants coincide with the Jones ( N = 2) invariants of the associated knots. Another possibility to construct knot invariants is to realize the cluster coordinates associated with reshufflings of the Stokes lines immediately in terms of check-operators acting on solutions of the Knizhnik-Zamolodchikov equations. Then the R-matrices are realized as products of successive mutations in the cluster algebra and are manifestly described in terms of quantum dilogarithms, ultimately leading to the Hikami construction of knot invariants.