Science.gov

Sample records for quantum recoil effects

  1. Charge transport-induced recoil and dissociation in double quantum dots.

    PubMed

    Pozner, Roni; Lifshitz, Efrat; Peskin, Uri

    2014-11-12

    Colloidal quantum dots (CQDs) are free-standing nanostructures with chemically tunable electronic properties. This combination of properties offers intriguing new possibilities for nanoelectromechanical devices that were not explored yet. In this work, we consider a new scanning tunneling microscopy setup for measuring ligand-mediated effective interdot forces and for inducing motion of individual CQDs within an array. Theoretical analysis of a double quantum dot structure within this setup reveals for the first time voltage-induced interdot recoil and dissociation with pronounced changes in the current. Considering realistic microscopic parameters, our approach enables correlating the onset of mechanical motion under bias voltage with the effective ligand-mediated binding forces. PMID:25259800

  2. Direct Measurement of Recoil Effects on Ar-Ar Standards

    NASA Astrophysics Data System (ADS)

    Hall, C. M.

    2011-12-01

    Advances in the precision possible with the Ar-Ar method using new techniques and equipment have led to considerable effort to improve the accuracy of the calibration of interlaboratory standards. However, ultimately the accuracy of the method relies on the measurement of 40Ar*/39ArK ratios on primary standards that have been calibrated with the K-Ar method and, in turn, on secondary standards that are calibrated against primary standards. It is usually assumed that an Ar-Ar total gas age is equivalent to a K-Ar age, but this assumes that there is zero loss of Ar due to recoil. Instead, traditional Ar-Ar total gas ages are in fact Ar retention ages [1] and not, strictly speaking, comparable to K-Ar ages. There have been efforts to estimate the importance of this effect on standards along with prescriptions for minimizing recoil effects [2,3], but these studies have relied on indirect evidence for 39Ar recoil. We report direct measurements of 39Ar recoil for a set of primary and secondary standards using the vacuum encapsulation techniques of [1] and show that significant adjustments to ages assigned to some standards may be needed. The fraction f of 39Ar lost due to recoil for primary standards MMhb-1 hornblende and GA-1550 biotite are 0.00367 and 0.00314 respectively. It is possible to modify the assumed K-Ar ages of these standards so that when using their measured Ar retention 40Ar*/39ArK ratios, one obtains a correct K-Ar age for an unknown, assuming that the unknown sample has zero loss of 39Ar due to recoil. Assuming a primary K-Ar age for MMhb-1 of 520.4 Ma, the modified age would be 522.1 Ma and assuming a primary K-Ar age for GA-1550 of 98.79 Ma [4] yields a modified effective age of 99.09 Ma. Measured f values for secondary standards FCT-3 biotite, FCT-2 sanidine and TCR-2 sanidine are 0.00932, 0.00182 and 0.00039 respectively. Using an R value for FCT-3 biotite relative to MMhb-1 [5], the K-Ar age for this standard would be 27.83 Ma and using R values for FCT and TC sanidines [4] against GA-1550, their K-Ar ages would be 28.06 Ma and 28.41 Ma respectively. For retrospective recalculation purposes, the effective Ar-Ar age of these samples that should yield correct K-Ar ages for unknowns with zero recoil loss would be 28.09 Ma, 28.11 Ma and 28.42 Ma for FCT-3 biotite, FCT-2 sanidine and TCR-2 sanidine respectively. The measured f for FCT-3 appears to explain the R value of it relative to FCT sanidine of 1.0086 found by [8]. From the low T portion of the Ar release spectra of the biotite and amphibole standards, it is clear that the dominant recoil artifact affecting Ar release is the re-implantation mechanism seen in clay samples [1,6,7] and not the loss of 39Ar at the surface of the grain. The geometry of neighboring grains during irradiation and internal defects may predominate in controlling recoil loss. [1] Dong et al., 1995, Science, 267, 355-359. [2] Paine et al., 2006, Geochim.Cosmochim. Acta, 70, 1507-1517. [3] Jourdan et al., 2007, Geochim. Cosmochim. Acta, 71, 2791-2808 [4] Renne et al., 1998, Chem. Geol., 145 117-152. [5] Hall & Farrell, 1995, Earth Planet. Sci. Lett., 133, 327-338. [6] Hall et al., 1997, Earth Planet. Sci. Lett., 148, 287-298. [7] Hall et al., 2000, Econ. Geol., 95, 1739-1752. [8] Di Vincenzo & Roman Skála, 2009, Geochim. Cosmochim. Acta, 73, 493-513.

  3. Dielectric barrier structure with hollow electrodes and its recoil effect

    SciTech Connect

    Yu, Shuang; Chen, Qunzhi; Liu, Jiahui; Wang, Kaile; Jiang, Zhe; Sun, Zhili; Zhang, Jue; Fang, Jing

    2015-06-15

    A dielectric barrier structure with hollow electrodes (HEDBS), in which gas flow oriented parallel to the electric field, was proposed. Results showed that with this structure, air can be effectively ignited, forming atmospheric low temperature plasma, and the proposed HEDBS could achieve much higher electron density (5 × 10{sup 15}/cm{sup 3}). It was also found that the flow condition, including outlet diameter and flow rate, played a key role in the evolution of electron density. Optical emission spectroscopy diagnostic results showed that the concentration of reactive species had the same variation trend as the electron density. The simulated distribution of discharge gas flow indicated that the HEDBS had a strong recoil effect on discharge gas, and could efficiently promote generating electron density as well as reactive species.

  4. Interference, recoil, and uncontrollable interaction

    NASA Astrophysics Data System (ADS)

    Ulfbeck, Ole

    2014-07-01

    When the initial state in a collision involves indeterminate momenta, the conservation law for momentum no longer applies to the individual event with a sharpness beyond the indeterminacy. As a consequence, there are collisions that are recoilless in the sense that the state of one of the quanta is unchanged by the collision while the other quantum emerges in a superposition of momenta. Recoilless collisions that avoid entanglement are basic for experiments studying coherence effects for individual quanta involving interactions of the quantum with reflectors or diaphragms. The idea that in interference experiments there is an inevitable recoil that can be made unobservable by firmly bolting the reflector or diaphragm to a solid support is false since in interference with individual quanta there is no recoil to control. The highly quantal character of the reflector or diaphragm in the interference experiment apparently went unnoticed in the conception of complementarity.

  5. Quantum effects in electron beam pumped GaAs

    SciTech Connect

    Yahia, M. E.; National Institute of Laser Enhanced Sciences , Cairo University ; Azzouz, I. M.; Moslem, W. M.

    2013-08-19

    Propagation of waves in nano-sized GaAs semiconductor induced by electron beam are investigated. A dispersion relation is derived by using quantum hydrodynamics equations including the electrons and holes quantum recoil effects, exchange-correlation potentials, and degenerate pressures. It is found that the propagating modes are instable and strongly depend on the electron beam parameters, as well as the quantum recoil effects and degenerate pressures. The instability region shrinks with the increase of the semiconductor number density. The instability arises because of the energetic electron beam produces electron-hole pairs, which do not keep in phase with the electrostatic potential arising from the pair plasma.

  6. Nuclear Recoil Effect in the Lamb Shift of Light Hydrogenlike Atoms

    NASA Astrophysics Data System (ADS)

    Yerokhin, V. A.; Shabaev, V. M.

    2015-12-01

    We report high-precision calculations of the nuclear recoil effect to the Lamb shift of hydrogenlike atoms to the first order in the electron-nucleus mass ratio and to all orders in the nuclear binding strength parameter Z α . The results are in excellent agreement with the known terms of the Z α expansion and allow an accurate identification of the nonperturbative higher-order remainder. For hydrogen, the higher-order remainder was found to be much larger than anticipated. This result resolves the long-standing disagreement between the numerical all-order and analytical Z α -expansion approaches to the recoil effect and completely removes the second-largest theoretical uncertainty in the hydrogen Lamb shift of the 1 S and 2 S states.

  7. Gravitational recoil: effects on massive black hole occupation fraction over cosmic time

    NASA Astrophysics Data System (ADS)

    Volonteri, Marta; Gültekin, Kayhan; Dotti, Massimo

    2010-06-01

    We assess the influence of massive black hole (MBH) ejections from galaxy centres due to gravitational radiation recoil, along the cosmic merger history of the MBH population. We discuss the `danger' of recoil for MBHs as a function of different MBH spin-orbit configurations and of the host halo cosmic bias, and on how that reflects on the occupation fraction of MBHs. We assess ejection probabilities for mergers occurring in a gas-poor environment, in which the MBH binary coalescence is driven by stellar dynamical processes and the spin-orbit configuration is expected to be isotropically distributed. We contrast this case with the `aligned' case. The latter is the more realistic situation for gas-rich, i.e. `wet', mergers, which are expected for high-redshift galaxies. We find that if all haloes at z > 5-7 host an MBH, the probability of the Milky Way (or similar size galaxy) to host an MBH today is less than 50 per cent, unless MBHs form continuously in galaxies. The occupation fraction of MBHs, intimately related to halo bias and MBH formation efficiency, plays a crucial role in increasing the retention fraction. Small haloes, with shallow potential wells and low escape velocities, have a high ejection probability, but the MBH merger rate is very low along their galaxy formation merger hierarchy: MBH formation processes are likely inefficient in such shallow potential wells. Recoils can decrease the overall frequency of MBHs in small galaxies to ~60 per cent, while they have little effect on the frequency of MBHs in large galaxies (at most a 20 per cent effect).

  8. Nuclear recoil and vacuum-polarization effects on the binding energies of supercritical H-like ions

    NASA Astrophysics Data System (ADS)

    Aleksandrov, Ivan A.; Plunien, Günter; Shabaev, Vladimir M.

    2016-01-01

    The Dirac Hamiltonian including nuclear recoil and vacuum-polarization operators is considered in a supercritical regime Z> 137. It is found that the nuclear recoil operator derived within the Breit approximation "regularizes" the Hamiltonian for the point-nucleus model and allows the ground state level to go continuously down and reach the negative energy continuum at a critical value Zcr ≈ 145. If the Hamiltonian contains both the recoil operator and the Uehling potential, the 1s level reaches the negative energy continuum at Zcr ≈ 144. The corresponding calculations for the excited states have been also performed. This study shows that, in contrast to previous investigations, a point-like nucleus can have effectively the charge Z> 137.

  9. Quantum Radiation Reaction Effects in Multiphoton Compton Scattering

    SciTech Connect

    Di Piazza, A.; Hatsagortsyan, K. Z.; Keitel, C. H.

    2010-11-26

    Radiation reaction effects in the interaction of an electron and a strong laser field are investigated in the realm of quantum electrodynamics. We identify the quantum radiation reaction with the multiple photon recoils experienced by the laser-driven electron due to consecutive incoherent photon emissions. After determining a quantum radiation dominated regime, we demonstrate how in this regime quantum signatures of the radiation reaction strongly affect multiphoton Compton scattering spectra and that they could be measurable in principle with presently available laser technology.

  10. Effect of a target size on the recoil momentum upon laser irradiation of absorbing materials

    SciTech Connect

    Chumakou, A N; Petrenko, A M; Bosak, N A

    2004-10-31

    The dependence of a recoil momentum on the radius of a target irradiated by a single-pulse Nd{sup 3+}:YAG laser ({lambda}=1.064 {mu}m, {tau}=20 ns, E{<=}300 mJ) in the air is studied. The recoil momentum decreases three-fold with increasing the relative target radius from 0.3 to 5 and tends to saturation for r>3. The calculation of the recoil momentum on the basis of the Euler and Navier-Stokes equations gave understated values for r>1, which lowered to negative values. The reasons for the qualitative discrepancy between the experimental and calculated data is discussed. (interaction of laser radiation with matter)

  11. Quantum zeno effect

    NASA Astrophysics Data System (ADS)

    Petrosky, T.; Tasaki, S.; Prigogine, I.

    1990-12-01

    Misra and Sudarshan pointed out, based on the quantum measurement theory, that repeated measurements lead to a slowing down of the transition, which they called the quantum Zeno effect. Recently, Itano, Heinzen, Bollinger and Wineland have reported that they succeeded in observing that effect. We show that the results of Itano et al. can be recovered through conventional quantum mechanics and do not involve a repeated reduction of the wave function

  12. Temperature Dependence and Recoil-free Fraction Effects in Olivines Across the Mg-Fe Solid Solution

    NASA Technical Reports Server (NTRS)

    Sklute, E. C.; Rothstein, Y.; Dyar, M. D.; Schaefer, M. W.; Menzies, O. N.; Bland, P. A.; Berry, F. J.

    2005-01-01

    Olivine and pyroxene are the major ferromagnesian minerals in most meteorite types and in mafic igneous rocks that are dominant at the surface of the Earth. It is probable that they are the major mineralogical components at the surface of any planetary body that has undergone differentiation processes. In situ mineralogical studies of the rocks and soils on Mars suggest that olivine is a widespread mineral on that planet s surface (particularly at the Gusev site) and that it has been relatively unaffected by alteration. Thus an understanding of the characteristics of Mossbauer spectra of olivine is of great importance in interpreting MER results. However, variable temperature Mossbauer spectra of olivine, which are needed to quantify recoil-free fraction effects and to understand the temperature dependence of olivine spectra, are lacking in the literature. Thus, we present here a study of the temperature dependence and recoil-free fraction of a series of synthetic olivines.

  13. Quantum Zeno effect

    NASA Astrophysics Data System (ADS)

    Petrosky, T.; Tasaki, S.; Prigogine, I.

    1991-01-01

    In 1977, Misra and Sudarshan showed, based on the quantum measurement theory, that an unstable particle will never be found to decay when it is continuously observed. They called it the quantum Zeno effect (or paradox). More generally the quantum Zeno effect is associated to the inhibition of transitions by frequent measurements. This possibility has attracted much interest over the last years. Recently, Itano, Heinzen, Bollinger and Wineland have reported that they succeeded in observing the quantum Zeno effect. This would indeed be an important step towards the understanding of the role of the observer in quantum mechanics. However, in the present paper, we will show that their results can be recovered through conventional quantum mechanics and do not involve a repeated reduction (or collapse) of the wave function.

  14. Molecular modeling of the effects of 40Ar recoil in illite particles on their K-Ar isotope dating

    NASA Astrophysics Data System (ADS)

    Szczerba, Marek; Derkowski, Arkadiusz; Kalinichev, Andrey G.; Środoń, Jan

    2015-06-01

    The radioactive decay of 40K to 40Ar is the basis of isotope age determination of micaceous clay minerals formed during diagenesis. The difference in K-Ar ages between fine and coarse grained illite particles has been interpreted using detrital-authigenic components system, its crystallization history or post-crystallization diffusion. Yet another mechanism should also be considered: natural 40Ar recoil. Whether this recoil mechanism can result in a significant enough loss of 40Ar to provide observable decrease of K-Ar age of the finest illite crystallites at diagenetic temperatures - is the primary objective of this study which is based on molecular dynamics (MD) computer simulations. All the simulations were performed for the same kinetic energy (initial velocity) of the 40Ar atom, but for varying recoil angles that cover the entire range of their possible values. The results show that 40Ar recoil can lead to various deformations of the illite structure, often accompanied by the displacement of OH groups or breaking of the Si-O bonds. Depending on the recoil angle, there are four possible final positions of the 40Ar atom with respect to the 2:1 layer at the end of the simulation: it can remain in the interlayer space or end up in the closest tetrahedral, octahedral or the opposite tetrahedral sheet. No simulation angles were found for which the 40Ar atom after recoil passes completely through the 2:1 layer. The energy barrier for 40Ar passing through the hexagonal cavity from the tetrahedral sheet into the interlayer was calculated to be 17 kcal/mol. This reaction is strongly exothermic, therefore there is almost no possibility for 40Ar to remain in the tetrahedral sheet of the 2:1 layer over geological time periods. It will either leave the crystal, if close enough to the edge, or return to the interlayer space. On the other hand, if 40Ar ends up in the octahedral sheet after recoil, a substantially higher energy barrier of 55 kcal/mol prevents it from leaving the TOT layer over geological time. Based on the results of MD simulations, the estimates of the potential effect of 40Ar recoil on the K-Ar dating of illite show that some of 40Ar is lost and the loss is substantially dependent on the crystallite dimensions. The 40Ar loss can vary from 10% for the finest crystallites (two 2:1 layers thickness and <0.02 μm in diameter) to close to zero for the thickest and largest (in the ab plane) ones. Because the decrease of the K-Ar estimated age is approximately proportional to the 40Ar loss, the finer crystallites show lower apparent age than the coarser ones, although the age of crystallization is assumed equal for all the crystallites. From the model it is also clear that the lack of K removal from illite fringes (potentially Ar-free) strongly increases the apparent age differences among crystallites of different size.

  15. Quantum Hall effect in quantum electrodynamics

    SciTech Connect

    Penin, Alexander A.

    2009-03-15

    We consider the quantum Hall effect in quantum electrodynamics and find a deviation from the quantum-mechanical prediction for the Hall conductivity due to radiative antiscreening of electric charge in an external magnetic field. A weak dependence of the universal von Klitzing constant on the magnetic field strength, which can possibly be observed in a dedicated experiment, is predicted.

  16. Potential effects of alpha-recoil on uranium-series dating of calcrete

    USGS Publications Warehouse

    Neymark, L.A.

    2011-01-01

    Evaluation of paleosol ages in the vicinity of Yucca Mountain, Nevada, at the time the site of a proposed high-level nuclear waste repository, is important for fault-displacement hazard assessment. Uranium-series isotope data were obtained for surface and subsurface calcrete samples from trenches and boreholes in Midway Valley, Nevada, adjacent to Yucca Mountain. 230Th/U ages of 33 surface samples range from 1.3 to 423 thousand years (ka) and the back-calculated 234U/238U initial activity ratios (AR) are relatively constant with a mean value of 1.54 0.15 (1?), which is consistent with the closed-system behavior. Subsurface calcrete samples are too old to be dated by the 230Th/U method. U-Pb data for post-pedogenic botryoidal opal from a subsurface calcrete sample show that these subsurface calcrete samples are older than ~ 1.65 million years (Ma), old enough to have attained secular equilibrium had their U-Th systems remained closed. However, subsurface calcrete samples show U-series disequilibrium indicating open-system behavior of 238U daughter isotopes, in contrast with the surface calcrete, where open-system behavior is not evident. Data for 21 subsurface calcrete samples yielded calculable 234U/238U model ages ranging from 130 to 1875 ka (assuming an initial AR of 1.54 0.15, the mean value calculated for the surface calcrete samples). A simple model describing continuous ?-recoil loss predicts that the 234U/238U and 230Th/238U ARs reach steady-state values ~ 2 Ma after calcrete formation. Potential effects of open-system behavior on 230Th/U ages and initial 234U/238U ARs for younger surface calcrete were estimated using data for old subsurface calcrete samples with the 234U loss and assuming that the total time of water-rock interaction is the only difference between these soils. The difference between the conventional closed-system and open-system ages may exceed errors of the calculated conventional ages for samples older than ~ 250 ka, but is negligible for younger soils.

  17. Quantum Effects in Biology

    NASA Astrophysics Data System (ADS)

    Mohseni, Masoud; Omar, Yasser; Engel, Gregory S.; Plenio, Martin B.

    2014-08-01

    List of contributors; Preface; Part I. Introduction: 1. Quantum biology: introduction Graham R. Fleming and Gregory D. Scholes; 2. Open quantum system approaches to biological systems Alireza Shabani, Masoud Mohseni, Seogjoo Jang, Akihito Ishizaki, Martin Plenio, Patrick Rebentrost, Alàn Aspuru-Guzik, Jianshu Cao, Seth Lloyd and Robert Silbey; 3. Generalized Förster resonance energy transfer Seogjoo Jang, Hoda Hossein-Nejad and Gregory D. Scholes; 4. Multidimensional electronic spectroscopy Tomáš Mančal; Part II. Quantum Effects in Bacterial Photosynthetic Energy Transfer: 5. Structure, function, and quantum dynamics of pigment protein complexes Ioan Kosztin and Klaus Schulten; 6. Direct observation of quantum coherence Gregory S. Engel; 7. Environment-assisted quantum transport Masoud Mohseni, Alàn Aspuru-Guzik, Patrick Rebentrost, Alireza Shabani, Seth Lloyd, Susana F. Huelga and Martin B. Plenio; Part III. Quantum Effects in Higher Organisms and Applications: 8. Excitation energy transfer in higher plants Elisabet Romero, Vladimir I. Novoderezhkin and Rienk van Grondelle; 9. Electron transfer in proteins Spiros S. Skourtis; 10. A chemical compass for bird navigation Ilia A. Solov'yov, Thorsten Ritz, Klaus Schulten and Peter J. Hore; 11. Quantum biology of retinal Klaus Schulten and Shigehiko Hayashi; 12. Quantum vibrational effects on sense of smell A. M. Stoneham, L. Turin, J. C. Brookes and A. P. Horsfield; 13. A perspective on possible manifestations of entanglement in biological systems Hans J. Briegel and Sandu Popescu; 14. Design and applications of bio-inspired quantum materials Mohan Sarovar, Dörthe M. Eisele and K. Birgitta Whaley; 15. Coherent excitons in carbon nanotubes Leonas Valkunas and Darius Abramavicius; Glossary; References; Index.

  18. Quantum spin Hall effect.

    PubMed

    Bernevig, B Andrei; Zhang, Shou-Cheng

    2006-03-17

    The quantum Hall liquid is a novel state of matter with profound emergent properties such as fractional charge and statistics. The existence of the quantum Hall effect requires breaking of the time reversal symmetry caused by an external magnetic field. In this work, we predict a quantized spin Hall effect in the absence of any magnetic field, where the intrinsic spin Hall conductance is quantized in units of 2(e/4pi). The degenerate quantum Landau levels are created by the spin-orbit coupling in conventional semiconductors in the presence of a strain gradient. This new state of matter has many profound correlated properties described by a topological field theory. PMID:16605772

  19. Quantum Spin Hall Effect

    SciTech Connect

    Bernevig, B.Andrei; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-01-15

    The quantum Hall liquid is a novel state of matter with profound emergent properties such as fractional charge and statistics. Existence of the quantum Hall effect requires breaking of the time reversal symmetry caused by an external magnetic field. In this work, we predict a quantized spin Hall effect in the absence of any magnetic field, where the intrinsic spin Hall conductance is quantized in units of 2 e/4{pi}. The degenerate quantum Landau levels are created by the spin-orbit coupling in conventional semiconductors in the presence of a strain gradient. This new state of matter has many profound correlated properties described by a topological field theory.

  20. The quantum sweeper effect

    NASA Astrophysics Data System (ADS)

    Grössing, G.; Fussy, S.; Mesa Pascasio, J.; Schwabl, H.

    2015-07-01

    We show that during stochastic beam attenuation in double slit experiments, there appear unexpected new effects for transmission factors below a ≤ 10-4, which can eventually be observed with the aid of weak measurement techniques. These are denoted as quantum sweeper effects, which are characterized by the bunching together of low counting rate particles within very narrow spatial domains. We employ a “superclassical” modeling procedure which we have previously shown to produce predictions identical with those of standard quantum theory. Thus it is demonstrated that in reaching down to ever weaker channel intensities, the nonlinear nature of the probability density currents becomes ever more important. We finally show that the resulting unexpected effects nevertheless implicitly also exist in standard quantum mechanics.

  1. Quantum Effects in Biological Systems

    NASA Astrophysics Data System (ADS)

    Roy, Sisir

    2014-07-01

    The debates about the trivial and non-trivial effects in biological systems have drawn much attention during the last decade or so. What might these non-trivial sorts of quantum effects be? There is no consensus so far among the physicists and biologists regarding the meaning of "non-trivial quantum effects". However, there is no doubt about the implications of the challenging research into quantum effects relevant to biology such as coherent excitations of biomolecules and photosynthesis, quantum tunneling of protons, van der Waals forces, ultrafast dynamics through conical intersections, and phonon-assisted electron tunneling as the basis for our sense of smell, environment assisted transport of ions and entanglement in ion channels, role of quantum vacuum in consciousness. Several authors have discussed the non-trivial quantum effects and classified them into four broad categories: (a) Quantum life principle; (b) Quantum computing in the brain; (c) Quantum computing in genetics; and (d) Quantum consciousness. First, I will review the above developments. I will then discuss in detail the ion transport in the ion channel and the relevance of quantum theory in brain function. The ion transport in the ion channel plays a key role in information processing by the brain.

  2. The Hermes Recoil Detector

    NASA Astrophysics Data System (ADS)

    Gregor, I. M.

    2003-06-01

    The HERMES physics program includes inclusive and semi-inclusive double-polarisation measurements that allow the determination of the polarised quark distributions for each flavour of valence and sea quarks. In addition, HERMES is able to study exclusive processes like the Deeply Virtual Compton Scattering (DVCS) which allow to access the Generalised Parton Distributions (GPDs). These GPDs may provide information for the still unknown orbital angular momentum of the partons. A recoil detector will be installed around the HERMES target region in order to improve the determination of the kinematics of exclusive events by providing a direct measurement of the recoiling particle and to suppress non-exclusive background. Such a recoil system would detect more than 85 % of recoil protons from DVCS.

  3. Transport of Radioactive Material by Alpha Recoil

    SciTech Connect

    Icenhour, A.S.

    2005-05-19

    The movement of high-specific-activity radioactive particles (i.e., alpha recoil) has been observed and studied since the early 1900s. These studies have been motivated by concerns about containment of radioactivity and the protection of human health. Additionally, studies have investigated the potential advantage of alpha recoil to effect separations of various isotopes. This report provides a review of the observations and results of a number of the studies.

  4. Effective equations for the quantum pendulum from momentous quantum mechanics

    SciTech Connect

    Hernandez, Hector H.; Chacon-Acosta, Guillermo

    2012-08-24

    In this work we study the quantum pendulum within the framework of momentous quantum mechanics. This description replaces the Schroedinger equation for the quantum evolution of the system with an infinite set of classical equations for expectation values of configuration variables, and quantum dispersions. We solve numerically the effective equations up to the second order, and describe its evolution.

  5. The HERMES Recoil Detector

    NASA Astrophysics Data System (ADS)

    Kaiser, R.

    2006-07-01

    The HERMES Collaboration is installing a new Recoil Detector to upgrade the spectrometer for measurements of hard exclusive electron/positron scattering reactions, in particular deeply virtual Compton scattering. These measurements will provide access to generalised parton distributions and hence to the localisation of quarks inside hadrons and to their orbital angular momentum. The HERMES Recoil Detector consists of three active components: a silicon detector surrounding the target cell inside the beam vacuum, a scintillating fibre tracker and a photon detector consisting of three layers of tungsten/scintillator. All three detectors are located inside a solenoidal magnetic field of 1 Tesla. The Recoil Detector was extensively tested with cosmic muons over the summer of 2005 and is being installed in the winter of 2005/6 for data taking until summer 2007.

  6. High acceptance recoil polarimeter

    SciTech Connect

    The HARP Collaboration

    1992-12-05

    In order to detect neutrons and protons in the 50 to 600 MeV energy range and measure their polarization, an efficient, low-noise, self-calibrating device is being designed. This detector, known as the High Acceptance Recoil Polarimeter (HARP), is based on the recoil principle of proton detection from np[r arrow]n[prime]p[prime] or pp[r arrow]p[prime]p[prime] scattering (detected particles are underlined) which intrinsically yields polarization information on the incoming particle. HARP will be commissioned to carry out experiments in 1994.

  7. Spin-orbit coupling and quantum spin Hall effect for neutral atoms without spin flips.

    PubMed

    Kennedy, Colin J; Siviloglou, Georgios A; Miyake, Hirokazu; Burton, William Cody; Ketterle, Wolfgang

    2013-11-27

    We propose a scheme which realizes spin-orbit coupling and the quantum spin Hall effect for neutral atoms in optical lattices without relying on near resonant laser light to couple different spin states. The spin-orbit coupling is created by modifying the motion of atoms in a spin-dependent way by laser recoil. The spin selectivity is provided by Zeeman shifts created with a magnetic field gradient. Alternatively, a quantum spin Hall Hamiltonian can be created by all-optical means using a period-tripling, spin-dependent superlattice. PMID:24329453

  8. The quantum Hall effect in quantum dot systems

    NASA Astrophysics Data System (ADS)

    Beltukov, Y. M.; Greshnov, A. A.

    2014-12-01

    It is proposed to use quantum dots in order to increase the temperatures suitable for observation of the integer quantum Hall effect. A simple estimation using Fock-Darwin spectrum of a quantum dot shows that good part of carriers localized in quantum dots generate the intervals of plateaus robust against elevated temperatures. Numerical calculations employing local trigonometric basis and highly efficient kernel polynomial method adopted for computing the Hall conductivity reveal that quantum dots may enhance peak temperature for the effect by an order of magnitude, possibly above 77 K. Requirements to potentials, quality and arrangement of the quantum dots essential for practical realization of such enhancement are indicated. Comparison of our theoretical results with the quantum Hall measurements in InAs quantum dot systems from two experimental groups is also given.

  9. The effect of quantum memory on quantum games

    NASA Astrophysics Data System (ADS)

    Ramzan, M.; Nawaz, Ahmad; Toor, A. H.; Khan, M. K.

    2008-02-01

    We study quantum games with correlated noise through a generalized quantization scheme. We investigate the effects of memory on quantum games, such as Prisoner's Dilemma, Battle of the Sexes and Chicken, through three prototype quantum-correlated channels. It is shown that the quantum player enjoys an advantage over the classical player for all nine cases considered in this paper for the maximally entangled case. However, the quantum player can also outperform the classical player for subsequent cases that can be noted in the case of the Battle of the Sexes game. It can be seen that the Nash equilibria do not change for all the three games under the effect of memory.

  10. Photoelectron Spectroscopy of LiV2O4 with Photons from 8.4 to 8100 eV: Bulk Sensitivity, Hybridization, and Recoil Effects

    NASA Astrophysics Data System (ADS)

    Suga, Shigemasa; Sekiyama, Akira; Fujiwara, Hidenori; Nakatsu, Yasutaka; Yamaguchi, Jun-ichi; Kimura, Masato; Murakami, Keita; Niitaka, Seiji; Takagi, Hidenori; Yabashi, Makina; Tamasaku, Kenji; Higashiya, Atsushi; Ishikawa, Tetsuya; Nekrasov, Igor

    2010-04-01

    Hard- and soft-X-ray photoelectron spectroscopies (HAXPES and SXPES) are very powerful for studying the bulk electronic structures of strongly correlated electron systems. The presence of an intrinsic surface layer on clean fractured surfaces is demonstrated for LiV2O4. In this material, single-nucleus recoil effects are very prominent not only for all core levels but also for valence states at 20 K. However, such recoil effects are negligible in VO2 even at 350 K in spite of the fact that VO2 has a similar V-O6 octahedron structure. The marked intensity increase in the high-binding-energy part of the so-called O 2p band relative to the V 3d band in HAXPES is interpreted to be due to the V 4s state contribution. Very high resolution extremely low energy photoelectron spectroscopy (ELEPES) is performed with Kr and Xe lamps at 10.1 and 8.4 eV, respectively, demonstrating its bulk sensitivity for this material with heavy-Fermion-like behavior.

  11. Comparison of quantum confinement effects between quantum wires and dots

    SciTech Connect

    Li, Jingbo; Wang, Lin-Wang

    2004-03-30

    Dimensionality is an important factor to govern the electronic structures of semiconductor nanocrystals. The quantum confinement energies in one-dimensional quantum wires and zero-dimensional quantum dots are quite different. Using large-scale first-principles calculations, we systematically study the electronic structures of semiconductor (including group IV, III-V, and II-VI) surface-passivated quantum wires and dots. The band-gap energies of quantum wires and dots have the same scaling with diameter for a given material. The ratio of band-gap-increases between quantum wires and dots is material-dependent, and slightly deviates from 0.586 predicted by effective-mass approximation. Highly linear polarization of photoluminescence in quantum wires is found. The degree of polarization decreases with the increasing temperature and size.

  12. Interface effect in coupled quantum wells

    SciTech Connect

    Hao, Ya-Fei

    2014-06-28

    This paper intends to theoretically investigate the effect of the interfaces on the Rashba spin splitting of two coupled quantum wells. The results show that the interface related Rashba spin splitting of the two coupled quantum wells is both smaller than that of a step quantum well which has the same structure with the step quantum well in the coupled quantum wells. And the influence of the cubic Dresselhaus spin-orbit interaction of the coupled quantum wells is larger than that of a step quantum well. It demonstrates that the spin relaxation time of the two coupled quantum wells will be shorter than that of a step quantum well. As for the application in the spintronic devices, a step quantum well may be better than the coupled quantum wells, which is mentioned in this paper.

  13. Quantum channels and memory effects

    NASA Astrophysics Data System (ADS)

    Caruso, Filippo; Giovannetti, Vittorio; Lupo, Cosmo; Mancini, Stefano

    2014-10-01

    Any physical process can be represented as a quantum channel mapping an initial state to a final state. Hence it can be characterized from the point of view of communication theory, i.e., in terms of its ability to transfer information. Quantum information provides a theoretical framework and the proper mathematical tools to accomplish this. In this context the notion of codes and communication capacities have been introduced by generalizing them from the classical Shannon theory of information transmission and error correction. The underlying assumption of this approach is to consider the channel not as acting on a single system, but on sequences of systems, which, when properly initialized allow one to overcome the noisy effects induced by the physical process under consideration. While most of the work produced so far has been focused on the case in which a given channel transformation acts identically and independently on the various elements of the sequence (memoryless configuration in jargon), correlated error models appear to be a more realistic way to approach the problem. A slightly different, yet conceptually related, notion of correlated errors applies to a single quantum system which evolves continuously in time under the influence of an external disturbance which acts on it in a non-Markovian fashion. This leads to the study of memory effects in quantum channels: a fertile ground where interesting novel phenomena emerge at the intersection of quantum information theory and other branches of physics. A survey is taken of the field of quantum channels theory while also embracing these specific and complex settings.

  14. Decoherence effects on the quantum spin channels

    NASA Astrophysics Data System (ADS)

    Cai, Jian-Ming; Zhou, Zheng-Wei; Guo, Guang-Can

    2006-08-01

    An open ended spin chain can serve as a quantum data bus for the coherent transfer of quantum state information. In this paper, we investigate the efficiency of such quantum spin channels which work in a decoherence environment. Our results show that the decoherence will significantly reduce the fidelity of quantum communication through the spin channels. Generally speaking, as the distance increases, the decoherence effects become more serious, which will put some constraints on the spin chains for long distance quantum state transfer.

  15. Interpreting Recoil for Undergraduate Students

    ERIC Educational Resources Information Center

    Elsayed, Tarek A.

    2012-01-01

    The phenomenon of recoil is usually explained to students in the context of Newton's third law. Typically, when a projectile is fired, the recoil of the launch mechanism is interpreted as a reaction to the ejection of the smaller projectile. The same phenomenon is also interpreted in the context of the conservation of linear momentum, which is…

  16. Interpreting Recoil for Undergraduate Students

    ERIC Educational Resources Information Center

    Elsayed, Tarek A.

    2012-01-01

    The phenomenon of recoil is usually explained to students in the context of Newton's third law. Typically, when a projectile is fired, the recoil of the launch mechanism is interpreted as a reaction to the ejection of the smaller projectile. The same phenomenon is also interpreted in the context of the conservation of linear momentum, which is

  17. Biological Effect of Lead-212 Localized in the Nucleus of Mammalian Cells: Role of Recoil Energy in the Radiotoxicity of Internal Alpha-Particle Emitters1

    PubMed Central

    Azure, Michael T.; Archer, Ronald D.; Sastry, Kandula S. R.; Rao, Dandamudi V.; Howell, Roger W.

    2012-01-01

    The radiochemical dipyrrolidinedithiocarbamato-212Pb(II) [212Pb(PDC)2] is synthesized and its effects on colony formation in cultured Chinese hamster V79 cells are investigated. The cellular uptake, biological retention, subcellular distribution and cytotoxicity of the radiocompound are determined. The 212Pb is taken up quickly by the cells, reaching saturation levels in 1.25 h. When the cells are washed, the intracellular activity is retained with a biological half-life of 11.6 h. Gamma-ray spectroscopy indicates that the 212Pb daughters (212Bi, 212Po and 208Tl) are in secular equilibrium within the cell. About 72% of the cellular activity localizes in the cell nucleus, of which 35% is bound specifically to nuclear DNA. The mean cellular uptake required to achieve 37% survival is 0.35 mBq of 212Pb per cell, which delivers a dose of 1.0 Gy to the cell nucleus when the recoil energy of 212Bi and 212Po decays is ignored and 1.7 Gy when recoil is included. The corresponding RBE values compared to acute external 137Cs γ rays at 37% survival are 4.0 and 2.3, respectively. The chemical Pb(PDC)2 is not chemotoxic at the concentrations used in this study. Because the β-particle emitter 212Pb decays to the α-particle-emitting daughters 212Bi and 212Po, these studies provide information on the biological effects of α-particle decays that occur in the cell nucleus. Our earlier studies with cells of the same cell line using 210Po (emits 5.3 MeV α particle) localized predominantly in the cytoplasm resulted in an RBE of 6. These earlier results for 210Po, along with the present results for 212Pb, suggest that the recoil energy associated with the 212Bi and 212Po daughter nuclei plays little or no role in imparting biological damage to critical targets in the cell nucleus. PMID:7938477

  18. Velocity Selective Raman Resonances at High Recoil

    NASA Astrophysics Data System (ADS)

    Kritsun, O.; Affolderbach, C.; Metcalf, H.

    2001-05-01

    We are continuing our exploration of the unusual domain of laser cooling where the ratio of the recoil frequency ?r to the natural width ? no longer satisfies ?_r/? ? \\varepsilon << 1. Among the unusual properties is that VSCPT can be performed in a two-level atom(J. Hack et. al., Phys. Rev., A62), 013405 (2000).. We use the 2 ^3Sarrow3 ^3P transition of metastable He at ? = 389 nm, where \\varepsilon ? 1/5 and the recoil velocity is >25 cm/s, comparable to the Doppler limit. Thus sub-recoil resolution is readily achieved in a modest atomic beam apparatus. We have observed the magnetic field and laser detuning dependence of the usual three-level VSCPT(A. Aspect et al., Phys. Rev. Lett., 61) 826 (1988). on the J = 1 arrow 1 transition, and velocity selective resonances on the J = 1 arrow 2 transition in magnetic fields. We have developed a simple quantum mechanical model of these phenomena as well as an appealing semi-classical model.

  19. 3D Quantum Gravity and Effective Noncommutative Quantum Field Theory

    SciTech Connect

    Freidel, Laurent; Livine, Etera R.

    2006-06-09

    We show that the effective dynamics of matter fields coupled to 3D quantum gravity is described after integration over the gravitational degrees of freedom by a braided noncommutative quantum field theory symmetric under a {kappa} deformation of the Poincare group.

  20. Quantum mechanical effects from deformation theory

    SciTech Connect

    Much, A.

    2014-02-15

    We consider deformations of quantum mechanical operators by using the novel construction tool of warped convolutions. The deformation enables us to obtain several quantum mechanical effects where electromagnetic and gravitomagnetic fields play a role. Furthermore, a quantum plane can be defined by using the deformation techniques. This in turn gives an experimentally verifiable effect.

  1. Hyperbolic supersymmetric quantum Hall effect

    SciTech Connect

    Hasebe, Kazuki

    2008-12-15

    Developing a noncompact version of the supersymmetric Hopf map, we formulate the quantum Hall effect on a superhyperboloid. Based on OSp(1|2) group theoretical methods, we first analyze the one-particle Landau problem, and successively explore the many-body problem where the Laughlin wave function, hard-core pseudopotential Hamiltonian, and topological excitations are derived. It is also shown that the fuzzy superhyperboloid emerges at the lowest Landau level.

  2. NMR investigation of the quantum pigeonhole effect

    NASA Astrophysics Data System (ADS)

    V. S., Anjusha; Hegde, Swathi S.; Mahesh, T. S.

    2016-02-01

    NMR quantum simulators have been used for studying various quantum phenomena. Here, using a four-qubit NMR quantum simulator, we investigate the recently postulated quantum pigeonhole effect. In this phenomenon, a set of three particles in a two-path interferometer often appears to be in such a superposition that no two particles can be assigned a single path, thus exhibiting the nonclassical behavior. In our experiments, quantum pigeons are emulated by three nuclear qubits whose states are probed jointly and noninvasively by an ancillary spin. The experimental results are in good agreement with quantum theoretical predictions.

  3. Protection of Quantum Correlation Through the Quantum Erasing Effect

    NASA Astrophysics Data System (ADS)

    Xu, Hui-Yun; Yang, Guo-Hui

    2016-05-01

    By taking into account the quantum erasing effect(QEE), the quantum discord (QD) behavior of a two-qubit system with different initial states are investigated in detail. We find that the quantum correlation can be saved under a scheme of two spatially separated atoms, each located in a leaky cavity through the quantum erasing method. It is shown that QEE can weaken the effects of decoherence, and preserve the maximum information of the coherent item. No matter whether the two atoms are in the mixted or pure state, one can robusty save their initial quantum correlation even the number of erasing events is finite. If one limit the erasing events N → ∞, the QEE can be used to protect the initial quantum correlation independently of the state in which it is stored, the values of QD is always nearly equal to the initial QD values, and it is nearly independent of the decoherence, which imply us more encourage strategy for protecting the quantum correlation properties in some quantum systems.

  4. Protection of Quantum Correlation Through the Quantum Erasing Effect

    NASA Astrophysics Data System (ADS)

    Xu, Hui-Yun; Yang, Guo-Hui

    2015-12-01

    By taking into account the quantum erasing effect(QEE), the quantum discord (QD) behavior of a two-qubit system with different initial states are investigated in detail. We find that the quantum correlation can be saved under a scheme of two spatially separated atoms, each located in a leaky cavity through the quantum erasing method. It is shown that QEE can weaken the effects of decoherence, and preserve the maximum information of the coherent item. No matter whether the two atoms are in the mixted or pure state, one can robusty save their initial quantum correlation even the number of erasing events is finite. If one limit the erasing events N → ∞, the QEE can be used to protect the initial quantum correlation independently of the state in which it is stored, the values of QD is always nearly equal to the initial QD values, and it is nearly independent of the decoherence, which imply us more encourage strategy for protecting the quantum correlation properties in some quantum systems.

  5. Quantum Zeno effect and quantum Zeno paradox in atomic physics

    NASA Astrophysics Data System (ADS)

    Block, Ellen; Berman, P. R.

    1991-08-01

    Itano and co-workers [Wayne M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, Phys. Rev. A 41, 2295 (1990)] have recently reported the experimental verification of the quantum Zeno effect, which is the inhibition of a quantum transition by frequent measurements. In this article, we offer an alternative interpretation of the quantum Zeno effect. We show that an analysis of the dynamics of the full three-level system gives the same result. There is no need to assume explicitly that the wave function has collapsed, nor even to assume that an ideal measurement has been made. In addition, we differentiate between what has been referred to as the quantum Zeno effect and what has been termed the quantum Zeno paradox. The former is the inhibition of induced transitions, and the latter is the, as yet experimentally unobserved, inhibition of spontaneous decay. Our interpretation, which emphasizes the ``measurement''-induced interruption of atomic-state coherences as the cause of inhibited quantum transitions, suggests a resolution to the quantum Zeno paradox. The theoretical limit of continuous observation is discussed.

  6. Further insight into gravitational recoil

    SciTech Connect

    Lousto, Carlos O.; Zlochower, Yosef

    2008-02-15

    We test the accuracy of our recently proposed empirical formula to model the recoil velocity imparted to the merger remnant of spinning, unequal-mass black-hole binaries. We study three families of black-hole binary configurations, all with mass ratio q=3/8 (to nearly maximize the unequal-mass contribution to the kick) and spins aligned (or counter-aligned) with the orbital angular momentum, two with spin configurations chosen to minimize the spin-induced tangential and radial accelerations of the trajectories, respectively, and a third family where the trajectories are significantly altered by spin-orbit coupling. We find good agreement between the measured and predicted recoil velocities for the first two families, and reasonable agreement for the third. We also reexamine our original generic binary configuration that led to the discovery of extremely large spin-driven recoil velocities and inspired our empirical formula, and find rough agreement between the predicted and measured recoil speeds.

  7. Difference between a Photon's Momentum and an Atom's Recoil

    SciTech Connect

    Gibble, Kurt

    2006-08-18

    When an atom absorbs a photon from a laser beam that is not an infinite plane wave, the atom's recoil is less than ({Dirac_h}/2{pi})k in the propagation direction. We show that the recoils in the transverse directions produce a lensing of the atomic wave functions, which leads to a frequency shift that is not discrete but varies linearly with the field amplitude and strongly depends on the atomic state detection. The same lensing effect is also important for microwave atomic clocks. The frequency shifts are of the order of the naive recoil shift for the transverse wave vector of the photons.

  8. Recoil corrections in antikaon-deuteron scattering

    NASA Astrophysics Data System (ADS)

    Mai, Maxim; Baru, Vadim; Epelbaum, Evgeny; Rusetsky, Akaki

    2016-03-01

    Using the non-relativistic effective field theory approach for K-d scattering, it is demonstrated that a systematic perturbative expansion of the recoil corrections in the parameter ξ = MK/mN is possible in spite of the fact that K-d scattering at low energies is inherently non-perturbative due to the large values of the K¯N scattering lengths. The first order correction to the K-d scattering length due to single insertion of the retardation term in the multiple-scattering series is calculated. The recoil effect turns out to be reasonably small even at the physical value of MK/mN ≃ 0:5.

  9. Quantum Zeno Effect in the Measurement Problem

    NASA Technical Reports Server (NTRS)

    Namiki, Mikio; Pasaczio, Saverio

    1996-01-01

    Critically analyzing the so-called quantum Zeno effect in the measurement problem, we show that observation of this effect does not necessarily mean experimental evidence for the naive notion of wave-function collapse by measurement (the simple projection rule). We also examine what kind of limitation the uncertainty relation and others impose on the observation of the quantum Zeno effect.

  10. Ion scattering and recoiling from liquid surfaces

    NASA Astrophysics Data System (ADS)

    Tassotto, Michael; Gannon, Thomas J.; Watson, Philip R.

    1997-12-01

    We have shown that ion beams can be used to probe the surface composition and molecular orientation of liquid surfaces. Time-of-flight analysis of the kinetic energy of scattered inert gas ions and recoil atoms ejected from the surface reveals the identity of atoms in the topmost atomic surface layer of the liquid. In this report we describe the first scattering/recoil experiments on surfaces of a liquid siloxane and glycerol using helium, neon and argon ions in the 2-3 keV energy range. Analysis of peak intensities as a function of experimental parameters can be used to infer average molecular orientations in the surface. Spectra from the liquid siloxane are similar to that reported by Bertrand et al. [J. Phys. Chem. 97, 131 788 (1993)] for the long-chain hydrocarbon hexatriacontane deposited as oriented solid films on Si wafers. Our data indicates that the siloxane backbone is effectively shielded by the attached hydrocarbon groups, and for incoming ions the molecule effectively resembles a hydrocarbon. Recent sum-frequency generation spectroscopy experiments [J. Phys. Chem. B 101, 4607 (1997)] suggest that a glycerol molecule in the liquid is, on average, oriented with the carbon backbone normal to the surface. Our data is consistent with this result, but scattering/recoiling simulations are needed to definitively determine the orientation.

  11. Infinite symmetry in the quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Lütken, C. A.

    2014-04-01

    The new states of matter and concomitant quantum critical phenomena revealed by the quantum Hall effect appear to be accompanied by an emergent modular symmetry. The extreme rigidity of this infinite symmetry makes it easy to falsify, but two decades of experiments have failed to do so, and the location of quantum critical points predicted by the symmetry is in increasingly accurate agreement with scaling experiments. The symmetry severely constrains the structure of the effective quantum field theory that encodes the low energy limit of quantum electrodynamics of 1010 charges in two dirty dimensions. If this is a non-linear σ-model the target space is a torus, rather than the more familiar sphere. One of the simplest toroidal models gives a critical (correlation length) exponent that agrees with the value obtained from numerical simulations of the quantum Hall effect.

  12. Quantum effects in the understanding of consciousness.

    PubMed

    Hameroff, Stuart R; Craddock, Travis J A; Tuszynski, Jack A

    2014-06-01

    This paper presents a historical perspective on the development and application of quantum physics methodology beyond physics, especially in biology and in the area of consciousness studies. Quantum physics provides a conceptual framework for the structural aspects of biological systems and processes via quantum chemistry. In recent years individual biological phenomena such as photosynthesis and bird navigation have been experimentally and theoretically analyzed using quantum methods building conceptual foundations for quantum biology. Since consciousness is attributed to human (and possibly animal) mind, quantum underpinnings of cognitive processes are a logical extension. Several proposals, especially the Orch OR hypothesis, have been put forth in an effort to introduce a scientific basis to the theory of consciousness. At the center of these approaches are microtubules as the substrate on which conscious processes in terms of quantum coherence and entanglement can be built. Additionally, Quantum Metabolism, quantum processes in ion channels and quantum effects in sensory stimulation are discussed in this connection. We discuss the challenges and merits related to quantum consciousness approaches as well as their potential extensions. PMID:25012711

  13. Quantum Zeno effect in parameter estimation

    NASA Astrophysics Data System (ADS)

    Kiilerich, Alexander Holm; Mølmer, Klaus

    2015-09-01

    The quantum Zeno effect freezes the evolution of a quantum system subject to frequent measurements. We apply a Fisher information analysis to show that because of this effect, a closed quantum system should be probed as rarely as possible, while a dissipative quantum system should be probed at specifically determined intervals to yield the optimal estimation of parameters governing the system dynamics. With a Bayesian analysis we show that a few frequent measurements are needed to identify the parameter region within which the Fisher information analysis applies.

  14. α -decay chains of recoiled superheavy nuclei: A theoretical study

    NASA Astrophysics Data System (ADS)

    Niyti, Sawhney, Gudveen; Sharma, Manoj K.; Gupta, Raj K.

    2015-05-01

    A systematic theoretical study of α -decay half-lives in the superheavy mass region of the periodic table of elements is carried out by extending the quantum-mechanical fragmentation theory based on the preformed cluster model (PCM) to include temperature (T ) dependence in its built-in preformation and penetration probabilities of decay fragments. Earlier, the α -decay chains of the isotopes of Z =115 were investigated by using the standard PCM for spontaneous decays, with"hot-optimum" orientation effects included, which required a constant scaling factor of 104 to approach the available experimental data. In the present approach of the PCM (T ≠0 ), the temperature effects are included via the recoil energy of the residual superheavy nucleus (SHN) left after x -neutron emission from the superheavy compound nucleus. The important result is that the α -decay half-lives calculated by the PCM (T ≠0 ) match the experimental data nearly exactly, without using any scaling factor of the type used in the PCM. Note that the PCM (T ≠0 ) is an equivalent of the dynamical cluster-decay model for heavy-ion collisions at angular momentum ℓ =0 . The only parameter of model is the neck-length parameter Δ R , which for the calculated half-lives of α -decay chains of various isotopes of Z =113 to 118 nuclei formed in "hot-fusion" reactions is found to be nearly constant, i.e., Δ R ≈0.95 ±0.05 fm for all the α -decay chains studied. The use of recoiled residue nucleus as a secondary heavy-ion beam for nuclear reactions has also been suggested in the past.

  15. The quantum Hall effect helicity

    SciTech Connect

    Shrivastava, Keshav N.

    2015-04-16

    The quantum Hall effect in semiconductor heterostructures is explained by two signs in the angular momentum j=l±s and g=(2j+1)/(2l+1) along with the Landau factor (n+1/2). These modifications in the existing theories explain all of the fractional charges. The helicity which is the sign of the product of the linear momentum with the spin p.s plays an important role for the understanding of the data at high magnetic fields. In particular it is found that particles with positive sign in the spin move in one direction and those with negative sign move in another direction which explains the up and down stream motion of the particles.

  16. RECOILING SUPERMASSIVE BLACK HOLES IN SPIN-FLIP RADIO GALAXIES

    SciTech Connect

    Liu, F. K.; Wang Dong; Chen Xian

    2012-02-20

    Numerical relativity simulations predict that coalescence of supermassive black hole (SMBH) binaries leads not only to a spin flip but also to a recoiling of the merger remnant SMBHs. In the literature, X-shaped radio sources are popularly suggested to be candidates for SMBH mergers with spin flip of jet-ejecting SMBHs. Here we investigate the spectral and spatial observational signatures of the recoiling SMBHs in radio sources undergoing black hole spin flip. Our results show that SMBHs in most spin-flip radio sources have mass ratio q {approx}> 0.3 with a minimum possible value q{sub min} {approx_equal} 0.05. For major mergers, the remnant SMBHs can get a kick velocity as high as 2100 km s{sup -1} in the direction within an angle {approx}< 40 Degree-Sign relative to the spin axes of remnant SMBHs, implying that recoiling quasars are biased to be with high Doppler-shifted broad emission lines while recoiling radio galaxies are biased to large apparent spatial off-center displacements. We also calculate the distribution functions of line-of-sight velocity and apparent spatial off-center displacements for spin-flip radio sources with different apparent jet reorientation angles. Our results show that the larger the apparent jet reorientation angle is, the larger the Doppler-shifting recoiling velocity and apparent spatial off-center displacement will be. We investigate the effects of recoiling velocity on the dust torus in spin-flip radio sources and suggest that recoiling of SMBHs would lead to 'dust-poor' active galactic nuclei. Finally, we collect a sample of 19 X-shaped radio objects and for each object give the probability of detecting the predicted signatures of recoiling SMBH.

  17. The recoiling of liquid droplets upon collision with solid surfaces

    NASA Astrophysics Data System (ADS)

    Kim, H.-Y.; Chun, J.-H.

    2001-03-01

    Although the spreading behavior of liquid droplets impacting on solid surfaces has been extensively studied, the mechanism of recoiling which takes place after the droplet reaches its maximum spread diameter has not yet been fully understood. This paper reports the study of the recoiling behavior of different liquid droplets (water, ink, and silicone oil) on different solid surfaces (polycarbonate and silicon oxide). The droplet dynamics are experimentally studied using a high speed video system. Analytical methods using the variational principle, which were originated by Kendall and Rohsenow (MIT Technical Report 85694-100, 1978) and Bechtel et al. [IBM J. Res. Dev. 25, 963 (1981)], are modified to account for wetting and viscous effects. In our model, an empirically determined dissipation factor is used to estimate the viscous friction. It is shown that the model closely predicts the experimental results obtained for the varying dynamic impact conditions and wetting characteristics. This study shows that droplets recoil fast and vigorously when the Ohnesorge number decreases or the Weber number increases. Droplets with a large equilibrium contact angle are also found to recoil faster. Here the Ohnesorge number scales the resisting force to the recoiling motion, and is shown to play the most important role in characterizing the recoiling motion.

  18. Maxwell-Garnett effective medium theory: Quantum nonlocal effects

    SciTech Connect

    Moradi, Afshin

    2015-04-15

    We develop the Maxwell-Garnett theory for the effective medium approximation of composite materials with metallic nanoparticles by taking into account the quantum spatial dispersion effects in dielectric response of nanoparticles. We derive a quantum nonlocal generalization of the standard Maxwell-Garnett formula, by means the linearized quantum hydrodynamic theory in conjunction with the Poisson equation as well as the appropriate additional quantum boundary conditions.

  19. Effective scenario of loop quantum cosmology.

    PubMed

    Ding, You; Ma, Yongge; Yang, Jinsong

    2009-02-01

    Semiclassical states in isotropic loop quantum cosmology are employed to show that the improved dynamics has the correct classical limit. The effective Hamiltonian for the quantum cosmological model with a massless scalar field is thus obtained, which incorporates also the next to leading order quantum corrections. The possibility that the higher order correction terms may lead to significant departure from the leading order effective scenario is revealed. If the semiclassicality of the model is maintained in the large scale limit, there are great possibilities for a k=0 Friedmann expanding universe to undergo a collapse in the future due to the quantum gravity effect. Thus the quantum bounce and collapse may contribute a cyclic universe in the new scenario. PMID:19257499

  20. Fractional quantum Hall effect revisited

    NASA Astrophysics Data System (ADS)

    Jacak, J.; Łydżba, P.; Jacak, L.

    2015-10-01

    The topology-based explanation of the fractional quantum Hall effect (FQHE) is summarized. The cyclotron braid subgroups crucial for this approach are introduced in order to identify the origin of the Laughlin correlations in 2D (two-dimensional) Hall systems. Flux-tubes and vortices for composite fermions in their standard constructions are explained in terms of cyclotron braids. The derivation of the hierarchy of the FQHE is proposed by mapping onto the integer effect within the topology-based approach. The experimental observations of the FQHE supporting the cyclotron braid picture are reviewed with a special attention paid to recent experiments with a suspended graphene. The triggering role of a carrier mobility for organization of the fractional state in Hall configuration is emphasized. The prerequisites for the FQHE are indicated including topological conditions substantially increasing the previously accepted set of physical necessities. The explanation of numerical studies by exact diagonalizations of the fractional Chern insulator states is formulated in terms of the topology condition applied to the Berry field flux quantization. Some new ideas withz regard to the synthetic fractional states in the optical lattices are also formulated.

  1. Electron emission and recoil effects following the beta decay of He6

    NASA Astrophysics Data System (ADS)

    Schulhoff, Eva E.; Drake, G. W. F.

    2015-11-01

    Probabilities for atomic electron excitation (shake-up) and ionization (shake-off) are studied following the beta-decay process →Li+6He6+e-+ν¯e , and in particular, recoil-induced contributions to the shake-off probability are calculated within the nonrelativistic sudden approximation. A pseudostate expansion method together with Stieltjes imaging is used to represent the complete two-electron spectrum of final Li+6 ,Li26+, and Li36+ states. Results for the recoil correction show a 7 σ disagreement with the experiment of Carlson et al. [Phys. Rev. 129, 2220 (1963), 10.1103/PhysRev.129.2220]. A variety of sum rules, including a newly derived Thomas-Reich-Kuhn oscillator strength sum rule for dipole recoil terms, provides tight constraints on the accuracy of the results. Calculations are performed for the helium 1 s 2 s 3S metastable state, as well as for the 1 s21S ground state. Our results would reduce the recoil-induced correction to the measured electroneutrino coupling constant ae μ from the apparent 0.6% used in the experiments to 0.09%.

  2. Nuclear quantum effects in water

    NASA Astrophysics Data System (ADS)

    Morrone, Joseph; Car, Roberto

    2008-03-01

    In this work, a path integral Car-Parrinello molecular dynamicsootnotetextCPMD V3.11 Copyright IBM Corp 1990-2006, Copyright MPI fuer Festkoerperforschung Stuttgart 1997-2001. simulation of liquid water is performed. It is found that the inclusion of nuclear quantum effects systematically improves the agreement of first-principles simulations of liquid water with experiment. In addition, the proton momentum distribution is computed utilizing a recently developed ``open'' path integral molecular dynamics methodologyootnotetextJ.A. Morrone, V. Srinivasan, D. Sebastiani, R. Car J. Chem. Phys. 126 234504 (2007).. It is shown that these results, which are consistent with our computations of the liquid structure, are in good agreement with neutron Compton scattering dataootnotetextG.F. Reiter, J.C. Li, J. Mayers, T. Abdul-Redah, P. Platzman Braz. J. Phys. 34 142 (2004).. The remaining discrepancies between experiment and the present results are indicative of some degree of over-binding in the hydrogen bond network, likely engendered by the use of semi-local approximations to density functional theory in order to describe the electronic structure.

  3. Quantum Hall effect in momentum space

    NASA Astrophysics Data System (ADS)

    Ozawa, Tomoki; Price, Hannah M.; Carusotto, Iacopo

    2016-05-01

    We theoretically discuss a momentum-space analog of the quantum Hall effect, which could be observed in topologically nontrivial lattice models subject to an external harmonic trapping potential. In our proposal, the Niu-Thouless-Wu formulation of the quantum Hall effect on a torus is realized in the toroidally shaped Brillouin zone. In this analogy, the position of the trap center in real space controls the magnetic fluxes that are inserted through the holes of the torus in momentum space. We illustrate the momentum-space quantum Hall effect with the noninteracting trapped Harper-Hofstadter model, for which we numerically demonstrate how this effect manifests itself in experimental observables. Extension to the interacting trapped Harper-Hofstadter model is also briefly considered. We finally discuss possible experimental platforms where our proposal for the momentum-space quantum Hall effect could be realized.

  4. Effect of temperature and recoil-energy spectra on irradiation-induced amorphization in Ca{sub 2}La{sub 8}(SiO{sub 4}){sub 6}O{sub 2}

    SciTech Connect

    Weber, W.J.; Wang, L.M.

    1993-09-01

    Single crystals of Ca{sub 2}La{sub 8}(SiO{sub 4}){sub 6}O{sub 2} have been irradiated with different ions/energies in an in situ study of the effects of temperature and recoil-energy spectra on irradiation-induced amorphization. The dose for complete amorphization increases with temperature in two stages. The low-temperature stage (below 250 K) has an activation energy of 0.01 {plus_minus} 0.003 eV and is believed to be associated with simultaneous close-pair recombination. The high-temperature stage (above 250 K) has an activation energy of 0.13 {plus_minus} 0.02 eV and may be associated with irradiation-enhanced defect mobility. The critical temperature for amorphization increases from {approximately}360 K for 0.8 MeV Ne{sup +} to {approximately}710 K for 1.5 MeV Kr{sup +}. At 15 K, the amorphization dose is {approximately}0.36 dpa and is independent of recoil-energy spectra. The amorphization dose increases more rapidly with temperature for Ne{sup +} due to the larger fraction of mobile defects produced by the low energy recoils. The temperature dependence is similar for 1.0 MeV Ar{sup +}, 1.5 MeV Kr{sup +}, and 1.5 MeV Xe{sup +}.

  5. Classical and quantum effects in electrodynamics

    NASA Astrophysics Data System (ADS)

    Komar, A. A.

    The papers presented in this volume provide an overview of recent research in the theory of classical and quantum effects in electrodynamics. Topics discussed include radiation from uniformly moving sources, the physics of superhigh-energy neutrinos, the Aharonov-Bohm effect for stationary and coherent states in a homogeneous magnetic field, and correlated coherent states. Papers are also presented on nondegenerate calibration and a generalized canonic formalism, evolution equations for the density matrices of linear open quantum systems, and a quantum particle in a nonstationary Coulomb potential.

  6. Generalized effective description of loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Ashtekar, Abhay; Gupt, Brajesh

    2015-10-01

    The effective description of loop quantum cosmology (LQC) has proved to be a convenient platform to study phenomenological implications of the quantum bounce that resolves the classical big bang singularity. Originally, this description was derived using Gaussian quantum states with small dispersions. In this paper we present a generalization to incorporate states with large dispersions. Specifically, we derive the generalized effective Friedmann and Raychaudhuri equations and propose a generalized effective Hamiltonian which are being used in an ongoing study of the phenomenological consequences of a broad class of quantum geometries. We also discuss an interesting interplay between the physics of states with larger dispersions in standard LQC, and of sharply peaked states in (hypothetical) LQC theories with larger area gap.

  7. Median recoil direction as a WIMP directional detection signal

    NASA Astrophysics Data System (ADS)

    Green, Anne M.; Morgan, Ben

    2010-03-01

    Direct detection experiments have reached the sensitivity to detect dark matter weakly interacting massive particles (WIMPs). Demonstrating that a putative signal is due to WIMPs, and not backgrounds, is a major challenge, however. The direction dependence of the WIMP scattering rate provides a potential WIMP “smoking gun.” If the WIMP distribution is predominantly smooth, the Galactic recoil distribution is peaked in the direction opposite to the direction of Solar motion. Previous studies have found that, for an ideal detector, of order 10 WIMP events would be sufficient to reject isotropy, and rule out an isotropic background. We examine how the median recoil direction could be used to confirm the WIMP origin of an anisotropic recoil signal. Specifically, we determine the number of events required to confirm the direction of solar motion as the median inverse recoil direction at 95% confidence. We find that for zero background 31 events are required, a factor of ˜2 more than are required to simply reject isotropy. We also investigate the effect of a nonzero isotropic background. As the background rate is increased the number of events required increases, initially fairly gradually and then more rapidly, once the signal becomes subdominant. We also discuss the effect of features in the speed distribution at large speeds, as found in recent high resolution simulations, on the median recoil direction.

  8. Median recoil direction as a WIMP directional detection signal

    SciTech Connect

    Green, Anne M.; Morgan, Ben

    2010-03-15

    Direct detection experiments have reached the sensitivity to detect dark matter weakly interacting massive particles (WIMPs). Demonstrating that a putative signal is due to WIMPs, and not backgrounds, is a major challenge, however. The direction dependence of the WIMP scattering rate provides a potential WIMP 'smoking gun'. If the WIMP distribution is predominantly smooth, the Galactic recoil distribution is peaked in the direction opposite to the direction of Solar motion. Previous studies have found that, for an ideal detector, of order 10 WIMP events would be sufficient to reject isotropy, and rule out an isotropic background. We examine how the median recoil direction could be used to confirm the WIMP origin of an anisotropic recoil signal. Specifically, we determine the number of events required to confirm the direction of solar motion as the median inverse recoil direction at 95% confidence. We find that for zero background 31 events are required, a factor of {approx}2 more than are required to simply reject isotropy. We also investigate the effect of a nonzero isotropic background. As the background rate is increased the number of events required increases, initially fairly gradually and then more rapidly, once the signal becomes subdominant. We also discuss the effect of features in the speed distribution at large speeds, as found in recent high resolution simulations, on the median recoil direction.

  9. Quantum well interface broadening effects

    NASA Astrophysics Data System (ADS)

    Gavryushin, Vladimir

    2007-02-01

    We have derived and analyzed the wavefunctions and eigenstates for quantum wells (QW), broadened due to static interface disorder, within Discreet Variable Representation (DVR) approach of Colbert and Miller. The main advantage of this approach, which we have tested, is that it allows to obtain ab-initio and to analyze the shift and broadening of resonance states in a semiconductor quantum wells of different shapes. Calculations based on the convolution methods were used to include the influence of disorder to the formation of heterojunction interfaces.

  10. Classification of macroscopic quantum effects

    NASA Astrophysics Data System (ADS)

    Farrow, Tristan; Vedral, Vlatko

    2015-02-01

    We review canonical experiments on systems that have pushed the boundary between the quantum and classical worlds towards much larger scales, and discuss their unique features that enable quantum coherence to survive. Because the types of systems differ so widely, we use a case by case approach to identifying the different parameters and criteria that capture their behaviour in a quantum mechanical framework. We find it helpful to categorise systems into three broad classes defined by mass, spatio-temporal coherence, and number of particles. The classes are not mutually exclusive and in fact the properties of some systems fit into several classes. We discuss experiments by turn, starting with interference of massive objects like macromolecules and micro-mechanical resonators, followed by self-interference of single particles in complex molecules, before examining the striking advances made with superconducting qubits. Finally, we propose a theoretical basis for quantifying the macroscopic features of a system to lay the ground for a more systematic comparison of the quantum properties in disparate systems.

  11. Locality and universality of quantum memory effects.

    PubMed

    Liu, B-H; Wißmann, S; Hu, X-M; Zhang, C; Huang, Y-F; Li, C-F; Guo, G-C; Karlsson, A; Piilo, J; Breuer, H-P

    2014-01-01

    The modeling and analysis of the dynamics of complex systems often requires to employ non-Markovian stochastic processes. While there is a clear and well-established mathematical definition for non-Markovianity in the case of classical systems, the extension to the quantum regime recently caused a vivid debate, leading to many different proposals for the characterization and quantification of memory effects in the dynamics of open quantum systems. Here, we derive a mathematical representation for the non-Markovianity measure based on the exchange of information between the open system and its environment, which reveals the locality and universality of non-Markovianity in the quantum state space and substantially simplifies its numerical and experimental determination. We further illustrate the application of this representation by means of an all-optical experiment which allows the measurement of the degree of memory effects in a photonic quantum process with high accuracy. PMID:25209643

  12. Locality and universality of quantum memory effects

    NASA Astrophysics Data System (ADS)

    Liu, B.-H.; Wißmann, S.; Hu, X.-M.; Zhang, C.; Huang, Y.-F.; Li, C.-F.; Guo, G.-C.; Karlsson, A.; Piilo, J.; Breuer, H.-P.

    2014-09-01

    The modeling and analysis of the dynamics of complex systems often requires to employ non-Markovian stochastic processes. While there is a clear and well-established mathematical definition for non-Markovianity in the case of classical systems, the extension to the quantum regime recently caused a vivid debate, leading to many different proposals for the characterization and quantification of memory effects in the dynamics of open quantum systems. Here, we derive a mathematical representation for the non-Markovianity measure based on the exchange of information between the open system and its environment, which reveals the locality and universality of non-Markovianity in the quantum state space and substantially simplifies its numerical and experimental determination. We further illustrate the application of this representation by means of an all-optical experiment which allows the measurement of the degree of memory effects in a photonic quantum process with high accuracy.

  13. Fractional quantum Hall effect in HgTe quantum wells

    NASA Astrophysics Data System (ADS)

    Wang, Jianhui

    2016-02-01

    We study the possibility of fractional quantum Hall effects in HgTe quantum wells using exact diagonalization. Our results show that Laughlin states, the Moore-Read state, and the Read-Rezayi Z3 state can all be supported. However, near the level crossing point (of the single-particle spectrum) the gap can be destroyed by Landau level mixing, and the Moore-Read state and the Read-Rezayi state dominate over their respective competing states only for wide wells. For smaller well widths the Moore-Read state crosses over to the composite fermion Fermi sea, while the Read-Rezayi state loses its dominance over the hierarchy state.

  14. Coherent quantum effects through dispersive bosonic media

    SciTech Connect

    Ye Saiyun; Yang Zhenbiao; Zheng Shibiao; Serafini, Alessio

    2010-07-15

    The coherent evolution of two qubits mediated by a set of bosonic field modes is investigated. By assuming a specific asymmetric encoding of the quantum states in the internal levels of the qubits, we show that entangling quantum gates can be realized, with high fidelity, even when a large number of mediating modes is involved. The effect of losses and imperfections on the gates' operation is also considered in detail.

  15. Possible observational effects of loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Mielczarek, Jakub

    2010-03-01

    In this paper, we consider realistic model of inflation embedded in the framework of loop quantum cosmology. Phase of inflation is preceded here by the phase of a quantum bounce. We show how parameters of inflation depend on the initial conditions established in the contracting, prebounce phase. Our investigations indicate that phase of the bounce easily sets proper initial conditions for the inflation. Subsequently, we study observational effects that might arise due to the quantum gravitational modifications. We perform preliminary observational constraints for the Barbero-Immirzi parameter γ, critical density ρc, and parameter λ. In the next step, we study effects on power spectrum of perturbations. We calculate spectrum of perturbations from the bounce and from the joined bounce+inflation phase. Based on these studies, we indicate a possible way to relate quantum cosmological models with the astronomical observations. Using the Sachs-Wolfe approximation, we calculate the spectrum of the superhorizontal CMB anisotropies. We show that quantum cosmological effects can, in the natural way, explain suppression of the low CMB multipoles. We show that fine-tuning is not required here, and the model is consistent with observations. We also analyze other possible probes of the quantum cosmologies and discuss perspectives of their implementation.

  16. Effective pure states for bulk quantum computation

    SciTech Connect

    Knill, E.; Chuang, I.; Laflamme, R.

    1997-11-01

    In bulk quantum computation one can manipulate a large number of indistinguishable quantum computers by parallel unitary operations and measure expectation values of certain observables with limited sensitivity. The initial state of each computer in the ensemble is known but not pure. Methods for obtaining effective pure input states by a series of manipulations have been described by Gershenfeld and Chuang (logical labeling) and Corey et al. (spatial averaging) for the case of quantum computation with nuclear magnetic resonance. We give a different technique called temporal averaging. This method is based on classical randomization, requires no ancilla qubits and can be implemented in nuclear magnetic resonance without using gradient fields. We introduce several temporal averaging algorithms suitable for both high temperature and low temperature bulk quantum computing and analyze the signal to noise behavior of each.

  17. Effects of molecular rotation after ionization and prior to fragmentation on observed recoil-frame photoelectron angular distributions in the dissociative photoionization of nonlinear molecules

    NASA Astrophysics Data System (ADS)

    López-Domínguez, Jesús A.; Lucchese, Robert R.

    2016-03-01

    Experimental angle-resolved photoelectron-photoion coincidence experiments measure photoelectron angular distributions (PADs) in dissociative photoionization (DPI) in the reference frame provided by the momenta of the emitted heavy fragments. By extension of the nomenclature used with DPI of diatomic molecules, we refer to such a PAD as a recoil-frame PAD (RFPAD). When the dissociation is fast compared to molecular rotational and bending motions, the emission directions of the heavy fragments can be used to determine the orientation of the bonds that are broken in the DPI at the time of the ionization, which is known as the axial-recoil approximation (ARA). When the ARA is valid, the RFPADs correspond to molecular-frame photoelectron angular distributions (MFPADs) when the momenta of a sufficient number of the heavy fragments are determined. When only two fragments are formed, the experiment cannot measure the orientation of the fragments about the recoil axes so that the resulting measured PAD is an azimuthally averaged RFPAD (AA-RFPAD). In this study we consider how the breakdown of the ARA due to rotation will modify the observed RFPADs for DPI processes in nonlinear molecules for ionization by light of arbitrary polarization. This model is applied to the core C 1 s DPI of CH4, with the results compared to experimental measurements and previous theoretical calculations done within the ARA. The published results indicate that there is a breakdown in the ARA for two-fragment events where the heavy-fragment kinetic energy release was less than 9 eV. Including the breakdown of the ARA due to rotation in our calculations gives very good agreement with the experimental AA-RFPAD, leading to an estimate of upper bounds on the predissociative lifetimes as a function of the kinetic energy release of the intermediate ion states formed in the DPI process.

  18. Berkeley Experiments on Superfluid Macroscopic Quantum Effects

    SciTech Connect

    Packard, Richard

    2006-09-07

    This paper provides a brief history of the evolution of the Berkeley experiments on macroscopic quantum effects in superfluid helium. The narrative follows the evolution of the experiments proceeding from the detection of single vortex lines to vortex photography to quantized circulation in 3He to Josephson effects and superfluid gyroscopes in both 4He and 3He.

  19. Quantum metrology and estimation of Unruh effect

    PubMed Central

    Wang, Jieci; Tian, Zehua; Jing, Jiliang; Fan, Heng

    2014-01-01

    We study the quantum metrology for a pair of entangled Unruh-Dewitt detectors when one of them is accelerated and coupled to a massless scalar field. Comparing with previous schemes, our model requires only local interaction and avoids the use of cavities in the probe state preparation process. We show that the probe state preparation and the interaction between the accelerated detector and the external field have significant effects on the value of quantum Fisher information, correspondingly pose variable ultimate limit of precision in the estimation of Unruh effect. We find that the precision of the estimation can be improved by a larger effective coupling strength and a longer interaction time. Alternatively, the energy gap of the detector has a range that can provide us a better precision. Thus we may adjust those parameters and attain a higher precision in the estimation. We also find that an extremely high acceleration is not required in the quantum metrology process. PMID:25424772

  20. Spectral Effects in Quantum Teleportation

    SciTech Connect

    Humble, Travis S; Grice, Warren P

    2007-01-01

    We use a multimode description of polarization-encoded qubits to analyze the quantum teleportation protocol. Specifically, we investigate how the teleportation fidelity depends on the spectral correlations inherent to polarization-entangled photons generated by type-II spontaneous parametric down conversion. We find that the maximal obtainable fidelity depends on the spectral entanglement carried by the joint probability amplitude, a result which we quantify for the case of a joint spectrum approximated by a correlated Gaussian function. We contrast these results with a similar analysis of the visibility obtained in a polarization-correlation experiment.

  1. Spectral effects in quantum teleportation

    SciTech Connect

    Humble, Travis S.; Grice, Warren P.

    2007-02-15

    We use a multimode description of polarization-encoded qubits to analyze the quantum teleportation protocol. Specifically, we investigate how the teleportation fidelity depends on the spectral correlations inherent to polarization-entangled photons generated by type-II spontaneous parametric down conversion. We find that the maximal obtainable fidelity depends on the spectral entanglement carried by the joint probability amplitude, a result which we quantify for the case of a joint spectrum approximated by a correlated Gaussian function. We contrast these results with a similar analysis of the visibility obtained in a polarization-correlation experiment.

  2. Dynamical Casimir effect and quantum cosmology

    NASA Astrophysics Data System (ADS)

    Brevik, I.; Milton, K. A.; Odintsov, S. D.; Osetrin, K. E.

    2000-09-01

    We apply the background field method and the effective action formalism to describe the four-dimensional dynamical Casimir effect. Our picture corresponds to the consideration of quantum cosmology for an expanding FRW universe (the boundary conditions act as a moving mirror) filled by a quantum massless GUT which is conformally invariant. We consider cases in which the static Casimir energy is attractive and repulsive. Inserting the simplest possible inertial term, we find, in the adiabatic (and semiclassical) approximation, the dynamical evolution of the scale factor and the dynamical Casimir stress analytically and numerically [for SU(2) super Yang-Mills theory]. Alternative kinetic energy terms are explored in the Appendix.

  3. The effects of nonextensivity on quantum dissipation

    NASA Astrophysics Data System (ADS)

    Choi, Jeong Ryeol

    2014-01-01

    Nonextensive dynamics for a quantum dissipative system described by a Caldirola-Kanai (CK) Hamiltonian is investigated in SU(1,1) coherent states. To see the effects of nonextensivity, the system is generalized through a modification fulfilled by replacing the ordinary exponential function in the standard CK Hamiltonian with the q-exponential function. We confirmed that the time behavior of the system is somewhat different depending on the value of q which is the degree of nonextensivity. The effects of q on quantum energy dissipation and other parameters are illustrated and discussed in detail.

  4. Quantum Plasma Effects in the Classical Regime

    SciTech Connect

    Brodin, G.; Marklund, M.; Manfredi, G.

    2008-05-02

    For quantum effects to be significant in plasmas it is often assumed that the temperature over density ratio must be small. In this paper we challenge this assumption by considering the contribution to the dynamics from the electron spin properties. As a starting point we consider a multicomponent plasma model, where electrons with spin-up and spin-down are regarded as different fluids. By studying the propagation of Alfven wave solitons we demonstrate that quantum effects can survive in a relatively high-temperature plasma. The consequences of our results are discussed.

  5. Quantum Hall effect in semiconductor systems with quantum dots and antidots

    SciTech Connect

    Beltukov, Ya. M.; Greshnov, A. A.

    2015-04-15

    The integer quantum Hall effect in systems of semiconductor quantum dots and antidots is studied theoretically as a factor of temperature. It is established that the conditions for carrier localization in quantum-dot systems favor the observation of the quantum Hall effect at higher temperatures than in quantum-well systems. The obtained numerical results show that the fundamental plateau corresponding to the transition between the ground and first excited Landau levels can be retained up to a temperature of T ∼ 50 K, which is an order of magnitude higher than in the case of quantum wells. Implementation of the quantum Hall effect at such temperatures requires quantum-dot systems with controllable characteristics, including the optimal size and concentration and moderate geometrical and composition fluctuations. In addition, ordered arrangement is desirable, hence quantum antidots are preferable.

  6. Developments in the quantum Hall effect.

    PubMed

    von Klitzing, Klaus

    2005-09-15

    The most important applications of the quantum Hall effect (QHE) are in the field of metrology. The observed quantization of the resistance is primarily used for the reproduction of the SI unit ohm, but is also important for high precision measurements of both the fine structure constant and the Planck constant. Some current QHE research areas include the analysis of new electron-electron correlation phenomena and the development of a more complete microscopic picture of this quantum effect. Recently, scanning force microscopy (SFM) of the potential distribution in QHE devices has been used to enhance the microscopic understanding of current flow in quantum Hall systems. This confirms the importance of the theoretically predicted stripes of compressible and incompressible electronic states close to the boundary of the QHE devices. PMID:16147506

  7. Four pi-recoil proportional counter used as neutron spectrometer

    NASA Technical Reports Server (NTRS)

    Bennett, E. F.

    1968-01-01

    Study considers problems encountered in using 4 pi-recoil counters for neutron spectra measurement. Emphasis is placed on calibration, shape discrimination, variation of W, the average energy loss per ion pair, and the effects of differentiation on the intrinsic counter resolution.

  8. Electron recombination in low-energy nuclear recoils tracks in liquid argon

    NASA Astrophysics Data System (ADS)

    Wojcik, M.

    2016-02-01

    This paper presents an analysis of electron-ion recombination processes in ionization tracks of recoiled atoms in liquid argon (LAr) detectors. The analysis is based on the results of computer simulations which use realistic models of electron transport and reactions. The calculations reproduce the recent experimental results of the ionization yield from 6.7 keV nuclear recoils in LAr. The statistical distribution of the number of electrons that escape recombination is found to deviate from the binomial distribution, and estimates of recombination fluctuations for nuclear recoils tracks are obtained. A study of the recombination kinetics shows that a significant part of electrons undergo very fast static recombination, an effect that may be responsible for the weak drift-field dependence of the ionization yield from nuclear recoils in some noble liquids. The obtained results can be useful in the search for hypothetical dark matter particles and in other studies that involve detection of recoiled nuclei.

  9. Introducing quantum effects in classical theories

    NASA Astrophysics Data System (ADS)

    Fabris, J. C.; Piattella, O. F.; Rodrigues, D. C.; Chauvineau, B.; Daouda, M. H.

    2016-01-01

    In this paper, we explore two different ways of implementing quantum effects in a classical structure. The first one is through an external field. The other one is modifying the classical conservation laws. In both cases, the consequences for the description of the evolution of the universe are discussed.

  10. Nuclear astrophysics with a recoil mass separator

    NASA Astrophysics Data System (ADS)

    Strieder, Frank

    2001-04-01

    Radiative capture reactions, like (α,γ)- and (p,γ)-reactions, are of great importance for the understanding of the different burning phases in stars. In most cases laboratory studies of some key reactions are very difficult due to the low cross section at the relevant Gamow energy where the stellar burning occurs. A new approach to measure these capture cross sections involves a two-sided differentially pumped gas target, a recoil mass separator, and a ΔE-E detector telescope (allowing for particle identification) as detection system. This combination allows a direct measurement of the produced recoils in inverse kinematics. The direct observation of the recoils requires an efficient recoil mass separator to filter out the incident beam particles from the recoils. The recoil separator must not only have a high filtering power but also a high transmission of the recoils (for the selected charge state) between the gas target chamber and the ΔE-E telescope. The feasibility of the separation of projectiles and recoils with a mass difference of 1 amu to 1 part in 1011 or more has been demonstrated in various experiments. A few of these experiments are discussed in this paper. .

  11. Nonlinear quantum effects on electron transfer reactions

    NASA Astrophysics Data System (ADS)

    Yoshimori, A.

    1995-03-01

    An approximate expression is developed for a nonadiabatic electron transfer rate to estimate quantum effects of nuclear rearrangements. The time-dependent formula for Fermi's golden rule is expanded by Plank's constant to the second order, using the Wigner transformation. The method of h̵- expansion is applicable to systems with nonlinear potentials or many degrees of freedom. Using a continuum approximation, from the expansion, a rate expression is obtained, including sizes of reactants and a distance between reactants explicitly. The ratio of the obtained rate to the classical rate agrees well with a ratio by a quantum Monte Carlo simulation.

  12. Significant Quantum Effects in Hydrogen Activation

    PubMed Central

    2014-01-01

    Dissociation of molecular hydrogen is an important step in a wide variety of chemical, biological, and physical processes. Due to the light mass of hydrogen, it is recognized that quantum effects are often important to its reactivity. However, understanding how quantum effects impact the reactivity of hydrogen is still in its infancy. Here, we examine this issue using a well-defined Pd/Cu(111) alloy that allows the activation of hydrogen and deuterium molecules to be examined at individual Pd atom surface sites over a wide range of temperatures. Experiments comparing the uptake of hydrogen and deuterium as a function of temperature reveal completely different behavior of the two species. The rate of hydrogen activation increases at lower sample temperature, whereas deuterium activation slows as the temperature is lowered. Density functional theory simulations in which quantum nuclear effects are accounted for reveal that tunneling through the dissociation barrier is prevalent for H2 up to ∼190 K and for D2 up to ∼140 K. Kinetic Monte Carlo simulations indicate that the effective barrier to H2 dissociation is so low that hydrogen uptake on the surface is limited merely by thermodynamics, whereas the D2 dissociation process is controlled by kinetics. These data illustrate the complexity and inherent quantum nature of this ubiquitous and seemingly simple chemical process. Examining these effects in other systems with a similar range of approaches may uncover temperature regimes where quantum effects can be harnessed, yielding greater control of bond-breaking processes at surfaces and uncovering useful chemistries such as selective bond activation or isotope separation. PMID:24684530

  13. Significant Quantum Effects in Hydrogen Activation

    SciTech Connect

    Kyriakou, Georgios; Davidson, Erlend R.; Peng, Guowen; Roling, Luke T.; Singh, Suyash; Boucher, Matthew B.; Marcinkowski, Matthew D.; Mavrikakis, Manos; Michaelides, Angelos; Sykes, E. Charles H.

    2014-03-31

    Dissociation of molecular hydrogen is an important step in a wide variety of chemical, biological, and physical processes. Due to the light mass of hydrogen, it is recognized that quantum effects are often important to its reactivity. However, understanding how quantum effects impact the reactivity of hydrogen is still in its infancy. Here, we examine this issue using a well-defined Pd/Cu(111) alloy that allows the activation of hydrogen and deuterium molecules to be examined at individual Pd atom surface sites over a wide range of temperatures. Experiments comparing the uptake of hydrogen and deuterium as a function of temperature reveal completely different behavior of the two species. The rate of hydrogen activation increases at lower sample temperature, whereas deuterium activation slows as the temperature is lowered. Density functional theory simulations in which quantum nuclear effects are accounted for reveal that tunneling through the dissociation barrier is prevalent for H2 up to 190 K and for D2 up to 140 K. Kinetic Monte Carlo simulations indicate that the effective barrier to H2 dissociation is so low that hydrogen uptake on the surface is limited merely by thermodynamics, whereas the D2 dissociation process is controlled by kinetics. These data illustrate the complexity and inherent quantum nature of this ubiquitous and seemingly simple chemical process. Examining these effects in other systems with a similar range of approaches may uncover temperature regimes where quantum effects can be harnessed, yielding greater control of bond-breaking processes at surfaces and uncovering useful chemistries such as selective bond activation or isotope separation.

  14. Optical lattice quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Palmer, Rebecca N.; Klein, Alexander; Jaksch, Dieter

    2008-07-01

    We explore the behavior of interacting bosonic atoms in an optical lattice subject to a large artificial magnetic field. We extend earlier investigations of this system where the number of magnetic flux quanta per unit cell α is close to a simple rational number [R. N. Palmer and D. Jaksch, Phys. Rev. Lett. 96, 180407 (2006)]. Interesting topological states such as the Laughlin and Read-Rezayi states can occur even if the atoms experience a weak trapping potential in one direction. An explicit numerical calculation near α=1/2 shows that the system exhibits a striped vortex lattice phase of one species, which is analogous to the behavior of a two-species system for small α . We also investigate methods to probe the encountered states. These include spatial correlation functions and the measurement of noise correlations in time-of-flight expanded atomic clouds. Characteristic differences arise which allow for an identification of the respective quantum Hall states. We furthermore discuss that a counterintuitive flow of the Hall current occurs for certain values of α .

  15. Effective equilibrium theory of nonequilibrium quantum transport

    SciTech Connect

    Dutt, Prasenjit; Koch, Jens; Han, Jong; Le Hur, Karyn

    2011-12-15

    The theoretical description of strongly correlated quantum systems out of equilibrium presents several challenges and a number of open questions persist. Here, we focus on nonlinear electronic transport through an interacting quantum dot maintained at finite bias using a concept introduced by Hershfield [S. Hershfield, Phys. Rev. Lett. 70 2134 (1993)] whereby one can express such nonequilibrium quantum impurity models in terms of the system's Lippmann-Schwinger operators. These scattering operators allow one to reformulate the nonequilibrium problem as an effective equilibrium problem associated with a modified Hamiltonian. In this paper, we provide a pedagogical analysis of the core concepts of the effective equilibrium theory. First, we demonstrate the equivalence between observables computed using the Schwinger-Keldysh framework and the effective equilibrium approach, and relate Green's functions in the two theoretical frameworks. Second, we expound some applications of this method in the context of interacting quantum impurity models. We introduce a novel framework to treat effects of interactions perturbatively while capturing the entire dependence on the bias voltage. For the sake of concreteness, we employ the Anderson model as a prototype for this scheme. Working at the particle-hole symmetric point, we investigate the fate of the Abrikosov-Suhl resonance as a function of bias voltage and magnetic field. - Highlights: > Reformulation of steady-state nonequilibrium quantum transport, following Hershfield. > Derivation of effective equilibrium density operator using the 'open-system' approach. > Equivalence with the Keldysh description and formulas relating the two approaches. > Novel framework to treat interactions perturbatively. > Application to nonequilibrium Anderson model and fate of Abrikosov-Suhl resonance.

  16. Quantum Anomalous Hall Effect in Hg_1-yMn_yTe Quantum Wells

    SciTech Connect

    Liu, Chao-Xing; Qi, Xiao-Liang; Dai, Xi; Fang, Zhong; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    The quantum Hall effect is usually observed when the two-dimensional electron gas is subjected to an external magnetic field, so that their quantum states form Landau levels. In this work we predict that a new phenomenon, the quantum anomalous Hall effect, can be realized in Hg{sub 1-y}Mn{sub y}Te quantum wells, without the external magnetic field and the associated Landau levels. This effect arises purely from the spin polarization of the Mn atoms, and the quantized Hall conductance is predicted for a range of quantum well thickness and the concentration of the Mn atoms. This effect enables dissipationless charge current in spintronics devices.

  17. Electron-exchange and quantum screening effects on the collisional entanglement fidelity in degenerate quantum plasmas

    NASA Astrophysics Data System (ADS)

    Hong, Woo-Pyo; Jung, Young-Dae

    2014-06-01

    The influence of electron-exchange and quantum screening on the collisional entanglement fidelity for the elastic electron-ion collision is investigated in degenerate quantum plasmas. The effective Shukla-Eliasson potential and the partial wave method are used to obtain the collisional entanglement fidelity in quantum plasmas as a function of the electron-exchange parameter, Fermi energy, plasmon energy and collision energy. The results show that the quantum screening effect enhances the entanglement fidelity in quantum plasmas. However, it is found that the electron-exchange effect strongly suppresses the collisional entanglement fidelity. Hence, we have found that the influence of the electron-exchange reduces the transmission of quantum information in quantum plasmas. In addition, it is found that, although the entanglement fidelity decreases with an increase of the Fermi energy, it increases with increasing plasmon energy in degenerate quantum plasmas.

  18. Measurement of Nuclear Recoils in the CDMS II Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Fallows, Scott M.

    The Cryogenic Dark Matter Search (CDMS) experiment is designed to directly detect elastic scatters of weakly-interacting massive dark matter particles (WIMPs), on target nuclei in semiconductor crystals composed of Si and Ge. These scatters would occur very rarely, in an overwhelming background composed primarily of electron recoils from photons and electrons, as well as a smaller but non-negligible background of WIMP-like nuclear recoils from neutrons. The CDMS~II generation of detectors simultaneously measure ionization and athermal phonon signals from each scatter, allowing discrimination against virtually all electron recoils in the detector bulk. Pulse-shape timing analysis allows discrimination against nearly all remaining electron recoils taking place near detector surfaces. Along with carefully limited neutron backgrounds, this experimental program allowed for "background-free'' operation of CDMS~II at Soudan, with less than one background event expected in each WIMP-search analysis. As a result, exclusionary upper-limits on WIMP-nucleon interaction cross section were placed over a wide range of candidate WIMP masses, ruling out large new regions of parameter space. These results, like any others, are subject to a variety of systematic effects that may alter their final interpretations. A primary focus of this dissertation will be difficulties in precisely calibrating the energy scale for nuclear recoil events like those from WIMPs. Nuclear recoils have suppressed ionization signals relative to electron recoils of the same recoil energy, so the response of the detectors is calibrated differently for each recoil type. The overall normalization and linearity of the energy scale for electron recoils in CDMS~II detectors is clearly established by peaks of known gamma energy in the ionization spectrum of calibration data from a 133Ba source. This electron-equivalent keVee) energy scale enables calibration of the total phonon signal (keVt) by enforcing unity yield for electron recoils, in aggregate. Subtracting an event's Luke phonon contribution from its calibrated total phonon energy (keV t), as measured by the ionization signal, results in a valid measure of the true recoil energy (keVr) for both electron and nuclear recoils. I discuss systematic uncertainties affecting the reconstruction of this recoil energy, the primary analysis variable, and use several methods to constrain their magnitude. I present the resulting adjusted WIMP limits and discuss their impact in the context of current and projected constraints on the parameter space for WIMP interactions.

  19. A programmable quantum current standard from the Josephson and the quantum Hall effects

    SciTech Connect

    Poirier, W. Lafont, F.; Djordjevic, S.; Schopfer, F.; Devoille, L.

    2014-01-28

    We propose a way to realize a programmable quantum current standard (PQCS) from the Josephson voltage standard and the quantum Hall resistance standard (QHR) exploiting the multiple connection technique provided by the quantum Hall effect (QHE) and the exactness of the cryogenic current comparator. The PQCS could lead to breakthroughs in electrical metrology like the realization of a programmable quantum current source, a quantum ampere-meter, and a simplified closure of the quantum metrological triangle. Moreover, very accurate universality tests of the QHE could be performed by comparing PQCS based on different QHRs.

  20. Introduction to Quantum Effects in Gravity

    NASA Astrophysics Data System (ADS)

    Mukhanov, Viatcheslav; Winitzki, Sergei

    2007-01-01

    This is the first introductory textbook on quantum field theory in gravitational backgrounds intended for undergraduate and beginning graduate students in the fields of theoretical astrophysics, cosmology, particle physics, and string theory. The book covers the basic (but essential) material of quantization of fields in an expanding universe and quantum fluctuations in inflationary spacetime. It also contains a detailed explanation of the Casimir, Unruh, and Hawking effects, and introduces the method of effective action used for calculating the back-reaction of quantum systems on a classical external gravitational field. The broad scope of the material covered will provide the reader with a thorough perspective of the subject. Every major result is derived from first principles and thoroughly explained. The book is self-contained and assumes only a basic knowledge of general relativity. Exercises with detailed solutions are provided throughout the book. The first introductory textbook on quantum field theory in gravitational backgrounds for undergraduate and beginning graduate students Contains exercises with detailed solutions Self-contained, covering a broad scope of material

  1. Recoil-decay tagging spectroscopy of 74162W88

    NASA Astrophysics Data System (ADS)

    Li, H. J.; Cederwall, B.; Bäck, T.; Qi, C.; Doncel, M.; Jakobsson, U.; Auranen, K.; Bönig, S.; Drummond, M. C.; Grahn, T.; Greenlees, P.; HerzáÅ, A.; Julin, R.; Juutinen, S.; Konki, J.; Kröll, T.; Leino, M.; McPeake, C.; O'Donnell, D.; Page, R. D.; Pakarinen, J.; Partanen, J.; Peura, P.; Rahkila, P.; Ruotsalainen, P.; Sandzelius, M.; Sarén, J.; Sayǧı, B.; Scholey, C.; Sorri, J.; Stolze, S.; Taylor, M. J.; Thornthwaite, A.; Uusitalo, J.; Xiao, Z. G.

    2015-07-01

    Excited states in the highly neutron-deficient nucleus 162W have been investigated via the 92Mo (78Kr,2α ) 162W reaction. Prompt γ rays were detected by the JUROGAM II high-purity germanium detector array and the recoiling fusion-evaporation products were separated by the recoil ion transport unit (RITU) gas-filled recoil separator and identified with the gamma recoil electron alpha tagging (GREAT) spectrometer at the focal plane of RITU. γ rays from 162W were identified uniquely using mother-daughter and mother-daughter-granddaughter α -decay correlations. The observation of a rotational-like ground-state band is interpreted within the framework of total Routhian surface (TRS) calculations, which suggest an axially symmetric ground-state shape with a γ -soft minimum at β2≈0.15 . Quasiparticle alignment effects are discussed based on cranked shell model calculations. New measurements of the 162W ground-state α -decay energy and half-life were also performed. The observed α -decay energy agrees with previous measurements. The half-life of 162W was determined to be t1 /2=990 (30 ) ms. This value deviates significantly from the currently adopted value of t1 /2=1360 (70 ) ms. In addition, the α -decay energy and half-life of 166Os were measured and found to agree with the adopted values.

  2. Doppler- and recoil-free laser excitation of Rydberg states via three-photon transitions

    SciTech Connect

    Ryabtsev, I. I.; Beterov, I. I.; Tretyakov, D. B.; Entin, V. M.; Yakshina, E. A.

    2011-11-15

    Three-photon laser excitation of Rydberg states by three different laser beams can be arranged in a starlike geometry that simultaneously eliminates the recoil effect and Doppler broadening. Our analytical and numerical calculations for a particular laser excitation scheme 5S{sub 1/2}{yields}5P{sub 3/2}{yields}6S{sub 1/2}{yields}nP in Rb atoms have shown that, compared to the one- and two-photon laser excitation, this approach provides much narrower linewidth and longer coherence time for both cold atom samples and hot vapors, if the intermediate one-photon resonances of the three-photon transition are detuned by more than respective single-photon Doppler widths. This method can be used to improve fidelity of Rydberg quantum gates and precision of spectroscopic measurements in Rydberg atoms.

  3. Reentrant Quantum Hall Effect at Low Fields

    NASA Astrophysics Data System (ADS)

    Jiang, H. W.

    1997-03-01

    Several recent experiments, on various semiconductor heterostructures, have shown that an insulating phase at zero field can undergo a phase transition to the quantum Hall effect phase in an applied magnetic field.(see for example, H. W. Jiang, C. E. Johnson, K. L. Wang, and S. T. Hannahs, Phys. Rev. Lett. 71, 1439 (1993).) To understand this phenomena, we have studied the evolution of the quantum Hall effect at low fields.(I. Glozman, C. E. Johnson, and H. W. Jiang, Phys. Rev. Lett. 74, 594 (1995).) We found that the chemical potential of the lowest delocalized-state band not only deviates from the host Landau level center, but also "floats up" above the Fermi level as B goes to zero. In the region where the floating of delocalized states is observed, we have also found that the position of the conductivity minimum in the density - field plane to be strongly path-dependent. This path dependence has, in fact, given us information to quantitatively link the floating to Landau level mixing.(I. Glozman, C. E. Johnson, and H. W. Jiang, Phys. Rev. B 52, R14348 (1995).) The similar studies have been extended to the fractional quantum Hall effect regime.(L. W. Wong, H. W. Jiang, and W. J. Schaff, Phys. Rev. B54, Dec. 15, in press (1996).) The potential floating of the delocalized states of composite-fermions in a vanishing effective field will be discussed.

  4. Gas powered fluid gun with recoil mitigation

    DOEpatents

    Grubelich, Mark C; Yonas, Gerold

    2013-11-12

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  5. Gas powered fluid gun with recoil mitigation

    DOEpatents

    Grubelich, Mark C.; Yonas, Gerold

    2016-03-01

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  6. Quantum gravity effects in the Kerr spacetime

    SciTech Connect

    Reuter, M.; Tuiran, E.

    2011-02-15

    We analyze the impact of the leading quantum gravity effects on the properties of black holes with nonzero angular momentum by performing a suitable renormalization group improvement of the classical Kerr metric within quantum Einstein gravity. In particular, we explore the structure of the horizons, the ergosphere, and the static limit surfaces as well as the phase space available for the Penrose process. The positivity properties of the effective vacuum energy-momentum tensor are also discussed and the 'dressing' of the black hole's mass and angular momentum are investigated by computing the corresponding Komar integrals. The pertinent Smarr formula turns out to retain its classical form. As for their thermodynamical properties, a modified first law of black-hole thermodynamics is found to be satisfied by the improved black holes (to second order in the angular momentum); the corresponding Bekenstein-Hawking temperature is not proportional to the surface gravity.

  7. The pinning effect in quantum dots

    SciTech Connect

    Monisha, P. J.; Mukhopadhyay, Soma

    2014-04-24

    The pinning effect is studied in a Gaussian quantum dot using the improved Wigner-Brillouin perturbation theory (IWBPT) in the presence of electron-phonon interaction. The electron ground state plus one phonon state is degenerate with the electron in the first excited state. The electron-phonon interaction lifts the degeneracy and the first excited states get pinned to the ground state plus one phonon state as we increase the confinement frequency.

  8. Quantum Gravitational Effects and Grand Unification

    SciTech Connect

    Calmet, Xavier; Hsu, Stephen D. H.; Reeb, David

    2008-11-23

    In grand unified theories with large numbers of fields, renormalization effects significantly modify the scale at which quantum gravity becomes strong. This in turn can modify the boundary conditions for coupling constant unification, if higher dimensional operators induced by gravity are taken into consideration. We show that the generic size of, and the uncertainty in, these effects from gravity can be larger than the two-loop corrections typically considered in renormalization group analyses of unification. In some cases, gravitational effects of modest size can render unification impossible.

  9. Grand Unification and Enhanced Quantum Gravitational Effects

    SciTech Connect

    Calmet, Xavier; Hsu, Stephen D. H.; Reeb, David

    2008-10-24

    In grand unified theories with large numbers of fields, renormalization effects significantly modify the scale at which quantum gravity becomes strong. This in turn can modify the boundary conditions for coupling constant unification, if higher dimensional operators induced by gravity are taken into consideration. We show that the generic size of, and the uncertainty in, these effects from gravity can be larger than the two-loop corrections typically considered in renormalization group analyses of unification. In some cases, gravitational effects of modest size can render unification impossible.

  10. Retention studies of recoiling daughter nuclides of 225Ac in polymer vesicles.

    PubMed

    Wang, G; de Kruijff, R M; Rol, A; Thijssen, L; Mendes, E; Morgenstern, A; Bruchertseifer, F; Stuart, M C A; Wolterbeek, H T; Denkova, A G

    2014-02-01

    Alpha radionuclide therapy is steadily gaining importance and a large number of pre-clinical and clinical studies have been carried out. However, due to the recoil effects the daughter recoil atoms, most of which are alpha emitters as well, receive energies that are much higher than the energies of chemical bonds resulting in decoupling of the radionuclide from common targeting agents. Here, we demonstrate that polymer vesicles (i.e. polymersomes) can retain recoiling daughter nuclei based on an experimental study examining the retention of (221)Fr and (213)Bi when encapsulating (225)Ac. PMID:24374072

  11. Investigation of potential profile effects in quantum dot and onion-like quantum dot-quantum well on optical properties

    NASA Astrophysics Data System (ADS)

    Elyasi, P.; SalmanOgli, A.

    2014-05-01

    This paper investigates GaAs/AlGaAs modified quantum dot nanocrystal and GaAs/AlGaAs/GaAs/AlGaAs quantum dot-quantum well heteronanocrystal. These quantum dots have been analyzed by the finite element numerical methods. Simulations carried out for state n=1, l=0, and m=0 which are original, orbital, and magnetic state of quantum numbers. The effects of variation in radius layers such as total radius, GaAs core, shell and AlGaAs barriers radius on the wavelength and emission coefficient are studied. For the best time, it has also investigated the effect of mole fraction on emission coefficient. Meanwhile, one of the problems in biological applications is alteration of the emission wavelength of a quantum dot by changing in its dimension. This problem will be resolved by changing in potential profile.

  12. Quantum nonlocal effects on optical properties of spherical nanoparticles

    SciTech Connect

    Moradi, Afshin

    2015-02-15

    To study the scattering of electromagnetic radiation by a spherical metallic nanoparticle with quantum spatial dispersion, we develop the standard nonlocal Mie theory by allowing for the excitation of the quantum longitudinal plasmon modes. To describe the quantum nonlocal effects, we use the quantum longitudinal dielectric function of the system. As in the standard Mie theory, the electromagnetic fields are expanded in terms of spherical vector wavefunctions. Then, the usual Maxwell boundary conditions are imposed plus the appropriate additional boundary conditions. Examples of calculated extinction spectra are presented, and it is found that the frequencies of the subsidiary peaks, due to quantum bulk plasmon excitations exhibit strong dependence on the quantum spatial dispersion.

  13. Non-adiabatic effect on quantum pumping

    NASA Astrophysics Data System (ADS)

    Uchiyama, Chikako

    2014-03-01

    We study quantum pumping for an anharmonic junction model which interacts with two kinds of bosonic environments. We provide an expression for the quantum pumping under a piecewise modulation of environmental temperatures with including non-adiabatic effect under Markovian approximation. The obtained formula is an extension of the one expressed with the geometrical phase(Phys. Rev. Lett. 104,170601 (2010)). This extension shows that the quantum pumping depends on the initial condition of the anharmonic junction just before the modulation, as well as the characteristic environmental parameters such as interaction strength and cut-off frequencies of spectral density other than the conditions of modulation. We clarify that the pumping current including non-adiabatic effect can be larger than that under the adiabatic condition. This means that we can find the optimal condition of the current by adjusting these parameters. (The article has been submitted as http://arxiv.org/submit/848201 and will be appeared soon.) This work is supported by a Grant-in-Aid for Scientific Research (B) (KAKENHI 25287098).

  14. Integer quantum Hall effect in graphene

    NASA Astrophysics Data System (ADS)

    Jellal, Ahmed

    2016-04-01

    We study the quantum Hall effect in a monolayer graphene by using an approach based on thermodynamical properties. This can be done by considering a system of Dirac particles in an electromagnetic field and taking into account of the edges effect as a pseudo-potential varying continuously along the x direction. At low temperature and in the weak electric field limit, we explicitly determine the thermodynamical potential. With this, we derive the particle numbers in terms of the quantized flux and therefore the Hall conductivity immediately follows.

  15. Excitons in the Fractional Quantum Hall Effect

    DOE R&D Accomplishments Database

    Laughlin, R. B.

    1984-09-01

    Quasiparticles of charge 1/m in the Fractional Quantum Hall Effect form excitons, which are collective excitations physically similar to the transverse magnetoplasma oscillations of a Wigner crystal. A variational exciton wavefunction which shows explicitly that the magnetic length is effectively longer for quasiparticles than for electrons is proposed. This wavefunction is used to estimate the dispersion relation of these excitons and the matrix elements to generate them optically out of the ground state. These quantities are then used to describe a type of nonlinear conductivity which may occur in these systems when they are relatively clean.

  16. Nontrivial quantum and quantum-like effects in biosystems: Unsolved questions and paradoxes.

    PubMed

    Melkikh, Alexey V; Khrennikov, Andrei

    2015-11-01

    Non-trivial quantum effects in biological systems are analyzed. Some unresolved issues and paradoxes related to quantum effects (Levinthal's paradox, the paradox of speed, and mechanisms of evolution) are addressed. It is concluded that the existence of non-trivial quantum effects is necessary for the functioning of living systems. In particular, it is demonstrated that classical mechanics cannot explain the stable work of the cell and any over-cell structures. The need for quantum effects is generated also by combinatorial problems of evolution. Their solution requires a priori information about the states of the evolving system, but within the framework of the classical theory it is not possible to explain mechanisms of its storage consistently. We also present essentials of so called quantum-like paradigm: sufficiently complex bio-systems process information by violating the laws of classical probability and information theory. Therefore the mathematical apparatus of quantum theory may have fruitful applications to describe behavior of bio-systems: from cells to brains, ecosystems and social systems. In quantum-like information biology it is not presumed that quantum information bio-processing is resulted from quantum physical processes in living organisms. Special experiments to test the role of quantum mechanics in living systems are suggested. This requires a detailed study of living systems on the level of individual atoms and molecules. Such monitoring of living systems in vivo can allow the identification of the real potentials of interaction between biologically important molecules. PMID:26160644

  17. Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells

    SciTech Connect

    Bernevig, A.

    2010-03-02

    We show that the quantum spin Hall (QSH) effect, a state of matter with topological properties distinct from those of conventional insulators, can be realized in mercury telluride-cadmium telluride semiconductor quantum wells. When the thickness of the quantum well is varied, the electronic state changes from a normal to an 'inverted' type at a critical thickness d{sub c}. We show that this transition is a topological quantum phase transition between a conventional insulating phase and a phase exhibiting the QSH effect with a single pair of helical edge states. We also discuss methods for experimental detection of the QSH effect.

  18. Quantum spin Hall effect and topological phase transition in HgTe quantum wells.

    PubMed

    Bernevig, B Andrei; Hughes, Taylor L; Zhang, Shou-Cheng

    2006-12-15

    We show that the quantum spin Hall (QSH) effect, a state of matter with topological properties distinct from those of conventional insulators, can be realized in mercury telluride-cadmium telluride semiconductor quantum wells. When the thickness of the quantum well is varied, the electronic state changes from a normal to an "inverted" type at a critical thickness d(c). We show that this transition is a topological quantum phase transition between a conventional insulating phase and a phase exhibiting the QSH effect with a single pair of helical edge states. We also discuss methods for experimental detection of the QSH effect. PMID:17170299

  19. Cosmic fluctuations from a quantum effective action

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2015-10-01

    Does the observable spectrum of cosmic fluctuations depend on detailed initial conditions? This addresses the question if the general inflationary paradigm is sufficient to predict within a given model the spectrum and amplitude of cosmic fluctuations, or if additional particular assumptions about the initial conditions are needed. The answer depends on the number of e -foldings Nin between the beginning of inflation and horizon crossing of the observable fluctuations. We discuss an interacting inflaton field in an arbitrary homogeneous and isotropic geometry, employing the quantum effective action Γ . An exact time evolution equation for the correlation function involves the second functional derivative Γ(2 ) . The operator formalism and quantum vacua for interacting fields are not needed. Use of the effective action also allows one to address the change of frames by field transformations (field relativity). Within the approximation of a derivative expansion for the effective action we find the most general solution for the correlation function, including mixed quantum states. For not too large Nin the memory of the initial conditions is preserved. In this case the cosmic microwave background cannot disentangle between the initial spectrum and its processing at horizon crossing. The inflaton potential cannot be reconstructed without assumptions about the initial state of the universe. We argue that for very large Nin a universal scaling form of the correlation function is reached for the range of observable modes. This can be due to symmetrization and equilibration effects, not yet contained in our approximation, which drive the short distance tail of the correlation function toward the Lorentz invariant propagator in flat space.

  20. The effect of measurements, randomly distributed in time, on quantum systems: stochastic quantum Zeno effect

    NASA Astrophysics Data System (ADS)

    Shushin, A. I.

    2011-02-01

    The manifestation of measurements, randomly distributed in time, on the evolution of quantum systems are analyzed in detail. The set of randomly distributed measurements (RDM) is modeled within the renewal theory, in which the distribution is characterized by the probability density function (PDF) W(t) of times t between successive events (measurements). The evolution of the quantum system affected by the RDM is shown to be described by the density matrix satisfying the stochastic Liouville equation. This equation is applied to the analysis of the RDM effect on the evolution of a two-level system for different types of RDM statistics, corresponding to different PDFs W(t). Obtained general results are illustrated as applied to the cases of the Poissonian (W(t) \\sim \\,e^{-w_r t}) and anomalous (W(t) ~ 1/t1 + α, α <= 1) RDM statistics. In particular, specific features of the quantum and inverse Zeno effects, resulting from the RDM, are thoroughly discussed.

  1. The quantum Zeno effect and quantum feedback in cavity QED

    NASA Astrophysics Data System (ADS)

    Dotsenko, I.; Bernu, J.; Deléglise, S.; Sayrin, C.; Brune, M.; Raimond, J.-M.; Haroche, S.; Mirrahimi, M.; Rouchon, P.

    2010-09-01

    We explore experimentally the fundamental projective properties of a quantum measurement and their application in the control of a system's evolution. We perform quantum non-demolition (QND) photon counting on a microwave field trapped in a very-high-Q superconducting cavity, employing circular Rydberg atoms as non-absorbing probes of light. By repeated measurement of the cavity field we demonstrated the freeze of its initially coherent evolution, illustrating the back action of the photon number measurement on the field's phase. On the contrary, by utilizing a weak QND measurement in combination with the control injection of coherent pulses, we plan to force the field to deterministically evolve towards any target photon-number state. This quantum feedback procedure will enable us to prepare and protect photon-number states against decoherence.

  2. Quantum theory of the inverse Faraday effect

    NASA Astrophysics Data System (ADS)

    Battiato, M.; Barbalinardo, G.; Oppeneer, P. M.

    2014-01-01

    We provide a quantum theoretical description of the magnetic polarization induced by intense circularly polarized light in a material. Such effect—commonly referred to as the inverse Faraday effect—is treated using beyond-linear response theory, considering the applied electromagnetic field as external perturbation. An analytical time-dependent solution of the Liouville-von Neumann equation to second order is obtained for the density matrix and used to derive expressions for the optomagnetic polarization. Two distinct cases are treated, the long-time adiabatic limit of polarization imparted by continuous wave irradiation, and the full temporal shape of the transient magnetic polarization induced by a short laser pulse. We further derive expressions for the Verdet constants for the inverse, optomagnetic Faraday effect and for the conventional, magneto-optical Faraday effect and show that they are in general different. Additionally, we derive expressions for the Faraday and inverse Faraday effects within the Drude-Lorentz theory and demonstrate that their equality does not hold in general, but only for dissipationless media. As an example, we perform initial quantum mechanical calculations of the two Verdet constants for a hydrogenlike atom and we extract the trends. We observe that one reason for a large inverse Faraday effect in heavy atoms is the spatial extension of the wave functions rather than the spin-orbit interaction, which nonetheless contributes positively.

  3. Engineering of perturbation effects in onion-like heteronanocrystal quantum dot-quantum well

    NASA Astrophysics Data System (ADS)

    SalmanOgli, A.; Rostami, R.

    2013-10-01

    In this article, the perturbation influences on optical characterization of quantum dot and quantum dot-quantum well (modified quantum dot) heteronanocrystal is investigated. The original aim of this article is to investigate the quantum dot-quantum well heteronanocrystal advantages and disadvantages, when used as a functionalized particle in biomedical applications. Therefore, all of the critical features of quantum dots are fundamentally studied and their influences on optical properties are simulated. For the first time, the perturbation effects on optical characteristics are observed in the quantum dot-quantum well heteronanocrystals by 8-band K.P theory. The impact of perturbation on optical features such as photoluminescence and shifting of wavelength is studied. The photoluminescence and operation wavelength of quantum dots play a vital role in biomedical applications, where their absorption and emission in biological assays are altered by shifting of wavelength. Furthermore, in biomedical applications, by tuning the emission wavelengths of the quantum dot into far-red and near-infrared ranges, non-invasive in-vivo imaging techniques have been easily developed. In this wavelength window, tissue absorption, scattering and auto-fluorescence intensities have minimum quantities; thus fixing or minimizing of wavelength shifting can be regarded as an important goal which is investigated in this work.

  4. A recoil resilient lumen support, design, fabrication and mechanical evaluation

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Arash; Ali, Mohamed Sultan Mohamed; Takahata, Kenichi; Al-Sarawi, Said; Abbott, Derek

    2013-06-01

    Stents are artificial implants that provide scaffolding to a cavity inside the body. This paper presents a new luminal device for reducing the mechanical failure of stents due to recoil, which is one of the most important issues in stenting. This device, which we call a recoil-resilient ring (RRR), is utilized standalone or potentially integrated with existing stents to address the problem of recoil. The proposed structure aims to minimize the need for high-pressure overexpansion that can induce intra-luminal trauma and excess growth of vascular tissue causing later restenosis. The RRR is an overlapped open ring with asymmetrical sawtooth structures that are intermeshed. These teeth can slide on top of each other, while the ring is radially expanded, but interlock step-by-step so as to keep the final expanded state against compressional forces that normally cause recoil. The RRRs thus deliver balloon expandability and, when integrated with a stent, bring both radial rigidity and longitudinal flexibility to the stent. The design of the RRR is investigated through finite element analysis (FEA), and then the devices are fabricated using micro-electro-discharge machining of 200-µm-thick Nitinol sheet. The standalone RRR is balloon expandable in vitro by 5-7 Atm in pressure, which is well within the recommended in vivo pressure ranges for stenting procedures. FEA compression tests indicate 13× less reduction of the cross-sectional area of the RRR compared with a typical stainless steel stent. These results also show perfect elastic recovery of the RRR after removal of the pressure compared to the remaining plastic deformations of the stainless steel stent. On the other hand, experimental loading tests show that the fabricated RRRs have 2.8× radial stiffness compared to a two-column section of a commercial stent while exhibiting comparable elastic recovery. Furthermore, testing of in vitro expansion in a mock artery tube shows around 2.9% recoil, approximately 5-11× smaller than the recoil reported for commercial stents. These experimental results demonstrate the effectiveness of the device design for the targeted luminal support and stenting applications.

  5. Quantum Rotational Effects in Nanomagnetic Systems

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Michael F.

    Quantum tunneling of the magnetic moment in a nanomagnet must conserve the total angular momentum. For a nanomagnet embedded in a rigid body, reversal of the magnetic moment will cause the body to rotate as a whole. When embedded in an elastic environment, tunneling of the magnetic moment will cause local elastic twists of the crystal structure. In this thesis, I will present a theoretical study of the interplay between magnetization and rotations in a variety of nanomagnetic systems which have some degree of rotational freedom. We investigate the effect of rotational freedom on the tunnel splitting of a nanomagnet which is free to rotate about its easy axis. Calculating the exact instanton of the coupled equations of motion shows that mechanical freedom of the particle renormalizes the easy axis anisotropy, increasing the tunnel splitting. To understand magnetization dynamics in free particles, we study a quantum mechanical model of a tunneling spin embedded in a rigid rotor. The exact energy levels for a symmetric rotor exhibit first and second order quantum phase transitions between states with different values the magnetic moment. A quantum phase diagram is obtained in which the magnetic moment depends strongly on the moments of inertia. An intrinsic contribution to decoherence of current oscillations of a flux qubit must come from the angular momentum it transfers to the surrounding body. Within exactly solvable models of a qubit embedded in a rigid body and an elastic medium, we show that slow decoherence is permitted if the solid is macroscopically large. The spin-boson model is one of the simplest representations of a two-level system interacting with a quantum harmonic oscillator, yet has eluded a closed-form solution. I investigate some possible approaches to understanding its spectrum. The Landau-Zener dynamics of a tunneling spin coupled to a torsional resonator show that for certain parameter ranges the system exhibits multiple Landau-Zener transitions. These transitions coincide in time with changes in the oscillator dynamics. A large number of spins on a single oscillator coupled only through the in-phase oscillations behaves as a single large spin, greatly enhancing the spin-phonon coupling.

  6. Recoil detection of the lightest neutralino in MSSM singlet extensions

    SciTech Connect

    Barger, Vernon; Lewis, Ian; McCaskey, Mat; Shaughnessy, Gabe; Yencho, Brian; Langacker, Paul

    2007-06-01

    We investigate the correlated predictions of singlet extended MSSM models for direct detection and the cosmological relic density of the lightest neutralino. To illustrate the general effects of the singlet, we take heavy sleptons and squarks. We apply CERN LEP (g-2){sub {mu}}, and perturbativity constraints. We find that the WMAP upper bound on the cold dark matter density limits much of the parameter space to regions where the lightest neutralino can be discovered in recoil experiments. The results for the next-to-minimal supersymmetric standard model and U(1){sup '}-extended minimal supersymmetric standard model are typically similar to the MSSM since their light neutralinos have similar compositions and masses. In the nearly minimal supersymmetric standard model the neutralino is often very light and its recoil detection is within the reach of the CDMS II experiment. In general, most points in the parameter spaces of the singlet models we consider are accessible to the WARP experiment.

  7. Magnetic quantum ratchet effect in graphene

    NASA Astrophysics Data System (ADS)

    Drexler, C.; Tarasenko, S. A.; Olbrich, P.; Karch, J.; Hirmer, M.; Müller, F.; Gmitra, M.; Fabian, J.; Yakimova, R.; Lara-Avila, S.; Kubatkin, S.; Wang, M.; Vajtai, R.; Ajayan, P. M.; Kono, J.; Ganichev, S. D.

    2013-02-01

    A periodically driven system with spatial asymmetry can exhibit a directed motion facilitated by thermal or quantum fluctuations. This so-called ratchet effect has fascinating ramifications in engineering and natural sciences. Graphene is nominally a symmetric system. Driven by a periodic electric field, no directed electric current should flow. However, if the graphene has lost its spatial symmetry due to its substrate or adatoms, an electronic ratchet motion can arise. We report an experimental demonstration of such an electronic ratchet in graphene layers, proving the underlying spatial asymmetry. The orbital asymmetry of the Dirac fermions is induced by an in-plane magnetic field, whereas the periodic driving comes from terahertz radiation. The resulting magnetic quantum ratchet transforms the a.c. power into a d.c. current, extracting work from the out-of-equilibrium electrons driven by undirected periodic forces. The observation of ratchet transport in this purest possible two-dimensional system indicates that the orbital effects may appear and be substantial in other two-dimensional crystals such as boron nitride, molybdenum dichalcogenides and related heterostructures. The measurable orbital effects in the presence of an in-plane magnetic field provide strong evidence for the existence of structure inversion asymmetry in graphene.

  8. Quenching and channeling of nuclear recoils in NaI(Tl): Implications for dark-matter searches

    NASA Astrophysics Data System (ADS)

    Collar, J. I.

    2013-09-01

    A new experimental evaluation of the quenching factor for nuclear recoils in NaI[Tl] is described. Systematics affecting previous measurements are addressed by careful characterization of the emission spectrum of the neutron source, use of a small scintillator coupled to an ultra-bialkali high-quantum-efficiency photomultiplier, and evaluation of nonlinearities in the electron recoil response via Compton scattering. A trend towards a rapidly diminishing quenching factor with decreasing sodium recoil energy is revealed. Additionally, no evidence for crystal lattice channeling of low-energy recoiling ions is found in a scintillator of known crystallographic orientation. A discussion on how these findings affect dark matter searches employing NaI[Tl] (e.g., DAMA/LIBRA) is offered.

  9. Anatomy of the Binary Black Hole Recoil: A Multipolar Analysis

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy; Buonanno, Alessandra; vanMeter, James R.; Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.

    2007-01-01

    We present a multipolar analysis of the recoil velocity computed in recent numerical simulations of binary black hole coalescence, for both unequal masses and non-zero, non-precessing spins. We show that multipole moments up to and including 1 = 4 are sufficient to accurately reproduce the final recoil velocity (= 98%) and that only a few dominant modes contribute significantly to it (2 95%). We describe how the relative amplitude, and more importantly, the relative phase, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ring-down phases. We also find that the numerical results can be reproduced, to a high level of accuracy, by an effective Newtonian formula for the multipole moments obtained by replacing in the Newtonian formula the radial separation with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasi-normal modes. Analytic formulae, obtained by expressing the multipole moments in terms of the fundamental QNMs of a Kerr BH, are able to explain the onset and amount of '.anti-kick" for each of the simulations. Lastly, we apply this multipolar analysis to understand the remarkable difference between the amplitudes of planar and non-planar kicks for equal-mass spinning black holes.

  10. Recoiling from a Kick in the Head-On Case

    NASA Technical Reports Server (NTRS)

    Choi, Dae-Il; Kelly, Bernard J.; Boggs, William D.; Baker, John G.; Centrella, Joan; Van Meter, James

    2007-01-01

    Recoil "kicks" induced by gravitational radiation are expected in the inspiral and merger of black holes. Recently the numerical relativity community has begun to measure the significant kicks found when both unequal masses and spins are considered. Because understanding the cause and magnitude of each component of this kick may be complicated in inspiral simulations, we consider these effects in the context of a simple test problem. We study recoils from collisions of binaries with initially head-on trajectories, starting with the simplest case of equal masses with no spin; adding spin and varying the mass ratio, both separately and jointly. We find spin-induced recoils to be significant even in head-on configurations. Additionally, it appears that the scaling of transverse kicks with spins is consistent with post-Newtonian (PN) theory, even though the kick is generated in the nonlinear merger interaction, where PN theory should not apply. This suggests that a simple heuristic description might be effective in the estimation of spin-kicks.

  11. A Double Scattering Analytical Model For Elastic Recoil Detection Analysis

    SciTech Connect

    Barradas, N. P.; Lorenz, K.; Alves, E.; Darakchieva, V.

    2011-06-01

    We present an analytical model for calculation of double scattering in elastic recoil detection measurements. Only events involving the beam particle and the recoil are considered, i.e. 1) an ion scatters off a target element and then produces a recoil, and 2) an ion produces a recoil which then scatters off a target element. Events involving intermediate recoils are not considered, i.e. when the primary ion produces a recoil which then produces a second recoil. If the recoil element is also present in the stopping foil, recoil events in the stopping foil are also calculated. We included the model in the standard code for IBA data analysis NDF, and applied it to the measurement of hydrogen in Si.

  12. Incoherent tunneling effects in a one-dimensional quantum walk

    NASA Astrophysics Data System (ADS)

    Annabestani, Mostafa; Javad Akhtarshenas, Seyed; Abolhassani, Mohamad Reza

    2016-03-01

    In this article we investigate the effects of shifting position decoherence, arising from the incoherent tunneling effect in the experimental realization of the quantum walk, on the one-dimensional discrete time quantum walk. We show that in the regime of this type of noise the quantum behavior of the walker does not vanish, in contrast to the coin decoherence for which the walker undergoes a quantum-to-classical transition even for weak noise. In particular, we show that the quadratic dependence of the variance on the time and also the coin–position entanglement, i.e. two important quantum aspects of the coherent quantum walk, are preserved in the presence of tunneling decoherence. Furthermore, we present an explicit expression for the probability distribution of the decoherent one-dimensional quantum walk in terms of the corresponding coherent probabilities, and show that this type of decoherence smooths the probability distribution.

  13. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators

    PubMed Central

    Guterding, Daniel; Jeschke, Harald O.; Valentí, Roser

    2016-01-01

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions. PMID:27185665

  14. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators.

    PubMed

    Guterding, Daniel; Jeschke, Harald O; Valentí, Roser

    2016-01-01

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions. PMID:27185665

  15. Quantum revivals and magnetization tunneling in effective spin systems

    NASA Astrophysics Data System (ADS)

    Krizanac, M.; Altwein, D.; Vedmedenko, E. Y.; Wiesendanger, R.

    2016-03-01

    Quantum mechanical objects or nano-objects have been proposed as bits for information storage. While time-averaged properties of magnetic, quantum-mechanical particles have been extensively studied experimentally and theoretically, experimental investigations of the real time evolution of magnetization in the quantum regime were not possible until recent developments in pump-probe techniques. Here we investigate the quantum dynamics of effective spin systems by means of analytical and numerical treatments. Particular attention is paid to the quantum revival time and its relation to the magnetization tunneling. The quantum revival time has been initially defined as the recurrence time of a total wave-function. Here we show that the quantum revivals of wave-functions and expectation values in spin systems may be quite different which gives rise to a more sophisticated definition of the quantum revival within the realm of experimental research. Particularly, the revival times for integer spins coincide which is not the case for half-integer spins. Furthermore, the quantum revival is found to be shortest for integer ratios between the on-site anisotropy and an external magnetic field paving the way to novel methods of anisotropy measurements. We show that the quantum tunneling of magnetization at avoided level crossing is coherent to the quantum revival time of expectation values, leading to a connection between these two fundamental properties of quantum mechanical spins.

  16. Quantum dissipative effect of one dimension coupled anharmonic oscillator

    SciTech Connect

    Sulaiman, A.; Zen, Freddy P.

    2015-04-16

    Quantum dissipative effect of one dimension coupled anharmonic oscillator is investigated. The systems are two coupled harmonic oscillator with the different masses. The dissipative effect is studied based on the quantum state diffusion formalism. The result show that the anharmonic effect increase the amplitude but the lifetime of the oscillation depend on the damping coefficient and do not depend on the temperature.

  17. Investigation on modeling and controability of a magnetorheological gun recoil damper

    NASA Astrophysics Data System (ADS)

    Hu, Hongsheng; Wang, Juan; Wang, Jiong; Qian, Suxiang; Li, Yancheng

    2009-07-01

    Magnetorheological (MR) fluid as a new smart material has done well in the vibration and impact control engineering fields because of its good electromechanical coupling characteristics, preferable dynamic performance and higher sensitivity. And success of MRF has been apparent in many engineering applied fields, such as semi-active suspension, civil engineering, etc. So far, little research has been done about MR damper applied into the weapon system. Its primary purpose of this study is to identify its dynamic performance and controability of the artillery recoil mechanism equipped with MR damper. Firstly, based on the traditional artillery recoil mechanism, a recoil dynamic model is developed in order to obtain an ideal rule between recoil force and its stroke. Then, its effects of recoil resistance on the stability and firing accuracy of artillery are explored. Because MR gun recoil damper under high impact load shows a typical nonlinear character and there exists a shear-thinning phenomenon, to establish an accurate dynamic model has been a seeking aim of its design and application for MR damper under high impact load. Secondly, in this paper, considering its actual bearing load, an inertia factor was introduced to Herschel-Bulkley model, and some factor's effect on damping force are simulated and analyzed by using numerical simulation, including its dynamic performance under different flow coefficients and input currents. Finally, both of tests with the fixed current and different On-Off control algorithms have been done to confirm its controability of MR gun recoil damper under high impact load. Experimental results show its dynamic performances of the large-scale single-ended MR gun recoil damper can be changed by altering the applied currents and it has a good controllability.

  18. Quantum toys for quantum computing: persistent currents controlled by the spin Josephson effect.

    PubMed

    Tatara, Gen; Garcia, N

    2003-08-15

    Quantum devices and computers will need operational units in different architectural configurations for their functioning. The unit should be a simple "quantum toy," an easy to handle superposition state. Here such a novel unit of quantum mechanical flux state (or persistent current) in a conducting ring with three ferromagnetic quantum dots is presented. The state is labeled by the two directions of the persistent current, which is driven by the spin chirality of the dots, and is controlled by the spin (the spin Josephson effect). It is demonstrated that by the use of two connected rings, one can carry out unitary transformations on the input flux state by controlling one spin in one of the rings, enabling us to prepare superposition states. The flux is shown to be a quantum operation gate, and may be useful in quantum computing. PMID:12935044

  19. Covariant effective action for loop quantum cosmology a la Palatini

    SciTech Connect

    Olmo, Gonzalo J.; Singh, Parampreet E-mail: psingh@perimeterinstitute.ca

    2009-01-15

    In loop quantum cosmology, non-perturbative quantum gravity effects lead to the resolution of the big bang singularity by a quantum bounce without introducing any new degrees of freedom. Though fundamentally discrete, the theory admits a continuum description in terms of an effective Hamiltonian. Here we provide an algorithm to obtain the corresponding effective action, establishing in this way the covariance of the theory for the first time. This result provides new insights on the continuum properties of the discrete structure of quantum geometry and opens new avenues to extract physical predictions such as those related to gauge invariant cosmological perturbations.

  20. Fractional quantum Hall effect in optical lattices

    SciTech Connect

    Hafezi, M.; Demler, E.; Lukin, M. D.; Soerensen, A. S.

    2007-08-15

    We analyze a recently proposed method to create fractional quantum Hall (FQH) states of atoms confined in optical lattices [A. Soerensen et al., Phys. Rev. Lett. 94, 086803 (2005)]. Extending the previous work, we investigate conditions under which the FQH effect can be achieved for bosons on a lattice with an effective magnetic field and finite on-site interaction. Furthermore, we characterize the ground state in such systems by calculating Chern numbers which can provide direct signatures of topological order and explore regimes where the characterization in terms of wave-function overlap fails. We also discuss various issues which are relevant for the practical realization of such FQH states with ultracold atoms in an optical lattice, including the presence of a long-range dipole interaction which can improve the energy gap and stabilize the ground state. We also investigate a detection technique based on Bragg spectroscopy to probe these systems in an experimental realization.

  1. Fractional Quantum Hall Effect from Phenomenological Bosonization

    NASA Astrophysics Data System (ADS)

    Zyuzin, Vladimir

    2013-03-01

    In this work we propose a model of the fractional quantum Hall effect within conventional one-dimensional bosonization. It is shown that in this formalism the resulting bosonized fermion operator corresponding to momenta of Landau gauge wave function is effectively two-dimensional. At special filling factors the bulk gets gapped, and the theory is described by a sine-Gordon model. The edges are shown to be gapless, chiral, and carrying a fractional charge. The hierarchy of obtained fractional charges is consistent with existing experiments and theories. It is also possible to draw a connection to composite fermion description and to the Laughlin many-body wave function. ARO grant W911NF-09-1-0527 and NSF grant DMR-0955778.

  2. Destruction of the Fractional Quantum Hall Effect by Disorder

    DOE R&D Accomplishments Database

    Laughlin, R. B.

    1985-07-01

    It is suggested that Hall steps in the fractional quantum Hall effect are physically similar to those in the ordinary quantum Hall effect. This proposition leads to a simple scaling diagram containing a new type of fixed point, which is identified with the destruction of the fractional states by disorder. 15 refs., 3 figs.

  3. Quantum Numbers of Textured Hall Effect Quasiparticles

    SciTech Connect

    Nayak, C.; Wilczek, F.

    1996-11-01

    We propose a class of variational wave functions with slow variation in spin and charge density and simple vortex structure at infinity, which properly generalize both the Laughlin quasiparticles and baby Skyrmions. We argue, on the basis of these wave functions and a spin-statistics relation in the relevant effective field theory, that the spin of the corresponding quasiparticle has a fractional part related in a universal fashion to the properties of the bulk state. We propose a direct experimental test of this claim. We show that certain spin-singlet quantum Hall states can be understood as arising from primary polarized states by Skyrmion condensation. {copyright} {ital 1996 The American Physical Society.}

  4. Boundary Effective Action for Quantum Hall States

    NASA Astrophysics Data System (ADS)

    Gromov, Andrey; Jensen, Kristan; Abanov, Alexander G.

    2016-03-01

    We consider quantum Hall states on a space with boundary, focusing on the aspects of the edge physics which are completely determined by the symmetries of the problem. There are four distinct terms of Chern-Simons type that appear in the low-energy effective action of the state. Two of these protect gapless edge modes. They describe Hall conductance and, with some provisions, thermal Hall conductance. The remaining two, including the Wen-Zee term, which contributes to the Hall viscosity, do not protect gapless edge modes but are instead related to the local boundary response fixed by symmetries. We highlight some basic features of this response. It follows that the coefficient of the Wen-Zee term can change across an interface without closing a gap or breaking a symmetry.

  5. Quantum Hall effects in a non-Abelian honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Li, Ling; Hao, Ningning; Liu, Guocai; Bai, Zhiming; Li, Zai-Dong; Chen, Shu; Liu, W. M.

    2015-12-01

    We study the tunable quantum Hall effects in a non-Abelian honeycomb optical lattice which is a multi-Dirac-point system. We find that the quantum Hall effects present different features with the change in relative strengths of several perturbations. Namely, the quantum spin Hall effect can be induced by gauge-field-dressed next-nearest-neighbor hopping, which, together with a Zeeman field, can induce the quantum anomalous Hall effect characterized by different Chern numbers. Furthermore, we find that the edge states of the multi-Dirac-point system represent very different features for different boundary geometries, in contrast with the generic two-Dirac-point system. Our study extends the borders of the field of quantum Hall effects in a honeycomb optical lattice with multivalley degrees of freedom.

  6. Effective Fault-Tolerant Quantum Computation with Slow Measurements

    SciTech Connect

    DiVincenzo, David P.; Aliferis, Panos

    2007-01-12

    How important is fast measurement for fault-tolerant quantum computation? Using a combination of existing and new ideas, we argue that measurement times as long as even 1000 gate times or more have a very minimal effect on the quantum accuracy threshold. This shows that slow measurement, which appears to be unavoidable in many implementations of quantum computing, poses no essential obstacle to scalability.

  7. On Quantum Effects in a Theory of Biological Evolution

    PubMed Central

    Martin-Delgado, M. A.

    2012-01-01

    We construct a descriptive toy model that considers quantum effects on biological evolution starting from Chaitin's classical framework. There are smart evolution scenarios in which a quantum world is as favorable as classical worlds for evolution to take place. However, in more natural scenarios, the rate of evolution depends on the degree of entanglement present in quantum organisms with respect to classical organisms. If the entanglement is maximal, classical evolution turns out to be more favorable. PMID:22413059

  8. Proton recoil scintillator neutron rem meter

    DOEpatents

    Olsher, Richard H.; Seagraves, David T.

    2003-01-01

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  9. The effective field theory treatment of quantum gravity

    SciTech Connect

    Donoghue, John F.

    2012-09-24

    This is a pedagogical introduction to the treatment of quantum general relativity as an effective field theory. It starts with an overview of the methods of effective field theory and includes an explicit example. Quantum general relativity matches this framework and I discuss gravitational examples as well as the limits of the effective field theory. I also discuss the insights from effective field theory on the gravitational effects on running couplings in the perturbative regime.

  10. Quantum interference phenomena in the Casimir effect

    NASA Astrophysics Data System (ADS)

    Allocca, Andrew A.; Wilson, Justin H.; Galitski, Victor M.

    2015-06-01

    We propose a definitive test of whether plates involved in Casimir experiments should be modeled with ballistic or diffusive electrons—a prominent controversy highlighted by a number of conflicting experiments. The unambiguous test we propose is a measurement of the Casimir force between a disordered quasi-two-dimensional metallic plate and a three-dimensional metallic system at low temperatures, in which disorder-induced weak-localization effects modify the well-known Drude result in an experimentally tunable way. We calculate the weak-localization correction to the Casimir force as a function of magnetic field and temperature and demonstrate that the quantum interference suppression of the Casimir force is a strong, observable effect. The coexistence of weak-localization suppression in electronic transport and Casimir pressure would lend credence to the Drude theory of the Casimir effect, while the lack of such correlation would indicate a fundamental problem with the existing theory. We also study mesoscopic disorder fluctuations in the Casimir effect and estimate the width of the distribution of Casmir energies due to disorder fluctuations.

  11. Nuclear quantum effects and kinetic isotope effects in enzyme reactions.

    PubMed

    Vardi-Kilshtain, Alexandra; Nitoker, Neta; Major, Dan Thomas

    2015-09-15

    Enzymes are extraordinarily effective catalysts evolved to perform well-defined and highly specific chemical transformations. Studying the nature of rate enhancements and the mechanistic strategies in enzymes is very important, both from a basic scientific point of view, as well as in order to improve rational design of biomimetics. Kinetic isotope effect (KIE) is a very important tool in the study of chemical reactions and has been used extensively in the field of enzymology. Theoretically, the prediction of KIEs in condensed phase environments such as enzymes is challenging due to the need to include nuclear quantum effects (NQEs). Herein we describe recent progress in our group in the development of multi-scale simulation methods for the calculation of NQEs and accurate computation of KIEs. We also describe their application to several enzyme systems. In particular we describe the use of combined quantum mechanics/molecular mechanics (QM/MM) methods in classical and quantum simulations. The development of various novel path-integral methods is reviewed. These methods are tailor suited to enzyme systems, where only a few degrees of freedom involved in the chemistry need to be quantized. The application of the hybrid QM/MM quantum-classical simulation approach to three case studies is presented. The first case involves the proton transfer in alanine racemase. The second case presented involves orotidine 5'-monophosphate decarboxylase where multidimensional free energy simulations together with kinetic isotope effects are combined in the study of the reaction mechanism. Finally, we discuss the proton transfer in nitroalkane oxidase, where the enzyme employs tunneling as a catalytic fine-tuning tool. PMID:25769515

  12. Quantum confinement effects across two-dimensional planes in MoS{sub 2} quantum dots

    SciTech Connect

    Gan, Z. X.; Liu, L. Z.; Wu, H. Y.; Hao, Y. L.; Shan, Y.; Wu, X. L. E-mail: paul.chu@cityu.edu.hk; Chu, Paul K. E-mail: paul.chu@cityu.edu.hk

    2015-06-08

    The low quantum yield (∼10{sup −5}) has restricted practical use of photoluminescence (PL) from MoS{sub 2} composed of a few layers, but the quantum confinement effects across two-dimensional planes are believed to be able to boost the PL intensity. In this work, PL from 2 to 9 nm MoS{sub 2} quantum dots (QDs) is excluded from the solvent and the absorption and PL spectra are shown to be consistent with the size distribution. PL from MoS{sub 2} QDs is also found to be sensitive to aggregation due to the size effect.

  13. Recoil-proton polarization in high-energy deuteron photodisintegration with circularly plarized photons.

    SciTech Connect

    Jiang, X.; Arrington, J.; Benmokhtar, F.; Camsonne, A.; Chen, J. P.; Holt, R. J.; Qattan, I. A.; Reimer, P. E.; Schulte, E. C.; Wijesooriya, K.; Physics; Rutgers Univ.; Univ. Blaise Pascal; Thomas Jefferson National Accelerator Facility

    2007-05-01

    We measured the angular dependence of the three recoil-proton polarization components in two-body photodisintegration of the deuteron at a photon energy of 2 GeV. These new data provide a benchmark for calculations based on quantum chromodynamics. Two of the five existing models have made predictions of polarization observables. Both explain the longitudinal polarization transfer satisfactorily. Transverse polarizations are not well described, but suggest isovector dominance.

  14. Recoil-Proton Polarization in High-Energy Deuteron Photodisintegration with Circularly Polarized Photons

    SciTech Connect

    Jiang, X.; Benmokhtar, F.; Glashauser, C.; McCormick, K.; Ransome, R. D.; Arrington, J.; Holt, R. J.; Reimer, P. E.; Schulte, E. C.; Wijesooriya, K.; Camsonne, A.

    2007-05-04

    We measured the angular dependence of the three recoil-proton polarization components in two-body photodisintegration of the deuteron at a photon energy of 2 GeV. These new data provide a benchmark for calculations based on quantum chromodynamics. Two of the five existing models have made predictions of polarization observables. Both explain the longitudinal polarization transfer satisfactorily. Transverse polarizations are not well described, but suggest isovector dominance.

  15. BlackMax: A black-hole event generator with rotation, recoil, split branes, and brane tension

    SciTech Connect

    Dai Dechang; Starkman, Glenn; Stojkovic, Dejan; Issever, Cigdem; Tseng, Jeff; Rizvi, Eram

    2008-04-01

    We present a comprehensive black-hole event generator, BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity, thus offering more realistic predictions for hadron-hadron colliders. The generator includes all of the black-hole gray-body factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, nonzero brane tension, and black-hole recoil due to Hawking radiation (although not all simultaneously). The generator can be interfaced with Herwig and Pythia. The main code can be downloaded from http://www-pnp.physics.ox.ac.uk/{approx}issever/BlackMax/blackmax.html.

  16. BlackMax: A black-hole event generator with rotation, recoil, split branes, and brane tension

    NASA Astrophysics Data System (ADS)

    Dai, De-Chang; Starkman, Glenn; Stojkovic, Dejan; Issever, Cigdem; Rizvi, Eram; Tseng, Jeff

    2008-04-01

    We present a comprehensive black-hole event generator, BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity, thus offering more realistic predictions for hadron-hadron colliders. The generator includes all of the black-hole gray-body factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, nonzero brane tension, and black-hole recoil due to Hawking radiation (although not all simultaneously). The generator can be interfaced with Herwig and Pythia. The main code can be downloaded from http://www-pnp.physics.ox.ac.uk/~issever/BlackMax/blackmax.html.

  17. Quantum teleportation of nonclassical wave packets: An effective multimode theory

    SciTech Connect

    Benichi, Hugo; Takeda, Shuntaro; Lee, Noriyuki; Furusawa, Akira

    2011-07-15

    We develop a simple and efficient theoretical model to understand the quantum properties of broadband continuous variable quantum teleportation. We show that, if stated properly, the problem of multimode teleportation can be simplified to teleportation of a single effective mode that describes the input state temporal characteristic. Using that model, we show how the finite bandwidth of squeezing and external noise in the classical channel affect the output teleported quantum field. We choose an approach that is especially relevant for the case of non-Gaussian nonclassical quantum states and we finally back-test our model with recent experimental results.

  18. Quantum electrodynamics in finite volume and nonrelativistic effective field theories

    NASA Astrophysics Data System (ADS)

    Fodor, Z.; Hoelbling, C.; Katz, S. D.; Lellouch, L.; Portelli, A.; Szabo, K. K.; Toth, B. C.

    2016-04-01

    Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics computations. Because of their long-range nature, they lead to large finite-size effects over which it is important to gain analytical control. Nonrelativistic effective field theories provide an efficient tool to describe these effects. Here we argue that some care has to be taken when applying these methods to quantum electrodynamics in a finite volume.

  19. Quantum corrections to conductivity under conditions of the integer quantum Hall effect

    SciTech Connect

    Greshnov, A. A.

    2012-06-15

    Quantum corrections to the conductivity of a two-dimensional electron gas under conditions of the integer quantum Hall effect have been studied. It is shown that violation of the one-parameter scaling under conditions of quantizing magnetic fields, {omega}{sub c}{tau} Much-Greater-Than 1, occurs at a level of the perturbation theory. The results of diagrammatic calculation of the quantum correction are in agreement with the numerical dependences of the peaks in the longitudinal conductivity on the effective size of the sample, in contrast to earlier calculations based on the unitary nonlinear {sigma}-model. Due to this, consideration of Landau quantization represents a criterion for correct description of the quantum Hall effect.

  20. Radiation effects in Si-Ge quantum size structure (Review)

    SciTech Connect

    Sobolev, N. A.

    2013-02-15

    The article is dedicated to the review and analysis of the effects and processes occurring in Si-Ge quantum size semiconductor structures upon particle irradiation including ion implantation. Comparisons to bulk materials are drawn. The reasons of the enhanced radiation hardness of superlattices and quantum dots are elucidated. Some technological applications of the radiation treatment are reviewed.

  1. Low frequency hybrid instability in quantum magneto semiconductor plasmas

    NASA Astrophysics Data System (ADS)

    Rasheed, A.; Jamil, M.; Areeb, F.; Siddique, M.; Salimullah, M.

    2016-05-01

    The excitation of electrostatic, comparatively low frequency, lower-hybrid waves (LHWs) induced by electron beam in semiconductor plasma is examined using a quantum hydrodynamic model. Various quantum effects are taken into account including the recoil effect, Fermi degenerate pressure, and exchange-correlation potential. The effects of different parameters like the electron-to-hole number density ratio, scaled electron beam temperature and streaming speed, propagation angle and cyclotron frequency over the growth, and phase speed of LHWs are investigated. It is noticed that an increase in the electron number density and streaming speed enhance the instability. Similar effects are observed on decreasing the propagation angle with magnetic field.

  2. Geometry of the fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Haldane, F. D. M.

    2012-02-01

    Unlike the integer effect, the incompressible electron fluid that exhibits the fractional effect is not invariant under ``area-preserving diffeomorphisms'' of the guiding-center degrees of freedom. Instead (F. D. M. Haldane, Phys. Rev. Lett. 108, 116801 (2011)), it has a shear modulus that characterizes the energy cost of distortions of the correlation hole around the electrons, and a ``guiding-center metric tensor'' that exhibits quantum zero-point fluctuations around a preferred shape. In a simple (one-component) fluid, electronic charge-density fluctuations relative to the background set by the magnetic flux density are given by δρ = (e^*/2π)s K, where e^* is the elementary fractional charge, s is an integer or half-integer ``guiding-center spin'' that is topologically quantized by the Gauss-Bonnet theorem, and K is the local Gaussian curvature of the guiding-center metric. These results provide a simple explanation of the seminal 1985 results of Girvin, MacDonald and Platzman on the FQH structure factor and collective mode, which remained unexplained in previous proposed narrative explanations of FQH incompressibility (Ginzburg-Landau Chern-Simons theory, composite fermions, and non-commutative Chern-Simons field theory).

  3. Multidimensional quantum tunneling in the Schwinger effect

    NASA Astrophysics Data System (ADS)

    Dumlu, Cesim K.

    2016-03-01

    We study the Schwinger effect, in which the external field having a spatiotemporal profile creates electron-positron pairs via multidimensional quantum tunneling. Our treatment is based on the trace formula for the QED effective action, whose imaginary part is represented by a sum over complex worldline solutions. The worldlines are multiperiodic, and the periods of motion collectively depend on the strength of spatial and temporal inhomogeneity. We argue that the classical action that leads to the correct tunneling amplitude must take into account both the full period, T ˜ and the first fundamental period, T1. In view of this argument we investigate pair production in an exponentially damped sinusoidal field and find that the initial momenta for multiperiodic trajectories lie on parabolic curves, such that on each curve the ratio T ˜/T1 stays uniform. Evaluation of the tunneling amplitude using these trajectories shows that vacuum decay rate is reduced by an order of magnitude, with respect to the purely time-dependent case, due to the presence of magnetic field.

  4. Effective quantum dynamics of two Brownian particles

    NASA Astrophysics Data System (ADS)

    Duarte, O. S.; Caldeira, A. O.

    2009-09-01

    We use the system-plus-reservoir approach to study the quantum dynamics of a bipartite continuous variable system (two generic particles). We present an extension of the traditional model of a bath of oscillators which is capable of inducing an effective coupling between the two parts of the system depending on the choice made for the spectral density of the bath. The coupling is nonlinear in the system variables and an exponential dependence on these variables is imposed in order to guarantee the translational invariance of the model if the two particles are not subject to any external potential. The reduced density operator is obtained by the functional integral method. The dynamical susceptibility of the reservoir is modeled in order to introduce, besides a characteristic frequency, a characteristic length that determines if the effective interaction potential is strong enough to induce entanglement between the particles. Our model provides a criterion of distance for identifying in which cases a common environment can induce entanglement. Three regimes are found: the short distance regime, equivalent to a bilinear system-reservoir coupling, the long distance regime in which the particles act like coupled to independent reservoirs, and the intermediate regime suitable for the competition between decoherence and induced entanglement.

  5. From quantum confinement to quantum Hall effect in graphene nanostructures

    NASA Astrophysics Data System (ADS)

    Guimarães, M. H. D.; Shevtsov, O.; Waintal, X.; van Wees, B. J.

    2012-02-01

    We study the evolution of the two-terminal conductance plateaus with a magnetic field for armchair graphene nanoribbons (GNRs) and graphene nanoconstrictions (GNCs). For GNRs, the conductance plateaus of (2e2)/(h) at zero magnetic field evolve smoothly to the quantum Hall regime, where the plateaus in conductance at even multiples of (2e2)/(h) disappear. It is shown that the relation between the energy and magnetic field does not follow the same behavior as in “bulk” graphene, reflecting the different electronic structure of a GNR. For the nanoconstrictions we show that the conductance plateaus do not have the same sharp behavior in zero magnetic field as in a GNR, which reflects the presence of backscattering in such structures. Our results show good agreement with recent experiments on high-quality graphene nanoconstrictions. The behavior with the magnetic field for a GNC shows some resemblance to the one for a GNR but now depends also on the length of the constriction. By analyzing the evolution of the conductance plateaus in the presence of the magnetic field we can obtain the width of the structures studied and show that this is a powerful experimental technique in the study of the electronic and structural properties of narrow structures.

  6. Oscillatory quantum screening effects on the transition bremsstrahlung radiation in quantum plasmas

    NASA Astrophysics Data System (ADS)

    Jung, Young-Dae

    2011-06-01

    The oscillatory screening effects on the transition bremsstrahlung radiation due to the polarization interaction between the electron and shielding cloud are investigated in dense quantum plasmas. The impact-parameter analysis with the modified Debye-Hückel potential is applied to obtain the bremsstrahlung radiation cross section as a function of the quantum wave number, impact parameter, photon energy, and projectile energy. The results show that the oscillatory quantum screening effect strongly suppresses the transition bremsstrahlung radiation spectrum in dense quantum plasmas. It is also found that the oscillatory quantum screening effect is more significant near the maximum peak of the bremsstrahlung radiation cross section. In addition, the maximum peak of the bremsstrahlung radiation cross section is getting close to the center of the shielding cloud as increasing quantum wave number. It is interesting to note that the range of the bremsstrahlung photon energy would be broadened with an increase of the oscillatory screening effect. It is also found that the oscillatory screening effects on the transition bremsstrahlung spectrum decreases with increasing projectile energy.

  7. Oscillatory quantum screening effects on the transition bremsstrahlung radiation in quantum plasmas

    SciTech Connect

    Jung, Young-Dae

    2011-06-15

    The oscillatory screening effects on the transition bremsstrahlung radiation due to the polarization interaction between the electron and shielding cloud are investigated in dense quantum plasmas. The impact-parameter analysis with the modified Debye-Hueckel potential is applied to obtain the bremsstrahlung radiation cross section as a function of the quantum wave number, impact parameter, photon energy, and projectile energy. The results show that the oscillatory quantum screening effect strongly suppresses the transition bremsstrahlung radiation spectrum in dense quantum plasmas. It is also found that the oscillatory quantum screening effect is more significant near the maximum peak of the bremsstrahlung radiation cross section. In addition, the maximum peak of the bremsstrahlung radiation cross section is getting close to the center of the shielding cloud as increasing quantum wave number. It is interesting to note that the range of the bremsstrahlung photon energy would be broadened with an increase of the oscillatory screening effect. It is also found that the oscillatory screening effects on the transition bremsstrahlung spectrum decreases with increasing projectile energy.

  8. Quantum size effects on exciton states in indirect-gap quantum dots

    NASA Astrophysics Data System (ADS)

    Feng, D. H.; Xu, Z. Z.; Jia, T. Q.; Li, X. X.; Gong, S. Q.

    2003-07-01

    We investigate exciton ground states in Si and 3C-SiC quantum dots by using the effective mass theory, taking account of the conduction- and valence-band mass anisotropy as well as the small spin-orbit splitting energy. The degenerate hole and exciton states are partly split by the mass anisotropy. The anisotropy splitting energies in quantum dots are different dramatically from their bulk value due to quantum size effects. The assumed changeable spin-orbit splitting energy may change the ordering of the anisotropy-split energy levels. Taking account of the exchange interaction, the degeneracy of the exciton states is further lifted. Due to the anisotropy and exchange splitting, the 48-fold exciton ground state will be split into two 18-fold triplets and two 6-fold singlets. The lowest three states are optically forbidden for Si quantum dots, which leads to a Stokes shift of luminescence. The theroretical shift agrees well with the experimental data. Furthermore, the exciton band gap and binding energy as a function of dot radius are presented both for Si and for 3C-SiC quantum dots. The band gap of Si quantum dots agrees well with the recent photoluminescence results of size-separated quantum dots by Ledoux et al. and absorption data of Furukawa et al.

  9. Ionization and scintillation of nuclear recoils in gaseous xenon

    NASA Astrophysics Data System (ADS)

    Renner, J.; Gehman, V. M.; Goldschmidt, A.; Matis, H. S.; Miller, T.; Nakajima, Y.; Nygren, D.; Oliveira, C. A. B.; Shuman, D.; Álvarez, V.; Borges, F. I. G.; Cárcel, S.; Castel, J.; Cebrián, S.; Cervera, A.; Conde, C. A. N.; Dafni, T.; Dias, T. H. V. T.; Díaz, J.; Esteve, R.; Evtoukhovitch, P.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Gil, A.; Gómez, H.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Hauptman, J.; Hernando Morata, J. A.; Herrera, D. C.; Iguaz, F. J.; Irastorza, I. G.; Jinete, M. A.; Labarga, L.; Laing, A.; Liubarsky, I.; Lopes, J. A. M.; Lorca, D.; Losada, M.; Luzón, G.; Marí, A.; Martín-Albo, J.; Martínez, A.; Moiseenko, A.; Monrabal, F.; Monserrate, M.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Natal da Luz, H.; Navarro, G.; Nebot-Guinot, M.; Palma, R.; Pérez, J.; Pérez Aparicio, J. L.; Ripoll, L.; Rodríguez, A.; Rodríguez, J.; Santos, F. P.; dos Santos, J. M. F.; Seguí, L.; Serra, L.; Simón, A.; Sofka, C.; Sorel, M.; Toledo, J. F.; Tomás, A.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Villar, J. A.; Webb, R. C.; White, J.; Yahlali, N.

    2015-09-01

    Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope α-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.

  10. Quantum Spin Hall Effect in Inverted Type II Semiconductors

    SciTech Connect

    Liu, Chaoxing; Hughes, Taylor L.; Qi, Xiao-Liang; Wang, Kang; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    The quantum spin Hall (QSH) state is a topologically non-trivial state of quantum matter which preserves time-reversal symmetry; it has an energy gap in the bulk, but topologically robust gapless states at the edge. Recently, this novel effect has been predicted and observed in HgTe quantum wells. In this work we predict a similar effect arising in Type-II semiconductor quantum wells made from InAs/GaSb/AlSb. Because of a rare band alignment the quantum well band structure exhibits an 'inverted' phase similar to CdTe/HgTe quantum wells, which is a QSH state when the Fermi level lies inside the gap. Due to the asymmetric structure of this quantum well, the effects of inversion symmetry breaking and inter-layer charge transfer are essential. By standard self-consistent calculations, we show that the QSH state persists when these corrections are included, and a quantum phase transition between the normal insulator and the QSH phase can be electrically tuned by the gate voltage.

  11. Monte Carlo simulation of quantum Zeno effect in the brain

    NASA Astrophysics Data System (ADS)

    Georgiev, Danko

    2015-12-01

    Environmental decoherence appears to be the biggest obstacle for successful construction of quantum mind theories. Nevertheless, the quantum physicist Henry Stapp promoted the view that the mind could utilize quantum Zeno effect to influence brain dynamics and that the efficacy of such mental efforts would not be undermined by environmental decoherence of the brain. To address the physical plausibility of Stapp's claim, we modeled the brain using quantum tunneling of an electron in a multiple-well structure such as the voltage sensor in neuronal ion channels and performed Monte Carlo simulations of quantum Zeno effect exerted by the mind upon the brain in the presence or absence of environmental decoherence. The simulations unambiguously showed that the quantum Zeno effect breaks down for timescales greater than the brain decoherence time. To generalize the Monte Carlo simulation results for any n-level quantum system, we further analyzed the change of brain entropy due to the mind probing actions and proved a theorem according to which local projections cannot decrease the von Neumann entropy of the unconditional brain density matrix. The latter theorem establishes that Stapp's model is physically implausible but leaves a door open for future development of quantum mind theories provided the brain has a decoherence-free subspace.

  12. Effects of the generalised uncertainty principle on quantum tunnelling

    NASA Astrophysics Data System (ADS)

    Blado, Gardo; Prescott, Trevor; Jennings, James; Ceyanes, Joshuah; Sepulveda, Rafael

    2016-03-01

    In a previous paper (Blado et al 2014 Eur. J. Phys. 35 065011), we showed that quantum gravity effects can be discussed with only a background in non-relativistic quantum mechanics at the undergraduate level by looking at the effect of the generalised uncertainty principle (GUP) on the finite and infinite square wells. In this paper, we derive the GUP corrections to the tunnelling probability of simple quantum mechanical systems which are accessible to undergraduates (alpha decay, simple models of quantum cosmogenesis and gravitational tunnelling radiation) and which employ the WKB approximation, a topic discussed in undergraduate quantum mechanics classes. It is shown that the GUP correction increases the tunnelling probability in each of the examples discussed.

  13. Graphene/Si-quantum-dot heterojunction diodes showing high photosensitivity compatible with quantum confinement effect.

    PubMed

    Shin, Dong Hee; Kim, Sung; Kim, Jong Min; Jang, Chan Wook; Kim, Ju Hwan; Lee, Kyeong Won; Kim, Jungkil; Oh, Si Duck; Lee, Dae Hun; Kang, Soo Seok; Kim, Chang Oh; Choi, Suk-Ho; Kim, Kyung Joong

    2015-04-24

    Graphene/Si quantum dot (QD) heterojunction diodes are reported for the first time. The photoresponse, very sensitive to variations in the size of the QDs as well as in the doping concentration of graphene and consistent with the quantum-confinement effect, is remarkably enhanced in the near-ultraviolet range compared to commercially available bulk-Si photodetectors. The photoresponse proves to be dominated by the carriertunneling mechanism. PMID:25776865

  14. Polaronic effects in a Gaussian quantum dot

    NASA Astrophysics Data System (ADS)

    Yanar, Sonay; Sevim, Ata; Boyacioglu, B.; Saglam, Mesude; Mukhopadhyaya, Soma; Chatterjee, Ashok

    2008-03-01

    The problem of an electron interacting with longitudinal-optical (LO) phonons is investigated in an N-dimensional quantum dot with symmetric Gaussian confinement in all directions using the Rayleigh-Schrödinger perturbation theory, a variant of the canonical transformation method of Lee-Low-Pines, and the sophisticated apparatus of the Feynman-Haken path-integral technique for the entire range of the coupling parameters and the results for N=2 and N=3 are obtained as special cases. It is shown that the polaronic effects are quite significant for small dots with deep confining potential well and the parabolic potential is only a poor approximation of the Gaussian confinement. The Feynman-Haken path-integral technique in general gives a good upper bound to the ground state energy for all values of the system parameters and therefore is used as a benchmark for comparison between different methods. It is shown that the perturbation theory yields for the ground state polaron self-energy a simple closed-form analytic expression containing only Gamma functions and in the weak-coupling regime it provides the lowest energy because of an efficient partitioning of the Gaussian potential and the subsequent use of a mean-field kind of treatment. The polarization potential, the polaron radius and the number of virtual phonons in the polaron cloud are obtained using the Lee-Low-Pines-Huybrechts method and their variations with respect to different parameters of the system are discussed.

  15. Skyrmion recoil in pion-nucleon scattering

    SciTech Connect

    Hughes, J. Physics Department, University of California at Davis, Davis, California 95616 ); Mathews, G.J. )

    1992-08-01

    We calculate the lowest-order recoil corrections to the pion-nucleon scattering matrix in the SU(2) Skyrme model. The corrections result from a direct semiclassical evaluation of path-integral expressions for relevant finite-time transition amplitudes. The {ital S} matrix for pion-nucleon scattering is extracted from these amplitudes by using a configuration-space representation for the asymptotic nucleons; the quanta are treated just as in the vacuum sector. The recoil corrections result from the Skyrmion freely translating between initial and final positions, and are relevant to a kinematical regime opposite to that where the impulse approximation is valid. The form of the corrections is model independent, unchanged for any chiral model with hedgehog solitary wave solutions. Remarkably, new lowest-lying resonances emerge in the {ital p} channels, whereas the {ital s} and {ital d} waves are not noticeably improved.

  16. Plasmon modes of metallic nanowires including quantum nonlocal effects

    SciTech Connect

    Moradi, Afshin

    2015-03-15

    The properties of electrostatic surface and bulk plasmon modes of cylindrical metallic nanowires are investigated, using the quantum hydrodynamic theory of plasmon excitation which allows an analytical study of quantum tunneling effects through the Bohm potential term. New dispersion relations are obtained for each type of mode and their differences with previous treatments based on the standard hydrodynamic model are analyzed in detail. Numerical results show by considering the quantum effects, as the value of wave number increases, the surface modes are slightly red-shifted first and then blue-shifted while the bulk modes are blue-shifted.

  17. Planck scale effects on some low energy quantum phenomena

    NASA Astrophysics Data System (ADS)

    Das, Saurya; Mann, R. B.

    2011-10-01

    Almost all theories of Quantum Gravity predict modifications of the Heisenberg Uncertainty Principle near the Planck scale to a so-called Generalized Uncertainty Principle (GUP). Recently it was shown that the GUP gives rise to corrections to the Schrödinger and Dirac equations, which in turn affect all non-relativistic and relativistic quantum Hamiltonians. In this Letter, we apply it to superconductivity and the quantum Hall effect and compute Planck scale corrections. We also show that Planck scale effects may account for a (small) part of the anomalous magnetic moment of the muon. We obtain (weak) empirical bounds on the undetermined GUP parameter from present-day experiments.

  18. Density effects on bremsstrahlung radiation in quantum plasmas

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.; Jung, Young-Dae

    2014-01-01

    In this paper, we investigate the effects of plasma number-density and quantum shielding of ions by degenerate electrons on the free-free and electron-atom bremsstrahlung radiation spectra in dense quantum plasmas for a wide range of plasma number-density and atomic-number of the constituent ions. We use previously reported results from the extended Shukla-Eliasson quantum-dressed ionic potential, which takes into account the relativistic degeneracy effect, the quantum statistical pressure, the electron-exchange correlations, the Wigner-Seitz cell interaction feature, as well as the important collective quantum diffraction of electrons. It is observed that the electron number-density has fundamental effect on the free-free and bound-bound bremsstrahlung radiation spectra over the whole frequency range of radiation. By comparing the radiation spectra for the quantum plasmas with ions of bare Coulomb, Thomas-Fermi, and extended quantum potentials, many important features of the bremsstrahlung radiation is highlighted. Current investigation can provide important information on plasma diagnostics for atomic processes in dense plasmas, such as the inertial-confinement fusion, warm dense matter, and the planetary cores. The results can also help in better understanding of the cooling processes in completely degenerate hot compact stellar objects such as white dwarfs.

  19. Intrinsic Spin Hall Effect Induced by Quantum Phase Transition in HgCdTe Quantum Wells

    SciTech Connect

    Yang, Wen; Chang, Kai; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    Spin Hall effect can be induced both by the extrinsic impurity scattering and by the intrinsic spin-orbit coupling in the electronic structure. The HgTe/CdTe quantum well has a quantum phase transition where the electronic structure changes from normal to inverted. We show that the intrinsic spin Hall effect of the conduction band vanishes on the normal side, while it is finite on the inverted side. This difference gives a direct mechanism to experimentally distinguish the intrinsic spin Hall effect from the extrinsic one.

  20. Accelerating quantum instanton calculations of the kinetic isotope effects.

    PubMed

    Karandashev, Konstantin; Vaníček, Jiří

    2015-11-21

    Path integral implementation of the quantum instanton approximation currently belongs among the most accurate methods for computing quantum rate constants and kinetic isotope effects, but its use has been limited due to the rather high computational cost. Here, we demonstrate that the efficiency of quantum instanton calculations of the kinetic isotope effects can be increased by orders of magnitude by combining two approaches: The convergence to the quantum limit is accelerated by employing high-order path integral factorizations of the Boltzmann operator, while the statistical convergence is improved by implementing virial estimators for relevant quantities. After deriving several new virial estimators for the high-order factorization and evaluating the resulting increase in efficiency, using ⋅Hα + HβHγ → HαHβ + ⋅ Hγ reaction as an example, we apply the proposed method to obtain several kinetic isotope effects on CH4 + ⋅ H ⇌ ⋅ CH3 + H2 forward and backward reactions. PMID:26590524

  1. Decoherence Effects on Multiplayer Cooperative Quantum Games

    NASA Astrophysics Data System (ADS)

    Salman, Khan; Ramzan, M.; M. Khalid., Khan

    2011-08-01

    We study the behavior of cooperative multiplayer quantum games [Q. Chen, Y. Wang, J.T. Liu, and K.L. Wang, Phys. Lett. A 327 (2004) 98; A.P. Flitney and L.C.L. Hollenberg, Quantum Inf. Comput. 7 (2007) 111] in the presence of decoherence using different quantum channels such as amplitude damping, depolarizing and phase damping. It is seen that the outcomes of the games for the two damping channels with maximum values of decoherence reduce to same value. However, in comparison to phase damping channel, the payoffs of cooperators are strongly damped under the influence amplitude damping channel for the lower values of decoherence parameter. In the case of depolarizing channel, the game is a no-payoff game irrespective of the degree of entanglement in the initial state for the larger values of decoherence parameter. The decoherence gets the cooperators worse off.

  2. Casimir Effects in Renormalizable Quantum Field Theories

    NASA Astrophysics Data System (ADS)

    Graham, Noah; Jaffe, Robert L.; Weigel, Herbert

    We present a framework for the study of one-loop quantum corrections to extended field configurations in renormalizable quantum field theories. We work in the continuum, transforming the standard Casimir sum over modes into a sum over bound states and an integral over scattering states weighted by the density of states. We express the density of states in terms of phase shifts, allowing us to extract divergences by identifying Born approximations to the phase shifts with low order Feynman diagrams. Once isolated in Feynman diagrams, the divergences are canceled against standard counterterms. Thus regulated, the Casimir sum is highly convergent and amenable to numerical computation. Our methods have numerous applications to the theory of solitons, membranes, and quantum field theories in strong external fields or subject to boundary conditions.

  3. Relativistic recoil and the railgun

    NASA Astrophysics Data System (ADS)

    Allen, J. E.; Jones, T. V.

    1990-01-01

    Calculations are presented that refute recent statements (e.g., Graneau, 1987) made to the effect that the operation of a railgun cannot be explained in terms of classical relativistic electrodynamics. It is demonstrated that, on the contrary, there is no difficulty in using the concept of electromagnetic momentum to calculate the electromagnetic forces that propel the projectile in a railgun. The error made by other authors was to suppose that classical electrodynamics demand that a large amount of momentum be associated with the electromagnetic field at some previous time. The projectile can acquire much more momentum than that associated with the incident wave, because the electromagnetic waves are reflected both at the projectile end and at the breech end of the railgun.

  4. Quantum effects improve the energy efficiency of feedback control.

    PubMed

    Horowitz, Jordan M; Jacobs, Kurt

    2014-04-01

    The laws of thermodynamics apply equally well to quantum systems as to classical systems, and because of this, quantum effects do not change the fundamental thermodynamic efficiency of isothermal refrigerators or engines. We show that, despite this fact, quantum mechanics permits measurement-based feedback control protocols that are more thermodynamically efficient than their classical counterparts. As part of our analysis, we perform a detailed accounting of the thermodynamics of unitary feedback control and elucidate the sources of inefficiency in measurement-based and coherent feedback. PMID:24827219

  5. Quantum Hall Effect in Graphene with Superconducting Electrodes

    NASA Astrophysics Data System (ADS)

    Rickhaus, Peter; Weiss, Markus; Marot, Laurent; Schönenberger, Christian

    2012-04-01

    We have realized an integer quantum Hall system with superconducting contacts by connecting graphene to niobium electrodes. Below their upper critical field of 4 tesla, an integer quantum Hall effect coexists with superconductivity in the leads, but with a plateau conductance that is larger than in the normal state. We ascribe this enhanced quantum Hall plateau conductance to Andreev processes at the graphene-superconductor interface leading to the formation of so-called Andreev edge-states. The enhancement depends strongly on the filling-factor, and is less pronounced on the first plateau, due to the special nature of the zero energy Landau level in monolayer graphene.

  6. Quantum effects improve the energy efficiency of feedback control

    NASA Astrophysics Data System (ADS)

    Horowitz, Jordan M.; Jacobs, Kurt

    2014-04-01

    The laws of thermodynamics apply equally well to quantum systems as to classical systems, and because of this, quantum effects do not change the fundamental thermodynamic efficiency of isothermal refrigerators or engines. We show that, despite this fact, quantum mechanics permits measurement-based feedback control protocols that are more thermodynamically efficient than their classical counterparts. As part of our analysis, we perform a detailed accounting of the thermodynamics of unitary feedback control and elucidate the sources of inefficiency in measurement-based and coherent feedback.

  7. Franz-Keldysh effect in ZnO quantum wire

    NASA Astrophysics Data System (ADS)

    Xia, Congxin; Wei, Shuyi; Spector, Harold N.

    2010-06-01

    Within the framework of the effective mass, the electric field effect on the optical absorption coefficient is investigated theoretically in cylindrical ZnO quantum wire (QWR). Numerical results show that the application of the electric field can decrease the strength and the threshold energy of the optical absorption coefficient in ZnO QWR. We find that there are additional oscillations in the absorption above the effective band gap, which are due to the Franz-Keldysh effect for the electric field parallel to the axis of the wire. In addition, quantum size effects on the optical absorption of ZnO QWR are also calculated.

  8. Quantum effects after decoherence in a quenched phase transition.

    PubMed

    Antunes, N D; Lombardo, F C; Monteoliva, D

    2001-12-01

    We study a quantum mechanical toy model that mimics some features of a quenched phase transition. Both by virtue of a time-dependent Hamiltonian or by changing the temperature of the bath we are able to show that even after classicalization has been reached, the system may display quantum behavior again. We explain this behavior in terms of simple nonlinear analysis and estimate relevant time scales that match the results of numerical simulations of the master equation. This opens new possibilities both in the study of quantum effects in nonequilibrium phase transitions and in general time-dependent problems where quantum effects may be relevant even after decoherence has been completed. PMID:11736247

  9. Hall effect in quantum critical charge-cluster glass.

    PubMed

    Wu, Jie; Bollinger, Anthony T; Sun, Yujie; Božović, Ivan

    2016-04-19

    Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La2-xSrxCuO4(LSCO) samples doped near the quantum critical point atx∼ 0.06. Dramatic fluctuations in the Hall resistance appear belowTCG∼ 1.5 K and increase as the sample is cooled down further, signaling quantum critical behavior. We explore the doping dependence of this effect in detail, by studying a combinatorial LSCO library in which the Sr content is varied in extremely fine steps,Δx∼ 0.00008. We observe that quantum charge fluctuations wash out when superconductivity emerges but can be restored when the latter is suppressed by applying a magnetic field, showing that the two instabilities compete for the ground state. PMID:27044081

  10. Piezo-Phototronic Effect in a Quantum Well Structure.

    PubMed

    Huang, Xin; Du, Chunhua; Zhou, Yongli; Jiang, Chunyan; Pu, Xiong; Liu, Wei; Hu, Weiguo; Chen, Hong; Wang, Zhong Lin

    2016-05-24

    With enhancements in the performance of optoelectronic devices, the field of piezo-phototronics has attracted much attention, and several theoretical works have been reported based on semiclassical models. At present, the feature size of optoelectronic devices are rapidly shrinking toward several tens of nanometers, which results in the quantum confinement effect. Starting from the basic piezoelectricity equation, Schrödinger equation, Poisson equation, and Fermi's golden rule, a self-consistent theoretical model is proposed to study the piezo-phototronic effect in the framework of perturbation theory in quantum mechanics. The validity and universality of this model are well-proven with photoluminescence measurements in a single GaN/InGaN quantum well and multiple GaN/InGaN quantum wells. This study provides important insight into the working principle of nanoscale piezo-phototronic devices as well as guidance for the future device design. PMID:27088347

  11. Quantum simulation of the dynamical Casimir effect with trapped ions

    NASA Astrophysics Data System (ADS)

    Trautmann, N.; Hauke, P.

    2016-04-01

    Quantum vacuum fluctuations are a direct manifestation of Heisenberg’s uncertainty principle. The dynamical Casimir effect (DCE) allows for the observation of these vacuum fluctuations by turning them into real, observable photons. However, the observation of this effect in a cavity QED experiment would require the rapid variation of the length of a cavity with relativistic velocities, a daunting challenge. Here, we propose a quantum simulation of the DCE using an ion chain confined in a segmented ion trap. We derive a discrete model that enables us to map the dynamics of the multimode radiation field inside a variable-length cavity to radial phonons of the ion crystal. We perform a numerical study comparing the ion-chain quantum simulation under realistic experimental parameters to an ideal Fabry–Perot cavity, demonstrating the viability of the mapping. The proposed quantum simulator, therefore, allows for probing the photon (respectively phonon) production caused by the DCE on the single photon level.

  12. Quantum Electrodynamics Effects in Heavy Ions and Atoms

    SciTech Connect

    Shabaev, V. M.; Andreev, O. V.; Bondarev, A. I.; Glazov, D. A.; Kozhedub, Y. S.; Maiorova, A. V.; Tupitsyn, I. I.; Plunien, G.; Volotka, A. V.

    2011-05-11

    Quantum electrodynamics theory of heavy ions and atoms is considered. The current status of calculations of the binding energies, the hyperfine splitting and g factor values in heavy few-electron ions is reviewed. The theoretical predictions are compared with available experimental data. A special attention is focused on tests of quantum electrodynamics in strong electromagnetic fields and on determination of the fundamental constants. Recent progress in calculations of the parity nonconservation effects with heavy atoms and ions is also reported.

  13. Spacetime effects on satellite-based quantum communications

    NASA Astrophysics Data System (ADS)

    Bruschi, David Edward; Ralph, Timothy C.; Fuentes, Ivette; Jennewein, Thomas; Razavi, Mohsen

    2014-08-01

    We investigate the consequences of space-time being curved on space-based quantum communication protocols. We analyze tasks that require either the exchange of single photons in a certain entanglement distribution protocol or beams of light in a continuous-variable quantum key distribution scheme. We find that gravity affects the propagation of photons, therefore adding additional noise to the channel for the transmission of information. The effects could be measured with current technology.

  14. A toy model for quantum spin Hall effect

    NASA Astrophysics Data System (ADS)

    Owerre, S. A.; Nsofini, J.

    2015-09-01

    In this communication, we investigate a toy model of three-dimensional topological insulator surface, coupled homogeneously to a fictitious pseudospin-1/2 particle. We show that this toy model captures the interesting features of topological insulator surface states, which include topological quantum phase transition and quantum spin Hall effect. We further incorporate an out-of-plane magnetic field and obtain the Landau levels.

  15. Effective quantum dynamics of interacting systems with inhomogeneous coupling

    SciTech Connect

    Lopez, C. E.; Retamal, J. C.; Christ, H.; Solano, E.

    2007-03-15

    We study the quantum dynamics of a single mode (particle) interacting inhomogeneously with a large number of particles and introduce an effective approach to find the accessible Hilbert space, where the dynamics takes place. Two relevant examples are given: the inhomogeneous Tavis-Cummings model (e.g., N atomic qubits coupled to a single cavity mode, or to a motional mode in trapped ions) and the inhomogeneous coupling of an electron spin to N nuclear spins in a quantum dot.

  16. Recoil frame photoelectron angular distributions in core O 1s ionization of H2CO

    NASA Astrophysics Data System (ADS)

    Stener, M.; Decleva, P.; Adachi, J.; Miyauchi, N.; Yamazaki, M.; Yagishita, A.

    2012-10-01

    Recoil frame photoelectron angular distributions (RFPADs) from core O 1s ionization of H2CO are studied theoretically and experimentally. Time-dependent density functional theory calculations are performed to elucidate the ionization dynamics. The effect of averaging around the fragmentation axis is considered to explain differences between molecular frame and recoil frame angular distributions. Convolution by acceptance angles is also considered for the comparison between theory and experiment. The shape resonance to the virtual valence σ* (C-O) is properly reproduced by the calculations. In addition, it is found that the shape resonance plays a major role in assessing the RFPADs for light polarization parallel to the fragmentation axis.

  17. Effects of superpositions of quantum states on quantum isoenergetic cycles: Efficiency and maximum power output

    NASA Astrophysics Data System (ADS)

    Niu, X. Y.; Huang, X. L.; Shang, Y. F.; Wang, X. Y.

    2015-04-01

    Superposition principle plays a crucial role in quantum mechanics, thus its effects on thermodynamics is an interesting topic. Here, the effects of superpositions of quantum states on isoenergetic cycle are studied. We find superposition can improve the heat engine efficiency and release the positive work condition in general case. In the finite time process, we find the efficiency at maximum power output in superposition case is lower than the nonsuperposition case. This efficiency depends on one index of the energy spectrum of the working substance. This result does not mean the superposition discourages the heat engine performance. For fixed efficiency or fixed power, the superposition improves the power or efficiency respectively. These results show how quantum mechanical properties affect the thermodynamical cycle.

  18. Recoiling black holes: prospects for detection and implications of spin alignment

    NASA Astrophysics Data System (ADS)

    Blecha, Laura; Sijacki, Debora; Kelley, Luke Zoltan; Torrey, Paul; Vogelsberger, Mark; Nelson, Dylan; Springel, Volker; Snyder, Gregory; Hernquist, Lars

    2016-02-01

    Supermassive black hole (BH) mergers produce powerful gravitational wave emission. Asymmetry in this emission imparts a recoil kick to the merged BH, which can eject the BH from its host galaxy altogether. Recoiling BHs could be observed as offset active galactic nuclei (AGN). Several candidates have been identified, but systematic searches have been hampered by large uncertainties regarding their observability. By extracting merging BHs and host galaxy properties from the Illustris cosmological simulations, we have developed a comprehensive model for recoiling AGN. Here, for the first time, we model the effects of BH spin alignment and recoil dynamics based on the gas richness of host galaxies. We predict that if BH spins are not highly aligned, seeing-limited observations could resolve offset AGN, making them promising targets for all-sky surveys. For randomly oriented spins, ≲ 10 spatially offset AGN may be detectable in Hubble Space Telescope-Cosmological Evolution Survey, and >103 could be found with the Panoramic Survey Telescope & Rapid Response System (Pan-STARRS), the Large Synoptic Survey Telescope (LSST), Euclid, and the Wide-Field Infrared Survey Telescope (WFIRST). Nearly a thousand velocity offset AGN are predicted within the Sloan Digital Sky Survey (SDSS) footprint; the rarity of large broad-line offsets among SDSS quasars is likely due in part to selection effects but suggests that spin alignment plays a role in suppressing recoils. None the less, in our most physically motivated model where alignment occurs only in gas-rich mergers, hundreds of offset AGN should be found in all-sky surveys. Our findings strongly motivate a dedicated search for recoiling AGN.

  19. New effects in quantum vacuum: photon undulator and transition radiation

    NASA Astrophysics Data System (ADS)

    Mendonça, J. T.

    2009-09-01

    We consider a new optical property of quantum vacuum, as predicted by quantum electrodynamics. It is associated with the propagation of an intense laser pulse, in the presence of a periodic static magnetic field. The existence of an effective charge distribution for the intense laser beam is demonstrated. The photon undulator effect results from the spacetime modulations of this effective charge. This is similar to an electron undulator, where the electron beam is replaced by a photon beam. We also discuss a closely related effect, which can be called photon transition radiation in vacuum. It is associated with the effective charge variation at a magnetic boundary. This work could lead to new experimental configurations for quantum vacuum research with future multi-Peta-Watt laser systems.

  20. Neutron electric form factor via recoil polarimetry

    SciTech Connect

    Madey, Richard; Semenov, Andrei; Taylor, Simon; Aghalaryan, Aram; Crouse, Erick; MacLachlan, Glen; Plaster, Bradley; Tajima, Shigeyuki; Tireman, William; Yan, Chenyu; Ahmidouch, Abdellah; Anderson, Brian; Asaturyan, Razmik; Baker, O; Baldwin, Alan; Breuer, Herbert; Carlini, Roger; Christy, Michael; Churchwell, Steve; Cole, Leon; Danagoulian, Samuel; Day, Donal; Elaasar, Mostafa; Ent, Rolf; Farkhondeh, Manouchehr; Fenker, Howard; Finn, John; Gan, Liping; Garrow, Kenneth; Gueye, Paul; Howell, Calvin; Hu, Bitao; Jones, Mark; Kelly, James; Keppel, Cynthia; Khandaker, Mahbubul; Kim, Wooyoung; Kowalski, Stanley; Lung, Allison; Mack, David; Manley, D; Markowitz, Pete; Mitchell, Joseph; Mkrtchyan, Hamlet; Opper, Allena; Perdrisat, Charles; Punjabi, Vina; Raue, Brian; Reichelt, Tilmann; Reinhold, Joerg; Roche, Julie; Sato, Yoshinori; Seo, Wonick; Simicevic, Neven; Smith, Gregory; Stepanyan, Samuel; Tadevosyan, Vardan; Tang, Liguang; Ulmer, Paul; Vulcan, William; Watson, John; Wells, Steven; Wesselmann, Frank; Wood, Stephen; Yan, Chen; Yang, Seunghoon; Yuan, Lulin; Zhang, Wei-Ming; Zhu, Hong Guo; Zhu, Xiaofeng

    2003-05-01

    The ratio of the electric to the magnetic form factor of the neutron, G_En/G_Mn, was measured via recoil polarimetry from the quasielastic d({pol-e},e'{pol-n)p reaction at three values of Q^2 [viz., 0.45, 1.15 and 1.47 (GeV/c)^2] in Hall C of the Thomas Jefferson National Accelerator Facility. Preliminary data indicate that G_En follows the Galster parameterization up to Q^2 = 1.15 (GeV/c)^2 and appears to rise above the Galster parameterization at Q^2 = 1.47 (GeV/c)^2.

  1. Recombination in liquid xenon for low-energy recoils

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Mei, Dongming; Cubed Collaboration

    2014-09-01

    Detector response to low-energy recoils in sub-keV region is critical to detection of low-mass dark matter particles-WIMPS (Weakly interacting massive particles). The role of electron-ion recombination is important to the interpretation of the relation between ionization yield and scintillation yield, which are in general anti-correlated. Recent experimental results show that ionization yield increases down to keV range. This phenomenon contradicts general understanding for low energy recoils in the keV range in which direct excitation dominates. The explanation is that recombination becomes much less efficient when the track length is smaller than the thermalization distance of electrons. However, recombination rate is also proportional to ionization density, which is very high for keV recoils. To understand how recombination rate behaves for keV recoils, we calculated both initial recombination rate and volume recombination rate for keV recoils in liquid xenon. In this paper, we show the results of the calculated recombination rate as a function of recoil energy for both electronic recoils and nuclear recoils. Detector response to low-energy recoils in sub-keV region is critical to detection of low-mass dark matter particles-WIMPS (Weakly interacting massive particles). The role of electron-ion recombination is important to the interpretation of the relation between ionization yield and scintillation yield, which are in general anti-correlated. Recent experimental results show that ionization yield increases down to keV range. This phenomenon contradicts general understanding for low energy recoils in the keV range in which direct excitation dominates. The explanation is that recombination becomes much less efficient when the track length is smaller than the thermalization distance of electrons. However, recombination rate is also proportional to ionization density, which is very high for keV recoils. To understand how recombination rate behaves for keV recoils, we calculated both initial recombination rate and volume recombination rate for keV recoils in liquid xenon. In this paper, we show the results of the calculated recombination rate as a function of recoil energy for both electronic recoils and nuclear recoils. DE-FG02-10ER46709 and the state of South Dakota.

  2. Thermal recoil force, telemetry, and the Pioneer anomaly

    SciTech Connect

    Toth, Viktor T.; Turyshev, Slava G.

    2009-02-15

    Precision navigation of spacecraft requires accurate knowledge of small forces, including the recoil force due to anisotropies of thermal radiation emitted by spacecraft systems. We develop a formalism to derive the thermal recoil force from the basic principles of radiative heat exchange and energy-momentum conservation. The thermal power emitted by the spacecraft can be computed from engineering data obtained from flight telemetry, which yields a practical approach to incorporate the thermal recoil force into precision spacecraft navigation. Alternatively, orbit determination can be used to estimate the contribution of the thermal recoil force. We apply this approach to the Pioneer anomaly using a simulated Pioneer 10 Doppler data set.

  3. Thermal recoil force, telemetry, and the Pioneer anomaly

    NASA Astrophysics Data System (ADS)

    Toth, Viktor T.; Turyshev, Slava G.

    2009-02-01

    Precision navigation of spacecraft requires accurate knowledge of small forces, including the recoil force due to anisotropies of thermal radiation emitted by spacecraft systems. We develop a formalism to derive the thermal recoil force from the basic principles of radiative heat exchange and energy-momentum conservation. The thermal power emitted by the spacecraft can be computed from engineering data obtained from flight telemetry, which yields a practical approach to incorporate the thermal recoil force into precision spacecraft navigation. Alternatively, orbit determination can be used to estimate the contribution of the thermal recoil force. We apply this approach to the Pioneer anomaly using a simulated Pioneer 10 Doppler data set.

  4. Emergence of integer quantum Hall effect from chaos

    NASA Astrophysics Data System (ADS)

    Tian, Chushun; Chen, Yu; Wang, Jiao

    2016-02-01

    We present an analytic microscopic theory showing that in a large class of spin-1/2 quasiperiodic quantum kicked rotors, a dynamical analog of the integer quantum Hall effect (IQHE) emerges from an intrinsic chaotic structure. Specifically, the inverse of the Planck's quantum (he) and the rotor's energy growth rate mimic the "filling fraction" and the "longitudinal conductivity" in conventional IQHE, respectively, and a hidden quantum number is found to mimic the "quantized Hall conductivity." We show that for an infinite discrete set of critical values of he, the long-time energy growth rate is universal and of order of unity ("metallic" phase), but otherwise vanishes ("insulating" phase). Moreover, the rotor insulating phases are topological, each of which is characterized by a hidden quantum number. This number exhibits universal behavior for small he, i.e., it jumps by unity whenever he decreases, passing through each critical value. This intriguing phenomenon is not triggered by the likes of Landau band filling, well known to be the mechanism for conventional IQHE, and far beyond the canonical Thouless-Kohmoto-Nightingale-Nijs paradigm for quantum Hall transitions. Instead, this dynamical phenomenon is of strong chaos origin; it does not occur when the dynamics is (partially) regular. More precisely, we find that a topological object, similar to the topological theta angle in quantum chromodynamics, emerges from strongly chaotic motion at microscopic scales, and its renormalization gives the hidden quantum number. Our analytic results are confirmed by numerical simulations. Our findings indicate that rich topological quantum phenomena can emerge from chaos and might point to a new direction of study in the interdisciplinary area straddling chaotic dynamics and condensed matter physics. This work is a substantial extension of a short paper published earlier by two of us [Y. Chen and C. Tian, Phys. Rev. Lett. 113, 216802 (2014), 10.1103/PhysRevLett.113.216802].

  5. OPTICS. Quantum spin Hall effect of light.

    PubMed

    Bliokh, Konstantin Y; Smirnova, Daria; Nori, Franco

    2015-06-26

    Maxwell's equations, formulated 150 years ago, ultimately describe properties of light, from classical electromagnetism to quantum and relativistic aspects. The latter ones result in remarkable geometric and topological phenomena related to the spin-1 massless nature of photons. By analyzing fundamental spin properties of Maxwell waves, we show that free-space light exhibits an intrinsic quantum spin Hall effect—surface modes with strong spin-momentum locking. These modes are evanescent waves that form, for example, surface plasmon-polaritons at vacuum-metal interfaces. Our findings illuminate the unusual transverse spin in evanescent waves and explain recent experiments that have demonstrated the transverse spin-direction locking in the excitation of surface optical modes. This deepens our understanding of Maxwell's theory, reveals analogies with topological insulators for electrons, and offers applications for robust spin-directional optical interfaces. PMID:26113717

  6. Angular momentum projection with quantum effects

    SciTech Connect

    Ren, C.; Banerjee, M.K. Department of Astronomy, University of Maryland, College Park, Maryland 20742 )

    1991-04-01

    We have improved a simple and rapid method of calculating expectation values of operators in states of good angular momentum projected from a hedgehog baryon state introduced by Birse {ital et} {ital al}. We have included the contributions of quantum mesons, while in the original method only classical meson fields were included. The method has been applied to models where the mean-field approximation does not include loop terms. Hence, for reasons of consistency, contributions of quantum loops to the matrix elements have been dropped. The symmetry of the hedgehog state under grand reversal (the combined operation of time reversal and {ital e}{sup {ital i}{pi}{bold {cflx I}}}{sub 2}, where {bold {cflx I}} is the isospin operator) introduces remarkable simplification in the calculation of matrix elements of operators which do not contain time derivatives of meson fields. The quantum meson contributions turn out to be 3/2/{l angle}{ital B}{vert bar}{ital {cflx J}}{sup 2}{vert bar}{ital B}{r angle} times the classical meson-field contributions, with {vert bar}{ital B}{r angle} being the hedgehog state. Such operators are encountered in the calculation of nucleon magnetic moments, {ital g}{sub {ital A}}(0) and {ital g}{sub {pi}{ital N}{ital N}}(0)/2{ital M}. Calculation of charge radii involves operators containing time derivatives of meson fields and requires the knowledge of wave functions of quantum mesons. Proper nonperturbative treatment, even though at the tree level, requires that these wave functions describe the motion of the mesons in the potential generated by the baryon. Fortunately, because of the neglect of the loop terms, one needs only the even-parity, grand-spin-1 states which are purely pionic. The Goldberger-Treiman relations, an exact result for the model, serves as a partial test of the method of calculation discussed here.

  7. Confinement and inhomogeneous broadening effects in the quantum oscillatory magnetization of quantum dot ensembles

    NASA Astrophysics Data System (ADS)

    Herzog, F.; Heedt, S.; Goerke, S.; Ibrahim, A.; Rupprecht, B.; Heyn, Ch; Hardtdegen, H.; Schäpers, Th; Wilde, M. A.; Grundler, D.

    2016-02-01

    We report on the magnetization of ensembles of etched quantum dots with a lateral diameter of 460 nm, which we prepared from InGaAs/InP heterostructures. The quantum dots exhibit 1/B-periodic de-Haas-van-Alphen-type oscillations in the magnetization M(B) for external magnetic fields B  >  2 T, measured by torque magnetometry at 0.3 K. We compare the experimental data to model calculations assuming different confinement potentials and including ensemble broadening effects. The comparison shows that a hard wall potential with an edge depletion width of 100 nm explains the magnetic behavior. Beating patterns induced by Rashba spin-orbit interaction (SOI) as measured in unpatterned and nanopatterned InGaAs/InP heterostructures are not observed for the quantum dots. From our model we predict that signatures of SOI in the magnetization could be observed in larger dots in tilted magnetic fields.

  8. Quantum confinement effects on charge-transfer between PbS quantum dots and 4-mercaptopyridine

    SciTech Connect

    Fu Xiaoqi; Pan Yi; Lombardi, John R.; Wang Xin

    2011-01-14

    We obtain the surface enhanced Raman spectra of 4-mercaptopyridine on lead sulfide (PbS) quantum dots as a function of nanoparticle size and excitation wavelength. The nanoparticle radii are selected to be less than the exciton Bohr radius of PbS, enabling the observation of quantum confinement effects on the spectrum. We utilize the variation of nontotally symmetric modes of both b{sub 1} and b{sub 2} symmetry as compared to the totally symmetric a{sub 1} modes to measure the degree of charge-transfer between the molecule and quantum dot. We find both size dependent and wavelength dependent resonances in the range of these measurements, and attribute them to charge-transfer resonances which are responsible for the Raman enhancement.

  9. Effect of Coulomb correlation on electron transport through a concentric quantum ring-quantum dot structure

    NASA Astrophysics Data System (ADS)

    Chwiej, T.; Kutorasiński, K.

    2010-04-01

    We study transfer of a single-electron through a quantum ring capacitively coupled to the charged quantum dot placed in its center. For this purpose we solve the time-dependent Schrödinger equation for the pair of particles: the electron traveling through the ring and the other carrier confined within the quantum dot. The correlation effects due to the interaction between the charge carriers are described in a numerically exact manner. We find that the amplitude of Aharonov-Bohm oscillations of the transfer probability is significantly affected by the presence of the dot-confined carrier. In particular the Coulomb correlation leads to inelastic scattering. When the inelastic scattering is strong the transmission of electron through the ring is not completely blocked for (n+1/2) magnetic flux quanta.

  10. Neutron star recoils from anisotropic supernovae.

    NASA Astrophysics Data System (ADS)

    Janka, H.-T.; Mueller, E.

    1994-10-01

    Refering to recent hydrodynamical computations (Herant et al. 1992; Janka & Mueller 1993a) it is argued that neutron star kicks up to a few hundred km/s might be caused by a turbulent overturn of the matter between proto-neutron star and supernova shock during the early phase of the supernova explosion. These recoil speeds ("kick velocities") may be of the right size to explain the measured proper motions of most pulsars and do not require the presence of magnetic fields in the star. It is also possible that anisotropic neutrino emission associated with convective processes in the surface layers of the nascent neutron star (Burrows & Fryxell 1992; Janka & Mueller 1993b; Mueller 1993) provides an acceleration mechanism (Woosley 1987), although our estimates indicate that the maximum attainable velocities are around 200km/s. Yet, it turns out to be very unlikely that the considered stochastic asymmetries of supernova explosions are able to produce large enough recoils to account for pulsar velocities in excess of about 500km/s, which can be found in the samples of Harrison et al. (1993) and Taylor et al. (1993). It is concluded that other acceleration mechanisms have to be devised to explain the fast motion of PSR 2224+65 (transverse speed >=800km/s Cordes et al. 1993) and the high-velocities deduced from associations between supernova remnants and nearby young pulsars (e.g., Frail & Kulkarni 1991; Stewart et al. 1993; Caraveo 1993).

  11. New Method for Studying Localization effects in Quantum Hall Systems

    NASA Astrophysics Data System (ADS)

    Bhatt, R. N.; Geraedts, Scott

    Disorder is central to the study of the fractional quantum Hall effect. It is responsible for the finite width of the quantum Hall plateaus, and it is of course present in experiment. Numerical studies of the disordered fractional quantum Hall effect are nonetheless very difficult, because the lack of symmetry present in clean systems limits the size of systems that can be studied. We introduce a new method for studying the integer and fractional quantum Hall effect in the presence of disorder that allows larger system sizes to be studied. The method relies on truncating the single particle Hilbert space, which leads to an exponential reduction in the Hilbert space of the many-particle system while preserving the essential topological nature of the state. We apply the model to the study of disorder transitions in the quantum Hall effect, both for the ground state and excited states. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, through Grant DE-SC0002140.

  12. Fano-Andreev effect in Quantum Dots in Kondo regime

    NASA Astrophysics Data System (ADS)

    Orellana, Pedro; Calle, Ana Maria; Pacheco, Monica; Apel, Victor

    In the present work, we investigate the transport through a T-shaped double quantum dot system coupled to two normal leads and to a superconducting lead. We study the role of the superconducting lead in the quantum interferometric features of the double quantum dot and by means of a slave boson mean field approximation at low temperature regime. We inquire into the influence of intradot interactions in the electronic properties of the system as well. Our results show that Fano resonances due to Andreev bound states are exhibited in the transmission from normal to normal lead as a consequence of quantum interference and proximity effect. This Fano effect produced by Andreev bound states in a side quantum dot was called Fano-Andreev effect, which remains valid even if the electron-electron interaction are taken into account, that is, the Fano-Andreev effect is robust against e-e interactions even in Kondo regime. We acknowledge the financial support from FONDECYT program Grants No. 3140053 and 11400571.

  13. Ratchet effects in graphene and quantum wells with lateral superlattice

    SciTech Connect

    Golub, L. E.; Nalitov, A. V.; Ivchenko, E. L.; Olbrich, P.; Kamann, J.; Eroms, J.; Weiss, D.; Ganichev, S. D.

    2013-12-04

    Theoretical and experimental studies on the ratchet effects in graphene and in quantum wells with a lateral superlattice excited by alternating electric fields of terahertz frequency range are presented. We discuss the Seebeck ratchet effect and helicity driven photocurrents and show that the photocurrent generation is based on the combined action of a spatially periodic in-plane potential and a spatially modulated light.

  14. Quantum effects in unimolecular reaction dynamics

    SciTech Connect

    Gezelter, J.D.

    1995-12-01

    This work is primarily concerned with the development of models for the quantum dynamics of unimolecular isomerization and photodissociation reactions. We apply the rigorous quantum methodology of a Discrete Variable Representation (DVR) with Absorbing Boundary Conditions (ABC) to these models in an attempt to explain some very surprising results from a series of experiments on vibrationally excited ketene. Within the framework of these models, we are able to identify the experimental signatures of tunneling and dynamical resonances in the energy dependence of the rate of ketene isomerization. Additionally, we investigate the step-like features in the energy dependence of the rate of dissociation of triplet ketene to form {sup 3}B{sub 1} CH{sub 2} + {sup 1}{sigma}{sup +} CO that have been observed experimentally. These calculations provide a link between ab initio calculations of the potential energy surfaces and the experimentally observed dynamics on these surfaces. Additionally, we develop an approximate model for the partitioning of energy in the products of photodissociation reactions of large molecules with appreciable barriers to recombination. In simple bond cleavage reactions like CH{sub 3}COCl {yields} CH{sub 3}CO + Cl, the model does considerably better than other impulsive and statistical models in predicting the energy distribution in the products. We also investigate ways of correcting classical mechanics to include the important quantum mechanical aspects of zero-point energy. The method we investigate is found to introduce a number of undesirable dynamical artifacts including a reduction in the above-threshold rates for simple reactions, and a strong mixing of the chaotic and regular energy domains for some model problems. We conclude by discussing some of the directions for future research in the field of theoretical chemical dynamics.

  15. Phenomenology of effective geometries from quantum gravity

    NASA Astrophysics Data System (ADS)

    Torromé, Ricardo Gallego; Letizia, Marco; Liberati, Stefano

    2015-12-01

    In a recent paper [M. Assanioussi, A. Dapor, and J. Lewandowski, Phys. Lett. B 751, 302 (2015)] a general mechanism for the emergence of cosmological spacetime geometry from a quantum gravity setting was devised and a departure from standard dispersion relations for an elementary particle was predicted. We elaborate here on this approach extending the results obtained in that paper and showing that generically such a framework will not lead to higher order modified dispersion relations in the matter sector. Furthermore, we shall discuss possible phenomenological constraints to this scenario showing that spacetime will have to be classical to a very high degree by now in order to be consistent with current observations.

  16. Fractional quantum Hall effect in Hofstadter butterflies of Dirac fermions

    NASA Astrophysics Data System (ADS)

    Ghazaryan, Areg; Chakraborty, Tapash; Pietiläinen, Pekka

    2015-05-01

    We report on the influence of a periodic potential on the fractional quantum Hall effect (FQHE) states in monolayer graphene. We have shown that for two values of the magnetic flux per unit cell (one-half and one-third flux quantum) an increase of the periodic potential strength results in a closure of the FQHE gap and appearance of gaps due to the periodic potential. In the case of one-half flux quantum this causes a change of the ground state and consequently the change of the momentum of the system in the ground state. While there is also crossing between low-lying energy levels for one-third flux quantum, the ground state does not change with the increase of the periodic potential strength and is always characterized by the same momentum. Finally, it is shown that for one-half flux quantum the emergent gaps are due entirely to the electron-electron interaction, whereas for the one-third flux quantum per unit cell these are due to both non-interacting electrons (Hofstadter butterfly pattern) and the electron-electron interaction.

  17. Dynamical quantum Hall effect in the parameter space

    PubMed Central

    Gritsev, V.; Polkovnikov, A.

    2012-01-01

    Geometric phases in quantum mechanics play an extraordinary role in broadening our understanding of fundamental significance of geometry in nature. One of the best known examples is the Berry phase [M.V. Berry (1984), Proc. Royal. Soc. London A, 392:45], which naturally emerges in quantum adiabatic evolution. So far the applicability and measurements of the Berry phase were mostly limited to systems of weakly interacting quasi-particles, where interference experiments are feasible. Here we show how one can go beyond this limitation and observe the Berry curvature, and hence the Berry phase, in generic systems as a nonadiabatic response of physical observables to the rate of change of an external parameter. These results can be interpreted as a dynamical quantum Hall effect in a parameter space. The conventional quantum Hall effect is a particular example of the general relation if one views the electric field as a rate of change of the vector potential. We illustrate our findings by analyzing the response of interacting spin chains to a rotating magnetic field. We observe the quantization of this response, which we term the rotational quantum Hall effect. PMID:22493228

  18. Quantum dust magnetosonic waves with spin and exchange correlation effects

    NASA Astrophysics Data System (ADS)

    Maroof, R.; Mushtaq, A.; Qamar, A.

    2016-01-01

    Dust magnetosonic waves are studied in degenerate dusty plasmas with spin and exchange correlation effects. Using the fluid equations of magnetoplasma with quantum corrections due to the Bohm potential, temperature degeneracy, spin magnetization energy, and exchange correlation, a generalized dispersion relation is derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. The exchange-correlation potentials are used, based on the adiabatic local-density approximation, and can be described as a function of the electron density. For three different values of angle, the dispersion relation is reduced to three different modes under the low frequency magnetohydrodynamic assumptions. It is found that the effects of quantum corrections in the presence of dust concentration significantly modify the dispersive properties of these modes. The results are useful for understanding numerous collective phenomena in quantum plasmas, such as those in compact astrophysical objects (e.g., the cores of white dwarf stars and giant planets) and in plasma-assisted nanotechnology (e.g., quantum diodes, quantum free-electron lasers, etc.).

  19. Topological insulators in silicene: Quantum hall, quantum spin hall and quantum anomalous hall effects

    SciTech Connect

    Ezawa, Motohiko

    2013-12-04

    Silicene is a monolayer of silicon atoms forming a two-dimensional honeycomb lattice, which shares almost every remarkable property with graphene. The low energy dynamics is described by Dirac electrons, but they are massive due to relatively large spin-orbit interactions. I will explain the following properties of silicene: 1) The band structure is controllable by applying an electric field. 2) Silicene undergoes a phase transition from a topological insulator to a band insulator by applying external electric field. 3) The topological phase transition can be detected experimentally by way of diamagnetism. 4) There is a novel valley-spin selection rules revealed by way of photon absorption. 5) Silicene yields a remarkably many phases such as quantum anomalous Hall phase and valley polarized metal when the exchange field is additionally introduced. 6) A silicon nanotubes can be used to convey spin currents under an electric field.

  20. Microscopic Properties of the Fractional Quantum Hall Effect

    NASA Astrophysics Data System (ADS)

    Kou, Angela

    The fractional quantum Hall effect occurs when an extremely clean 2-dimensional fermion gas is subject to a magnetic field. This simple set of circumstances creates phenomena, such as edge reconstruction and fractional statistics, that remain subjects of experimental study 30 years after the discovery of the fractional quantum Hall effect. This thesis investigates the properties of excitations of the fractional quantum Hall effect. The first set of experiments studies the interaction between fractional quantum Hall quasiparticles and nuclei in a quantum point contact (QPC). Following the application of a DC bias, fractional plateaus in the QPC shift symmetrically about half filling of the lowest Landau level, nu = 1/3, suggesting an interpretation in terms of composite fermions. Mapping the effects from the integer to fractional regimes extends the composite fermion picture to include hyperfine coupling. The second set of experiments studies the tunneling of quasiparticles through an antidot in the integer and fractional quantum Hall effect. In the integer regime, we conclude that oscillations are of the Coulomb type from the scaling of magnetic field period with the number of edges bound to the antidot. Generalizing this picture to the fractional regime, we find (based on magnetic field and gate-voltage periods) at nu = 2/3 a tunneling charge of (2/3)e and a single charged edge. Further unpublished data related to this experiment as well as alternative theoretical explanations are also presented. The third set of experiments investigates the properties of the fractional quantum Hall effect in the lowest Landau level of bilayer graphene using a scanning single-electron transistor. We observe a sequence of states which breaks particle-hole symmetry and instead obeys a nu → nu + 2 symmetry. This asymmetry highlights the importance of the orbital degeneracy for many-body states in bilayer graphene. The fourth set of experiments investigates the coupling between microwaves and the fractional quantum Hall effect. Reflectometry is used to investigate bulk properties of samples with different electron densities. We observe large changes in the amplitude of the reflected signal at each integer filling factor as well as changes in the capacitance of the system.

  1. Arrest of Langmuir wave collapse by quantum effects

    NASA Astrophysics Data System (ADS)

    Simpson, G.; Sulem, C.; Sulem, P. L.

    2009-11-01

    The arrest of Langmuir wave collapse by quantum effects, first addressed by Haas and Shukla [Phys. Rev. E 79, 066402 (2009)] using a Rayleigh-Ritz trial function method is revisited, using rigorous estimates and systematic asymptotic expansions. The absence of blow up for the so-called quantum Zakharov equations is proved in two and three dimensions, whatever the strength of the quantum effects. The time-periodic behavior of the solution for initial conditions slightly in excess of the singularity threshold for the classical problem is established for various settings in two space dimensions. The difficulty of developing a consistent perturbative approach in three dimensions is also discussed and a semiphenomenological model is suggested for this case.

  2. Effects of reservoir squeezing on quantum systems and work extraction.

    PubMed

    Huang, X L; Wang, Tao; Yi, X X

    2012-11-01

    We establish a quantum Otto engine cycle in which the working substance contacts with squeezed reservoirs during the two quantum isochoric processes. We consider two working substances: (1) a qubit and (2) two coupled qubits. Due to the effects of squeezing, the working substance can be heated to a higher effective temperature, which leads to many interesting features different from the ordinary ones, such as (1) for the qubit as working substance, if we choose the squeezed parameters properly, the positive work can be exported even when T(H) quantum fuel is more efficient than the classical one. PMID:23214736

  3. Effects of reservoir squeezing on quantum systems and work extraction

    NASA Astrophysics Data System (ADS)

    Huang, X. L.; Wang, Tao; Yi, X. X.

    2012-11-01

    We establish a quantum Otto engine cycle in which the working substance contacts with squeezed reservoirs during the two quantum isochoric processes. We consider two working substances: (1) a qubit and (2) two coupled qubits. Due to the effects of squeezing, the working substance can be heated to a higher effective temperature, which leads to many interesting features different from the ordinary ones, such as (1) for the qubit as working substance, if we choose the squeezed parameters properly, the positive work can be exported even when THquantum fuel is more efficient than the classical one.

  4. Loss of coherence and memory effects in quantum dynamics Loss of coherence and memory effects in quantum dynamics

    NASA Astrophysics Data System (ADS)

    Benatti, Fabio; Floreanini, Roberto; Scholes, Greg

    2012-08-01

    The last years have witnessed fast growing developments in the use of quantum mechanics in technology-oriented and information-related fields, especially in metrology, in the developments of nano-devices and in understanding highly efficient transport processes. The consequent theoretical and experimental outcomes are now driving new experimental tests of quantum mechanical effects with unprecedented accuracies that carry with themselves the concrete possibility of novel technological spin-offs. Indeed, the manifold advances in quantum optics, atom and ion manipulations, spintronics and nano-technologies are allowing direct experimental verifications of new ideas and their applications to a large variety of fields. All of these activities have revitalized interest in quantum mechanics and created a unique framework in which theoretical and experimental physics have become fruitfully tangled with information theory, computer, material and life sciences. This special issue aims to provide an overview of what is currently being pursued in the field and of what kind of theoretical reference frame is being developed together with the experimental and theoretical results. It consists of three sections: 1. Memory effects in quantum dynamics and quantum channels 2. Driven open quantum systems 3. Experiments concerning quantum coherence and/or decoherence The first two sections are theoretical and concerned with open quantum systems. In all of the above mentioned topics, the presence of an external environment needs to be taken into account, possibly in the presence of external controls and/or forcing, leading to driven open quantum systems. The open system paradigm has proven to be central in the analysis and understanding of many basic issues of quantum mechanics, such as the measurement problem, quantum communication and coherence, as well as for an ever growing number of applications. The theory is, however, well-settled only when the so-called Markovian or memoryless, approximation applies. When strong coupling or long environmental relaxation times make memory effects important for a realistic description of the dynamics, new strategies are asked for and the assessment of the general structure of non-Markovian dynamical equations for realistic systems is a crucial issue. The impact of quantum phenomena such as coherence and entanglement in biology has recently started to be considered as a possible source of the high efficiency of certain biological mechanisms, including e.g. light harvesting in photosynthesis and enzyme catalysis. In this effort, the relatively unknown territory of driven open quantum systems is being explored from various directions, with special attention to the creation and stability of coherent structures away from thermal equilibrium. These investigations are likely to advance our understanding of the scope and role of quantum mechanics in living systems; at the same time they provide new ideas for the developments of next generations of devices implementing highly efficient energy harvesting and conversion. The third section concerns experimental studies that are currently being pursued. Multidimensional nonlinear spectroscopy, in particular, has played an important role in enabling experimental detection of the signatures of coherence. Recent remarkable results suggest that coherence—both electronic and vibrational—survive for substantial timescales even in complex biological systems. The papers reported in this issue describe work at the forefront of this field, where researchers are seeking a detailed understanding of the experimental signatures of coherence and its implications for light-induced processes in biology and chemistry.

  5. Nernst effect in bismuth and graphite across the quantum limit

    NASA Astrophysics Data System (ADS)

    Behnia, Kamran

    2010-03-01

    Bismuth and graphite are elemental semimetals, which host a dilute liquid of highly mobile carriers of both signs. These features conspire to generate a very large Nernst coefficient. The quantum limit is attained when the magnetic field puts all electrons in their lowest Landau level and can be crossed in bismuth and graphite for particular orientations of the magnetic field. The fate of a three-dimensional electron gas pushed to this ultraquantum regime has been barely explored. According to recent studies on bismuth and graphite in the vicinity of the quantum limit, whenever a Landau level intersects the Fermi level, the Nernst signal sharply peaks and the oscillating signal exceeds by far the monotonous background. Both these features are absent in two-dimensional systems. Beyond the quantum limit, Nernst effect in bismuth detects field scales unexpected in the one-particle picture. Our recent angular-dependent Nernst measurements find that the band picture, quite successful in explaining the complex electronic spectrum of bismuth up to 9 T, is inadequate as the quantum limit is crossed, An enigmatic reorganization of electrons, most probably due to collective effects, occurs far beyond the quantum limit around B=40 T. Collaborators: Zengwei Zhu, Benoit Fauqu'e, Huan Yang, Baptiste Vignolle, Cyril Proust, Arlei Antunes, Liam Malone, Tim Murphy, Luis Balicas, Yakov Kopelevich and Jean-Paul Issi.

  6. Effects of quantum coherence in metalloprotein electron transfer

    NASA Astrophysics Data System (ADS)

    Dorner, Ross; Goold, John; Heaney, Libby; Farrow, Tristan; Vedral, Vlatko

    2012-09-01

    Many intramolecular electron transfer (ET) reactions in biology are mediated by metal centers in proteins. This process is commonly described by a model of diffusive hopping according to the semiclassical theories of Marcus and Hopfield. However, recent studies have raised the possibility that nontrivial quantum mechanical effects play a functioning role in certain biomolecular processes. Here, we investigate the potential effects of quantum coherence in biological ET by extending the semiclassical model to allow for the possibility of quantum coherent phenomena using a quantum master equation based on the Holstein Hamiltonian. We test the model on the structurally defined chain of seven iron-sulfur clusters in nicotinamide adenine dinucleotide plus hydrogen:ubiquinone oxidoreductase (complex I), a crucial respiratory enzyme and one of the longest chains of metal centers in biology. Using experimental parameters where possible, we find that, in limited circumstances, a small quantum mechanical contribution can provide a marked increase in the ET rate above the semiclassical diffusive-hopping rate. Under typical biological conditions, our model reduces to well-known diffusive behavior.

  7. Quantum Einstein-de Haas effect.

    PubMed

    Ganzhorn, Marc; Klyatskaya, Svetlana; Ruben, Mario; Wernsdorfer, Wolfgang

    2016-01-01

    The classical Einstein-de Haas experiment demonstrates that a change of magnetization in a macroscopic magnetic object results in a mechanical rotation of this magnet. This experiment can therefore be considered as a macroscopic manifestation of the conservation of total angular momentum and energy of electronic spins. Since the conservation of angular momentum is a consequence of a system's rotational invariance, it is valid for an ensemble of spins in a macroscopic ferromaget as well as for single spins. Here we propose an experimental realization of an Einstein-de Haas experiment at the single-spin level based on a single-molecule magnet coupled to a nanomechanical resonator. We demonstrate that the spin associated with the single-molecule magnet is then subject to conservation of total angular momentum and energy, which results in a total suppression of the molecule's quantum tunnelling of magnetization. PMID:27126449

  8. Quantum Einstein-de Haas effect

    PubMed Central

    Ganzhorn, Marc; Klyatskaya, Svetlana; Ruben, Mario; Wernsdorfer, Wolfgang

    2016-01-01

    The classical Einstein-de Haas experiment demonstrates that a change of magnetization in a macroscopic magnetic object results in a mechanical rotation of this magnet. This experiment can therefore be considered as a macroscopic manifestation of the conservation of total angular momentum and energy of electronic spins. Since the conservation of angular momentum is a consequence of a system's rotational invariance, it is valid for an ensemble of spins in a macroscopic ferromaget as well as for single spins. Here we propose an experimental realization of an Einstein-de Haas experiment at the single-spin level based on a single-molecule magnet coupled to a nanomechanical resonator. We demonstrate that the spin associated with the single-molecule magnet is then subject to conservation of total angular momentum and energy, which results in a total suppression of the molecule's quantum tunnelling of magnetization. PMID:27126449

  9. The Quantum Spin Hall Effect: Theory and Experiment

    SciTech Connect

    Konig, Markus; Buhmann, Hartmut; Molenkamp, Laurens W.; Hughes, Taylor L.; Liu, Chao-Xing; Qi, Xiao-Liang; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    The search for topologically non-trivial states of matter has become an important goal for condensed matter physics. Recently, a new class of topological insulators has been proposed. These topological insulators have an insulating gap in the bulk, but have topologically protected edge states due to the time reversal symmetry. In two dimensions the helical edge states give rise to the quantum spin Hall (QSH) effect, in the absence of any external magnetic field. Here we review a recent theory which predicts that the QSH state can be realized in HgTe/CdTe semiconductor quantum wells. By varying the thickness of the quantum well, the band structure changes from a normal to an 'inverted' type at a critical thickness d{sub c}. We present an analytical solution of the helical edge states and explicitly demonstrate their topological stability. We also review the recent experimental observation of the QSH state in HgTe/(Hg,Cd)Te quantum wells. We review both the fabrication of the sample and the experimental setup. For thin quantum wells with well width d{sub QW} < 6.3 nm, the insulating regime shows the conventional behavior of vanishingly small conductance at low temperature. However, for thicker quantum wells (d{sub QW} > 6.3 nm), the nominally insulating regime shows a plateau of residual conductance close to 2e{sup 2}/h. The residual conductance is independent of the sample width, indicating that it is caused by edge states. Furthermore, the residual conductance is destroyed by a small external magnetic field. The quantum phase transition at the critical thickness, d{sub c} = 6.3 nm, is also independently determined from the occurrence of a magnetic field induced insulator to metal transition.

  10. Effective action for a quantum scalar field in warped spaces

    NASA Astrophysics Data System (ADS)

    Hoff da Silva, J. M.; Mendonça, E. L.; Scatena, E.

    2015-11-01

    We investigate the one-loop corrections, at zero as well as finite temperature, of a scalar field taking place in a braneworld motivated warped background. After to reach a well-defined problem, we calculate the effective action with the corresponding quantum corrections to each case.

  11. Eight-dimensional quantum Hall effect and "Octonions".

    PubMed

    Bernevig, Bogdan A; Hu, Jiangping; Toumbas, Nicolaos; Zhang, Shou-Cheng

    2003-12-01

    We construct a generalization of the quantum Hall effect where particles move in an eight-dimensional space under an SO(8) gauge field. The underlying mathematics of this particle liquid is that of the last normed division algebra, the octonions. Two fundamentally different liquids with distinct configuration spaces can be constructed, depending on whether the particles carry spinor or vector SO(8) quantum numbers. One of the liquids lives on a 20-dimensional manifold with an internal component of SO(7) holonomy, whereas the second liquid lives on a 14-dimensional manifold with an internal component of G2 holonomy. PMID:14683206

  12. Local field effects and metamaterials based on colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Porvatkina, O. V.; Tishchenko, A. A.; Strikhanov, M. N.

    2015-11-01

    Metamaterials are composite structures that exhibit interesting and unusual properties, e.g. negative refractive index. In this article we consider metamaterials based on colloidal quantum dots (CQDs). We investigate these structures taking into account the local field effects and theoretically analyze expressions for permittivity and permeability of metamaterials based on CdSe CQDs. We obtain inequality describing the conditions when material with definite concentration of CQDs is metamaterial. Also we investigate how the values of dielectric polarizability and magnetic polarizability of CQDs depend on the dots radius and properties the material the quantum dots are made of.

  13. Analog model for quantum gravity effects: phonons in random fluids.

    PubMed

    Krein, G; Menezes, G; Svaiter, N F

    2010-09-24

    We describe an analog model for quantum gravity effects in condensed matter physics. The situation discussed is that of phonons propagating in a fluid with a random velocity wave equation. We consider that there are random fluctuations in the reciprocal of the bulk modulus of the system and study free phonons in the presence of Gaussian colored noise with zero mean. We show that, in this model, after performing the random averages over the noise function a free conventional scalar quantum field theory describing free phonons becomes a self-interacting model. PMID:21230759

  14. Continuity of the sequential product of sequential quantum effect algebras

    NASA Astrophysics Data System (ADS)

    Lei, Qiang; Su, Xiaochao; Wu, Junde

    2016-04-01

    In order to study quantum measurement theory, sequential product defined by A∘B = A1/2BA1/2 for any two quantum effects A, B has been introduced. Physically motivated conditions ask the sequential product to be continuous with respect to the strong operator topology. In this paper, we study the continuity problems of the sequential product A∘B = A1/2BA1/2 with respect to other important topologies, such as norm topology, weak operator topology, order topology, and interval topology.

  15. Effect of structural disorder on quantum oscillations in graphite

    NASA Astrophysics Data System (ADS)

    Camargo, B. C.; Kopelevich, Y.; Usher, A.; Hubbard, S. B.

    2016-01-01

    We have studied the effect of structural disorder on the de Haas van Alphen and Shubnikov de Haas quantum oscillations measured in natural, Kish, and highly oriented pyrolytic graphite samples at temperatures down to 30 mK and at magnetic fields up to 14 T. The measurements were performed on different samples characterized by means of x-ray diffractometry, transmission electron microscopy, and atomic-force microscopy techniques. Our results reveal a correlation between the amplitude of quantum oscillations and the sample surface roughness.

  16. Effective photon mass and exact translating quantum relativistic structures

    NASA Astrophysics Data System (ADS)

    Haas, Fernando; Manrique, Marcos Antonio Albarracin

    2016-04-01

    Using a variation of the celebrated Volkov solution, the Klein-Gordon equation for a charged particle is reduced to a set of ordinary differential equations, exactly solvable in specific cases. The new quantum relativistic structures can reveal a localization in the radial direction perpendicular to the wave packet propagation, thanks to a non-vanishing scalar potential. The external electromagnetic field, the particle current density, and the charge density are determined. The stability analysis of the solutions is performed by means of numerical simulations. The results are useful for the description of a charged quantum test particle in the relativistic regime, provided spin effects are not decisive.

  17. Temporally evolved recoil pressure driven melt infiltration during laser surface modifications of porous alumina ceramic

    SciTech Connect

    Harimkar, Sandip P.; Samant, Anoop N.; Dahotre, Narendra B.

    2007-03-01

    Laser surface modification of porous alumina ceramic with a high power laser is associated with a series of physical processes such as heating, melting, and evaporation of material. Above certain threshold laser intensity ({approx}10{sup 10} W/m{sup 2}), rapid evaporation at melt surface generates strong recoil pressures. These laser-induced evaporation recoil pressures tend to drive the flow of molten material into the porous substrate thus contributing to the overall observed depth of melting. This paper presents a three-dimensional thermal model to calculate the temporal evolution of temperature during laser surface modifications of alumina ceramic. This is followed by the determination of recoil pressures at the evaporating surface based on experimentally verified physical model of melt hydrodynamics and laser-induced evaporation proposed by Anisimov [Sov. Phys. JETP 27, 182 (1968)]. Finally, Carman-Kozeny equations were employed to analyze the effect of recoil pressure on the depth of infiltration which is subsequently integrated with the calculated depth of melting from thermal model. Such an integrative approach results in better agreement of the predicted values of depths of melting with the experimental values.

  18. Effect of local channels on quantum steering ellipsoids

    NASA Astrophysics Data System (ADS)

    Hu, Xueyuan; Fan, Heng

    2015-02-01

    The effect of a local trace-preserving single-qubit channel on a two-qubit state is investigated in the frame of quantum steering ellipsoids (QSEs). The phenomenon of locally increased quantum discord is visualized in this picture. We strictly prove that a B -side two-qubit discordant state can be locally prepared from a classical state by a trace-preserving channel on qubit B if and only if its QSE of B is a nonradial line segment. For states with higher-dimensional QSEs, the phenomenon of locally increased quantum correlation generally happens when the shape of the QSE is like a baguette. Based on this observation, we find a class of entangled states whose quantum discord can be increased by the local amplitude-damping channel. Further, we find that the local quantum channel does not increase the size of the QSEs of either qubit A or qubit B , for the needle-shaped QSE states, or for the Bell diagonal states with higher-dimensional QSEs.

  19. The quantum pinch effect in semiconducting quantum wires: A bird’s-eye view

    NASA Astrophysics Data System (ADS)

    Kushwaha, Manvir S.

    2016-01-01

    Those who measure success with culmination do not seem to be aware that life is a journey not a destination. This spirit is best reflected in the unceasing failures in efforts for solving the problem of controlled thermonuclear fusion for even the simplest pinches for over decades; and the nature keeps us challenging with examples. However, these efforts have permitted researchers the obtention of a dense plasma with a lifetime that, albeit short, is sufficient to study the physics of the pinch effect, to create methods of plasma diagnostics, and to develop a modern theory of plasma processes. Most importantly, they have impregnated the solid state plasmas, particularly the electron-hole plasmas in semiconductors, which do not suffer from the issues related with the confinement and which have demonstrated their potential not only for the fundamental physics but also for the device physics. Here, we report on a two-component, cylindrical, quasi-one-dimensional quantum plasma subjected to a radial confining harmonic potential and an applied magnetic field in the symmetric gauge. It is demonstrated that such a system, as can be realized in semiconducting quantum wires, offers an excellent medium for observing the quantum pinch effect at low temperatures. An exact analytical solution of the problem allows us to make significant observations: Surprisingly, in contrast to the classical pinch effect, the particle density as well as the current density display a determinable maximum before attaining a minimum at the surface of the quantum wire. The effect will persist as long as the equilibrium pair density is sustained. Therefore, the technological promise that emerges is the route to the precise electronic devices that will control the particle beams at the nanoscale.

  20. Coupling effect of quantum wells on band structure

    NASA Astrophysics Data System (ADS)

    Jie, Chen; Weiyou, Zeng

    2015-10-01

    The coupling effects of quantum wells on band structure are numerically investigated by using the Matlab programming language. In a one dimensional finite quantum well with the potential barrier V0, the calculation is performed by increasing the number of inserted barriers with the same height Vb, and by, respectively, varying the thickness ratio of separated wells to inserted barriers and the height ratio of Vb to V0. Our calculations show that coupling is strongly influenced by the above parameters of the inserted barriers and wells. When these variables change, the width of the energy bands and gaps can be tuned. Our investigation shows that it is possible for quantum wells to achieve the desired width of the bands and gaps.

  1. On the Convergence in Effective Loop Quantum Cosmology

    SciTech Connect

    Corichi, Alejandro; Vukasinac, Tatjana; Zapata, Jose Antonio

    2010-07-12

    In Loop Quantum Cosmology (LQC) there is a discreteness parameter {lambda}, that has been heuristically associated to a fundamental granularity of quantum geometry. It is also possible to consider {lambda} as a regulator in the same spirit as that used in lattice field theory, where it specifies a regular lattice in the real line. A particular quantization of the k = 0 FLRW loop cosmological model yields a completely solvable model, known as solvable loop quantum cosmology(sLQC). In this contribution, we consider effective classical theories motivated by sLQC and study their {lambda}-dependence, with a special interest on the limit {lambda}{yields}0 and the role of the evolution parameter in the convergence of such limit.

  2. Macroscopic quantum effects observed in Mssbauer spectra of antiferromagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Chuev, Mikhail A.

    2014-04-01

    The 57Fe Mssbauer spectra of antiferromagnetic nanoparticles have been measured for almost half a century and often displayed a specific (non-superparamagnetic) temperature evolution of the spectral shape which looks like a quantum superposition of well-resolved magnetic hyperfine structure and single line or quadrupolar doublet of lines with the temperature-dependent partial spectral areas. We have developed a quantum-mechanical model for describing thermodynamic characteristics of an ensemble of ideal and "uncompensated" antiferromagnetic nanoparticles with uniaxial magnetic anisotropy in the first approximation of slowly relaxing macrospins of magnetic sublattices. This model allows one to qualitatively describe the macroscopic quantum effects observed in the Mssbauer spectra and to clarify principally the difference in thermodynamic properties of ferromagnetic and antiferromagnetic particles revealed in spectroscopic measurements.

  3. Mesoscopic effects in quantum phases of ultracold quantum gases in optical lattices

    NASA Astrophysics Data System (ADS)

    Carr, L. D.; Wall, M. L.; Schirmer, D. G.; Brown, R. C.; Williams, J. E.; Clark, Charles W.

    2010-01-01

    We present a wide array of quantum measures on numerical solutions of one-dimensional Bose- and Fermi-Hubbard Hamiltonians for finite-size systems with open boundary conditions. Finite-size effects are highly relevant to ultracold quantum gases in optical lattices, where an external trap creates smaller effective regions in the form of the celebrated “wedding cake” structure and the local density approximation is often not applicable. Specifically, for the Bose-Hubbard Hamiltonian we calculate number, quantum depletion, local von Neumann entropy, generalized entanglement or Q measure, fidelity, and fidelity susceptibility; for the Fermi-Hubbard Hamiltonian we also calculate the pairing correlations, magnetization, charge-density correlations, and antiferromagnetic structure factor. Our numerical method is imaginary time propagation via time-evolving block decimation. As part of our study we provide a careful comparison of canonical versus grand canonical ensembles and Gutzwiller versus entangled simulations. The most striking effect of finite size occurs for bosons: we observe a strong blurring of the tips of the Mott lobes accompanied by higher depletion, and show how the location of the first Mott lobe tip approaches the thermodynamic value as a function of system size.

  4. Quantum confined stark effect in wide parabolic quantum wells: real density matrix approach

    NASA Astrophysics Data System (ADS)

    Zielińska-Raczyńska, Sylwia; Czajkowski, Gerard; Ziemkiewicz, David

    2015-12-01

    We show how to compute the optical functions of wide parabolic quantum wells (WPQWs) exposed to uniform electric F applied in the growth direction, in the excitonic energy region. The effect of the coherence between the electron-hole pair and the electromagnetic field of the propagating wave including the electron-hole screened Coulomb potential is adopted, and the valence band structure is taken into account in the cylindrical approximation. The role of the interaction potential and of the applied electric field, which mix the energy states according to different quantum numbers and create symmetry forbidden transitions, is stressed. We use the real density matrix approach (RDMA) and an effective e-h potential, which enable to derive analytical expressions for the WPQWs electrooptical functions. Choosing the susceptibility, we performed numerical calculations appropriate to a GaAs/GaAlAs WPQWs. We have obtained a red shift of the absorption maxima (quantum confined Stark effect), asymmetric upon the change of the direction of the applied field ( F → - F), parabolic for the ground state and strongly dependent on the confinement parameters (the QWs sizes), changes in the oscillator strengths, and new peaks related to the states with different parity for electron and hole.

  5. Quantum mechanical effects of topological origin

    NASA Technical Reports Server (NTRS)

    Duru, I. H.

    1993-01-01

    Following a brief review of the original Casimir and Aharonov-Bohm effects, some other effects of similar natures are mentioned. A Casimir interaction between AB fluxes is presented. Possible realizations of the Casimir effects for massive charged fields in solid state structures and a new AB effect for photons are suggested.

  6. Photodynamic antibacterial effect of graphene quantum dots.

    PubMed

    Ristic, Biljana Z; Milenkovic, Marina M; Dakic, Ivana R; Todorovic-Markovic, Biljana M; Milosavljevic, Momir S; Budimir, Milica D; Paunovic, Verica G; Dramicanin, Miroslav D; Markovic, Zoran M; Trajkovic, Vladimir S

    2014-05-01

    Synthesis of new antibacterial agents is becoming increasingly important in light of the emerging antibiotic resistance. In the present study we report that electrochemically produced graphene quantum dots (GQD), a new class of carbon nanoparticles, generate reactive oxygen species when photoexcited (470 nm, 1 W), and kill two strains of pathogenic bacteria, methicillin-resistant Staphylococcus aureus and Escherichia coli. Bacterial killing was demonstrated by the reduction in number of bacterial colonies in a standard plate count method, the increase in propidium iodide uptake confirming the cell membrane damage, as well as by morphological defects visualized by atomic force microscopy. The induction of oxidative stress in bacteria exposed to photoexcited GQD was confirmed by staining with a redox-sensitive fluorochrome dihydrorhodamine 123. Neither GQD nor light exposure alone were able to cause oxidative stress and reduce the viability of bacteria. Importantly, mouse spleen cells were markedly less sensitive in the same experimental conditions, thus indicating a fairly selective antibacterial photodynamic action of GQD. PMID:24612819

  7. Linear and nonlinear electrostatic modes in a strongly coupled quantum plasma

    SciTech Connect

    Ghosh, Samiran; Chakrabarti, Nikhil

    2012-07-15

    The properties of linear and nonlinear electrostatic waves in a strongly coupled electron-ion quantum plasma are investigated. In this study, the inertialess electrons are degenerate, while non-degenerate inertial ions are strongly correlated. The ion dynamics is governed by the continuity and the generalized viscoelastic momentum equations. The quantum forces associated with the quantum statistical pressure and the quantum recoil effect act on the degenerate electron fluid, whereas strong ion correlation effects are embedded in generalized viscoelastic momentum equation through the viscoelastic relaxation of ion correlations and ion fluid shear viscosities. Hence, the spectra of linear electrostatic modes are significantly affected by the strong ion coupling effect. In the weakly nonlinear limit, due to ion-ion correlations, the quantum plasma supports a dispersive shock wave, the dynamics of which is governed by the Korteweg-de Vries Burgers' equation. For a particular value of the quantum recoil effect, only monotonic shock structure is observed. Possible applications of our investigation are briefly mentioned.

  8. Self-action effects in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Dneprovskii, V. S.; Kanev, A. R.; Kozlova, M. V.; Smirnov, A. M.

    2014-05-01

    Two-dimensional (2D) dynamic photonic crystal regime has been utilized to investigate self-diffraction effect and nonlinear optical properties of excitons in CdSe/ZnS colloidal quantum dots (QDs). Self-diffraction at 2D photonic crystal arises for three intersecting beams of Nd+3:YAG laser second harmonic in the case of one-photon resonant excitation of the exciton (electron - hole) transition QDs. The relaxation time of excited excitons has been measured by pump and probe technique at induced one-dimensional transient diffraction grating. Two-exponential decay with initial fast and slow parts was discovered. Self-action effect has been discovered in the case of stationary resonant excitation of excitons in CdSe/ZnS QDs by the beam of second harmonic of powerful 12-nanosecond laser pulses. The bleaching of exciton absorption and the creation of transparency channel (this effect provokes self-diffraction of the second harmonic beam) was explained by the dominating coexisting and competing processes of state filling in stationary excited quantum dots and Stark-shift of exciton spectral band. The peculiarities of the influence of these processes at the change of exciton absorption in quantum dots in the case of different detuning from exciton resonance (quantum dots with different size have been used) was analyzed.

  9. Magnitude of quantum effects in classical spin ices

    NASA Astrophysics Data System (ADS)

    Rau, Jeffrey G.; Gingras, Michel J. P.

    2015-10-01

    The pyrochlore spin ice compounds Dy2Ti2O7 and Ho2Ti2O7 are well described by classical Ising models down to low temperatures. Given the empirical success of this description, the question of the importance of quantum effects in these materials has been mostly ignored. We show that the common wisdom that the strictly Ising moments of isolated Dy3+ and Ho3+ ions imply Ising interactions is too naïve; a more complex argument is needed to explain the close agreement between theory and experiment. From a microscopic picture of the interactions in rare-earth oxides, we show that the high-rank multipolar interactions needed to induce quantum effects in these two materials are generated only very weakly by superexchange. Using this framework, we formulate an estimate of the scale of quantum effects in Ho2Ti2O7 and Dy2Ti2O7 , finding it to be well below experimentally relevant temperatures. We discuss the implications of these results for realizing quantum spin ice in other materials.

  10. Separation of the alpha-emitting radioisotopes actinium-225 and bismuth-213 from thorium-229 using alpha recoil methods

    NASA Astrophysics Data System (ADS)

    Ruddy, F. H.; Dulloo, A. R.; Seidel, J. G.; Petrović, B.

    2004-01-01

    An innovative method has been demonstrated for separating alpha-emitting isotopes for medical radiotherapy applications. The method relies on recoil-ion separation rather than on conventional wet chemistry techniques to separate medical isotopes from their precursor sources. The isotopes 225Ac and 213Bi have been separated from electro-deposited sources of 229ThO 2. Separations of 225Ac were carried out by placing nickel recoil collector foils in firm contact with the 229ThO 2 sources. One-stage recoil-ion separations of 225Ac from 229Th have been performed as well as two-stage separations of 213Bi from previously recoil separated 225Ac. In addition, a direct recoil separation of 213Bi from 229Th has been demonstrated. The 213Bi from the one-stage direct separation has a high isotopic purity, but contains small amounts of long-lived 225Ac alpha activity. The two-stage separations of 213Bi produce high isotopic purity material (>99.9999%), but result in lower isotopic yields. Range-energy calculations have been carried out to determine the yields of recoil ions as a function of alpha-particle energy and ThO 2 thickness. The results of the calculations have been benchmarked with recoil separation measurements carried out using ThO 2 electro-deposits over a range of thickness. A computer code based on the generalized Bateman equations has been developed to allow calculations of the amounts of any isotope in the 229Th decay chain as a function of recoil separation exposure time and elapsed time after the separation. An excellent match has been obtained between the predictions of the Bateman calculations and the results of recoil separation measurements. The recoil separation method has proven to be a simple and effective way of separating medically useful isotopes such as 213Bi. In addition, the method has been shown to produce no chemical or radioactive wastes, in contrast to radiochemical separation methods, which generate mixed (chemical and radioactive) waste.

  11. Quantum simulation of many-body effects in steady-state nonequilibrium: Electron-phonon coupling in quantum dots

    NASA Astrophysics Data System (ADS)

    Han, J. E.

    2006-03-01

    We develope a method of mapping quantum nonequilibrium steady-state to an effective equilibrium system and present an algorithm to calculate electron-transport using an equilibrium technique. A systematic implementation of boundary conditions in steady-state nonequilibrium is made in the statistical operator Ŷ constructed from scattering state operators. We explicitly demonstrate the equivalence of this method to nonequilibrium Green function techniques for a noninteracting quantum dot model. In electron-phonon coupled quantum dot systems, we formulate an algorithm to construct the statistical bias operator Ŷ and perform a full many-body calculation with the quantum Monte Carlo technique. The results coherently demonstrate various transport behaviors such as phonon dephasing, I-V staircase, and phonon-assisted tunneling phenomena. This formulation makes the existing computational quantum many-body techniques applicable to quantum steady-state nonequilibrium problems, which will complement the theories based on the diagrammatic approach.

  12. Modeling the Observability of Recoiling Black Holes as Offset Quasars

    NASA Astrophysics Data System (ADS)

    Blecha, Laura; Torrey, Paul; Vogelsberger, Mark; Genel, Shy; Springel, Volker; Sijacki, Debora; Snyder, Gregory; Bird, Simeon; Nelson, Dylan; Xu, Dandan; Hernquist, Lars

    2015-08-01

    The merger of two supermassive black holes (SMBHs) imparts a gravitational-wave (GW) recoil kick to the remnant SMBH. In extreme cases these kicks may be thousands of km/s -- enough to easily eject them from their host galaxies. Moderate recoil kicks may also cause substantial displacements of the SMBH, however. An actively-accreting, recoiling SMBH may be observable as an offset quasar. Prior to the advent of a space-based GW observatory, detections of these offset quasars may offer the best chance for identifying recent SMBH mergers. Indeed, observational searches for recoiling quasars have already identified several promising candidates. However, systematic searches for recoils are currently hampered by large uncertainties regarding how often offset quasars should be observable, where they are most likely to be found, and whether BH spin alignment prior to merger is efficient at suppressing large recoils. Motivated by this, we have developed a model for the observable population of recoiling quasars in a cosmological framework, utilizing detailed information about the progenitor galaxies from state-of-the-art cosmological hydrodynamic simulations (the Illustris Project). The model for offset quasar lifetimes includes a physically-motivated, time-dependent model for accretion onto kicked SMBHs, and results are analyzed for a range of possible BH spin alignment models. We find that the observability of offset quasars depends strongly on the efficiency of pre-merger spin alignment, with promising indications that observations of recoils could distinguish between at least the extreme limits of spin alignment models. Our results also suggest that observable offset quasars should inhabit preferred types of host galaxies, where again these populations depend on the degree of pre-merger spin alignment. These findings will be valuable for planned and future dedicated searches for recoiling quasars, and they indicate that such objects might be used to place indirect constraints on SMBH spins.

  13. Vortices in superconducting films: Statistics and fractional quantum Hall effect

    SciTech Connect

    Dziarmaga, J.

    1996-03-01

    We present a derivation of the Berry phase picked up during exchange of parallel vortices. This derivation is based on the Bogolubov{endash}de Gennes formalism. The origin of the Magnus force is also critically reanalyzed. The Magnus force can be interpreted as an interaction with the effective magnetic field. The effective magnetic field may be even of the order 10{sup 6}{ital T}/A. We discuss a possibility of the fractional quantum Hall effect (FQHE) in vortex systems. As the real magnetic field is varied to drive changes in vortex density, the vortex density will prefer to stay at some quantized values. The mere existence of the FQHE does not depend on vortex quantum statistics, although the pattern of the plateaux does. We also discuss how the density of anyonic vortices can lower the effective strengh of the Magnus force, what might be observable in measurements of Hall resistivity. {copyright} {ital 1996 The American Physical Society.}

  14. Additional Dirac Matrix in Quantum Hall Effect

    SciTech Connect

    Shrivastava, Keshav N.

    2008-05-20

    We find that the predictions of the Dirac equation agree with the idea of fractional charges. We have introduced the combination of spin and orbital quantum numbers, including the negative sign for spin, in such a way that there occur fractional charges through the Bohr magneton. This leads to doubling of eigen values so that we define an additional matrix the properties of which are important when magnetic field is present. There is a spin-charge coupling so that spin (1/2) particle can have the zero or one charge. The Dirac equation can accommodate not only charges of 0 and {+-}e but also fractional values such as 1/3 and 2/3. For spin (1/2) there are two eigen values, {+-}(1/2)g{mu}{sub B}H but when two different g values are taken into account, there are four eigen values, {+-}(1/2)g{+-}{mu}{sub B}H, which are fractionally charged. The Hall resistivity becomes spin dependent. The spin (1/2) particle with zero orbital angular momentum, has two values of resistivity, 3h/e{sup 2} and 3h/(2e{sup 2}) which means that when magnetic field is varied the resistivity can change by a factor of 2. If the spin is 3/2, the value of (1/2)g+ = (1/2)+(3/2) so that g = 4 arises which substituted in the series, {+-}(1/2)g{mu}{sub B}H, {+-}(3/2)g{mu}{sub B}H, {+-}(5/2)g{mu}{sub B}H, ..., gives 2, 6, 10, etc which are the correct numbers found experimentally.

  15. 8 π -periodic Josephson effects in a quantum dot/ quantum spin-Hall josephson junction system

    NASA Astrophysics Data System (ADS)

    Hui, Hoi-Yin; Sau, Jay

    2015-03-01

    Josephson junctions made of conventional s-wave superconductors display 2 π periodicity. On the other hand, 4 π -periodic fractional Josephson effect is known to be a characteristic signature of topological superconductors and Majorana fermions [1]. Zhang and Kane have shown that Josephson junctions made of topological superconductors are 8 π -periodic if interaction is used to avoid dissipation [2]. Here we present a general argument for how time-reversal symmetry and Z2 non-trivial topology constrains the Josephson periodicity to be 8 π . We then illustrate this through a microscopic model of a quantum dot in a quantum spin-hall Josephson junction. Work supported by NSF-JQI-PFC, LPS-CMTC and Microsoft Q.

  16. Mesoscopic effects in quantum phases of ultracold quantum gases in optical lattices

    NASA Astrophysics Data System (ADS)

    Carr, Lincoln D.; Wall, M. L.; Schirmer, D. G.; Brown, R. C.; Williams, J. E.; Clark, Charles W.

    2010-03-01

    We present a wide array of quantum measures on numerical solutions of one-dimensional Bose- and Fermi-Hubbard Hamiltonians for finite-size systems with open boundary conditions. Specifically, for the Bose-Hubbard Hamiltonian we calculate number, quantum depletion, local von Neumann entropy, generalized entanglement or Q measure, fidelity, and fidelity susceptibility; for the Fermi-Hubbard Hamiltonian we also calculate the pairing correlations, magnetization, charge-density correlations, and antiferromagnetic structure factor. Our numerical method is imaginary time propagation via time-evolving block decimation. As part of our study we provide a careful comparison of canonical versus grand canonical ensembles and Gutzwiller versus entangled simulations. The most striking effect of finite size occurs for bosons: we observe a strong blurring of the tips of the Mott lobes accompanied by higher depletion, and show how the location of the first Mott lobe tip approaches the thermodynamic value as a function of system size.

  17. Quantum spin Hall effect in nanostructures based on cadmium fluoride

    SciTech Connect

    Bagraev, N. T.; Guimbitskaya, O. N.; Klyachkin, L. E.; Koudryavtsev, A. A.; Malyarenko, A. M.; Romanov, V. V.; Ryskin, A. I.; Shcheulin, A. S.

    2010-10-15

    Tunneling current-voltage (I-V) characteristics and temperature dependences of static magnetic susceptibility and specific heat of the CdB{sub x}F{sub 2-x}/p-CdF{sub 2}-QW/CdB{sub x}F{sub 2-x} planar sandwich structures formed on the surface of an n-CdF{sub 2} crystal have been studied in order to identify superconducting properties of the CdB{sub x}F{sub 2-x} {delta} barriers confining the p-type CdF{sub 2} ultranarrow quantum well. Comparative analysis of current-voltage (I-V) characteristics and conductance-voltage dependences (measured at the temperatures, respectively, below and above the critical temperature of superconducting transition) indicates that there is an interrelation between quantization of supercurrent and dimensional quantization of holes in the p-CdF{sub 2} ultranarrow quantum well. It is noteworthy that detection of the Josephson peak of current in each hole subband is accompanied by the appearance of the spectrum of the multiple Andreev reflection (MAR). A high degree of spin polarization of holes in the edge channels along the perimeter of the p-CdF{sub 2} ultranarrow quantum well appears as a result of MAR and makes it possible to identify the quantum spin Hall effect I-V characteristics; this effect becomes pronounced in the case of detection of nonzero conductance at the zero voltage applied to the vertical gate in the Hall geometry of the experiment. Within the energy range of superconducting gap, the I-V characteristics of the spin transistor and quantum spin Hall effect are controlled by the MAR spectrum appearing as the voltage applied to the vertical gate is varied. Beyond the range of the superconducting gap, the observed I-V characteristic of the quantum spin Hall effect is represented by a quantum conductance staircase with a height of the steps equal to e{sub 2}/h; this height is interrelated with the Aharonov-Casher oscillations of longitudinal and depends on the voltage applied to the vertical gate.

  18. Nambu-Goldstone effective theory of information at quantum criticality

    NASA Astrophysics Data System (ADS)

    Dvali, Gia; Franca, Andre; Gomez, Cesar; Wintergerst, Nico

    2015-12-01

    We establish a fundamental connection between quantum criticality of a many-body system, such as Bose-Einstein condensates, and its capacity of information-storage and processing. For deriving the effective theory of modes in the vicinity of the quantum critical point, we develop a new method by mapping a Bose-Einstein condensate of N -particles onto a sigma model with a continuous global (pseudo)symmetry that mixes bosons of different momenta. The Bogolyubov modes of the condensate are mapped onto the Goldstone modes of the sigma model, which become gapless at the critical point. These gapless Goldstone modes are the quantum carriers of information and entropy. Analyzing their effective theory, we observe information-processing properties strikingly similar to the ones predicted by the black hole portrait. The energy cost per qubit of information-storage vanishes in the large-N limit and the total information-storage capacity increases with N either exponentially or as a power law. The longevity of information-storage also increases with N , whereas the scrambling time in the over-critical regime is controlled by the Lyapunov exponent and scales logarithmically with N . This connection reveals that the origin of black hole information storage lies in the quantum criticality of the graviton Bose-gas, and that much simpler systems that can be manufactured in table-top experiments can exhibit very similar information-processing dynamics.

  19. Interacting scalar fields in the context of effective quantum gravity

    NASA Astrophysics Data System (ADS)

    Pietrykowski, Artur R.

    2013-01-01

    A four-dimensional scalar field theory with quartic and of higher-power interactions suffers the triviality issue at the quantum level. This is due to coupling constants that, contrary to the physical expectations, seem to grow without a bound with energy. Since this problem concerns the high- energy domain, interaction with a quantum gravitational field may provide a natural solution to it. In this paper we address this problem considering a scalar field theory with a general analytic potential having Z2 symmetry and interacting with a quantum gravitational field. The dynamics of the latter is governed by the cosmological constant and the Einstein-Hilbert term, both being the lowest and next-to-lowest terms of the effective theory of quantum gravity. Using the Vilkovisky-DeWitt method we calculate the one-loop correction to the scalar field effective action. We also derive the gauge-independent one-loop beta functions for all the scalar field couplings in the minimal subtraction scheme. We find that the leading gravitational corrections act in the direction of asymptotic freedom. Moreover, assuming both the Newton and cosmological constants have nonzero fixed point values, we find asymptotically free Halpern-Huang potentials.

  20. Hall effect in quantum critical charge-cluster glass

    DOE PAGESBeta

    Bozovic, Ivan; Wu, Jie; Bollinger, Anthony T.; Sun, Yujie

    2016-04-04

    Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La2-xSrxCuO4 (LSCO) samples doped near the quantum critical point at x ≈ 0.06. Dramatic fluctuations in the Hall resistance appear below TCG ≈ 1.5 K and increase as the sample is cooled down further, signaling quantum critical behavior. We explore the doping dependence of this effect in detail, by studying a combinatorial LSCO library in which the Sr content is varied in extremely fine steps,more » Δx ≈ 0.00008. Furthermore, we observe that quantum charge fluctuations wash out when superconductivity emerges but can be restored when the latter is suppressed by applying a magnetic field, showing that the two instabilities compete for the ground state.« less

  1. Quantification of 39Ar recoil ejection from GA1550 biotite during neutron irradiation as a function of grain dimensions

    NASA Astrophysics Data System (ADS)

    Paine, Jeffrey H.; Nomade, Sébastien; Renne, Paul R.

    2006-03-01

    This study presents the first measurement of 39Ar recoil ejection loss from individual, dimensionally characterized mineral grains due to neutron irradiation, and reveals the extent to which this recoil loss is problematic for 40Ar/ 39Ar dating. Using the well-characterized biotite standard GA1550, known to have between grain reproducibility of 40Ar*/ 39Ar K of order 0.1%, we measured the thicknesses (3-210 μm) and surface areas (0.07-0.90 mm 2) of 159 grains selected to span the dimensional range represented in the aliquot. Thinner grains with high surface area/volume (SA/V) reveal elevated 40Ar/ 39Ar, as much as 26% higher than thicker grains expected to suffer proportionately negligible depletion. Although the thinner grains yield intrinsically less precise measurements due to small 39Ar ion beams, a regular decrease in net recoil loss with increasing biotite grain thickness is clear for grains thinner than ca. 50 μm. Grains thicker than 50 μm reveal essentially no 39Ar loss within analytical uncertainties. The measured 39Ar loss spectrum is significantly higher than predicted by previous modeling approaches. These results suggest a practical threshold of ca. 50 μm grain thickness for biotites, and probably other phyllosilicates, irradiated with 235U fission spectrum neutrons in order to avoid recoil artifacts. Poor agreement between our data and simulation results indicates that recoil displacement models should be revisited in order to resolve the discrepancy. Further empirical work to determine the recoil loss of 39Ar in other minerals is important not only for routine age measurements, but also to shed more light on the role of recoil in multi-diffusion domain theory and other thermochronologic applications exploiting variable diffusion radii and/or grain size effects.

  2. Memory effects in attenuation and amplification quantum processes

    SciTech Connect

    Lupo, Cosmo; Giovannetti, Vittorio; Mancini, Stefano

    2010-09-15

    With increasing communication rates via quantum channels, memory effects become unavoidable whenever the use rate of the channel is comparable to the typical relaxation time of the channel environment. We introduce a model of a bosonic memory channel, describing correlated noise effects in quantum-optical processes via attenuating or amplifying media. To study such a channel model, we make use of a proper set of collective field variables, which allows us to unravel the memory effects, mapping the n-fold concatenation of the memory channel to a unitarily equivalent, direct product of n single-mode bosonic channels. We hence estimate the channel capacities by relying on known results for the memoryless setting. Our findings show that the model is characterized by two different regimes, in which the cross correlations induced by the noise among different channel uses are either exponentially enhanced or exponentially reduced.

  3. Global effects of quantum states induced by locally invariant measurements

    NASA Astrophysics Data System (ADS)

    Luo, Shunlong; Fu, Shuangshuang

    2010-10-01

    In quantum mechanics, general measurements often cause disturbance which may be exploited to quantify entanglement, nonlocality or quantumness. Imagine a bipartite state ρab shared by two parties a and b, and a von Neumann measurement performed locally on party a which does not disturb the local state ρa:=tr b ρab, but nevertheless may disturb the global state ρab. This disturbance is an indication of some kind of correlations or global effect in ρab which cannot be accounted for locally. We propose to use the maximum disturbance on ρab caused by locally non-disturbing measurements as a figure of merit quantifying the global effect (nonlocality), and investigate its fundamental properties. For general two-qubit states and some higher-dimensional symmetric states, we present analytic formulas for their global effects.

  4. Evanescent radiation, quantum mechanics and the Casimir effect

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1989-01-01

    An attempt to bridge the gap between classical and quantum mechanics and to explain the Casimir effect is presented. The general nature of chaotic motion is discussed from two points of view: the first uses catastrophe theory and strange attractors to describe the deterministic view of this motion; the underlying framework for chaos in these classical dynamic systems is their extreme sensitivity to initial conditions. The second interpretation refers to randomness associated with probabilistic dynamics, as for Brownian motion. The present approach to understanding evanescent radiation and its relation to the Casimir effect corresponds to the first interpretation, whereas stochastic electrodynamics corresponds to the second viewpoint. The nonlinear behavior of the electromagnetic field is also studied. This well-understood behavior is utilized to examine the motions of two orbiting charges and shows a closeness between the classical behavior and the quantum uncertainty principle. The evanescent radiation is used to help explain the Casimir effect.

  5. Super quantum measures on effect algebras with the Riesz decomposition properties

    SciTech Connect

    Xie, Yongjian Ren, Fang; Yang, Aili

    2015-10-15

    We give one basis of the space of super quantum measures on finite effect algebras with the Riesz decomposition properties (RDP for short). Then we prove that the super quantum measures and quantum interference functions on finite effect algebras with the RDP are determined each other. At last, we investigate the relationships between the super quantum measures and the diagonally positive signed measures on finite effect algebras with the RDP in detail.

  6. Spontaneous emission control of quantum dots embedded in photonic crystals: Effects of external fields and dimension

    NASA Astrophysics Data System (ADS)

    Vaseghi, B.; Hashemi, H.

    2016-06-01

    In this paper simultaneous effects of external electric and magnetic fields and quantum confinement on the radiation properties of spherical quantum dot embedded in a photonic crystal are investigated. Under the influence of photonic band-gap, effects of external static fields and dot dimension on the amplitude and spectrum of different radiation fields emitted by the quantum dot are studied. Our results show the considerable effects of external fields and quantum confinement on the spontaneous emission of the system.

  7. Plasma wave instability in a quantum field effect transistor with magnetic field effect

    SciTech Connect

    Zhang, Li-Ping; Xue, Ju-Kui

    2013-08-15

    The current-carrying state of a nanometer Field Effect Transistor (FET) may become unstable against the generation of high-frequency plasma waves and lead to generation of terahertz radiation. In this paper, the influences of magnetic field, quantum effects, electron exchange-correlation, and thermal motion of electrons on the instability of the plasma waves in a nanometer FET are reported. We find that, while the electron exchange-correlation suppresses the radiation power, the magnetic field, the quantum effects, and the thermal motion of electrons can enhance the radiation power. The radiation frequency increases with quantum effects and thermal motion of electrons, but decreases with electron exchange-correlation effect. Interestingly, we find that magnetic field can suppress the quantum effects and the thermal motion of electrons and the radiation frequency changes non-monotonely with the magnetic field. These properties could make the nanometer FET advantageous for realization of practical terahertz oscillations.

  8. Transforming quantum operations: Quantum supermaps

    NASA Astrophysics Data System (ADS)

    Chiribella, G.; D'Ariano, G. M.; Perinotti, P.

    2008-08-01

    We introduce the concept of quantum supermap, describing the most general transformation that maps an input quantum operation into an output quantum operation. Since quantum operations include as special cases quantum states, effects, and measurements, quantum supermaps describe all possible transformations between elementary quantum objects (quantum systems as well as quantum devices). After giving the axiomatic definition of supermap, we prove a realization theorem, which shows that any supermap can be physically implemented as a simple quantum circuit. Applications to quantum programming, cloning, discrimination, estimation, information-disturbance trade-off, and tomography of channels are outlined.

  9. High-temperature quantum Hall effect in finite gapped HgTe quantum wells

    NASA Astrophysics Data System (ADS)

    Khouri, T.; Bendias, M.; Leubner, P.; Brüne, C.; Buhmann, H.; Molenkamp, L. W.; Zeitler, U.; Hussey, N. E.; Wiedmann, S.

    2016-03-01

    We report on the observation of the quantum Hall effect at high temperatures in HgTe quantum wells with a finite band gap and a thickness below and above the critical thickness dc that separates a conventional semiconductor from a two-dimensional topological insulator. At high carrier concentrations, we observe a quantized Hall conductivity up to 60 K with energy gaps between Landau levels of the order of 25 meV, in good agreement with the Landau level spectrum obtained from k .p calculations. Using the scaling approach for the plateau-plateau transition at ν =2 →1 , we find the scaling coefficient κ =0.45 ±0.04 to be consistent with the universality of scaling theory, and we do not find signs of increased electron-phonon interaction to alter the scaling even at these elevated temperatures. Comparing the high-temperature limit of the quantized Hall resistance in HgTe quantum wells with a finite band gap with room-temperature experiment in graphene, we find that the energy gaps at the breakdown of the quantization exceed the thermal energy by the same order of magnitude.

  10. Quantum spin Hall effect in α -Sn /CdTe(001 ) quantum-well structures

    NASA Astrophysics Data System (ADS)

    Küfner, Sebastian; Matthes, Lars; Bechstedt, Friedhelm

    2016-01-01

    The electronic and topological properties of heterovalent and heterocrystalline α -Sn/CdTe(001) quantum wells (QWs) are studied in dependence on the thickness of α -Sn by means of ab initio calculations. We calculate the topological Z2 invariants of the respective bulk crystals, which identify α -Sn as strong three-dimensional (3D) topological insulators (TIs), whereas CdTe is a trivial insulator. We predict the existence of two-dimensional (2D) topological interface states between both materials and show that a topological phase transition from a trivial insulating phase into the quantum spin Hall (QSH) phase in the QW structures occurs at much higher thicknesses than in the HgTe case. The QSH effect is characterized by the localization, dispersion, and spin polarization of the topological interface states. We address the distinction of the 3D and 2D TI characters of the studied QW structures, which is inevitable for an understanding of the underlying quantum state of matter. The 3D TI nature is characterized by two-dimensional topological interface states, while the 2D phase exhibits one-dimensional edge states. The two different state characteristics are often intermixed in the discussion of the topology of 2D QW structures, especially, the comparison of ab initio calculations and experimental transport studies.

  11. A Proton Recoil Telescope for Neutron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cinausero, M.; Barbui, M.; Prete, G.; Rizzi, V.; Andrighetto, A.; Pesente, S.; Fabris, D.; Lunardon, M.; Nebbia, G.; Viesti, G.; Moretto, S.; Morando, M.; Zenoni, A.; Bocci, F.; Donzella, A.; Bonomi, G.; Fontana, A.

    2006-05-01

    The N2P research program funded by the INFN committee for Experimental Nuclear Physics (CSNIII) has among his goals the construction of a Proton Recoil Telescope (PRT), a detector to measure neutron energy spectra. The interest in such a detector is primarily related to the SPES project for rare beams production at the Laboratori Nazionali di Legnaro. For the SPES project it is, in fact, of fundamental importance to have reliable information about energy spectra and yield for neutrons produced by d or p projectiles on thick light targets to model the ''conversion target'' in which the p or d are converted in neutrons. These neutrons, in a second stage, will induce the Uranium fission in the ''production target''. The fission products are subsequently extracted, selected and re-accelerated to produce the exotic beam. The neutron spectra and angular distribution are important parameters to define the final production of fission fragments. In addition, this detector can be used to measure neutron spectra in the field of cancer therapy (this topic is nowadays of particular interest to INFN, for the National Centre for Hadron therapy (CNAO) in Pavia) and space applications.

  12. Binary Black Hole Mergers and Recoil Kicks

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Baker, J.; Choi, D.; Koppitz, M.; vanMeter, J.; Miller, C.

    2006-01-01

    Recent developments in numerical relativity have made it possible to follow reliably the coalescence of two black holes from near the innermost stable circular orbit to final ringdown. This opens up a wide variety of exciting astrophysical applications of these simulations. Chief among these is the net kick received when two unequal mass or spinning black holes merge. The magnitude of this kick has bearing on the production and growth of supermassive black holes during the epoch of structure formation, and on the retention of black holes in stellar clusters. Here we report the first accurate numerical calculation of this kick, for two nonspinning black holes in a 1.5:1 mass ratio, which is expected based on analytic considerations to give a significant fraction of the maximum possible recoil. We have performed multiple runs with different initial separations, orbital angular momenta, resolutions, extraction radii, and gauges. The full range of our kick speeds is 86-116 kilometers per second, and the most reliable runs give kicks between 86 and 97 kilometers per second. This is intermediate between the estimates from two recent post-Newtonian analyses and suggests that at redshifts z greater than 10, halos with masses less than 10(exp 9) M(sub SUN) will have difficulty retaining coalesced black holes after major mergers.

  13. Scintillation Efficiency of Liquid Xenon for Low Energy Nuclear Recoils

    NASA Astrophysics Data System (ADS)

    Wongjirad, Taritree; Ni, Kaixuan; Manzur, Angel; Kastens, Louis; McKinsey, Daniel

    2008-04-01

    In early 2006, the XENON and ZEPLIN collaborations announced highly stringent upper limits on the WIMP-nucleon cross-section. However, the dominant systematic uncertainty in these limits is due to the uncertainty in the nuclear recoil scintillation efficiency (NRSE) for liquid xenon. The NRSE is defined as the amount of scintillation produced by nuclear recoils, divided by the amount of scintillation produced by electron recoils, per unit energy. Though the NRSE has been measured by several groups, its value at the low energies most important for the liquid xenon WIMP searches has a large uncertainty. Furthermore, the NRSE may vary with the strength of the electric field in the liquid xenon. In an attempt to reduce these uncertainties, we have measured the NRSE down to 5 keV nuclear recoil energy for various electric fields.

  14. Tunable interactions and the fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Papic, Zlatko

    2013-03-01

    We explore several realistic methods of tuning the interactions in two-dimensional electronic systems in high magnetic fields. We argue that these experimental probes can be useful in studying the interplay of topology, quantum geometry and symmetry breaking in the fractional quantum Hall effect (FQHE). In particular, we show that the mixing of subbands and Landau levels in GaAs wide quantum wells breaks the particle-hole symmetry between the Moore-Read Pfaffian state and its particle-hole conjugate, the anti-Pfaffian, in such a way that the latter is unambiguously favored and generically describes the ground state at 5/2 filling [1]. Furthermore, the tilting of the magnetic field, or more generally variation of the band mass tensor, probes the fluctuation of the intrinsic metric degree of freedom of the incompressible fluids, and ultimately induces the crossover to the broken-symmetry and nematic phases in higher Landau levels [2]. Some of these mechanisms also lead to an enhancement of the excitation gap of the non-Abelian states, as observed in recent experiments. Finally, we compare the tuning capabilities in conventional systems with that in multilayer graphene and related materials with Dirac-type carriers where tuning the band structure and dielectric environment provides a simple and direct method to engineer more robust FQHE states and to study quantum transitions between them [3]. This work was supported by DOE grant DESC0002140.

  15. Aharonov-Bohm effect in the tunnelling of a quantum rotor in a linear Paul trap

    NASA Astrophysics Data System (ADS)

    Noguchi, Atsushi; Shikano, Yutaka; Toyoda, Kenji; Urabe, Shinji

    2014-05-01

    Quantum tunnelling is a common fundamental quantum mechanical phenomenon that originates from the wave-like characteristics of quantum particles. Although the quantum tunnelling effect was first observed 85 years ago, some questions regarding the dynamics of quantum tunnelling remain unresolved. Here we realize a quantum tunnelling system using two-dimensional ionic structures in a linear Paul trap. We demonstrate that the charged particles in this quantum tunnelling system are coupled to the vector potential of a magnetic field throughout the entire process, even during quantum tunnelling, as indicated by the manifestation of the Aharonov-Bohm effect in this system. The tunnelling rate of the structures periodically depends on the strength of the magnetic field, whose period is the same as the magnetic flux quantum φ0 through the rotor [(0.99±0.07) × φ0].

  16. Anomalous nuclear quantum effects in ice.

    PubMed

    Pamuk, B; Soler, J M; Ramírez, R; Herrero, C P; Stephens, P W; Allen, P B; Fernández-Serra, M-V

    2012-05-11

    One striking anomaly of water ice has been largely neglected and never explained. Replacing hydrogen (1H) by deuterium (2H) causes ice to expand, whereas the normal isotope effect is volume contraction with increased mass. Furthermore, the anomaly increases with temperature T, even though a normal isotope shift should decrease with T and vanish when T is high enough to use classical nuclear motions. In this study, we show that these effects are very well described by ab initio density-functional theory. Our theoretical modeling explains these anomalies, and allows us to predict and to experimentally confirm a counter effect, namely, that replacement of 16O by 18O causes a normal lattice contraction. PMID:23003032

  17. ab initio based tight-binding investigation of quantum spin Hall effect in InAs/GaSb quantum wells

    NASA Astrophysics Data System (ADS)

    Wu, Quansheng; Soluyanov, Alexey; Troyer, Matthias

    Quantum spin Hall state is a topologically non-trivial quantum state, which can be used for designing various quantum devices including those potentially useful for quantum computing. Type-II InAs/GaSb semiconductor quantum well was predicted to realize this state of matter. In this work, we systematically investigate topological properties of this system using symmetrized Wannier-based tight-binding models. The model parameters are derived from first-principles hybrid functional calculations, which capture the right band gap and effective masses of both InAs and GaSb. By varying the thickness of InAs and GaSb layers, three possible phases are obtained: normal insulator, quantum spin Hall insulator, and semimetal, allowing us to optimize the growth conditions for the quantum spin Hall phase realization. Most importantly, we identify optimal growth directions, showing that a significant increase of the topological gap can be obtained by growing the quantum well in the [111]-direction. Phase diagrams are obtained for different layer thicknesses and growth directions. Effects of strain and applied electric fields are also discussed.

  18. Stability diagram of the collective atomic recoil laser with thermal atoms

    NASA Astrophysics Data System (ADS)

    Tomczyk, H.; Schmidt, D.; Georges, C.; Slama, S.; Zimmermann, C.

    2015-06-01

    We experimentally investigate cold thermal atoms in a single sidedly pumped optical ring resonator for temperatures between 0.4 and 9 μ K . The threshold for collective atomic recoil lasing (CARL) is recorded for various pump-cavity detunings. The resulting stability diagram is interpreted by simulating the classical CARL equations. We find that the stability diagram for thermal atoms shows the same asymmetry as observed for Bose-Einstein condensates in previous experiments. Whereas for condensates the asymmetry is well explained by a Dicke-type quantum model we here discuss a simplified classical model. It complements the quantum model and provides an intuitive explanation based on the change in the long-range atomic interaction with pump-cavity detuning.

  19. Quantum Hall Effect, Bosonization and Chiral Actions in Higher Dimensions

    NASA Astrophysics Data System (ADS)

    Karabali, Dimitra

    2013-12-01

    We give a brief review of the Quantum Hall effect in higher dimensions and its relation to fuzzy spaces. For a quantum Hall system, the lowest Landau level dynamics is given by a one-dimensional matrix action. This can be used to write down a bosonized noncommutative field theory describing the interactions of higher dimensional nonrelativistic fermions with abelian or nonabelian gauge fields in the lowest Landau level. This general approach is applied explicitly to the case of QHE on CPk. It is shown that in the semiclassical limit the effective action contains a bulk Chern-Simons type term whose anomaly is exactly canceled by a boundary term given in terms of a chiral, gauged Wess-Zumino-Witten action suitably generalized to higher dimensions.

  20. Relativistic and quantum electrodynamic effects in superheavy elements

    NASA Astrophysics Data System (ADS)

    Schwerdtfeger, Peter; Pašteka, Lukáš F.; Punnett, Andrew; Bowman, Patrick O.

    2015-12-01

    The current status of relativistic electronic structure theory for superheavy elements is reviewed. Recent developments in relativistic quantum theory have made it possible to obtain accurate electronic properties for the trans-actinide elements with the aim to predict their chemical and physical behaviour. The role of quantum electrodynamic effects beyond the no-virtual-pair approximation, which is usually neglected in relativistic molecular calculations, is discussed. Changes in periodic trends due to relativistic effects are outlined for the superheavy elements with nuclear charge Z = 111- 120. We also analyse the role of the negative energy states for the electronic stability of superheavy elements beyond the critical nuclear charge (Zcrit ≈ 170), where the 1s state enters the negative energy continuum at - 2mec2.

  1. Heat capacity of water: A signature of nuclear quantum effects

    NASA Astrophysics Data System (ADS)

    Vega, C.; Conde, M. M.; McBride, C.; Abascal, J. L. F.; Noya, E. G.; Ramirez, R.; Sesé, L. M.

    2010-01-01

    In this note we present results for the heat capacity at constant pressure for the TIP4PQ/2005 model, as obtained from path-integral simulations. The model does a rather good job of describing both the heat capacity of ice Ih and of liquid water. Classical simulations using the TIP4P/2005, TIP3P, TIP4P, TIP4P-Ew, simple point charge/extended, and TIP5P models are unable to reproduce the heat capacity of water. Given that classical simulations do not satisfy the third law of thermodynamics, one would expect such a failure at low temperatures. However, it seems that for water, nuclear quantum effects influence the heat capacities all the way up to room temperature. The failure of classical simulations to reproduce Cp points to the necessity of incorporating nuclear quantum effects to describe this property accurately.

  2. Entangling polaritons via dynamical Casimir effect in circuit quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Rossatto, D. Z.; Felicetti, S.; Eneriz, H.; Rico, E.; Sanz, M.; Solano, E.

    2016-03-01

    We investigate theoretically how the dynamical Casimir effect can entangle quantum systems in different coupling regimes of circuit quantum electrodynamics, and show the robustness of such entanglement generation against dissipative effects, considering experimental parameters of current technology. We consider two qubit-resonator systems, which are coupled by a SQUID driven with an external magnetic field, and explore the entire range of coupling regimes between each qubit and its resonator. In this scheme, we derive a semianalytic explanation for the entanglement generation between both superconducting qubits when they are coupled to their resonators in the strong coupling regime. For the ultrastrong and deep strong coupling regimes, we design experimentally feasible theoretical protocols to generate maximally entangled polaritonic states.

  3. Quasiparticle Aggregation in the Fractional Quantum Hall Effect

    DOE R&D Accomplishments Database

    Laughlin, R. B.

    1984-10-10

    Quasiparticles in the Fractional Quantum Hall Effect behave qualitatively like electrons confined to the lowest landau level, and can do everything electrons can do, including condense into second generation Fractional Quantum Hall ground states. I review in this paper the reasoning leading to variational wavefunctions for ground state and quasiparticles in the 1/3 effect. I then show how two-quasiparticle eigenstates are uniquely determined from symmetry, and how this leads in a natural way to variational wavefunctions for composite states which have the correct densities (2/5, 2/7, ...). I show in the process that the boson, anyon and fermion representations for the quasiparticles used by Haldane, Halperin, and me are all equivalent. I demonstrate a simple way to derive Halperin`s multiple-valued quasiparticle wavefunction from the correct single-valued electron wavefunction. (auth)

  4. Quantum Zeno effect for a free-moving particle

    NASA Astrophysics Data System (ADS)

    Porras, Miguel A.; Luis, Alfredo; Gonzalo, Isabel

    2014-12-01

    Although the quantum Zeno effect takes its name from Zeno's arrow paradox, the effect of frequently observing the position of a freely moving particle on its motion has not been analyzed in detail in the frame of standard quantum mechanics. We study the evolution of a moving free particle while monitoring whether it lingers in a given region of space, and explain the dependence of the lingering probability on the frequency of the measurements and the initial momentum of the particle. Stopping the particle entails the emergence of Schrödinger cat states during the observed evolution, closely connected to the high-order diffraction modes in Fabry-Pérot optical resonators.

  5. Inflationary back-reaction effects from Relativistic Quantum Geometry

    NASA Astrophysics Data System (ADS)

    Bellini, Mauricio

    2016-03-01

    We study the dynamics of scalar metric fluctuations in a non-perturbative variational formalism recently introduced, by which the dynamics of a geometrical scalar field θ, describes the quantum geometrical effects on a Weylian-like manifold with respect to a background Riemannian space-time. In this letter we have examined an example in the framework of inflationary cosmology. The resulting spectral predictions are in very good agreement with observations and other models of inflation.

  6. Isotope effects in underdoped cuprate superconductors: a quantum critical phenomenon.

    PubMed

    Schneider, T; Keller, H

    2001-05-21

    We show that the unusual doping dependence of the isotope effects on transition temperature and zero temperature in-plane penetration depth naturally follows from the doping driven 3D-2D crossover and the 2D quantum superconductor to insulator transition in the underdoped limit. Since lattice distortions are the primary consequence of isotope substitution, our analysis clearly reveals the strong involvement of lattice degrees of freedom in mediating superconductivity. PMID:11384376

  7. Dynamic and steady control of quantum coherence in photonic crystals via the Zeeman effect

    NASA Astrophysics Data System (ADS)

    Chen, LuZhou; Huang, YongGang; Jin, ChongJun; Wang, XueHua

    2012-12-01

    The dynamic evolution of a multi-level atom in the three-dimensional photonic crystal under an applied magnetic field is investigated. By combining the Zeeman effect with the photonic band gap effect, the dynamic quantum superposition states and steady quantum coherent trapping states of the atom can be flexibly controlled. This paves the way for coherent manipulation of quantum states in the solid-state system, which has important applications in quantum information processing.

  8. Topological superconductivity, topological confinement, and the vortex quantum Hall effect

    SciTech Connect

    Diamantini, M. Cristina; Trugenberger, Carlo A.

    2011-09-01

    Topological matter is characterized by the presence of a topological BF term in its long-distance effective action. Topological defects due to the compactness of the U(1) gauge fields induce quantum phase transitions between topological insulators, topological superconductors, and topological confinement. In conventional superconductivity, because of spontaneous symmetry breaking, the photon acquires a mass due to the Anderson-Higgs mechanism. In this paper we derive the corresponding effective actions for the electromagnetic field in topological superconductors and topological confinement phases. In topological superconductors magnetic flux is confined and the photon acquires a topological mass through the BF mechanism: no symmetry breaking is involved, the ground state has topological order, and the transition is induced by quantum fluctuations. In topological confinement, instead, electric charge is linearly confined and the photon becomes a massive antisymmetric tensor via the Stueckelberg mechanism. Oblique confinement phases arise when the string condensate carries both magnetic and electric flux (dyonic strings). Such phases are characterized by a vortex quantum Hall effect potentially relevant for the dissipationless transport of information stored on vortices.

  9. Effective localization potential of quantum states in disordered media

    NASA Astrophysics Data System (ADS)

    Marcel, Filoche; Arnold, Douglas N.; David, Guy; Jerison, David; Mayboroda, Svitlana

    The amplitude of localized quantum states in random or disordered media may exhibit long range exponential decay. We present here a theory that unveils the existence of a localization landscape that controls the amplitude of the eigenstates in any quantum system. For second order operators such as the Schrödinger operator, this localization landscape is simply the solution of a Dirichlet problem with uniform right-hand side. Moreover, we show that the reciprocal of this landscape plays the role of an effective potential which finely governs the confinement of the quantum states. In this picture, the boundaries of the localization subregions for low energy eigenfunctions correspond to the barriers of this effective potential, and the long range exponential decay characteristic of Anderson localization is explained as the consequence of multiple tunneling in the dense network of barriers created by this effective potential. Finally, we show that the Weyl's formula based on this potential turns out to be a remarkable approximation of the density of states for a large variety of systems, periodic or random, 1D, 2D, or 3D. NSF Grant DMS-1418805, ANR Grant GEOMETRYA ANR-12-BS01-0014, NSF Grant DMS-1069225, NSF CAREER Award DMS-1056004, NSF INSPIRE Grant.

  10. Effects of a scalar scaling field on quantum mechanics

    NASA Astrophysics Data System (ADS)

    Benioff, Paul

    2016-04-01

    This paper describes the effects of a complex scalar scaling field on quantum mechanics. The field origin is an extension of the gauge freedom for basis choice in gauge theories to the underlying scalar field. The extension is based on the idea that the value of a number at one space time point does not determine the value at another point. This, combined with the description of mathematical systems as structures of different types, results in the presence of separate number fields and vector spaces as structures, at different space time locations. Complex number structures and vector spaces at each location are scaled by a complex space time dependent scaling factor. The effect of this scaling factor on several physical and geometric quantities has been described in other work. Here the emphasis is on quantum mechanics of one and two particles, their states and properties. Multiparticle states are also briefly described. The effect shows as a complex, nonunitary, scalar field connection on a fiber bundle description of nonrelativistic quantum mechanics. The lack of physical evidence for the presence of this field so far means that the coupling constant of this field to fermions is very small. It also means that the gradient of the field must be very small in a local region of cosmological space and time. Outside this region, there are no restrictions on the field gradient.

  11. Quantum instanton evaluation of the kinetic isotope effects

    SciTech Connect

    Vanicek, Jiri; Miller, William H.; Castillo, Jesus F.; Aoiz, F.Javier

    2005-04-19

    A general quantum-mechanical method for computing kinetic isotope effects is presented. The method is based on the quantum instanton approximation for the rate constant and on the path integral Metropolis Monte-Carlo evaluation of the Boltzmann operator matrix elements. It computes the kinetic isotope effect directly, using a thermodynamic integration with respect to the mass of the isotope, thus avoiding the more computationally expensive process of computing the individual rate constants. The method is more accurate than variational transition-state theories or the semiclassical instanton method since it does not assume a single reaction path and does not use a semiclassical approximation of the Boltzmann operator. While the general Monte-Carlo implementation makes the method accessible to systems with a large number of atoms, we present numerical results for the Eckart barrier and for the collinear and full three-dimensional isotope variants of the hydrogen exchange reaction H+H{sub 2} {yields} H{sub 2}+H. In all seven test cases, for temperatures between 250 K and 600 K, the error of the quantum instanton approximation for the kinetic isotope effects is less than {approx}10%.

  12. Quantum Hall effect from finite-frequency studies

    NASA Astrophysics Data System (ADS)

    Engel, L. W.; Li, Y. P.; Tsui, D. C.

    1996-09-01

    An overview is given of two finite frequency ( f ≈ 10-100 MHz and 0.2-14 GHz) experiments on the two-dimensional electron system (2DES) in GaAs/ Al xGa 1- xAs heterostructures at dilution refrigerator temperatures in the quantum Hall effect regime. In the lower frequency experiment, Re σxx and Im σx are simultaneously measured in a high mobility sample and a giant dielectric constant is observed in the insulating phase reentrant around the {1}/{5} fractional quantum Hall effect liquid. The data provide new evidence for Wigner crystal order in the insulator, where the crystal is strongly pinned by residual impurities in close proximity to the 2DES. In the high-frequency experiment, Re σxx is measured in an ƒ range that can be continuously tuned from well-below to well-above kT/h of the sample. Dynamic scaling was observed in the plateau to plateau transition of integer quantum Hall effect in a low mobility sample.

  13. Electron-recoil ion and recoil ion-projectile coincidence techniques applied to obtain absolute partial collision cross sections.

    PubMed

    Wolff, W; de Souza, Ihani J; Tavares, André C; de Oliveira, G F S; Luna, H

    2012-12-01

    We present in detail an alternative experimental set-up and data analysis, based on the electron-recoil ion and recoil ion-projectile coincidence techniques, that enable the measurement of partial pure ionization and partial charge exchange cross sections for an effusive gas jet set-up, where the absolute target density and recoil ion efficiency cannot be measured directly. The method is applied to the ionization of helium atoms due to collision with partially stripped C(3 +) projectiles. In order to check the method, the results are compared to data available in the literature where the target density and recoil ion detection efficiency were measured directly. The pure ionization channel is compared to the electron capture channel. PMID:23277972

  14. Negative muon chemistry: the quantum muon effect and the finite nuclear mass effect.

    PubMed

    Posada, Edwin; Moncada, Félix; Reyes, Andrés

    2014-10-01

    The any-particle molecular orbital method at the full configuration interaction level has been employed to study atoms in which one electron has been replaced by a negative muon. In this approach electrons and muons are described as quantum waves. A scheme has been proposed to discriminate nuclear mass and quantum muon effects on chemical properties of muonic and regular atoms. This study reveals that the differences in the ionization potentials of isoelectronic muonic atoms and regular atoms are of the order of millielectronvolts. For the valence ionizations of muonic helium and muonic lithium the nuclear mass effects are more important. On the other hand, for 1s ionizations of muonic atoms heavier than beryllium, the quantum muon effects are more important. In addition, this study presents an assessment of the nuclear mass and quantum muon effects on the barrier of Heμ + H2 reaction. PMID:25188920

  15. Quantum anomalous Hall effect in stable dumbbell stanene

    NASA Astrophysics Data System (ADS)

    Zhang, Huisheng; Zhang, Jiayong; Zhao, Bao; Zhou, Tong; Yang, Zhongqin

    2016-02-01

    Topological property of the dumbbell (DB) stanene, more stable than the stanene with a honeycomb lattice, is investigated by using ab initio methods. The magnetic DB stanene demonstrates an exotic quantum anomalous Hall (QAH) effect due to inversion of the Sn spin-up px,y and spin-down pz states. The QAH gap is found to be opened at Γ point rather than the usual K and K' points, beneficial to observe the effect in experiments. When a 3% tensile strain is applied, a large nontrivial gap (˜50 meV) is achieved. Our results provide another lighthouse for realizing QAH effects in two-dimensional systems.

  16. Diffraction effects on light-atomic-ensemble quantum interface

    SciTech Connect

    Mueller, J.H.; Petrov, P.; Garrido Alzar, C.L.; Polzik, E.S.; Oblak, D.; Echaniz, S.R. de

    2005-03-01

    We present a simple method to include the effects of diffraction into the description of a light-atomic ensemble quantum interface in the context of collective variables. Carrying out a scattering calculation we single out the purely geometrical effect and apply our method to the experimental relevant case of Gaussian-shaped atomic samples stored in single beam optical dipole traps probed by a Gaussian beam. We derive simple scaling relations for the effect of the interaction geometry and compare our findings to the results from one-dimensional models of light propagation.

  17. Thermopower enhancement in quantum wells with the Rashba effect

    SciTech Connect

    Wu, Lihua; Yang, Jiong; Wang, Shanyu; Wei, Ping; Yang, Jihui E-mail: wqzhang@mail.sic.ac.cn; Zhang, Wenqing E-mail: wqzhang@mail.sic.ac.cn; Chen, Lidong

    2014-11-17

    We theoretically demonstrate that the thermopower in two-dimensional quantum wells (QWs) can be significantly enhanced by its Rashba spin-splitting effect, governed by the one-dimensional density of states in the low Fermi energy region. The thermopower enhancement is due to the lower Fermi level for a given carrier concentration in Rashba QWs, as compared with that in normal two-dimensional systems without the spin-splitting effect. The degenerate approximation directly shows that larger strength of Rashba effect leads to higher thermopower and consequently better thermoelectric performance in QWs.

  18. Gravitational-wave probe of effective quantum gravity

    SciTech Connect

    Alexander, Stephon; Finn, Lee Samuel; Yunes, Nicolas

    2008-09-15

    All modern routes leading to a quantum theory of gravity - i.e., perturbative quantum gravitational one-loop exact correction to the global chiral current in the standard model, string theory, and loop quantum gravity - require modification of the classical Einstein-Hilbert action for the spacetime metric by the addition of a parity-violating Chern-Simons term. The introduction of such a term leads to spacetimes that manifest an amplitude birefringence in the propagation of gravitational waves. While the degree of birefringence may be intrinsically small, its effects on a gravitational wave accumulate as the wave propagates. Observation of gravitational waves that have propagated over cosmological distances may allow the measurement of even a small birefringence, providing evidence of quantum gravitational effects. The proposed Laser Interferometer Space Antenna (LISA) will be sensitive enough to observe the gravitational waves from sources at cosmological distances great enough that interesting bounds on the Chern-Simons coupling may be found. Here we evaluate the effect of a Chern-Simons induced spacetime birefringence to the propagation of gravitational waves from such systems. Focusing attention on the gravitational waves from coalescing binary black holes systems, which LISA will be capable of observing at redshifts approaching 30, we find that the signature of Chern-Simons gravity is a time-dependent change in the apparent orientation of the binary's orbital angular momentum with respect to the observer line-of-sight, with the magnitude of change reflecting the integrated history of the Chern-Simons coupling over the worldline of the radiation wave front. While spin-orbit coupling in the binary system will also lead to an evolution of the system's orbital angular momentum, the time dependence and other details of this real effect are different than the apparent effect produced by Chern-Simons birefringence, allowing the two effects to be separately identified. In this way gravitational-wave observations with LISA may thus provide our first and only opportunity to probe the quantum structure of spacetime over cosmological distances.

  19. Quantum confined Stark effect in organic fluorophores.

    NASA Astrophysics Data System (ADS)

    Peng, Xihong; Anderson, John; Tepper, Gary; Bandyopadhyay, Supriyo; Nayak, Saroj

    2008-03-01

    Fluorescent molecules have widely been used to detect and visualize structure and processes in biological samples due to its extraordinary sensitivity. However, the emission spectra of flurophores are usually broad and the accurate identification is difficult. Recently, experiments show that energy shifts by Stark effect can be used to aid the identification of organic molecules [1]. Stark effect originates from the shifting/splitting of energy levels when a molecule is under an external electric field, which shows a shift/splitting of a peak in absorption/emission spectra. The size of the shift depends on the magnitude of the external field and the molecular structure. In this talk we will show our theoretical study of the peak shifts on emission spectra for a series of organic fluorophores such as tyrosine, tryptophan, rhodamine123 and coumarin314 using density functional theory. We find that a particular peak shift is determined by the local dipole moments of molecular orbitals rather than the global dipole moment of the molecule. These molecular-specific shifts in emission spectra may enable to improve molecular identification in biosensors. Our results will be compared with experimental data. [1]Unpublished, S. Sarkar, B. Kanchibotla, S. Bandyopadhyay, G. Tepper, J. Edwards, J. Anderson, and R. Kessick.

  20. Effect of carrier dynamics and temperature on two-state lasing in semiconductor quantum dot lasers

    SciTech Connect

    Korenev, V. V. Savelyev, A. V.; Zhukov, A. E.; Omelchenko, A. V.; Maximov, M. V.

    2013-10-15

    It is analytically shown that the both the charge carrier dynamics in quantum dots and their capture into the quantum dots from the matrix material have a significant effect on two-state lasing phenomenon in quantum dot lasers. In particular, the consideration of desynchronization in electron and hole capture into quantum dots allows one to describe the quenching of ground-state lasing observed at high injection currents both qualitatevely and quantitatively. At the same time, an analysis of the charge carrier dynamics in a single quantum dot allowed us to describe the temperature dependences of the emission power via the ground- and excited-state optical transitions of quantum dots.

  1. Quantum and nonlocal coherent effects in Boltzmann gases

    NASA Astrophysics Data System (ADS)

    Meyerovich, A. E.

    1989-05-01

    Quantum coherent phenomena in Boltzmann gases are studied on the basis of the generalized Waldmann-Snider kinetic equation. The equation takes into account the effects of quantum identity of particles. The conditions are formulated for the propagation of different collective modes in gases of particles with arbitrary internal degrees of freedom. Collective coherent effects are macroscopic manifestations of the molecular field for the transverse (off-diagonal) elements of particle distribution in a ``polarized'' system (a system with a nonuniform population of internal energy levels in an unperturbed state). The simplest results are obtained for particles with equidistant internal-energy levels exploiting the analogy with spin-polarized quantum gases. The accurate study of nonlocal interaction terms permits one to compare classical-kinetic and Fermi-liquid approaches to kinetic phenomena in dilute gases, and shows the limitations of both approaches. In the case of collective modes, more accurate schemes of derivation of the kinetic equation must be accompanied by the simultaneous calculations of nonlocal contributions.

  2. Quantum Effects in the Nonlinear Response of Graphene Plasmons.

    PubMed

    Cox, Joel D; Silveiro, Iván; García de Abajo, F Javier

    2016-02-23

    The ability of graphene to support long-lived, electrically tunable plasmons that interact strongly with light, combined with its highly nonlinear optical response, has generated great expectations for application of the atomically thin material to nanophotonic devices. These expectations are mainly reinforced by classical analyses performed using the response derived from extended graphene, neglecting finite-size and nonlocal effects that become important when the carbon layer is structured on the nanometer scale in actual device designs. Here we show that finite-size effects produce large contributions that increase the nonlinear response of nanostructured graphene to significantly higher levels than those predicted by classical theories. We base our analysis on a quantum-mechanical description of graphene using tight-binding electronic states combined with the random-phase approximation. While classical and quantum descriptions agree well for the linear response when either the plasmon energy is below the Fermi energy or the size of the structure exceeds a few tens of nanometers, this is not always the case for the nonlinear response, and in particular, third-order Kerr-type nonlinearities are generally underestimated by the classical theory. Our results reveal the complex quantum nature of the optical response in nanostructured graphene, while further supporting the exceptional potential of this material for nonlinear nanophotonic devices. PMID:26718484

  3. Memory effects and mesoscopic quantum transport

    NASA Astrophysics Data System (ADS)

    Knezevic, Irena

    The active region of a mesoscopic structure or a modern semiconductor device needs to be treated as a dynamically open many-body system, exchanging information and particles with the contacts. The feedback from the active region to the contacts cannot be neglected, especially during the transient regime, because, due to the small size, both the active region and the contacts contain a small number of electrons. In this work, a rigorous theoretical approach for treating mesoscopic electronic systems as open many-body systems is developed. It is based on the partial-trace-free (PTF) approach that has provided a new outlook on the evolution of the reduced density matrix of an open system, and enabled several lines of research, which are presented in this work. First, an effective, memory-containing interaction was recognized in the equations of motion for the representation submatrices of the evolution operator (these submatrices are written in a special basis, adapted for the PTF approach, in the Liouville space of the composite closed system). The memory dressing, a quantity that separates the effective from the physical interaction, was identified. It obeys a self-contained nonlinear equation of motion (the Riccati matrix equation), whose solution can be represented in a diagrammatic fashion and enables physical approximations beyond the weak coupling limit. On the other hand, a foundation for the generalization of nonequilibrium Green's functions to open systems was laid. Two-time correlation functions were generalized, and evolution in both the transient and the steady-state regime was discussed. Based on the PTF approach, a second-order master equation of motion was derived for the reduced density matrix of the active region of a real electronic system: a resonant-tunneling diode (RTD). This equation incorporates the exchange of information and particles between the active region and the contacts, while being computationally tractable. The master equation was solved numerically, and the transient regime response of the RTD with sub-femtosecond resolution was obtained. Natural oscillations of the RTD output quantities (occupation number, current) were observed, with frequencies in the THz range, which is in general agreement with experimental findings.

  4. What Can We Learn From Proton Recoils about Heavy-Ion SEE Sensitivity?

    NASA Technical Reports Server (NTRS)

    Ladbury, Raymond L.

    2016-01-01

    The fact that protons cause single-event effects (SEE) in most devices through production of light-ion recoils has led to attempts to bound heavy-ion SEE susceptibility through use of proton data. Although this may be a viable strategy for some devices and technologies, the data must be analyzed carefully and conservatively to avoid over-optimistic estimates of SEE performance. We examine the constraints that proton test data can impose on heavy-ion SEE susceptibility.

  5. Fractionally charged skyrmions in fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-11-01

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.

  6. Interaction driven quantum Hall effect in artificially stacked graphene bilayers

    NASA Astrophysics Data System (ADS)

    Iqbal, Muhammad Zahir; Iqbal, Muhammad Waqas; Siddique, Salma; Khan, Muhammad Farooq; Ramay, Shahid Mahmood; Nam, Jungtae; Kim, Keun Soo; Eom, Jonghwa

    2016-04-01

    The honeycomb lattice structure of graphene gives rise to its exceptional electronic properties of linear dispersion relation and its chiral nature of charge carriers. The exceptional electronic properties of graphene stem from linear dispersion relation and chiral nature of charge carries, originating from its honeycomb lattice structure. Here, we address the quantum Hall effect in artificially stacked graphene bilayers and single layer graphene grown by chemical vapor deposition. The quantum Hall plateaus started to appear more than 3 T and became clearer at higher magnetic fields up to 9 T. Shubnikov-de Hass oscillations were manifestly observed in graphene bilayers texture. These unusual plateaus may have been due to the layers interaction in artificially stacked graphene bilayers. Our study initiates the understanding of interactions between artificially stacked graphene layers.

  7. Fractionally charged skyrmions in fractional quantum Hall effect

    PubMed Central

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-01-01

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region. PMID:26608906

  8. Fractionally charged skyrmions in fractional quantum Hall effect.

    PubMed

    Balram, Ajit C; Wurstbauer, U; Wójs, A; Pinczuk, A; Jain, J K

    2015-01-01

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region. PMID:26608906

  9. Interaction driven quantum Hall effect in artificially stacked graphene bilayers

    PubMed Central

    Iqbal, Muhammad Zahir; Iqbal, Muhammad Waqas; Siddique, Salma; Khan, Muhammad Farooq; Ramay, Shahid Mahmood; Nam, Jungtae; Kim, Keun Soo; Eom, Jonghwa

    2016-01-01

    The honeycomb lattice structure of graphene gives rise to its exceptional electronic properties of linear dispersion relation and its chiral nature of charge carriers. The exceptional electronic properties of graphene stem from linear dispersion relation and chiral nature of charge carries, originating from its honeycomb lattice structure. Here, we address the quantum Hall effect in artificially stacked graphene bilayers and single layer graphene grown by chemical vapor deposition. The quantum Hall plateaus started to appear more than 3 T and became clearer at higher magnetic fields up to 9 T. Shubnikov-de Hass oscillations were manifestly observed in graphene bilayers texture. These unusual plateaus may have been due to the layers interaction in artificially stacked graphene bilayers. Our study initiates the understanding of interactions between artificially stacked graphene layers. PMID:27098387

  10. Interaction driven quantum Hall effect in artificially stacked graphene bilayers.

    PubMed

    Iqbal, Muhammad Zahir; Iqbal, Muhammad Waqas; Siddique, Salma; Khan, Muhammad Farooq; Ramay, Shahid Mahmood; Nam, Jungtae; Kim, Keun Soo; Eom, Jonghwa

    2016-01-01

    The honeycomb lattice structure of graphene gives rise to its exceptional electronic properties of linear dispersion relation and its chiral nature of charge carriers. The exceptional electronic properties of graphene stem from linear dispersion relation and chiral nature of charge carries, originating from its honeycomb lattice structure. Here, we address the quantum Hall effect in artificially stacked graphene bilayers and single layer graphene grown by chemical vapor deposition. The quantum Hall plateaus started to appear more than 3 T and became clearer at higher magnetic fields up to 9 T. Shubnikov-de Hass oscillations were manifestly observed in graphene bilayers texture. These unusual plateaus may have been due to the layers interaction in artificially stacked graphene bilayers. Our study initiates the understanding of interactions between artificially stacked graphene layers. PMID:27098387

  11. Fractionally charged skyrmions in fractional quantum Hall effect

    SciTech Connect

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-11-26

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.

  12. Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold

    NASA Astrophysics Data System (ADS)

    Xu, Jingke; Shields, Emily; Calaprice, Frank; Westerdale, Shawn; Froborg, Francis; Suerfu, Burkhant; Alexander, Thomas; Aprahamian, Ani; Back, Henning O.; Casarella, Clark; Fang, Xiao; Gupta, Yogesh K.; Ianni, Aldo; Lamere, Edward; Lippincott, W. Hugh; Liu, Qian; Lyons, Stephanie; Siegl, Kevin; Smith, Mallory; Tan, Wanpeng; Kolk, Bryant Vande

    2015-07-01

    The dark matter interpretation of the DAMA modulation signal depends on the NaI(Tl) scintillation efficiency of nuclear recoils. Previous measurements for Na recoils have large discrepancies, especially in the DAMA/LIBRA modulation energy region. We report a quenching effect measurement of Na recoils in NaI(Tl) from 3 to 52 keVnr, covering the whole DAMA/LIBRA energy region for dark matter-Na scattering interpretations. By using a low-energy, pulsed neutron beam, a double time-of-flight technique, and pulse-shape discrimination methods, we obtained the most accurate measurement of this kind for NaI(Tl) to date. The results differ significantly from the DAMA reported values at low energies but fall between the other previous measurements. We present the implications of the new quenching results for the dark matter interpretation of the DAMA modulation signal.

  13. Nonlocal Memory Effects in the Dynamics of Open Quantum Systems

    NASA Astrophysics Data System (ADS)

    Laine, Elsi-Mari; Breuer, Heinz-Peter; Piilo, Jyrki; Li, Chuan-Feng; Guo, Guang-Can

    2012-05-01

    We explore the possibility to generate nonlocal dynamical maps of an open quantum system through local system-environment interactions. Employing a generic decoherence process induced by a local interaction Hamiltonian, we show that initial correlations in a composite environment can lead to nonlocal open system dynamics which exhibit strong memory effects, although the local dynamics is Markovian. In a model of two entangled photons interacting with two dephasing environments, we find a direct connection between the degree of memory effects and the amount of correlation in the initial environmental state. The results demonstrate that, contrary to conventional wisdom, enlarging an open system can change the dynamics from Markovian to non-Markovian.

  14. A theoretical estimation of orientational quantum effects in polar fluids

    NASA Astrophysics Data System (ADS)

    Woodward, C. E.; Nordholm, Sture

    Thermodynamic properties of classical polar fluids can be estimated from those of a simple fluid wherein the central pair potential has been chosen to account for pairwise orientational correlations. This mapping of polar to simple fluids has been extended to account for the quantization of rotational motion and the corresponding damping of orientational correlations. Choosing the model parameters to reflect HCl, HBr and HI we find large rotational quantum effects on the phase diagram and second virial coefficients if dispersion forces are neglected but only very minor such effects when the dominant dispersion forces are included.

  15. Automation of experiments at Dubna Gas-Filled Recoil Separator

    NASA Astrophysics Data System (ADS)

    Tsyganov, Yu. S.

    2016-01-01

    Approaches to solving the problems of automation of basic processes in long-term experiments in heavy ion beams of the Dubna Gas-Filled Recoil Separator (DGFRS) facility are considered. Approaches in the field of spectrometry, both of rare α decays of superheavy nuclei and those for constructing monitoring systems to provide accident-free experiment running with highly radioactive targets and recording basic parameters of experiment, are described. The specific features of Double Side Silicon Strip Detectors (DSSSDs) are considered, special attention is paid to the role of boundary effects of neighboring p-n transitions in the "active correlations" method. An example of an off-beam experiment attempting to observe Zeno effect is briefly considered. Basic examples for nuclear reactions of complete fusion at 48Ca ion beams of U-400 cyclotron (LNR, JINR) are given. A scenario of development of the "active correlations" method for the case of very high intensity beams of heavy ions at promising accelerators of LNR, JINR, is presented.

  16. Predictive theory for elastic scattering and recoil of protons from 4He

    NASA Astrophysics Data System (ADS)

    Hupin, Guillaume; Quaglioni, Sofia; Navrátil, Petr

    2014-12-01

    Low-energy cross sections for elastic scattering and recoil of protons from 4He nuclei (also known as α particles) are calculated directly by solving the Schrödinger equation for five nucleons interacting through accurate two- and three-nucleon forces derived within the framework of chiral effective field theory. Precise knowledge of these processes at various proton backscattering/recoil angles and energies is needed for the ion-beam analysis of numerous materials, from the surface layers of solids, to thin films, to fusion-reactor materials. Indeed, the same elastic scattering process, in two different kinematic configurations, can be used to probe the concentrations and depth profiles of either hydrogen or helium. We compare our results to available experimental data and show that direct calculations with modern nuclear potentials can help to resolve remaining inconsistencies among data sets and can be used to predict these cross sections when measurements are not available.

  17. A predictive theory for elastic scattering and recoil of protons from 4He

    SciTech Connect

    Hupin, Guillaume; Quaglioni, Sofia; Navratil, Petr

    2014-12-08

    Low-energy cross sections for elastic scattering and recoil of protons from 4He nuclei (also known as α particles) are calculated directly by solving the Schrodinger equation for five nucleons interacting through accurate two- and three-nucleon forces derived within the framework of chiral effective field theory. Precise knowledge of these processes at various proton backscattering/recoil angles and energies is needed for the ion-beam analysis of numerous materials, from the surface layers of solids, to thin films, to fusion-reactor materials. Indeed, the same elastic scattering process, in two different kinematic configurations, can be used to probe the concentrations and depth profiles of either hydrogen or helium. Furthermore, we compare our results to available experimental data and show that direct calculations with modern nuclear potentials can help to resolve remaining inconsistencies among data sets and can be used to predict these cross sections when measurements are not available.

  18. A coherent understanding of low-energy nuclear recoils in liquid xenon

    SciTech Connect

    Sorensen, Peter

    2010-09-01

    Liquid xenon detectors such as XENON10 and XENON100 obtain a significant fraction of their sensitivity to light (∼<10 GeV) particle dark matter by looking for nuclear recoils of only a few keV, just above the detector threshold. Yet in this energy regime a correct treatment of the detector threshold and resolution remains unclear. The energy dependence of the scintillation yield of liquid xenon for nuclear recoils also bears heavily on detector sensitivity, yet numerous measurements have not succeeded in obtaining concordant results. In this article we show that the ratio of detected ionization to scintillation can be leveraged to constrain the scintillation yield. We also present a rigorous treatment of liquid xenon detector threshold and energy resolution. Notably, the effective energy resolution differs significantly from a simple Poisson distribution. We conclude with a calculation of dark matter exclusion limits, and show that existing data from liquid xenon detectors strongly constrain recent interpretations of light dark matter.

  19. A predictive theory for elastic scattering and recoil of protons from 4He

    DOE PAGESBeta

    Hupin, Guillaume; Quaglioni, Sofia; Navratil, Petr

    2014-12-08

    Low-energy cross sections for elastic scattering and recoil of protons from 4He nuclei (also known as α particles) are calculated directly by solving the Schrodinger equation for five nucleons interacting through accurate two- and three-nucleon forces derived within the framework of chiral effective field theory. Precise knowledge of these processes at various proton backscattering/recoil angles and energies is needed for the ion-beam analysis of numerous materials, from the surface layers of solids, to thin films, to fusion-reactor materials. Indeed, the same elastic scattering process, in two different kinematic configurations, can be used to probe the concentrations and depth profiles ofmore » either hydrogen or helium. Furthermore, we compare our results to available experimental data and show that direct calculations with modern nuclear potentials can help to resolve remaining inconsistencies among data sets and can be used to predict these cross sections when measurements are not available.« less

  20. Obstruction of black hole singularity by quantum field theory effects

    NASA Astrophysics Data System (ADS)

    Abedi, Jahed; Arfaei, Hessamaddin

    2016-03-01

    We consider the back reaction of the energy due to quantum fluctuation of the background fields considering the trace anomaly for Schwarzschild black hole. It is shown that it will result in modification of the horizon and also formation of an inner horizon. We show that the process of collapse of a thin shell stops before formation of the singularity at a radius slightly smaller than the inner horizon at the order of {left({c}_AM/M_pright)}^{1/3}{l}_p . After the collapse stops the reverse process takes place. Thus we demonstrate that without turning on quantum gravity and just through the effects the coupling of field to gravity as trace anomaly of quantum fluctuations the formation of the singularity through collapse is obstructed. An important consequence of our work is existence of an extremal solution with zero temperature and a mass which is lower bound for the Schwazschild solution. This solution is also the asymptotic final stable state after Hawking radiation.

  1. Experimental simulation of the Unruh effect on an NMR quantum simulator

    NASA Astrophysics Data System (ADS)

    Jin, FangZhou; Chen, HongWei; Rong, Xing; Zhou, Hui; Shi, MingJun; Zhang, Qi; Ju, ChenYong; Cai, YiFu; Luo, ShunLong; Peng, XinHua; Du, JiangFeng

    2016-03-01

    The Unruh effect is one of the most fundamental manifestations of the fact that the particle content of a field theory is observer dependent. However, there has been so far no experimental verification of this effect, as the associated temperatures lie far below any observable threshold. Recently, physical phenomena, which are of great experimental challenge, have been investigated by quantum simulations in various fields. Here we perform a proof-of-principle simulation of the evolution of fermionic modes under the Unruh effect with a nuclear magnetic resonance (NMR) quantum simulator. By the quantum simulator, we experimentally demonstrate the behavior of Unruh temperature with acceleration, and we further investigate the quantum correlations quantified by quantum discord between two fermionic modes as seen by two relatively accelerated observers. It is shown that the quantum correlations can be created by the Unruh effect from the classically correlated states. Our work may provide a promising way to explore the quantum physics of accelerated systems.

  2. Quantum Confined Stark Effect in a GaAs/AlGaAs Nanowire Quantum Well Tube Device: Probing Exciton Localization.

    PubMed

    Badada, Bekele H; Shi, Teng; Jackson, Howard E; Smith, Leigh M; Zheng, Changlin; Etheridge, Joanne; Gao, Qiang; Tan, H Hoe; Jagadish, Chennupati

    2015-12-01

    In this Letter, we explore the nature of exciton localization in single GaAs/AlGaAs nanowire quantum well tube (QWT) devices using photocurrent (PC) spectroscopy combined with simultaneous photoluminescence (PL) and photoluminescence excitation (PLE) measurements. Excitons confined to GaAs quantum well tubes of 8 and 4 nm widths embedded into an AlGaAs barrier are seen to ionize at high bias levels. Spectroscopic signatures of the ground and excited states confined to the QWT seen in PL, PLE, and PC data are consistent with simple numerical calculations. The demonstration of good electrical contact with the QWTs enables the study of Stark effect shifts in the sharp emission lines of excitons localized to quantum dot-like states within the QWT. Atomic resolution cross-sectional TEM measurements and an analysis of the quantum confined Stark effect of these dots provide insights into the nature of the exciton localization in these nanostructures. PMID:26562619

  3. The role of quantum effects in proton transfer reactions in enzymes: quantum tunneling in a noisy environment?

    NASA Astrophysics Data System (ADS)

    Bothma, Jacques P.; Gilmore, Joel B.; McKenzie, Ross H.

    2010-05-01

    We consider the role of quantum effects in the transfer of hydrogen-like species in enzyme-catalyzed reactions. This review is stimulated by claims that the observed magnitude and temperature dependence of kinetic isotope effects (KIEs) implies that quantum tunneling below the energy barrier associated with the transition state significantly enhances the reaction rate in many enzymes. We review the path integral approach and the Caldeira-Leggett model, which provides a general framework to describe and understand tunneling in a quantum system that interacts with a noisy environment at nonzero temperature. Here the quantum system is the active site of the enzyme, and the environment is the surrounding protein and water. Tunneling well below the barrier only occurs for temperatures less than a temperature T0, which is determined by the curvature of the potential energy surface near the top of the barrier. We argue that for most enzymes this temperature is less than room temperature. We review typical values for the parameters in the Caldeira-Leggett Hamiltonian, including the frequency-dependent friction and noise due to the environment. For physically reasonable parameters, we show that quantum transition state theory gives a quantitative description of the temperature dependence and magnitude of KIEs for two classes of enzymes that have been claimed to exhibit signatures of quantum tunneling. The only quantum effects are those associated with the transition state, both reflection at the barrier top and tunneling just below the barrier. We establish that the friction and noise due to the environment are weak and only slightly modify the reaction rate. Furthermore, at room temperature and for typical energy barriers environmental fluctuations with frequencies much less than 1000 cm-1 do not have a significant effect on quantum corrections to the reaction rate. This is essentially because the time scales associated with the dynamics of proton transfer are faster than much of the low-frequency noise associated with the protein and solvent.

  4. Submillisecond Elastic Recoil Reveals Molecular Origins of Fibrin Fiber Mechanics

    PubMed Central

    Hudson, Nathan E.; Ding, Feng; Bucay, Igal; O’Brien, E. Timothy; Gorkun, Oleg V.; Superfine, Richard; Lord, Susan T.; Dokholyan, Nikolay V.; Falvo, Michael R.

    2013-01-01

    Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin’s elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin’s mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. PMID:23790375

  5. Calculation of recoil implantation profiles using known range statistics

    NASA Technical Reports Server (NTRS)

    Fung, C. D.; Avila, R. E.

    1985-01-01

    A method has been developed to calculate the depth distribution of recoil atoms that result from ion implantation onto a substrate covered with a thin surface layer. The calculation includes first order recoils considering projected range straggles, and lateral straggles of recoils but neglecting lateral straggles of projectiles. Projectile range distributions at intermediate energies in the surface layer are deduced from look-up tables of known range statistics. A great saving of computing time and human effort is thus attained in comparison with existing procedures. The method is used to calculate recoil profiles of oxygen from implantation of arsenic through SiO2 and of nitrogen from implantation of phosphorus through Si3N4 films on silicon. The calculated recoil profiles are in good agreement with results obtained by other investigators using the Boltzmann transport equation and they also compare very well with available experimental results in the literature. The deviation between calculated and experimental results is discussed in relation to lateral straggles. From this discussion, a range of surface layer thickness for which the method applies is recommended.

  6. Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers

    NASA Astrophysics Data System (ADS)

    Zhang, Zi-Hui; Liu, Wei; Ju, Zhengang; Tiam Tan, Swee; Ji, Yun; Kyaw, Zabu; Zhang, Xueliang; Wang, Liancheng; Wei Sun, Xiao; Volkan Demir, Hilmi

    2014-06-01

    InGaN/GaN light-emitting diodes (LEDs) grown along the polar orientations significantly suffer from the quantum confined Stark effect (QCSE) caused by the strong polarization induced electric field in the quantum wells, which is a fundamental problem intrinsic to the III-nitrides. Here, we show that the QCSE is self-screened by the polarization induced bulk charges enabled by designing quantum barriers. The InN composition of the InGaN quantum barrier graded along the growth orientation opportunely generates the polarization induced bulk charges in the quantum barrier, which well compensate the polarization induced interface charges, thus avoiding the electric field in the quantum wells. Consequently, the optical output power and the external quantum efficiency are substantially improved for the LEDs. The ability to self-screen the QCSE using polarization induced bulk charges opens up new possibilities for device engineering of III-nitrides not only in LEDs but also in other optoelectronic devices.

  7. Effect of quantum nuclear motion on hydrogen bonding

    SciTech Connect

    McKenzie, Ross H. Bekker, Christiaan; Athokpam, Bijyalaxmi; Ramesh, Sai G.

    2014-05-07

    This work considers how the properties of hydrogen bonded complexes, X–H⋯Y, are modified by the quantum motion of the shared proton. Using a simple two-diabatic state model Hamiltonian, the analysis of the symmetric case, where the donor (X) and acceptor (Y) have the same proton affinity, is carried out. For quantitative comparisons, a parametrization specific to the O–H⋯O complexes is used. The vibrational energy levels of the one-dimensional ground state adiabatic potential of the model are used to make quantitative comparisons with a vast body of condensed phase data, spanning a donor-acceptor separation (R) range of about 2.4 − 3.0 Å, i.e., from strong to weak hydrogen bonds. The position of the proton (which determines the X–H bond length) and its longitudinal vibrational frequency, along with the isotope effects in both are described quantitatively. An analysis of the secondary geometric isotope effect, using a simple extension of the two-state model, yields an improved agreement of the predicted variation with R of frequency isotope effects. The role of bending modes is also considered: their quantum effects compete with those of the stretching mode for weak to moderate H-bond strengths. In spite of the economy in the parametrization of the model used, it offers key insights into the defining features of H-bonds, and semi-quantitatively captures several trends.

  8. Mirages and many-body effects in quantum corrals

    NASA Astrophysics Data System (ADS)

    Aligia, A. A.; Lobos, A. M.

    2005-04-01

    In an experiment on quantum mirages, confinement of surface states in an elliptical corral has been used to project the Kondo effect from one focus where a magnetic impurity was placed to the other, empty, focus. The signature of the Kondo effect is seen as a Fano antiresonance in scanning tunnelling spectroscopy. This experiment combines the many-body physics of the Kondo effect with the subtle effects of confinement. In this work we review the essential physics of the quantum mirage experiment, and present new calculations involving other geometries and more than one impurity in the corral, which should be relevant for other experiments that are being made, and to discern the relative importance of the hybridization of the impurity with surface (Vs) and bulk (Vb) states. The intensity of the mirage imposes a lower bound on Vs/Vb which we estimate. Our emphasis is on the main physical ingredients of the phenomenon and the many-body aspects, like the dependence of the observed differential conductance on the geometry, which cannot be calculated with alternative one-body theories. The system is described with an Anderson impurity model solved using complementary approaches: theory of perturbation in the Coulomb repulsion U, slave bosons in the mean field and exact diagonalization plus embedding.

  9. Quantum effects on compressional Alfven waves in compensated semiconductors

    SciTech Connect

    Amin, M. R.

    2015-03-15

    Amplitude modulation of a compressional Alfven wave in compensated electron-hole semiconductor plasmas is considered in the quantum magnetohydrodynamic regime in this paper. The important ingredients of this study are the inclusion of the particle degeneracy pressure, exchange-correlation potential, and the quantum diffraction effects via the Bohm potential in the momentum balance equations of the charge carriers. A modified nonlinear Schrödinger equation is derived for the evolution of the slowly varying amplitude of the compressional Alfven wave by employing the standard reductive perturbation technique. Typical values of the parameters for GaAs, GaSb, and GaN semiconductors are considered in analyzing the linear and nonlinear dispersions of the compressional Alfven wave. Detailed analysis of the modulation instability in the long-wavelength regime is presented. For typical parameter ranges of the semiconductor plasmas and at the long-wavelength regime, it is found that the wave is modulationally unstable above a certain critical wavenumber. Effects of the exchange-correlation potential and the Bohm potential in the wave dynamics are also studied. It is found that the effect of the Bohm potential may be neglected in comparison with the effect of the exchange-correlation potential in the linear and nonlinear dispersions of the compressional Alfven wave.

  10. Edge states and integer quantum Hall effect in topological insulator thin films

    PubMed Central

    Zhang, Song-Bo; Lu, Hai-Zhou; Shen, Shun-Qing

    2015-01-01

    The integer quantum Hall effect is a topological state of quantum matter in two dimensions, and has recently been observed in three-dimensional topological insulator thin films. Here we study the Landau levels and edge states of surface Dirac fermions in topological insulators under strong magnetic field. We examine the formation of the quantum plateaux of the Hall conductance and find two different patterns, in one pattern the filling number covers all integers while only odd integers in the other. We focus on the quantum plateau closest to zero energy and demonstrate the breakdown of the quantum spin Hall effect resulting from structure inversion asymmetry. The phase diagrams of the quantum Hall states are presented as functions of magnetic field, gate voltage and chemical potential. This work establishes an intuitive picture of the edge states to understand the integer quantum Hall effect for Dirac electrons in topological insulator thin films. PMID:26304795

  11. Repulsive gravitational effect of a quantum wave packet and experimental scheme with superfluid helium

    NASA Astrophysics Data System (ADS)

    Xiong, Hongwei

    2015-08-01

    We consider the gravitational effect of quantum wave packets when quantum mechanics, gravity, and thermodynamics are simultaneously considered. Under the assumption of a thermodynamic origin of gravity, we propose a general equation to describe the gravitational effect of quantum wave packets. In the classical limit, this equation agrees with Newton's law of gravitation. For quantum wave packets, however, it predicts a repulsive gravitational effect. We propose an experimental scheme using superfluid helium to test this repulsive gravitational effect. Our studies show that, with present technology such as superconducting gravimetry and cold atom interferometry, tests of the repulsive gravitational effect for superfluid helium are within experimental reach.

  12. Relation between quantum effects in general relativity and embedding theory

    NASA Astrophysics Data System (ADS)

    Paston, S. A.

    2015-10-01

    We discuss results relevant to the relation between quantum effects in a Riemannian space and on the surface appearing as a result of its isometric embedding in a flat space of a higher dimension. We discuss the correspondence between the Hawking effect fixed by an observer in the Riemannian space with a horizon and the Unruh effect related to an accelerated motion of this observer in the ambient space. We present examples for which this correspondence holds and examples for which there is no correspondence. We describe the general form of the hyperbolic embedding of the metric with a horizon smoothly covering the horizon and prove that there is a correspondence between the Hawking and Unruh effects for this embedding. We also discuss the possibility of relating two-point functions in a Riemannian space and the ambient space in which it is embedded. We obtain restrictions on the geometric parameters of the embedding for which such a relation is known.

  13. Quantum Zeno Effect in an Unstable System with NMR

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Yuichiro; Tanaka, Hirotaka

    2016-01-01

    We theoretically propose a scheme for the verification of the quantum Zeno effect (QZE) to suppress a decay process with nuclear magnetic resonance (NMR). Nuclear spins are affected by low-frequency noise, and thus we can naturally observe non exponential decay behavior, which is a prerequisite in observing the QZE. We also show that a key component for verifying the QZE, namely, the measurement of a nuclear spin, can be realized with NMR using the current technology by using a measurement process with a non selective architecture.

  14. Four-Dimensional Quantum Hall Effect with Ultracold Atoms

    NASA Astrophysics Data System (ADS)

    Price, H. M.; Zilberberg, O.; Ozawa, T.; Carusotto, I.; Goldman, N.

    2015-11-01

    We propose a realistic scheme to detect the 4D quantum Hall effect using ultracold atoms. Based on contemporary technology, motion along a synthetic fourth dimension can be accomplished through controlled transitions between internal states of atoms arranged in a 3D optical lattice. From a semiclassical analysis, we identify the linear and nonlinear quantized current responses of our 4D model, relating these to the topology of the Bloch bands. We then propose experimental protocols, based on current or center-of-mass-drift measurements, to extract the topological second Chern number. Our proposal sets the stage for the exploration of novel topological phases in higher dimensions.

  15. Quantum anomalous Hall effect in topological insulator memory

    SciTech Connect

    Jalil, Mansoor B. A.; Tan, S. G.; Siu, Z. B.

    2015-05-07

    We theoretically investigate the quantum anomalous Hall effect (QAHE) in a magnetically coupled three-dimensional-topological insulator (3D-TI) system. We apply the generalized spin-orbit coupling Hamiltonian to obtain the Hall conductivity σ{sup xy} of the system. The underlying topology of the QAHE phenomenon is then analyzed to show the quantization of σ{sup xy} and its relation to the Berry phase of the system. Finally, we analyze the feasibility of utilizing σ{sup xy} as a memory read-out in a 3D-TI based memory at finite temperatures, with comparison to known magnetically doped 3D-TIs.

  16. Quantum Hall effect in supersymmetric Chern-Simons theories

    NASA Astrophysics Data System (ADS)

    Tong, David; Turner, Carl

    2015-12-01

    We introduce a supersymmetric Chern-Simons theory whose low energy physics is that of the fractional quantum Hall effect. The supersymmetry allows us to solve the theory analytically. We quantize the vortices and, by relating their dynamics to a matrix model, show that their ground state wave function is in the same universality class as the Laughlin state. We further construct coherent state representations of the excitations of a finite number of vortices. These are quasiholes. By an explicit computation of the Berry phase, without resorting to a plasma analogy, we show that these excitations have fractional charge and spin.

  17. Quantum Effects in Nanoscale MOSFET Devices at Low Temperature

    NASA Astrophysics Data System (ADS)

    Day, Alexandra

    2014-03-01

    MOSFET transistors are a key component of virtually all modern electronic devices. Today's most advanced MOSFETs are small enough that quantum mechanical effects become relevant when considering their function and use. This project, completed at the National Institute of Standards and Technology as part of a Society of Physics Students internship, presents a first step in describing the theoretical behavior of nanoscale MOSFETs at low temperature. I acknowledge generous support from the Society of Physics Students and the National Institute of Standards and Technology.

  18. Recoil velocity at second post-Newtonian order for spinning black hole binaries

    SciTech Connect

    Racine, Etienne; Buonanno, Alessandra; Kidder, Larry

    2009-08-15

    We compute the flux of linear momentum carried by gravitational waves emitted from spinning binary black holes at second post-Newtonian (2PN) order for generic orbits. In particular we provide explicit expressions of three new types of terms, namely, next-to-leading order spin-orbit terms at 1.5 post-Newtonian (1.5PN) order, spin-orbit tail terms at 2PN order, and spin-spin terms at 2PN order. Restricting ourselves to quasicircular orbits, we integrate the linear-momentum flux over time to obtain the recoil velocity as function of orbital frequency. We find that in the so-called superkick configuration the higher-order spin corrections can increase the recoil velocity up to a factor {approx}3 with respect to the leading-order PN prediction. Whereas the recoil velocity computed in PN theory within the adiabatic approximation can accurately describe the early inspiral phase, we find that its fast increase during the late inspiral and plunge, and the arbitrariness in determining until when it should be trusted, makes the PN predictions for the total recoil not very accurate and robust. Nevertheless, the linear-momentum flux at higher PN orders can be employed to build more reliable resummed expressions aimed at capturing the nonperturbative effects until merger. Furthermore, we provide expressions valid for generic orbits, and accurate at 2PN order, for the energy and angular momentum carried by gravitational waves emitted from spinning binary black holes. Specializing to quasicircular orbits we compute the spin-spin terms at 2PN order in the expression for the evolution of the orbital frequency and found agreement with Mikoczi, Vasuth, and Gergely. We also verified that in the limit of extreme mass ratio our expressions for the energy and angular momentum fluxes match the ones of Tagoshi, Shibata, Tanaka, and Sasaki obtained in the context of black hole perturbation theory.

  19. Recoil velocity at second post-Newtonian order for spinning black hole binaries

    NASA Astrophysics Data System (ADS)

    Racine, Étienne; Buonanno, Alessandra; Kidder, Larry

    2009-08-01

    We compute the flux of linear momentum carried by gravitational waves emitted from spinning binary black holes at second post-Newtonian (2PN) order for generic orbits. In particular we provide explicit expressions of three new types of terms, namely, next-to-leading order spin-orbit terms at 1.5 post-Newtonian (1.5PN) order, spin-orbit tail terms at 2PN order, and spin-spin terms at 2PN order. Restricting ourselves to quasicircular orbits, we integrate the linear-momentum flux over time to obtain the recoil velocity as function of orbital frequency. We find that in the so-called superkick configuration the higher-order spin corrections can increase the recoil velocity up to a factor ˜3 with respect to the leading-order PN prediction. Whereas the recoil velocity computed in PN theory within the adiabatic approximation can accurately describe the early inspiral phase, we find that its fast increase during the late inspiral and plunge, and the arbitrariness in determining until when it should be trusted, makes the PN predictions for the total recoil not very accurate and robust. Nevertheless, the linear-momentum flux at higher PN orders can be employed to build more reliable resummed expressions aimed at capturing the nonperturbative effects until merger. Furthermore, we provide expressions valid for generic orbits, and accurate at 2PN order, for the energy and angular momentum carried by gravitational waves emitted from spinning binary black holes. Specializing to quasicircular orbits we compute the spin-spin terms at 2PN order in the expression for the evolution of the orbital frequency and found agreement with Mikóczi, Vasúth, and Gergely. We also verified that in the limit of extreme mass ratio our expressions for the energy and angular momentum fluxes match the ones of Tagoshi, Shibata, Tanaka, and Sasaki obtained in the context of black hole perturbation theory.

  20. SIMULATIONS OF RECOILING MASSIVE BLACK HOLES IN THE VIA LACTEA HALO

    SciTech Connect

    Guedes, J.; Madau, P.; Diemand, J.; Kuhlen, M.; Zemp, M.

    2009-09-10

    The coalescence of a massive black hole (MBH) binary leads to the gravitational-wave recoil of the system and its ejection from the galaxy core. We have carried out N-body simulations of the motion of a M{sub BH} = 3.7 x 10{sup 6} M{sub sun} MBH remnant in the 'Via Lactea I' simulation, a Milky Way-sized dark matter halo. The black hole receives a recoil velocity of V{sub kick} = 80, 120, 200, 300, and 400 km s{sup -1} at redshift 1.5, and its orbit is followed for over 1 Gyr within a 'live' host halo, subject only to gravity and dynamical friction against the dark matter background. We show that, owing to asphericities in the dark matter potential, the orbit of the MBH is highly nonradial, resulting in a significantly increased decay timescale compared to a spherical halo. The simulations are used to construct a semi-analytic model of the motion of the MBH in a time-varying triaxial Navarro-Frenk-White dark matter halo plus a spherical stellar bulge, where the dynamical friction force is calculated directly from the velocity dispersion tensor. Such a model should offer a realistic picture of the dynamics of kicked MBHs in situations where gas drag, friction by disk stars, and the flattening of the central cusp by the returning black hole are all negligible effects. We find that MBHs ejected with initial recoil velocities V{sub kick} {approx}> 500 km s{sup -1} do not return to the host center within a Hubble time. In a Milky Way-sized galaxy, a recoiling hole carrying a gaseous disk of initial mass {approx}M{sub BH} may shine as a quasar for a substantial fraction of its 'wandering' phase. The long decay timescales of kicked MBHs predicted by this study may thus be favorable to the detection of off-nuclear quasar activity.

  1. Fission product release from nuclear fuel by recoil and knockout

    NASA Astrophysics Data System (ADS)

    Lewis, B. J.

    1987-03-01

    An analytical model has been developed to describe the fission product release from nuclear fuel arising from the surface-fission release mechanisms of recoil and knockout. Release expressions are evaluated and compared to the short-lived activity measurements from in-reactor experiments with intact operating fuel. Recoil is shown to be an important process for releasing fission products from free UO 2 surfaces into the fuel-to-sheath gap. The model is also applied to tramp uranium in a power reactor primary heat transport circuit where it is demonstrated that recoil is the dominant release mechanism for small particles of fuel which are deposited on in-core surfaces. A methodology is established whereby release from surface contamination can be distinguished from that of fuel pin failure.

  2. Monte Carlo Simulation of the DRAGON Recoil Mass Spectrometer End Detectors

    NASA Astrophysics Data System (ADS)

    Veloce, Laurelle; Fallis, J.; Ruiz, C.; Reeve, S.

    2010-11-01

    DRAGON (Detector of Recoils And Gammas Of Nuclear reactions), located at TRIUMF in Vancouver, BC, is designed to study radiative capture reactions relevant in astrophysical nucleosynthesis processes. These types of reactions help us understand the production of heavy elements in the Universe. An accelerated beam of a given isotope is sent through a gas target where the reactions take place. Magnetic and electrostatic dipoles separate the recoils from the original beam particles, selecting particles according to charge and mass. The products of the nuclear reactions are then detected at the end of DRAGON by heavy ion detectors, which constitute two micro channel plate (MCP) detectors for time of flight measurements, used in conjunction with a Double Sided Silicon Strip Detector (DSSSD) or an ionization chamber (IC). The DSSSD gives information on number of counts, total energy deposited, and position while the IC measures the number of counts and the energy deposited as the particle travels through the chamber. In order to determine which set up is ideal for a given reaction and energy range, we have developed a Monte Carlo simulation of these end detectors. The program simulates both recoil and beam particles, and takes into account effects such as straggling and pulse height defect. Reaction kinematics in the gas target are also considered. Comparisons to recent experimental data will be discussed.

  3. A compact high-resolution elastic recoil detection system for lithium depth profiling

    NASA Astrophysics Data System (ADS)

    Nikko, Masataka; Nakajima, Kaoru; Kimura, Kenji

    2015-07-01

    A compact high-resolution elastic recoil detection analysis (ERDA) system was developed for precise Li analysis. 200-400 keV He+ ions were used as primary ions and the energy spectra of recoiled Li ions were measured using a magnetic spectrometer. Due to its dispersion the background originating from the scattered primary ions is reduced. The recoiled ions of the substrate other than Li, which may also contribute to the background, were rejected by a thin mylar foil placed in front of a focal plane detector. An electrostatic quadrupole lens was installed at the entrance of the magnetic spectrometer to improve the depth resolution by correcting the effect of the kinematic broadening. The performance of the developed high-resolution ERDA was examined by measuring several samples. A thin Li layer (1.5 1015 cm-2) deposited on a graphite surface was clearly observed and the detection limit was estimated to be less than 0.01 ML under typical measurement conditions. The depth resolution was estimated to be 0.5 nm at the surface and was better than 3 nm in the surface region within 5 nm from the surface.

  4. Quenching factor for low-energy nuclear recoils in a plastic scintillator

    NASA Astrophysics Data System (ADS)

    Reichhart, L.; Akimov, D. Yu.; Arajo, H. M.; Barnes, E. J.; Belov, V. A.; Burenkov, A. A.; Chepel, V.; Currie, A.; DeViveiros, L.; Edwards, B.; Francis, V.; Ghag, C.; Hollingsworth, A.; Horn, M.; Kalmus, G. E.; Kobyakin, A. S.; Kovalenko, A. G.; Lebedenko, V. N.; Lindote, A.; Lopes, M. I.; Lscher, R.; Majewski, P.; Murphy, A. St J.; Neves, F.; Paling, S. M.; Pinto da Cunha, J.; Preece, R.; Quenby, J. J.; Scovell, P. R.; Silva, C.; Solovov, V. N.; Smith, N. J. T.; Smith, P. F.; Stekhanov, V. N.; Sumner, T. J.; Thorne, C.; Walker, R. J.

    2012-06-01

    Plastic scintillators are widely used in industry, medicine, and scientific research, including nuclear and particle physics. Although one of their most common applications is in neutron detection, experimental data on their response to low-energy nuclear recoils are scarce. Here, the relative scintillation efficiency for neutron-induced nuclear recoils in a polystyrene-based plastic scintillator (UPS-923A) is presented, exploring recoil energies between 125 and 850 keV. Monte Carlo simulations, incorporating light collection efficiency and energy resolution effects, are used to generate neutron scattering spectra which are matched to observed distributions of scintillation signals to parameterize the energy-dependent quenching factor. At energies above 300 keV the dependence is reasonably described using the semiempirical formulation of Birks and a kB factor of (0.0140.002) g MeV-1 cm-2 has been determined. Below that energy, the measured quenching factor falls more steeply than predicted by the Birks formalism.

  5. Recoil polarization observables in the electroproduction of K mesons and Λ's from the proton

    NASA Astrophysics Data System (ADS)

    Maxwell, Oren V.

    2014-09-01

    A model developed previously to investigate the electromagnetic production of strangeness from the proton is used to investigate single and double recoil polarization observables in the reaction ep →e'K+Λ in the relativistic impulse approximation. The formalism is based on a tree-level, effective Lagrangian model, which incorporates a variety of baryon resonances with spins up to 5/2 and the two kaon resonances, K(892) and K1(1270). The parameters of the model were fit to a large pool of photoproduction data from the CLAS, GRAAL, SAPHIR, and LEPS collaborations and to CLAS data for the virtual photoproduction structure functions σU,σT,σL,σTT,σLT, and σLT'. Using two different versions of this model, results are presented for three recoil polarization asymmetries that have been measured recently at CLAS. A new fit is then presented which incorporates the new polarization data in the fitted data set. Results obtained with this new fit are presented for six recoil polarization asymmetries and compared with results from one of the previous fits.

  6. External-field effect on quantum features of radiation emitted by a quantum well in a microcavity

    SciTech Connect

    Sete, Eyob A.; Das, Sumanta; Eleuch, H.

    2011-02-15

    We consider a semiconductor quantum well in a microcavity driven by coherent light and coupled to a squeezed vacuum reservoir. By systematically solving the pertinent quantum Langevin equations in the strong-coupling and low-excitation regimes, we study the effect of exciton-photon detuning, external coherent light, and the squeezed vacuum reservoir on vacuum Rabi splitting and on quantum statistical properties of the light emitted by the quantum well. We show that the exciton-photon detuning leads to a shift in polariton resonance frequencies and a decrease in fluorescence intensity. We also show that the fluorescent light exhibits quadrature squeezing, which predominately depends on the exciton-photon detuning and the degree of the squeezing of the input field.

  7. Configuration interaction matrix elements for the quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Wooten, Rachel; Macek, Joseph

    2015-03-01

    In the spherical model of the quantum Hall system, the two-body matrix elements and pseudopotentials can be found analytically in terms of a general scalar pair interaction potential by expressing the pair interaction as a weighted sum over Legendre polynomials. For non-infinite systems, only a finite set of terms in the potential expansion contribute to the interactions; the contributing terms define an effective spatial potential for the system. The connection between the effective spatial potential and the pseudopotential is one-to-one for finite systems, and any completely defined model pseudopotential can be analytically inverted to give a unique corresponding spatial potential. This technique of inverting the pseudopotential to derive effective spatial potentials may be of use for developing accurate model spatial potentials for quantum Monte Carlo simulations. We demonstrate the technique and the corresponding spatial potentials for a few example model pseudopotentials. Supported by Office of Basic Energy Sciences, U.S. DOE, Grant DE-FG02-02ER15283 to the University of Tennessee.

  8. Quantum effects in diamond isotopes at high pressures

    NASA Astrophysics Data System (ADS)

    Enkovich, P. V.; Brazhkin, V. V.; Lyapin, S. G.; Kanda, H.; Novikov, A. P.; Stishov, S. M.

    2016-01-01

    An influence of quantum effects on the equation of states and phase transitions in compressed matter is of primary interest in the physics of giant planets and in astrophysics. To gain some insight into the problem we carried out precision Raman studies of diamond isotopes 12C, 13C, and their mixture 12.5C in the pressure range up to 73 GPa using helium as a hydrostatic pressure-transmitting medium. The ratio of Raman frequencies of 12 and 13C diamonds, which differs from the classical value (1.0408), was found to slightly, but nonmonotonically, change up to 60 GPa. One can propose that the quantum effects in diamonds initially are enhanced on compression to ˜30 GPa and then decrease up to the maximum experimentally measured pressure. This behavior probably unveils hidden features of covalent interaction in crystals. Examination of the isotopically mixed 12.5C diamond shows that the effective mass determining the Raman frequency varies under compression from 12.38 a.u. at ambient pressure to 12.33 a.u. at pressure of 73 GPa.

  9. Nuclear quantum effects in high-pressure ice

    NASA Astrophysics Data System (ADS)

    Bronstein, Yael; Depondt, Philippe; Finocchi, Fabio

    Because of their mass, hydrogen nuclei are subjected to nuclear quantum effects (NQE), mainly tunneling and zero-point energy. They can be crucial to describe correctly the properties of H-containing systems, even at room temperature. A prototypical example of the importance of NQE is the transition from asymmetric H-bonds in phase VII to symmetric bonds in phase X of high-pressure ice, in which NQE drastically reduce the transition pressure. However, natural ice is rarely pure and even small concentrations of salt (LiCl or NaCl) in ice have a strong effect on the phase diagram: the VII to X transition is shifted to higher pressures, questioning the resilience of NQE in the presence of ionic impurities. We investigate these questions using the Quantum Thermal Bath, a semi-classical Langevin dynamics, taking into account both NQE and thermal effects in pure and salty ices. We show why NQE can be sensitive to the presence of impurities and that non-trivial phenomena could result, such as the spectacular upshift of the transition pressure and the peculiar motion of ions.

  10. Photodissociation of laboratory oriented molecules: Revealing molecular frame properties of nonaxial recoil

    SciTech Connect

    Brom, Alrik J. van den; Rakitzis, T. Peter; Janssen, Maurice H.M.

    2004-12-15

    We report the photodissociation of laboratory oriented OCS molecules. A molecular beam of OCS molecules is hexapole state-selected and spatially oriented in the electric field of a velocity map imaging lens. The oriented OCS molecules are dissociated at 230 nm with the linear polarization set at 45 deg. to the orientation direction of the OCS molecules. The CO({nu}=0,J) photofragments are quantum state-selectively ionized by the same 230 nm pulse and the angular distribution is measured using the velocity map imaging technique. The observed CO({nu}=0,J) images are strongly asymmetric and the degree of asymmetry varies with the CO rotational state J. From the observed asymmetry in the laboratory frame we can directly extract the molecular frame angles between the final photofragment recoil velocity and the permanent dipole moment and the transition dipole moment. The data for CO fragments with high rotational excitation reveal that the dissociation dynamics is highly nonaxial, even though conventional wisdom suggests that the nearly limiting {beta} parameter results from fast axial recoil dynamics. From our data we can extract the relative contribution of parallel and perpendicular transitions at 230 nm excitation.

  11. Quantum confinement in Si and Ge nanostructures: effect of crystallinity

    NASA Astrophysics Data System (ADS)

    Barbagiovanni, Eric G.; Lockwood, David J.; Costa Filho, Raimundo N.; Goncharova, Lyudmila V.; Simpson, Peter J.

    2013-10-01

    We look at the relationship between the preparation method of Si and Ge nanostructures (NSs) and the structural, electronic, and optical properties in terms of quantum confinement (QC). QC in NSs causes a blue shift of the gap energy with decreasing NS dimension. Directly measuring the effect of QC is complicated by additional parameters, such as stress, interface and defect states. In addition, differences in NS preparation lead to differences in the relevant parameter set. A relatively simple model of QC, using a `particle-in-a-box'-type perturbation to the effective mass theory, was applied to Si and Ge quantum wells, wires and dots across a variety of preparation methods. The choice of the model was made in order to distinguish contributions that are solely due to the effects of QC, where the only varied experimental parameter was the crystallinity. It was found that the hole becomes de-localized in the case of amorphous materials, which leads to stronger confinement effects. The origin of this result was partly attributed to differences in the effective mass between the amorphous and crystalline NS as well as between the electron and hole. Corrections to our QC model take into account a position dependent effective mass. This term includes an inverse length scale dependent on the displacement from the origin. Thus, when the deBroglie wavelength or the Bohr radius of the carriers is on the order of the dimension of the NS the carriers `feel' the confinement potential altering their effective mass. Furthermore, it was found that certain interface states (Si-O-Si) act to pin the hole state, thus reducing the oscillator strength.

  12. Stopping Power of Au for Ti Using Elastic Recoil Technique

    SciTech Connect

    Linares, R.; Freire, J. A.; Ribas, R. V.; Medina, N. H.; Oliveira, J. R. B.; Seale, W. A.; Cybulska, E. W.; Wiedemann, K. T.; Allegro, P. R.; Toufen, D. L.

    2009-06-03

    The slowing down of heavy ions in matter is still not well understood especially at low energies (<0.5 MeV/u). In this contribution we present new experimental data for the stopping power of Au for Ti ions using an elastic recoil technique where a heavy-ion beam at low energies is produced by elastic scattering of an energetic primary beam imping on a thin target. Atoms from the target recoil at low energies. We compare our experimental data with previous data and with semi-empirical and theoretical models.

  13. Semianalytical quantum model for graphene field-effect transistors

    SciTech Connect

    Pugnaghi, Claudio; Grassi, Roberto Gnudi, Antonio; Di Lecce, Valerio; Gnani, Elena; Reggiani, Susanna; Baccarani, Giorgio

    2014-09-21

    We develop a semianalytical model for monolayer graphene field-effect transistors in the ballistic limit. Two types of devices are considered: in the first device, the source and drain regions are doped by charge transfer with Schottky contacts, while, in the second device, the source and drain regions are doped electrostatically by a back gate. The model captures two important effects that influence the operation of both devices: (i) the finite density of states in the source and drain regions, which limits the number of states available for transport and can be responsible for negative output differential resistance effects, and (ii) quantum tunneling across the potential steps at the source-channel and drain-channel interfaces. By comparison with a self-consistent non-equilibrium Green's function solver, we show that our model provides very accurate results for both types of devices, in the bias region of quasi-saturation as well as in that of negative differential resistance.

  14. Effective Confining Potential of Quantum States in Disordered Media

    NASA Astrophysics Data System (ADS)

    Arnold, Douglas N.; David, Guy; Jerison, David; Mayboroda, Svitlana; Filoche, Marcel

    2016-02-01

    The amplitude of localized quantum states in random or disordered media may exhibit long-range exponential decay. We present here a theory that unveils the existence of an effective potential which finely governs the confinement of these states. In this picture, the boundaries of the localization subregions for low energy eigenfunctions correspond to the barriers of this effective potential, and the long-range exponential decay characteristic of Anderson localization is explained as the consequence of multiple tunneling in the dense network of barriers created by this effective potential. Finally, we show that Weyl's formula based on this potential turns out to be a remarkable approximation of the density of states for a large variety of one-dimensional systems, periodic or random.

  15. Confined monopoles induced by quantum effects in dense QCD

    SciTech Connect

    Eto, Minoru; Nitta, Muneto; Yamamoto, Naoki

    2011-04-15

    We analytically show that mesonic bound states of confined monopoles appear inside a non-Abelian vortex string in massless three-flavor QCD at large quark chemical potential {mu}. The orientational modes CP{sup 2} in the internal space of a vortex is described by the low-energy effective world-sheet theory. Mesons of confined monopoles are dynamically generated as bound states of kinks by the quantum effects in the effective theory. The mass of monopoles is shown to be an exponentially soft scale M{approx}{Delta}exp[-c({mu}/{Delta}){sup 2}], with the color superconducting gap {Delta} and some constant c. A possible quark-monopole duality between the hadron phase and the color superconducting phase is also discussed.

  16. Effective Confining Potential of Quantum States in Disordered Media.

    PubMed

    Arnold, Douglas N; David, Guy; Jerison, David; Mayboroda, Svitlana; Filoche, Marcel

    2016-02-01

    The amplitude of localized quantum states in random or disordered media may exhibit long-range exponential decay. We present here a theory that unveils the existence of an effective potential which finely governs the confinement of these states. In this picture, the boundaries of the localization subregions for low energy eigenfunctions correspond to the barriers of this effective potential, and the long-range exponential decay characteristic of Anderson localization is explained as the consequence of multiple tunneling in the dense network of barriers created by this effective potential. Finally, we show that Weyl's formula based on this potential turns out to be a remarkable approximation of the density of states for a large variety of one-dimensional systems, periodic or random. PMID:26894725

  17. Effects of Shannon entropy and electric field on polaron in RbCl triangular quantum dot

    NASA Astrophysics Data System (ADS)

    M, Tiotsop; A, J. Fotue; S, C. Kenfack; N, Issofa; H, Fotsin; L, C. Fai

    2016-04-01

    In this paper, the time evolution of the quantum mechanical state of a polaron is examined using the Pekar type variational method on the condition of the electric-LO-phonon strong-coupling and polar angle in RbCl triangular quantum dot. We obtain the eigenenergies, and the eigenfunctions of the ground state, and the first excited state respectively. This system in a quantum dot can be treated as a two-level quantum system qubit and the numerical calculations are performed. The effects of Shannon entropy and electric field on the polaron in the RbCl triangular quantum dot are also studied.

  18. Cross-sectional nanophotoluminescence studies of Stark effects in self-assembled quantum dots

    SciTech Connect

    Htoon, H.; Keto, J. W.; Baklenov, O.; Holmes, A. L. Jr.; Shih, C. K.

    2000-02-07

    By using a cross-sectional geometry, we show the capability to perform single-dot spectroscopy in self-assembled quantum dots using far-field optics. By using this method, we study the quantum-confined Stark effect in self-assembled quantum dots. For single-stack quantum dots (QDs), we find that the spectra are redshifted with an increase in electric field. For vertically coupled double-stack quantum dots, while most of the QDs are redshifted, some QDs show blueshifted spectra, which can be interpreted as an evidence of coupled QD molecules. (c) 2000 American Institute of Physics.

  19. Generation of quantum steering and interferometric power in the dynamical Casimir effect

    NASA Astrophysics Data System (ADS)

    Sabín, Carlos; Adesso, Gerardo

    2015-10-01

    We analyze the role of the dynamical Casimir effect as a resource for quantum technologies, such as quantum cryptography and quantum metrology. In particular, we consider the generation of Einstein-Podolsky-Rosen steering and Gaussian interferometric power, two useful forms of asymmetric quantum correlations, in superconducting waveguides modulated by superconducting quantum interferometric devices. We show that while a certain value of squeezing is required to overcome thermal noise and give rise to steering, any nonzero squeezing produces interferometric power which in fact increases with thermal noise.

  20. Compact analytical model of double gate junction-less field effect transistor comprising quantum-mechanical effect

    NASA Astrophysics Data System (ADS)

    Gupta, Shoubhik; Ghosh, Bahniman; Balmukund Rahi, Shiromani

    2015-02-01

    We investigate the quantum-mechanical effects on the electrical properties of the double-gate junction-less field effect transistors. The quantum-mechanical effect, or carrier energy-quantization effects on the threshold voltage, of DG-JLFET are analytically modeled and incorporated in the Duarte et al. model and then verified by TCAD simulation.

  1. An analytical solution for quantum size effects on Seebeck coefficient

    NASA Astrophysics Data System (ADS)

    Karabetoglu, S.; Sisman, A.; Ozturk, Z. F.

    2016-03-01

    There are numerous experimental and numerical studies about quantum size effects on Seebeck coefficient. In contrast, in this study, we obtain analytical expressions for Seebeck coefficient under quantum size effects. Seebeck coefficient of a Fermi gas confined in a rectangular domain is considered. Analytical expressions, which represent the size dependency of Seebeck coefficient explicitly, are derived in terms of confinement parameters. A fundamental form of Seebeck coefficient based on infinite summations is used under relaxation time approximation. To obtain analytical results, summations are calculated using the first two terms of Poisson summation formula. It is shown that they are in good agreement with the exact results based on direct calculation of summations as long as confinement parameters are less than unity. The analytical results are also in good agreement with experimental and numerical ones in literature. Maximum relative errors of analytical expressions are less than 3% and 4% for 2D and 1D cases, respectively. Dimensional transitions of Seebeck coefficient are also examined. Furthermore, a detailed physical explanation for the oscillations in Seebeck coefficient is proposed by considering the relative standard deviation of total variance of particle number in Fermi shell.

  2. Scar and antiscar quantum effects in open chaotic systems

    NASA Astrophysics Data System (ADS)

    Kaplan, L.

    1999-05-01

    We predict and numerically observe strong periodic orbit effects in the properties of weakly open quantum systems with a chaotic classical limit. Antiscars lead to a large number of exponentially narrow isolated resonances when the single-channel (or tunneling) opening is located on a short unstable orbit of the closed system; the probability to remain in the system at long times is thus exponentially enhanced over the random matrix theory prediction. The distribution of resonance widths and the probability to remain are quantitatively given in terms of only the stability matrix of the orbit on which the opening is placed. The long-time remaining probability density is nontrivially distributed over the available phase space; it can be enhanced or suppressed near orbits other than the one on which the lead is located, depending on the periods and classical actions of these other orbits. These effects of the short periodic orbits on quantum decay rates have no classical counterpart, and first appear on times scales much larger than the Heisenberg time of the system. All the predictions are quantitatively compared with numerical data.

  3. Quantum resonance effects in exchange, photodissociation, and recombination reactions

    SciTech Connect

    Pack, R.; Kendrick, B.; Kress, J.; Walker, R.; Hayes, E.; Lagana, A.; Parker, G.; Butcher, E.

    1996-04-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project studied quantum resonance effects on chemical reactions. The authors accurate reactive scattering calculations showed that quantum resonance phenomena dominate most chemical reactions and are essential to any real understanding of reactivity. It was found that, as long-lived metastable states of the colliding system, resonances can decay to reactants, products, or a mixture of both. Only the latter contribute to reaction. Conditions under which resonances can be neglected or treated statistically were studied. Important implications about the mechanism of recombination reactions were discovered, and some remarkable effects of geometric phases on the symmetries and energies of resonances were also discovered. Calculations were completed for the reaction H + O{sub 2} {yields} OH + O, which is the rate limiting step in the combustion of all hydrocarbons and the single most important reaction in all of combustion chemistry.

  4. Efficient Multi-Dimensional Simulation of Quantum Confinement Effects in Advanced MOS Devices

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Ancona, Mario G.; Rafferty, Conor S.; Yu, Zhiping

    2000-01-01

    We investigate the density-gradient (DG) transport model for efficient multi-dimensional simulation of quantum confinement effects in advanced MOS devices. The formulation of the DG model is described as a quantum correction ot the classical drift-diffusion model. Quantum confinement effects are shown to be significant in sub-100nm MOSFETs. In thin-oxide MOS capacitors, quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion of quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion of quantum effects in simulations dramatically improves the match between C-V simulations and measurements for oxide thickness down to 2 nm. Significant quantum corrections also occur in the I-V characteristics of short-channel (30 to 100 nm) n-MOSFETs, with current drive reduced by up to 70%. This effect is shown to result from reduced inversion charge due to quantum confinement of electrons in the channel. Also, subthreshold slope is degraded by 15 to 20 mV/decade with the inclusion of quantum effects via the density-gradient model, and short channel effects (in particular, drain-induced barrier lowering) are noticeably increased.

  5. Scanning Capacitance Microscopy of the Quantum Hall Effect

    NASA Astrophysics Data System (ADS)

    Ashoori, Ray

    1997-03-01

    Since the discovery of the quantum Hall effect in 1980, physicists have drawn schematic pictures to illustrate hypothetical structure of the two-dimensional electron gas (2DEG) in the presence of a quantizing magnetic field. Quantum Hall plateaus are thought to occur as a result of localization of electrons in the 2DEG. Distinct areas of the electron gas may consist of ``localized'' or ``delocalized'' electrons. We recently developed a technique which permits direct imaging of this structure with ~400 Angstrom resolution. We constructed a scanning tunneling microscope that works both in the usual tunneling mode and in a novel capacitance mode. The microscope operates in a liquid helium-3 cryostat at 300 mK equipped with a magnet permitting application of fields of up to 12 Tesla. An insulating AlGaAs layer separates the 2DEG from the sample surface. The initial approach to the sample is achieved in tunneling mode with a sufficiently large applied bias between the tip and the 2DEG to permit electron tunneling through the AlGaAs layer. With the surface found, the microscope is switched into capacitance mode. The tip is scanned at fixed height (typically 50 Angstroms) above the sample surface. We tune two different parameters: tip bias and magnetic field strength. The capacitance signal is measured with a 1 mV amplitude 100 KHz excitation on the 2DEG. Regions of the 2DEG which are near integer Landau level filling fraction appear black (low capacitance) in the capacitance images. This arises because charge cannot readily flow into or out of these ``incompressible'' regions. Other, ``compressible'', areas display varying brightness according to their conductivities. The positions and shapes of the boundaries between these regions vary substantially as the magnetic field strength is changed, in a fashion significantly different than simple models would suggest. This new direct imaging of a quantum fluid reveals a fascinatingly complex sea of distinct phases.

  6. Exact modeling of finite temperature and quantum delocalization effects on reliability of quantum-dot cellular automata

    NASA Astrophysics Data System (ADS)

    Tiihonen, Juha; Schramm, Andreas; Kylänpää, Ilkka; Rantala, Tapio T.

    2016-02-01

    A thorough simulation study is carried out on thermal and quantum delocalization effects on the feasibility of a quantum-dot cellular automata (QCA) cell. The occupation correlation of two electrons is modeled with a simple four-site array of harmonic quantum dots (QD). QD sizes range from 20 nm to 40 nm with site separations from 20 nm to 100 nm, relevant for state-of-the-art GaAs/InAs semiconductor technology. The choice of parameters introduces QD overlap, which is only simulated properly with exact treatment of strong Coulombic correlation and thermal equilibrium quantum statistics. These are taken into account with path integral Monte Carlo approach. Thus, we demonstrate novel joint effects of quantum delocalization and decoherence in QCA, but also highly sophisticated quantitative evidence supporting the traditional relations in pragmatic QCA design. Moreover, we show the effects of dimensionality and spin state, and point out the parameter space conditions, where the ‘classical’ treatment becomes invalid.

  7. Ambiguities in waveforms from precessing and recoiling black-hole binaries

    NASA Astrophysics Data System (ADS)

    Boyle, Michael

    2015-04-01

    Precessing and recoiling black-hole binaries will present some of the most interesting and complex sources for gravitational-wave astronomy. These systems push the limits of our understanding and techniques in both analytical and numerical relativity. In particular, the model spacetimes we use to describe these systems exhibit asymptotic gauge symmetries that are entirely arbitrary and uncontrolled, yet have direct impact on the waveforms. We must understand these effects in our models, in order to understand the effects on astrophysical measurements from gravitational-wave astronomy. I will describe these symmetries, demonstrate their effects on real waveforms, and discuss methods for eliminating the ambiguities.

  8. Casimir effects for classical and quantum liquids in slab geometry: A brief review

    SciTech Connect

    Biswas, Shyamal

    2015-05-15

    We analytically explore Casimir effects for confinement of classical and quantum fluctuations in slab (film) geometry (i) for classical (critical) fluctuations over {sup 4}He liquid around the λ point, and (ii) for quantum (phonon) fluctuations of Bogoliubov excitations over an interacting Bose-Einstein condensate. We also briefly review Casimir effects for confinement of quantum vacuum fluctuations confined to two plates of different geometries.

  9. Phase diagram of the two-component fractional quantum Hall effect.

    PubMed

    Archer, Alexander C; Jain, Jainendra K

    2013-06-14

    We calculate the phase diagram of the two component fractional quantum Hall effect as a function of the spin or valley Zeeman energy and the filling factor, which reveals new phase transitions and phase boundaries spanning many fractional plateaus. This phase diagram is relevant to the fractional quantum Hall effect in graphene and in GaAs and AlAs quantum wells, when either the spin or valley degree of freedom is active. PMID:25165951

  10. Nonequilibrium phonon effects in midinfrared quantum cascade lasers

    SciTech Connect

    Shi, Y. B. Knezevic, I.

    2014-09-28

    We investigate the effects of nonequilibrium phonon dynamics on the operation of a GaAs-based midinfrared quantum cascade laser over a range of temperatures (77–300 K) via a coupled ensemble Monte Carlo simulation of electron and optical-phonon systems. Nonequilibrium phonon effects are shown to be important below 200 K. At low temperatures, nonequilibrium phonons enhance injection selectivity and efficiency by drastically increasing the rate of interstage electron scattering from the lowest injector state to the next-stage upper lasing level via optical-phonon absorption. As a result, the current density and modal gain at a given field are higher and the threshold current density lower and considerably closer to experiment than results obtained with thermal phonons. By amplifying phonon absorption, nonequilibrium phonons also hinder electron energy relaxation and lead to elevated electronic temperatures.

  11. Adiabatic Transport of Geometric Singularities in the Quantum Hall Effect

    NASA Astrophysics Data System (ADS)

    Laskin, Michael; Chu, Yu Hung; Can, Tankut; Wiegmann, Paul

    We present a framework for studying the fractional Quantum Hall Effect (FQHE) on singular surfaces - in particular surfaces with multiple geometric singularities. It is now known that, aside from the Hall conductance and viscosity, there exists a third universal transport coefficient of the FQHE - the gravitational anomaly. This coefficient is difficult to measure since it usually appears as a higher order correction to observable quantities, such as the particle density. Singular surfaces are the first setting where the gravitational anomaly appears as a leading order effect. These surfaces are therefore ideal for studying geometric response and the gravitational anomaly within the FQHE. We expand the generating functional in the large N limit on such surfaces. From there, we braid the conical singularities of the surface and find a remarkable result - the gravitational anomaly determines the braiding statistics of the transported conical singularities.

  12. Effective field theory of quantum gravity coupled to scalar electrodynamics

    NASA Astrophysics Data System (ADS)

    Ibiapina Bevilaqua, L.; Lehum, A. C.; da Silva, A. J.

    2016-05-01

    In this work, we use the framework of effective field theory to couple Einstein’s gravity to scalar electrodynamics and determine the renormalization of the model through the study of physical processes below Planck scale, a realm where quantum mechanics and general relativity are perfectly compatible. We consider the effective field theory up to dimension six operators, corresponding to processes involving one-graviton exchange. Studying the renormalization group functions, we see that the beta function of the electric charge is positive and possesses no contribution coming from gravitational interaction. Our result indicates that gravitational corrections do not alter the running behavior of the gauge coupling constants, even if massive particles are present.

  13. Barrier penetration effects on thermopower in semiconductor quantum wells

    SciTech Connect

    Vaidya, R. G.; Department of Physics and C.E.I.E, Tumkur University, Tumkur, Karnataka, India – 573 102 ; Sankeshwar, N. S. Mulimani, B. G.

    2014-01-15

    Finite confinement effects, due to the penetration of the electron wavefunction into the barriers of a square well potential, on the low–temperature acoustic-phonon-limited thermopower (TP) of 2DEG are investigated. The 2DEG is considered to be scattered by acoustic phonons via screened deformation potential and piezoelectric couplings. Incorporating the barrier penetration effects, the dependences of diffusion TP and phonon drag TP on barrier height are studied. An expression for phonon drag TP is obtained. Numerical calculations of temperature dependences of mobility and TP for a 10 nm InN/In {sub x}Ga{sub 1−x}N quantum well for different values of x show that the magnitude and behavior of TP are altered. A decrease in the barrier height from 500 meV by a factor of 5, enhances the mobility by 34% and reduces the TP by 58% at 20 K. Results are compared with those of infinite barrier approximation.

  14. Disorder effects in the quantum Hall effect of graphene p-n junctions

    NASA Astrophysics Data System (ADS)

    Li, Jian; Shen, Shun-Qing

    2008-11-01

    The quantum Hall effect in graphene p-n junctions is studied numerically with emphasis on the effect of disorder at the interface of two adjacent regions. Conductance plateaus are found to be attached to the intensity of the disorder and are accompanied by universal conductance fluctuations in the bipolar regime, which is in good agreement with theoretical predictions of the random matrix theory on quantum chaotic cavities. The calculated Fano factors can be used in an experimental identification of the underlying transport character.

  15. Band Collapse and the Quantum Hall Effect in Graphene

    SciTech Connect

    Bernevig, B.Andrei; Hughes, Taylor L.; Zhang, Shou-Cheng; Chen, Han-Dong; Wu, Congjun; /Santa Barbara, KITP

    2010-03-16

    The recent Quantum Hall experiments in graphene have confirmed the theoretically well-understood picture of the quantum Hall (QH) conductance in fermion systems with continuum Dirac spectrum. In this paper we take into account the lattice, and perform an exact diagonalization of the Landau problem on the hexagonal lattice. At very large magnetic fields the Dirac argument fails completely and the Hall conductance, given by the number of edge states present in the gaps of the spectrum, is dominated by lattice effects. As the field is lowered, the experimentally observed situation is recovered through a phenomenon which we call band collapse. As a corollary, for low magnetic field, graphene will exhibit two qualitatively different QHE's: at low filling, the QHE will be dominated by the 'relativistic' Dirac spectrum and the Hall conductance will be odd-integer; above a certain filling, the QHE will be dominated by a non-relativistic spectrum, and the Hall conductance will span all integers, even and odd.

  16. Application of the quantum Hall effect to resistance metrology

    NASA Astrophysics Data System (ADS)

    Poirier, Wilfrid; Schopfer, Félicien; Guignard, Jérémie; Thévenot, Olivier; Gournay, Pierre

    2011-05-01

    The quantum Hall effect (QHE) discovery has revolutionized metrology by providing with a representation of the unit of resistance, R, that can be reproduced within a relative uncertainty of one part in 10 9 and is theoretically only linked to Planck's constant h and the electron charge e. This breakthrough also results from the development of resistance comparison bridges using cryogenic current comparator (CCC). The QHE experimental know-how now allows the realization of perfectly quantized Quantum Hall Array Resistance Standards (QHARS) by combining a large number of single Hall bars. In the context of an evolution of the Système International (SI) of units by fixing some fundamental constants of physics, the determination of the von Klitzing constant R through the use of the so-called Thompson-Lampard calculable capacitor and the realization of refined universality tests of the QHE are of prime importance. Finally, the fascinating graphene material might be a new turning point in resistance metrology.

  17. Nanoscale optimization of quantum dot media for effective photovoltaic conversion

    NASA Astrophysics Data System (ADS)

    Sablon, K. A.; Sergeev, A.; Little, J. W.; Vagidov, N.; Mitin, V.

    2014-06-01

    Nanoscale engineering of band profile and potential profile provide effective tools for the management of photoelectron processes in quantum dot (QD) photovoltaic devices. We investigate the QD devices with various 1-μm InAs /GaAs QD media placed in a 3-μm base GaAs p-n junction. We found that n-charging of quantum dots (QDs) create potential barriers around QDs. QD growth between ultrathin AlGaAs layers leads to the formation of AlGaAs "fence" barriers, and reduces the wetting layers (WLs). The barriers around QDs and reduction of the wetting layer substantially suppress recombination processes via QDs. The n-doping of interdot space in QD media enhances electron extraction from QDs. All of our QD devices show short-circuit current, JSC, higher than that of the reference cell, but smaller open-circuit voltage, VOC.. In the QD devices, the short circuit currents increase by ~0.1 mA/cm2 per dot layer. JSC reaches 28.4 mA/cm2 in the device with QD media that combines dot charging, fence barriers, and WL reduction.

  18. Fractionally charged skyrmions in fractional quantum Hall effect

    DOE PAGESBeta

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-11-26

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeemanmore » energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.« less

  19. Quantum Stress Tensor Fluctuations and their Physical Effects

    SciTech Connect

    Ford, L. H.; Wu, C.-H.

    2008-03-06

    We summarize several aspects of recent work on quantum stress tensor fluctuations and their role in driving fluctuations of the gravitational field. The role of correlations and anticorrelations is emphasized. We begin with a review of the properties of the stress tensor correlation function. We next consider some illuminating examples of non-gravitational effects of stress tensors fluctuations, specifically fluctuations of the Casimir force and radiation pressure fluctuations. We next discuss passive fluctuations of spacetime geometry and some of their operational signatures. These include luminosity fluctuations, line broadening, and angular blurring of a source viewed through a fluctuating gravitational field. Finally, we discuss the possible role of quantum stress tensor fluctuations in the early universe, especially in inflation. The fluctuations of the expansion of a congruence of comoving geodesics grows during the inflationary era, due to non-cancellation of anticorrelations that would have occurred in flat spacetime. This results in subsequent non-Gaussian density perturbations and allows one to infer an upper bound on the duration of inflation. This bound is consistent with adequate inflation to solve the horizon and flatness problems.

  20. A Candidate Recoiling Black Hole in a Nearby Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Koss, Michael

    2014-10-01

    We have discovered a BH recoil candidate offset by 800 pc from a nearby dwarf galaxy. The object, SDSS1133, shows offset broad lines and strong variability. While originally classified as a supernova because of its non-detection in 2005, we detect it in recent and past observations over 63 years. Using high-resolution adaptive optics observations, we constrain the source emission region to be <12 pc. Overall these properties are consistent with theoretical predictions for a runaway BH ejected from its host by gravitational-wave recoil following a merger. We propose a small, 4 orbit HST observation using the COS spectrograph in the FUV, to test for broad C IV emission and other high ionization emission lines which would decisively favor the recoiling BH interpretation. The unique UV spectroscopic capability of HST is critical to decide whether this is a recoiling black hole or an unprecedented 50 year outbursting LBV star (e.g. Eta Carina) followed by a unique long duration SN IIn with rebrightening. Either discovery would be extremely exciting. Finally, SDSS1133 has recently undergone a 1.3 mag rebrightening in PanSTARRS imaging suggesting that the coming year is a critical time to observe the source at maximum.

  1. Elastic recoil detection (ERD) with extremely heavy ions

    NASA Astrophysics Data System (ADS)

    Forster, J. S.; Currie, P. J.; Davies, J. A.; Siegele, R.; Wallace, S. G.; Zelenitsky, D.

    1996-06-01

    Extremely heavy-ion beams such as 209Bi in elastic recoil detection (ERD) make ERD a uniquely valuable technique for thin-film analysis of elements with mass ≤ 100. We report ERD measurements of compositional analysis of dinosaur eggshells and bones. We also show the capability of the ERD technique on studies of thin-film, high-temperature superconductors.

  2. Quantum Gravity Effects on the Tunneling Radiation of the Einstein-Maxwell-Dilaton-Axion Black Hole

    NASA Astrophysics Data System (ADS)

    Cheng, Tianhu; Ren, Ruyi; Chen, Deyou; Liu, Zixiang; Li, Guopin

    2016-03-01

    Taking into account effects of quantum gravity, we investigate the evaporation of an Einstein-Maxwell-Dilaton-Axion black hole. The corrected Hawking temperature is gotten respectively by the scalar particle's and the fermion's tunneling across the horizon. This temperature is lower than the original one derived by Hawking, which means quantum gravity effects slow down the rise of the temperature.

  3. Decoherence Effect on Quantum Correlation and Entanglement in a Two-qubit Spin Chain

    NASA Astrophysics Data System (ADS)

    Pourkarimi, Mohammad Reza; Rahnama, Majid; Rooholamini, Hossein

    2015-04-01

    Assuming a two-qubit system in Werner state which evolves in Heisenberg XY model with Dzyaloshinskii-Moriya (DM) interaction under the effect of different environments. We evaluate and compare quantum entanglement, quantum and classical correlation measures. It is shown that in the absence of decoherence effects, there is a critical value of DM interaction for which entanglement may vanish while quantum and classical correlations do not. In the presence of environment the behavior of correlations depends on the kind of system-environment interaction. Correlations can be sustained by manipulating Hamiltonian anisotropic-parameter in a dissipative environment. Quantum and classical correlations are more stable than entanglement generally.

  4. Spin effects on the instability and propagation modes of electrostatic plasma waves in quantum plasmas

    SciTech Connect

    Ki, Dae-Han; Jung, Young-Dae

    2011-09-19

    The effects of the electron spin interaction on the pure instability and propagation modes of the quantum electrostatic waves are investigated in cold quantum electron plasmas. It is found that the influence of the electron spin interaction increases the group velocity of the propagation mode of the quantum electrostatic wave. In addition, it is shown that the electron spin interaction enhances the growth rate of the instability mode of the quantum electrostatic wave. It is also found that the effects of the electron spin interaction would be more important in the domain of small Fermi wave numbers.

  5. Quantum effects in adiabatic electrochemical electron-transfer reactions

    NASA Astrophysics Data System (ADS)

    Koper, M. T. M.; Mohr, J.-H.; Schmickler, W.

    1997-07-01

    The role of nuclear tunneling in adiabatic electrochemical electron-transfer reactions is studied by applying the WKB approximation and the Quantum Kramers Theory to the ground-state potential energy surface calculated from an extended Anderson-Newns Hamiltonian. Reorganization of both solvent and ligand modes is considered. In the limit of vanishing electronic coupling analytical formulas are obtained for the temperature dependence of the activation parameters, which are valid over a practically unlimited temperature range. In the limit of high temperature, they are shown to be identical to expression derived from the non-adiabatic Levich-Dogonadze theory. The effect of friction and non-vanishing electronic coupling are studied and both are found to suppress the relative contribution of the nuclear tunneling to the overall reaction rate.

  6. Ferromagnetic Kondo Effect in a Triple Quantum Dot System

    NASA Astrophysics Data System (ADS)

    Baruselli, P. P.; Requist, R.; Fabrizio, M.; Tosatti, E.

    2013-07-01

    A simple device of three laterally coupled quantum dots, the central one contacted by metal leads, provides a realization of the ferromagnetic Kondo model, which is characterized by interesting properties like a nonanalytic inverted zero-bias anomaly and an extreme sensitivity to a magnetic field. Tuning the gate voltages of the lateral dots allows us to study the transition from a ferromagnetic to antiferromagnetic Kondo effect, a simple case of a Berezinskii-Kosterlitz-Thouless transition. We model the device by three coupled Anderson impurities that we study by numerical renormalization group. We calculate the single-particle spectral function of the central dot, which at zero frequency is proportional to the zero-bias conductance, across the transition, both in the absence and in the presence of a magnetic field.

  7. Magnetoelectric transport and quantum interference effect in ultrathin manganite films

    SciTech Connect

    Wang, Cong; Jin, Kui-juan Gu, Lin; Lu, Hui-bin; Li, Shan-ming; Zhou, Wen-jia; Zhao, Rui-qiang; Guo, Hai-zhong; He, Meng; Yang, Guo-zhen

    2014-04-21

    The magnetoelectric transport behavior with respect to the thicknesses of ultrathin La{sub 0.9}Sr{sub 0.1}MnO{sub 3} films is investigated in detail. The metal-insulator phase transition, which has never been observed in bulk La{sub 0.9}Sr{sub 0.1}MnO{sub 3}, is found in ultrathin films with thicknesses larger than 6 unit cells. Low-temperature resistivity minima appeared in films with thicknesses less than 10 unit cells. This is attributed to the presence of quantum interference effects. These data suggest that the influence of the weak localization becomes much pronounced as the film thickness decreases from 16 to 8 unit cells.

  8. Magnetic quantum coherence effect in Ni4 molecular transistors.

    PubMed

    González, Gabriel; Leuenberger, Michael N

    2014-07-01

    We present a theoretical study of electron transport in Ni4 molecular transistors in the presence of Zeeman spin splitting and magnetic quantum coherence (MQC). The Zeeman interaction is extended along the leads which produces gaps in the energy spectrum which allow electron transport with spin polarized along a certain direction. We show that the coherent states in resonance with the spin up or down states in the leads induces an effective coupling between localized spin states and continuum spin states in the single molecule magnet and leads, respectively. We investigate the conductance at zero temperature as a function of the applied bias and magnetic field by means of the Landauer formula, and show that the MQC is responsible for the appearence of resonances. Accordingly, we name them MQC resonances. PMID:24918902

  9. Scaling theory of the integer quantum Hall effect

    SciTech Connect

    Huckestein, B.

    1995-04-01

    The scaling theory of the transitions between plateaus of the Hall conductivity in the integer quantum Hall effect is reviewed. In the model of two-dimensional noninteracting electrons in strong magnetic fields, the transitions are disorder-induced localization-delocalization transitions. While experimental and analytical approaches are surveyed, the emphasis is on numerical studies, which successfully describe the experiments. The theoretical models for disordered systems are described in detail. An overview of the finite-size scaling theory and its relation to Anderson localiztion is given. The field-theoretical approach to the localization problem is outlined. Numerical methods for the calculation of scaling quantities, in particular the localization length, are detailed. The properties of local observables at the localization-delocalization transition are discussed in terms of multifractal measures. Finally, the results of extensive numerical investigations are compared with experimental findings.

  10. Quantum Anomalous Hall Effect in 2D Organic Topological Insulators

    NASA Astrophysics Data System (ADS)

    Wang, Zhengfei; Liu, Zheng; Liu, Feng

    2013-03-01

    Quantum anomalous Hall effect (QAHE) is a fundamental transport phenomenon in the field of condensed-matter physics. Without external magnetic field, spontaneous magnetization combined with spin-orbit coupling give rise to a quantized Hall conductivity. So far, a number of theoretical proposals have been made to realize the QAHE, but all based on inorganic materials. Here, using first-principles calculations, we predict a family of 2D organic topological insulators (OTIs) for realizing the QAHE. Designed by assembling molecular building blocks of triphenyl-transition-metal compounds into a hexagonal lattice, this new classes of organic materials are shown to have a nonzero Chern number and exhibit a gapless chiral edge state within the Dirac gap. This work was supported by US DOE-BES (Grant No. DE-FG02-04ER46027).

  11. Topological insulator in junction with ferromagnets: Quantum Hall effects

    NASA Astrophysics Data System (ADS)

    Chudnovskiy, A. L.; Kagalovsky, V.

    2015-06-01

    The ferromagnet-topological insulator-ferromagnet (FM-TI-FM) junction exhibits thermal and electrical quantum Hall effects. The generated Hall voltage and transverse temperature gradient can be controlled by the directions of magnetizations in the FM leads, which inspires the use of FM-TI-FM junctions as electrical and as heat switches in spintronic devices. Thermal and electrical Hall coefficients are calculated as functions of the magnetization directions in ferromagnets and the spin-relaxation time in TI. Both the Hall voltage and the transverse temperature gradient decrease but are not completely suppressed even at very short spin-relaxation times. The Hall coefficients turn out to be independent of the spin-relaxation time for symmetric configuration of FM leads.

  12. Symmetry criteria for quantum simulability of effective interactions

    NASA Astrophysics Data System (ADS)

    Zimborás, Zoltán; Zeier, Robert; Schulte-Herbrüggen, Thomas; Burgarth, Daniel

    2015-10-01

    What can one do with a given tunable quantum device? We provide complete symmetry criteria deciding whether some effective target interaction(s) can be simulated by a set of given interactions. Symmetries lead to a better understanding of simulation and permit a reasoning beyond the limitations of the usual explicit Lie closure. Conserved quantities induced by symmetries pave the way to a resource theory for simulability. On a general level, one can now decide equality for any pair of compact Lie algebras just given by their generators without determining the algebras explicitly. Several physical examples are illustrated, including entanglement invariants, the relation to unitary gate membership problems, as well as the central-spin model.

  13. Thermoelectric effects in molecular quantum dots with contacts

    NASA Astrophysics Data System (ADS)

    Koch, T.; Loos, J.; Fehske, H.

    2014-04-01

    We consider the steady-state thermoelectric transport through a vibrating molecular quantum dot that is contacted to macroscopic leads. For moderate electron-phonon interaction strength and comparable electronic and phononic timescales, we investigate the impact of the formation of a local polaron on the thermoelectric properties of the junction. We apply a variational Lang-Firsov transformation and solve the equations of motion in the Kadanoff-Baym formalism up to second order in the dot-lead coupling parameter. We calculate the thermoelectric current and voltage for finite temperature differences in the resonant and inelastic tunneling regimes. For a near resonant dot level, the formation of a local polaron can boost the thermoelectric effect because of the Franck-Condon blockade. The line shape of the thermoelectric voltage signal becomes asymmetrical due to the varying polaronic character of the dot state and in the nonlinear transport regime, vibrational signatures arise.

  14. Orbital Kondo effect in fractional quantum Hall systems

    NASA Astrophysics Data System (ADS)

    Komijani, Yashar; Simon, Pascal; Affleck, Ian

    2015-08-01

    We study the transport properties of a charge qubit coupling two chiral Luttinger liquids, realized by two antidots placed between the edges of an integer ν =1 or fractional ν =1 /3 quantum Hall bar. We show that in the limit of a large capacitive coupling between the antidots, their quasiparticle occupancy behaves as a pseudospin corresponding to an orbital Kondo impurity coupled to a chiral Luttinger liquid, while the interantidot tunneling acts as an impurity magnetic field. The latter tends to destabilize the Kondo fixed point for the ν =1 /3 fractional Hall state, producing an effective interedge tunneling. We relate the interedge conductance to the susceptibility of the Kondo impurity and calculate it analytically in various limits for both ν =1 and ν =1 /3 .

  15. Electronic properties and the quantum Hall effect in bilayer graphene.

    PubMed

    Fal'ko, Vladimir I

    2008-01-28

    In this paper, I review the quantum Hall effect (QHE) and far-infra red (FIR) absorption properties of bilayer graphene in a strong magnetic field. This includes a derivation of the effective low-energy Hamiltonian for this system and the consequences of this Hamiltonian for the sequencing of the Landau levels in the material: the form of this effective Hamiltonian gives rise to the presence of a level with doubled degeneracy at zero energy. The effect of a potential difference between the layer of a bilayer is also investigated. It is found that there is a density-dependent gap near the K points in the band structure. The consequences of this gap on the QHE are then described. Also, the magneto-absorption spectrum is investigated and an experiment proposed to distinguish between model groundstates of the bilayer QHE system based on the different absorption characteristics of right- and left-handed polarization of FIR light. Finally, the effects of trigonal warping are taken into account in the absorption picture. PMID:18024357

  16. Toward Quantum Plasmonics with Plasmon Drag Effect. Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Durach, Maxim; Lepain, Matthew; Mapes, Zoe; Rono, Vincent; Noginova, Natalia

    Giant plasmon drag effect observed in plasmonic metal films and nanostructures brings new fundamental insights into ways in which light-matter interaction occurs. We demonstrate analytically, numerically and experimentally that rectified drag forces acting upon electrons in plasmonic metals are intimately related to the absorption of plasmonic excitations. The plasmon energy quanta absorbed by the metal plasma are associated with momentum quanta, which are also transferred to electrons upon energy absorption. We show that this picture directly applies to plasmon drag effect in a variety of systems, and, to our knowledge for the first time, is capable to explain and predict the magnitude of the effect not only qualitatively, but with close quantitative agreement. The plasmon drag effect opens new avenues for plasmonic-based electronics providing opportunities for incorporation of plasmonic circuits into electronic devices, and for optical sensing offering a new operational principle and an opportunity to substitute the bulky optical set-ups with diffraction limited sensing by electronics. Our work not only adds more clarity into the mechanism behind the plasmon drag effect but also contributes to the emerging field of quantum plasmonics.

  17. Demonstration of nuclear recoil discrimination using recoil range in a mixed CaF 2 + liquid scintillator gel detector for dark matter searches

    NASA Astrophysics Data System (ADS)

    Spooner, N. J. C.; Tovey, D. R.; Peak, C. D.; Roberts, J. W.

    1997-12-01

    We present first measurements on a prototype dark matter detector being developed to achieve event by event discrimination of nuclear recoils from electron recoils below 100 keV by utilising the difference in the recoil ranges of these particles. The detector consists of sub-micron scintillating grains of CaF 2 suspended in Dioxan gel scintillator with matched refractive index. We call this form of detector CASPAR (Cocktail of Alkali halide Scintillating PARticles). We present here results of monoenergetic neutron scattering tests on CASPAR and show how scintillation pulse shape analysis can be used as a powerful means of distinguishing Ca, F, C and H recoil events from electron recoils. > 90% discrimination of Ca and F recoils from electrons at 60 keV was observed for <5% loss of signal.

  18. Localizationlike effect in two-dimensional alternate quantum walks with periodic coin operations

    NASA Astrophysics Data System (ADS)

    Di Franco, Carlo; Paternostro, Mauro

    2015-01-01

    Exploiting multidimensional quantum walks as feasible platforms for quantum computation and quantum simulation attracts constantly growing attention from a broad experimental physics community. Here, we propose a two-dimensional quantum walk scheme with a single-qubit coin that presents, in the considered regimes, a strong localizationlike effect on the walker. The result could provide new possible directions for the implementation of quantum algorithms or from the point of view of quantum simulation. We characterize the localizationlike effect in terms of the parameters of a step-dependent qubit operation that acts on the coin space after any standard coin operation, showing that a proper choice can guarantee a nonnegligible probability of finding the walker in the origin even for large times. We finally discuss the robustness to imperfections, a qualitative relation with coherences behavior, and possible experimental realizations of this model with the current state-of-the-art settings.

  19. Radiation Effects in Nanostructures: Comparison of Proton Irradiation Induced Changes on Quantum Dots and Quantum Wells

    NASA Technical Reports Server (NTRS)

    Leon, R.; Swift, G.; Magness, B.; Taylor, W.; Tang, Y.; Wang, K.; Dowd, P.; Zhang, Y.

    2000-01-01

    Successful implementation of technology using self-forming semiconductor Quantum Dots (QDs) has already demonstrated that temperature independent Dirac-delta density of states can be exploited in low current threshold QD lasers and QD infrared photodetectors.

  20. Efficient Multi-Dimensional Simulation of Quantum Confinement Effects in Advanced MOS Devices

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Rafferty, Conor S.; Ancona, Mario G.; Yu, Zhi-Ping

    2000-01-01

    We investigate the density-gradient (DG) transport model for efficient multi-dimensional simulation of quantum confinement effects in advanced MOS devices. The formulation of the DG model is described as a quantum correction to the classical drift-diffusion model. Quantum confinement effects are shown to be significant in sub-100nm MOSFETs. In thin-oxide MOS capacitors, quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion or quantum effects in simulations dramatically improves the match between C-V simulations and measurements for oxide thickness down to 2 nm. Significant quantum corrections also occur in the I-V characteristics of short-channel (30 to 100 nm) n-MOSFETs, with current drive reduced by up to 70%. This effect is shown to result from reduced inversion charge due to quantum confinement of electrons in the channel. Also, subthreshold slope is degraded by 15 to 20 mV/decade with the inclusion of quantum effects via the density-gradient model, and short channel effects (in particular, drain-induced barrier lowering) are noticeably increased.

  1. Non-abelian fractional quantum hall effect for fault-resistant topological quantum computation.

    SciTech Connect

    Pan, Wei; Thalakulam, Madhu; Shi, Xiaoyan; Crawford, Matthew; Nielsen, Erik; Cederberg, Jeffrey George

    2013-10-01

    Topological quantum computation (TQC) has emerged as one of the most promising approaches to quantum computation. Under this approach, the topological properties of a non-Abelian quantum system, which are insensitive to local perturbations, are utilized to process and transport quantum information. The encoded information can be protected and rendered immune from nearly all environmental decoherence processes without additional error-correction. It is believed that the low energy excitations of the so-called =5/2 fractional quantum Hall (FQH) state may obey non-Abelian statistics. Our goal is to explore this novel FQH state and to understand and create a scientific foundation of this quantum matter state for the emerging TQC technology. We present in this report the results from a coherent study that focused on obtaining a knowledge base of the physics that underpins TQC. We first present the results of bulk transport properties, including the nature of disorder on the 5/2 state and spin transitions in the second Landau level. We then describe the development and application of edge tunneling techniques to quantify and understand the quasiparticle physics of the 5/2 state.

  2. Dissipationless quantum spin current and the intrinsic spin Hall effect

    NASA Astrophysics Data System (ADS)

    Zhang, Shou-Cheng

    2005-03-01

    A recent theory predicts that dissipationless spin currents can be induced purely by an electric field in conventional semiconductors. The dissipationless spin current is derived from a novel topological structure in momentum space, is independent of the sample disorder and leads to the intrinsic spin Hall effect. In hole doped semiconductors, with or without inversion symmetry breaking, there are no vertex corrections due to impurities scattering, and there are no extrinsic contributions to the spin Hall effect in the clean limit. I shall analyze two recent experiments on the spin Hall effect, and show that they are both consistent with the intrinsic nature of the effect. S. Murakami, N. Nagaosa and Shou-Cheng Zhang, ``Dissipationless quantum spin current at room temperature", Science, bf 301, 1348 (2003). J. Sinova et. al., Phys. Rev. Lett. 92, 126603 (2004). Y. Kato et. al., Science, 11 Nov 2004 (10.1126/science.1105514). J. Wunderlich et.al., cond-mat/0410295. B. Andrei Bernevig and Shou-Cheng Zhang, cond-mat/0411457.

  3. Non-Markovian dynamics of correlations: The composite effect of two channels and robust quantum correlation preserving by detuning

    NASA Astrophysics Data System (ADS)

    Ji, Y. H.; Wan, X. D.

    2015-10-01

    We investigate the influence of the composite effect and information backflow effect in non-Markovian channel on the dynamics of quantum correlation including quantum entanglement and quantum discord. It is found that, the composite effect of independent channels is not only harmful to the maintenance of quantum correlation but also unfavorable for the maintenance of classic correlation. In a non-Markovian channel, by regulating the discord between qubit and the center frequency of cavity model, the time of quantum correlation and classical correlation of the system can be effectively prolonged. Thus, the quantum information processing can be achieved more easily under larger detuning.

  4. Magnetic Topological Insulators and Quantum Anomalous Hall Effect

    NASA Astrophysics Data System (ADS)

    Kou, Xufeng

    The engineering of topological surface states is a key to realize applicable devices based on topological insulators (TIs). Among various proposals, introducing magnetic impurities into TIs has been proven to be an effective way to open a surface gap and integrate additional ferromagnetism with the original topological order. In this Dissertation, we study both the intrinsic electrical and magnetic properties of the magnetic TI thin films grown by molecular beam epitaxy. By doping transition element Cr into the host tetradymite-type V-VI semiconductors, we achieve robust ferromagnetic order with a strong perpendicular magnetic anisotropy. With additional top-gating capability, we realize the electric-field-controlled ferromagnetism in the magnetic TI systems, and demonstrate such magneto-electric effects can be effectively manipulated, depending on the interplays between the band topology, magnetic exchange coupling, and structural engineering. Most significantly, we report the observation of quantum anomalous Hall effect (QAHE) in the Cr-doped (BiSb)2Te3 samples where dissipationless chiral edge conduction is realized in the macroscopic millimeter-size devices without the presence of any external magnetic field, and the stability of the quantized Hall conductance of e2/h is well-maintained as the film thickness varies across the 2D hybridization limit. With additional quantum confinement, we discover the metal-to-insulator switching between two opposite QAHE states, and reveal the universal QAHE phase diagram in the thin magnetic TI samples. In addition to the uniform magnetic TIs, we further investigate the TI/Cr-doped TI bilayer structures prepared by the modulation-doped growth method. By controlling the magnetic interaction profile, we observe the Dirac hole-mediated ferromagnetism and develop an effective way to manipulate its strength. Besides, the giant spin-orbit torque in such magnetic TI-based heterostructures enables us to demonstrate the current-induced magnetization switching with the critical current density much lower than other heavy metal/magnet systems. Our work on the magnetic TIs and their heterostructures thus unfolds new avenues for novel multifunctional nano-electronics and non-volatile spintronic applications.

  5. Elastic Recoil after Balloon Angioplasty in Hemodialysis Accesses: Does It Actually Occur and Is It Clinically Relevant?

    PubMed

    Rajan, Dheeraj K; Sidhu, Arshdeep; Noel-Lamy, Maxime; Mahajan, Ashish; Simons, Martin E; Sniderman, Kenneth W; Jaskolka, Jeffrey; Tan, Kong Teng

    2016-06-01

    Purpose To qualify and quantify elastic recoil and determine its effect on access patency. Materials and Methods Research ethics board approval was obtained and all patients signed an informed consent form. This was a prospective, nonrandomized study of mature accesses that underwent balloon percutaneous transluminal angioplasty (PTA) between January 2009 and December 2012. After PTA, completion fistulography was performed at 0-, 5-, 10-, and 15-minute intervals. From Digital Imaging and Communications in Medicine images, percentage of lesion stenosis before and after PTA was measured at each time point. A total of 76 patients (44 men, 32 women; mean age, 59.6 years) were enrolled and underwent 154 PTAs in 56 grafts and 98 fistulas. Venous elastic recoil was defined as recurrent luminal narrowing greater than 50% within 15 minutes after full effacement of the stenosis by the angioplasty balloon. Data collected included sex, age, access type and location, lesion location, length, and time to next intervention. Access patency was estimated by using Kaplan-Meier survival method, association of variables with the risk of loss of patency was assessed by using a Cox proportional hazards model, and a multiple variable model was examined by considering all variables. Results Technical success of PTA with less than 30% residual stenosis was 78%. By 15 minutes, 15.6% (24 of 154) of treated lesions recurrently narrowed by more than 50%, with a majority observed at 5 minutes (15 of 24). Technical failure of PTA was predictive of elastic recoil (P < .001), as was cephalic arch stenosis in fistulas (P = .047) and autogenous fistulas (P = .04). Elastic recoil, when it did occur, did not influence patency. Six-month primary patency was 34.8% in grafts and 47.1% in fistulas. Conclusion Venous elastic recoil after PTA of stenoses in hemodialysis access circuits is common, but its occurrence does not influence access primary patency after PTA. (©) RSNA, 2015. PMID:26694051

  6. Quantum Computer Games: Quantum Minesweeper

    ERIC Educational Resources Information Center

    Gordon, Michal; Gordon, Goren

    2010-01-01

    The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…

  7. Quantum Computer Games: Quantum Minesweeper

    ERIC Educational Resources Information Center

    Gordon, Michal; Gordon, Goren

    2010-01-01

    The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical

  8. Warm target recoil ion momentum spectroscopy for fragmentation of molecular hydrogen by ultrashort laser pulses.

    PubMed

    Liu, Jia; Wu, Jian; Czasch, Achim; Zeng, Heping

    2009-07-20

    We demonstrate warm target recoil ion momentum spectroscopy for the fragmentation dynamics of the warm hydrogen molecules at room temperature. The thermal movement effect of the warm molecule is removed by using a correction algorithm in the momentum space. Based on the reconstructed three-dimensional momentum vectors as well as the kinetic energy release spectra, different vibrational states of the H(2)(+) ground state are clearly visible and the internuclear separation for charge resonance enhanced ionization of the second electron is identified. The results show adequate accordance with the former experiments using other techniques. PMID:19654636

  9. Capillary array as an effusive molecular beam source for high resolution recoil ion momentum spectrometry

    NASA Astrophysics Data System (ADS)

    Bapat, Bhas; Krishnakumar, E.

    1994-03-01

    The role of a capillary array as a molecular beam source for use in recoil ion momentum spectrometry in ion-atom collisions is investigated. Numerical simulations show that by using a capillary array it is possible to obtain a half-width of 1 meV at room temperature, while the sensitivity could be in the range as low as 100 µeV. Preliminary measurements with electron impact ionisation showed the effectiveness of this technique by providing an energy resolution of about 2 meV at room temperature, which is superior to the resolution reported using a gas cell cooled to 30° K.

  10. Quantum random walks on congested lattices and the effect of dephasing

    PubMed Central

    Motes, Keith R.; Gilchrist, Alexei; Rohde, Peter P.

    2016-01-01

    We consider quantum random walks on congested lattices and contrast them to classical random walks. Congestion is modelled on lattices that contain static defects which reverse the walker’s direction. We implement a dephasing process after each step which allows us to smoothly interpolate between classical and quantum random walks as well as study the effect of dephasing on the quantum walk. Our key results show that a quantum walker escapes a finite boundary dramatically faster than a classical walker and that this advantage remains in the presence of heavily congested lattices. PMID:26812924

  11. Hamiltonian flows, short-time propagators and the quantum Zeno effect

    NASA Astrophysics Data System (ADS)

    de Gosson, Maurice A.; Hiley, Basil J.

    2014-04-01

    In a recent paper we have examined the short-time propagator for the Schrödinger equation of a point source. An accurate expression modulo Δt2 for the propagator showed that it was independent of the quantum potential implying that the quantum motion is classical for very short times. In this paper we apply these results to the experiment of Itano, Heinzen, Bollinger and Wineland which demonstrates the quantum Zeno effect in beryllium. We show that the transition is inhibited because the applied continuous wave radiation suppresses the quantum potential necessary for the transition to occur. This shows there is no need to appeal to wave function collapse.

  12. Geometric phases and quantum correlations of superconducting two-qubit system with dissipative effect

    NASA Astrophysics Data System (ADS)

    Xue, Liyuan; Yu, Yanxia; Cai, Xiaoya; Pan, Hui; Wang, Zisheng

    2016-01-01

    We investigate time-dependent Pancharatnam phases and the relations between such geometric phases and quantum correlations, i.e., quantum discord and concurrence, of superconducting two-qubit coupling system in dissipative environment with the mixture effects of four different eigenstates of density matrix. We find that the time-dependent Pancharatnam phases not only keep the motion memory of such a two-qubit system, but also include the information of quantum correlations. We show that the sudden died and alive phenomena of quantum entanglement are intrinsic in the transition of Pancharatnam phase in the X-state and the complex oscillations of Pancharatnam phase in the Y-state. The faster the Pancharatnam phases change, the slower the quantum correlations decay. In particular, we find that a subspace of quantum entanglement can exist in the Y-state by choosing suitable coupling parameters between two-qubit system and its environment, or initial conditions.

  13. Measurements of scintillation efficiency and pulse shape for low energy recoils in liquid xenon

    NASA Astrophysics Data System (ADS)

    Akimov, D.; Bewick, A.; Davidge, D.; Dawson, J.; Howard, A. S.; Ivaniouchenkov, I.; Jones, W. G.; Joshi, J.; Kudryavtsev, V. A.; Lawson, T. B.; Lebedenko, V.; Lehner, M. J.; Lightfoot, P. K.; Liubarsky, I.; Lüscher, R.; McMillan, J. E.; Peak, C. D.; Quenby, J. J.; Spooner, N. J. C.; Sumner, T. J.; Tovey, D. R.; Ward, C. K.

    2002-01-01

    Results of observations of low energy nuclear and electron recoil events in liquid xenon scintillator detectors are given. The relative scintillation efficiency for nuclear recoils is 0.22±0.01 in the recoil energy range 40-70 keV. Under the assumption of a single dominant decay component to the scintillation pulse shape the log-normal mean parameter T0 of the maximum likelihood estimator of the decay time constant for 6 keV recoil events is equal to 21.0±0.5 ns. It is observed that for electron recoils T0 rises slowly with energy, having a value ∼30 ns at Eee∼15 keV. Electron and nuclear recoil pulse shapes are found to be well fitted by single exponential functions although some evidence is found for a double exponential form for the nuclear recoil pulse shape.

  14. A Study of Intrinsic Statistical Variation for Nuclear Recoils in Germanium Detector for Dark Matter Searches

    NASA Astrophysics Data System (ADS)

    Wei, Wenzhao; Wang, Lu; Mei, Dongming; Cubed Collaboration

    2015-10-01

    The intrinsic statistical variation in nuclear recoils is a critical part that cannot be ignored when calculating energy resolution of germanium detector in detecting WIMPs. Have a good theoretical understanding about the intrinsic statistical variation in nuclear recoils and develop a model for calculating this variation based on experimental data is of great importance in determining the width of nuclear recoil band, which is used to identify nuclear recoils events. Hence, we designed an experiment to study the intrinsic statistical variation in nuclear recoils with various gamma sources and AmBe neutron source. In addition, we developed a theoretical model to calculate the intrinsic statistical variation in nuclear recoils based on data from AmBe neutron source. In this work, we will present our data and theoretical calculation for nuclear recoils. This work is supported by NSF in part by the NSF PHY-0758120, DOE grant DE-FG02-10ER46709, and the State of South Dakota.

  15. Classical limit of the quantum Zeno effect by environmental decoherence

    NASA Astrophysics Data System (ADS)

    Bedingham, D.; Halliwell, J. J.

    2014-04-01

    We consider a point particle in one dimension initially confined to a finite spatial region whose state is frequently monitored by projection operators onto that region. In the limit of infinitely frequent monitoring, the state never escapes from the region—this is the Zeno effect. In the corresponding classical problem, by contrast, the state diffuses out of the region with the frequent monitoring simply removing probability. The aim of this paper is to show how the Zeno effect disappears in the classical limit in this and similar examples. We give a general argument showing that the Zeno effect is suppressed in the presence of a decoherence mechanism which suppresses interference between histories. We show how this works explicitly in two examples involving projections onto a one-dimensional subspace and identify the key time scales for the process. We extend this understanding to our main problem of interest, the case of a particle in a spatial region, by coupling it to a decohering environment. Smoothed projectors are required to give the problem proper definition and this implies the existence of a momentum cutoff and minimum length scale. We show that the escape rate from the region approaches the classically expected result, and hence the Zeno effect is suppressed, as long as the environmentally induced fluctuations in momentum are sufficiently large. We establish the time scale on which an arbitrary initial state develops sufficiently large fluctuations to satisfy this condition. We link our results to earlier work on the ℏ →0 limit of the Zeno effect. We illustrate our results by plotting the probability flux lines for the density matrix (which are equivalent to Bohm trajectories in the pure-state case). These illustrate both the Zeno and anti-Zeno effects very clearly, and their suppression. Our results are closely related to our earlier paper [Phys. Rev. A 88, 022128 (2013), 10.1103/PhysRevA.88.022128], demonstrating the suppression of quantum-mechanical reflection by decoherence.

  16. Calendar effects in quantum mechanics in view of interactive holography

    NASA Astrophysics Data System (ADS)

    Berkovich, Simon

    2013-04-01

    Quantum mechanics in terms of interactive holography appears as `normal' science [1]. With the holography quantum behavior is determined by the interplay of material formations and their conjugate images. To begin with, this effortlessly elucidates the nonlocality in quantum entanglements. Then, it has been shown that Schr"odinger's dynamics for a single particle arises from Bi-Fragmental random walks of the particle itself and its holographic image. For many particles this picture blurs with fragments merging as bosons or fermions. In biomolecules, swapping of particles and their holographic placeholders leads to self-replication of the living matter. Because of broad interpretations of quantum formalism direct experiments attributing it to holography may not be very compelling. The holographic mechanism better reveals as an absolute frame of reference. A number of physical and biological events exhibit annual variations when Earth orbital position changes with respect to the universal holographic mechanism. The well established calendar variations of heart attacks can be regarded as a positive outcome of a generalization of the Michelson experiment, where holography is interferometry and ailing hearts are detectors of pathologically replicated proteins. Also, there have been already observed calendar changes in radioactive decay rates. The same could be expected for various fine quantum experiences, like, e.g., Josephson tunneling. In other words, Quantum Mechanics (February) Quantum Mechanics (August). [1] S. Berkovich, ``A comprehensive explanation of quantum mechanics,'' www.cs.gwu.edu/research/technical-report/170 .

  17. Elementary framework for cold field emission: Incorporation of quantum-confinement effects

    SciTech Connect

    Patterson, A. A. Akinwande, A. I.

    2013-12-21

    Although the Fowler-Nordheim (FN) equation serves as the foundation of cold field emission theory, it may not be suitable for predicting the emitted current density (ECD) from emitters with a quantum-confined electron supply. This work presents an analytical framework for treating cold field emission from metals that includes the effects of a quantum-confined electron supply. Within the framework, quantum confinement in emitters is classified into transverse and normal quantum confinement based on the orientation of the confinement relative to the emission direction. The framework is used to generate equations predicting the ECD from rectangular and cylindrical emitter geometries comprised of electron supplies of reduced dimensionality. Transverse quantum confinement of the electron supply leads to a reduction in the total ECD as transverse emitter dimensions decrease and normal quantum confinement results in an oscillatory ECD as a function of the normal quantum well width. Incorporating a geometry-dependent field enhancement factor into the model reveals an optimal transverse well width for which quantum confinement of the electron supply and field enhancement equally affect the ECD and a maximum total ECD for the emitter geometry at a given applied field is obtained. As a result, the FN equation over-predicts the ECD from emitters with transverse dimensions under approximately 5 nm, and in those cases, geometry-specific ECD equations incorporating quantum-confinement effects should be employed instead.

  18. Motion and gravity effects in the precision of quantum clocks.

    PubMed

    Lindkvist, Joel; Sabín, Carlos; Johansson, Göran; Fuentes, Ivette

    2015-01-01

    We show that motion and gravity affect the precision of quantum clocks. We consider a localised quantum field as a fundamental model of a quantum clock moving in spacetime and show that its state is modified due to changes in acceleration. By computing the quantum Fisher information we determine how relativistic motion modifies the ultimate bound in the precision of the measurement of time. While in the absence of motion the squeezed vacuum is the ideal state for time estimation, we find that it is highly sensitive to the motion-induced degradation of the quantum Fisher information. We show that coherent states are generally more resilient to this degradation and that in the case of very low initial number of photons, the optimal precision can be even increased by motion. These results can be tested with current technology by using superconducting resonators with tunable boundary conditions. PMID:25988238

  19. Motion and gravity effects in the precision of quantum clocks

    PubMed Central

    Lindkvist, Joel; Sabín, Carlos; Johansson, Göran; Fuentes, Ivette

    2015-01-01

    We show that motion and gravity affect the precision of quantum clocks. We consider a localised quantum field as a fundamental model of a quantum clock moving in spacetime and show that its state is modified due to changes in acceleration. By computing the quantum Fisher information we determine how relativistic motion modifies the ultimate bound in the precision of the measurement of time. While in the absence of motion the squeezed vacuum is the ideal state for time estimation, we find that it is highly sensitive to the motion-induced degradation of the quantum Fisher information. We show that coherent states are generally more resilient to this degradation and that in the case of very low initial number of photons, the optimal precision can be even increased by motion. These results can be tested with current technology by using superconducting resonators with tunable boundary conditions. PMID:25988238

  20. Quantum fluctuations and isotope effects in ab initio descriptions of water

    SciTech Connect

    Wang, Lu; Markland, Thomas E.; Ceriotti, Michele

    2014-09-14

    Isotope substitution is extensively used to investigate the microscopic behavior of hydrogen bonded systems such as liquid water. The changes in structure and stability of these systems upon isotope substitution arise entirely from the quantum mechanical nature of the nuclei. Here, we provide a fully ab initio determination of the isotope exchange free energy and fractionation ratio of hydrogen and deuterium in water treating exactly nuclear quantum effects and explicitly modeling the quantum nature of the electrons. This allows us to assess how quantum effects in water manifest as isotope effects, and unravel how the interplay between electronic exchange and correlation and nuclear quantum fluctuations determine the structure of the hydrogen bond in water.

  1. Observation of Resonant Quantum Magnetoelectric Effect in a Multiferroic Metal-Organic Framework.

    PubMed

    Tian, Ying; Shen, Shipeng; Cong, Junzhuang; Yan, Liqin; Wang, Shouguo; Sun, Young

    2016-01-27

    A resonant quantum magnetoelectric coupling effect has been demonstrated in the multiferroic metal-organic framework of [(CH3)2NH2]Fe(HCOO)3. This material shows a coexistence of a spin-canted antiferromagnetic order and ferroelectricity as well as clear magnetoelectric coupling below TN ≈ 19 K. In addition, a component of single-ion quantum magnets develops below ∼8 K because of an intrinsic magnetic phase separation. The stair-shaped magnetic hysteresis loop at 2 K signals resonant quantum tunneling of magnetization. Meanwhile, the magnetic field dependence of dielectric permittivity exhibits sharp peaks just at the critical tunneling fields, evidencing the occurrence of resonant quantum magnetoelectric coupling effect. This resonant effect enables a simple electrical detection of quantum tunneling of magnetization. PMID:26743039

  2. Direct recoil oxygen ion fractions resulting from Ar + collisions

    NASA Astrophysics Data System (ADS)

    Chen, Jie-Nan; Rabalais, J. Wayne

    1986-03-01

    Direct recoil of oxygen from oxidized and hydroxylated magnesium surfaces as a result of 6 keV Ar + collisions produces O -, O +, and O species. The total ion fraction at a recoil angle of 22° is ~33.5%, of which O - is 23.7% and O + is 9.8% for the oxidized surface. The O -/O + intensity ratio is extremely sensitive to the amount of hydrogen present, with the O + yield dropping to ~1% on the hydroxylated surface. These results are considered within a model for electronic transitions in ion/surface collisions which considers Auger and resonant transitions along the ion trajectory and electron promotions in the quasi-diatomic molecule of the close encounter.

  3. Recoiled Proton Tagged Knockout Reaction for {sup 8}He

    SciTech Connect

    Ye, Y.; Cao, Z.; Xiao, J.; Jiang, D.; Zheng, T.; Hua, H.; Ge, Y.; Li, X.; Lou, J.; Li, Q.; Lv, L.; Qiao, R.; You, H.; Chen, R.; Sakurai, H.; Otsu, H.; Li, Z.; Nishimura, M.; Sakaguchi, S.; Baba, H.

    2010-05-12

    Recently recoiled proton tagged knockout reaction experiments were carried-out for {sup 8}He at 82 MeV/nucleon. The purpose of the experiment are: (1) Through the core knocked out technique, to study the correlation of the valence neutrons in the ground state of {sup 8}He. This should provide new experimental information to the neutron coupling and neutron matter, including the BCS pairing and BEC pairing. (2) Through the valence neutron knocked out technique, to study the resonant states {sup 7}He and the related single particle states. This will be complementary to the previous similar measurement but with better selection of the reaction mechanism.Some new recoiled proton telescopes and the forward neutron spectrometer was applied in the experiment. Performance of the detection system and very preliminary experimental results are shown here.

  4. Acceleration of positrons by a relativistic electron beam in the presence of quantum effects

    SciTech Connect

    Niknam, A. R.; Aki, H.; Khorashadizadeh, S. M.

    2013-09-15

    Using the quantum magnetohydrodynamic model and obtaining the dispersion relation of the Cherenkov and cyclotron waves, the acceleration of positrons by a relativistic electron beam is investigated. The Cherenkov and cyclotron acceleration mechanisms of positrons are compared together. It is shown that growth rate and, therefore, the acceleration of positrons can be increased in the presence of quantum effects.

  5. Hořava-Lifshitz gravity and effective theory of the fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Wu, Chaolun; Wu, Shao-Feng

    2015-01-01

    We show that Hořava-Lifshitz gravity theory can be employed as a covariant framework to build an effective field theory for the fractional quantum Hall effect that respects all the spacetime symmetries such as non-relativistic diffeomorphism invariance and anisotropic Weyl invariance as well as the gauge symmetry. The key to this formalism is a set of correspondence relations that maps all the field degrees of freedom in the Hořava-Lifshitz gravity theory to external background (source) fields among others in the effective action of the quantum Hall effect, according to their symmetry transformation properties. We originally derive the map as a holographic dictionary, but its form is independent of the existence of holographic duality. This paves the way for the application of Hořava-Lifshitz holography on fractional quantum Hall effect. Using the simplest holographic Chern-Simons model, we compute the low energy effective action at leading orders and show that it captures universal electromagnetic and geometric properties of quantum Hall states, including the Wen-Zee shift, Hall viscosity, angular momentum density and their relations. We identify the shift function in Hořava-Lifshitz gravity theory as minus of guiding center velocity and conjugate to guiding center momentum. This enables us to distinguish guiding center angular momentum density from the internal one, which is the sum of Landau orbit spin and intrinsic (topological) spin of the composite particles. Our effective action shows that Hall viscosity is minus half of the internal angular momentum density and proportional to Wen-Zee shift, and Hall bulk viscosity is half of the guiding center angular momentum density.

  6. Recoiling supermassive black holes: a search in the nearby universe

    SciTech Connect

    Lena, D.; Robinson, A.; Axon, D. J.; Merritt, D.; Marconi, A.; Capetti, A.; Batcheldor, D.

    2014-11-10

    The coalescence of a binary black hole can be accompanied by a large gravitational recoil due to anisotropic emission of gravitational waves. A recoiling supermassive black hole (SBH) can subsequently undergo long-lived oscillations in the potential well of its host galaxy, suggesting that offset SBHs may be common in the cores of massive ellipticals. We have analyzed Hubble Space Telescope archival images of 14 nearby core ellipticals, finding evidence for small (≲ 10 pc) displacements between the active galactic nucleus (AGN; the location of the SBH) and the center of the galaxy (the mean photocenter) in 10 of them. Excluding objects that may be affected by large-scale isophotal asymmetries, we consider six galaxies to have detected displacements, including M87, where a displacement was previously reported by Batcheldor et al. In individual objects, these displacements can be attributed to residual gravitational recoil oscillations following a major or minor merger within the last few gigayears. For plausible merger rates, however, there is a high probability of larger displacements than those observed, if SBH coalescence took place in these galaxies. Remarkably, the AGN-photocenter displacements are approximately aligned with the radio source axis in four of the six galaxies with displacements, including three of the four having relatively powerful kiloparsec-scale jets. This suggests intrinsic asymmetries in radio jet power as a possible displacement mechanism, although approximate alignments are also expected for gravitational recoil. Orbital motion in SBH binaries and interactions with massive perturbers can produce the observed displacement amplitudes but do not offer a ready explanation for the alignments.

  7. Time-of-flight direct recoil ion scattering spectrometer

    DOEpatents

    Krauss, A.R.; Gruen, D.M.; Lamich, G.J.

    1994-09-13

    A time-of-flight direct recoil and ion scattering spectrometer beam line is disclosed. The beam line includes an ion source which injects ions into pulse deflection regions and separated by a drift space. A final optics stage includes an ion lens and deflection plate assembly. The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions. 23 figs.

  8. Time-of-flight direct recoil ion scattering spectrometer

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.; Lamich, George J.

    1994-01-01

    A time of flight direct recoil and ion scattering spectrometer beam line (10). The beam line (10) includes an ion source (12) which injects ions into pulse deflection regions (14) and (16) separated by a drift space (18). A final optics stage includes an ion lens and deflection plate assembly (22). The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions (14) and (16).

  9. Strong-coupling topological Josephson effect in quantum wires.

    PubMed

    Nogueira, Flavio S; Eremin, Ilya

    2012-08-15

    We investigate the Josephson effect for a setup with two lattice quantum wires featuring Majorana zero energy boundary modes at the tunnel junction. In the weak-coupling regime, the exact solution reproduces the perturbative result for the energy containing a contribution ∼ ± cos(ϕ/2) relative to the tunneling of paired Majorana fermions. As the tunnel amplitude g grows relative to the hopping amplitude w, the gap between the energy levels gradually diminishes until it closes completely at the critical value gc [Formula: see text]. At this point the Josephson energies have the principal values [Formula: see text], where m =- 1,0,1 and σ =± 1, a result not following from perturbation theory. It represents a transparent regime where three Bogoliubov states merge, leading to additional degeneracies of the topologically nontrivial ground state with an odd number of Majorana fermions at the end of each wire. We also obtain the exact tunnel currents for a fixed parity of the eigenstates. The Josephson current shows the characteristic 4π periodicity expected for a topological Josephson effect. We discuss the additional features of the current associated with a closure of the energy gap between the energy levels. PMID:22784937

  10. Many-Body Effects in Quantum-Well Intersubband Transitions

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Ning, Cun-Zheng

    2003-01-01

    Intersubband polarization couples to collective excitations of the interacting electron gas confined in a semiconductor quantum well (Qw) structure. Such excitations include correlated pair excitations (repellons) and intersubband plasmons (ISPs). The oscillator strength of intersubband transitions (ISBTs) strongly varies with QW parameters and electron density because of this coupling. We have developed a set of kinetic equations, termed the intersubband semiconductor Bloch equations (ISBEs), from density matrix theory with the Hartree-Fock approximation, that enables a consistent description of these many-body effects. Using the ISBEs for a two-conduction-subband model, various many-body effects in intersubband transitions are studied in this work. We find interesting spectral changes of intersubband absorption coefficient due to interplay of the Fermi-edge singularity, subband renormalization, intersubband plasmon oscillation, and nonparabolicity of bandstructure. Our results uncover a new perspective for ISBTs and indicate the necessity of proper many-body theoretical treatment in order for modeling and prediction of ISBT line shape.

  11. Tuning The Properties of Quantum Dots Via The Effective Mass

    SciTech Connect

    Singh, R. A.; Sinha, Abhinav; Pathak, Praveen

    2011-07-15

    In the present work we revisit effective mass theory (EMT) for a semiconductor quantum dot (QD) and employ the BenDaniel-Duke (BDD) boundary condition. In effective mass theory mass m{sub i} inside the dot of radius R is different from the mass m{sub o} outside the dot. That gives us a crucial factor in determining the electronic spectrum namely {beta} = m{sub i}/m{sub 0}. We show both by numerical calculations and asymptotic analysis that the ground state energy and the surface charge density, {rho}(r) can be large. We also show that the dependence of the ground state energy on the radius of the well is infraquadratic. We demonstrate that the significance of BDD condition is pronounced at large R. We also study the dependence of excited state on the radius as well as the difference between energy states. Both exhibit an infra quadratic behavior with radius. The energy difference is important in study of absorption and emission spectra. We find that the BDD condition substantially alters the energy difference. Hence the interpretation of experimental result may need to be reexamined.

  12. Astrometric detection of gravitational effects of quantum vacuum

    NASA Astrophysics Data System (ADS)

    Vecchiato, Alberto; Gai, Mario; Hajdukovic, Dragan

    2015-08-01

    In a series of recent papers it was suggested that the pairs of virtual particles-antiparticles composing the Quantum Vacuum (QV) can behave like gravitational dipoles with both attractive and repulsive interaction. If verified, this hypothesis would give raise to a series of gravitational effects at different scale length not yet considered in current gravity theories, and it may support galactic and cosmological models alternative to those involving Dark Matter and Dark Energy.Within the boundaries of the Solar System, the most promising targets for testing the gravitational QV conjecture are the binary trans-neptunian objects (TNOs). The gravitational action of the QV, in fact, would manifest itself as an external force inducing an anomalous precession, i.e. an excess shift of the longitude of the pericenter in the orbit of the TNO satellite which, e.g., for the UX25 candidate and under reasonable working hypothesis, was estimated to be about 0.23 arcsec per orbit.In this work we analyze in some detail the feasibility of testing the gravitational QV hypothesis estimating the above effect with ground-based and spaceborne astrometric observations. Several observing scenarios are explored here, including those using conventional and adaptive optics telescopes from ground, some spaceborne telescopes, and by exploring a list of possible candidates.

  13. Effective dynamics in Bianchi type II loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Corichi, Alejandro; Montoya, Edison

    2012-05-01

    We numerically investigate the solutions to the effective equations of the Bianchi II model within the “improved” loop quantum cosmology dynamics. The matter source is a massless scalar field. We perform a systematic study of the space of solutions, and focus on the behavior of several geometrical observables. We show that the big bang singularity is replaced by a bounce and the pointlike singularities do not saturate the energy density bound. There are up to three directional bounces in the scale factors, one global bounce in the expansion, the shear presents up to four local maxima and can be zero at the bounce. This allows for solutions with density larger than the maximal density for the isotropic and Bianchi I cases. The asymptotic behavior is shown to behave like that of a Bianchi I model, and the effective solutions connect anisotropic solutions even when the shear is zero at the bounce. All known facts of Bianchi I are reproduced. In the “vacuum limit,” solutions are such that almost all the dynamics is due to the anisotropies. Since Bianchi II plays an important role in the Bianchi IX model and the Belinskii, Khalatnikov, Lifshitz conjecture, our results can provide an intuitive understanding of the behavior in the vicinity of general spacelike singularities, when loop-geometric corrections are present.

  14. Temperature effects and transport phenomena in terahertz quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Slingerland, Philip C.

    Quantum cascade lasers (QCL's) employ the mid- and far-infrared intersubband radiative transitions available in semiconductor heterostructures. Through the precise design and construction of these heterostructures the laser characteristics and output frequencies can be controlled. When fabricated, QCL's offer a lightweight and portable alternative to traditional laser systems which emit in this frequency range. The successful operation of these devices strongly depends on the effects of electron transport. Studies have been conducted on the mechanisms involved in electron transport and a computational model has been completed for QCL performance prediction and design optimization. The implemented approach utilized a three period model of the laser active region with periodic boundary conditions enforced. All of the wavefunctions within these periods were included in a self-consistent rate equation model. This model employed all relevant types of scattering mechanisms within three periods. Additionally, an energy balance equation was studied to determine the set of individual subband electron temperatures. This equation included the influence of both electron-LO phonon and electron-electron scattering. The effect of different modeling parameters within QCL electron temperature predictions are presented along with a description of the complete QCL computational model and comparisons with experimental results.

  15. Carrier capture into semiconductor quantum dots via quantum wire barriers: Localization and thermionic emission effects

    NASA Astrophysics Data System (ADS)

    Szeszko, J.; Zhu, Q.; Gallo, P.; Rudra, A.; Kapon, E.

    2011-08-01

    Carrier transport and capture paths via barriers of different dimensionality in AlGaAs/GaAs quantum wire (QWR)/quantum dot (QD) heterostructures, grown in inverted pyramids, are studied by photoluminescence (PL) spectroscopy. Evidence for thermally activated diffusion related to potential disorder in the QWR barriers and thermionic emission of carriers from the QD into the QWR barrier is observed in temperature dependent PL spectra. Similar activation energies for the thermionic emission are derived from the continuous-wave and time-resolved PL spectroscopy.

  16. Induced spin-accumulation and spin-polarization in a quantum-dot ring by using magnetic quantum dots and Rashba spin-orbit effect

    SciTech Connect

    Eslami, L. Faizabadi, E.

    2014-05-28

    The effect of magnetic contacts on spin-dependent electron transport and spin-accumulation in a quantum ring, which is threaded by a magnetic flux, is studied. The quantum ring is made up of four quantum dots, where two of them possess magnetic structure and other ones are subjected to the Rashba spin-orbit coupling. The magnetic quantum dots, referred to as magnetic quantum contacts, are connected to two external leads. Two different configurations of magnetic moments of the quantum contacts are considered; the parallel and the anti-parallel ones. When the magnetic moments are parallel, the degeneracy between the transmission coefficients of spin-up and spin-down electrons is lifted and the system can be adjusted to operate as a spin-filter. In addition, the accumulation of spin-up and spin-down electrons in non-magnetic quantum dots are different in the case of parallel magnetic moments. When the intra-dot Coulomb interaction is taken into account, we find that the electron interactions participate in separation between the accumulations of electrons with different spin directions in non-magnetic quantum dots. Furthermore, the spin-accumulation in non-magnetic quantum dots can be tuned in the both parallel and anti-parallel magnetic moments by adjusting the Rashba spin-orbit strength and the magnetic flux. Thus, the quantum ring with magnetic quantum contacts could be utilized to create tunable local magnetic moments which can be used in designing optimized nanodevices.

  17. 39Ar and 37Ar recoil loss during neutron irradiation of sanidine and plagioclase

    NASA Astrophysics Data System (ADS)

    Jourdan, Fred; Matzel, Jennifer P.; Renne, Paul R.

    2007-06-01

    The 40Ar/ 39Ar dating technique requires the activation of 39Ar via neutron irradiation. The energy produced by the reaction is transferred to the daughter atom as kinetic energy and triggers its displacement, known as the recoil effect. Significant amounts of 39Ar and 37Ar can be lost from minerals leading to spurious ages and biased age spectra. Through two experiments, we present direct measurement of the recoil-induced 39Ar and 37Ar losses on Fish Canyon sanidine and plagioclase. We use multi-grain populations with discrete sizes ranging from 210 to <5 μm. One population consists of a mixture between sanidine and plagioclase, and the other includes pure sanidine. We show that 39Ar loss (depletion factor) for sanidine is ˜3% for the smallest fraction. Age spectra of fractions smaller than ˜50 μm show slight departure from flat plateau-age spectrum usually observed for large sanidine. This departure is roughly proportional to the size of the grain but does not show typical 39Ar loss age spectra. The calculated thickness of the total depletion layer d0(sanidine) is 0.035 ± 0.012 (2 σ). This is equivalent to a mean depth of the partial depletion layer ( x0) of 0.070 ± 0.024 μm. The latter value is indistinguishable from previous values of ˜0.07-0.09 μm obtained by argon implantation experiments and simulation results. We show that it is possible to adequately correct ages from 39Ar ejection loss provided that the d0-value and the size range of the minerals are sufficiently constrained. As exemplified by similar calculations performed on results obtained in a similar study of GA1550 biotite [Paine J. H., Nomade S., and Renne P. R. (2006) Quantification of 39Ar recoil ejection from GA1550 biotite during neutron irradiation as a function of grain dimensions. Geochim. Cosmochim. Acta70, 1507-1517.], the d0(biotite) is 0.46 ± 0.06 μm. The significant difference between empirical results on biotite and sanidine, along with different simulation results, suggests that for biotite, crystal structures and lattice defects of the stopping medium and possibly subsequent thermal degassing (due to ˜150-200 °C temperature in the reactor or extraction line bake out) must play an important role in 39Ar loss. The second experiment suggests that 37Ar recoil can substantially affect the age via the interference corrections with results that suggest up to ˜98% of 37Ar can be ejected from the ˜5 μm grain dimension. Further investigation of silicates of various compositions and structures are required to better understand (and correct) the recoil and recoil-induced effects on both 39Ar and 37Ar and their influences on 40Ar/ 39Ar dating.

  18. The velocity and recoil of DNA bands during gel electrophoresis

    NASA Astrophysics Data System (ADS)

    Keiner, Louis E.; Holzwarth, G.

    1992-09-01

    The velocity and recoil of bands of DNA containing 48.5 to 4800 kilobasepairs (kb) were measured during pulsed-field gel electrophoresis by a video imaging and analysis system. When a 10 V/cm electric field was first applied, the velocity showed an initial sharp peak after approximately 1 s whose amplitude depended on the molecular weight of the DNA and the rest time and polarity of the previous pulse. For example, G DNA (670 kb) exhibited an initial velocity peak of 13 μm/s. The velocity then oscillated through a shallow minimum and small maximum before reaching a 5.0 μm/s plateau. After the field was turned off, the bands moved backward (recoiled). The band position obeyed a stretched-exponential relation, x = x0 exp[ - (t/τ)β] with amplitude x0 equal to approximately 1/10th of the DNA contour length and β≊0.6; for S. pombe DNA, x0 was a remarkable 165 μm. Both the initial velocity spike and the recoil arise from the presence of a significant fraction of U-shaped molecules with low configurational entropy. The initial velocity spike is exploited in field-inversion gel electrophoresis to generate the ``antiresonance,'' which is the basis of size-dependent mobility. Recent computer simulations which include tube-length fluctuations and tube leakage are in excellent accord with the measured velocities.

  19. Quantum-electrodynamics corrections in pionic hydrogen

    SciTech Connect

    Schlesser, S.; Le Bigot, E.-O.; Indelicato, P.; Pachucki, K.

    2011-07-15

    We investigate all pure quantum-electrodynamics corrections to the np{yields}1s, n=2-4 transition energies of pionic hydrogen larger than 1 meV, which requires an accurate evaluation of all relevant contributions up to order {alpha}{sup 5}. These values are needed to extract an accurate strong interaction shift from experiment. Many small effects, such as second-order and double vacuum polarization contribution, proton and pion self-energies, finite size and recoil effects are included with exact mass dependence. Our final value differs from previous calculations by up to {approx_equal}11 ppm for the 1s state, while a recent experiment aims at a 4 ppm accuracy.

  20. Recoil Experiments Using a Compressed Air Cannon

    ERIC Educational Resources Information Center

    Taylor, Brett

    2006-01-01

    Ping-Pong vacuum cannons, potato guns, and compressed air cannons are popular and dramatic demonstrations for lecture and lab. Students enjoy them for the spectacle, but they can also be used effectively to teach physics. Recently we have used a student-built compressed air cannon as a laboratory activity to investigate impulse, conservation of…

  1. Recoil Experiments Using a Compressed Air Cannon

    ERIC Educational Resources Information Center

    Taylor, Brett

    2006-01-01

    Ping-Pong vacuum cannons, potato guns, and compressed air cannons are popular and dramatic demonstrations for lecture and lab. Students enjoy them for the spectacle, but they can also be used effectively to teach physics. Recently we have used a student-built compressed air cannon as a laboratory activity to investigate impulse, conservation of

  2. Quantum Anomalous Hall Effect in Hetero Magnetic Topological Insulator Structures

    NASA Astrophysics Data System (ADS)

    Wang, Kang

    2014-03-01

    The quantum anomalous Hall effect (QAHE), which has the quantized Hall conductance of h /e2 in the absence of external field, was expected to happen in a magnetic 3-D topological insulators (TIs) system. In this talk, we report recent progress of QAHE-related physics in the TRS-breaking field. In the first part, we show the generation of robust magnetism by doping magnetic ions (Cr) into the host (BixSb1-x)2 Te3 materials. With gate-controlled magneto-transport measurements, we demonstrate the presence of both the hole-mediated RKKY coupling and carrier-independent van Vleck magnetism. By adjusting the Cr doping concentration and Bi/Sb ratio, we establish an effective way to experimentally approach to the QAHE region. The second part of this talk discusses the manipulation of surface-related magnetism in the modulation-doped TI/Cr-doped TI heterostructures. We investigate the role of massive surface Dirac fermions in the bulk RKKY mediation process. Both our theoretical models and experimental results reveal that the topological surface-related magnetic order can be either enhanced or suppressed, depending on the magnetic interaction range between the surface states and Cr ions. Based on such TI heterostructures, we also demonstrate the magnetization switching via giant spin-orbit torque induced by the in-plane current. Finally, in order to make these effects observable at 300K, we describe the use of magnetic proximity effects to manipulate the surface magnetism of TI. These results not only demonstrate additional important steps to further explore fundamental properties of the TRS-breaking TI systems but also may help the realization of many functionalities of TI-based spintronics applications. The work was in part supported by DARPA under N66001-12-1-40 and N66001-11-1-4105.

  3. Temperature scaling in the quantum-Hall-effect regime in a HgTe quantum well with an inverted energy spectrum

    SciTech Connect

    Arapov, Yu. G.; Gudina, S. V.; Neverov, V. N.; Podgornykh, S. M.; Popov, M. R. Harus, G. I.; Shelushinina, N. G.; Yakunin, M. V.; Mikhailov, N. N.; Dvoretsky, S. A.

    2015-12-15

    The longitudinal and Hall magnetoresistances of HgTe/HgCdTe heterostructures with an inverted energy spectrum (the HgTe quantum well width is d = 20.3 nm) are measured in the quantum-Hall-effect regime at T = 2–50 K in magnetic fields up to B = 9 T. Analysis of the temperature dependences of conductivity in the transition region between the first and second plateaus of the quantum Hall effect shows the feasibility of the scaling regime for a plateau–plateau quantum phase transition in 2D-structures on the basis of mercury telluride.

  4. Therapeutic Effects of Oligonol, Acupuncture, and Quantum Light Therapy in Chronic Nonbacterial Prostatitis

    PubMed Central

    Öztekin, İlhan; Akdere, Hakan; Can, Nuray; Aktoz, Tevfik; Turan, Fatma Nesrin

    2015-01-01

    This research aimed to compare anti-inflammatory effects of oligonol, acupuncture, and quantum light therapy in rat models of estrogen-induced prostatitis. Adult male Wistar albino rats were grouped as follows: Group I, control (n = 10); Group II, chronic prostatitis (n = 10); Group III, oligonol (n = 10); Group IV, acupuncture (n = 10); Group V, quantum (n = 10); Group VI, oligonol plus quantum (n = 10); Group VII, acupuncture plus oligonol (n = 10); Group VIII, quantum plus acupuncture (n = 10); and Group IX, acupuncture plus quantum plus oligonol (n = 10). Chronic prostatitis (CP) was induced by the administration of 17-beta-estradiol (E2) and dihydrotestosterone (DHT). Oligonol was given for 6 weeks at a dose of 60 mg/day. Acupuncture needles were inserted at CV 3/4 and bilaterally B 32/35 points with 1-hour manual stimulation. Quantum therapy was administered in 5-minute sessions three times weekly for 6 weeks. Lateral lobes of prostates were dissected for histopathologic evaluation. Although all of the treatment modalities tested in this study showed anti-inflammatory effects in the treatment of CP in male rats, a synergistic effect was observed for oligonol plus quantum light combination. Monotherapy with oligonol showed a superior anti-inflammatory efficacy as compared to quantum light and acupuncture monotherapies. PMID:26064171

  5. Recoil Polarization Measurements of the Proton Electromagnetic Form Factor Ratio to High Momentum Transfer

    SciTech Connect

    Andrew Puckett

    2010-02-01

    The electromagnetic form factors of the nucleon characterize the effect of its internal structure on its response to an electromagnetic probe as studied in elastic electronnucleon scattering. These form factors are functions of the squared four-momentum transfer Q2 between the electron and the proton. The two main classes of observables of this reaction are the scattering cross section and polarization asymmetries, both of which are sensitive to the form factors in different ways. When considering large f momentum transfers, double-polarization observables offer superior sensitivity to the electric form factor. This thesis reports the results of a new measurement of the ratio of the electric and magnetic form factors of the proton at high momentum transfer using the recoil polarization technique. A polarized electron beam was scattered from a liquid hydrogen target, transferring polarization to the recoiling protons. These protons were detected in a magnetic spectrometer which was used to reconstruct their kinematics, including their scattering angles and momenta, and the position of the interaction vertex. A proton polarimeter measured the polarization of the recoiling protons by measuring the azimuthal asymmetry in the angular distribution of protons scattered in CH2 analyzers. The scattered electron was detected in a large acceptance electromagnetic calorimeter in order to suppress inelastic backgrounds. The measured ratio of the transverse and longitudinal polarization components of the scattered proton is directly proportional to the ratio of form factors GpE=GpM. The measurements reported in this thesis took place at Q2 =5.2, 6.7, and 8.5 GeV2, and represent the most accurate measurements of GpE in this Q2 region to date.

  6. Interface Phonons and Polaron Effect in Quantum Wires

    PubMed Central

    2010-01-01

    The theory of large radius polaron in the quantum wire is developed. The interaction of charge particles with interface optical phonons as well as with optical phonons localized in the quantum wire is taken into account. The interface phonon contribution is shown to be dominant for narrow quantum wires. The wave functions and polaron binding energy are found. It is determined that polaron binding energy depends on the electron mass inside the wire and on the polarization properties of the barrier material. PMID:21124637

  7. Projecting the Kondo effect: theory of the quantum mirage.

    PubMed

    Agam, O; Schiller, A

    2001-01-15

    A microscopic theory is developed for the projection (quantum mirage) of the Kondo resonance from one focus of an elliptic quantum corral to the other focus. The quantum mirage is shown to be independent of the size and the shape of the ellipse, and experiences lambdaF/4 oscillations ( lambdaF is the surface-band Fermi wavelength) with an increasing semimajor axis length. We predict an oscillatory behavior of the mirage as a function of a weak magnetic field applied perpendicular to the sample. PMID:11177861

  8. Quantum site percolation on triangular lattice and the integer quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Mkhitaryan, V. V.; Raikh, M. E.

    2009-03-01

    Generic classical electron motion in a strong perpendicular magnetic field and random potential reduces to the bond percolation on a square lattice. Here we point out that for certain smooth two-dimensional potentials with 120° rotational symmetry this problem reduces to the site percolation on a triangular lattice. We use this observation to develop an approximate analytical description of the integer quantum Hall transition. For this purpose we devise a quantum generalization of the real-space renormalization group (RG) treatment of the site percolation on the triangular lattice. In quantum case, the RG transformation describes the evolution of the distribution of the 3×3 scattering matrices at the sites. We find the fixed point of this distribution and use it to determine the critical exponent, ν , for which we find the value ν≈2.3÷2.76 . The RG step involves only a single Hikami box and thus can serve as a minimal RG description of the quantum Hall transition.

  9. Fidelity Susceptibility Perspective on the Kondo Effect and Impurity Quantum Phase Transitions

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Shinaoka, Hiroshi; Troyer, Matthias

    2015-12-01

    The Kondo effect is a ubiquitous phenomenon appearing at low temperature in quantum confined systems coupled to a continuous bath. Efforts in understanding and controlling it have triggered important developments across several disciplines of condensed matter physics. A recurring pattern in these studies is that the suppression of the Kondo effect often results in intriguing physical phenomena such as impurity quantum phase transitions or non-Fermi-liquid behavior. We show that the fidelity susceptibility is a sensitive indicator for such phenomena because it quantifies the sensitivity of the system's state with respect to its coupling to the bath. We demonstrate the power of the fidelity susceptibility approach by using it to identify the crossover and quantum phase transitions in the one and two impurity Anderson models. The feasibility of measuring fidelity susceptibility in condensed matter as well as ultracold quantum gases experiments opens exciting new routes to diagnose the Kondo problem and impurity quantum phase transitions.

  10. Quantum rod-sensitized solar cell: nanocrystal shape effect on the photovoltaic properties.

    PubMed

    Salant, Asaf; Shalom, Menny; Tachan, Zion; Buhbut, Sophia; Zaban, Arie; Banin, Uri

    2012-04-11

    The effect of the shape of nanocrystal sensitizers in photoelectrochemical cells is reported. CdSe quantum rods of different dimensions were effectively deposited rapidly by electrophoresis onto mesoporous TiO(2) electrodes and compared with quantum dots. Photovoltaic efficiency values of up to 2.7% were measured for the QRSSC, notably high values for TiO(2) solar cells with ex situ synthesized nanoparticle sensitizers. The quantum rod-based solar cells exhibit a red shift of the electron injection onset and charge recombination is significantly suppressed compared to dot sensitizers. The improved photoelectrochemical characteristics of the quantum rods over the dots as sensitizers is assigned to the elongated shape, allowing the build-up of a dipole moment along the rod that leads to a downward shift of the TiO(2) energy bands relative to the quantum rods, leading to improved charge injection. PMID:22452287

  11. Sub-recoil laser cooling of metastable helium

    NASA Astrophysics Data System (ADS)

    Liu, Liang

    2000-08-01

    This work presents the results of several experiments in sub-recoil laser cooling of metastable Helium (He*) on the 23S1 --> 23P0,1,2 transitions at λ = 1.083 μm and on the 23S1 --> 33P0,1,2 transitions at λ = 389 nm in a magnetic field. The idea is to combine the principle of sub-recoil cooling based on VSCPT (Velocity Selective Coherent Population Trapping) with the VSR (Velocity Selective Resonance) produced by an applied magnetic field. We first review the works on Doppler and sub-Doppler cooling, and point out that the sub-recoil cooling is possible when the atom is dark to the laser field. When the kinetic energy term is considered in the Hamiltonian, the dark state has a distribution over detuning and laser intensity. Thus for limited interaction time for blue detuning, the trapped state leads a single sub-recoil peak, and for red detuning, it leads a single sub-recoil dip. W present a semiclassical description of VSCPT in a magnetic field. In this description, two terms are added to the Hamiltonian simultaneously, that is the kinetic energy term and Zeeman shift term. With the kinetic energy term, the dependence of the dark state on laser parameters can be understood, and with the Zeeman term, VSCPT phenomena can be controlled by the applied magnetic field. We present an experiment on the He* J = 1 --> 1 transition driven by σ+ - σ- counter-propagating fields in a magnetic field parallel to the k-vector of the lasers, which produces a standard A system. We first apply a magnetic field parallel to the k-vector of laser beams, and observe the change of VSCPT vs the magnetic field. Then we study VSCPT behaviour in zero magnetic field for different detuning, intensity and interaction time. The configuration is then changed to a σ+ standing wave in a magnetic field perpendicular to the k-vector of the laser beams. For the J = 1 --> 0 transition, besides the dark state similar to 1 --> 1 transition, there is a leak from J = 0, mJ = 0 of the excited state. (Abstract shortened by UMI.)

  12. Optimizing hierarchical equations of motion for quantum dissipation and quantifying quantum bath effects on quantum transfer mechanisms.

    PubMed

    Ding, Jin-Jin; Xu, Rui-Xue; Yan, YiJing

    2012-06-14

    We present an optimized hierarchical equations of motion theory for quantum dissipation in multiple Brownian oscillators bath environment, followed by a mechanistic study on a model donor-bridge-acceptor system. We show that the optimal hierarchy construction, via the memory-frequency decomposition for any specified Brownian oscillators bath, is generally achievable through a universal pre-screening search. The algorithm goes by identifying the candidates for the best be just some selected Padé spectrum decomposition based schemes, together with a priori accuracy control criterions on the sole approximation, the white-noise residue ansatz, involved in the hierarchical construction. Beside the universal screening search, we also analytically identify the best for the case of Drude dissipation and that for the Brownian oscillators environment without strongly underdamped bath vibrations. For the mechanistic study, we quantify the quantum nature of bath influence and further address the issue of localization versus delocalization. Proposed are a reduced system entropy measure and a state-resolved constructive versus destructive interference measure. Their performances on quantifying the correlated system-environment coherence are exemplified in conjunction with the optimized hierarchical equations of motion evaluation of the model system dynamics, at some representing bath parameters and temperatures. Analysis also reveals the localization to delocalization transition as temperature decreases. PMID:22713032

  13. Optimizing hierarchical equations of motion for quantum dissipation and quantifying quantum bath effects on quantum transfer mechanisms

    NASA Astrophysics Data System (ADS)

    Ding, Jin-Jin; Xu, Rui-Xue; Yan, YiJing

    2012-06-01

    We present an optimized hierarchical equations of motion theory for quantum dissipation in multiple Brownian oscillators bath environment, followed by a mechanistic study on a model donor-bridge-acceptor system. We show that the optimal hierarchy construction, via the memory-frequency decomposition for any specified Brownian oscillators bath, is generally achievable through a universal pre-screening search. The algorithm goes by identifying the candidates for the best be just some selected Padé spectrum decomposition based schemes, together with a priori accuracy control criterions on the sole approximation, the white-noise residue ansatz, involved in the hierarchical construction. Beside the universal screening search, we also analytically identify the best for the case of Drude dissipation and that for the Brownian oscillators environment without strongly underdamped bath vibrations. For the mechanistic study, we quantify the quantum nature of bath influence and further address the issue of localization versus delocalization. Proposed are a reduced system entropy measure and a state-resolved constructive versus destructive interference measure. Their performances on quantifying the correlated system-environment coherence are exemplified in conjunction with the optimized hierarchical equations of motion evaluation of the model system dynamics, at some representing bath parameters and temperatures. Analysis also reveals the localization to delocalization transition as temperature decreases.

  14. A path integral approach to fractional quantum Hall effect

    SciTech Connect

    Kvale, M.N.

    1989-01-01

    In this paper the author reformulates and further develops the cooperative-ring-exchange (CRE) theory of the fractional quantum Hall effect. Initially, a classical two-dimensional electron gas is considered and a guiding-center approximation is made for strong magnetic fields. The resulting Lagrangian is quantized via path integration and the integral is evaluated using the semiclassical approximation. By considering the CRE processes and a time discretization procedure, the 2DEG is mapped to two different lattice models that bracket the behavior of the system. Analysis of the behavior of the system shows an underlying modular symmetry and allows one to made some new experimental predictions. By interpreting the CRE processes as a loop-space formulation of a lattice gauge field theory, a Landau-Ginzburg action is derived that contains most of the important physics associated with the FQHE and chose ground state can be identified with the Laughlin wave function. Finally, the Laughlin wave function is derived directly from the partition function in the FQHE regime.

  15. Quantum tunneling observed without its characteristic large kinetic isotope effects

    PubMed Central

    Hama, Tetsuya; Ueta, Hirokazu; Kouchi, Akira; Watanabe, Naoki

    2015-01-01

    Classical transition-state theory is fundamental to describing chemical kinetics; however, quantum tunneling is also important in explaining the unexpectedly large reaction efficiencies observed in many chemical systems. Tunneling is often indicated by anomalously large kinetic isotope effects (KIEs), because a particle’s ability to tunnel decreases significantly with its increasing mass. Here we experimentally demonstrate that cold hydrogen (H) and deuterium (D) atoms can add to solid benzene by tunneling; however, the observed H/D KIE was very small (1–1.5) despite the large intrinsic H/D KIE of tunneling (≳100). This strong reduction is due to the chemical kinetics being controlled not by tunneling but by the surface diffusion of the H/D atoms, a process not greatly affected by the isotope type. Because tunneling need not be accompanied by a large KIE in surface and interfacial chemical systems, it might be overlooked in other systems such as aerosols or enzymes. Our results suggest that surface tunneling reactions on interstellar dust may contribute to the deuteration of interstellar aromatic and aliphatic hydrocarbons, which could represent a major source of the deuterium enrichment observed in carbonaceous meteorites and interplanetary dust particles. These findings could improve our understanding of interstellar physicochemical processes, including those during the formation of the solar system. PMID:26034285

  16. Optical waveguide arrays: quantum effects and PT symmetry breaking

    NASA Astrophysics Data System (ADS)

    Joglekar, Yogesh N.; Thompson, Clinton; Scott, Derek D.; Vemuri, Gautam

    2013-09-01

    Over the last two decades, advances in fabrication have led to significant progress in creating patterned heterostructures that support either carriers, such as electrons or holes, with specific band structure or electromagnetic waves with a given mode structure and dispersion. In this article, we review the properties of light in coupled optical waveguides that support specific energy spectra, with or without the effects of disorder, that are well-described by a Hermitian tight-binding model. We show that with a judicious choice of the initial wave packet, this system displays the characteristics of a quantum particle, including transverse photonic transport and localization, and that of a classical particle. We extend the analysis to non-Hermitian, parity and time-reversal () symmetric Hamiltonians which physically represent waveguide arrays with spatially separated, balanced absorption or amplification. We show that coupled waveguides are an ideal candidate to simulate -symmetric Hamiltonians and the transition from a purely real energy spectrum to a spectrum with complex conjugate eigenvalues that occurs in them.

  17. Quantum Hall effect and the topological number in graphene

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yasumasa; Kohmoto, Mahito

    2006-10-01

    Recently, an unusual integer quantum Hall effect was observed in graphene in which the Hall conductivity is quantized as σxy=(±2,±6,±10,…)×e2/h , where e is the electron charge and h is the Planck constant. To explain this we consider the energy structure as a function of magnetic field (the Hofstadter butterfly diagram) on the honeycomb lattice and the Streda formula for Hall conductivity. The quantized Hall conductivities are identified as the topological TKNN integers [D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982); M. Kohmoto, Ann. Phys. (N.Y.) 160, 343 (1985)]. They are odd integers ±1,±3,±5,…×2 (spin degrees of freedom) when a uniform magnetic field is as high as 30T for example. The gaps corresponding to even integers, ±2,±4,±6,… are too small to be observed, but when the system is anisotropic, which is described by the generalized honeycomb lattice, and/or in an extremely strong magnetic field, quantization in even integers takes place as well. We also compare the results with those for the square lattice in an extremely strong magnetic field.

  18. Tunable many-body effects in triple quantum dots

    NASA Astrophysics Data System (ADS)

    Kim, Jihan; Melnikov, Dmitriy V.; Leburton, Jean-Pierre

    2009-07-01

    Exchange energies and charge densities for a few electrons in electrically tunable triangular and collinear triple quantum dot (TQD) systems are investigated by using the variational Monte Carlo method in the presence of magnetic fields. For N=2 electrons we observe a discontinuity in the J derivative with detuning voltage (dJ/dVT) in triangular triple QDs at B=0T as crossing of the eigenenergy levels leads to abrupt spatial symmetry change in the singlet and the triplet densities (density rotation) and relocalization. For B≠0T , the angular momentum provided to the electrons quenches this effect. The density rotation is absent in the collinear TQD for all magnetic fields as the lowest excited state remains the px state and as such, no change in symmetry is possible. By varying the triangular TQD configuration, we show the discontinuity in dJ/dVT persists for the top angle comprised between ˜20° and ˜70° . For three electrons in the symmetric triangular TQD, the monotonicity of the quadruplet-doublet energy difference from B=0 to 4 T remains intact for decoupled QDs but not for coupled QDs. Finally, addition energy for the triangular TQD system is computed for up to N=3 electrons.

  19. Effects of quantum coherence and interference in atoms near nanoparticles

    NASA Astrophysics Data System (ADS)

    Dhayal, Suman; Rostovtsev, Yuri V.

    2016-04-01

    Optical properties of ensembles of realistic quantum emitters coupled to plasmonic systems are studied by using adequate models that can take into account full atomic geometry. In particular, the coherent effects such as forming "dark states," optical pumping, coherent Raman scattering, and the stimulated Raman adiabatic passage (STIRAP) are revisited in the presence of metallic nanoparticles. It is shown that the dark states are still formed but they have more complicated structure, and the optical pumping and the STIRAP cannot be employed in the vicinity of plasmonic nanostructures. Also, there is a huge difference in the behavior of the local atomic polarization and the atomic polarization averaged over an ensemble of atoms homogeneously spread near nanoparticles. The average polarization is strictly related to the polarization induced by the external field, while the local polarization can be very different from the one induced by the external field. This is important for the excitation of single molecules, e.g., different components of scattering from single molecules can be used for their efficient detection.

  20. Theory of integer quantum Hall effect in insulating bilayer graphene

    NASA Astrophysics Data System (ADS)

    Roy, Bitan

    2014-05-01

    A variational ground state for insulating bilayer graphene (BLG), subject to quantizing magnetic fields, is proposed. Due to the Zeeman coupling, the layer antiferromagnet (LAF) order parameter in fully gapped BLG gets projected onto the spin easy plane, and simultaneously a ferromagnet order, which can further be enhanced by exchange interaction, develops in the direction of the magnetic field. The activation gap for the ν =0 Hall state then displays a crossover from quadratic to linear scaling with the magnetic field, as it gets stronger, and I obtain excellent agreement with a number of recent experiments with realistic strengths for the ferromagnetic interaction. A component of the LAF order, parallel to the external magnetic field, gives birth to additional incompressible Hall states at filling ν =±2, whereas the remote hopping in BLG yields ν =±1 Hall states. Evolution of the LAF order in tilted magnetic fields, scaling of the gap at ν =2, the effect of external electric fields on various Hall plateaus, and different possible hierarchies of fractional quantum Hall states are highlighted.

  1. Level statistics and phase diagram for the Quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Zharekeshev, Isa

    2004-03-01

    We report results of numerical studies of the integer quantum Hall effect (IQHE) on a two-dimensional square lattice with non-interacting electrons in the presence of disordered potential and a uniform magnetic field applied perpendicular to the lattice of size upto 4000 x 4000 sites. It is shown that short-range spectral fluctuations exhibit critical behavior, giving the correlation length exponent ν≈ 2.36 and the irrelevant exponent y≈ -0.8. The latter is extracted by taking corrections to the scaling into account. The long-range fluctuations are described by the critical spectral compressibility i≈ 0.135, consistent with the multifractal dimension D2 found numerically from the distributions of momenta of the participation ratio P(I_p) at the transition between the Hall plateaus. We show that in the quasi-1D geometry the localization length oscillates in the quantized limit, when the Hall conductance undergoes a crossover from Shubnikov-DeHaas regime to the IQHE. It `doubles' at the GOE-GUE crossover (at weak magnetic fields ωτ≪ 1). Comparison between the IQHE and the 3D Anderson transition confirms similarity for the parametric spectral statistics and the distributions of wavefunctions amplitudes. Both are used to precisely track the floating-up of currect-carring states and to compute the global phase diagram.

  2. Effect of laser polarization on quantum electrodynamical cascading

    SciTech Connect

    Bashmakov, V. F.; Nerush, E. N.; Kostyukov, I. Yu.; Fedotov, A. M.; Narozhny, N. B.

    2014-01-15

    Development of quantum electrodynamical (QED) cascades in a standing electromagnetic wave for circular and linear polarizations is simulated numerically with a 3D PIC-MC code. It is demonstrated that for the same laser energy the number of particles produced in a circularly polarized field is greater than in a linearly polarized field, though the acquiring mean energy per particle is larger in the latter case. The qualitative model of laser-assisted QED cascades is extended by including the effect of polarization of the field. It turns out that cascade dynamics is notably more complicated in the case of linearly polarized field, where separation into the qualitatively different “electric” and “magnetic” regions (where the electric field is stronger than the magnetic field and vice versa) becomes essential. In the “magnetic” regions, acceleration is suppressed, and moreover the high-energy electrons are even getting cooled by photon emission. The volumes of the “electric” and “magnetic” regions evolve periodically in time and so does the cascade growth rate. In contrast to the linear polarization, the charged particles can be accelerated by circularly polarized wave even in “magnetic region.” The “electric” and “magnetic” regions do not evolve in time, and cascade growth rate almost does not depend on time for circular polarization.

  3. Quantum tunneling observed without its characteristic large kinetic isotope effects.

    PubMed

    Hama, Tetsuya; Ueta, Hirokazu; Kouchi, Akira; Watanabe, Naoki

    2015-06-16

    Classical transition-state theory is fundamental to describing chemical kinetics; however, quantum tunneling is also important in explaining the unexpectedly large reaction efficiencies observed in many chemical systems. Tunneling is often indicated by anomalously large kinetic isotope effects (KIEs), because a particle's ability to tunnel decreases significantly with its increasing mass. Here we experimentally demonstrate that cold hydrogen (H) and deuterium (D) atoms can add to solid benzene by tunneling; however, the observed H/D KIE was very small (1-1.5) despite the large intrinsic H/D KIE of tunneling (≳ 100). This strong reduction is due to the chemical kinetics being controlled not by tunneling but by the surface diffusion of the H/D atoms, a process not greatly affected by the isotope type. Because tunneling need not be accompanied by a large KIE in surface and interfacial chemical systems, it might be overlooked in other systems such as aerosols or enzymes. Our results suggest that surface tunneling reactions on interstellar dust may contribute to the deuteration of interstellar aromatic and aliphatic hydrocarbons, which could represent a major source of the deuterium enrichment observed in carbonaceous meteorites and interplanetary dust particles. These findings could improve our understanding of interstellar physicochemical processes, including those during the formation of the solar system. PMID:26034285

  4. Photooxidation and quantum confinement effects in exfoliated black phosphorus

    NASA Astrophysics Data System (ADS)

    Favron, Alexandre; Gaufrès, Etienne; Fossard, Frédéric; Phaneuf-L'Heureux, Anne-Laurence; Tang, Nathalie Y.-W.; Lévesque, Pierre L.; Loiseau, Annick; Leonelli, Richard; Francoeur, Sébastien; Martel, Richard

    2015-08-01

    Thin layers of black phosphorus have recently raised interest owing to their two-dimensional (2D) semiconducting properties, such as tunable direct bandgap and high carrier mobilities. This lamellar crystal of phosphorus atoms can be exfoliated down to monolayer 2D-phosphane (also called phosphorene) using procedures similar to those used for graphene. Probing the properties has, however, been challenged by a fast degradation of the thinnest layers on exposure to ambient conditions. Herein, we investigate this chemistry using in situ Raman and transmission electron spectroscopies. The results highlight a thickness-dependent photoassisted oxidation reaction with oxygen dissolved in adsorbed water. The oxidation kinetics is consistent with a phenomenological model involving electron transfer and quantum confinement as key parameters. A procedure carried out in a glove box is used to prepare mono-, bi- and multilayer 2D-phosphane in their pristine states for further studies on the effect of layer thickness on the Raman modes. Controlled experiments in ambient conditions are shown to lower the Ag1/Ag2 intensity ratio for ultrathin layers, a signature of oxidation.

  5. Undoing the effect of loss on quantum entanglement

    NASA Astrophysics Data System (ADS)

    Ulanov, Alexander E.; Fedorov, Ilya A.; Pushkina, Anastasia A.; Kurochkin, Yury V.; Ralph, Timothy C.; Lvovsky, A. I.

    2015-11-01

    Entanglement distillation, the purpose of which is to probabilistically increase the strength and purity of quantum entanglement, is a primary element of many quantum communication and computation protocols. It is particularly necessary in quantum repeaters in order to counter the degradation of entanglement that inevitably occurs due to losses in communication lines. Here, we distil the Einstein–Podolsky–Rosen state of light, the workhorse of continuous-variable entanglement, using noiseless amplification. The advantage of our technique is that it permits recovering a macroscopic level of entanglement, however low the initial entanglement or however high the loss may be. Experimentally, we recover the original entanglement level after one of the Einstein–Podolsky–Rosen modes has experienced a loss factor of 20. The level of entanglement in our distilled state is higher than that achievable by direct transmission of any state through a similar loss channel. This is a key step towards realizing practical continuous-variable quantum communication protocols.

  6. Magnetoconductance of a hybrid quantum ring: Effects of antidot potentials

    NASA Astrophysics Data System (ADS)

    Kim, Nammee; Park, Dae-Han; Kim, Heesang

    2016-05-01

    The electronic structures and two-terminal magnetoconductance of a hybrid quantum ring are studied. The backscattering due to energy-resonance is considered in the conductance calculation. The hybrid magnetic-electric quantum ring is fabricated by applying an antidot electrostatic potential in the middle of a magnetic quantum dot. Electrons are both magnetically and electrically confined in the plane. The antidot potential repelling electrons from the center of the dot plays a critical role in the energy spectra and magnetoconductance. The angular momentum transition in the energy dispersion and the magnetoconductance behavior are investigated in consideration of the antidot potential variation. Results are shown using a comparison of the results of the conventional magnetic quantum dot.

  7. Environmental Effects on Quantum Reversal of Mesoscopic Spins

    NASA Astrophysics Data System (ADS)

    Giraud, R.; Chiorescu, I.; Wernsdorfer, W.; Barbara, B.; Jansen, A. G. M.; Caneschi, A.; Mueller, A.; Tkachuk, A. M.

    2002-10-01

    We describe what we learnt these last years on quantum reversal of large magnetic moments, using mainly conventional SQUID or micro-SQUID magnetometry. Beside the case of ferromagnetic nanoparticles with 103 - 105 atoms (e.g. Co, Ni, Fe, Ferrites), most fruitful systems appeared to be ensembles of magnetic molecules. These molecules, generally arranged in single crystals, carry relatively small magnetic moments (S = 10 in Mn12-ac and Fe8). They are sufficiently apart from each other not to be coupled by exchange interactions. The ground multiplet is split over an energy barrier of tens of kelvin (≈ 67 K for Mn12) by a strong local crystal field, leading to an Ising-type ground-state. Only weak inter-molecular dipolar interactions are present, as well as intra-molecular interactions, such as hyperfine interactions. Quantum properties of molecule spins are crucially dependent on their magnetic environment of electronic and nuclear spins (the spin bath). Energy fluctuations of the spin bath of about 0.1 K are important, especially at very low temperatures. In particular, they are much larger than the ground-state tunnel splitting of large-spin molecules in low applied fields, of about 10-8 K or even less (such a low value is due to the presence of large energy barriers). Theoretical predictions are experimentally checked for tunneling effects in the presence of non-equilibrated or equilibrated spin-energy distribution. It is also shown that the phonon-bath plays no role in low field, except when the temperature approaches the cross-over temperature to the thermal activation regime. In fact, spin-phonon transitions can play a role only if the tunnel splitting is not too small in comparison with kBT. This is the case both for large-spin molecules in a large magnetic field (e.g. Mn12-ac in a few tesla) and for low-spin molecules, as shown with the study of the molecule V15 (Hilbert space dimension as large as 215 and spin 1/2). We also give our latest results on the extension of these studies beyond molecular magnetism. Single-ion slow quantum relaxation is observed in rare-earth Ho3+ ions highly diluted in an insulating matrix LiYF4. This relaxation is due to the coherent tunneling of individual Ho3+ spins strongly coupled to their nuclear spins, leading to electro-nuclear entangled states at avoided level crossings. In fact tunneling of the spin system is induced by the hyperfine coupling. Together with the important role of the "spin bath", the roles of cross-spin and spin-phonon relaxations are also considered. All these results confirm the emergence of a new field of research: "mesoscopic magnetism".

  8. Asymptotic limits of Navier-Stokes equations with quantum effects

    NASA Astrophysics Data System (ADS)

    Yang, Jianwei; Ju, Qiangchang; Yang, Yong-Fu

    2015-10-01

    This paper is concerned with the combined incompressible limit and semiclassical limit of the weak solutions to the barotropic quantum Navier-Stokes equations of compressible flows. By using the relative entropy method, we show that for well-prepared initial data, the weak solutions of the compressible quantum Navier-Stokes model converge to the strong solution of the incompressible Navier-Stokes equations as long as the latter exists. Furthermore, the convergence rates are also obtained.

  9. Kondo effect in asymmetric Josephson couplings through a quantum dot

    NASA Astrophysics Data System (ADS)

    Tanaka, Yoshihide; Oguri, Akira; Hewson, A. C.

    2007-05-01

    Asymmetry in the Josephson couplings between two superconductors through a quantum dot is studied based on a single impurity Anderson model using the numerical renormalization group (NRG). Specifically, we examine how the difference between the couplings ΓL and ΓR affects the ground state, which is known to show a quantum phase transition between a nonmagnetic singlet and a magnetic doublet depending on the various parameters; the Coulomb interaction U, onsite potential \\epsilon_d, level width \\Gamma_{\

  10. Supersymmetric Quantum-Hall Effect on a Fuzzy Supersphere

    SciTech Connect

    Hasebe, Kazuki

    2005-05-27

    Supersymmetric quantum-Hall liquids are constructed on a supersphere in a supermonopole background. We derive a supersymmetric generalization of the Laughlin wave function, which is a ground state of a hard-core OSp(1 vertical bar 2) invariant Hamiltonian. We also present excited topological objects, which are fractionally charged deficits made by super Hall currents. Several relations between quantum-Hall systems and their supersymmetric extensions are discussed.

  11. Switching-on quantum size effects in silicon nanocrystals.

    PubMed

    Sun, Wei; Qian, Chenxi; Wang, Liwei; Wei, Muan; Mastronardi, Melanie L; Casillas, Gilberto; Breu, Josef; Ozin, Geoffrey A

    2015-01-27

    The size-dependence of the absolute luminescence quantum yield of size-separated silicon nanocrystals reveals a "volcano" behavior, which switches on around 5 nm, peaks at near 3.7-3.9 nm, and decreases thereafter. These three regions respectively define: i) the transition from bulk to strongly quantum confined emissive silicon, ii) increasing confinement enhancing radiative recombination, and iii) increasing contributions favoring non-radiative recombination. PMID:25472530

  12. Direct detection of classically undetectable dark matter through quantum decoherence

    NASA Astrophysics Data System (ADS)

    Riedel, C. Jess

    2013-12-01

    Although various pieces of indirect evidence about the nature of dark matter have been collected, its direct detection has eluded experimental searches despite extensive effort. If the mass of dark matter is below 1 MeV, it is essentially imperceptible to conventional detection methods because negligible energy is transferred to nuclei during collisions. Here I propose directly detecting dark matter through the quantum decoherence it causes rather than its classical effects, such as recoil or ionization. I show that quantum spatial superpositions are sensitive to low-mass dark matter that is inaccessible to classical techniques. This provides new independent motivation for matter interferometry with large masses, especially on spaceborne platforms. The apparent dark matter wind we experience as the Sun travels through the Milky Way ensures interferometers and related devices are directional detectors, and so are able to provide unmistakable evidence that decoherence has Galactic origins.

  13. Effective-field-theory model for the fractional quantum Hall effect

    NASA Technical Reports Server (NTRS)

    Zhang, S. C.; Hansson, T. H.; Kivelson, S.

    1989-01-01

    Starting directly from the microscopic Hamiltonian, a field-theory model is derived for the fractional quantum Hall effect. By considering an approximate coarse-grained version of the same model, a Landau-Ginzburg theory similar to that of Girvin (1986) is constructed. The partition function of the model exhibits cusps as a function of density. It is shown that the collective density fluctuations are massive.

  14. Effect of source tampering in the security of quantum cryptography

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Hai; Xu, Feihu; Jiang, Mu-Sheng; Ma, Xiang-Chun; Lo, Hoi-Kwong; Liang, Lin-Mei

    2015-08-01

    The security of source has become an increasingly important issue in quantum cryptography. Based on the framework of measurement-device-independent quantum key distribution (MDI-QKD), the source becomes the only region exploitable by a potential eavesdropper (Eve). Phase randomization is a cornerstone assumption in most discrete-variable (DV) quantum communication protocols (e.g., QKD, quantum coin tossing, weak-coherent-state blind quantum computing, and so on), and the violation of such an assumption is thus fatal to the security of those protocols. In this paper, we show a simple quantum hacking strategy, with commercial and homemade pulsed lasers, by Eve that allows her to actively tamper with the source and violate such an assumption, without leaving a trace afterwards. Furthermore, our attack may also be valid for continuous-variable (CV) QKD, which is another main class of QKD protocol, since, excepting the phase random assumption, other parameters (e.g., intensity) could also be changed, which directly determine the security of CV-QKD.

  15. Phase and structural transformations in metallic iron under the action of heavy ions and recoil nuclei.

    PubMed

    Alekseev, I; Novikov, D

    2014-02-01

    By the use of various modes of Mössbauer spectroscopy after effects of irradiation of metal iron with (12)C(4+) and (14)N(5+) ions of medium energies, and alpha-particles and the (208)Tl, (208,212)Pb, and (216)Po recoil from a (228)Th-source have been studied. The experimental data obtained in the study enabled various types of external and internal radiation to be compared in regard to the damage they cause, as well as to their effect on the structure-, phase composition- and corrosion resistance properties of metallic iron. Irradiation with (12)C(4+) and (14)N(5+) ions is accompanied by both structural disordering of the α-Fe lattice, and the appearance of γ-phase in the bulk metal. This is indicated by a single line which is 2 to 3-fold broadened (as compared to the lines of the magnetic sextet). This is a result of a strong local heating of the lattice in the thermal spike area with a subsequent instant cooling-down and recrystallization of this "molted" area. Irradiation of iron foils with (12)C(4+)- and (14)N(5+) ions and with recoil nuclei does provoke corrosion processes (the formation of γ-FeOOH) and is accompanied by an intensive oxidation of the metal. PMID:24378918

  16. Exploring Nuclear Effects in the Dynamics of Nanomaterials with a Quantum Trajectory-Electronic Structure Approach

    NASA Astrophysics Data System (ADS)

    Garashchuk, Sophya

    2014-03-01

    A massively parallel, direct quantum molecular dynamics method is described. The method combines a quantum trajectory (QT) representation of the nuclear wavefunction discretized into an ensemble of trajectories with an electronic structure (ES) description of electrons, namely using the Density Functional Tight Binding (DFTB) theory. Quantum nuclear effects are included into the dynamics of the nuclei via quantum corrections to the classical forces. To reduce computational cost and increase numerical accuracy, the quantum corrections to dynamics resulting from localization of the nuclear wavefunction are computed approximately and included into selected degrees of freedom representing light particles where the quantum effects are expected to be the most pronounced. A massively parallel implementation, based on the Message Passing Interface allows for efficient simulations of ensembles of thousands of trajectories at once. The QTES-DFTB dynamics approach is employed to study the role of quantum nuclear effects on the interaction of hydrogen with a model graphene sheet, revealing that neglect of nuclear effects can lead to an overestimation of adsorption. Supported by the National Science Foundation and the Petroleum Research Fund of the American Chemical Society.

  17. Rapid passage effects in nitrous oxide induced by a chirped external cavity quantum cascade laser

    NASA Astrophysics Data System (ADS)

    van Helden, J. H.; Peverall, R.; Ritchie, G. A. D.; Walker, R. J.

    2009-02-01

    A widely tunable pulsed external cavity quantum cascade laser operating around 8 μm has been used to make rotationally resolved measurements of rapid passage effects in the absorption spectrum of N2O. Rapid passage signals as a function of laser power and N2O pressure are presented. Comparisons are drawn with measurements performed on the same transition with a standard distributed feedback quantum cascade laser. The initial observations on rapid passage effects induced with an external cavity quantum cascade laser show that such high power, widely tunable radiation sources may find applications in both nonlinear optics and optical sensing experiments.

  18. Wake potential with exchange-correlation effects in semiconductor quantum plasmas

    NASA Astrophysics Data System (ADS)

    Khan, Arroj A.; Jamil, M.; Hussain, A.

    2015-09-01

    Using the non-relativistic quantum hydrodynamic model, wake potential has been studied in a magnetized semiconductor quantum plasma in the presence of upper hybrid wave which is excited via externally injected electron beam. The quantum effect contains electron exchange and correlation potential, Fermi degenerate pressure, and Bohm potential. It is found that the contribution of quantum mechanical electron exchange and correlation potential significantly modifies the amplitude and the effective length of the oscillatory wake potential. In the electron-hole plasma systems, electron exchange-correlation effects tend to increase the magnitude of the wake potential and are much effective at the distances of the order of Debye-length. The application of the work in context of the semiconductor plasmas have also been analyzed graphically.

  19. Wake potential with exchange-correlation effects in semiconductor quantum plasmas

    SciTech Connect

    Khan, Arroj A.; Jamil, M.; Hussain, A.

    2015-09-15

    Using the non-relativistic quantum hydrodynamic model, wake potential has been studied in a magnetized semiconductor quantum plasma in the presence of upper hybrid wave which is excited via externally injected electron beam. The quantum effect contains electron exchange and correlation potential, Fermi degenerate pressure, and Bohm potential. It is found that the contribution of quantum mechanical electron exchange and correlation potential significantly modifies the amplitude and the effective length of the oscillatory wake potential. In the electron-hole plasma systems, electron exchange-correlation effects tend to increase the magnitude of the wake potential and are much effective at the distances of the order of Debye-length. The application of the work in context of the semiconductor plasmas have also been analyzed graphically.

  20. Understanding the physics of a possible non-Abelian fractional quantum hall effect state.

    SciTech Connect

    Pan, Wei; Crawford, Matthew; Tallakulam, Madhu; Ross, Anthony Joseph, III

    2010-10-01

    We wish to present in this report experimental results from a one-year Senior Council Tier-1 LDRD project that focused on understanding the physics of a possible non-Abelian fractional quantum Hall effect state. We first give a general introduction to the quantum Hall effect, and then present the experimental results on the edge-state transport in a special fractional quantum Hall effect state at Landau level filling {nu} = 5/2 - a possible non-Abelian quantum Hall state. This state has been at the center of current basic research due to its potential applications in fault-resistant topological quantum computation. We will also describe the semiconductor 'Hall-bar' devices we used in this project. Electron physics in low dimensional systems has been one of the most exciting fields in condensed matter physics for many years. This is especially true of quantum Hall effect (QHE) physics, which has seen its intellectual wealth applied in and has influenced many seemingly unrelated fields, such as the black hole physics, where a fractional QHE-like phase has been identified. Two Nobel prizes have been awarded for discoveries of quantum Hall effects: in 1985 to von Klitzing for the discovery of integer QHE, and in 1998 to Tsui, Stormer, and Laughlin for the discovery of fractional QHE. Today, QH physics remains one of the most vibrant research fields, and many unexpected novel quantum states continue to be discovered and to surprise us, such as utilizing an exotic, non-Abelian FQHE state at {nu} = 5/2 for fault resistant topological computation. Below we give a briefly introduction of the quantum Hall physics.

  1. Shot noise in quantum dots in presence of Fano and Dicke effects in Kondo regime

    NASA Astrophysics Data System (ADS)

    Orellana, Pedro; Cortes, Natalia; Apel, Victor

    The quantum dots allow studying systematically quantum-interference effects as Fano and Dicke effects due to the possibility of continuous tuning the relevant parameters governing the properties of these resonances, in equilibrium and nonequilibrium regimes. The condition for the Fano resonance is the existence of two scattering channels: a discrete level and a broad continuum band. On the other hand, the electronic version of the Dicke effect is analogous to the Dicke effect in optics, which takes place in the spontaneous emission of two closely-lying atoms radiating a photon into the same environment. In quantum dots this effect is due to quantum interference in the passage of an electron through two closely lying resonant states of the quantum dots coupled to common leads. In this work, we present a systematic investigation of the influence of the Dicke effect on shot-noise and Fano factor in a cross-shaped quantum dot array. The relevant quantities are obtained by the non-equilibrium Green's function technique. Our results show that at zero temperature, the electrical current, shot-noise and Fano factor exhibit characteristics of the Dicke effect. This work was partially supported by FONDECYT under Grant 140571.

  2. One-dimensional carrier localization and effective quantum wire behavior in two-dimensional quantum wedges

    NASA Astrophysics Data System (ADS)

    Riyopoulos, S.; Moustakas, T. D.

    2009-08-01

    It is shown that quantum wedges (QWGs), i.e., ridges formed between intersecting plane quantum wells (QWs), cause carrier wave function localization in one dimension. In the absence of polarization fields only the fundamental mode is localized. When the inherent in GaN polarization is included many lower modes become confined. In QWGs, additional confinement of the wave function from the polarization field component along the QW causes blueshifting of the confined mode energy, as opposed to the redshifting induced by the transverse field component in straight QWs. The emission localization and blueshift agrees with experimental photoluminescence observations in QWs deposited on textured GaN. Electrostatic shielding of the parallel polar potential by free carriers leads to localized band bending at the wedges, instead of uniform band tilting, inducing tighter lateral carrier confinement. Thus the ridges formed by intersecting QWs behave as a network of quantum wires. Since electrons and holes are confined in opposite polarity wedges, separated by a QW length, direct recombination between QWG-trapped electrons and holes is unlikely; instead radiative emission at the wedges involves recombination between trapped electrons—"passing" holes and vice versa. A simplified analytical theory is introduced to obtain the energy levels and the transition probabilities via overlap integrals. The passing-trapped emission rates are comparable to those for emission in flat QWs, and the blueshift in wavelength is in good agreement with the observed values.

  3. Ramsauer effect in a one-dimensional quantum walk with multiple defects

    NASA Astrophysics Data System (ADS)

    Lam, Ho Tat; Szeto, Kwok Yip

    2015-07-01

    Experimental observations of quantum walks in one dimension have provided many exciting applications in quantum computing, while recent theoretical investigation of single-phase defect in these system points towards interesting phenomena associated with bound states. Here we obtain analytical solutions of a quantum walk with a general quantum coin in one dimension with multiple defects, with predictions on the condition for zero reflectance for scattering state and the existence of an analogy to the Ramsauer effect for multiple defects. We also show the transition from the zero-reflectance state to the bound state can provide a method for preparing the quantum walk in a bound state. Applications to systems similar to thin film optics are suggested.

  4. Zeeman effect of the topological surface states revealed by quantum oscillations up to 91 Tesla

    NASA Astrophysics Data System (ADS)

    Zhang, Zuocheng; Wei, Wei; Yang, Fangyuan; Zhu, Zengwei; Guo, Minghua; Feng, Yang; Yu, Dejing; Yao, Mengyu; Harrison, Neil; McDonald, Ross; Zhang, Yuanbo; Guan, Dandan; Qian, Dong; Jia, Jinfeng; Wang, Yayu

    2015-12-01

    We report quantum oscillation studies on the B i2T e3 -xSx topological insulator single crystals in pulsed magnetic fields up to 91 T. For the x =0.4 sample with the lowest bulk carrier density, the surface and bulk quantum oscillations can be disentangled by combined Shubnikov-de Haas and de Hass-van Alphen oscillations, as well as quantum oscillations in nanometer-thick peeled crystals. At high magnetic fields beyond the bulk quantum limit, our results suggest that the zeroth Landau level of topological surface states is shifted due to the Zeeman effect. The g factor of the topological surface states is estimated to be between 1.8 and 4.5. These observations shed new light on the quantum transport phenomena of topological insulators in ultrahigh magnetic fields.

  5. Strain-induced effects on optical properties of magnetized Stranski Krastanov quantum dots

    NASA Astrophysics Data System (ADS)

    Gupta, S. K.; Kapoor, S.; Kumar, J.; Sen, P. K.

    2007-08-01

    The optical properties of semiconductor quantum dots are strongly affected by the strain arising due to lattice mismatch of the substrate and deposited material. Hole energy eigenvalues of a strained quantum dot have been calculated and included subsequently in the analytical study of the optical properties of the system in the presence of a moderately strong magnetic field. The anisotropic quantum dot is modelled by assuming a parabolic confinement potential. The analyses are based on a 4\\times 4~\\mathbf {k}\\bdot \\mathbf {p} Hamiltonian model that includes the strain-induced effects. The wavefunctions obtained by solving the eigenvalue equations are used to calculate the dipole matrix elements of the transition between valence band and conduction band. It is observed that, in the presence of strain, the optical properties of the quantum dot are altered significantly since the strain field changes the electronic structure of the quantum dot.

  6. Measurement of Recoil Losses and Ranges for Spallation Products Produced in Proton Interactions with Al, Si, Mg at 200 and 500 MeV

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.

    2005-01-01

    Cosmic rays interact with extraterrestrial materials to produce a variety of spallation products. If these cosmogenic nuclides are produced within an inclusion in such material, then an important consideration is the loss of the product nuclei, which recoil out of the inclusion. Of course, at the same time, some atoms of the product nuclei under study may be knocked into the inclusion from the surrounding material, which is likely to have a different composition to that of the inclusion [1]. For example, Ne-21 would be produced in presolar grains, such as SiC, when irradiated in interstellar space. However, to calculate a presolar age, one needs to know how much 21Ne is retained in the grain. For small grains, the recoil losses might be large [2, 3] To study this effect under laboratory conditions, recoil measurements were made using protons with energies from 66 - 1600 MeV on Si, Al and Ba targets [3, 4, 5].

  7. Possible observation of the quantum Zeno effect by means of neutron spin-flipping

    NASA Astrophysics Data System (ADS)

    Inagaki, Seizo; Namiki, Mikio; Tajiri, Tomohiro

    1992-06-01

    For the purpose of clarifying the meaning of a recent experiment on atomic transitions performed by Itano, Heinzen, Bollinger and Wineland from a measurement-theoretical point of view, that is, the fact that their experiment does not display the quantum Zeno effect, we propose a neutron experiment which reproduces essentially the same results. We also discuss a possibility of observing the quantum Zeno effect in an alternative experiment with neutron spin-flipping.

  8. Linear and nonlinear quantum Zeno and anti-Zeno effects in a nonlinear optical coupler

    NASA Astrophysics Data System (ADS)

    Thapliyal, Kishore; Pathak, Anirban; Peřina, Jan

    2016-02-01

    Quantum Zeno and anti-Zeno effects are studied in a symmetric nonlinear optical coupler, which is composed of two nonlinear (χ(2 )) waveguides that are interacting with each other via the evanescent waves. Both waveguides operate under second harmonic generation. However, to study quantum Zeno and anti-Zeno effects one of them is considered as the system and the other one is considered as the probe. Considering all the fields involved as weak, a completely quantum mechanical description is provided, and the analytic solutions of Heisenberg's equations of motion for all the field modes are obtained using a perturbative technique. Photon number statistics of the second harmonic mode of the system is shown to depend on the presence of the probe, and this dependence is considered as quantum Zeno and anti-Zeno effects. Further, it is established that as a special case of the momentum operator for χ(2 )-χ(2 ) symmetric coupler we can obtain momentum operator of χ(2 )-χ(1 ) asymmetric coupler with linear (χ(1 )) waveguide as the probe, and, in such a particular case, the expressions obtained for Zeno and anti-Zeno effects with nonlinear probe (which we referred to as nonlinear quantum Zeno and anti-Zeno effects) may be reduced to the corresponding expressions with linear probe (which we referred to as the linear quantum Zeno and anti-Zeno effects). Linear and nonlinear quantum Zeno and anti-Zeno effects are rigorously investigated, and it is established that, in the stimulated case, we may switch between quantum Zeno and anti-Zeno effects just by controlling the phase of the second harmonic mode of the system or probe.

  9. Two-channel Kondo effect and renormalization flow with macroscopic quantum charge states

    NASA Astrophysics Data System (ADS)

    Iftikhar, Z.; Jezouin, S.; Anthore, A.; Gennser, U.; Parmentier, F. D.; Cavanna, A.; Pierre, F.

    2015-10-01

    Many-body correlations and macroscopic quantum behaviours are fascinating condensed matter problems. A powerful test-bed for the many-body concepts and methods is the Kondo effect, which entails the coupling of a quantum impurity to a continuum of states. It is central in highly correlated systems and can be explored with tunable nanostructures. Although Kondo physics is usually associated with the hybridization of itinerant electrons with microscopic magnetic moments, theory predicts that it can arise whenever degenerate quantum states are coupled to a continuum. Here we demonstrate the previously elusive `charge' Kondo effect in a hybrid metal-semiconductor implementation of a single-electron transistor, with a quantum pseudospin of 1/2 constituted by two degenerate macroscopic charge states of a metallic island. In contrast to other Kondo nanostructures, each conduction channel connecting the island to an electrode constitutes a distinct and fully tunable Kondo channel, thereby providing unprecedented access to the two-channel Kondo effect and a clear path to multi-channel Kondo physics. Using a weakly coupled probe, we find the renormalization flow, as temperature is reduced, of two Kondo channels competing to screen the charge pseudospin. This provides a direct view of how the predicted quantum phase transition develops across the symmetric quantum critical point. Detuning the pseudospin away from degeneracy, we demonstrate, on a fully characterized device, quantitative agreement with the predictions for the finite-temperature crossover from quantum criticality.

  10. Quantum Capacitance Effect on Zig-Zag Graphene Nanoscrolls (zgns) (16, 0)

    NASA Astrophysics Data System (ADS)

    Hamzah, Afiq; Ahmadi, M. T.; Ismail, Razali

    2013-01-01

    Miniaturization of electronic devices carries them to the quantum limits which mean quantum effect will be dominant in nano-size device characterization. A first band analytical model of the quantum capacitance for (16, 0) zig-zag graphene nanoscroll (ZGNS) is presented. The behavior of the quantum capacitance within the degeneracy limits is approximated using the Maxwell-Boltzmann approximation within a range of E - EF > 3KBT. The quantum capacitance is subsequently derived from the carrier density of the ZGNS due to its significance within one-dimensional (1D) devices by employing the Taylor's series expansion for parabolic energy band structure approximation. Additionally, the quantum capacitance analytical derivation in term of ZGNS physical form considering the Archimedean spiral-type structure is modeled. Because of its unique geometry structure which provides high area for intercalation, it is expected that ZGNS structure (length and interlayer distances) will alter the quantum capacitance. We also report that at first sub-band of (16, 0) ZGNS the quantum capacitance reach degenerate limit at approximately of ≅ 0.49 × 10-10F/m @ 49 pF/m.

  11. First-principle study of quantum confinement effect on small sized silicon quantum dots using density-functional theory

    NASA Astrophysics Data System (ADS)

    Anas, M. M.; Othman, A. P.; Gopir, G.

    2014-09-01

    Density functional theory (DFT), as a first-principle approach has successfully been implemented to study nanoscale material. Here, DFT by numerical basis-set was used to study the quantum confinement effect as well as electronic properties of silicon quantum dots (Si-QDs) in ground state condition. Selection of quantum dot models were studied intensively before choosing the right structure for simulation. Next, the computational result were used to examine and deduce the electronic properties and its density of state (DOS) for 14 spherical Si-QDs ranging in size up to ˜ 2 nm in diameter. The energy gap was also deduced from the HOMO-LUMO results. The atomistic model of each silicon QDs was constructed by repeating its crystal unit cell of face-centered cubic (FCC) structure, and reconstructed until the spherical shape obtained. The core structure shows tetrahedral (Td) symmetry structure. It was found that the model need to be passivated, and hence it was noticed that the confinement effect was more pronounced. The model was optimized using Quasi-Newton method for each size of Si-QDs to get relaxed structure before it was simulated. In this model the exchange-correlation potential (Vxc) of the electrons was treated by Local Density Approximation (LDA) functional and Perdew-Zunger (PZ) functional.

  12. First-principle study of quantum confinement effect on small sized silicon quantum dots using density-functional theory

    SciTech Connect

    Anas, M. M.; Othman, A. P.; Gopir, G.

    2014-09-03

    Density functional theory (DFT), as a first-principle approach has successfully been implemented to study nanoscale material. Here, DFT by numerical basis-set was used to study the quantum confinement effect as well as electronic properties of silicon quantum dots (Si-QDs) in ground state condition. Selection of quantum dot models were studied intensively before choosing the right structure for simulation. Next, the computational result were used to examine and deduce the electronic properties and its density of state (DOS) for 14 spherical Si-QDs ranging in size up to ∼ 2 nm in diameter. The energy gap was also deduced from the HOMO-LUMO results. The atomistic model of each silicon QDs was constructed by repeating its crystal unit cell of face-centered cubic (FCC) structure, and reconstructed until the spherical shape obtained. The core structure shows tetrahedral (T{sub d}) symmetry structure. It was found that the model need to be passivated, and hence it was noticed that the confinement effect was more pronounced. The model was optimized using Quasi-Newton method for each size of Si-QDs to get relaxed structure before it was simulated. In this model the exchange-correlation potential (V{sub xc}) of the electrons was treated by Local Density Approximation (LDA) functional and Perdew-Zunger (PZ) functional.

  13. Generalized Landau level representation: Effect of static screening in the quantum Hall effect in graphene

    NASA Astrophysics Data System (ADS)

    Shovkovy, Igor A.; Xia, Lifang

    2016-01-01

    By making use of the generalized Landau level representation (GLLR) for the quasiparticle propagator, we study the effect of screening on the properties of the quantum Hall states with integer filling factors in graphene. The analysis is performed in the low-energy Dirac model in the mean-field approximation, in which the long-range Coulomb interaction is modified by the one-loop static screening effects in the presence of a background magnetic field. By utilizing a rather general ansatz for the propagator, in which all dynamical parameters are running functions of the Landau level index n , we derive a self-consistent set of the Schwinger-Dyson (gap) equations and solve them numerically. The explicit solutions demonstrate that static screening leads to a substantial suppression of the gap parameters in the quantum Hall states with a broken U(4 ) flavor symmetry. The temperature dependence of the energy gaps is also studied. The corresponding results mimic well the temperature dependence of the activation energies measured in experiment. It is also argued that, in principle, the Landau level running of the quasiparticle dynamical parameters could be measured via optical studies of the integer quantum Hall states.

  14. Two-qubit conditional phase gate in laser-excited semiconductor quantum dots using the quantum Zeno effect.

    PubMed

    Xu, K J; Huang, Y P; Moore, M G; Piermarocchi, C

    2009-07-17

    We propose a scheme for a two-qubit conditional quantum Zeno phase gate for semiconductor quantum dots. The proposed system consists of two charged dots and one ancillary neutral dot driven by a laser pulse tuned to the exciton resonance. The primary decoherence mechanism is phonon-assisted exciton relaxation, which can be viewed as continuous monitoring by the environment. Because of the Zeno effect, a strong possibility of emission is sufficient to strongly modify the coherent dynamics, with negligible probability of actual emission. We solve analytically the master equation and simulate the dynamics of the system using a realistic set of parameters. In contrast to standard schemes, larger phonon relaxation rates increase the fidelity of the operations. PMID:19659314

  15. Analgesic Effects of Oligonol, Acupuncture and Quantum Light Therapy on Chronic Nonbacterial Prostatitis

    PubMed Central

    Akdere, Hakan; Oztekin, Ilhan; Arda, Ersan; Aktoz, Tevfik; Turan, Fatma Nesrin; Burgazli, Kamil Mehmet

    2015-01-01

    Background: Chronic Nonbacterial Prostatitis (CNBP) is a condition that frequently causes long-term pain and a significant decrease in the quality of life. Objectives: The present study aimed to examine the analgesic effects of oligonol, acupuncture, quantum light therapy and their combinations on estrogen-induced CNBP in rats. Materials and Methods: This experimental study was conducted in Edirne, Turkey, using a simple randomized allocation. A total of 90 adult male Wistar rats were randomized into 9 groups of 10 rats each: Group I, control; Group II, CNBP, Group III, oligonol only, Group IV, acupuncture only; Group V, quantum only; Group VI, oligonol + quantum; Group VII, acupuncture + oligonol; Group VIII, quantum + acupuncture; Group IX, acupuncture + quantum + oligonol. Oligonol treatment was given at a dose of 60?mg/day for 6 weeks. Conceptual vessels (CV) 3 and 4, and bilaterally urinary bladder (Bl) 32 and 34 points were targeted with 1-hour acupuncture stimulation. The quantum light therapy was applied in 5-minute sessions for 6 weeks (3-times/a week). For pain measurements, mechanical pressure was applied to a point 2 cm distal to the root of the tail to elicit pain and consequent parameters (peak force, latency time of response and total length of measurement) were assessed. Results: Analgesic effects were observed with all treatment regimens; however, the most prominent median analgesic effect was shown in the quantum light therapy in combination with acupuncture for estrogen-induced CNBP (PF1 = 663.9, PF2 = 403.4) (P = 0.012). Furthermore, we observed that monotherapy with quantum light showed a better analgesic efficacy as compared to oligonol and acupuncture monotherapies (PF1 = 1044.6, PF2 = 661.2) (P = 0.018, P = 0.008, P = 0.018; respectively). Conclusions: All treatment modalities showed a significant analgesic effect on CNBP in rats, being most prominent with the quantum light therapy. PMID:26023344

  16. Effect of Magnesium Diffusion Into the Active Region of LED Structures with InGaN/GaN Quantum Wells on Internal Quantum Efficiency

    NASA Astrophysics Data System (ADS)

    Romanov, I. S.; Prudaev, I. A.; Marmalyuk, A. A.; Kureshov, V. A.; Sabitov, D. R.; Mazalov, A. V.

    2014-08-01

    The results of experimental studies of the dependence of an internal quantum efficiency of blue LED structures with multiple InGaN/GaN quantum wells on the growth temperature of a p-GaN layer are presented. The effect of the magnesium diffusion on the photoluminescence characteristics of LED structures is discussed.

  17. Effective field theory for quantum liquid in dwarf stars

    SciTech Connect

    Gabadadze, Gregory; Rosen, Rachel A. E-mail: rarosen@physik.su.se

    2010-04-01

    An effective field theory approach is used to describe quantum matter at greater-than-atomic but less-than-nuclear densities which are encountered in white dwarf stars. We focus on the density and temperature regime for which charged spin-0 nuclei form an interacting charged Bose-Einstein condensate, while the neutralizing electrons form a degenerate fermi gas. After a brief introductory review, we summarize distinctive properties of the charged condensate, such as a mass gap in the bosonic sector as well as gapless fermionic excitations. Charged impurities placed in the condensate are screened with great efficiency, greater than in an equivalent uncondensed plasma. We discuss a generalization of the Friedel potential which takes into account bosonic collective excitations in addition to the fermionic excitations. We argue that the charged condensate could exist in helium-core white dwarf stars and discuss the evolution of these dwarfs. Condensation would lead to a significantly faster rate of cooling than that of carbon- or oxygen-core dwarfs with crystallized cores. This prediction can be tested observationally: signatures of charged condensation may have already been seen in the recently discovered sequence of helium-core dwarfs in the nearby globular cluster NGC 6397. Sufficiently strong magnetic fields can penetrate the condensate within Abrikosov-like vortices. We find approximate analytic vortex solutions and calculate the values of the lower and upper critical magnetic fields at which vortices are formed and destroyed respectively. The lower critical field is within the range of fields observed in white dwarfs, but tends toward the higher end of this interval. This suggests that for a significant fraction of helium-core dwarfs, magnetic fields are entirely expelled within the core.

  18. Intense laser field effects on a Woods-Saxon potential quantum well

    NASA Astrophysics Data System (ADS)

    Restrepo, R. L.; Morales, A. L.; Akimov, V.; Tulupenko, V.; Kasapoglu, E.; Ungan, F.; Duque, C. A.

    2015-11-01

    This paper presents the results of the theoretical study of the effects of non-resonant intense laser field and electric and magnetic fields on the optical properties in an quantum well (QW) make with Woods-Saxon potential profile. The electric field and intense laser field are applied along the growth direction of the Woods-Saxon quantum well and the magnetic field is oriented perpendicularly. To calculate the energy and the wave functions of the electron in the Woods-Saxon quantum well, the effective mass approximation and the method of envelope wave function are used. The confinement in the Woods-Saxon quantum well is changed drastically by the application of intense laser field or either the effect of electric and magnetic fields. The optical properties are calculated using the compact density matrix.

  19. Recoil ion charge state distribution following the beta(sup +) decay of {sup 21}Na

    SciTech Connect

    Scielzo, Nicholas D.; Freedman, Stuart J.; Fujikawa, Brian K.; Vetter, Paul A.

    2003-01-03

    The charge state distribution following the positron decay of 21Na has been measured, with a larger than expected fraction of the daughter 21Ne in positive charge states. No dependence on either the positron or recoil nucleus energy is observed. The data is compared to a simple model based on the sudden approximation. Calculations suggest a small but important contribution from recoil ionization has important consequences for precision beta decay correlation experiments detecting recoil ions.

  20. Tunable optical Kerr effects of DNAs coupled to quantum dots.

    PubMed

    Li, Yang; Zhu, Ka-Di

    2012-01-01

    : The coupling between DNA molecules and quantum dots can result in impressive nonlinear optical properties. In this paper, we theoretically demonstrate the significant enhancement of Kerr coefficient of signal light using optical pump-probe technique when the pump-exciton detuning is zero, and the probe-exciton detuning is adjusted properly to the frequency of DNA vibration mode. The magnitude of optical Kerr coefficient can be tuned by modifying the intensity of the pump beam. It is shown clearly that this phenomenon cannot occur without the DNA-quantum dot coupling. The present research will lead us to know more about the anomalous nonlinear optical behaviors in the hybrid DNA-quantum dot systems, which may have potential applications in the fields such as DNA detection. PMID:23194282