Science.gov

Sample records for quantum recoil effects

  1. Accounting for Recoil Effects in Geochronometers: A New Model Approach

    NASA Astrophysics Data System (ADS)

    Lee, V. E.; Huber, C.

    2012-12-01

    A number of geologically important chronometers are affected by, or owe their utility to, the "recoil effect". This effect describes the physical displacement of a nuclide due to energetic nuclear processes such as radioactive alpha decay (as in the case of various parent-daughter pairs in the uranium-series decay chains, and Sm-Nd), as well as neutron irradiation (in the case of the methodology for the 40Ar/39Ar dating method). The broad range of affected geochronometers means that the recoil effect can impact a wide range of dating method applications in the geosciences, including but not limited to: Earth surface processes, paleoclimate, volcanic processes, and cosmochemistry and planetary evolution. In particular, the recoil effect can have a notable impact on the use of fine grains (silt- and clay-sized particles) for geochronometric dating purposes. This is because recoil-induced loss of a nuclide from the surfaces of a grain can create an isotopically-depleted outer rind, and for small grains, this depleted rind can be volumetrically significant. When this recoil loss is measurable and occurs in a known time-dependent fashion, it can usefully serve as the basis for chronometers (such as the U-series comminution age method); in other cases recoil loss from fine particles creates an unwanted deviation from expected isotope values (such as for the Ar-Ar method). To improve both the accuracy and precision of ages inferred from geochronometric systems that involve the recoil of a key nuclide from small domains, it is necessary to quantify the magnitude of the recoil loss of that particular nuclide. It is also necessary to quantitatively describe the effect of geological processes that can alter the outer surface of grains, and hence the isotopically-depleted rind. Here we present a new mathematical and numerical model that includes two main features that enable enhanced accuracy and precision of ages determined from geochronometers. Since the surface area of the dated grain is a major control on the magnitude of recoil loss, the first feature is the ability to calculate recoil effects on isotopic compositions for realistic, complex grain shapes and surface roughnesses. This is useful because natural grains may have irregular shapes that do not conform to simple geometric descriptions. Perhaps more importantly, the surface area over which recoiled nuclides are lost can be significantly underestimated when grain surface roughness is not accounted for, since the recoil distances can be of similar characteristic lengthscales to surface roughness features. The second key feature is the ability to incorporate dynamical geologic processes affecting grain surfaces in natural settings, such as dissolution and crystallization. We describe the model and its main components, and point out implications for the geologically-relevant chronometers mentioned above.

  2. Charge transport-induced recoil and dissociation in double quantum dots.

    PubMed

    Pozner, Roni; Lifshitz, Efrat; Peskin, Uri

    2014-11-12

    Colloidal quantum dots (CQDs) are free-standing nanostructures with chemically tunable electronic properties. This combination of properties offers intriguing new possibilities for nanoelectromechanical devices that were not explored yet. In this work, we consider a new scanning tunneling microscopy setup for measuring ligand-mediated effective interdot forces and for inducing motion of individual CQDs within an array. Theoretical analysis of a double quantum dot structure within this setup reveals for the first time voltage-induced interdot recoil and dissociation with pronounced changes in the current. Considering realistic microscopic parameters, our approach enables correlating the onset of mechanical motion under bias voltage with the effective ligand-mediated binding forces. PMID:25259800

  3. Collective atomic recoil lasing including friction and diffusion effects

    SciTech Connect

    Robb, G.R.M.; Piovella, N.; Ferraro, A.; Bonifacio, R.; Courteille, Ph.W.; Zimmermann, C.

    2004-04-01

    We extend the collective atomic recoil lasing (CARL) model including the effects of friction and diffusion forces acting on the atoms due to the presence of optical molasses fields. The results from this model are consistent with those from a recent experiment by Kruse et al. [ Phys. Rev. Lett. 91, 183601 (2003) ]. In particular, we obtain a threshold condition above which collective backscattering occurs. Using a nonlinear analysis we show that the backscattered field and the bunching evolve to a steady state, in contrast to the nonstationary behavior of the standard CARL model. For a proper choice of the parameters, this steady state can be superfluorescent.

  4. Recoil effects in multiphoton electron-positron pair creation

    SciTech Connect

    Krajewska, K.; Kaminski, J. Z.

    2010-07-15

    Triply differential probability rates for electron-positron pair creation in laser-nucleus collisions, calculated within the S-matrix approach, are investigated as functions of the nuclear recoil. Pronounced enhancements of differential probability rates of multiphoton pair production are found for a nonzero momentum transfer from the colliding nucleus. The corresponding rates show a very dramatic dependence on the polarization of the laser field impinging on the nucleus; only for a linearly polarized light are the multiphoton rates for electron-positron pair production considerably large. We focus therefore on this case. Our numerical results for different geometries of the reaction particles demonstrate that, for the linearly polarized laser field of an infinite extent (which is a good approximation for femtosecond laser pulses), the pair creation is far more efficient if the nucleus is detected in the direction of the laser-field propagation. The corresponding angular distributions of the created particles show that the high-energy pairs are predominantly produced in the plane spanned by the polarization vector and the laser-field propagation direction, while the low-energy pairs are rather spread around the latter of the two directions. The enhancement of differential probability rates at each energy sector, defined by the four-momentum conservation relation, is observed with varying the energy of the produced particles. The total probability rates of pair production are also evaluated and compared with the corresponding results for the case when one disregards the recoil effect. A tremendous enhancement of the total probability rates of the electron-positron pair creation is observed if one takes into account the nuclear recoil.

  5. Dielectric barrier structure with hollow electrodes and its recoil effect

    NASA Astrophysics Data System (ADS)

    Yu, Shuang; Chen, Qunzhi; Liu, Jiahui; Wang, Kaile; Jiang, Zhe; Sun, Zhili; Zhang, Jue; Fang, Jing

    2015-06-01

    A dielectric barrier structure with hollow electrodes (HEDBS), in which gas flow oriented parallel to the electric field, was proposed. Results showed that with this structure, air can be effectively ignited, forming atmospheric low temperature plasma, and the proposed HEDBS could achieve much higher electron density (5 × 1015/cm3). It was also found that the flow condition, including outlet diameter and flow rate, played a key role in the evolution of electron density. Optical emission spectroscopy diagnostic results showed that the concentration of reactive species had the same variation trend as the electron density. The simulated distribution of discharge gas flow indicated that the HEDBS had a strong recoil effect on discharge gas, and could efficiently promote generating electron density as well as reactive species.

  6. Dielectric barrier structure with hollow electrodes and its recoil effect

    SciTech Connect

    Yu, Shuang; Chen, Qunzhi; Liu, Jiahui; Wang, Kaile; Jiang, Zhe; Sun, Zhili; Zhang, Jue; Fang, Jing

    2015-06-15

    A dielectric barrier structure with hollow electrodes (HEDBS), in which gas flow oriented parallel to the electric field, was proposed. Results showed that with this structure, air can be effectively ignited, forming atmospheric low temperature plasma, and the proposed HEDBS could achieve much higher electron density (5?×?10{sup 15}/cm{sup 3}). It was also found that the flow condition, including outlet diameter and flow rate, played a key role in the evolution of electron density. Optical emission spectroscopy diagnostic results showed that the concentration of reactive species had the same variation trend as the electron density. The simulated distribution of discharge gas flow indicated that the HEDBS had a strong recoil effect on discharge gas, and could efficiently promote generating electron density as well as reactive species.

  7. Bursts of Radiation and Recoil Effects in Electromagnetism and Gravitation

    E-print Network

    C. Barrabès; P. A. Hogan

    2000-12-06

    The Maxwell field of a charge e which experiences an impulsive acceleration or deceleration is constructed explicitly by subdividing Minkowskian space-time into two halves bounded by a future null-cone and then glueing the halves back together with appropriate matching conditions. The resulting retarded radiation can be viewed as instantaneous electromagnetic bremsstrahlung. If we similarly consider a spherically symmetric, moving gravitating mass, to experience an impulsive deceleration, as viewed by a distant observer, then this is accompanied by the emission of a light-like shell whose total energy measured by this observer is the same as the kinetic energy of the source before it stops. This phenomenon is a recoil effect which may be thought of as a limiting case of a Kinnersley rocket.

  8. Hadronic effects and observables in B ?? ?+?- decay at large recoil

    NASA Astrophysics Data System (ADS)

    Hambrock, Christian; Khodjamirian, Alexander; Rusov, Aleksey

    2015-10-01

    We calculate the amplitude of the rare flavor-changing neutral-current decay B ?? ?+?- at large recoil of the pion. The nonlocal contributions in which the weak effective operators are combined with the electromagnetic lepton-pair emission are systematically taken into account. These amplitudes are calculated at off-shell values of the lepton-pair mass squared, q2<0 , employing the operator-product expansion, QCD factorization and light-cone sum rules. The results are fitted to hadronic dispersion relations in q2, including the intermediate vector meson contributions. The dispersion relations are then used in the physical region q2>0 . Our main result is the process-dependent addition ? C9(B ? )(q2) to the Wilson coefficient C9 obtained at 4 m?2

  9. Radiation Recoil Effects on the Dynamical Evolution of Asteroids

    NASA Astrophysics Data System (ADS)

    Cotto-Figueroa, Desiree

    The Yarkovsky effect is a radiation recoil force that results in a semimajor axis drift in the orbit that can cause Main Belt asteroids to be delivered to powerful resonances from which they could be transported to Earth-crossing orbits. This force depends on the spin state of the object, which is modified by the YORP effect, a variation of the Yarkovsky effect that results in a torque that changes the spin rate and the obliquity. Extensive analyses of the basic behavior of the YORP effect have been previously conducted in the context of the classical spin state evolution of rigid bodies (YORP cycle). However, the YORP effect has an extreme sensitivity to the topography of the asteroids and a minor change in the shape of an aggregate asteroid can stochastically change the YORP torques. Here we present the results of the first simulations that self-consistently model the YORP effect on the spin states of dynamically evolving aggregates. For these simulations we have developed several algorithms and combined them with two codes, TACO and pkdgrav. TACO is a thermophysical asteroid code that models the surface of an asteroid using a triangular facet representation and which can compute the YORP torques. The code pkdgrav is a cosmological N-body tree code modified to simulate the dynamical evolution of asteroids represented as aggregates of spheres using gravity and collisions. The continuous changes in the shape of an aggregate result in a different evolution of the YORP torques and therefore aggregates do not evolve through the YORP cycle as a rigid body would. Instead of having a spin evolution ruled by long periods of rotational acceleration and deceleration as predicted by the classical YORP cycle, the YORP effect is self-limiting and stochastic on aggregate asteroids. We provide a statistical description of the spin state evolution which lays out the foundation for new simulations of a coupled Yarkovsky/YORP evolution. Both self-limiting YORP and to a lesser degree a stochastic YORP provide a viable means to explain why the Near-Earth Asteroid (NEA) population seems to remember their initial spin states at the time of delivery from the Main Belt. The YORP effect drives the obliquity of most objects that follow the YORP cycle to the values of 0, 90 and 180 degrees. NEAs could complete a YORP cycle on timescales much shorter than their typical dynamical lifetime. Therefore, one should expect the obliquity distribution of the population of NEAs to be concentrated about those values if they follow the YORP cycle. But to obtain a direct measurement of the obliquity distribution will require radar observations or multiple lightcurves at different illumination and orbital phases for each NEA. Instead of obtaining a direct measurement, the obliquity distribution can be inferred if the distribution of semimajor axis drift rates due to the Yarkovsky effect can be measured. From the linear heat diffusion theory for a spherical body, the semimajor axis drift rate varies linearly with cosine obliquity. Previous studies have attempted to infer the obliquity distribution taking advantage of this simple dependence. However, those results should be considered only approximate because of the neglect of the dependence of the semimajor axis drift rate on density, thermal properties, and shape. Here we seek to obtain the obliquity distribution of NEAs using a better approach based on Bayesian inference that takes into account our prior knowledge of the distributions of the physical parameters on which the semimajor axis drift rates depend. A preliminary obliquity distribution of the NEA population has been estimated to be a V-shaped model that lacks a concentration of objects at an obliquity of 90 degrees and which suggests that the most probable value of the fraction of retrograde rotators is 70.0%. Once the obliquity distribution is obtained, it can in turn be used to test YORP predictions and constrain YORP evolution.

  10. Is CHF triggered by the vapor recoil effect?

    E-print Network

    Nikolayev, Vadim S; Chatain, D

    2007-01-01

    This paper deals with the triggering mechanism of the boiling crisis, a transition from nucleate to film boiling. We observe the boiling crisis in pool saturated boiling experimentally at nearly critical pressure to take advantage of the slowness of the bubble growth and of the smallness of the Critical Heat Flux (CHF) that defines the transition point. Such experiments require the reduced gravity conditions. Close to the CHF, the slow growth of the individual dry spots and their subsequent fusion on the transparent heater are observed through the latter. As discussed in the paper, these observations are consistent with numerical results obtained with the vapor recoil model of the boiling crisis.

  11. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: Recoil momentum at a solid surface during developed laser ablation

    NASA Astrophysics Data System (ADS)

    Kuznetsov, L. I.

    1993-12-01

    The recoil momentum from a laser light pulse in the intensity range 105-107 W/cm2 is experimentally investigated for dielectric and metallic targets as a function of the pressure of the surrounding medium and angle of illumination. An equation with empirical coefficients is obtained for the recoil momentum of illuminated targets. Effects of the screening properties of the erosion jet and the back pressure on the recoil momentum are analyzed as the external pressure is varied.

  12. Cosmogenic production rates and recoil loss effects in micrometeorites and interplanetary dust particles

    NASA Astrophysics Data System (ADS)

    Trappitsch, Reto; Leya, Ingo

    2013-02-01

    We present a purely physical model to determine cosmogenic production rates for noble gases and radionuclides in micrometeorites (MMs) and interplanetary dust particles (IDPs) by solar cosmic-rays (SCR) and galactic cosmic-rays (GCR) fully considering recoil loss effects. Our model is based on various nuclear model codes to calculate recoil cross sections, recoil ranges, and finally the percentages of the cosmogenic nuclides that are lost as a function of grain size, chemical composition of the grain, and the spectral distribution of the projectiles. The main advantage of our new model compared with earlier approaches is that we consider the entire SCR particle spectrum up to 240 MeV and not only single energy points. Recoil losses for GCR-produced nuclides are assumed to be equal to recoil losses for SCR-produced nuclides. Combining the model predictions with Poynting-Robertson orbital lifetimes, we calculate cosmic-ray exposure ages for recently studied MMs, cosmic spherules, and IDPs. The ages for MMs and the cosmic-spherule are in the range <2.2-233 Ma, which corresponds, according to the Poynting-Robertson drag, to orbital distances in the range 4.0-34 AU. For two IDPs, we determine exposure ages of longer than 900 Ma, which corresponds to orbital distances larger than 150 AU. The orbital distance in the range 4-6 AU for one MM and the cosmic spherule indicate an origin either in the asteroid belt or release from comets coming either from the Kuiper Belt or the Oort Cloud. Three of the studied MMs have orbital distances in the range 23-34 AU, clearly indicating a cometary origin, either from short-period comets from the Kuiper Belt or from the Oort Cloud. The two IDPs have orbital distances of more than 150 AU, indicating an origin from Oort Cloud comets.

  13. Nuclear Recoil Effect in the Lamb Shift of Light Hydrogenlike Atoms.

    PubMed

    Yerokhin, V A; Shabaev, V M

    2015-12-01

    We report high-precision calculations of the nuclear recoil effect to the Lamb shift of hydrogenlike atoms to the first order in the electron-nucleus mass ratio and to all orders in the nuclear binding strength parameter Z?. The results are in excellent agreement with the known terms of the Z? expansion and allow an accurate identification of the nonperturbative higher-order remainder. For hydrogen, the higher-order remainder was found to be much larger than anticipated. This result resolves the long-standing disagreement between the numerical all-order and analytical Z?-expansion approaches to the recoil effect and completely removes the second-largest theoretical uncertainty in the hydrogen Lamb shift of the 1S and 2S states. PMID:26684115

  14. Nuclear recoil effect in the Lamb shift of light hydrogen-like atoms

    E-print Network

    Yerokhin, V A

    2015-01-01

    We report high-precision calculations of the nuclear recoil effect to the Lamb shift of hydrogen-like atoms to the first order in the electron-nucleus mass ratio and to all orders in the nuclear binding strength parameter $Z\\alpha$. The results are in excellent agreement with the known terms of the $Z\\alpha$ expansion and allow an accurate identification of the nonperturbative higher-order remainder. For hydrogen, the higher-order remainder was found to be much larger than anticipated. This result resolves the long-standing disagreement between the numerical all-order and the analytical $Z\\alpha$-expansion approaches to the recoil effect and completely removes the second-largest theoretical uncertainty in the hydrogen Lamb shift of the $1S$ and $2S$ states.

  15. Self-organization effects and light amplification of collective atomic recoil motion in a harmonic trap

    E-print Network

    L. Zhang; G. J. Yang; L. X. Xia

    2005-10-06

    Self-organization effects related to light amplification in the collective atomic recoil laser system with the driven atoms confined in a harmonic trap are investigated further. In the dispersive parametric region, our study reveals that the spontaneously formed structures in the phase space contributes an important role to the light amplification of the probe field under the atomic motion being modified by the trap.

  16. Quantum effects in electron beam pumped GaAs

    SciTech Connect

    Yahia, M. E.; National Institute of Laser Enhanced Sciences , Cairo University ; Azzouz, I. M.; Moslem, W. M.

    2013-08-19

    Propagation of waves in nano-sized GaAs semiconductor induced by electron beam are investigated. A dispersion relation is derived by using quantum hydrodynamics equations including the electrons and holes quantum recoil effects, exchange-correlation potentials, and degenerate pressures. It is found that the propagating modes are instable and strongly depend on the electron beam parameters, as well as the quantum recoil effects and degenerate pressures. The instability region shrinks with the increase of the semiconductor number density. The instability arises because of the energetic electron beam produces electron-hole pairs, which do not keep in phase with the electrostatic potential arising from the pair plasma.

  17. Nuclear recoil and vacuum-polarization effects on the binding energies of supercritical H-like ions

    E-print Network

    Aleksandrov, Ivan A; Shabaev, Vladimir M

    2015-01-01

    The Dirac Hamiltonian including nuclear recoil and vacuum-polarization operators is considered in a supercritical regime Z > 137. It is found that the nuclear recoil operator derived within the Breit approximation regularizes the Hamiltonian for the point-nucleus model and allows the ground state level to go continuously down and reach the negative energy continuum at a critical value Zcr = 145. If the Hamiltonian contains both the recoil operator and the Uehling potential, the 1s level reaches the negative energy continuum at Zcr = 144. The corresponding calculations for the excited states have been also performed. This study shows that, in contrast to previous investigations, a point-like nucleus can have effectively the charge Z > 137.

  18. Frequency-dependent polarizability of helium including relativistic effects with nuclear recoil terms

    E-print Network

    Piszczatowski, Konrad; Komasa, Jacek; Jeziorski, Bogumil; Szalewicz, Krzysztof

    2015-01-01

    Future metrology standards will be partly based on physical quantities computed from first principles rather than measured. In particular, a new pressure standard can be established if the dynamic polarizability of helium can be determined from theory with an uncertainty smaller than 0.2 ppm. We present calculations of the frequency-dependent part of this quantity including relativistic effects with full account of leading nuclear recoil terms and using highly optimized explicitly correlated basis sets. A particular emphasis is put on uncertainty estimates. At the He-Ne laser wavelength of 632.9908 nm, the computed polarizability value of 1.391 811 41 a.u. has uncertainty of 0.1 ppm that is two orders of magnitude smaller than those of the most accurate polarizability measurements. We also obtained an accurate expansion of the helium refractive index in powers of density.

  19. Frequency-Dependent Polarizability of Helium Including Relativistic Effects with Nuclear Recoil Terms

    NASA Astrophysics Data System (ADS)

    Piszczatowski, Konrad; Puchalski, Mariusz; Komasa, Jacek; Jeziorski, Bogumi?; Szalewicz, Krzysztof

    2015-05-01

    Future metrology standards will be partly based on physical quantities computed from first principles rather than measured. In particular, a new pressure standard can be established if the dynamic polarizability of helium can be determined from theory with an uncertainty smaller than 0.2 ppm. We present calculations of the frequency-dependent part of this quantity including relativistic effects with full account of leading nuclear recoil terms and using highly optimized explicitly correlated basis sets. A particular emphasis is put on uncertainty estimates. At the He-Ne laser wavelength of 632.9908 nm, the computed polarizability value of 1.39181141 a.u. has uncertainty of 0.1 ppm that is 2 orders of magnitude smaller than those of the most accurate polarizability measurements. We also obtained an accurate expansion of the helium refractive index in powers of density.

  20. Jeans instability with exchange effects in quantum dusty magnetoplasmas

    NASA Astrophysics Data System (ADS)

    Jamil, M.; Rasheed, A.; Rozina, Ch.; Jung, Y.-D.; Salimullah, M.

    2015-08-01

    Jeans instability is examined in magnetized quantum dusty plasmas using the quantum hydrodynamic model. The quantum effects are considered via exchange-correlation potential, recoil effect, and Fermi degenerate pressure, in addition to thermal effects of plasma species. It is found that the electron exchange and correlation potential have significant effects over the threshold value of wave vector and Jeans instability. The presence of electron exchange and correlation effect shortens the time of dust sound that comparatively stabilizes the self gravitational collapse. The results at quantum scale are helpful in understanding the collapse of the self-gravitating dusty plasma systems.

  1. Temperature Dependence and Recoil-free Fraction Effects in Olivines Across the Mg-Fe Solid Solution

    NASA Technical Reports Server (NTRS)

    Sklute, E. C.; Rothstein, Y.; Dyar, M. D.; Schaefer, M. W.; Menzies, O. N.; Bland, P. A.; Berry, F. J.

    2005-01-01

    Olivine and pyroxene are the major ferromagnesian minerals in most meteorite types and in mafic igneous rocks that are dominant at the surface of the Earth. It is probable that they are the major mineralogical components at the surface of any planetary body that has undergone differentiation processes. In situ mineralogical studies of the rocks and soils on Mars suggest that olivine is a widespread mineral on that planet s surface (particularly at the Gusev site) and that it has been relatively unaffected by alteration. Thus an understanding of the characteristics of Mossbauer spectra of olivine is of great importance in interpreting MER results. However, variable temperature Mossbauer spectra of olivine, which are needed to quantify recoil-free fraction effects and to understand the temperature dependence of olivine spectra, are lacking in the literature. Thus, we present here a study of the temperature dependence and recoil-free fraction of a series of synthetic olivines.

  2. The Effect of Gravitational Recoil on Black Holes Forming in a Hierarchical Universe

    E-print Network

    N. I. Libeskind; S. Cole; C. S. Frenk; J. C. Helly

    2005-12-02

    Galactic bulges are known to harbour central black holes whose mass is tightly correlated with the stellar mass and velocity dispersion of the bulge. In a hierarchical universe, mergers of subgalactic units are accompanied by the amalgamation of bulges and the likely coalescence of galactocentric black holes. In these mergers, the beaming of gravitational radiation during the plunge phase of the black hole collision can impart a linear momentum kick or ``gravitational recoil'' to the remnant. If large enough, this kick will eject the remnant from the galaxy and populate intergalactic space with wandering black holes. Using a semi-analytic model of galaxy formation, we investigate the effect of black hole ejections on the scatter in the relation between black hole and bulge mass. We find that although not the dominant source of the measured scatter, they do make a significant contribution and may be used to set a constraint, v_kickblack holes are ejected from the progenitors of present day galaxies, giving rise to a population of wandering intrahalo and intergalactic black holes whose distribution we investigate in high-resolution N-body simulations of Milk-Way mass halos. We find that intergalactic black holes make up only ~2-3% of the total galactic black hole mass but, within a halo, wandering black holes can contribute up to about half of the total black hole mass orbiting the central galaxy. Intrahalo black holes offer a natural explanation for the compact X-ray sources often seen near the centres of galaxies and for the hyperluminous non-central X-ray source in M82.

  3. Molecular modeling of the effects of 40Ar recoil in illite particles on their K-Ar isotope dating

    NASA Astrophysics Data System (ADS)

    Szczerba, Marek; Derkowski, Arkadiusz; Kalinichev, Andrey G.; ?rodo?, Jan

    2015-06-01

    The radioactive decay of 40K to 40Ar is the basis of isotope age determination of micaceous clay minerals formed during diagenesis. The difference in K-Ar ages between fine and coarse grained illite particles has been interpreted using detrital-authigenic components system, its crystallization history or post-crystallization diffusion. Yet another mechanism should also be considered: natural 40Ar recoil. Whether this recoil mechanism can result in a significant enough loss of 40Ar to provide observable decrease of K-Ar age of the finest illite crystallites at diagenetic temperatures - is the primary objective of this study which is based on molecular dynamics (MD) computer simulations. All the simulations were performed for the same kinetic energy (initial velocity) of the 40Ar atom, but for varying recoil angles that cover the entire range of their possible values. The results show that 40Ar recoil can lead to various deformations of the illite structure, often accompanied by the displacement of OH groups or breaking of the Si-O bonds. Depending on the recoil angle, there are four possible final positions of the 40Ar atom with respect to the 2:1 layer at the end of the simulation: it can remain in the interlayer space or end up in the closest tetrahedral, octahedral or the opposite tetrahedral sheet. No simulation angles were found for which the 40Ar atom after recoil passes completely through the 2:1 layer. The energy barrier for 40Ar passing through the hexagonal cavity from the tetrahedral sheet into the interlayer was calculated to be 17 kcal/mol. This reaction is strongly exothermic, therefore there is almost no possibility for 40Ar to remain in the tetrahedral sheet of the 2:1 layer over geological time periods. It will either leave the crystal, if close enough to the edge, or return to the interlayer space. On the other hand, if 40Ar ends up in the octahedral sheet after recoil, a substantially higher energy barrier of 55 kcal/mol prevents it from leaving the TOT layer over geological time. Based on the results of MD simulations, the estimates of the potential effect of 40Ar recoil on the K-Ar dating of illite show that some of 40Ar is lost and the loss is substantially dependent on the crystallite dimensions. The 40Ar loss can vary from 10% for the finest crystallites (two 2:1 layers thickness and <0.02 ?m in diameter) to close to zero for the thickest and largest (in the ab plane) ones. Because the decrease of the K-Ar estimated age is approximately proportional to the 40Ar loss, the finer crystallites show lower apparent age than the coarser ones, although the age of crystallization is assumed equal for all the crystallites. From the model it is also clear that the lack of K removal from illite fringes (potentially Ar-free) strongly increases the apparent age differences among crystallites of different size.

  4. Recoil effects of a motional scatterer on single-photon scattering in one dimension

    E-print Network

    Qiong Li; D. Z. Xu; C. Y. Cai; C. P. Sun

    2013-05-22

    The scattering of a single photon with sufficiently high energy can cause a recoil of a motional scatterer. We study its backaction on the photon's coherent transport in one dimension by modeling the motional scatterer as a two-level system, which is trapped in a harmonic potential. While the reflection spectrum is of a single peak in the Lamb-Dicke limit, multi-peaks due to phonon excitations can be observed in the reflection spectrum as the trap becomes looser or the mass of the two-level system becomes smaller.

  5. Recoil effects of a motional scatterer on single-photon scattering in one dimension

    PubMed Central

    Li, Qiong; Xu, D. Z.; Cai, C. Y.; Sun, C. P.

    2013-01-01

    The scattering of a single photon with sufficiently high energy can cause a recoil of a motional scatterer. We study its backaction on the photon's coherent transport in one dimension by modeling the motional scatterer as a two-level system, which is trapped in a harmonic potential. While the reflection spectrum is of a single peak in the Lamb-Dicke limit, multi-peaks due to phonon excitations can be observed in the reflection spectrum as the trap becomes looser or the mass of the two-level system becomes smaller. PMID:24220217

  6. The effect of recoil pressure in the ablation of polycrystalline graphite by a nanosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Hoffman, Jacek

    2015-06-01

    Our experiments with the ablation of graphite by a nanosecond laser pulse showed the formation of craters with a depth of upto 60 µm. The creation of such deep craters is hard to explain solely by evaporation. Existing models should be supplemented by an additional mass removal process that ensures penetration of the material. The recoil pressure at the surface of the target generates a compression wave propagating deep into the material. Possible mechanisms of fracture by the longitudinal compression wave are discussed. A phenomenological model of material fragmentation is proposed. Modelling results are in good agreement with the experiment. The model may be used for polycrystalline graphite as well as other brittle materials treated by the nanosecond laser pulse.

  7. Quantum Hamlet Effect

    E-print Network

    Pankovi?, Vladan

    2009-01-01

    In this work, by use of a formalism similar to formalism of the quantum Zeno effect (decrease of the decay probability of an unstable quantum system by frequent measurements) and quantum anti-Zeno effect (increase of the decay probability of an unstable quantum system by frequent measurements), we introduce so-called quantum Hamlet effect. It represents a complete destruction of the quantum predictions on the decay probability of an unstable quantum system by frequent measurement. Precisely, by means of some especial, correctly defined, frequent measurements, decay probability of an unstable quantum system can behave as a divergent series without any definite value. In this way there is quantum mechanically completely unsolvable ``Hamlet dilemma'', to decay or not to decay.

  8. Maximum gravitational recoil.

    PubMed

    Campanelli, Manuela; Lousto, Carlos O; Zlochower, Yosef; Merritt, David

    2007-06-01

    Recent calculations of gravitational radiation recoil generated during black-hole binary mergers have reopened the possibility that a merged binary can be ejected even from the nucleus of a massive host galaxy. Here we report the first systematic study of gravitational recoil of equal-mass binaries with equal, but counteraligned, spins parallel to the orbital plane. Such an orientation of the spins is expected to maximize the recoil. We find that recoil velocity (which is perpendicular to the orbital plane) varies sinusoidally with the angle that the initial spin directions make with the initial linear momenta of each hole and scales up to a maximum of approximately 4000 km s-1 for maximally rotating holes. Our results show that the amplitude of the recoil velocity can depend sensitively on spin orientations of the black holes prior to merger. PMID:17677894

  9. Photon Recoil Momentum in Dispersive Media

    SciTech Connect

    Campbell, Gretchen K.; Leanhardt, Aaron E.; Mun, Jongchul; Boyd, Micah; Streed, Erik W.; Ketterle, Wolfgang; Pritchard, David E.

    2005-05-06

    A systematic shift of the photon recoil momentum due to the index of refraction of a dilute gas of atoms has been observed. The recoil frequency was determined with a two-pulse light grating interferometer using near-resonant laser light. The results show that the recoil momentum of atoms caused by the absorption of a photon is n({Dirac_h}/2{pi})k, where n is the index of refraction of the gas and k is the vacuum wave vector of the photon. This systematic effect must be accounted for in high-precision atom interferometry with light gratings.

  10. Quantum Spin Hall Effect

    SciTech Connect

    Bernevig, B.Andrei; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-01-15

    The quantum Hall liquid is a novel state of matter with profound emergent properties such as fractional charge and statistics. Existence of the quantum Hall effect requires breaking of the time reversal symmetry caused by an external magnetic field. In this work, we predict a quantized spin Hall effect in the absence of any magnetic field, where the intrinsic spin Hall conductance is quantized in units of 2 e/4{pi}. The degenerate quantum Landau levels are created by the spin-orbit coupling in conventional semiconductors in the presence of a strain gradient. This new state of matter has many profound correlated properties described by a topological field theory.

  11. Quantum Effects in Biology

    NASA Astrophysics Data System (ADS)

    Mohseni, Masoud; Omar, Yasser; Engel, Gregory S.; Plenio, Martin B.

    2014-08-01

    List of contributors; Preface; Part I. Introduction: 1. Quantum biology: introduction Graham R. Fleming and Gregory D. Scholes; 2. Open quantum system approaches to biological systems Alireza Shabani, Masoud Mohseni, Seogjoo Jang, Akihito Ishizaki, Martin Plenio, Patrick Rebentrost, Alàn Aspuru-Guzik, Jianshu Cao, Seth Lloyd and Robert Silbey; 3. Generalized Förster resonance energy transfer Seogjoo Jang, Hoda Hossein-Nejad and Gregory D. Scholes; 4. Multidimensional electronic spectroscopy Tomáš Man?al; Part II. Quantum Effects in Bacterial Photosynthetic Energy Transfer: 5. Structure, function, and quantum dynamics of pigment protein complexes Ioan Kosztin and Klaus Schulten; 6. Direct observation of quantum coherence Gregory S. Engel; 7. Environment-assisted quantum transport Masoud Mohseni, Alàn Aspuru-Guzik, Patrick Rebentrost, Alireza Shabani, Seth Lloyd, Susana F. Huelga and Martin B. Plenio; Part III. Quantum Effects in Higher Organisms and Applications: 8. Excitation energy transfer in higher plants Elisabet Romero, Vladimir I. Novoderezhkin and Rienk van Grondelle; 9. Electron transfer in proteins Spiros S. Skourtis; 10. A chemical compass for bird navigation Ilia A. Solov'yov, Thorsten Ritz, Klaus Schulten and Peter J. Hore; 11. Quantum biology of retinal Klaus Schulten and Shigehiko Hayashi; 12. Quantum vibrational effects on sense of smell A. M. Stoneham, L. Turin, J. C. Brookes and A. P. Horsfield; 13. A perspective on possible manifestations of entanglement in biological systems Hans J. Briegel and Sandu Popescu; 14. Design and applications of bio-inspired quantum materials Mohan Sarovar, Dörthe M. Eisele and K. Birgitta Whaley; 15. Coherent excitons in carbon nanotubes Leonas Valkunas and Darius Abramavicius; Glossary; References; Index.

  12. Transport of Radioactive Material by Alpha Recoil

    SciTech Connect

    Icenhour, A.S.

    2005-05-19

    The movement of high-specific-activity radioactive particles (i.e., alpha recoil) has been observed and studied since the early 1900s. These studies have been motivated by concerns about containment of radioactivity and the protection of human health. Additionally, studies have investigated the potential advantage of alpha recoil to effect separations of various isotopes. This report provides a review of the observations and results of a number of the studies.

  13. Recoil by Auger electrons: Theory and application

    SciTech Connect

    Demekhin, Ph. V.; Scheit, S.; Cederbaum, L. S.

    2009-10-28

    General equations accounting for the molecular dynamics induced by the recoil of a fast Auger electron are presented. The implications of the degree of localization of the molecular orbitals of diatomic molecules involved in the Auger decay are analyzed. It is shown that the direct and exchange terms of the Auger transition matrix element may give rise to opposite signs and hence to opposite directions of the recoil momenta transferred to the nuclear vibrational motion. Consequently, these terms have a different impact on the recoil-induced nuclear dynamics in the final Auger decay state. The developed theory is applied to study the influence of the recoil on the interatomic Coulombic decay (ICD) following the K-LL Auger decay of the Ne dimer. Our calculations illustrate a significant effect of the recoil of nuclei on the computed wave packets propagating on the potential energy curve populated by the Auger decay. The corresponding final states of the Auger process decay further by ICD. We show that the recoil momentum imparted onto the nuclei modifies the computed ICD spectra considerably.

  14. Site-specific recoil diffraction of backscattered electrons in crystals.

    PubMed

    Winkelmann, Aimo; Vos, Maarten

    2011-02-25

    A novel diffraction effect in high-energy electron backscattering is demonstrated: the formation of element-specific diffraction patterns via nuclear recoil. For sapphire (Al(2)O(3)), the difference in recoil energy allows us to determine if an electron scattered from aluminum or from oxygen. The angular electron distribution obtained in such measurements is a strong function of the recoiling lattice site. These element-specific recoil diffraction features are explained using the dynamical theory of electron diffraction. Our observations open up new possibilities for local, element-resolved crystallographic analysis using quasielastically backscattered electrons in scanning electron microscopy. PMID:21405583

  15. Site-Specific Recoil Diffraction of Backscattered Electrons in Crystals

    NASA Astrophysics Data System (ADS)

    Winkelmann, Aimo; Vos, Maarten

    2011-02-01

    A novel diffraction effect in high-energy electron backscattering is demonstrated: the formation of element-specific diffraction patterns via nuclear recoil. For sapphire (Al2O3), the difference in recoil energy allows us to determine if an electron scattered from aluminum or from oxygen. The angular electron distribution obtained in such measurements is a strong function of the recoiling lattice site. These element-specific recoil diffraction features are explained using the dynamical theory of electron diffraction. Our observations open up new possibilities for local, element-resolved crystallographic analysis using quasielastically backscattered electrons in scanning electron microscopy.

  16. Casimir Effect for Quantum Graphs

    E-print Network

    Matrasulov, D U; Khabibullaev, P K; Saidov, A A

    2007-01-01

    The Casimir effects for one-dimensional fractal networks, so-called quantum graphs is studied. Based on the Green function approach for quantum graphs zero-point energy for some simplest topologies is written explicitly.

  17. Casimir Effect for Quantum Graphs

    E-print Network

    D. U. Matrasulov; J. R. Yusupov; P. K. Khabibullaev; A. A. Saidov

    2007-07-25

    The Casimir effects for one-dimensional fractal networks, so-called quantum graphs is studied. Based on the Green function approach for quantum graphs zero-point energy for some simplest topologies is written explicitly.

  18. Quantum Effects in Biological Systems

    NASA Astrophysics Data System (ADS)

    Roy, Sisir

    2014-07-01

    The debates about the trivial and non-trivial effects in biological systems have drawn much attention during the last decade or so. What might these non-trivial sorts of quantum effects be? There is no consensus so far among the physicists and biologists regarding the meaning of "non-trivial quantum effects". However, there is no doubt about the implications of the challenging research into quantum effects relevant to biology such as coherent excitations of biomolecules and photosynthesis, quantum tunneling of protons, van der Waals forces, ultrafast dynamics through conical intersections, and phonon-assisted electron tunneling as the basis for our sense of smell, environment assisted transport of ions and entanglement in ion channels, role of quantum vacuum in consciousness. Several authors have discussed the non-trivial quantum effects and classified them into four broad categories: (a) Quantum life principle; (b) Quantum computing in the brain; (c) Quantum computing in genetics; and (d) Quantum consciousness. First, I will review the above developments. I will then discuss in detail the ion transport in the ion channel and the relevance of quantum theory in brain function. The ion transport in the ion channel plays a key role in information processing by the brain.

  19. Gaussian effective potential: Quantum mechanics

    NASA Astrophysics Data System (ADS)

    Stevenson, P. M.

    1984-10-01

    We advertise the virtues of the Gaussian effective potential (GEP) as a guide to the behavior of quantum field theories. Much superior to the usual one-loop effective potential, the GEP is a natural extension of intuitive notions familiar from quantum mechanics. A variety of quantum-mechanical examples are studied here, with an eye to field-theoretic analogies. Quantum restoration of symmetry, dynamical mass generation, and "quantum-mechanical resuscitation" are among the phenomena discussed. We suggest how the GEP could become the basis of a systematic approximation procedure. A companion paper will deal with scalar field theory.

  20. Spin-orbit coupling and quantum spin Hall effect for neutral atoms without spin flips.

    PubMed

    Kennedy, Colin J; Siviloglou, Georgios A; Miyake, Hirokazu; Burton, William Cody; Ketterle, Wolfgang

    2013-11-27

    We propose a scheme which realizes spin-orbit coupling and the quantum spin Hall effect for neutral atoms in optical lattices without relying on near resonant laser light to couple different spin states. The spin-orbit coupling is created by modifying the motion of atoms in a spin-dependent way by laser recoil. The spin selectivity is provided by Zeeman shifts created with a magnetic field gradient. Alternatively, a quantum spin Hall Hamiltonian can be created by all-optical means using a period-tripling, spin-dependent superlattice. PMID:24329453

  1. Interpreting Recoil for Undergraduate Students

    ERIC Educational Resources Information Center

    Elsayed, Tarek A.

    2012-01-01

    The phenomenon of recoil is usually explained to students in the context of Newton's third law. Typically, when a projectile is fired, the recoil of the launch mechanism is interpreted as a reaction to the ejection of the smaller projectile. The same phenomenon is also interpreted in the context of the conservation of linear momentum, which is…

  2. Interpreting Recoil for Undergraduate Students

    NASA Astrophysics Data System (ADS)

    Elsayed, Tarek A.

    2012-04-01

    The phenomenon of recoil is usually explained to students in the context of Newton's third law. Typically, when a projectile is fired, the recoil of the launch mechanism is interpreted as a reaction to the ejection of the smaller projectile. The same phenomenon is also interpreted in the context of the conservation of linear momentum, which is closely related to Newton's third law. Since the actual microscopic causes of recoil differ from one problem to another, some students (and teachers) may not be satisfied with understanding recoil through the principles of conservation of linear momentum and Newton's third law. For these students, the origin of the recoil motion should be presented in more depth.

  3. Difference between a Photon's Momentum and an Atom's Recoil

    SciTech Connect

    Gibble, Kurt

    2006-08-18

    When an atom absorbs a photon from a laser beam that is not an infinite plane wave, the atom's recoil is less than ({Dirac_h}/2{pi})k in the propagation direction. We show that the recoils in the transverse directions produce a lensing of the atomic wave functions, which leads to a frequency shift that is not discrete but varies linearly with the field amplitude and strongly depends on the atomic state detection. The same lensing effect is also important for microwave atomic clocks. The frequency shifts are of the order of the naive recoil shift for the transverse wave vector of the photons.

  4. Effective Quantum Time Travel

    E-print Network

    Svetlichny, George

    2009-01-01

    The quantum teleportation protocol can be used to probabilistically simulate a quantum circuit with backward-in-time connections. This allows us to analyze some conceptual problems of time travel in the context of physically realizable situations, to realize encrypted measurements of future states for which the decryption key becomes available only after the state is created, and to probabilistically realize a multistage quantum state processing within the time needed to complete only one stage. The probabilistic nature of the process resolves any paradox.

  5. Effective Quantum Time Travel

    E-print Network

    George Svetlichny

    2009-02-27

    The quantum teleportation protocol can be used to probabilistically simulate a quantum circuit with backward-in-time connections. This allows us to analyze some conceptual problems of time travel in the context of physically realizable situations, to realize encrypted measurements of future states for which the decryption key becomes available only after the state is created, and to probabilistically realize a multistage quantum state processing within the time needed to complete only one stage. The probabilistic nature of the process resolves any paradox.

  6. Effective equations for the quantum pendulum from momentous quantum mechanics

    SciTech Connect

    Hernandez, Hector H.; Chacon-Acosta, Guillermo

    2012-08-24

    In this work we study the quantum pendulum within the framework of momentous quantum mechanics. This description replaces the Schroedinger equation for the quantum evolution of the system with an infinite set of classical equations for expectation values of configuration variables, and quantum dispersions. We solve numerically the effective equations up to the second order, and describe its evolution.

  7. Quantum effects in linguistic endeavors

    E-print Network

    F. Tito Arecchi

    2015-05-21

    Classifying the information content of neural spike trains in a linguistic endeavor, an uncertainty relation emerges between the bit size of a word and its duration. This uncertainty is associated with the task of synchronizing the spike trains of different duration representing different words. The uncertainty involves peculiar quantum features, so that word comparison amounts to measurement-based-quantum computation. Such a quantum behavior explains the onset and decay of the memory window connecting successive pieces of a linguistic text. The behavior here discussed is applicable to other reported evidences of quantum effects in human linguistic processes, so far lacking a plausible framework, since either no efforts to assign an appropriate quantum constant had been associated or speculating on microscopic processes dependent on Planck's constant resulted in unrealistic decoherence times.

  8. Quantum chaos and effective thermalization.

    PubMed

    Altland, Alexander; Haake, Fritz

    2012-02-17

    We demonstrate effective equilibration for unitary quantum dynamics under conditions of classical chaos. Focusing on the paradigmatic example of the Dicke model, we show how a constructive description of the thermalization process is facilitated by the Glauber Q or Husimi function, for which the evolution equation turns out to be of Fokker-Planck type. The equation describes a competition of classical drift and quantum diffusion in contractive and expansive directions. By this mechanism the system follows a "quantum smoothened" approach to equilibrium, which avoids the notorious singularities inherent to classical chaotic flows. PMID:22401203

  9. RECOILING SUPERMASSIVE BLACK HOLES IN SPIN-FLIP RADIO GALAXIES

    SciTech Connect

    Liu, F. K.; Wang Dong; Chen Xian

    2012-02-20

    Numerical relativity simulations predict that coalescence of supermassive black hole (SMBH) binaries leads not only to a spin flip but also to a recoiling of the merger remnant SMBHs. In the literature, X-shaped radio sources are popularly suggested to be candidates for SMBH mergers with spin flip of jet-ejecting SMBHs. Here we investigate the spectral and spatial observational signatures of the recoiling SMBHs in radio sources undergoing black hole spin flip. Our results show that SMBHs in most spin-flip radio sources have mass ratio q {approx}> 0.3 with a minimum possible value q{sub min} {approx_equal} 0.05. For major mergers, the remnant SMBHs can get a kick velocity as high as 2100 km s{sup -1} in the direction within an angle {approx}< 40 Degree-Sign relative to the spin axes of remnant SMBHs, implying that recoiling quasars are biased to be with high Doppler-shifted broad emission lines while recoiling radio galaxies are biased to large apparent spatial off-center displacements. We also calculate the distribution functions of line-of-sight velocity and apparent spatial off-center displacements for spin-flip radio sources with different apparent jet reorientation angles. Our results show that the larger the apparent jet reorientation angle is, the larger the Doppler-shifting recoiling velocity and apparent spatial off-center displacement will be. We investigate the effects of recoiling velocity on the dust torus in spin-flip radio sources and suggest that recoiling of SMBHs would lead to 'dust-poor' active galactic nuclei. Finally, we collect a sample of 19 X-shaped radio objects and for each object give the probability of detecting the predicted signatures of recoiling SMBH.

  10. Electron emission and recoil effects following the beta decay of He6

    NASA Astrophysics Data System (ADS)

    Schulhoff, Eva E.; Drake, G. W. F.

    2015-11-01

    Probabilities for atomic electron excitation (shake-up) and ionization (shake-off) are studied following the beta-decay process ?Li+6He6+e-+?¯e , and in particular, recoil-induced contributions to the shake-off probability are calculated within the nonrelativistic sudden approximation. A pseudostate expansion method together with Stieltjes imaging is used to represent the complete two-electron spectrum of final Li+6 ,Li26+, and Li36+ states. Results for the recoil correction show a 7 ? disagreement with the experiment of Carlson et al. [Phys. Rev. 129, 2220 (1963), 10.1103/PhysRev.129.2220]. A variety of sum rules, including a newly derived Thomas-Reich-Kuhn oscillator strength sum rule for dipole recoil terms, provides tight constraints on the accuracy of the results. Calculations are performed for the helium 1 s 2 s 3S metastable state, as well as for the 1 s21S ground state. Our results would reduce the recoil-induced correction to the measured electroneutrino coupling constant ae ? from the apparent 0.6% used in the experiments to 0.09%.

  11. Effective equations for quantum dynamics

    E-print Network

    Benjamin Schlein

    2012-08-01

    We report on recent results concerning the derivation of effective evolution equations starting from many body quantum dynamics. In particular, we obtain rigorous derivations of nonlinear Hartree equations in the bosonic mean field limit, with precise bounds on the rate of convergence. Moreover, we present a central limit theorem for the fluctuations around the Hartree dynamics.

  12. Quantum computing of quantum chaos and imperfection effects

    E-print Network

    Pil Hun Song; Dima L. Shepelyansky

    2000-09-01

    We study numerically the imperfection effects in the quantum computing of the kicked rotator model in the regime of quantum chaos. It is shown that there are two types of physical characteristics: for one of them the quantum computation errors grow exponentially with the number of qubits in the computer while for the other the growth is polynomial. Certain similarity between classical and quantum computing errors is also discussed.

  13. Effective Constraints for Quantum Systems

    E-print Network

    Martin Bojowald; Barbara Sandhoefer; Aureliano Skirzewski; Artur Tsobanjan

    2008-04-21

    An effective formalism for quantum constrained systems is presented which allows manageable derivations of solutions and observables, including a treatment of physical reality conditions without requiring full knowledge of the physical inner product. Instead of a state equation from a constraint operator, an infinite system of constraint functions on the quantum phase space of expectation values and moments of states is used. The examples of linear constraints as well as the free non-relativistic particle in parameterized form illustrate how standard problems of constrained systems can be dealt with in this framework.

  14. Effective Gain Measurement in Quantum Cascade Lasers

    E-print Network

    Petta, Jason

    Effective Gain Measurement in Quantum Cascade Lasers A new method to measure gain in Quantum, PRISM, *BYU Supported by NSF, PRISM #12;Outline Lasers ­ The Basics Quantum Cascade Lasers Gain and Loss unchanged http://www.ux1.eiu.edu/~cfadd/1160/Ch29Atm/Laser.html #12;Quantum Cascade Laser Laser Bar Sample

  15. Wave kinetics of relativistic quantum plasmas

    SciTech Connect

    Mendonca, J. T.

    2011-06-15

    A quantum kinetic equation, valid for relativistic unmagnetized plasmas, is derived here. This equation describes the evolution of a quantum quasi-distribution, which is the Wigner function for relativistic spinless charged particles in a plasma, and it is exactly equivalent to a Klein-Gordon equation. Our quantum kinetic equation reduces to the Vlasov equation in the classical limit, where the Wigner function is replaced by a classical distribution function. An approximate form of the quantum kinetic equation is also derived, which includes first order quantum corrections. This is applied to electron plasma waves, for which a new dispersion relation is obtained. It is shown that quantum recoil effects contribute to the electron Landau damping with a third order derivative term. The case of high frequency electromagnetic waves is also considered. Its dispersion relation is shown to be insensitive to quantum recoil effects for equilibrium plasma distributions.

  16. Quantum channels and memory effects

    E-print Network

    F. Caruso; V. Giovannetti; C. Lupo; S. Mancini

    2014-12-15

    Any physical process can be represented as a quantum channel mapping an initial state to a final state. Hence it can be characterized from the point of view of communication theory, i.e., in terms of its ability to transfer information. Quantum information provides a theoretical framework and the proper mathematical tools to accomplish this. In this context the notion of codes and communication capacities have been introduced by generalizing them from the classical Shannon theory of information transmission and error correction. The underlying assumption of this approach is to consider the channel not as acting on a single system, but on sequences of systems, which, when properly initialized allow one to overcome the noisy effects induced by the physical process under consideration. While most of the work produced so far has been focused on the case in which a given channel transformation acts identically and independently on the various elements of the sequence (memoryless configuration in jargon), correlated error models appear to be a more realistic way to approach the problem. A slightly different, yet conceptually related, notion of correlated errors applies to a single quantum system which evolves continuously in time under the influence of an external disturbance which acts on it in a non-Markovian fashion. This leads to the study of memory effects in quantum channels: a fertile ground where interesting novel phenomena emerge at the intersection of quantum information theory and other branches of physics. A survey is taken of the field of quantum channels theory while also embracing these specific and complex settings.

  17. Interface effect in coupled quantum wells

    SciTech Connect

    Hao, Ya-Fei

    2014-06-28

    This paper intends to theoretically investigate the effect of the interfaces on the Rashba spin splitting of two coupled quantum wells. The results show that the interface related Rashba spin splitting of the two coupled quantum wells is both smaller than that of a step quantum well which has the same structure with the step quantum well in the coupled quantum wells. And the influence of the cubic Dresselhaus spin-orbit interaction of the coupled quantum wells is larger than that of a step quantum well. It demonstrates that the spin relaxation time of the two coupled quantum wells will be shorter than that of a step quantum well. As for the application in the spintronic devices, a step quantum well may be better than the coupled quantum wells, which is mentioned in this paper.

  18. Median recoil direction as a WIMP directional detection signal

    SciTech Connect

    Green, Anne M.; Morgan, Ben

    2010-03-15

    Direct detection experiments have reached the sensitivity to detect dark matter weakly interacting massive particles (WIMPs). Demonstrating that a putative signal is due to WIMPs, and not backgrounds, is a major challenge, however. The direction dependence of the WIMP scattering rate provides a potential WIMP 'smoking gun'. If the WIMP distribution is predominantly smooth, the Galactic recoil distribution is peaked in the direction opposite to the direction of Solar motion. Previous studies have found that, for an ideal detector, of order 10 WIMP events would be sufficient to reject isotropy, and rule out an isotropic background. We examine how the median recoil direction could be used to confirm the WIMP origin of an anisotropic recoil signal. Specifically, we determine the number of events required to confirm the direction of solar motion as the median inverse recoil direction at 95% confidence. We find that for zero background 31 events are required, a factor of {approx}2 more than are required to simply reject isotropy. We also investigate the effect of a nonzero isotropic background. As the background rate is increased the number of events required increases, initially fairly gradually and then more rapidly, once the signal becomes subdominant. We also discuss the effect of features in the speed distribution at large speeds, as found in recent high resolution simulations, on the median recoil direction.

  19. Quantum mechanical effects from deformation theory

    SciTech Connect

    Much, A.

    2014-02-15

    We consider deformations of quantum mechanical operators by using the novel construction tool of warped convolutions. The deformation enables us to obtain several quantum mechanical effects where electromagnetic and gravitomagnetic fields play a role. Furthermore, a quantum plane can be defined by using the deformation techniques. This in turn gives an experimentally verifiable effect.

  20. Nuclear Quantum Effects in Water

    NASA Astrophysics Data System (ADS)

    Morrone, Joseph A.; Car, Roberto

    2008-07-01

    A path-integral Car-Parrinello molecular dynamics simulation of liquid water and ice is performed. It is found that the inclusion of nuclear quantum effects systematically improves the agreement of first-principles simulations of liquid water with experiment. In addition, the proton momentum distribution is computed utilizing a recently developed open path-integral molecular dynamics methodology. It is shown that these results are in good agreement with experimental data.

  1. Nuclear quantum effects in water

    E-print Network

    Joseph A. Morrone; Roberto Car

    2008-03-25

    In this work, a path integral Car-Parrinello molecular dynamics simulation of liquid water is performed. It is found that the inclusion of nuclear quantum effects systematically improves the agreement of first principles simulations of liquid water with experiment. In addition, the proton momentum distribution is computed utilizing a recently developed open path integral molecular dynamics methodology. It is shown that these results are in good agreement with neutron Compton scattering data for liquid water and ice.

  2. NMR Investigation of the Quantum Piegonhole Effect

    E-print Network

    Anjusha V. S.; Swathi S. Hegde; T. S Mahesh

    2015-12-14

    Quantum simulators based on nuclear spin-systems controlled by NMR techniques have been used for studying various quantum phenomena. In this work, using a four-qubit NMR quantum simulator, we investigate the recently postulated quantum pigeon-hole effect. In mathematics, the pigeonhole effect is described by a set of three objects being allocated with only two containers. Classically, one would expect at least one container to accommodate more than one object. However, recently it was predicted that there exist quantum scenarios wherein three quantum particles appear to reside in two containers in such a way that no two particles can be simultaneously assigned with a single container. In our experiments, quantum pigeons are emulated by three nuclear qubits whose states are probed jointly and noninvasively by an ancillary spin. The qubit-states $\\{\\ket{0}$, $\\ket{1}\\}$ emulate the two containers available for each of the qubits. The experimental results are in good agreement with quantum theoretical predictions.

  3. NMR simulation of Quantum Pigeonhole Effect

    E-print Network

    Anjusha V. S.; Swathi S. Hegde; T. S Mahesh

    2015-09-14

    Quantum simulators based on nuclear spin-systems controlled by NMR techniques have been used for studying various quantum phenomena. In this work, using a four-qubit NMR quantum simulator, we investigate the recently postulated quantum pigeon-hole effect. In mathematics, the pigeonhole effect is described by a set of three objects being allocated with only two containers. Classically, one would expect at least one container to accommodate more than one object. However, recently it was predicted that there exist quantum scenarios wherein three quantum particles appear to reside in two containers in such a way that no two particles can be simultaneously assigned with a single container. In our experiments, quantum pigeons are emulated by three nuclear qubits whose states are probed jointly and noninvasively by an ancillary spin. The qubit-states $\\{\\ket{0}$, $\\ket{1}\\}$ emulate the two containers available for each of the qubits. The experimental results are in good agreement with quantum theoretical predictions.

  4. Planck's Quantum-Driven Integer Quantum Hall Effect in Chaos

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Tian, Chushun

    2014-11-01

    We find in a canonical chaotic system, the kicked spin-1 /2 rotor, a Planck's quantum(he)-driven phenomenon bearing a close analogy to the integer quantum Hall effect but of chaos origin. Specifically, the rotor's energy growth is unbounded ("metallic" phase) for a discrete set of critical values of he, but otherwise bounded ("insulating" phase). The latter phase is topological and characterized by a quantum number ("quantized Hall conductance"). The number jumps by unity whenever he passes through each critical value as it decreases. Our findings indicate that rich topological quantum phenomena can emerge from chaos.

  5. Quantum Zeno Effect in the Measurement Problem

    NASA Technical Reports Server (NTRS)

    Namiki, Mikio; Pasaczio, Saverio

    1996-01-01

    Critically analyzing the so-called quantum Zeno effect in the measurement problem, we show that observation of this effect does not necessarily mean experimental evidence for the naive notion of wave-function collapse by measurement (the simple projection rule). We also examine what kind of limitation the uncertainty relation and others impose on the observation of the quantum Zeno effect.

  6. Interpreting Recoil Motion for Undergraduate Students

    E-print Network

    Mokhiemer, Tarek Ahmed

    2007-01-01

    In this paper, I outline some problems in the students' understanding of the reason of recoil motion when introduced to them in the context of Newton's third law. I propose to explain the origin of recoil and the fundamental mechanism which produces this motion when presenting recoil to students to give them more insight into the physical processes involved. This mechanism differs from one system to another. Several examples that can be easily implemented in the classroom environment are given in this paper. Such a deep understanding of recoil may reflect on the level of understanding of other physical phenomena sought by students.

  7. Electron recombination in low-energy nuclear recoils tracks in liquid argon

    E-print Network

    Wojcik, Mariusz

    2015-01-01

    This paper presents an analysis of electron-ion recombination processes in ionization tracks of recoiled atoms in liquid argon (LAr) detectors. The analysis is based on the results of computer simulations which use realistic models of electron transport and reactions. The calculations reproduce the recent experimental results of the ionization yield from 6.7 keV nuclear recoils in LAr. The statistical distribution of the number of electrons that escape recombination is found to deviate from the binomial distribution, and estimates of recombination fluctuations for nuclear recoils tracks are obtained. A study of the recombination kinetics shows that a significant part of electrons undergo very fast static recombination, an effect that may be responsible for the weak drift-field dependence of the ionization yield from nuclear recoils in some noble liquids. The obtained results can be useful in the search for hypothetical dark matter particles and in other studies that involve detection of recoiled nuclei.

  8. Maxwell-Garnett effective medium theory: Quantum nonlocal effects

    SciTech Connect

    Moradi, Afshin

    2015-04-15

    We develop the Maxwell-Garnett theory for the effective medium approximation of composite materials with metallic nanoparticles by taking into account the quantum spatial dispersion effects in dielectric response of nanoparticles. We derive a quantum nonlocal generalization of the standard Maxwell-Garnett formula, by means the linearized quantum hydrodynamic theory in conjunction with the Poisson equation as well as the appropriate additional quantum boundary conditions.

  9. Quantum communication complexity using the quantum Zeno effect

    NASA Astrophysics Data System (ADS)

    Tavakoli, Armin; Anwer, Hammad; Hameedi, Alley; Bourennane, Mohamed

    2015-07-01

    The quantum Zeno effect (QZE) is the phenomenon in which the unitary evolution of a quantum state is suppressed, e.g., due to frequent measurements. Here, we investigate the use of the QZE in a class of communication complexity problems (CCPs). Quantum entanglement is known to solve certain CCPs beyond classical constraints. However, recent developments have yielded CCPs for which superclassical results can be obtained using only communication of a single d -level quantum state (qudit) as a resource. In the class of CCPs considered here, we show quantum reduction of complexity in three ways: using (i) entanglement and the QZE, (ii) a single qudit and the QZE, and (iii) a single qudit. We have performed a proof of concept experimental demonstrations of three party CCP protocol based on single-qubit communication with and without QZE.

  10. Nonlinear effects in quantum dissipation

    NASA Astrophysics Data System (ADS)

    Vitali, David; Grigolini, Paolo

    1990-12-01

    We study a two-level system linearly interacting with a set of quantum-mechanical oscillators, referred to as the ``bath.'' This system is formally equivalent to a magnetic dipole, with spin 1/2, precessing with the Larmor frequency ?0 around a fixed magnetic field along the z axis and undergoing the influence of a fluctuating field along the x axis. These bath fluctuations are not independent of the state of the spin, and the crucial problem to be studied in this paper is precisely how to take the reaction field, i.e., the influence of the bath on the system, into account. We find a general result based on neglecting a contribution to the reaction field proportional to ?x(t)-, where the angle brackets denote averaging on both the spin and the bath space, with a density matrix corresponding to the spin polarized along the x axis. We show that under the special condition that the spin does not significantly depart from its initial state, our general result turns out to coincide with the noninteracting-blip approximation (NBA) of Leggett and co-workers [Rev. Mod. Phys. 59, 1 (1987)]. When we make the assumption that both quantum and thermal fluctuations of the bath can be neglected and that the time scale of the bath is virtually zero (adiabatic assumption), our general result turns out to coincide with the prediction of the discrete nonlinear Schrödinger equation (DNSE) of Davydov and Kislukha [Phys. Status Solidi B 59, 465 (1973)] and Davydov $[-Biology and Quantum Mechanics (Pergamon, Oxford, 1982)] in the two-sites case. This means that the nonlinear effects proven by Kenkre and co-workers [Phys. Rev. B 34, 4959 (1986); 35, 1473 (1987)] to accompany a significant departure of the spin from the initial state are lost by the NBA. On the other hand, our approach provides a rigorous evaluation of the effects of the oscillator fluctuations on the predictions of the DNSE. It is shown that the quantum fluctuations might have a significant role also in the region of high temperature to which the nonadiabatic corrections of Kenkre and co-workers apply. Finally, it is shown that a still more accurate approximation would be that of neglecting a reaction field proportional to ?x(t)-s, where s denotes an average carried out only on the spin space. This approximation leads our approach to coincide with the exact result in the special case where both the spin and its bath are replaced by their classical counterparts. Under this approximation, the detrapping would be equivalent to an Arrhenius-like thermal-activation process. When the coupling strength between the system and its bath is decreased, the spin is expected to depart from the initial trapped state. The dynamics of this process is expected to be influenced by the joint action of the bath fluctuations (both thermal and quantum mechanical) and of the nonlinearity stemming from the reaction field, and ignored by the NBA. This intriguing problem should be the subject of further investigations.

  11. Quantum Zeno effect in parameter estimation

    NASA Astrophysics Data System (ADS)

    Kiilerich, Alexander Holm; Mølmer, Klaus

    2015-09-01

    The quantum Zeno effect freezes the evolution of a quantum system subject to frequent measurements. We apply a Fisher information analysis to show that because of this effect, a closed quantum system should be probed as rarely as possible, while a dissipative quantum system should be probed at specifically determined intervals to yield the optimal estimation of parameters governing the system dynamics. With a Bayesian analysis we show that a few frequent measurements are needed to identify the parameter region within which the Fisher information analysis applies.

  12. Thermodynamic magnon recoil for domain wall motion

    NASA Astrophysics Data System (ADS)

    Yan, Peng; Cao, Yunshan; Sinova, Jairo

    2015-09-01

    We predict a thermodynamic magnon recoil effect for domain wall motions in the presence of temperature gradients. All current thermodynamic theories assert that a magnetic domain wall must move toward the hotter side, based on equilibrium thermodynamic arguments. Microscopic calculations, on the other hand, show that a domain wall can move either along or against the direction of heat currents, depending on how strong the magnonic heat currents are reflected by the domain wall. We have resolved the inconsistency between these two approaches by augmenting the theory in the presence of thermal gradients by incorporating in the free energy of domain walls a heat current term present in nonequilibrium steady states. The condition to observe a domain wall propagation toward the colder regime is derived analytically and can be tested by future experiments.

  13. Effective quantum field theories in general spacetimes

    E-print Network

    Andreas Raab

    2013-02-17

    We introduce regular charts as physical reference frames in spacetime, and we show that general spacetimes can always be fully captured by regular charts. Effective quantum field theories (QFTs) can be conveniently defined in regular reference frames, and the definition is independent of specific background metric and independent of specific regular reference frame. As a consequence, coupling to classical gravity is possible in effective QFTs without getting back-reaction effects. Moreover, we present an approach to effective QFTs including quantum gravity.

  14. Recoil-decay tagging spectroscopy of 74162W88

    NASA Astrophysics Data System (ADS)

    Li, H. J.; Cederwall, B.; Bäck, T.; Qi, C.; Doncel, M.; Jakobsson, U.; Auranen, K.; Bönig, S.; Drummond, M. C.; Grahn, T.; Greenlees, P.; HerzáÅ, A.; Julin, R.; Juutinen, S.; Konki, J.; Kröll, T.; Leino, M.; McPeake, C.; O'Donnell, D.; Page, R. D.; Pakarinen, J.; Partanen, J.; Peura, P.; Rahkila, P.; Ruotsalainen, P.; Sandzelius, M.; Sarén, J.; Say??, B.; Scholey, C.; Sorri, J.; Stolze, S.; Taylor, M. J.; Thornthwaite, A.; Uusitalo, J.; Xiao, Z. G.

    2015-07-01

    Excited states in the highly neutron-deficient nucleus 162W have been investigated via the 92Mo (78Kr,2? ) 162W reaction. Prompt ? rays were detected by the JUROGAM II high-purity germanium detector array and the recoiling fusion-evaporation products were separated by the recoil ion transport unit (RITU) gas-filled recoil separator and identified with the gamma recoil electron alpha tagging (GREAT) spectrometer at the focal plane of RITU. ? rays from 162W were identified uniquely using mother-daughter and mother-daughter-granddaughter ? -decay correlations. The observation of a rotational-like ground-state band is interpreted within the framework of total Routhian surface (TRS) calculations, which suggest an axially symmetric ground-state shape with a ? -soft minimum at ?2?0.15 . Quasiparticle alignment effects are discussed based on cranked shell model calculations. New measurements of the 162W ground-state ? -decay energy and half-life were also performed. The observed ? -decay energy agrees with previous measurements. The half-life of 162W was determined to be t1 /2=990 (30 ) ms. This value deviates significantly from the currently adopted value of t1 /2=1360 (70 ) ms. In addition, the ? -decay energy and half-life of 166Os were measured and found to agree with the adopted values.

  15. Quantum effects in the understanding of consciousness.

    PubMed

    Hameroff, Stuart R; Craddock, Travis J A; Tuszynski, Jack A

    2014-06-01

    This paper presents a historical perspective on the development and application of quantum physics methodology beyond physics, especially in biology and in the area of consciousness studies. Quantum physics provides a conceptual framework for the structural aspects of biological systems and processes via quantum chemistry. In recent years individual biological phenomena such as photosynthesis and bird navigation have been experimentally and theoretically analyzed using quantum methods building conceptual foundations for quantum biology. Since consciousness is attributed to human (and possibly animal) mind, quantum underpinnings of cognitive processes are a logical extension. Several proposals, especially the Orch OR hypothesis, have been put forth in an effort to introduce a scientific basis to the theory of consciousness. At the center of these approaches are microtubules as the substrate on which conscious processes in terms of quantum coherence and entanglement can be built. Additionally, Quantum Metabolism, quantum processes in ion channels and quantum effects in sensory stimulation are discussed in this connection. We discuss the challenges and merits related to quantum consciousness approaches as well as their potential extensions. PMID:25012711

  16. The Collective Atomic Recoil Laser

    SciTech Connect

    Courteille, Ph.W.; Cube, C. avon; Deh, B.; Kruse, D.; Ludewig, A.; Slama, S.; Zimmermann, C.

    2005-05-05

    An ensemble of periodically ordered atoms coherently scatters the light of an incident laser beam. The scattered and the incident light may interfere and give rise to a light intensity modulation and thus to optical dipole forces which, in turn, emphasize the atomic ordering. This positive feedback is at the origin of the collective atomic recoil laser (CARL). We demonstrate this dynamics using ultracold atoms confined by dipole forces in a unidirectionally pumped far red-detuned high-finesse optical ring cavity. Under the influence of an additional dissipative force exerted by an optical molasses the atoms, starting from an unordered distribution, spontaneously form a density grating moving at constant velocity. Additionally, steady state lasing is observed in the reverse direction if the pump laser power exceeds a certain threshold. We compare the dynamics of the atomic trajectories to the behavior of globally coupled oscillators, which exhibit phase transitions from incoherent to coherent states if the coupling strength exceeds a critical value.

  17. Fractional quantum Hall effect revisited

    NASA Astrophysics Data System (ADS)

    Jacak, J.; ?yd?ba, P.; Jacak, L.

    2015-10-01

    The topology-based explanation of the fractional quantum Hall effect (FQHE) is summarized. The cyclotron braid subgroups crucial for this approach are introduced in order to identify the origin of the Laughlin correlations in 2D (two-dimensional) Hall systems. Flux-tubes and vortices for composite fermions in their standard constructions are explained in terms of cyclotron braids. The derivation of the hierarchy of the FQHE is proposed by mapping onto the integer effect within the topology-based approach. The experimental observations of the FQHE supporting the cyclotron braid picture are reviewed with a special attention paid to recent experiments with a suspended graphene. The triggering role of a carrier mobility for organization of the fractional state in Hall configuration is emphasized. The prerequisites for the FQHE are indicated including topological conditions substantially increasing the previously accepted set of physical necessities. The explanation of numerical studies by exact diagonalizations of the fractional Chern insulator states is formulated in terms of the topology condition applied to the Berry field flux quantization. Some new ideas withz regard to the synthetic fractional states in the optical lattices are also formulated.

  18. Effective scenario of loop quantum cosmology.

    PubMed

    Ding, You; Ma, Yongge; Yang, Jinsong

    2009-02-01

    Semiclassical states in isotropic loop quantum cosmology are employed to show that the improved dynamics has the correct classical limit. The effective Hamiltonian for the quantum cosmological model with a massless scalar field is thus obtained, which incorporates also the next to leading order quantum corrections. The possibility that the higher order correction terms may lead to significant departure from the leading order effective scenario is revealed. If the semiclassicality of the model is maintained in the large scale limit, there are great possibilities for a k=0 Friedmann expanding universe to undergo a collapse in the future due to the quantum gravity effect. Thus the quantum bounce and collapse may contribute a cyclic universe in the new scenario. PMID:19257499

  19. About the importance of the nuclear recoil in ?emission near the DNA

    E-print Network

    E. Lodi Rizzini; A. Bianconi; M. Corradini; M. Leali; V. Mascagna; L. Venturelli; N. Zurlo

    2011-07-19

    The effect of the energy deposition inside the human body made by radioactive substances is discussed. For the first time, we stress the importance of the recoiling nucleus in such reactions, particularly concerning the damage caused on the DNA structure.

  20. Discrete quantum geometries and their effective dimension

    E-print Network

    Johannes Thürigen

    2015-10-29

    In several approaches towards a quantum theory of gravity, such as group field theory and loop quantum gravity, quantum states and histories of the geometric degrees of freedom turn out to be based on discrete spacetime. The most pressing issue is then how the smooth geometries of general relativity, expressed in terms of suitable geometric observables, arise from such discrete quantum geometries in some semiclassical and continuum limit. In this thesis I tackle the question of suitable observables focusing on the effective dimension of discrete quantum geometries. For this purpose I give a purely combinatorial description of the discrete structures which these geometries have support on. As a side topic, this allows to present an extension of group field theory to cover the combinatorially larger kinematical state space of loop quantum gravity. Moreover, I introduce a discrete calculus for fields on such fundamentally discrete geometries with a particular focus on the Laplacian. This permits to define the effective-dimension observables for quantum geometries. Analysing various classes of quantum geometries, I find as a general result that the spectral dimension is more sensitive to the underlying combinatorial structure than to the details of the additional geometric data thereon. Semiclassical states in loop quantum gravity approximate the classical geometries they are peaking on rather well and there are no indications for stronger quantum effects. On the other hand, in the context of a more general model of states which are superposition over a large number of complexes, based on analytic solutions, there is a flow of the spectral dimension from the topological dimension $d$ on low energy scales to a real number $0<\\alphaquantum geometry as effectively fractal.

  1. Discrete quantum geometries and their effective dimension

    E-print Network

    Thürigen, Johannes

    2015-01-01

    In several approaches towards a quantum theory of gravity, such as group field theory and loop quantum gravity, quantum states and histories of the geometric degrees of freedom turn out to be based on discrete spacetime. The most pressing issue is then how the smooth geometries of general relativity, expressed in terms of suitable geometric observables, arise from such discrete quantum geometries in some semiclassical and continuum limit. In this thesis I tackle the question of suitable observables focusing on the effective dimension of discrete quantum geometries. For this purpose I give a purely combinatorial description of the discrete structures which these geometries have support on. As a side topic, this allows to present an extension of group field theory to cover the combinatorially larger kinematical state space of loop quantum gravity. Moreover, I introduce a discrete calculus for fields on such fundamentally discrete geometries with a particular focus on the Laplacian. This permits to define the ef...

  2. Doppler- and recoil-free laser excitation of Rydberg states via three-photon transitions

    SciTech Connect

    Ryabtsev, I. I.; Beterov, I. I.; Tretyakov, D. B.; Entin, V. M.; Yakshina, E. A.

    2011-11-15

    Three-photon laser excitation of Rydberg states by three different laser beams can be arranged in a starlike geometry that simultaneously eliminates the recoil effect and Doppler broadening. Our analytical and numerical calculations for a particular laser excitation scheme 5S{sub 1/2}{yields}5P{sub 3/2}{yields}6S{sub 1/2}{yields}nP in Rb atoms have shown that, compared to the one- and two-photon laser excitation, this approach provides much narrower linewidth and longer coherence time for both cold atom samples and hot vapors, if the intermediate one-photon resonances of the three-photon transition are detuned by more than respective single-photon Doppler widths. This method can be used to improve fidelity of Rydberg quantum gates and precision of spectroscopic measurements in Rydberg atoms.

  3. Retention studies of recoiling daughter nuclides of 225Ac in polymer vesicles.

    PubMed

    Wang, G; de Kruijff, R M; Rol, A; Thijssen, L; Mendes, E; Morgenstern, A; Bruchertseifer, F; Stuart, M C A; Wolterbeek, H T; Denkova, A G

    2014-02-01

    Alpha radionuclide therapy is steadily gaining importance and a large number of pre-clinical and clinical studies have been carried out. However, due to the recoil effects the daughter recoil atoms, most of which are alpha emitters as well, receive energies that are much higher than the energies of chemical bonds resulting in decoupling of the radionuclide from common targeting agents. Here, we demonstrate that polymer vesicles (i.e. polymersomes) can retain recoiling daughter nuclei based on an experimental study examining the retention of (221)Fr and (213)Bi when encapsulating (225)Ac. PMID:24374072

  4. Quantum Hamlet Effect- a New Example

    E-print Network

    Vladan Pankovi?

    2009-11-06

    In this work we consider a new example of the recently introduced quantum Hamlet effect. We consider an especial, abstract, "unstable" quantum system whose dynamical evolution during a small time interval is interrupted by frequent measurements. Here three different final situations exist. First one corresponds to quantum Zeno effect, second one - to quantum anti-Zeno effect and third one - to so-called quantum Hamlet effect. By quantum Zeno effect final "non-decay" probability is function of number of the decay measurements variable and "dynamical degree" parameter equivalent to two. When measurements number tends toward infinity "non-decay" probability has the one limit, or, it tends analytically toward one and system stands "non-decayed". By quantum anti-Zeno effect final "non-decay" probability is function of number of the decay measurements variable and "dynamical degree" parameter equivalent to one. When measurements number tends toward infinity "non-decay" probability has the zero limit, or, it tends analytically toward zero and system becomes "decayed". By quantum Hamlet effect, final "non-decay" probability is function of two variable, number of the decay measurements and "dynamical degree". When measurements number tends toward infinity and "dynamical degree" toward one, final "non-decay" probability depends not only of final value of given variables, but, also, on the ways on which given variables tends toward their final values. It means that final "no-decay" probability has not (analytical) limit, or that there is no {\\it analytical} prediction on the final "no-decay" probability. To be "decayed" or "no-decayed" that is analytically unsolvable question for given quantum system.

  5. Gas powered fluid gun with recoil mitigation

    DOEpatents

    Grubelich, Mark C; Yonas, Gerold

    2013-11-12

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  6. Precision spectroscopy by photon-recoil signal amplification.

    PubMed

    Wan, Yong; Gebert, Florian; Wübbena, Jannes B; Scharnhorst, Nils; Amairi, Sana; Leroux, Ian D; Hemmerling, Börge; Lörch, Niels; Hammerer, Klemens; Schmidt, Piet O

    2014-01-01

    Precision spectroscopy of atomic and molecular ions offers a window to new physics, but is typically limited to species with a cycling transition for laser cooling and detection. Quantum logic spectroscopy has overcome this limitation for species with long-lived excited states. Here we extend quantum logic spectroscopy to fast, dipole-allowed transitions and apply it to perform an absolute frequency measurement. We detect the absorption of photons by the spectroscopically investigated ion through the photon recoil imparted on a co-trapped ion of a different species, on which we can perform efficient quantum logic detection techniques. This amplifies the recoil signal from a few absorbed photons to thousands of fluorescence photons. We resolve the line centre of a dipole-allowed transition in (40)Ca(+) to 1/300 of its observed linewidth, rendering this measurement one of the most accurate of a broad transition. The simplicity and versatility of this approach enables spectroscopy of many previously inaccessible species. PMID:24477261

  7. Nuclear quantum effects in water

    NASA Astrophysics Data System (ADS)

    Morrone, Joseph; Car, Roberto

    2008-03-01

    In this work, a path integral Car-Parrinello molecular dynamicsootnotetextCPMD V3.11 Copyright IBM Corp 1990-2006, Copyright MPI fuer Festkoerperforschung Stuttgart 1997-2001. simulation of liquid water is performed. It is found that the inclusion of nuclear quantum effects systematically improves the agreement of first-principles simulations of liquid water with experiment. In addition, the proton momentum distribution is computed utilizing a recently developed ``open'' path integral molecular dynamics methodologyootnotetextJ.A. Morrone, V. Srinivasan, D. Sebastiani, R. Car J. Chem. Phys. 126 234504 (2007).. It is shown that these results, which are consistent with our computations of the liquid structure, are in good agreement with neutron Compton scattering dataootnotetextG.F. Reiter, J.C. Li, J. Mayers, T. Abdul-Redah, P. Platzman Braz. J. Phys. 34 142 (2004).. The remaining discrepancies between experiment and the present results are indicative of some degree of over-binding in the hydrogen bond network, likely engendered by the use of semi-local approximations to density functional theory in order to describe the electronic structure.

  8. Casimir effect and quantum reflection

    E-print Network

    Gabriel Dufour; Romain Guérout; Astrid Lambrecht; Serge Reynaud

    2015-11-12

    The GBAR experiment will time the free fall of cold antihydrogen atoms dropped onto an annihilation plate to test the universality of free fall on antimatter. In this contribution, we study the quantum reflection of the anti-atom resulting from the Casimir-Polder attraction to the plate. We evaluate the Casimir-Polder potential and the associated quantum reflection amplitudes and find that reflection is enhanced for weaker potentials. A Liouville transformation of the Schr\\"odinger equation is used to map the quantum reflection problem onto an equivalent problem of scattering on a barrier, leading to an intuitive understanding of the phenomenon.

  9. Effective constraints for relativistic quantum systems

    SciTech Connect

    Bojowald, Martin; Tsobanjan, Artur

    2009-12-15

    Determining the physical Hilbert space is often considered the most difficult but crucial part of completing the quantization of a constrained system. In such a situation it can be more economical to use effective constraint methods, which are extended here to relativistic systems as they arise for instance in quantum cosmology. By sidestepping explicit constructions of states, such tools allow one to arrive much more feasibly at results for physical observables at least in semiclassical regimes. Several questions discussed recently regarding effective equations and state properties in quantum cosmology, including the spreading of states and quantum backreaction, are addressed by the examples studied here.

  10. Scintillation Response of Liquid Xenon to Low Energy Nuclear Recoils

    E-print Network

    E. Aprile; K. L. Giboni; P. Majewski; K. Ni; M. Yamashita; R. Hasty; A. Manzur; D. N. McKinsey

    2005-03-29

    Liquid Xenon (LXe) is expected to be an excellent target and detector medium to search for dark matter in the form of Weakly Interacting Massive Particles (WIMPs). Knowledge of LXe ionization and scintillation response to low energy nuclear recoils expected from the scattering of WIMPs by Xe nuclei is important for determining the sensitivity of LXe direct detection experiments. Here we report on new measurements of the scintillation yield of Xe recoils with kinetic energy as low as 10 keV. The dependence of the scintillation yield on applied electric field was also measured in the range of 0 to 4 kV/cm. Results are in good agreement with recent theoretical predictions that take into account the effect of biexcitonic collisions in addition to the nuclear quenching effect.

  11. Recoil polarimetery in meson photoproduction reactions 

    E-print Network

    Sikora, Mark

    2011-11-23

    A large acceptance polarimeter has been designed to measure recoil polarisation in pseudoscalar (J?=0?) meson photoproduction reactions. The device was installed at the MAMI facility at the Institut für Kernphysik in ...

  12. Generalized effective description of loop quantum cosmology

    E-print Network

    Ashtekar, Abhay

    2015-01-01

    The effective description of loop quantum cosmology (LQC) has proved to be a convenient platform to study phenomenological implications of the quantum bounce that resolves the classical big-bang singularity. Originally, this description was derived using Gaussian quantum states with small dispersions. In this paper we present a generalization to incorporate states with large dispersions. Specifically, we derive the \\emph{generalized} effective Friedmann and Raychaudhuri equations and propose a generalized effective Hamiltonian which are being used in an ongoing study of the phenomenological consequences of a broad class of quantum geometries. We also discuss an interesting interplay between the physics of states with larger dispersions in standard LQC, and of sharply peaked states in (hypothetical) LQC theories with larger area gap.

  13. Generalized effective description of loop quantum cosmology

    E-print Network

    Abhay Ashtekar; Brajesh Gupt

    2015-10-15

    The effective description of loop quantum cosmology (LQC) has proved to be a convenient platform to study phenomenological implications of the quantum bounce that resolves the classical big-bang singularity. Originally, this description was derived using Gaussian quantum states with small dispersions. In this paper we present a generalization to incorporate states with large dispersions. Specifically, we derive the \\emph{generalized} effective Friedmann and Raychaudhuri equations and propose a generalized effective Hamiltonian which are being used in an ongoing study of the phenomenological consequences of a broad class of quantum geometries. We also discuss an interesting interplay between the physics of states with larger dispersions in standard LQC, and of sharply peaked states in (hypothetical) LQC theories with larger area gap.

  14. Generalized effective description of loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Ashtekar, Abhay; Gupt, Brajesh

    2015-10-01

    The effective description of loop quantum cosmology (LQC) has proved to be a convenient platform to study phenomenological implications of the quantum bounce that resolves the classical big bang singularity. Originally, this description was derived using Gaussian quantum states with small dispersions. In this paper we present a generalization to incorporate states with large dispersions. Specifically, we derive the generalized effective Friedmann and Raychaudhuri equations and propose a generalized effective Hamiltonian which are being used in an ongoing study of the phenomenological consequences of a broad class of quantum geometries. We also discuss an interesting interplay between the physics of states with larger dispersions in standard LQC, and of sharply peaked states in (hypothetical) LQC theories with larger area gap.

  15. Optimal tunneling enhances the quantum photovoltaic effect in double quantum dots

    E-print Network

    Wang, Chen

    We investigate the quantum photovoltaic effect in double quantum dots by applying the nonequilibrium quantum master equation. A drastic suppression of the photovoltaic current is observed near the open circuit voltage, ...

  16. Measurement of scintillation efficiency for nuclear recoils in liquid argon

    E-print Network

    D. Gastler; E. Kearns; A. Hime; L. C. Stonehill; S. Seibert; J. Klein; W. H. Lippincott; D. N. McKinsey; J. A. Nikkel

    2012-05-08

    The scintillation light yield of liquid argon from nuclear recoils relative to electronic recoils has been measured as a function of recoil energy from 10 keVr up to 250 keVr. The scintillation efficiency, defined as the ratio of the nuclear recoil scintillation response to the electronic recoil response, is 0.25 \\pm 0.01 + 0.01(correlated) above 20 keVr.

  17. Quantum Computing and Lie Theory Feynman's suggestion that the only effective way to model quantum phe-

    E-print Network

    D'Agnolo, Andrea

    Quantum Computing and Lie Theory Feynman's suggestion that the only effective way to model quantum that a quantum computer could, in theory, factor large integers or do discrete logarithms in polynomial time the basic quantum mechanics necessary to understand the theory, describe quantum algorithms and explain

  18. Quantum well interface broadening effects

    NASA Astrophysics Data System (ADS)

    Gavryushin, Vladimir

    2007-02-01

    We have derived and analyzed the wavefunctions and eigenstates for quantum wells (QW), broadened due to static interface disorder, within Discreet Variable Representation (DVR) approach of Colbert and Miller. The main advantage of this approach, which we have tested, is that it allows to obtain ab-initio and to analyze the shift and broadening of resonance states in a semiconductor quantum wells of different shapes. Calculations based on the convolution methods were used to include the influence of disorder to the formation of heterojunction interfaces.

  19. A recoil resilient lumen support, design, fabrication and mechanical evaluation

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Arash; Ali, Mohamed Sultan Mohamed; Takahata, Kenichi; Al-Sarawi, Said; Abbott, Derek

    2013-06-01

    Stents are artificial implants that provide scaffolding to a cavity inside the body. This paper presents a new luminal device for reducing the mechanical failure of stents due to recoil, which is one of the most important issues in stenting. This device, which we call a recoil-resilient ring (RRR), is utilized standalone or potentially integrated with existing stents to address the problem of recoil. The proposed structure aims to minimize the need for high-pressure overexpansion that can induce intra-luminal trauma and excess growth of vascular tissue causing later restenosis. The RRR is an overlapped open ring with asymmetrical sawtooth structures that are intermeshed. These teeth can slide on top of each other, while the ring is radially expanded, but interlock step-by-step so as to keep the final expanded state against compressional forces that normally cause recoil. The RRRs thus deliver balloon expandability and, when integrated with a stent, bring both radial rigidity and longitudinal flexibility to the stent. The design of the RRR is investigated through finite element analysis (FEA), and then the devices are fabricated using micro-electro-discharge machining of 200-µm-thick Nitinol sheet. The standalone RRR is balloon expandable in vitro by 5-7 Atm in pressure, which is well within the recommended in vivo pressure ranges for stenting procedures. FEA compression tests indicate 13× less reduction of the cross-sectional area of the RRR compared with a typical stainless steel stent. These results also show perfect elastic recovery of the RRR after removal of the pressure compared to the remaining plastic deformations of the stainless steel stent. On the other hand, experimental loading tests show that the fabricated RRRs have 2.8× radial stiffness compared to a two-column section of a commercial stent while exhibiting comparable elastic recovery. Furthermore, testing of in vitro expansion in a mock artery tube shows around 2.9% recoil, approximately 5-11× smaller than the recoil reported for commercial stents. These experimental results demonstrate the effectiveness of the device design for the targeted luminal support and stenting applications.

  20. Locality and universality of quantum memory effects

    PubMed Central

    Liu, B.-H.; Wißmann, S.; Hu, X.-M.; Zhang, C.; Huang, Y.-F.; Li, C.-F.; Guo, G.-C.; Karlsson, A.; Piilo, J.; Breuer, H.-P.

    2014-01-01

    The modeling and analysis of the dynamics of complex systems often requires to employ non-Markovian stochastic processes. While there is a clear and well-established mathematical definition for non-Markovianity in the case of classical systems, the extension to the quantum regime recently caused a vivid debate, leading to many different proposals for the characterization and quantification of memory effects in the dynamics of open quantum systems. Here, we derive a mathematical representation for the non-Markovianity measure based on the exchange of information between the open system and its environment, which reveals the locality and universality of non-Markovianity in the quantum state space and substantially simplifies its numerical and experimental determination. We further illustrate the application of this representation by means of an all-optical experiment which allows the measurement of the degree of memory effects in a photonic quantum process with high accuracy. PMID:25209643

  1. Observation of the Dependence of Scintillation from Nuclear Recoils in Liquid Argon on Drift Field

    E-print Network

    T. Alexander; H. O. Back; H. Cao; A. G. Cocco; F. DeJongh; G. Fiorillo; C. Galbiati; C. Ghag; L. Grandi; C. Kendziora; W. H. Lippincott; B. Loer; C. Love; L. Manenti; C. J. Martoff; Y. Meng; D. Montanari; P. Mosteiro; D. Olvitt; S. Pordes; H. Qian; B. Rossi; R. Saldanha; W. Tan; J. Tatarowicz; S. Walker; H. Wang; A. W. Watson; S. Westerdale; J. Yoo

    2013-12-16

    We have exposed a dual-phase Liquid Argon Time Projection Chamber (LAr-TPC) to a low energy pulsed narrowband neutron beam, produced at the Notre Dame Institute for Structure and Nuclear Astrophysics to study the scintillation light yield of recoiling nuclei in a LAr-TPC. A liquid scintillation counter was arranged to detect and identify neutrons scattered in the LAr-TPC target and to select the energy of the recoiling nuclei. We report the observation of a significant dependence on drift field of liquid argon scintillation from nuclear recoils of 11 keV. This observation is important because, to date, estimates of the sensitivity of noble liquid TPC dark matter searches are based on the assumption that electric field has only a small effect on the light yield from nuclear recoils.

  2. Coherent quantum effects through dispersive bosonic media

    SciTech Connect

    Ye Saiyun; Yang Zhenbiao; Zheng Shibiao; Serafini, Alessio

    2010-07-15

    The coherent evolution of two qubits mediated by a set of bosonic field modes is investigated. By assuming a specific asymmetric encoding of the quantum states in the internal levels of the qubits, we show that entangling quantum gates can be realized, with high fidelity, even when a large number of mediating modes is involved. The effect of losses and imperfections on the gates' operation is also considered in detail.

  3. Anatomy of the binary black hole recoil: A multipolar analysis

    E-print Network

    Jeremy D. Schnittman; Alessandra Buonanno; James R. van Meter; John G. Baker; William D. Boggs; Joan Centrella; Bernard J. Kelly; Sean T. McWilliams

    2007-12-20

    We present a multipolar analysis of the gravitational recoil computed in recent numerical simulations of binary black hole (BH) coalescence, for both unequal masses and non-zero, non-precessing spins. We show that multipole moments up to and including l=4 are sufficient to accurately reproduce the final recoil velocity (within ~2%) and that only a few dominant modes contribute significantly to it (within ~5%). We describe how the relative amplitudes, and more importantly, the relative phases, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ringdown phases. We also find that the numerical results can be reproduced by an ``effective Newtonian'' formula for the multipole moments obtained by replacing the radial separation in the Newtonian formulae with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasi-normal modes (QNMs). Analytic formulae, obtained by expressing the multipole moments in terms of the fundamental QNMs of a Kerr BH, are able to explain the onset and amount of ``anti-kick'' for each of the simulations. Lastly, we apply this multipolar analysis to help explain the remarkable difference between the amplitudes of planar and non-planar kicks for equal-mass spinning black holes.

  4. Anatomy of the Binary Black Hole Recoil: A Multipolar Analysis

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy; Buonanno, Alessandra; vanMeter, James R.; Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.

    2007-01-01

    We present a multipolar analysis of the recoil velocity computed in recent numerical simulations of binary black hole coalescence, for both unequal masses and non-zero, non-precessing spins. We show that multipole moments up to and including 1 = 4 are sufficient to accurately reproduce the final recoil velocity (= 98%) and that only a few dominant modes contribute significantly to it (2 95%). We describe how the relative amplitude, and more importantly, the relative phase, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ring-down phases. We also find that the numerical results can be reproduced, to a high level of accuracy, by an effective Newtonian formula for the multipole moments obtained by replacing in the Newtonian formula the radial separation with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasi-normal modes. Analytic formulae, obtained by expressing the multipole moments in terms of the fundamental QNMs of a Kerr BH, are able to explain the onset and amount of '.anti-kick" for each of the simulations. Lastly, we apply this multipolar analysis to understand the remarkable difference between the amplitudes of planar and non-planar kicks for equal-mass spinning black holes.

  5. Berkeley Experiments on Superfluid Macroscopic Quantum Effects

    SciTech Connect

    Packard, Richard

    2006-09-07

    This paper provides a brief history of the evolution of the Berkeley experiments on macroscopic quantum effects in superfluid helium. The narrative follows the evolution of the experiments proceeding from the detection of single vortex lines to vortex photography to quantized circulation in 3He to Josephson effects and superfluid gyroscopes in both 4He and 3He.

  6. Quantum Confined Stark Effect in Wide Parabolic Quantum Wells

    E-print Network

    Sylwia Zieli?ska-Raczy?ska; Gerard Czajkowski; David Ziemkiewicz

    2015-07-30

    We show how to compute the optical functions of Wide Parabolic Quantum Wells (WPQWs) exposed to uniform electric F applied in the growth direction, in the excitonic energy region. The effect of the coherence between the electron-hole pair and the electromagnetic field of the propagating wave including the electron-hole screened Coulomb potential is adopted, and the valence band structure is taken into account in the cylindrical approximation. The role of the interaction potential and of the applied electric field, which mix the energy states according to different quantum numbers and create symmetry forbidden transitions, is stressed. We use the Real Density Matrix Approach (RDMA) and an effective e-h potential, which enable to derive analytical expressions for the WPQWs electrooptical functions. Choosing the susceptibility, we performed numerical calculations appropriate to a GaAs/GaAlAs WPQWs. We have obtained a red shift of the absorption maxima (Quantum Confined Stark Effect), asymmetric upon the change of the direction of the applied field (F -> -F), parabolic for the ground state and strongly dependent on the confinement parameters (the QWs sizes), changes in the oscillator strengths, and new peaks related to the states with different parity for electron and hole.

  7. Classical and quantum phenomenology in radiation by relativistic electrons in matter or in external fields

    NASA Astrophysics Data System (ADS)

    Artru, Xavier

    2015-07-01

    Phenomenological aspects of radiation by relativistic electrons in external field, in matter or the vicinity of matter are reviewed, among which: infrared divergence, coherence length effects, shadowing, crystal-assisted radiation, quantum recoil and spin effects, electron side-slipping, photon impact parameter and tunneling in the radiation process.

  8. Quantum metrology and estimation of Unruh effect.

    PubMed

    Wang, Jieci; Tian, Zehua; Jing, Jiliang; Fan, Heng

    2014-01-01

    We study the quantum metrology for a pair of entangled Unruh-Dewitt detectors when one of them is accelerated and coupled to a massless scalar field. Comparing with previous schemes, our model requires only local interaction and avoids the use of cavities in the probe state preparation process. We show that the probe state preparation and the interaction between the accelerated detector and the external field have significant effects on the value of quantum Fisher information, correspondingly pose variable ultimate limit of precision in the estimation of Unruh effect. We find that the precision of the estimation can be improved by a larger effective coupling strength and a longer interaction time. Alternatively, the energy gap of the detector has a range that can provide us a better precision. Thus we may adjust those parameters and attain a higher precision in the estimation. We also find that an extremely high acceleration is not required in the quantum metrology process. PMID:25424772

  9. Quantum metrology and detection of Unruh effect

    E-print Network

    Jieci Wang; Zehua Tian; Jiliang Jing; Heng Fan

    2014-10-19

    We study the quantum metrology for a pair of entangled Unruh-Dewitt detectors when one of them is accelerated and coupled to a massless scalar field. Comparing with previous schemes, our model requires only local interaction and avoids the use of cavities in the probe state preparation process. We show that the probe state preparation and the interaction between the accelerated detector and the external field have significant effects on the value of quantum Fisher information, correspondingly pose variable ultimate limit of precision in the estimation of Unruh effect. We find that the precision of the estimation can be improved by a larger effective coupling strength and a longer interaction time. Alternatively, the energy gap of the detector has a range that can provide us a better precision. Thus we may adjust those parameters and attain a higher precision in the estimation. We also find that an extremely high acceleration is not required in the quantum metrology process.

  10. Quantum metrology and estimation of Unruh effect

    PubMed Central

    Wang, Jieci; Tian, Zehua; Jing, Jiliang; Fan, Heng

    2014-01-01

    We study the quantum metrology for a pair of entangled Unruh-Dewitt detectors when one of them is accelerated and coupled to a massless scalar field. Comparing with previous schemes, our model requires only local interaction and avoids the use of cavities in the probe state preparation process. We show that the probe state preparation and the interaction between the accelerated detector and the external field have significant effects on the value of quantum Fisher information, correspondingly pose variable ultimate limit of precision in the estimation of Unruh effect. We find that the precision of the estimation can be improved by a larger effective coupling strength and a longer interaction time. Alternatively, the energy gap of the detector has a range that can provide us a better precision. Thus we may adjust those parameters and attain a higher precision in the estimation. We also find that an extremely high acceleration is not required in the quantum metrology process. PMID:25424772

  11. Nonlinear effect on quantum control for two-level systems

    E-print Network

    Wang, W; Yi, X X

    2009-01-01

    The traditional quantum control theory focuses on linear quantum system. Here we show the effect of nonlinearity on quantum control of a two-level system, we find that the nonlinearity can change the controllability of quantum system. Furthermore, we demonstrate that the Lyapunov control can be used to overcome this uncontrollability induced by the nonlinear effect.

  12. The effects of nonextensivity on quantum dissipation

    PubMed Central

    Choi, Jeong Ryeol

    2014-01-01

    Nonextensive dynamics for a quantum dissipative system described by a Caldirola-Kanai (CK) Hamiltonian is investigated in SU(1,1) coherent states. To see the effects of nonextensivity, the system is generalized through a modification fulfilled by replacing the ordinary exponential function in the standard CK Hamiltonian with the q-exponential function. We confirmed that the time behavior of the system is somewhat different depending on the value of q which is the degree of nonextensivity. The effects of q on quantum energy dissipation and other parameters are illustrated and discussed in detail. PMID:24468727

  13. Quantum Plasma Effects in the Classical Regime

    SciTech Connect

    Brodin, G.; Marklund, M.; Manfredi, G.

    2008-05-02

    For quantum effects to be significant in plasmas it is often assumed that the temperature over density ratio must be small. In this paper we challenge this assumption by considering the contribution to the dynamics from the electron spin properties. As a starting point we consider a multicomponent plasma model, where electrons with spin-up and spin-down are regarded as different fluids. By studying the propagation of Alfven wave solitons we demonstrate that quantum effects can survive in a relatively high-temperature plasma. The consequences of our results are discussed.

  14. Quantum plasma effects in the classical regime

    E-print Network

    G. Brodin; M. Marklund; G. Manfredi

    2008-02-01

    For quantum effects to be significant in plasmas it is often assumed that the temperature over density ratio must be small. In this paper we challenge this assumption by considering the contribution to the dynamics from the electron spin properties. As a starting point we consider a multicomponent plasma model, where electrons with spin up and spin down are regarded as different fluids. By studying the propagation of Alfv\\'{e}n wave solitons we demonstrate that quantum effects can survive in a relatively high-temperature plasma. The consequences of our results are discussed.

  15. The Compton effect: Transition to quantum mechanics

    NASA Astrophysics Data System (ADS)

    Stuewer, R. H.

    2000-11-01

    The discovery of the Compton effect at the end of 1922 was a decisive event in the transition to the new quantum mechanics of 1925-1926 because it stimulated physicists to examine anew the fundamental problem of the interaction between radiation and matter. I first discuss Albert Einstein's light-quantum hypothesis of 1905 and why physicists greeted it with extreme skepticism, despite Robert A. Millikan's confirmation of Einstein's equation of the photoelectric effect in 1915. I then follow in some detail the experimental and theoretical research program that Arthur Holly Compton pursued between 1916 and 1922 at the University of Minnesota, the Westinghouse Lamp Company, the Cavendish Laboratory, and Washington University that culminated in his discovery of the Compton effect. Surprisingly, Compton was not influenced directly by Einstein's light-quantum hypothesis, in contrast to Peter Debye and H.A. Kramers, who discovered the quantum theory of scattering independently. I close by discussing the most significant response to that discovery, the Bohr-Kramers-Slater theory of 1924, its experimental refutation, and its influence on the emerging new quantum mechanics.

  16. Significant Quantum Effects in Hydrogen Activation

    PubMed Central

    2014-01-01

    Dissociation of molecular hydrogen is an important step in a wide variety of chemical, biological, and physical processes. Due to the light mass of hydrogen, it is recognized that quantum effects are often important to its reactivity. However, understanding how quantum effects impact the reactivity of hydrogen is still in its infancy. Here, we examine this issue using a well-defined Pd/Cu(111) alloy that allows the activation of hydrogen and deuterium molecules to be examined at individual Pd atom surface sites over a wide range of temperatures. Experiments comparing the uptake of hydrogen and deuterium as a function of temperature reveal completely different behavior of the two species. The rate of hydrogen activation increases at lower sample temperature, whereas deuterium activation slows as the temperature is lowered. Density functional theory simulations in which quantum nuclear effects are accounted for reveal that tunneling through the dissociation barrier is prevalent for H2 up to ?190 K and for D2 up to ?140 K. Kinetic Monte Carlo simulations indicate that the effective barrier to H2 dissociation is so low that hydrogen uptake on the surface is limited merely by thermodynamics, whereas the D2 dissociation process is controlled by kinetics. These data illustrate the complexity and inherent quantum nature of this ubiquitous and seemingly simple chemical process. Examining these effects in other systems with a similar range of approaches may uncover temperature regimes where quantum effects can be harnessed, yielding greater control of bond-breaking processes at surfaces and uncovering useful chemistries such as selective bond activation or isotope separation. PMID:24684530

  17. Significant Quantum Effects in Hydrogen Activation

    SciTech Connect

    Kyriakou, Georgios; Davidson, Erlend R.; Peng, Guowen; Roling, Luke T.; Singh, Suyash; Boucher, Matthew B.; Marcinkowski, Matthew D.; Mavrikakis, Manos; Michaelides, Angelos; Sykes, E. Charles H.

    2014-05-27

    Dissociation of molecular hydrogen is an important step in a wide variety of chemical, biological, and physical processes. Due to the light mass of hydrogen, it is recognized that quantum effects are often important to its reactivity. However, understanding how quantum effects impact the reactivity of hydrogen is still in its infancy. Here, we examine this issue using a well-defined Pd/Cu(111) alloy that allows the activation of hydrogen and deuterium molecules to be examined at individual Pd atom surface sites over a wide range of temperatures. Experiments comparing the uptake of hydrogen and deuterium as a function of temperature reveal completely different behavior of the two species. The rate of hydrogen activation increases at lower sample temperature, whereas deuterium activation slows as the temperature is lowered. Density functional theory simulations in which quantum nuclear effects are accounted for reveal that tunneling through the dissociation barrier is prevalent for H2 up to 190 K and for D2 up to 140 K. Kinetic Monte Carlo simulations indicate that the effective barrier to H2 dissociation is so low that hydrogen uptake on the surface is limited merely by thermodynamics, whereas the D2 dissociation process is controlled by kinetics. These data illustrate the complexity and inherent quantum nature of this ubiquitous and seemingly simple chemical process. Examining these effects in other systems with a similar range of approaches may uncover temperature regimes where quantum effects can be harnessed, yielding greater control of bond-breaking processes at surfaces and uncovering useful chemistries such as selective bond activation or isotope separation.

  18. Effective Evolution Equations from Quantum Dynamics

    E-print Network

    Niels Benedikter; Marcello Porta; Benjamin Schlein

    2015-02-09

    In these notes we review the material presented at the summer school on "Mathematical Physics, Analysis and Stochastics" held at the University of Heidelberg in July 2014. We consider the time-evolution of quantum systems and in particular the rigorous derivation of effective equations approximating the many-body Schr\\"odinger dynamics in certain physically interesting regimes.

  19. Protecting entanglement via the quantum Zeno effect

    E-print Network

    Sabrina Maniscalco; Francesco Francica; Rosa L. Zaffino; Nicola Lo Gullo; Francesco Plastina

    2007-10-21

    We study the exact entanglement dynamics of two atoms in a lossy resonator. Besides discussing the steady-state entanglement, we show that in the strong coupling regime the system-reservoir correlations induce entanglement revivals and oscillations and propose a strategy to fight against the deterioration of the entanglement using the quantum Zeno effect.

  20. The Quantum Hall Effect in Graphene

    E-print Network

    Paolo Cea

    2012-04-24

    We investigate the quantum Hall effect in graphene. We argue that in graphene in presence of an external magnetic field there is dynamical generation of mass by a rearrangement of the Dirac sea. We show that the mechanism breaks the lattice valley degeneracy only for the $n=0$ Landau levels and leads to the new observed $\

  1. Surface distortion effects on quantum dot helium

    NASA Astrophysics Data System (ADS)

    Encinosa, Mario; Etemadi, Babak

    1999-06-01

    The Schrödinger equation for a quantum mechanical particle constrained to a surface includes a potential term dependent on surface curvature. We use differential forms to derive this term and employ Monge representations for two surfaces to obtain specific expressions for the potential. We calculate the first order perturbative effect of this potential on the ground state energy of model quantum dot helium. We find that the energy shift can be sensitive to the detailed shape of the surface distortion. This dependence arises from the Coulomb repulsion between the electron pair, which causes each electron to preferentially sample (or not sample) regions where physical curvature leads to comparatively large values of the distortion potential.

  2. Effective equilibrium theory of nonequilibrium quantum transport

    SciTech Connect

    Dutt, Prasenjit; Koch, Jens; Han, Jong; Le Hur, Karyn

    2011-12-15

    The theoretical description of strongly correlated quantum systems out of equilibrium presents several challenges and a number of open questions persist. Here, we focus on nonlinear electronic transport through an interacting quantum dot maintained at finite bias using a concept introduced by Hershfield [S. Hershfield, Phys. Rev. Lett. 70 2134 (1993)] whereby one can express such nonequilibrium quantum impurity models in terms of the system's Lippmann-Schwinger operators. These scattering operators allow one to reformulate the nonequilibrium problem as an effective equilibrium problem associated with a modified Hamiltonian. In this paper, we provide a pedagogical analysis of the core concepts of the effective equilibrium theory. First, we demonstrate the equivalence between observables computed using the Schwinger-Keldysh framework and the effective equilibrium approach, and relate Green's functions in the two theoretical frameworks. Second, we expound some applications of this method in the context of interacting quantum impurity models. We introduce a novel framework to treat effects of interactions perturbatively while capturing the entire dependence on the bias voltage. For the sake of concreteness, we employ the Anderson model as a prototype for this scheme. Working at the particle-hole symmetric point, we investigate the fate of the Abrikosov-Suhl resonance as a function of bias voltage and magnetic field. - Highlights: > Reformulation of steady-state nonequilibrium quantum transport, following Hershfield. > Derivation of effective equilibrium density operator using the 'open-system' approach. > Equivalence with the Keldysh description and formulas relating the two approaches. > Novel framework to treat interactions perturbatively. > Application to nonequilibrium Anderson model and fate of Abrikosov-Suhl resonance.

  3. Quantum Mechanical Effects in Gravitational Collapse

    E-print Network

    Eric Greenwood

    2010-01-12

    In this thesis we investigate quantum mechanical effects to various aspects of gravitational collapse. These quantum mechanical effects are implemented in the context of the Functional Schr\\"odinger formalism. The Functional Schr\\"odinger formalism allows us to investigate the time-dependent evolutions of the quantum mechanical effects, which is beyond the scope of the usual methods used to investigate the quantum mechanical corrections of gravitational collapse. Utilizing the time-dependent nature of the Functional Schr\\"odinger formalism, we study the quantization of a spherically symmetric domain wall from the view point of an asymptotic and infalling observer, in the absence of radiation. To build a more realistic picture, we then study the time-dependent nature of the induced radiation during the collapse using a semi-classical approach. Using the domain wall and the induced radiation, we then study the time-dependent evolution of the entropy of the domain wall. Finally we make some remarks about the possible inclusion of backreaction into the system.

  4. Proton recoil scintillator neutron rem meter

    DOEpatents

    Olsher, Richard H. (Los Alamos, NM); Seagraves, David T. (Los Alamos, NM)

    2003-01-01

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  5. Almost Sharp Quantum Effects Alvaro Arias and Stan Gudder

    E-print Network

    Arias, Alvaro

    W (A) = hA, i. In particular, sharp effects are called quantum events and the probability that event QAlmost Sharp Quantum Effects Alvaro Arias and Stan Gudder Department of Mathematics The University of Denver Denver, Colorado 80208 April 15, 2004 Abstract Quantum effects are represented by operators

  6. Constraining effective quantum gravity with LISA

    E-print Network

    Nicolas Yunes; Lee Samuel Finn

    2008-11-02

    All modern routes leading to a quantum theory of gravity -- i.e., perturbative quantum gravitational one-loop exact correction to the global chiral current in the standard model, string theory, and perhaps even loop quantum gravity -- require supplementing the Einstein-Hilbert action with a parity-violating Chern-Simons term. Such a term leads to amplitude-birefringent gravitational wave propagation: i.e., one (circular) polarization state amplified with propagation while the other is attenuated. The proposed Laser Interferometer Space Antenna (LISA) is capable of observing gravitational wave sources at cosmological distances, suggesting the possibility that LISA observations may place a strong bound on this manifestation of quantum gravity. Here we report on a calculation of the effect that spacetime amplitude birefringence has on the signal LISA is capable of observing from inspiraling supermassive black hole binaries at large redshift. We find that the birefringence manifests itself in the observations as an anomalous precession of the binary's orbital angular momentum as it evolves toward coalescence, whose magnitude depends on the integrated history of the Chern-Simons coupling over the worldline of radiation wavefront. We estimate that LISA could place bounds on Chern-Simons modified gravity that are several orders of magnitude stronger than the present Solar System constraints, thus providing a probe of the quantum structure of spacetime.

  7. The Quantum-Classical and Mind-Brain Linkages: The Quantum Zeno Effect in Binocular Rivalry

    E-print Network

    Henry P. Stapp

    2007-11-05

    A quantum mechanical theory of the relationship between perceptions and brain dynamics based on von Neumann's theory of measurments is applied to a recent quantum theoretical treatment of binocular rivaly that makes essential use of the quantum Zeno effect to give good fits to the complex available empirical data. The often-made claim that decoherence effects in the warm, wet, noisy brain must eliminate quantum effects at the macroscopic scale pertaining to perceptions is examined, and it is argued, on the basis of fundamental principles. that the usual decoherence effects will not upset the quantum Zeno effect that is being exploited in the cited work.

  8. Recoil proton distribution in high energy photoproduction processes

    E-print Network

    E. Bartos; E. A. Kuraev; Yu. P. Peresunko; E. A. Vinokurov

    2006-11-22

    For high energy linearly polarized photon--proton scattering we have calculated the azimuthal and polar angle distributions in inclusive on recoil proton experimental setup. We have taken into account the production of lepton and pseudoscalar meson charged pairs. The typical values of cross sections are of order of hundreds of picobarn. The size of polarization effects are of order of several percents. The results are generalized for the case of electroproduction processes on the proton at rest and for high energy proton production process on resting proton.

  9. Effects of lasing in a one-dimensional quantum metamaterial

    NASA Astrophysics Data System (ADS)

    Asai, Hidehiro; Savel'ev, Sergey; Kawabata, Shiro; Zagoskin, Alexandre M.

    2015-04-01

    Electromagnetic pulse propagation in a quantum metamaterial, an artificial, globally quantum coherent optical medium, is numerically simulated. We show that a one-dimensional quantum metamaterial based on superconducting quantum bits, initialized in an easily reachable factorized excited state, demonstrates lasing in the microwave range, accompanied by the chaotization of qubit states and generation of higher harmonics. These effects may provide a tool for characterization and optimization of quantum metamaterial prototypes.

  10. Effect of local filtering on Freezing Phenomena of Quantum Correlation

    E-print Network

    Sumana Karmakar; Ajoy Sen; Amit Bhar; Debasis Sarkar

    2015-04-20

    General quantum correlations measures like quantum discord, one norm geometric quantum discord, exhibit freezing, sudden change, double sudden change behavior in their decay rates under different noisy channels. Therefore, one may attempt to investigate how the freezing behavior and other dynamical features are affected under application of local quantum operations. In this work, we demonstrate the effect of local filtering on the dynamical evolution of quantum correlations. We have found that using local filtering one may remove freezing depending upon the filtering parameter.

  11. Effects of lasing in a one-dimensional quantum metamaterial

    E-print Network

    Hidehiro Asai; Sergey Savel'ev; Shiro Kawabata; Alexandre Zagoskin

    2014-12-15

    Electromagnetic pulse propagation in a quantum metamaterial - artificial, globally quantum coherent optical medium - is numerically simulated. We show that for the quantum metamaterials based on superconducting quantum bits, initialized in an easily reachable factorized state, lasing in microwave range is triggered, accompanied by the chaotization of qubit states and generation of higher harmonics. These effects may provide a tool for characterization and optimization of quantum metamaterial prototypes.

  12. Manual of BlackMax, a black-hole event generator with rotation, recoil, split branes, and brane tension

    E-print Network

    De-Chang Dai; Cigdem Issever; Eram Rizvi; Glenn Starkman; Dejan Stojkovic; Jeff Tseng

    2009-02-20

    This is the users manual of the black-hole event generator BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at proton-proton, proton-antiproton and electron-positron colliders in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity. It includes all of the black-hole gray-body factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, non-zero brane tension and black-hole recoil due to Hawking radiation (although not all simultaneously).

  13. BlackMax: A black-hole event generator with rotation, recoil, split branes and brane tension

    E-print Network

    De-Chang Dai; Glenn Starkman; Dejan Stojkovic; Cigdem Issever; Eram Rizvi; Jeff Tseng

    2008-04-16

    We present a comprehensive black-hole event generator, BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity, thus offering more realistic predictions for hadron-hadron colliders. The generator includes all of the black-hole graybody factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, non-zero brane tension and black-hole recoil due to Hawking radiation (although not all simultaneously). The generator can be interfaced with Herwig and Pythia.

  14. BlackMax: A black-hole event generator with rotation, recoil, split branes and brane tension

    E-print Network

    Dai, De-Chang; Stojkovic, Dejan; Issever, Cigdem; Rizvi, Eram; Tseng, Jeff

    2007-01-01

    We present a comprehensive black-hole event generator, BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity, thus offering more realistic predictions for hadron-hadron colliders. The generator includes all of the black-hole graybody factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, non-zero brane tension and black-hole recoil due to Hawking radiation (although not all simultaneously). The generator can be interfaced with Herwig and Pythia.

  15. BlackMax: A black-hole event generator with rotation, recoil, split branes, and brane tension

    NASA Astrophysics Data System (ADS)

    Dai, De-Chang; Starkman, Glenn; Stojkovic, Dejan; Issever, Cigdem; Rizvi, Eram; Tseng, Jeff

    2008-04-01

    We present a comprehensive black-hole event generator, BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity, thus offering more realistic predictions for hadron-hadron colliders. The generator includes all of the black-hole gray-body factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, nonzero brane tension, and black-hole recoil due to Hawking radiation (although not all simultaneously). The generator can be interfaced with Herwig and Pythia. The main code can be downloaded from http://www-pnp.physics.ox.ac.uk/~issever/BlackMax/blackmax.html.

  16. Manual of BlackMax, a black-hole event generator with rotation, recoil, split branes, and brane tension

    E-print Network

    Dai, De-Chang; Rizvi, Eram; Starkman, Glenn; Stojkovic, Dejan; Tseng, Jeff

    2009-01-01

    This is the users manual of the black-hole event generator BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at proton-proton, proton-antiproton and electron-positron colliders in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity. It includes all of the black-hole gray-body factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, non-zero brane tension and black-hole recoil due to Hawking radiation (although not all simultaneously).

  17. BlackMax: A black-hole event generator with rotation, recoil, split branes, and brane tension

    SciTech Connect

    Dai Dechang; Starkman, Glenn; Stojkovic, Dejan; Issever, Cigdem; Tseng, Jeff; Rizvi, Eram

    2008-04-01

    We present a comprehensive black-hole event generator, BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity, thus offering more realistic predictions for hadron-hadron colliders. The generator includes all of the black-hole gray-body factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, nonzero brane tension, and black-hole recoil due to Hawking radiation (although not all simultaneously). The generator can be interfaced with Herwig and Pythia. The main code can be downloaded from http://www-pnp.physics.ox.ac.uk/{approx}issever/BlackMax/blackmax.html.

  18. Ionization and scintillation of nuclear recoils in gaseous xenon

    NASA Astrophysics Data System (ADS)

    Renner, J.; Gehman, V. M.; Goldschmidt, A.; Matis, H. S.; Miller, T.; Nakajima, Y.; Nygren, D.; Oliveira, C. A. B.; Shuman, D.; Álvarez, V.; Borges, F. I. G.; Cárcel, S.; Castel, J.; Cebrián, S.; Cervera, A.; Conde, C. A. N.; Dafni, T.; Dias, T. H. V. T.; Díaz, J.; Esteve, R.; Evtoukhovitch, P.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Gil, A.; Gómez, H.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Hauptman, J.; Hernando Morata, J. A.; Herrera, D. C.; Iguaz, F. J.; Irastorza, I. G.; Jinete, M. A.; Labarga, L.; Laing, A.; Liubarsky, I.; Lopes, J. A. M.; Lorca, D.; Losada, M.; Luzón, G.; Marí, A.; Martín-Albo, J.; Martínez, A.; Moiseenko, A.; Monrabal, F.; Monserrate, M.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Natal da Luz, H.; Navarro, G.; Nebot-Guinot, M.; Palma, R.; Pérez, J.; Pérez Aparicio, J. L.; Ripoll, L.; Rodríguez, A.; Rodríguez, J.; Santos, F. P.; dos Santos, J. M. F.; Seguí, L.; Serra, L.; Simón, A.; Sofka, C.; Sorel, M.; Toledo, J. F.; Tomás, A.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Villar, J. A.; Webb, R. C.; White, J.; Yahlali, N.

    2015-09-01

    Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope ?-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.

  19. Quantum Anomalous Hall Effect in Hg_1-yMn_yTe Quantum Wells

    SciTech Connect

    Liu, Chao-Xing; Qi, Xiao-Liang; Dai, Xi; Fang, Zhong; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    The quantum Hall effect is usually observed when the two-dimensional electron gas is subjected to an external magnetic field, so that their quantum states form Landau levels. In this work we predict that a new phenomenon, the quantum anomalous Hall effect, can be realized in Hg{sub 1-y}Mn{sub y}Te quantum wells, without the external magnetic field and the associated Landau levels. This effect arises purely from the spin polarization of the Mn atoms, and the quantized Hall conductance is predicted for a range of quantum well thickness and the concentration of the Mn atoms. This effect enables dissipationless charge current in spintronics devices.

  20. Grand unification and enhanced quantum gravitational effects.

    PubMed

    Calmet, Xavier; Hsu, Stephen D H; Reeb, David

    2008-10-24

    In grand unified theories with large numbers of fields, renormalization effects significantly modify the scale at which quantum gravity becomes strong. This in turn can modify the boundary conditions for coupling constant unification, if higher dimensional operators induced by gravity are taken into consideration. We show that the generic size of, and the uncertainty in, these effects from gravity can be larger than the two-loop corrections typically considered in renormalization group analyses of unification. In some cases, gravitational effects of modest size can render unification impossible. PMID:18999739

  1. Quantum Gravitational Effects and Grand Unification

    SciTech Connect

    Calmet, Xavier; Hsu, Stephen D. H.; Reeb, David

    2008-11-23

    In grand unified theories with large numbers of fields, renormalization effects significantly modify the scale at which quantum gravity becomes strong. This in turn can modify the boundary conditions for coupling constant unification, if higher dimensional operators induced by gravity are taken into consideration. We show that the generic size of, and the uncertainty in, these effects from gravity can be larger than the two-loop corrections typically considered in renormalization group analyses of unification. In some cases, gravitational effects of modest size can render unification impossible.

  2. Quantum gravity effects in the Kerr spacetime

    SciTech Connect

    Reuter, M.; Tuiran, E.

    2011-02-15

    We analyze the impact of the leading quantum gravity effects on the properties of black holes with nonzero angular momentum by performing a suitable renormalization group improvement of the classical Kerr metric within quantum Einstein gravity. In particular, we explore the structure of the horizons, the ergosphere, and the static limit surfaces as well as the phase space available for the Penrose process. The positivity properties of the effective vacuum energy-momentum tensor are also discussed and the 'dressing' of the black hole's mass and angular momentum are investigated by computing the corresponding Komar integrals. The pertinent Smarr formula turns out to retain its classical form. As for their thermodynamical properties, a modified first law of black-hole thermodynamics is found to be satisfied by the improved black holes (to second order in the angular momentum); the corresponding Bekenstein-Hawking temperature is not proportional to the surface gravity.

  3. Quantum renormalization of the spin Hall effect.

    PubMed

    Gu, Bo; Gan, Jing-Yu; Bulut, Nejat; Ziman, Timothy; Guo, Guang-Yu; Nagaosa, Naoto; Maekawa, Sadamichi

    2010-08-20

    By quantum Monte Carlo simulation of a realistic multiorbital Anderson impurity model, we study the spin-orbit interaction (SOI) of an Fe impurity in Au host metal. We show, for the first time, that the SOI is strongly renormalized by the quantum spin fluctuation. Based on this mechanism, we can explain why the gigantic spin Hall effect in Au with Fe impurities was observed in recent experiments, while it is not visible in the anomalous Hall effect. In addition, we show that the SOI is strongly renormalized by the Coulomb correlation U. Based on this picture, we can explain past discrepancies in the calculated orbital angular momenta for an Fe impurity in an Au host. PMID:20868117

  4. The pinning effect in quantum dots

    SciTech Connect

    Monisha, P. J.; Mukhopadhyay, Soma

    2014-04-24

    The pinning effect is studied in a Gaussian quantum dot using the improved Wigner-Brillouin perturbation theory (IWBPT) in the presence of electron-phonon interaction. The electron ground state plus one phonon state is degenerate with the electron in the first excited state. The electron-phonon interaction lifts the degeneracy and the first excited states get pinned to the ground state plus one phonon state as we increase the confinement frequency.

  5. Polymer quantum effects on compact stars models

    NASA Astrophysics Data System (ADS)

    Chacón-Acosta, Guillermo; Hernandez-Hernandez, Héctor H.

    2015-03-01

    In this work we study a completely degenerate Fermi gas at zero temperature by a semiclassical approximation for a Hamiltonian that arises in polymer quantum mechanics. Polymer quantum systems are quantum mechanical models quantized in a similar way as in loop quantum gravity, allowing the study of the discreteness of space and other features of the loop quantization in a simplified way. We obtain the polymer modified thermodynamical properties for this system by noticing that the corresponding Fermi energy is exactly the same as if one directly polymerizes the momentum pF. We also obtain the expansion of the corresponding thermodynamical variables in terms of small values of the polymer length scale ?. We apply these results to study a simple model of a compact one-dimensional star where the gravitational collapse is supported by electron degeneracy pressure. As a consequence, polymer corrections to the mass of the object are found. By using bounds for the polymer length found in Bose-Einstein condensates experiments we compute the modification in the mass of the compact object due to polymer effects of order 10-8. This result is similar to the other order found by different approaches such as generalized uncertainty principle (GUP), and that certainly is within the error reported in typical measurements of white dwarf masses.

  6. Recoil-Proton Polarization in High-Energy Deuteron Photodisintegration with Circularly Polarized Photons

    SciTech Connect

    Jiang, X.; Benmokhtar, F.; Glashauser, C.; McCormick, K.; Ransome, R. D.; Arrington, J.; Holt, R. J.; Reimer, P. E.; Schulte, E. C.; Wijesooriya, K.; Camsonne, A.

    2007-05-04

    We measured the angular dependence of the three recoil-proton polarization components in two-body photodisintegration of the deuteron at a photon energy of 2 GeV. These new data provide a benchmark for calculations based on quantum chromodynamics. Two of the five existing models have made predictions of polarization observables. Both explain the longitudinal polarization transfer satisfactorily. Transverse polarizations are not well described, but suggest isovector dominance.

  7. Recoil-proton polarization in high-energy deuteron photodisintegration with circularly plarized photons.

    SciTech Connect

    Jiang, X.; Arrington, J.; Benmokhtar, F.; Camsonne, A.; Chen, J. P.; Holt, R. J.; Qattan, I. A.; Reimer, P. E.; Schulte, E. C.; Wijesooriya, K.; Physics; Rutgers Univ.; Univ. Blaise Pascal; Thomas Jefferson National Accelerator Facility

    2007-05-01

    We measured the angular dependence of the three recoil-proton polarization components in two-body photodisintegration of the deuteron at a photon energy of 2 GeV. These new data provide a benchmark for calculations based on quantum chromodynamics. Two of the five existing models have made predictions of polarization observables. Both explain the longitudinal polarization transfer satisfactorily. Transverse polarizations are not well described, but suggest isovector dominance.

  8. Quantum Anomalous Hall Effect in Magnetically Doped InAs/GaSb Quantum Wells

    NASA Astrophysics Data System (ADS)

    Wang, Qing-Ze; Liu, Xin; Zhang, Hai-Jun; Samarth, Nitin; Zhang, Shou-Cheng; Liu, Chao-Xing

    2014-10-01

    The quantum anomalous Hall effect has recently been observed experimentally in thin films of Cr-doped (Bi,Sb)2Te3 at a low temperature (˜30 mK). In this work, we propose realizing the quantum anomalous Hall effect in more conventional diluted magnetic semiconductors with magnetically doped InAs/GaSb type-II quantum wells. Based on a four-band model, we find an enhancement of the Curie temperature of ferromagnetism due to band edge singularities in the inverted regime of InAs/GaSb quantum wells. Below the Curie temperature, the quantum anomalous Hall effect is confirmed by the direct calculation of Hall conductance. The parameter regime for the quantum anomalous Hall phase is identified based on the eight-band Kane model. The high sample quality and strong exchange coupling make magnetically doped InAs/GaSb quantum wells good candidates for realizing the quantum anomalous Hall insulator at a high temperature.

  9. Cavity cooling below the recoil limit.

    PubMed

    Wolke, Matthias; Klinner, Julian; Keßler, Hans; Hemmerich, Andreas

    2012-07-01

    Conventional laser cooling relies on repeated electronic excitations by near-resonant light, which constrains its area of application to a selected number of atomic species prepared at moderate particle densities. Optical cavities with sufficiently large Purcell factors allow for laser cooling schemes, avoiding these limitations. Here, we report on an atom-cavity system, combining a Purcell factor above 40 with a cavity bandwidth below the recoil frequency associated with the kinetic energy transfer in a single photon scattering event. This lets us access a yet-unexplored regime of atom-cavity interactions, in which the atomic motion can be manipulated by targeted dissipation with sub-recoil resolution. We demonstrate cavity-induced heating of a Bose-Einstein condensate and subsequent cooling at particle densities and temperatures incompatible with conventional laser cooling. PMID:22767925

  10. Skyrmion recoil in pion-nucleon scattering

    SciTech Connect

    Hughes, J. Physics Department, University of California at Davis, Davis, California 95616 ); Mathews, G.J. )

    1992-08-01

    We calculate the lowest-order recoil corrections to the pion-nucleon scattering matrix in the SU(2) Skyrme model. The corrections result from a direct semiclassical evaluation of path-integral expressions for relevant finite-time transition amplitudes. The {ital S} matrix for pion-nucleon scattering is extracted from these amplitudes by using a configuration-space representation for the asymptotic nucleons; the quanta are treated just as in the vacuum sector. The recoil corrections result from the Skyrmion freely translating between initial and final positions, and are relevant to a kinematical regime opposite to that where the impulse approximation is valid. The form of the corrections is model independent, unchanged for any chiral model with hedgehog solitary wave solutions. Remarkably, new lowest-lying resonances emerge in the {ital p} channels, whereas the {ital s} and {ital d} waves are not noticeably improved.

  11. Experiments with recoil ions and other considerations

    SciTech Connect

    Cocke, C.L.

    1987-01-01

    Some opportunities in collisions physics with slow, multiply charged ions are addressed. A distinction between inner and outer shell collisions is drawn. The applicability of recoil ion sources to outer shell collision systems is discussed, with emphasis on the quality of the beam desired. An example of an inner shell collision is discussed, and the usefulness of not pushing the collision energy too low is pointed out. 13 refs., 14 figs.

  12. Integer Quantum Hall Effect in Graphene

    E-print Network

    Ahmed Jellal

    2015-04-24

    We study the quantum Hall effect in a monolayer graphene by using an approach based on thermodynamical properties. This can be done by considering a system of Dirac particles in an electromagnetic field and taking into account of the edges effect as a pseudo-potential varying continuously along the $x$ direction. At low temperature and in the weak electric field limit, we explicitly determine the thermodynamical potential. With this, we derive the particle numbers in terms of the quantized flux and therefore the Hall conductivity immediately follows.

  13. Quantum and medium effects in (resonant) leptogenesis

    NASA Astrophysics Data System (ADS)

    Hohenegger, Andreas

    2014-03-01

    Leptogenesis offers a very attractive explanation for the origin of the baryon asymmetry of the universe. Such scenarios based on leptonic CP-violation can be realized already within minimalistic seesaw extensions of the standard model. Apart from model building issues the answer to the question of whether a given particle theory can explain the observed baryon number density depends also on the detailed statistical evolution of the asymmetry. The CP-violation within a given model leads to an asymmetry only if it is accompanied by an out-of-equilibrium evolution in the early universe. Most existing analyses employ Boltzmann-like equations (BEs) to describe it. In this context fundamental issues arise which can be addressed in the framework of non-equilibrium quantum field theory (NEQFT). Here, the relevance of quantum and medium effects for thermal leptogenesis is investigated. Within the 2PI-formalism of NEQFT, questions such as that for the justification of the particle picture arise naturally in subsequent approximations when BEs are to be derived. This specific problem is particularly important in the case of resonant leptogenesis where the relevant particle states are almost degenerate in mass. It is found that Boltzmann like equations can (only) be obtained in certain cases. But it is then possible to account for corrections due to quantum and medium effects.

  14. A programmable quantum current standard from the Josephson and the quantum Hall effects

    SciTech Connect

    Poirier, W. Lafont, F.; Djordjevic, S.; Schopfer, F.; Devoille, L.

    2014-01-28

    We propose a way to realize a programmable quantum current standard (PQCS) from the Josephson voltage standard and the quantum Hall resistance standard (QHR) exploiting the multiple connection technique provided by the quantum Hall effect (QHE) and the exactness of the cryogenic current comparator. The PQCS could lead to breakthroughs in electrical metrology like the realization of a programmable quantum current source, a quantum ampere-meter, and a simplified closure of the quantum metrological triangle. Moreover, very accurate universality tests of the QHE could be performed by comparing PQCS based on different QHRs.

  15. Quantum confined Stark effect in Gaussian quantum wells: A tight-binding study

    SciTech Connect

    Ramírez-Morales, A.; Martínez-Orozco, J. C.; Rodríguez-Vargas, I.

    2014-05-15

    The main characteristics of the quantum confined Stark effect (QCSE) are studied theoretically in quantum wells of Gaussian profile. The semi-empirical tight-binding model and the Green function formalism are applied in the numerical calculations. A comparison of the QCSE in quantum wells with different kinds of confining potential is presented.

  16. Energy transport via quasiparticle and phonon diffusion in superheated superconducting granule detectors after nuclear recoils

    NASA Astrophysics Data System (ADS)

    Gabutti, A.

    1995-04-01

    The energy transport via thermal diffusion inside superheated superconducting granules (SSG) after nuclear recoils is discussed. The decay towards equilibrium of the initial disturbance is described by a set of coupled heat-flow equations for the effective quasiparticle and phonon temperatures. The solution is carried out analytically for a point source located anywhere inside the superconducting granule with the initial energy distributed in both quasiparticle and phonon systems. The calculated sensitivity to nuclear recoils and the decay in time between interaction and phase transition are compared with irradiation measurements performed on Sn and Zn granules. The derived expressions for the quasiparticle and phonon temperatures are useful to predict the sensitivity of SSG detectors to nuclear recoils produced in dark matter particle or neutrino interactions.

  17. Cosmic fluctuations from a quantum effective action

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2015-10-01

    Does the observable spectrum of cosmic fluctuations depend on detailed initial conditions? This addresses the question if the general inflationary paradigm is sufficient to predict within a given model the spectrum and amplitude of cosmic fluctuations, or if additional particular assumptions about the initial conditions are needed. The answer depends on the number of e -foldings Nin between the beginning of inflation and horizon crossing of the observable fluctuations. We discuss an interacting inflaton field in an arbitrary homogeneous and isotropic geometry, employing the quantum effective action ? . An exact time evolution equation for the correlation function involves the second functional derivative ?(2 ) . The operator formalism and quantum vacua for interacting fields are not needed. Use of the effective action also allows one to address the change of frames by field transformations (field relativity). Within the approximation of a derivative expansion for the effective action we find the most general solution for the correlation function, including mixed quantum states. For not too large Nin the memory of the initial conditions is preserved. In this case the cosmic microwave background cannot disentangle between the initial spectrum and its processing at horizon crossing. The inflaton potential cannot be reconstructed without assumptions about the initial state of the universe. We argue that for very large Nin a universal scaling form of the correlation function is reached for the range of observable modes. This can be due to symmetrization and equilibration effects, not yet contained in our approximation, which drive the short distance tail of the correlation function toward the Lorentz invariant propagator in flat space.

  18. Quantum nonlocal effects on optical properties of spherical nanoparticles

    SciTech Connect

    Moradi, Afshin

    2015-02-15

    To study the scattering of electromagnetic radiation by a spherical metallic nanoparticle with quantum spatial dispersion, we develop the standard nonlocal Mie theory by allowing for the excitation of the quantum longitudinal plasmon modes. To describe the quantum nonlocal effects, we use the quantum longitudinal dielectric function of the system. As in the standard Mie theory, the electromagnetic fields are expanded in terms of spherical vector wavefunctions. Then, the usual Maxwell boundary conditions are imposed plus the appropriate additional boundary conditions. Examples of calculated extinction spectra are presented, and it is found that the frequencies of the subsidiary peaks, due to quantum bulk plasmon excitations exhibit strong dependence on the quantum spatial dispersion.

  19. TEMPERATURE EFFECTS AND TRANSPORT PHENOMENA IN TERAHERTZ QUANTUM CASCADE LASERS

    E-print Network

    Massachusetts at Lowell, University of

    TEMPERATURE EFFECTS AND TRANSPORT PHENOMENA IN TERAHERTZ QUANTUM CASCADE LASERS BY PHILIP C Quantum cascade lasers (QCL's) employ the mid- and far-infrared intersubband ra- diative transitions been possible without his ability to explain the often frustrating physics of quantum cascade lasers. I

  20. Memory Effects in Quantum Channel Discrimination Giulio Chiribella,1

    E-print Network

    D'Ariano, Giacomo Mauro

    Memory Effects in Quantum Channel Discrimination Giulio Chiribella,1 Giacomo M. D'Ariano,1 quantum-memory assisted protocols for discriminating quantum channels. We show that for optimal discrimination of memory channels, memory assisted protocols are needed. This leads to a new notion of distance

  1. Quantum Spin Hall Effect in Silicene

    E-print Network

    Liu, Cheng-Cheng; Yao, Yugui

    2011-01-01

    Recent years have witnessed great interest in the quantum spin Hall effect (QSHE) which is a new quantum state of matter with nontrivial topological property due to the scientific importance as a novel quantum state and the technological applications in spintronics. Taking account of Si, Ge significant importance as semiconductor material and intense interest in the realization of QSHE for spintronics, here we investigate the spin-orbit opened energy gap and the band topology in recently synthesized silicene using first-principles calculations. We demonstrate that silicene with topologically nontrivial electronic structures can realize QSHE by exploiting adiabatic continuity and direct calculation of the Z2 topological invariant. We predict that QSHE in silicene can be observed in an experimentally accessible low temperature regime with the spin-orbit band gap of 1.55 meV, much higher than that of graphene due to large spin-orbit coupling and the low-buckled structure. Furthermore, we find that the gap will i...

  2. Discrimination between Nuclear Recoils and Electron Recoils by Simultaneous Detection of Phonons and Scintillation Light

    E-print Network

    P. Meunier; M. Bravin; M. Bruckmayer; S. Giordano; M. Loidl; O. Meier; F. Proebst; W. Seidel; M. Sisti; L. Stodolsky; S. Uchaikin; L. Zerle

    1999-06-08

    We have developed a detector, consisting of a cryogenic calorimeter with a scintillating crystal as absorber, and a second calorimeter for the detection of the scintillation light, both operated at 12 mK. Using a CaWO4 crystal with a mass of 6g as scintillating absorber, we have achieved a discrimination of nuclear recoils against electron recoils with a suppression factor of 99.7% at energies above 15 keV. This novel method will be applied for background rejection in the CRESST (Cryogenic Rare Event Search with Superconducting Thermometers) experiment looking for dark matter Weakly Interacting Massive Particles (WIMPs).

  3. In-plane magnetization-induced quantum anomalous Hall effect.

    PubMed

    Liu, Xin; Hsu, Hsiu-Chuan; Liu, Chao-Xing

    2013-08-23

    The quantum Hall effect can only be induced by an out-of-plane magnetic field for two-dimensional electron gases, and similarly, the quantum anomalous Hall effect has also usually been considered for systems with only out-of-plane magnetization. In the present work, we predict that the quantum anomalous Hall effect can be induced by in-plane magnetization that is not accompanied by any out-of-plane magnetic field. Two realistic two-dimensional systems, Bi2Te3 thin film with magnetic doping and HgMnTe quantum wells with shear strains, are presented and the general condition for the in-plane magnetization-induced quantum anomalous Hall effect is discussed based on the symmetry analysis. Nonetheless, an experimental setup is proposed to confirm this effect, the observation of which will pave the way to search for the quantum anomalous Hall effect in a wider range of materials. PMID:24010461

  4. Effect of noise on quantum teleportation

    SciTech Connect

    Kumar, Deepak; Pandey, P. N.

    2003-07-01

    The effect of noise on quantum teleportation of a spin-(1/2) state using an entangled pair is studied. We calculate the time evolution of the density matrix of the three involved particles due to their coupling with the environmental degrees of freedom. We evaluate the fidelity of transmission as a function of time under a variety of conditions and compare the fidelities obtained for different entangled states. We find that for a generic coupling to environment, use of the singlet state for the entangled pair yields the highest fidelity in noisy conditions.

  5. Quantum Spring from the Casimir Effect

    E-print Network

    Chao-Jun Feng; Xin-Zhou Li

    2010-07-13

    The Casimir effect arises not only in the presence of material boundaries but also in space with nontrivial topology. In this paper, we choose a topology of the flat $(D+1)$-dimensional spacetime, which causes the helix boundary condition for a Hermitian massless scalar field. Especially, Casimir effect for a massless scalar field on the helix boundary condition is investigated in two and three dimensions by using the zeta function techniques. The Casimir force parallel to the axis of the helix behaves very much like the force on a spring that obeys the Hooke's law when the ratio $r$ of the pitch to the circumference of the helix is small, but in this case, the force comes from a quantum effect, so we would like to call it \\textit{quantum spring}. When $r$ is large, this force behaves like the Newton's law of universal gravitation in the leading order. On the other hand, the force perpendicular to the axis decreases monotonously with the increasing of the ratio $r$. Both forces are attractive and their behaviors are the same in two and three dimensions.

  6. Composite fermion observation in quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Shrivastava, Keshav

    2004-03-01

    The composite fermion model (CF) applicable to quantum Hall effect has been examined[1] and found to be internally inconsistent. Therefore, the claim of observing it in the experiment[2] has also been examined. What is observed in the data is the spin symmetry and the flux quantization but it is claimed that CFs are observed. It is further claimed by Willett et al that geometric resonance of the CF agrees with the data. Actually, the observation is related to flux quantization but not to CF. The attachment of "flux to charge", has not been found. Indeed the CF is unphysical because it uses flux without current. Therefore, the paper of Willett et al should be retracted. According to the theory[3] of angular momentum, we find that the effective charge is given by [L+(1/2)(+-)S]/(2L+1)=1/2 for L=0, S=0. A two particle state with s_1=+1/2, s_2=-1/2 gives the half filling. All of the predicted fractions agree with the data. [1] K. N. Shrivastava, Bull. Am. Phys. Soc. 48,529(2003). [2] R. L. Willett et al Phys. Rev. Lett.83,2624(1999). [3] K. N. Shrivastava, Introduction to quantum Hall effect, Nova Science, N. Y. 2002.

  7. Jet extinction from nonperturbative quantum gravity effects

    NASA Astrophysics Data System (ADS)

    Kilic, Can; Lath, Amitabh; Rose, Keith; Thomas, Scott

    2014-01-01

    The infrared-ultraviolet properties of quantum gravity suggest on very general grounds that hard short distance scattering processes are highly suppressed for center of mass scattering energies beyond the fundamental Planck scale. If this scale is not too far above the electroweak scale, these nonperturbative quantum gravity effects could be manifest as an extinction of high transverse momentum jets at the LHC. To model these effects, we implement an extinction Monte Carlo modification of the PYTHIA event generator based on a Veneziano form factor with a large absorptive branch cut modification of hard QCD scattering processes. Using this we illustrate the leading effects of extinction on the inclusive jet transverse momentum spectrum at the LHC. We estimate that an extinction mass scale of up to roughly half the center of mass beam collision energy could be probed with high statistics data. Experimental searches at the LHC for jet extinction would be complementary to ongoing searches for the related phenomenon of excess production of high multiplicity final states.

  8. Scintillation of liquid neon from electronic and nuclear recoils

    E-print Network

    J. A. Nikkel; R. Hasty; W. H. Lippincott; D. N. McKinsey

    2006-12-04

    We have measured the time dependence of scintillation light from electronic and nuclear recoils in liquid neon, finding a slow time constant of 15.4+-0.2 us. Pulse shape discrimination is investigated as a means of identifying event type in liquid neon. Finally, the nuclear recoil scintillation efficiency is measured to be 0.26+-0.03 for 387 keV nuclear recoils.

  9. Quantum dissipative effect of one dimension coupled anharmonic oscillator

    SciTech Connect

    Sulaiman, A.; Zen, Freddy P.

    2015-04-16

    Quantum dissipative effect of one dimension coupled anharmonic oscillator is investigated. The systems are two coupled harmonic oscillator with the different masses. The dissipative effect is studied based on the quantum state diffusion formalism. The result show that the anharmonic effect increase the amplitude but the lifetime of the oscillation depend on the damping coefficient and do not depend on the temperature.

  10. Thermal recoil force, telemetry, and the Pioneer anomaly

    SciTech Connect

    Toth, Viktor T.; Turyshev, Slava G.

    2009-02-15

    Precision navigation of spacecraft requires accurate knowledge of small forces, including the recoil force due to anisotropies of thermal radiation emitted by spacecraft systems. We develop a formalism to derive the thermal recoil force from the basic principles of radiative heat exchange and energy-momentum conservation. The thermal power emitted by the spacecraft can be computed from engineering data obtained from flight telemetry, which yields a practical approach to incorporate the thermal recoil force into precision spacecraft navigation. Alternatively, orbit determination can be used to estimate the contribution of the thermal recoil force. We apply this approach to the Pioneer anomaly using a simulated Pioneer 10 Doppler data set.

  11. Topological Quantum Computation by Manipulating Quantum Tunneling Effect of the Toric Codes

    E-print Network

    Su-Peng Kou

    2008-06-10

    Quantum computers are predicted to utilize quantum states to perform memory and to process tasks far faster than those of conventional classical computers. In this paper we show a new road towards building fault tolerance quantum computer by tuning quantum tunneling effect of the degenerate quantum states in topological order, instead of by braiding anyons. Using a designer Hamiltonian - the Wen-Plaquette model as an example, we study its quantum tunneling effect of the toric codes and show how to control the toric code to realize topological quantum computation (TQC). In particular, we give a proposal to the measurement of TQC. In the end the realization of the Wen-Plaquette model in cold atoms is discussed.

  12. Neutron electric form factor via recoil polarimetry

    SciTech Connect

    Richard Madey; Andrei Semenov; Simon Taylor; Aram Aghalaryan; Erick Crouse; Glen MacLachlan; Bradley Plaster; Shigeyuki Tajima; William Tireman; Chenyu Yan; Abdellah Ahmidouch; Brian Anderson; Razmik Asaturyan; O. Baker; Alan Baldwin; Herbert Breuer; Roger Carlini; Michael Christy; Steve Churchwell; Leon Cole; Samuel Danagoulian; Donal Day; Mostafa Elaasar; Rolf Ent; Manouchehr Farkhondeh; Howard Fenker; John Finn; Liping Gan; Kenneth Garrow; Paul Gueye; Calvin Howell; Bitao Hu; Mark Jones; James Kelly; Cynthia Keppel; Mahbubul Khandaker; Wooyoung Kim; Stanley Kowalski; Allison Lung; David Mack; D. Manley; Pete Markowitz; Joseph Mitchell; Hamlet Mkrtchyan; Allena Opper; Charles Perdrisat; Vina Punjabi; Brian Raue; Tilmann Reichelt; Joerg Reinhold; Julie Roche; Yoshinori Sato; Wonick Seo; Neven Simicevic; Gregory Smith; Samuel Stepanyan; Vardan Tadevosyan; Liguang Tang; Paul Ulmer; William Vulcan; John Watson; Steven Wells; Frank Wesselmann; Stephen Wood; Chen Yan; Seunghoon Yang; Lulin Yuan; Wei-Ming Zhang; Hong Guo Zhu; Xiaofeng Zhu

    2003-05-01

    The ratio of the electric to the magnetic form factor of the neutron, G_En/G_Mn, was measured via recoil polarimetry from the quasielastic d({pol-e},e'{pol-n)p reaction at three values of Q^2 [viz., 0.45, 1.15 and 1.47 (GeV/c)^2] in Hall C of the Thomas Jefferson National Accelerator Facility. Preliminary data indicate that G_En follows the Galster parameterization up to Q^2 = 1.15 (GeV/c)^2 and appears to rise above the Galster parameterization at Q^2 = 1.47 (GeV/c)^2.

  13. Nuclear quantum effects and kinetic isotope effects in enzyme reactions.

    PubMed

    Vardi-Kilshtain, Alexandra; Nitoker, Neta; Major, Dan Thomas

    2015-09-15

    Enzymes are extraordinarily effective catalysts evolved to perform well-defined and highly specific chemical transformations. Studying the nature of rate enhancements and the mechanistic strategies in enzymes is very important, both from a basic scientific point of view, as well as in order to improve rational design of biomimetics. Kinetic isotope effect (KIE) is a very important tool in the study of chemical reactions and has been used extensively in the field of enzymology. Theoretically, the prediction of KIEs in condensed phase environments such as enzymes is challenging due to the need to include nuclear quantum effects (NQEs). Herein we describe recent progress in our group in the development of multi-scale simulation methods for the calculation of NQEs and accurate computation of KIEs. We also describe their application to several enzyme systems. In particular we describe the use of combined quantum mechanics/molecular mechanics (QM/MM) methods in classical and quantum simulations. The development of various novel path-integral methods is reviewed. These methods are tailor suited to enzyme systems, where only a few degrees of freedom involved in the chemistry need to be quantized. The application of the hybrid QM/MM quantum-classical simulation approach to three case studies is presented. The first case involves the proton transfer in alanine racemase. The second case presented involves orotidine 5'-monophosphate decarboxylase where multidimensional free energy simulations together with kinetic isotope effects are combined in the study of the reaction mechanism. Finally, we discuss the proton transfer in nitroalkane oxidase, where the enzyme employs tunneling as a catalytic fine-tuning tool. PMID:25769515

  14. Nontrivial quantum and quantum-like effects in biosystems: Unsolved questions and paradoxes.

    PubMed

    Melkikh, Alexey V; Khrennikov, Andrei

    2015-11-01

    Non-trivial quantum effects in biological systems are analyzed. Some unresolved issues and paradoxes related to quantum effects (Levinthal's paradox, the paradox of speed, and mechanisms of evolution) are addressed. It is concluded that the existence of non-trivial quantum effects is necessary for the functioning of living systems. In particular, it is demonstrated that classical mechanics cannot explain the stable work of the cell and any over-cell structures. The need for quantum effects is generated also by combinatorial problems of evolution. Their solution requires a priori information about the states of the evolving system, but within the framework of the classical theory it is not possible to explain mechanisms of its storage consistently. We also present essentials of so called quantum-like paradigm: sufficiently complex bio-systems process information by violating the laws of classical probability and information theory. Therefore the mathematical apparatus of quantum theory may have fruitful applications to describe behavior of bio-systems: from cells to brains, ecosystems and social systems. In quantum-like information biology it is not presumed that quantum information bio-processing is resulted from quantum physical processes in living organisms. Special experiments to test the role of quantum mechanics in living systems are suggested. This requires a detailed study of living systems on the level of individual atoms and molecules. Such monitoring of living systems in vivo can allow the identification of the real potentials of interaction between biologically important molecules. PMID:26160644

  15. Fractional Quantum Hall Effect from Phenomenological Bosonization

    NASA Astrophysics Data System (ADS)

    Zyuzin, Vladimir

    2013-03-01

    In this work we propose a model of the fractional quantum Hall effect within conventional one-dimensional bosonization. It is shown that in this formalism the resulting bosonized fermion operator corresponding to momenta of Landau gauge wave function is effectively two-dimensional. At special filling factors the bulk gets gapped, and the theory is described by a sine-Gordon model. The edges are shown to be gapless, chiral, and carrying a fractional charge. The hierarchy of obtained fractional charges is consistent with existing experiments and theories. It is also possible to draw a connection to composite fermion description and to the Laughlin many-body wave function. ARO grant W911NF-09-1-0527 and NSF grant DMR-0955778.

  16. A quantum probability account of order effects in inference.

    PubMed

    Trueblood, Jennifer S; Busemeyer, Jerome R

    2011-01-01

    Order of information plays a crucial role in the process of updating beliefs across time. In fact, the presence of order effects makes a classical or Bayesian approach to inference difficult. As a result, the existing models of inference, such as the belief-adjustment model, merely provide an ad hoc explanation for these effects. We postulate a quantum inference model for order effects based on the axiomatic principles of quantum probability theory. The quantum inference model explains order effects by transforming a state vector with different sequences of operators for different orderings of information. We demonstrate this process by fitting the quantum model to data collected in a medical diagnostic task and a jury decision-making task. To further test the quantum inference model, a new jury decision-making experiment is developed. Using the results of this experiment, we compare the quantum inference model with two versions of the belief-adjustment model, the adding model and the averaging model. We show that both the quantum model and the adding model provide good fits to the data. To distinguish the quantum model from the adding model, we develop a new experiment involving extreme evidence. The results from this new experiment suggest that the adding model faces limitations when accounting for tasks involving extreme evidence, whereas the quantum inference model does not. Ultimately, we argue that the quantum model provides a more coherent account for order effects that was not possible before. PMID:21951058

  17. Gravitational recoils of supermassive black holes in hydrodynamical simulations of gas-rich galaxies

    NASA Astrophysics Data System (ADS)

    Sijacki, Debora; Springel, Volker; Haehnelt, Martin G.

    2011-07-01

    We study the evolution of gravitationally recoiled supermassive black holes (BHs) in massive gas-rich galaxies by means of high-resolution hydrodynamical simulations. We find that the presence of a massive gaseous disc allows recoiled BHs to return to the centre on a much shorter time-scale than for purely stellar discs. Also, BH accretion and feedback can strongly modify the orbit of recoiled BHs and hence their return time-scale, besides affecting the distribution of gas and stars in the galactic centre. However, the dynamical interaction of kicked BHs with the surrounding medium is in general complex and can facilitate both a fast return to the centre as well as a significant delay. The Bondi-Hoyle-Lyttleton accretion rates of the recoiling BHs in our simulated galaxies are favourably high for the detection of off-centred active galactic nuclei (AGN) if kicked into gas-rich discs - up to a few per cent of the Eddington accretion rate - and are highly variable on time-scales of a few 107 yr. In major merger simulations of gas-rich galaxies, we find that gravitational recoils increase the scatter in the BH mass-host galaxy relationships compared to simulations without kicks, with the BH mass being more sensitive to recoil kicks than the bulge mass. The BH mass can be lowered by a factor of a few due to a recoil, even for a relatively short return time-scale, but the exact magnitude of the effect depends strongly on the BH binary hardening time-scale and on the efficiency of star formation in the central regions. A generic result of our numerical models is that the clumpy massive discs suggested by recent high-redshift observations, as well as the remnants of gas-rich mergers, exhibit a gravitational potential that falls steeply in the central regions, due to the dissipative concentration of baryons. As a result, supermassive BHs should only rarely be able to escape from massive galaxies at high redshifts, which is the epoch where the bulk of BH recoils is expected to occur.

  18. Tunneling effects in a one-dimensional quantum walk

    E-print Network

    Mostafa Annabestani; Seyed Javad Akhtarshenas; Mohamad Reza Abolhassani

    2010-04-25

    In this article we investigate the effects of shifting position decoherence, arisen from the tunneling effect in the experimental realization of the quantum walk, on the one-dimensional discreet time quantum walk. We show that in the regime of this type of noise the quantum behavior of the walker does not fade, in contrary to the coin decoherence for which the walker undergos the quantum-to-classical transition even for weak noise. Particularly, we show that the quadratic dependency of the variance on the time and also the coin-position entanglement, i.e. two important quantum aspects of the coherent quantum walk, are preserved in the presence of tunneling decoherence. Furthermore, we present an explicit expression for the probability distribution of decoherent one-dimensional quantum walk in terms of the corresponding coherent probabilities, and show that this type of decoherence smooths the probability distribution.

  19. Investigation of potential profile effects in quantum dot and onion-like quantum dot-quantum well on optical properties

    NASA Astrophysics Data System (ADS)

    Elyasi, P.; SalmanOgli, A.

    2014-05-01

    This paper investigates GaAs/AlGaAs modified quantum dot nanocrystal and GaAs/AlGaAs/GaAs/AlGaAs quantum dot-quantum well heteronanocrystal. These quantum dots have been analyzed by the finite element numerical methods. Simulations carried out for state n=1, l=0, and m=0 which are original, orbital, and magnetic state of quantum numbers. The effects of variation in radius layers such as total radius, GaAs core, shell and AlGaAs barriers radius on the wavelength and emission coefficient are studied. For the best time, it has also investigated the effect of mole fraction on emission coefficient. Meanwhile, one of the problems in biological applications is alteration of the emission wavelength of a quantum dot by changing in its dimension. This problem will be resolved by changing in potential profile.

  20. Covariant effective action for loop quantum cosmology a la Palatini

    SciTech Connect

    Olmo, Gonzalo J.; Singh, Parampreet E-mail: psingh@perimeterinstitute.ca

    2009-01-15

    In loop quantum cosmology, non-perturbative quantum gravity effects lead to the resolution of the big bang singularity by a quantum bounce without introducing any new degrees of freedom. Though fundamentally discrete, the theory admits a continuum description in terms of an effective Hamiltonian. Here we provide an algorithm to obtain the corresponding effective action, establishing in this way the covariance of the theory for the first time. This result provides new insights on the continuum properties of the discrete structure of quantum geometry and opens new avenues to extract physical predictions such as those related to gauge invariant cosmological perturbations.

  1. Guiding effect of quantum wells in semiconductor lasers

    SciTech Connect

    Aleshkin, V Ya; Dikareva, Natalia V; Dubinov, A A; Zvonkov, B N; Karzanova, Maria V; Kudryavtsev, K E; Nekorkin, S M; Yablonskii, A N

    2013-05-31

    The guiding effect of InGaAs quantum wells in GaAs- and InP-based semiconductor lasers has been studied theoretically and experimentally. The results demonstrate that such waveguides can be effectively used in laser structures with a large refractive index difference between the quantum well material and semiconductor matrix and a large number of quantum wells (e.g. in InP-based structures). (semiconductor lasers. physics and technology)

  2. Dynamics of quantum entanglement in the reservoir with memory effects

    E-print Network

    Xiang Hao; Jinqiao Sha; Jian Sun; Shiqun Zhu

    2012-08-08

    The non-Markovian dynamics of quantum entanglement is studied by the Shabani-Lidar master equation when one of entangled quantum systems is coupled to a local reservoir with memory effects. The completely positive reduced dynamical map can be constructed in the Kraus representation. Quantum entanglement decays more slowly in the non-Markovian environment. The decoherence time for quantum entanglement can be markedly increased by the change of the memory kernel. It is found out that the entanglement sudden death between quantum systems and entanglement sudden birth between the system and reservoir occur at different instants.

  3. Extinction properties of metallic nanowires: Quantum diffraction and retardation effects

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin

    2015-10-01

    The standard Mie theory for the extinction of electromagnetic radiation by a metal cylinder that is irradiated by a normally incident plane wave is extended to the case of a metallic nanowire, where two quantum longitudinal waves are excited. The modification of the Mie theory due to quantum diffraction effects is included by employing the quantum hydrodynamic approximation and applying the appropriate quantum additional boundary conditions. The extinction properties of the system and their differences with previous treatments based on the standard local and nonlocal models are shown. Also, as an example the validity of the nonretarded approximation in the quantum nonlocal optical response of a sodium nanowire is discussed.

  4. The effective field theory treatment of quantum gravity

    SciTech Connect

    Donoghue, John F.

    2012-09-24

    This is a pedagogical introduction to the treatment of quantum general relativity as an effective field theory. It starts with an overview of the methods of effective field theory and includes an explicit example. Quantum general relativity matches this framework and I discuss gravitational examples as well as the limits of the effective field theory. I also discuss the insights from effective field theory on the gravitational effects on running couplings in the perturbative regime.

  5. Weightlessness of photons: A quantum effect

    E-print Network

    Ari Brynjolfsson

    2006-02-17

    Contrary to general belief, the Fraunhofer lines have been found to be plasma redshifted and not gravitationally redshifted, when observed on Earth. Quantum mechanical effects cause the photons' gravitational redshift to be reversed as the photons move from the Sun to the Earth. The designs of the experiments, which were thought to have proven the gravitational redshift of photons, are all in the domain of classical physics, and make it impossible to detect the reversal of the gravitational redshifts. The solar redshift experiments, however, are in the domain of quantum mechanics; and the reversal of the redshift is easily detected, when the plasma redshift is taken into account. The photons are found to be weightless relative to a local observer, but repelled relative to a distant observer. The weightlessness of the photons in the gravitational field relative to a local observer is inconsistent with Einstein's equivalence principle. This together with the plasma redshift has profound consequences for the cosmological perspectives. This article gives a theoretical explanation of the observed phenomena, proper interpretation of the many gravitational redshift experiments, and an understanding of how we missed observing the reversal of photons' gravitational redshift. The present analysis indicates that although the photons are weightless in a local system of reference, the experimental evidence indicates that quasi-static electromagnetic fields are not weightless, but adhere to the principle of equivalence.

  6. Anomalous nuclear quantum effects in ice

    NASA Astrophysics Data System (ADS)

    Pamuk, Betül; Soler, Jose M.; Allen, Philip B.; Fernández-Serra, Marivi

    2012-02-01

    The lattice parameters of light (H2O) and heavy (D2O) Ih ice at 10 K differ by 0.09%.[1] The larger lattice constant is that of the heavier isotope. This isotope shift with anomalous sign is linked to the zero point point energy of phonons in ice. To determine the origin of this anomaly, we use ab initio density functional theory to compute the free energy of ice within the quasiharmonic approximation. As expected, the frozen lattice constant at T = 0 K is smaller than the quantum lattice constant, independent of the isotopic substitution. We find that, the heavy isotope D gives more zero point expansion than H, whereas the heavy isotope ^18O gives normal zero point expansion, i.e smaller than ^16O. Relative to the the classical result, the net effect of quantum nuclei (H and O) on volume has the conventional (positive) sign at T = 0 but it becomes negative above 70 K, indicating that it may be also relevant for liquid water. These results are not reproduced by state of art polarizable empirical potentials.[2] [1] B. K. R"ottger et. al., Acta Cryst. B 50, 644-648 (1994). [2] C. P. Herrero and R. Ram'irez, J. Chem. Phys. 134, 094510 (2011).

  7. Kinetic Isotope Effects from Hybrid Classical and Quantum

    E-print Network

    Minnesota, University of

    CHAPTER 5 Kinetic Isotope Effects from Hybrid Classical and Quantum Path Integral Computations is by measurements of kinetic isotope effects (KIE),1 which are of quantum-mechanical origin. This is illustrated to isotope replacements. This is further exacerbated by the complexity and size of an enzyme system

  8. Peltier effect in strongly driven quantum wires

    NASA Astrophysics Data System (ADS)

    Mierzejewski, M.; Crivelli, D.; Prelovšek, P.

    2014-08-01

    We study a microscopic model of a thermocouple device with two connected correlated quantum wires driven by a constant electric field. In such a closed system we follow the time and position dependence of the entropy density using the concept of the reduced density matrix. At weak driving, the initial changes of the entropy at the junctions can be described by the linear Peltier response. At longer times the quasiequilibrium situation is reached with well defined local temperatures which increase due to an overall Joule heating. On the other hand, a strong electric field induces a nontrivial nonlinear thermoelectric response, e.g., the Bloch oscillations of the energy current. Moreover, we show for the doped Mott insulators that strong driving can reverse the Peltier effect.

  9. Continuous and Pulsed Quantum Zeno Effect

    SciTech Connect

    Streed, Erik W.; Mun, Jongchul; Boyd, Micah; Campbell, Gretchen K.; Medley, Patrick; Ketterle, Wolfgang; Pritchard, David E.

    2006-12-31

    Continuous and pulsed quantum Zeno effects were observed using a {sup 87}Rb Bose-Einstein condensate. Oscillations between two ground hyperfine states of a magnetically trapped condensate, externally driven at a transition rate {omega}{sub R}, were suppressed by destructively measuring the population in one of the states with resonant light. The suppression of the transition rate in the two-level system was quantified for pulsed measurements with a time interval {delta}t between pulses and continuous measurements with a scattering rate {gamma}. We observe that the continuous measurements exhibit the same suppression in the transition rate as the pulsed measurements when {gamma}{delta}t=3.60(0.43), in agreement with the predicted value of 4. Increasing the measurement rate suppressed the transition rate down to 0.005{omega}{sub R}.

  10. Quantum Numbers of Textured Hall Effect Quasiparticles

    SciTech Connect

    Nayak, C.; Wilczek, F.

    1996-11-01

    We propose a class of variational wave functions with slow variation in spin and charge density and simple vortex structure at infinity, which properly generalize both the Laughlin quasiparticles and baby Skyrmions. We argue, on the basis of these wave functions and a spin-statistics relation in the relevant effective field theory, that the spin of the corresponding quasiparticle has a fractional part related in a universal fashion to the properties of the bulk state. We propose a direct experimental test of this claim. We show that certain spin-singlet quantum Hall states can be understood as arising from primary polarized states by Skyrmion condensation. {copyright} {ital 1996 The American Physical Society.}

  11. Macroscopic quantum effects for classical light

    NASA Astrophysics Data System (ADS)

    Petrov, N. I.

    2014-10-01

    Optical analogies of macroscopic quantum effects (Schrödinger cat states, squeezing, collapse, and revival) for light beams propagating in an inhomogeneous linear medium are demonstrated theoretically using exact analytical solutions of the wave equation. It is shown that the coherent superposition of macroscopically distinguishable states is generated via mode interference from an initial off-axis single wave packet. Squeezed cat states with a fidelity >99% arise periodically and disappear rapidly within limited intervals of a propagation distance. Collapse and revival of wave packets at long-term nonparaxial evolution due to mode interference is demonstrated. Oscillations of the beam trajectory occur with extremely small amplitude, of the order of 10-19 m, which is typical of the estimated displacement caused by cosmic gravitational waves in gravity-wave detectors.

  12. Universal quantum constraints on the butterfly effect

    E-print Network

    Berenstein, David

    2015-01-01

    Lyapunov exponents play an important role in the evolution of quantum chaotic systems in the semiclassical limit. We conjecture the existence of an upper bound on the Lyapunov exponents that contribute to the quantum motion. This is a universal feature in any quantum system or quantum field theory, including those with a gravity dual, at zero or finite temperature. It has its origin in the finite size of the Hilbert space that is available to an initial quasi-classical configuration. An important consequence of this result is a universal quantum bound on the maximum growth rate of the entanglement entropy.

  13. Universal quantum constraints on the butterfly effect

    E-print Network

    David Berenstein; Antonio M. Garcia-Garcia

    2015-10-29

    Lyapunov exponents play an important role in the evolution of quantum chaotic systems in the semiclassical limit. We conjecture the existence of an upper bound on the Lyapunov exponents that contribute to the quantum motion. This is a universal feature in any quantum system or quantum field theory, including those with a gravity dual, at zero or finite temperature. It has its origin in the finite size of the Hilbert space that is available to an initial quasi-classical configuration. An important consequence of this result is a universal quantum bound on the maximum growth rate of the entanglement entropy.

  14. Effective equations for isotropic quantum cosmology including matter

    E-print Network

    Bojowald, Martin; Skirzewski, Aureliano

    2007-01-01

    Effective equations often provide powerful tools to develop a systematic understanding of detailed properties of a quantum system. This is especially helpful in quantum cosmology where several conceptual and technical difficulties associated with the full quantum equations can be avoided in this way. Here, effective equations for Wheeler-DeWitt and loop quantizations of spatially flat, isotropic cosmological models sourced by a massive or interacting scalar are derived and studied. The resulting systems are remarkably different from that given for a free, massless scalar. This has implications for the coherence of evolving states and the realization of a bounce in loop quantum cosmology.

  15. Heavy-to-light Meson Form Factors at Large Recoil

    SciTech Connect

    Hill, Richard J.; /SLAC

    2005-05-27

    Heavy-to-light meson form factors at large recoil can be described using the same techniques as for hard exclusive processes involving only light hadrons. Two competing mechanisms appear in the large-recoil regime, describing so-called ''soft-overlap'' and ''hard-scattering'' components of the form factors. It is shown how existing experimental data from B and D decays constrain the relative size of these components, and how lattice data can be used to study properties such as the energy scaling laws obeyed by the individual components. Symmetry relations between different form factors (F{sub +}, F{sub 0} and F{sub T}), and between different heavy initial-state mesons (B and D), are derived in the combined heavy-quark and large-recoil limits, and are shown to generalize corresponding relations valid at small recoil. Form factor parameterizations that are consistent with the large-recoil limit are discussed.

  16. Nuclear recoil scintillation and ionisation yields in liquid xenon from ZEPLIN-III data

    E-print Network

    M. Horn; V. A. Belov; D. Yu. Akimov; H. M. Araújo; E. J. Barnes; A. A. Burenkov; V. Chepel; A. Currie; B. Edwards; C. Ghag; A. Hollingsworth; G. E. Kalmus; A. S. Kobyakin; A. G. Kovalenko; V. N. Lebedenko; A. Lindote; M. I. Lopes; R. Lüscher; P. Majewski; A. StJ. Murphy; F. Neves; S. M. Paling; J. Pinto da Cunha; R. Preece; J. J. Quenby; L. Reichhart; P. R. Scovell; C. Silva; V. N. Solovov; N. J. T. Smith; P. F. Smith; V. N. Stekhanov; T. J. Sumner; C. Thorne; L. de Viveiros; R. J. Walker

    2011-10-17

    Scintillation and ionisation yields for nuclear recoils in liquid xenon above 10 keVnr (nuclear recoil energy) are deduced from data acquired using broadband Am-Be neutron sources. The nuclear recoil data from several exposures to two sources were compared to detailed simulations. Energy-dependent scintillation and ionisation yields giving acceptable fits to the data were derived. Efficiency and resolution effects are treated using a light collection Monte Carlo, measured photomultiplier response profiles and hardware trigger studies. A gradual fall in scintillation yield below ~40 keVnr is found, together with a rising ionisation yield; both are in good agreement with the latest independent measurements. The analysis method is applied to both the most recent ZEPLIN-III data, acquired with a significantly upgraded detector and a precision-calibrated Am-Be source, as well as to the earlier data from the first run in 2008. A new method for deriving the recoil scintillation yield, which includes sub-threshold S1 events, is also presented which confirms the main analysis.

  17. Effective fault-tolerant quantum computation with slow measurements

    E-print Network

    David P. DiVincenzo; Panos Aliferis

    2006-08-03

    How important is fast measurement for fault-tolerant quantum computation? Using a combination of existing and new ideas, we argue that measurement times as long as even 1,000 gate times or more have a very minimal effect on the quantum accuracy threshold. This shows that slow measurement, which appears to be unavoidable in many implementations of quantum computing, poses no essential obstacle to scalability.

  18. On Quantum Effects in a Theory of Biological Evolution

    PubMed Central

    Martin-Delgado, M. A.

    2012-01-01

    We construct a descriptive toy model that considers quantum effects on biological evolution starting from Chaitin's classical framework. There are smart evolution scenarios in which a quantum world is as favorable as classical worlds for evolution to take place. However, in more natural scenarios, the rate of evolution depends on the degree of entanglement present in quantum organisms with respect to classical organisms. If the entanglement is maximal, classical evolution turns out to be more favorable. PMID:22413059

  19. Quantum Spin Hall Effect in Ultrasonic Metamaterials

    NASA Astrophysics Data System (ADS)

    Mousavi, S. Hossein; Khanikaev, Alexander B.; Wang, Zheng

    2015-03-01

    The discovery of topological order without breaking time-reversal symmetry, such as that in Quantum Spin Hall (QSH) effect and Topological Insulators, is one of the most groundbreaking advancements of recent years in condensed matters physics. The approach to topological order without breaking time-reversal symmetry is particularly important in elastics because no natural elastic materials show linear nonreciprocal response. Here we illustrate the first elastic-wave system emulating QSH effect and demonstrate existence of topologically protected elastic edge states. The system represents an elastic metamaterial-based phononic crystal. In this crystal, we achieved degenerate linear dispersion for two sets of modes, classified by one of the system's symmetries. Then, by relaxing and removing that symmetry by deliberately engineering a gauge field emulating a strong spin-orbit coupling of QSH, we observe opening a complete topological bandgap. Finally, the hallmark of the topological order, namely the presence of one-way chiral edge waves insensitive to nonmagnetic defects and disorders, is demonstrated in such elastic metacrystals. We illustrate the unique property of these elastic edge waves to flow around sharp corners without back-reflection or localization.

  20. Radiation effects in Si-Ge quantum size structure (Review)

    SciTech Connect

    Sobolev, N. A.

    2013-02-15

    The article is dedicated to the review and analysis of the effects and processes occurring in Si-Ge quantum size semiconductor structures upon particle irradiation including ion implantation. Comparisons to bulk materials are drawn. The reasons of the enhanced radiation hardness of superlattices and quantum dots are elucidated. Some technological applications of the radiation treatment are reviewed.

  1. Theory of ionizing neutrino-atom collisions: The role of atomic recoil

    E-print Network

    Konstantin A. Kouzakov; Alexander I. Studenikin

    2014-11-09

    We consider theoretically ionization of an atom by neutrino impact taking into account electromagnetic interactions predicted for massive neutrinos by theories beyond the Standard Model. The effects of atomic recoil in this process are estimated using the one-electron and semiclassical approximations and are found to be unimportant unless the energy transfer is very close to the ionization threshold. We show that the energy scale where these effects become important is insignificant for current experiments searching for magnetic moments of reactor antineutrinos.

  2. Modeling the Observability of Recoiling Black Holes as Offset Quasars

    NASA Astrophysics Data System (ADS)

    Blecha, Laura; Torrey, Paul; Vogelsberger, Mark; Genel, Shy; Springel, Volker; Sijacki, Debora; Snyder, Gregory; Bird, Simeon; Nelson, Dylan; Xu, Dandan; Hernquist, Lars

    2015-08-01

    The merger of two supermassive black holes (SMBHs) imparts a gravitational-wave (GW) recoil kick to the remnant SMBH. In extreme cases these kicks may be thousands of km/s -- enough to easily eject them from their host galaxies. Moderate recoil kicks may also cause substantial displacements of the SMBH, however. An actively-accreting, recoiling SMBH may be observable as an offset quasar. Prior to the advent of a space-based GW observatory, detections of these offset quasars may offer the best chance for identifying recent SMBH mergers. Indeed, observational searches for recoiling quasars have already identified several promising candidates. However, systematic searches for recoils are currently hampered by large uncertainties regarding how often offset quasars should be observable, where they are most likely to be found, and whether BH spin alignment prior to merger is efficient at suppressing large recoils. Motivated by this, we have developed a model for the observable population of recoiling quasars in a cosmological framework, utilizing detailed information about the progenitor galaxies from state-of-the-art cosmological hydrodynamic simulations (the Illustris Project). The model for offset quasar lifetimes includes a physically-motivated, time-dependent model for accretion onto kicked SMBHs, and results are analyzed for a range of possible BH spin alignment models. We find that the observability of offset quasars depends strongly on the efficiency of pre-merger spin alignment, with promising indications that observations of recoils could distinguish between at least the extreme limits of spin alignment models. Our results also suggest that observable offset quasars should inhabit preferred types of host galaxies, where again these populations depend on the degree of pre-merger spin alignment. These findings will be valuable for planned and future dedicated searches for recoiling quasars, and they indicate that such objects might be used to place indirect constraints on SMBH spins.

  3. Memory effects in quantum channel discrimination

    E-print Network

    Giulio Chiribella; Giacomo M. D'Ariano; Paolo Perinotti

    2008-04-02

    We consider quantum-memory assisted protocols for discriminating quantum channels. We show that for optimal discrimination of memory channels, memory assisted protocols are needed. This leads to a new notion of distance for channels with memory. For optimal discrimination and estimation of sets of unitary channels memory-assisted protocols are not required.

  4. Monte Carlo simulation of quantum Zeno effect in the brain

    NASA Astrophysics Data System (ADS)

    Georgiev, Danko

    2015-12-01

    Environmental decoherence appears to be the biggest obstacle for successful construction of quantum mind theories. Nevertheless, the quantum physicist Henry Stapp promoted the view that the mind could utilize quantum Zeno effect to influence brain dynamics and that the efficacy of such mental efforts would not be undermined by environmental decoherence of the brain. To address the physical plausibility of Stapp's claim, we modeled the brain using quantum tunneling of an electron in a multiple-well structure such as the voltage sensor in neuronal ion channels and performed Monte Carlo simulations of quantum Zeno effect exerted by the mind upon the brain in the presence or absence of environmental decoherence. The simulations unambiguously showed that the quantum Zeno effect breaks down for timescales greater than the brain decoherence time. To generalize the Monte Carlo simulation results for any n-level quantum system, we further analyzed the change of brain entropy due to the mind probing actions and proved a theorem according to which local projections cannot decrease the von Neumann entropy of the unconditional brain density matrix. The latter theorem establishes that Stapp's model is physically implausible but leaves a door open for future development of quantum mind theories provided the brain has a decoherence-free subspace.

  5. Monte Carlo simulation of quantum Zeno effect in the brain

    E-print Network

    Danko Georgiev

    2014-12-11

    Environmental decoherence appears to be the biggest obstacle for successful construction of quantum mind theories. Nevertheless, the quantum physicist Henry Stapp promoted the view that the mind could utilize quantum Zeno effect to influence brain dynamics and that the efficacy of such mental efforts would not be undermined by environmental decoherence of the brain. To address the physical plausibility of Stapp's claim, we modeled the brain using quantum tunneling of an electron in a multiple-well structure such as the voltage sensor in neuronal ion channels and performed Monte Carlo simulations of quantum Zeno effect exerted by the mind upon the brain in the presence or absence of environmental decoherence. The simulations unambiguously showed that the quantum Zeno effect breaks down for timescales greater than the brain decoherence time. To generalize the Monte Carlo simulation results for any n-level quantum system, we further analyzed the change of brain entropy due to the mind probing actions and proved a theorem according to which local projections cannot decrease the von Neumann entropy of the unconditional brain density matrix. The latter theorem establishes that Stapp's model is physically implausible but leaves a door open for future development of quantum mind theories provided the brain has a decoherence-free subspace.

  6. Quantum confinement effects across two-dimensional planes in MoS{sub 2} quantum dots

    SciTech Connect

    Gan, Z. X.; Liu, L. Z.; Wu, H. Y.; Hao, Y. L.; Shan, Y.; Wu, X. L. E-mail: paul.chu@cityu.edu.hk; Chu, Paul K. E-mail: paul.chu@cityu.edu.hk

    2015-06-08

    The low quantum yield (?10{sup ?5}) has restricted practical use of photoluminescence (PL) from MoS{sub 2} composed of a few layers, but the quantum confinement effects across two-dimensional planes are believed to be able to boost the PL intensity. In this work, PL from 2 to 9?nm MoS{sub 2} quantum dots (QDs) is excluded from the solvent and the absorption and PL spectra are shown to be consistent with the size distribution. PL from MoS{sub 2} QDs is also found to be sensitive to aggregation due to the size effect.

  7. Quantum confinement effects across two-dimensional planes in MoS2 quantum dots

    NASA Astrophysics Data System (ADS)

    Gan, Z. X.; Liu, L. Z.; Wu, H. Y.; Hao, Y. L.; Shan, Y.; Wu, X. L.; Chu, Paul K.

    2015-06-01

    The low quantum yield (˜10-5) has restricted practical use of photoluminescence (PL) from MoS2 composed of a few layers, but the quantum confinement effects across two-dimensional planes are believed to be able to boost the PL intensity. In this work, PL from 2 to 9 nm MoS2 quantum dots (QDs) is excluded from the solvent and the absorption and PL spectra are shown to be consistent with the size distribution. PL from MoS2 QDs is also found to be sensitive to aggregation due to the size effect.

  8. Observation of Quantum Effects in sub Kelvin Cold Reactions

    E-print Network

    Henson, Alon B; Shagam, Yuval; Narevicius, Julia; Narevicius, Edvardas

    2012-01-01

    There has been a long-standing quest to observe chemical reactions at low temperatures where reaction rates and pathways are governed by quantum mechanical effects. So far this field of Quantum Chemistry has been dominated by theory. The difficulty has been to realize in the laboratory low enough collisional velocities between neutral reactants, so that the quantum wave nature could be observed. We report here the first realization of merged neutral supersonic beams, and the observation of clear quantum effects in the resulting reactions. We observe orbiting resonances in the Penning ionization reaction of argon and molecular hydrogen with metastable helium leading to a sharp increase in the absolute reaction rate in the energy range corresponding to a few degrees kelvin down to 10 mK. Our method is widely applicable to many canonical chemical reactions, and will enable a breakthrough in the experimental study of Quantum Chemistry.

  9. Observation of Quantum Effects in sub Kelvin Cold Reactions

    E-print Network

    Alon B. Henson; Sasha Gersten; Yuval Shagam; Julia Narevicius; Edvardas Narevicius

    2012-08-08

    There has been a long-standing quest to observe chemical reactions at low temperatures where reaction rates and pathways are governed by quantum mechanical effects. So far this field of Quantum Chemistry has been dominated by theory. The difficulty has been to realize in the laboratory low enough collisional velocities between neutral reactants, so that the quantum wave nature could be observed. We report here the first realization of merged neutral supersonic beams, and the observation of clear quantum effects in the resulting reactions. We observe orbiting resonances in the Penning ionization reaction of argon and molecular hydrogen with metastable helium leading to a sharp increase in the absolute reaction rate in the energy range corresponding to a few degrees kelvin down to 10 mK. Our method is widely applicable to many canonical chemical reactions, and will enable a breakthrough in the experimental study of Quantum Chemistry.

  10. A cavity-mediated collective quantum effect in sonoluminescing bubbles

    E-print Network

    Almut Beige; Oleg Kim

    2015-08-28

    This paper discusses a collective quantum effect which might play an important role in sonoluminescence experiments. We suggest that it occurs during the final stages of the collapse phase and enhances the heating of the particles inside the bubble.

  11. Two quantum effects in the theory of gravitation

    E-print Network

    Robinson, Sean Patrick, 1977-

    2005-01-01

    We will discuss two methods by which the formalism of quantum field theory can be included in calculating the physical effects of gravitation. In the first of these, the consequences of treating general relativity as an ...

  12. Imaging transport resonances in the quantum Hall effect

    E-print Network

    Steele, Gary Alexander

    2006-01-01

    We image charge transport in the quantum Hall effect using a scanning charge accumulation microscope. Applying a DC bias voltage to the tip induces a highly resistive ring-shaped incompressible strip (IS) in a very high ...

  13. Fractional quantum Hall effect in the absence of Landau levels

    PubMed Central

    Sheng, D.N.; Gu, Zheng-Cheng; Sun, Kai; Sheng, L.

    2011-01-01

    It is well known that the topological phenomena with fractional excitations, the fractional quantum Hall effect, will emerge when electrons move in Landau levels. Here we show the theoretical discovery of the fractional quantum Hall effect in the absence of Landau levels in an interacting fermion model. The non-interacting part of our Hamiltonian is the recently proposed topologically non-trivial flat-band model on a checkerboard lattice. In the presence of nearest-neighbouring repulsion, we find that at 1/3 filling, the Fermi-liquid state is unstable towards the fractional quantum Hall effect. At 1/5 filling, however, a next-nearest-neighbouring repulsion is needed for the occurrence of the 1/5 fractional quantum Hall effect when nearest-neighbouring repulsion is not too strong. We demonstrate the characteristic features of these novel states and determine the corresponding phase diagram. PMID:21750543

  14. Effects of pulse shape on rf SQUID quantum gates

    E-print Network

    Zhou, Zhongyuan; Chu, Shih-I; Han, Siyuan

    2003-06-01

    Effects of control-signal microwave pulse shapes on rf SQUID quantum gates are investigated. It is shown that the gate operations are mainly affected by microwave pulse area and are independent of pulse shape in the weak field limit....

  15. Quantum effects of massive modes in a cosmological quantum space-time

    E-print Network

    Tavakoli, Yaser

    2015-01-01

    The quantum theory of a massive, minimally coupled scalar field on an isotropic cosmological quantum space-time is revisited. The interplay between the quantum background and the massive modes of the field, when disregarding their back-reaction effects, gives rise to a theory of quantum field on an effective, dressed space-time whose isotropy may be broken in the direction of the field propagation. On the resulting dressed geometry, evolution of the massive modes, by analyzing the solutions to the corresponding Klein-Gordon equation, is investigated. In particular, by computing the leading order contributions in adiabatic series, an approximate solution for the mode function is obtained. By using the adiabatic regularization, to the fourth order in expansion series, the renormalization of the stress-energy and Hamiltonian of the quantized field is studied. The problem of particle production is studied here in the light of the classical theory of wave propagation on the effective anisotropic background. To the...

  16. Quantum corrections to conductivity under conditions of the integer quantum Hall effect

    SciTech Connect

    Greshnov, A. A.

    2012-06-15

    Quantum corrections to the conductivity of a two-dimensional electron gas under conditions of the integer quantum Hall effect have been studied. It is shown that violation of the one-parameter scaling under conditions of quantizing magnetic fields, {omega}{sub c}{tau} Much-Greater-Than 1, occurs at a level of the perturbation theory. The results of diagrammatic calculation of the quantum correction are in agreement with the numerical dependences of the peaks in the longitudinal conductivity on the effective size of the sample, in contrast to earlier calculations based on the unitary nonlinear {sigma}-model. Due to this, consideration of Landau quantization represents a criterion for correct description of the quantum Hall effect.

  17. Spacetime effects on satellite-based quantum communications

    E-print Network

    Bruschi, David Edward; Fuentes, Ivette; Jennewein, Thomas; Razavi, Mohsen

    2013-01-01

    We investigate the effects of space-time curvature on space-based quantum communication protocols. We analyze tasks that require either the exchange of single photons in a certain entanglement distribution protocol or beams of light in a continuous-variable quantum key distribution scheme. We find that gravity affects the propagation of photons, therefore acting as a noisy channel for the transmission of information. The effects can be measured with current technology.

  18. Quantum Computing Using Single Photons and the Zeno Effect

    E-print Network

    J. D. Franson; B. C. Jacobs; T. B. Pittman

    2004-08-14

    We show that the quantum Zeno effect can be used to suppress the failure events that would otherwise occur in a linear optics approach to quantum computing. From a practical viewpoint, that would allow the implementation of deterministic logic gates without the need for ancilla photons or high-efficiency detectors. We also show that the photons can behave as if they were fermions instead of bosons in the presence of a strong Zeno effect, which leads to a new paradigm for quantum computation.

  19. Plasmon modes of metallic nanowires including quantum nonlocal effects

    SciTech Connect

    Moradi, Afshin

    2015-03-15

    The properties of electrostatic surface and bulk plasmon modes of cylindrical metallic nanowires are investigated, using the quantum hydrodynamic theory of plasmon excitation which allows an analytical study of quantum tunneling effects through the Bohm potential term. New dispersion relations are obtained for each type of mode and their differences with previous treatments based on the standard hydrodynamic model are analyzed in detail. Numerical results show by considering the quantum effects, as the value of wave number increases, the surface modes are slightly red-shifted first and then blue-shifted while the bulk modes are blue-shifted.

  20. Scintillation Efficiency for Low-Energy Nuclear Recoils in Liquid-Xenon Dark Matter Detectors

    E-print Network

    Wei Mu; Xiaonu Xiong; Xiangdong Ji

    2013-10-09

    We perform a theoretical study of the scintillation efficiency in the low-energy region crucial for liquid-xenon dark-matter detectors. We develop a computer program to simulate the cascading process of the recoiling xenon nucleus in liquid xenon and calculate the nuclear quenching effect due to atomic collisions. We use the electronic stopping power extrapolated from the experimental data to the low-energy region, and take into account the effects of electrons escaping from the electron-ion pair recombination using the generalized Thomas-Imel model fitted to scintillation data. Our result agrees well with the experiments from neutron scattering and vanishes rapidly as the recoiling energy drops below 3 keV.

  1. Radiation pressure in strong-field-approximation theory: Retardation and recoil corrections

    NASA Astrophysics Data System (ADS)

    Krajewska, K.; Kami?ski, J. Z.

    2015-10-01

    Radiation pressure effects in ionization by short linearly polarized laser pulses are investigated in the framework of strong-field approximation, in both nonrelativistic and relativistic formulations. Differences between both approaches are discussed, and retardation and recoil corrections are defined. It is demonstrated how these corrections can be incorporated into the nonrelativistic approach, leading to the so-called quasirelativistic formulation. These three approaches are further applied to the analysis of signatures of radiation pressure in energy-angular distributions of photoelectrons. It is demonstrated that, for Ti:sapphire laser pulses of intensities up to 1016W /cm2 , predictions of the quasirelativistic formulation agree well with those of the full relativistic one, and that the recoil corrections contribute predominantly to radiation pressure effects.

  2. Towards witnessing quantum effects in complex molecules.

    PubMed

    Farrow, T; Taylor, R A; Vedral, V

    2015-12-12

    Whether many-body objects like organic molecules can exhibit full quantum behaviour, including entanglement, is an open fundamental question. We present a generic theoretical protocol for entangling two organic molecules, such as dibenzoterrylene in anthracene. The availability of organic dye molecules with two-level energy structures characterised by sharp and intense emission lines are characteristics that position them favourably as candidates for quantum information processing technologies involving single-photons. Quantum entanglement can in principle be generated between several organic molecules by carefully interfering their photoluminescence spectra. Major milestones have been achieved in the last 10 years showcasing entanglement in diverse systems including ions, cold atoms, superconductors, photons, quantum dots and NV-centres in diamond, but not yet in molecules. PMID:26428546

  3. Polymer quantum effects on compact stars models

    E-print Network

    Chacon-Acosta, Guillermo

    2014-01-01

    In this work we study a completely degenerated fermion gas at zero temperature within a semiclassical approximation for the Hamiltonian arising in polymer quantum mechanics. Polymer quantum systems are quantum mechanical models quantized in a similar way as in loop quantum gravity that allow the study of the discreteness of space and other features of the loop quantization in a simplified way. We obtain the polymer modified thermodynamical properties noticing that the corresponding Fermi energy is exactly the same as if one directly polymerizes the momentum $p_F$. We also obtain the corresponding expansion of thermodynamical variables for small values of the polymer length scale $\\lambda$. With this results we study a simple model of a compact object where the gravitational collapse is supported by electron degeneracy pressure. We find polymer corrections to the mass of the star. When compared with typical measurements of the mass of white dwarfs we obtain a bound on the polymer length of $\\lambda^2\\lesssim 1...

  4. Oscillatory quantum screening effects on the transition bremsstrahlung radiation in quantum plasmas

    SciTech Connect

    Jung, Young-Dae

    2011-06-15

    The oscillatory screening effects on the transition bremsstrahlung radiation due to the polarization interaction between the electron and shielding cloud are investigated in dense quantum plasmas. The impact-parameter analysis with the modified Debye-Hueckel potential is applied to obtain the bremsstrahlung radiation cross section as a function of the quantum wave number, impact parameter, photon energy, and projectile energy. The results show that the oscillatory quantum screening effect strongly suppresses the transition bremsstrahlung radiation spectrum in dense quantum plasmas. It is also found that the oscillatory quantum screening effect is more significant near the maximum peak of the bremsstrahlung radiation cross section. In addition, the maximum peak of the bremsstrahlung radiation cross section is getting close to the center of the shielding cloud as increasing quantum wave number. It is interesting to note that the range of the bremsstrahlung photon energy would be broadened with an increase of the oscillatory screening effect. It is also found that the oscillatory screening effects on the transition bremsstrahlung spectrum decreases with increasing projectile energy.

  5. Quantum Walks With Neutral Atoms: Quantum Interference Effects of One and Two Particles

    E-print Network

    Robens, Carsten; Meschede, Dieter; Alberti, Andrea

    2015-01-01

    We report on the state of the art of quantum walk experiments with neutral atoms in state-dependent optical lattices. We demonstrate a novel state-dependent transport technique enabling the control of two spin-selective sublattices in a fully independent fashion. This transport technique allowed us to carry out a test of single-particle quantum interference based on the violation of the Leggett-Garg inequality and, more recently, to probe two-particle quantum interference effects with neutral atoms cooled into the motional ground state. These experiments lay the groundwork for the study of discrete-time quantum walks of strongly interacting, indistinguishable particles to demonstrate quantum cellular automata of neutral atoms.

  6. Modulational instability of electrostatic acoustic waves in an electron-hole semiconductor quantum plasma

    SciTech Connect

    Wang, Yunliang Lü, Xiaoxia

    2014-02-15

    The modulational instability of quantum electrostatic acoustic waves in electron-hole quantum semiconductor plasmas is investigated using the quantum hydrodynamic model, from which a modified nonlinear Schrödinger equation with damping effects is derived using the reductive perturbation method. Here, we consider the combined effects of quantum recoil, quantum degenerate pressures, as well as the exchange-correlation effect standing for the electrons (holes) spin. The modulational instability for different semiconductors (GaAs, GaSb, and InP) is discussed. The collision between electron (hole) and phonon is also investigated. The permitted maximum time for modulational instability and the damping features of quantum envelope solitary wave are all determined by the collision. The approximate solitary solution with damping effects is presented in weak collision limit. The damping properties were discussed by numerical method.

  7. Quantum mechanical effects on the shock Hugoniot

    SciTech Connect

    Bennett, B.I. ); Liberman, D.A. )

    1991-01-01

    Calculations of the locus of shock Hugoniot states of aluminum, using two equations of state that either omit or include a quantum mechanical treatment for the material's electronic excitations, will be presented. The difference between the loci will be analyzed in the context of a comparison between an ab initio quantum mechanical model and a semiclassical treatment of the electronic states. The theoretical results are compared with high pressure (4--300 Mbars) data. 5 refs., 2 figs.

  8. Design of the SUPERB Recoil Separator

    NASA Astrophysics Data System (ADS)

    Jackson, Zachary; Carpenter, Lisa; Amthor, Matt

    2013-10-01

    The reaccelerator ReA12 upgrade planned at the National Superconducting Cyclotron Lab (NSCL) at Michigan State University will produce higher energy rare isotope beams close to the neutron and proton drip lines. We present one option for the recoil separator which aims to take full advantage of the new capabilities of ReA12 in studying rare isotopes. The Separator for Unique Products of Experiments with Radioactive Beams (SUPERB), patterned after the second half of the Super Separator-Spectrometer (S3) currently under construction at the Grand Accélérateur National d'Ions Lourds (GANIL). This design includes both electric and magnetic dipoles and this will allow physical separation by mass-to-charge ratio (m/q) with a maximum solid angle of 26 msr and a maximum magnetic rigidity of 1.44 Tm. This design also allows for flexibility of optical modes. Both large acceptance and unit magnification modes will be presented. Also, a fully magnetic configuration is considered that would eliminate the expected electric rigidity limit of 10 MV and increase the maximum magnetic rigidity to 1.92 Tm. We will present optical designs and simulations of SUBERB developed in the code COSY Infinity including a first order system and a higher order Monte Carlo calculation simulating 100Sn production. This research was funded by the NSF REU program, grant PHY-1165694 with additional support from the DoD ASSURE program.

  9. Exerpts from the history of alpha recoils.

    PubMed

    Samuelsson, Christer

    2011-05-01

    Any confined air volume holding radon ((222)Rn) gas bears a memory of past radon concentrations due to (210)Pb (T(1/2) = 22 y) and its progenies entrapped in all solid objects in the volume. The efforts of quantifying past radon exposures by means of the left-behind long-lived radon progenies started in 1987 with this author's unsuccessful trials of removing (214)Po from radon exposed glass objects. In this contribution the history and different techniques of assessing radon exposure to man in retrospect will be overviewed. The main focus will be on the implantation of alpha recoils into glass surfaces, but also potential traps in radon dwellings will be discussed. It is concluded that for a successful retrospective application, three crucial imperatives must be met, i.e. firstly, the object must persistently store a certain fraction of the created (210)Pb atoms, secondly, be resistant over decades towards disturbances from the outside and thirdly, all (210)Pb atoms analysed must originate from airborne radon only. For large-scale radon epidemiological studies, non-destructive and inexpensive measurement techniques are essential. Large-scale studies cannot be based on objects rarely found in dwellings or not available for measurements. PMID:21306801

  10. Binary Black Hole Mergers and Recoil Kicks

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Baker, J.; Choi, D.; Koppitz, M.; vanMeter, J.; Miller, C.

    2006-01-01

    Recent developments in numerical relativity have made it possible to follow reliably the coalescence of two black holes from near the innermost stable circular orbit to final ringdown. This opens up a wide variety of exciting astrophysical applications of these simulations. Chief among these is the net kick received when two unequal mass or spinning black holes merge. The magnitude of this kick has bearing on the production and growth of supermassive black holes during the epoch of structure formation, and on the retention of black holes in stellar clusters. Here we report the first accurate numerical calculation of this kick, for two nonspinning black holes in a 1.5:1 mass ratio, which is expected based on analytic considerations to give a significant fraction of the maximum possible recoil. We have performed multiple runs with different initial separations, orbital angular momenta, resolutions, extraction radii, and gauges. The full range of our kick speeds is 86-116 kilometers per second, and the most reliable runs give kicks between 86 and 97 kilometers per second. This is intermediate between the estimates from two recent post-Newtonian analyses and suggests that at redshifts z greater than 10, halos with masses less than 10(exp 9) M(sub SUN) will have difficulty retaining coalesced black holes after major mergers.

  11. Chaos and the quantum: how nonlinear effects can explain certain quantum paradoxes

    NASA Astrophysics Data System (ADS)

    McHarris, Wm C.

    2011-07-01

    In recent years we have suggested that many of the so-called paradoxes resulting from the Copenhagen interpretation of quantum mechanics could well have more logical parallels based in nonlinear dynamics and chaos theory. Perhaps quantum mechanics might not be strictly linear as has been commonly postulated, and indeed, during the past year experimentalists have discovered signatures of chaos in a definitely quantum system. As an illustration of what can go wrong when quantum effects are forced into a linear interpretation, I examine Bell-type inequalities. In conventional derivations of such inequalities, classical systems are found to impose upper limits on the statistical correlations between, say, the properties of a pair of separated but entangled particles, whereas quantum systems allow greater correlations. Numerous experiments have upheld the quantum predictions (greater statistical correlations than allowed classically), which has led to inferences such as the instantaneous transmission of information between effectively infinitely separated particles — Einstein's "spooky action-at-a-distance," incompatible with relativity. I argue that there is nothing wrong with the quantum mechanical side of such derivations (the usual point of attack by those attempting to debunk Bell-type arguments), but implicit in the derivations on the classical side is the assumption of independent, uncorrelated particles. As a result, one is comparing uncorrelated probabilities versus conditional probabilities rather than comparing classical versus quantum mechanics, making moot the experimental inferences. Further, nonlinear classical systems are known to exhibit correlations that can easily be as great as and overlap with quantum correlations — so-called nonextensive thermodynamics with its nonadditive entropy has verified this with numerous examples. Perhaps quantum mechanics does contain fundamental nonlinear elements. Nonlinear dynamics and chaos theory could well provide a bridge between the determinism so dear to Einstein and the statisical interpretation of the Copenhagen school. Einstein and Bohr both could have been right in their debates.

  12. Common physical mechanism for integer and fractional quantum Hall effects

    E-print Network

    Jianhua wang; Kang Li; Shuming Long; Yi Yuan

    2012-01-24

    Integer and fractional quantum Hall effects were studied with different physics models and explained by different physical mechanisms. In this paper, the common physical mechanism for integer and fractional quantum Hall effects is studied, where a new unified formulation of integer and fractional quantum Hall effect is presented. Firstly, we introduce a 2-dimensional ideal electron gas model in the presence of strong magnetic field with symmetry gauge, and the transverse electric filed $\\varepsilon_2$ is also introduced to balance Lorentz force. Secondly, the Pauli equation is solved where the wave function and energy levels is given explicitly. Thirdly, after the calculation of the degeneracy density for 2-dimensional ideal electron gas system, the Hall resistance of the system is obtained, where the quantum Hall number $\

  13. Accelerating quantum instanton calculations of the kinetic isotope effects.

    PubMed

    Karandashev, Konstantin; Vaní?ek, Ji?í

    2015-11-21

    Path integral implementation of the quantum instanton approximation currently belongs among the most accurate methods for computing quantum rate constants and kinetic isotope effects, but its use has been limited due to the rather high computational cost. Here, we demonstrate that the efficiency of quantum instanton calculations of the kinetic isotope effects can be increased by orders of magnitude by combining two approaches: The convergence to the quantum limit is accelerated by employing high-order path integral factorizations of the Boltzmann operator, while the statistical convergence is improved by implementing virial estimators for relevant quantities. After deriving several new virial estimators for the high-order factorization and evaluating the resulting increase in efficiency, using ?H? + H?H? ? H?H? + ? H? reaction as an example, we apply the proposed method to obtain several kinetic isotope effects on CH4 + ? H ? ? CH3 + H2 forward and backward reactions. PMID:26590524

  14. Accelerating quantum instanton calculations of the kinetic isotope effects

    NASA Astrophysics Data System (ADS)

    Karandashev, Konstantin; Vaní?ek, Ji?í

    2015-11-01

    Path integral implementation of the quantum instanton approximation currently belongs among the most accurate methods for computing quantum rate constants and kinetic isotope effects, but its use has been limited due to the rather high computational cost. Here, we demonstrate that the efficiency of quantum instanton calculations of the kinetic isotope effects can be increased by orders of magnitude by combining two approaches: The convergence to the quantum limit is accelerated by employing high-order path integral factorizations of the Boltzmann operator, while the statistical convergence is improved by implementing virial estimators for relevant quantities. After deriving several new virial estimators for the high-order factorization and evaluating the resulting increase in efficiency, using ?H? + H?H? ? H?H? + ? H? reaction as an example, we apply the proposed method to obtain several kinetic isotope effects on CH4 + ? H ? ? CH3 + H2 forward and backward reactions.

  15. Density effects on bremsstrahlung radiation in quantum plasmas

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.; Jung, Young-Dae

    2014-01-01

    In this paper, we investigate the effects of plasma number-density and quantum shielding of ions by degenerate electrons on the free-free and electron-atom bremsstrahlung radiation spectra in dense quantum plasmas for a wide range of plasma number-density and atomic-number of the constituent ions. We use previously reported results from the extended Shukla-Eliasson quantum-dressed ionic potential, which takes into account the relativistic degeneracy effect, the quantum statistical pressure, the electron-exchange correlations, the Wigner-Seitz cell interaction feature, as well as the important collective quantum diffraction of electrons. It is observed that the electron number-density has fundamental effect on the free-free and bound-bound bremsstrahlung radiation spectra over the whole frequency range of radiation. By comparing the radiation spectra for the quantum plasmas with ions of bare Coulomb, Thomas-Fermi, and extended quantum potentials, many important features of the bremsstrahlung radiation is highlighted. Current investigation can provide important information on plasma diagnostics for atomic processes in dense plasmas, such as the inertial-confinement fusion, warm dense matter, and the planetary cores. The results can also help in better understanding of the cooling processes in completely degenerate hot compact stellar objects such as white dwarfs.

  16. Huge Quantum Gravity Effects in the Solar System

    E-print Network

    Don N. Page

    2010-05-17

    Normally one thinks of the motion of the planets around the Sun as a highly classical phenomenon, so that one can neglect quantum gravity in the Solar System. However, classical chaos in the planetary motion amplifies quantum uncertainties so that they become very large, giving huge quantum gravity effects. For example, evidence suggests that Uranus may eventually be ejected from the Solar System, but quantum uncertainties would make the direction at which it leaves almost entirely uncertain, and the time of its exit uncertain by about a billion billion years. For a time a billion billion years from now, there are huge quantum uncertainties whether Uranus will be within the Solar System, within the Galaxy, or even within causal contact of the Galaxy.

  17. A coherent understanding of low-energy nuclear recoils in liquid xenon

    SciTech Connect

    Sorensen, Peter

    2010-09-01

    Liquid xenon detectors such as XENON10 and XENON100 obtain a significant fraction of their sensitivity to light (?<10 GeV) particle dark matter by looking for nuclear recoils of only a few keV, just above the detector threshold. Yet in this energy regime a correct treatment of the detector threshold and resolution remains unclear. The energy dependence of the scintillation yield of liquid xenon for nuclear recoils also bears heavily on detector sensitivity, yet numerous measurements have not succeeded in obtaining concordant results. In this article we show that the ratio of detected ionization to scintillation can be leveraged to constrain the scintillation yield. We also present a rigorous treatment of liquid xenon detector threshold and energy resolution. Notably, the effective energy resolution differs significantly from a simple Poisson distribution. We conclude with a calculation of dark matter exclusion limits, and show that existing data from liquid xenon detectors strongly constrain recent interpretations of light dark matter.

  18. Quantum Features of Vacuum Flux Impact: An Interpretation of Quantum Phenomena

    E-print Network

    C. L. Herzenberg

    2005-11-25

    Special relativity combined with the stochastic vacuum flux impact model lead to an explicit interpretation of many of the phenomena of elementary quantum mechanics. We examine characteristics of a repetitively impacted submicroscopic particle in conjunction with examination of the ways in which effects associated with the particle's behavior appear in moving frames of reference. As seen from relatively moving frames of reference, the time and location of impacts and recoils automatically exhibit wave behavior. This model leads to free particle waves with frequencies proportional to the energy and wavelengths inversely proportional to the momentum. As seen from relatively moving frames of reference, impacts and their associated recoils can appear to an observer to take place simultaneously at multiple locations in space. For superposed free particle waves corresponding to bidirectional motion, an amplitude that varies sinusoidally with distance results. A governing equation identical in form to the Schroedinger equation is developed that describes the behavior of the impacts and their associated recoils. This approach permits many features of quantum mechanics to be examined within an intuitively visualizable framework.

  19. Global coherence of quantum evolutions based on decoherent histories: theory and application to photosynthetic quantum energy transport

    E-print Network

    Michele Allegra; Paolo Giorda; Seth Lloyd

    2015-03-18

    In this paper we address the problem of charaterizing coherence in dissipative (Markovian) quantum evolutions. We base our analysis on the decoherent histories formalism which is the most basic and proper approach to assess coherence properties of quantum evolutions. We introduce and test different quantifiers and we show how these are able to capture the (average) coherence of general quantum evolutions on various time scales and for different levels of environmentally induced decoherence. In order to show the effectiveness of the introduced tools, we thoroughly apply them to a paradigmatic instance of quantum process where the role of coherence is being hotly debated: exciton transport in the FMO photosynthetic complex and its most relevant trimeric subunit. Our analysis illustrates how the high efficiency of environmentally assisted transport can be traced back to the coherence properties of the evolution and the interference between pathways in the decoherent histories formalism. Indeed, we show that the bath essentially implements a quantum recoil avoiding effect on the exciton dynamics: the action of decoherence in the system is set at precisely the right level needed to preserve and sustain the benefits of the fast initial quantum delocalization of the exciton over the network, while preventing the subsequent recoil that would necessarily follow form a purely coherent dynamics. This picture becomes very clear when expressed in terms of pathways leading to the exit site: the action of the bath is seen to selectively kill the negative interference between pathways, while retaining the intial positive one.

  20. Quantum effects improve the energy efficiency of feedback control.

    PubMed

    Horowitz, Jordan M; Jacobs, Kurt

    2014-04-01

    The laws of thermodynamics apply equally well to quantum systems as to classical systems, and because of this, quantum effects do not change the fundamental thermodynamic efficiency of isothermal refrigerators or engines. We show that, despite this fact, quantum mechanics permits measurement-based feedback control protocols that are more thermodynamically efficient than their classical counterparts. As part of our analysis, we perform a detailed accounting of the thermodynamics of unitary feedback control and elucidate the sources of inefficiency in measurement-based and coherent feedback. PMID:24827219

  1. Quantum effects improve the energy efficiency of feedback control

    NASA Astrophysics Data System (ADS)

    Horowitz, Jordan M.; Jacobs, Kurt

    2014-04-01

    The laws of thermodynamics apply equally well to quantum systems as to classical systems, and because of this, quantum effects do not change the fundamental thermodynamic efficiency of isothermal refrigerators or engines. We show that, despite this fact, quantum mechanics permits measurement-based feedback control protocols that are more thermodynamically efficient than their classical counterparts. As part of our analysis, we perform a detailed accounting of the thermodynamics of unitary feedback control and elucidate the sources of inefficiency in measurement-based and coherent feedback.

  2. Effective horizons for quantum communication in a Schwarzschild spacetime

    E-print Network

    Hosler, Dominic; Kok, Pieter

    2011-01-01

    Communication between a free-falling observer and an observer hovering above the Schwarzschild horizon of a black hole suffers from Unruh-Hawking noise, which degrades communication channel capacities. Ignoring time dilation, which affects all channels equally, we show that for bosonic communication using single and dual rail encoding the classical channel capacity reaches a finite value and the quantum channel capacity falls off exponentially. The latter defines an effective horizon, beyond which quantum communication becomes exponentially resource inefficient. The characteristic length scale associated with this quantum horizon depends on the mass of the black hole and the frequency of the communication channel.

  3. Intrinsic Spin Hall Effect Induced by Quantum Phase Transition in HgCdTe Quantum Wells

    SciTech Connect

    Yang, Wen; Chang, Kai; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    Spin Hall effect can be induced both by the extrinsic impurity scattering and by the intrinsic spin-orbit coupling in the electronic structure. The HgTe/CdTe quantum well has a quantum phase transition where the electronic structure changes from normal to inverted. We show that the intrinsic spin Hall effect of the conduction band vanishes on the normal side, while it is finite on the inverted side. This difference gives a direct mechanism to experimentally distinguish the intrinsic spin Hall effect from the extrinsic one.

  4. Plasmon modes of spherical nanoparticles: The effects of quantum nonlocality

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin

    2015-07-01

    We develop a new method for calculating the electrostatic surface and bulk plasmon modes of a spherical metal nanoparticle, by taking into account the quantum nonlocal effects. To describe these phenomena, we develop analytical theory based on the quantum hydrodynamical model of plasmon excitation. We derive new dispersion relation for the system and investigate its differences with previous treatments based on the standard nonlocal model.

  5. A toy model for quantum spin Hall effect

    NASA Astrophysics Data System (ADS)

    Owerre, S. A.; Nsofini, J.

    2015-09-01

    In this communication, we investigate a toy model of three-dimensional topological insulator surface, coupled homogeneously to a fictitious pseudospin-1/2 particle. We show that this toy model captures the interesting features of topological insulator surface states, which include topological quantum phase transition and quantum spin Hall effect. We further incorporate an out-of-plane magnetic field and obtain the Landau levels.

  6. Spacetime effects on satellite-based quantum communications

    E-print Network

    David Edward Bruschi; Tim Ralph; Ivette Fuentes; Thomas Jennewein; Mohsen Razavi

    2014-04-26

    We investigate the consequences of space-time being curved on space-based quantum communication protocols. We analyze tasks that require either the exchange of single photons in a certain entanglement distribution protocol or beams of light in a continuous-variable quantum key distribution scheme. We find that gravity affects the propagation of photons, therefore adding additional noise to the channel for the transmission of information. The effects could be measured with current technology.

  7. An Equation of Motion with Quantum Effect in Spacetime

    E-print Network

    Jyh-Yang Wu

    2009-05-26

    In this paper, we shall present a new equation of motion with Quantum effect in spacetime. To do so, we propose a classical-quantum duality. We also generalize the Schordinger equation to the spacetime and obtain a relativistic wave equation. This will lead a generalization of Einstein's formula $E=m_0c^2$ in the spacetime. In general, we have $E=m_0c^2 + \\frac{\\hbar^2}{12m_0}R$ in a spacetime.

  8. An effective non-commutative loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Espinoza-García, Abraham; Sabido, M.; Socorro, J.

    2015-11-01

    We construct a Non-Commutative extension of the Loop Quantum Cosmology effective scheme for the open FLRW model. We start from the holonomized Hamiltonian and implement a canonical non-commutativity among the matter degree of freedom and the holonomy variable, in the volume representation. We obtain a noncommutativie extension of the modified Friedmann equation which arises in Loop Quantum Cosmology for a particular case of the theta deformation.

  9. Polymer quantum effects on compact stars models

    E-print Network

    Guillermo Chacon-Acosta; Hector Hernandez-Hernandez

    2014-08-05

    In this work we study a completely degenerated fermion gas at zero temperature within a semiclassical approximation for the Hamiltonian arising in polymer quantum mechanics. Polymer quantum systems are quantum mechanical models quantized in a similar way as in loop quantum gravity that allow the study of the discreteness of space and other features of the loop quantization in a simplified way. We obtain the polymer modified thermodynamical properties noticing that the corresponding Fermi energy is exactly the same as if one directly polymerizes the momentum $p_F$. We also obtain the corresponding expansion of thermodynamical variables for small values of the polymer length scale $\\lambda$. With this results we study a simple model of a compact object where the gravitational collapse is supported by electron degeneracy pressure. We find polymer corrections to the mass of the star. When compared with typical measurements of the mass of white dwarfs we obtain a bound on the polymer length of $\\lambda^2\\lesssim 10^{-26}m^2$.

  10. Effect of quantum statistics on the gravitational weak equivalence principle

    NASA Astrophysics Data System (ADS)

    Mousavi, S. V.; Majumdar, A. S.; Home, D.

    2015-11-01

    We study the effect of quantum statistics on the arrival time distribution of quantum particles computed through the probability current density. It is shown that symmetrization or asymmetrization of the wave function affects the arrival time distribution for even freely propagating particles. In order to investigate the effect of statistics on the weak equivalence principle in quantum mechanics (WEQ), we then compute the mean arrival time for wavepackets in free fall. The violation of WEQ through the effect of statistics on the mass dependence of the mean arrival time is clearly exhibited. We finally evaluate the effect of spin on the violation of WEQ using a different approach by including an explicit spin-dependence in the probability current distribution, and compare it with the approach using particle statistics. Our results show WEQ re-emerges smoothly in the limit of large mass.

  11. Directional recoil rate for direct detection of WIMPs

    NASA Astrophysics Data System (ADS)

    Alenazi, Moqbil; Gondolo, Paolo

    2007-10-01

    The problem of directional direct detection of weakly interacting massive particles (WIMPs) dark matter (DM) is investigated. We compute, analytically and numerically, the directional differential recoil rate dRd? of recoiled target nuclei hit by WIMPs in direct detection experiments in terms of the angle ?, which is the angle between the reference direction and the recoil direction. While the analytic method is for fixed reference direction and Gaussian distribution of WIMPs, the numeric method is a general method. The two methods give the same results. We apply the numeric method to various Maxwellian distributions including; a stream of WIMPs, the standard dark halo, streams of WIMPs from Sikivie's late-infall (SLI) halo model, and streams with anisotropic velocity distributions. We show the results as distributions of the nuclei's directional differential recoil rate dRd? as a function of ?. We introduce a `folded' directional differential recoil rate dRd|?| to overcome the difficulty of head-tail discrimination in some WIMP's direct detectors. We conclude that dRd|?| can be helpful in recognizing cases of anisotropic streams and isotropic standard dark halo but not in the case of SLI streams.

  12. Calculation of recoil implantation profiles using known range statistics

    NASA Technical Reports Server (NTRS)

    Fung, C. D.; Avila, R. E.

    1985-01-01

    A method has been developed to calculate the depth distribution of recoil atoms that result from ion implantation onto a substrate covered with a thin surface layer. The calculation includes first order recoils considering projected range straggles, and lateral straggles of recoils but neglecting lateral straggles of projectiles. Projectile range distributions at intermediate energies in the surface layer are deduced from look-up tables of known range statistics. A great saving of computing time and human effort is thus attained in comparison with existing procedures. The method is used to calculate recoil profiles of oxygen from implantation of arsenic through SiO2 and of nitrogen from implantation of phosphorus through Si3N4 films on silicon. The calculated recoil profiles are in good agreement with results obtained by other investigators using the Boltzmann transport equation and they also compare very well with available experimental results in the literature. The deviation between calculated and experimental results is discussed in relation to lateral straggles. From this discussion, a range of surface layer thickness for which the method applies is recommended.

  13. Quenching Factor for Low Energy Nuclear Recoils in a Plastic Scintillator

    E-print Network

    L. Reichhart; D. Yu. Akimov; H. M. Araujo; E. J. Barnes; V. A. Belov; A. A. Burenkov; V. Chepel; A. Currie; L. DeViveiros; B. Edwards; V. Francis; C. Ghag; A. Hollingsworth; M. Horn; G. E. Kalmus; A. S. Kobyakin; A. G. Kovalenko; V. N. Lebedenko; A. Lindote; M. I. Lopes; R. Luscher; P. Majewski; A. St J. Murphy; F. Neves; S. M. Paling; J. Pinto da Cunha; R. Preece; J. J. Quenby; P. R. Scovell; C. Silva; V. N. Solovov; N. J. T. Smith; P. F. Smith; V. N. Stekhanov; T. J. Sumner; C. Thorne; R. J. Walker

    2011-11-09

    Plastic scintillators are widely used in industry, medicine and scientific research, including nuclear and particle physics. Although one of their most common applications is in neutron detection, experimental data on their response to low-energy nuclear recoils are scarce. Here, the relative scintillation efficiency for neutron-induced nuclear recoils in a polystyrene-based plastic scintillator (UPS-923A) is presented, exploring recoil energies between 125 keV and 850 keV. Monte Carlo simulations, incorporating light collection efficiency and energy resolution effects, are used to generate neutron scattering spectra which are matched to observed distributions of scintillation signals to parameterise the energy-dependent quenching factor. At energies above 300 keV the dependence is reasonably described using the semi-empirical formulation of Birks and a kB factor of (0.014+/-0.002) g/MeVcm^2 has been determined. Below that energy the measured quenching factor falls more steeply than predicted by the Birks formalism.

  14. Clean recoil implantation of the 100Pd/Rh TDPAC probe using a solenoidal separator

    NASA Astrophysics Data System (ADS)

    Abiona, A. A.; Kemp, W. J.; Williams, E.; Timmers, H.

    2012-10-01

    The synthesis and recoil implantation of the 100Pd/Rh probe for time differential perturbed angular correlation (TDPAC) spectroscopy using the solenoidal reaction product separator SOLITAIRE has been demonstrated for the first time. The separator suppresses the co-implantation of the intense flux of elastically scattered projectile ions that can affect results obtained with the hyperfine interactions technique. Using three different fusion evaporation reactions, the solenoid field was optimised at 4.5 T to achieve a concentrated, circular focus of evaporation residue ions with a lateral FWHM of 20 mm. Employing the reaction 92Zr(12C,4n)100Pd several samples have been recoil-implanted with the 100Pd/Rh probe. Gamma-ray spectroscopy of a silver sample and a TDPAC measurement on zinc confirm that the new preparation technique is effective. The ratio function measured with TDPAC of an undoped germanium sample may indicate that palladium-defect pairs are absent when implanting with SOLITAIRE. However, a direct comparison with TDPAC results for germanium samples prepared with conventional recoil implantation, which does not suppress the flux of elastics, does not support this assertion.

  15. Detecting Quantum Gravitational Effects of Loop Quantum Cosmology in the Early Universe?

    NASA Astrophysics Data System (ADS)

    Zhu, Tao; Wang, Anzhong; Cleaver, Gerald; Kirsten, Klaus; Sheng, Qin; Wu, Qiang

    2015-07-01

    We derive the primordial power spectra and spectral indexes of the density fluctuations and gravitational waves in the framework of loop quantum cosmology (LQC) with holonomy and inverse-volume corrections by using the uniform asymptotic approximation method to its third order, at which the upper error bounds are ? 0.15% and accurate enough for the current and forthcoming cosmological observations. Then, using the Planck, BAO, and supernova data, we obtain the tightest constraints on quantum gravitational effects from LQC corrections and find that such effects could be well within the detection of the current and forthcoming cosmological observations.

  16. Effective Physical Processes and Active Information in Quantum Computing

    E-print Network

    Ignazio Licata

    2007-10-23

    The recent debate on hypercomputation has arisen new questions both on the computational abilities of quantum systems and the Church-Turing Thesis role in Physics. We propose here the idea of "effective physical process" as the essentially physical notion of computation. By using the Bohm and Hiley active information concept we analyze the differences between the standard form (quantum gates) and the non-standard one (adiabatic and morphogenetic) of Quantum Computing, and we point out how its Super-Turing potentialities derive from an incomputable information source in accordance with Bell's constraints. On condition that we give up the formal concept of "universality", the possibility to realize quantum oracles is reachable. In this way computation is led back to the logic of physical world.

  17. Quantum effects of massive modes in a cosmological quantum space-time

    E-print Network

    Yaser Tavakoli; Julio C. Fabris

    2015-11-27

    The quantum theory of a massive, minimally coupled scalar field on an isotropic cosmological quantum space-time is revisited. The interplay between the quantum background and the massive modes of the field, when disregarding their back-reaction effects, gives rise to a theory of quantum field on an effective, dressed space-time whose isotropy may be broken in the direction of the field propagation. On the resulting dressed geometry, evolution of the massive modes, by analyzing the solutions to the corresponding Klein-Gordon equation, is investigated. In particular, by computing the leading order contributions in adiabatic series, an approximate solution for the mode function is obtained. By using the adiabatic regularization, to the fourth order in expansion series, the renormalization of the stress-energy and Hamiltonian of the quantized field is studied. The problem of particle production is studied here in the light of the classical theory of wave propagation on the effective anisotropic background. To the fourth adiabatic order, expressions for the production amount are derived for the cases of massive and massless modes. Finally, a scenario for production in transition from Planck era to a classical de Sitter regime is addressed. It is shown that, for massive modes, particles are created whose amount depends on the quantum-gravity-induced anisotropy factor and the mass of the field. However, for massless modes, no production occurs to any great extent.

  18. Emergence of integer quantum Hall effect from chaos

    E-print Network

    Chushun Tian; Yu Chen; Jiao Wang

    2015-12-01

    We present an analytic microscopic theory showing that in a large class of spin-$\\frac{1}{2}$ quasiperiodic quantum kicked rotors, a dynamical analog of the integer quantum Hall effect (IQHE) emerges from an intrinsic chaotic structure. Specifically, the inverse of the Planck's quantum ($h_e$) and the rotor's energy growth rate mimic the `filling fraction' and the `longitudinal conductivity' in conventional IQHE, respectively, and a hidden quantum number is found to mimic the `quantized Hall conductivity'. We show that for an infinite discrete set of critical values of $h_e$, the long-time energy growth rate is universal and of order of unity (`metallic' phase), but otherwise vanishes (`insulating' phase). Moreover, the rotor insulating phases are topological, each of which is characterized by a hidden quantum number. This number exhibits universal behavior for small $h_e$, i.e., it jumps by unity whenever $h_e$ decreases, passing through each critical value. This intriguing phenomenon is not triggered by the like of Landau band filling, well-known to be the mechanism for conventional IQHE, and far beyond the canonical Thouless-Kohmoto-Nightingale-Nijs paradigm for quantum Hall transitions. Instead, this dynamical phenomenon is of strong chaos origin; it does not occur when the dynamics is (partially) regular. More precisely, we find that, for the first time, a topological object, similar to the topological theta angle in quantum chromodynamics, emerges from strongly chaotic motion at microscopic scales, and its renormalization gives the hidden quantum number.Our analytic results are confirmed by numerical simulations.Our findings indicate that rich topological quantum phenomena can emerge from chaos and might point to a new direction of study in the interdisciplinary area straddling chaotic dynamics and condensed matter physics.

  19. Quantum vacuum effects from boundaries of designer potentials

    SciTech Connect

    Konopka, Tomasz

    2009-04-15

    Vacuum energy in quantum field theory, being the sum of zero-point energies of all field modes, is formally infinite but yet, after regularization or renormalization, can give rise to finite observable effects. One way of understanding how these effects arise is to compute the vacuum energy in an idealized system such as a large cavity divided into disjoint regions by pistons. In this paper, this type of calculation is carried out for situations where the potential affecting a field is not the same in all regions of the cavity. It is shown that the observable parts of the vacuum energy in such potentials do not fall off to zero as the region where the potential is nontrivial becomes large. This unusual behavior might be interesting for tests involving quantum vacuum effects and for studies on the relation between vacuum energy in quantum field theory and geometry.

  20. Effects of superpositions of quantum states on quantum isoenergetic cycles: Efficiency and maximum power output

    NASA Astrophysics Data System (ADS)

    Niu, X. Y.; Huang, X. L.; Shang, Y. F.; Wang, X. Y.

    2015-04-01

    Superposition principle plays a crucial role in quantum mechanics, thus its effects on thermodynamics is an interesting topic. Here, the effects of superpositions of quantum states on isoenergetic cycle are studied. We find superposition can improve the heat engine efficiency and release the positive work condition in general case. In the finite time process, we find the efficiency at maximum power output in superposition case is lower than the nonsuperposition case. This efficiency depends on one index of the energy spectrum of the working substance. This result does not mean the superposition discourages the heat engine performance. For fixed efficiency or fixed power, the superposition improves the power or efficiency respectively. These results show how quantum mechanical properties affect the thermodynamical cycle.

  1. Quantum Logic Operations Using Single Photons and the Zeno Effect

    E-print Network

    J. D. Franson; B. C. Jacobs; T. B. Pittman

    2004-02-19

    We show that the quantum Zeno effect can be used to implement several quantum logic gates for photonic qubits, including a gate that is similar to the square-root of SWAP operation. The operation of these devices depends on the fact that photons can behave as if they were non-interacting fermions instead of bosons in the presence of a strong Zeno effect. These results are discussed within the context of several no-go theorems for non-interacting fermions or bosons.

  2. Quantum Zeno effect for a free-moving particle

    NASA Astrophysics Data System (ADS)

    Porras, Miguel A.; Luis, Alfredo; Gonzalo, Isabel

    2014-12-01

    Although the quantum Zeno effect takes its name from Zeno's arrow paradox, the effect of frequently observing the position of a freely moving particle on its motion has not been analyzed in detail in the frame of standard quantum mechanics. We study the evolution of a moving free particle while monitoring whether it lingers in a given region of space, and explain the dependence of the lingering probability on the frequency of the measurements and the initial momentum of the particle. Stopping the particle entails the emergence of Schrödinger cat states during the observed evolution, closely connected to the high-order diffraction modes in Fabry-Pérot optical resonators.

  3. Disorder effects on stripe phases in quantum Hall systems

    NASA Astrophysics Data System (ADS)

    Li, Mei-Rong; Fertig, H. A.; Cote, R.; Yi, Hangmo

    2003-03-01

    We investigate the effect of Gaussian disorder on the electromagnetic response of stripe phases in quantum Hall systems. We use an effective elastic theory recently proposed(Hangmo Yi, H. A. Fertig, and R. Cote, Phys. Rev. Lett. 85, 4156 (2000).) to describe the low energy dynamics of the charge density waves, and handle the disorder by the replica approach and the Gaussian variational method. The possibility of a quantum depinning transition is investigated, and signatures of such a transition in the frequency-dependent conductivity are discussed.

  4. First detection of tracks of radon progeny recoils by MIMAC

    E-print Network

    Riffard, Q; Bosson, G; Bourrion, O; Descombes, T; Fourel, C; Guillaudin, O; Muraz, J -F; Colas, P; Ferrer-Ribas, E; Giomataris, I; Busto, J; Fouchez, D; Tao, C; Lebreton, L; Maire, D

    2015-01-01

    The MIMAC experiment is a $\\mu$-TPC matrix project for directional dark matter search. Directional detection is a strategy based on the measurement of the WIMP flux anisotropy due to the solar system motion with respect to the dark matter halo. The main purpose of MIMAC project is the measurement of the energy and the direction of nuclear recoils in 3D produced by elastic scattering of WIMPs. Since June 2012 a bi-chamber prototype is operating at the Modane underground laboratory. In this paper, we report the first ionization energy and 3D track observations of nuclear recoils produced by the radon progeny. This measurement shows the capability of the MIMAC detector and opens the possibility to explore the low energy recoil directionality signature.

  5. Ar-39 recoil losses and presolar ages in Allende inclusions

    NASA Technical Reports Server (NTRS)

    Villa, I. M.; Huneke, J. C.; Wasserburg, G. J.

    1983-01-01

    Argon analyses were performed for five coarse-grained, Ca-Al-rich inclusions from the Allende meteorite. The samples were neutron-irradiated in evacuated ampuoles, and the Ar in the ampuoles and in the samples was analyzed. Up to 60 percent of Ar-39 was lost from the samples into the ampuoles due to recoil during neutron-irradiation; this loss resulted in substantial increases in the apparent Ar-40-Ar-39 ages of the samples. Substantial amounts of trapped Ar-36 of unknown origin were found in the inclusions, and the presence of trapped Ar-40 could not be ruled out. It is inferred that the interpretation of high Ar-40/K-40 ratios as very high (presolar) ages may be subject to question. It is noted that the degrees of Ar-39 recoil loss reported is comparable to recoil loss in terrestrial rocks and cannot be attributed to KCl contamination of the samples.

  6. First detection of tracks of radon progeny recoils by MIMAC

    E-print Network

    Q. Riffard; D. Santos; G. Bosson; O. Bourrion; T. Descombes; C. Fourel; O. Guillaudin; J. -F. Muraz; P. Colas; E. Ferrer-Ribas; I. Giomataris; J. Busto; D. Fouchez; C. Tao; L. Lebreton; D. Maire

    2015-04-22

    The MIMAC experiment is a $\\mu$-TPC matrix project for directional dark matter search. Directional detection is a strategy based on the measurement of the WIMP flux anisotropy due to the solar system motion with respect to the dark matter halo. The main purpose of MIMAC project is the measurement of the energy and the direction of nuclear recoils in 3D produced by elastic scattering of WIMPs. Since June 2012 a bi-chamber prototype is operating at the Modane underground laboratory. In this paper, we report the first ionization energy and 3D track observations of nuclear recoils produced by the radon progeny. This measurement shows the capability of the MIMAC detector and opens the possibility to explore the low energy recoil directionality signature.

  7. Angular distributions of very low energy recoil ions

    SciTech Connect

    Gonzalez Lepera, C.E.; Breinig, M.; Burgdoerfer, J.; DeSerio, R.; Elston, S.B.; Gibbons, J.P.; Huelskoetter, H.P.; Liljeby, L.; Vane, C.R.; Sellin, I.A.

    1986-01-01

    We present the first measurements of the angular distribution of recoil ions near 90/sup 0/ with respect to the incident projectile direction. Beams of 22.5 and 33 MeV chlorine ions (incident charge states q =4,5,8) have been used as ''hammer'' beams incident on Ne atoms. We confirm the long standing assumption that these recoil ions are ejected preferentially at angles near 90/sup 0/ with respect to the primary beam direction and with energies typically less than 5 eV. Recoil ions ejected around 90/sup 0/ have an energy distribution appreciably wider than those ejected at either larger or smaller angles. 9 refs., 6 figs.

  8. Quantum circuit analog of the dynamical Casimir effect

    NASA Astrophysics Data System (ADS)

    Fujii, Toshiyuki; Matsuo, Shigemasa; Hatakenaka, Noriyuki; Kurihara, Susumu; Zeilinger, Anton

    2011-11-01

    We investigate a quantum-circuit analog of the dynamical Casimir effect discussed in cavity quantum electrodynamics (QED). A double superconducting quantum interference device (SQUID), consisting of a superconducting loop interrupted by a dc-SQUID, is regarded as a harmonic oscillator with a time-dependent frequency imitating the nonadiabatic boundaries in a cavity QED. Squeezing occurs due to parametric processes inherent in the system. We reformulate squeezing based on the Bogoliubov transformation between eigenstates at different times and derive the analytic formula for quantum-state evolutions of the system. The squeezing parameter clearly reveals the relationship between squeezing and nonadiabatic nature of the system. Thus, the squeezing parameter serves as a measure for the dynamical Casimir effect. We demonstrate squeezing for two types of frequency modulation and propose a method for measuring squeezing by using a circuit QED technique under coherent oscillations between an artificial atom and an LC circuit in the presence of dissipation. These observations suggest that a quantum circuit with a Josephson junction is a promising candidate for detecting the dynamical Casimir effect.

  9. Quantum effects in unimolecular reaction dynamics

    SciTech Connect

    Gezelter, J.D.

    1995-12-01

    This work is primarily concerned with the development of models for the quantum dynamics of unimolecular isomerization and photodissociation reactions. We apply the rigorous quantum methodology of a Discrete Variable Representation (DVR) with Absorbing Boundary Conditions (ABC) to these models in an attempt to explain some very surprising results from a series of experiments on vibrationally excited ketene. Within the framework of these models, we are able to identify the experimental signatures of tunneling and dynamical resonances in the energy dependence of the rate of ketene isomerization. Additionally, we investigate the step-like features in the energy dependence of the rate of dissociation of triplet ketene to form {sup 3}B{sub 1} CH{sub 2} + {sup 1}{sigma}{sup +} CO that have been observed experimentally. These calculations provide a link between ab initio calculations of the potential energy surfaces and the experimentally observed dynamics on these surfaces. Additionally, we develop an approximate model for the partitioning of energy in the products of photodissociation reactions of large molecules with appreciable barriers to recombination. In simple bond cleavage reactions like CH{sub 3}COCl {yields} CH{sub 3}CO + Cl, the model does considerably better than other impulsive and statistical models in predicting the energy distribution in the products. We also investigate ways of correcting classical mechanics to include the important quantum mechanical aspects of zero-point energy. The method we investigate is found to introduce a number of undesirable dynamical artifacts including a reduction in the above-threshold rates for simple reactions, and a strong mixing of the chaotic and regular energy domains for some model problems. We conclude by discussing some of the directions for future research in the field of theoretical chemical dynamics.

  10. Phenomenology of effective geometries from quantum gravity

    NASA Astrophysics Data System (ADS)

    Torromé, Ricardo Gallego; Letizia, Marco; Liberati, Stefano

    2015-12-01

    In a recent paper [M. Assanioussi, A. Dapor, and J. Lewandowski, Phys. Lett. B 751, 302 (2015)] a general mechanism for the emergence of cosmological spacetime geometry from a quantum gravity setting was devised and a departure from standard dispersion relations for an elementary particle was predicted. We elaborate here on this approach extending the results obtained in that paper and showing that generically such a framework will not lead to higher order modified dispersion relations in the matter sector. Furthermore, we shall discuss possible phenomenological constraints to this scenario showing that spacetime will have to be classical to a very high degree by now in order to be consistent with current observations.

  11. Microscopic Properties of the Fractional Quantum Hall Effect

    NASA Astrophysics Data System (ADS)

    Kou, Angela

    The fractional quantum Hall effect occurs when an extremely clean 2-dimensional fermion gas is subject to a magnetic field. This simple set of circumstances creates phenomena, such as edge reconstruction and fractional statistics, that remain subjects of experimental study 30 years after the discovery of the fractional quantum Hall effect. This thesis investigates the properties of excitations of the fractional quantum Hall effect. The first set of experiments studies the interaction between fractional quantum Hall quasiparticles and nuclei in a quantum point contact (QPC). Following the application of a DC bias, fractional plateaus in the QPC shift symmetrically about half filling of the lowest Landau level, nu = 1/3, suggesting an interpretation in terms of composite fermions. Mapping the effects from the integer to fractional regimes extends the composite fermion picture to include hyperfine coupling. The second set of experiments studies the tunneling of quasiparticles through an antidot in the integer and fractional quantum Hall effect. In the integer regime, we conclude that oscillations are of the Coulomb type from the scaling of magnetic field period with the number of edges bound to the antidot. Generalizing this picture to the fractional regime, we find (based on magnetic field and gate-voltage periods) at nu = 2/3 a tunneling charge of (2/3)e and a single charged edge. Further unpublished data related to this experiment as well as alternative theoretical explanations are also presented. The third set of experiments investigates the properties of the fractional quantum Hall effect in the lowest Landau level of bilayer graphene using a scanning single-electron transistor. We observe a sequence of states which breaks particle-hole symmetry and instead obeys a nu ? nu + 2 symmetry. This asymmetry highlights the importance of the orbital degeneracy for many-body states in bilayer graphene. The fourth set of experiments investigates the coupling between microwaves and the fractional quantum Hall effect. Reflectometry is used to investigate bulk properties of samples with different electron densities. We observe large changes in the amplitude of the reflected signal at each integer filling factor as well as changes in the capacitance of the system.

  12. General relativistic effects in quantum interference of photons

    NASA Astrophysics Data System (ADS)

    Zych, Magdalena; Costa, Fabio; Pikovski, Igor; Ralph, Timothy C.; Brukner, ?aslav

    2012-11-01

    Quantum mechanics and general relativity have been extensively and independently confirmed in many experiments. However, the interplay of the two theories has never been tested: all experiments that measured the influence of gravity on quantum systems are consistent with non-relativistic, Newtonian gravity. On the other hand, all tests of general relativity can be described within the framework of classical physics. Here we discuss a quantum interference experiment with single photons that can probe quantum mechanics in curved space-time. We consider a single photon traveling in superposition along two paths in an interferometer, with each arm experiencing a different gravitational time dilation. If the difference in the time dilations is comparable with the photon’s coherence time, the visibility of the quantum interference is predicted to drop, while for shorter time dilations the effect of gravity will result only in a relative phase shift between the two arms. We discuss what aspects of the interplay between quantum mechanics and general relativity are probed in such experiments and analyze the experimental feasibility.

  13. Fractional quantum Hall effect in Hofstadter butterflies of Dirac fermions.

    PubMed

    Ghazaryan, Areg; Chakraborty, Tapash; Pietiläinen, Pekka

    2015-05-13

    We report on the influence of a periodic potential on the fractional quantum Hall effect (FQHE) states in monolayer graphene. We have shown that for two values of the magnetic flux per unit cell (one-half and one-third flux quantum) an increase of the periodic potential strength results in a closure of the FQHE gap and appearance of gaps due to the periodic potential. In the case of one-half flux quantum this causes a change of the ground state and consequently the change of the momentum of the system in the ground state. While there is also crossing between low-lying energy levels for one-third flux quantum, the ground state does not change with the increase of the periodic potential strength and is always characterized by the same momentum. Finally, it is shown that for one-half flux quantum the emergent gaps are due entirely to the electron-electron interaction, whereas for the one-third flux quantum per unit cell these are due to both non-interacting electrons (Hofstadter butterfly pattern) and the electron-electron interaction. PMID:25894009

  14. Fractional quantum Hall effect in Hofstadter butterflies of Dirac fermions

    NASA Astrophysics Data System (ADS)

    Ghazaryan, Areg; Chakraborty, Tapash; Pietiläinen, Pekka

    2015-05-01

    We report on the influence of a periodic potential on the fractional quantum Hall effect (FQHE) states in monolayer graphene. We have shown that for two values of the magnetic flux per unit cell (one-half and one-third flux quantum) an increase of the periodic potential strength results in a closure of the FQHE gap and appearance of gaps due to the periodic potential. In the case of one-half flux quantum this causes a change of the ground state and consequently the change of the momentum of the system in the ground state. While there is also crossing between low-lying energy levels for one-third flux quantum, the ground state does not change with the increase of the periodic potential strength and is always characterized by the same momentum. Finally, it is shown that for one-half flux quantum the emergent gaps are due entirely to the electron-electron interaction, whereas for the one-third flux quantum per unit cell these are due to both non-interacting electrons (Hofstadter butterfly pattern) and the electron-electron interaction.

  15. Bound polaron in a quantum pseudodot under Rashba effect

    NASA Astrophysics Data System (ADS)

    Khordad, R.

    2015-05-01

    In the present work, the influence of Rashba effect on bound polaron in a quantum pseudodot is studied. Using the Lee-Low-Pines unitary transformation method and the Pekar type variational procedure, we have derived an expression for the bound polaron ground state energy. The ground state energy as functions of the wave vector, the electron-phonon coupling strength, and quantum confinement size is obtained by considering different Coulomb bound potentials. It is found that (i) the ground state energy is decreased with raising the Coulomb bound potential, the electron-phonon coupling strength, and quantum confinement size. (ii) The ground state energy increases when the wave vector is increasing. (iii) The ground state energy splits into two branches (spin-up and spin-down) due to the Rashba effect.

  16. Pseudorelativistic effects on solitons in quantum semiconductor plasma.

    PubMed

    Wang, Yunliang; Wang, Xiaodan; Jiang, Xiangqian

    2015-04-01

    A theory for nonlinear excitations in quantum plasmas is presented for narrow-gap semiconductors by considering the combined effects of quantum and pseudorelativity. The system is governed by a coupled Klein-Gordon equation for the collective wave functions of the conduction electrons and Poisson's equation for the electrostatic potential. This gives a closed system, including the effects of charge separation, quantum tunneling, and pseudorelativity. By choosing the typical parameters of semiconductor InSb, the quasistationary soliton solution, which is a multipeaked dark soliton, is obtained numerically and shows depleted electron densities correlated with a localized potential. The dynamical simulation result shows that the dark soliton is stable and has a multipeaked profile, which is consistent with the quasistationary solution. The present model and results may be useful in understanding the nonlinear properties of semiconductor plasma on an ultrafast time scale. PMID:25974603

  17. Plasma wave instability in a quantum field effect transistor with magnetic field effect

    SciTech Connect

    Zhang, Li-Ping; Xue, Ju-Kui

    2013-08-15

    The current-carrying state of a nanometer Field Effect Transistor (FET) may become unstable against the generation of high-frequency plasma waves and lead to generation of terahertz radiation. In this paper, the influences of magnetic field, quantum effects, electron exchange-correlation, and thermal motion of electrons on the instability of the plasma waves in a nanometer FET are reported. We find that, while the electron exchange-correlation suppresses the radiation power, the magnetic field, the quantum effects, and the thermal motion of electrons can enhance the radiation power. The radiation frequency increases with quantum effects and thermal motion of electrons, but decreases with electron exchange-correlation effect. Interestingly, we find that magnetic field can suppress the quantum effects and the thermal motion of electrons and the radiation frequency changes non-monotonely with the magnetic field. These properties could make the nanometer FET advantageous for realization of practical terahertz oscillations.

  18. Recoil-alpha-fission and recoil-alpha-alpha-fission events observed in the reaction Ca-48 + Am-243

    E-print Network

    U. Forsberg; D. Rudolph; L. -L. Andersson; A. Di Nitto; Ch. E. Düllmann; J. M. Gates; P. Golubev; K. E. Gregorich; C. J. Gross; R. -D. Herzberg; F. P. Hessberger; J. Khuyagbaatar; J. V. Kratz; K. Rykaczewski; L. G. Sarmiento; M. Schädel; A. Yakushev; S. Åberg; D. Ackermann; M. Block; H. Brand; B. G. Carlsson; D. Cox; X. Derkx; J. Dobaczewski; K. Eberhardt; J. Even; C. Fahlander; J. Gerl; E. Jäger; B. Kindler; J. Krier; I. Kojouharov; N. Kurz; B. Lommel; A. Mistry; C. Mokry; W. Nazarewicz; H. Nitsche; J. P. Omtvedt; P. Papadakis; I. Ragnarsson; J. Runke; H. Schaffner; B. Schausten; Y. Shi; P. Thörle-Pospiech; T. Torres; T. Traut; N. Trautmann; A. Türler; A. Ward; D. E. Ward; N. Wiehl

    2015-02-10

    Products of the fusion-evaporation reaction Ca-48 + Am-243 were studied with the TASISpec set-up at the gas-filled separator TASCA at the GSI Helmholtzzentrum f\\"ur Schwerionenforschung. Amongst the detected thirty correlated alpha-decay chains associated with the production of element Z=115, two recoil-alpha-fission and five recoil-alpha-alpha-fission events were observed. The latter are similar to four such events reported from experiments performed at the Dubna gas-filled separator. Contrary to their interpretation, we propose an alternative view, namely to assign eight of these eleven decay chains of recoil-alpha(-alpha)-fission type to start from the 3n-evaporation channel 115-288. The other three decay chains remain viable candidates for the 2n-evaporation channel 115-289.

  19. Recoil-alpha-fission and recoil-alpha-alpha-fission events observed in the reaction Ca-48 + Am-243

    E-print Network

    Forsberg, U; Andersson, L -L; Di Nitto, A; Düllmann, Ch E; Gates, J M; Golubev, P; Gregorich, K E; Gross, C J; Herzberg, R -D; Hessberger, F P; Khuyagbaatar, J; Kratz, J V; Rykaczewski, K; Sarmiento, L G; Schädel, M; Yakushev, A; Åberg, S; Ackermann, D; Block, M; Brand, H; Carlsson, B G; Cox, D; Derkx, X; Dobaczewski, J; Eberhardt, K; Even, J; Fahlander, C; Gerl, J; Jäger, E; Kindler, B; Krier, J; Kojouharov, I; Kurz, N; Lommel, B; Mistry, A; Mokry, C; Nazarewicz, W; Nitsche, H; Omtvedt, J P; Papadakis, P; Ragnarsson, I; Runke, J; Schaffner, H; Schausten, B; Shi, Y; Thörle-Pospiech, P; Torres, T; Traut, T; Trautmann, N; Türler, A; Ward, A; Ward, D E; Wiehl, N

    2015-01-01

    Products of the fusion-evaporation reaction Ca-48 + Am-243 were studied with the TASISpec set-up at the gas-filled separator TASCA at the GSI Helmholtzzentrum f\\"ur Schwerionenforschung. Amongst the detected thirty correlated alpha-decay chains associated with the production of element Z=115, two recoil-alpha-fission and five recoil-alpha-alpha-fission events were observed. The latter are similar to four such events reported from experiments performed at the Dubna gas-filled separator. Contrary to their interpretation, we propose an alternative view, namely to assign eight of these eleven decay chains of recoil-alpha(-alpha)-fission type to start from the 3n-evaporation channel 115-288. The other three decay chains remain viable candidates for the 2n-evaporation channel 115-289.

  20. Optimal quantum estimation of the Unruh-Hawking effect

    E-print Network

    Mariona Aspachs; Gerardo Adesso; Ivette Fuentes

    2010-10-09

    We address on general quantum-statistical grounds the problem of optimal detection of the Unruh-Hawking effect. We show that the effect signatures are magnified up to potentially observable levels if the scalar field to be probed has high mean energy from an inertial perspective: The Unruh-Hawking effect acts like an amplification channel. We prove that a field in a Fock inertial state, probed via photon counting by a non-inertial detector, realizes the optimal strategy attaining the ultimate sensitivity allowed by quantum mechanics for the observation of the effect. We define the parameter regime in which the effect can be reliably revealed in laboratory experiments, regardless of the specific implementation.

  1. Effects of quantum coherence in metalloprotein electron transfer

    NASA Astrophysics Data System (ADS)

    Dorner, Ross; Goold, John; Heaney, Libby; Farrow, Tristan; Vedral, Vlatko

    2012-09-01

    Many intramolecular electron transfer (ET) reactions in biology are mediated by metal centers in proteins. This process is commonly described by a model of diffusive hopping according to the semiclassical theories of Marcus and Hopfield. However, recent studies have raised the possibility that nontrivial quantum mechanical effects play a functioning role in certain biomolecular processes. Here, we investigate the potential effects of quantum coherence in biological ET by extending the semiclassical model to allow for the possibility of quantum coherent phenomena using a quantum master equation based on the Holstein Hamiltonian. We test the model on the structurally defined chain of seven iron-sulfur clusters in nicotinamide adenine dinucleotide plus hydrogen:ubiquinone oxidoreductase (complex I), a crucial respiratory enzyme and one of the longest chains of metal centers in biology. Using experimental parameters where possible, we find that, in limited circumstances, a small quantum mechanical contribution can provide a marked increase in the ET rate above the semiclassical diffusive-hopping rate. Under typical biological conditions, our model reduces to well-known diffusive behavior.

  2. Photodissociation of laboratory oriented molecules: Revealing molecular frame properties of nonaxial recoil

    SciTech Connect

    Brom, Alrik J. van den; Rakitzis, T. Peter; Janssen, Maurice H.M.

    2004-12-15

    We report the photodissociation of laboratory oriented OCS molecules. A molecular beam of OCS molecules is hexapole state-selected and spatially oriented in the electric field of a velocity map imaging lens. The oriented OCS molecules are dissociated at 230 nm with the linear polarization set at 45 deg. to the orientation direction of the OCS molecules. The CO({nu}=0,J) photofragments are quantum state-selectively ionized by the same 230 nm pulse and the angular distribution is measured using the velocity map imaging technique. The observed CO({nu}=0,J) images are strongly asymmetric and the degree of asymmetry varies with the CO rotational state J. From the observed asymmetry in the laboratory frame we can directly extract the molecular frame angles between the final photofragment recoil velocity and the permanent dipole moment and the transition dipole moment. The data for CO fragments with high rotational excitation reveal that the dissociation dynamics is highly nonaxial, even though conventional wisdom suggests that the nearly limiting {beta} parameter results from fast axial recoil dynamics. From our data we can extract the relative contribution of parallel and perpendicular transitions at 230 nm excitation.

  3. Quantum gravity effect in torsion driven inflation and CP violation

    NASA Astrophysics Data System (ADS)

    Choudhury, Sayantan; Pal, Barun Kumar; Basu, Banasri; Bandyopadhyay, Pratul

    2015-10-01

    We have derived an effective potential for inflationary scenario from torsion and quantum gravity correction in terms of the scalar field hidden in torsion. A strict bound on the CP violating ? parameter, O(1{0}^{-10})

  4. Thermal non-equilibrium effects in quantum reflection

    E-print Network

    Viola Druzhinina; Marcel Mudrich; Florian Arnecke; Javier Madronero; Andreas Buchleitner

    2009-03-19

    We show that the quantum reflection coefficient of ultracold heavy atoms scattering off a dielectric surface can be tuned in a wide range by suitable choice of surface and environment temperatures. This effect results from a temperature dependent long-range repulsive part of the van der Waals-Casimir-Polder-Lifshitz atom-surface interaction potential.

  5. Cooperative Effects in Quartz Media with Quantum Dots

    NASA Astrophysics Data System (ADS)

    Pishenko, A. V.; Gladush, M. G.; Prokhorov, A. V.

    2015-09-01

    We theoretically consider a problem of generation of infrared pulses of superradiation (SR) in a dielectric medium hosting a dense ensemble of quantum dots produced using the narrow gap semiconductors. We have studied the influence of complex local-field corrections on cooperative optical processes in such a material due to essential modifications of the effective values of the spontaneous relaxation rates.

  6. Quantum Gravity Effect in Torsion Driven Inflation and CP violation

    E-print Network

    Sayantan Choudhury; Barun Kumar Pal; Banasri Basu; Pratul Bandyopadhyay

    2015-10-10

    We have derived an effective potential for inflationary scenario from torsion and quantum gravity correction in terms of the scalar field hidden in torsion. A strict bound on the CP violating $\\theta$ parameter, ${\\cal O}(10^{-10})<\\theta<{\\cal O}(10^{-9})$ has been obtained, using {\\tt Planck+WMAP9} best fit cosmological parameters.

  7. Effective action for a quantum scalar field in warped spaces

    NASA Astrophysics Data System (ADS)

    Hoff da Silva, J. M.; Mendonça, E. L.; Scatena, E.

    2015-11-01

    We investigate the one-loop corrections, at zero as well as finite temperature, of a scalar field taking place in a braneworld motivated warped background. After to reach a well-defined problem, we calculate the effective action with the corresponding quantum corrections to each case.

  8. Low energy theorems of quantum gravity from effective field theory

    NASA Astrophysics Data System (ADS)

    Donoghue, John F.; Holstein, Barry R.

    2015-10-01

    In this survey, we review some of the low energy quantum predictions of general relativity which are independent of details of the yet unknown high-energy completion of the gravitational interaction. Such predictions can be extracted using the techniques of effective field theory.

  9. Loss of coherence and memory effects in quantum dynamics Loss of coherence and memory effects in quantum dynamics

    NASA Astrophysics Data System (ADS)

    Benatti, Fabio; Floreanini, Roberto; Scholes, Greg

    2012-08-01

    The last years have witnessed fast growing developments in the use of quantum mechanics in technology-oriented and information-related fields, especially in metrology, in the developments of nano-devices and in understanding highly efficient transport processes. The consequent theoretical and experimental outcomes are now driving new experimental tests of quantum mechanical effects with unprecedented accuracies that carry with themselves the concrete possibility of novel technological spin-offs. Indeed, the manifold advances in quantum optics, atom and ion manipulations, spintronics and nano-technologies are allowing direct experimental verifications of new ideas and their applications to a large variety of fields. All of these activities have revitalized interest in quantum mechanics and created a unique framework in which theoretical and experimental physics have become fruitfully tangled with information theory, computer, material and life sciences. This special issue aims to provide an overview of what is currently being pursued in the field and of what kind of theoretical reference frame is being developed together with the experimental and theoretical results. It consists of three sections: 1. Memory effects in quantum dynamics and quantum channels 2. Driven open quantum systems 3. Experiments concerning quantum coherence and/or decoherence The first two sections are theoretical and concerned with open quantum systems. In all of the above mentioned topics, the presence of an external environment needs to be taken into account, possibly in the presence of external controls and/or forcing, leading to driven open quantum systems. The open system paradigm has proven to be central in the analysis and understanding of many basic issues of quantum mechanics, such as the measurement problem, quantum communication and coherence, as well as for an ever growing number of applications. The theory is, however, well-settled only when the so-called Markovian or memoryless, approximation applies. When strong coupling or long environmental relaxation times make memory effects important for a realistic description of the dynamics, new strategies are asked for and the assessment of the general structure of non-Markovian dynamical equations for realistic systems is a crucial issue. The impact of quantum phenomena such as coherence and entanglement in biology has recently started to be considered as a possible source of the high efficiency of certain biological mechanisms, including e.g. light harvesting in photosynthesis and enzyme catalysis. In this effort, the relatively unknown territory of driven open quantum systems is being explored from various directions, with special attention to the creation and stability of coherent structures away from thermal equilibrium. These investigations are likely to advance our understanding of the scope and role of quantum mechanics in living systems; at the same time they provide new ideas for the developments of next generations of devices implementing highly efficient energy harvesting and conversion. The third section concerns experimental studies that are currently being pursued. Multidimensional nonlinear spectroscopy, in particular, has played an important role in enabling experimental detection of the signatures of coherence. Recent remarkable results suggest that coherence—both electronic and vibrational—survive for substantial timescales even in complex biological systems. The papers reported in this issue describe work at the forefront of this field, where researchers are seeking a detailed understanding of the experimental signatures of coherence and its implications for light-induced processes in biology and chemistry.

  10. The quantum Goldilocks effect: on the convergence of timescales in quantum transport

    E-print Network

    Lloyd, Seth; Shabani, Alireza; Rabitz, Herschel

    2011-01-01

    Excitonic transport in photosynthesis exhibits a wide range of time scales. Absorption and initial relaxation takes place over tens of femtoseconds. Excitonic lifetimes are on the order of a nanosecond. Hopping rates, energy differences between chromophores, reorganization energies, and decoherence rates correspond to time scales on the order of picoseconds. The functional nature of the divergence of time scales is easily understood: strong coupling to the electromagnetic field over a broad band of frequencies yields rapid absorption, while long excitonic lifetimes increase the amount of energy that makes its way to the reaction center to be converted to chemical energy. The convergence of the remaining time scales to the centerpoint of the overall temporal range is harder to understand. In this paper we argue that the convergence of timescales in photosynthesis can be understood as an example of the `quantum Goldilocks effect': natural selection tends to drive quantum systems to the degree of quantum coheren...

  11. The Macroscopic Quantum Effect in Nonlinear Oscillating Systems: a Possible Bridge between Classical and Quantum Physics

    E-print Network

    Doubochinski, Danil

    2007-01-01

    Einstein, De Broglie and others hoped that the schism between classical and quantum physics might one day be overcome by a theory taking into account the essential nonlinearity of elementary physical processes. However, neither their attempts, nor subsequent ones were able to supply a unifying principle that could serve as a starting-point for a coherent understanding of both microphysical and macroscopic phenomena. In the late 1960s the phenomenon of amplitude quantization, or Macroscopic Quantum Effect (MQE), was discovered in a class of nonlinear oscillating systems in which two or more subsystems are coupled to each other by interactions having a specific phase-dependent character -- so-called argumental interactions. Experimental and theoretical studies of the MQE, carried out up to the present time, suggest the possibility of a new conceptual framework for physics, which would provide a bridge between classical and quantum physics, replacing the Newtonian notion of "force" by a new conception of physica...

  12. Long-Term Evolution of and X-ray Emission from a Recoiling Supermassive Black Hole in a Disk Galaxy

    E-print Network

    Yutaka Fujita

    2008-10-08

    Recent numerical relativity simulations have shown that the emission of gravitational waves at the merger of two black holes gives a recoil kick to the final black hole. We follow the orbits of a recoiling supermassive black hole (SMBH) in a fixed background potential of a disk galaxy including the effect of dynamical friction. If the recoil velocity of the SMBH is smaller than the escape velocity of the galaxy, the SMBH moves around in the potential along a complex trajectory before it spirals into the galactic center through dynamical friction. We consider the accretion of gas onto the SMBH from the surrounding ISM and estimate the X-ray luminosity of the SMBH. We find that it can be larger than 3x 10^39 erg^-1 or the typical X-ray luminosity of ultra-luminous X-ray sources, when the SMBH passes the galactic disk. In particular, the luminosity could exceed ~10^46 erg s^-1, if the SMBH is ejected into the galactic disk. The average luminosity gradually increases as the SMBH spirals into the galactic center. We also estimate the probability of finding recoiling SMBHs with X-ray luminosities of >3x 10^39 erg^-1 in a disk galaxy.

  13. Local field effects and metamaterials based on colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Porvatkina, O. V.; Tishchenko, A. A.; Strikhanov, M. N.

    2015-11-01

    Metamaterials are composite structures that exhibit interesting and unusual properties, e.g. negative refractive index. In this article we consider metamaterials based on colloidal quantum dots (CQDs). We investigate these structures taking into account the local field effects and theoretically analyze expressions for permittivity and permeability of metamaterials based on CdSe CQDs. We obtain inequality describing the conditions when material with definite concentration of CQDs is metamaterial. Also we investigate how the values of dielectric polarizability and magnetic polarizability of CQDs depend on the dots radius and properties the material the quantum dots are made of.

  14. Nuclear Quantum Vibrational Effects in Shock Hugoniot Temperatures

    SciTech Connect

    Goldman, N; Reed, E; Fried, L E

    2009-07-23

    We present a straightforward method for the inclusion of quantum nuclear vibrational effects in molecular dynamics calculations of shock Hugoniot temperatures. Using a Grueneisen equation of state and a quasiharmonic approximation to the vibrational energies, we derive a simple, post-processing method for calculation of the quantum corrected Hugoniot temperatures. We have used our novel technique on ab initio simulations of shock compressed water. Our results indicate significantly closer agreement with all available experimental temperature data. Our formalism and technique can be easily applied to a number of different shock compressed molecular liquids or solids.

  15. The effect of Quantum Gravity on astrophysical neutrino flavor observables

    NASA Astrophysics Data System (ADS)

    Miller, Jonathan; Pasechnik, Roman

    2015-04-01

    At the quantum level, an interaction of a neutrino with a graviton may trigger the collapse of the neutrino flavor eigenstate to a neutrino mass eigenstate. I will present that such an essentially quantum gravity effect may have strong consequences for neutrino oscillation phenomena in astrophysics due to the relatively large scattering cross section of relativistic neutrinos off massive sources of gravitational fields (the case of gravitational Bethe-Heitler scattering). This results in a new technique for the indirect detection of gravitons by measuring the flavor composition of astrophysical neutrinos.

  16. Quantum effects in the dynamics of deeply supercooled water.

    PubMed

    Agapov, A L; Kolesnikov, A I; Novikov, V N; Richert, R; Sokolov, A P

    2015-02-01

    Despite its simple chemical structure, water remains one of the most puzzling liquids with many anomalies at low temperatures. Combining neutron scattering and dielectric relaxation spectroscopy, we show that quantum fluctuations are not negligible in deeply supercooled water. Our dielectric measurements reveal the anomalously weak temperature dependence of structural relaxation in vapor-deposited water close to the glass transition temperature T(g)?136K. We demonstrate that this anomalous behavior can be explained well by quantum effects. These results have significant implications for our understanding of water dynamics. PMID:25768510

  17. Zero-recoil sum rules for ?b ??c form factors

    NASA Astrophysics Data System (ADS)

    Mannel, Thomas; van Dyk, Danny

    2015-12-01

    We set up a zero recoil sum rule to constrain the form factors of the ?b ??c transition. Our results are compared with the recent lattice calculation for these transitions. We find the same situation as in the case for B ?D*: The lattice results practically saturate the sum rules, leaving basically no room for excited states.

  18. Elastic recoil detection (ERD) with extremely heavy ions

    NASA Astrophysics Data System (ADS)

    Forster, J. S.; Currie, P. J.; Davies, J. A.; Siegele, R.; Wallace, S. G.; Zelenitsky, D.

    1996-06-01

    Extremely heavy-ion beams such as 209Bi in elastic recoil detection (ERD) make ERD a uniquely valuable technique for thin-film analysis of elements with mass ? 100. We report ERD measurements of compositional analysis of dinosaur eggshells and bones. We also show the capability of the ERD technique on studies of thin-film, high-temperature superconductors.

  19. The Quantum Spin Hall Effect: Theory and Experiment

    SciTech Connect

    Konig, Markus; Buhmann, Hartmut; Molenkamp, Laurens W.; Hughes, Taylor L.; Liu, Chao-Xing; Qi, Xiao-Liang; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    The search for topologically non-trivial states of matter has become an important goal for condensed matter physics. Recently, a new class of topological insulators has been proposed. These topological insulators have an insulating gap in the bulk, but have topologically protected edge states due to the time reversal symmetry. In two dimensions the helical edge states give rise to the quantum spin Hall (QSH) effect, in the absence of any external magnetic field. Here we review a recent theory which predicts that the QSH state can be realized in HgTe/CdTe semiconductor quantum wells. By varying the thickness of the quantum well, the band structure changes from a normal to an 'inverted' type at a critical thickness d{sub c}. We present an analytical solution of the helical edge states and explicitly demonstrate their topological stability. We also review the recent experimental observation of the QSH state in HgTe/(Hg,Cd)Te quantum wells. We review both the fabrication of the sample and the experimental setup. For thin quantum wells with well width d{sub QW} < 6.3 nm, the insulating regime shows the conventional behavior of vanishingly small conductance at low temperature. However, for thicker quantum wells (d{sub QW} > 6.3 nm), the nominally insulating regime shows a plateau of residual conductance close to 2e{sup 2}/h. The residual conductance is independent of the sample width, indicating that it is caused by edge states. Furthermore, the residual conductance is destroyed by a small external magnetic field. The quantum phase transition at the critical thickness, d{sub c} = 6.3 nm, is also independently determined from the occurrence of a magnetic field induced insulator to metal transition.

  20. Quantum Hall effect in graphene decorated with disordered multilayer patches

    SciTech Connect

    Nam, Youngwoo; Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Gothenburg ; Sun, Jie Lindvall, Niclas; Kireev, Dmitry; Yurgens, August; Jae Yang, Seung; Rae Park, Chong; Woo Park, Yung

    2013-12-02

    Quantum Hall effect (QHE) is observed in graphene grown by chemical vapour deposition using platinum catalyst. The QHE is even seen in samples which are irregularly decorated with disordered multilayer graphene patches and have very low mobility (<500 cm{sup 2}V{sup ?1}s{sup ?1}). The effect does not seem to depend on electronic mobility and uniformity of the resulting material, which indicates the robustness of QHE in graphene.

  1. Magnitude of quantum effects in classical spin ices

    NASA Astrophysics Data System (ADS)

    Rau, Jeffrey G.; Gingras, Michel J. P.

    2015-10-01

    The pyrochlore spin ice compounds Dy2Ti2O7 and Ho2Ti2O7 are well described by classical Ising models down to low temperatures. Given the empirical success of this description, the question of the importance of quantum effects in these materials has been mostly ignored. We show that the common wisdom that the strictly Ising moments of isolated Dy3+ and Ho3+ ions imply Ising interactions is too naïve; a more complex argument is needed to explain the close agreement between theory and experiment. From a microscopic picture of the interactions in rare-earth oxides, we show that the high-rank multipolar interactions needed to induce quantum effects in these two materials are generated only very weakly by superexchange. Using this framework, we formulate an estimate of the scale of quantum effects in Ho2Ti2O7 and Dy2Ti2O7 , finding it to be well below experimentally relevant temperatures. We discuss the implications of these results for realizing quantum spin ice in other materials.

  2. Testing quantum gravity effects with latest CMB observations

    E-print Network

    Yi-Fu Cai; Yi Wang

    2014-06-19

    Inspired by quantum gravitational physics, the approach of non-commutative (NC) phase space leads to a modified dispersion relation of gravitational waves. This feature, if applied to the very early universe, gives rise to a modified power spectrum of primordial tensor perturbations with a suppression of power on large scales. We confront this phenomenon with the BICEP2 and Planck experiments, and show that inflation with the modified dispersion relation can simultaneously fit the observations better than the standard inflationary paradigm. In particular, the numerical result implies that with the latest cosmological microwave background (CMB) observations, a quantum gravity modified power spectrum of primordial tensor modes is preferred at a statistical significance of more than $3\\sigma$ compared with the minimal model. Our study indicates that the potential tension between the BICEP2 and Planck data may be resolved by quantum gravity effects.

  3. Testing quantum gravity effects with latest CMB observations

    E-print Network

    Cai, Yi-Fu

    2014-01-01

    Inspired by quantum gravitational physics, the approach of non-commutative (NC) phase space leads to a modified dispersion relation of gravitational waves. This feature, if applied to the very early universe, gives rise to a modified power spectrum of primordial tensor perturbations with a suppression of power on large scales. We confront this phenomenon with the BICEP2 and Planck experiments, and show that inflation with the modified dispersion relation can simultaneously fit the observations better than the standard inflationary paradigm. In particular, the numerical result implies that with the latest cosmological microwave background (CMB) observations, a quantum gravity modified power spectrum of primordial tensor modes is preferred at a statistical significance of more than $3\\sigma$ compared with the minimal model. Our study indicates that the potential tension between the BICEP2 and Planck data may be resolved by quantum gravity effects.

  4. Coupling effect of quantum wells on band structure

    NASA Astrophysics Data System (ADS)

    Jie, Chen; Weiyou, Zeng

    2015-10-01

    The coupling effects of quantum wells on band structure are numerically investigated by using the Matlab programming language. In a one dimensional finite quantum well with the potential barrier V0, the calculation is performed by increasing the number of inserted barriers with the same height Vb, and by, respectively, varying the thickness ratio of separated wells to inserted barriers and the height ratio of Vb to V0. Our calculations show that coupling is strongly influenced by the above parameters of the inserted barriers and wells. When these variables change, the width of the energy bands and gaps can be tuned. Our investigation shows that it is possible for quantum wells to achieve the desired width of the bands and gaps.

  5. Effective time-independent analysis for quantum kicked systems

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Jayendra N.; Guha Sarkar, Tapomoy

    2015-03-01

    We present a mapping of potentially chaotic time-dependent quantum kicked systems to an equivalent approximate effective time-independent scenario, whereby the system is rendered integrable. The time evolution is factorized into an initial kick, followed by an evolution dictated by a time-independent Hamiltonian and a final kick. This method is applied to the kicked top model. The effective time-independent Hamiltonian thus obtained does not suffer from spurious divergences encountered if the traditional Baker-Cambell-Hausdorff treatment is used. The quasienergy spectrum of the Floquet operator is found to be in excellent agreement with the energy levels of the effective Hamiltonian for a wide range of system parameters. The density of states for the effective system exhibits sharp peaklike features, pointing towards quantum criticality. The dynamics in the classical limit of the integrable effective Hamiltonian shows remarkable agreement with the nonintegrable map corresponding to the actual time-dependent system in the nonchaotic regime. This suggests that the effective Hamiltonian serves as a substitute for the actual system in the nonchaotic regime at both the quantum and classical level.

  6. A holographic model for the fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Lippert, Matthew; Meyer, René; Taliotis, Anastasios

    2015-01-01

    Experimental data for fractional quantum Hall systems can to a large extent be explained by assuming the existence of a ?0(2) modular symmetry group commuting with the renormalization group flow and hence mapping different phases of two-dimensional electron gases into each other. Based on this insight, we construct a phenomenological holographic model which captures many features of the fractional quantum Hall effect. Using an -invariant Einstein-Maxwell-axio-dilaton theory capturing the important modular transformation properties of quantum Hall physics, we find dyonic diatonic black hole solutions which are gapped and have a Hall conductivity equal to the filling fraction, as expected for quantum Hall states. We also provide several technical results on the general behavior of the gauge field fluctuations around these dyonic dilatonic black hole solutions: we specify a sufficient criterion for IR normalizability of the fluctuations, demonstrate the preservation of the gap under the action, and prove that the singularity of the fluctuation problem in the presence of a magnetic field is an accessory singularity. We finish with a preliminary investigation of the possible IR scaling solutions of our model and some speculations on how they could be important for the observed universality of quantum Hall transitions.

  7. Emergence of integer quantum Hall effect from chaos

    E-print Network

    Tian, Chushun; Wang, Jiao

    2015-01-01

    We present an analytic microscopic theory showing that in a large class of spin-$\\frac{1}{2}$ quasiperiodic quantum kicked rotors, a dynamical analog of the integer quantum Hall effect (IQHE) emerges from an intrinsic chaotic structure. Specifically, the inverse of the Planck's quantum ($h_e$) and the rotor's energy growth rate mimic the `filling fraction' and the `longitudinal conductivity' in conventional IQHE, respectively, and a hidden quantum number is found to mimic the `quantized Hall conductivity'. We show that for an infinite discrete set of critical values of $h_e$, the long-time energy growth rate is universal and of order of unity (`metallic' phase), but otherwise vanishes (`insulating' phase). Moreover, the rotor insulating phases are topological, each of which is characterized by a hidden quantum number. This number exhibits universal behavior for small $h_e$, i.e., it jumps by unity whenever $h_e$ decreases, passing through each critical value. This intriguing phenomenon is not triggered by the...

  8. Quantum Spin Hall Effect and Topological Field Effect Transistor in Two-Dimensional Transition Metal Dichalcogenides

    E-print Network

    Qian, Xiaofeng

    Quantum spin Hall (QSH) effect materials feature edge states that are topologically protected from backscattering. However, the small band gap in materials that have been identified as QSH insulators limits applications. ...

  9. Negative muon chemistry: the quantum muon effect and the finite nuclear mass effect.

    PubMed

    Posada, Edwin; Moncada, Félix; Reyes, Andrés

    2014-10-01

    The any-particle molecular orbital method at the full configuration interaction level has been employed to study atoms in which one electron has been replaced by a negative muon. In this approach electrons and muons are described as quantum waves. A scheme has been proposed to discriminate nuclear mass and quantum muon effects on chemical properties of muonic and regular atoms. This study reveals that the differences in the ionization potentials of isoelectronic muonic atoms and regular atoms are of the order of millielectronvolts. For the valence ionizations of muonic helium and muonic lithium the nuclear mass effects are more important. On the other hand, for 1s ionizations of muonic atoms heavier than beryllium, the quantum muon effects are more important. In addition, this study presents an assessment of the nuclear mass and quantum muon effects on the barrier of He? + H2 reaction. PMID:25188920

  10. The mechanics of elastic loading and recoil in anuran jumping.

    PubMed

    Astley, Henry C; Roberts, Thomas J

    2014-12-15

    Many animals use catapult mechanisms to produce extremely rapid movements for escape or prey capture, resulting in power outputs far beyond the limits of muscle. In these catapults, muscle contraction loads elastic structures, which then recoil to release the stored energy extremely rapidly. Many arthropods employ anatomical 'catch mechanisms' to lock the joint in place during the loading period, which can then be released to allow joint motion via elastic recoil. Jumping vertebrates lack a clear anatomical catch, yet face the same requirement to load the elastic structure prior to movement. There are several potential mechanisms to allow loading of vertebrate elastic structures, including the gravitational load of the body, a variable mechanical advantage, and moments generated by the musculature of proximal joints. To test these hypothesized mechanisms, we collected simultaneous 3D kinematics via X-ray Reconstruction of Moving Morphology (XROMM) and single-foot forces during the jumps of three Rana pipiens. We calculated joint mechanical advantage, moment and power using inverse dynamics at the ankle, knee, hip and ilio-sacral joints. We found that the increasing proximal joint moments early in the jump allowed for high ankle muscle forces and elastic pre-loading, and the subsequent reduction in these moments allowed the ankle to extend using elastic recoil. Mechanical advantage also changed throughout the jump, with the muscle contracting against a poor mechanical advantage early in the jump during loading and a higher mechanical advantage late in the jump during recoil. These 'dynamic catch mechanisms' serve to resist joint motion during elastic loading, then allow it during elastic recoil, functioning as a catch mechanism based on the balance and orientation of forces throughout the limb rather than an anatomical catch. PMID:25520385

  11. Memory effects in attenuation and amplification quantum processes

    E-print Network

    Cosmo Lupo; Vittorio Giovannetti; Stefano Mancini

    2010-10-05

    With increasing communication rates via quantum channels, memory effects become unavoidable whenever the use rate of the channel is comparable to the typical relaxation time of the channel environment. We introduce a model of a bosonic memory channel, describing correlated noise effects in quantum-optical processes via attenuating or amplifying media. To study such a channel model, we make use of a proper set of collective field variables, which allows us to unravel the memory effects, mapping the n-fold concatenation of the memory channel to a unitarily equivalent, direct product of n single-mode bosonic channels. We hence estimate the channel capacities by relying on known results for the memoryless setting. Our findings show that the model is characterized by two different regimes, in which the cross correlations induced by the noise among different channel uses are either exponentially enhanced or exponentially reduced.

  12. Quantum metrology and the detection of Unruh effect

    E-print Network

    Wang, Jieci; Jing, Jiliang; Fan, Heng

    2014-01-01

    We study the quantum metrology for a pair of entangled Unruh-Dewitt detectors coupled to a massless scalar field when one of them is accelerated. Comparing with previous schemes, our model requires only local interaction and avoids the use of cavities in the probe state preparation process. We show that the accelerated motion and the interaction between the accelerated detector and the external field have significant effects on the value of quantum Fisher information, correspondingly pose variable ultimate limit of precision in the detection of Unruh effect. We find that the precision of the estimation can be improved by a larger effective coupling strength and a longer interaction time. In contrast, there are a range of accelerations and energy gaps of the detector that provide us with a better precision in the estimation. Thus we may adjust those parameters in the scheme of the detection.

  13. Jet Extinction from Non-Perturbative Quantum Gravity Effects

    E-print Network

    Can Kilic; Amitabh Lath; Keith Rose; Scott Thomas

    2013-12-17

    The infrared-ultraviolet properties of quantum gravity suggest on very general grounds that hard short distance scattering processes are highly suppressed for center of mass scattering energies beyond the fundamental Planck scale. If this scale is not too far above the electroweak scale, these non-perturbative quantum gravity effects could be manifest as an extinction of high transverse momentum jets at the LHC. To model these effects we implement an Extinction Monte Carlo modification of the Pythia event generator based on a large damping Veneziano form factor modification of hard QCD scattering processes. Using this we illustrate the leading effects of extinction on the inclusive jet transverse momentum spectrum at the LHC. We estimate that an extinction mass scale of up to roughly half the center of mass beam collision energy could be probed with high statistics data.

  14. Evanescent radiation, quantum mechanics and the Casimir effect

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1989-01-01

    An attempt to bridge the gap between classical and quantum mechanics and to explain the Casimir effect is presented. The general nature of chaotic motion is discussed from two points of view: the first uses catastrophe theory and strange attractors to describe the deterministic view of this motion; the underlying framework for chaos in these classical dynamic systems is their extreme sensitivity to initial conditions. The second interpretation refers to randomness associated with probabilistic dynamics, as for Brownian motion. The present approach to understanding evanescent radiation and its relation to the Casimir effect corresponds to the first interpretation, whereas stochastic electrodynamics corresponds to the second viewpoint. The nonlinear behavior of the electromagnetic field is also studied. This well-understood behavior is utilized to examine the motions of two orbiting charges and shows a closeness between the classical behavior and the quantum uncertainty principle. The evanescent radiation is used to help explain the Casimir effect.

  15. Towards a quantum theory of chiral magnetic effect

    E-print Network

    V. Orlovsky; V. Shevchenko

    2010-08-30

    We discuss three possible ways to address quantum physics behind chiral magnetic effect and electric charge fluctuation patterns in heavy ion collisions. The first one makes use of P-parity violation probed by local order parameters, the second considers CME in quantum measurement theory framework and the third way is to study P-odd * P-odd contributions to P-even observables. In the latter approach relevant form-factor is extracted and computed for weak magnetic field in confinement region and for free quarks in strong field regime. It is shown that the effect is negligible in the former case. We also discuss saturation effect - charge fluctuation asymmetry for free fermions reaches constant value at asymptotically large fields.

  16. Loop quantum cosmology of Bianchi IX: Effective dynamics

    E-print Network

    Alejandro Corichi; Edison Montoya

    2015-02-09

    We study numerically the solutions to the effective equations of Bianchi IX spacetimes within Loop Quantum Cosmology. We consider Bianchi IX models with and without inverse triad corrections whose matter content is a scalar field without mass. The solutions are classified using the classical observables. We show that both effective theories --with lapse N=V and N=1-- solve the big bang singularity and reproduce the classical dynamics far from the bounce. Moreover, due to the spatial compactness, there is an infinity number of bounces and recollapses. We study the limit of large volume and show that both effective theories reproduce the same dynamics, thus recovering general relativity. We implement a procedure to identify amongst the Bianchi IX solutions, those that behave like k=0,1 FLRW as well as Bianchi I, II, and VII_0 models. The effective solutions exhibit Bianchi I phases with Bianchi II transitions and also Bianchi VII_0 phases, which had not been studied before, at the quantum nor effective level. We comment on the possible implications of these results for a quantum modification to the classical BKL behaviour.

  17. Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets.

    PubMed

    Sichert, Jasmina A; Tong, Yu; Mutz, Niklas; Vollmer, Mathias; Fischer, Stefan; Milowska, Karolina Z; García Cortadella, Ramon; Nickel, Bert; Cardenas-Daw, Carlos; Stolarczyk, Jacek K; Urban, Alexander S; Feldmann, Jochen

    2015-10-14

    Organometal halide perovskites have recently emerged displaying a huge potential for not only photovoltaic, but also light emitting applications. Exploiting the optical properties of specifically tailored perovskite nanocrystals could greatly enhance the efficiency and functionality of applications based on this material. In this study, we investigate the quantum size effect in colloidal organometal halide perovskite nanoplatelets. By tuning the ratio of the organic cations used, we can control the thickness and consequently the photoluminescence emission of the platelets. Quantum mechanical calculations match well with the experimental values. We find that not only do the properties of the perovskite, but also those of the organic ligands play an important role. Stacking of nanoplatelets leads to the formation of minibands, further shifting the bandgap energies. In addition, we find a large exciton binding energy of up to several hundreds of meV for nanoplatelets thinner than three unit cells, partially counteracting the blueshift induced by quantum confinement. Understanding of the quantum size effects in perovskite nanoplatelets and the ability to tune them provide an additional method with which to manipulate the optical properties of organometal halide perovskites. PMID:26327242

  18. Nambu-Goldstone Effective Theory of Information at Quantum Criticality

    E-print Network

    Gia Dvali; Andre Franca; Cesar Gomez; Nico Wintergerst

    2015-07-10

    We establish a fundamental connection between quantum criticality of a many-body system, such as Bose-Einstein condensates, and its capacity of information-storage and processing. For deriving the effective theory of modes in the vicinity of the quantum critical point we develop a new method by mapping a Bose-Einstein condensate of $N$-particles onto a sigma model with a continuous global (pseudo)symmetry that mixes bosons of different momenta. The Bogolyubov modes of the condensate are mapped onto the Goldstone modes of the sigma model, which become gapless at the critical point. These gapless Goldstone modes are the quantum carriers of information and entropy. Analyzing their effective theory, we observe the information-processing properties strikingly similar to the ones predicted by the black hole portrait. The energy cost per qubit of information-storage vanishes in the large-$N$ limit and the total information-storage capacity increases with $N$ either exponentially or as a power law. The longevity of information-storage also increases with $N$, whereas the scrambling time in the over-critical regime is controlled by the Lyapunov exponent and scales logarithmically with $N$. This connection reveals that the origin of black hole information storage lies in the quantum criticality of the graviton Bose-gas, and that much simpler systems that can be manufactured in table-top experiments can exhibit very similar information-processing dynamics.

  19. A coherent understanding of low-energy nuclear recoils in liquid xenon

    E-print Network

    Peter Sorensen

    2010-09-07

    Liquid xenon detectors such as XENON10 and XENON100 obtain a significant fraction of their sensitivity to light (xenon for nuclear recoils also bears heavily on detector sensitivity, yet numerous measurements have not succeeded in obtaining concordant results. In this article we show that the ratio of detected ionization to scintillation can be leveraged to constrain the scintillation yield. We also present a rigorous treatment of liquid xenon detector threshold and energy resolution. Notably, the effective energy resolution differs significantly from a simple Poisson distribution. We conclude with a calculation of dark matter exclusion limits, and show that existing data from liquid xenon detectors strongly constrain recent interpretations of light dark matter.

  20. Relativistic Doppler effect in quantum communication

    E-print Network

    Asher Peres; Daniel R. Terno

    2003-04-06

    When an electromagnetic signal propagates in vacuo, a polarization detector cannot be rigorously perpendicular to the wave vector because of diffraction effects. The vacuum behaves as a noisy channel, even if the detectors are perfect. The ``noise'' can however be reduced and nearly cancelled by a relative motion of the observer toward the source. The standard definition of a reduced density matrix fails for photon polarization, because the transversality condition behaves like a superselection rule. We can however define an effective reduced density matrix which corresponds to a restricted class of positive operator-valued measures. There are no pure photon qubits, and no exactly orthogonal qubit states.

  1. Quantum effects in the hot electron microbolometer

    SciTech Connect

    Tang, A.; Richards, P.L.

    1994-10-01

    The theory of the hot electron microbolometer proposed by Nahum et al. assumed that the photon energy is thermalized in the electrons in the Cu absorber before relaxing to the lattice. Since the photons initially excite individual electrons to K{omega}>>k{sub B}T, however, direct relaxation of these hot electrons to phonons must also be considered. Theoretical estimates suggest that this extra relaxation channel increases the effective thermal conductance for K{omega}>>k{sub B}T and influences bolometer noise. Calculations of these effects are presented which predict very useful performance both for ground-based and spacebased astronomical photometry at millimeter and submillimeter wavelengths.

  2. The quantum Goldilocks effect: on the convergence of timescales in quantum transport

    E-print Network

    Seth Lloyd; Masoud Mohseni; Alireza Shabani; Herschel Rabitz

    2011-11-21

    Excitonic transport in photosynthesis exhibits a wide range of time scales. Absorption and initial relaxation takes place over tens of femtoseconds. Excitonic lifetimes are on the order of a nanosecond. Hopping rates, energy differences between chromophores, reorganization energies, and decoherence rates correspond to time scales on the order of picoseconds. The functional nature of the divergence of time scales is easily understood: strong coupling to the electromagnetic field over a broad band of frequencies yields rapid absorption, while long excitonic lifetimes increase the amount of energy that makes its way to the reaction center to be converted to chemical energy. The convergence of the remaining time scales to the centerpoint of the overall temporal range is harder to understand. In this paper we argue that the convergence of timescales in photosynthesis can be understood as an example of the `quantum Goldilocks effect': natural selection tends to drive quantum systems to the degree of quantum coherence that is `just right' for attaining maximum efficiency. We provide a general theory of optimal and robust, efficient transport in quantum systems, and show that it is governed by a single parameter.

  3. The Macroscopic Quantum Effect in Nonlinear Oscillating Systems: a Possible Bridge between Classical and Quantum Physics

    E-print Network

    Danil Doubochinski; Jonathan Tennenbaum

    2007-11-30

    Einstein, De Broglie and others hoped that the schism between classical and quantum physics might one day be overcome by a theory taking into account the essential nonlinearity of elementary physical processes. However, neither their attempts, nor subsequent ones were able to supply a unifying principle that could serve as a starting-point for a coherent understanding of both microphysical and macroscopic phenomena. In the late 1960s the phenomenon of amplitude quantization, or Macroscopic Quantum Effect (MQE), was discovered in a class of nonlinear oscillating systems in which two or more subsystems are coupled to each other by interactions having a specific phase-dependent character -- so-called argumental interactions. Experimental and theoretical studies of the MQE, carried out up to the present time, suggest the possibility of a new conceptual framework for physics, which would provide a bridge between classical and quantum physics, replacing the Newtonian notion of "force" by a new conception of physical interaction. The present paper presents a brief introduction to the MQE and some ideas about its possible significance in the search for new approaches to the understanding of quantum phenomena.

  4. Thermopower enhancement in quantum wells with the Rashba effect

    SciTech Connect

    Wu, Lihua; Yang, Jiong; Wang, Shanyu; Wei, Ping; Yang, Jihui E-mail: wqzhang@mail.sic.ac.cn; Zhang, Wenqing E-mail: wqzhang@mail.sic.ac.cn; Chen, Lidong

    2014-11-17

    We theoretically demonstrate that the thermopower in two-dimensional quantum wells (QWs) can be significantly enhanced by its Rashba spin-splitting effect, governed by the one-dimensional density of states in the low Fermi energy region. The thermopower enhancement is due to the lower Fermi level for a given carrier concentration in Rashba QWs, as compared with that in normal two-dimensional systems without the spin-splitting effect. The degenerate approximation directly shows that larger strength of Rashba effect leads to higher thermopower and consequently better thermoelectric performance in QWs.

  5. Vacuum state truncation via the quantum Zeno effect

    E-print Network

    Tae-Gon Noh

    2012-08-22

    In the context of quantum state engineering we analyze the effect of observation on nonlinear optical $n$-photon Fock state generation. We show that it is possible to truncate the vacuum component from an arbitrary photon number superposition without modifying its remaining parts. In the course of the full dynamical analysis of the effect of observation, it is also found that the Zeno and the anti-Zeno effects repeat periodically. We discuss the close relationship between vacuum state truncation and so-called "interaction-free" measurement.

  6. Noninertial effects on the quantum dynamics of scalar bosons

    E-print Network

    Castro, Luis B

    2015-01-01

    The noninertial effect of rotating frames on the quantum dynamics of scalar bosons embedded in the background of a cosmic string is considered. In this work, scalar bosons are described by the Duffin--Kemmer--Petiau (DKP) formalism. Considering the DKP oscillator in this background the combined effects of a rotating frames and cosmic string on the equation of motion, energy spectrum and DKP spinor are analyzed and discussed in details. Additionally, the effect of rotating frames on the scalar bosons localization is studied.

  7. Entangling polaritons via dynamical Casimir effect in circuit quantum electrodynamics

    E-print Network

    D. Z. Rossatto; S. Felicetti; H. Eneriz; E. Rico; M. Sanz; E. Solano

    2015-11-12

    We investigate how the dynamical Casimir effect (DCE) can entangle quantum systems in different coupling regimes of circuit quantum electrodynamics, and show the robustness of such entanglement generation against dissipative effects with current technology. We consider two qubit-resonator systems, which are coupled by a SQUID driven with an external magnetic field, and explore the entire range of coupling regimes between each qubit and its respective resonator. In this scheme, we derive a semianalytic explanation for the entanglement generation between both superconducting qubits when they are coupled to their resonators in the strong coupling (SC) regime. For the ultrastrong (USC) and deep strong coupling (DSC) regimes, we design feasible protocols to generate maximally-entangled polaritonic states.

  8. Topological domain walls and quantum valley Hall effects in silicene

    NASA Astrophysics Data System (ADS)

    Kim, Youngkuk; Choi, Keunsu; Ihm, Jisoon; Jin, Hosub

    2014-02-01

    Silicene is a two-dimensional honeycomb lattice made of silicon atoms, which is considered to be a new Dirac fermion system. Based on first-principles calculations, we examine the possibility of the formation of solitonlike topological domain walls (DWs) in silicene. We show that the DWs between regions of distinct ground states of the buckled geometry should bind electrons when a uniform electric field is applied in the perpendicular direction to the sheet. The topological origin of the electron confinement is demonstrated based on numerical calculations of the valley-specific Hall conductivities, and possible experimental signatures of the quantum valley Hall effects are discussed using simulated scanning tunneling microscopy images. Our results strongly suggest that silicene could be an ideal host for the quantum valley Hall effect, thus providing a pathway to the valleytronics in silicon-based technology.

  9. Quasiparticle aggregation in the Fractional Quantum Hall Effect

    SciTech Connect

    Laughlin, R.B.

    1984-10-10

    Quasiparticles in the Fractional Quantum Hall Effect behave qualitatively like electrons confined to the lowest landau level, and can do everything electrons can do, including condense into second generation Fractional Quantum Hall ground states. I review in this paper the reasoning leading to variational wavefunctions for ground state and quasiparticles in the 1/3 effect. I then show how two-quasiparticle eigenstates are uniquely determined from symmetry, and how this leads in a natural way to variational wavefunctions for composite states which have the correct densities (2/5, 2/7, ...). I show in the process that the boson, anyon and fermion representations for the quasiparticles used by Haldane, Halperin, and me are all equivalent. I demonstrate a simple way to derive Halperin's multiple-valued quasiparticle wavefunction from the correct single-valued electron wavefunction.

  10. Effective spin chains for fractional quantum Hall states

    NASA Astrophysics Data System (ADS)

    Bergholtz, Emil J.; Nakamura, Masaaki; Suorsa, Juha

    2011-01-01

    Fractional quantum Hall (FQH) states are topologically ordered which indicates that their essential properties are insensitive to smooth deformations of the manifold on which they are studied. Their microscopic Hamiltonian description, however, strongly depends on geometrical details. Recent work has shown how this dependence can be exploited to generate effective models that are both interesting in their own right and also provide further insight into the quantum Hall system. We review and expand on recent efforts to understand the FQH system close to the solvable thin-torus limit in terms of effective spin chains. In particular, we clarify how the difference between the bosonic and fermionic FQH states, which is not apparent in the thin-torus limit, can be seen at this level. Additionally, we discuss the relation of the Haldane-Shastry chain to the so-called QH circle limit and comment on its significance to recent entanglement studies.

  11. Effective approach to non-relativistic quantum mechanics

    E-print Network

    Jacobs, David M

    2015-01-01

    Boundary conditions on non-relativistic wavefunctions are generally not completely constrained by the basic precepts of quantum mechanics, so understanding the set of possible self-adjoint extensions of the Hamiltonian is required. For real physical systems, non-trivial self-adjoint extensions have been used to model contact potentials when those interactions are expected a priori. However, they must be incorporated into the effective description of any quantum mechanical system in order to capture possible short-distance physics that does not decouple in the low energy limit. Here, an approach is described wherein an artificial boundary is inserted at an intermediate scale on which boundary conditions may encode short-distance effects that are hidden behind the boundary. Using this approach, an analysis is performed of the free particle, harmonic oscillator, and Coulomb potential in three dimensions. Requiring measurable quantities, such as spectra and cross sections, to be independent of this artificial bou...

  12. Quantum Effects in the Diffusion of Hydrogen on Ru(0001) Eliza M. McIntosh,*,,

    E-print Network

    Alavi, Ali

    results. Despite these studies, a detailed view of the underlying mechanisms behind the quantum behaviorQuantum Effects in the Diffusion of Hydrogen on Ru(0001) Eliza M. McIntosh,*,, K. Thor Wikfeldt of hydrogen on the Ru(0001) surface between 75 and 250 K. Quantum effects are evident at temperatures as high

  13. Casimir effects for classical and quantum liquids in slab geometry: A brief review

    SciTech Connect

    Biswas, Shyamal

    2015-05-15

    We analytically explore Casimir effects for confinement of classical and quantum fluctuations in slab (film) geometry (i) for classical (critical) fluctuations over {sup 4}He liquid around the ? point, and (ii) for quantum (phonon) fluctuations of Bogoliubov excitations over an interacting Bose-Einstein condensate. We also briefly review Casimir effects for confinement of quantum vacuum fluctuations confined to two plates of different geometries.

  14. Topological insulators in silicene: Quantum hall, quantum spin hall and quantum anomalous hall effects

    SciTech Connect

    Ezawa, Motohiko

    2013-12-04

    Silicene is a monolayer of silicon atoms forming a two-dimensional honeycomb lattice, which shares almost every remarkable property with graphene. The low energy dynamics is described by Dirac electrons, but they are massive due to relatively large spin-orbit interactions. I will explain the following properties of silicene: 1) The band structure is controllable by applying an electric field. 2) Silicene undergoes a phase transition from a topological insulator to a band insulator by applying external electric field. 3) The topological phase transition can be detected experimentally by way of diamagnetism. 4) There is a novel valley-spin selection rules revealed by way of photon absorption. 5) Silicene yields a remarkably many phases such as quantum anomalous Hall phase and valley polarized metal when the exchange field is additionally introduced. 6) A silicon nanotubes can be used to convey spin currents under an electric field.

  15. Microscopic theory of quantum dot interactions with quantum light: Local field effect

    NASA Astrophysics Data System (ADS)

    Slepyan, G. Ya.; Magyarov, A.; Maksimenko, S. A.; Hoffmann, A.

    2007-11-01

    A theory of both linear and nonlinear electromagnetic responses of a single quantum dot (QD) exposed to quantum light, accounting for depolarization induced local field has been developed. Based on the microscopic Hamiltonian accounting for the electron-hole exchange interaction, an effective two-body Hamiltonian has been derived and expressed in terms of the incident electric field, with a separate term describing the QD depolarization. The quantum equations of motion have been formulated and solved using the Hamiltonian for various types of the QD optical excitation, such as Fock qubit, coherent fields, vacuum state of electromagnetic field, and light with arbitrary photonic state distribution. For a QD exposed to coherent light, we predict the appearance of two oscillatory regimes in the Rabi effect separated by the bifurcation. In the first regime, the standard collapse-revival phenomenon does not reveal itself and the QD population inversion is found to be negative, while in the second one, the collapse-revival picture is found to be strongly distorted as compared to that predicted by the standard Jaynes-Cummings model. For the case of QD interaction with an arbitrary quantum light state in the linear regime, it has been shown that the local field induces a fine structure of the absorbtion spectrum. Instead of a single line with frequency corresponding to the exciton transition frequency, a duplet appears, with one component shifted by the amount of the local field coupling parameter. It has been demonstrated that the strong light-matter coupling regime arises in the weak-field limit. A physical interpretation of the predicted effects has been proposed.

  16. Inflationary back-reaction effects from Relativistic Quantum Geometry

    E-print Network

    Mauricio Bellini

    2015-12-13

    We study the dynamics of scalar metric fluctuations in a non-perturbative variational formalism recently introduced, by which the dynamics of an geometrical scalar field $\\theta$, describes the quantum geometrical effects on a Weylian-like manifold with respect to a background Riemannian space-time. In this letter we have examined an example in the framework of inflationary cosmology. The resulting spectral predictions are in very good agreement with observations and other models of inflation.

  17. Probing Quantum-Vacuum Geometrical Effects with Cold Atoms

    SciTech Connect

    Dalvit, Diego A. R.; Neto, Paulo A. Maia; Lambrecht, Astrid; Reynaud, Serge

    2008-02-01

    The lateral Casimir-Polder force between an atom and a corrugated surface should allow one to study experimentally nontrivial geometrical effects in the electromagnetic quantum vacuum. Here, we derive the theoretical expression of this force in the scattering approach. We show that large corrections to the 'proximity force approximation' could be measured using present-day technology with a Bose-Einstein condensate used as a vacuum field sensor.

  18. Tunnelling Effects in a Brane System and Quantum Hall Physics

    E-print Network

    Cappiello, L; Maiella, G; Marotta, V

    2001-01-01

    We argue that a system of interacting D-branes, generalizing a recent proposal, can be modelled as a Quantum Hall fluid. We show that tachyon condensation in such a system is equivalent to one particle tunnelling. In a conformal field theory effective description, that induces a transition from a theory with central charge c=2 to a theory with c=3/2, with a corresponding symmetry enhancement.

  19. Tunnelling Effects in a Brane System and Quantum Hall Physics

    E-print Network

    L. Cappiello; G. Cristofano; G. Maiella; V. Marotta

    2001-06-29

    We argue that a system of interacting D-branes, generalizing a recent proposal, can be modelled as a Quantum Hall fluid. We show that tachyon condensation in such a system is equivalent to one particle tunnelling. In a conformal field theory effective description, that induces a transition from a theory with central charge c=2 to a theory with c=3/2, with a corresponding symmetry enhancement.

  20. Magnetotransport in Dirac metals: Chiral magnetic effect and quantum oscillations

    NASA Astrophysics Data System (ADS)

    Monteiro, Gustavo M.; Abanov, Alexander G.; Kharzeev, Dmitri E.

    2015-10-01

    Dirac metals are characterized by the linear dispersion of fermionic quasiparticles, with the Dirac point hidden inside a Fermi surface. We study the magnetotransport in these materials using chiral kinetic theory to describe within the same framework both the negative magnetoresistance caused by the chiral magnetic effect and quantum oscillations in the magnetoresistance due to the existence of the Fermi surface. We discuss the relevance of obtained results to recent measurements on Cd3As2 .

  1. Robust electron pairing in the integer quantum hall effect regime.

    PubMed

    Choi, H K; Sivan, I; Rosenblatt, A; Heiblum, M; Umansky, V; Mahalu, D

    2015-01-01

    Electron pairing is a rare phenomenon appearing only in a few unique physical systems; for example, superconductors and Kondo-correlated quantum dots. Here, we report on an unexpected electron pairing in the integer quantum Hall effect regime. The pairing takes place within an interfering edge channel in an electronic Fabry-Perot interferometer at a wide range of bulk filling factors, between 2 and 5. We report on three main observations: high-visibility Aharonov-Bohm conductance oscillations with magnetic flux periodicity equal to half the magnetic flux quantum; an interfering quasiparticle charge equal to twice the elementary electron charge as revealed by quantum shot noise measurements, and full dephasing of the pairs' interference by induced dephasing of the adjacent inner edge channel-a manifestation of inter-channel entanglement. Although this pairing phenomenon clearly results from inter-channel interaction, the exact mechanism that leads to electron-electron attraction within a single edge channel is not clear. We believe that substantial efforts are needed in order to clarify these intriguing and unexpected findings. PMID:26096516

  2. Robust electron pairing in the integer quantum hall effect regime

    NASA Astrophysics Data System (ADS)

    Choi, H. K.; Sivan, I.; Rosenblatt, A.; Heiblum, M.; Umansky, V.; Mahalu, D.

    2015-06-01

    Electron pairing is a rare phenomenon appearing only in a few unique physical systems; for example, superconductors and Kondo-correlated quantum dots. Here, we report on an unexpected electron pairing in the integer quantum Hall effect regime. The pairing takes place within an interfering edge channel in an electronic Fabry-Perot interferometer at a wide range of bulk filling factors, between 2 and 5. We report on three main observations: high-visibility Aharonov-Bohm conductance oscillations with magnetic flux periodicity equal to half the magnetic flux quantum; an interfering quasiparticle charge equal to twice the elementary electron charge as revealed by quantum shot noise measurements, and full dephasing of the pairs' interference by induced dephasing of the adjacent inner edge channel--a manifestation of inter-channel entanglement. Although this pairing phenomenon clearly results from inter-channel interaction, the exact mechanism that leads to electron-electron attraction within a single edge channel is not clear. We believe that substantial efforts are needed in order to clarify these intriguing and unexpected findings.

  3. Quantum gravitational optics: Effective Raychaudhuri equation

    SciTech Connect

    Ahmadi, N.; Nouri-Zonoz, M.

    2006-08-15

    Vacuum polarization in QED in a background gravitational field induces interactions which effectively modify the classical picture of light rays, as the null geodesics of spacetime. These interactions violate the strong equivalence principle and affect the propagation of light leading to superluminal photon velocities. Taking into account the QED vacuum polarization, we study the propagation of a bundle of rays in a background gravitational field. To do so we study the perturbative deformation of the Raychaudhuri equation through the influence of vacuum polarization on photon propagation. We analyze the contribution of the above interactions to the optical scalars, namely, shear, vorticity, and expansion using the Newman-Penrose formalism.

  4. Quantum-instanton evaluation of the kinetic isotope effects.

    PubMed

    Vanícek, Jirí; Miller, William H; Castillo, Jesús F; Aoiz, F Javier

    2005-08-01

    A general quantum-mechanical method for computing kinetic isotope effects is presented. The method is based on the quantum-instanton approximation for the rate constant and on the path-integral Metropolis-Monte Carlo evaluation of the Boltzmann operator matrix elements. It computes the kinetic isotope effect directly, using a thermodynamic integration with respect to the mass of the isotope, thus avoiding the more computationally expensive process of computing the individual rate constants. The method should be more accurate than variational transition-state theories or the semiclassical instanton method since it does not assume a single tunneling path and does not use a semiclassical approximation of the Boltzmann operator. While the general Monte Carlo implementation makes the method accessible to systems with a large number of atoms, we present numerical results for the Eckart barrier and for the collinear and full three-dimensional isotope variants of the hydrogen exchange reaction H + H2 --> H2 + H. In all seven test cases, for temperatures between 250 and 600 K, the error of the quantum instanton approximation for the kinetic isotope effects is less than approximately 10%. PMID:16108632

  5. Novel Atomic Coherence and Interference Effects in Quantum Optics and Atomic Physics 

    E-print Network

    Jha, Pankaj

    2012-10-19

    It is well known that the optical properties of multi-level atomic and molecular system can be controlled and manipulated efficiently using quantum coherence and interference, which has led to many new effects in quantum ...

  6. Gravitational-wave probe of effective quantum gravity

    SciTech Connect

    Alexander, Stephon; Finn, Lee Samuel; Yunes, Nicolas

    2008-09-15

    All modern routes leading to a quantum theory of gravity - i.e., perturbative quantum gravitational one-loop exact correction to the global chiral current in the standard model, string theory, and loop quantum gravity - require modification of the classical Einstein-Hilbert action for the spacetime metric by the addition of a parity-violating Chern-Simons term. The introduction of such a term leads to spacetimes that manifest an amplitude birefringence in the propagation of gravitational waves. While the degree of birefringence may be intrinsically small, its effects on a gravitational wave accumulate as the wave propagates. Observation of gravitational waves that have propagated over cosmological distances may allow the measurement of even a small birefringence, providing evidence of quantum gravitational effects. The proposed Laser Interferometer Space Antenna (LISA) will be sensitive enough to observe the gravitational waves from sources at cosmological distances great enough that interesting bounds on the Chern-Simons coupling may be found. Here we evaluate the effect of a Chern-Simons induced spacetime birefringence to the propagation of gravitational waves from such systems. Focusing attention on the gravitational waves from coalescing binary black holes systems, which LISA will be capable of observing at redshifts approaching 30, we find that the signature of Chern-Simons gravity is a time-dependent change in the apparent orientation of the binary's orbital angular momentum with respect to the observer line-of-sight, with the magnitude of change reflecting the integrated history of the Chern-Simons coupling over the worldline of the radiation wave front. While spin-orbit coupling in the binary system will also lead to an evolution of the system's orbital angular momentum, the time dependence and other details of this real effect are different than the apparent effect produced by Chern-Simons birefringence, allowing the two effects to be separately identified. In this way gravitational-wave observations with LISA may thus provide our first and only opportunity to probe the quantum structure of spacetime over cosmological distances.

  7. Gravitational-wave probe of effective quantum gravity

    NASA Astrophysics Data System (ADS)

    Alexander, Stephon; Finn, Lee Samuel; Yunes, Nicolás

    2008-09-01

    All modern routes leading to a quantum theory of gravity—i.e., perturbative quantum gravitational one-loop exact correction to the global chiral current in the standard model, string theory, and loop quantum gravity—require modification of the classical Einstein-Hilbert action for the spacetime metric by the addition of a parity-violating Chern-Simons term. The introduction of such a term leads to spacetimes that manifest an amplitude birefringence in the propagation of gravitational waves. While the degree of birefringence may be intrinsically small, its effects on a gravitational wave accumulate as the wave propagates. Observation of gravitational waves that have propagated over cosmological distances may allow the measurement of even a small birefringence, providing evidence of quantum gravitational effects. The proposed Laser Interferometer Space Antenna (LISA) will be sensitive enough to observe the gravitational waves from sources at cosmological distances great enough that interesting bounds on the Chern-Simons coupling may be found. Here we evaluate the effect of a Chern-Simons induced spacetime birefringence to the propagation of gravitational waves from such systems. Focusing attention on the gravitational waves from coalescing binary black holes systems, which LISA will be capable of observing at redshifts approaching 30, we find that the signature of Chern-Simons gravity is a time-dependent change in the apparent orientation of the binary’s orbital angular momentum with respect to the observer line-of-sight, with the magnitude of change reflecting the integrated history of the Chern-Simons coupling over the worldline of the radiation wave front. While spin-orbit coupling in the binary system will also lead to an evolution of the system’s orbital angular momentum, the time dependence and other details of this real effect are different than the apparent effect produced by Chern-Simons birefringence, allowing the two effects to be separately identified. In this way gravitational-wave observations with LISA may thus provide our first and only opportunity to probe the quantum structure of spacetime over cosmological distances.

  8. Nonadiabatic quantum molecular dynamics with hopping. II. Role of nuclear quantum effects in atomic collisions

    NASA Astrophysics Data System (ADS)

    Fischer, M.; Handt, J.; Schmidt, R.

    2014-07-01

    The role of electron-nuclear correlations, i.e., quantum effects in the nuclear motion in atomic collisions with complex targets, is discussed using the recently developed nonadiabatic quantum molecular dynamics with hopping method [Fischer, Handt, and Schmidt, paper I of this series, Phys. Rev. A 90, 012525 (2014), 10.1103/PhysRevA.90.012525]. It is shown that the excitation process is nearly unaffected by electron-nuclear correlations as long as integral quantities are considered (total kinetic energy loss), whereas the relaxation mechanism of the molecular target is greatly affected (total fragmentation probability). To describe highly differential quantities (kinetic energy loss as a function of the scattering angle), however, the consideration of nuclear quantum effects during the initial excitation process is indispensable, even in collisions where one would expect purely classical behavior of the nuclei due to their small de Broglie wavelength. The calculations reproduce and explain in detail old but still unexplained experimental data of differential energy-loss spectroscopy in He +He and He +H2 collisions.

  9. Recoil Polarization Measurements of the Proton Electromagnetic Form Factor Ratio to High Momentum Transfer

    SciTech Connect

    Andrew Puckett

    2010-02-01

    The electromagnetic form factors of the nucleon characterize the effect of its internal structure on its response to an electromagnetic probe as studied in elastic electronnucleon scattering. These form factors are functions of the squared four-momentum transfer Q2 between the electron and the proton. The two main classes of observables of this reaction are the scattering cross section and polarization asymmetries, both of which are sensitive to the form factors in different ways. When considering large f momentum transfers, double-polarization observables offer superior sensitivity to the electric form factor. This thesis reports the results of a new measurement of the ratio of the electric and magnetic form factors of the proton at high momentum transfer using the recoil polarization technique. A polarized electron beam was scattered from a liquid hydrogen target, transferring polarization to the recoiling protons. These protons were detected in a magnetic spectrometer which was used to reconstruct their kinematics, including their scattering angles and momenta, and the position of the interaction vertex. A proton polarimeter measured the polarization of the recoiling protons by measuring the azimuthal asymmetry in the angular distribution of protons scattered in CH2 analyzers. The scattered electron was detected in a large acceptance electromagnetic calorimeter in order to suppress inelastic backgrounds. The measured ratio of the transverse and longitudinal polarization components of the scattered proton is directly proportional to the ratio of form factors GpE=GpM. The measurements reported in this thesis took place at Q2 =5.2, 6.7, and 8.5 GeV2, and represent the most accurate measurements of GpE in this Q2 region to date.

  10. The new vacuum-mode recoil separator MARA at JYFL

    NASA Astrophysics Data System (ADS)

    Sarén, J.; Uusitalo, J.; Leino, M.; Greenlees, P. T.; Jakobsson, U.; Jones, P.; Julin, R.; Juutinen, S.; Ketelhut, S.; Nyman, M.; Peura, P.; Rahkila, P.; Scholey, C.; Sorri, J.

    2008-10-01

    A new vacuum-mode recoil separator MARA (Mass Analysing Recoil Apparatus) is under design and construction at the Department of Physics in the University of Jyväskylä. The separator is intended to separate reaction products from the primary beam in mass region below A = 150 . The ion-optical configuration of the separator will be QQQDEDM, where a magnetic quadrupole (Q) triplet is followed by an electrostatic deflector (DE) and a magnetic dipole (DM). The total length of MARA will be less than 7.0 m and the first order resolving power more than 250 for a beam spot size of 2 mm. In this contribution the main properties of MARA are given and results from simulations are shown.

  11. Gravitational wave recoil in Robinson-Trautman spacetimes

    NASA Astrophysics Data System (ADS)

    Macedo, Rodrigo P.; Saa, Alberto

    2008-11-01

    We consider the gravitational recoil due to nonreflection-symmetric gravitational wave emission in the context of axisymmetric Robinson-Trautman spacetimes. We show that regular initial data evolve generically into a final configuration corresponding to a Schwarzschild black hole moving with constant speed. For the case of (reflection-)symmetric initial configurations, the mass of the remnant black hole and the total energy radiated away are completely determined by the initial data, allowing us to obtain analytical expressions for some recent numerical results that have appeared in the literature. Moreover, by using the Galerkin spectral method to analyze the nonlinear regime of the Robinson-Trautman equations, we show that the recoil velocity can be estimated with good accuracy from some asymmetry measures (namely the first odd moments) of the initial data. The extension for the nonaxisymmetric case and the implications of our results for realistic situations involving head-on collision of two black holes are also discussed.

  12. Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers

    E-print Network

    Demir, Hilmi Volkan

    Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers Zi-Hui Zhang, Wei Liu, Zhengang Ju, Swee Tiam Tan, Yun Ji, Zabu Kyaw, Xueliang Zhang); doi: 10.1063/1.4883894 View online: http://dx.doi.org/10.1063/1.4883894 View Table of Contents: http

  13. 8 ? -periodic Josephson effects in a quantum dot/ quantum spin-Hall josephson junction system

    NASA Astrophysics Data System (ADS)

    Hui, Hoi-Yin; Sau, Jay

    2015-03-01

    Josephson junctions made of conventional s-wave superconductors display 2 ? periodicity. On the other hand, 4 ? -periodic fractional Josephson effect is known to be a characteristic signature of topological superconductors and Majorana fermions [1]. Zhang and Kane have shown that Josephson junctions made of topological superconductors are 8 ? -periodic if interaction is used to avoid dissipation [2]. Here we present a general argument for how time-reversal symmetry and Z2 non-trivial topology constrains the Josephson periodicity to be 8 ? . We then illustrate this through a microscopic model of a quantum dot in a quantum spin-hall Josephson junction. Work supported by NSF-JQI-PFC, LPS-CMTC and Microsoft Q.

  14. Recoiling supermassive black holes: a search in the nearby universe

    SciTech Connect

    Lena, D.; Robinson, A.; Axon, D. J.; Merritt, D.; Marconi, A.; Capetti, A.; Batcheldor, D.

    2014-11-10

    The coalescence of a binary black hole can be accompanied by a large gravitational recoil due to anisotropic emission of gravitational waves. A recoiling supermassive black hole (SBH) can subsequently undergo long-lived oscillations in the potential well of its host galaxy, suggesting that offset SBHs may be common in the cores of massive ellipticals. We have analyzed Hubble Space Telescope archival images of 14 nearby core ellipticals, finding evidence for small (? 10 pc) displacements between the active galactic nucleus (AGN; the location of the SBH) and the center of the galaxy (the mean photocenter) in 10 of them. Excluding objects that may be affected by large-scale isophotal asymmetries, we consider six galaxies to have detected displacements, including M87, where a displacement was previously reported by Batcheldor et al. In individual objects, these displacements can be attributed to residual gravitational recoil oscillations following a major or minor merger within the last few gigayears. For plausible merger rates, however, there is a high probability of larger displacements than those observed, if SBH coalescence took place in these galaxies. Remarkably, the AGN-photocenter displacements are approximately aligned with the radio source axis in four of the six galaxies with displacements, including three of the four having relatively powerful kiloparsec-scale jets. This suggests intrinsic asymmetries in radio jet power as a possible displacement mechanism, although approximate alignments are also expected for gravitational recoil. Orbital motion in SBH binaries and interactions with massive perturbers can produce the observed displacement amplitudes but do not offer a ready explanation for the alignments.

  15. Time-of-flight direct recoil ion scattering spectrometer

    DOEpatents

    Krauss, Alan R. (Naperville, IL); Gruen, Dieter M. (Downers Grove, IL); Lamich, George J. (Orland Park, IL)

    1994-01-01

    A time of flight direct recoil and ion scattering spectrometer beam line (10). The beam line (10) includes an ion source (12) which injects ions into pulse deflection regions (14) and (16) separated by a drift space (18). A final optics stage includes an ion lens and deflection plate assembly (22). The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions (14) and (16).

  16. Time-of-flight direct recoil ion scattering spectrometer

    DOEpatents

    Krauss, A.R.; Gruen, D.M.; Lamich, G.J.

    1994-09-13

    A time-of-flight direct recoil and ion scattering spectrometer beam line is disclosed. The beam line includes an ion source which injects ions into pulse deflection regions and separated by a drift space. A final optics stage includes an ion lens and deflection plate assembly. The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions. 23 figs.

  17. Recoil Experiments Using a Compressed Air Cannon

    ERIC Educational Resources Information Center

    Taylor, Brett

    2006-01-01

    Ping-Pong vacuum cannons, potato guns, and compressed air cannons are popular and dramatic demonstrations for lecture and lab. Students enjoy them for the spectacle, but they can also be used effectively to teach physics. Recently we have used a student-built compressed air cannon as a laboratory activity to investigate impulse, conservation of…

  18. Recoil-induced Resonances as All-optical Switches

    NASA Astrophysics Data System (ADS)

    Narducci, F. A.; Desavage, S. A.; Gordon, K. H.; Duncan, D. L.; Welch, G. R.; Davis, J. P.

    2010-03-01

    We have measured recoil-induced resonances (RIR) [1,2] in our system of laser-cooled 85Rb atoms. Although this technique has been demonstrated to be useful for the purpose of extracting the cloud temperature [3], our aim was to demonstrate an all optical switch based on recoil-induced resonances. In addition to a very narrow ``free-space'' recoil-induced resonance of approximately 15 kHz, we also discovered a much broader resonance (˜30 MHz), caused by standing waves established by our trapping fields. We compare and contrast the switching dynamics of these two resonances and demonstrate optical switching using both resonances. Finally, we consider the applicability of the narrow, free-space resonance to the slowing of a weak probe field. [1] J. Guo, P.R. Berman, B. Dubetsky and G. Grynberg PRA, 46, 1426 (1992). [2] (a) P. Verkerk, B. Loumis, C. Salomon, C. Cohen-Tannoudji, J. Courtois PRL, 68, 3861 (1992). (b) G. Grynberg, J-Y Courtois, B. Lounis, P. Verkerk PRL, 72, 3017 (1994). [3] (a) T. Brzozowski, M. Brzozowska, J. Zachorowski, M. Zawada, W. Gawlik PRA, 71, 013401 (2005). (b) M. Brzozowska, T. Brzozowski J. Zachorowski, W. Gawlik PRA, 72, 061401(R), (2005).

  19. The recoil proton polarization in. pi. p elastic scattering

    SciTech Connect

    Seftor, C.J.

    1988-09-01

    The polarization of the recoil proton for ..pi../sup +/p and ..pi../sup -/p elastic scattering has been measured for various angles at 547 MeV/c and 625 MeV/c by a collaboration involving The George Washington University; the University of California, Los Angeles; and Abilene Christian University. The experiment was performed at the P/sup 3/ East experimental area of the Los Alamos Meson Physics Facility. Beam intensities varied from 0.4 to 1.0 x 10/sup 7/ ..pi../sup -/'s/sec and from 3.0 to 10.0 x 10/sup 7/ ..pi../sup +/'s/sec. The beam spot size at the target was 1 cm in the horizontal direction by 2.5 cm in the vertical direction. A liquid-hydrogen target was used in a flask 5.7 cm in diameter and 10 cm high. The scattered pion and recoil proton were detected in coincidence using the Large Acceptance Spectrometer (LAS) to detect and momentum analyze the pions and the JANUS recoil proton polarimeter to detect and measure the polarization of the protons. Results from this experiment are compared with previous measurements of the polarization, with analyzing power data previously taken by this group, and to partial-wave analysis predictions. 12 refs., 53 figs., 18 tabs.

  20. Effective State Metamorphosis in Semi-Classical Loop Quantum Cosmology

    E-print Network

    Singh, P

    2005-01-01

    Modification to the behavior of geometrical density at short scales is a key result of loop quantum cosmology, responsible for an interesting phenomenology in the very early universe. We demonstrate the way a perfect fluid with arbitrary equation of state incorporates this change in its effective dynamics in the loop modified phase. We show that irrespective of the choice of matter component, stress-energy conservation law generically implies that classical equation of state metamorphoses itself to an effective negative equation of state below a critical scale determined by the theory.

  1. Nambu-Goldstone Effective Theory of Information at Quantum Criticality

    E-print Network

    Dvali, Gia; Gomez, Cesar; Wintergerst, Nico

    2015-01-01

    We establish a fundamental connection between quantum criticality of a many-body system, such as Bose-Einstein condensates, and its capacity of information-storage and processing. For deriving the effective theory of modes in the vicinity of the quantum critical point we develop a new method by mapping a Bose-Einstein condensate of $N$-particles onto a sigma model with a continuous global (pseudo)symmetry that mixes bosons of different momenta. The Bogolyubov modes of the condensate are mapped onto the Goldstone modes of the sigma model, which become gapless at the critical point. These gapless Goldstone modes are the quantum carriers of information and entropy. Analyzing their effective theory, we observe the information-processing properties strikingly similar to the ones predicted by the black hole portrait. The energy cost per qubit of information-storage vanishes in the large-$N$ limit and the total information-storage capacity increases with $N$ either exponentially or as a power law. The longevity of i...

  2. Understanding boundary effects in quantum state tomography – One qubit case

    SciTech Connect

    Sugiyama, Takanori; Turner, Peter S.; Murao, Mio

    2014-12-04

    For classical and quantum estimation with finite data sets, the estimation error can deviate significantly from its asymptotic (large data set) behavior. In quantum state tomography, a major reason for this is the existence of a boundary in the parameter space imposed by constraints, such as the positive semidefiniteness of density matrices. Intuitively, we should be able to reduce the estimation error by using our knowledge of these constraints. This intuition is correct for maximumlikelihood estimators, but the size of the reduction has not been evaluated quantitatively. In this proceeding, we evaluate the improvement in one qubit state tomography by using mathematical tools in classical statistical estimation theory. In particular, we show that the effect of the reduction decreases exponentially with respect to the number of data sets when the true state is mixed, and it remains at arbitrarily large data set when the true state is pure.

  3. Effects of Quantum Error Correction on Entanglement Sudden Death

    E-print Network

    Muhammed Yönaç; J. H. Eberly

    2013-09-03

    We investigate the effects of error correction on non-local quantum coherence as a function of time, extending the study by Sainz and Bj\\"ork. We consider error correction of amplitude damping, pure phase damping and combinations of amplitude and phase damping as they affect both fidelity and quantum entanglement. Initial two-qubit entanglement is encoded in arbitrary real superpositions of both \\Phi-type and \\Psi-type Bell states. Our main focus is on the possibility of delay or prevention of ESD (early stage decoherence, or entanglement sudden death). We obtain the onset times for ESD as a function of the state-superposition mixing angle. Error correction affects entanglement and fidelity differently, and we exhibit initial entangled states for which error correction increases fidelity but decreases entanglement, and vice versa.

  4. Fractionally charged skyrmions in fractional quantum Hall effect.

    PubMed

    Balram, Ajit C; Wurstbauer, U; Wójs, A; Pinczuk, A; Jain, J K

    2015-01-01

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region. PMID:26608906

  5. Fractionally charged skyrmions in fractional quantum Hall effect

    PubMed Central

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-01-01

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region. PMID:26608906

  6. Obstruction of black hole singularity by quantum field theory effects

    E-print Network

    Abedi, Jahed

    2015-01-01

    We consider QFT fluctuation effects for a collapsing shell via trace anomaly. It is shown that their backreaction besides modification of the Schwarzschild radius and creating a new inner horizon, extracts energy from the shell by getting large after the shell passes the horizon to the extent of impeding the collapse and finally stopping it from reaching the singularity without turning on the Quantum Gravity. The bounce radius is the same order of magnitude suggested by LQG, $(\\frac{13}{180 \\pi} \\frac{M}{M_{p}})^{1/3} l_{p}$ . After reaching the bounce radius the shell expands back and exits the horizon. This observation has deep consequences for different aspects of quantum black hole such as information problem.

  7. Effective State Metamorphosis in Semi-Classical Loop Quantum Cosmology

    E-print Network

    Parampreet Singh

    2005-08-29

    Modification to the behavior of geometrical density at short scales is a key result of loop quantum cosmology, responsible for an interesting phenomenology in the very early universe. We demonstrate the way matter with arbitrary scale factor dependence in Hamiltonian incorporates this change in its effective dynamics in the loop modified phase. For generic matter, the equation of state starts varying near a critical scale factor, becomes negative below it and violates strong energy condition. This opens a new avenue to generalize various phenomenological applications in loop quantum cosmology. We show that different ways to define energy density may yield radically different results, especially for the case corresponding to classical dust. We also discuss implications for frequency dispersion induced by modification to geometric density at small scales.

  8. Quantum anomalous Hall effect in magnetic topological insulators

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Lian, Biao; Zhang, Shou-Cheng

    2015-12-01

    The search for topologically non-trivial states of matter has become an important goal for condensed matter physics. Here, we give a theoretical introduction to the quantum anomalous Hall (QAH) effect based on magnetic topological insulators in two-dimensions (2D) and three-dimensions (3D). In 2D topological insulators, magnetic order breaks the symmetry between the counter-propagating helical edge states, and as a result, the quantum spin Hall effect can evolve into the QAH effect. In 3D, magnetic order opens up a gap for the topological surface states, and chiral edge state has been predicted to exist on the magnetic domain walls. We present the phase diagram in thin films of a magnetic topological insulator and review the basic mechanism of ferromagnetic order in magnetically doped topological insulators. We also review the recent experimental observation of the QAH effect. We discuss more recent theoretical work on the coexistence of the helical and chiral edge states, multi-channel chiral edge states, the theory of the plateau transition, and the thickness dependence in the QAH effect.

  9. Loop quantum cosmology of Bianchi IX: Effective dynamics

    E-print Network

    Corichi, Alejandro

    2015-01-01

    We study numerically the solutions to the effective equations of Bianchi IX spacetimes within Loop Quantum Cosmology. We consider Bianchi IX models with and without inverse triad corrections whose matter content is a scalar field without mass. The solutions are classified using the classical observables. We show that both effective theories --with lapse N=V and N=1-- solve the big bang singularity and reproduce the classical dynamics far from the bounce. Moreover, due to the spatial compactness, there is an infinity number of bounces and recollapses. We study the limit of large volume and show that both effective theories reproduce the same dynamics, thus recovering general relativity. We implement a procedure to identify amongst the Bianchi IX solutions, those that behave like k=0,1 FLRW as well as Bianchi I, II, and VII_0 models. The effective solutions exhibit Bianchi I phases with Bianchi II transitions and also Bianchi VII_0 phases, which had not been studied before, at the quantum nor effective level. W...

  10. Measurement of Recoil Losses and Ranges for Spallation Products Produced in Proton Interactions with Al, Si, Mg at 200 and 500 MeV

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.

    2005-01-01

    Cosmic rays interact with extraterrestrial materials to produce a variety of spallation products. If these cosmogenic nuclides are produced within an inclusion in such material, then an important consideration is the loss of the product nuclei, which recoil out of the inclusion. Of course, at the same time, some atoms of the product nuclei under study may be knocked into the inclusion from the surrounding material, which is likely to have a different composition to that of the inclusion [1]. For example, Ne-21 would be produced in presolar grains, such as SiC, when irradiated in interstellar space. However, to calculate a presolar age, one needs to know how much 21Ne is retained in the grain. For small grains, the recoil losses might be large [2, 3] To study this effect under laboratory conditions, recoil measurements were made using protons with energies from 66 - 1600 MeV on Si, Al and Ba targets [3, 4, 5].

  11. Relation between quantum effects in general relativity and embedding theory

    NASA Astrophysics Data System (ADS)

    Paston, S. A.

    2015-10-01

    We discuss results relevant to the relation between quantum effects in a Riemannian space and on the surface appearing as a result of its isometric embedding in a flat space of a higher dimension. We discuss the correspondence between the Hawking effect fixed by an observer in the Riemannian space with a horizon and the Unruh effect related to an accelerated motion of this observer in the ambient space. We present examples for which this correspondence holds and examples for which there is no correspondence. We describe the general form of the hyperbolic embedding of the metric with a horizon smoothly covering the horizon and prove that there is a correspondence between the Hawking and Unruh effects for this embedding. We also discuss the possibility of relating two-point functions in a Riemannian space and the ambient space in which it is embedded. We obtain restrictions on the geometric parameters of the embedding for which such a relation is known.

  12. Temperature effects on quantum interference in molecular junctions

    NASA Astrophysics Data System (ADS)

    Markussen, Troels; Thygesen, Kristian S.

    2014-02-01

    A number of experiments have demonstrated that destructive quantum interference (QI) effects in molecular junctions lead to very low conductances even at room temperature. On the other hand, another recent experiment showed increasing conductance with temperature which was attributed to decoherence effects destroying QI at finite temperatures. Here we study the influence of finite temperatures and electron-phonon interactions on QI in molecular junctions. Two different models leading to two inherently different types of QI effects are considered. Each model is exemplified by specific molecules and studied using first-principles calculations. We find that the molecules exhibiting QI show a much stronger temperature dependence of the conductance compared to molecules without QI. However, the large QI-induced suppression of the conductance remains, showing that QI effects are indeed robust against finite temperatures and inelastic scattering.

  13. Effect of carrier dynamics and temperature on two-state lasing in semiconductor quantum dot lasers

    SciTech Connect

    Korenev, V. V. Savelyev, A. V.; Zhukov, A. E.; Omelchenko, A. V.; Maximov, M. V.

    2013-10-15

    It is analytically shown that the both the charge carrier dynamics in quantum dots and their capture into the quantum dots from the matrix material have a significant effect on two-state lasing phenomenon in quantum dot lasers. In particular, the consideration of desynchronization in electron and hole capture into quantum dots allows one to describe the quenching of ground-state lasing observed at high injection currents both qualitatevely and quantitatively. At the same time, an analysis of the charge carrier dynamics in a single quantum dot allowed us to describe the temperature dependences of the emission power via the ground- and excited-state optical transitions of quantum dots.

  14. Development of a Position Sensitive Beta and Recoil Ion Detectors for the 6He ? - ? Angular Correlation Measurement

    NASA Astrophysics Data System (ADS)

    Hong, Ran; Bagdasarova, Yelena; Garcia, Alejandro; Storm, Derek; Sternberg, Matthew; Swanson, Erik; Wauters, Frederik; Zumwalt, David; Bailey, Kevin; Leredde, Arnaud; Mueller, Peter; O'Connor, Thomas; Fléchard, Xavier; Liennard, Etienne; Knecht, Andreas; Naviliat-Cuncic, Oscar

    2014-09-01

    In order to measure the ? - ? angular correlation coefficient a and put more stringent limits on exotic tensor type weak currents, we constructed a system which detects ? particles in coincidence with recoil ions from the ?-decay of laser trapped 6He atoms. The ? particles are detected by a scintillator and a multi-wire proportional chamber (MWPC) with a capacitive charge division anode. The recoil ions are detected by a microchannel plate (MCP) with delay-line anodes. The coefficient a is extracted by fitting the coincidence data to GEANT4 based Monte Carlo simulations, which are also used to study systematic uncertainties related to the detector system. A new method of calibrating the MWPC using a cathode focusing effect will be presented. This work is supported by DOE, Office of Nuclear Physics, under contract nos. DE-AC02-06CH11357 and DE-FG02-97ER41020.

  15. Effect of quantum nuclear motion on hydrogen bonding

    SciTech Connect

    McKenzie, Ross H. Bekker, Christiaan; Athokpam, Bijyalaxmi; Ramesh, Sai G.

    2014-05-07

    This work considers how the properties of hydrogen bonded complexes, X–H?Y, are modified by the quantum motion of the shared proton. Using a simple two-diabatic state model Hamiltonian, the analysis of the symmetric case, where the donor (X) and acceptor (Y) have the same proton affinity, is carried out. For quantitative comparisons, a parametrization specific to the O–H?O complexes is used. The vibrational energy levels of the one-dimensional ground state adiabatic potential of the model are used to make quantitative comparisons with a vast body of condensed phase data, spanning a donor-acceptor separation (R) range of about 2.4 ? 3.0 Å, i.e., from strong to weak hydrogen bonds. The position of the proton (which determines the X–H bond length) and its longitudinal vibrational frequency, along with the isotope effects in both are described quantitatively. An analysis of the secondary geometric isotope effect, using a simple extension of the two-state model, yields an improved agreement of the predicted variation with R of frequency isotope effects. The role of bending modes is also considered: their quantum effects compete with those of the stretching mode for weak to moderate H-bond strengths. In spite of the economy in the parametrization of the model used, it offers key insights into the defining features of H-bonds, and semi-quantitatively captures several trends.

  16. Repulsive gravitational effect of a quantum wave packet and experimental scheme with superfluid helium

    NASA Astrophysics Data System (ADS)

    Xiong, Hongwei

    2015-08-01

    We consider the gravitational effect of quantum wave packets when quantum mechanics, gravity, and thermodynamics are simultaneously considered. Under the assumption of a thermodynamic origin of gravity, we propose a general equation to describe the gravitational effect of quantum wave packets. In the classical limit, this equation agrees with Newton's law of gravitation. For quantum wave packets, however, it predicts a repulsive gravitational effect. We propose an experimental scheme using superfluid helium to test this repulsive gravitational effect. Our studies show that, with present technology such as superconducting gravimetry and cold atom interferometry, tests of the repulsive gravitational effect for superfluid helium are within experimental reach.

  17. Nonequilibrium phonon effects in midinfrared quantum cascade lasers Y. B. Shi and I. Knezevic

    E-print Network

    Knezevic, Irena

    Nonequilibrium phonon effects in midinfrared quantum cascade lasers Y. B. Shi and I. Knezevic transport and output characteristics of terahertz quantum cascade lasers J. Appl. Phys. 103, 103113 (2008); 10.1063/1.2927469 Comparative analysis of resonant phonon THz quantum cascade lasers J. Appl. Phys

  18. Effective utilization of quantum-cascade distributed-feedback lasers in absorption spectroscopy

    E-print Network

    Effective utilization of quantum-cascade distributed-feedback lasers in absorption spectroscopy quantum-cascade lasers. This technique was combined with a 100-m path-length multipass cell and a zero.6320, 010.1280. 1. Introduction Recently developed quantum-cascade lasers1 have been demonstrated

  19. The effects of electron temperature in terahertz quantum cascade laser predictions

    E-print Network

    Massachusetts at Lowell, University of

    The effects of electron temperature in terahertz quantum cascade laser predictions Philip along with a description of the complete QCL prediction code. Keywords: quantum cascade lasers, terahertz, electron temperature, device modelling 1. INTRODUCTION A quantum cascade laser (QCL) is a type

  20. Generalized decoding, effective channels, and simplified security proofs in quantum key distribution

    E-print Network

    quantum key distribution protocols can be decomposed into two basic steps: delivery of the signals over of several key distribution protocols based on equiangular spherical codes. I. INTRODUCTION Quantum keyGeneralized decoding, effective channels, and simplified security proofs in quantum key

  1. Mesoscopics in Spintronics: Quantum Interference Effects in Spin-Polarized Electron Branislav K. Nikolic

    E-print Network

    Nikolic, Branislav K.

    Mesoscopics in Spintronics: Quantum Interference Effects in Spin-Polarized Electron Transport to allow for envisioned quantum technologies that manipulate spin, such as spintronics1,2 or solid-state quantum computing with spin-qubits.3 Spintronic engi- neering of spin-polarized currents, combined

  2. Classical nonlinearity and quantum decay: The effect of classical phase-space structures Yosef Ashkenazy,1

    E-print Network

    Ashkenazy, Yossi "Yosef"

    and stochastic motion in the classical phase space corresponds, from a quantum point of view, to the possibilityClassical nonlinearity and quantum decay: The effect of classical phase-space structures Yosef, in order to an- swer the fundamental question in quantum chaos: what is the signature of classical chaos

  3. Indium arsenide quantum wire trigate metal oxide semiconductor field effect transistor

    E-print Network

    Gilbert, Matthew

    Indium arsenide quantum wire trigate metal oxide semiconductor field effect transistor M. J-consistent ballistic quantum mechanical simulation of an indium arsenide InAs quantum wire metal oxide semiconductor: 10.1063/1.2179135 I. INTRODUCTION It has been a well established fact that the semiconductor industry

  4. Squeezed State Effects on Continuous Variable Quantum Erasing

    NASA Astrophysics Data System (ADS)

    Bonanno, Peter; Kasisomayajula, Vijay; Russo, Onofrio

    2008-03-01

    Experimental verification of complementarity using quantum erasing for the continuous variable (CV) infinite dimensional Hilbert space has been considered. [1] The complemetary pair is that of the canonically conjugate amplitude and phase quadratures of light. The amplitude quadrature is labeled to a squeezed meter signal by quantum nondemolition (QND) [2] entanglement coupling. [3] Knowledge of which eigenstate (WE) can be obtained by measuring this amplitude in the meter state, and can thereafter be `lost' by measuring the quadrature phase of the meter, thus restoring the quadrature phase of the signal beam in a process known as quantum erasure. [4] The coupling, i.e. the labeling of the signal state to the meter state, is implemented with a beam splitter coupled to the squeezed light meter beam. [4] We investigate the effects of using the unitary squeeze operator S(z)=exp.5ex1 -.1em/ -.15em.25ex2 (z*a^2 - za^+2) where z = re^i(squeezing angle) on selected coherent states under certain conditions. [5,6] [1] U. L. Anderson et al., Phys. Rev. Lett. 93, 100403 (2004). [2] V. B. Braginsky et al., Science 209, 547 (1980). [3] R. Bruckmeimer et al., Phys. Rev. Lett. 79, 43 (1997). [4] P. Grangier et al., Nature 396, 537 (1998). [5] C. M. Caves, Phys. Rev. D 23, 1693 (1981). [6] D. Stoler, Phys. Rev. D. 1, 3217 (1970), D. Stoler, Phys. Rev. D. 4, 1925 (1971). .

  5. A Model of the Recoil Shadow Anisotropy Method for the YRAST Ball Array

    NASA Astrophysics Data System (ADS)

    Swanson, D.; Beausang, C. W.; Meyer, D. A.; Millman, E. A.; Ai, H.; Casten, R. F.; Heinz, A.; McCutchan, E. A.; Plettner, C.; Qian, J.; Thomas, N. J.; Williams, E.; Winkler, R.; Zamfir, N. V.; Gürdal, G.

    2004-10-01

    A model of the Recoil Shadow Anisotropy Method (RSAM)^1, a technique for measuring isomeric half-lives of recoiling nuclei, has been developed for the YRAST Ball array. RSAM uses the shadowing effect of collimators on four-leaf clover detectors to determine anisotropies, or ratios of ?-ray decay intensities in different leaves, as a function of source position. For an isotropic stationary source, the anisotropy should depend only on the ratio of the solid angles of the leaves. Based on the geometry of YRAST Ball, a model was constructed to predict the anisotropy ratio as a function of source position and ?-ray energy for both stationary and moving sources. Theoretical predictions are being compared with calibration data obtained from a stationary ^152Eu source at various positions. Results will be presented. Work supported by US DOE under Grant Nos. DE-FG02-91ER-40609, DE-FG03-03NA-00081, and DE-FG02-88ER-40417. ^1 E. Gueorguieva et al., Nucl. Instr. and Meth. A 474 (2001) 132-142.

  6. Total recoil: perch compliance alters jumping performance and kinematics in green anole lizards (Anolis carolinensis).

    PubMed

    Gilman, Casey A; Bartlett, Michael D; Gillis, Gary B; Irschick, Duncan J

    2012-01-15

    Jumping is a common form of locomotion for many arboreal animals. Many species of the arboreal lizard genus Anolis occupy habitats in which they must jump to and from unsteady perches, e.g. narrow branches, vines, grass and leaves. Anoles therefore often use compliant perches that could alter jump performance. In this study we conducted a small survey of the compliance of perches used by the arboreal green anole Anolis carolinensis in the wild (N=54 perches) and then, using perches within the range of compliances used by this species, investigated how perch compliance (flexibility) affects the key jumping variables jump distance, takeoff duration, takeoff angle, takeoff speed and landing angle in A. carolinensis in the laboratory (N=11). We observed that lizards lost contact with compliant horizontal perches prior to perch recoil, and increased perch compliance resulted in decreased jump distance and takeoff speed, likely because of the loss of kinetic energy to the flexion of the perch. However, the most striking effect of perch compliance was an unexpected one; perch recoil following takeoff resulted in the lizards being struck on the tail by the perch, even on the narrowest perches. This interaction between the perch and the tail significantly altered body positioning during flight and landing. These results suggest that although the use of compliant perches in the wild is common for this species, jumping from these perches is potentially costly and may affect survival and behavior, particularly in the largest individuals. PMID:22189765

  7. Ionization Yield from Nuclear Recoils in Liquid-Xenon Dark Matter Detection

    E-print Network

    Wei Mu; Xiangdong Ji

    2013-10-08

    The ionization yield in the two-phase liquid xenon dark-matter detector has been studied in keV nuclear-recoil energy region. The newly-obtained nuclear quenching as well as the recently-measured average energy required to produce an electron-ion pair are used to calculate the total electric charges produced. To estimate the fraction of the electron charges collected, the Thomas-Imel model is generalized to describing the field dependence for nuclear recoils in liquid xenon. With free parameters fitted to experiment measured 56.5 keV nuclear recoils, the energy dependence of ionization yield for nuclear recoils is predicted, which increases with the decreasing of the recoiling energy and reaches the maximum value at 2~3 keV. This prediction agrees well with existing data and may help to lower the energy detection threshold for nuclear recoils to ~1 keV.

  8. Quantum Effects in Nanoscale MOSFET Devices at Low Temperature

    NASA Astrophysics Data System (ADS)

    Day, Alexandra

    2014-03-01

    MOSFET transistors are a key component of virtually all modern electronic devices. Today's most advanced MOSFETs are small enough that quantum mechanical effects become relevant when considering their function and use. This project, completed at the National Institute of Standards and Technology as part of a Society of Physics Students internship, presents a first step in describing the theoretical behavior of nanoscale MOSFETs at low temperature. I acknowledge generous support from the Society of Physics Students and the National Institute of Standards and Technology.

  9. Quantum anomalous Hall effect in topological insulator memory

    SciTech Connect

    Jalil, Mansoor B. A.; Tan, S. G.; Siu, Z. B.

    2015-05-07

    We theoretically investigate the quantum anomalous Hall effect (QAHE) in a magnetically coupled three-dimensional-topological insulator (3D-TI) system. We apply the generalized spin-orbit coupling Hamiltonian to obtain the Hall conductivity ?{sup xy} of the system. The underlying topology of the QAHE phenomenon is then analyzed to show the quantization of ?{sup xy} and its relation to the Berry phase of the system. Finally, we analyze the feasibility of utilizing ?{sup xy} as a memory read-out in a 3D-TI based memory at finite temperatures, with comparison to known magnetically doped 3D-TIs.

  10. Vortex equations governing the fractional quantum Hall effect

    E-print Network

    Luciano Medina

    2015-10-14

    An existence theory is established for a coupled non-linear elliptic system, known as "vortex equations", describing the fractional quantum Hall effect in 2-dimensional double-layered electron systems. Via variational methods, we prove the existence and uniqueness of multiple vortices over a doubly periodic domain and the full plane. In the doubly periodic situation, explicit sufficient and necessary conditions are obtained that relate the size of the domain and the vortex numbers. For the full plane case, existence is established for all finite-energy solutions and exponential decay estimates are proved. Quantization phenomena of the magnetic flux are found in both cases.

  11. Four-Dimensional Quantum Hall Effect with Ultracold Atoms.

    PubMed

    Price, H M; Zilberberg, O; Ozawa, T; Carusotto, I; Goldman, N

    2015-11-01

    We propose a realistic scheme to detect the 4D quantum Hall effect using ultracold atoms. Based on contemporary technology, motion along a synthetic fourth dimension can be accomplished through controlled transitions between internal states of atoms arranged in a 3D optical lattice. From a semiclassical analysis, we identify the linear and nonlinear quantized current responses of our 4D model, relating these to the topology of the Bloch bands. We then propose experimental protocols, based on current or center-of-mass-drift measurements, to extract the topological second Chern number. Our proposal sets the stage for the exploration of novel topological phases in higher dimensions. PMID:26588394

  12. Four-Dimensional Quantum Hall Effect with Ultracold Atoms

    NASA Astrophysics Data System (ADS)

    Price, H. M.; Zilberberg, O.; Ozawa, T.; Carusotto, I.; Goldman, N.

    2015-11-01

    We propose a realistic scheme to detect the 4D quantum Hall effect using ultracold atoms. Based on contemporary technology, motion along a synthetic fourth dimension can be accomplished through controlled transitions between internal states of atoms arranged in a 3D optical lattice. From a semiclassical analysis, we identify the linear and nonlinear quantized current responses of our 4D model, relating these to the topology of the Bloch bands. We then propose experimental protocols, based on current or center-of-mass-drift measurements, to extract the topological second Chern number. Our proposal sets the stage for the exploration of novel topological phases in higher dimensions.

  13. Role of Quantum Effects in the GlassTransition.

    SciTech Connect

    Novikov, Vladimir; Sokolov, Alexei P

    2013-01-01

    It is shown that quantum effects lead to a significant decrease of the glass transition temperature Tg with respect to the melting temperature Tm, so that the ratio Tg=Tm can be much smaller than the typical value of 2=3 in materials where Tg is near or below 60 K. Furthermore, it is demonstrated that the viscosity or structural relaxation time in such low temperature glass formers should exhibit highly unusual temperature dependence, namely a decrease of the apparent activation energy upon approaching Tg (instead of traditional increase).

  14. Quantum anomalous Hall effect in topological insulator memory

    NASA Astrophysics Data System (ADS)

    Jalil, Mansoor B. A.; Tan, S. G.; Siu, Z. B.

    2015-05-01

    We theoretically investigate the quantum anomalous Hall effect (QAHE) in a magnetically coupled three-dimensional-topological insulator (3D-TI) system. We apply the generalized spin-orbit coupling Hamiltonian to obtain the Hall conductivity ?xy of the system. The underlying topology of the QAHE phenomenon is then analyzed to show the quantization of ?xy and its relation to the Berry phase of the system. Finally, we analyze the feasibility of utilizing ?xy as a memory read-out in a 3D-TI based memory at finite temperatures, with comparison to known magnetically doped 3D-TIs.

  15. Quantum interference effects in ($\\vec e,e'p$) reactions

    E-print Network

    A. Bianconi; S. Boffi

    1994-12-26

    The response to longitudinally polarized electrons in coincident out-of-plane ($\\vec{\\mathrm e},{\\mathrm e}'{\\mathrm p}$) reaction is discussed to study the role of final state interactions and quantum interference between different reaction channels, i.e. between direct (quasi) elastic proton emission and baryon resonance production. The high-energy suppression of this effect due to colour transparency is also discussed. Results are given for the $^{12}$C($\\vec{\\mathrm e},{\\mathrm e}'{\\mathrm p}$)$^{11}$B$_{\\mathrm {g.s.}}$

  16. Vortex equations governing the fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Medina, Luciano

    2015-09-01

    An existence theory is established for a coupled non-linear elliptic system, known as "vortex equations," describing the fractional quantum Hall effect in 2-dimensional double-layered electron systems. Via variational methods, we prove the existence and uniqueness of multiple vortices over a doubly periodic domain and the full plane. In the doubly periodic situation, explicit sufficient and necessary conditions are obtained that relate the size of the domain and the vortex numbers. For the full plane case, existence is established for all finite-energy solutions and exponential decay estimates are proved. Quantization phenomena of the magnetic flux are found in both cases.

  17. Semianalytical quantum model for graphene field-effect transistors

    SciTech Connect

    Pugnaghi, Claudio; Grassi, Roberto Gnudi, Antonio; Di Lecce, Valerio; Gnani, Elena; Reggiani, Susanna; Baccarani, Giorgio

    2014-09-21

    We develop a semianalytical model for monolayer graphene field-effect transistors in the ballistic limit. Two types of devices are considered: in the first device, the source and drain regions are doped by charge transfer with Schottky contacts, while, in the second device, the source and drain regions are doped electrostatically by a back gate. The model captures two important effects that influence the operation of both devices: (i) the finite density of states in the source and drain regions, which limits the number of states available for transport and can be responsible for negative output differential resistance effects, and (ii) quantum tunneling across the potential steps at the source-channel and drain-channel interfaces. By comparison with a self-consistent non-equilibrium Green's function solver, we show that our model provides very accurate results for both types of devices, in the bias region of quasi-saturation as well as in that of negative differential resistance.

  18. Aspects of anisotropic fractional quantum Hall effect in phosphorene

    NASA Astrophysics Data System (ADS)

    Ghazaryan, Areg; Chakraborty, Tapash

    2015-10-01

    We have analyzed the effects of the anisotropic energy bands of phosphorene on magnetoroton branches for electrons and holes in the two Landau levels close to the band edges. We have found that the fractional quantum Hall effect gap in the lowest (highest) Landau level in the conduction (valence) band is slightly larger than that for conventional semiconductor systems and therefore the effect should be experimentally observable in phosphorene. We also found that the magnetoroton mode for both electrons and holes consists of two branches with two minima due to the anisotropy. Most importantly, in the long-wavelength limit a second mode with upward dispersion, well separated from the magnetoroton mode was found to appear, that is entirely a consequence of the anisotropy in the system. These novel features of the collective mode, unique to phosphorene, can be observed in resonant inelastic light-scattering experiments.

  19. Path Integral and Effective Hamiltonian in Loop Quantum Cosmology

    E-print Network

    Haiyun Huang; Yongge Ma; Li Qin

    2011-06-27

    We study the path integral formulation of Friedmann universe filled with a massless scalar field in loop quantum cosmology. All the isotropic models of $k=0,+1,-1$ are considered. To construct the path integrals in the timeless framework, a multiple group-averaging approach is proposed. Meanwhile, since the transition amplitude in the deparameterized framework can be expressed in terms of group-averaging, the path integrals can be formulated for both deparameterized and timeless frameworks. Their relation is clarified. It turns out that the effective Hamiltonian derived from the path integral in deparameterized framework is equivalent to the effective Hamiltonian constraint derived from the path integral in timeless framework, since they lead to same equations of motion. Moreover, the effective Hamiltonian constraints of above models derived in canonical theory are confirmed by the path integral formulation.

  20. Recoil ion charge state distribution following the beta(sup +) decay of {sup 21}Na

    SciTech Connect

    Scielzo, Nicholas D.; Freedman, Stuart J.; Fujikawa, Brian K.; Vetter, Paul A.

    2003-01-03

    The charge state distribution following the positron decay of 21Na has been measured, with a larger than expected fraction of the daughter 21Ne in positive charge states. No dependence on either the positron or recoil nucleus energy is observed. The data is compared to a simple model based on the sudden approximation. Calculations suggest a small but important contribution from recoil ionization has important consequences for precision beta decay correlation experiments detecting recoil ions.

  1. On the Existence of Quantum Wave Function and Quantum Interference Effects in Mental States: An Experimental Confirmation during Perception and Cognition in Humans

    E-print Network

    Elio Conte; Andrei Yuri Khrennikov; Orlando Todarello; Antonio Federici; Joseph P. Zbilut

    2008-08-27

    We introduce the quantum theoretical formulation to determine a posteriori, if existing, the quantum wave functions and to estimate the quantum interference effects of mental states. Such quantum features are actually found in the case of an experiment involving the perception and the cognition in humans. Also some specific psychological variables are introduced and it is obtained that they characterize in a stringent manner the quantum behaviour of mind during such performed experiment.

  2. Quantum statistical properties of an FEL amplifier

    SciTech Connect

    Dattoli, G.; Gallardo, J.; Renieri, A.; Richetta, M.

    1985-07-01

    We discuss the problem of photon quantum statistics of a single particle free-electron laser (FEL) amplifier in the small-signal cold beam regime to first order in the electron quantum recoil. The initial radiation wave is an arbitrary coherent state. We show that Glauber coherence is not preserved by the FEL interaction if the initial coherent state is not the vacuum, even if we neglect the electron quantum recoil (absence of gain). We evaluate the first two moments of the final photon distribution and find sub- (super)-Poissonian photon statistics for a negative (positive) resonance parameter.

  3. Edge states and integer quantum Hall effect in topological insulator thin films

    PubMed Central

    Zhang, Song-Bo; Lu, Hai-Zhou; Shen, Shun-Qing

    2015-01-01

    The integer quantum Hall effect is a topological state of quantum matter in two dimensions, and has recently been observed in three-dimensional topological insulator thin films. Here we study the Landau levels and edge states of surface Dirac fermions in topological insulators under strong magnetic field. We examine the formation of the quantum plateaux of the Hall conductance and find two different patterns, in one pattern the filling number covers all integers while only odd integers in the other. We focus on the quantum plateau closest to zero energy and demonstrate the breakdown of the quantum spin Hall effect resulting from structure inversion asymmetry. The phase diagrams of the quantum Hall states are presented as functions of magnetic field, gate voltage and chemical potential. This work establishes an intuitive picture of the edge states to understand the integer quantum Hall effect for Dirac electrons in topological insulator thin films. PMID:26304795

  4. Edge states and integer quantum Hall effect in topological insulator thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Song-Bo; Lu, Hai-Zhou; Shen, Shun-Qing

    2015-08-01

    The integer quantum Hall effect is a topological state of quantum matter in two dimensions, and has recently been observed in three-dimensional topological insulator thin films. Here we study the Landau levels and edge states of surface Dirac fermions in topological insulators under strong magnetic field. We examine the formation of the quantum plateaux of the Hall conductance and find two different patterns, in one pattern the filling number covers all integers while only odd integers in the other. We focus on the quantum plateau closest to zero energy and demonstrate the breakdown of the quantum spin Hall effect resulting from structure inversion asymmetry. The phase diagrams of the quantum Hall states are presented as functions of magnetic field, gate voltage and chemical potential. This work establishes an intuitive picture of the edge states to understand the integer quantum Hall effect for Dirac electrons in topological insulator thin films.

  5. Excitons in germanium nanowires: Quantum confinement, orientation, and anisotropy effects within a first-principles approach

    E-print Network

    Marini, Andrea

    Excitons in germanium nanowires: Quantum confinement, orientation, and anisotropy effects within many-body effects crucially modify the electronic and optical properties of free-standing Germanium quantum confinement effects such that charge carriers are free to move only along the wire. Germanium

  6. The Lamb Shift from an Effective Hamiltonian in Non-relativistic Quantum

    E-print Network

    Ikegami, Takashi

    The Lamb Shift from an Effective Hamiltonian in Non-relativistic Quantum Electrodynamics Hamiltonian in non-relativistic quantum electrodynamics are reviewed. The Lamb shift of a hydrogen-like atom electrodynamics, effective Hamiltonian, spectrum, Lamb shift, effective operator Mathematics Subject

  7. Revealing Compressed Stops Using High-Momentum Recoils

    E-print Network

    Sebastian Macaluso; Michael Park; David Shih; Brock Tweedie

    2015-06-25

    Searches for supersymmetric top quarks at the LHC have been making great progress in pushing sensitivity out to higher mass, but are famously plagued by gaps in coverage around lower-mass regions where the decay phase space is closing off. Within the common stop-NLSP / neutralino-LSP simplified model, the line in the mass plane where there is just enough phase space to produce an on-shell top quark remains almost completely unconstrained. Here, we show that is possible to define searches capable of probing a large patch of this difficult region, with S/B ~ 1 and significances often well beyond 5 sigma. The basic strategy is to leverage the large energy gain of LHC Run 2, leading to a sizable population of stop pair events recoiling against a hard jet. The recoil not only re-establishes a MET signature, but also leads to a distinctive anti-correlation between the MET and the recoil jet transverse vectors when the stops decay all-hadronically. Accounting for jet combinatorics, backgrounds, and imperfections in MET measurements, we estimate that Run 2 will already start to close the gap in exclusion sensitivity with the first few 10s of inverse-fb. By 300/fb, exclusion sensitivity may extend from stop masses of 550 GeV on the high side down to below 200 GeV on the low side, approaching the "stealth" point at m(stop) = m(top) and potentially overlapping with limits from top pair cross section and spin correlation measurements.

  8. Measurements of Scintillation Efficiency and Pulse-Shape for Low Energy Recoils in Liquid Xenon

    E-print Network

    D. Akimov; A. Bewick; D. Davidge; J. Dawson; A. S. Howard; I. Ivaniouchenkov; W. G. Jones; M. Joshi; V. A. Kudryavtsev; T. B. Lawson; V. Lebedenko; M. J. Lehner; P. K. Lightfoot; I. Liubarsky; R. Luscher; J. E. McMillan; C. D. Peak; J. J. Quenby; N. J. C. Spooner; T. J. Sumner; D. R. Tovey; C. K. Ward

    2001-06-08

    Results of observations of low energy nuclear and electron recoil events in liquid xenon scintillator detectors are given. The relative scintillation efficiency for nuclear recoils is 0.22 +/- 0.01 in the recoil energy range 40 keV - 70 keV. Under the assumption of a single dominant decay component to the scintillation pulse-shape the log-normal mean parameter T0 of the maximum likelihood estimator of the decay time constant for 6 keV pulse-shapes are found to be well fitted by single exponential functions although some evidence is found for a double exponential form for the nuclear recoil pulse-shape.

  9. The effectiveness of quantum operations for eavesdropping on sealed messages

    E-print Network

    Paul A Lopata; Thomas B Bahder

    2007-04-04

    A quantum protocol is described which enables a user to send sealed messages and that allows for the detection of active eavesdroppers. We examine a class of eavesdropping strategies, those that make use of quantum operations, and we determine the information gain versus disturbance caused by these strategies. We demonstrate this tradeoff with an example and we compare this protocol to quantum key distribution, quantum direct communication, and quantum seal protocols.

  10. On Quantum Coherence Effects in Photo and Solar Cells

    E-print Network

    Kimberly Chapin; Konstantin Dorfman; Anatoly Svidzinsky; Marlan Scully

    2011-02-01

    We show that quantum coherence can increase the quantum efficiency of various thermodynamic systems. For example, we can enhance the quantum efficiency for a quantum dot photocell, a laser based solar cell and the photo-Carnot quantum heat engine. Our results are fully consistent with the laws of thermodynamics contrary to comments found in the paper of A.P. Kirk, Phys. Rev. Lett. 106, 048703 (2011).

  11. Scattering approach to quantum transport and many body effects

    SciTech Connect

    Pichard, Jean-Louis

    2010-12-21

    We review a series of works discussing how the scattering approach to quantum transport developed by Landauer and Buttiker for one body elastic scatterers can be extended to the case where electron-electron interactions act inside the scattering region and give rise to many body scattering. Firstly, we give an exact numerical result showing that at zero temperature a many body scatterer behaves as an effective one body scatterer, with an interaction dependent transmission. Secondly, we underline that this effective scatterer depends on the presence of external scatterers put in its vicinity. The implications of this non local scattering are illustrated studying the conductance of a quantum point contact where electrons interact with a scanning gate microscope. Thirdly, using the numerical renormalization group developed by Wilson for the Kondo problem, we study a double dot spinless model with an inter-dot interaction U and inter-dot hopping t{sub d}, coupled to leads by hopping terms t{sub c}. We show that the quantum conductance as a function of t{sub d} is given by a universal function, independently of the values of U and t{sub c}, if one measures t{sub d} in units of a characteristic scale {tau}(U,t{sub c}). Mapping the double dot system without spin onto a single dot Anderson model with spin and magnetic field, we show that {tau}(U,t{sub c}) 2T{sub K}, where T{sub K} is the Kondo temperature of the Anderson model.

  12. Search for $?$-mesic nuclei in recoil-free transfer reaction

    E-print Network

    The COSY-GEM Collaboration; :; A. Budzanowski

    2008-12-22

    We have studied the reaction $p+{^{27}Al}\\to {^3{He}}+p+\\pi^-+X$ at recoil-free kinematics. An $\\eta$ meson possibly produced in this reaction would be thus almost at rest in the laboratory system and could therefore be bound with high probability, if nuclear $\\eta$ states exist. The decay of such a state through the $N^*(1535)$ resonance would lead to a proton-$\\pi^-$ pair emitted in opposite directions. For these conditions we find some indication of such a bound state. An upper limit of $\\approx$ 0.5 nb is found.

  13. B -> D* l nu at zero recoil: an update

    SciTech Connect

    Bailey, Jon A.; Bazavov, A.; Bernard, C.; Bouchard, C.M.; DeTar, C.; El-Khadra, A.X.; Freeland, E.D.; Gamiz, E.; Gottlieb, Steven; Heller, U.M.; Hetrick, J.E.

    2010-11-01

    We present an update of our calculation of the form factor for {bar B} {yields} D*{ell}{bar {nu}} at zero recoil, with higher statistics and finer lattices. As before, we use the Fermilab action for b and c quarks, the asqtad staggered action for light valence quarks, and the MILC ensembles for gluons and light quarks (Luescher-Weisz married to 2+1 rooted staggered sea quarks). In this update, we have reduced the total uncertainty on F(1) from 2.6% to 1.7%.

  14. Projectile paths corrected for recoil and air resistance

    NASA Astrophysics Data System (ADS)

    Kemp, H. R.

    1986-01-01

    The angle of projection of a bullet is not the same as the angle of the bore of the firearm just before firing. This is because recoil alters the direction of the barrel as the bullet moves along the barrel. Neither is the angle of projection of an arrow the same as the direction of the arrow just before it is projected. The difficulty in obtaining the angle of projection limits the value of the standard equation for trajectories relative to a horizontal plane. Furthermore, air resistance makes this equation unrealistic for all but short ranges.

  15. B -> D* l nu at zero recoil: an update

    E-print Network

    Jon A. Bailey; A. Bazavov; C. Bernard; C. M. Bouchard; C. DeTar; A. X. El-Khadra; E. D. Freeland; E. Gámiz; Steven Gottlieb; U. M. Heller; J. E. Hetrick; A. S. Kronfeld; J. Laiho; L. Levkova; P. B. Mackenzie; M. B. Oktay; J. N. Simone; R. Sugar; D. Toussaint; R. S. Van de Water

    2010-11-09

    We present an update of our calculation of the form factor for B -> D* l nu at zero recoil, with higher statistics and finer lattices. As before, we use the Fermilab action for b and c quarks, the asqtad staggered action for light valence quarks, and the MILC ensembles for gluons and light quarks (L\\"uscher-Weisz married to 2+1 rooted staggered sea quarks). In this update, we have reduced the total uncertainty on F(1) from 2.6% to 1.7%. At Lattice2010 we presented a still-blinded result, but this writeup includes the unblinded result from the September 2010 CKM workshop.

  16. Quantum noise effects with Kerr nonlinearity enhancement in coupled gain-loss waveguides

    E-print Network

    Bing He; Shu-Bin Yan; Jing Wang; Min Xiao

    2015-05-26

    It is generally difficult to study the dynamical properties of a quantum system with both inherent quantum noises and non-perturbative nonlinearity. Due to the possibly drastic intensity increase of an input coherent light in the gain-loss waveguide couplers with parity-time (PT) symmetry, the Kerr effect from a nonlinearity added into the systems can be greatly enhanced, and is expected to create the macroscopic entangled states of the output light fields with huge photon numbers. Meanwhile, the quantum noises also coexist with the amplification and dissipation of the light fields. Under the interplay between the quantum noises and nonlinearity, the quantum dynamical behaviors of the systems become rather complicated. However, the important quantum noise effects have been mostly neglected in the previous studies about nonlinear PT-symmetric systems. Here we present a solution to this non-perturbative quantum nonlinear problem, showing the real-time evolution of the system observables. The enhanced Kerr nonlinearity is found to give rise to a previously unknown decoherence effect that is irrelevant to the quantum noises, and imposes a limit on the emergence of macroscopic nonclassicality. In contrast to what happen in the linear systems, the quantum noises exert significant impact on the system dynamics, and can create the nonclassical light field states in conjunction with the enhanced Kerr nonlinearity. This first study on the noise involved quantum nonlinear dynamics of the coupled gain-loss waveguides can help to better understand the quantum noise effects in the broad nonlinear systems.

  17. Simulations of the Nuclear Recoil Head-Tail Signature in Gases Relevant to Directional Dark Matter Searches

    E-print Network

    Majewski, P; Snowden-Ifft, D P; Spooner, N J C

    2009-01-01

    We present the first detailed simulations of the head-tail effect relevant to directional Dark Matter searches. Investigations of the location of the majority of the ionization charge as being either at the beginning half (tail) or at the end half (head) of the nuclear recoil track were performed for carbon and sulphur recoils in 40 Torr negative ion carbon disulfide and for fluorine recoils in 100 Torr carbon tetrafluoride. The SRIM simulation program was used, together with a purpose-written Monte Carlo generator, to model production of ionizing pairs, diffusion and basic readout geometries relevant to potential real detector scenarios, such as under development for the DRIFT experiment. The results clearly indicate the existence of a head-tail track asymmetry but with a magnitude critically influenced by two competing factors: the nature of the stopping power and details of the range straggling. The former tends to result in the tail being greater than the head and the latter the reverse.

  18. Simulations of the Nuclear Recoil Head-Tail Signature in Gases Relevant to Directional Dark Matter Searches

    E-print Network

    P. Majewski; D. Muna; D. P. Snowden-Ifft; N. J. C. Spooner

    2009-02-25

    We present the first detailed simulations of the head-tail effect relevant to directional Dark Matter searches. Investigations of the location of the majority of the ionization charge as being either at the beginning half (tail) or at the end half (head) of the nuclear recoil track were performed for carbon and sulphur recoils in 40 Torr negative ion carbon disulfide and for fluorine recoils in 100 Torr carbon tetrafluoride. The SRIM simulation program was used, together with a purpose-written Monte Carlo generator, to model production of ionizing pairs, diffusion and basic readout geometries relevant to potential real detector scenarios, such as under development for the DRIFT experiment. The results clearly indicate the existence of a head-tail track asymmetry but with a magnitude critically influenced by two competing factors: the nature of the stopping power and details of the range straggling. The former tends to result in the tail being greater than the head and the latter the reverse.

  19. Two-subband quantum Hall effect in parabolic quantum wells C. Ellenberger,1 B. Simovic,1 R. Leturcq,1 T. Ihn,1 S. E. Ulloa,1,

    E-print Network

    Ihn, Thomas

    interaction effects beyond the mean field Har- tree and exchange interactions are neglected. Our samplesTwo-subband quantum Hall effect in parabolic quantum wells C. Ellenberger,1 B. Simovic,1 R. Leturcq; published 8 November 2006 The low-temperature magnetoresistance of parabolic quantum wells displays

  20. Efficient Multi-Dimensional Simulation of Quantum Confinement Effects in Advanced MOS Devices

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Ancona, Mario G.; Rafferty, Conor S.; Yu, Zhiping

    2000-01-01

    We investigate the density-gradient (DG) transport model for efficient multi-dimensional simulation of quantum confinement effects in advanced MOS devices. The formulation of the DG model is described as a quantum correction ot the classical drift-diffusion model. Quantum confinement effects are shown to be significant in sub-100nm MOSFETs. In thin-oxide MOS capacitors, quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion of quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion of quantum effects in simulations dramatically improves the match between C-V simulations and measurements for oxide thickness down to 2 nm. Significant quantum corrections also occur in the I-V characteristics of short-channel (30 to 100 nm) n-MOSFETs, with current drive reduced by up to 70%. This effect is shown to result from reduced inversion charge due to quantum confinement of electrons in the channel. Also, subthreshold slope is degraded by 15 to 20 mV/decade with the inclusion of quantum effects via the density-gradient model, and short channel effects (in particular, drain-induced barrier lowering) are noticeably increased.

  1. Mixing effects in the crystallization of supercooled quantum binary liquids.

    PubMed

    Kühnel, M; Fernández, J M; Tramonto, F; Tejeda, G; Moreno, E; Kalinin, A; Nava, M; Galli, D E; Montero, S; Grisenti, R E

    2015-08-14

    By means of Raman spectroscopy of liquid microjets, we have investigated the crystallization process of supercooled quantum liquid mixtures composed of parahydrogen (pH2) or orthodeuterium (oD2) diluted with small amounts of neon. We show that the introduction of the Ne impurities affects the crystallization kinetics in terms of a significant reduction of the measured pH2 and oD2 crystal growth rates, similarly to what found in our previous work on supercooled pH2-oD2 liquid mixtures [Kühnel et al., Phys. Rev. B 89, 180201(R) (2014)]. Our experimental results, in combination with path-integral simulations of the supercooled liquid mixtures, suggest in particular a correlation between the measured growth rates and the ratio of the effective particle sizes originating from quantum delocalization effects. We further show that the crystalline structure of the mixtures is also affected to a large extent by the presence of the Ne impurities, which likely initiate the freezing process through the formation of Ne-rich crystallites. PMID:26277142

  2. Mixing effects in the crystallization of supercooled quantum binary liquids

    NASA Astrophysics Data System (ADS)

    Kühnel, M.; Fernández, J. M.; Tramonto, F.; Tejeda, G.; Moreno, E.; Kalinin, A.; Nava, M.; Galli, D. E.; Montero, S.; Grisenti, R. E.

    2015-08-01

    By means of Raman spectroscopy of liquid microjets, we have investigated the crystallization process of supercooled quantum liquid mixtures composed of parahydrogen (pH2) or orthodeuterium (oD2) diluted with small amounts of neon. We show that the introduction of the Ne impurities affects the crystallization kinetics in terms of a significant reduction of the measured pH2 and oD2 crystal growth rates, similarly to what found in our previous work on supercooled pH2-oD2 liquid mixtures [Kühnel et al., Phys. Rev. B 89, 180201(R) (2014)]. Our experimental results, in combination with path-integral simulations of the supercooled liquid mixtures, suggest in particular a correlation between the measured growth rates and the ratio of the effective particle sizes originating from quantum delocalization effects. We further show that the crystalline structure of the mixtures is also affected to a large extent by the presence of the Ne impurities, which likely initiate the freezing process through the formation of Ne-rich crystallites.

  3. Quantum Confined Stark Effect in a GaAs/AlGaAs Nanowire Quantum Well Tube Device: Probing Exciton Localization.

    PubMed

    Badada, Bekele H; Shi, Teng; Jackson, Howard E; Smith, Leigh M; Zheng, Changlin; Etheridge, Joanne; Gao, Qiang; Tan, H Hoe; Jagadish, Chennupati

    2015-12-01

    In this Letter, we explore the nature of exciton localization in single GaAs/AlGaAs nanowire quantum well tube (QWT) devices using photocurrent (PC) spectroscopy combined with simultaneous photoluminescence (PL) and photoluminescence excitation (PLE) measurements. Excitons confined to GaAs quantum well tubes of 8 and 4 nm widths embedded into an AlGaAs barrier are seen to ionize at high bias levels. Spectroscopic signatures of the ground and excited states confined to the QWT seen in PL, PLE, and PC data are consistent with simple numerical calculations. The demonstration of good electrical contact with the QWTs enables the study of Stark effect shifts in the sharp emission lines of excitons localized to quantum dot-like states within the QWT. Atomic resolution cross-sectional TEM measurements and an analysis of the quantum confined Stark effect of these dots provide insights into the nature of the exciton localization in these nanostructures. PMID:26562619

  4. Thermoelectric effects in quantum Hall systems beyond linear response

    NASA Astrophysics Data System (ADS)

    López, Rosa; Hwang, Sun-Yong; Sánchez, David

    2014-12-01

    We consider a quantum Hall system with an antidot acting as a energy dependent scatterer. In the purely charge case, we find deviations from the Wiedemann-Franz law that take place in the nonlinear regime of transport. We also discuss Peltier effects beyond linear response and describe both effects using magnetic-field asymmetric transport coefficients. For the spin case such as that arising along the helical edge states of a two-dimensional topological insulator, we investigate the generation of spin currents as a result of applied voltage and temperature differences in samples attached to ferromagnetic leads. We find that in the parallel configuration the spin current can be tuned with the leads' polarization even in the linear regime of transport. In contrast, for antiparallel magnetizations the spin currents has a strict nonlinear dependence on the the applied fields.

  5. Quantum Anomalous Hall Effect in Graphene-based Heterostructure

    PubMed Central

    Zhang, Jiayong; Zhao, Bao; Yao, Yugui; Yang, Zhongqin

    2015-01-01

    Quantum anomalous Hall (QAH) effect, with potential applications in low-power-consumption electronics, is predicted in the heterostructure of graphene on the (001) surface of a real antiferromagnetic insulator RbMnCl3, based on density-functional theory and Wannier function methods. Due to the interactions from the substrate, a much large exchange field (about 280?meV) and an enhanced Rashba spin-orbit coupling are induced in graphene, leading to a topologically nontrivial QAH gap opened in the system. The avenues of enhancing the nontrivial gap are also proposed, from which nearly a gap one order large is achieved. Our work demonstrates that this graphene-based heterostructure is an appropriate candidate to be employed to experimentally observe the QAH effect and explore the promising applications. PMID:26024508

  6. Quantum Gravity Effects in Black Holes at the LHC

    E-print Network

    Gian Luigi Alberghi; Roberto Casadio; Alessandro Tronconi

    2007-02-16

    We study possible back-reaction and quantum gravity effects in the evaporation of black holes which could be produced at the LHC through a modification of the Hawking emission. The corrections are phenomenologically taken into account by employing a modified relation between the black hole mass and temperature. The usual assumption that black holes explode around $1 $TeV is also released, and the evaporation process is extended to (possibly much) smaller final masses. We show that these effects could be observable for black holes produced with a relatively large mass and should therefore be taken into account when simulating micro-black hole events for the experiments planned at the LHC.

  7. Nonequilibrium phonon effects in midinfrared quantum cascade lasers

    SciTech Connect

    Shi, Y. B. Knezevic, I.

    2014-09-28

    We investigate the effects of nonequilibrium phonon dynamics on the operation of a GaAs-based midinfrared quantum cascade laser over a range of temperatures (77–300 K) via a coupled ensemble Monte Carlo simulation of electron and optical-phonon systems. Nonequilibrium phonon effects are shown to be important below 200 K. At low temperatures, nonequilibrium phonons enhance injection selectivity and efficiency by drastically increasing the rate of interstage electron scattering from the lowest injector state to the next-stage upper lasing level via optical-phonon absorption. As a result, the current density and modal gain at a given field are higher and the threshold current density lower and considerably closer to experiment than results obtained with thermal phonons. By amplifying phonon absorption, nonequilibrium phonons also hinder electron energy relaxation and lead to elevated electronic temperatures.

  8. Barrier penetration effects on thermopower in semiconductor quantum wells

    SciTech Connect

    Vaidya, R. G.; Department of Physics and C.E.I.E, Tumkur University, Tumkur, Karnataka, India – 573 102 ; Sankeshwar, N. S. Mulimani, B. G.

    2014-01-15

    Finite confinement effects, due to the penetration of the electron wavefunction into the barriers of a square well potential, on the low–temperature acoustic-phonon-limited thermopower (TP) of 2DEG are investigated. The 2DEG is considered to be scattered by acoustic phonons via screened deformation potential and piezoelectric couplings. Incorporating the barrier penetration effects, the dependences of diffusion TP and phonon drag TP on barrier height are studied. An expression for phonon drag TP is obtained. Numerical calculations of temperature dependences of mobility and TP for a 10 nm InN/In {sub x}Ga{sub 1?x}N quantum well for different values of x show that the magnitude and behavior of TP are altered. A decrease in the barrier height from 500 meV by a factor of 5, enhances the mobility by 34% and reduces the TP by 58% at 20 K. Results are compared with those of infinite barrier approximation.

  9. Landau damping and the onset of particle trapping in quantum plasmas

    SciTech Connect

    Daligault, Jérôme

    2014-04-15

    Using analytical theory and simulations, we assess the impact of quantum effects on non-linear wave-particle interactions in quantum plasmas. We more specifically focus on the resonant interaction between Langmuir waves and electrons, which, in classical plasmas, lead to particle trapping. Two regimes are identified depending on the difference between the time scale of oscillation t{sub B}(k)=?(m/eEk) of a trapped electron and the quantum time scale t{sub q}(k)=2m/?k{sup 2} related to recoil effect, where E and k are the wave amplitude and wave vector. In the classical-like regime, t{sub B}(k)?quantum regime, t{sub B}(k)?>?t{sub q}(k), particle trapping is hampered by the finite recoil imparted to resonant electrons in their interactions with plasmons.

  10. Binary Black Holes: Spin Dynamics and Gravitational Recoil

    E-print Network

    Herrmann, Frank; Shoemaker, Deirdre M; Laguna, Pablo; Matzner, Richard A

    2007-01-01

    We present a study of spinning black hole binaries focusing on the spin dynamics of the individual black holes as well as on the gravitational recoil acquired by the black hole produced by the merger. We consider two series of initial spin orientations away from the binary orbital plane. In one of the series, the spins are anti-aligned; for the second series, one of the spins points away from the binary along the line separating the black holes. We find a remarkable agreement between the spin dynamics predicted at 2nd post-Newtonian order and those from numerical relativity. For each configuration, we compute the kick of the final black hole. We use the kick estimates from the series with anti-aligned spins to fit the parameters in the Kidder kick formula, and verify that the recoil along the direction of the orbital angular momentum is proportional to $\\sin\\theta$ and on the orbital plane to $\\cos\\theta$, with $\\theta$ the angle between the spin directions and the orbital angular momentum.

  11. Binary Black Holes: Spin Dynamics and Gravitational Recoil

    E-print Network

    Frank Herrmann; Ian Hinder; Deirdre M. Shoemaker; Pablo Laguna; Richard A. Matzner

    2007-09-17

    We present a study of spinning black hole binaries focusing on the spin dynamics of the individual black holes as well as on the gravitational recoil acquired by the black hole produced by the merger. We consider two series of initial spin orientations away from the binary orbital plane. In one of the series, the spins are anti-aligned; for the second series, one of the spins points away from the binary along the line separating the black holes. We find a remarkable agreement between the spin dynamics predicted at 2nd post-Newtonian order and those from numerical relativity. For each configuration, we compute the kick of the final black hole. We use the kick estimates from the series with anti-aligned spins to fit the parameters in the \\KKF{,} and verify that the recoil along the direction of the orbital angular momentum is $\\propto \\sin\\theta$ and on the orbital plane $\\propto \\cos\\theta$, with $\\theta$ the angle between the spin directions and the orbital angular momentum. We also find that the black hole spins can be well estimated by evaluating the isolated horizon spin on spheres of constant coordinate radius.

  12. The WITCH experiment: Acquiring the first recoil ion spectrum

    E-print Network

    V. Yu. Kozlov; M. Beck; S. Coeck; P. Delahaye; P. Friedag; M. Herbane; A. Herlert; I. S. Kraev; M. Tandecki; S. Van Gorp; F. Wauters; Ch. Weinheimer; F. Wenander; D. Zakoucky; N. Severijns

    2008-07-22

    The standard model of the electroweak interaction describes beta-decay in the well-known V-A form. Nevertheless, the most general Hamiltonian of a beta-decay includes also other possible interaction types, e.g. scalar (S) and tensor (T) contributions, which are not fully ruled out yet experimentally. The WITCH experiment aims to study a possible admixture of these exotic interaction types in nuclear beta-decay by a precise measurement of the shape of the recoil ion energy spectrum. The experimental set-up couples a double Penning trap system and a retardation spectrometer. The set-up is installed in ISOLDE/CERN and was recently shown to be fully operational. The current status of the experiment is presented together with the data acquired during the 2006 campaign, showing the first recoil ion energy spectrum obtained. The data taking procedure and corresponding data acquisition system are described in more detail. Several further technical improvements are briefly reviewed.

  13. Binary black holes: Spin dynamics and gravitational recoil

    NASA Astrophysics Data System (ADS)

    Herrmann, Frank; Hinder, Ian; Shoemaker, Deirdre M.; Laguna, Pablo; Matzner, Richard A.

    2007-10-01

    We present a study of spinning black hole binaries focusing on the spin dynamics of the individual black holes as well as on the gravitational recoil acquired by the black hole produced by the merger. We consider two series of initial spin orientations away from the binary orbital plane. In one of the series, the spins are antialigned; for the second series, one of the spins points away from the binary along the line separating the black holes. We find a remarkable agreement between the spin dynamics predicted at 2nd post-Newtonian order and those from numerical relativity. For each configuration, we compute the kick of the final black hole. We use the kick estimates from the series with antialigned spins to fit the parameters in the Kidder kick formula, and verify that the recoil in the direction of the orbital angular momentum is ?sin?? and on the orbital plane ?cos??, with ? the angle between the spin directions and the orbital angular momentum. We also find that the black hole spins can be well estimated by evaluating the isolated horizon spin on spheres of constant coordinate radius.

  14. Phase diagram of the two-component fractional quantum Hall effect.

    PubMed

    Archer, Alexander C; Jain, Jainendra K

    2013-06-14

    We calculate the phase diagram of the two component fractional quantum Hall effect as a function of the spin or valley Zeeman energy and the filling factor, which reveals new phase transitions and phase boundaries spanning many fractional plateaus. This phase diagram is relevant to the fractional quantum Hall effect in graphene and in GaAs and AlAs quantum wells, when either the spin or valley degree of freedom is active. PMID:25165951

  15. Generation of quantum steering and interferometric power in the dynamical Casimir effect

    NASA Astrophysics Data System (ADS)

    Sabín, Carlos; Adesso, Gerardo

    2015-10-01

    We analyze the role of the dynamical Casimir effect as a resource for quantum technologies, such as quantum cryptography and quantum metrology. In particular, we consider the generation of Einstein-Podolsky-Rosen steering and Gaussian interferometric power, two useful forms of asymmetric quantum correlations, in superconducting waveguides modulated by superconducting quantum interferometric devices. We show that while a certain value of squeezing is required to overcome thermal noise and give rise to steering, any nonzero squeezing produces interferometric power which in fact increases with thermal noise.

  16. The exchange-correlation effects on surface plasmon oscillations in semi-bounded quantum plasma

    NASA Astrophysics Data System (ADS)

    Shahmansouri, Mehran

    2015-09-01

    We studied the surface plasmon waves in a quantum plasma half-space by considering the effects of exchange and correlation for the electrons. We used a quantum hydrodynamic approach, including the full set of Maxwell equations and considering two new quantities (measuring the exchange and correlation effects) in addition to the Fermi electron temperature and the quantum Bohm potential, to derive the dispersion relation for the surface plasmon waves. It was found that the exchange-correlation effects significantly modified the behavior of surface plasmon waves. We showed that the frequency of surface plasmon wave was down-shifted by the exchange-correlation effects. On the other hand, the quantum effects (including of the exchange-correlation effects and the quantum Bohm potential) was seen to cause an increase in the phase speed of surface plasmon waves. Our results can help to understand the propagation properties of surface waves in intense laser produced solid density plasmas and metallic plasmas.

  17. Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers

    SciTech Connect

    Zhang, Zi-Hui; Liu, Wei; Ju, Zhengang; Tiam Tan, Swee; Ji, Yun; Kyaw, Zabu; Zhang, Xueliang; Wang, Liancheng; Wei Sun, Xiao E-mail: volkan@stanfordalumni.org; Volkan Demir, Hilmi E-mail: volkan@stanfordalumni.org

    2014-06-16

    InGaN/GaN light-emitting diodes (LEDs) grown along the polar orientations significantly suffer from the quantum confined Stark effect (QCSE) caused by the strong polarization induced electric field in the quantum wells, which is a fundamental problem intrinsic to the III-nitrides. Here, we show that the QCSE is self-screened by the polarization induced bulk charges enabled by designing quantum barriers. The InN composition of the InGaN quantum barrier graded along the growth orientation opportunely generates the polarization induced bulk charges in the quantum barrier, which well compensate the polarization induced interface charges, thus avoiding the electric field in the quantum wells. Consequently, the optical output power and the external quantum efficiency are substantially improved for the LEDs. The ability to self-screen the QCSE using polarization induced bulk charges opens up new possibilities for device engineering of III-nitrides not only in LEDs but also in other optoelectronic devices.

  18. The Quantum Hall Effect in Spin Quartets in Graphene

    NASA Astrophysics Data System (ADS)

    Shrivastava, Keshav

    2008-03-01

    Using the non-relativistic Schroedinger equation, we find that for (1/2)g=(1/2)±s gives zero charge for negative sign and one charge for positive sign. This explains the conductivity at i = 0 and 1. For s=3/2, (1/2)g=2 for positive sign and hence g=4. The substitution in the series, -(5/2)(g?BH), -(3/2)(g?BH), -(1/2)( g?BH), +(1/2)( g?BH),+(3/2)( g?BH), +(5/2)( g?BH), , etc., g=4 gives, -10, -6, -2, +2, +6, +10, etc. This series is the same as observed in the experimental data of quantum Hall effect in graphene. When we take n=2 in the flux quantization, i.e., 2(hc/e), we generate the plateaus at ±4. Thus the plateaus can occur at 0, 1, 4 and at 2, 6, 10, 14, , etc. Thus the quantum Hall effect in graphene is understood by means of non-relativistic theory. The fractions such as 1/3 or integers such as 0,1,4,, 2,6,10,14, multiply the charge and hence describe the ``effective charge'' of the quasiparticles. This means that there is ``spin-charge locking''. *K. N. Shrivastava, Phys. Lett. A 113, 435(1986); 115, 436(E)(1986); Phys. Lett. A, 326, 469(2004); AIP Conf. Proc. 909, 43(2007);909,50(2007. *Z.Jiang, et al, Phys. Rev. Lett. 98,197403(2007);Y.Zhang et al, Phys. Rev. Lett. 96, 136806(2006).

  19. Effect of source tampering in the security of quantum cryptography

    E-print Network

    Sun, Shi-Hai

    The security of source has become an increasingly important issue in quantum cryptography. Based on the framework of measurement-device-independent quantum key distribution (MDI-QKD), the source becomes the only region ...

  20. Quantum Effects in the Diffusion of Hydrogen on Ru(0001)

    PubMed Central

    2013-01-01

    An understanding of hydrogen diffusion on metal surfaces is important not only for its role in heterogeneous catalysis and hydrogen fuel cell technology but also because it provides model systems where tunneling can be studied under well-defined conditions. Here we report helium spin–echo measurements of the atomic-scale motion of hydrogen on the Ru(0001) surface between 75 and 250 K. Quantum effects are evident at temperatures as high as 200 K, while below 120 K we observe a tunneling-dominated temperature-independent jump rate of 1.9 × 109 s–1, many orders of magnitude faster than previously seen. Quantum transition-state theory calculations based on ab initio path-integral simulations reproduce the temperature dependence of the rate at higher temperatures and predict a crossover to tunneling-dominated diffusion at low temperatures. However, the tunneling rate is underestimated, highlighting the need for future experimental and theoretical studies of hydrogen diffusion on this and other well-defined surfaces. PMID:24920996

  1. Sagnac effect in a chain of mesoscopic quantum rings

    SciTech Connect

    Search, Christopher P.; Toland, John R. E.; Zivkovic, Marko

    2009-05-15

    The ability to interferometrically detect inertial rotations via the Sagnac effect has been a strong stimulus for the development of atom interferometry because of the potential 10{sup 10} enhancement of the rotational phase shift in comparison to optical Sagnac gyroscopes. Here we analyze ballistic transport of matter waves in a one-dimensional chain of N coherently coupled quantum rings in the presence of a rotation of angular frequency {omega}. We show that the transmission probability, T, exhibits zero transmission stop gaps as a function of the rotation rate interspersed with regions of rapidly oscillating finite transmission. With increasing N, the transition from zero transmission to the oscillatory regime becomes an increasingly sharp function of {omega} with a slope {partial_derivative}T/{partial_derivative}{omega}{approx}N{sup 2}. The steepness of this slope dramatically enhances the response to rotations in comparison to conventional single ring interferometers such as the Mach-Zehnder interferometer and leads to a phase sensitivity well below the quantum shot-noise limit typical of atom interferometers.

  2. Band Collapse and the Quantum Hall Effect in Graphene

    SciTech Connect

    Bernevig, B.Andrei; Hughes, Taylor L.; Zhang, Shou-Cheng; Chen, Han-Dong; Wu, Congjun; /Santa Barbara, KITP

    2010-03-16

    The recent Quantum Hall experiments in graphene have confirmed the theoretically well-understood picture of the quantum Hall (QH) conductance in fermion systems with continuum Dirac spectrum. In this paper we take into account the lattice, and perform an exact diagonalization of the Landau problem on the hexagonal lattice. At very large magnetic fields the Dirac argument fails completely and the Hall conductance, given by the number of edge states present in the gaps of the spectrum, is dominated by lattice effects. As the field is lowered, the experimentally observed situation is recovered through a phenomenon which we call band collapse. As a corollary, for low magnetic field, graphene will exhibit two qualitatively different QHE's: at low filling, the QHE will be dominated by the 'relativistic' Dirac spectrum and the Hall conductance will be odd-integer; above a certain filling, the QHE will be dominated by a non-relativistic spectrum, and the Hall conductance will span all integers, even and odd.

  3. Quantum Reality, Complex Numbers and the Meteorological Butterfly Effect

    E-print Network

    T. N. Palmer

    2005-01-17

    A not-too-technical version of the paper: "A Granular Permutation-based Representation of Complex Numbers and Quaternions: Elements of a Realistic Quantum Theory" - Proc. Roy. Soc.A (2004) 460, 1039-1055. The phrase "meteorological butterfly effect" is introduced to illustrate, not the familiar loss of predictability in low-dimensional chaos, but the much less familiar and much more radical paradigm of the finite-time predictability horizon, associated with upscale transfer of uncertainty in certain multi-scale systems. This motivates a novel reinterpretation of unit complex numbers (and quaternions) in terms of a family of self-similar permutation operators. A realistic deterministic kinematic reformulation of the foundations of quantum theory is given using this reinterpretation of complex numbers. Using a property of the cosine function not normally encountered in physics, that it is irrational for all dyadic rational angles between 0 and pi/2, this reformulation is shown to have the emergent property of counterfactual indefiniteness and is therefore not non-locally causal.

  4. Quantum Stress Tensor Fluctuations and their Physical Effects

    E-print Network

    L. H. Ford; Chun-Hsien Wu

    2007-10-19

    We summarize several aspects of recent work on quantum stress tensor fluctuations and their role in driving fluctuations of the gravitational field. The role of correlations and anticorrelations is emphasized. We begin with a review of the properties of the stress tensor correlation function. We next consider some illuminating examples of non-gravitational effects of stress tensors fluctuations, specifically fluctuations of the Casimir force and radiation pressure fluctuations. We next discuss passive fluctuations of spacetime geometry and some of their operational signatures. These include luminosity fluctuations, line broadening, and angular blurring of a source viewed through a fluctuating gravitational field. Finally, we discuss the possible role of quantum stress tensor fluctuations in the early universe, especially in inflation. The fluctuations of the expansion of a congruence of comoving geodesics grows during the inflationary era, due to non-cancellation of anticorrelations that would have occurred in flat spacetime. This results in subsequent non-Gaussian density perturbations and allows one to infer an upper bound on the duration of inflation. This bound is consistent with adequate inflation to solve the horizon and flatness problems.

  5. Electron-Fluxon Approach to the Quantum Hall Effect

    NASA Astrophysics Data System (ADS)

    Fujita, Shigeji; Morabito, David; Godoy, Salvador

    2001-04-01

    Experimental data by Willett et al.(R. Willett et al.), Phys. Rev. Lett. 59, 1776 (1987). show that the Hall resistivity ?_xy at the extreme low temperatures has plateaus at fractional occupation ratios (2D electron density / fluxon density) ? with odd denominators, where the longitudinal resistivity ?_xx (nearly) vanishes. The plateau heights are quantized in units of h/e^2. Each plateau is material- and shape-independent and indicates the stability of the superconducting state. The same data show that ?_xy is linear in B at ?=1/2, where ?_xx has a small dip, indicating a Fermi-liquid-like state with a different kind of stability. We develop a microscopic theory of the quantum Hall effect in analogy with the theory of the high temperature superconductivity, regarding the fluxon as a quantum particle with half spin and zero mass. Each Landau level, E=(N+1/2)hbar ?_0, ?_0=eB/m, has a great degeneracy. Exchange of a longitudinal phonon can generate an attractive transition between the degenerate states. The same exchange can also pair-create electron-fluxon composites, bosonic and fermionic depending on the number of fluxons. The model accounts for the energy gap at each plateau, ensuring the stability of the superconducting state.

  6. Quantum Hall effect on centimeter scale chemical vapor deposited graphene films

    E-print Network

    Chen, Yong P.

    Quantum Hall effect on centimeter scale chemical vapor deposited graphene films Tian Shen, Wei Wu, Qingkai Yu, Curt A. Richter, Randolph Elmquist et al. Citation: Appl. Phys. Lett. 99, 232110 (2011); doi://apl.aip.org/about/rights_and_permissions #12;Quantum Hall effect on centimeter scale chemical vapor deposited graphene films Tian Shen,1,2,a

  7. 2005 Nature Publishing Group Strong quantum-confined Stark effect in germanium

    E-print Network

    Miller, David A. B.

    © 2005 Nature Publishing Group Strong quantum-confined Stark effect in germanium quantum to integrate with silicon electronic devices. Germanium is routinely integrated with silicon in electronics8 , but previous silicon­germanium structures have also not shown strong modulation effects9­13 . Here we report

  8. MESOSCOPIC SPINTRONICS: FLUCTUATION AND LOCALIZATION EFFECTS IN SPIN-POLARIZED QUANTUM

    E-print Network

    Nikolic, Branislav K.

    MESOSCOPIC SPINTRONICS: FLUCTUATION AND LOCALIZATION EFFECTS IN SPIN-POLARIZED QUANTUM TRANSPORT spintronic devices leads to a dramatic reduction of localization effects on the conductances to allow for envisioned quantum technologies that manipulate spin, such as spintronics1,2 or solid

  9. Quantum nuclear effects on the location of hydrogen above and below the palladium (100) surface

    E-print Network

    Alavi, Ali

    Quantum nuclear effects on the location of hydrogen above and below the palladium (100) surface functional calculation Quantum effect Path-integral Palladium Hydrogen We report ab initio path integral at palladium surfaces has great implications to a broad range of disciplines such as catalysis, nuclear

  10. Rashba effect in an asymmetric quantum dot in a magnetic field S. Bandyopadhyay

    E-print Network

    Cahay, Marc

    because of the Zeeman effect brought about by the magnetic field due to the contacts. We will callRashba effect in an asymmetric quantum dot in a magnetic field S. Bandyopadhyay Department that causes a Zeeman splitting of the electronic states in the quantum dot. We show that this Zeeman splitting

  11. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 1 Modeling of Terahertz Heating Effects in

    E-print Network

    Ganesan, Sashikumaar

    1 µW. But the modern THz systems use more powerful quantum cascade lasers or free electron lasersIEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 1 Modeling of Terahertz Heating Effects effects. As with any other electromagnetic radiation interaction with tissue, the temperature distribution

  12. Optimal control of gun recoil in direct fire using magnetorheological absorbers

    NASA Astrophysics Data System (ADS)

    Singh, Harinder J.; Wereley, Norman M.

    2014-05-01

    Optimal control of a gun recoil absorber is investigated for minimizing recoil loads and maximizing rate of fire. A multi-objective optimization problem was formulated by considering the mechanical model of the recoil absorber employing a spring and a magnetorheological (MR) damper. The damper forces are predicted by evaluating pressure drops using a nonlinear Bingham-plastic model. The optimization methodology provides multiple optimal design configurations with a trade-off between recoil load minimization and increased rate of fire. The configurations with low or high recoil loads imply low or high rate of fire, respectively. The gun recoil absorber performance is also analyzed for perturbations in the firing forces. The adaptive control of the MR damper for varying gun firing forces provides a smooth operation by returning the recoil mass to its battery position (ready to reload and fire) without incurring an end-stop impact. Furthermore, constant load transmissions are observed with respect to the recoil stroke by implementing optimal control during the simulated firing events.

  13. Under consideration for publication in J. Fluid Mech. 1 Recoil of a liquid filament

    E-print Network

    Hoepffner, Jérôme

    ) A liquid filament recoils because of its surface tension. It may recoil to one sphere: the geometrical filament by a neck. The radius of the neck decreases in time such that we may expect pinch-off. There is a flow through the neck because of the retraction. This flow may detach into a jet downstream of the neck

  14. Exact calculations of nuclear-recoil energies from prompt gamma decays resulting from neutron capture

    SciTech Connect

    Kinney, J.H.

    1981-07-20

    The results of an accurate determination of the recoil spectrum from (n, ..gamma..) reactions in molybdenum are presented. The recoil spectrum has been calculated from nuclear level structure data and measured branching ratios. Angular correlations between successive gammas have been accounted for using the standard theoretical techniques of Racah algebra and the density matrix formalism.

  15. External-field effect on quantum features of radiation emitted by a quantum well in a microcavity

    SciTech Connect

    Sete, Eyob A.; Das, Sumanta; Eleuch, H.

    2011-02-15

    We consider a semiconductor quantum well in a microcavity driven by coherent light and coupled to a squeezed vacuum reservoir. By systematically solving the pertinent quantum Langevin equations in the strong-coupling and low-excitation regimes, we study the effect of exciton-photon detuning, external coherent light, and the squeezed vacuum reservoir on vacuum Rabi splitting and on quantum statistical properties of the light emitted by the quantum well. We show that the exciton-photon detuning leads to a shift in polariton resonance frequencies and a decrease in fluorescence intensity. We also show that the fluorescent light exhibits quadrature squeezing, which predominately depends on the exciton-photon detuning and the degree of the squeezing of the input field.

  16. Quantum Hall Effect on the Flag Manifold F_2

    E-print Network

    Mohammed Daoud; Ahmed Jellal

    2008-05-06

    The Landau problem on the flag manifold ${\\bf F}_2 = SU(3)/U(1)\\times U(1)$ is analyzed from an algebraic point of view. The involved magnetic background is induced by two U(1) abelian connections. In quantizing the theory, we show that the wavefunctions, of a non-relativistic particle living on ${\\bf F}_2$, are the SU(3) Wigner ${\\cal D}$-functions satisfying two constraints. Using the ${\\bf F}_2$ algebraic and geometrical structures, we derive the Landau Hamiltonian as well as its energy levels. The Lowest Landau level (LLL) wavefunctions coincide with the coherent states for the mixed SU(3) representations. We discuss the quantum Hall effect for a filling factor $\

  17. Quantum Gravity effect on the Quark-Gluon Plasma

    E-print Network

    I. Elmashad; A. Farag Ali; L. I. Abou-Salem; Jameel-Un Nabi; A. Tawfik

    2012-08-20

    The Generalized Uncertainty Principle (GUP), which has been predicted by various theories of quantum gravity near the Planck scale is implemented on deriving the thermodynamics of ideal Quark-Gluon Plasma (QGP) consisting of two massless quark flavors at the hadron-QGP phase equilibrium and at a vanishing chemical potential. The effective degrees of freedom and MIT bag pressure are utilized to distinguish between the hadronic and partonic phases. We find that GUP makes a non-negligible contribution to all thermodynamic quantities, especially at high temperatures. The asymptotic behavior of corresponding QGP thermodynamic quantities characterized by the Stephan-Boltzmann limit would be approached, when the GUP approach is taken into consideration.

  18. The origins of cosmic rays and quantum effects on gravity

    NASA Technical Reports Server (NTRS)

    Tomozawa, Y.

    1985-01-01

    The energy spectrum of primary cosmic rays is explained by particles emitted during a thermal expansion of explosive objects inside and near the galaxy, remnants of which may be supernova and/or active talaxies, or even stars or galaxies that disappeared from our sight after the explosion. A power law energy spectrum for cosmic rays, E to the (-alpha -1, is obtained from an expansion rate T is proportional to R to the alpha. Using the solution of the Einstein equation, we obtain a spectrum which agrees very well with experimental data. The implication of an inflationary early universe on the cosmic ray spectrum is also discussed. It is also suggested that the conflict between this model and the singularity theorem in classical general relativity may be eliminated by quantum effects.

  19. Symmetry criteria for quantum simulability of effective interactions

    NASA Astrophysics Data System (ADS)

    Zimborás, Zoltán; Zeier, Robert; Schulte-Herbrüggen, Thomas; Burgarth, Daniel

    2015-10-01

    What can one do with a given tunable quantum device? We provide complete symmetry criteria deciding whether some effective target interaction(s) can be simulated by a set of given interactions. Symmetries lead to a better understanding of simulation and permit a reasoning beyond the limitations of the usual explicit Lie closure. Conserved quantities induced by symmetries pave the way to a resource theory for simulability. On a general level, one can now decide equality for any pair of compact Lie algebras just given by their generators without determining the algebras explicitly. Several physical examples are illustrated, including entanglement invariants, the relation to unitary gate membership problems, as well as the central-spin model.

  20. Magnetic quantum coherence effect in Ni4 molecular transistors.

    PubMed

    González, Gabriel; Leuenberger, Michael N

    2014-07-01

    We present a theoretical study of electron transport in Ni4 molecular transistors in the presence of Zeeman spin splitting and magnetic quantum coherence (MQC). The Zeeman interaction is extended along the leads which produces gaps in the energy spectrum which allow electron transport with spin polarized along a certain direction. We show that the coherent states in resonance with the spin up or down states in the leads induces an effective coupling between localized spin states and continuum spin states in the single molecule magnet and leads, respectively. We investigate the conductance at zero temperature as a function of the applied bias and magnetic field by means of the Landauer formula, and show that the MQC is responsible for the appearence of resonances. Accordingly, we name them MQC resonances. PMID:24918902

  1. Magnetoelectric transport and quantum interference effect in ultrathin manganite films

    SciTech Connect

    Wang, Cong; Jin, Kui-juan Gu, Lin; Lu, Hui-bin; Li, Shan-ming; Zhou, Wen-jia; Zhao, Rui-qiang; Guo, Hai-zhong; He, Meng; Yang, Guo-zhen

    2014-04-21

    The magnetoelectric transport behavior with respect to the thicknesses of ultrathin La{sub 0.9}Sr{sub 0.1}MnO{sub 3} films is investigated in detail. The metal-insulator phase transition, which has never been observed in bulk La{sub 0.9}Sr{sub 0.1}MnO{sub 3}, is found in ultrathin films with thicknesses larger than 6 unit cells. Low-temperature resistivity minima appeared in films with thicknesses less than 10 unit cells. This is attributed to the presence of quantum interference effects. These data suggest that the influence of the weak localization becomes much pronounced as the film thickness decreases from 16 to 8 unit cells.

  2. Role of quantum effects in the glass transition

    NASA Astrophysics Data System (ADS)

    Novikov, Vladimir; Sokolov, Alexei

    2013-03-01

    It is shown that quantum effects lead to a significant decrease of the glass transition temperature Tg with respect to the melting temperature Tm, so that the ratio Tg/Tm can be much smaller than the typical value of 2/3 in materials where Tg is near or below ~ 60 K. Furthermore, it is demonstrated that the viscosity or structural relaxation time in such low temperature glass-formers should exhibit highly unusual temperature dependence, namely a decrease of the apparent activation energy upon approaching Tg (instead of traditional increase). V.N.N. acknowledges research sponsored by the Laboratory Directed Research and Development Program at the Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy.

  3. Impact of Low-Energy Response to Nuclear Recoils in Dark Matter Detectors

    E-print Network

    Mei, D -M; Wang, L

    2015-01-01

    We report an absolute energy response function to electronic and nuclear recoils for germanium and liquid xenon detectors. As a result, we show that the detection energy threshold of nuclear recoils for a dual-phase xenon detector can be $\\sim$ 6.8 keV for a given number of detectable photoelectrons. We evaluate the average energy expended per electron-hole pair to be $\\sim$8.9 eV, which sets a detection energy threshold of $\\sim$4.5 keV for a germanium detector at 50 mini-Kelvin at 69 volts with a primary phonon frequency of 2 THz. The Fano factors of nuclear and electronic recoils that constrain the capability for discriminating nuclear recoils below 2-3 keV recoil energy for both technologies are different.

  4. Efficient Multi-Dimensional Simulation of Quantum Confinement Effects in Advanced MOS Devices

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Rafferty, Conor S.; Ancona, Mario G.; Yu, Zhi-Ping

    2000-01-01

    We investigate the density-gradient (DG) transport model for efficient multi-dimensional simulation of quantum confinement effects in advanced MOS devices. The formulation of the DG model is described as a quantum correction to the classical drift-diffusion model. Quantum confinement effects are shown to be significant in sub-100nm MOSFETs. In thin-oxide MOS capacitors, quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion or quantum effects in simulations dramatically improves the match between C-V simulations and measurements for oxide thickness down to 2 nm. Significant quantum corrections also occur in the I-V characteristics of short-channel (30 to 100 nm) n-MOSFETs, with current drive reduced by up to 70%. This effect is shown to result from reduced inversion charge due to quantum confinement of electrons in the channel. Also, subthreshold slope is degraded by 15 to 20 mV/decade with the inclusion of quantum effects via the density-gradient model, and short channel effects (in particular, drain-induced barrier lowering) are noticeably increased.

  5. NMR quantum simulation of localization effects induced by decoherence

    E-print Network

    Gonzalo A. Alvarez; Dieter Suter

    2010-04-28

    The loss of coherence in quantum mechanical superposition states limits the time for which quantum information remains useful. Similarly, it limits the distance over which quantum information can be transmitted, resembling Anderson localization, where disorder causes quantum mechanical states to become localized. Here, we investigate in a nuclear spin-based quantum simulator, the localization of the size of spin clusters that are generated by a Hamiltonian driving the transmission of information, while a variable-strength perturbation counteracts the spreading. We find that the system reaches a dynamic equilibrium size, which decreases with the square of the perturbation strength.

  6. Decoherence Effect on Quantum Correlation and Entanglement in a Two-qubit Spin Chain

    NASA Astrophysics Data System (ADS)

    Pourkarimi, Mohammad Reza; Rahnama, Majid; Rooholamini, Hossein

    2015-04-01

    Assuming a two-qubit system in Werner state which evolves in Heisenberg XY model with Dzyaloshinskii-Moriya (DM) interaction under the effect of different environments. We evaluate and compare quantum entanglement, quantum and classical correlation measures. It is shown that in the absence of decoherence effects, there is a critical value of DM interaction for which entanglement may vanish while quantum and classical correlations do not. In the presence of environment the behavior of correlations depends on the kind of system-environment interaction. Correlations can be sustained by manipulating Hamiltonian anisotropic-parameter in a dissipative environment. Quantum and classical correlations are more stable than entanglement generally.

  7. Group velocity of extraordinary waves in superdense magnetized quantum plasma with spin-1/2 effects

    SciTech Connect

    Li Chunhua; Ren Haijun; Yang Weihong; Wu Zhengwei; Chu, Paul K.

    2012-12-15

    Based on the one component plasma model, a new dispersion relation and group velocity of elliptically polarized extraordinary electromagnetic waves in a superdense quantum magnetoplasma are derived. The group velocity of the extraordinary wave is modified due to the quantum forces and magnetization effects within a certain range of wave numbers. It means that the quantum spin-1/2 effects can reduce the transport of energy in such quantum plasma systems. Our work should be of relevance for the dense astrophysical environments and the condensed matter physics.

  8. Valley-polarized quantum anomalous Hall effect in silicene.

    PubMed

    Pan, Hui; Li, Zhenshan; Liu, Cheng-Cheng; Zhu, Guobao; Qiao, Zhenhua; Yao, Yugui

    2014-03-14

    We find theoretically a new quantum state of matter-the valley-polarized quantum anomalous Hall state in silicene. In the presence of Rashba spin-orbit coupling and an exchange field, silicene hosts a quantum anomalous Hall state with Chern number C=2. We show that through tuning the Rashba spin-orbit coupling, a topological phase transition results in a valley-polarized quantum anomalous Hall state, i.e., a quantum state that exhibits the electronic properties of both the quantum valley Hall state (valley Chern number Cv=3) and quantum anomalous Hall state with C=-1. This finding provides a platform for designing dissipationless valleytronics in a more robust manner. PMID:24679320

  9. Valley-Polarized Quantum Anomalous Hall Effect in Silicene

    NASA Astrophysics Data System (ADS)

    Pan, Hui; Li, Zhenshan; Liu, Cheng-Cheng; Zhu, Guobao; Qiao, Zhenhua; Yao, Yugui

    2014-03-01

    We find theoretically a new quantum state of matter—the valley-polarized quantum anomalous Hall state in silicene. In the presence of Rashba spin-orbit coupling and an exchange field, silicene hosts a quantum anomalous Hall state with Chern number C =2. We show that through tuning the Rashba spin-orbit coupling, a topological phase transition results in a valley-polarized quantum anomalous Hall state, i.e., a quantum state that exhibits the electronic properties of both the quantum valley Hall state (valley Chern number Cv=3) and quantum anomalous Hall state with C =-1. This finding provides a platform for designing dissipationless valleytronics in a more robust manner.

  10. Magnetic Topological Insulators and Quantum Anomalous Hall Effect

    NASA Astrophysics Data System (ADS)

    Kou, Xufeng

    The engineering of topological surface states is a key to realize applicable devices based on topological insulators (TIs). Among various proposals, introducing magnetic impurities into TIs has been proven to be an effective way to open a surface gap and integrate additional ferromagnetism with the original topological order. In this Dissertation, we study both the intrinsic electrical and magnetic properties of the magnetic TI thin films grown by molecular beam epitaxy. By doping transition element Cr into the host tetradymite-type V-VI semiconductors, we achieve robust ferromagnetic order with a strong perpendicular magnetic anisotropy. With additional top-gating capability, we realize the electric-field-controlled ferromagnetism in the magnetic TI systems, and demonstrate such magneto-electric effects can be effectively manipulated, depending on the interplays between the band topology, magnetic exchange coupling, and structural engineering. Most significantly, we report the observation of quantum anomalous Hall effect (QAHE) in the Cr-doped (BiSb)2Te3 samples where dissipationless chiral edge conduction is realized in the macroscopic millimeter-size devices without the presence of any external magnetic field, and the stability of the quantized Hall conductance of e2/h is well-maintained as the film thickness varies across the 2D hybridization limit. With additional quantum confinement, we discover the metal-to-insulator switching between two opposite QAHE states, and reveal the universal QAHE phase diagram in the thin magnetic TI samples. In addition to the uniform magnetic TIs, we further investigate the TI/Cr-doped TI bilayer structures prepared by the modulation-doped growth method. By controlling the magnetic interaction profile, we observe the Dirac hole-mediated ferromagnetism and develop an effective way to manipulate its strength. Besides, the giant spin-orbit torque in such magnetic TI-based heterostructures enables us to demonstrate the current-induced magnetization switching with the critical current density much lower than other heavy metal/magnet systems. Our work on the magnetic TIs and their heterostructures thus unfolds new avenues for novel multifunctional nano-electronics and non-volatile spintronic applications.

  11. Effective approach to non-relativistic quantum mechanics

    E-print Network

    David M. Jacobs

    2015-11-19

    Non-trivial self-adjoint extensions in quantum mechanics have been used in the past to model contact interactions when those interactions are expected a priori. However, real physical systems can only ever be understood to a finite resolution, so there exists a generic ignorance of possible short-range interactions. To address this issue, a real-space approach is described here wherein an artificial boundary is inserted at an intermediate scale to explicitly hide possible short-distance effects. Boundary conditions may then encode physical effects that are hidden behind the boundary, thereby effectively capturing the set of possible UV completions. Using this approach, a non-relativistic analysis is performed of the free particle, harmonic oscillator, and Coulomb potential in three dimensions. Requiring measurable quantities, such as spectra and cross sections, to be independent of the position of the boundary, renormalization group-type equations are derived that determine how the boundary conditions run. Generically, observables differ from their canonical values and symmetries are anomalously broken. Connections are made to well-studied physical systems, such as the deuteron and condensed matter systems that employ Feshbach resonances.

  12. Mahan polaritons and their lifetime due to hole recoil

    NASA Astrophysics Data System (ADS)

    Baeten, Maarten; Wouters, Michiel

    2015-11-01

    We present a theoretical study on polaritons in doped semiconductor microcavities, focussing on a cavity mode that is resonant with the Fermi edge. In agreement with experimental results, the strong light-matter coupling is maintained under very high doping within our ladder diagram approximation. In particular, we find that the polaritons result from the strong admixing of the cavity mode with the Mahan exciton. The upper Mahan polariton, lying in the electron-hole continuum, always remains visible and has a linewidth due to free interband electron-hole creation. The lower Mahan polariton acquires a finite lifetime due to relaxation of the valence band hole if the electron density exceeds a certain critical value. However, if the Rabi splitting exceeds the inverse hole recoil time, the lower polariton lifetime is only limited by the cavity properties.

  13. Study of nuclear recoils in liquid argon with monoenergetic neutrons

    E-print Network

    Regenfus, C; Amsler, C; Creus, W; Ferella, A; Rochet, J; Walter, M

    2012-01-01

    For the development of liquid argon dark matter detectors we assembled a setup in the laboratory to scatter neutrons on a small liquid argon target. The neutrons are produced mono-energetically (E_kin=2.45 MeV) by nuclear fusion in a deuterium plasma and are collimated onto a 3" liquid argon cell operating in single-phase mode (zero electric field). Organic liquid scintillators are used to tag scattered neutrons and to provide a time-of-flight measurement. The setup is designed to study light pulse shapes and scintillation yields from nuclear and electronic recoils as well as from {\\alpha}-particles at working points relevant to dark matter searches. Liquid argon offers the possibility to scrutinise scintillation yields in noble liquids with respect to the populations of the two fundamental excimer states. Here we present experimental methods and first results from recent data towards such studies.

  14. Proton Recoil Detectors and Fission Ionization Chambers for Neutron Dosimetry

    NASA Astrophysics Data System (ADS)

    Wilson, Brent; McMahan, Peggy; Barquest, Brad; Johnson, Mike

    2006-10-01

    This research involved the creation and development of detectors for the measurement of neutron flux. These detectors will be utilized to obtain dose information for fast neutron irradiations of electronic components, materials, and biological samples in the new neutron beamline at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. As a first step, we have developed two well-established neutron detectors -- the proton recoil detector and the fission ionization chamber -- for the energy range of the neutrons at our facility, 5 to 30 MeV. Using activation foil measurements (to obtain absolute neutron flux) and time-of-flight measurements with a Stilbene detector (to obtain the neutron energy spectra), we can calculate the efficiency of our detectors for both monoenergetic and white spectrum neutrons in this energy range.

  15. Spectroscopy of {sup 144}Ho using recoil-isomer tagging

    SciTech Connect

    Mason, P. J. R; Cullen, D. M.; Scholey, C.; Greenlees, P. T.; Jakobsson, U.; Jones, P. M.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Nyman, M.; Peura, P.; Puurunen, A.; Rahkila, P.; Ruotsalainen, P.; Sorri, J.; Saren, J.; Uusitalo, J.; Xu, F. R.

    2010-02-15

    Excited states in the proton-unbound odd-odd nucleus {sup 144}Ho have been populated using the {sup 92}Mo({sup 54}Fe,pn){sup 144}Ho reaction and studied using the recoil-isomer-tagging technique. The alignment properties and signature splitting of the rotational band above the I{sup p}i=(8{sup +}){sup 144m}Ho isomer have been analyzed and the isomer confirmed to have a pih{sub 11/2} x nuh{sub 11/2} two-quasiparticle configuration. The configuration-constrained blocking method has been used to calculate the shapes of the ground and isomeric states, which are both predicted to have triaxial nuclear shapes with |gamma|approx =24 deg.

  16. Recoil Polarization for Delta Excitation in Pion Electroproduction

    SciTech Connect

    J. J. Kelly; R. E. Roche; Z. Chai; M. K. Jones; O. Gayou; A. J. Sarty; S. Frullani; K. Aniol; E. J. Beise; F. Benmokhtar; W. Bertozzi; W. U. Boeglin; T. Botto; E. J. Brash; H. Breuer; E. Brown; E. Burtin; J. R. Calarco; C. Cavata; C. C. Chang; N. S. Chant; J.-P. Chen; M. Coman; D. Crovelli; R. De Leo; S. Dieterich; S. Escoffier; K. G. Fissum; V. Garde; F. Garibaldi; S. Georgakopoulus; S. Gilad; R. Gilman; C. Glashausser; J.-O. Hansen; D. W. Higinbotham; A. Hotta; G. M. Huber; H. Ibrahim; M. Iodice; C. W. de Jager; X. Jiang; A. Klimenko; A. Kozlov; G. Kumbartzki; M. Kuss; L. Lagamba; G. Laveissiere; J. J. LeRose; R. A. Lindgren; N. Liyanage; G. J. Lolos; R. W. Lourie; D. J. Margaziotis; F. Marie; P. Markowitz; S. McAleer; D. Meekins; R. Michaels; B. D. Milbrath; J. Mitchell; J. Nappa; D. Neyret; C. F. Perdrisat; M. Potokar; V. A. Punjabi; T. Pussieux; R. D. Ransome; P. G. Roos; M. Rvachev; A. Saha; S. Sirca; R. Suleiman; S. Strauch; J. A. Templon; L. Todor; P. E. Ulmer; G. M. Urciuoli; L. B. Weinstein; K. Wijesooriya; B. Wojtsekhowski; X. Zheng; and L. Zhu

    2005-08-01

    We measured angular distributions of recoil-polarization response functions for neutral pion electroproduction for W=1.23 GeV at Q{sup 2}=1.0 (GeV/c){sup 2}, obtaining 14 separated response functions plus 2 Rosenbluth combinations; of these, 12 have been observed for the first time. Dynamical models do not describe quantities governed by imaginary parts of interference products well, indicating the need for adjusting magnitudes and phases for nonresonant amplitudes. We performed a nearly model-independent multipole analysis and obtained values for Re(S1+/M1+)=-(6.84+/-0.15)% and Re(E1+/M1+)=-(2.91+/-0.19)% that are distinctly different from those from the traditional Legendre analysis based upon M1+ dominance and sp truncation.

  17. A Recoil Mass Spectrometer for the HHIRF facility

    SciTech Connect

    Cole, J.D. ); Cormier, T.M. ); Hamilton, J.H. . Dept. of Physics and Astronomy)

    1989-01-01

    A Recoil Mass Spectrometer (RMS) is to be built that will carry out a broad research program in heavy-ion science. The RMS will make possible the study of otherwise inaccessible exotic nuclei. Careful attention has been given to match the RMS to all the beams available from the HHIRF accelerators, including those beams with the highest energy, as well as massive particles for use in inverse reactions. The RMS is to be a momentum achromat followed by a split electric-dipole mass spectrometer of the type operating at NSRL at the University of Rochester. The RMS is essential for many of the proposed experiments on short-lived and/or low cross-section products. The spectrometer design is discussed, with examples and comparisons with other spectrometers given. Detector arrays to be used with the RMS are also discussed. 21 refs., 4 figs., 1 tab.

  18. Quantum Hall Effect and Black Hole Entropy in Loop Quantum Gravity

    E-print Network

    Deepak Vaid

    2012-08-16

    In LQG, black hole horizons are described by 2+1 dimensional boundaries of a bulk 3+1 dimensional spacetime. The horizon is endowed with area by lines of gravitational flux which pierce the surface. As is well known, counting of the possible states associated with a given set of punctures allows us to recover the famous Bekenstein-Hawking area law according to which the entropy of a black hole is proportional to the area of the associated horizon $ S_{BH} \\propto A_{Hor} $. It is also known that the dynamics of the horizon degrees of freedom is described by the Chern-Simons action of a $\\mathfrak{su(2)}$ (or $\\mathfrak{u(1)}$ after a certain gauge fixing) valued gauge field $A_{\\mu}^i$. Recent numerical work which performs the state-counting for punctures, from first-principles, reveals a step-like structure in the entropy-area relation. We argue that both the presence of the Chern-Simons action and the step-like structure in the entropy-area curve are indicative of the fact that the effective theory which describes the dynamics of punctures on the horizon is that of the Quantum Hall Effect.

  19. Sub-barrier reactions measured using a recoil mass separator

    SciTech Connect

    Betts, R.R.

    1988-01-01

    Few data exist in the sub-barrier region for reaction channels other than fusion. In particular, our experimental knowledge of quasi-elastic transfer reactions is sparse, despite the belief that this particular channel may be dominant in determining some features of the sub-barrier fusion enhancement. Transfer reactions are governed primarily by the closet approach of the colliding nuclei which, at low energies, results in a strong backward peaking of the angular distribution in the center-of-mass frame. For situations where the projectile has a significant fraction of the target mass, as is so in most cases of interest, the backscattered projectile-like fragment has such low energy that the usual techniques of measurement and identification become invalid. Here, we report on a solution to this problem which allows a systematic study of many aspects of transfer reactions in the energy regime of interest. We exploit the fact that associated with the low-energy backscattered projectile-like fragment is a complementary target-like fragment which recoils to forward angles with a large fraction of the incident beam energy. These target-like fragments were detected and identified using the Daresbury Recoil Mass Separator thus allowing the measurement of quasi-elastic transfer over hitherto inaccessible energy range from the vicinity of the barrier to several tens of MeV below. The experiments described here used VYNi beams of energies ranging from 180 to 260 MeV provided by the Daresbury Laboratory Nuclear Structure Facility tandem accelerator. Data on sub-barrier transfer for targets of /sup 116,118,120,122,124/Sn and /sup 144,148,150,152,154/Sm were obtained. 16 refs., 10 figs., 2 tabs.

  20. Collision of fast highly charged ions in gas targets: ionization, recoil-ion production, and charge transfer

    SciTech Connect

    Schalchter, A.S.; Berkner, K.H.; Beyer, H.F.

    1982-07-01

    Electron-capture, ionization, and recoil-ion-production cross sections are measured and calculated for fast highly charged projectiles in hydrogen and rare-gas targets. Recoil-ion-production cross sections are found to be large; the low energy and high charge states of the recoil ions make them useful for subsequent collision studies.

  1. Effective-field-theory model for the fractional quantum Hall effect

    NASA Technical Reports Server (NTRS)

    Zhang, S. C.; Hansson, T. H.; Kivelson, S.

    1989-01-01

    Starting directly from the microscopic Hamiltonian, a field-theory model is derived for the fractional quantum Hall effect. By considering an approximate coarse-grained version of the same model, a Landau-Ginzburg theory similar to that of Girvin (1986) is constructed. The partition function of the model exhibits cusps as a function of density. It is shown that the collective density fluctuations are massive.

  2. Cosmological fluctuations: Comparing Quantum and Classical Statistical and Stringy Effects

    E-print Network

    de Alwis, S P

    2015-01-01

    The theory of cosmological fluctuations assumes that the pre-inflationary state of the universe was the quantum vacuum of a scalar field(s) coupled to gravity. The observed cosmic microwave background fluctuations are then interpreted as quantum fluctuations. Here we consider alternate interpretations of the classic calculations of scalar and tensor power spectra by replacing the quantum vacuum with a classical statistical distribution, and suggest a way of distinguishing the quantum from the classical alternatives. The possibility that the latter is governed by a fundamental length scale as in string theory is also explored.

  3. Effective Dynamics in Bianchi Type II Loop Quantum Cosmology

    E-print Network

    Corichi, Alejandro

    2012-01-01

    We numerically investigate the solutions to the effective equations of the Bianchi II model within the "improved" Loop Quantum Cosmology (LQC) dynamics. The matter source is a massless scalar field. We perform a systematic study of the space of solutions, and focus on the behavior of several geometrical observables. We show that the big-bang singularity is replaced by a bounce and the point-like singularities do not saturate the energy density bound. There are up to five directional bounces in the scale factors, one global bounce in the expansion, the shear presents up to four local maxima and can be zero at the bounce. This allows for solutions with density larger than the maximal density for the isotropic and Bianchi I cases. The asymptotic behavior is shown to behave like that of a Bianchi I model, and the effective solutions connect anisotropic solutions even when the shear is zero at the bounce. All known facts of Bianchi I are reproduced. In the "vacuum limit", solutions are such that almost all the dyn...

  4. Effective Dynamics in Bianchi Type II Loop Quantum Cosmology

    E-print Network

    Alejandro Corichi; Edison Montoya

    2012-03-08

    We numerically investigate the solutions to the effective equations of the Bianchi II model within the "improved" Loop Quantum Cosmology (LQC) dynamics. The matter source is a massless scalar field. We perform a systematic study of the space of solutions, and focus on the behavior of several geometrical observables. We show that the big-bang singularity is replaced by a bounce and the point-like singularities do not saturate the energy density bound. There are up to three directional bounces in the scale factors, one global bounce in the expansion, the shear presents up to four local maxima and can be zero at the bounce. This allows for solutions with density larger than the maximal density for the isotropic and Bianchi I cases. The asymptotic behavior is shown to behave like that of a Bianchi I model, and the effective solutions connect anisotropic solutions even when the shear is zero at the bounce. All known facts of Bianchi I are reproduced. In the "vacuum limit", solutions are such that almost all the dynamics is due to the anisotropies. Since Bianchi II plays an important role in the Bianchi IX model and the Belinskii, Khalatnikov, Lifshitz (BKL) conjecture, our results can provide an intuitive understanding of the behavior in the vicinity of general space-like singularities, when loop-geometric corrections are present.

  5. Effective dynamics in Bianchi type II loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Corichi, Alejandro; Montoya, Edison

    2012-05-01

    We numerically investigate the solutions to the effective equations of the Bianchi II model within the “improved” loop quantum cosmology dynamics. The matter source is a massless scalar field. We perform a systematic study of the space of solutions, and focus on the behavior of several geometrical observables. We show that the big bang singularity is replaced by a bounce and the pointlike singularities do not saturate the energy density bound. There are up to three directional bounces in the scale factors, one global bounce in the expansion, the shear presents up to four local maxima and can be zero at the bounce. This allows for solutions with density larger than the maximal density for the isotropic and Bianchi I cases. The asymptotic behavior is shown to behave like that of a Bianchi I model, and the effective solutions connect anisotropic solutions even when the shear is zero at the bounce. All known facts of Bianchi I are reproduced. In the “vacuum limit,” solutions are such that almost all the dynamics is due to the anisotropies. Since Bianchi II plays an important role in the Bianchi IX model and the Belinskii, Khalatnikov, Lifshitz conjecture, our results can provide an intuitive understanding of the behavior in the vicinity of general spacelike singularities, when loop-geometric corrections are present.

  6. Astrometric detection of gravitational effects of quantum vacuum

    NASA Astrophysics Data System (ADS)

    Vecchiato, Alberto; Gai, Mario; Hajdukovic, Dragan

    2015-08-01

    In a series of recent papers it was suggested that the pairs of virtual particles-antiparticles composing the Quantum Vacuum (QV) can behave like gravitational dipoles with both attractive and repulsive interaction. If verified, this hypothesis would give raise to a series of gravitational effects at different scale length not yet considered in current gravity theories, and it may support galactic and cosmological models alternative to those involving Dark Matter and Dark Energy.Within the boundaries of the Solar System, the most promising targets for testing the gravitational QV conjecture are the binary trans-neptunian objects (TNOs). The gravitational action of the QV, in fact, would manifest itself as an external force inducing an anomalous precession, i.e. an excess shift of the longitude of the pericenter in the orbit of the TNO satellite which, e.g., for the UX25 candidate and under reasonable working hypothesis, was estimated to be about 0.23 arcsec per orbit.In this work we analyze in some detail the feasibility of testing the gravitational QV hypothesis estimating the above effect with ground-based and spaceborne astrometric observations. Several observing scenarios are explored here, including those using conventional and adaptive optics telescopes from ground, some spaceborne telescopes, and by exploring a list of possible candidates.

  7. Quantum Anomalous Hall Effect in Hetero Magnetic Topological Insulator Structures

    NASA Astrophysics Data System (ADS)

    Wang, Kang

    2014-03-01

    The quantum anomalous Hall effect (QAHE), which has the quantized Hall conductance of h /e2 in the absence of external field, was expected to happen in a magnetic 3-D topological insulators (TIs) system. In this talk, we report recent progress of QAHE-related physics in the TRS-breaking field. In the first part, we show the generation of robust magnetism by doping magnetic ions (Cr) into the host (BixSb1-x)2 Te3 materials. With gate-controlled magneto-transport measurements, we demonstrate the presence of both the hole-mediated RKKY coupling and carrier-independent van Vleck magnetism. By adjusting the Cr doping concentration and Bi/Sb ratio, we establish an effective way to experimentally approach to the QAHE region. The second part of this talk discusses the manipulation of surface-related magnetism in the modulation-doped TI/Cr-doped TI heterostructures. We investigate the role of massive surface Dirac fermions in the bulk RKKY mediation process. Both our theoretical models and experimental results reveal that the topological surface-related magnetic order can be either enhanced or suppressed, depending on the magnetic interaction range between the surface states and Cr ions. Based on such TI heterostructures, we also demonstrate the magnetization switching via giant spin-orbit torque induced by the in-plane current. Finally, in order to make these effects observable at 300K, we describe the use of magnetic proximity effects to manipulate the surface magnetism of TI. These results not only demonstrate additional important steps to further explore fundamental properties of the TRS-breaking TI systems but also may help the realization of many functionalities of TI-based spintronics applications. The work was in part supported by DARPA under N66001-12-1-40 and N66001-11-1-4105.

  8. Quantum fluctuations and isotope effects in ab initio descriptions of water

    SciTech Connect

    Wang, Lu; Markland, Thomas E.; Ceriotti, Michele

    2014-09-14

    Isotope substitution is extensively used to investigate the microscopic behavior of hydrogen bonded systems such as liquid water. The changes in structure and stability of these systems upon isotope substitution arise entirely from the quantum mechanical nature of the nuclei. Here, we provide a fully ab initio determination of the isotope exchange free energy and fractionation ratio of hydrogen and deuterium in water treating exactly nuclear quantum effects and explicitly modeling the quantum nature of the electrons. This allows us to assess how quantum effects in water manifest as isotope effects, and unravel how the interplay between electronic exchange and correlation and nuclear quantum fluctuations determine the structure of the hydrogen bond in water.

  9. Photonic realization of nonlocal memory effects and non-Markovian quantum probes

    PubMed Central

    Liu, Bi-Heng; Cao, Dong-Yang; Huang, Yun-Feng; Li, Chuan-Feng; Guo, Guang-Can; Laine, Elsi-Mari; Breuer, Heinz-Peter; Piilo, Jyrki

    2013-01-01

    The study of open quantum systems is important for fundamental issues of quantum physics as well as for technological applications such as quantum information processing. Recent developments in this field have increased our basic understanding on how non-Markovian effects influence the dynamics of an open quantum system, paving the way to exploit memory effects for various quantum control tasks. Most often, the environment of an open system is thought to act as a sink for the system information. However, here we demonstrate experimentally that a photonic open system can exploit the information initially held by its environment. Correlations in the environmental degrees of freedom induce nonlocal memory effects where the bipartite open system displays, counterintuitively, local Markovian and global non-Markovian character. Our results also provide novel methods to protect and distribute entanglement, and to experimentally quantify correlations in photonic environments.

  10. A Novel method for modeling the recoil in W boson events at hadron collider

    SciTech Connect

    Abazov, Victor Mukhamedovich; Abbott, Braden Keim; Abolins, Maris A.; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Aguilo, Ernest; Ahsan, Mahsana; Alexeev, Guennadi D.; Alkhazov, Georgiy D.; Alton, Andrew K.; /Michigan U. /Augustana Coll., Sioux Falls /Northeastern U.

    2009-07-01

    We present a new method for modeling the hadronic recoil in W {yields} {ell}{nu} events produced at hadron colliders. The recoil is chosen from a library of recoils in Z {yields} {ell}{ell} data events and overlaid on a simulated W {yields} {ell}{nu} event. Implementation of this method requires that the data recoil library describe the properties of the measured recoil as a function of the true, rather than the measured, transverse momentum of the boson. We address this issue using a multidimensional Bayesian unfolding technique. We estimate the statistical and systematic uncertainties from this method for the W boson mass and width measurements assuming 1 fb{sup -1} of data from the Fermilab Tevatron. The uncertainties are found to be small and comparable to those of a more traditional parameterized recoil model. For the high precision measurements that will be possible with data from Run II of the Fermilab Tevatron and from the CERN LHC, the method presented in this paper may be advantageous, since it does not require an understanding of the measured recoil from first principles.

  11. Coulomb Oscillations and Hall Effect in Quasi-2D Graphite Quantum Dots

    E-print Network

    McEuen, Paul L.

    Coulomb Oscillations and Hall Effect in Quasi-2D Graphite Quantum Dots J. Scott Bunch, Yuval Yaish-temperature electrical transport measurements on gated, quasi-2D graphite quantum dots. In devices with low contact that electrons in mesoscopic graphite pieces are delocalized over nearly the whole graphite piece down to low

  12. An NMR and Quantum Mechanical Investigation of Solvent Effects on Conformational Equilibria of Butanedinitrile

    E-print Network

    Goddard III, William A.

    Received April 12, 2002 Abstract: Vicinal proton-proton NMR couplings and ab initio quantum mechanics haveAn NMR and Quantum Mechanical Investigation of Solvent Effects on Conformational Equilibria, the hydroxyl proton of 2-fluoro- ethanol shows the typical upfield shift behavior of inter- molecularly

  13. Band-Gap Renormalization and Excitonic Effects in Tunneling in Asymmetric Double Quantum Wells

    NASA Astrophysics Data System (ADS)

    Tackeuchi, Atsushi; Heberle, Albert; Rühle, Wolfgang; Köhler, Klaus; Muto, Shunichi

    1995-05-01

    Tunneling in asymmetric double quantum wells is studied using time-resolved photoluminescence. The photoluminescence lineshape and peak position of the narrow quantum well are strongly influenced by band-gap renormalization caused by the tunneling carriers. Tunneling is quenched in a field regime of ±10 kV/cm around the ground-state resonance due to excitonic effects.

  14. Acceleration of positrons by a relativistic electron beam in the presence of quantum effects

    SciTech Connect

    Niknam, A. R.; Aki, H.; Khorashadizadeh, S. M.

    2013-09-15

    Using the quantum magnetohydrodynamic model and obtaining the dispersion relation of the Cherenkov and cyclotron waves, the acceleration of positrons by a relativistic electron beam is investigated. The Cherenkov and cyclotron acceleration mechanisms of positrons are compared together. It is shown that growth rate and, therefore, the acceleration of positrons can be increased in the presence of quantum effects.

  15. Accuracy of electronic wave functions in quantum Monte Carlo: The effect of high-order correlations

    E-print Network

    Nightingale, Peter

    Accuracy of electronic wave functions in quantum Monte Carlo: The effect of high-order correlations, Rhode Island 02881 Received 24 February 1997; accepted 19 May 1997 Compact and accurate wave functions can be constructed by quantum Monte Carlo methods. Typically, these wave functions consist of a sum

  16. Quantum teleportation of non-classical wave-packets, an effective multimode theory

    E-print Network

    Hugo Benichi; Shuntaro Takeda; Noriyuki Lee; Akira Furusawa

    2011-09-08

    We develop a simple and efficient theoretical model to understand the quantum properties of broadband continuous variable quantum teleportation. We show that, if stated properly, the problem of multimode teleportation can be simplified to teleportation of a single effective mode that describes the input state temporal characteristic. Using that model, we show how the finite bandwidth of squeezing and external noise in the classical channel affect the output teleported quantum field. We choose an approach that is especially relevant for the case of non-Gaussian non-classical quantum states and we finally back-test our model with recent experimental results.

  17. Piezoelectric effect in InAs/InP quantum rod nanowires grown on silicon substrate

    SciTech Connect

    Anufriev, Roman; Chauvin, Nicolas Bru-Chevallier, Catherine; Khmissi, Hammadi; Naji, Khalid; Gendry, Michel; Patriarche, Gilles

    2014-05-05

    We report on the evidence of a strain-induced piezoelectric field in wurtzite InAs/InP quantum rod nanowires. This electric field, caused by the lattice mismatch between InAs and InP, results in the quantum confined Stark effect and, as a consequence, affects the optical properties of the nanowire heterostructure. It is shown that the piezoelectric field can be screened by photogenerated carriers or removed by increasing temperature. Moreover, a dependence of the piezoelectric field on the quantum rod diameter is observed in agreement with simulations of wurtzite InAs/InP quantum rod nanowire heterostructures.

  18. Field theoretical quantities in the fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Curnoe, Stephanie Hythe

    This thesis studies two models of the fractional quantum Hall effect (FQHE), the bosonic (Chern-Simons-Landau-Ginzburg) description and the fermionic (composite fermion gauge theory) description. The bosonic theory attempts to describe the FQHE states at filling fractions nu={1/ 2n+1} while the fermionic theory attempts to describe the states at nu={p/ 2np±1} and the metallic states in between. Within the bosonic theory, the fractionally charged quasiparticles of the FQH system are vortices which appear during the breakdown of the uniform quantum Hall state. The energetics of a single vortex state are studied whereby it is shown how the system may become unstable to the formation of vortices. Numerical vortex profiles are computed by minimising the Hamiltonian. Using the fermionic theory of composite fermions interacting with gauge fluctuations, we consider two important field theoretic quantities, the self-energy and the thermodynamic potential in a finite magnetic field. We find that the conventional Luttinger-Ward treatment of the oscillatory behaviour of the thermodynamic potential is not applicable in two dimensions, for any kind of interaction. Instead we propose a new formulation which omits all crossed graphs and which necessarily includes the oscillatory self-consistent self-energy. To second order in perturbation theory, the oscillatory self-energy is calculated by retaining Landau level quantisation on the internal fermion line. The low energy form of the self-consistent self-energy is obtained by means of a new iterative procedure which is introduced here. This procedure makes use of the structure introduced by Landau level quantisation. We also investigate the structure induced in the analogous two dimensional electron-phonon problem, in order to assist our understanding of the composite fermion self-energy. In the low energy limit, it is found that the renormalised form of the composite fermion Green's function is of the same form as the unrenormalised Green's function. Therefore we argue that the principal effects of interactions may be accounted for using a field-dependent renormalised mass. The iterative procedure for finding the self-consistent self-energy is used to evaluate the renormalised gap between the Fermi energy and the first excited states, which rapidly converges in a few iterations. We find a significant departure from the asymptotic result obtained by ignoring Landau level quantisation in the regime of experimentally relevant values of the parameters. We compare our findings with measurements of the gap in fractional Hall states near nu=1/2.

  19. Generalized Landau-level representation: effect of static screening in quantum Hall effect in graphene

    E-print Network

    Igor A. Shovkovy; Lifang Xia

    2015-08-18

    By making use of the generalized Landau-level representation (GLLR) for the quasiparticle propagator, we study the effect of screening on the properties of the quantum Hall states with integer filling factors in graphene. The analysis is performed in the low-energy Dirac model in the improved rainbow approximation, in which the long-range Coulomb interaction is modified by the one-loop static screening effects in the presence of a background magnetic field. By utilizing a rather general ansatz for the propagator, in which all dynamical parameters are running functions of the Landau-level index $n$, we derive a self-consistent set of the Schwinger-Dyson (gap) equations and solve them numerically. The explicit solutions demonstrate that static screening leads to a substantial suppression of the gap parameters in the quantum Hall states with a broken $U(4)$ flavor symmetry. The temperature dependence of the energy gaps is also studied. The corresponding results mimic well the temperature dependence of the activation energies measured in experiment. It is also argued that, in principle, the Landau-level running of the quasiparticle dynamical parameters could be measured via optical studies of the integer quantum Hall states.

  20. Non-equilibrium effects upon the non-Markovian Caldeira-Leggett quantum master equation

    SciTech Connect

    Bolivar, A.O.

    2011-05-15

    Highlights: > Classical Brownian motion described by a non-Markovian Fokker-Planck equation. > Quantization process. > Quantum Brownian motion described by a non-Markovian Caldeira-Leggett equation. > A non-equilibrium quantum thermal force is predicted. - Abstract: We obtain a non-Markovian quantum master equation directly from the quantization of a non-Markovian Fokker-Planck equation describing the Brownian motion of a particle immersed in a generic environment (e.g. a non-thermal fluid). As far as the especial case of a heat bath comprising of quantum harmonic oscillators is concerned, we derive a non-Markovian Caldeira-Leggett master equation on the basis of which we work out the concept of non-equilibrium quantum thermal force exerted by the harmonic heat bath upon the Brownian motion of a free particle. The classical limit (or dequantization process) of this sort of non-equilibrium quantum effect is scrutinized, as well.